Science.gov

Sample records for embryonic expression landscape

  1. Gene Expression Noise, Fitness Landscapes, and Evolution

    NASA Astrophysics Data System (ADS)

    Charlebois, Daniel

    The stochastic (or noisy) process of gene expression can have fitness consequences for living organisms. For example, gene expression noise facilitates the development of drug resistance by increasing the time scale at which beneficial phenotypic states can be maintained. The present work investigates the relationship between gene expression noise and the fitness landscape. By incorporating the costs and benefits of gene expression, we track how the fluctuation magnitude and timescale of expression noise evolve in simulations of cell populations under stress. We find that properties of expression noise evolve to maximize fitness on the fitness landscape, and that low levels of expression noise emerge when the fitness benefits of gene expression exceed the fitness costs (and that high levels of noise emerge when the costs of expression exceed the benefits). The findings from our theoretical/computational work offer new hypotheses on the development of drug resistance, some of which are now being investigated in evolution experiments in our laboratory using well-characterized synthetic gene regulatory networks in budding yeast. Nserc Postdoctoral Fellowship (Grant No. PDF-453977-2014).

  2. The metabolome regulates the epigenetic landscape during naive-to-primed human embryonic stem cell transition.

    PubMed

    Sperber, Henrik; Mathieu, Julie; Wang, Yuliang; Ferreccio, Amy; Hesson, Jennifer; Xu, Zhuojin; Fischer, Karin A; Devi, Arikketh; Detraux, Damien; Gu, Haiwei; Battle, Stephanie L; Showalter, Megan; Valensisi, Cristina; Bielas, Jason H; Ericson, Nolan G; Margaretha, Lilyana; Robitaille, Aaron M; Margineantu, Daciana; Fiehn, Oliver; Hockenbery, David; Blau, C Anthony; Raftery, Daniel; Margolin, Adam A; Hawkins, R David; Moon, Randall T; Ware, Carol B; Ruohola-Baker, Hannele

    2015-12-01

    For nearly a century developmental biologists have recognized that cells from embryos can differ in their potential to differentiate into distinct cell types. Recently, it has been recognized that embryonic stem cells derived from both mice and humans exhibit two stable yet epigenetically distinct states of pluripotency: naive and primed. We now show that nicotinamide N-methyltransferase (NNMT) and the metabolic state regulate pluripotency in human embryonic stem cells (hESCs).  Specifically, in naive hESCs, NNMT and its enzymatic product 1-methylnicotinamide are highly upregulated, and NNMT is required for low S-adenosyl methionine (SAM) levels and the H3K27me3 repressive state. NNMT consumes SAM in naive cells, making it unavailable for histone methylation that represses Wnt and activates the HIF pathway in primed hESCs. These data support the hypothesis that the metabolome regulates the epigenetic landscape of the earliest steps in human development. PMID:26571212

  3. Caffeine exposure alters cardiac gene expression in embryonic cardiomyocytes.

    PubMed

    Fang, Xiefan; Mei, Wenbin; Barbazuk, William B; Rivkees, Scott A; Wendler, Christopher C

    2014-12-15

    Previous studies demonstrated that in utero caffeine treatment at embryonic day (E) 8.5 alters DNA methylation patterns, gene expression, and cardiac function in adult mice. To provide insight into the mechanisms, we examined cardiac gene and microRNA (miRNA) expression in cardiomyocytes shortly after exposure to physiologically relevant doses of caffeine. In HL-1 and primary embryonic cardiomyocytes, caffeine treatment for 48 h significantly altered the expression of cardiac structural genes (Myh6, Myh7, Myh7b, Tnni3), hormonal genes (Anp and BnP), cardiac transcription factors (Gata4, Mef2c, Mef2d, Nfatc1), and microRNAs (miRNAs; miR208a, miR208b, miR499). In addition, expressions of these genes were significantly altered in embryonic hearts exposed to in utero caffeine. For in utero experiments, pregnant CD-1 dams were treated with 20-60 mg/kg of caffeine, which resulted in maternal circulation levels of 37.3-65.3 μM 2 h after treatment. RNA sequencing was performed on embryonic ventricles treated with vehicle or 20 mg/kg of caffeine daily from E6.5-9.5. Differential expression (DE) analysis revealed that 124 genes and 849 transcripts were significantly altered, and differential exon usage (DEU) analysis identified 597 exons that were changed in response to prenatal caffeine exposure. Among the DE genes identified by RNA sequencing were several cardiac structural genes and genes that control DNA methylation and histone modification. Pathway analysis revealed that pathways related to cardiovascular development and diseases were significantly affected by caffeine. In addition, global cardiac DNA methylation was reduced in caffeine-treated cardiomyocytes. Collectively, these data demonstrate that caffeine exposure alters gene expression and DNA methylation in embryonic cardiomyocytes.

  4. Expression of CGRP in embryonic mouse masseter muscle.

    PubMed

    Azuma, Yuri; Miwa, Yoko; Sato, Iwao

    2016-07-01

    Neuropeptide calcitonin gene-related peptide (CGRP) is a mediator of inflammation and head pain that influences the functional vascular blood supply. The CGRP also regulate myoblast and acetylcholine receptors on neuromuscular junctions in development. However, little is known about its appearance and location during mouse masseter muscle (MM) development. We detected the mRNA abundance of CGRP, vascular genesis markers (Vascular endothelial growth factor A (VEGF-A), PECAM (CD31), lymphatic vessel endothelial hyaluronan receptor-1 (LYVE-1)) and embryonic and adult myosin heavy chain (MyHCs) (embryonic, IIa, IIb, and IIx) using real-time RT-PCR during development from the embryonic stage to after birth (E12.5, E14.5, E17.5, E18.5, P0, P1 and P5). We also endeavored to analyze the expression and localization of CGRP in situ hybridization in the developing mouse MM during development from the embryonic stage to after birth (E12.5, E14.5, E17.5, and P1). The antisense probe for CGRP was detected by in situ hybridization at E12.5, E14.5 E17.5 and then no longer detected after birth. The CGRP, CD31, embryonic MyHC abundance levels are highest at E17.5 (p<0.001) and they show a pattern similar to that of the other markers from E12.5 to P5. PCA analysis indicates a specific relation between CGRP and embryonic MyHC, CD31, and LYVE-1 in MM development. Cluster analyses identified the following distinct clusters for mRNA abundance in the MM: cluster 1, P5; cluster 2, E12.5, E14.5, E17.5, E18.5, P0, and P1. The positive correlation between CGRP and embryonic MyHC (Pearson's r>0.65; p<0.01) was analyzed. These data suggested that CGRP may have an influence on embryonic MyHC during mouse MM development. CGRP also affects the angiogenesis markers at embryonic stages. PMID:27136747

  5. Differential expression of microRNAs in mouse embryonic bladder

    SciTech Connect

    Liu, Benchun; Cunha, Gerald R.; Baskin, Laurence S.

    2009-08-07

    MicroRNAs (miRNAs) are involved in several biological processes including development, differentiation and proliferation. Analysis of miRNA expression patterns in the process of embryogenesis may have substantial value in determining the mechanism of embryonic bladder development as well as for eventual therapeutic intervention. The miRNA expression profiles are distinct among the cellular types and embryonic stages as demonstrated by microarray technology and validated by quantitative real-time RT-PCR approach. Remarkably, the miRNA expression patterns suggested that unique miRNAs from epithelial and submucosal areas are responsible for mesenchymal cellular differentiation, especially regarding bladder smooth muscle cells. Our data show that miRNA expression patterns are unique in particular cell types of mouse bladder at specific developmental stages, reflecting the apparent lineage and differentiation status within the embryonic bladder. The identification of unique miRNAs expression before and after smooth muscle differentiation in site-specific area of the bladder indicates their roles in embryogenesis and may aid in future clinical intervention.

  6. Changing nuclear landscape and unique PML structures during early epigenetic transitions of human embryonic stem cells.

    PubMed

    Butler, John T; Hall, Lisa L; Smith, Kelly P; Lawrence, Jeanne B

    2009-07-01

    The complex nuclear structure of somatic cells is important to epigenomic regulation, yet little is known about nuclear organization of human embryonic stem cells (hESC). Here we surveyed several nuclear structures in pluripotent and transitioning hESC. Observations of centromeres, telomeres, SC35 speckles, Cajal Bodies, lamin A/C and emerin, nuclear shape and size demonstrate a very different "nuclear landscape" in hESC. This landscape is remodeled during a brief transitional window, concomitant with or just prior to differentiation onset. Notably, hESC initially contain abundant signal for spliceosome assembly factor, SC35, but lack discrete SC35 domains; these form as cells begin to specialize, likely reflecting cell-type specific genomic organization. Concomitantly, nuclear size increases and shape changes as lamin A/C and emerin incorporate into the lamina. During this brief window, hESC exhibit dramatically different PML-defined structures, which in somatic cells are linked to gene regulation and cancer. Unlike the numerous, spherical somatic PML bodies, hES cells often display approximately 1-3 large PML structures of two morphological types: long linear "rods" or elaborate "rosettes", which lack substantial SUMO-1, Daxx, and Sp100. These occur primarily between Day 0-2 of differentiation and become rare thereafter. PML rods may be "taut" between other structures, such as centromeres, but clearly show some relationship with the lamina, where PML often abuts or fills a "gap" in early lamin A/C staining. Findings demonstrate that pluripotent hES cells have a markedly different overall nuclear architecture, remodeling of which is linked to early epigenomic programming and involves formation of unique PML-defined structures.

  7. Prediction of gene expression in embryonic structures of Drosophila melanogaster.

    PubMed

    Samsonova, Anastasia A; Niranjan, Mahesan; Russell, Steven; Brazma, Alvis

    2007-07-01

    Understanding how sets of genes are coordinately regulated in space and time to generate the diversity of cell types that characterise complex metazoans is a major challenge in modern biology. The use of high-throughput approaches, such as large-scale in situ hybridisation and genome-wide expression profiling via DNA microarrays, is beginning to provide insights into the complexities of development. However, in many organisms the collection and annotation of comprehensive in situ localisation data is a difficult and time-consuming task. Here, we present a widely applicable computational approach, integrating developmental time-course microarray data with annotated in situ hybridisation studies, that facilitates the de novo prediction of tissue-specific expression for genes that have no in vivo gene expression localisation data available. Using a classification approach, trained with data from microarray and in situ hybridisation studies of gene expression during Drosophila embryonic development, we made a set of predictions on the tissue-specific expression of Drosophila genes that have not been systematically characterised by in situ hybridisation experiments. The reliability of our predictions is confirmed by literature-derived annotations in FlyBase, by overrepresentation of Gene Ontology biological process annotations, and, in a selected set, by detailed gene-specific studies from the literature. Our novel organism-independent method will be of considerable utility in enriching the annotation of gene function and expression in complex multicellular organisms.

  8. Expression of signaling components in embryonic eyelid epithelium.

    PubMed

    Meng, Qinghang; Jin, Chang; Chen, Yinglei; Chen, Jing; Medvedovic, Mario; Xia, Ying

    2014-01-01

    Closure of an epithelium opening is a critical morphogenetic event for development. An excellent example for this process is the transient closure of embryonic eyelid. Eyelid closure requires shape change and migration of epithelial cells at the tip of the developing eyelids, and is dictated by numerous signaling pathways. Here we evaluated gene expression in epithelial cells isolated from the tip (leading edge, LE) and inner surface epithelium (IE) of the eyelid from E15.5 mouse fetuses by laser capture microdissection (LCM). We showed that the LE and IE cells are different at E15.5, such that IE had higher expression of muscle specific genes, while LE acquired epithelium identities. Despite their distinct destinies, these cells were overall similar in expression of signaling components for the "eyelid closure pathways". However, while the LE cells had more abundant expression of Fgfr2, Erbb2, Shh, Ptch1 and 2, Smo and Gli2, and Jag1 and Notch1, the IE cells had more abundant expression of Bmp5 and Bmpr1a. In addition, the LE cells had more abundant expression of adenomatosis polyposis coli down-regulated 1 (Apcdd1), but the IE cells had high expression of Dkk2. Our results suggest that the functionally distinct LE and IE cells have also differential expression of signaling molecules that may contribute to the cell-specific responses to morphogenetic signals. The expression pattern suggests that the EGF, Shh and NOTCH pathways are preferentially active in LE cells, the BMP pathways are effective in IE cells, and the Wnt pathway may be repressed in LE and IE cells via different mechanisms.

  9. Expression of Signaling Components in Embryonic Eyelid Epithelium

    PubMed Central

    Meng, Qinghang; Jin, Chang; Chen, Yinglei; Chen, Jing; Medvedovic, Mario; Xia, Ying

    2014-01-01

    Closure of an epithelium opening is a critical morphogenetic event for development. An excellent example for this process is the transient closure of embryonic eyelid. Eyelid closure requires shape change and migration of epithelial cells at the tip of the developing eyelids, and is dictated by numerous signaling pathways. Here we evaluated gene expression in epithelial cells isolated from the tip (leading edge, LE) and inner surface epithelium (IE) of the eyelid from E15.5 mouse fetuses by laser capture microdissection (LCM). We showed that the LE and IE cells are different at E15.5, such that IE had higher expression of muscle specific genes, while LE acquired epithelium identities. Despite their distinct destinies, these cells were overall similar in expression of signaling components for the “eyelid closure pathways”. However, while the LE cells had more abundant expression of Fgfr2, Erbb2, Shh, Ptch1 and 2, Smo and Gli2, and Jag1 and Notch1, the IE cells had more abundant expression of Bmp5 and Bmpr1a. In addition, the LE cells had more abundant expression of adenomatosis polyposis coli down-regulated 1 (Apcdd1), but the IE cells had high expression of Dkk2. Our results suggest that the functionally distinct LE and IE cells have also differential expression of signaling molecules that may contribute to the cell-specific responses to morphogenetic signals. The expression pattern suggests that the EGF, Shh and NOTCH pathways are preferentially active in LE cells, the BMP pathways are effective in IE cells, and the Wnt pathway may be repressed in LE and IE cells via different mechanisms. PMID:24498290

  10. Reversible Regulation of Promoter and Enhancer Histone Landscape by DNA Methylation in Mouse Embryonic Stem Cells.

    PubMed

    King, Andrew D; Huang, Kevin; Rubbi, Liudmilla; Liu, Shuo; Wang, Cun-Yu; Wang, Yinsheng; Pellegrini, Matteo; Fan, Guoping

    2016-09-27

    DNA methylation is one of a number of modes of epigenetic gene regulation. Here, we profile the DNA methylome, transcriptome, and global occupancy of histone modifications (H3K4me1, H3K4me3, H3K27me3, and H3K27ac) in a series of mouse embryonic stem cells (mESCs) with varying DNA methylation levels to study the effects of DNA methylation on deposition of histone modifications. We find that genome-wide DNA demethylation alters occupancy of histone modifications at both promoters and enhancers. This is reversed upon remethylation by Dnmt expression. DNA methylation promotes H3K27me3 deposition at bivalent promoters, while opposing H3K27me3 at silent promoters. DNA methylation also reversibly regulates H3K27ac and H3K27me3 at previously identified tissue-specific enhancers. These effects require DNMT catalytic activity. Collectively, our data show that DNA methylation is essential and instructive for deposition of specific histone modifications across regulatory regions, which together influences gene expression patterns in mESCs. PMID:27681438

  11. Coordinate expression of parietal endodermal functions in hybrids of embryonal carcinoma and endodermal cells.

    PubMed Central

    Howe, W E; Oshima, R G

    1982-01-01

    A derivative, FOT5, of the F9 murine embryonal carcinoma cell line which is resistant to ouabain and thioguanine was fused with a near diploid parietal endodermal cell line, PFHR9, Hybrid clones (ENEC1 to ENEC5) were isolated in HAT Medium containing ouabain at a frequency of approximately 2 x 10(-4). The DNA contents and chromosome number of the ENEC hybrids were approximately the sum of those of the parents. Five hybrid cell lines examined in detail expressed the following parietal endodermal functions: plasminogen activator activity, basement membrane proteins, and endodermal cytoskeletal proteins. Embryonal carcinoma characteristic functions (tumorigenicity, a stage specific embryonic antigen, and high alkaline phosphatase activity) were extinguished in the hybrids. No hybrid clones with embryonal carcinoma morphology were observed among 1,358 hybrid clones examined. Hybrids, propagated for over 100 generations, continued to express endodermal functions and not embryonal carcinoma functions. The coordinate expression of endodermal functions and the extinction of embryonal carcinoma functions in the ENEC hybrids suggest that the parietal endodermal cells contain diffusible activities which extinguish embryonal carcinoma functions and possibly cause the embryonal carcinoma genome to express parietal endodermal characteristics. Images PMID:7202115

  12. Embryonic cerebrospinal fluid collaborates with the isthmic organizer to regulate mesencephalic gene expression.

    PubMed

    Parada, Carolina; Martín, Cristina; Alonso, María I; Moro, José A; Bueno, David; Gato, Angel

    2005-11-01

    Early in development, the behavior of neuroepithelial cells is controlled by several factors acting in a developmentally regulated manner. Recently it has been shown that diffusible factors contained within embryonic cerebrospinal fluid (CSF) promote neuroepithelial cell survival, proliferation, and neurogenesis in mesencephalic explants lacking any known organizing center. In this paper, we show that mesencephalic and mesencephalic+isthmic organizer explants cultured only with basal medium do not express the typically expressed mesencephalic or isthmic organizer genes analyzed (otx2 and fgf8, respectively) and that mesencephalic explants cultured with embryonic CSF-supplemented medium do effect such expression, although they exhibit an altered pattern of gene expression, including ectopic shh expression domains. Other trophic sources that are able to maintain normal neuroepithelial cell behavior, i.e., fibroblast growth factor-2, fail to activate this ectopic shh expression. Conversely, the expression pattern of the analyzed genes in mesencephalic+isthmic organizer explants cultured with embryonic cerebrospinal fluid-supplemented medium mimics the pattern for control embryos developed in ovo. We demonstrate that embryonic CSF collaborates with the isthmic organizer in regulation of the expression pattern of some characteristic neuroectodermal genes during early stages of central nervous system (CNS) development, and we suggest that this collaboration is not restricted to the maintenance of neuroepithelial cell survival. Data reported in this paper corroborate the hypothesis that factors contained within embryonic CSF contribute to the patterning of the CNS during early embryonic development. PMID:16180222

  13. Shh expression is required for embryonic hair follicle but not mammary gland development.

    PubMed

    Michno, Kinga; Boras-Granic, Kata; Mill, Pleasantine; Hui, C C; Hamel, Paul A

    2003-12-01

    The embryonic mammary gland and hair follicle are both derived from the ventral ectoderm, and their development depends on a number of common fundamental developmental pathways. While the Hedgehog (Hh) signaling pathway is required for hair follicle morphogenesis, the role of this pathway during embryonic mammary gland development remains undetermined. We demonstrate here that, unlike the hair follicle, both Shh and Ihh are expressed in the developing embryonic mouse mammary rudiment as early as E12.5. In Shh(-/-) embryos, hair follicle development becomes arrested at an early stage, while the mammary rudiment, which continues to express Ihh, develops in a manner indistinguishable from that of wild-type littermates. The five pairs of mammary buds in Shh(-/-) female embryos exhibit normal branching morphogenesis at E16.5, forming a rudimentary ductal structure identical to wild-type embryonic mammary glands. We further demonstrate that loss of Hh signaling causes altered cyclin D1 expression in the embryonic dermal mesenchyme. Specifically, cyclin D1 is expressed at E14.5 principally in the condensed mesenchymal cells of the presumptive hair follicles and in both mesenchymal and epithelial cells of the mammary rudiments in wild-type and Shh-deficient embryos. By E18.5, robust cyclin D1 expression is maintained in mammary rudiments of both wild-type and Shh-deficient embryos. In hair follicles of wild-type embryos by E18.5, cyclin D1 expression switches to follicular epithelial cells. In contrast, strong cyclin D1 expression is observed principally in the mesenchymal cells of arrested hair follicles in Shh(-/-) embryos at E18.5. These data reveal that, despite the common embryonic origin of hair follicles and mammary glands, distinct patterns of Hh-family expression occur in these two tissues. Furthermore, these data suggest that cyclin D1 expression in the embryonic hair follicle is mediated by both Hh-independent and Hh-dependent mechanisms.

  14. Retinoic Acid Induces Embryonic Stem Cell Differentiation by Altering Both Encoding RNA and microRNA Expression.

    PubMed

    Zhang, Jingcheng; Gao, Yang; Yu, Mengying; Wu, Haibo; Ai, Zhiying; Wu, Yongyan; Liu, Hongliang; Du, Juan; Guo, Zekun; Zhang, Yong

    2015-01-01

    Retinoic acid (RA) is a vitamin A metabolite that is essential for early embryonic development and promotes stem cell neural lineage specification; however, little is known regarding the impact of RA on mRNA transcription and microRNA levels on embryonic stem cell differentiation. Here, we present mRNA microarray and microRNA high-output sequencing to clarify how RA regulates gene expression. Using mRNA microarray analysis, we showed that RA repressed pluripotency-associated genes while activating ectoderm markers in mouse embryonic stem cells (mESCs). Moreover, RA modulated the DNA methylation of mESCs by altering the expression of epigenetic-associated genes such as Dnmt3b and Dnmt3l. Furthermore, H3K4me2, a pluripotent histone modification, was repressed by RA stimulation. From microRNA sequence data, we identified two downregulated microRNAs, namely, miR-200b and miR-200c, which regulated the pluripotency of stem cells. We found that miR-200b or miR-200c deficiency suppressed the expression of pluripotent genes, including Oct4 and Nanog, and activated the expression of the ectodermal marker gene Nestin. These results demonstrate that retinoid induces mESCs to differentiate by regulating miR-200b/200c. Our findings provide the landscapes of mRNA and microRNA gene networks and indicate the crucial role of miR-200b/200c in the RA-induced differentiation of mESCs.

  15. Enhanced expression of FNDC5 in human embryonic stem cell-derived neural cells along with relevant embryonic neural tissues.

    PubMed

    Ghahrizjani, Fatemeh Ahmadi; Ghaedi, Kamran; Salamian, Ahmad; Tanhaei, Somayeh; Nejati, Alireza Shoaraye; Salehi, Hossein; Nabiuni, Mohammad; Baharvand, Hossein; Nasr-Esfahani, Mohammad Hossein

    2015-02-25

    Availability of human embryonic stem cells (hESCs) has enhanced the capability of basic and clinical research in the context of human neural differentiation. Derivation of neural progenitor (NP) cells from hESCs facilitates the process of human embryonic development through the generation of neuronal subtypes. We have recently indicated that fibronectin type III domain containing 5 protein (FNDC5) expression is required for appropriate neural differentiation of mouse embryonic stem cells (mESCs). Bioinformatics analyses have shown the presence of three isoforms for human FNDC5 mRNA. To differentiate which isoform of FNDC5 is involved in the process of human neural differentiation, we have used hESCs as an in vitro model for neural differentiation by retinoic acid (RA) induction. The hESC line, Royan H5, was differentiated into a neural lineage in defined adherent culture treated by RA and basic fibroblast growth factor (bFGF). We collected all cell types that included hESCs, rosette structures, and neural cells in an attempt to assess the expression of FNDC5 isoforms. There was a contiguous increase in all three FNDC5 isoforms during the neural differentiation process. Furthermore, the highest level of expression of the isoforms was significantly observed in neural cells compared to hESCs and the rosette structures known as neural precursor cells (NPCs). High expression levels of FNDC5 in human fetal brain and spinal cord tissues have suggested the involvement of this gene in neural tube development. Additional research is necessary to determine the major function of FDNC5 in this process.

  16. The metabolome regulates the epigenetic landscape during naïve to primed human embryonic stem cell transition

    PubMed Central

    Sperber, Henrik; Mathieu, Julie; Wang, Yuliang; Ferreccio, Amy; Hesson, Jennifer; Xu, Zhuojin; Fischer, Karin A.; Devi, Arikketh; Detraux, Damien; Gu, Haiwei; Battle, Stephanie L.; Showalter, Megan; Valensisi, Cristina; Bielas, Jason H.; Ericson, Nolan G.; Margaretha, Lilyana; Robitaille, Aaron M.; Margineantu, Daciana; Fiehn, Oliver; Hockenbery, David; Blau, C. Anthony; Raftery, Daniel; Margolin, Adam; Hawkins, R. David; Moon, Randall T.; Ware, Carol B.; Ruohola-Baker, Hannele

    2015-01-01

    For nearly a century developmental biologists have recognized that cells from embryos can differ in their potential to differentiate into distinct cell types. Recently, it has been recognized that embryonic stem cells derived from both mice and humans display two stable yet epigenetically distinct states of pluripotency, naïve and primed. We now show that nicotinamide-N-methyl transferase (NNMT) and metabolic state regulate pluripotency in hESCs. Specifically, in naïve hESCs NNMT and its enzymatic product 1-methylnicotinamide (1-MNA) are highly upregulated, and NNMT is required for low SAM levels and H3K27me3 repressive state. NNMT consumes SAM in naïve cells, making it unavailable for histone methylation that represses Wnt and activates HIF pathway in primed hESCs. These data support the hypothesis that the metabolome regulates the epigenetic landscape of the earliest steps in human development. PMID:26571212

  17. Single-cell methylome landscapes of mouse embryonic stem cells and early embryos analyzed using reduced representation bisulfite sequencing

    PubMed Central

    Guo, Hongshan; Zhu, Ping; Wu, Xinglong; Li, Xianlong; Wen, Lu; Tang, Fuchou

    2013-01-01

    DNA methylation is crucial for a wide variety of biological processes, yet no technique suitable for the methylome analysis of DNA methylation at single-cell resolution is available. Here, we describe a methylome analysis technique that enables single-cell and single-base resolution DNA methylation analysis based on reduced representation bisulfite sequencing (scRRBS). The technique is highly sensitive and can detect the methylation status of up to 1.5 million CpG sites within the genome of an individual mouse embryonic stem cell (mESC). Moreover, we show that the technique can detect the methylation status of individual CpG sites in a haploid sperm cell in a digitized manner as either unmethylated or fully methylated. Furthermore, we show that the demethylation dynamics of maternal and paternal genomes after fertilization can be traced within the individual pronuclei of mouse zygotes. The demethylation process of the genic regions is faster than that of the intergenic regions in both male and female pronuclei. Our method paves the way for the exploration of the dynamic methylome landscapes of individual cells at single-base resolution during physiological processes such as embryonic development, or during pathological processes such as tumorigenesis. PMID:24179143

  18. Spatial expression of transcription factors in Drosophila embryonic organ development

    PubMed Central

    2013-01-01

    Background Site-specific transcription factors (TFs) bind DNA regulatory elements to control expression of target genes, forming the core of gene regulatory networks. Despite decades of research, most studies focus on only a small number of TFs and the roles of many remain unknown. Results We present a systematic characterization of spatiotemporal gene expression patterns for all known or predicted Drosophila TFs throughout embryogenesis, the first such comprehensive study for any metazoan animal. We generated RNA expression patterns for all 708 TFs by in situ hybridization, annotated the patterns using an anatomical controlled vocabulary, and analyzed TF expression in the context of organ system development. Nearly all TFs are expressed during embryogenesis and more than half are specifically expressed in the central nervous system. Compared to other genes, TFs are enriched early in the development of most organ systems, and throughout the development of the nervous system. Of the 535 TFs with spatially restricted expression, 79% are dynamically expressed in multiple organ systems while 21% show single-organ specificity. Of those expressed in multiple organ systems, 77 TFs are restricted to a single organ system either early or late in development. Expression patterns for 354 TFs are characterized for the first time in this study. Conclusions We produced a reference TF dataset for the investigation of gene regulatory networks in embryogenesis, and gained insight into the expression dynamics of the full complement of TFs controlling the development of each organ system. PMID:24359758

  19. Cadherin expression by embryonic divisions and derived gray matter structures in the telencephalon of the chicken.

    PubMed

    Redies, C; Medina, L; Puelles, L

    2001-09-24

    The expression of three cadherins (cadherin-6B, cadherin-7, and R-cadherin) was studied by immunohistochemistry in the telencephalon of chicken embryos at intermediate stages of development (11 and 15 days of incubation). Expression patterns were related to cytoarchitecture and to previously published data on functional connections and on the expression of gene regulatory proteins. Our results indicate that, like in other regions of the embryonic chicken brain, the expression of each cadherin is restricted to parts of embryonic divisions as well as to particular nuclei, areas or their subdivisions. The expression patterns are largely complementary with partial overlap. The regional expression of the cadherins respects the boundary between the pallium and the subpallium as well as between various pallial and subpallial subdivisions. Novel subdivisions were found in several telencephalic areas. For example, subjacent to the hyperstriatum, the neostriatum contains multiple islands of cells with a profile of cadherin expression that differs from the surrounding matrix ("island fields"). Moreover, the expression of each cadherin is apparently associated with parts of intratelencephalic neural circuits and of thalamopallial and basal ganglia pathways. These results support a role for cadherins in the aggregation and differentiation of gray matter structures within embryonic brain divisions. The cadherin immunostaining patterns are interpreted in the context of a recently proposed divisional scheme of the avian pallium that postulates medial, dorsal, lateral, and ventral divisions as complete radial histogenetic units (Puelles et al. [2000]).

  20. Developmental analysis of tropomyosin gene expression in embryonic stem cells and mouse embryos.

    PubMed Central

    Muthuchamy, M; Pajak, L; Howles, P; Doetschman, T; Wieczorek, D F

    1993-01-01

    Tropomyosins (TMs) comprise a family of actin-binding proteins which play an important role in the regulation of contractility in muscle (cardiac, skeletal, and smooth) and nonmuscle cells. Although they are present in all cells, different isoforms are characteristic of specific cell types. In vertebrates, there are four different TM genes (alpha-TM, beta-TM, TM30, and TM4), three of which generate alternatively spliced isoforms. This study defines the expression patterns of these isoforms during murine embryogenesis, using both in vivo and in vitro conditions. The embryonic stem cell culture system, which has been shown to mimic different stages of mouse embryonic development, including the differentiation of primitive organ systems such as the myocardium, is used for our in vitro analysis. Our results demonstrate that several TM isoforms are expressed in specific developmental patterns, often correlated with the differentiation of particular tissues or organs. Surprisingly, other TMs, such as the striated muscle beta-TM and smooth muscle alpha-TM, are expressed constitutively. This study also demonstrates that there is an excellent correlation between the expression patterns of the TM isoforms observed in developing embryonic stem cells and mouse embryos. In addition, a quantitative molecular analysis of TM isoforms was conducted in embryonic, neonatal, and adult cardiac tissue. Our results show for the first time that the alpha- and beta-TM striated muscle transcripts are present in the earliest functional stages of the heart, and these TM isoforms are identical to those present throughout cardiac development. Images PMID:7684495

  1. The heterogeneous energy landscape expression of KWW relaxation

    PubMed Central

    Wu, J. H.; Jia, Q.

    2016-01-01

    Here we show a heterogeneous energy landscape approach to describing the Kohlrausch-Williams-Watts (KWW) relaxation function. For a homogeneous dynamic process, the distribution of free energy landscape is first proposed, revealing the significance of rugged fluctuations. In view of the heterogeneous relaxation given in two dynamic phases and the transmission coefficient in a rate process, we obtain a general characteristic relaxation time distribution equation for the KWW function in a closed, analytic form. Analyses of numerical computation show excellent accuracy, both in time and frequency domains, in the convergent performance of the heterogeneous energy landscape expression and shunning the catastrophic truncations reported in the previous work. The stretched exponential β, closely associated to temperature and apparent correlation with one dynamic phase, reveals a threshold value of 1/2 defining different behavior of the probability density functions. Our work may contribute, for example, to in-depth comprehension of the dynamic mechanism of glass transition, which cannot be provided by existing approaches. PMID:26879824

  2. Surface functionalities of gold nanoparticles impact embryonic gene expression responses

    PubMed Central

    Truong, Lisa; Tilton, Susan C.; Zaikova, Tatiana; Richman, Erik; Waters, Katrina M.; Hutchison, James E.; Tanguay, Robert L.

    2012-01-01

    Incorporation of gold nanoparticles (AuNPs) into consumer products is increasing; however, there is a gap in available toxicological data to determine the safety of AuNPs. In this study, we utilised the embryonic zebrafish to investigate how surface functionalisation and charge influence molecular responses. Precisely engineered AuNPs with 1.5 nm cores were synthesised and functionalized with three ligands: 2-mercaptoethanesulfonic acid (MES), N,N,N-trimethylammoniumethanethiol (TMAT), or 2-(2-(2-mercaptoethoxy)ethoxy)ethanol. Developmental assessments revealed differential biological responses when embryos were exposed to the functionalised AuNPs at the same concentration. Using inductively coupled plasma–mass spectrometry, AuNP uptake was confirmed in exposed embryos. Following exposure to MES- and TMAT-AuNPs from 6 to 24 or 6 to 48 h post fertilisation, pathways involved in inflammation and immune response were perturbed. Additionally, transport mechanisms were misregulated after exposure to TMAT and MES-AuNPs, demonstrating that surface functionalisation influences many molecular pathways. PMID:22263968

  3. Pluripotency factors and Polycomb Group proteins repress aryl hydrocarbon receptor expression in murine embryonic stem cells.

    PubMed

    Ko, Chia-I; Wang, Qin; Fan, Yunxia; Xia, Ying; Puga, Alvaro

    2014-01-01

    The aryl hydrocarbon receptor (AHR) is a transcription factor and environmental sensor that regulates expression of genes involved in drug-metabolism and cell cycle regulation. Chromatin immunoprecipitation analyses, Ahr ablation in mice and studies with orthologous genes in invertebrates suggest that AHR may also play a significant role in embryonic development. To address this hypothesis, we studied the regulation of Ahr expression in mouse embryonic stem cells and their differentiated progeny. In ES cells, interactions between OCT3/4, NANOG, SOX2 and Polycomb Group proteins at the Ahr promoter repress AHR expression, which can also be repressed by ectopic expression of reprogramming factors in hepatoma cells. In ES cells, unproductive RNA polymerase II binds at the Ahr transcription start site and drives the synthesis of short abortive transcripts. Activation of Ahr expression during differentiation follows from reversal of repressive marks in Ahr promoter chromatin, release of pluripotency factors and PcG proteins, binding of Sp factors, establishment of histone marks of open chromatin, and engagement of active RNAPII to drive full-length RNA transcript elongation. Our results suggest that reversible Ahr repression in ES cells holds the gene poised for expression and allows for a quick switch to activation during embryonic development.

  4. Methodology matters: IVF versus ICSI and embryonic gene expression.

    PubMed

    Bridges, Phillip J; Jeoung, Myoungkun; Kim, Heyoung; Kim, Jung Ho; Lee, Dong Ryul; Ko, CheMyong; Baker, Doris J

    2011-08-01

    The use of assisted reproduction treatment, especially intracytoplasmic sperm injection (ICSI), is now linked to a range of adverse consequences, the aetiology of which remains largely undefined. Our objective of this study was to determine differences in gene expression of blastocysts generated by ICSI as well as ICSI with artificial oocyte activation (ICSI-A) versus the less manipulative IVF, providing fundamental genetic information that can be used to aid in the diagnosis or treatment of those adversely affected by assisted reproduction treatment, as well as stimulate research to further refine these techniques. Murine blastocysts were generated by ICSI, ICSI-A and IVF, and processed for a microarray-based analysis of gene expression. Ten blastocysts were pooled for each procedure and three independent replicates generated. The data were then processed to determine differential gene expression and to identify biological pathways affected by the procedures. In blastocysts derived by ICSI versus IVF, the expression of 197 genes differed (P < 0.01). In blastocysts derived by ICSI-A versus IVF and ICSI-A versus ICSI, the expression of 132 and 65 genes differed respectively (P < 0.01). Procedural-induced changes in genes regulating specific biological pathways revealed some consistency to known adverse consequences. Detailed investigation of procedure-specific dysfunction is therefore warranted.

  5. Prominent expression of transforming growth factor beta2 gene in the chicken embryonic gonad as revealed by suppressive subtraction cloning.

    PubMed

    Hattori Ma, Masa-aki; Furuta, Hiroki; Hiyama, Yoshio; Kato, Yukio; Fujihara, Noboru

    2002-02-01

    cDNA cloning from chicken embryonic gonad subtracted from tissues of the brain, heart, liver, gizzard, mesonephros, and muscle was performed to identify growth factor genes with expression unique to embryonic ovary and testis. We obtained several cDNA clones encoding known and many unknown genes. We found for the first time that the transforming growth factor beta2 (TGF-beta2) is preferentially expressed in the chicken embryonic ovary and testis. cDNA subtraction cloning with respect to the selective expression of TGF-beta2 in the ovary and testis was further analyzed by reverse transcription-polymerase chain reaction analyses of other embryonic tissues. The ontogeny of TGF-beta2 was evaluated in chicken embryonic ovary and testis. In both testis and ovary, the levels of TGF-beta2 transcripts were high during the early period of embryonic development (E7), gradually decreased until the late embryonic days (E14--E17), and then slightly increased at the last embryonic day (E21). There was no difference in the TGF-beta2 transcripts per RNA between the left and the right ovaries. TGF-beta2 may have a critical role in the regulation of the development of chicken ovarian and testicular germ cells during the embryonic period.

  6. Identification of N-myc regulatory regions involved in embryonic expression.

    PubMed

    Charron, Jean; Gagnon, Jean-François; Cadrin-Girard, Jean François

    2002-01-01

    Our knowledge on the regulation of the N-myc proto-oncogene expression comes mostly from in vitro studies. Very few in vivo analyses have been performed to identify the regulatory elements involved in N-myc developmental expression. In the present study, we defined DNA regions required for the regulated expression of N-myc during early embryogenesis. We showed that the expression of N-myc driven by the human N-myc sequences previously described to control N-myc expression in appropriate cell types in vitro cannot rescue the mouse N-myc mutant phenotype, suggesting that regulatory elements necessary for N-myc embryonic expression were missing. To identify the regulatory DNA regions involved in N-myc expression, transgenic mouse lines carrying N-myc/lacZ reporter constructs were generated. Beta-galactosidase staining analysis at different stages of gestation revealed that >16 kb of mouse N-myc genomic sequences are required to recapitulate the entire spatiotemporal expression pattern of the endogenous N-myc gene between embryonic d 8.5 and 11.5. This observation supported the notion that the sequences previously identified by in vitro assays were not sufficient to reproduce the N-myc embryonic expression pattern. However, regulatory elements that can direct specific expression in the visceral arches, the limb buds, the CNS, and the dorsal root ganglia are included into the mouse N-myc genomic sequences tested. Altogether, these findings indicated that the regulation of the spatiotemporal expression pattern of N-myc during development necessitates multiple regulatory DNA elements. PMID:11756639

  7. Characterization and embryonic expression of four amphioxus Frizzled genes with important functions during early embryogenesis.

    PubMed

    Qian, Guanghui; Li, Guang; Chen, Xiaoying; Wang, Yiquan

    2013-12-01

    The Wnt signaling pathway plays crucial roles in the embryonic patterning of all metazoans. Recent studies on Wnt genes in amphioxus have shed important insights into the evolution of the vertebrate Wnt gene family and their functions. Nevertheless, the potential roles of Wnt family receptors encoded by Frizzled (Fz) genes in amphioxus embryonic development remain to be investigated. In the present study, we identified four amphioxus Fz genes-AmphiFz1/2/7, AmphiFz4, AmphiFz5/8, and AmphiFz9/10-and analyzed their expression patterns during amphioxus embryogenesis. We found that these four Fz genes were maternally expressed and might be involved in early animal-vegetal axis establishment. The AmphiFz1/2/7 transcripts were detected in the central dorsal neural plate, mesoderm, the Hatschek's pit, and rim of the mouth, whereas those of AmphiFz4 were detected in the mesoderm, pharyngeal endoderm, and entire gut region. AmphiFz5/8 was exclusively expressed in the anterior-most region, whereas AmphiFz9/10 was expressed in the neural plate, somites, and tail bud. The dynamic and diverse expression patterns of amphioxus Fz genes suggest that these genes are not only associated with early embryonic axis establishment but also are involved in the development of several organs in amphioxus.

  8. Sexually dimorphic expression of Mafb regulates masculinization of the embryonic urethral formation

    PubMed Central

    Suzuki, Kentaro; Numata, Tomokazu; Suzuki, Hiroko; Raga, Dennis Diana; Ipulan, Lerrie Ann; Yokoyama, Chikako; Matsushita, Shoko; Hamada, Michito; Nakagata, Naomi; Nishinakamura, Ryuichi; Kume, Shoen; Takahashi, Satoru; Yamada, Gen

    2014-01-01

    Masculinization of external genitalia is an essential process in the formation of the male reproductive system. Prominent characteristics of this masculinization are the organ size and the sexual differentiation of the urethra. Although androgen is a pivotal inducer of the masculinization, the regulatory mechanism under the control of androgen is still unknown. Here, we address this longstanding question about how androgen induces masculinization of the embryonic external genitalia through the identification of the v-maf avian musculoaponeurotic fibrosarcoma oncogene homolog B (Mafb) gene. Mafb is expressed prominently in the mesenchyme of male genital tubercle (GT), the anlage of external genitalia. MAFB expression is rarely detected in the mesenchyme of female GTs. However, exposure to exogenous androgen induces its mesenchymal expression in female GTs. Furthermore, MAFB expression is prominently down-regulated in male GTs of androgen receptor (Ar) KO mice, indicating that AR signaling is necessary for its expression. It is revealed that Mafb KO male GTs exhibit defective embryonic urethral formation, giving insight into the common human congenital anomaly hypospadias. However, the size of Mafb KO male GTs is similar with that of wild-type males. Moreover, androgen treatment fails to induce urethral masculinization of the GTs in Mafb KO mice. The current results provide evidence that Mafb is an androgen-inducible, sexually dimorphic regulator of embryonic urethral masculinization. PMID:25362053

  9. Characterization and embryonic expression of four amphioxus Frizzled genes with important functions during early embryogenesis.

    PubMed

    Qian, Guanghui; Li, Guang; Chen, Xiaoying; Wang, Yiquan

    2013-12-01

    The Wnt signaling pathway plays crucial roles in the embryonic patterning of all metazoans. Recent studies on Wnt genes in amphioxus have shed important insights into the evolution of the vertebrate Wnt gene family and their functions. Nevertheless, the potential roles of Wnt family receptors encoded by Frizzled (Fz) genes in amphioxus embryonic development remain to be investigated. In the present study, we identified four amphioxus Fz genes-AmphiFz1/2/7, AmphiFz4, AmphiFz5/8, and AmphiFz9/10-and analyzed their expression patterns during amphioxus embryogenesis. We found that these four Fz genes were maternally expressed and might be involved in early animal-vegetal axis establishment. The AmphiFz1/2/7 transcripts were detected in the central dorsal neural plate, mesoderm, the Hatschek's pit, and rim of the mouth, whereas those of AmphiFz4 were detected in the mesoderm, pharyngeal endoderm, and entire gut region. AmphiFz5/8 was exclusively expressed in the anterior-most region, whereas AmphiFz9/10 was expressed in the neural plate, somites, and tail bud. The dynamic and diverse expression patterns of amphioxus Fz genes suggest that these genes are not only associated with early embryonic axis establishment but also are involved in the development of several organs in amphioxus. PMID:24012522

  10. Thalidomide induced early gene expression perturbations indicative of human embryopathy in mouse embryonic stem cells

    SciTech Connect

    Gao, Xiugong Sprando, Robert L.; Yourick, Jeffrey J.

    2015-08-15

    Developmental toxicity testing has traditionally relied on animal models which are costly, time consuming, and require the sacrifice of large numbers of animals. In addition, there are significant disparities between human beings and animals in their responses to chemicals. Thalidomide is a species-specific developmental toxicant that causes severe limb malformations in humans but not in mice. Here, we used microarrays to study transcriptomic changes induced by thalidomide in an in vitro model based on differentiation of mouse embryonic stem cells (mESCs). C57BL/6 mESCs were allowed to differentiate spontaneously and RNA was collected at 24, 48, and 72 h after exposure to 0.25 mM thalidomide. Global gene expression analysis using microarrays revealed hundreds of differentially expressed genes upon thalidomide exposure that were enriched in gene ontology (GO) terms and canonical pathways associated with embryonic development and differentiation. In addition, many genes were found to be involved in small GTPases-mediated signal transduction, heart development, and inflammatory responses, which coincide with clinical evidences and may represent critical embryotoxicities of thalidomide. These results demonstrate that transcriptomics in combination with mouse embryonic stem cell differentiation is a promising alternative model for developmental toxicity assessment. - Highlights: • Studied genomic changes in mouse embryonic stem cells upon thalidomide exposure • Identified gene expression changes that may represent thalidomide embryotoxicity • The toxicogenomic changes coincide well with known thalidomide clinical outcomes. • The mouse embryonic stem cell model is suitable for developmental toxicity testing. • The model has the potential for high-throughput screening of a multitude of compounds.

  11. An embryonic story: analysis of the gene regulative network controlling Xist expression in mouse embryonic stem cells.

    PubMed

    Navarro, Pablo; Avner, Philip

    2010-07-01

    In mice, dosage compensation of X-linked gene expression is achieved through the inactivation of one of the two X-chromosomes in XX female cells. The complex epigenetic process leading to X-inactivation is largely controlled by Xist and Tsix, two non-coding genes of opposing function. Xist RNA triggers X-inactivation by coating the inactive X, while Tsix is critical for the designation of the active X-chromosome through cis-repression of Xist RNA accumulation. Recently, a plethora of trans-acting factors and cis-regulating elements have been suggested to act as key regulators of either Xist, Tsix or both; these include ubiquitous factors such as Yy1 and Ctcf, developmental proteins such as Nanog, Oct4 and Sox2, and X-linked regulators such as Rnf12. In this paper we summarise recent advances in our knowledge of the regulation of Xist and Tsix in embryonic stem (ES) and differentiating ES cells.

  12. SpolvlgA is a DDX3/PL10-related DEAD-box RNA helicase expressed in blastomeres and embryonic cells in planarian embryonic development

    PubMed Central

    Solana, Jordi; Romero, Rafael

    2009-01-01

    Planarian flatworms have an impressive regenerative power. Although their embryonic development is still poorly studied and is highly derived it still displays some simple characteristics. We have identified SpolvlgA, a Schmidtea polychroa homolog of the DDX3/PL10 DEAD-box RNA helicase DjvlgA from the planarian species Dugesia japonica. This gene has been previously described as being expressed in planarian adult stem cells (neoblasts), as well as the germ line. Here we present the expression pattern of SpolvlgA in developing embryos of S. polychroa and show that it is expressed from the first cleavage rounds in blastomere cells and blastomere-derived embryonic cells. These cells are undifferentiated cells that engage in a massive wave of differentiation during stage 5 of development. SpolvlgA expression highlights this wave of differentiation, where nearly all previous structures are substituted by blastomere-derived embryonic cells. In late stages of development SpolvlgA is expressed in most proliferating and differentiating cells. Thus, SpolvlgA is a gene expressed in planarian embryos from the first stages of development and a good marker for the zygote-derived cell lineage in these embryos. Expression in adult worms is also monitored and is found in the planarian germ line, where it is showed to be expressed in spermatogonia, spermatocytes and differentiating spermatids. PMID:19159016

  13. Redeployment of germ layers related TFs shows regionalized expression during two non-embryonic developments.

    PubMed

    Ricci, Lorenzo; Cabrera, Fabien; Lotito, Sonia; Tiozzo, Stefano

    2016-08-01

    In all non-vertebrate metazoan phyla, species that evolved non-embryonic developmental pathways as means of propagation or regeneration can be found. In this context, new bodies arise through asexual reproduction processes (such as budding) or whole body regeneration, that lack the familiar temporal and spatial cues classically associated with embryogenesis, like maternal determinants, or gastrulation. The molecular mechanisms underlying those non-embryonic developments (i.e., regeneration and asexual reproduction), and their relationship to those deployed during embryogenesis are poorly understood. We have addressed this question in the colonial ascidian Botryllus schlosseri, which undergoes an asexual reproductive process via palleal budding (PB), as well as a whole body regeneration by vascular budding (VB). We identified early regenerative structures during VB and then followed the fate of differentiating tissues during both non-embryonic developments (PB and VB) by monitoring the expression of genes known to play key functions in germ layer specification with well conserved expression patterns in solitary ascidian embryogenesis. The expression patterns of FoxA1, GATAa, GATAb, Otx, Bra, Gsc and Tbx2/3 were analysed during both PB and VB. We found that the majority of these transcription factors were expressed during both non-embryonic developmental processes, revealing a regionalization of the palleal and vascular buds. Knockdown of GATAa by siRNA in palleal buds confirmed that preventing the correct development of one of these regions blocks further tissue specification. Our results indicate that during both normal and injury-induced budding, a similar alternative developmental program operates via early commitment of epithelial regions.

  14. Redeployment of germ layers related TFs shows regionalized expression during two non-embryonic developments.

    PubMed

    Ricci, Lorenzo; Cabrera, Fabien; Lotito, Sonia; Tiozzo, Stefano

    2016-08-01

    In all non-vertebrate metazoan phyla, species that evolved non-embryonic developmental pathways as means of propagation or regeneration can be found. In this context, new bodies arise through asexual reproduction processes (such as budding) or whole body regeneration, that lack the familiar temporal and spatial cues classically associated with embryogenesis, like maternal determinants, or gastrulation. The molecular mechanisms underlying those non-embryonic developments (i.e., regeneration and asexual reproduction), and their relationship to those deployed during embryogenesis are poorly understood. We have addressed this question in the colonial ascidian Botryllus schlosseri, which undergoes an asexual reproductive process via palleal budding (PB), as well as a whole body regeneration by vascular budding (VB). We identified early regenerative structures during VB and then followed the fate of differentiating tissues during both non-embryonic developments (PB and VB) by monitoring the expression of genes known to play key functions in germ layer specification with well conserved expression patterns in solitary ascidian embryogenesis. The expression patterns of FoxA1, GATAa, GATAb, Otx, Bra, Gsc and Tbx2/3 were analysed during both PB and VB. We found that the majority of these transcription factors were expressed during both non-embryonic developmental processes, revealing a regionalization of the palleal and vascular buds. Knockdown of GATAa by siRNA in palleal buds confirmed that preventing the correct development of one of these regions blocks further tissue specification. Our results indicate that during both normal and injury-induced budding, a similar alternative developmental program operates via early commitment of epithelial regions. PMID:27208394

  15. Over-expression of DMRT1 induces the male pathway in embryonic chicken gonads

    PubMed Central

    Lambeth, Luke; Raymond, Christopher S.; Roeszler, Kelly N.; Kuroiwa, Asato; Nakata, Tomohiro; Zarkower, David; Smith, Craig A.

    2014-01-01

    DMRT1 encodes a conserved transcription factor with an essential role in gonadal function. In the chicken, DMRT1 is located on the Z sex chromosome and is currently the best candidate master regulator of avian gonadal sex differentiation. We previously showed that knockdown of DMRT1 expression during the period of sexual differentiation induces feminisation of male embryonic chicken gonads. This gene is therefore necessary for proper testis development in the chicken. However, whether it is sufficient to induce testicular differentiation has remained unresolved. We show here that over-expression of DMRT1 induces male pathway genes and antagonises the female pathway in embryonic chicken gonads. Ectopic DMRT1 expression in female gonads induces localised SOX9 and AMH expression. It also induces expression of the recently identified Z-linked male factor, Hemogen (HEMGN). Masculinised gonads show evidence of cord-like structures and retarded female-type cortical development. Furthermore, expression of the critical feminizing enzyme, aromatase, is reduced in the presence of over-expressed DMRT1. These data indicate that DMRT1 is an essential sex-linked regulator of gonadal differentiation in avians, and that it likely acts via a dosage mechanism established through the lack of global Z dosage compensation in birds. PMID:24576538

  16. Cis-regulatory underpinnings of human GLI3 expression in embryonic craniofacial structures and internal organs.

    PubMed

    Abbasi, Amir A; Minhas, Rashid; Schmidt, Ansgar; Koch, Sabine; Grzeschik, Karl-Heinz

    2013-10-01

    The zinc finger transcription factor Gli3 is an important mediator of Sonic hedgehog (Shh) signaling. During early embryonic development Gli3 participates in patterning and growth of the central nervous system, face, skeleton, limb, tooth and gut. Precise regulation of the temporal and spatial expression of Gli3 is crucial for the proper specification of these structures in mammals and other vertebrates. Previously we reported a set of human intronic cis-regulators controlling almost the entire known repertoire of endogenous Gli3 expression in mouse neural tube and limbs. However, the genetic underpinning of GLI3 expression in other embryonic domains such as craniofacial structures and internal organs remain elusive. Here we demonstrate in a transgenic mice assay the potential of a subset of human/fish conserved non-coding sequences (CNEs) residing within GLI3 intronic intervals to induce reporter gene expression at known regions of endogenous Gli3 transcription in embryonic domains other than central nervous system (CNS) and limbs. Highly specific reporter expression was observed in craniofacial structures, eye, gut, and genitourinary system. Moreover, the comparison of expression patterns directed by these intronic cis-acting regulatory elements in mouse and zebrafish embryos suggests that in accordance with sequence conservation, the target site specificity of a subset of these elements remains preserved among these two lineages. Taken together with our recent investigations, it is proposed here that during vertebrate evolution the Gli3 expression control acquired multiple, independently acting, intronic enhancers for spatiotemporal patterning of CNS, limbs, craniofacial structures and internal organs.

  17. Chronic ethanol exposure increases goosecoid (GSC) expression in human embryonic carcinoma cell differentiation.

    PubMed

    Halder, Debasish; Park, Ji Hyun; Choi, Mi Ran; Chai, Jin Choul; Lee, Young Seek; Mandal, Chanchal; Jung, Kyoung Hwa; Chai, Young Gyu

    2014-01-01

    Fetal alcohol spectrum disorder (FASD) is a set of developmental malformations caused by excess alcohol consumption during pregnancy. Using an in vitro system, we examined the role that chronic ethanol (EtOH) exposure plays in gene expression changes during the early stage of embryonic differentiation. We demonstrated that EtOH affected the cell morphology, cell cycle progression and also delayed the down-regulation of OCT4 and NANOG during differentiation. Gene expression profiling and pathway analysis demonstrated that EtOH deregulates many genes and pathways that are involved in early embryogenesis. Follow-up analyzes revealed that EtOH exposure to embryoid bodies (EBs) induced the expression of an organizer-specific gene, goosecoid (GSC), in comparison to controls. Moreover, EtOH treatment altered several important genes that are involved in embryonic structure formation, nervous system development, and placental and embryonic vascularization, which are all common processes that FASD can disrupt. Specifically, EtOH treatment let to a reduction in ALDOC, ENO2 and CDH1 expression, whereas EtOH treatment induced the expression of PTCH1, EGLN1, VEGFA and DEC2 in treated EBs. We also found that folic acid (FA) treatment was able to correct the expression of the majority of genes deregulated by EtOH exposure during early embryo development. Finally, the present study identified a gene set including GSC, which was deregulated by EtOH exposure that may contribute to the etiology of fetal alcohol syndrome (FAS). We also reported that EtOH-induced GSC expression is mediated by Nodal signaling, which may provide a new avenue for analyzing the molecular mechanisms behind EtOH teratogenicity in FASD individuals.

  18. Time-Series Interactions of Gene Expression, Vascular Growth and Hemodynamics during Early Embryonic Arterial Development

    PubMed Central

    Goktas, Selda; Uslu, Fazil E.; Kowalski, William J.; Ermek, Erhan; Keller, Bradley B.

    2016-01-01

    The role of hemodynamic forces within the embryo as biomechanical regulators for cardiovascular morphogenesis, growth, and remodeling is well supported through the experimental studies. Furthermore, clinical experience suggests that perturbed flow disrupts the normal vascular growth process as one etiology for congenital heart diseases (CHD) and for fetal adaptation to CHD. However, the relationships between hemodynamics, gene expression and embryonic vascular growth are poorly defined due to the lack of concurrent, sequential in vivo data. In this study, a long-term, time-lapse optical coherence tomography (OCT) imaging campaign was conducted to acquire simultaneous blood velocity, pulsatile micro-pressure and morphometric data for 3 consecutive early embryonic stages in the chick embryo. In conjunction with the in vivo growth and hemodynamics data, in vitro reverse transcription polymerase chain reaction (RT-PCR) analysis was performed to track changes in transcript expression relevant to histogenesis and remodeling of the embryonic arterial wall. Our non-invasive extended OCT imaging technique for the microstructural data showed continuous vessel growth. OCT data coupled with the PIV technique revealed significant but intermitted increases in wall shear stress (WSS) between first and second assigned stages and a noticeable decrease afterwards. Growth rate, however, did not vary significantly throughout the embryonic period. Among all the genes studied, only the MMP-2 and CASP-3 expression levels remained unchanged during the time course. Concurrent relationships were obtained among the transcriptional modulation of the genes, vascular growth and hemodynamics-related changes. Further studies are indicated to determine cause and effect relationships and reversibility between mechanical and molecular regulation of vasculogenesis. PMID:27552150

  19. Time-Series Interactions of Gene Expression, Vascular Growth and Hemodynamics during Early Embryonic Arterial Development.

    PubMed

    Goktas, Selda; Uslu, Fazil E; Kowalski, William J; Ermek, Erhan; Keller, Bradley B; Pekkan, Kerem

    2016-01-01

    The role of hemodynamic forces within the embryo as biomechanical regulators for cardiovascular morphogenesis, growth, and remodeling is well supported through the experimental studies. Furthermore, clinical experience suggests that perturbed flow disrupts the normal vascular growth process as one etiology for congenital heart diseases (CHD) and for fetal adaptation to CHD. However, the relationships between hemodynamics, gene expression and embryonic vascular growth are poorly defined due to the lack of concurrent, sequential in vivo data. In this study, a long-term, time-lapse optical coherence tomography (OCT) imaging campaign was conducted to acquire simultaneous blood velocity, pulsatile micro-pressure and morphometric data for 3 consecutive early embryonic stages in the chick embryo. In conjunction with the in vivo growth and hemodynamics data, in vitro reverse transcription polymerase chain reaction (RT-PCR) analysis was performed to track changes in transcript expression relevant to histogenesis and remodeling of the embryonic arterial wall. Our non-invasive extended OCT imaging technique for the microstructural data showed continuous vessel growth. OCT data coupled with the PIV technique revealed significant but intermitted increases in wall shear stress (WSS) between first and second assigned stages and a noticeable decrease afterwards. Growth rate, however, did not vary significantly throughout the embryonic period. Among all the genes studied, only the MMP-2 and CASP-3 expression levels remained unchanged during the time course. Concurrent relationships were obtained among the transcriptional modulation of the genes, vascular growth and hemodynamics-related changes. Further studies are indicated to determine cause and effect relationships and reversibility between mechanical and molecular regulation of vasculogenesis. PMID:27552150

  20. Identification of embryonic precursor cells that differentiate into thymic epithelial cells expressing autoimmune regulator.

    PubMed

    Akiyama, Nobuko; Takizawa, Nobukazu; Miyauchi, Maki; Yanai, Hiromi; Tateishi, Ryosuke; Shinzawa, Miho; Yoshinaga, Riko; Kurihara, Masaaki; Demizu, Yosuke; Yasuda, Hisataka; Yagi, Shintaro; Wu, Guoying; Matsumoto, Mitsuru; Sakamoto, Reiko; Yoshida, Nobuaki; Penninger, Josef M; Kobayashi, Yasuhiro; Inoue, Jun-Ichiro; Akiyama, Taishin

    2016-07-25

    Medullary thymic epithelial cells (mTECs) expressing autoimmune regulator (Aire) are critical for preventing the onset of autoimmunity. However, the differentiation program of Aire-expressing mTECs (Aire(+) mTECs) is unclear. Here, we describe novel embryonic precursors of Aire(+) mTECs. We found the candidate precursors of Aire(+) mTECs (pMECs) by monitoring the expression of receptor activator of nuclear factor-κB (RANK), which is required for Aire(+) mTEC differentiation. pMECs unexpectedly expressed cortical TEC molecules in addition to the mTEC markers UEA-1 ligand and RANK and differentiated into mTECs in reaggregation thymic organ culture. Introduction of pMECs in the embryonic thymus permitted long-term maintenance of Aire(+) mTECs and efficiently suppressed the onset of autoimmunity induced by Aire(+) mTEC deficiency. Mechanistically, pMECs differentiated into Aire(+) mTECs by tumor necrosis factor receptor-associated factor 6-dependent RANK signaling. Moreover, nonclassical nuclear factor-κB activation triggered by RANK and lymphotoxin-β receptor signaling promoted pMEC induction from progenitors exhibiting lower RANK expression and higher CD24 expression. Thus, our findings identified two novel stages in the differentiation program of Aire(+) mTECs. PMID:27401343

  1. Characterization of tweety gene (ttyh1-3) expression in Xenopus laevis during embryonic development

    PubMed Central

    Rabe, Brian A.; Huyck, Ryan W.; Williams, Cheyenne C.; Saha, Margaret S.

    2015-01-01

    The tweety family of genes encodes large-conductance chloride channels and has been implicated in a wide array of cellular processes including cell division, cell adhesion, regulation of calcium activity, and tumorigenesis, particularly in neuronal cells. However, their expression patterns during early development remain largely unknown. Here, we describe the spatial and temporal patterning of ttyh1, ttyh2, and ttyh3 in Xenopus laevis during early embryonic development. Ttyh1 and ttyh3 are initially expressed at the late neurula stage are and primarily localized to the developing nervous system; however ttyh1 and ttyh3 both show transient expression in the somites. By swimming tadpole stages, all three genes are expressed in the brain, spinal cord, eye, and cranial ganglia. While ttyh1 is restricted to proliferative, ventricular zones, ttyh3 is primarily localized to postmitotic regions of the developing nervous system. Ttyh2, however, is strongly expressed in cranial ganglia V, VII, IX and X. The differing temporal and spatial expression patterns of ttyh1, ttyh2, and ttyh3 suggest that they may play distinct roles throughout embryonic development. PMID:25541457

  2. Thalidomide induced early gene expression perturbations indicative of human embryopathy in mouse embryonic stem cells.

    PubMed

    Gao, Xiugong; Sprando, Robert L; Yourick, Jeffrey J

    2015-08-15

    Developmental toxicity testing has traditionally relied on animal models which are costly, time consuming, and require the sacrifice of large numbers of animals. In addition, there are significant disparities between human beings and animals in their responses to chemicals. Thalidomide is a species-specific developmental toxicant that causes severe limb malformations in humans but not in mice. Here, we used microarrays to study transcriptomic changes induced by thalidomide in an in vitro model based on differentiation of mouse embryonic stem cells (mESCs). C57BL/6 mESCs were allowed to differentiate spontaneously and RNA was collected at 24, 48, and 72h after exposure to 0.25mM thalidomide. Global gene expression analysis using microarrays revealed hundreds of differentially expressed genes upon thalidomide exposure that were enriched in gene ontology (GO) terms and canonical pathways associated with embryonic development and differentiation. In addition, many genes were found to be involved in small GTPases-mediated signal transduction, heart development, and inflammatory responses, which coincide with clinical evidences and may represent critical embryotoxicities of thalidomide. These results demonstrate that transcriptomics in combination with mouse embryonic stem cell differentiation is a promising alternative model for developmental toxicity assessment.

  3. Characterization, expression, and evolution of the mouse embryonic zeta-globin gene.

    PubMed Central

    Leder, A; Weir, L; Leder, P

    1985-01-01

    We have determined the complete sequence of the embryonic alpha-like, zeta (zeta)-globin gene of the BALB/c mouse. The structure of this gene establishes the amino acid sequence of the mouse embryonic zeta-globin polypeptide chain and allows us to identify sequences within the gene that may be important for its expression. One of these is a 300-base segment that is tightly conserved between mice and humans and is located at the 5' end of the zeta-globin gene. By introducing the cloned gene into permanently transfected mouse erythroleukemic cell lines and comparing its transcript with that of zeta-globin mRNA derived from embryonic yolk sac erythrocytes, we are able to show that the cloned gene is transcriptionally active and that its transcript is correctly initiated and processed. Interestingly, the zeta-globin gene is also active when permanently transfected into an immunoglobulin-producing B-cell, a cell that presumably has tissue-specific requirements for gene expression. Further, a comparison of the amino acid coding sequence of the mouse zeta-globin gene to that of zeta-like globin genes of other species supports a revised evolutionary lineage in which goats and humans are closely related, whereas mice are further removed. Images PMID:4000117

  4. Paf receptor expression in the marsupial embryo and endometrium during embryonic diapause.

    PubMed

    Fenelon, Jane C; Shaw, Geoff; O'Neill, Chris; Frankenberg, Stephen; Renfree, Marilyn B

    2014-01-01

    The control of reactivation from embryonic diapause in the tammar wallaby (Macropus eugenii) involves sequential activation of the corpus luteum, secretion of progesterone that stimulates endometrial secretion and subsequent changes in the uterine environment that activate the embryo. However, the precise signals between the endometrium and the blastocyst are currently unknown. In eutherians, both the phospholipid Paf and its receptor, platelet-activating factor receptor (PTAFR), are present in the embryo and the endometrium. In the tammar, endometrial Paf release in vitro increases around the time of the early progesterone pulse that occurs around the time of reactivation, but whether Paf can reactivate the blastocyst is unknown. We cloned and characterised the expression of PTAFR in the tammar embryo and endometrium at entry into embryonic diapause, during its maintenance and after reactivation. Tammar PTAFR sequence and protein were highly conserved with mammalian orthologues. In the endometrium, PTAFR was expressed at a constant level in the glandular epithelium across all stages and in the luminal epithelium during both diapause and reactivation. Thus, the presence of the receptor appears not to be a limiting factor for Paf actions in the endometrium. However, the low levels of PTAFR in the embryo during diapause, together with its up-regulation and subsequent internalisation at reactivation, supports earlier results suggesting that endometrial Paf could be involved in reactivation of the tammar blastocyst from embryonic diapause. PMID:24123130

  5. Expression of neuronal nitric oxide synthase during embryonic development of the rat optic vesicle.

    PubMed

    Nobakht, M; Majidzadeh, S; Fattahi, M; Samadi, M; Tabatabaeei, P

    2007-04-01

    The expression of neuronal nitric oxide synthase during the development of rat optic vesicle from embryonic day E14 to E18 was analyzed by histochemical procedures. The samples were frozen and cut on a cryostat and then studied by using the light microscope. Expression of nNOS was first seen on E14 in cells of Cajal-Retzius located in the marginal zone of optic vesicle. NADPH-d persisted in this layer throughout the embryonic period and began to decrease on E20. At E16, the optic vesicle has four NADPH-d positive layers. At E18, NADPH-d reactivity observed at low magnification showed five clearly defined layers. In the late stages, the most notable feature was a decrease in histochemical reaction of the marginal zone and at these stages, the layer IV showed less staining than the rest of the cortical plate. The observations suggest that nitric oxide is synthesized during embryonic life processes and this is related to maturational processes.

  6. Nocodazole treatment decreases expression of pluripotency markers Nanog and Oct4 in human embryonic stem cells.

    PubMed

    Kallas, Ade; Pook, Martin; Maimets, Martti; Zimmermann, Külli; Maimets, Toivo

    2011-01-01

    Nocodazole is a known destabiliser of microtubule dynamics and arrests cell-cycle at the G2/M phase. In the context of the human embryonic stem cell (hESC) it is important to understand how this arrest influences the pluripotency of cells. Here we report for the first time the changes in the expression of transcription markers Nanog and Oct4 as well as SSEA-3 and SSEA-4 in human embryonic cells after their treatment with nocodazole. Multivariate permeabilised-cell flow cytometry was applied for characterising the expression of Nanog and Oct4 during different cell cycle phases. Among untreated hESC we detected Nanog-expressing cells, which also expressed Oct4, SSEA-3 and SSEA-4. We also found another population expressing SSEA-4, but without Nanog, Oct4 and SSEA-3 expression. Nocodazole treatment resulted in a decrease of cell population positive for all four markers Nanog, Oct4, SSEA-3, SSEA-4. Nocodazole-mediated cell-cycle arrest was accompanied by higher rate of apoptosis and upregulation of p53. Twenty-four hours after the release from nocodazole block, the cell cycle of hESC normalised, but no increase in the expression of transcription markers Nanog and Oct4 was detected. In addition, the presence of ROCK-2 inhibitor Y-27632 in the medium had no effect on increasing the expression of pluripotency markers Nanog and Oct4 or decreasing apoptosis or the level of p53. The expression of SSEA-3 and SSEA-4 increased in Nanog-positive cells after wash-out of nocodazole in the presence and in the absence of Y-27632. Our data show that in hESC nocodazole reversible blocks cell cycle, which is accompanied by irreversible loss of expression of pluripotency markers Nanog and Oct4.

  7. Characterization of two novel lipocalins expressed in the Drosophila embryonic nervous system.

    PubMed

    Sánchez, D; Ganfornina, M D; Torres-Schumann, S; Speese, S D; Lora, J M; Bastiani, M J

    2000-06-01

    We have found two novel lipocalins in the fruit fly Drosophila melanogaster that are homologous to the grasshopper Lazarillo, a singular lipocalin within this protein family which functions in axon guidance during nervous system development. Sequence analysis suggests that the two Drosophila proteins are secreted and possess peptide regions unique in the lipocalin family. The mRNAs of DNLaz (for Drosophila neural Lazarillo) and DGLaz (for Drosophila glial Lazarillo) are expressed with different temporal patterns during embryogenesis. They show low levels of larval expression and are highly expressed in pupa and adult flies. DNLaz mRNA is transcribed in a subset of neurons and neuronal precursors in the embryonic CNS. DGLaz mRNA is found in a subset of glial cells of the CNS: the longitudinal glia and the medial cell body glia. Both lipocalins are also expressed outside the nervous system in the developing gut, fat body and amnioserosa. The DNLaz protein is detected in a subset of axons in the developing CNS. Treatment with a secretion blocker enhances the antibody labeling, indicating the DNLaz secreted nature. These findings make the embryonic nervous system expression of lipocalins a feature more widespread than previously thought. We propose that DNLaz and DGLaz may have a role in axonal outgrowth and pathfinding, although other putative functions are also discussed.

  8. TGF-beta signaling potentiates differentiation of embryonic stem cells to Pdx-1 expressing endodermal cells.

    PubMed

    Shiraki, Nobuaki; Lai, Cheng-Jung; Hishikari, Yosuke; Kume, Shoen

    2005-06-01

    Embryonic stem (ES) cells have the capacity to differentiate to every cell type that constitutes fetal or adult tissues. To trace and quantitatively assess the differentiation of ES cells into gut endodermal cells, we used an ES cell line with the lacZ gene inserted into the pdx-1 locus. Targeted mutations of pdx-1 in mice demonstrate that pdx-1 is required for pancreatic and rostral duodenal development; therefore, pdx-1 serves as an excellent early gut regional specific marker. When these ES cells were differentiated by removal of leukemia inhibitory factor (LIF), only fractional cells turned into lacZ positive, which indicates pancreatic-duodenal differentiation. Co-cultivation of ES cells with pancreatic rudiments induced a significant increase in the proportion of lacZ positive cell numbers and this increase was further enhanced by forced expression of a chick putative endoderm inducer gene, cmix. Transforming growth factor (TGF)-beta2 mimicked the effects of pancreatic rudiments and this effect was enhanced by cmix expression. Expression analysis showed over-expression of cmix induced endodermal marker genes. These data indicate that one can make use of this knowledge on molecular events of embryonic development to drive ES cells to differentiate into pdx-1 expressing endodermal cells in vitro.

  9. Identification and Expression Analysis of Zebrafish (Danio rerio) E-Selectin during Embryonic Development.

    PubMed

    Sun, Guijin; Liu, Kechun; Wang, Xue; Liu, Xiuhe; He, Qiuxia; Hsiao, Chung-Der

    2015-01-01

    In this study, we cloned the full-length cDNA of E-selectin of zebrafish (Danio rerio), analyzed its expression pattern and preliminarily explored its biological function. Zebrafish E-selectin cDNA is 3146 bp and encodes a putative 871 amino acid protein. All structural domains involved in E-selectin function are conserved in the putative protein. Whole-mount in situ hybridization of zebrafish at 24 and 48 h post-fertilization (hpf) revealed E-selectin expression mainly in vascular/endothelial progenitor cells in the posterior trunk and blood cells in the intermediate cell mass and posterior cardinal vein regions. Real-time quantitative RT-PCR analysis detected E-selectin expression at 0.2, 24 and 48 hpf and significantly decreased from 48 to 72 hpf. The expression of E-selectin, tumor necrosis factor-α and interleukin-1β was significantly upregulated at 22 to 72 h after induction with bacterial lipopolysaccharide. Thus, the structure of E-selectin protein is highly conserved among species, and E-selectin may be involved in embryonic development and essential for hematopoiesis and angiogenesis during embryonic development in zebrafish. Furthermore, we provide the first evidence of inflammatory mediators inducing E-selectin expression in non-mammalian vertebrates, which suggests that zebrafish E-selectin may be involved in inflammation and probably has similar biological function to mammalian E-selectin. PMID:26473817

  10. A Comparative Analysis of Transcription Factor Expression during Metazoan Embryonic Development

    PubMed Central

    Schep, Alicia N.; Adryan, Boris

    2013-01-01

    During embryonic development, a complex organism is formed from a single starting cell. These processes of growth and differentiation are driven by large transcriptional changes, which are following the expression and activity of transcription factors (TFs). This study sought to compare TF expression during embryonic development in a diverse group of metazoan animals: representatives of vertebrates (Danio rerio, Xenopus tropicalis), a chordate (Ciona intestinalis) and invertebrate phyla such as insects (Drosophila melanogaster, Anopheles gambiae) and nematodes (Caenorhabditis elegans) were sampled, The different species showed overall very similar TF expression patterns, with TF expression increasing during the initial stages of development. C2H2 zinc finger TFs were over-represented and Homeobox TFs were under-represented in the early stages in all species. We further clustered TFs for each species based on their quantitative temporal expression profiles. This showed very similar TF expression trends in development in vertebrate and insect species. However, analysis of the expression of orthologous pairs between more closely related species showed that expression of most individual TFs is not conserved, following the general model of duplication and diversification. The degree of similarity between TF expression between Xenopus tropicalis and Danio rerio followed the hourglass model, with the greatest similarity occuring during the early tailbud stage in Xenopus tropicalis and the late segmentation stage in Danio rerio. However, for Drosophila melanogaster and Anopheles gambiae there were two periods of high TF transcriptome similarity, one during the Arthropod phylotypic stage at 8–10 hours into Drosophila development and the other later at 16–18 hours into Drosophila development. PMID:23799133

  11. MicroRNA and gene expression patterns in the differentiation of human embryonic stem cells

    PubMed Central

    Ren, Jiaqiang; Jin, Ping; Wang, Ena; Marincola, Francesco M; Stroncek, David F

    2009-01-01

    Background The unique features of human embryonic stem (hES) cells make them the best candidate resource for both cell replacement therapy and development research. However, the molecular mechanisms responsible for the simultaneous maintenance of their self-renewal properties and undifferentiated state remain unclear. Non-coding microRNAs (miRNA) which regulate mRNA cleavage and inhibit encoded protein translation exhibit temporal or tissue-specific expression patterns and they play an important role in development timing. Results In this study, we analyzed miRNA and gene expression profiles among samples from 3 hES cell lines (H9, I6 and BG01v), differentiated embryoid bodies (EB) derived from H9 cells at different time points, and 5 adult cell types including Human Microvascular Endothelial Cells (HMVEC), Human Umbilical Vein Endothelial Cells (HUVEC), Umbilical Artery Smooth Muscle Cells (UASMC), Normal Human Astrocytes (NHA), and Lung Fibroblasts (LFB). This analysis rendered 104 miRNAs and 776 genes differentially expressed among the three cell types. Selected differentially expressed miRNAs and genes were further validated and confirmed by quantitative real-time-PCR (qRT-PCR). Especially, members of the miR-302 cluster on chromosome 4 and miR-520 cluster on chromosome 19 were highly expressed in undifferentiated hES cells. MiRNAs in these two clusters displayed similar expression levels. The members of these two clusters share a consensus 7-mer seed sequence and their targeted genes had overlapping functions. Among the targeted genes, genes with chromatin structure modification function are enriched suggesting a role in the maintenance of chromatin structure. We also found that the expression level of members of the two clusters, miR-520b and miR-302c, were negatively correlated with their targeted genes based on gene expression analysis Conclusion We identified the expression patterns of miRNAs and gene transcripts in the undifferentiation of human embryonic

  12. Dissecting the heterogeneity of gene expressions in mouse embryonic stem cells

    NASA Astrophysics Data System (ADS)

    Zou, Ling-Nan; Thomson, Matt; Liu, S. John; Ramanathan, Sharad

    2011-03-01

    A population of genetically identical cells, of the same nominal cell type, and cultured in the same petri dish, will nevertheless often exhibit varying patterns of gene expression. Taking mouse embryonic stem (ES) cells as a model system, we use immunofluorescence and flow cytometry to examine in detail the distribution of expression levels for various transcription factors key to the maintenance of the ES cell identity. We find the population-level distribution of many proteins, once rescaled by the average expression level, have very similar shapes. This suggest the largest component of observed heterogeneity comes from a single source. More subtly, we find the expression many of genes appears to modulate with the cell cycle. This may suggest that the program for maintaining ES cell identity is tightly coupled to the cell cycle machinery. This work is supported by the Harvard Stem Cell Institute and the Jane Coffin Childs Memorial Fund for Medical Research.

  13. Parental vitamin deficiency affects the embryonic gene expression of immune-, lipid transport- and apolipoprotein genes

    NASA Astrophysics Data System (ADS)

    Skjærven, Kaja H.; Jakt, Lars Martin; Dahl, John Arne; Espe, Marit; Aanes, Håvard; Hamre, Kristin; Fernandes, Jorge M. O.

    2016-10-01

    World Health Organization is concerned for parental vitamin deficiency and its effect on offspring health. This study examines the effect of a marginally dietary-induced parental one carbon (1-C) micronutrient deficiency on embryonic gene expression using zebrafish. Metabolic profiling revealed a reduced 1-C cycle efficiency in F0 generation. Parental deficiency reduced the fecundity and a total of 364 genes were differentially expressed in the F1 embryos. The upregulated genes (53%) in the deficient group were enriched in biological processes such as immune response and blood coagulation. Several genes encoding enzymes essential for the 1-C cycle and for lipid transport (especially apolipoproteins) were aberrantly expressed. We show that a parental diet deficient in micronutrients disturbs the expression in descendant embryos of genes associated with overall health, and result in inherited aberrations in the 1-C cycle and lipid metabolism. This emphasises the importance of parental micronutrient status for the health of the offspring.

  14. Gene expression analysis of mouse embryonic stem cells following levitation in an ultrasound standing wave trap.

    PubMed

    Bazou, Despina; Kearney, Roisin; Mansergh, Fiona; Bourdon, Celine; Farrar, Jane; Wride, Michael

    2011-02-01

    In the present paper, gene expression analysis of mouse embryonic stem (ES) cells levitated in a novel ultrasound standing wave trap (USWT) (Bazou et al. 2005a) at variable acoustic pressures (0.08-0.85 MPa) and times (5-60 min) was performed. Our results showed that levitation of ES cells at the highest employed acoustic pressure for 60 min does not modify gene expression and cells maintain their pluripotency. Embryoid bodies (EBs) also expressed the early and late neural differentiation markers, which were also unaffected by the acoustic field. Our results suggest that the ultrasound trap microenvironment is minimally invasive as the biologic consequences of ES cell replication and EB differentiation proceed without significantly affecting gene expression. The technique holds great promise in safe cell manipulation techniques for a variety of applications including tissue engineering and regenerative medicine. PMID:21208732

  15. Gene Expression Analysis of Mouse Embryonic Stem Cells Following Levitation in an Ultrasound Standing Wave Trap

    PubMed Central

    Bazou, Despina; Kearney, Roisin; Mansergh, Fiona; Bourdon, Celine; Farrar, Jane; Wride, Michael

    2011-01-01

    In the present paper, gene expression analysis of mouse embryonic stem (ES) cells levitated in a novel ultrasound standing wave trap (USWT) (Bazou et al. 2005a) at variable acoustic pressures (0.08–0.85 MPa) and times (5–60 min) was performed. Our results showed that levitation of ES cells at the highest employed acoustic pressure for 60 min does not modify gene expression and cells maintain their pluripotency. Embryoid bodies (EBs) also expressed the early and late neural differentiation markers, which were also unaffected by the acoustic field. Our results suggest that the ultrasound trap microenvironment is minimally invasive as the biologic consequences of ES cell replication and EB differentiation proceed without significantly affecting gene expression. The technique holds great promise in safe cell manipulation techniques for a variety of applications including tissue engineering and regenerative medicine. (E-mail: Bazoud@tcd.ie) PMID:21208732

  16. Parental vitamin deficiency affects the embryonic gene expression of immune-, lipid transport- and apolipoprotein genes

    PubMed Central

    Skjærven, Kaja H.; Jakt, Lars Martin; Dahl, John Arne; Espe, Marit; Aanes, Håvard; Hamre, Kristin; Fernandes, Jorge M. O.

    2016-01-01

    World Health Organization is concerned for parental vitamin deficiency and its effect on offspring health. This study examines the effect of a marginally dietary-induced parental one carbon (1-C) micronutrient deficiency on embryonic gene expression using zebrafish. Metabolic profiling revealed a reduced 1-C cycle efficiency in F0 generation. Parental deficiency reduced the fecundity and a total of 364 genes were differentially expressed in the F1 embryos. The upregulated genes (53%) in the deficient group were enriched in biological processes such as immune response and blood coagulation. Several genes encoding enzymes essential for the 1-C cycle and for lipid transport (especially apolipoproteins) were aberrantly expressed. We show that a parental diet deficient in micronutrients disturbs the expression in descendant embryos of genes associated with overall health, and result in inherited aberrations in the 1-C cycle and lipid metabolism. This emphasises the importance of parental micronutrient status for the health of the offspring. PMID:27731423

  17. Embryonic expression of endogenous retroviral RNAs in somatic tissues adjacent to the Oikopleura germline

    PubMed Central

    Henriet, Simon; Sumic, Sara; Doufoundou-Guilengui, Carlette; Jensen, Marit Flo; Grandmougin, Camille; Fal, Kateryna; Thompson, Eric; Volff, Jean-Nicolas; Chourrout, Daniel

    2015-01-01

    Selective pressure to maintain small genome size implies control of transposable elements, and most old classes of retrotransposons are indeed absent from the very compact genome of the tunicate Oikopleura dioica. Nonetheless, two families of retrotransposons are present, including the Tor elements. The gene organization within Tor elements is similar to that of LTR retrotransposons and retroviruses. In addition to gag and pol, many Tor elements carry a third gene encoding viral envelope-like proteins (Env) that may mediate infection. We show that the Tor family contains distinct classes of elements. In some classes, env mRNA is transcribed from the 5′LTR as in retroviruses. In others, env is transcribed from an additional promoter located downstream of the 5′LTR. Tor Env proteins are membrane-associated glycoproteins which exhibit some features of viral membrane fusion proteins. Whereas some elements are expressed in the adult testis, many others are specifically expressed in embryonic somatic cells adjacent to primordial germ cells. Such embryonic expression depends on determinants present in the Tor elements and not on their surrounding genomic environment. Our study shows that unusual modes of transcription and expression close to the germline may contribute to the proliferation of Tor elements. PMID:25779047

  18. Discriminating classes of developmental toxicants using gene expression profiling in the embryonic stem cell test.

    PubMed

    van Dartel, Dorien A M; Pennings, Jeroen L A; Robinson, Joshua F; Kleinjans, Jos C S; Piersma, Aldert H

    2011-03-01

    The embryonic stem cell test (EST) has been shown to be a promising in vitro method for the prediction of developmental toxicity. In our previous studies, we demonstrated that the implementation of gene expression analysis in the EST may further improve the identification of developmental toxicants. In the present study, we investigated if gene expression profiling could be used to discriminate compound classes with distinct modes of action (MoA) using the EST protocol. Gene expression data of our previous study were used and were analyzed of embryonic stem cell (ESC) differentiation cultures exposed to six compounds belonging to two classes with distinct MoA, namely phthalates and triazoles. We used three approaches to study class-characteristic gene regulation that may be useful for discrimination of compound classes. First, at the individual gene level, gene signatures characteristic for each class were identified that successfully discriminated both classes using principal component analysis. Second, at the functional level, enriched gene ontology (GO) biological processes showed their usefulness for class discrimination via hierarchical clustering. Third, two previously identified gene sets, which we designed to predict developmental toxicity, appeared successful in separating phthalate from triazole compounds. In summary, we established the possibility to discriminate between compound classes in the EST system using three different specific transcriptomics-based approaches. Differential gene expression information specific for the class of compound under study may be employed to optimize prioritization of compounds within that class for further testing.

  19. mRNA expression profiling of laser microbeam microdissected cells from slender embryonic structures.

    PubMed

    Scheidl, Stefan J; Nilsson, Sven; Kalén, Mattias; Hellström, Mats; Takemoto, Minoru; Håkansson, Joakim; Lindahl, Per

    2002-03-01

    Microarray hybridization has rapidly evolved as an important tool for genomic studies and studies of gene regulation at the transcriptome level. Expression profiles from homogenous samples such as yeast and mammalian cell cultures are currently extending our understanding of biology, whereas analyses of multicellular organisms are more difficult because of tissue complexity. The combination of laser microdissection, RNA amplification, and microarray hybridization has the potential to provide expression profiles from selected populations of cells in vivo. In this article, we present and evaluate an experimental procedure for global gene expression analysis of slender embryonic structures using laser microbeam microdissection and laser pressure catapulting. As a proof of principle, expression profiles from 1000 cells in the mouse embryonic (E9.5) dorsal aorta were generated and compared with profiles for captured mesenchymal cells located one cell diameter further away from the aortic lumen. A number of genes were overexpressed in the aorta, including 11 previously known markers for blood vessels. Among the blood vessel markers were endoglin, tie-2, PDGFB, and integrin-beta1, that are important regulators of blood vessel formation. This demonstrates that microarray analysis of laser microbeam micro-dissected cells is sufficiently sensitive for identifying genes with regulative functions.

  20. Expression dynamics of WOX genes mark cell fate decisions during early embryonic patterning in Arabidopsis thaliana.

    PubMed

    Haecker, Achim; Gross-Hardt, Rita; Geiges, Bernd; Sarkar, Ananda; Breuninger, Holger; Herrmann, Marita; Laux, Thomas

    2004-02-01

    During embryonic pattern formation, the main body axes are established and cells of different developmental fates are specified from a single-cell zygote. Despite the fundamental importance of this process, in plants, the underlying mechanisms are largely unknown. We show that expression dynamics of novel WOX (WUSCHEL related homeobox) gene family members reveal early embryonic patterning events in Arabidopsis. WOX2 and WOX8 are co-expressed in the egg cell and zygote and become confined to the apical and basal daughter cells of the zygote, respectively, by its asymmetric division. WOX2 not only marks apical descendants of the zygote, but is also functionally required for their correct development, suggesting that the asymmetric division of the plant zygote separates determinants of apical and basal cell fates. WOX9 expression is initiated in the basal daughter cell of the zygote and subsequently shifts into the descendants of the apical daughter apparently in response to signaling from the embryo proper. Expression of WOX5 shows that identity of the quiescent center is initiated very early in the hypophyseal cell, and highlights molecular and developmental similarities between the stem cell niches of root and shoot meristems. Together, our data suggest that during plant embryogenesis region-specific transcription programs are initiated very early in single precursor cells and that WOX genes play an important role in this process.

  1. Adult, embryonic and fetal hemoglobin are expressed in human glioblastoma cells.

    PubMed

    Emara, Marwan; Turner, A Robert; Allalunis-Turner, Joan

    2014-02-01

    Hemoglobin is a hemoprotein, produced mainly in erythrocytes circulating in the blood. However, non-erythroid hemoglobins have been previously reported in other cell types including human and rodent neurons of embryonic and adult brain, but not astrocytes and oligodendrocytes. Human glioblastoma multiforme (GBM) is the most aggressive tumor among gliomas. However, despite extensive basic and clinical research studies on GBM cells, little is known about glial defence mechanisms that allow these cells to survive and resist various types of treatment. We have shown previously that the newest members of vertebrate globin family, neuroglobin (Ngb) and cytoglobin (Cygb), are expressed in human GBM cells. In this study, we sought to determine whether hemoglobin is also expressed in GBM cells. Conventional RT-PCR, DNA sequencing, western blot analysis, mass spectrometry and fluorescence microscopy were used to investigate globin expression in GBM cell lines (M006x, M059J, M059K, M010b, U87R and U87T) that have unique characteristics in terms of tumor invasion and response to radiotherapy and hypoxia. The data showed that α, β, γ, δ, ζ and ε globins are expressed in all tested GBM cell lines. To our knowledge, we are the first to report expression of fetal, embryonic and adult hemoglobin in GBM cells under normal physiological conditions that may suggest an undefined function of those expressed hemoglobins. Together with our previous reports on globins (Ngb and Cygb) expression in GBM cells, the expression of different hemoglobins may constitute a part of series of active defence mechanisms supporting these cells to resist various types of treatments including chemotherapy and radiotherapy.

  2. Adenine Nucleotide Translocase 4 Is Expressed Within Embryonic Ovaries and Dispensable During Oogenesis

    PubMed Central

    Lim, Chae Ho; Brower, Jeffrey V.; Resnick, James L.; Oh, S. Paul

    2015-01-01

    Adenine nucleotide translocase (Ant) facilitates the exchange of adenosine triphosphate across the mitochondrial inner membrane and plays a critical role for bioenergetics in eukaryotes. Mice have 3 Ant paralogs, Ant1 (Slc25a4), Ant2 (Slc25a5), and Ant4 (Slc25a31), which are expressed in a tissue-dependent manner. We previously identified that Ant4 was expressed exclusively in testicular germ cells in adult mice and essential for spermatogenesis and subsequently male fertility. Further investigation into the process of spermatogenesis revealed that Ant4 was particularly highly expressed during meiotic prophase I and indispensable for normal progression of leptotene spermatocytes to the stages thereafter. In contrast, the expression and roles of Ant4 in female germ cells have not previously been elucidated. Here, we demonstrate that the Ant4 gene is expressed during embryonic ovarian development during which meiotic prophase I occurs. We confirmed embryonic ovary-specific Ant4 expression using a bacterial artificial chromosome transgene. In contrast to male, however, Ant4 null female mice were fertile although the litter size was slightly decreased. They showed apparently normal ovarian development which was morphologically indistinguishable from the control animals. These data indicate that Ant4 is a meiosis-specific gene expressed during both male and female gametogenesis however indispensable only during spermatogenesis and not oogenesis. The differential effects of Ant4 depletion within the processes of male and female gametogenesis may be explained by meiosis-specific inactivation of the X-linked Ant2 gene in male, a somatic paralog of the Ant4 gene. PMID:25031318

  3. Early embryonic failure: Expression and imprinted status of candidate genes on human chromosome 21

    SciTech Connect

    Sherman, L.S.; Bennett, P.R.; Moore, G.E.

    1994-09-01

    Two cases of maternal uniparental (hetero)disomy for human chromosome 21 (mUPD21) have been identified in a systematic search for UPD in 23 cases of early embryonic failure (EEF). Bi-parental origin of the other chromosome pairs was confirmed using specific VNTR probes or dinucleotide repeat analysis. Both maternally and paternally derived isochromosomes 21q have previously been identified in two individuals with normal phenotypes. Full UPD21 has a different mechanism of origin than uniparental isochromosome 21q and its effect on imprinted genes and phenotypic outcome will therefore not necessarily be the same. EEF associated with mUPD21 suggests that developmentally important genes on HSA 21 may be imprinted such that they are only expressed from either the maternally or paternally derived alleles. We have searched for monoallelic expression of candidate genes on HSA 21 in human pregnancy (CBS, IFNAR, COL6A1) using intragenic DNA polymorphisms. These genes were chosen either because their murine homologues lie in imprinted regions or because they are potentially important in embryogenesis. Once imprinted candidate genes have been identified, their methylation status and expression in normal, early embryonic failure and uniparental disomy 21 pregnancies will be studied. At the same time, a larger number of cases of EEF are being examined to further investigate the incidence of UPD21 in this group.

  4. Over Expression of NANOS3 and DAZL in Human Embryonic Stem Cells

    PubMed Central

    Panula, Sarita; Reda, Ahmed; Stukenborg, Jan-Bernd; Ramathal, Cyril; Sukhwani, Meena; Albalushi, Halima; Edsgärd, Daniel; Nakamura, Michiko; Söder, Olle; Orwig, Kyle E.; Yamanaka, Shinya; Reijo Pera, Renee A.; Hovatta, Outi

    2016-01-01

    The mechanisms underlying human germ cell development are largely unknown, partly due to the scarcity of primordial germ cells and the inaccessibility of the human germline to genetic analysis. Human embryonic stem cells can differentiate to germ cells in vitro and can be genetically modified to study the genetic requirements for germ cell development. Here, we studied NANOS3 and DAZL, which have critical roles in germ cell development in several species, via their over expression in human embryonic stem cells using global transcriptional analysis, in vitro germ cell differentiation, and in vivo germ cell formation assay by xenotransplantation. We found that NANOS3 over expression prolonged pluripotency and delayed differentiation. In addition, we observed a possible connection of NANOS3 with inhibition of apoptosis. For DAZL, our results suggest a post-transcriptional regulation mechanism in hES cells. In addition, we found that DAZL suppressed the translation of OCT4, and affected the transcription of several genes associated with germ cells, cell cycle arrest, and cell migration. Furthermore, DAZL over expressed cells formed spermatogonia-like colonies in a rare instance upon xenotransplantation. These data can be used to further elucidate the role of NANOS3 and DAZL in germ cell development both in vitro and in vivo. PMID:27768780

  5. Cyclic stretch of Embryonic Cardiomyocytes Increases Proliferation, Growth, and Expression While Repressing Tgf-β Signaling

    PubMed Central

    Banerjee, Indroneal; Carrion, Katrina; Serrano, Ricardo; Dyo, Jeffrey; Sasik, Roman; Lund, Sean; Willems, Erik; Aceves, Seema; Meili, Rudolph; Mercola, Mark; Chen, Ju; Zambon, Alexander; Hardiman, Gary; Doherty, Taylor A; Lange, Stephan; del Álamo, Juan C.; Nigam, Vishal

    2014-01-01

    Perturbed biomechanical stimuli are thought to be critical for the pathogenesis of a number of congenital heart defects, including Hypoplastic Left Heart Syndrome (HLHS). While embryonic cardiomyocytes experience biomechanical stretch every heart beat, their molecular responses to biomechanical stimuli during heart development are poorly understood. We hypothesized that biomechanical stimuli activate specific signaling pathways that impact proliferation, gene expression and myocyte contraction. The objective of this study was to expose embryonic mouse cardiomyocytes (EMCM) to cyclic stretch and examine key molecular and phenotypic responses. Analysis of RNA-Sequencing data demonstrated that gene ontology groups associated with myofibril and cardiac development were significantly modulated. Stretch increased EMCM proliferation, size, cardiac gene expression, and myofibril protein levels. Stretch also repressed several components belonging to the Transforming Growth Factor-β (Tgf-β) signaling pathway. EMCMs undergoing cyclic stretch had decreased Tgf-β expression, protein levels, and signaling. Furthermore, treatment of EMCMs with a Tgf-β inhibitor resulted in increased EMCM size. Functionally, Tgf-β signaling repressed EMCM proliferation and contractile function, as assayed via dynamic monolayer force microscopy (DMFM). Taken together, these data support the hypothesis that biomechanical stimuli play a vital role in normal cardiac development and for cardiac pathology, including HLHS. PMID:25446186

  6. Chibby functions in Xenopus ciliary assembly, embryonic development, and the regulation of gene expression

    PubMed Central

    Shi, Jianli; Zhao, Ying; Galati, Domenico; Winey, Mark; Klymkowsky, Michael W.

    2015-01-01

    Wnt signaling and ciliogenesis are core features of embryonic development in a range of metazoans. Chibby (Cby), a basal-body associated protein, regulates β-catenin-mediated Wnt signaling in the mouse but not Drosophila. Here we present an analysis of Cby’s embryonic expression and morphant phenotypes in Xenopus laevis. Cby RNA is supplied maternally, negatively regulated by Snail2 but not Twist1, preferentially expressed in the neuroectoderm, and regulates β-catenin-mediated gene expression. Reducing Cby levels reduced the density of multiciliated cells, the number of basal bodies per multiciliated cell, and the numbers of neural tube primary cilia; it also led to abnormal development of the neural crest, central nervous system, and pronephros, all defects that were rescued by a Cby-GFP chimera. Reduction of Cby led to an increase in Wnt8a and decreases in Gli2, Gli3, and Shh RNA levels. Many, but not all, morphant phenotypes were significantly reversed by the Wnt inhibitor SFRP2. These observations extend our understanding of Cby’s role in mediating the network of interactions between ciliogenesis, signaling systems and tissue patterning. PMID:25220153

  7. Six proteins regulate the activation of Myf5 expression in embryonic mouse limbs

    PubMed Central

    Giordani, Julien; Bajard, Lola; Demignon, Josiane; Daubas, Philippe; Buckingham, Margaret; Maire, Pascal

    2007-01-01

    Myf5, a member of the myogenic regulatory factor family, plays a major role in determining myogenic cell fate at the onset of skeletal muscle formation in the embryo. Spatiotemporal control of its expression during development requires multiple enhancer elements spread over >100 kb at the Myf5 locus. Transcription in embryonic limbs is regulated by a 145-bp element located at −57.5 kb from the Myf5 gene. In the present study we show that Myf5 expression is severely impaired in the limb buds of Six1−/− and Six1−/−Six4−/+ mouse mutants despite the presence of myogenic progenitor cells. The 145-bp regulatory element contains a sequence that binds Six1 and Six4 in electromobility shift assays in vitro and in chromatin immunoprecipitation assays with embryonic extracts. We further show that Six1 is able to transactivate a reporter gene under the control of this sequence. In vivo functionality of the Six binding site is demonstrated by transgenic analysis. Mutation of this site impairs reporter gene expression in the limbs and in mature somites where the 145-bp regulatory element is also active. Six1/4 therefore regulate Myf5 transcription, together with Pax3, which was previously shown to be required for the activity of the 145-bp element. Six homeoproteins, which also directly regulate the myogenic differentiation gene Myogenin and lie genetically upstream of Pax3, thus control hypaxial myogenesis at multiple levels. PMID:17592144

  8. Boule Is Present in Fish and Bisexually Expressed in Adult and Embryonic Germ Cells of Medaka

    PubMed Central

    Xu, Hongyan; Li, Zhendong; Li, Mingyou; Wang, Li; Hong, Yunhan

    2009-01-01

    Background The DAZ family genes boule, daz and dazl encode RNA binding proteins essential for fertility of diverse animals including human. dazl has bisexual expression in both mitotic and meiotic germ cells, whereas daz has male premeiotic expression, and boule is largely a unisexual meiotic regulator. Although boule has been proposed as the ancestor for dazl/daz by gene duplication, it has been identified only in invertebrates and mammals. It has, however, remained unclear when and how the DAZ family has evolved in vertebrates. Methodology and Principal Findings This study was aimed at identifying and characterizing the DAZ family genes in fish as the basal vertebrate. We show that boule and dazl coexist in medaka and stickleback. Similar to the medaka dazl (Odazl), the medaka boule (Obol) is maternally supplied and segregates with primordial germ cells. Surprisingly, Obol is expressed in adult germ cells at pre-meiotic and meiotic stages of spermatogenesis and oogenesis. However, the maximal meiotic Obol expression in spermatocytes contrasts with the predominant pre-meiotic Odazl expression in spermatogonia, and the diffuse cytoplasmic Obol distribution in early oocytes contrasts with the Odazl concentration in the Balbinani's body. Conclusions The identification of fish boule and dazl genes provides direct evidence for the early gene duplication during vertebrate evolution. Our finding that Obol exhibits bisexual expression in both embryonic and adult germ cells considerably extends the diversity of boule expression patterns and offers a new insight into the evolutions of DAZ family members, expression patterns and functions in animal fertility. PMID:19564913

  9. Selective MicroRNA-Offset RNA Expression in Human Embryonic Stem Cells

    PubMed Central

    Juhila, Juuso; Holm, Frida; Weltner, Jere; Trokovic, Ras; Mikkola, Milla; Toivonen, Sanna; Balboa, Diego; Lampela, Riina; Icay, Katherine; Tuuri, Timo; Otonkoski, Timo; Wong, Garry; Hovatta, Outi

    2015-01-01

    Small RNA molecules, including microRNAs (miRNAs), play critical roles in regulating pluripotency, proliferation and differentiation of embryonic stem cells. miRNA-offset RNAs (moRNAs) are similar in length to miRNAs, align to miRNA precursor (pre-miRNA) loci and are therefore believed to derive from processing of the pre-miRNA hairpin sequence. Recent next generation sequencing (NGS) studies have reported the presence of moRNAs in human neurons and cancer cells and in several tissues in mouse, including pluripotent stem cells. In order to gain additional knowledge about human moRNAs and their putative development-related expression, we applied NGS of small RNAs in human embryonic stem cells (hESCs) and fibroblasts. We found that certain moRNA isoforms are notably expressed in hESCs from loci coding for stem cell-selective or cancer-related miRNA clusters. In contrast, we observed only sparse moRNAs in fibroblasts. Consistent with earlier findings, most of the observed moRNAs derived from conserved loci and their expression did not appear to correlate with the expression of the adjacent miRNAs. We provide here the first report of moRNAs in hESCs, and their expression profile in comparison to fibroblasts. Moreover, we expand the repertoire of hESC miRNAs. These findings provide an expansion on the known repertoire of small non-coding RNA contents in hESCs. PMID:25822230

  10. Temporally and spatially controlled expression of transgenes in embryonic and adult tissues

    PubMed Central

    Zhang, Qian; Triplett, Aleata A.; Harms, Don W.; Lin, Wan-chi; Creamer, Bradley A.; Rizzino, Angie; Wagner, Kay-Uwe

    2009-01-01

    Using ES cell-mediated transgenesis, we generated a novel mouse strain that permits a temporally and spatially controlled expression of responder genes in embryonic and multiple adult tissues. The transgene was constructed in a way that a CMV enhancer linked to the chicken β-actin promoter (CAG) drives the expression of the tetracycline-controlled transactivator (tTA) in particular tissues upon Cre-mediated excision of a floxed βgeo marker located between the promoter and the tTA. Based on the enzymatic activity of lacZ, the CAG-βgeo-tTA construct exhibits a widespread expression and appears to be very strong in the brain, heart, muscle, pancreas, and skin. Like the embryonic stem cell line that was used to generate this strain, the CAG-βgeo-tTA transgene is already highly active in preimplantation embryos. Using in vivo bioluminescence imaging on MMTV-Cre, CAG-βgeo-tTA, TetO-Luciferase triple transgenic mice and their controls, we demonstrated that the expression of the tTA, which is strictly dependent on the presence of Cre recombinase, induces the activation of the reporter transgene in the absence of any ligands. The tTA-mediated transactivation can be completely ablated through administration of doxycycline, and its subsequent withdrawal lifts the transcriptional block. Based on these characteristics, this novel strain may be useful in experiments that require a sustained expression of transgenes in particular cell types over a prolonged period followed by a rapid downregulation, for example in studies that examine the therapeutic value of cancer-initiating oncogenes during disease progression. PMID:19821046

  11. Heterogeneous lineage marker expression in naive embryonic stem cells is mostly due to spontaneous differentiation.

    PubMed

    Nair, Gautham; Abranches, Elsa; Guedes, Ana M V; Henrique, Domingos; Raj, Arjun

    2015-08-21

    Populations of cultured mouse embryonic stem cells (ESCs) exhibit a subfraction of cells expressing uncharacteristically low levels of pluripotency markers such as Nanog. Yet, the extent to which individual Nanog-negative cells are differentiated, both from ESCs and from each other, remains unclear. Here, we show the transcriptome of Nanog-negative cells exhibits expression of classes of genes associated with differentiation that are not yet active in cells exposed to differentiation conditions for one day. Long non-coding RNAs, however, exhibit more changes in expression in the one-day-differentiated cells than in Nanog-negative cells. These results are consistent with the concept that Nanog-negative cells may contain subpopulations of both lineage-primed and differentiated cells. Single cell analysis showed that Nanog-negative cells display substantial and coherent heterogeneity in lineage marker expression in progressively nested subsets of cells exhibiting low levels of Nanog, then low levels of Oct4, and then a set of lineage markers, which express intensely in a small subset of these more differentiated cells. Our results suggest that the observed enrichment of lineage-specific marker gene expression in Nanog-negative cells is associated with spontaneous differentiation of a subset of these cells rather than the more random expression that may be associated with reversible lineage priming.

  12. Heterogeneous lineage marker expression in naive embryonic stem cells is mostly due to spontaneous differentiation

    PubMed Central

    Nair, Gautham; Abranches, Elsa; Guedes, Ana M. V.; Henrique, Domingos; Raj, Arjun

    2015-01-01

    Populations of cultured mouse embryonic stem cells (ESCs) exhibit a subfraction of cells expressing uncharacteristically low levels of pluripotency markers such as Nanog. Yet, the extent to which individual Nanog-negative cells are differentiated, both from ESCs and from each other, remains unclear. Here, we show the transcriptome of Nanog-negative cells exhibits expression of classes of genes associated with differentiation that are not yet active in cells exposed to differentiation conditions for one day. Long non-coding RNAs, however, exhibit more changes in expression in the one-day-differentiated cells than in Nanog-negative cells. These results are consistent with the concept that Nanog-negative cells may contain subpopulations of both lineage-primed and differentiated cells. Single cell analysis showed that Nanog-negative cells display substantial and coherent heterogeneity in lineage marker expression in progressively nested subsets of cells exhibiting low levels of Nanog, then low levels of Oct4, and then a set of lineage markers, which express intensely in a small subset of these more differentiated cells. Our results suggest that the observed enrichment of lineage-specific marker gene expression in Nanog-negative cells is associated with spontaneous differentiation of a subset of these cells rather than the more random expression that may be associated with reversible lineage priming. PMID:26292941

  13. Human Skin Cells That Express Stage-Specific Embryonic Antigen 3 Associate with Dermal Tissue Regeneration

    PubMed Central

    Vega Crespo, Agustin; Awe, Jason P.; Reijo Pera, Renee

    2012-01-01

    Abstract Stage-specific embryonic antigen 3 (SSEA3) is a glycosphingolipid that has previously been used to identify cells with stem cell-like, multipotent, and pluripotent characteristics. A rare subpopulation of SSEA3-expressing cells exists in the dermis of adult human skin. These SSEA3-expressing cells undergo a significant increase in cell number in response to injury, suggesting a possible role in regeneration. These SSEA3-expressing regeneration-associated (SERA) cells were derived through primary cell culture, purified by fluorescence-activated cell sorting (FACS), and characterized. Longer in vitro culture of the primary skin cells led to lower SSEA3 expression stability after FACS-based purification, suggesting that the current culture conditions may need to be optimized to permit the large-scale expansion of SERA cells. The SERA cells demonstrated a global transcriptional state that was most similar to bone marrow- and fat-derived mesenchymal stem cells (MSCs), and the highest expressing SSEA3-expressing cells co-expressed CD105 (clone 35). However, while a rare population of MSCs was observed in primary human skin cell cultures that could differentiate into adipocytes, osteoblasts, or chondrocytes, SERA cells did not possess this differentiation capacity, suggesting that there are at least two different rare subpopulations in adult human skin primary cultures. The identification, efficient purification, and large-scale expansion of these rare subpopulations (SERA cells and MSCs) from heterogeneous adult human skin primary cell cultures may have applications for future patient-specific cellular therapies. PMID:23514702

  14. Developmental MicroRNA Expression Profiling of Murine Embryonic Orofacial Tissue

    PubMed Central

    Mukhopadhyay, Partha; Brock, Guy; Pihur, Vasyl; Webb, Cynthia; Pisano, M. Michele; Greene, Robert M.

    2011-01-01

    BACKGROUND Orofacial development is a multifaceted process involving precise, spatio-temporal expression of a panoply of genes. MicroRNAs (miRNAs), the largest family of noncoding RNAs involved in gene silencing, represent critical regulators of cell and tissue differentiation. MicroRNA gene expression profiling is an effective means of acquiring novel and valuable information regarding the expression and regulation of genes, under the control of miRNA, involved in mammalian orofacial development. METHODS To identify differentially expressed miRNAs during mammalian orofacial ontogenesis, miRNA expression profiles from gestation day (GD) -12, -13 and -14 murine orofacial tissue were compared utilizing miRXplore microarrays from Miltenyi Biotech. Quantitative real-time PCR was utilized for validation of gene expression changes. Cluster analysis of the microarray data was conducted with the clValid R package and the UPGMA clustering method. Functional relationships between selected miRNAs were investigated using Ingenuity Pathway Analysis. RESULTS Expression of over 26% of the 588 murine miRNA genes examined was detected in murine orofacial tissues from GD-12–GD-14. Among these expressed genes, several clusters were seen to be developmentally regulated. Differential expression of miRNAs within such clusters were shown to target genes encoding proteins involved in cell proliferation, cell adhesion, differentiation, apoptosis and epithelial-mesenchymal transformation, all processes critical for normal orofacial development. CONCLUSIONS Using miRNA microarray technology, unique gene expression signatures of hundreds of miRNAs in embryonic orofacial tissue were defined. Gene targeting and functional analysis revealed that the expression of numerous protein-encoding genes, crucial to normal orofacial ontogeny, may be regulated by specific miRNAs. PMID:20589883

  15. Embryonic expression and evolutionary analysis of the amphioxus Dickkopf and Kremen family genes.

    PubMed

    Zhang, Yujun; Mao, Bingyu

    2010-09-01

    The secreted Wnt signaling inhibitor Dickkopf1 (Dkk1) plays key role in vertebrate head induction. Its receptor Kremen synergizes with Dkk1 in Wnt inhibition. Here we have carried out expression and functional studies of the Dkk and Kremen genes in amphioxus (Branchiostoma belcheri). During embryonic and larval development, BbDkk1/2/4 is expressed in the posterior mesoendoderm, anterior somatic mesoderm and the pharyngeal regions. Its expression becomes restricted to the pharyngeal region on the left side at larval stages. In 45 h larvae, BbDkk1/2/4 is expressed specifically in the cerebral vesicle. BbDkk3 was only detected at larval stages in the mid-intestine region. Seven Kremen related genes were identified in the genome of the Florida amphioxus (Branchiostoma floridae), clustered in 4 scaffolds, and are designated Kremen1-4 and Kremen-like 1-3, respectively. In B. belcheri, Kremen1 is strongly expressed in the mesoendoderm during early development and Kremen3 is expressed asymmetrically in spots in the larval pharyngeal region. In luciferase reporter assays, BbDkk1/2/4 can strongly inhibit Wnt signaling, while BbDkk3, BbKremen1 and BbKremen3 can not. No co-operative effect was observed between amphioxus Dkk1/2/4 and Kremens, suggesting that the interaction between Dkk and Kremen likely originated later during evolution.

  16. Knockdown of p53 suppresses Nanog expression in embryonic stem cells

    SciTech Connect

    Abdelalim, Essam Mohamed; Tooyama, Ikuo

    2014-01-10

    Highlights: •We investigate the role of p53 in ESCs in the absence of DNA damage. •p53 knockdown suppresses ESC proliferation. •p53 knockdown downregulates Nanog expression. •p53 is essential for mouse ESC self-renewal. -- Abstract: Mouse embryonic stem cells (ESCs) express high levels of cytoplasmic p53. Exposure of mouse ESCs to DNA damage leads to activation of p53, inducing Nanog suppression. In contrast to earlier studies, we recently reported that chemical inhibition of p53 suppresses ESC proliferation. Here, we confirm that p53 signaling is involved in the maintenance of mouse ESC self-renewal. RNA interference-mediated knockdown of p53 induced downregulation of p21 and defects in ESC proliferation. Furthermore, p53 knockdown resulted in a significant downregulation in Nanog expression at 24 and 48 h post-transfection. p53 knockdown also caused a reduction in Oct4 expression at 48 h post-transfection. Conversely, exposure of ESCs to DNA damage caused a higher reduction of Nanog expression in control siRNA-treated cells than in p53 siRNA-treated cells. These data show that in the absence of DNA damage, p53 is required for the maintenance of mouse ESC self-renewal by regulating Nanog expression.

  17. Endogenous and ectopic expression of telomere regulating genes in chicken embryonic fibroblasts

    SciTech Connect

    Michailidis, Georgios; Saretzki, Gabriele; Hall, Judith , E-Mail: Judith.hall@ncl.ac.uk

    2005-09-16

    In this study, we compared the endogenous expression of genes encoding telomere regulating proteins in cultured chicken embryonic fibroblasts (CEFs) and 10-day-old chicken embryos. CEFs maintained in vitro senesced and senescence was accompanied by reduced telomere length, telomerase activity, and expression of the chicken (c) TRF1 gene. There was no change in TRF2 gene expression although the major TRF2 transcript identified in 10-day-old chicken embryos encoded a truncated TRF2 protein (TRF2'), containing an N-terminal dimerisation domain but lacking a myb-related DNA binding domain and nuclear localisation signal. Senescence of the CEFs in vitro was associated with the loss of the TRF2' transcript, indicative of a novel function for the encoded protein. Senescence was also coupled with decreased expression of RAD51, but increased RAD52 expression. These data support that RAD51 independent recombination mechanisms do not function in vitro to maintain chicken telomeres. To attempt to rescue the CEFs from replicative senescence, we stably transfected passage 3 CEFs with the human telomerase reverse transcriptase (hTERT) catalytic subunit. While hTERT expression was detected in the stable transfectants neither telomerase activity nor the stabilisation of telomere length was observed, and the transfectant cells senesced at the same passage number as the untransfected cells. These data indicate that the human TERT is incompatible with the avian telomere maintenance apparatus and suggest the functioning of a species specific telomere system in the avian.

  18. Changes in Laminin Expression Pattern during Early Differentiation of Human Embryonic Stem Cells.

    PubMed

    Pook, Martin; Teino, Indrek; Kallas, Ade; Maimets, Toivo; Ingerpuu, Sulev; Jaks, Viljar

    2015-01-01

    Laminin isoforms laminin-511 and -521 are expressed by human embryonic stem cells (hESC) and can be used as a growth matrix to culture these cells under pluripotent conditions. However, the expression of these laminins during the induction of hESC differentiation has not been studied in detail. Furthermore, the data regarding the expression pattern of laminin chains in differentiating hESC is scarce. In the current study we aimed to fill this gap and investigated the potential changes in laminin expression during early hESC differentiation induced by retinoic acid (RA). We found that laminin-511 but not -521 accumulates in the committed cells during early steps of hESC differentiation. We also performed a comprehensive analysis of the laminin chain repertoire and found that pluripotent hESC express a more diverse range of laminin chains than shown previously. In particular, we provide the evidence that in addition to α1, α5, β1, β2 and γ1 chains, hESC express α2, α3, β3, γ2 and γ3 chain proteins and mRNA. Additionally, we found that a variant of laminin α3 chain-145 kDa-accumulated in RA-treated hESC showing that these cells produce prevalently specifically modified version of α3 chain in early phase of differentiation. PMID:26378917

  19. Satb1 and Satb2 regulate embryonic stem cell differentiation and Nanog expression

    PubMed Central

    Savarese, Fabio; Dávila, Amparo; Nechanitzky, Robert; De La Rosa-Velazquez, Inti; Pereira, Carlos F.; Engelke, Rudolf; Takahashi, Keiko; Jenuwein, Thomas; Kohwi-Shigematsu, Terumi; Fisher, Amanda G.; Grosschedl, Rudolf

    2009-01-01

    Satb1 and the closely related Satb2 proteins regulate gene expression and higher-order chromatin structure of multigene clusters in vivo. In examining the role of Satb proteins in murine embryonic stem (ES) cells, we find that Satb1−/− cells display an impaired differentiation potential and augmented expression of the pluripotency determinants Nanog, Klf4, and Tbx3. Metastable states of self-renewal and differentiation competence have been attributed to heterogeneity of ES cells in the expression of Nanog. Satb1−/− cultures have a higher proportion of Nanoghigh cells, and an increased potential to reprogram human B lymphocytes in cell fusion experiments. Moreover, Satb1-deficient ES cells show an increased expression of Satb2, and we find that forced Satb2 expression in wild-type ES cells antagonizes differentiation-associated silencing of Nanog and enhances the induction of NANOG in cell fusions with human B lymphocytes. An antagonistic function of Satb1 and Satb2 is also supported by the almost normal differentiation potential of Satb1−/−Satb2−/− ES cells. Taken together with the finding that both Satb1 and Satb2 bind the Nanog locus in vivo, our data suggest that the balance of Satb1 and Satb2 contributes to the plasticity of Nanog expression and ES cell pluripotency. PMID:19933152

  20. Changes in Laminin Expression Pattern during Early Differentiation of Human Embryonic Stem Cells

    PubMed Central

    Pook, Martin; Teino, Indrek; Kallas, Ade; Maimets, Toivo; Ingerpuu, Sulev; Jaks, Viljar

    2015-01-01

    Laminin isoforms laminin-511 and -521 are expressed by human embryonic stem cells (hESC) and can be used as a growth matrix to culture these cells under pluripotent conditions. However, the expression of these laminins during the induction of hESC differentiation has not been studied in detail. Furthermore, the data regarding the expression pattern of laminin chains in differentiating hESC is scarce. In the current study we aimed to fill this gap and investigated the potential changes in laminin expression during early hESC differentiation induced by retinoic acid (RA). We found that laminin-511 but not -521 accumulates in the committed cells during early steps of hESC differentiation. We also performed a comprehensive analysis of the laminin chain repertoire and found that pluripotent hESC express a more diverse range of laminin chains than shown previously. In particular, we provide the evidence that in addition to α1, α5, β1, β2 and γ1 chains, hESC express α2, α3, β3, γ2 and γ3 chain proteins and mRNA. Additionally, we found that a variant of laminin α3 chain—145 kDa—accumulated in RA-treated hESC showing that these cells produce prevalently specifically modified version of α3 chain in early phase of differentiation. PMID:26378917

  1. Effects of simulated-microgravity on zebrafish embryonic development and microRNA expression

    NASA Astrophysics Data System (ADS)

    Hang, Xiaoming; Sun, Yeqing; Zhang, Meng; Li, Hui

    2012-07-01

    Microgravity is a constant physical factor astronauts must meet during space flight. Therefore, the mechanism of microgravity-induced biological effects is one of the most important issues in space biological studies. In this research, zebrafish (Danio rerio) embryos at different development stages were exposed to simulated microgravity, respectively, using a rotary cell culture system (RCCS) designed by NASA. Biological effects of simulated microgravity on zebrafish embryos were investigated at the phenotypic and microRNA expression levels. Malformation rate and mortality rate were found increased after simulated microgravity exposure. Body length and heart rate were also increased during microgravity exposure and after a shot period of gravity recovery, but both returned to normal level after 10 days and 7 days of gravity recovery, respectively. Additionally, significant changes in microRNA expression profiles of zebrafish embryos were observed, depending on the development stages of embyos exposed to simulated microgravity and the exposure time. All together, nine miRNAs showed significant changes after three different microgravity exposures (8-72hpf, 24-72hpf and 24-48hpf). Four miRNAs, dre-miR-738, dre-miR-133a, dre-miR-133b and dre-miR-22a, were up-regulated. Two miRNAs, dre-miR-1 and dre-miR-16a, were down-regulated. The other three miRNAs, dre-miR-204, dre-miR-9* and dre-miR-429, were found up-regulated when microgravity exposures ended at 72hpf, but down-regulated when microgravity exposures ended at 48hpf. Above results demonstrated microRNA expression of zebrafish embryos could be induced by both embryonic development stage and simulated microgravity. Key Words: Danio rerio; Simulated-microgravity; embryonic devlopment; microRNA expression

  2. Ectopic expression of Cripto-1 in transgenic mouse embryos causes hemorrhages, fatal cardiac defects and embryonic lethality

    PubMed Central

    Lin, Xiaolin; Zhao, Wentao; Jia, Junshuang; Lin, Taoyan; Xiao, Gaofang; Wang, Shengchun; Lin, Xia; Liu, Yu; Chen, Li; Qin, Yujuan; Li, Jing; Zhang, Tingting; Hao, Weichao; Chen, Bangzhu; Xie, Raoying; Cheng, Yushuang; Xu, Kang; Yao, Kaitai; Huang, Wenhua; Xiao, Dong; Sun, Yan

    2016-01-01

    Targeted disruption of Cripto-1 in mice caused embryonic lethality at E7.5, whereas we unexpectedly found that ectopic Cripto-1 expression in mouse embryos also led to embryonic lethality, which prompted us to characterize the causes and mechanisms underlying embryonic death due to ectopic Cripto-1 expression. RCLG/EIIa-Cre embryos displayed complex phenotypes between embryonic day 14.5 (E14.5) and E17.5, including fatal hemorrhages (E14.5-E15.5), embryo resorption (E14.5-E17.5), pale body surface (E14.5-E16.5) and no abnormal appearance (E14.5-E16.5). Macroscopic and histological examination revealed that ectopic expression of Cripto-1 transgene in RCLG/EIIa-Cre embryos resulted in lethal cardiac defects, as evidenced by cardiac malformations, myocardial thinning, failed assembly of striated myofibrils and lack of heartbeat. In addition, Cripto-1 transgene activation beginning after E8.5 also caused the aforementioned lethal cardiac defects in mouse embryos. Furthermore, ectopic Cripto-1 expression in embryonic hearts reduced the expression of cardiac transcription factors, which is at least partially responsible for the aforementioned lethal cardiac defects. Our results suggest that hemorrhages and cardiac abnormalities are two important lethal factors in Cripto-1 transgenic mice. Taken together, these findings are the first to demonstrate that sustained Cripto-1 transgene expression after E11.5 causes fatal hemorrhages and lethal cardiac defects, leading to embryonic death at E14.5-17.5. PMID:27687577

  3. Effect of Bushenantai recipe on the expression of endometrial LIF in mice with embryonic implantation dysfunction.

    PubMed

    Zhang, Mingmin; Huang, Yuqin; Zhu, Guijin; Huang, Guangying; Dong, Liping; Zhang, Jinjin

    2008-02-01

    In order to observe the effect of Bushenantai recipe on the expression of endometrial leukemia-inhibitory factor (LIF) in mice with embryonic implantation dysfunction (EID), 120 Kunming mice post coition were randomized into three groups: normal control group, model group and traditional Chinese medicine group (TCM group) (n=40 in each group). Uterus was collected on the pregnancy day (Pd) 4, 5, 6 after an intravenous injection of Evan's blue. The endometrium was dyed by Evan's blue and the mean points of response were observed on Pd 5. The expression of LIF mRNA and protein was detected by RT-PCR and immunohistochemistry respectively and analyzed statistically by image system. The results showed that the number of implantation sites in model group was remarkably less than in normal control group and TCM group. There was no significant difference between normal control group and TCM group. The expression of LIF mRNA and protein in model group was delayed. Bushenantai recipe could increase the expression of LIF mRNA and protein in endometria of mice with EID. It was suggested that Bushenantai recipe could improve embryo implantation of mice with EID by promoting the endometrial LIF expression and endometrial decidualization.

  4. c-Rel Regulates Inscuteable Gene Expression during Mouse Embryonic Stem Cell Differentiation.

    PubMed

    Ishibashi, Riki; Kozuki, Satoshi; Kamakura, Sachiko; Sumimoto, Hideki; Toyoshima, Fumiko

    2016-02-12

    Inscuteable (Insc) regulates cell fate decisions in several types of stem cells. Although it is recognized that the expression levels of mouse INSC govern the balance between symmetric and asymmetric stem cell division, regulation of mouse Insc gene expression remains poorly understood. Here, we showed that mouse Insc expression transiently increases at an early stage of differentiation, when mouse embryonic stem (mES) cells differentiate into bipotent mesendoderm capable of producing both endoderm and mesoderm in defined culture conditions. We identified the minimum transcriptional regulatory element (354 bases) that drives mouse Insc transcription in mES cells within a region >5 kb upstream of the mouse Insc transcription start site. We found that the transcription factor reticuloendotheliosis oncogene (c-Rel) bound to the minimum element and promoted mouse Insc expression in mES cells. In addition, short interfering RNA-mediated knockdown of either mouse INSC or c-Rel protein decreased mesodermal cell populations without affecting differentiation into the mesendoderm or endoderm. Furthermore, overexpression of mouse INSC rescued the mesoderm-reduced phenotype induced by knockdown of c-Rel. We propose that regulation of mouse Insc expression by c-Rel modulates cell fate decisions during mES cell differentiation.

  5. Expression profiles of Wnt genes during neural differentiation of mouse embryonic stem cells.

    PubMed

    Nordin, Norshariza; Li, Meng; Mason, John O

    2008-03-01

    The Wnt family of secreted signaling proteins regulates many aspects of animal development and the behavior of several types of stem cells, including embryonic stem (ES) cells. Activation of canonical Wnt signaling has been shown to either inhibit or promote the differentiation of ES cells into neurons, depending on the stage of differentiation. Here, we describe the expression of all 19 mouse Wnt genes during this process. Using the well-established retinoic acid induction protocol we found that all Wnt genes except Wnt8b are expressed as ES cells differentiate into neurons, many of them in dynamic patterns. The expression pattern of 12 Wnt genes was analyzed quantitatively at 2-day intervals throughout neural differentiation, showing that multiple Wnt genes are expressed at each stage. A large proportion of these, including both canonical and noncanonical Wnts, are expressed at highest levels during later stages of differentiation. The complexity of the patterns observed indicates that disentangling specific roles for individual Wnt genes in the differentiation process will be a significant challenge.

  6. MicroRNA-10 modulates Hox genes expression during Nile tilapia embryonic development.

    PubMed

    Giusti, Juliana; Pinhal, Danillo; Moxon, Simon; Campos, Camila Lovaglio; Münsterberg, Andrea; Martins, Cesar

    2016-05-01

    Hox gene clusters encode a family of transcription factors that govern anterior-posterior axis patterning during embryogenesis in all bilaterian animals. The time and place of Hox gene expression are largely determined by the relative position of each gene within its cluster. Furthermore, Hox genes were shown to have their expression fine-tuned by regulatory microRNAs (miRNAs). However, the mechanisms of miRNA-mediated regulation of these transcription factors during fish early development remain largely unknown. Here we have profiled three highly expressed miR-10 family members of Nile tilapia at early embryonic development, determined their genomic organization as well as performed functional experiments for validation of target genes. Quantitative analysis during developmental stages showed miR-10 family expression negatively correlates with the expression of HoxA3a, HoxB3a and HoxD10a genes, as expected for bona fide miRNA-mRNA interactions. Moreover, luciferase assays demonstrated that HoxB3a and HoxD10a are targeted by miR-10b-5p. Overall, our data indicate that the miR-10 family directly regulates members of the Hox gene family during Nile tilapia embryogenesis. PMID:26980108

  7. Expression profiling of nuclear receptors in human and mouse embryonic stem cells.

    PubMed

    Xie, Chang-Qing; Jeong, Yangsik; Fu, Mingui; Bookout, Angie L; Garcia-Barrio, Minerva T; Sun, Tingwan; Kim, Bong-Hyun; Xie, Yang; Root, Sierra; Zhang, Jifeng; Xu, Ren-He; Chen, Y Eugene; Mangelsdorf, David J

    2009-05-01

    Nuclear receptors (NRs) regulate gene expression in essential biological processes including differentiation and development. Here we report the systematic profiling of NRs in human and mouse embryonic stem cell (ESC) lines and during their early differentiation into embryoid bodies. Expression of the 48 human and mouse NRs was assessed by quantitative real-time PCR. In general, expression of NRs between the two human cell lines was highly concordant, whereas in contrast, expression of NRs between human and mouse ESCs differed significantly. In particular, a number of NRs that have been implicated previously as crucial regulators of mouse ESC biology, including ERRbeta, DAX-1, and LRH-1, exhibited diametric patterns of expression, suggesting they may have distinct species-specific functions. Taken together, these results highlight the complexity of the transcriptional hierarchy that exists between species and governs early development. These data should provide a unique resource for further exploration of the species-specific roles of NRs in ESC self-renewal and differentiation. PMID:19196830

  8. High expression of hTERT and stemness genes in BORIS/CTCFL positive cells isolated from embryonic cancer cells.

    PubMed

    Alberti, Loredana; Renaud, Stéphanie; Losi, Lorena; Leyvraz, Serge; Benhattar, Jean

    2014-01-01

    BORIS/CTCFL is a member of cancer testis antigen family normally expressed in germ cells. In tumors, it is aberrantly expressed although its functions are not completely well-defined. To better understand the functions of BORIS in cancer, we selected the embryonic cancer cells as a model. Using a molecular beacon, which specifically targets BORIS mRNA, we demonstrated that BORIS positive cells are a small subpopulation of tumor cells (3-5% of total). The BORIS-positive cells isolated using BORIS-molecular beacon, expressed higher telomerase hTERT, stem cell (NANOG, OCT4, SOX2) and cancer stem cell marker genes (CD44 and ALDH1) compared to the BORIS-negative tumor cells. In order to define the functional role of BORIS, stable BORIS-depleted embryonic cancer cells were generated. BORIS silencing strongly down-regulated the expression of hTERT, stem cell and cancer stem cell marker genes. Moreover, the BORIS knockdown increased cellular senescence in embryonic cancer cells, revealing a putative role of BORIS in the senescence biological program. Our data indicate an association of BORIS expressing cells subpopulation with the expression of stemness genes, highlighting the critical role played by BORIS in embryonic neoplastic disease.

  9. Differential gene expression in mouse spermatogonial stem cells and embryonic stem cells

    PubMed Central

    Bai, Yinshan; Feng, Meiying; Liu, Shanshan; Wei, Hengxi; Li, Li; Zhang, Xianwei; Shen, Chao; Zhang, Shouquan; Ma, Ningfang

    2016-01-01

    Mouse spermatogonial stem cells (mSSCs) may be reprogrammed to become pluripotent stem cells under in vitro culture conditions, due to epigenetic modifications, which are closely associated with the expression of transcription factors and epigenetic factors. Thus, this study was conducted to compare the gene expression of transcription factors and epigenetic factors in mSSCs and mouse embryonic stem cells (mESCs). Firstly, the freshly isolated mSSCs [mSSCs (f)] were enriched by magnetic-activated cell sorting with Thy1.2 (CD90.2) microbeads, and the typical morphological characteristics were maintained under in vitro culture conditions for over 5 months to form long-term propagated mSSCs [mSSCs (l)]. These mSSCs (l) expressed pluripotency-associated genes and were induced to differentiate into sperm. Our findings indicated that the mSSCs (l) expressed high levels of the transcription factors, Lin28 and Prmt5, and the epigenetic factors, Tet3, Parp1, Max, Tert and Trf1, in comparison with the mESCs, with the levels of Prmt5, Tet3, Parp1 and Tert significantly higher than those in the mESCs. There was no significant difference in Kdm2b expression between mSSCs (l) and mESCs. Furthermore, the gene expression of N-Myc, Dppa2, Tbx3, Nr5a2, Prmt5, Tet3, Parp1, Max, Tert and Trf1 in the mSSCs (l) was markedly higher in comparison to that in the mSSCs (f). Collectively, our results suggest that the mSSCs and the mESCs displayed differential gene expression profiles, and the mSSCs possessed the potential to acquire pluripotency based on the high expression of transcription factors and epigenetic factors. These data may provide novel insights into the reprogramming mechanism of mSSCs. PMID:27353491

  10. Expression of Na(+)/K(+)-ATPase alpha-subunit mRNA during embryonic development of the crayfish Astacus leptodactylus.

    PubMed

    Serrano, L; Towle, D W; Charmantier, G; Spanings-Pierrot, C

    2007-06-01

    Astacus leptodactylus is a decapod crustacean fully adapted to freshwater where it spends its entire life cycle after hatching under huge osmoconcentration differences between the hemolymph and surrounding freshwater. We investigated the expression of mRNA encoding one ion transport-related protein, Na(+)/K(+)-ATPase alpha-subunit, and one putative housekeeping gene, beta-actin, during crayfish ontogenesis using quantitative real-time PCR. A 216-amino acid part of the open reading frame region of the cDNA coding for the Na(+)/K(+)-ATPase alpha-subunit was sequenced from total embryo, juvenile and adult gill tissues. The predicted amino acid sequence showed a high percentage similarity to those of other invertebrates (up to 95%) and vertebrates (up to 69%). beta-actin expression exhibited modest changes through embryonic development and early post-embryonic stage. The Na(+)/K(+)-ATPase alpha-subunit gene was expressed in all studied stages from metanauplius to juvenile. Two peaks of expression were observed: one in young embryos at 25% of embryonic development (EI=100 mum), and one in embryos just before hatching (at EI=420 mum), continuing in the freshly hatched juveniles. The Na(+)/K(+)-ATPase expression profile during embryonic development is time-correlated with the occurrence of other features, including ontogenesis of excretory antennal glands and differentiation of gill ionocytes linked to hyperosmoregulation processes and therefore involved in freshwater adaptation.

  11. Embryonic expression of the divergent Drosophila beta3-tubulin isoform is required for larval behavior.

    PubMed Central

    Dettman, R W; Turner, F R; Hoyle, H D; Raff, E C

    2001-01-01

    We have sought to define the developmental and cellular roles played by differential expression of distinct beta-tubulins. Drosophila beta3-tubulin (beta3) is a structurally divergent isoform transiently expressed during midembryogenesis. Severe beta3 mutations cause larval lethality resulting from failed gut function and consequent starvation. However, mutant larvae also display behavioral abnormalities consistent with defective sensory perception. We identified embryonic beta3 expression in several previously undefined sites, including different types of sensory organs. We conclude that abnormalities in foraging behavior and photoresponsiveness exhibited by prelethal mutant larvae reflect defective beta3 function in the embryo during development of chordotonal and other mechanosensory organs and of Bolwig's organ and nerve. We show that microtubule organization in the cap cells of chordotonal organs is altered in mutant larvae. Thus transient zygotic beta3 expression has permanent consequences for the architecture of the cap cell microtubule cytoskeleton in the larval sensilla, even when beta3 is no longer present. Our data provide a link between the microtubule cytoskeleton in embryogenesis and the behavioral phenotype manifested as defective proprioreception at the larval stage. PMID:11333234

  12. A Mechanochemical Model for Embryonic Pattern Formation: Coupling Tissue Mechanics and Morphogen Expression

    PubMed Central

    Mercker, Moritz; Hartmann, Dirk; Marciniak-Czochra, Anna

    2013-01-01

    Motivated by recent experimental findings, we propose a novel mechanism of embryonic pattern formation based on coupling of tissue curvature with diffusive signaling by a chemical factor. We derive a new mathematical model using energy minimization approach and show that the model generates a variety of morphogen and curvature patterns agreeing with experimentally observed structures. The mechanism proposed transcends the classical Turing concept which requires interactions between two morphogens with a significantly different diffusivity. Our studies show how biomechanical forces may replace the elusive long-range inhibitor and lead to formation of stable spatially heterogeneous structures without existence of chemical prepatterns. We propose new experimental approaches to decisively test our central hypothesis that tissue curvature and morphogen expression are coupled in a positive feedback loop. PMID:24376555

  13. CHANGES IN EXPRESSION OF PHOSPHORYLATED AND TOTAL ERK 1/2 IN TCDD-EXPOSED EMBRYONIC MOUSE PALATES

    EPA Science Inventory

    CHANGES IN EXPRESSION OF PHOSPHORYLATED AND TOTAL ERK1/2 IN TCDD-EXPOSED EMBRYONIC MOUSE PALATES.
    C Wolf and B Abbott, USEPA, ORD, NHEERL, Reproductive Toxicology Division, Research Triangle Park, NC 27711

    2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induces cleft palate...

  14. An amphioxus netrin gene is expressed in midline structures during embryonic and larval development.

    PubMed

    Shimeld, S

    2000-07-01

    Members of the netrin gene family have been identified in vertebrates, Drosophila and Caenorhabditis elegans and found to encode secreted molecules involved in axon guidance. Here I use the conserved function of netrins in triploblasts, coupled with the phylogenetic position of amphioxus (the closest living relative of the vertebrates), to investigate the evolution of an axon guidance cue in chordates. A single amphioxus netrin gene was isolated by PCR and cDNA library screening and named AmphiNetrin. The predicted AmphiNetrin protein showed high identity to other netrin family members but differed in that the third of three EGF repeats found in other netrins was absent. Molecular phylogene-tic analysis showed that despite the absent EGF repeat AmphiNetrin is most closely related to the vertebrate netrins. AmphiNetrin expression was identified in embryonic notochord and floor plate, a pattern similar to that of vertebrate netrin-1 expression. AmphiNetrin expression was also identified more widely in the posterior larval brain, and in the anterior extension of the notochord that underlies the anterior of the amphioxus brain. All of these areas of expression are correlated with developing axon trajectories: The floor plate with ventrally projecting somatic motor neurons and Rohde cell projections, the posterior brain with the ventral commissure and primary motor centre and the anterior extension of the notochord with ventrally projecting neurons associated with the median eye. Amphioxus is naturally cyclopaedic and also lacks the ventral brain cells that the induction of which results in the splitting of the vertebrate eye field and, when missing, result in cyclopaedia. These cells normally express netrins required for developing axon tracts in the brain, and the expression of AmphiNetrin in the anterior extension of the notochord underlying the brain may explain how amphioxus is able to maintain ventral guidance cues while lacking these cells.

  15. Forced expression of Hnf1b/Foxa3 promotes hepatic fate of embryonic stem cells.

    PubMed

    Yahoo, Neda; Pournasr, Behshad; Rostamzadeh, Jalal; Hakhamaneshi, Mohammad Saeed; Ebadifar, Asghar; Fathi, Fardin; Baharvand, Hossein

    2016-05-20

    Embryonic stem (ES) cell-derived hepatocytes have the potential to be used for basic research, regenerative medicine, and drug discovery. Recent reports demonstrated that in addition to conventional differentiation inducers such as chemical compounds and cytokines, overexpression of lineage-specific transcription factors could induce ES cells to differentiate to a hepatic fate. Here, we hypothesized that lentivirus-mediated inducible expression of hepatic lineage transcription factors could enhance mouse ES cells to hepatocyte-like cells. We screened the effects of candidate transcription factors Hnf1b, Hnf1a, Hnf4a, Foxa1, Foxa3 and Hex, and determined that the combination of Hnf1b/Foxa3 promoted expression of several hepatic lineage-specific markers and proteins, in addition to glycogen storage, ICG uptake, and secretion of albumin and urea. The differentiated cells were engraftable and expressed albumin when transplanted into a carbon tetrachloride-injured mouse model. These results demonstrated the crucial role of Hnf1b and Foxa3 in hepatogenesis in vitro and provided a valuable tool for the efficient differentiation of HLCs from ES cells. PMID:27107701

  16. Rapid Transcriptional Pulsing Dynamics of High Expressing Retroviral Transgenes in Embryonic Stem Cells

    PubMed Central

    Lo, Mandy Y. M.; Rival-Gervier, Sylvie; Pasceri, Peter; Ellis, James

    2012-01-01

    Single cell imaging studies suggest that transcription is not continuous and occurs as discrete pulses of gene activity. To study mechanisms by which retroviral transgenes can transcribe to high levels, we used the MS2 system to visualize transcriptional dynamics of high expressing proviral integration sites in embryonic stem (ES) cells. We established two ES cell lines each bearing a single copy, self-inactivating retroviral vector with a strong ubiquitous human EF1α gene promoter directing expression of mRFP fused to an MS2-stem-loop array. Transfection of MS2-EGFP generated EGFP focal dots bound to the mRFP-MS2 stem loop mRNA. These transcription foci colocalized with the transgene integration site detected by immunoFISH. Live tracking of single cells for 20 minutes detected EGFP focal dots that displayed frequent and rapid fluctuations in transcription over periods as short as 25 seconds. Similarly rapid fluctuations were detected from focal doublet signals that colocalized with replicated proviral integration sites by immunoFISH, consistent with transcriptional pulses from sister chromatids. We concluded that retroviral transgenes experience rapid transcriptional pulses in clonal ES cell lines that exhibit high level expression. These events are directed by a constitutive housekeeping gene promoter and may provide precedence for rapid transcriptional pulsing at endogenous genes in mammalian stem cells. PMID:22606340

  17. Electrophysiological characterization of ionic transport by the retinal exchanger expressed in human embryonic kidney cells.

    PubMed Central

    Navanglone, A; Rispoli, G; Gabellini, N; Carafoli, E

    1997-01-01

    The retinal Na+:Ca2+, K+exchanger cDNA was transiently expressed in human embryonic kidney (HEK 293) cells by transfection with plasmid DNA. The correct targeting of the expressed protein to the plasma membrane was confirmed by immunocytochemistry. The reverse exchange offrent (Ca2+ imported per Na+ extruded) was measured in whole-cell voltage-clamp experiments after intracellular perfusion with Na+ (Na+i, 128 mM) and extracellular perfusion with Ca2+ (Ca2o+, 1 mM) and Ko+ (20 mM). As expected, the exchange current was suppressed by removing Ca2o+. Surprisingly, however, it was also abolished by increasing Na+o to almost abolish the Na+ gradient, and it was almost unaffected by the removal of Ko+. Apparently, then, at variance with the exchanger in the rod outer segment, the retinal exchanger expressed in 293 cells acts essentially as a Na+:Ca2+ exchanger and does not require K+ for its electrogenic activity. Images FIGURE 1 PMID:9199770

  18. RNA-Seq Analysis of Differential Gene Expression in Electroporated Chick Embryonic Spinal Cord

    PubMed Central

    Vieceli, Felipe M.; Yan, C.Y. Irene

    2014-01-01

    In ovo electroporation of the chick neural tube is a fast and inexpensive method for identification of gene function during neural development. Genome wide analysis of differentially expressed transcripts after such an experimental manipulation has the potential to uncover an almost complete picture of the downstream effects caused by the transfected construct. This work describes a simple method for comparing transcriptomes from samples of transfected embryonic spinal cords comprising all steps between electroporation and identification of differentially expressed transcripts. The first stage consists of guidelines for electroporation and instructions for dissection of transfected spinal cord halves from HH23 embryos in ribonuclease-free environment and extraction of high-quality RNA samples suitable for transcriptome sequencing. The next stage is that of bioinformatic analysis with general guidelines for filtering and comparison of RNA-Seq datasets in the Galaxy public server, which eliminates the need of a local computational structure for small to medium scale experiments. The representative results show that the dissection methods generate high quality RNA samples and that the transcriptomes obtained from two control samples are essentially the same, an important requirement for detection of differential expression genes in experimental samples. Furthermore, one example is provided where experimental overexpression of a DNA construct can be visually verified after comparison with control samples. The application of this method may be a powerful tool to facilitate new discoveries on the function of neural factors involved in spinal cord early development. PMID:25406837

  19. Using cadherin expression to assess spontaneous differentiation of embryonic stem cells.

    PubMed

    Spencer, Helen; Keramari, Maria; Ward, Christopher M

    2011-01-01

    Embryonic stem cells (ESCs) are pluripotent cells derived from preimplantation embryos and can be maintained in an undifferentiated state over prolonged periods in vitro. In addition, ESCs can be induced to differentiate into cells representative of the three primary germ layers. As such, ESCs are a useful system for studying early developmental events in vitro and have the potential to provide a ubiquitous supply of somatic cells for use in regenerative medicine. However, significant differences in the expression pattern of various cell surface markers between murine and human ESCs, e.g. the SSEA series, necessitate the use of separate markers for determining the undifferentiated state of these cells. We have recently shown that an E- to N-cadherin switch occurs during spontaneous differentiation of both murine and human ESCs. Here we describe the use of E-cadherin and N-cadherin proteins and transcript expression for assessing the proportion of undifferentiated and spontaneously differentiated cells within ESC populations. In summary, loss of cell surface E-cadherin and/or gain of N-cadherin protein expression provides a useful nondestructive assay for the determination of the proportion of spontaneously differentiated cells within an ESC population. In addition, presence of N-cadherin transcripts in an ESC population is indicative of spontaneous differentiation of a proportion of the cells. PMID:21042986

  20. Expression of TGF-betas in the embryonic nervous system: analysis of interbalance between isoforms.

    PubMed

    Mecha, M; Rabadán, M A; Peña-Melián, A; Valencia, M; Mondéjar, T; Blanco, M J

    2008-06-01

    Transforming growth factor-beta (TGF-beta) is a family of growth factors with essential and multiple roles during embryonic development. In mammals, three isoforms (TGF-beta1, TGF-beta2, TGF-beta3) have been described. In the nervous system, the presence of TGF-beta1 has remained undetectable in other structures than meninges and choroids plexus, while TGF-beta2 and TGF-beta3 were considered as the neural members of the family. In the present study, we have analysed the expression pattern of the three isoforms in the neural tube, brain, and spinal cord during development in both mouse and chicken. The data reveal specific patterns for each isoform. This work also shows that both TGF-beta1 and TGF-beta3 are expressed in neural crest cells. In addition, we demonstrate the existence of interbalance between TGF-beta1 and TGF-beta3 with possible functional implications, which, together with the expression of TGF-beta1 in the CNS, represents one of the most important contributions of this work.

  1. Inference of the Xenopus tropicalis embryonic regulatory network and spatial gene expression patterns

    PubMed Central

    2014-01-01

    Background During embryogenesis, signaling molecules produced by one cell population direct gene regulatory changes in neighboring cells and influence their developmental fates and spatial organization. One of the earliest events in the development of the vertebrate embryo is the establishment of three germ layers, consisting of the ectoderm, mesoderm and endoderm. Attempts to measure gene expression in vivo in different germ layers and cell types are typically complicated by the heterogeneity of cell types within biological samples (i.e., embryos), as the responses of individual cell types are intermingled into an aggregate observation of heterogeneous cell types. Here, we propose a novel method to elucidate gene regulatory circuits from these aggregate measurements in embryos of the frog Xenopus tropicalis using gene network inference algorithms and then test the ability of the inferred networks to predict spatial gene expression patterns. Results We use two inference models with different underlying assumptions that incorporate existing network information, an ODE model for steady-state data and a Markov model for time series data, and contrast the performance of the two models. We apply our method to both control and knockdown embryos at multiple time points to reconstruct the core mesoderm and endoderm regulatory circuits. Those inferred networks are then used in combination with known dorsal-ventral spatial expression patterns of a subset of genes to predict spatial expression patterns for other genes. Both models are able to predict spatial expression patterns for some of the core mesoderm and endoderm genes, but interestingly of different gene subsets, suggesting that neither model is sufficient to recapitulate all of the spatial patterns, yet they are complementary for the patterns that they do capture. Conclusion The presented methodology of gene network inference combined with spatial pattern prediction provides an additional layer of validation to

  2. Kisspeptin Activates Ankrd 26 Gene Expression in Migrating Embryonic GnRH Neurons.

    PubMed

    Soga, Tomoko; Lim, Wei Ling; Khoo, Alan Soo-Beng; Parhar, Ishwar S

    2016-01-01

    Kisspeptin, a newly discovered neuropeptide, regulates gonadotropin-releasing hormone (GnRH). Kisspeptins are a large RF-amide family of peptides. The kisspeptin coded by KiSS-1 gene is a 145-amino acid protein that is cleaved to C-terminal peptide kisspeptin-10. G-protein-coupled receptor 54 (GPR54) has been identified as a kisspeptin receptor, and it is expressed in GnRH neurons and in a variety of cancer cells. In this study, enhanced green fluorescent protein (EGFP) labeled GnRH cells with migratory properties, which express GPR54, served as a model to study the effects of kisspeptin on cell migration. We monitored EGFP-GnRH neuronal migration in brain slide culture of embryonic day 14 transgenic rat by live cell imaging system and studied the effects of kisspeptin-10 (1 nM) treatment for 36 h on GnRH migration. Furthermore, to determine kisspeptin-induced molecular pathways related with apoptosis and cytoskeletal changes during neuronal migration, we studied the expression levels of candidate genes in laser-captured EGFP-GnRH neurons by real-time PCR. We found that there was no change in the expression level of genes related to cell proliferation and apoptosis. The expression of ankyrin repeat domain-containing protein (ankrd) 26 in EGFP-GnRH neurons was upregulated by the exposure to kisspeptin. These studies suggest that ankrd 26 gene plays an unidentified role in regulating neuronal movement mediated by kisspeptin-GPR54 signaling, which could be a potential pathway to suppress cell migration. PMID:26973595

  3. Secisbp2 Is Essential for Embryonic Development and Enhances Selenoprotein Expression

    PubMed Central

    Seeher, Sandra; Atassi, Tarik; Mahdi, Yassin; Carlson, Bradley A.; Braun, Doreen; Wirth, Eva K.; Klein, Marc O.; Reix, Nathalie; Miniard, Angela C.; Schomburg, Lutz; Hatfield, Dolph L.; Driscoll, Donna M.

    2014-01-01

    Abstract Aims: The selenocysteine insertion sequence (SECIS)-binding protein 2 (Secisbp2) binds to SECIS elements located in the 3′-untranslated region of eukaryotic selenoprotein mRNAs. Selenoproteins contain the rare amino acid selenocysteine (Sec). Mutations in SECISBP2 in humans lead to reduced selenoprotein expression thereby affecting thyroid hormone-dependent growth and differentiation processes. The most severe cases also display myopathy, hearing impairment, male infertility, increased photosensitivity, mental retardation, and ataxia. Mouse models are needed to understand selenoprotein-dependent processes underlying the patients' pleiotropic phenotypes. Results: Unlike tRNA[Ser]Sec-deficient embryos, homozygous Secisbp2-deleted embryos implant, but fail before gastrulation. Heterozygous inactivation of Secisbp2 reduced the amount of selenoprotein expressed, but did not affect the thyroid hormone axis or growth. Conditional deletion of Secisbp2 in hepatocytes significantly decreased selenoprotein expression. Unexpectedly, the loss of Secisbp2 reduced the abundance of many, but not all, selenoprotein mRNAs. Transcript-specific and gender-selective effects on selenoprotein mRNA abundance were greater in Secisbp2-deficient hepatocytes than in tRNA[Ser]Sec-deficient cells. Despite the massive reduction of Dio1 and Sepp1 mRNAs, significantly more corresponding protein was detected in primary hepatocytes lacking Secisbp2 than in cells lacking tRNA[Ser]Sec. Regarding selenoprotein expression, compensatory nuclear factor, erythroid-derived, like 2 (Nrf2)-dependent gene expression, or embryonic development, phenotypes were always milder in Secisbp2-deficient than in tRNA[Ser]Sec-deficient mice. Innovation: We report the first Secisbp2 mutant mouse models. The conditional mutants provide a model for analyzing Secisbp2 function in organs not accessible in patients. Conclusion: In hepatocyte-specific conditional mouse models, Secisbp2 gene inactivation is less

  4. Kisspeptin Activates Ankrd 26 Gene Expression in Migrating Embryonic GnRH Neurons

    PubMed Central

    Soga, Tomoko; Lim, Wei Ling; Khoo, Alan Soo-Beng; Parhar, Ishwar S.

    2016-01-01

    Kisspeptin, a newly discovered neuropeptide, regulates gonadotropin-releasing hormone (GnRH). Kisspeptins are a large RF-amide family of peptides. The kisspeptin coded by KiSS-1 gene is a 145-amino acid protein that is cleaved to C-terminal peptide kisspeptin-10. G-protein-coupled receptor 54 (GPR54) has been identified as a kisspeptin receptor, and it is expressed in GnRH neurons and in a variety of cancer cells. In this study, enhanced green fluorescent protein (EGFP) labeled GnRH cells with migratory properties, which express GPR54, served as a model to study the effects of kisspeptin on cell migration. We monitored EGFP–GnRH neuronal migration in brain slide culture of embryonic day 14 transgenic rat by live cell imaging system and studied the effects of kisspeptin-10 (1 nM) treatment for 36 h on GnRH migration. Furthermore, to determine kisspeptin-induced molecular pathways related with apoptosis and cytoskeletal changes during neuronal migration, we studied the expression levels of candidate genes in laser-captured EGFP–GnRH neurons by real-time PCR. We found that there was no change in the expression level of genes related to cell proliferation and apoptosis. The expression of ankyrin repeat domain-containing protein (ankrd) 26 in EGFP–GnRH neurons was upregulated by the exposure to kisspeptin. These studies suggest that ankrd 26 gene plays an unidentified role in regulating neuronal movement mediated by kisspeptin–GPR54 signaling, which could be a potential pathway to suppress cell migration. PMID:26973595

  5. Concentration-dependent gene expression responses to flusilazole in embryonic stem cell differentiation cultures

    SciTech Connect

    Dartel, Dorien A.M. van; Pennings, Jeroen L.A.; Fonteyne, Liset J.J. de la; Brauers, Karen J.J.; Claessen, Sandra; Delft, Joost H. van; Kleinjans, Jos C.S.; Piersma, Aldert H.

    2011-03-01

    The murine embryonic stem cell test (EST) is designed to evaluate developmental toxicity based on compound-induced inhibition of embryonic stem cell (ESC) differentiation into cardiomyocytes. The addition of transcriptomic evaluation within the EST may result in enhanced predictability and improved characterization of the applicability domain, therefore improving usage of the EST for regulatory testing strategies. Transcriptomic analyses assessing factors critical for risk assessment (i.e. dose) are needed to determine the value of transcriptomic evaluation in the EST. Here, using the developmentally toxic compound, flusilazole, we investigated the effect of compound concentration on gene expression regulation and toxicity prediction in ESC differentiation cultures. Cultures were exposed for 24 h to multiple concentrations of flusilazole (0.54-54 {mu}M) and RNA was isolated. In addition, we sampled control cultures 0, 24, and 48 h to evaluate the transcriptomic status of the cultures across differentiation. Transcriptomic profiling identified a higher sensitivity of development-related processes as compared to cell division-related processes in flusilazole-exposed differentiation cultures. Furthermore, the sterol synthesis-related mode of action of flusilazole toxicity was detected. Principal component analysis using gene sets related to normal ESC differentiation was used to describe the dynamics of ESC differentiation, defined as the 'differentiation track'. The concentration-dependent effects on development were reflected in the significance of deviation of flusilazole-exposed cultures from this transcriptomic-based differentiation track. Thus, the detection of developmental toxicity in EST using transcriptomics was shown to be compound concentration-dependent. This study provides further insight into the possible application of transcriptomics in the EST as an improved alternative model system for developmental toxicity testing.

  6. Cytosine arabinoside induces ectoderm and inhibits mesoderm expression in human embryonic stem cells during multilineage differentiation

    PubMed Central

    Jagtap, S; Meganathan, K; Gaspar, J; Wagh, V; Winkler, J; Hescheler, J; Sachinidis, A

    2011-01-01

    BACKGROUND AND PURPOSE Teratogenic substances induce adverse effects during the development of the embryo. Multilineage differentiation of human embryonic stem cells (hESCs) mimics the development of the embryo in vitro. Here, we propose a transcriptomic approach in hESCs for monitoring specific toxic effects of compounds as an alternative to traditional time-consuming and cost-intensive in vivo tests requiring large numbers of animals. This study was undertaken to explore the adverse effects of cytosine arabinoside (Ara-C) on randomly differentiated hESCs. EXPERIMENTAL APPROACH Human embryonic stem cells were used to investigate the effects of a developmental toxicant Ara-C. Sublethal concentrations of Ara-C were given for two time points, day 7 and day 14 during the differentiation. Gene expression was assessed with microarrays to determine the dysregulated transcripts in presence of Ara-C. KEY RESULTS Randomly differentiated hESCs were able to generate the multilineage markers. The low concentration of Ara-C (1 nM) induced the ectoderm and inhibited the mesoderm at day 14. The induction of ectodermal markers such as MAP2, TUBB III, PAX6, TH and NESTIN was observed with an inhibition of mesodermal markers such as HAND2, PITX2, GATA5, MYL4, TNNT2, COL1A1 and COL1A2. In addition, no induction of apoptosis was observed. Gene ontology revealed unique dysregulated biological process related to neuronal differentiation and mesoderm development. Pathway analysis showed the axon guidance pathway to be dysregulated. CONCLUSIONS AND IMPLICATIONS Our results suggest that hESCs in combination with toxicogenomics offer a sensitive in vitro developmental toxicity model as an alternative to traditional animal experiments. PMID:21198554

  7. Embryonic and tissue-specific regulation of myostatin-1 and -2 gene expression in zebrafish

    PubMed Central

    Helterline, Deri L.I.; Garikipati, Dilip; Stenkamp, Deborah L.; Rodgers, Buel D.

    2008-01-01

    Myostatin is a member of the TGF-β superfamily and a potent negative regulator of muscle growth and development in mammals. Its expression is limited primarily to skeletal muscle in mammals, but occurs in many different fish tissues, although quantitative measurements of the embryonic and tissue-specific expression profiles are lacking. A recent phylogenetic analysis of all known myostatin genes identified a novel paralogue in zebrafish, zfMSTN-2, and prompted the reclassification of the entire subfamily to include MSTN-1 and -2 sister clades in the bony fishes. The differential expression profiles of both genes were therefore determined using custom RNA panels generated from pooled (100–150/sampling) embryos at different stages of development and from individual adult tissues. High levels of both transcripts were transiently present at the blastula stage, but were undetectable throughout gastrulation (7 hpf). Levels of zfMSTN-2 peaked during early somitogenesis (11 hpf), returned to basal levels during late somitogenesis and did not begin to rise again until hatching (72 hpf). By contrast, zfMSTN-1 mRNA levels peaked during late somitogenesis (15.5–19 hpf), returned to baseline at 21.5 hpf and eventually rose 25-fold by 72 hpf. In adults, both transcripts were present in a wide variety of tissues, including some not previously known to express myostatin. Expression of zfMSTN-1 was highest in brain, muscle, heart and testes and was 1–3 log orders above that in other tissues. It was also greater than zfMSTN-2 expression in most tissues, nevertheless, levels of both transcripts increased almost 600-fold in spleens of fish subjected to stocking stress. Myostatin expression was also detected in mouse spleens, suggesting that myostatin may influence immune cell development in mammals as well as fish. These studies indicate that zfMSTN-1 and -2 gene expression is differentially regulated in developing fish embryos and in adult tissues. The increased expression of

  8. Monitoring Long Interspersed Nuclear Element 1 Expression During Mouse Embryonic Stem Cell Differentiation.

    PubMed

    Bodak, Maxime; Ciaudo, Constance

    2016-01-01

    Long Interspersed Elements-1 (LINE-1 or L1) are a class of transposable elements which account for almost 19 % of the mouse genome. This represents around 600,000 L1 fragments, among which it is estimated that 3000 intact copies still remain capable to retrotranspose and to generate deleterious mutation by insertion into genomic coding region. In differentiated cells, full length L1 are transcriptionally repressed by DNA methylation. However at the blastocyst stage, L1 elements are subject to a demethylation wave and able to be expressed and to be inserted into new genomic locations. Mouse Embryonic Stem Cells (mESCs) are pluripotent stem cells derived from the inner cell mass of blastocysts. Mouse ESCs can be maintained undifferentiated under controlled culture conditions or induced into the three primary germ layers, therefore they represent a suitable model to follow mechanisms involved in L1 repression during the process of differentiation of mESCs. This protocol presents how to maintain culture of undifferentiated mESCs, induce their differentiation, and monitor L1 expression at the transcriptional and translational levels. L1 transcriptional levels are assessed by real-time qRT-PCR performed on total RNA extracts using specific L1 primers and translation levels are measured by Western blot analysis of L1 protein ORF1 using a specific L1 antibody.

  9. Directed neuronal differentiation of mouse embryonic and induced pluripotent stem cells and their gene expression profiles.

    PubMed

    Chen, Xuesong; Gu, Qi; Wang, Xiang; Ma, Qingwen; Tang, Huixiang; Yan, Xiaoshuang; Guo, Xinbing; Yan, Hao; Hao, Jie; Zeng, Fanyi

    2013-07-01

    Embryonic stem cells (ESCs) may be useful as a therapeutic source of cells for the production of healthy tissue; however, they are associated with certain challenges including immunorejection as well as ethical issues. Induced pluripotent stem cells (iPSCs) are a promising substitute since a patient's own adult cells would serve as tissue precursors. Ethical concerns prevent a full evaluation of the developmental potency of human ESCs and iPSCs, therefore, mouse iPSC models are required for protocol development and safety assessments. We used a modified culturing protocol to differentiate pluripotent cells from a mouse iPS cell line and two mouse ES cell lines into neurons. Our results indicated that all three pluripotent stem cell lines underwent nearly the same differentiation process when induced to form neurons in vitro. Genomic expression microarray profiling and single-cell RT-qPCR were used to analyze the neural lineage differentiation process, and more than one thousand differentially expressed genes involved in multiple molecular processes relevant to neural development were identified.

  10. CD44 in Differentiated Embryonic Stem Cells: Surface Expression and Transcripts Encoding Multiple Variants

    PubMed Central

    Haegel, Hélène; Dierich, Andrée

    1994-01-01

    Expression of the surface-adhesion molecule CD44 was investigated during the in vitro differentiation of the embryonic stem (ES) cell line D3. By immunofluorescence analysis, totipotent, undifferentiated ES cells did not show surface expression of CD44, although two transcripts of approximately 1.6 and 3.3 kb were detected on Northern blots. Following 1 week of differentiation in either suspension or substrate-attached cultures, CD44 appeared on the surface of some D3 cells, and synthesis of an additional 4.5 kb mRNA species was detected on Northern blots. At this stage, at least three distinct transcripts encoding CD44 variants were induced within the cultures, resulting from alternative splicing of additional exons in the variable domains of CD44. From PCR analysis, they all appeared to contain the variable exon v10, and two of them in addition contained v6. Taken together, these results suggest that CD44 may play a role in cell migration and adhesion in the early development of the mouse embryo. PMID:7542511

  11. Expression of GD2 and GD3 gangliosides in human embryonic neural stem cells

    PubMed Central

    Yanagisawa, Makoto; Yoshimura, Saori; Yu, Robert K

    2011-01-01

    NSCs (neural stem cells) are undifferentiated neural cells endowed with a high potential for proliferation and a capacity for self-renewal with retention of multipotency to differentiate into neurons and glial cells. It has been recently reported that GD3, a b-series ganglioside, is a marker molecule for identifying and isolating mouse NSCs. However, the expression of gangliosides in human NSCs is largely unknown. In the present study, we analysed the expression of gangliosides, GD2 and GD3, in human NSCs that were isolated from human brains at gestational week 17 in the form of neurospheres, which are floating clonal aggregates formed by NSCs in vitro. Employing immunocytochemistry, we found that human NSCs were strongly reactive to anti-GD2 antibody and relatively weakly reactive to anti-GD3 antibody. Treatment of these cells with an organic solvent such as 100% methanol, which selectively removes glycolipids from plasma membrane, abolished the immunoreactivity with those antibodies, indicating that the reactivity was due to GD2 and GD3, but not to GD2-/GD3-like glycoproteins or proteoglycans. The immunoreactivity of human NSCs to antibody against SSEA-1 (stage-specific embryonic antigen-1), a well-known carbohydrate antigen of NSCs, was not decreased by the treatment with 100% methanol, indicating that SSEA-1 is mainly carried by glycoproteins and/or proteoglycans in human NSCs. Our study suggests that GD2 and GD3 can be marker gangliosides for identifying human NSCs. PMID:21395555

  12. Gene expression signatures defining fundamental biological processes in pluripotent, early, and late differentiated embryonic stem cells.

    PubMed

    Gaspar, John Antonydas; Doss, Michael Xavier; Winkler, Johannes; Wagh, Vilas; Hescheler, Jürgen; Kolde, Raivo; Vilo, Jaak; Schulz, Herbert; Sachinidis, Agapios

    2012-09-01

    Investigating the molecular mechanisms controlling the in vivo developmental program postembryogenesis is challenging and time consuming. However, the developmental program can be partly recapitulated in vitro by the use of cultured embryonic stem cells (ESCs). Similar to the totipotent cells of the inner cell mass, gene expression and morphological changes in cultured ESCs occur hierarchically during their differentiation, with epiblast cells developing first, followed by germ layers and finally somatic cells. Combination of high throughput -omics technologies with murine ESCs offers an alternative approach for studying developmental processes toward organ-specific cell phenotypes. We have made an attempt to understand differentiation networks controlling embryogenesis in vivo using a time kinetic, by identifying molecules defining fundamental biological processes in the pluripotent state as well as in early and the late differentiation stages of ESCs. Our microarray data of the differentiation of the ESCs clearly demonstrate that the most critical early differentiation processes occur at days 2 and 3 of differentiation. Besides monitoring well-annotated markers pertinent to both self-renewal and potency (capacity to differentiate to different cell lineage), we have identified candidate molecules for relevant signaling pathways. These molecules can be further investigated in gain and loss-of-function studies to elucidate their role for pluripotency and differentiation. As an example, siRNA knockdown of MageB16, a gene highly expressed in the pluripotent state, has proven its influence in inducing differentiation when its function is repressed.

  13. Differential and stage-related expression in embryonic tissues of a new human homoeobox gene.

    PubMed

    Mavilio, F; Simeone, A; Giampaolo, A; Faiella, A; Zappavigna, V; Acampora, D; Poiana, G; Russo, G; Peschle, C; Boncinelli, E

    The homoeobox is a 183 base-pair (bp) DNA sequence conserved in several Drosophila genes controlling segmentation and segment identity. Homoeobox sequences have been detected in the genome of species ranging from insects and anellids to vertebrates and homoeobox containing genes have been cloned from Xenopus, mouse and man. We recently isolated human homoeobox containing complementary DNA clones, that represent transcripts from four different human genes. One clone (HHO.c10) is selectively expressed in a 2.1 kilobase (kb) polyadenylated transcript in the spinal cord of human embryos and fetuses 5-10 weeks after fertilization. We report the characterization of a second cDNA clone, termed HHO.c13, that represents a new homoeobox gene. This clone encodes a protein of 255 amino-acid residues, which includes a pentapeptide, upstream of the homoeo domain, conserved in other Drosophila, Xenopus, murine and human homoeobox genes. By Northern analysis HHO.c13 detects multiple embryonic transcripts, which are differentially expressed in spinal cord, brain, backbone rudiments, limb buds and heart in 5-9-week-old human embryos and fetuses, in a striking organ- and stage-specific pattern. These observations suggest that in early mammalian development homoeobox genes may exert a wide spectrum of control functions in a variety of organs and body parts, in addition to the spinal cord. PMID:2879245

  14. Modulation of chromatin modifying factors' gene expression in embryonic and induced pluripotent stem cells.

    PubMed

    Luzzani, Carlos; Solari, Claudia; Losino, Noelia; Ariel, Waisman; Romorini, Leonardo; Bluguermann, Carolina; Sevlever, Gustavo; Barañao, Lino; Miriuka, Santiago; Guberman, Alejandra

    2011-07-15

    Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) are a promising source of cells for regenerative medicine because of their potential of self renew and differentiation. Multiple evidences highlight the relationship of chromatin remodeling with stem cell properties, differentiation programs and reprogramming for iPSC obtention. With the purpose of finding chromatin modifying factors relevant to these processes, and based on ChIP on chip studies, we selected several genes that could be modulated by Oct4, Sox2 and Nanog, critical transcription factors in stem cells, and studied their expression profile along the differentiation in mouse and human ESCs, and in mouse iPSCs. In this work, we analyzed the expression of Gcn5l2, GTF3C3, TAF15, ATF7IP, Myst2, HDAC2, HDAC3, HDAC5, HDAC10, SUV39H2, Jarid2, and Bmi-1. We found some genes from different functional groups that were highly modulated, suggesting that they could be relevant both in the undifferentiated state and during differentiation. These findings could contribute to the comprehension of molecular mechanisms involved in pluripotency, early differentiation and reprogramming. We believe that a deeper knowledge of the epigenetic regulation of ESC will allow improving somatic cell reprogramming for iPSC obtention and differentiation protocols optimization.

  15. Comparative analysis of temporal gene expression patterns in the developing ovary of the embryonic chicken

    PubMed Central

    YU, Minli; XU, Yali; YU, Defu; YU, Debing; DU, Wenxing

    2015-01-01

    Many genes participate in the process of ovarian germ cell development, while the combined action mechanisms of these molecular regulators still need clarification. The present study was focused on determination of differentially expressed genes and gene functions at four critical time points in chicken ovarian development. Comparative transcriptional profiling of ovaries from embryonic day 5.5 (E5.5), E12.5, E15.5 and E18.5 was performed using an Affymetrix GeneChip chicken genome microarray. Differential expression patterns for genes specifically depleted and enriched in each stage were identified. The results showed that most of the up- and downregulated genes were involved in the metabolism of retinoic acid (RA) and synthesis of hormones. Among them, a higher number of up- and downregulated genes in the E15.5 ovary were identified as being involved in steroid biosynthesis and retinol metabolism, respectively. To validate gene changes, expressions of twelve candidate genes related to germ cell development were examined by real-time PCR and found to be consistent with the of GeneChip data. Moreover, the immunostaining results suggested that ovarian development during different stages was regulated by different genes. Furthermore, a Raldh2 knockdown chicken model was produced to investigate the fundamental role of Raldh2 in meiosis initiation. It was found that meiosis occurred abnormally in Raldh2 knockdown ovaries, but the inhibitory effect on meiosis was reversed by the addition of exogenous RA. This study offers insights into the profile of gene expression and mechanisms regulating ovarian development, especially the notable role of Raldh2 in meiosis initiation in the chicken. PMID:25736178

  16. Proteomic Analysis of the Ubiquitin Landscape in the Drosophila Embryonic Nervous System and the Adult Photoreceptor Cells

    PubMed Central

    Ramirez, Juanma; Martinez, Aitor; Lectez, Benoit; Lee, So Young; Franco, Maribel; Barrio, Rosa; Dittmar, Gunnar; Mayor, Ugo

    2015-01-01

    Background Ubiquitination is known to regulate physiological neuronal functions as well as to be involved in a number of neuronal diseases. Several ubiquitin proteomic approaches have been developed during the last decade but, as they have been mostly applied to non-neuronal cell culture, very little is yet known about neuronal ubiquitination pathways in vivo. Methodology/Principal Findings Using an in vivo biotinylation strategy we have isolated and identified the ubiquitinated proteome in neurons both for the developing embryonic brain and for the adult eye of Drosophila melanogaster. Bioinformatic comparison of both datasets indicates a significant difference on the ubiquitin substrates, which logically correlates with the processes that are most active at each of the developmental stages. Detection within the isolated material of two ubiquitin E3 ligases, Parkin and Ube3a, indicates their ubiquitinating activity on the studied tissues. Further identification of the proteins that do accumulate upon interference with the proteasomal degradative pathway provides an indication of the proteins that are targeted for clearance in neurons. Last, we report the proof-of-principle validation of two lysine residues required for nSyb ubiquitination. Conclusions/Significance These data cast light on the differential and common ubiquitination pathways between the embryonic and adult neurons, and hence will contribute to the understanding of the mechanisms by which neuronal function is regulated. The in vivo biotinylation methodology described here complements other approaches for ubiquitome study and offers unique advantages, and is poised to provide further insight into disease mechanisms related to the ubiquitin proteasome system. PMID:26460970

  17. Impact of thermal stress during incubation on gene expression in embryonic muscle of Peking ducks (Anasplatyrhynchos domestica).

    PubMed

    Liu, Hehe; Liu, Junying; Yan, Xiping; Li, Qingqing; Zhao, Yangmei; Wang, Yan; Zhang, Rongping; Wang, Guosong; Wang, Haohan; Li, Xinxin; Yang, Chao; Li, Liang; Han, Chunchun; Wang, Jiwen

    2015-10-01

    Changes in temperature will influence poultry embryonic muscle development. However, little is known about the changes in molecular processes impacted by incubation temperature in avians. In this study, we investigated the effects of increasing the incubation temperature by 1°C from day 11-20 on the embryonic and posthatch skeletal muscle development of the Peking duck, and identified the differentially expressed genes using RNA-seq of leg muscle tissues. The results showed that altering the incubation temperature had immediate and long-lasting effects on phenotypic changes in the embryonic and post-hatching muscle development. It was shown that expression levels of total 1370 genes were altered in muscle tissues by the thermal treatments. The gene ontology (GO) analyses indicated that cellular processes including metabolism, cell cycle, catalytic activity, and enzyme regulatory activity may have involved in the muscle mass impacted by thermal manipulation. TGF-beta and insulin pathways as two classical muscle development related pathways may also involve in regulating muscle mass. These data may be helpful for understanding the physiological and biochemical processes of muscle development under environmental treatments in embryonic avians.

  18. Induced Wnt5a expression perturbs embryonic outgrowth and intestinal elongation, but is well-tolerated in adult mice.

    PubMed

    Bakker, Elvira R M; Raghoebir, Lalini; Franken, Patrick F; Helvensteijn, Werner; van Gurp, Léon; Meijlink, Frits; van der Valk, Martin A; Rottier, Robbert J; Kuipers, Ernst J; van Veelen, Wendy; Smits, Ron

    2012-09-01

    Wnt5a is essential during embryonic development, as indicated by mouse Wnt5a knockout embryos displaying outgrowth defects of multiple structures including the gut. The dynamics of Wnt5a involvement in these processes is unclear, and perinatal lethality of Wnt5a knockout embryos has hampered investigation of Wnt5a during postnatal stages in vivo. Although in vitro studies have suggested a relevant role for Wnt5a postnatally, solid evidence for a significant impact of Wnt5a within the complexity of an adult organism is lacking. We generated a tightly-regulated inducible Wnt5a transgenic mouse model and investigated the effects of Wnt5a induction during different time-frames of embryonic development and in adult mice, focusing on the gastrointestinal tract. When induced in embryos from 10.5 dpc onwards, Wnt5a expression led to severe outgrowth defects affecting the gastrointestinal tracts, limbs, facial structures and tails, closely resembling the defects observed in Wnt5a knockout mice. However, Wnt5a induction from 13.5 dpc onwards did not cause this phenotype, indicating that the most critical period for Wnt5a in embryonic development is prior to 13.5 dpc. In adult mice, induced Wnt5a expression did not reveal abnormalities, providing the first in vivo evidence that Wnt5a has no major impact on mouse intestinal homeostasis postnatally. Protein expression of Wnt5a receptor Ror2 was strongly reduced in adult intestine compared to embryonic stages. Moreover, we uncovered a regulatory process where induction of Wnt5a causes downregulation of its receptor Ror2. Taken together, our results indicate a role for Wnt5a during a restricted time-frame of embryonic development, but suggest no impact during homeostatic postnatal stages.

  19. Ethanol upregulates NMDA receptor subunit gene expression in human embryonic stem cell-derived cortical neurons.

    PubMed

    Xiang, Yangfei; Kim, Kun-Yong; Gelernter, Joel; Park, In-Hyun; Zhang, Huiping

    2015-01-01

    Chronic alcohol consumption may result in sustained gene expression alterations in the brain, leading to alcohol abuse or dependence. Because of ethical concerns of using live human brain cells in research, this hypothesis cannot be tested directly in live human brains. In the present study, we used human embryonic stem cell (hESC)-derived cortical neurons as in vitro cellular models to investigate alcohol-induced expression changes of genes involved in alcohol metabolism (ALDH2), anti-apoptosis (BCL2 and CCND2), neurotransmission (NMDA receptor subunit genes: GRIN1, GRIN2A, GRIN2B, and GRIN2D), calcium channel activity (ITPR2), or transcriptional repression (JARID2). hESCs were differentiated into cortical neurons, which were characterized by immunostaining using antibodies against cortical neuron-specific biomarkers. Ethanol-induced gene expression changes were determined by reverse-transcription quantitative polymerase chain reaction (RT-qPCR). After a 7-day ethanol (50 mM) exposure followed by a 24-hour ethanol withdrawal treatment, five of the above nine genes (including all four NMDA receptor subunit genes) were highly upregulated (GRIN1: 1.93-fold, P = 0.003; GRIN2A: 1.40-fold, P = 0.003; GRIN2B: 1.75-fold, P = 0.002; GRIN2D: 1.86-fold, P = 0.048; BCL2: 1.34-fold, P = 0.031), and the results of GRIN1, GRIN2A, and GRIN2B survived multiple comparison correction. Our findings suggest that alcohol responsive genes, particularly NMDA receptor genes, play an important role in regulating neuronal function and mediating chronic alcohol consumption-induced neuroadaptations.

  20. Comparison of recombinant human haptocorrin expressed in human embryonic kidney cells and native haptocorrin.

    PubMed

    Furger, Evelyne; Fedosov, Sergey N; Lildballe, Dorte Launholt; Waibel, Robert; Schibli, Roger; Nexo, Ebba; Fischer, Eliane

    2012-01-01

    Haptocorrin (HC) is a circulating corrinoid binding protein with unclear function. In contrast to transcobalamin, the other transport protein in blood, HC is heavily glycosylated and binds a variety of cobalamin (Cbl) analogues. HC is present not only in blood but also in various secretions like milk, tears and saliva. No recombinant form of HC has been described so far. We report the expression of recombinant human HC (rhHC) in human embryonic kidney cells. We purified the protein with a yield of 6 mg (90 nmol) per litre of cell culture supernatant. The isolated rhHC behaved as native HC concerning its spectral properties and ability to recognize both Cbl and its baseless analogue cobinamide. Similar to native HC isolated from blood, rhHC bound to the asialoglycoprotein receptor only after removal of terminal sialic acid residues by treatment with neuraminidase. Interestingly, rhHC, that compared to native HC contains four excessive amino acids (…LVPR) at the C-terminus, showed subtle changes in the binding kinetics of Cbl, cobinamide and the fluorescent Cbl conjugate CBC. The recombinant protein has properties very similar to native HC and although showing slightly different ligand binding kinetics, rhHC is valuable for further biochemical and structural studies.

  1. Genome-wide gene expression analysis of mouse embryonic stem cells exposed to p-dichlorobenzene.

    PubMed

    Tani, Hidenori; Takeshita, Jun-Ichi; Aoki, Hiroshi; Abe, Ryosuke; Toyoda, Akinobu; Endo, Yasunori; Miyamoto, Sadaaki; Gamo, Masashi; Torimura, Masaki

    2016-09-01

    Because of the limitations of whole animal testing approaches for toxicological assessment, new cell-based assay systems have been widely studied. In this study, we focused on two biological products for toxicological assessment: mouse embryonic stem cells (mESCs) and long noncoding RNAs (lncRNAs). mESCs possess the abilities of self-renewal and differentiation into multiple cell types. LlncRNAs are an important class of pervasive non-protein-coding transcripts involved in the molecular mechanisms associated with responses to chemicals. We exposed mESCs to p-dichlorobenzene (p-DCB) for 1 or 28 days (daily dose), extracted total RNA, and performed deep sequencing analyses. The genome-wide gene expression analysis indicated that mechanisms modulating proteins occurred following acute and chronic exposures, and mechanisms modulating genomic DNA occurred following chronic exposure. Moreover, our results indicate that three novel lncRNAs (Snora41, Gm19947, and Scarna3a) in mESCs respond to p-DCB exposure. We propose that these lncRNAs have the potential to be surrogate indicators of p-DCB responses in mESCs. PMID:26975756

  2. EFFECTS OF CYTOSINE ARABINOSIDE ON DIFFERENTIAL GENE EXPRESSION IN EMBRYONIC NEURAL RETINA

    PubMed Central

    Jones, R. E.; Moscona, A. A.

    1974-01-01

    The analogue of cytidine, cytosine arabinoside (Ara-C), elicited a significant increase in the level of glutamine synthetase (GS) in embryonic chick neural retina in the absence of the steroid inducer of the enzyme. The increase was due to de novo synthesis of GS and was mediated by RNA which accumulated in the presence of the effective concentration of Ara-C. Accumulation of GS did not result from the inhibition of DNA synthesis for which Ara-C is best known. This new effect of Ara-C involves differential suppression of macromolecular synthesis in this system: the concentration of Ara-C which caused maximum GS accumulation suppressed overall protein and RNA syntheses 65–75% without inhibiting the transcription and translation of templates essential for GS synthesis. Withdrawal of Ara-C resulted in restoration of RNA synthesis and cessation of GS accumulation, even though preformed templates for the enzyme were present; however, if all RNA synthesis was arrested with actinomycin D at the time of Ara-C withdrawal, GS continued to accumulate. The results are consistent with the hypothesis that Ara-C differentially affects the activity of structural and regulatory genes involved in the regulation of GS levels in the retina: Ara-C allows transcription of the enzyme-specific templates, but reversibly inhibits the expression of regulatory genes which limit the accumulation of GS. PMID:4151790

  3. Generation and gene expression profiling of 48 transcription-factor-inducible mouse embryonic stem cell lines

    PubMed Central

    Yamamizu, Kohei; Sharov, Alexei A.; Piao, Yulan; Amano, Misa; Yu, Hong; Nishiyama, Akira; Dudekula, Dawood B.; Schlessinger, David; Ko, Minoru S. H.

    2016-01-01

    Mouse embryonic stem cells (ESCs) can differentiate into a wide range – and possibly all cell types in vitro, and thus provide an ideal platform to study systematically the action of transcription factors (TFs) in cell differentiation. Previously, we have generated and analyzed 137 TF-inducible mouse ESC lines. As an extension of this “NIA Mouse ESC Bank,” we generated and characterized 48 additional mouse ESC lines, in which single TFs in each line could be induced in a doxycycline-controllable manner. Together, with the previous ESC lines, the bank now comprises 185 TF-manipulable ESC lines (>10% of all mouse TFs). Global gene expression (transcriptome) profiling revealed that the induction of individual TFs in mouse ESCs for 48 hours shifts their transcriptomes toward specific differentiation fates (e.g., neural lineages by Myt1 Isl1, and St18; mesodermal lineages by Pitx1, Pitx2, Barhl2, and Lmx1a; white blood cells by Myb, Etv2, and Tbx6, and ovary by Pitx1, Pitx2, and Dmrtc2). These data also provide and lists of inferred target genes of each TF and possible functions of these TFs. The results demonstrate the utility of mouse ESC lines and their transcriptome data for understanding the mechanism of cell differentiation and the function of TFs. PMID:27150017

  4. The type 1 cannabinoid receptor is highly expressed in embryonic cortical projection neurons and negatively regulates neurite growth in vitro.

    PubMed

    Vitalis, Tania; Lainé, Jeanne; Simon, Anne; Roland, Alexandre; Leterrier, Christophe; Lenkei, Zsolt

    2008-11-01

    In the rodent and human embryonic brains, the cerebral cortex and hippocampus transiently express high levels of type 1 cannabinoid receptors (CB(1)Rs), at a developmental stage when these areas are composed mainly of glutamatergic neurons. However, the precise cellular and subcellular localization of CB(1)R expression as well as effects of CB(1)R modulation in this cell population remain largely unknown. We report that, starting from embryonic day 12.5, CB(1)Rs are strongly expressed in both reelin-expressing Cajal-Retzius cells and newly differentiated postmitotic glutamatergic neurons of the mouse telencephalon. CB(1)R protein is localized first to somato-dendritic endosomes and at later developmental stages it localizes mostly to developing axons. In young axons, CB(1)Rs are localized both to the axolemma and to large, often multivesicular endosomes. Acute maternal injection of agonist CP-55940 results in the relocation of receptors from axons to somato-dendritic endosomes, indicating the functional competence of embryonic CB(1)Rs. The adult phenotype of CB(1)R expression is established around postnatal day 5. By using pharmacological and mutational modulation of CB(1)R activity in isolated cultured rat hippocampal neurons, we also show that basal activation of CB(1)R acts as a negative regulatory signal for dendritogenesis, dendritic and axonal outgrowth, and branching. Together, the overall negative regulatory role in neurite development suggests that embryonic CB(1)R signaling may participate in the correct establishment of neuronal connectivity and suggests a possible mechanism for the development of reported glutamatergic dysfunction in the offspring following maternal cannabis consumption.

  5. Chamber Specific Gene Expression Landscape of the Zebrafish Heart

    PubMed Central

    Singh, Angom Ramcharan; Sivadas, Ambily; Sabharwal, Ankit; Vellarikal, Shamsudheen Karuthedath; Jayarajan, Rijith; Verma, Ankit; Kapoor, Shruti; Joshi, Adita; Scaria, Vinod; Sivasubbu, Sridhar

    2016-01-01

    The organization of structure and function of cardiac chambers in vertebrates is defined by chamber-specific distinct gene expression. This peculiarity and uniqueness of the genetic signatures demonstrates functional resolution attributed to the different chambers of the heart. Altered expression of the cardiac chamber genes can lead to individual chamber related dysfunctions and disease patho-physiologies. Information on transcriptional repertoire of cardiac compartments is important to understand the spectrum of chamber specific anomalies. We have carried out a genome wide transcriptome profiling study of the three cardiac chambers in the zebrafish heart using RNA sequencing. We have captured the gene expression patterns of 13,396 protein coding genes in the three cardiac chambers—atrium, ventricle and bulbus arteriosus. Of these, 7,260 known protein coding genes are highly expressed (≥10 FPKM) in the zebrafish heart. Thus, this study represents nearly an all-inclusive information on the zebrafish cardiac transcriptome. In this study, a total of 96 differentially expressed genes across the three cardiac chambers in zebrafish were identified. The atrium, ventricle and bulbus arteriosus displayed 20, 32 and 44 uniquely expressing genes respectively. We validated the expression of predicted chamber-restricted genes using independent semi-quantitative and qualitative experimental techniques. In addition, we identified 23 putative novel protein coding genes that are specifically restricted to the ventricle and not in the atrium or bulbus arteriosus. In our knowledge, these 23 novel genes have either not been investigated in detail or are sparsely studied. The transcriptome identified in this study includes 68 differentially expressing zebrafish cardiac chamber genes that have a human ortholog. We also carried out spatiotemporal gene expression profiling of the 96 differentially expressed genes throughout the three cardiac chambers in 11 developmental stages and 6

  6. A gene expression signature shared by human mature oocytes and embryonic stem cells

    PubMed Central

    Assou, Said; Cerecedo, Doris; Tondeur, Sylvie; Pantesco, Véronique; Hovatta, Outi; Klein, Bernard; Hamamah, Samir; De Vos, John

    2009-01-01

    Background The first week of human pre-embryo development is characterized by the induction of totipotency and then pluripotency. The understanding of this delicate process will have far reaching implication for in vitro fertilization and regenerative medicine. Human mature MII oocytes and embryonic stem (ES) cells are both able to achieve the feat of cell reprogramming towards pluripotency, either by somatic cell nuclear transfer or by cell fusion, respectively. Comparison of the transcriptome of these two cell types may highlight genes that are involved in pluripotency initiation. Results Based on a microarray compendium of 205 samples, we compared the gene expression profile of mature MII oocytes and human ES cells (hESC) to that of somatic tissues. We identified a common oocyte/hESC gene expression profile, which included a strong cell cycle signature, genes associated with pluripotency such as LIN28 and TDGF1, a large chromatin remodelling network (TOP2A, DNMT3B, JARID2, SMARCA5, CBX1, CBX5), 18 different zinc finger transcription factors, including ZNF84, and several still poorly annotated genes such as KLHL7, MRS2, or the Selenophosphate synthetase 1 (SEPHS1). Interestingly, a large set of genes was also found to code for proteins involved in the ubiquitination and proteasome pathway. Upon hESC differentiation into embryoid bodies, the transcription of this pathway declined. In vitro, we observed a selective sensitivity of hESC to the inhibition of the activity of the proteasome. Conclusion These results shed light on the gene networks that are concurrently overexpressed by the two human cell types with somatic cell reprogramming properties. PMID:19128516

  7. Microarray Analysis of LTR Retrotransposon Silencing Identifies Hdac1 as a Regulator of Retrotransposon Expression in Mouse Embryonic Stem Cells

    PubMed Central

    Madej, Monika J.; Taggart, Mary; Gautier, Philippe; Garcia-Perez, Jose Luis; Meehan, Richard R.; Adams, Ian R.

    2012-01-01

    Retrotransposons are highly prevalent in mammalian genomes due to their ability to amplify in pluripotent cells or developing germ cells. Host mechanisms that silence retrotransposons in germ cells and pluripotent cells are important for limiting the accumulation of the repetitive elements in the genome during evolution. However, although silencing of selected individual retrotransposons can be relatively well-studied, many mammalian retrotransposons are seldom analysed and their silencing in germ cells, pluripotent cells or somatic cells remains poorly understood. Here we show, and experimentally verify, that cryptic repetitive element probes present in Illumina and Affymetrix gene expression microarray platforms can accurately and sensitively monitor repetitive element expression data. This computational approach to genome-wide retrotransposon expression has allowed us to identify the histone deacetylase Hdac1 as a component of the retrotransposon silencing machinery in mouse embryonic stem cells, and to determine the retrotransposon targets of Hdac1 in these cells. We also identify retrotransposons that are targets of other retrotransposon silencing mechanisms such as DNA methylation, Eset-mediated histone modification, and Ring1B/Eed-containing polycomb repressive complexes in mouse embryonic stem cells. Furthermore, our computational analysis of retrotransposon silencing suggests that multiple silencing mechanisms are independently targeted to retrotransposons in embryonic stem cells, that different genomic copies of the same retrotransposon can be differentially sensitive to these silencing mechanisms, and helps define retrotransposon sequence elements that are targeted by silencing machineries. Thus repeat annotation of gene expression microarray data suggests that a complex interplay between silencing mechanisms represses retrotransposon loci in germ cells and embryonic stem cells. PMID:22570599

  8. Type III interferon gene expression in response to influenza virus infection in chicken and duck embryonic fibroblasts.

    PubMed

    Zhang, Zhijie; Zou, Tingting; Hu, Xiaotong; Jin, Hong

    2015-12-01

    Type III interferons (IFN-λs) comprise a group of newly identified antiviral cytokines that are functionally similar to type I IFNs and elicit first-line antiviral responses. Recently, type III IFNs were identified in several species; however, little information is available about type III IFNs in ducks. We compared the expression of type III IFNs and their receptor in chicken embryonic fibroblasts (CEFs) and duck embryonic fibroblasts (DEFs) in response to influenza virus infection. The results showed that the expression of type III IFNs was upregulated in both DEFs and CEFs following infection with H1N1 influenza virus or treatment with poly (I:C), and expression levels were significantly higher in CEFs than in DEFs at each time point. The expression of the receptor for type III IFNs (IL-28Rα) was also upregulated following infection with H1N1 virus or treatment with poly (I:C) and was significantly higher in CEFs than in DEFs at each time point. The expression of the receptor for type III IFNs occurred from 8 hpi and remained at similar levels until 36 hpi in CEFs, but the expression level was elevated from 36 hpi in DEFs. These findings revealed the existence of distinct expression patterns for type III IFNs in chickens and ducks in response to influenza virus infection. The provided data are fundamentally useful in furthering our understanding of type III IFNs and innate antiviral responses in different species.

  9. Type III interferon gene expression in response to influenza virus infection in chicken and duck embryonic fibroblasts.

    PubMed

    Zhang, Zhijie; Zou, Tingting; Hu, Xiaotong; Jin, Hong

    2015-12-01

    Type III interferons (IFN-λs) comprise a group of newly identified antiviral cytokines that are functionally similar to type I IFNs and elicit first-line antiviral responses. Recently, type III IFNs were identified in several species; however, little information is available about type III IFNs in ducks. We compared the expression of type III IFNs and their receptor in chicken embryonic fibroblasts (CEFs) and duck embryonic fibroblasts (DEFs) in response to influenza virus infection. The results showed that the expression of type III IFNs was upregulated in both DEFs and CEFs following infection with H1N1 influenza virus or treatment with poly (I:C), and expression levels were significantly higher in CEFs than in DEFs at each time point. The expression of the receptor for type III IFNs (IL-28Rα) was also upregulated following infection with H1N1 virus or treatment with poly (I:C) and was significantly higher in CEFs than in DEFs at each time point. The expression of the receptor for type III IFNs occurred from 8 hpi and remained at similar levels until 36 hpi in CEFs, but the expression level was elevated from 36 hpi in DEFs. These findings revealed the existence of distinct expression patterns for type III IFNs in chickens and ducks in response to influenza virus infection. The provided data are fundamentally useful in furthering our understanding of type III IFNs and innate antiviral responses in different species. PMID:26598110

  10. Distinct cis regulatory elements govern the expression of TAG1 in embryonic sensory ganglia and spinal cord.

    PubMed

    Hadas, Yoav; Nitzan, Noa; Furley, Andrew J W; Kozlov, Serguei V; Klar, Avihu

    2013-01-01

    Cell fate commitment of spinal progenitor neurons is initiated by long-range, midline-derived, morphogens that regulate an array of transcription factors that, in turn, act sequentially or in parallel to control neuronal differentiation. Included among these are transcription factors that regulate the expression of receptors for guidance cues, thereby determining axonal trajectories. The Ig/FNIII superfamily molecules TAG1/Axonin1/CNTN2 (TAG1) and Neurofascin (Nfasc) are co-expressed in numerous neuronal cell types in the CNS and PNS - for example motor, DRG and interneurons - both promote neurite outgrowth and both are required for the architecture and function of nodes of Ranvier. The genes encoding TAG1 and Nfasc are adjacent in the genome, an arrangement which is evolutionarily conserved. To study the transcriptional network that governs TAG1 and Nfasc expression in spinal motor and commissural neurons, we set out to identify cis elements that regulate their expression. Two evolutionarily conserved DNA modules, one located between the Nfasc and TAG1 genes and the second directly 5' to the first exon and encompassing the first intron of TAG1, were identified that direct complementary expression to the CNS and PNS, respectively, of the embryonic hindbrain and spinal cord. Sequential deletions and point mutations of the CNS enhancer element revealed a 130bp element containing three conserved E-boxes required for motor neuron expression. In combination, these two elements appear to recapitulate a major part of the pattern of TAG1 expression in the embryonic nervous system.

  11. Gene expression signatures affected by alcohol-induced DNA methylomic deregulation in human embryonic stem cells

    PubMed Central

    Kim, Hyun-Sung; Hoang, Michael; Tu, Thanh G.; Elie, Omid; Lee, Connie; Vu, Catherine; Horvath, Steve; Spigelman, Igor; Kim, Yong

    2014-01-01

    Stem cells, especially human embryonic stem cells (hESCs), are useful models to study molecular mechanisms of human disorders that originate during gestation. Alcohol (ethanol, EtOH) consumption during pregnancy causes a variety of prenatal and postnatal disorders collectively referred to as fetal alcohol spectrum disorders (FASDs). To better understand the molecular events leading to FASDs, we performed a genome-wide analysis of EtOH's effects on the maintenance and differentiation of hESCs in culture. Gene Co-expression Network Analysis showed significant alterations in gene profiles of EtOH-treated differentiated or undifferentiated hESCs, particularly those associated with molecular pathways for metabolic processes, oxidative stress, and neuronal properties of stem cells. A genome-wide DNA methylome analysis revealed widespread EtOH-induced alterations with significant hypermethylation of many regions of chromosomes. Undifferentiated hESCs were more vulnerable to EtOH's effect than their differentiated counterparts, with methylation on the promoter regions of chromosomes 2, 16 and 18 in undifferentiated hESCs most affected by EtOH exposure. Combined transcriptomic and DNA methylomic analysis produced a list of differentiation-related genes dysregulated by EtOH-induced DNA methylation changes, which likely play a role in EtOH-induced decreases in hESC pluripotency. DNA sequence motif analysis of genes epigenetically altered by EtOH identified major motifs representing potential binding sites for transcription factors. These findings should help in deciphering the precise mechanisms of alcohol-induced teratogenesis. PMID:24751885

  12. Temporal expression patterns of insulin-like growth factor binding protein-4 in the embryonic and postnatal rat brain

    PubMed Central

    2013-01-01

    Background IGFBP-4 has been considered as a factor involving in development of the central nervous system (CNS), but its role needs to be further clarified. In present study, the localization of IGFBP-4 expression in the embryonic forebrain, midbrain and hindbrain was determined using immunohistochemistry, and the levels of IGFBP-4 protein and mRNA were semi-quantified using RT-PCR and Western blot in the embryonic (forebrain, midbrain and hindbrain) and postnatal brain (cerebral cortex, cerebellum and midbrain). Results A clear immunoreactivity of IGFBP-4 covered almost the entire embryonic brain (forebrain, midbrain, hindbrain) from E10.5 to E18.5, except for the area near the ventricle from E14.5. The change of IGFBP-4 mRNA level was regularly from E10.5 to E18.5: its expression peaked at E13.5 and E14.5, followed by gradual decreasing from E15.5. The expression of IGFBP-4 protein was similar to that of mRNA in embryonic stage. After birth, the pattern of IGFBP-4 expression was shown to be rather divergent in different brain areas. In the cerebral cortex, the IGFBP-4 mRNA increased gradually after birth (P0), while the protein showed little changes from P0 to P28, but decreased significantly at P70. In the cerebellum, the IGFBP-4 mRNA decreased gradually from P0, reached the lowest level at P21, and then increased again. However, its protein level gradually increased from P0 to P70. In the midbrain, the IGFBP-4 mRNA first decreased and reached its lowest level at P28 before it increased, while the protein remained constant from P0 to P70. At P7, P14, P21, P28 and P70, the levels of IGFBP-4 mRNA in the cerebral cortex were significantly higher than that in the cerebellum or in the midbrain. Differently, the protein levels in the cerebellum were significantly higher than that either in the cerebral cortex or in the midbrain at P14, P21, P28 and P70. Conclusions The temporal expression pattern of IGFBP-4 in the embryonic brain from E10.5 to E18.5 was consistent

  13. Changes in microRNA expression during differentiation of embryonic and induced pluripotent stem cells to definitive endoderm.

    PubMed

    Francis, Natalie; Moore, Melanie; Asan, Simona G; Rutter, Guy A; Burns, Chris

    2015-01-01

    Pluripotent stem cells, including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), have the potential to treat type 1 diabetes through cell replacement therapy. However, the protocols used to generate insulin-expressing cells in vitro frequently result in cells which have an immature phenotype and are functionally restricted. MicroRNAs (miRNAs) are now known to be important in cell fate specification, and a unique miRNA signature characterises pancreatic development at the definitive endoderm stage. Several studies have described differences in miRNA expression between ESCs and iPSCs. Here we have used microarray analysis both to identify miRNAs up- or down-regulated upon endoderm formation, and also miRNAs differentially expressed between ESCs and iPSCs. Several miRNAs fulfilling both these criteria were identified, suggesting that differences in the expression of these miRNAs may affect the ability of pluripotent stem cells to differentiate into definitive endoderm. The expression of these miRNAs was validated by qRT-PCR, and the relationship between one of these miRNAs, miR-151a-5p, and its predicted target gene, SOX17, was investigated by luciferase assay, and suggested an interaction between miR-151a-5p and this key transcription factor. In conclusion, these findings demonstrate a unique miRNA expression pattern for definitive endoderm derived from both embryonic and induced pluripotent stem cells.

  14. Similarities in Gene Expression Profiles during In Vitro Aging of Primary Human Embryonic Lung and Foreskin Fibroblasts

    PubMed Central

    Marthandan, Shiva; Priebe, Steffen; Baumgart, Mario; Groth, Marco; Cellerino, Alessandro; Guthke, Reinhard; Hemmerich, Peter; Diekmann, Stephan

    2015-01-01

    Replicative senescence is of fundamental importance for the process of cellular aging, since it is a property of most of our somatic cells. Here, we elucidated this process by comparing gene expression changes, measured by RNA-seq, in fibroblasts originating from two different tissues, embryonic lung (MRC-5) and foreskin (HFF), at five different time points during their transition into senescence. Although the expression patterns of both fibroblast cell lines can be clearly distinguished, the similar differential expression of an ensemble of genes was found to correlate well with their transition into senescence, with only a minority of genes being cell line specific. Clustering-based approaches further revealed common signatures between the cell lines. Investigation of the mRNA expression levels at various time points during the lifespan of either of the fibroblasts resulted in a number of monotonically up- and downregulated genes which clearly showed a novel strong link to aging and senescence related processes which might be functional. In terms of expression profiles of differentially expressed genes with age, common genes identified here have the potential to rule the transition into senescence of embryonic lung and foreskin fibroblasts irrespective of their different cellular origin. PMID:26339636

  15. β-Globin-Expressing Definitive Erythroid Progenitor Cells Generated from Embryonic and Induced Pluripotent Stem Cell-Derived Sacs.

    PubMed

    Fujita, Atsushi; Uchida, Naoya; Haro-Mora, Juan J; Winkler, Thomas; Tisdale, John

    2016-06-01

    Human embryonic stem (ES) cells and induced pluripotent stem (iPS) cells represent a potential alternative source for red blood cell transfusion. However, when using traditional methods with embryoid bodies, ES cell-derived erythroid cells predominantly express embryonic type ɛ-globin, with lesser fetal type γ-globin and very little adult type β-globin. Furthermore, no β-globin expression is detected in iPS cell-derived erythroid cells. ES cell-derived sacs (ES sacs) have been recently used to generate functional platelets. Due to its unique structure, we hypothesized that ES sacs serve as hemangioblast-like progenitors capable to generate definitive erythroid cells that express β-globin. With our ES sac-derived erythroid differentiation protocol, we obtained ∼120 erythroid cells per single ES cell. Both primitive (ɛ-globin expressing) and definitive (γ- and β-globin expressing) erythroid cells were generated from not only ES cells but also iPS cells. Primitive erythropoiesis is gradually switched to definitive erythropoiesis during prolonged ES sac maturation, concurrent with the emergence of hematopoietic progenitor cells. Primitive and definitive erythroid progenitor cells were selected on the basis of glycophorin A or CD34 expression from cells within the ES sacs before erythroid differentiation. This selection and differentiation strategy represents an important step toward the development of in vitro erythroid cell production systems from pluripotent stem cells. Further optimization to improve expansion should be required for clinical application. Stem Cells 2016;34:1541-1552.

  16. Microarray analysis of gene expression in mouse (strain 129) embryonic stem cells after typical synthetic musk exposure.

    PubMed

    Shi, Jiachen; Li, Ming; Jiao, Zhihao; Zhang, Jing; Feng, Yixing; Shao, Bing

    2013-01-01

    Synthetic musks are widely used in personal-care products and can readily accumulate in the adipose tissue, breast milk, and blood of humans. In this study, the Affymetrix Mouse Genome GeneChip was used to identify alterations in gene expression of embryonic stem cells from the 129 strain of the laboratory mouse after treatment with the synthetic musk tonalide (AHTN). Among the 45,037 transcripts in the microarray, 2,879 genes were differentially expressed. According to the microarray analysis, the potential influence of AHTN on the development to embryo should be of concern, and the toxicological effects of it and related musk compounds should be studied further.

  17. Factors expressed by murine embryonic pancreatic mesenchyme enhance generation of insulin-producing cells from hESCs.

    PubMed

    Guo, Tingxia; Landsman, Limor; Li, Na; Hebrok, Matthias

    2013-05-01

    Islet transplantation has proven to be a successful strategy to restore normoglycemia in patients with type 1 diabetes (T1D). However, the dearth of cadaveric islets available for transplantation hampers the widespread application of this treatment option. Although human embryonic stem cells and induced pluripotent stem cells are capable of generating insulin-producing cells in vitro when provided with the appropriate inductive cues, the insulin-expressing cells that develop behave more like immature β-cells with minimal sensitivity to glucose stimulation. Here, we identify a set of signaling factors expressed in mouse embryonic mesenchyme during the time when foregut and pancreatic progenitors are specified and test their activities during in vitro differentiation of human embryonic stem cells. Several of the identified factors work in concert to expand the pancreatic progenitor pool. Interestingly, transforming growth factor (TGF)-β ligands, most potent in inducing pancreatic progenitors, display strong inhibitory effects on subsequent endocrine cell differentiation. Treatment with TGF-β ligands, followed by the addition of a TGF-β receptor antagonist, dramatically increased the number of insulin-producing cells in vitro, demonstrating the need for dynamic temporal regulation of TGF-β signaling during in vitro differentiation. These studies illustrate the need to precisely mimic the in vivo conditions to fully recapitulate pancreatic lineage specification in vitro. PMID:23305648

  18. The protein expression landscape of the Arabidopsis root

    PubMed Central

    Petricka, Jalean J.; Schauer, Monica A.; Megraw, Molly; Breakfield, Natalie W.; Thompson, J. Will; Georgiev, Stoyan; Soderblom, Erik J.; Ohler, Uwe; Moseley, Martin Arthur; Grossniklaus, Ueli; Benfey, Philip N.

    2012-01-01

    Because proteins are the major functional components of cells, knowledge of their cellular localization is crucial to gaining an understanding of the biology of multicellular organisms. We have generated a protein expression map of the Arabidopsis root providing the identity and cell type-specific localization of nearly 2,000 proteins. Grouping proteins into functional categories revealed unique cellular functions and identified cell type-specific biomarkers. Cellular colocalization provided support for numerous protein–protein interactions. With a binary comparison, we found that RNA and protein expression profiles are weakly correlated. We then performed peak integration at cell type-specific resolution and found an improved correlation with transcriptome data using continuous values. We performed GeLC-MS/MS (in-gel tryptic digestion followed by liquid chromatography-tandem mass spectrometry) proteomic experiments on mutants with ectopic and no root hairs, providing complementary proteomic data. Finally, among our root hair-specific proteins we identified two unique regulators of root hair development. PMID:22447775

  19. TGFβ-1 and Wnt-3a interact to induce unique gene expression profiles in murine embryonic palate mesenchymal cells

    PubMed Central

    Warner, Dennis R.; Mukhopadhyay, Partha; Brock, Guy N.; Pihur, Vasyl; Pisano, M. Michele; Greene, Robert M.

    2011-01-01

    Development of the secondary palate in mammals is a complex process under the control of numerous growth and differentiation factors that regulate key processes such as cell proliferation, synthesis of extracellular matrix molecules, and epithelial-mesenchymal transdifferentiation. Alterations in any one of these processes either through genetic mutation or environmental insult have the potential to lead to clefts of the secondary palate. Members of the TGFβ family of cytokines are crucial mediators of these processes and emerging evidence supports a pivotal role for members of the Wnt family of secreted growth and differentiation factors. Previous work in this laboratory demonstrated cross-talk between the Wnt and TGFβ signaling pathways in cultured mouse embryonic palate mesenchymal cells. In the current study we tested the hypothesis that unique gene expression profiles are induced in murine embryonic palate mesenchymal cells as a result of this cross-talk between the TGFβ and Wnt signal transduction pathways. PMID:20955781

  20. The miR-17-92 cluster regulates FOG-2 expression and inhibits proliferation of mouse embryonic cardiomyocytes.

    PubMed

    Xiang, Rui; Lei, Han; Chen, Mianzhi; Li, Qinwei; Sun, Huan; Ai, Jianzhong; Chen, Tielin; Wang, Honglian; Fang, Yin; Zhou, Qin

    2012-02-01

    MicroRNAs (miRNAs) have gradually been recognized as regulators of embryonic development; however, relatively few miRNAs have been identified that regulate cardiac development. A series of recent papers have established an essential role for the miRNA-17-92 (miR-17-92) cluster of miRNAs in the development of the heart. Previous research has shown that the Friend of Gata-2 (FOG-2) is critical for cardiac development. To investigate the possibility that the miR-17-92 cluster regulates FOG-2 expression and inhibits proliferation in mouse embryonic cardiomyocytes we initially used bioinformatics to analyze 3' untranslated regions (3'UTR) of FOG-2 to predict the potential of miR-17-92 to target it. We used luciferase assays to demonstrate that miR-17-5p and miR-20a of miR-17-92 interact with the predicted target sites in the 3'UTR of FOG-2. Furthermore, RT-PCR and Western blot were used to demonstrate the post-transcriptional regulation of FOG-2 by miR-17-92 in embryonic cardiomyocytes from E12.5-day pregnant C57BL/6J mice. Finally, EdU cell assays together with the FOG-2 rescue strategy were employed to evaluate the effect of proliferation on embryonic cardiomyocytes. We first found that the miR-17-5p and miR-20a of miR-17-92 directly target the 3'UTR of FOG-2 and post-transcriptionally repress the expression of FOG-2. Moreover, our findings demonstrated that over-expression of miR-17-92 may inhibit cell proliferation via post-transcriptional repression of FOG-2 in embryonic cardiomyocytes. These results indicate that the miR-17-92 cluster regulates the expression of FOG-2 protein and suggest that the miR-17-92 cluster might play an important role in heart development.

  1. Dynamic expression of calretinin in embryonic and early fetal human cortex

    PubMed Central

    González-Gómez, Miriam; Meyer, Gundela

    2014-01-01

    Calretinin (CR) is one of the earliest neurochemical markers in human corticogenesis. In embryos from Carnegie stages (CS) 17 to 23, calbindin (CB) and CR stain opposite poles of the incipient cortex suggesting early regionalization: CB marks the neuroepithelium of the medial boundary of the cortex with the choroid plexus (cortical hem). By contrast, CR is confined to the subventricular zone (SVZ) of the lateral and caudal ganglionic eminences at the pallial-subpallial boundary (PSB, or antihem), from where CR+/Tbr1- neurons migrate toward piriform cortex and amygdala as a component of the lateral cortical stream. At CS 19, columns of CR+ cells arise in the rostral cortex, and contribute at CS 20 to the “monolayer” of horizontal Tbr1+/CR+ and GAD+ cells in the preplate. At CS 21, the “pioneer cortical plate” appears as a radial aggregation of CR+/Tbr1+ neurons, which cover the entire future neocortex and extend the first corticofugal axons. CR expression in early human corticogenesis is thus not restricted to interneurons, but is also present in the first excitatory projection neurons of the cortex. At CS 21/22, the cortical plate is established following a lateral to medial gradient, when Tbr1+/CR- neurons settle within the pioneer cortical plate, and thus separate superficial and deep pioneer neurons. CR+ pioneer neurons disappear shortly after the formation of the cortical plate. Reelin+ Cajal-Retzius cells begin to express CR around CS21 (7/8 PCW). At CS 21–23, the CR+ SVZ at the PSB is the source of CR+ interneurons migrating into the cortical SVZ. In turn, CB+ interneurons migrate from the subpallium into the intermediate zone following the fibers of the internal capsule. Early CR+ and CB+ interneurons thus have different origins and migratory routes. CR+ cell populations in the embryonic telencephalon take part in a complex sequence of events not analyzed so far in other mammalian species, which may represent a distinctive trait of the initial

  2. Differential regulation of osteogenic marker gene expression by Wnt-3a in embryonic mesenchymal multipotential progenitor cells.

    PubMed

    Derfoul, Assia; Carlberg, Alyssa L; Tuan, Rocky S; Hall, David J

    2004-06-01

    The Wnt family of secreted glycoproteins plays an integral role in embryonic development and differentiation. To explore the role of Wnt's in one aspect of differentiation, namely osteogenesis, we employed a retroviral gene transfer approach to express Wnt-3a in the multipotent murine embryonic mesenchymal cell line C3H10T1/2. We found that expression of Wnt-3a in these cells had a significant, positive effect on cell growth in serum-containing medium, in that the cells grew to very high densities compared to the control cells. Additionally, apoptosis was markedly inhibited by Wnt-3a. However, when the cells were grown in serum-deficient medium, the Wnt-3a-expressing cells arrested efficiently in G1 phase, indicating that serum growth factors were needed in addition to Wnt-3a for enhanced proliferation. Wnt-3a-expressing cells exhibited high levels of alkaline phosphatase gene expression and enzymatic activity, but did not show any matrix mineralization. Unexpectedly, basal expression of bone sialoprotein, osteocalcin, and osteopontin were markedly inhibited by Wnt-3a, as were other known target genes of Wnt-3a, such as Brachyury, FGF-10, and Cdx1. When Wnt-3a-expressing cells were treated with osteogenic supplements in the presence of BMP-2, alkaline phosphatase gene expression and activity were further elevated. Additionally, BMP-2 was able to reverse the inhibitory effect of Wnt-3a on osteocalcin and osteopontin gene expression. These results indicate that while Wnt-3a represses basal expression of some osteogenic genes, this repression can be partially reversed by BMP-2. Finally, the enhanced gene expression of alkaline phosphatase induced by Wnt-3a could be effectively suppressed by the combined action of dexamethasone and 1,25-dihydroxyvitamin D(3). These data show for the first time that Wnt-3a has an unusual effect on multipotential embryonic cells, in that it enhances cellular proliferation and expression of alkaline phosphatase, while it represses most

  3. Toward the Beginning of Time: Circadian Rhythms in Metabolism Precede Rhythms in Clock Gene Expression in Mouse Embryonic Stem Cells

    PubMed Central

    Paulose, Jiffin K.; Rucker, Edmund B.; Cassone, Vincent M.

    2012-01-01

    The appearance, progression, and potential role for circadian rhythms during early development have previously focused mainly on the suprachiasmatic nucleus (SCN) and peri- and postnatal expression of canonical clock genes. More recently, gene expression studies in embryonic stem cells have shown that some clock genes are expressed in undifferentiated cells; however rhythmicity was only established when cells are directed toward a neural fate. These studies also concluded that a functional clock is not present in ESCs, based solely on their gene expression. The null hypothesis underlying the present study is that embryonic stem cells become rhythmic in both clock gene expression and glucose utilization only when allowed to spontaneously differentiate. Undifferentiated stem cells (ESCs, n = 6 cultures/timepoint for all experiments) were either maintained in their pluripotent state or released into differentiation (dESCs, n = 6 cultures/timepoint for all experiments). Glucose utilization was assayed through 2-deoxyglucose uptake measurement, and clock gene and glucose transporter expression was assayed every 4 hours for 2 days in ESCs and dESCs by quantitative PCR (qPCR) in the same cell lysates. Undifferentiated stem cells expressed a self-sustained rhythm in glucose uptake that was not coincident with rhythmic expression of clock genes. This physiological rhythm was paralleled by glucose transporter mRNA expression. Upon differentiation, circadian patterns of some but not all clock genes were expressed, and the amplitude of the glucose utilization rhythm was enhanced in dESCs. These data provide the earliest evidence of a functional circadian clock, in addition to further challenging the idea that rhythmic transcription of clock genes are necessary for rhythmic physiological output and suggest a role for a clock-controlled physiology in the earliest stages of development. PMID:23155474

  4. Gene Expression Profiling of Shoot-Derived Calli from Adult Radiata Pine and Zygotic Embryo-Derived Embryonal Masses

    PubMed Central

    Garcia-Mendiguren, O.; Montalbán, I. A.; Stewart, D.; Moncaleán, P.; Klimaszewska, K.; Rutledge, R. G.

    2015-01-01

    Background Although somatic embryogenesis has an unprecedented potential for large-scale clonal propagation of conifers, the ability to efficiently induce the embryonal cultures required for somatic embryo production has long been a challenge. Furthermore, because early stage zygotic embryos remain the only responsive explants for pines, it is not possible to clone individual trees from vegetative explants at a commercial scale. This is of particular interest for adult trees because many elite characteristics only become apparent following sexual maturation. Findings Shoot explants collected from adult radiata pine trees were cultured on four induction media differing in plant growth regulator composition, either directly after collection or from in vitro-generated axillary shoots. Six callus lines were selected for microscopic examination, which failed to reveal any embryonal masses (EM). qPCR expression profiling of five of these lines indicated that explant type influenced the absolute level of gene expression, but not the type of genes that were expressed. The analysis, which also included three EM lines induced from immature zygotic embryos, encompassed five categories of genes reflective of metabolic, mitotic and meristematic activity, along with putative markers of embryogenicity. Culture medium was found to have no significant impact on gene expression, although differences specific to the explant’s origin were apparent. Expression of transcriptional factors associated with vegetative meristems further suggested that all of the callus lines possessed a substantive vegetative character. Most notable, however, was that they all also expressed a putative embryogenic marker (LEC1). Conclusions While limited in scope, these results illustrate the utility of expression profiling for characterizing tissues in culture. For example, although the biological significance of LEC1 expression is unclear, it does present the possibility that these callus lines possess

  5. Distinct gene expression responses of two anticonvulsant drugs in a novel human embryonic stem cell based neural differentiation assay protocol.

    PubMed

    Schulpen, Sjors H W; de Jong, Esther; de la Fonteyne, Liset J J; de Klerk, Arja; Piersma, Aldert H

    2015-04-01

    Hazard assessment of chemicals and pharmaceuticals is increasingly gaining from knowledge about molecular mechanisms of toxic action acquired in dedicated in vitro assays. We have developed an efficient human embryonic stem cell neural differentiation test (hESTn) that allows the study of the molecular interaction of compounds with the neural differentiation process. Within the 11-day differentiation protocol of the assay, embryonic stem cells lost their pluripotency, evidenced by the reduced expression of stem cell markers Pou5F1 and Nanog. Moreover, stem cells differentiated into neural cells, with morphologically visible neural structures together with increased expression of neural differentiation-related genes such as βIII-tubulin, Map2, Neurogin1, Mapt and Reelin. Valproic acid (VPA) and carbamazepine (CBZ) exposure during hESTn differentiation led to concentration-dependent reduced expression of βIII-tubulin, Neurogin1 and Reelin. In parallel VPA caused an increased gene expression of Map2 and Mapt which is possibly related to the neural protective effect of VPA. These findings illustrate the added value of gene expression analysis for detecting compound specific effects in hESTn. Our findings were in line with and could explain effects observed in animal studies. This study demonstrates the potential of this assay protocol for mechanistic analysis of specific compound-induced inhibition of human neural cell differentiation.

  6. Estradiol differentially induces progesterone receptor isoforms expression through alternative promoter regulation in a mouse embryonic hypothalamic cell line.

    PubMed

    Vázquez-Martínez, Edgar Ricardo; Camacho-Arroyo, Ignacio; Zarain-Herzberg, Angel; Rodríguez, María Carmen; Mendoza-Garcés, Luciano; Ostrosky-Wegman, Patricia; Cerbón, Marco

    2016-06-01

    Progesterone receptor (PR) presents two main isoforms (PR-A and PR-B) that are regulated by two specific promoters and transcribed from alternative transcriptional start sites. The molecular regulation of PR isoforms expression in embryonic hypothalamus is poorly understood. The aim of the present study was to assess estradiol regulation of PR isoforms in a mouse embryonic hypothalamic cell line (mHypoE-N42), as well as the transcriptional status of their promoters. MHypoE-N42 cells were treated with estradiol for 6 and 12 h. Then, Western blot, real-time quantitative reverse transcription polymerase chain reaction, and chromatin and DNA immunoprecipitation experiments were performed. PR-B expression was transiently induced by estradiol after 6 h of treatment in an estrogen receptor alpha (ERα)-dependent manner. This induction was associated with an increase in ERα phosphorylation (serine 118) and its recruitment to PR-B promoter. After 12 h of estradiol exposure, a downregulation of this PR isoform was associated with a decrease of specific protein 1, histone 3 lysine 4 trimethylation, and RNA polymerase II occupancy on PR-B promoter, without changes in DNA methylation and hydroxymethylation. In contrast, there were no estradiol-dependent changes in PR-A expression that could be related with the epigenetic marks or the transcription factors evaluated. We demonstrate that PR isoforms are differentially regulated by estradiol and that the induction of PR-B expression is associated to specific transcription factors interactions and epigenetic changes in its promoter in embryonic hypothalamic cells. PMID:26676302

  7. Estradiol differentially induces progesterone receptor isoforms expression through alternative promoter regulation in a mouse embryonic hypothalamic cell line.

    PubMed

    Vázquez-Martínez, Edgar Ricardo; Camacho-Arroyo, Ignacio; Zarain-Herzberg, Angel; Rodríguez, María Carmen; Mendoza-Garcés, Luciano; Ostrosky-Wegman, Patricia; Cerbón, Marco

    2016-06-01

    Progesterone receptor (PR) presents two main isoforms (PR-A and PR-B) that are regulated by two specific promoters and transcribed from alternative transcriptional start sites. The molecular regulation of PR isoforms expression in embryonic hypothalamus is poorly understood. The aim of the present study was to assess estradiol regulation of PR isoforms in a mouse embryonic hypothalamic cell line (mHypoE-N42), as well as the transcriptional status of their promoters. MHypoE-N42 cells were treated with estradiol for 6 and 12 h. Then, Western blot, real-time quantitative reverse transcription polymerase chain reaction, and chromatin and DNA immunoprecipitation experiments were performed. PR-B expression was transiently induced by estradiol after 6 h of treatment in an estrogen receptor alpha (ERα)-dependent manner. This induction was associated with an increase in ERα phosphorylation (serine 118) and its recruitment to PR-B promoter. After 12 h of estradiol exposure, a downregulation of this PR isoform was associated with a decrease of specific protein 1, histone 3 lysine 4 trimethylation, and RNA polymerase II occupancy on PR-B promoter, without changes in DNA methylation and hydroxymethylation. In contrast, there were no estradiol-dependent changes in PR-A expression that could be related with the epigenetic marks or the transcription factors evaluated. We demonstrate that PR isoforms are differentially regulated by estradiol and that the induction of PR-B expression is associated to specific transcription factors interactions and epigenetic changes in its promoter in embryonic hypothalamic cells.

  8. Variation in embryonic mortality and maternal transcript expression among Atlantic cod (Gadus morhua) broodstock: a functional genomics study.

    PubMed

    Rise, Matthew L; Nash, Gordon W; Hall, Jennifer R; Booman, Marije; Hori, Tiago S; Trippel, Edward A; Gamperl, A Kurt

    2014-12-01

    Early life stage mortality is an important issue for Atlantic cod aquaculture, yet the impact of the cod maternal (egg) transcriptome on egg quality and mortality during embryonic development is poorly understood. In the present work, we studied embryonic mortality and maternal transcript expression using eggs from 15 females. Total mortality at 7days post-fertilization (7 dpf, segmentation stage) was used as an indice of egg quality. A 20,000 probe (20K) microarray experiment compared the 7hours post-fertilization (7 hpf, ~2-cell stage) egg transcriptome of the two lowest quality females (>90% mortality at 7 dpf) to that of the highest quality female (~16% mortality at 7 dpf). Forty-three microarray probes were consistently differentially expressed in both low versus high quality egg comparisons (25 higher expressed in low quality eggs, and 18 higher expressed in high quality eggs). The microarray experiment also identified many immune-relevant genes [e.g. interferon (IFN) pathway genes ifngr1 and ifrd1)] that were highly expressed in eggs of all 3 females regardless of quality. Twelve of the 43 candidate egg quality-associated genes, and ifngr1, ifrd1 and irf7, were included in a qPCR study with 7 hpf eggs from all 15 females. Then, the genes that were confirmed by qPCR to be greater than 2-fold differentially expressed between 7 hpf eggs from the lowest and highest quality females (dcbld1, ddc, and acy3 more highly expressed in the 2 lowest quality females; kpna7 and hacd1 more highly expressed in the highest quality female), and the 3 IFN pathway genes, were included in a second qPCR study with unfertilized eggs. While some maternal transcripts included in these qPCR studies were associated with extremes in egg quality, there was little correlation between egg quality and gene expression when all females were considered. Both dcbld1 and ddc showed greater than 100-fold differences in transcript expression between females and were potentially influenced by

  9. Murine branched chain alpha-ketoacid dehydrogenase kinase; cDNA cloning, tissue distribution, and temporal expression during embryonic development.

    PubMed

    Doering, C B; Coursey, C; Spangler, W; Danner, D J

    1998-06-01

    These studies were designed to demonstrate the structural and functional similarity of murine branched chain alpha-ketoacid dehydrogenase and its regulation by the complex-specific kinase. Nucleotide sequence and deduced amino acid sequence for the kinase cDNA demonstrate a highly conserved coding sequence between mouse and human. Tissue-specific expression in adult mice parallels that reported in other mammals. Kinase expression in female liver is influenced by circadian rhythm. Of special interest is the fluctuating expression of this kinase during embryonic development against the continuing increase in the catalytic subunits of this mitochondrial complex during development. The need for regulation of the branched chain alpha-ketoacid dehydrogenase complex by kinase expression during embryogenesis is not understood. However, the similarity of murine branched chain alpha-ketoacid dehydrogenase and its kinase to the human enzyme supports the use of this animal as a model for the human system. PMID:9611264

  10. Over-expression of Ultrabithorax alters embryonic body plan and wing patterns in the butterfly Bicyclus anynana.

    PubMed

    Tong, Xiaoling; Hrycaj, Steven; Podlaha, Ondrej; Popadic, Aleksandar; Monteiro, Antónia

    2014-10-15

    In insects, forewings and hindwings usually have different shapes, sizes, and color patterns. A variety of RNAi experiments across insect species have shown that the hox gene Ultrabithorax (Ubx) is necessary to promote hindwing identity. However, it remains unclear whether Ubx is sufficient to confer hindwing fate to forewings across insects. Here, we address this question by over-expressing Ubx in the butterfly Bicyclus anynana using a heat-shock promoter. Ubx whole-body over-expression during embryonic and larvae development led to body plan changes in larvae but to mere quantitative changes to adult morphology, respectively. Embryonic heat-shocks led to fused segments, loss of thoracic and abdominal limbs, and transformation of head limbs to larger appendages. Larval heat-shocks led to reduced eyespot size in the expected homeotic direction, but neither additional eyespots nor wing shape changes were observed in forewings as expected of a homeotic transformation. Interestingly, Ubx was found to be expressed in a novel, non-characteristic domain - in the hindwing eyespot centers. Furthermore, ectopic expression of Ubx on the pupal wing activated the eyespot-associated genes spalt and Distal-less, known to be directly repressed by Ubx in the fly׳s haltere and leg primordia, respectively, and led to the differentiation of black wing scales. These results suggest that Ubx has been co-opted into a novel eyespot gene regulatory network, and that it is capable of activating black pigmentation in butterflies. PMID:25169193

  11. Over-expression of Ultrabithorax alters embryonic body plan and wing patterns in the butterfly Bicyclus anynana.

    PubMed

    Tong, Xiaoling; Hrycaj, Steven; Podlaha, Ondrej; Popadic, Aleksandar; Monteiro, Antónia

    2014-10-15

    In insects, forewings and hindwings usually have different shapes, sizes, and color patterns. A variety of RNAi experiments across insect species have shown that the hox gene Ultrabithorax (Ubx) is necessary to promote hindwing identity. However, it remains unclear whether Ubx is sufficient to confer hindwing fate to forewings across insects. Here, we address this question by over-expressing Ubx in the butterfly Bicyclus anynana using a heat-shock promoter. Ubx whole-body over-expression during embryonic and larvae development led to body plan changes in larvae but to mere quantitative changes to adult morphology, respectively. Embryonic heat-shocks led to fused segments, loss of thoracic and abdominal limbs, and transformation of head limbs to larger appendages. Larval heat-shocks led to reduced eyespot size in the expected homeotic direction, but neither additional eyespots nor wing shape changes were observed in forewings as expected of a homeotic transformation. Interestingly, Ubx was found to be expressed in a novel, non-characteristic domain - in the hindwing eyespot centers. Furthermore, ectopic expression of Ubx on the pupal wing activated the eyespot-associated genes spalt and Distal-less, known to be directly repressed by Ubx in the fly׳s haltere and leg primordia, respectively, and led to the differentiation of black wing scales. These results suggest that Ubx has been co-opted into a novel eyespot gene regulatory network, and that it is capable of activating black pigmentation in butterflies.

  12. Expression of the ephrin receptor B2 in the embryonic chicken bursa of Fabricius

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chicken B-cells develop in a specific organ, the bursa of Fabricius. To understand the bursal microenvironment guiding B-cell development, previous studies identified ephrin (Eph) receptor B2 (EphB2) gene transcripts in the embryonic bursa. We hypothesize that the EphB2 receptors and their ligands r...

  13. ALTERNATE PATCHED SPLICE FORMS ARE EXPRESSED IN A TISSUE SPECIFIC MANNER DURING EARLY EMBRYONIC DEVELOPMENT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    BACKGROUND: The Hedgehog (Hh) pathway is critical for embryonic patterning of nearly every organ system in the developing fetus and is highly conserved across phylogeny. We have previously characterized three alternate splice forms of the Ptc gene, including a novel Exon 1C isoform in the mouse, but...

  14. INVOLVEMENT OF MICRORNAS IN EMBRYONIC GENOME ACTIVATION AS SHOWN BY DICER EXPRESSION IN RAINBOW TROUT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Most maternal transcripts including many housekeeping genes are degraded at or around embryonic genome activation as evidenced by our initial studies. This degradation appears to be global but highly regulated. MicroRNAs are naturally occurring small (19-24bp) RNAs that are shown to be involved in m...

  15. Embryonic catalase protects against ethanol-initiated DNA oxidation and teratogenesis in acatalasemic and transgenic human catalase-expressing mice.

    PubMed

    Miller, Lutfiya; Shapiro, Aaron M; Wells, Peter G

    2013-08-01

    Reactive oxygen species (ROS) are implicated in fetal alcohol spectrum disorders (FASD) caused by alcohol (ethanol, EtOH). Although catalase detoxifies hydrogen peroxide, embryonic catalase activity is only about 5% of maternal levels. To determine the roles of ROS and embryonic catalase in FASD, pregnant mice with enhanced (expressing human catalase, hCat) or deficient (acatalasemic, aCat) catalase activity, or their respective wild-type (WT) controls, were treated ip on gestational day 9 with 4 or 6g/kg EtOH or its saline vehicle, and embryos and fetuses were, respectively, evaluated for oxidatively damaged DNA and structural anomalies. Untreated hCat and aCat dams had, respectively, more and less offspring than their WT controls. hCat progenies were protected from all EtOH fetal anomalies at the low dose (p < .01) and from reduced head diameter and resorptions at the high dose (p < .001). Conversely, aCat progenies were more sensitive to dose-dependent EtOH fetal anomalies (p < .001) and exhibited a 50% increase in maternal lethality (p < .05) at the high dose. Maternal pretreatment of aCat mice with polyethylene glycol-conjugated catalase (PEG-Cat) reduced EtOH fetal anomalies (p < .001). EtOH-initiated embryonic DNA oxidation was reduced in hCat and WT mice pretreated with PEG-Cat and enhanced in aCat mice. Plasma concentrations of EtOH in catalase-altered mice were similar to controls, precluding a pharmacokinetic basis for altered EtOH teratogenesis. Endogenous embryonic catalase, despite its low level, is an important embryoprotective enzyme for EtOH teratogenesis and a likely determinant of individual risk.

  16. Embryonic catalase protects against ethanol embryopathies in acatalasemic mice and transgenic human catalase-expressing mice in embryo culture.

    PubMed

    Miller-Pinsler, Lutfiya; Wells, Peter G

    2015-09-15

    Reactive oxygen species (ROS) have been implicated in the mechanism of ethanol (EtOH) teratogenicity, but the protective role of the embryonic antioxidative enzyme catalase is unclear, as embryonic activity is only about 5% of maternal levels. We addressed this question in a whole embryo culture model. C57BL/6 mouse embryos expressing human catalase (hCat) or their wild-type (C57BL/6 WT) controls, and C3Ga.Cg-Cat(b)/J catalase-deficient, acatalasemic (aCat) mouse embryos or their wild-type C3HeB/FeJ (C3H WT) controls, were explanted on gestational day (GD) 9 (plug=GD 1), exposed for 24h to 2 or 4mg/mL EtOH or vehicle, and evaluated for functional and morphological changes. hCat and C57BL/6 WT vehicle-exposed embryos developed normally, while EtOH was embryopathic in C57BL/6 WT embryos, evidenced by decreases in anterior neuropore closure, somites developed, turning and head length, whereas hCat embryos were protected (p<0.001). Maternal pretreatment of C57BL/6 WT dams with 50kU/kg PEG-catalase (PEG-cat) 8h prior to embryo culture, which increases embryonic catalase activity, blocked all EtOH embryopathies (p<0.001). Vehicle-exposed aCat mouse embryos had lower yolk sac diameters compared to WT controls, suggesting that endogenous ROS are embryopathic. EtOH was more embryopathic in aCat embryos than WT controls, evidenced by reduced head length and somite development (p<0.01), and trends for reduced anterior neuropore closure, turning and crown-rump length. Maternal pretreatment of aCat dams with PEG-Cat blocked all EtOH embryopathies (p<0.05). These data suggest that embryonic catalase is a determinant of risk for EtOH embryopathies.

  17. Dynamic structure and protein expression of the live embryonic heart captured by 2-photon light sheet microscopy and retrospective registration

    PubMed Central

    Trivedi, Vikas; Truong, Thai V.; Trinh, Le A.; Holland, Daniel B.; Liebling, Michael; Fraser, Scott E.

    2015-01-01

    We present an imaging and image reconstruction pipeline that captures the dynamic three-dimensional beating motion of the live embryonic zebrafish heart at subcellular resolution. Live, intact zebrafish embryos were imaged using 2-photon light sheet microscopy, which offers deep and fast imaging at 70 frames per second, and the individual optical sections were assembled into a full 4D reconstruction of the beating heart using an optimized retrospective image registration algorithm. This imaging and reconstruction platform permitted us to visualize protein expression patterns at endogenous concentrations in zebrafish gene trap lines. PMID:26114028

  18. Functional Characterization and Expression Profiling of Human Induced Pluripotent Stem Cell- and Embryonic Stem Cell-Derived Endothelial Cells

    PubMed Central

    Li, Zongjin; Hu, Shijun; Ghosh, Zhumur; Han, Zhongchao

    2011-01-01

    With regard to human induced pluripotent stem cells (hiPSCs), in which adult cells are reprogrammed into embryonic-like cells using defined factors, their functional and transcriptional expression pattern during endothelial differentiation has yet to be characterized. In this study, hiPSCs and human embryonic stem cells (hESCs) were differentiated using the embryoid body method, and CD31+ cells were sorted. Fluorescence activated cell sorting analysis of hiPSC-derived endothelial cells (hiPSC-ECs) and hESC-derived endothelial cells (hESC-ECs) demonstrated similar endothelial gene expression patterns. We showed functional vascular formation by hiPSC-ECs in a mouse Matrigel plug model. We compared the gene profiles of hiPSCs, hESCs, hiPSC-ECs, hESC-ECs, and human umbilical vein endothelial cells (HUVECs) using whole genome microarray. Our analysis demonstrates that gene expression variation of hiPSC-ECs and hESC-ECs contributes significantly to biological differences between hiPSC-ECs and hESC-ECs as well as to the “distances” among hiPSCs, hESCs, hiPSC-ECs, hESC-ECs, and HUVECs. We further conclude that hiPSCs can differentiate into functional endothelial cells, but with limited expansion potential compared with hESC-ECs; thus, extensive studies should be performed to explore the cause and extent of such differences before clinical application of hiPSC-ECs can begin. PMID:21235328

  19. Tributyltin alters osteocalcin, matrix metalloproteinase 20 and dentin sialophosphoprotein gene expression in mineralizing mouse embryonic tooth in vitro.

    PubMed

    Salmela, Eija; Alaluusua, Satu; Sahlberg, Carin; Lukinmaa, Pirjo-Liisa

    2012-01-01

    We showed in a previous in vitro study that tributyltin (TBT) arrests dentin mineralization and enamel formation in developing mouse tooth. The present aim was to investigate the effect of TBT on the expression of genes associated with mineralization of dental hard tissues. Embryonic day 18 mouse mandibular first molars were cultured for 3, 5 or 7 days and exposed to 1.0 μM TBT and studied by real-time quantitative polymerase chain reaction (RT-QPCR) for the expressions of osteocalcin (Ocn), alkaline phosphatase (Alpl), dentin matrix protein 1 (Dmp1), dentin sialophosphoprotein (Dspp) and matrix metalloproteinase 20 (Mmp-20).Ocn, Mmp-20 and Dspp, whose expressions showed changes in RT- QPCR, were further analyzed by in situ hybridization of tissue sections. In situ hybridization showed that TBT decreased Ocn expression in odontoblasts but increased the expression in the epithelial tooth compartment. In QPCR assays, the net effect in the whole tooth was increased expression. TBT also reduced Mmp-20 expression in ameloblasts and odontoblasts. Dspp expression varied but both QPCR assays and in situ hybridization showed a decreasing trend. TBT exposure had no clear effect on Alpl and Dmp1 expressions. Increased Ocn expression by epithelial enamel organ may inhibit dentin mineralization and enamel formation. Decreased Ocn, Mmp-20 and Dspp expressions in odontoblasts may indicate delayed cell differentiation, or TBT may specifically decrease the expression of genes involved in dentin mineralization. While decreased Mmp-20 expression by TBT in ameloblasts may impair enamel mineralization, the coincident reduction in Mmp-20 and Dspp expressions in odontoblasts may potentiate the delay of dentin mineralization.

  20. Serum-based culture conditions provoke gene expression variability in mouse embryonic stem cells as revealed by single cell analysis

    PubMed Central

    Guo, Guoji; Pinello, Luca; Han, Xiaoping; Lai, Shujing; Shen, Li; Lin, Ta-Wei; Zou, Keyong; Yuan, Guo-Cheng; Orkin, Stuart H.

    2015-01-01

    Summary Variation in gene expression is an important feature of mouse embryonic stem cells (ESCs). However, the mechanisms responsible for global gene expression variation in ESCs are not fully understood. We performed single cell mRNA-seq analysis of mouse ESCs and uncovered significant heterogeneity in ESCs cultured in serum. We define highly variable gene clusters with distinct chromatin states; and show that bivalent genes are prone to expression variation. At the same time, we identify an ESC priming pathway that initiates the exit from the naïve ESC state. Finally, we provide evidence that a large proportion of intracellular network variability is due to the extracellular culture environment. Serum free culture reduces cellular heterogeneity and transcriptome variation in ESCs. PMID:26804902

  1. [Expression of TGFbeta family factors and FGF2 in mouse and human embryonic stem cells maintained in different culture systems].

    PubMed

    Lifantseva, N V; Kol'tsova, A M; Polianskaia, G G; Gordeeva, O F

    2013-01-01

    Mouse and human embryonic stem cells are in different states of pluripotency (naive/ground and primed states). Mechanisms of signaling regulation in cells with ground and primed states of pluripotency are considerably different. In order to understand the contribution of endogenous and exogenous factors in the maintenance of a metastable state of the cells in different phases ofpluripotency, we examined the expression of TGFbeta family factors (ActivinA, Nodal, Leftyl, TGFbeta1, GDF3, BMP4) and FGF2 initiating the appropriate signaling pathways in mouse and human embryonic stem cells (mESCs, hESCs) and supporting feeder cells. Quantitative real-time PCR analysis of gene expression showed that the expression patterns of endogenous factors studied were considerably different in mESCs and hESCs. The most significant differences were found in the levels of endogenous expression of TGFbeta1, BMP4 and ActivinA. The sources of exogenous factors ActivnA, TGFbeta1, and FGF2 for hESCs are feeder cells (mouse and human embryonic fibroblasts) expressing high levels of these factors, as well as low levels of BMP4. Thus, our data demonstrated that the in vitro maintenance of metastable state of undifferentiated pluripotent cells is achieved in mESCs and hESCs using different schemes of the regulations of ActivinA/Nodal/Lefty/Smad2/3BMP/Smad1/5/8 endogenous branches of TGFbeta signaling. The requirement for exogenous stimulation or inhibition of these signaling pathways is due to different patterns of endogenous expression of TGFbeta family factors and FGF2 in the mESCs and hESCs. For the hESCs, enhanced activity of ActivinA/Nodal/Lefty/Smad2/3 signaling by exogenous factor stimulation is necessary to mitigate the effects of BMP/Smadl/5/8 signaling pathways that promote cell differentiation into the extraembryonic structures. Significant differences in endogenous FGF2 expression in the cells in the ground and primary states of pluripotency demonstrate diverse involvement of this

  2. Cyclic mechanical strain maintains Nanog expression through PI3K/Akt signaling in mouse embryonic stem cells

    SciTech Connect

    Horiuchi, Rie; Akimoto, Takayuki; Hong, Zhang; Ushida, Takashi

    2012-08-15

    Mechanical strain has been reported to affect the proliferation/differentiation of many cell types; however, the effects of mechanotransduction on self-renewal as well as pluripotency of embryonic stem (ES) cells remains unknown. To investigate the effects of mechanical strain on mouse ES cell fate, we examined the expression of Nanog, which is an essential regulator of self-renewal and pluripotency as well as Nanog-associated intracellular signaling during uniaxial cyclic mechanical strain. The mouse ES cell line, CCE was plated onto elastic membranes, and we applied 10% strain at 0.17 Hz. The expression of Nanog was reduced during ES cell differentiation in response to the withdrawal of leukemia inhibitory factor (LIF); however, two days of cyclic mechanical strain attenuated this reduction of Nanog expression. On the other hand, the cyclic mechanical strain promoted PI3K-Akt signaling, which is reported as an upstream of Nanog transcription. The cyclic mechanical strain-induced Akt phosphorylation was blunted by the PI3K inhibitor wortmannin. Furthermore, cytochalasin D, an inhibitor of actin polymerization, also inhibited the mechanical strain-induced increase in phospho-Akt. These findings imply that mechanical force plays a role in regulating Nanog expression in ES cells through the actin cytoskeleton-PI3K-Akt signaling. -- Highlights: Black-Right-Pointing-Pointer The expression of Nanog, which is an essential regulator of 'stemness' was reduced during embryonic stem (ES) cell differentiation. Black-Right-Pointing-Pointer Cyclic mechanical strain attenuated the reduction of Nanog expression. Black-Right-Pointing-Pointer Cyclic mechanical strain promoted PI3K-Akt signaling and mechanical strain-induced Akt phosphorylation was blunted by the PI3K inhibitor and an inhibitor of actin polymerization.

  3. Expression Patterns of Cancer-Testis Antigens in Human Embryonic Stem Cells and Their Cell Derivatives Indicate Lineage Tracks

    PubMed Central

    Lifantseva, Nadya; Koltsova, Anna; Krylova, Tatyana; Yakovleva, Tatyana; Poljanskaya, Galina; Gordeeva, Olga

    2011-01-01

    Pluripotent stem cells can differentiate into various lineages but undergo genetic and epigenetic changes during long-term cultivation and, therefore, require regular monitoring. The expression patterns of cancer-testis antigens (CTAs) MAGE-A2, -A3, -A4, -A6, -A8, -B2, and GAGE were examined in undifferentiated human embryonic stem (hES) cells, their differentiated derivatives, teratocarcinoma (hEC) cells, and cancer cell lines of neuroectodermal and mesodermal origin. Undifferentiated hES cells and embryoid body cells expressed MAGE-A3, -A6, -A4, -A8, and GAGEs while later differentiated derivatives expressed only MAGE-A8 or MAGE-A4. Likewise, mouse pluripotent stem cells also express CTAs of Magea but not Mageb family. Despite similarity of the hES and hEC cell expression patterns, MAGE-A2 and MAGE-B2 were detected only in hEC cells but not in hES cells. Moreover, our analysis has shown that CTAs are aberrantly expressed in cancer cell lines and display low tissue specificity. The identification of CTA expression patterns in pluripotent stem cells and their derivatives may be useful for isolation of abnormally CTA-expressing cells to improve the safety of stem-cell based therapy. PMID:21785609

  4. Embryonic catalase protects against ethanol embryopathies in acatalasemic mice and transgenic human catalase-expressing mice in embryo culture

    SciTech Connect

    Miller-Pinsler, Lutfiya; Wells, Peter G.

    2015-09-15

    Reactive oxygen species (ROS) have been implicated in the mechanism of ethanol (EtOH) teratogenicity, but the protective role of the embryonic antioxidative enzyme catalase is unclear, as embryonic activity is only about 5% of maternal levels. We addressed this question in a whole embryo culture model. C57BL/6 mouse embryos expressing human catalase (hCat) or their wild-type (C57BL/6 WT) controls, and C3Ga.Cg-Cat{sup b}/J catalase-deficient, acatalasemic (aCat) mouse embryos or their wild-type C3HeB/FeJ (C3H WT) controls, were explanted on gestational day (GD) 9 (plug = GD 1), exposed for 24 h to 2 or 4 mg/mL EtOH or vehicle, and evaluated for functional and morphological changes. hCat and C57BL/6 WT vehicle-exposed embryos developed normally, while EtOH was embryopathic in C57BL/6 WT embryos, evidenced by decreases in anterior neuropore closure, somites developed, turning and head length, whereas hCat embryos were protected (p < 0.001). Maternal pretreatment of C57BL/6 WT dams with 50 kU/kg PEG-catalase (PEG-cat) 8 h prior to embryo culture, which increases embryonic catalase activity, blocked all EtOH embryopathies (p < 0.001). Vehicle-exposed aCat mouse embryos had lower yolk sac diameters compared to WT controls, suggesting that endogenous ROS are embryopathic. EtOH was more embryopathic in aCat embryos than WT controls, evidenced by reduced head length and somite development (p < 0.01), and trends for reduced anterior neuropore closure, turning and crown–rump length. Maternal pretreatment of aCat dams with PEG-Cat blocked all EtOH embryopathies (p < 0.05). These data suggest that embryonic catalase is a determinant of risk for EtOH embryopathies. - Highlights: • Ethanol (EtOH) exposure causes structural embryopathies in embryo culture. • Genetically enhanced catalase (hCat) protects against EtOH embryopathies. • Genetically deficient catalase (aCat) exacerbates EtOH embryopathies. • Embryonic catalase is developmentally important. • Et

  5. Differential expression of gamma-aminobutyric acid type B receptor subunit mRNAs in the developing nervous system and receptor coupling to adenylyl cyclase in embryonic neurons.

    PubMed

    Martin, Stella C; Steiger, Janine L; Gravielle, María Clara; Lyons, Helen R; Russek, Shelley J; Farb, David H

    2004-05-17

    gamma-Aminobutyric acid type B receptors (GABA(B)Rs) mediate both slow inhibitory synaptic activity in the adult nervous system and motility signals for migrating embryonic cortical cells. Previous papers have described the expression of GABA(B)Rs in the adult brain, but the expression and functional significance of these gene products in the embryo are largely unknown. Here we examine GABA(B)R expression from rat embryonic day 10 (E10) to E18 compared with adult and ask whether embryonic cortical neurons contain functional GABA(B)R. GABA(B)R1 transcript levels greatly exceed GABA(B)R2 levels in the developing neural tube at E11, and olfactory bulb and striatum at E17 but equalize in most regions of adult nervous tissue, except for the glomerular and granule cell layers of the main olfactory bulb and the striatum. Consistent with expression differences, the binding affinity of GABA for GABA(B)Rs is significantly lower in adult striatum compared with cerebellum. Multiple lines of evidence from in situ hybridization, RNase protection, and real-time PCR demonstrate that GABA(B)R1a, GABA(B)R1b, GABA(B)R1h (a subunit subtype, lacking a sushi domain, that we have identified in embryonic rat brain), GABA(B)R2, and GABA(B)L transcript levels are not coordinately regulated. Despite the functional requirement for a heterodimer of GABA(B)R subunits, the expression of each subunit mRNA is under independent control during embryonic development, and, by E18, GABA(B)Rs are negatively coupled to adenylyl cyclase in neocortical neurons. The presence of embryonic GABA(B)R transcripts and protein and functional receptor coupling indicates potentially important roles for GABA(B)Rs in modulation of synaptic transmission in the developing embryonic nervous system.

  6. YKL-40 is differentially expressed in human embryonic stem cells and in cell progeny of the three germ layers.

    PubMed

    Brøchner, Christian B; Johansen, Julia S; Larsen, Lars A; Bak, Mads; Mikkelsen, Hanne B; Byskov, Anne Grete; Andersen, Claus Yding; Møllgård, Kjeld

    2012-03-01

    The secreted glycoprotein YKL-40 participates in cell differentiation, inflammation, and cancer progression. High YKL-40 expression is reported during early human development, but its functions are unknown. Six human embryonic stem cell (hESC) lines were cultured in an atmosphere of low or high oxygen tension, in culture medium with or without basic fibroblast growth factor, and on feeder layers comprising mouse embryonic fibroblasts or human foreskin fibroblasts to evaluate whether hESCs and their progeny produced YKL-40 and to characterize YKL-40 expression during differentiation. Secreted YKL-40 protein and YKL-40 mRNA expression were measured by enzyme-linked immunosorbent assay (ELISA) and quantitative RT-PCR. Serial-sectioned colonies were stained for YKL-40 protein and for pluripotent hESC (OCT4, NANOG) and germ layer (HNF-3β, PDX1, CD34, p63, nestin, PAX6) markers. Double-labeling showed YKL-40 expression in OCT4-positive hESCs, PAX6-positive neuroectodermal cells, and HNF-3β-positive endodermal cells. The differentiating progeny showed strong YKL-40 expression. Abrupt transition between YKL-40 and OCT4-positive hESCs and YKL-40-positive ecto- and neuroectodermal lineages was observed within the same epithelial-like layer. YKL-40-positive cells within deeper layers lacked contact with OCT4-positive cells. YKL-40 may be important in initial cell differentiation from hESCs toward ectoderm and neuroectoderm, with retained epithelial morphology, whereas later differentiation into endoderm and mesoderm involves a transition into the deeper layers of the colony.

  7. Inferring the Transcriptional Landscape of Bovine Skeletal Muscle by Integrating Co-Expression Networks

    PubMed Central

    Hudson, Nicholas J.; Reverter, Antonio; Wang, YongHong; Greenwood, Paul L.; Dalrymple, Brian P.

    2009-01-01

    Background Despite modern technologies and novel computational approaches, decoding causal transcriptional regulation remains challenging. This is particularly true for less well studied organisms and when only gene expression data is available. In muscle a small number of well characterised transcription factors are proposed to regulate development. Therefore, muscle appears to be a tractable system for proposing new computational approaches. Methodology/Principal Findings Here we report a simple algorithm that asks “which transcriptional regulator has the highest average absolute co-expression correlation to the genes in a co-expression module?” It correctly infers a number of known causal regulators of fundamental biological processes, including cell cycle activity (E2F1), glycolysis (HLF), mitochondrial transcription (TFB2M), adipogenesis (PIAS1), neuronal development (TLX3), immune function (IRF1) and vasculogenesis (SOX17), within a skeletal muscle context. However, none of the canonical pro-myogenic transcription factors (MYOD1, MYOG, MYF5, MYF6 and MEF2C) were linked to muscle structural gene expression modules. Co-expression values were computed using developing bovine muscle from 60 days post conception (early foetal) to 30 months post natal (adulthood) for two breeds of cattle, in addition to a nutritional comparison with a third breed. A number of transcriptional landscapes were constructed and integrated into an always correlated landscape. One notable feature was a ‘metabolic axis’ formed from glycolysis genes at one end, nuclear-encoded mitochondrial protein genes at the other, and centrally tethered by mitochondrially-encoded mitochondrial protein genes. Conclusions/Significance The new module-to-regulator algorithm complements our recently described Regulatory Impact Factor analysis. Together with a simple examination of a co-expression module's contents, these three gene expression approaches are starting to illuminate the in vivo

  8. Ex vivo expanded SSEA-4+ human limbal stromal cells are multipotent and do not express other embryonic stem cell markers

    PubMed Central

    Hussin, Noor Hamidah; Othman, Ainoon; Umapathy, Thiageswari; Baharuddin, Puteri; Jamal, Rahman; Zakaria, Zubaidah

    2012-01-01

    Purpose The presence of multipotent human limbal stromal cells resembling mesenchymal stromal cells (MSC) provides new insights to the characteristic of these cells and its therapeutic potential. However, little is known about the expression of stage-specific embryonic antigen 4 (SSEA-4) and the embryonic stem cell (ESC)-like properties of these cells. We studied the expression of SSEA-4 surface protein and the various ESC and MSC markers in the ex vivo cultured limbal stromal cells. The phenotypes and multipotent differentiation potential of these cells were also evaluated. Methods Limbal stromal cells were derived from corneoscleral rims. The SSEA-4+ and SSEA-4- limbal stromal cells were sorted by fluorescence-activated cells sorting (FACS). Isolated cells were expanded and reanalyzed for their expression of SSEA-4. Expression of MSC and ESC markers on these cells were also analyzed by FACS. In addition, expression of limbal epithelial and corneal stromal proteins such as ATP-binding cassette sub-family G member 2 (ABCG2), tumour protein p63 (p63), paired box 6 (Pax6), cytokeratin 3 (AE5), cytokeratin 10, and keratocan sulfate were evaluated either by immunofluorecence staining or reverse transcription polymerase chain reaction. Appropriate induction medium was used to differentiate these cells into adipocytes, osteocytes, and chondrocytes. Results Expanded limbal stromal cells expressed the majority of mesenchymal markers. These cells were negative for ABCG2, p63, Pax6, AE-5, and keratocan sulfate. After passaged, a subpopulation of these cells showed low expression of SSEA-4 but were negative for other important ESC surface markers such as Tra-1–60, Tra-1–81, and transcription factors like octamer-binding transcription factor 4 (Oct4), SRY(sex determining region Y)-box 2 (Sox2), and Nanog. Early passaged cells when induced were able to differentiate into adipocytes, osteocytes and chondrocytes. Conclusions The expanded limbal stromal cells showed features

  9. The embryonic leaf identity gene FUSCA3 regulates vegetative phase transitions by negatively modulating ethylene-regulated gene expression in Arabidopsis

    PubMed Central

    2012-01-01

    Background The embryonic temporal regulator FUSCA3 (FUS3) plays major roles in the establishment of embryonic leaf identity and the regulation of developmental timing. Loss-of-function mutations of this B3 domain transcription factor result in replacement of cotyledons with leaves and precocious germination, whereas constitutive misexpression causes the conversion of leaves into cotyledon-like organs and delays vegetative and reproductive phase transitions. Results Herein we show that activation of FUS3 after germination dampens the expression of genes involved in the biosynthesis and response to the plant hormone ethylene, whereas a loss-of-function fus3 mutant shows many phenotypes consistent with increased ethylene signaling. This FUS3-dependent regulation of ethylene signaling also impinges on timing functions outside embryogenesis. Loss of FUS3 function results in accelerated vegetative phase change, and this is again partially dependent on functional ethylene signaling. This alteration in vegetative phase transition is dependent on both embryonic and vegetative FUS3 function, suggesting that this important transcriptional regulator controls both embryonic and vegetative developmental timing. Conclusion The results of this study indicate that the embryonic regulator FUS3 not only controls the embryonic-to-vegetative phase transition through hormonal (ABA/GA) regulation but also functions postembryonically to delay vegetative phase transitions by negatively modulating ethylene-regulated gene expression. PMID:22348746

  10. Single cell derived murine embryonic stem cell clones stably express Rex1-specific green fluorescent protein and their differentiation study

    SciTech Connect

    Chen Xiaopan; Wu Rongrong; Feng Shumei; Gu Bin; Dai Licheng; Zhang Ming; Zhao Xiaoli

    2007-10-19

    Embryonic stem cells (ESCs) often display high rates of apoptosis and spontaneous differentiation in routine culture, thus bring the proliferation of these cells highly inefficient. Moreover, little is known about the factors that are indispensable for sustaining self-renewal. To surmount these issues, we established transgenic mES cell lines expressing the enhanced green fluorescent protein (EGFP) under the control of the Rex1 promoter which is a key regulator of pluripotency in ES cells. In addition, we provided a simplified and improved protocol to derive transgenic mESCs from single cell. Finally, we showed that embryoid body (EB) development was faster than adherent differentiation in terms of differentiation ratio by real-time tracking of the EGFP expression. Therefore, these cell lines can be tracked and selected both in vitro and in vivo and should be invaluable for studying the factors that are indispensable for maintaining pluripotency.

  11. Differential expression of embryonic epicardial progenitor markers and localization of cardiac fibrosis in adult ischemic injury and hypertensive heart disease.

    PubMed

    Braitsch, Caitlin M; Kanisicak, Onur; van Berlo, Jop H; Molkentin, Jeffery D; Yutzey, Katherine E

    2013-12-01

    During embryonic heart development, the transcription factors Tcf21, Wt1, and Tbx18 regulate activation and differentiation of epicardium-derived cells, including fibroblast lineages. Expression of these epicardial progenitor factors and localization of cardiac fibrosis were examined in mouse models of cardiovascular disease and in human diseased hearts. Following ischemic injury in mice, epicardial fibrosis is apparent in the thickened layer of subepicardial cells that express Wt1, Tbx18, and Tcf21. Perivascular fibrosis with predominant expression of Tcf21, but not Wt1 or Tbx18, occurs in mouse models of pressure overload or hypertensive heart disease, but not following ischemic injury. Areas of interstitial fibrosis in ischemic and hypertensive hearts actively express Tcf21, Wt1, and Tbx18. In all areas of fibrosis, cells that express epicardial progenitor factors are distinct from CD45-positive immune cells. In human diseased hearts, differential expression of Tcf21, Wt1, and Tbx18 also is detected with epicardial, perivascular, and interstitial fibrosis, indicating conservation of reactivated developmental mechanisms in cardiac fibrosis in mice and humans. Together, these data provide evidence for distinct fibrogenic mechanisms that include Tcf21, separate from Wt1 and Tbx18, in different fibroblast populations in response to specific types of cardiac injury.

  12. PMP-22 expression in the central nervous system of the embryonic mouse defines potential transverse segments and longitudinal columns.

    PubMed

    Parmantier, E; Braun, C; Thomas, J L; Peyron, F; Martinez, S; Zalc, B

    1997-02-10

    PMP-22, a major constituent of peripheral nervous system (PNS) myelin, is also present in the central nervous system (CNS), in motoneurons of the cranial nerve motor nuclei and spinal cord (Parmantier et al. [1995] Eur. J. Neurosci. 7:1080-1088). The expression of PMP-22 in the CNS during embryonic and early postnatal development was investigated and showed a biphasic spatio-temporal pattern. The expression of PMP-22 started at embryonic day (E)11.5, in restricted longitudinal and transverse domains, in the ventricular zone of the spinal cord, rhombencephalon, mesencephalon and prosencephalon. In the mid- and forebrain, the PMP-22 signal was detectable in a longitudinal domain that followed ventrally the basal/alar boundary but could no longer be detected dorsally at some distance from the roof plate. Along the caudo-rostral axis, the territory in which PMP-22 was detected spanned the mesencephalon and the prosencephalon, extending caudally from the limit between the isthmus and the mesencephalon, and rostrally to the boundary between prosomeres 4 and 5 (p4/p5). In agreement with the prosomeric model of forebrain organization proposed by Puelles and Rubenstein ([1993] TINS 16:472-479), differences in the level of PMP-22 expression in p2, p3, and p4 clearly defined the p2/p3 and p3/p4 neuromeric boundaries. By E17.5, PMP-22 was no longer detected in the ventricular zone, but at E18.5 it began to be expressed in motoneurons of cranial nerve motor nuclei and, after birth, following a rostro-caudal gradient, in the ventral spinal cord.

  13. Calbindin D-28K and parvalbumin expression in embryonic chick hippocampus is enhanced by prenatal auditory stimulation.

    PubMed

    Chaudhury, Sraboni; Nag, Tapas Chandra; Wadhwa, Shashi

    2008-01-29

    Calcium-binding proteins (CaBPs) buffer excess of cytosolic Ca(2+), which accompanies neuronal activity following external stimuli. Prenatal auditory stimulation by species-specific sound and music influences early maturation of the auditory pathway and the behavioral responses in chicks. In this study, we determined the volume, total number of neurons, proportion of calbindin D-28K and parvalbumin-positive neurons along with their levels of expression in the developing chick hippocampus following prenatal auditory stimulation. Fertilized eggs of domestic chicks were exposed to sounds of either species-specific calls or sitar music at 65 dB for 15 min/h round the clock from embryonic day (E) 10 until hatching. Hippocampi of developmental stages (E12, E16 and E20) were examined. With an increase in embryonic age during normal development, the hippocampus showed an increase in its volume, total number of neurons as well as in the neuron proportions and levels of expression of calbindin D-28K and parvalbumin. A significant increase of volume at E20 was noted only in the music-stimulated group compared to that of their age-matched control (p<0.05). On the other hand, both auditory-stimulated groups showed a significant increase in the proportion of immunopositive neurons and the levels of expression of calbindin D-28K and parvalbumin as compared to the control at all developmental stages studied (p<0.003). The increase in proportions of CaBP neurons during development and in the sound-enriched groups suggests an activity-dependent increase in Ca(2+) influx. The enhanced expression of CaBPs may help in cell survival by preventing excitotoxic death of neurons during development and may also be involved in long-term potentiation. PMID:18096144

  14. The piggyBac Transposon-Mediated Expression of SV40 T Antigen Efficiently Immortalizes Mouse Embryonic Fibroblasts (MEFs)

    PubMed Central

    Cui, Jing; Zhang, Hongmei; Chen, Xiang; Li, Ruidong; Wu, Ningning; Chen, Xian; Wen, Sheng; Zhang, Junhui; Yin, Liangjun; Deng, Fang; Liao, Zhan; Zhang, Zhonglin; Zhang, Qian; Yan, Zhengjian; Liu, Wei; Ye, Jixing; Deng, Youlin; Wang, Zhongliang; Qiao, Min; Luu, Hue H.; Haydon, Rex C.; Shi, Lewis L.; Liang, Houjie; He, Tong-Chuan

    2014-01-01

    Mouse embryonic fibroblasts (MEFs) are mesenchymal stem cell (MSC)-like multipotent progenitor cells and can undergo self-renewal and differentiate into to multiple lineages, including bone, cartilage and adipose. Primary MEFs have limited life span in culture, which thus hampers MEFs’ basic research and translational applications. To overcome this challenge, we investigate if piggyBac transposon-mediated expression of SV40 T antigen can effectively immortalize mouse MEFs and that the immortalized MEFs can maintain long-term cell proliferation without compromising their multipotency. Using the piggyBac vector MPH86 which expresses SV40 T antigen flanked with flippase (FLP) recognition target (FRT) sites, we demonstrate that mouse embryonic fibroblasts (MEFs) can be efficiently immortalized. The immortalized MEFs (piMEFs) exhibit an enhanced proliferative activity and maintain long-term cell proliferation, which can be reversed by FLP recombinase. The piMEFs express most MEF markers and retain multipotency as they can differentiate into osteogenic, chondrogenic and adipogenic lineages upon BMP9 stimulation in vitro. Stem cell implantation studies indicate that piMEFs can form bone, cartilage and adipose tissues upon BMP9 stimulation, whereas FLP-mediated removal of SV40 T antigen diminishes the ability of piMEFs to differentiate into these lineages, possibly due to the reduced expansion of progenitor populations. Our results demonstrate that piggyBac transposon-mediated expression of SV40 T can effectively immortalize MEFs and that the reversibly immortalized piMEFs not only maintain long-term cell proliferation but also retain their multipotency. Thus, the high transposition efficiency and the potential footprint-free natures may render piggyBac transposition an effective and safe strategy to immortalize progenitor cells isolated from limited tissue supplies, which is essential for basic and translational studies. PMID:24845466

  15. Perfluorooctane Sulfonate Disturbs Nanog Expression through miR-490-3p in Mouse Embryonic Stem Cells

    PubMed Central

    Chen, Minjian; Han, Xiumei; Du, Guizhen; Ji, Xiaoli; Chang, Chunxin; Rehan, Virender K.; Wang, Xinru; Xia, Yankai

    2013-01-01

    Perfluorooctane sulfonate (PFOS) poses potential risks to reproduction and development. Mouse embryonic stem cells (mESCs) are ideal models for developmental toxicity testing of environmental contaminants in vitro. However, the mechanism by which PFOS affects early embryonic development is still unclear. In this study, mESCs were exposed to PFOS for 24 h, and then general cytotoxicity and pluripotency were evaluated. MTT assay showed that neither PFOS (0.2 µM, 2 µM, 20 µM, and 200 µM) nor control medium (0.1% DMSO) treatments affected cell viability. Furthermore, there were no significant differences in cell cycle and apoptosis between the PFOS treatment and control groups. However, we found that the mRNA and protein levels of pluripotency markers (Sox2, Nanog) in mESCs were significantly decreased following exposure to PFOS for 24 h, while there were no significant changes in the mRNA and protein levels of Oct4. Accordingly, the expression levels of miR-145 and miR-490-3p, which can regulate Sox2 and Nanog expressions were significantly increased. Chrm2, the host gene of miR-490-3p, was positively associated with miR-490-3p expression after PFOS exposure. Dual luciferase reporter assay suggests that miR-490-3p directly targets Nanog. These results suggest that PFOS can disturb the expression of pluripotency factors in mESCs, while miR-145 and miR-490-3p play key roles in modulating this effect. PMID:24098361

  16. Identification, Characterization, and Mapping of Expressed Sequence Tags from an Embryonic Zebrafish Heart cDNA Library

    PubMed Central

    Ton, Christopher; Hwang, David M.; Dempsey, Adam A.; Tang, Hong-Chang; Yoon, Jennifer; Lim, Mindy; Mably, John D.; Fishman, Mark C.; Liew, Choong-Chin

    2000-01-01

    The generation of expressed sequence tags (ESTs) has proven to be a rapid and economical approach by which to identify and characterize expressed genes. We generated 5102 ESTs from a 3-d-old embryonic zebrafish heart cDNA library. Of these, 57.6% matched to known genes, 14.2% matched only to other ESTs, and 27.8% showed no match to any ESTs or known genes. Clustering of all ESTs identified 359 unique clusters comprising 1771 ESTs, whereas the remaining 3331 ESTs did not cluster. This estimates the number of unique genes identified in the data set to be approximately 3690. A total of 1242 unique known genes were used to analyze the gene expression patterns in the zebrafish embryonic heart. These were categorized into seven categories on the basis of gene function. The largest class of genes represented those involved in gene/protein expression (25.9% of known transcripts). This class was followed by genes involved in metabolism (18.7%), cell structure/motility (16.4%), cell signaling and communication (9.6%), cell/organism defense (7.1%), and cell division (4.4%). Unclassified genes constituted the remaining 17.91%. Radiation hybrid mapping was performed for 102 ESTs and comparison of map positions between zebrafish and human identified new synteny groups. Continued comparative analysis will be useful in defining the boundaries of conserved chromosome segments between zebrafish and humans, which will facilitate the transfer of genetic information between the two organisms and improve our understanding of vertebrate evolution. [The sequence data described in this paper have been submitted to the GenBank data library under accession nos. BE693120–BE693210 and BE704450.] PMID:11116087

  17. Constitutive Expression of GATA4 Dramatically Increases the Cardiogenic Potential of D3 Mouse Embryonic Stem Cells

    PubMed Central

    Laemmle, Lillian L.; Cohen, Justus B.; Glorioso, Joseph C.

    2016-01-01

    The transcription factor GATA binding protein 4 (GATA4) is a vital regulator of cardiac programming that acts by inducing the expression of many different genes involved in cardiomyogenesis. Here we generated a D3 mouse embryonic stem cell line that constitutively expresses high levels of GATA4 and show that these cells have dramatically increased cardiogenic potential compared to an eGFP-expressing control cell line. Embryoid bodies (EB) derived from the D3-GATA4 line displayed increased levels of cardiac gene expression and showed more abundant cardiomyocyte differentiation than control eGFP EB. These cells and two additional lines expressing lower levels of GATA4 provide a platform to screen previously untested cardiac genes and gene combinations for their ability to further increase the efficiency of cardiomyocyte differentiation beyond that achieved by transgenic GATA4 alone. Non-integrative delivery of identified gene combinations will aid in the production of differentiated cells for the treatment of ischemic cardiomyopathy. PMID:27441042

  18. Inhibition of mouse GPM6A expression leads to decreased differentiation of neurons derived from mouse embryonic stem cells.

    PubMed

    Michibata, Hideo; Okuno, Tsuyoshi; Konishi, Nae; Wakimoto, Koji; Kyono, Kiyoshi; Aoki, Kan; Kondo, Yasushi; Takata, Kazuyuki; Kitamura, Yoshihisa; Taniguchi, Takashi

    2008-08-01

    Glycoprotein M6A (GPM6A) is known as a transmembrane protein and an abundant cell surface protein on neurons in the central nervous system (CNS). However, the function of GPM6A is still unknown in the differentiation of neurons derived from embryonic stem (ES) cells. To investigate the function of GPM6A, we generated knockdown mouse ES cell lines (D3m-shM6A) using a short hairpin RNA (shRNA) expression vector driven by the U6 small nuclear RNA promoter, which can significantly suppress the expression of mouse GPM6A mRNA. Real-time polymerase chain reaction (real-time PCR) and immunocytochemical analysis showed that expression of shRNA against GPM6A markedly reduced the expression of neuroectodermal-associated genes (OTX1, Lmx1b, En1, Pax2, Pax5, Sox1, Sox2, and Wnt1), and also the number of neural stem cells (NSC) derived from D3mshM6A cells compared to control vector-transfected mouse ES cells (D3m-Mock). Moreover, our results show a decrease in both the number of neuronal markers and the number of differentiating neuronal cells (cholinergic, catecholaminergic, and GABAergic neurons) from NSC in D3m-shM6A cells. Hence, our findings suggest that expression level of GPM6A is directly or indirectly associated with the differentiation of neurons derived from undifferentiated ES cells. PMID:18522499

  19. Lovastatin Decreases the Expression of CD133 and Influences the Differentiation Potential of Human Embryonic Stem Cells

    PubMed Central

    Kallas-Kivi, Ade

    2016-01-01

    The lipophilic statin lovastatin decreases cholesterol synthesis and is a safe and effective treatment for the prevention of cardiovascular diseases. Growing evidence points at antitumor potential of lovastatin. Therefore, understanding the molecular mechanism of lovastatin function in different cell types is critical to effective therapy design. In this study, we investigated the effects of lovastatin on the differentiation potential of human embryonic stem (hES) cells (H9 cell line). Multiparameter flow cytometric assay was used to detect changes in the expression of transcription factors characteristic of hES cells. We found that lovastatin treatment delayed NANOG downregulation during ectodermal and endodermal differentiation. Likewise, expression of ectodermal (SOX1 and OTX2) and endodermal (GATA4 and FOXA2) markers was higher in treated cells. Exposure of hES cells to lovastatin led to a minor decrease in the expression of SSEA-3 and a significant reduction in CD133 expression. Treated cells also formed fewer embryoid bodies than control cells. By analyzing hES with and without CD133, we discovered that CD133 expression is required for proper formation of embryoid bodies. In conclusion, lovastatin reduced the heterogeneity of hES cells and impaired their differentiation potential. PMID:27247576

  20. Dose response analysis of monophthalates in the murine embryonic stem cell test assessed by cardiomyocyte differentiation and gene expression.

    PubMed

    Schulpen, Sjors H W; Robinson, Joshua F; Pennings, Jeroen L A; van Dartel, Dorien A M; Piersma, Aldert H

    2013-01-01

    The embryonic stem cell test (EST) is based on compound-induced inhibition of cardiomyocyte differentiation of pluripotent stem cells. We examined the use of transcriptomics to assess concentration-effect relationships and performed potency ranking within a chemical class. Three embryotoxic phthalate monoesters, monobutyl phthalate (MBuP), monobenzyl phthalate (MBzP) and mono-(2-ethylhexyl) phthalate (MEHP) and the non-embryotoxic monomethyl phthalate (MMP) were studied for their effects on gene expression. Effects on gene expression were observed at concentrations that did not inhibit cardiomyocyte differentiation or induce cytotoxicity. The embryotoxic phthalate monoesters altered the expression of 668 commonly expressed genes in a concentration-dependent fashion. The same potency ranking was observed for morphology and gene expression (MEHP>MBzP>MBuP>MMP). These results indicate that integrating transcriptomics provides a sensitive method to measure the dose-dependent effects of phthalate monoester exposure and enables potency ranking based on a common mode of action within a class of compounds. Transcriptomic approaches may improve the applicability of the EST, in terms of sensitivity and specificity.

  1. GLUT3 and PKM2 regulate OCT4 expression and support the hypoxic culture of human embryonic stem cells.

    PubMed

    Christensen, David R; Calder, Philip C; Houghton, Franchesca D

    2015-12-07

    Human embryonic stem cells (hESCs) have the capacity to differentiate into all cell types and thus have great potential for regenerative medicine. hESCs cultured at low oxygen tensions are more pluripotent and display an increased glycolytic rate but how this is regulated is unknown. This study therefore aimed to investigate the regulation of glucose metabolism in hESCs and whether this might impact OCT4 expression. In contrast to the glucose transporter GLUT1, GLUT3 was regulated by environmental oxygen and localised to hESC membranes. Silencing GLUT3 caused a reduction in glucose uptake and lactate production as well as OCT4 expression. GLUT3 and OCT4 expression were correlated suggesting that hESC self-renewal is regulated by the rate of glucose uptake. Surprisingly, PKM2, a rate limiting enzyme of glycolysis displayed a nuclear localisation in hESCs and silencing PKM2 did not alter glucose metabolism suggesting a role other than as a glycolytic enzyme. PKM2 expression was increased in hESCs cultured at 5% oxygen compared to 20% oxygen and silencing PKM2 reduced OCT4 expression highlighting a transcriptional role for PKM2 in hESCs. Together, these data demonstrate two separate mechanisms by which genes regulating glucose uptake and metabolism are involved in the hypoxic support of pluripotency in hESCs.

  2. Aire regulates the expression of differentiation-associated genes and self-renewal of embryonic stem cells.

    PubMed

    Gu, Bin; Zhang, Jiarong; Chen, Qi; Tao, Bo; Wang, Wei; Zhou, Yang; Chen, Liangbiao; Liu, Yusen; Zhang, Ming

    2010-04-01

    Embryonic stem cells (ESCs) are pluripotent stem cells from early embryos. It has been well recognized that ESC genomes are maintained in a globally transcriptional hyperactive state, which genetically poised ESCs to the high differentiation potential. However, the transcription factors regulating the global transcription activities in ESCs are not well defined. We show here that mouse and human ESCs express two transcription factors, Aire and Deaf1. Previously known to function in the thymus stromal cells and peripheral lymphoid organs respectively, Aire and Deaf1 help regulate the ectopic expression of diverse tissue-specific antigens to establish self-immune tolerance. Differentiation of ESCs greatly reduced Aire and Deaf1 expression, in a pattern similar to the pluripotent factors, Oct4 and Nanog. Knockdown of Aire in mouse ESCs resulted in significantly decreased clone-forming efficiency as well as attenuated cell cycle, suggesting Aire plays a role in ESC self-renewal. In addition, some differentiation-associated genes that are sporadically expressed in ESCs were reduced in expression upon Aire knockdown. These results suggest that transcription factors such as Aire and Deaf1, which exert global transcriptional regulatory functions, may play important roles in self-renewal of ESCs and maintaining ESC in a transcriptionally hyperactive state.

  3. Embryonic catalase protects against ethanol embryopathies in acatalasemic mice and transgenic human catalase-expressing mice in embryo culture.

    PubMed

    Miller-Pinsler, Lutfiya; Wells, Peter G

    2015-09-15

    Reactive oxygen species (ROS) have been implicated in the mechanism of ethanol (EtOH) teratogenicity, but the protective role of the embryonic antioxidative enzyme catalase is unclear, as embryonic activity is only about 5% of maternal levels. We addressed this question in a whole embryo culture model. C57BL/6 mouse embryos expressing human catalase (hCat) or their wild-type (C57BL/6 WT) controls, and C3Ga.Cg-Cat(b)/J catalase-deficient, acatalasemic (aCat) mouse embryos or their wild-type C3HeB/FeJ (C3H WT) controls, were explanted on gestational day (GD) 9 (plug=GD 1), exposed for 24h to 2 or 4mg/mL EtOH or vehicle, and evaluated for functional and morphological changes. hCat and C57BL/6 WT vehicle-exposed embryos developed normally, while EtOH was embryopathic in C57BL/6 WT embryos, evidenced by decreases in anterior neuropore closure, somites developed, turning and head length, whereas hCat embryos were protected (p<0.001). Maternal pretreatment of C57BL/6 WT dams with 50kU/kg PEG-catalase (PEG-cat) 8h prior to embryo culture, which increases embryonic catalase activity, blocked all EtOH embryopathies (p<0.001). Vehicle-exposed aCat mouse embryos had lower yolk sac diameters compared to WT controls, suggesting that endogenous ROS are embryopathic. EtOH was more embryopathic in aCat embryos than WT controls, evidenced by reduced head length and somite development (p<0.01), and trends for reduced anterior neuropore closure, turning and crown-rump length. Maternal pretreatment of aCat dams with PEG-Cat blocked all EtOH embryopathies (p<0.05). These data suggest that embryonic catalase is a determinant of risk for EtOH embryopathies. PMID:26074427

  4. Maternal Experience with Predation Risk Influences Genome-Wide Embryonic Gene Expression in Threespined Sticklebacks (Gasterosteus aculeatus)

    PubMed Central

    Mommer, Brett C.; Bell, Alison M.

    2014-01-01

    There is growing evidence for nongenetic effects of maternal experience on offspring. For example, previous studies have shown that female threespined stickleback fish (Gasterosteus aculeatus) exposed to predation risk produce offspring with altered behavior, metabolism and stress physiology. Here, we investigate the effect of maternal exposure to predation risk on the embryonic transcriptome in sticklebacks. Using RNA-sequencing we compared genome-wide transcription in three day post-fertilization embryos of predator-exposed and control mothers. There were hundreds of differentially expressed transcripts between embryos of predator-exposed mothers and embryos of control mothers including several non-coding RNAs. Gene Ontology analysis revealed biological pathways involved in metabolism, epigenetic inheritance, and neural proliferation and differentiation that differed between treatments. Interestingly, predation risk is associated with an accelerated life history in many vertebrates, and several of the genes and biological pathways that were identified in this study suggest that maternal exposure to predation risk accelerates the timing of embryonic development. Consistent with this hypothesis, embryos of predator-exposed mothers were larger than embryos of control mothers. These findings point to some of the molecular mechanisms that might underlie maternal effects. PMID:24887438

  5. Compound-specific effects of diverse neurodevelopmental toxicants on global gene expression in the neural embryonic stem cell test (ESTn).

    PubMed

    Theunissen, P T; Robinson, J F; Pennings, J L A; van Herwijnen, M H; Kleinjans, J C S; Piersma, A H

    2012-08-01

    Alternative assays for developmental toxicity testing are needed to reduce animal use in regulatory toxicology. The in vitro murine neural embryonic stem cell test (ESTn) was designed as an alternative for neurodevelopmental toxicity testing. The integration of toxicogenomic-based approaches may further increase predictivity as well as provide insight into underlying mechanisms of developmental toxicity. In the present study, we investigated concentration-dependent effects of six mechanistically diverse compounds, acetaldehyde (ACE), carbamazepine (CBZ), flusilazole (FLU), monoethylhexyl phthalate (MEHP), penicillin G (PENG) and phenytoin (PHE), on the transcriptome and neural differentiation in the ESTn. All compounds with the exception of PENG altered ESTn morphology (cytotoxicity and neural differentiation) in a concentration-dependent manner. Compound induced gene expression changes and corresponding enriched gene ontology biological processes (GO-BP) were identified after 24h exposure at equipotent differentiation-inhibiting concentrations of the compounds. Both compound-specific and common gene expression changes were observed between subsets of tested compounds, in terms of significance, magnitude of regulation and functionality. For example, ACE, CBZ and FLU induced robust changes in number of significantly altered genes (≥ 687 genes) as well as a variety of GO-BP, as compared to MEHP, PHE and PENG (≤ 55 genes with no significant changes in GO-BP observed). Genes associated with developmentally related processes (embryonic morphogenesis, neuron differentiation, and Wnt signaling) showed diverse regulation after exposure to ACE, CBZ and FLU. In addition, gene expression and GO-BP enrichment showed concentration dependence, allowing discrimination of non-toxic versus toxic concentrations on the basis of transcriptomics. This information may be used to define adaptive versus toxic responses at the transcriptome level.

  6. Compound-specific effects of diverse neurodevelopmental toxicants on global gene expression in the neural embryonic stem cell test (ESTn)

    SciTech Connect

    Theunissen, P.T.; Robinson, J.F.; Pennings, J.L.A.; Herwijnen, M.H. van; Kleinjans, J.C.S.; Piersma, A.H.

    2012-08-01

    Alternative assays for developmental toxicity testing are needed to reduce animal use in regulatory toxicology. The in vitro murine neural embryonic stem cell test (ESTn) was designed as an alternative for neurodevelopmental toxicity testing. The integration of toxicogenomic-based approaches may further increase predictivity as well as provide insight into underlying mechanisms of developmental toxicity. In the present study, we investigated concentration-dependent effects of six mechanistically diverse compounds, acetaldehyde (ACE), carbamazepine (CBZ), flusilazole (FLU), monoethylhexyl phthalate (MEHP), penicillin G (PENG) and phenytoin (PHE), on the transcriptome and neural differentiation in the ESTn. All compounds with the exception of PENG altered ESTn morphology (cytotoxicity and neural differentiation) in a concentration-dependent manner. Compound induced gene expression changes and corresponding enriched gene ontology biological processes (GO–BP) were identified after 24 h exposure at equipotent differentiation-inhibiting concentrations of the compounds. Both compound-specific and common gene expression changes were observed between subsets of tested compounds, in terms of significance, magnitude of regulation and functionality. For example, ACE, CBZ and FLU induced robust changes in number of significantly altered genes (≥ 687 genes) as well as a variety of GO–BP, as compared to MEHP, PHE and PENG (≤ 55 genes with no significant changes in GO–BP observed). Genes associated with developmentally related processes (embryonic morphogenesis, neuron differentiation, and Wnt signaling) showed diverse regulation after exposure to ACE, CBZ and FLU. In addition, gene expression and GO–BP enrichment showed concentration dependence, allowing discrimination of non-toxic versus toxic concentrations on the basis of transcriptomics. This information may be used to define adaptive versus toxic responses at the transcriptome level.

  7. Force via integrins but not E-cadherin decreases Oct3/4 expression in embryonic stem cells

    SciTech Connect

    Uda, Yuhei; Poh, Yeh-Chuin; Chowdhury, Farhan; Wu, Douglas C.; Tanaka, Tetsuya S.; Sato, Masaaki; Wang, Ning

    2011-11-18

    Highlights: Black-Right-Pointing-Pointer Force via integrins or cadherins induces similar cell stiffening responses. Black-Right-Pointing-Pointer Force via integrins but not cadherins induces cell spreading. Black-Right-Pointing-Pointer Force via integrins but not cadherins induces differentiation of embryonic stem cells. -- Abstract: Increasing evidence suggests that mechanical factors play a critical role in fate decisions of stem cells. Recently we have demonstrated that a local force applied via Arg-Gly-Asp (RGD) peptides coated magnetic beads to mouse embryonic stem (ES) cells increases cell spreading and cell stiffness and decreases Oct3/4 (Pou5f1) gene expression. However, it is not clear whether the effects of the applied stress on these functions of ES cells can be extended to natural extracellular matrix proteins or cell-cell adhesion molecules. Here we show that a local cyclic shear force applied via fibronectin or laminin to integrin receptors increased cell spreading and stiffness, downregulated Oct3/4 gene expression, and decreased cell proliferation rate. In contrast, the same cyclic force applied via cell-cell adhesion molecule E-cadherin (Cdh1) had no effects on cell spreading, Oct3/4 gene expression, and the self-renewal of mouse ES cells, but induced significant cell stiffening. Our findings demonstrate that biological responses of ES cells to force applied via integrins are different from those to force via E-cadherin, suggesting that mechanical forces might play different roles in different force transduction pathways to shape early embryogenesis.

  8. Bitter, sweet and umami taste receptors and downstream signaling effectors: Expression in embryonic and growing chicken gastrointestinal tract.

    PubMed

    Cheled-Shoval, Shira L; Druyan, Shelly; Uni, Zehava

    2015-08-01

    Taste perception is a crucial biological mechanism affecting food and water choices and consumption in the animal kingdom. Bitter taste perception is mediated by a G-protein-coupled receptor (GPCR) family-the taste 2 receptors (T2R)-and their downstream proteins, whereas sweet and umami tastes are mediated by the GPCR family -taste 1 receptors (T1R) and their downstream proteins. Taste receptors and their downstream proteins have been identified in extra-gustatory tissues in mammals, such as the lungs and gastrointestinal tract (GIT), and their GIT activation has been linked with different metabolic and endocrinic pathways in the GIT. The chicken genome contains three bitter taste receptors termed ggTas2r1, ggTas2r2, and ggTas2r7, and the sweet/umami receptors ggTas1r1 and ggTas1r3, but it lacks the sweet receptor ggTas1r2. The aim of this study was to identify and determine the expression of genes related to taste perception in the chicken GIT, both at the embryonic stage and in growing chickens. The results of this study demonstrate for the first time, using real-time PCR, expression of the chicken taste receptor genes ggTas2r1, ggTas2r2, ggTas2r7, ggTas1r1, and ggTas1r3 and of their downstream protein-encoding genes TRPM5, α-gustducin, and PLCβ2 in both gustatory tissues-the palate and tongue, and extra-gustatory tissues-the proventriculus, duodenum, jejunum, ileum, cecum, and colon of embryonic day 19 (E19) and growing (21 d old) chickens. Expression of these genes suggests the involvement of taste pathways for sensing carbohydrates, amino acids and bitter compounds in the chicken GIT.

  9. Gene expression classification using epigenetic features and DNA sequence composition in the human embryonic stem cell line H1.

    PubMed

    Su, Wen-Xia; Li, Qian-Zhong; Zhang, Lu-Qiang; Fan, Guo-Liang; Wu, Cheng-Yan; Yan, Zhen-He; Zuo, Yong-Chun

    2016-10-30

    Epigenetic factors are known to correlate with gene expression in the existing studies. However, quantitative models that accurately classify the highly and lowly expressed genes based on epigenetic factors are currently lacking. In this study, a new machine learning method combines histone modifications, DNA methylation, DNA accessibility, transcription factors, and trinucleotide composition with support vector machines (SVM) is developed in the context of human embryonic stem cell line (H1). The results indicate that the predictive accuracy will be markedly improved when the epigenetic features are considered. The predictive accuracy and Matthews correlation coefficient of the best model are as high as 95.96% and 0.92 for 10-fold cross-validation test, and 95.58% and 0.92 for independent dataset test, respectively. Our model provides a good way to judge a gene is either highly or lowly expressed gene by using genetic and epigenetic data, when the expression data of the gene is lacking. And a web-server GECES for our analysis method is established at http://202.207.14.87:8032/fuwu/GECES/index.asp, so that other scientists can easily get their desired results by our web-server, without going through the mathematical details.

  10. Gene expression classification using epigenetic features and DNA sequence composition in the human embryonic stem cell line H1.

    PubMed

    Su, Wen-Xia; Li, Qian-Zhong; Zhang, Lu-Qiang; Fan, Guo-Liang; Wu, Cheng-Yan; Yan, Zhen-He; Zuo, Yong-Chun

    2016-10-30

    Epigenetic factors are known to correlate with gene expression in the existing studies. However, quantitative models that accurately classify the highly and lowly expressed genes based on epigenetic factors are currently lacking. In this study, a new machine learning method combines histone modifications, DNA methylation, DNA accessibility, transcription factors, and trinucleotide composition with support vector machines (SVM) is developed in the context of human embryonic stem cell line (H1). The results indicate that the predictive accuracy will be markedly improved when the epigenetic features are considered. The predictive accuracy and Matthews correlation coefficient of the best model are as high as 95.96% and 0.92 for 10-fold cross-validation test, and 95.58% and 0.92 for independent dataset test, respectively. Our model provides a good way to judge a gene is either highly or lowly expressed gene by using genetic and epigenetic data, when the expression data of the gene is lacking. And a web-server GECES for our analysis method is established at http://202.207.14.87:8032/fuwu/GECES/index.asp, so that other scientists can easily get their desired results by our web-server, without going through the mathematical details. PMID:27468948

  11. Targeted deletion of Vglut2 expression in the embryonal telencephalon promotes an anxiolytic phenotype of the adult mouse

    PubMed Central

    Nordenankar, Karin; Bergfors, Assar

    2015-01-01

    Background Anxiety is a natural emotion experienced by all individuals. However, when anxiety becomes excessive, it contributes to the substantial group of anxiety disorders that affect one in three people and thus are among the most common psychiatric disorders. Anxiolysis, the reduction of anxiety, is mediated via several large groups of therapeutical compounds, but the relief is often only temporary, and increased knowledge of the neurobiology underlying anxiety is needed in order to improve future therapies. Aim We previously demonstrated that mice lacking forebrain expression of the Vesicular glutamate transporter 2 (Vglut2) from adolescence showed a strong anxiolytic behaviour as adults. In the current study, we wished to analyse if removal of Vglut2 expression already from mid-gestation of the mouse embryo would give rise to similar anxiolysis in the adult mouse. Methods We produced transgenic mice lacking Vglut2 from mid-gestation and analysed their affective behaviour, including anxiety, when they had reached adulthood. Results The transgenic mice lacking Vglut2 expression from mid-gestation showed certain signs of anxiolytic behaviour, but this phenotype was not as prominent as when Vglut2 was removed during adolescence. Conclusion Our results suggest that both embryonal and adolescent forebrain expression of Vglut2 normally contributes to balancing the level of anxiety. As the neurobiological basis for anxiety is similar across species, our results in mice may help improve the current understanding of the neurocircuitry of anxiety, and hence anxiolysis, also in humans. PMID:25857802

  12. Embryonic expression of endothelins and their receptors in lamprey and frog reveals stem vertebrate origins of complex Endothelin signaling

    PubMed Central

    Square, Tyler; Jandzik, David; Cattell, Maria; Hansen, Andrew; Medeiros, Daniel Meulemans

    2016-01-01

    Neural crest cells (NCCs) are highly patterned embryonic cells that migrate along stereotyped routes to give rise to a diverse array of adult tissues and cell types. Modern NCCs are thought to have evolved from migratory neural precursors with limited developmental potential and patterning. How this occurred is poorly understood. Endothelin signaling regulates several aspects of NCC development, including their migration, differentiation, and patterning. In jawed vertebrates, Endothelin signaling involves multiple functionally distinct ligands (Edns) and receptors (Ednrs) expressed in various NCC subpopulations. To test the potential role of endothelin signaling diversification in the evolution of modern, highly patterned NCC, we analyzed the expression of the complete set of endothelin ligands and receptors in the jawless vertebrate, the sea lamprey (Petromyzon marinus). To better understand ancestral features of gnathostome edn and ednr expression, we also analyzed all known Endothelin signaling components in the African clawed frog (Xenopus laevis). We found that the sea lamprey has a gnathsotome-like complement of edn and ednr duplicates, and these genes are expressed in patterns highly reminiscent of their gnathostome counterparts. Our results suggest that the duplication and specialization of vertebrate Endothelin signaling coincided with the appearance of highly patterned and multipotent NCCs in stem vertebrates. PMID:27677704

  13. Control of mouse U1 snRNA gene expression during in vitro differentiation of mouse embryonic stem cells.

    PubMed Central

    Cheng, Y; Lund, E; Kahan, B W; Dahlberg, J E

    1997-01-01

    Early in mouse development, two classes of U1 RNAs, mU1a and mU1b, are synthesized, but as development proceeds, transcription of the embryo-specific mU1b genes is selectively down-regulated to a barely detectable level. We show here that during in vitro differentiation of mouse embryonic stem (ES) cells, both exogenously introduced and endogenous U1b genes are subject to normal developmental regulation. Thus, ES cells represent a convenient isogenic system for studying the control of expression of developmentally regulated snRNA genes. Using this system, we have identified a region in the proximal 5'flanking region, located outside the PSE element, that is responsible for differential transcription of the mU1a and mU1b genes in both developing cells and transiently transfected NIH 3T3 cells. PMID:9153321

  14. {beta}-Catenin up-regulates Nanog expression through interaction with Oct-3/4 in embryonic stem cells

    SciTech Connect

    Takao, Yukinari; Yokota, Takashi; Koide, Hiroshi . E-mail: hkoide@med.kanazawa-u.ac.jp

    2007-02-16

    It is well known that mouse embryonic stem (ES) cells can be maintained by the presence of leukemia inhibitory factor (LIF). Recent studies have revealed that Wnt also exhibits activity similar to LIF. The molecular mechanism behind the maintenance of ES cells by these factors, however, is not fully understood. In this study, we found that LIF enhances level of nuclear {beta}-catenin, a component of the Wnt signaling pathway. Expression of an activated mutant of {beta}-catenin led to the long-term proliferation of ES cells, even in the absence of LIF. Furthermore, it was found that {beta}-catenin up-regulates Nanog in an Oct-3/4-dependent manner and that {beta}-catenin physically associates with Oct-3/4. These results suggest that up-regulating Nanog through interaction with Oct-3/4 involves {beta}-catenin in the LIF- and Wnt-mediated maintenance of ES cell self-renewal.

  15. Slow growth and unstable ribosomal RNA lacking pseudouridine in mouse embryonic fibroblast cells expressing catalytically inactive dyskerin

    PubMed Central

    Gu, Bai-Wei; Ge, Jingping; Fan, Jian-Meng; Bessler, Monica; Mason, Philip J.

    2013-01-01

    Pseudouridine is the most abundant modified nucleotide in ribosomal RNA throughout eukaryotes and archaea but its role is not known. Here we produced mouse embryonic fibroblast cells expressing only catalytically inactive dyskerin, the pseudouridine synthase that converts uridine to pseudouridine in ribosomal RNA. The mutant dyskerin protein, D125A, was extremely unstable but cells were able to divide and grow very slowly. Abnormalities in ribosome RNA synthesis were apparent but mature cytoplasmic RNAs lacking pseudouridine were produced and were very unstable. We conclude that pseudouridine is required to stabilize the secondary structure of ribosomal RNA that is essential for its function. Structured summary of protein interactions∷ fibrillarin and Dkc1 colocalize by fluorescence microscopy (View interaction) PMID:23726835

  16. Large-scale time-lapse microscopy of Oct4 expression in human embryonic stem cell colonies.

    PubMed

    Bhadriraju, Kiran; Halter, Michael; Amelot, Julien; Bajcsy, Peter; Chalfoun, Joe; Vandecreme, Antoine; Mallon, Barbara S; Park, Kye-Yoon; Sista, Subhash; Elliott, John T; Plant, Anne L

    2016-07-01

    Identification and quantification of the characteristics of stem cell preparations is critical for understanding stem cell biology and for the development and manufacturing of stem cell based therapies. We have developed image analysis and visualization software that allows effective use of time-lapse microscopy to provide spatial and dynamic information from large numbers of human embryonic stem cell colonies. To achieve statistically relevant sampling, we examined >680 colonies from 3 different preparations of cells over 5days each, generating a total experimental dataset of 0.9 terabyte (TB). The 0.5 Giga-pixel images at each time point were represented by multi-resolution pyramids and visualized using the Deep Zoom Javascript library extended to support viewing Giga-pixel images over time and extracting data on individual colonies. We present a methodology that enables quantification of variations in nominally-identical preparations and between colonies, correlation of colony characteristics with Oct4 expression, and identification of rare events.

  17. Early embryonic death-associated changes in genome-wide gene expression profiles in the fetal placenta of the cow carrying somatic nuclear-derived cloned embryo.

    PubMed

    Oishi, Masahito; Gohma, Hiroshi; Hashizume, Kazuyoshi; Taniguchi, Yukio; Yasue, Hiroshi; Takahashi, Seiya; Yamada, Takahisa; Sasaki, Yoshiyuki

    2006-04-01

    Successful somatic nuclear transfer-derived cloning has been reported in cattle; however, the cloned embryo is highly susceptible to death around day 60 of gestation leading to early embryonic loss. The early embryonic death is postulated to possibly arise in part from an atypical placentation. We have performed cDNA macroarray analysis using 3,353 of the previously cataloged 4,165 genes, in order to characterize the early embryonic death-associated changes in genome-wide gene expression profiles in the fetal placenta of the cow carrying somatic nuclear transfer-derived cloned embryo. A more marked difference in the expression profiles was observed between the fetal placentas of the cows with the cloned immotile embryo (CD) and with the cloned motile embryo (CL) or artificial insemination-derived motile embryo (AI), as compared to between the CL and AI placentas, suggesting an aberration of the expression profile in the CD placenta among the three placentas. Further, 291 and 77 genes showed more than twofold elevation and less than 50% reduction, respectively, in either or both of two CD (CD1 and CD2) placentas in comparison with the CL placenta, but no differential expression between the CL and AI placentas. The expression patterns of six genes in the AI, CL, and CD placentas were confirmed in an experiment with an additional sample for each of the three placentas. Among the placental genes showing the early embryonic death-associated changes of expression in the cow with the cloned embryo, IGF2 (elevated gene), and HBA1, HBA2, SPTB, and SPTBN1 genes (reduced gene) are intriguing in that the changes of expression in these genes were observed in an additional sample of CD placenta as well as the CD1 and CD2 placentas, and in that overexpression (for IGF2) and dysfunction or deficiency (for HBA1, HBA2, SPTB, and SPTBN1) result in embryonic lethality.

  18. Meta-analysis of differentiating mouse embryonic stem cell gene expression kinetics reveals early change of a small gene set.

    PubMed

    Glover, Clive H; Marin, Michael; Eaves, Connie J; Helgason, Cheryl D; Piret, James M; Bryan, Jennifer

    2006-11-24

    Stem cell differentiation involves critical changes in gene expression. Identification of these should provide endpoints useful for optimizing stem cell propagation as well as potential clues about mechanisms governing stem cell maintenance. Here we describe the results of a new meta-analysis methodology applied to multiple gene expression datasets from three mouse embryonic stem cell (ESC) lines obtained at specific time points during the course of their differentiation into various lineages. We developed methods to identify genes with expression changes that correlated with the altered frequency of functionally defined, undifferentiated ESC in culture. In each dataset, we computed a novel statistical confidence measure for every gene which captured the certainty that a particular gene exhibited an expression pattern of interest within that dataset. This permitted a joint analysis of the datasets, despite the different experimental designs. Using a ranking scheme that favored genes exhibiting patterns of interest, we focused on the top 88 genes whose expression was consistently changed when ESC were induced to differentiate. Seven of these (103728_at, 8430410A17Rik, Klf2, Nr0b1, Sox2, Tcl1, and Zfp42) showed a rapid decrease in expression concurrent with a decrease in frequency of undifferentiated cells and remained predictive when evaluated in additional maintenance and differentiating protocols. Through a novel meta-analysis, this study identifies a small set of genes whose expression is useful for identifying changes in stem cell frequencies in cultures of mouse ESC. The methods and findings have broader applicability to understanding the regulation of self-renewal of other stem cell types.

  19. Changes in WNT signaling-related gene expression associated with development and cloning in bovine extra-embryonic and endometrial tissues during the peri-implantation period.

    PubMed

    Biase, Fernando H; Rabel, Chanaka; Guillomot, Michel; Sandra, Olivier; Andropolis, Kalista; Olmstead, Colleen; Oliveira, Rosane; Wallace, Richard; Le Bourhis, Daniel; Richard, Christophe; Campion, Evelyne; Chaulot-Talmon, Aurélie; Giraud-Delville, Corinne; Taghouti, Géraldine; Jammes, Hélène; Hue, Isabelle; Renard, Jean Paul; Lewin, Harris A

    2013-12-01

    We determined if somatic cell nuclear transfer (SCNT) cloning is associated with WNT-related gene expression in cattle development, and if the expression of genes in the WNT pathway changes during the peri-implantation period. Extra-embryonic and endometrial tissues were collected at gestation days 18 and 34 (d18, d34). WNT5A, FZD4, FZD5, LRP5, CTNNB1, GNAI2, KDM1A, BCL2L1, and SFRP1 transcripts were localized in extra-embryonic tissue, whereas SFRP1 and DKK1 were localized in the endometrium. There were no differences in the localization of these transcripts in extra-embryonic tissue or endometrium from SCNT or artificial insemination (AI) pregnancies. Expression levels of WNT5A were 11-fold greater in the allantois of SCNT than AI samples. In the trophoblast, expression of WNT5A, FZD5, CTNNB1, and DKK1 increased significantly from d18 to d34, whereas expression of KDM1A and SFRP1 decreased, indicating that implantation is associated with major changes in WNT signaling. SCNT was associated with altered WNT5A expression in trophoblasts, with levels increasing 2.3-fold more in AI than SCNT conceptuses from d18 to d34. In the allantois, expression of WNT5A increased 6.3-fold more in SCNT than AI conceptuses from d18 to d34. Endometrial tissue expression levels of the genes tested did not differ between AI or SCNT pregnancies, although expression of individual genes showed variation across developmental stages. Our results demonstrate that SCNT is associated with altered expression of specific WNT-related genes in extra-embryonic tissue in a time- and tissue-specific manner. The pattern of gene expression in the WNT pathway suggests that noncanonical WNT signal transduction is important for implantation of cattle conceptuses.

  20. Direct conversion of mouse embryonic fibroblasts into functional keratinocytes through transient expression of pluripotency-related genes.

    PubMed

    Iacovides, Demetris; Rizki, Gizem; Lapathitis, Georgios; Strati, Katerina

    2016-01-01

    The insufficient ability of specialized cells such as neurons, cardiac myocytes, and epidermal cells to regenerate after tissue damage poses a great challenge to treat devastating injuries and ailments. Recent studies demonstrated that a diverse array of cell types can be directly derived from embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), or somatic cells by combinations of specific factors. The use of iPSCs and direct somatic cell fate conversion, or transdifferentiation, holds great promise for regenerative medicine as these techniques may circumvent obstacles related to immunological rejection and ethical considerations. However, producing iPSC-derived keratinocytes requires a lengthy two-step process of initially generating iPSCs and subsequently differentiating into skin cells, thereby elevating the risk of cellular damage accumulation and tumor formation. In this study, we describe the reprogramming of mouse embryonic fibroblasts into functional keratinocytes via the transient expression of pluripotency factors coupled with directed differentiation. The isolation of an iPSC intermediate is dispensable when using this method. Cells derived with this approach, termed induced keratinocytes (iKCs), morphologically resemble primary keratinocytes. Furthermore they express keratinocyte-specific markers, downregulate mesenchymal markers as well as the pluripotency factors Oct4, Sox2, and Klf4, and they show important functional characteristics of primary keratinocytes. iKCs can be further differentiated by high calcium administration in vitro and are capable of regenerating a fully stratified epidermis in vivo. Efficient conversion of somatic cells into keratinocytes could have important implications for studying genetic skin diseases and designing regenerative therapies to ameliorate devastating skin conditions. PMID:27473056

  1. Transcriptional Profiling Identifies Location-Specific and Breed-Specific Differentially Expressed Genes in Embryonic Myogenesis in Anas Platyrhynchos

    PubMed Central

    Zhang, Rong-Ping; Liu, He-He; Liu, Jun-Ying; Hu, Ji-Wei; Yan, Xi-Ping; Wang, Ding-Min-Cheng; Li, Liang; Wang, Ji-Wen

    2015-01-01

    Skeletal muscle growth and development are highly orchestrated processes involving significant changes in gene expressions. Differences in the location-specific and breed-specific genes and pathways involved have important implications for meat productions and meat quality. Here, RNA-Seq was performed to identify differences in the muscle deposition between two muscle locations and two duck breeds for functional genomics studies. To achieve those goals, skeletal muscle samples were collected from the leg muscle (LM) and the pectoral muscle (PM) of two genetically different duck breeds, Heiwu duck (H) and Peking duck (P), at embryonic 15 days. Functional genomics studies were performed in two experiments: Experiment 1 directly compared the location-specific genes between PM and LM, and Experiment 2 compared the two breeds (H and P) at the same developmental stage (embryonic 15 days). Almost 13 million clean reads were generated using Illumina technology (Novogene, Beijing, China) on each library, and more than 70% of the reads mapped to the Peking duck (Anas platyrhynchos) genome. A total of 168 genes were differentially expressed between the two locations analyzed in Experiment 1, whereas only 8 genes were differentially expressed when comparing the same location between two breeds in Experiment 2. Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes pathways (KEGG) were used to functionally annotate DEGs (differentially expression genes). The DEGs identified in Experiment 1 were mainly involved in focal adhesion, the PI3K-Akt signaling pathway and ECM-receptor interaction pathways (corrected P-value<0.05). In Experiment 2, the DEGs were associated with only the ribosome signaling pathway (corrected P-value<0.05). In addition, quantitative real-time PCR was used to confirm 15 of the differentially expressed genes originally detected by RNA-Seq. A comparative transcript analysis of the leg and pectoral muscles of two duck breeds not only improves our

  2. Oct3/4 directly regulates expression of E2F3a in mouse embryonic stem cells

    SciTech Connect

    Kanai, Dai; Ueda, Atsushi; Akagi, Tadayuki; Yokota, Takashi; Koide, Hiroshi

    2015-04-10

    Embryonic stem (ES) cells, derived from the inner cell mass of blastocysts, have a characteristic cell cycle with truncated G1 and G2 phases. Recent findings that suppression of Oct3/4 expression results in a reduced proliferation rate of ES cells suggest the involvement of Oct3/4 in the regulation of ES cell growth, although the underlying molecular mechanism remains unclear. In the present study, we identified E2F3a as a direct target gene of Oct3/4 in ES cells. Oct3/4 directly bound to the promoter region of the E2F3a gene and positively regulated expression of E2F3a in mouse ES cells. Suppression of E2F3a activity by E2F6 overexpression led to the reduced proliferation in ES cells, which was relieved by co-expression of E2F3a. Furthermore, cell growth retardation caused by loss of Oct3/4 was rescued by E2F3a expression. These results suggest that Oct3/4 upregulates E2F3a expression to promote ES cell growth. - Highlights: • Oct3/4 positively regulates E2F3a expression in ES cells. • Oct3/4 binds to the promoter region of the E2F3a gene. • Overexpression of E2F6, an inhibitor of E2F3a, reduces ES cell growth. • E2F3a recovers growth retardation of ES cells caused by Oct3/4 reduction.

  3. Histone demethylation maintains Prdm14 and Tsix expression and represses xIst in embryonic stem cells.

    PubMed

    Kamikawa, Yasunao F; Donohoe, Mary E

    2015-01-01

    Epigenetic reprogramming is exemplified by the remarkable changes observed in cellular differentiation and X-chromosome inactivation (XCI) in mammalian female cells. Histone 3 lysine 27 trimethylation (H3K27me3) is a modification that suppresses gene expression in multiple contexts including embryonic stem cells (ESCs) and decorates the entire inactive X-chromosome. The conversion of female somatic cells to induced pluripotency is accompanied by X-chromosome reactivation (XCR) and H3K27me3 erasure. Here, we show that the H3K27-specific demethylase Utx regulates the expression of the master regulators for XCI and XCR: Prdm14, Tsix, and Xist. Female ESC transcriptome analysis using a small molecule inhibitor for H3K27 demethylases, GSK-J4, identifies novel targets of H3K27 demethylation. Consistent with a recent report that GSK-J4 can inhibit other histone demethylase, we found that elevated H3K4me3 levels are associated with increased gene expression including Xist. Our data suggest multiple regulatory mechanisms for XCI via histone demethylation.

  4. Identification of Epigenetic Factor Proteins Expressed in Human Embryonic Stem Cell-Derived Trophoblasts and in Human Placental Trophoblasts.

    PubMed

    Sarkar, Prasenjit; Mischler, Adam; Randall, Shan M; Collier, Timothy S; Dorman, Karen F; Boggess, Kim A; Muddiman, David C; Rao, Balaji M

    2016-08-01

    Human embryonic stem cells (hESCs) have been used to derive trophoblasts through differentiation in vitro. Intriguingly, mouse ESCs are prevented from differentiation to trophoblasts by certain epigenetic factor proteins such as Dnmt1, thus necessitating the study of epigenetic factor proteins during hESC differentiation to trophoblasts. We used stable isotope labeling by amino acids in cell culture and quantitative proteomics to study changes in the nuclear proteome during hESC differentiation to trophoblasts and identified changes in the expression of 30 epigenetic factor proteins. Importantly, the DNA methyltransferases DNMT1, DNMT3A, and DNMT3B were downregulated. Additionally, we hypothesized that nuclear proteomics of hESC-derived trophoblasts may be used for screening epigenetic factor proteins expressed by primary trophoblasts in human placental tissue. Accordingly, we conducted immunohistochemistry analysis of six epigenetic factor proteins identified from hESC-derived trophoblasts-DNMT1, DNMT3B, BAF155, BAF60A, BAF57, and ING5-in 6-9 week human placentas. Indeed, expression of these proteins was largely, though not fully, consistent with that observed in 6-9 week placental trophoblasts. Our results support the use of hESC-derived trophoblasts as a model for placental trophoblasts, which will enable further investigation of epigenetic factors involved in human trophoblast development. PMID:27378238

  5. The Role of Embryonic Stem Cell-expressed RAS (ERAS) in the Maintenance of Quiescent Hepatic Stellate Cells.

    PubMed

    Nakhaei-Rad, Saeideh; Nakhaeizadeh, Hossein; Götze, Silke; Kordes, Claus; Sawitza, Iris; Hoffmann, Michèle J; Franke, Manuel; Schulz, Wolfgang A; Scheller, Jürgen; Piekorz, Roland P; Häussinger, Dieter; Ahmadian, Mohammad R

    2016-04-15

    Hepatic stellate cells (HSCs) were recently identified as liver-resident mesenchymal stem cells. HSCs are activated after liver injury and involved in pivotal processes, such as liver development, immunoregulation, regeneration, and also fibrogenesis. To date, several studies have reported candidate pathways that regulate the plasticity of HSCs during physiological and pathophysiological processes. Here we analyzed the expression changes and activity of the RAS family GTPases and thereby investigated the signaling networks of quiescent HSCs versus activated HSCs. For the first time, we report that embryonic stem cell-expressed RAS (ERAS) is specifically expressed in quiescent HSCs and down-regulated during HSC activation via promoter DNA methylation. Notably, in quiescent HSCs, the high level of ERAS protein correlates with the activation of AKT, STAT3, mTORC2, and HIPPO signaling pathways and inactivation of FOXO1 and YAP. Our data strongly indicate that in quiescent HSCs, ERAS targets AKT via two distinct pathways driven by PI3Kα/δ and mTORC2, whereas in activated HSCs, RAS signaling shifts to RAF-MEK-ERK. Thus, in contrast to the reported role of ERAS in tumor cells associated with cell proliferation, our findings indicate that ERAS is important to maintain quiescence in HSCs.

  6. DNMT3B7, a truncated DNMT3B isoform expressed in human tumors, disrupts embryonic development and accelerates lymphomagenesis

    PubMed Central

    Shah, Mrinal Y.; Vasanthakumar, Aparna; Barnes, Natalie Y.; Figueroa, Maria E.; Kamp, Anna; Hendrick, Christopher; Ostler, Kelly R.; Davis, Elizabeth M.; Lin, Shang; Anastasi, John; Le Beau, Michelle M.; Moskowitz, Ivan; Melnick, Ari; Pytel, Peter; Godley, Lucy A.

    2010-01-01

    Epigenetic changes are among the most common alterations observed in cancer cells, yet the mechanism by which cancer cells acquire and maintain abnormal DNA methylation patterns is not understood. Cancer cells have an altered distribution of DNA methylation and express aberrant DNA methyltransferase 3B transcripts, which encode truncated proteins, some of which lack the C-terminal catalytic domain. To test if a truncated DNMT3B isoform disrupts DNA methylation in vivo, we constructed two lines of transgenic mice expressing DNMT3B7, a truncated DNMT3B isoform commonly found in cancer cells. DNMT3B7 transgenic mice exhibit altered embryonic development, including lymphopenia, craniofacial abnormalities, and cardiac defects, similar to Dnmt3b-deficient animals, but rarely develop cancer. However, when DNMT3B7 transgenic are bred with Eμ-Myc transgenic mice, which model aggressive B cell lymphoma, DNMT3B7 expression increases the frequency of mediastinal lymphomas in Eμ-Myc animals. Eμ-Myc/DNMT3B7 mediastinal lymphomas have more chromosomal rearrangements, increased global DNA methylation levels, and more locus-specific perturbations in DNA methylation patterns compared to Eμ-Myc lymphomas. These data represent the first in vivo modeling of cancer-associated DNA methylation changes and suggest that truncated DNMT3B isoforms contribute to the re-distribution of DNA methylation characterizing virtually every human tumor. PMID:20587527

  7. DNMT3B7, a truncated DNMT3B isoform expressed in human tumors, disrupts embryonic development and accelerates lymphomagenesis.

    PubMed

    Shah, Mrinal Y; Vasanthakumar, Aparna; Barnes, Natalie Y; Figueroa, Maria E; Kamp, Anna; Hendrick, Christopher; Ostler, Kelly R; Davis, Elizabeth M; Lin, Shang; Anastasi, John; Le Beau, Michelle M; Moskowitz, Ivan P; Melnick, Ari; Pytel, Peter; Godley, Lucy A

    2010-07-15

    Epigenetic changes are among the most common alterations observed in cancer cells, yet the mechanism by which cancer cells acquire and maintain abnormal DNA methylation patterns is not understood. Cancer cells have an altered distribution of DNA methylation and express aberrant DNA methyltransferase 3B transcripts, which encode truncated proteins, some of which lack the COOH-terminal catalytic domain. To test if a truncated DNMT3B isoform disrupts DNA methylation in vivo, we constructed two lines of transgenic mice expressing DNMT3B7, a truncated DNMT3B isoform commonly found in cancer cells. DNMT3B7 transgenic mice exhibit altered embryonic development, including lymphopenia, craniofacial abnormalities, and cardiac defects, similar to Dnmt3b-deficient animals, but rarely develop cancer. However, when DNMT3B7 transgenic mice are bred with Emicro-Myc transgenic mice, which model aggressive B-cell lymphoma, DNMT3B7 expression increases the frequency of mediastinal lymphomas in Emicro-Myc animals. Emicro-Myc/DNMT3B7 mediastinal lymphomas have more chromosomal rearrangements, increased global DNA methylation levels, and more locus-specific perturbations in DNA methylation patterns compared with Emicro-Myc lymphomas. These data represent the first in vivo modeling of cancer-associated DNA methylation changes and suggest that truncated DNMT3B isoforms contribute to the redistribution of DNA methylation characterizing virtually every human tumor.

  8. Analysis of RNA Interference Lines Identifies New Functions of Maternally-Expressed Genes Involved in Embryonic Patterning in Drosophila melanogaster.

    PubMed

    Liu, Niankun; Lasko, Paul

    2015-03-31

    Embryonic patterning in Drosophila melanogaster is initially established through the activity of a number of maternally expressed genes that are expressed during oogenesis. mRNAs from some of these genes accumulate in the posterior pole plasm of the oocyte and early embryo and localize further into RNA islands, which are transient ring-like structures that form around the nuclei of future primordial germ cells (pole cells) at stage 3 of embryogenesis. As mRNAs from several genes with known functions in anterior-posterior patterning and/or germ cell specification accumulate in RNA islands, we hypothesized that some other mRNAs that localize in this manner might also function in these developmental processes. To test this, we investigated the developmental functions of 51 genes whose mRNAs accumulate in RNA islands by abrogating their activity in the female germline using RNA interference. This analysis revealed requirements for ttk, pbl, Hip14, eIF5, eIF4G, and CG9977 for progression through early oogenesis. We observed dorsal appendage defects in a proportion of eggs produced by females expressing double-stranded RNA targeting Mkrn1 or jvl, implicating these two genes in dorsal-ventral patterning. In addition, posterior patterning defects and a reduction in pole cell number were seen in the progeny of Mkrn1 females. Because the mammalian ortholog of Mkrn1 acts as an E3 ubiquitin ligase, these results suggest an additional link between protein ubiquitination and pole plasm activity.

  9. Differential expression of hoxa2a and hoxa2b genes during striped bass embryonic development.

    PubMed

    Scemama, Jean-Luc; Vernon, Jamie L; Stellwag, Edmund J

    2006-10-01

    Here, we report the cloning and expression analysis of two previously uncharacterized paralogs group 2 Hox genes, striped bass hoxa2a and hoxa2b, and the developmental regulatory gene egr2. We demonstrate that both Hox genes are expressed in the rhombomeres of the developing hindbrain and the pharyngeal arches albeit with different spatio-temporal distributions relative to one another. While both hoxa2a and hoxa2b share the r1/r2 anterior boundary of expression characteristic of the hoxa2 paralog genes of other species, hoxa2a gene expression extends throughout the hindbrain, whereas hoxa2b gene expression is restricted to the r2-r5 region. Egr2, which is used in this study as an early developmental marker of rhombomeres 3 and 5, is expressed in two distinct bands with a location and spacing typical for these two rhombomeres in other species. Within the pharyngeal arches, hoxa2a is expressed at higher levels in the second pharyngeal arch, while hoxa2b is more strongly expressed in the posterior arches. Further, hoxa2b expression within the arches becomes undetectable at 60hpf, while hoxa2a expression is maintained at least up until the beginning of chondrogenesis. Comparison of the striped bass HoxA cluster paralog group 2 (PG2) genes to their orthologs and trans-orthologs shows that the striped bass hoxa2a gene expression pattern is similar to the overall expression pattern described for the hoxa2 genes in the lobe-finned fish lineage and for the hoxa2b gene from zebrafish. It is notable that the pharyngeal arch expression pattern of the striped bass hoxa2a gene is more divergent from its sister paralog, hoxa2b, than from the zebrafish hoxa2b gene. Overall, our results suggest that differences in the Hox PG2 gene complement of striped bass and zebrafish affects both their rhombomeric and pharyngeal arch expression patterns and may account for the similarities in pharyngeal arch expression between striped bass hoxa2a and zebrafish hoxa2b.

  10. Spatio-Temporally Restricted Expression of Cell Adhesion Molecules during Chicken Embryonic Development

    PubMed Central

    Roy, Priti; Bandyopadhyay, Amitabha

    2014-01-01

    Differential cell adhesive properties are known to regulate important developmental events like cell sorting and cell migration. Cadherins and protocadherins are known to mediate these cellular properties. Though a large number of such molecules have been predicted, their characterization in terms of interactive properties and cellular roles is far from being comprehensive. To narrow down the tissue context and collect correlative evidence for tissue specific roles of these molecules, we have carried out whole-mount in situ hybridization based RNA expression study for seven cadherins and four protocadherins. In developing chicken embryos (HH stages 18, 22, 26 and 28) cadherins and protocadherins are expressed in tissue restricted manner. This expression study elucidates precise expression domains of cell adhesion molecules in the context of developing embryos. These expression domains provide spatio-temporal context in which the function of these genes can be further explored. PMID:24806091

  11. Vitamin C induces a pluripotent state in mouse embryonic stem cells by modulating microRNA expression.

    PubMed

    Gao, Yuan; Han, Zhuo; Li, Qian; Wu, Yongyan; Shi, Xiaoyan; Ai, Zhiying; Du, Juan; Li, Wenzhong; Guo, Zekun; Zhang, Yong

    2015-02-01

    MicroRNAs (miRNAs), a group of noncoding RNAs, function as post-transcriptional gene regulators and control the establishment, self-renewal and differentiation of stem cells. Vitamin C has been recognized as a reprogramming enhancer because of its ability to induce a blastocyst-like state in embryonic stem cells (ESCs). However, knowledge on the regulation of miRNAs by vitamin C in ESCs is limited. In this study, we found that vitamin C induced miRNA expression, particularly of ESC-specific miRNAs. Moreover, vitamin C maintained the miRNA expression of the Dlk1-Dio3 imprinting region. The miRNAs in this region contain identical seed sequences, which target a class of genes, including Kdm6b, Klf13, and Sox6, and are mainly related to cell differentiation and development. These genes were significantly downregulated by vitamin C. Notably, miR-143 promoted self-renewal of mouse ESCs and suppressed expression of the de novo methyltransferase gene Dnmt3a. Knockdown of miR-143 by use of its inhibitor counteracted the vitamin C-induced reduction in Dnmt3a expression, showing that vitamin C repressed Dnmt3a expression via miR-143. Vitamin C also promoted DNA demethylation, including of pluripotency gene promoters (Tbx3, Tcl1, and Esrrb) and ESC-specific miRNA promoters (miR-290-295 and miR-17-92 clusters), and DNA hydroxymethylation, including of the intergenic differentially methylated region of the Dlk1-Dio3 region. These results strongly suggested that vitamin C promoted widespread DNA demethylation in gene promoters by modulating epigenetic modifiers, including Dnmt3a, which activated pluripotency genes and ESC-specific miRNAs. Then, differentiation and development genes were repressed by ESC-enriched miRNAs, which maintained the stem cell state. PMID:25491368

  12. Paternal poly (ADP-ribose) metabolism modulates retention of inheritable sperm histones and early embryonic gene expression.

    PubMed

    Ihara, Motomasa; Meyer-Ficca, Mirella L; Leu, N Adrian; Rao, Shilpa; Li, Fan; Gregory, Brian D; Zalenskaya, Irina A; Schultz, Richard M; Meyer, Ralph G

    2014-05-01

    To achieve the extreme nuclear condensation necessary for sperm function, most histones are replaced with protamines during spermiogenesis in mammals. Mature sperm retain only a small fraction of nucleosomes, which are, in part, enriched on gene regulatory sequences, and recent findings suggest that these retained histones provide epigenetic information that regulates expression of a subset of genes involved in embryo development after fertilization. We addressed this tantalizing hypothesis by analyzing two mouse models exhibiting abnormal histone positioning in mature sperm due to impaired poly(ADP-ribose) (PAR) metabolism during spermiogenesis and identified altered sperm histone retention in specific gene loci genome-wide using MNase digestion-based enrichment of mononucleosomal DNA. We then set out to determine the extent to which expression of these genes was altered in embryos generated with these sperm. For control sperm, most genes showed some degree of histone association, unexpectedly suggesting that histone retention in sperm genes is not an all-or-none phenomenon and that a small number of histones may remain associated with genes throughout the genome. The amount of retained histones, however, was altered in many loci when PAR metabolism was impaired. To ascertain whether sperm histone association and embryonic gene expression are linked, the transcriptome of individual 2-cell embryos derived from such sperm was determined using microarrays and RNA sequencing. Strikingly, a moderate but statistically significant portion of the genes that were differentially expressed in these embryos also showed different histone retention in the corresponding gene loci in sperm of their fathers. These findings provide new evidence for the existence of a linkage between sperm histone retention and gene expression in the embryo.

  13. Transcriptional coactivator undifferentiated embryonic cell transcription factor 1 expressed in spermatogonial stem cells: a putative marker of boar spermatogonia.

    PubMed

    Lee, Won-Young; Lee, Kyung-Hoon; Heo, Young-Tae; Kim, Nam-Hyung; Kim, Jin-Hoi; Kim, Jae-Hwan; Moon, Sung-Hwan; Chung, Hak-Jae; Yoon, Min-Jung; Song, Hyuk

    2014-11-30

    Spermatogenesis is initiated from spermatogonial stem cells (SSCs), which are derived from gonocytes. Although some rodent SSC markers have been investigated, other species- and developmental stage-specific markers of spermatogonia have not been identified. The objective of this study was to characterize the expression of undifferentiated embryonic cell transcription factor 1 (UTF1) gene as a potential marker for spermatogonia and SSCs in the boar testis. In boar testis tissue at pre-pubertal stages (tissues collected at 5, 30, and 60 days of age), UTF1 gene expression was detected in almost all spermatogonia cells that expressed a protein gene product 9.5 (PGP9.5), and immunocytochemical analysis of isolated total testicular cells showed that 91.14% of cells staining for PGP9.5 also stained for UTF1. However, in boar testis tissue at pubertal and post-pubertal stages (tissues collected at 90, 120, 150, and 180 days of age), UTF1 was not detected in all PGP9.5-positive cells in the basement membrane. While some PGP9.5-positive cells stained for UTF1, other cells stained only for PGP9.5 or UTF1. PGP9.5, UTF1, and NANOG was assessed in in vitro cultures of pig SSCs (pSSCs) from testes collected at 5 days of age. The relative amounts of PGP9.5, NANOG, and UTF1 mRNA were greater in pSSC colonies than in testis and muscle tissue. Thus, the UTF1 gene is expressed in PGP9.5-positive spermatogonia cells of pigs at 5 days of age, and its expression is maintained in cultured pSSC colonies, suggesting that UTF1 is a putative marker for early-stage spermatogonia in the pre-pubertal pig testis. These findings will facilitate the study of spermatogenesis and applications in germ cell research.

  14. Identification of microRNAs expressed highly in pancreatic islet-like cell clusters differentiated from human embryonic stem cells.

    PubMed

    Chen, Bo-Zhi; Yu, Sung-Liang; Singh, Sher; Kao, Li-Pin; Tsai, Zong-Yun; Yang, Pan-Chyr; Chen, Bai-Hsiun; Shoei-Lung Li, Steven

    2011-01-01

    Type 1 diabetes is an autoimmune destruction of pancreatic islet beta cell disease, making it important to find a new alternative source of the islet beta cells to replace the damaged cells. hES (human embryonic stem) cells possess unlimited self-renewal and pluripotency and thus have the potential to provide an unlimited supply of different cell types for tissue replacement. The hES-T3 cells with normal female karyotype were first differentiated into EBs (embryoid bodies) and then induced to generate the T3pi (pancreatic islet-like cell clusters derived from T3 cells), which expressed pancreatic islet cell-specific markers of insulin, glucagon and somatostatin. The expression profiles of microRNAs and mRNAs from the T3pi were analysed and compared with those of undifferentiated hES-T3 cells and differentiated EBs. MicroRNAs negatively regulate the expression of protein-coding mRNAs. The T3pi showed very high expression of microRNAs, miR-186, miR-199a and miR-339, which down-regulated the expression of LIN28, PRDM1, CALB1, GCNT2, RBM47, PLEKHH1, RBPMS2 and PAK6. Therefore, these microRNAs and their target genes are very likely to play important regulatory roles in the development of pancreas and/or differentiation of islet cells, and they may be manipulated to increase the proportion of beta cells and insulin synthesis in the differentiated T3pi for cell therapy of type I diabetics. PMID:20735361

  15. Embryonic Stem Cell-Derived Microvesicles Induce Gene Expression Changes in Müller Cells of the Retina

    PubMed Central

    Katsman, Diana; Stackpole, Emma J.; Domin, Daniel R.; Farber, Debora B.

    2012-01-01

    Cell-derived microvesicles (MVs), recognized as important components of cell-cell communication, contain mRNAs, miRNAs, proteins and lipids and transfer their bioactive contents from parent cells to cells of other origins. We have studied the effect that MVs released from embryonic stem cells (ESMVs) have on retinal progenitor Müller cells. Cultured human Müller cells were exposed to mouse ESMVs every 48 hours for a total of 9 treatments. Morphological changes were observed by light microscopy in the treated cells, which grew as individual heterogeneous cells, compared to the uniform, spindle-like adherent cellular sheets of untreated cells. ESMVs transferred to Müller cells embryonic stem cell (ESC) mRNAs involved in the maintenance of pluripotency, including Oct4 and Sox2, and the miRNAs of the 290 cluster, important regulators of the ESC-specific cell cycle. Moreover, ESMV exposure induced up-regulation of the basal levels of endogenous human Oct4 mRNA in Müller cells. mRNA and miRNA microarrays of ESMV-treated vs. untreated Müller cells revealed the up-regulation of genes and miRNAs involved in the induction of pluripotency, cellular proliferation, early ocular genes and genes important for retinal protection and remodeling, as well as the down-regulation of inhibitory and scar-related genes and miRNAs involved in differentiation and cell cycle arrest. To further characterize the heterogeneous cell population of ESMV-treated Müller cells, their expression of retinal cell markers was compared to that in untreated control cells by immunocytochemistry. Markers for amacrine, ganglion and rod photoreceptors were present in treated but not in control Müller cells. Together, our findings indicate that ESMs induce de-differentiation and pluripotency in their target Müller cells, which may turn on an early retinogenic program of differentiation. PMID:23226281

  16. Loss of Pnn expression results in mouse early embryonic lethality and cellular apoptosis through SRSF1-mediated alternative expression of Bcl-xS and ICAD.

    PubMed

    Leu, Steve; Lin, Yen-Ming; Wu, Chu-Han; Ouyang, Pin

    2012-07-01

    Pinin (Pnn), a serine/arginine-rich (SR)-related protein, has been shown to play multiple roles within eukaryotic cells including cell-cell adhesion, cell migration, regulation of gene transcription, mRNA export and alternative splicing. In this study, an attempt to generate mice homozygously deficient in Pnn failed because of early embryonic lethality. To evaluate the effects of loss of Pnn expression on cell survival, RNA interference experiments were performed in MCF-7 cells. Depletion of Pnn resulted in cellular apoptosis and nuclear condensation. In addition, nuclear speckles were disrupted, and expression levels of SR proteins were diminished. RT-PCR analysis showed that alternative splicing patterns of SRSF1 as well as of apoptosis-related genes Bcl-x and ICAD were altered, and expression levels of Bim isoforms were modulated in Pnn-depleted cells. Cellular apoptosis induced by Pnn depletion was rescued by overexpression of SRSF1, which also restored generation of Bcl-xL and functionless ICAD. Pnn expression is, therefore, essential for survival of mouse embryos and the breast carcinoma cell line MCF-7. Moreover, Pnn depletion, modulated by SRSF1, determines cellular apoptosis through activation of the expression of pro-apoptotic Bcl-xS transcripts. PMID:22454513

  17. Loss of Pnn expression results in mouse early embryonic lethality and cellular apoptosis through SRSF1-mediated alternative expression of Bcl-xS and ICAD.

    PubMed

    Leu, Steve; Lin, Yen-Ming; Wu, Chu-Han; Ouyang, Pin

    2012-07-01

    Pinin (Pnn), a serine/arginine-rich (SR)-related protein, has been shown to play multiple roles within eukaryotic cells including cell-cell adhesion, cell migration, regulation of gene transcription, mRNA export and alternative splicing. In this study, an attempt to generate mice homozygously deficient in Pnn failed because of early embryonic lethality. To evaluate the effects of loss of Pnn expression on cell survival, RNA interference experiments were performed in MCF-7 cells. Depletion of Pnn resulted in cellular apoptosis and nuclear condensation. In addition, nuclear speckles were disrupted, and expression levels of SR proteins were diminished. RT-PCR analysis showed that alternative splicing patterns of SRSF1 as well as of apoptosis-related genes Bcl-x and ICAD were altered, and expression levels of Bim isoforms were modulated in Pnn-depleted cells. Cellular apoptosis induced by Pnn depletion was rescued by overexpression of SRSF1, which also restored generation of Bcl-xL and functionless ICAD. Pnn expression is, therefore, essential for survival of mouse embryos and the breast carcinoma cell line MCF-7. Moreover, Pnn depletion, modulated by SRSF1, determines cellular apoptosis through activation of the expression of pro-apoptotic Bcl-xS transcripts.

  18. Selecting antagonistic antibodies that control differentiation through inducible expression in embryonic stem cells

    PubMed Central

    Melidoni, Anna N.; Dyson, Michael R.; Wormald, Sam; McCafferty, John

    2013-01-01

    Antibodies that modulate receptor function have great untapped potential in the control of stem cell differentiation. In contrast to many natural ligands, antibodies are stable, exquisitely specific, and are unaffected by the regulatory mechanisms that act on natural ligands. Here we describe an innovative system for identifying such antibodies by introducing and expressing antibody gene populations in ES cells. Following induced antibody expression and secretion, changes in differentiation outcomes of individual antibody-expressing ES clones are monitored using lineage-specific gene expression to identify clones that encode and express signal-modifying antibodies. This in-cell expression and reporting system was exemplified by generating blocking antibodies to FGF4 and its receptor FGFR1β, identified through delayed onset of ES cell differentiation. Functionality of the selected antibodies was confirmed by addition of exogenous antibodies to three different ES reporter cell lines, where retained expression of pluripotency markers Oct4, Nanog, and Rex1 was observed. This work demonstrates the potential for discovery and utility of functional antibodies in stem cell differentiation. This work is also unique in constituting an example of ES cells carrying an inducible antibody that causes a functional protein “knock-down” and allows temporal control of stable signaling components at the protein level. PMID:24082130

  19. Embryonic Nkx2.1-expressing neural precursor cells contribute to the regional heterogeneity of adult V-SVZ neural stem cells.

    PubMed

    Delgado, Ryan N; Lim, Daniel A

    2015-11-15

    The adult ventricular-subventricular zone (V-SVZ) of the lateral ventricle produces several subtypes of olfactory bulb (OB) interneurons throughout life. Neural stem cells (NSCs) within this zone are heterogeneous, with NSCs located in different regions of the lateral ventricle wall generating distinct OB interneuron subtypes. The regional expression of specific transcription factors appears to correspond to such geographical differences in the developmental potential of V-SVZ NSCs. However, the transcriptional definition and developmental origin of V-SVZ NSC regional identity are not well understood. In this study, we found that a population of NSCs in the ventral region of the V-SVZ expresses the transcription factor Nkx2.1 and is derived from Nkx2.1-expressing (Nkx2.1+) embryonic precursors. To follow the fate of Nkx2.1+ cells and their progeny in vivo, we used mice with an Nkx2.1-CreER "knock-in" allele. Nkx2.1+ V-SVZ NSCs labeled in adult mice generated interneurons for the deep granule cell layer of the OB. Embryonic brain Nkx2.1+ precursors labeled at embryonic day 12.5 gave rise to Nkx2.1+ NSCs of the ventral V-SVZ in postnatal and adult mice. Thus, embryonic Nkx2.1+ neural precursors give rise to a population of Nkx2.1+ NSCs in the ventral V-SVZ where they contribute to the regional heterogeneity of V-SVZ NSCs.

  20. Preliminary evidence of phenytoin-induced alterations in embryonic gene expression in a mouse model.

    PubMed

    Musselman, A C; Bennett, G D; Greer, K A; Eberwine, J H; Finnell, R H

    1994-01-01

    SWV mouse embryos collected on gestational days (GD) 9:12 and 10:00 following chronic in utero exposure to teratogenic concentrations of phenytoin were utilized for in situ transcription studies of gene expression. The substrate cDNA obtained from the frozen embryo sections was amplified into radiolabelled antisense RNA (RT/aRNA) and used as a probe to screen a panel of 20 cDNA clones representing genes that are important regulators of craniofacial and neural development. The magnitude of alteration in gene expression following phenytoin treatment was determined densitometrically by changes in the hybridization intensity of the aRNA probes to the cDNA clones immobilized to the slot blots. We found that both Wnt-1 and the calcium channel gene were developmentally regulated, as their level of expression decreased significantly between the two collection times. Phenytoin treatment produced a significant downregulation in the level of expression for 25% of the genes examined in the GD 9:12 embryos, including the growth factors TGF-beta and NT3, the proto-oncogene Wnt-1, the nicotinic receptor, and the voltage sensitive calcium channel gene. Additional changes in the coordinate expression of several of the growth and transcription factors were observed at both gestational timepoints. The application of RT/aRNA technology has extended our appreciation of the normal patterns of gene expression during craniofacial and neural development, and provided the first demonstration of multiple coordinate changes in transcription patterns following teratogenic insult.

  1. Ectopic Atoh1 expression drives Merkel cell production in embryonic, postnatal and adult mouse epidermis.

    PubMed

    Ostrowski, Stephen M; Wright, Margaret C; Bolock, Alexa M; Geng, Xuehui; Maricich, Stephen M

    2015-07-15

    Merkel cells are mechanosensitive skin cells whose production requires the basic helix-loop-helix transcription factor Atoh1. We induced ectopic Atoh1 expression in the skin of transgenic mice to determine whether Atoh1 was sufficient to create additional Merkel cells. In embryos, ectopic Atoh1 expression drove ectopic expression of the Merkel cell marker keratin 8 (K8) throughout the epidermis. Epidermal Atoh1 induction in adolescent mice similarly drove widespread K8 expression in glabrous skin of the paws, but in the whisker pads and body skin ectopic K8+ cells were confined to hair follicles and absent from interfollicular regions. Ectopic K8+ cells acquired several characteristics of mature Merkel cells in a time frame similar to that seen during postnatal development of normal Merkel cells. Although ectopic K8+ cell numbers decreased over time, small numbers of these cells remained in deep regions of body skin hair follicles at 3 months post-induction. In adult mice, greater numbers of ectopic K8+ cells were created by Atoh1 induction during anagen versus telogen and following disruption of Notch signaling by conditional deletion of Rbpj in the epidermis. Our data demonstrate that Atoh1 expression is sufficient to produce new Merkel cells in the epidermis, that epidermal cell competency to respond to Atoh1 varies by skin location, developmental age and hair cycle stage, and that the Notch pathway plays a key role in limiting epidermal cell competency to respond to Atoh1 expression.

  2. Shh and Pax6 have unconventional expression patterns in embryonic morphogenesis in Sepia officinalis (Cephalopoda).

    PubMed

    Navet, Sandra; Andouche, Aude; Baratte, Sébastien; Bonnaud, Laure

    2009-10-01

    Cephalopods show a very complex nervous system, particularly derived when compared to other molluscs. In vertebrates, the setting up of the nervous system depends on genes such as Shh and Pax6. In this paper we assess Shh and Pax6 expression patterns during Sepia officinalis development by whole-mount in situ hybridization. In vertebrates, Shh has been shown to indirectly inhibit Pax6. This seems to be the case in cephalopods as the expression patterns of these genes do not overlap during S. officinalis development. Pax6 is expressed in the optic region and brain and Shh in gut structures, as already seen in vertebrates and Drosophila. Thus, both genes show expression in analogous structures in vertebrates. Surprisingly, they also exhibit unconventional expressions such as in gills for Pax6 and ganglia borders for Shh. They are also expressed in many cephalopods' derived characters among molluscs as in arm suckers for Pax6 and beak producing tissues, nuchal organ and neural cord of the arms for Shh. This new data supports the fact that molecular control patterns have evolved with the appearance of morphological novelties in cephalopods as shown in this new model, S. officinalis.

  3. Expression Pattern of Early Growth Response Gene 1 during Olive Flounder (Paralichthys olivaceus) Embryonic Development

    PubMed Central

    Yang, Hyun; Lee, Jeong-Ho; Noh, Jae Koo; Kim, Hyun Chul; Park, Choul-Ji; Park, Jong-Won; Kim, Kyung-Kil

    2014-01-01

    The early growth response protein 1 (Egr-1) is a widely reported zinc finger protein and a well known transcription factor encoded by the Egr-1 gene, which plays key roles in many aspects of vertebrate embryogenesis and in adult vertebrates. The Egr-1 expression is important in the formation of the gill vascular system in flounders, which develops during the post-hatching phase and is essential for survival during the juvenile period. However, the complete details of Egr-1 expression during embryo development in olive flounder are not available. We assessed the expression patterns of Egr-1 during the early development of olive flounders by using reverse transcription polymerase chain reaction (RT-PCR) analysis. Microscopic observations showed that gill filament formation corresponded with the Egr-1 expression. Thus, we showed that Egr-1 plays a vital role in angiogenesis in the gill filaments during embryogenesis. Further, Egr-1 expression was found to be strong at 5 days after hatching (DAH), in the development of the gill vascular system, and this strong expression level was maintained throughout all the development stages. Our findings have important implications with respect to the biological role of Egr-1 and evolution of the first respiratory blood vessels in the gills of olive flounder. Further studies are required to elucidate the Egr-1-mediated stress response and to decipher the functional role of Egr-1 in developmental stages. PMID:25949193

  4. Quantitative expression of pluripotency-related genes in parthenogenetically produced buffalo (Bubalus bubalis) embryos and in putative embryonic stem cells derived from them.

    PubMed

    Singh, K P; Kaushik, R; Mohapatra, S K; Garg, V; Rameshbabu, K; Singh, M K; Palta, P; Manik, R S; Singla, S K; Chauhan, M S

    2014-09-01

    Parthenogenetically produced embryos and embryonic stem (ES) cells derived from them offer a unique model for investigating the role of transcription factors in embryonic genome activation (EGA), pluripotent lineage specification and in pluripotency and self-renewal of ES cells because of the unique nature of these embryos. There is little information on the quantitative expression of important genes in parthenogenetically produced embryos and in ES cells derived from them. The present study examined the quantitative expression of some important genes in parthenogenetically produced buffalo embryos and in putative parthenogenetic ES cells (pES) cells. The quantitative expression of OCT-4, SOX-2, NANOG, REX-1, FOXD-3 and NUCLEOSTEMIN, which is very low in immature and mature oocytes, and in embryos at 2-, 4- and 8- to 16-cell stage, increases significantly at morula and blastocyst stage. The expression level of TELOMERASE, c-MYC and STAT-3, which is high in immature oocytes decreases during embryonic development followed by either an increase at the morula stage (TELOMERASE) or a low expression level maintained throughout development till blastocyst stage (c-MYC and STAT-3). There is a progressive decline in the expression level of OCT-4, SOX-2, c-MYC, REX-1, NUCLEOSTEMIN, TELOMERASE and STAT-3 during long term culture of pES cells. PMID:25077841

  5. CIBZ Regulates Mesodermal and Cardiac Differentiation of by Suppressing T and Mesp1 Expression in Mouse Embryonic Stem Cells

    PubMed Central

    Kotoku, Tomomi; Kosaka, Koji; Nishio, Miki; Ishida, Yasumasa; Kawaichi, Masashi; Matsuda, Eishou

    2016-01-01

    The molecular mechanisms underlying mesodermal and cardiac specification from embryonic stem cells (ESCs) are not fully understood. Here, we showed that the BTB domain-containing zinc finger protein CIBZ is expressed in mouse ESCs but is dramatically downregulated during ESC differentiation. CIBZ deletion in ESCs induced specification toward mesoderm phenotypes and their differentiation into cardiomyocytes, whereas overexpression of CIBZ delayed these processes. During ESC differentiation, CIBZ loss-and-gain-of-function data indicate that CIBZ negatively regulates the expressions of Brachyury (T) and Mesp1, the key transcriptional factors responsible for the specification of mammalian mesoderm and cardiac progenitors, respectively. Chromatin immunoprecipitation assays showed that CIBZ binds to T and Mesp1 promoters in undifferentiated ESCs, and luciferase assays indicate that CIBZ suppresses T and Mesp1 promoters. These findings demonstrate that CIBZ is a novel regulator of mesodermal and cardiac differentiation of ESCs, and suggest that CIBZ-mediated cardiac differentiation depends on the regulation of these two genes. PMID:27659197

  6. Chronic Nicotine Exposure Systemically Alters MicroRNA Expression Profiles during Post-embryonic Stages in Caenorhabditis elegans

    PubMed Central

    Taki, Faten A; Pan, Xiaoping; Zhang, Baohong

    2014-01-01

    Tobacco smoking is associated with many diseases. Addiction is of the most notorious tobacco-related syndrome and is majorly attributed to nicotine. In this study, we employed C. elegans as a biological model to systemically investigate the effect of chronic nicotine exposure on microRNA (miRNA) expression profile and their regulated biochemical pathways. Nicotine treatment (20μM and 20mM) was limited to the post-embryonic stage from L1–L4 (~31 hours) period after which worms were collected for genome-wide miRNA profiling. Our results show that nicotine significantly altered the expression patterns of 40 miRNAs. The effect was proportional to the nicotine dose and was expected to have an additive, more robust response. Based on pathway enrichment analyses coupled with nicotine-induced miRNA patterns, we inferred that miRNAs as a system mediates “regulatory hormesis”, manifested in biphasic behavioral and physiological phenotypes. We proposed a model where nicotine addiction is mediated by miRNAs’ regulation of fos-1 and is maintained by epigenetic factors. Thus, our study offers new insights for a better understanding of the sensitivity of early developmental stages to nicotine. PMID:23765240

  7. Development of retrovirus vectors useful for expressing genes in cultured murine embryonal cells and hematopoietic cells in vivo.

    PubMed Central

    Guild, B C; Finer, M H; Housman, D E; Mulligan, R C

    1988-01-01

    A series of retrovirus vectors were constructed in which cellular promoter elements derived from the chicken beta-actin and human histone H4 genes were introduced within the proviral transcriptional unit of Moloney murine leukemia virus in order to promote expression of inserted sequences. Each of these vectors gave rise to high titer of virus capable of transferring the expected proviral structure to cells. Inclusion of normal 5' splice sequences or a portion of viral gag sequences in these constructions resulted in significant increases in virus titer. Each construction was transcriptionally active in NIH 3T3 cells and in undifferentiated F9 cells. One of the vectors, HSG-neo, which contained the human histone H4 promoter, was shown to be transcriptionally active in hematopoietic cells derived from long-term reconstituted bone marrow transplant recipients engrafted with transduced stem cells. These vectors should be of general use for obtaining efficient gene expression in embryonal and hematopoietic cells. Images PMID:3418785

  8. Chronic nicotine exposure systemically alters microRNA expression profiles during post-embryonic stages in Caenorhabditis elegans.

    PubMed

    Taki, Faten A; Pan, Xiaoping; Zhang, Baohong

    2014-01-01

    Tobacco smoking is associated with many diseases. Addiction is of the most notorious tobacco-related syndrome and is mainly attributed to nicotine. In this study, we employed Caenorhabditis elegans as a biological model to systemically investigate the effect of chronic nicotine exposure on microRNA (miRNA) expression profile and their regulated biochemical pathways. Nicotine treatment (20 µM and 20 mM) was limited to the post-embryonic stage from L1 to L4 (∼31 h) period after which worms were collected for genome-wide miRNA profiling. Our results show that nicotine significantly altered the expression patterns of 40 miRNAs. The effect was proportional to the nicotine dose and was expected to have an additive, more robust response. Based on pathway enrichment analyses coupled with nicotine-induced miRNA patterns, we inferred that miRNAs as a system mediates "regulatory hormesis", manifested in biphasic behavioral and physiological phenotypes. We proposed a model where nicotine addiction is mediated by miRNAs' regulation of fos-1 and is maintained by epigenetic factors. Thus, our study offers new insights for a better understanding of the sensitivity of early developmental stages to nicotine.

  9. Ectopic expression of Cvh (Chicken Vasa homologue) mediates the reprogramming of chicken embryonic stem cells to a germ cell fate.

    PubMed

    Lavial, Fabrice; Acloque, Hervé; Bachelard, Elodie; Nieto, M Angela; Samarut, Jacques; Pain, Bertrand

    2009-06-01

    When they are derived from blastodermal cells of the pre-primitive streak in vitro, the pluripotency of Chicken Embryonic Stem Cells (cESC) can be controlled by the cPouV and Nanog genes. These cESC can differentiate into derivatives of the three germ layers both in vitro and in vivo, but they only weakly colonize the gonads of host embryos. By contrast, non-cultured blastodermal cells and long-term cultured chicken primordial germ cells maintain full germline competence. This restriction in the germline potential of the cESC may result from either early germline determination in the donor embryos or it may occur as a result of in vitro culture. We are interested in understanding the genetic determinants of germline programming. The RNA binding protein Cvh (Chicken Vasa Homologue) is considered as one such determinant, although its role in germ cell physiology is still unclear. Here we show that the exogenous expression of Cvh, combined with appropriate culture conditions, induces cESC reprogramming towards a germ cell fate. Indeed, these cells express the Dazl, Tudor and Sycp3 germline markers, and they display improved germline colonization and adopt a germ cell fate when injected into recipient embryos. Thus, our results demonstrate that Vasa can drive ES cell differentiation towards the germ cell lineage, both in vitro and in vivo.

  10. Divergent Palate Morphology in Turtles and Birds Correlates With Differences in Proliferation and BMP2 Expression During Embryonic Development

    PubMed Central

    ABRAMYAN, JOHN; JIA-MIEN LEUNG, KELVIN; RICHMAN, JOY MARION

    2014-01-01

    During embryonic development, amniotes typically form outgrowths from the medial sides of the maxillary prominences called palatal shelves or palatine processes. In mammals the shelves fuse in the midline and form a bony hard palate that completely separates the nasal and oral cavities. In birds and lizards, palatine processes develop but remain unfused, leaving a natural cleft. Adult turtles do not possess palatine processes and unlike other amniotes, the internal nares open into the oral cavity. Here we investigate craniofacial ontogeny in the turtle, Emydura subglobosa to determine whether vestigial palatine processes develop and subsequently regress, or whether development fails entirely. We found that the primary palate in turtles develops similarly to other amniotes, but secondary palate ontogeny diverges. Using histology, cellular dynamics and in situ hybridization we found no evidence of palatine process development at any time during ontogeny of the face in the turtle. Furthermore, detailed comparisons with chicken embryos (the model organism most closely related to turtles from a molecular phylogeny perspective), we identified differences in proliferation and gene expression patterns that correlate with the differences in palate morphology. We propose that, in turtles, palatine process outgrowth is never initiated due to a lack of mesenchymal bone morphogenetic protein 2 (BMP2) expression in the maxillary mesenchyme, which in turn fails to induce the relatively higher cellular proliferation required for medial tissue outgrowth. It is likely that these differences between turtles and birds arose after the divergence of the lineage leading to modern turtles. PMID:24323766

  11. Embryonic expression of the human 40-kD keratin: evidence from a processed pseudogene sequence.

    PubMed Central

    Savtchenko, E S; Schiff, T A; Jiang, C K; Freedberg, I M; Blumenberg, M

    1988-01-01

    Analysis of the cytoskeletal components of early murine embryos has detected expression of two keratin proteins, K#8 and K#18, at the 4-8-cell stage. Comparable data for human embryos do not exist, although several processed pseudogenes corresponding to K#8 and K#18 have been discovered in the human genome. Because only genes that are expressed in pre-germ-line and germ-line cells can give rise to processed pseudogenes, the existence of human K#8 and K#18 processed pseudogenes is prima facie evidence for expression of keratins K#8 and K#18 in the early human embryo. We have cloned and determined the complete sequence of a processed pseudogene corresponding to another acidic human keratin. Comparison of its sequence with known sequences of other mammalian keratins indicates that the pseudogene arose from a reverse transcript of a correctly initiated and terminated functional human K#19 gene. This implies expression of K#19 keratin in addition to K#8 and K#18 in the early human embryo. We have proposed previously that K#19 evolved specifically to redress unbalanced production of various basic keratins, and our current evidence, that it is expressed at an early stage of development, implies that K#19 may fulfill this same role during human embryogenesis. Images Figure 3 PMID:2461075

  12. Expression of Immune-Related Genes during Loach (Misgurnus anguillicaudatus) Embryonic and Early Larval Development

    PubMed Central

    Lee, Jang Wook; Kim, Jung Eun; Goo, In Bon; Hwang, Ju-Ae; Im, Jea Hyun; Choi, Hye-Sung; Lee, Jeong-Ho

    2015-01-01

    Early life stage mortality in fish is one of the problems faced by loach aquaculture. However, our understanding of immune system in early life stage fish is still incomplete, and the information available is restricted to a few fish species. In the present work, we investigated the expression of immune-related transcripts in loach during early development. In fishes, recombination-activating gene 1 (RAG-1) and sacsin (SACS) have been considered as immunological function. In this study, the expression of the both genes was assessed throughout the early developmental stages of loach using real-time PCR method. maRAG-1 mRNA was first detected in 0 dph, observed the increased mostly until 40 dph. Significant expression of maRAG-1 was detected in 0 to 40 dph. These patterns of expression may suggest that the loach start to develop its function after hatching. On the other hand, maSACS was detected in unfertilized oocyte to molura stages and 0 to 40 dph. maSACS mRNA transcripts were detected in unfertilized oocytes, suggesting that they are maternally transferred. PMID:26973969

  13. Comparison of epigenetic mediator expression and function in mouse and human embryonic blastomeres

    PubMed Central

    Chavez, Shawn L.; McElroy, Sohyun L.; Bossert, Nancy L.; De Jonge, Christopher J.; Rodriguez, Maria Vera; Leong, Denise E.; Behr, Barry; Westphal, Lynn M.; Reijo Pera, Renee A.

    2014-01-01

    A map of human embryo development that combines imaging, molecular, genetic and epigenetic data for comparisons to other species and across pathologies would be greatly beneficial for basic science and clinical applications. Here, we compared mRNA and protein expression of key mediators of DNA methylation and histone modifications between mouse and human embryos, embryos from fertile/infertile couples, and following growth factor supplementation. We observed that individual mouse and human embryos are characterized by similarities and distinct differences in DNA methylation and histone modification patterns especially at the single-cell level. In particular, while mouse embryos first exhibited sub-compartmentalization of different histone modifications between blastomeres at the morula stage and cell sub-populations in blastocysts, differential histone modification expression was detected between blastomeres earlier in human embryos at the four- to eight-cell stage. Likewise, differences in epigenetic mediator expression were also observed between embryos from fertile and infertile couples, which were largely equalized in response to growth factor supplementation, suggesting that select growth factors might prevent alterations in epigenetic profiles during prolonged embryo culture. Finally, we determined that reduced expression via morpholino technologies of a single histone-modifying enzyme, Rps6ka4/Msk2, resulted in cleavage-stage arrest as assessed by time-lapse imaging and was associated with aneuploidy generation. Taken together, data document differences in epigenetic patterns between species with implications for fertility and suggest functional roles for individual epigenetic factors during pre-implantation development. PMID:24821703

  14. A population of serumdeprivation-induced bone marrow stem cells (SD-BMSC) expresses marker typical for embryonic and neural stem cells

    SciTech Connect

    Sauerzweig, Steven Munsch, Thomas; Lessmann, Volkmar; Reymann, Klaus G.; Braun, Holger

    2009-01-01

    The bone marrow represents an easy accessible source of adult stem cells suitable for various cell based therapies. Several studies in recent years suggested the existence of pluripotent stem cells within bone marrow stem cells (BMSC) expressing marker proteins of both embryonic and tissue committed stem cells. These subpopulations were referred to as MAPC, MIAMI and VSEL-cells. Here we describe SD-BMSC (serumdeprivation-induced BMSC) which are induced as a distinct subpopulation after complete serumdeprivation. SD-BMSC are generated from small-sized nestin-positive BMSC (S-BMSC) organized as round-shaped cells in the top layer of BMSC-cultures. The generation of SD-BMSC is caused by a selective proliferation of S-BMSC and accompanied by changes in both morphology and gene expression. SD-BMSC up-regulate not only markers typical for neural stem cells like nestin and GFAP, but also proteins characteristic for embryonic cells like Oct4 and SOX2. We hypothesize, that SD-BMSC like MAPC, MIAMI and VSEL-cells represent derivatives from a single pluripotent stem cell fraction within BMSC exhibiting characteristics of embryonic and tissue committed stem cells. The complete removal of serum might offer a simple way to specifically enrich this fraction of pluripotent embryonic like stem cells in BMSC cultures.

  15. The histone demethylase JMJD2C is stage-specifically expressed in preimplantation mouse embryos and is required for embryonic development.

    PubMed

    Wang, Jianle; Zhang, Miao; Zhang, Yu; Kou, Zhaohui; Han, Zhiming; Chen, Da-Yuan; Sun, Qing-Yuan; Gao, Shaorong

    2010-01-01

    Epigenetic modifications play a pivotal role in embryonic development by dynamically regulating DNA methylation and chromatin modifications. Although recent studies have shown that core histone methylation is reversible, very few studies have investigated the functions of the newly discovered histone demethylases during embryonic development. In the present study, we investigated the expression characteristics and function of JMJD2C, a histone demethylase that belongs to the JmjC-domain-containing histone demethylases, during preimplantation embryonic development of the mouse. We found that JMJD2C is stage-specifically expressed during preimplantation development, with the highest activity being observed from the two-cell to the eight-cell stage. Depletion of JMJD2C in metaphase II oocytes followed by parthenogenetic activation causes a developmental arrest before the blastocyst stage. Moreover, consistent with a previous finding in embryonic stem (ES) cells, depletion of JMJD2C causes a significant down-regulation of the pluripotency gene Nanog in embryos. However, contrary to a previous report in ES cells, we observed that other pluripotency genes, Pou5f1 and Sox2, are also significantly down-regulated in JMJD2C-depleted embryos. Furthermore, the depletion of JMJD2C in early embryos also caused significant down-regulation of the Myc and Klf4 genes, which are associated with cell proliferation. Our data suggest that the deregulation of these critical genes synergistically causes the developmental defects observed in JMJD2C-depleted embryos. PMID:19696013

  16. Polymorphic core promoter GA-repeats alter gene expression of the early embryonic developmental genes.

    PubMed

    Valipour, E; Kowsari, A; Bayat, H; Banan, M; Kazeminasab, S; Mohammadparast, S; Ohadi, M

    2013-12-01

    Protein complexes that bind to 'GAGA' DNA elements are necessary to replace nucleosomes to create a local chromatin environment that facilitates a variety of site-specific regulatory responses. Three to four elements are required for the disruption of a preassembled nucleosome. We have previously identified human protein-coding gene core promoters that are composed of exceptionally long GA-repeats. The functional implication of those GA-repeats is beginning to emerge in the core promoter of the human SOX5 gene, which is involved in multiple developmental processes. In the current study, we analyze the functional implication of GA-repeats in the core promoter of two additional genes, MECOM and GABRA3, whose expression is largely limited to embryogenesis. We report a significant difference in gene expression as a result of different alleles across those core promoters in the HEK-293 cell line. Across-species homology check for the GABRA3 GA-repeats revealed that those repeats are evolutionary conserved in mouse and primates (p<1 × 10(-8)). The MECOM core promoter GA-repeats are also conserved in numerous species, of which human has the longest repeat and complexity. We propose a novel role for GA-repeat core promoters to regulate gene expression in the genes involved in development and evolution.

  17. Expression of the mouse corticotropin-releasing hormone gene in vivo and targeted inactivation in embryonic stem cells.

    PubMed Central

    Muglia, L J; Jenkins, N A; Gilbert, D J; Copeland, N G; Majzoub, J A

    1994-01-01

    Corticotropin-releasing hormone (CRH), one of the primary regulators of the hypothalamic-pituitary-adrenal (HPA) axis, exhibits abnormal regulation in pathologic states such as depression and anorexia nervosa. Analysis of the role of CRH in regulation of the HPA axis would be facilitated by the creation of animal models in which CRH gene structure and function could be manipulated. We have determined the DNA sequence of the mouse CRH gene. Using a highly sensitive reverse transcription-polymerase chain reaction method, we have found expression of CRH mRNA in adrenal, ovary, testis, gut, heart, anterior pituitary, lung, and spleen, in addition to cerebral cortex and hypothalamus. Within the spleen, CRH mRNA is localized specifically to T-lymphocytes. We mapped the chromosomal location of mouse CRH via interspecific mouse backcrosses to chromosome 3, which is not the site of any naturally occurring mutations consistent with CRH deficiency. Because of this, we inactivated a CRH allele in mouse embryonic stem (ES) cells by homologous recombination with a mutant mouse CRH gene lacking the entire coding region of preproCRH. Mice chimeric for each of two ES clones with an inactivated CRH allele are being used to generate animals with complete CRH deficiency. Images PMID:8182138

  18. Large-scale time-lapse microscopy of Oct4 expression in human embryonic stem cell colonies.

    PubMed

    Bhadriraju, Kiran; Halter, Michael; Amelot, Julien; Bajcsy, Peter; Chalfoun, Joe; Vandecreme, Antoine; Mallon, Barbara S; Park, Kye-Yoon; Sista, Subhash; Elliott, John T; Plant, Anne L

    2016-07-01

    Identification and quantification of the characteristics of stem cell preparations is critical for understanding stem cell biology and for the development and manufacturing of stem cell based therapies. We have developed image analysis and visualization software that allows effective use of time-lapse microscopy to provide spatial and dynamic information from large numbers of human embryonic stem cell colonies. To achieve statistically relevant sampling, we examined >680 colonies from 3 different preparations of cells over 5days each, generating a total experimental dataset of 0.9 terabyte (TB). The 0.5 Giga-pixel images at each time point were represented by multi-resolution pyramids and visualized using the Deep Zoom Javascript library extended to support viewing Giga-pixel images over time and extracting data on individual colonies. We present a methodology that enables quantification of variations in nominally-identical preparations and between colonies, correlation of colony characteristics with Oct4 expression, and identification of rare events. PMID:27286574

  19. Expression of chicken vinculin complements the adhesion-defective phenotype of a mutant mouse F9 embryonal carcinoma cell

    PubMed Central

    1993-01-01

    A mutant cell line, derived from the mouse embryonal carcinoma cell line F9, is defective in cell-cell adhesion (compaction) and in cell- substrate adhesion. We have previously shown that neither uvomorulin (E- cadherin) nor integrins are responsible for the mutant phenotype (Calogero, A., M. Samuels, T. Darland, S. A. Edwards, R. Kemler, and E. D. Adamson. 1991. Dev. Biol. 146:499-508). Several cytoskeleton proteins were assayed and only vinculin was found to be absent in mutant (5.51) cells. A chicken vinculin expression vector was transfected into the 5.51 cells together with a neomycin-resistance vector. Clones that were adherent to the substrate were selected in medium containing G418. Two clones, 5.51Vin3 and Vin4, were analyzed by Nomarski differential interference contrast and laser confocal microscopy as well as by biochemical and molecular biological techniques. Both clones adhered well to substrates and both exhibited F- actin stress fibers with vinculin localized at stress fiber tips in focal contacts. This was in marked contrast to 5.51 parental cells, which had no stress fibers and no vinculin. The mutant and complemented F9 cell lines will be useful models for examining the complex interactions between cytoskeletal and cell adhesion proteins. PMID:8491782

  20. CRISPR reveals a distal super-enhancer required for Sox2 expression in mouse embryonic stem cells.

    PubMed

    Li, Yan; Rivera, Chloe M; Ishii, Haruhiko; Jin, Fulai; Selvaraj, Siddarth; Lee, Ah Young; Dixon, Jesse R; Ren, Bing

    2014-01-01

    The pluripotency of embryonic stem cells (ESCs) is maintained by a small group of master transcription factors including Oct4, Sox2 and Nanog. These core factors form a regulatory circuit controlling the transcription of a number of pluripotency factors including themselves. Although previous studies have identified transcriptional regulators of this core network, the cis-regulatory DNA sequences required for the transcription of these key pluripotency factors remain to be defined. We analyzed epigenomic data within the 1.5 Mb gene-desert regions around the Sox2 gene and identified a 13kb-long super-enhancer (SE) located 100kb downstream of Sox2 in mouse ESCs. This SE is occupied by Oct4, Sox2, Nanog, and the mediator complex, and physically interacts with the Sox2 locus via DNA looping. Using a simple and highly efficient double-CRISPR genome editing strategy we deleted the entire 13-kb SE and characterized transcriptional defects in the resulting monoallelic and biallelic deletion clones with RNA-seq. We showed that the SE is responsible for over 90% of Sox2 expression, and Sox2 is the only target gene along the chromosome. Our results support the functional significance of a SE in maintaining the pluripotency transcription program in mouse ESCs.

  1. Cloning and molecular characterization of an ornithine decarboxylase gene and its expression during embryonic development of the housefly, Musca domestica.

    PubMed

    Toutges, Michelle J; Santoso, Adi

    2011-10-01

    We are interested in identifying targets that may be used to develop new control products for the common housefly, Musca domestica, a vector of disease for many vertebrates. One such target, ornithine decarboxylase (ODC), is an embryonic enzyme involved in the regulation of polyamines and is a critical enzyme during M. domestica development. In this study, the cDNA for ODC from M. domestica was cloned, sequenced, and characterized. The full-length cDNA was 1,337-bp, consistent with a single band of approximately 1.35 kb obtained by northern analysis. The open-reading frame contains 1,191 bp, yielding a deduced polypeptide of 396 amino acid residues with a predicted mass of 44,618 Da. The deduced M. domestica ODC protein was homologous to other ODC proteins. mRNA expression profiles analyzed by real-time PCR indicated that the ODC transcript is temporally regulated throughout embryogenesis. Sequence data and Southern blot analysis suggests that there were likely only one or two closely linked copies of the M. domestica ODC gene.

  2. Cloning and molecular characterization of an ornithine decarboxylase gene and its expression during embryonic development of the housefly, Musca domestica.

    PubMed

    Toutges, Michelle J; Santoso, Adi

    2011-10-01

    We are interested in identifying targets that may be used to develop new control products for the common housefly, Musca domestica, a vector of disease for many vertebrates. One such target, ornithine decarboxylase (ODC), is an embryonic enzyme involved in the regulation of polyamines and is a critical enzyme during M. domestica development. In this study, the cDNA for ODC from M. domestica was cloned, sequenced, and characterized. The full-length cDNA was 1,337-bp, consistent with a single band of approximately 1.35 kb obtained by northern analysis. The open-reading frame contains 1,191 bp, yielding a deduced polypeptide of 396 amino acid residues with a predicted mass of 44,618 Da. The deduced M. domestica ODC protein was homologous to other ODC proteins. mRNA expression profiles analyzed by real-time PCR indicated that the ODC transcript is temporally regulated throughout embryogenesis. Sequence data and Southern blot analysis suggests that there were likely only one or two closely linked copies of the M. domestica ODC gene. PMID:21928394

  3. Identification of differentially expressed non-coding RNAs in embryonic stem cell neural differentiation

    PubMed Central

    Skreka, Konstantinia; Schafferer, Simon; Nat, Irina-Roxanna; Zywicki, Marek; Salti, Ahmad; Apostolova, Galina; Griehl, Matthias; Rederstorff, Mathieu; Dechant, Georg; Hüttenhofer, Alexander

    2012-01-01

    Protein-coding genes, guiding differentiation of ES cells into neural cells, have extensively been studied in the past. However, for the class of ncRNAs only the involvement of some specific microRNAs (miRNAs) has been described. Thus, to characterize the entire small non-coding RNA (ncRNA) transcriptome, involved in the differentiation of mouse ES cells into neural cells, we have generated three specialized ribonucleo-protein particle (RNP)-derived cDNA libraries, i.e. from pluripotent ES cells, neural progenitors and differentiated neural cells, respectively. By high-throughput sequencing and transcriptional profiling we identified several novel miRNAs to be involved in ES cell differentiation, as well as seven small nucleolar RNAs. In addition, expression of 7SL, 7SK and vault-2 RNAs was significantly up-regulated during ES cell differentiation. About half of ncRNA sequences from the three cDNA libraries mapped to intergenic or intragenic regions, designated as interRNAs and intraRNAs, respectively. Thereby, novel ncRNA candidates exhibited a predominant size of 18–30 nt, thus resembling miRNA species, but, with few exceptions, lacking canonical miRNA features. Additionally, these novel intraRNAs and interRNAs were not only found to be differentially expressed in stem-cell derivatives, but also in primary cultures of hippocampal neurons and astrocytes, strengthening their potential function in neural ES cell differentiation. PMID:22492625

  4. Identification of differentially expressed non-coding RNAs in embryonic stem cell neural differentiation.

    PubMed

    Skreka, Konstantinia; Schafferer, Simon; Nat, Irina-Roxanna; Zywicki, Marek; Salti, Ahmad; Apostolova, Galina; Griehl, Matthias; Rederstorff, Mathieu; Dechant, Georg; Hüttenhofer, Alexander

    2012-07-01

    Protein-coding genes, guiding differentiation of ES cells into neural cells, have extensively been studied in the past. However, for the class of ncRNAs only the involvement of some specific microRNAs (miRNAs) has been described. Thus, to characterize the entire small non-coding RNA (ncRNA) transcriptome, involved in the differentiation of mouse ES cells into neural cells, we have generated three specialized ribonucleo-protein particle (RNP)-derived cDNA libraries, i.e. from pluripotent ES cells, neural progenitors and differentiated neural cells, respectively. By high-throughput sequencing and transcriptional profiling we identified several novel miRNAs to be involved in ES cell differentiation, as well as seven small nucleolar RNAs. In addition, expression of 7SL, 7SK and vault-2 RNAs was significantly up-regulated during ES cell differentiation. About half of ncRNA sequences from the three cDNA libraries mapped to intergenic or intragenic regions, designated as interRNAs and intraRNAs, respectively. Thereby, novel ncRNA candidates exhibited a predominant size of 18-30 nt, thus resembling miRNA species, but, with few exceptions, lacking canonical miRNA features. Additionally, these novel intraRNAs and interRNAs were not only found to be differentially expressed in stem-cell derivatives, but also in primary cultures of hippocampal neurons and astrocytes, strengthening their potential function in neural ES cell differentiation. PMID:22492625

  5. Hydrogen gas attenuates embryonic gene expression and prevents left ventricular remodeling induced by intermittent hypoxia in cardiomyopathic hamsters.

    PubMed

    Kato, Ryuji; Nomura, Atsuo; Sakamoto, Aiji; Yasuda, Yuki; Amatani, Koyuha; Nagai, Sayuri; Sen, Yoko; Ijiri, Yoshio; Okada, Yoshikatsu; Yamaguchi, Takehiro; Izumi, Yasukatsu; Yoshiyama, Minoru; Tanaka, Kazuhiko; Hayashi, Tetsuya

    2014-12-01

    The prevalence of sleep apnea is very high in patients with heart failure (HF). The aims of this study were to investigate the influence of intermittent hypoxia (IH) on the failing heart and to evaluate the antioxidant effect of hydrogen gas. Normal male Syrian hamsters (n = 22) and cardiomyopathic (CM) hamsters (n = 33) were exposed to IH (repeated cycles of 1.5 min of 5% oxygen and 5 min of 21% oxygen for 8 h during the daytime) or normoxia for 14 days. Hydrogen gas (3.05 vol/100 vol) was inhaled by some CM hamsters during hypoxia. IH increased the ratio of early diastolic mitral inflow velocity to mitral annulus velocity (E/e', 21.8 vs. 16.9) but did not affect the LV ejection fraction (EF) in normal Syrian hamsters. However, IH increased E/e' (29.4 vs. 21.5) and significantly decreased the EF (37.2 vs. 47.2%) in CM hamsters. IH also increased the cardiomyocyte cross-sectional area (672 vs. 443 μm(2)) and interstitial fibrosis (29.9 vs. 9.6%), along with elevation of oxidative stress and superoxide production in the left ventricular (LV) myocardium. Furthermore, IH significantly increased the expression of brain natriuretic peptide, β-myosin heavy chain, c-fos, and c-jun mRNA in CM hamsters. Hydrogen gas inhalation significantly decreased both oxidative stress and embryonic gene expression, thus preserving cardiac function in CM hamsters. In conclusion, IH accelerated LV remodeling in CM hamsters, at least partly by increasing oxidative stress in the failing heart. These findings might explain the poor prognosis of patients with HF and sleep apnea.

  6. Tumorigenic Xenopus cells express several maternal and early embryonic mRNAs

    SciTech Connect

    Picard, J.J.; Pelle, R.; Schonne, E.; Dworkin-Rastl, E.; Dworkin, M.B.

    1986-11-01

    Recombinant cDNA libraries were constructed from poly (A)/sup +/ RNA isolated from different stages of oogenesis and embryogenesis from the clawed toad Xenopus laevis. Hybridization analyses were used to describe the accumulation of specific RNAs represented by these cDNA clones in oocytes, embryos, adult liver, a cell line derived from Xenopus borealis embryos (Xb693), and a tumorigenic substrain of that cell line (Xb693T). It was found that from 550 cDNA clones analyses, six sequences accumulate to higher titers in poly(A)/sup +/ RNA isolated from the tumorigenic cell line compared with the nontumorigenic cell line. All six sequences were expressed at high levels during oogenesis. DNA sequencing of these three sequences followed by a computer search of protein data banks has identified them as coding for the glycolytic enzyme enolase, the ATP-ADP carrier protein, and a-tubulin.

  7. Embryonic expression of zebrafish AMPA receptor genes: zygotic gria2alpha expression initiates at the midblastula transition.

    PubMed

    Lin, Wei-Hsiang; Wu, Chan-Hwa; Chen, Yu-Chia; Chow, Wei-Yuan

    2006-09-19

    The AMPA-preferring receptors (AMPARs) mediate rapid excitatory synaptic transmission in the central nervous system of vertebrates. Expression profiles of 8 AMPAR genes were studied by RT-PCR analyses to elucidate the properties of AMPARs during early zebrafish development. Transcripts of all AMPAR genes are detected at the time of fertilization, suggesting maternal transcriptions of zebrafish AMPAR genes. The amounts of gria1 and gria2 transcripts are several-fold higher than that of gria3 and gria4 between 10 and 72 hpf (hour postfertilization). The edited gria2alpha transcript decreases during gastrulation period, suggesting that zygotic expression of gria2alpha begins around the time of midblastula transition. Relative to the amount of beta-actin, the amounts of AMPAR transcripts increase significantly after the completion of neurulation. The amounts of gria2 transcripts exceed the total amounts of the remaining AMPAR transcripts after 36 hpf, suggesting increases in the representation of low Ca2+ permeable AMPARs during neuronal maturation. Many but not all of the known mammalian protein-protein interaction motifs are preserved in the C-terminal domains (CTD) of zebrafish AMPARs. Before 16 hpf, the embryos express predominantly the alternative splice forms encoding longer CTD. Representations of the short CTD splice forms of gria2 and gria4alpha increase after 24 hpf, when neurulation is nearly completed.

  8. Profiles of mRNA expression of related genes in the duck hypothalamus-pituitary growth axis during embryonic and early post-hatch development.

    PubMed

    Hu, Yan; Liu, Hongxiang; Song, Chi; Xu, Wenjuan; Ji, Gaige; Zhu, Chunhong; Shu, Jingting; Li, Huifang

    2015-03-15

    In this study, the ontogeny of body and liver weight and the pattern of related gene mRNA expression in the hypothalamus-pituitary growth axis (HPGA) of two different duck breeds (Anas platyrhynchos domestica) were compared during embryonic and post-hatch development. Duck hypothalamic growth hormone release hormone (GHRH), somatostatin (SS), pituitary growth hormone (GH), liver growth hormone receptor (GHR) and insulin-like growth factor-I (IGF-1) mRNA were first detected on the 13th embryonic day. During early duck development, SS maintained a lower expression status, whereas the other four genes exhibited highly significant variations in an age-specific manner. Highly significant breed specificity was observed with respect to hepatic IGF-1 mRNA expression, which showed a significant breed-age interaction effect. Compared with previous studies on chickens, significant species differences were observed regarding the mRNA expression of bird embryonic HPGA-related genes. During early development, highly significant breed and age specificity were observed with respect to developmental changes in body and liver weight, and varying degrees of significant linear correlation were found between these performances and the mRNA expression of HPGA-related genes in the duck HPGA. These results suggest that different genetic backgrounds may lead to differences in duck growth and HPGA-related gene mRNA expression, and the differential mRNA expression of related genes in the duck HPGA may be particularly important in the early growth of ducks. Furthermore, hepatic IGF-1 mRNA expression presented highly significant breed specificity, and evidence suggests the involvement of hepatic IGF-1 in mediating genetic effects on embryo and offspring growth in ducks.

  9. Expression of human oxoguanine glycosylase 1 or formamidopyrimidine glycosylase in human embryonic kidney 293 cells exacerbates methylmercury toxicity in vitro

    SciTech Connect

    Ondovcik, Stephanie L.; Preston, Thomas J.; McCallum, Gordon P.; Wells, Peter G.

    2013-08-15

    Exposure to methylmercury (MeHg) acutely at high levels, or via chronic low-level dietary exposure from daily fish consumption, can lead to adverse neurological effects in both the adult and developing conceptus. To determine the impact of variable DNA repair capacity, and the role of reactive oxygen species (ROS) and oxidatively damaged DNA in the mechanism of toxicity, transgenic human embryonic kidney (HEK) 293 cells that stably express either human oxoguanine glycosylase 1 (hOgg1) or its bacterial homolog, formamidopyrimidine glycosylase (Fpg), which primarily repair the oxidative lesion 8-oxo-2′-deoxyguanosine (8-oxodG), were used to assess the in vitro effects of MeHg. Western blotting confirmed the expression of hOgg1 or Fpg in both the nuclear and mitochondrial compartments of their respective cell lines. Following acute (1–2 h) incubations with 0–10 μM MeHg, concentration-dependent decreases in clonogenic survival and cell growth accompanied concentration-dependent increases in lactate dehydrogenase (LDH) release, ROS formation, 8-oxodG levels and apurinic/apyrimidinic (AP) sites, consistent with the onset of cytotoxicity. Paradoxically, hOgg1- and Fpg-expressing HEK 293 cells were more sensitive than wild-type cells stably transfected with the empty vector control to MeHg across all cellular and biochemical parameters, exhibiting reduced clonogenic survival and cell growth, and increased LDH release and DNA damage. Accordingly, upregulation of specific components of the base excision repair (BER) pathway may prove deleterious potentially due to the absence of compensatory enhancement of downstream processes to repair toxic intermediary abasic sites. Thus, interindividual variability in DNA repair activity may constitute an important risk factor for environmentally-initiated, oxidatively damaged DNA and its pathological consequences. - Highlights: • hOgg1 and Fpg repair oxidatively damaged DNA. • hOgg1- and Fpg-expressing cells are more

  10. Effects of Ethanol on the Expression Level of Various BDNF mRNA Isoforms and Their Encoded Protein in the Hippocampus of Adult and Embryonic Rats

    PubMed Central

    Shojaei, Shahla; Ghavami, Saeid; Panjehshahin, Mohammad Reza; Owji, Ali Akbar

    2015-01-01

    We aimed to compare the effects of oral ethanol (Eth) alone or combined with the phytoestrogen resveratrol (Rsv) on the expression of various brain-derived neurotrophic factor (BDNF) transcripts and the encoded protein pro-BDNF in the hippocampus of pregnant and embryonic rats. A low (0.25 g/kg body weight (BW)/day) dose of Eth produced an increase in the expression of BDNF exons I, III and IV and a decrease in that of the exon IX in embryos, but failed to affect BDNF transcript and pro-BDNF protein expression in adults. However, co-administration of Eth 0.25 g/kg·BW/day and Rsv led to increased expression of BDNF exons I, III and IV and to a small but significant increase in the level of pro-BDNF protein in maternal rats. A high (2.5 g/kg·BW/day) dose of Eth increased the expression of BDNF exons III and IV in embryos, but it decreased the expression of exon IX containing BDNF mRNAs in the maternal rats. While the high dose of Eth alone reduced the level of pro-BDNF in adults, it failed to change the levels of pro-BDNF in embryos. Eth differentially affects the expression pattern of BDNF transcripts and levels of pro-BDNF in the hippocampus of both adult and embryonic rats. PMID:26703578

  11. Graded Smad2/3 Activation Is Converted Directly into Levels of Target Gene Expression in Embryonic Stem Cells

    PubMed Central

    Mavrakis, Konstantinos J.; Goggolidou, Paraskevi; Norris, Dominic P.; Episkopou, Vasso

    2009-01-01

    The Transforming Growth Factor (TGF) β signalling family includes morphogens, such as Nodal and Activin, with important functions in vertebrate development. The concentration of the morphogen is critical for fate decisions in the responding cells. Smad2 and Smad3 are effectors of the Nodal/Activin branch of TGFβ signalling: they are activated by receptors, enter the nucleus and directly transcribe target genes. However, there have been no studies correlating levels of Smad2/3 activation with expression patterns of endogenous target genes in a developmental context over time. We used mouse Embryonic Stem (ES) cells to create a system whereby levels of activated Smad2/3 can be manipulated by an inducible constitutively active receptor (Alk4*) and an inhibitor (SB-431542) that blocks specifically Smad2/3 activation. The transcriptional responses were analysed by microarrays at different time points during activation and repression. We identified several genes that follow faithfully and reproducibly the Smad2/3 activation profile. Twenty-seven of these were novel and expressed in the early embryo downstream of Smad2/3 signalling. As they responded to Smad2/3 activation in the absence of protein synthesis, they were considered direct. These immediate responsive genes included negative intracellular feedback factors, like SnoN and I-Smad7, which inhibit the transcriptional activity of Smad2/3. However, their activation did not lead to subsequent repression of target genes over time, suggesting that this type of feedback is inefficient in ES cells or it is counteracted by mechanisms such as ubiquitin-mediated degradation by Arkadia. Here we present an ES cell system along with a database containing the expression profile of thousands of genes downstream of Smad2/3 activation patterns, in the presence or absence of protein synthesis. Furthermore, we identify primary target genes that follow proportionately and with high sensitivity changes in Smad2/3 levels over 15–30

  12. Expression of insulin-like growth factor system genes in liver tissue during embryonic and early post-hatch development in duck (Anas platyrhynchos Domestica).

    PubMed

    Jianmin, Zou; Jingting, Shu; Yanju, Shan; Yan, Hu; Chi, Song; Wenqi, Zhu

    2014-04-01

    The IGF system is one of the most important endocrine and paracrine growth factor systems that regulate fetal and placental growth, whereas the liver is the principal source of circulation IGF-I. In the present study, expression of IGF-I, IGF type-I receptor (IGF-IR), and IGF binding protein (IGFBP)-3 genes was quantified by RT-PCR in the liver tissue on days 13, 17, 21, 25, and 27 of embryonic development, as well as at 7 days post-hatching (PH) in meat-type Gaoyou ducks and egg-type Jinding ducks. The results showed that IGF-I mRNA could be detected as early as on E 13d, but the expression level was low throughout embryonic development before increasing dramatically by E 27d and 7 days PH in both duck breeds. However, Gaoyou ducks exhibited higher IGF-I mRNA level than Jinding ducks, and the differences were significant on E 13d, E 21d, and at 7 days PH. Expression of IGF-IR in liver increased gradually in the former stages of the embryonic development, reaching its highest point on E 21d, and then declined up until 7 days PH. The expression pattern of IGFBP-3 gene was similar to that of IGF-IR gene, increasing significantly from E 17d. The expression peak appeared on E 25d, then declined significantly just prior to hatching (day 27) and was followed by an increase at 7 days PH. In general, the expression level of IGF-IR and IGFBP-3 genes in Jinding ducks was higher than that in Gaoyou ducks. Inverse relationships were observed for the expression of IGF-I and IGF-IR, and IGF-I and IGFBP-3, whereas a positive relationship was observed for the expression of IGF-IR and IGFBP-3. Our data indicate a differential expression of selected genes that comprise the IGF system in the duck liver tissue during embryonic and early PH growth and development.

  13. Cloning the Dmrt1 and DmrtA2 genes of ayu (Plecoglossus altivelis) and mapping their expression in adult, larval, and embryonic stages

    PubMed Central

    WANG, Jin-Hua; MIAO, Liang; LI, Ming-Yun; GUO, Xiao-Fei; PAN, Na; CHEN, Ying-Ying; ZHAO, Liang

    2014-01-01

    The Dmrt family of genes are involved in sex differentiation in different species of invertebrates, and some vertebrates including human. In this study, we cloned the full-length cDNA of ayu (Plecoglossus altivelis) Dmrt1 and DmrtA2. Sequence and phylogenetic tree analyses showed ayu Dmrt1 showed highest similarity to that of Oncorhynchus mykiss while ayu DmrtA2 is most similar to that of Oryzias latipes. Fluorescence-based quantitative reverse transcription PCR (qRT-PCR) revealed the Dmrt1 was predominantly expressed in the testis. At the larval stages, Dmrt1 mRNA expression level was highest during 52-64 days post hatching (dph) and at the gastrula stage during embryonic development. DmrtA2, meanwhile, was specifically expressed in the ovary and was highly expressed in the female brain tissue, but not male brain tissue. During the larval stages, DmrtA2 expression remained high before day 34, and then fluctuated while generally decreasing. During embryonic development, DmrtA2 expression increased gradually and peaked at the hatching stage. Our data suggest that ayu Dmrt1 might participate in the differentiation and maintenance of testis while DmrtA2 may play a role in ovary-differentiation and mature-ovary maintenance. DmrtA2 might also participate in brain development. PMID:24668652

  14. Identifying the germline in an equally cleaving mollusc: Vasa and Nanos expression during embryonic and larval development of the vetigastropod Haliotis asinina.

    PubMed

    Kranz, Alexandrea M; Tollenaere, Alina; Norris, Belinda J; Degnan, Bernard M; Degnan, Sandie M

    2010-06-15

    Members of the Vasa and Nanos gene families are important for the specification and development of the germline in diverse animals. Here, we determine spatial and temporal expression of Vasa and Nanos to investigate germline development in the vetigastropod Haliotis asinina. This is the first time these genes have been examined in an equally cleaving lophotrochozoan species. We find that HasVasa and HasNanos have largely overlapping, but not identical, expression patterns during embryonic and larval development, with both being maternally expressed and localized to the micromere cell lineages during cleavage. As embryonic development continues, HasVasa and HasNanos become progressively more enriched in the dorsal quadrant of the embryo. By the trochophore stage, both HasVasa and HasNanos are expressed in the putative mesodermal bands of the larva. This differs from the unequally cleaving gastropod Illyanasa obsoleta, in which IoVasa and IoNanos expression is detectable only in the early embryo and not during gastrulation and larval development. Our results suggest that the H. asinina germline arises from the 4d cell lineage and that primordial germ cells (PGCs) are not specified exclusively by maternally inherited determinants (preformation). As such, we infer that inductive signals (epigenesis) play an important role in specifying PGCs in H. asinina. We hypothesize that HasVasa is expressed in a population of undifferentiated multipotent cells, from which the PGCs are segregated later during development.

  15. Expression Analysis of SOX14 during Retinoic Acid Induced Neural Differentiation of Embryonal Carcinoma Cells and Assessment of the Effect of Its Ectopic Expression on SOXB Members in HeLa Cells

    PubMed Central

    Popovic, Jelena; Stanisavljevic, Danijela; Schwirtlich, Marija; Klajn, Andrijana; Marjanovic, Jelena; Stevanovic, Milena

    2014-01-01

    SOX14 is a member of the SOXB2 subgroup of transcription factors implicated in neural development. Although the first SOX14 gene in vertebrates was cloned and characterized more than a decade ago and its expression profile during development was revealed in various animal model systems, the role of this gene during neural development is largely unknown. In the present study we analyzed the expression of SOX14 in human NT2/D1 and mouse P19 pluripotent embryonal carcinoma cells. We demonstrated that it is expressed in both cell lines and upregulated during retinoic acid induced neural differentiation. We showed that SOX14 was expressed in both neuronal and non-neuronal differentiated derivatives, as revealed by immunocytochemistry. Since it was previously proposed that increased SOXB2 proteins level interfere with the activity of SOXB1 counteracting partners, we compared expression patterns of SOXB members during retinoic acid induction of embryonal carcinoma cells. We revealed that upregulation of SOX14 expression is accompanied by alterations in the expression patterns of SOXB1 members. In order to analyze the potential cross-talk between them, we generated SOX14 expression construct. The ectopic expression of SOX14 was demonstrated at the mRNA level in NT2/D1, P19 and HeLa cells, while an increased level of SOX14 protein was detected in HeLa cells only. By transient transfection experiments in HeLa cells we showed for the first time that ectopic expression of SOX14 repressed SOX1 expression, whereas no significant effect on SOX2, SOX3 and SOX21 was observed. Data presented here provide an insight into SOX14 expression during in vitro neural differentiation of embryonal carcinoma cells and demonstrate the effect of its ectopic expression on protein levels of SOXB members in HeLa cells. Obtained results contribute to better understanding the role of one of the most conserved SOX proteins. PMID:24637840

  16. Granulosa cells and retinoic acid co-treatment enrich potential germ cells from manually selected Oct4-EGFP expressing human embryonic stem cells.

    PubMed

    Chen, Hsin-Fu; Jan, Pey-Shynan; Kuo, Hung-Chih; Wu, Fang-Chun; Lan, Chen-Wei; Huang, Mei-Chi; Chien, Chung-Liang; Ho, Hong-Nerng

    2014-09-01

    Differentiation of human embryonic stem (HES) cells to germ cells may become clinically useful in overcoming diseases related to germ-cell development. Niches were used to differentiate HES cell lines, NTU1 and H9 Oct4-enhanced green fluorescence protein (EGFP), including laminin, granulosa cell co-culture or conditioned medium, ovarian stromal cell co-culture or conditioned medium, retinoic acid, stem cell factor (SCF) and BMP4-BMP7-BMP8b treatment. Flow cytometry showed that granulosa cell co-culture (P < 0.001) or conditioned medium (P = 0.007) treatment for 14 days significantly increased the percentages of differentiated H9 Oct4-EGFP cells expressing early germ cell marker stage-specific embryonic antigen 1(SSEA1); sorted SSEA1[+] cells did not express higher levels of germ cell gene VASA and GDF9. Manually collected H9 Oct4-EGFP[+] cells expressed significantly higher levels of VASA (P = 0.005) and GDF9 (P = 0.001). H9 Oct4-EGFP[+] cells developed to ovarian follicle-like structures after culture for 28 days but with low efficiency. Unlike SCF and BMP4, retinoic acid co-treatment enhanced VASA, GDF9 and SCP3 expression. A protocol is recommended to enrich differentiated HES cells with germ-cell potential by culture with granulosa cells, conditioned medium or retinoic acid, manual selection of Oct4-EGFP[+] cells, and analysis of VASA, GDF9 expression, or both.

  17. Reactive oxygen species and nuclear factor-kappa B pathway mediate high glucose-induced Pax-2 gene expression in mouse embryonic mesenchymal epithelial cells and kidney explants.

    PubMed

    Chen, Y-W; Liu, F; Tran, S; Zhu, Y; Hébert, M-J; Ingelfinger, J R; Zhang, S-L

    2006-11-01

    Diabetic mellitus confers a major risk of congenital malformations, and is associated with diabetic embryopathy, affecting multiple organs including the kidney. The DNA paired box-2 (Pax-2) gene is essential in nephrogenesis. We investigated whether high glucose alters Pax-2 gene expression and aimed to delineate its underlying mechanism(s) of action using both in vitro (mouse embryonic mesenchymal epithelial cells (MK4) and ex vivo (kidney explant from Hoxb7-green florescent protein (GFP) mice) approaches. Pax-2 gene expression was determined by reverse transcriptase-polymerase chain reaction, Western blotting, and immunofluorescent staining. A fusion gene containing the full-length 5'-flanking region of the human Pax-2 promoter linked to a luciferase reporter gene, pGL-2/hPax-2, was transfected into MK4 cells with or without dominant negative IkappaBalpha (DN IkappaBalpha) cotransfection. Fusion gene expression level was quantified by cellular luciferase activity. Reactive oxygen species (ROS) generation was measured by lucigenin assay. Embryonic kidneys from Hoxb7-GFP mice were cultured ex vivo. High D(+) glucose (25 mM), compared to normal glucose (5 mM), specifically induced Pax-2 gene expression in MK4 cells and kidney explants. High glucose-induced Pax-2 gene expression is mediated, at least in part, via ROS generation and activation of the nuclear factor kappa B signaling pathway, but not via protein kinase C, p38 mitogen-activated protein kinase (MAPK), and p44/42 MAPK signaling.

  18. Inducible and reversible suppression of Npm1 gene expression using stably integrated small interfering RNA vector in mouse embryonic stem cells

    SciTech Connect

    Wang Beibei; Lu Rui; Wang Weicheng; Jin Ying . E-mail: yjin@sibs.ac.cn

    2006-09-08

    The tetracycline (Tc)-inducible small interference RNA (siRNA) is a powerful tool for studying gene function in mammalian cells. However, the system is infrequently utilized in embryonic stem (ES) cells. Here, we present First application of the Tc-inducible, stably integrated plasmid-based siRNA system in mouse ES cells to down-regulate expression of Npm1, an essential gene for embryonic development. The physiological role of Npm1 in ES cells has not been defined. Our data show that the knock-down of Npm1 expression by this siRNA system was not only highly efficient, but also Tc- dose- and induction time-dependent. Particularly, the down-regulation of Npm1 expression was reversible. Importantly, suppression of Npm1 expression in ES cells resulted in reduced cell proliferation. Taken together, this system allows for studying gene function in a highly controlled manner, otherwise difficult to achieve in ES cells. Moreover, our results demonstrate that Npm1 is essential for ES cell proliferation.

  19. Effects of the EVCAM chemical validation library on differentiation using marker gene expression in lmouse embryonic stem cells

    EPA Science Inventory

    The adherent cell differentiation and cytotoxicity (ACDC) assay was used to profile the effects of the ECVAM EST validation chemical library (19 compounds) on J1 mouse embryonic stem cells (mESC). PCR-based TaqMan Low Density Arrays (TLDA) provided a high-content assessment of al...

  20. Insulin-like growth factors I and II in starry flounder (Platichthys stellatus): molecular cloning and differential expression during embryonic development.

    PubMed

    Xu, Yongjiang; Zang, Kun; Liu, Xuezhou; Shi, Bao; Li, Cunyu; Shi, Xueying

    2015-02-01

    In order to elucidate the possible roles of insulin-like growth factors I and II (IGF-I and IGF-II) in the embryonic development of Platichthys stellatus, their cDNAs were isolated and their spatial expression pattern in adult organs and temporal expression pattern throughout embryonic development were examined by quantitative real-time PCR assay. The IGF-I cDNA sequence was 1,268 bp in length and contained an open reading frame (ORF) of 558 bp, which encoded 185 amino acid residues. With respect to IGF-II, the full-length cDNA was 899 bp in length and contained a 648-bp ORF, which encoded 215 amino acid residues. The amino acid sequences of IGF-I and IGF-II exhibited high identities with their fish counterparts. The highest IGF-I mRNA level was found in the liver for both sexes, whereas the IGF-II gene was most abundantly expressed in female liver and male liver, gill, and brain. The sex-specific and spatial expression patterns of IGF-I and IGF-II mRNAs are thought to be related to the sexually dimorphic growth and development of starry flounder. Both IGF-I and IGF-II mRNAs were detected in unfertilized eggs, which indicated that IGF-I and IGF-II were parentally transmitted. Nineteen embryonic development stages were tested. IGF-I mRNA level remained high from unfertilized eggs to low blastula followed by a significant decrease at early gastrula and then maintained a lower level. In contrast, IGF-II mRNA level was low from unfertilized eggs to high blastula and peaked at low blastula followed by a gradual decrease. Moreover, higher levels of IGF-I mRNA than that of IGF-II were found from unfertilized eggs to high blastula, vice versa from low blastula to newly hatched larva, and the different expression pattern verified the differential roles of IGF-I and IGF-II in starry flounder embryonic development. These results could help in understanding the endocrine mechanism involved in the early development and growth of starry flounder.

  1. Insulin-like growth factors I and II in starry flounder (Platichthys stellatus): molecular cloning and differential expression during embryonic development.

    PubMed

    Xu, Yongjiang; Zang, Kun; Liu, Xuezhou; Shi, Bao; Li, Cunyu; Shi, Xueying

    2015-02-01

    In order to elucidate the possible roles of insulin-like growth factors I and II (IGF-I and IGF-II) in the embryonic development of Platichthys stellatus, their cDNAs were isolated and their spatial expression pattern in adult organs and temporal expression pattern throughout embryonic development were examined by quantitative real-time PCR assay. The IGF-I cDNA sequence was 1,268 bp in length and contained an open reading frame (ORF) of 558 bp, which encoded 185 amino acid residues. With respect to IGF-II, the full-length cDNA was 899 bp in length and contained a 648-bp ORF, which encoded 215 amino acid residues. The amino acid sequences of IGF-I and IGF-II exhibited high identities with their fish counterparts. The highest IGF-I mRNA level was found in the liver for both sexes, whereas the IGF-II gene was most abundantly expressed in female liver and male liver, gill, and brain. The sex-specific and spatial expression patterns of IGF-I and IGF-II mRNAs are thought to be related to the sexually dimorphic growth and development of starry flounder. Both IGF-I and IGF-II mRNAs were detected in unfertilized eggs, which indicated that IGF-I and IGF-II were parentally transmitted. Nineteen embryonic development stages were tested. IGF-I mRNA level remained high from unfertilized eggs to low blastula followed by a significant decrease at early gastrula and then maintained a lower level. In contrast, IGF-II mRNA level was low from unfertilized eggs to high blastula and peaked at low blastula followed by a gradual decrease. Moreover, higher levels of IGF-I mRNA than that of IGF-II were found from unfertilized eggs to high blastula, vice versa from low blastula to newly hatched larva, and the different expression pattern verified the differential roles of IGF-I and IGF-II in starry flounder embryonic development. These results could help in understanding the endocrine mechanism involved in the early development and growth of starry flounder. PMID:25424555

  2. Expression analysis of the insulin-like growth factors I and II during embryonic and early larval development of turbot ( Scophthalmus maximus)

    NASA Astrophysics Data System (ADS)

    Wen, Haishen; Qi, Qian; Hu, Jian; Si, Yufeng; He, Feng; Li, Jifang

    2015-04-01

    The insulin-like growth factors I and II (IGF-I and IGF-II) are important proteins involved in fish growth and development. Here, we report the isolation of IGF-II and expression analysis of IGFs in turbot Scophthalmus maximus, aiming to clarify their function in embryonic and larval development of fish. The deduced IGF-II gene is 808 bp in full length, which encodes a protein of 219 amino acids and is 93% similar with that of Paralichthys olicaceus in amino acid sequence. The tissue abundance and the expression pattern of IGFs in a turbot at early development stages were investigated via reverse transcription-polymer chain reaction. Result showed that the IGF-I and IGF-II genes were widely expressed in tissues of S. maximus. IGF-I was detected in all tissues except intestines with the highest level in liver, while IGF-II transcript presented in all tissues except muscle. At the stages of embryonic and larval development, the mRNA levels of IGFs sharply increased from the stage of unfertilized egg to post larva, followed by a decrease with larval development. However, there was an increase in IGF-I at the embryonic stage and IGF-II at the gastrula stage, respectively. These results suggested that IGFs play important roles in cell growth and division of the turbot. Our study provides reference data for further investigation of growth regulation in turbot, which can guarantee better understanding of the physiological role that IGFs play in fish.

  3. Mechanism of PKA-dependent and lipid-raft independent stimulation of Connexin43 expression by oxytoxin in mouse embryonic stem cells.

    PubMed

    Yun, Seung Pil; Park, Su Shin; Ryu, Jung Min; Park, Jae Hong; Kim, Mi Ok; Lee, Jang-Hern; Han, Ho Jae

    2012-07-01

    Previous studies shows that connexins appear very early during murine embryo development, the gap junctional intercellular communication found in the inner cell mass of early embryo is also maintained in embryonic stem cells (ESC), and expression of oxytocin receptor (OTR) is developmentally regulated at early embryonic development. However, effect of oxytocin (OT) on the regulation of the connexin43 (Cx43) and maintenance of undifferentiation is not fully understood in stem cells. Therefore, we investigated the effect of OT on Cx43 expression and related signaling cascades in mouse ESC. OT increased Cx43 expression that was inhibited by the OTR inhibitor atosiban. In experiments to examine whether the effect of OT depends on lipid rafts, caveolin-1 (cav-1), cav-2, and flotillin-2, but not OTR, were detected in lipid raft fractions. Also, colocalization of OTR, cav-1, and cav-2 was not detected. Moreover, the lipid raft disruptor methyl-β-cyclodextrin did not attenuate OT-induced Cx43 expression. In experiments to examine related signaling pathways, OT activated cAMP/protein kinase A (PKA) which was inhibited by adenylyl cyclase inhibitor SQ 22536 and PKA inhibitor PKI. OT increased nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) phosphorylation which was inhibited by PKI. OT also increased cAMP response element-binding (CREB)/CREB-binding protein (CBP) expression in the nucleus and induced the formation of CREB1/NF-κB/CBP complexes, which was blocked by the NF-κB-specific small interfering RNA, NF-κB inhibitors, SN50, and bay11-7082. Complex disruption by NF-κB inhibitors decreased OT-induced Cx43 expression. In conclusion, OT stimulates Cx43 expression through the NF-κB/CREB/CBP complex via the lipid raft-independent OTR-mediated cAMP/PKA in mouse ESC.

  4. Effect of egg weight on composition, embryonic growth, and expression of amino acid transporter genes in yolk sac membranes and small intestines of the domestic pigeon (Columba livia).

    PubMed

    Chen, M X; Li, X G; Yan, H C; Wang, X Q; Gao, C Q

    2016-06-01

    The objective of this study was to investigate the effect of egg weight on the composition of the egg, the growth of the embryo, and the expression of amino acid transporter genes in the yolk sac membranes and small intestines of the domestic pigeon (Columba livia). A total of 240 fertilized eggs were collected and divided into two groups based on the weight of the eggs, light (LE) and heavy (HE). The composition of 20 eggs from each group was measured, and the remaining eggs were weighed and placed in an incubator. On embryonic days (E) 9, 11, 13, and 15 and day of hatch (DOH), 15 embryos/hatchlings from each group were measured for embryonic growth, and samples were collected. The HE had heavier yolk and albumen weights than the LE (P < 0.01). Compared with the LE, the HE had heavier yolk-free embryonic body and yolk sac weights from E13 to DOH (P < 0.05). Additionally, the HE had larger yolk sac membrane weights from E13 to E15 (P < 0.05) and had more residual yolk sac content on DOH than those of the LE (P < 0.01). The yolk absorption was greater for the HE than for the LE from E11 to E13 (P < 0.05). Furthermore, the abundance of CAT2 and PepT1 mRNA in the yolk sac membranes was greater in the HE than in the LE on E13 (P < 0.05). Compared with the LE, the gene expression of EAAT2 in the intestine on E13 was greater in the HE, whereas the expression of EAAT3 was lower in the HE (P < 0.05). Taken together, our results suggest that egg weight influenced the composition of the eggs, embryonic development, and expression of amino acid transporter genes in the yolk sac membranes and small intestines of pigeon embryos.

  5. Regulation of expression driven by human immunodeficiency virus type 1 and human T-cell leukemia virus type I long terminal repeats in pluripotential human embryonic cells

    SciTech Connect

    Maio, J.; Brown, F.L. )

    1988-04-01

    Human pluripotential embryonic teratocarcinoma cells differentially expressed gene activity controlled by the human immunodeficiency virus type 1 (HIV-1) and human T-cell leukemia virus type I (HTLV-I) long terminal repeats (LTRs) when differentiation was induced by the morphogen all-trans retinoic acid. The alterations occurred after commitment and before the appearance of the multiple cell types characteristic of these pluripotential cells. After commitment, gene activity controlled by the HIV-1 LTR markedly increased, whereas that controlled by the HTLV-I LTR decreased. Steady-state mRNA levels and nuclear run-on transcription indicated that the increased HIV-1-directed activity during differentiation occurred posttranscriptionally, whereas the decreased HTLV-I activity was at the transcriptional level. Phorbol esters did not cause commitment but strongly enhanced expression by both viral LTRs at the transcriptional level. Differentiating cells gradually lost the ability to respond to phorbol ester stimulation. Experiments with a deletion mutant of the HIV-1 LTR suggested that this was due to imposition of negative regulation during differentiation that was not reversed by phorbol ester induction. Cycloheximide, with or without phorbol ester, slightly stimulated HIV-1-directed activity at the transcriptional level and massively increased the amounts of steady-state mRNA by posttranscriptional superinduction. It appeared, however, that new nuclear protein synthesis was required for maximal transcriptional stimulation by phorbol esters. Thus, changing cellular regulatory mechanisms influenced human retrovirus expression during human embryonic cell differentiation.

  6. The effect of cancer procoagulant on expression of metastatic and angiogenic markers in breast cancer and embryonic stem cell lines.

    PubMed

    Kee, Nalise Low Ah; Naudé, Ryno J; Blatch, Gregory L; Frost, Carminita L

    2012-03-01

    Cancer procoagulant is present only in malignant tumours and the undifferentiated tissues of human placenta. Its possible role in angiogenesis and metastasis was investigated. Cancer procoagulant increased the steady-state mRNA level of L1 cell adhesion molecule (L1CAM) in MCF-7 breast cancer cells and E14 mouse embryonic stem cells (MESCs), while an increase in angiogenin mRNA was observed in MDA-MB-231 breast cancer cells. Furthermore, production of vascular endothelial growth factor (VEGF) protein in MCF-7 breast cancer cells and E14 MESCs, but decreased in MDA-MB-231 breast cancer cells. We conclude that cancer procoagulant could potentially play a part in angiogenesis in cancer and vascular development during embryonic development. PMID:22718627

  7. The effect of cancer procoagulant on expression of metastatic and angiogenic markers in breast cancer and embryonic stem cell lines.

    PubMed

    Kee, Nalise Low Ah; Naudé, Ryno J; Blatch, Gregory L; Frost, Carminita L

    2012-03-01

    Cancer procoagulant is present only in malignant tumours and the undifferentiated tissues of human placenta. Its possible role in angiogenesis and metastasis was investigated. Cancer procoagulant increased the steady-state mRNA level of L1 cell adhesion molecule (L1CAM) in MCF-7 breast cancer cells and E14 mouse embryonic stem cells (MESCs), while an increase in angiogenin mRNA was observed in MDA-MB-231 breast cancer cells. Furthermore, production of vascular endothelial growth factor (VEGF) protein in MCF-7 breast cancer cells and E14 MESCs, but decreased in MDA-MB-231 breast cancer cells. We conclude that cancer procoagulant could potentially play a part in angiogenesis in cancer and vascular development during embryonic development.

  8. Temporal changes in the carbohydrates expressed on BG01 human embryonic stem cells during differentiation as embryoid bodies.

    PubMed

    Wearne, Kimberly A; Winter, Harry C; Goldstein, Irwin J

    2008-02-01

    Cell surface carbohydrates present on BG01 human embryonic stem cells after 28 days of differentiation were examined using two classes of carbohydrate binding proteins: lectins and antibodies specific for carbohydrate epitopes. Specificity of lectin staining was verified using carbohydrate ligands to block lectin interaction, glycohydrolases to cleave specific sugar residues that are receptors for these proteins, and periodate oxidation to destroy susceptible sugar residues. Specific antibodies were used to identify various tissue types and germ layers present in the 12- and 28-day differentiating embryoid bodies. Results from 12 and 28-day differentiated embryoid bodies were compared to determine changes over time. A slight increase in the sialylation of alpha-GalNAc was seen between 12 and 28 days of differentiation due to the presence of sialyl Tn and/or other sialylated alpha-GalNAc residues. Increases were also observed in GalNAc, the T antigen (Gal beta1,3 GalNAc), and difucosylated LacNAc residues during this time interval. Additionally, some distinct differences in the pattern of lectin staining between 12 and 28 days were observed. Not unexpectedly, the presence of most differentiated cell-types increased during this time period with the exception of neural progenitors, which decreased. Undifferentiated cells, which were prevalent in the 12-day EBs, were undetectable after 28 days. We conclude that several changes in glycosylation occurred during the differentiation of embryonic stem cells, and that these changes may play a role in embryonic development.

  9. Hair cell regeneration or the expression of related factors that regulate the fate specification of supporting cells in the cochlear ducts of embryonic and posthatch chickens.

    PubMed

    Jiang, Lingling; Jin, Ran; Xu, Jincao; Ji, Yubin; Zhang, Meiguang; Zhang, Xuebo; Zhang, Xinwen; Han, Zhongming; Zeng, Shaoju

    2016-02-01

    Hair cells in posthatch chickens regenerate spontaneously through mitosis or the transdifferentiation of supporting cells in response to antibiotic injury. However, how embryonic chicken cochleae respond to antibiotic treatment remains unknown. This study is the first to indicate that unlike hair cells in posthatch chickens, the auditory epithelium was free from antibiotic injury (25-250 mg gentamicin/kg) in embryonic chickens, although FITC-conjugated gentamicin actually reached embryonic hair cells. Next, we examined and counted the cells and performed labeling for BrdU, Sox2, Atoh1/Math1, PV or p27(kip1) (triple or double labeling) in the injured cochlea ducts after gentamicin treatment at 2 h (h), 15 h, 24 h, 2 days (d), 3 d and 7 d after BrdU treatment in posthatch chickens. Our results indicated that following gentamicin administration, proliferating cells (BrdU+) were labeled for Atoh1/Math1 in the damaged areas 3d after gentamicin administration, whereas hair cells (PV+) renewed through mitosis (BrdU+) or direct transdifferentiation (BrdU-) were evident only after 5 d of gentamicin administration. In addition, Sox2 expression was up-regulated in triggered supporting cells at an early stage of regeneration, but stopped at the advent of mature hair cells. Our study also indicated that p27(kip1) was expressed in both hair cells and supporting cells but was down-regulated in a subgroup of the supporting cells that gave rise to hair cells. These data and the obtained dynamic changes of the cells labeled for BrdU, Sox2, Atoh1/Math1, PV or p27(kip1) are useful for understanding supporting cell behaviors and their fate specification during hair cell regeneration.

  10. Expression of thyroid hormone transporters and deiodinases at the brain barriers in the embryonic chicken: Insights into the regulation of thyroid hormone availability during neurodevelopment.

    PubMed

    Van Herck, Stijn L J; Delbaere, Joke; Bourgeois, Nele M A; McAllan, Bronwyn M; Richardson, Samantha J; Darras, Veerle M

    2015-04-01

    Thyroid hormones (THs) are key regulators in the development of the vertebrate brain. Therefore, TH access to the developing brain needs to be strictly regulated. The brain barriers separate the central nervous system from the rest of the body and impose specific transport mechanisms on the exchange of molecules between the general circulation and the nervous system. As such they form ideal structures for regulating TH exchange between the blood and the brain. To investigate the mechanism by which the developing brain regulates TH availability, we investigated the ontogenetic expression profiles of TH transporters, deiodinases and the TH distributor protein transthyretin (TTR) at the brain barriers during embryonic and early postnatal development using the chicken as a model. In situ hybridisation revealed expression of the TH transporters monocarboxylate transporter 8 (MCT8) and 10 (MCT10), organic anion transporting polypeptide 1C1 (OATP1C1) and L-type amino acid transporter 1 (LAT1) and the inactivating type 3 deiodinase (D3) in the choroid plexus which forms the blood-cerebrospinal fluid barrier. This was confirmed by quantitative PCR which additionally indicated strongly increasing expression of TTR as well as detectable expression of the activating type 2 deiodinase (D2) and the (in)activating type 1 deiodinase (D1). In the brain capillaries forming the blood-brain barrier in situ hybridisation showed exclusive expression of LAT1 and D2. The combined presence of LAT1 and D2 in brain capillaries suggests that the blood-brain barrier forms the main route for receptor-active T3 uptake into the embryonic chicken brain. Expression of multiple transporters, deiodinases and TTR in the choroid plexus indicates that the blood-cerebrospinal fluid barrier is also important in regulating early TH availability. The impact of these barrier systems can be deduced from the clear difference in T3 and T4 levels as well as the T3/T4 ratio between the developing brain and the

  11. Detecting the developmental toxicity of bFGF in the embryonic stem cell test using differential gene expression of differentiation-related genes.

    PubMed

    Deng, Shu-Qin; Xu, Hua; He, Qing; Jiang, Hai-Xiang; Su, Ben-Jin; Zhang, Qi-Hao

    2014-06-01

    Basic fibroblast growth factor (bFGF) is a mitogenic cytokine that can stimulate mesoderm-and neuroectoderm-originated cell proliferation. This study was performed to investigate the effects of bFGF on cell differentiation and the expression of specific markers at different embryonic developmental stages. We firstly evaluated the embryotoxic potential of bFGF in vitro using a modified EST protocol. Sequentially, we further investigated how bFGF impact the different tissue-special genes and proteins expressions during the differentiation of murine ES cells in vitro and attempt to reveal the effects of bFGF on differentiation processes. This analysis was focused on key tissue- and stage-specific genes involved in ectodermal, mesodermal, and endodermal differentiation, including ectodermal-specific gene Nestin, Oligo2 and Syn, mesodermal-specific gene MHC and MyoD, and endodermal-specific gene GATA6, TTR and ALB, as well as undifferentiated gene Sox-2 and Oct-4. The results demonstrate that bFGF could promote expression of ectodermal-specific genes and protein, but suppress the expressions of endoderm-specific and some mesoderm-specific gene and protein. A conclusion can be drawn that bFGF exhibits weak embryotoxicity and mainly promotes ES cell differentiation towards the ectodermal lineages but suppress differentiation into endoderm lineages. These opposing effects of bFGF on the embryonic development of the three germ layers may be related to its weak embryotoxic potential. More specifically, inhibition of expression of the endodermal-specific markers transthyretin (TTR), and albumin (ALB) by bFGF may be of more value in detecting the embryotoxic potential of bFGF.

  12. Proximal promoter elements of the human zeta-globin gene confer embryonic-specific expression on a linked reporter gene in transgenic mice.

    PubMed

    Pondel, M D; Sharpe, J A; Clark, S; Pearson, L; Wood, W G; Proudfoot, N J

    1996-11-01

    We have investigated the transcriptional regulation of the human embryonic zeta-globin gene promoter. First, we examined the effect that deletion of sequences 5' to zeta-globin's CCAAT box have on zeta-promoter activity in erythroid cell lines. Deletions of sequences between -116 and -556 (cap = 0) had little effect while further deletion to -84 reduced zeta-promoter activity by only 2-3-fold in both transiently and stably transfected erythroid cells. Constructs containing 67, 84 and 556 bp of zeta-globin 5' flanking region linked to a beta-galactosidase reporter gene (lacZ) and hypersensitive site -40 (HS-40) of the human alpha-globin gene cluster were then employed for the generation of transgenic mice. LacZ expression from all constructs, including a 67 bp zeta-globin promoter, was erythroid-specific and most active between 8.5 and 10.5 days post-fertilisation. By 16.5 days gestation, lacZ expression dropped 40-100-fold. These results suggest that embryonic-specific activation of the human zeta-globin promoter is conferred by a 67 bp zeta-promoter fragment containing only a CCAAT and TATA box. PMID:8932366

  13. Marked change in microRNA expression during neuronal differentiation of human teratocarcinoma NTera2D1 and mouse embryonal carcinoma P19 cells

    SciTech Connect

    Hohjoh, Hirohiko Fukushima, Tatsunobu

    2007-10-19

    MicroRNAs (miRNAs) are small noncoding RNAs, with a length of 19-23 nucleotides, which appear to be involved in the regulation of gene expression by inhibiting the translation of messenger RNAs carrying partially or nearly complementary sequences to the miRNAs in their 3' untranslated regions. Expression analysis of miRNAs is necessary to understand their complex role in the regulation of gene expression during the development, differentiation and proliferation of cells. Here we report on the expression profile analysis of miRNAs in human teratocarcinoma NTere2D1, mouse embryonic carcinoma P19, mouse neuroblastoma Neuro2a and rat pheochromocytoma PC12D cells, which can be induced into differentiated cells with long neuritic processes, i.e., after cell differentiation, such that the resultant cells look similar to neuronal cells. The data presented here indicate marked changes in the expression of miRNAs, as well as genes related to neuronal development, occurred in the differentiation of NTera2D1 and P19 cells. Significant changes in miRNA expression were not observed in Neuro2a and PC12D cells, although they showed apparent morphologic change between undifferentiated and differentiated cells. Of the miRNAs investigated, the expression of miRNAs belonging to the miR-302 cluster, which is known to be specifically expressed in embryonic stem cells, and of miR-124a specific to the brain, appeared to be markedly changed. The miR-302 cluster was potently expressed in undifferentiated NTera2D1 and P19 cells, but hardly in differentiated cells, such that miR-124a showed an opposite expression pattern to the miR-302 cluster. Based on these observations, it is suggested that the miR-302 cluster and miR-124a may be useful molecular indicators in the assessment of degree of undifferentiation and/or differentiation in the course of neuronal differentiation.

  14. Expression of biomarker genes of differentiation in D3 mouse embryonic stem cells after exposure to different embryotoxicant and non-embryotoxicant model chemicals

    PubMed Central

    Romero, Andrea C.; del Río, Eva; Vilanova, Eugenio; Sogorb, Miguel A.

    2015-01-01

    There is a necessity to develop in vitro methods for testing embryotoxicity (Romero et al., 2015) [1]. We studied the progress of D3 mouse embryonic stem cells differentiation exposed to model embryotoxicants and non-embryotoxicants chemicals through the expression of biomarker genes. We studied a set of 16 different genes biomarkers of general cellular processes (Cdk1, Myc, Jun, Mixl, Cer and Wnt3), ectoderm formation (Nrcam, Nes, Shh and Pnpla6), mesoderm formation (Mesp1, Vegfa, Myo1e and Hdac7) and endoderm formation (Flk1 and Afp). We offer dose response in order to derive the concentration causing either 50% or 200% of expression of the biomarker gene. These records revealed to be a valuable end-point to predict in vitro the embryotoxicity of chemicals (Romero et al., 2015) [1]. PMID:26568980

  15. Expression of neuropeptides and anoctamin 1 in the embryonic and adult zebrafish intestine, revealing neuronal subpopulations and ICC-like cells.

    PubMed

    Uyttebroek, Leen; Shepherd, Iain T; Hubens, Guy; Timmermans, Jean-Pierre; Van Nassauw, Luc

    2013-11-01

    This immunohistochemical study in zebrafish aims to extend the neurochemical characterization of enteric neuronal subpopulations and to validate a marker for identification of interstitial cells of Cajal (ICC). The expression of neuropeptides and anoctamin 1 (Ano1), a selective ICC marker in mammals, was analyzed in both embryonic and adult intestine. Neuropeptides were present from 3 days postfertilization (dpf). At 3 dpf, galanin-positive nerve fibers were found in the proximal intestine, while calcitonin gene-related peptide (CGRP)- and substance P-expressing fibers appeared in the distal intestine. At 5 dpf, immunoreactive fibers were present along the entire intestinal length, indicating a well-developed peptidergic innervation at the onset of feeding. In the adult intestine, vasoactive intestinal peptide (VIP), pituitary adenylate cyclase-activating peptide (PACAP), galanin, CGRP and substance P were detected in nerve fibers. Colchicine pretreatment enhanced only VIP and PACAP immunoreactivity. VIP and PACAP were coexpressed in enteric neurons. Colocalization stainings revealed three neuronal subpopulations expressing VIP and PACAP: a nitrergic noncholinergic subpopulation, a serotonergic subpopulation and a subpopulation expressing no other markers. Ano1-immunostaining revealed a 3-dimensional network in the adult intestine containing multipolar cells at the myenteric plexus and bipolar cells interspersed between circular smooth muscle cells. Ano1 immunoreactivity first appeared at 3 dpf, indicative of the onset of proliferation of ICC-like cells. It is shown that the Ano1 antiserum is a selective marker of ICC-like cells in the zebrafish intestine. Finally, it is hypothesized that ICC-like cells mediate the spontaneous regular activity of the embryonic intestine.

  16. PFOS, PFNA, and PFOA sub-lethal exposure to embryonic zebrafish have different toxicity profiles in terms of morphometrics, behavior and gene expression.

    PubMed

    Jantzen, Carrie E; Annunziato, Kate A; Bugel, Sean M; Cooper, Keith R

    2016-06-01

    Polyfluorinated compounds (PFC) are a class of anthropogenic, persistent and toxic chemicals. PFCs are detected worldwide and consist of fluorinated carbon chains of varying length, terminal groups, and industrial uses. Previous zebrafish studies in the literature as well as our own studies have shown that exposure to these chemicals at a low range of concentrations (0.02-2.0μM; 20-2000ppb) resulted in chemical specific developmental defects and reduced post hatch survival. It was hypothesized that sub-lethal embryonic exposure to perfluorooctanesulfonic acid (PFOS), perfluorononanoic acid (PFNA), or perfluorooctanoic acid (PFOA) would result in different responses with regard to morphometric, behavior, and gene expression in both yolk sac fry and larval zebrafish. Zebrafish were exposed to PFOS, PFOA, and PFNA (0.02, 0.2, 2.0μM) for the first five days post fertilization (dpf) and analyzed for morphometrics (5 dpf, 14 dpf), targeted gene expression (5 dpf, 14 dpf), and locomotive behavior (14 dpf). All three PFCs commonly resulted in a decrease in total body length, increased tfc3a (muscle development) expression and decreased ap1s (protein transport) expression at 5dpf, and hyperactive locomotor activity 14 dpf. All other endpoints measured at both life-stage time points varied between each of the PFCs. PFOS, PFNA, and PFOA exposure resulted in significantly altered responses in terms of morphometric, locomotion, and gene expression endpoints, which could be manifested in field exposed teleosts.

  17. Human Parthenogenetic Embryonic Stem Cell–Derived Neural Stem Cells Express HLA-G and Show Unique Resistance to NK Cell–Mediated Killing

    PubMed Central

    Schmitt, Jessica; Eckardt, Sigrid; Schlegel, Paul G; Sirén, Anna-Leena; Bruttel, Valentin S; McLaughlin, K John; Wischhusen, Jörg; Müller, Albrecht M

    2015-01-01

    Parent-of-origin imprints have been implicated in the regulation of neural differentiation and brain development. Previously we have shown that, despite the lack of a paternal genome, human parthenogenetic (PG) embryonic stem cells (hESCs) can form proliferating neural stem cells (NSCs) that are capable of differentiation into physiologically functional neurons while maintaining allele-specific expression of imprinted genes. Since biparental (“normal”) hESC–derived NSCs (N NSCs) are targeted by immune cells, we characterized the immunogenicity of PG NSCs. Flow cytometry and immunocytochemistry revealed that both N NSCs and PG NSCs exhibited surface expression of human leukocyte antigen (HLA) class I but not HLA-DR molecules. Functional analyses using an in vitro mixed lymphocyte reaction assay resulted in less proliferation of peripheral blood mononuclear cells (PBMC) with PG compared with N NSCs. In addition, natural killer (NK) cells cytolyzed PG less than N NSCs. At a molecular level, expression analyses of immune regulatory factors revealed higher HLA-G levels in PG compared with N NSCs. In line with this finding, MIR152, which represses HLA-G expression, is less transcribed in PG compared with N cells. Blockage of HLA-G receptors ILT2 and KIR2DL4 on natural killer cell leukemia (NKL) cells increased cytolysis of PG NSCs. Together this indicates that PG NSCs have unique immunological properties due to elevated HLA-G expression. PMID:25811991

  18. Analysis of LPS-induced, NFκB-dependent interleukin-8 transcription in kidney embryonic cell line expressing TLR4 using luciferase assay.

    PubMed

    Yunusova, Tamara; Akhtar, Mumtaz; Poltoratsky, Vladimir

    2014-01-01

    Gene expression is orchestrated by a complex network of signal transduction pathways that typically originate on cell surface receptors and culminate in DNA-binding transcription factors, which translocate to the nucleus and bind cis-regulatory elements in promoter regions of genes, thereby inducing de novo synthesis of the nascent RNA transcripts and their splicing. Gene expression arrays monitor abundance of the matured, spliced cDNA, which undergoes additional posttranscriptional modifications that greatly affect the half-life of the cDNA. Thus, the relative abundance of cDNA is not necessarily commensurable with the activity of promoters of the corresponding genes. In contrast, reporter gene assays provide valuable insight into the regulation of gene expression at the level of transcription and allow for discerning the contribution of individual transcription factors into changes in gene expression. Here, we describe a robust reporter gene assay method that is useful for exploration of transcription regulatory network, which regulates gene expression in response to inflammation. The method is exemplified by using the promoter region of the prototypic pro-inflammatory chemokine interleukin-8 (IL-8, CXCL8), which plays an important role in immune response as well as carcinogenesis. Using the luciferase reporter gene assay, we analyze the activation status of the IL-8 promoter in lipopolysaccharide (LPS)-stimulated human embryonic kidney cells. PMID:24908317

  19. Analysis of LPS-induced, NFκB-dependent interleukin-8 transcription in kidney embryonic cell line expressing TLR4 using luciferase assay.

    PubMed

    Yunusova, Tamara; Akhtar, Mumtaz; Poltoratsky, Vladimir

    2014-01-01

    Gene expression is orchestrated by a complex network of signal transduction pathways that typically originate on cell surface receptors and culminate in DNA-binding transcription factors, which translocate to the nucleus and bind cis-regulatory elements in promoter regions of genes, thereby inducing de novo synthesis of the nascent RNA transcripts and their splicing. Gene expression arrays monitor abundance of the matured, spliced cDNA, which undergoes additional posttranscriptional modifications that greatly affect the half-life of the cDNA. Thus, the relative abundance of cDNA is not necessarily commensurable with the activity of promoters of the corresponding genes. In contrast, reporter gene assays provide valuable insight into the regulation of gene expression at the level of transcription and allow for discerning the contribution of individual transcription factors into changes in gene expression. Here, we describe a robust reporter gene assay method that is useful for exploration of transcription regulatory network, which regulates gene expression in response to inflammation. The method is exemplified by using the promoter region of the prototypic pro-inflammatory chemokine interleukin-8 (IL-8, CXCL8), which plays an important role in immune response as well as carcinogenesis. Using the luciferase reporter gene assay, we analyze the activation status of the IL-8 promoter in lipopolysaccharide (LPS)-stimulated human embryonic kidney cells.

  20. Enhanced therapeutic neovascularization by CD31-expressing cells and embryonic stem cell-derived endothelial cells engineered with chitosan hydrogel containing VEGF-releasing microtubes.

    PubMed

    Lee, Sangho; Valmikinathan, Chandra M; Byun, Jaemin; Kim, Sangsung; Lee, Geehee; Mokarram, Nassir; Pai, S Balakrishna; Um, Elisa; Bellamkonda, Ravi V; Yoon, Young-sup

    2015-09-01

    Various stem cells and their progeny have been used therapeutically for vascular regeneration. One of the major hurdles for cell-based therapy is low cell retention in vivo, and to improve cell survival several biomaterials have been used to encapsulate cells before transplantation. Vascular regeneration involves new blood vessel formation which consists of two processes, vasculogenesis and angiogenesis. While embryonic stem cell (ESC)-derived endothelial cells (ESC-ECs) have clearer vasculogenic potency, adult cells exert their effects mainly through paracrine angiogenic activities. While these two cells have seemingly complementary advantages, there have not been any studies to date combining these two cell types for vascular regeneration. We have developed a novel chitosan-based hydrogel construct that encapsulates both CD31-expressing BM-mononuclear cells (BM-CD31(+) cells) and ESC-ECs, and is loaded with VEGF-releasing microtubes. This cell construct showed high cell survival and minimal cytotoxicity in vitro. When implanted into a mouse model of hindlimb ischemia, it induced robust cell retention, neovascularization through vasculogenesis and angiogenesis, and efficiently induced recovery of blood flow in ischemic hindlimbs. This chitosan-based hydrogel encapsulating mixed adult and embryonic cell derivatives and containing VEGF can serve as a novel platform for treating various cardiovascular diseases.

  1. Comparisons of the effects of TCDD and hydrocortisone on growth factor expression provide insight into their interaction in the embryonic mouse palate

    SciTech Connect

    Abbott, B.D.; Harris, M.W.; Birnbaum, L.S.

    1992-01-01

    Cleft palate (CP) can be induced in embryonic mice by a wide range of compounds, including glucocorticoids and 2,3,7,8-tyetrachlorodibenzo-p-dioxin (TCDD). Hydrocortisone (HC), a glucocorticoid, retards embryonic growth producing small palatal shelves, while TCDD exposure blocks the fusion of normally sized shelves. TCDD induction of CP involves altered differentiation of the medial epithelial cells. Recent studies indicate that growth factors such as EGF, TGF-alpha, TGF-beta1, and TGF-beta2 are involved in palatogenesis, regulating proliferation, differentiation, and extracellular matrix production. A synergism has been observed between HC and TCDD in which doses too low to induce CP alone are able to produce >90% incidence when coadministered. In the present study a standard teratology protocol was performed in C57BL/6N mice to examine the synergism at doses lower than those previously published. Data from the study indicate synergistic interactions at doses as low as 3 micrograms TCDD/kg + 1 mg HC/kg. This extreme sensitivity suggests the involvement of a receptor-mediated mechanism possibly resulting in altered regulation of gene expression. (Copyright (c) 1992 Wiley-Liss, Inc.)

  2. Alcohol modulates expression of DNA methyltranferases and methyl CpG-/CpG domain-binding proteins in murine embryonic fibroblasts

    PubMed Central

    Mukhopadhyay, Partha; Rezzoug, Francine; Kaikaus, Jahanzeb; Greene, Robert M.; Pisano, M. Michele

    2013-01-01

    Fetal alcohol syndrome (FAS), presenting with a constellation of neuro-/psychological, craniofacial and cardiac abnormalities, occurs frequently in offspring of women who consume alcohol during pregnancy, with a prevalence of 1–3 per 1000 livebirths. The present study was designed to test the hypothesis that alcohol alters global DNA methylation, and modulates expression of the DNA methyltransferases (DNMTs) and various methyl CpG-binding proteins. Murine embryonic fibroblasts (MEFs), utilized as an in vitro embryonic model system, demonstrated ~5% reduction in global DNA methylation following exposure to 200 mM ethanol. In addition, ethanol induced degradation of DNA methyltransferases (DNMT-1, DNMT-3a, and DNMT-3b), as well as the methyl CpG-binding proteins (MeCP-2, MBD-2 and MBD-3), in MEF cells by the proteasomal pathway. Such degradation could be completely rescued by pretreatment of MEF cells with the proteasomal inhibitor, MG-132. These data support a potential epigenetic molecular mechanism underlying the pathogenesis of FAS during mammalian development. PMID:23395981

  3. Enhanced Therapeutic Neovascularization by CD31-Expressing Cells and Embryonic Stem Cell-Derived Endothelial Cells Engineered with Chitosan Hydrogel Containing VEGF-Releasing Microtubes

    PubMed Central

    Lee, Sangho; Valmikinathan, Chandra M.; Byun, Jaemin; Kim, Sangsung; Lee, Geehee; Mokarram, Nassir; Pai, S. Balakrishna; Um, Elisa; Bellamkonda, Ravi V.; Yoon, Youngsup

    2015-01-01

    Various stem cells and their progeny have been used therapeutically for vascular regeneration. One of the major hurdles for cell-based therapy is low cell retention in vivo, and to improve cell survival several biomaterials have been used to encapsulate cells before transplantation. Vascular regeneration involves new blood vessel formation which consists of two processes, vasculogenesis and angiogenesis. While embryonic stem cell (ESC)-derived endothelial cells (ESC-ECs) have clearer vasculogenic potency, adult cells exert their effects mainly through paracrine angiogenic activities. While these two cells have seemingly complementary advantages, there have not been any studies to date combining these two cell types for vascular regeneration. We have developed a novel chitosan-based hydrogel construct that encapsulates both CD31-expressing BM-mononuclear cells (BM-CD31+ cells) and ESC-ECs, and is loaded with VEGF-releasing microtubes. This cell construct showed high cell survival and minimal cytotoxicity in vitro. When implanted into a mouse model of hindlimb ischemia, it induced robust cell retention, neovascularization through vasculogenesis and angiogenesis, and efficiently induced recovery of blood flow in ischemic hindlimbs. This chitosan-based hydrogel encapsulating mixed adult and embryonic cell derivatives and containing VEGF can serve as a novel platform for treating various cardiovascular diseases. PMID:26102992

  4. Expression of stage-specific embryonic antigen-4 (SSEA-4) defines spontaneous loss of epithelial phenotype in human solid tumor cells.

    PubMed

    Sivasubramaniyan, Kavitha; Harichandan, Abhishek; Schilbach, Karin; Mack, Andreas F; Bedke, Jens; Stenzl, Arnulf; Kanz, Lothar; Niederfellner, Gerhard; Bühring, Hans-Jörg

    2015-08-01

    Stage-specific embryonic antigen-4 (SSEA-4) is a glycosphingolipid, which is overexpressed in some cancers and has been linked to disease progression. However, little is known about the functions of SSEA-4 and the characteristics of SSEA-4 expressing tumor cells. Our studies identified SSEA-4 expression on a subpopulation of cells in many solid tumor cell lines but not in leukemic cell lines. Fluorescence-activated cell sorting-sorted SSEA-4(+) prostate cancer cells formed fibroblast-like colonies with limited cell-cell contacts, whereas SSEA-4(-) cells formed cobblestone-like epithelial colonies. Only colonies derived from SSEA-4(+) cells were enriched for pluripotent embryonic stem cell markers. Moreover, major epithelial cell-associated markers Claudin-7, E-cadherin, ESRP1 and GRHL2 were down-regulated in the SSEA-4(+) fraction of DU145 and HCT-116 cells. Similar to cell lines, SSEA-4(+) primary prostate tumor cells also showed down-regulation of epithelial cell-associated markers. In addition, they showed up-regulation of epithelial-to-mesenchymal transition as well as mesenchymal markers. Furthermore, SSEA-4(+) cells escape from adhesive colonies spontaneously and form invadopodia-like migratory structures, in which SSEA-4, cortactin as well as active pPI3K, pAkt and pSrc are enriched and colocalized. Finally, SSEA-4(+) cells displayed strong tumorigenic ability and stable knockdown of SSEA-4 synthesis resulted in decreased cellular adhesion to different extracellular matrices. In conclusion, we introduce SSEA-4 as a novel marker to identify heterogeneous, invasive subpopulations of tumor cells. Moreover, increased cell-surface SSEA-4 expression is associated with the loss of cell-cell interactions and the gain of a migratory phenotype, suggesting an important role of SSEA-4 in cancer invasion by influencing cellular adhesion to the extracellular matrix.

  5. Human Hand1 basic helix-loop-helix (bHLH) protein: extra-embryonic expression pattern, interaction partners and identification of its transcriptional repressor domains.

    PubMed

    Knöfler, Martin; Meinhardt, Gudrun; Bauer, Sandra; Loregger, Thomas; Vasicek, Richard; Bloor, Debra J; Kimber, Susan J; Husslein, Peter

    2002-02-01

    The basic helix-loop-helix (bHLH) transcription factor, Hand1, plays an important role in the development of the murine extra-embryonic trophoblast cell lineage. In the present study, we have analysed the expression of Hand1 in human extra-embryonic cell types and determined its binding specificity and transcriptional activity upon interaction with different class A bHLH factors. Northern blotting and in situ hybridization showed that Hand1 mRNA is specifically expressed in amnion cells at different stages of gestation. Accordingly, we demonstrate that the protein is exclusively produced in the amniotic epithelium in vivo and in purified amnion cells in vitro using a novel polyclonal Hand1 antiserum. Reverse transcriptase-PCR and immunohistochemical staining of blastocysts revealed the production of Hand1 mRNA and polypeptide in the trophectodermal cell layer. In the presence of E12/E47, Hand1 stimulated the transcription of luciferase reporters harbouring degenerate E-boxes, suggesting that E-proteins are potential dimerization partners in trophoblastic tumour and amnion cells. In contrast, Hand1 diminished E12/E47-dependent transcription of reporters containing perfect E-boxes by inhibiting the interaction of Hand1/E-protein heterodimers with the palindromic cognate sequence. Furthermore, we show that Hand1 down-regulated GAL-E12-dependent reporter expression, indicating that the protein can also act directly as a transcriptional repressor. Mutational analyses of GAL-Hand1 suggested that two protein regions located within its N-terminal portion mainly confer the repressing activity. In conclusion, human Hand1 may play an important role in the differentiation of the amniotic membrane and the pre-implanting trophoblast. Furthermore, the data suggest that Hand1 can act as a repressor by two independent mechanisms; sequestration of class A bHLH factors from E-boxes and inhibition of their transcriptional activity.

  6. Expression of cumulus-oocyte complex genes and embryonic development in goats subjected to progestogen-based estrus synchronization.

    PubMed

    Thammasiri, Jiratti; Navanukraw, Chainarong; Uriyapongson, Suthipong; Khanthusaeng, Vilaivan; Kamollirt, Chuchat

    2016-07-15

    The objective was to investigate the effect of short-term (7 days) and long-term (14 days) progesterone-based estrus synchronization on number of follicles, progesterone concentrations, cumulus-oocyte complex (COC) gene expression, and embryonic development in goats. Nulliparous Thai-native goats (n = 45) were randomly assigned to one of two estrus synchronization treatments. Goats were treated with intravaginal sponges containing 60-mg medroxyprogesterone acetate (MAP; Synchrogest esponjas, Spain) during 7 or 14 days (short-term or long-term protocol, respectively). Multiple follicular development was induced by intramuscularly injections of 300-IU eCG in both groups (1 day before sponge withdrawal). An ovariectomy was performed at 24 hours after sponge removal to evaluate number of follicle and collect oocyte for IVF. Oocyte quality (healthy or nonhealthy) was determined by morphology of COCs before IVM. Recovery of COCs and total cellular RNA isolation were applied to determine apoptosis-related gene expression. After IVF, embryos were evaluated during the eight-day culture as numbers of cleaved oocyte, morula, and blastocyst embryo. Total numbers of follicles and oocytes were similar for both treatments. Plasma progesterone concentrations were not different during MAP insertion period (P > 0.05). However, goats that received the short-term protocol had a greater number of 4 to 6-mm follicle, healthy oocytes, cleaved oocytes, and morula embryos than goats that received the long-term protocol (P < 0.01). In addition, the expression of B-cell lymphoma 2 messenger RNA was greater (P < 0.05) in COCs derived from the 7 days MAP-treated when compared to the 14 days MAP-treated goats. These data highlight that the 7-day progestin-based treatment may contribute to quality of oocytes and embryonic development in goats.

  7. sRNA-seq analysis of human embryonic stem cells and definitive endoderm reveals differentially expressed microRNAs and novel IsomiRs with distinct targets.

    PubMed

    Hinton, Andrew; Hunter, Shaun E; Afrikanova, Ivka; Jones, G Adam; Lopez, Ana D; Fogel, Gary B; Hayek, Alberto; King, Charles C

    2014-09-01

    MicroRNAs (miRNAs) are noncoding, regulatory RNAs expressed dynamically during differentiation of human embryonic stem cells (hESCs) into defined lineages. Mapping developmental expression of miRNAs during transition from pluripotency to definitive endoderm (DE) should help to elucidate the mechanisms underlying lineage specification and ultimately enhance differentiation protocols. In this report, next generation sequencing was used to build upon our previous analysis of miRNA expression in human hESCs and DE. From millions of sequencing reads, 747 and 734 annotated miRNAs were identified in pluripotent and DE cells, respectively, including 77 differentially expressed miRNAs. Among these, four of the top five upregulated miRNAs were previously undetected in DE. Furthermore, the stem-loop for miR-302a, an important miRNA for both hESCs self-renewal and endoderm specification, produced several highly expressed miRNA species (isomiRs). Overall, isomiRs represented >10% of sequencing reads in >40% of all detected stem-loop arms, suggesting that the impact of these abundant miRNA species may have been overlooked in previous studies. Because of their relative abundance, the role of differential isomiR targeting was studied using the miR-302 cluster as a model system. A miRNA mimetic for miR-302a-5p, but not miR-302a-5p(+3), decreased expression of orthodenticle homeobox 2 (OTX2). Conversely, isomiR 302a-5p(+3) selectively decreased expression of tuberous sclerosis protein 1, but not OTX2, indicating nonoverlapping specificity of miRNA processing variants. Taken together, our characterization of miRNA expression, which includes novel miRNAs and isomiRs, helps establish a foundation for understanding the role of miRNAs in DE formation and selective targeting by isomiRs.

  8. Large-scale atlas of microarray data reveals the distinct expression landscape of different tissues in Arabidopsis.

    PubMed

    He, Fei; Yoo, Shinjae; Wang, Daifeng; Kumari, Sunita; Gerstein, Mark; Ware, Doreen; Maslov, Sergei

    2016-06-01

    Transcriptome data sets from thousands of samples of the model plant Arabidopsis thaliana have been collectively generated by multiple individual labs. Although integration and meta-analysis of these samples has become routine in the plant research community, it is often hampered by a lack of metadata or differences in annotation styles of different labs. In this study, we carefully selected and integrated 6057 Arabidopsis microarray expression samples from 304 experiments deposited to the Gene Expression Omnibus (GEO) at the National Center for Biotechnology Information (NCBI). Metadata such as tissue type, growth conditions and developmental stage were manually curated for each sample. We then studied the global expression landscape of the integrated data set and found that samples of the same tissue tend to be more similar to each other than to samples of other tissues, even in different growth conditions or developmental stages. Root has the most distinct transcriptome, compared with aerial tissues, but the transcriptome of cultured root is more similar to the transcriptome of aerial tissues, as the cultured root samples lost their cellular identity. Using a simple computational classification method, we showed that the tissue type of a sample can be successfully predicted based on its expression profile, opening the door for automatic metadata extraction and facilitating the re-use of plant transcriptome data. As a proof of principle, we applied our automated annotation pipeline to 708 RNA-seq samples from public repositories and verified the accuracy of our predictions with sample metadata provided by the authors. PMID:27015116

  9. Equarin, a novel soluble molecule expressed with polarity at chick embryonic lens equator, is involved in eye formation.

    PubMed

    Mu, Hong; Ohta, Kunimasa; Kuriyama, Sei; Shimada, Naoko; Tanihara, Hidenobu; Yasuda, Kunio; Tanaka, Hideaki

    2003-02-01

    The lens plays an important role in eye development. To investigate the molecular mechanisms involved, we used signal sequence trap screens with a chicken lens cDNA library and identified a novel secreted molecule, equarin. Equarin encodes consensus repeat domains conserved in human SRPX and mouse Urb. In the embryonic eye, equarin transcript is detected exclusively in the lens, and persists in the lens equatorial region in a high-dorsal-to-low-ventral gradient. In vitro analysis of equarin protein indicated that after translation, it is modified, cleaved, and secreted to extracellular locations. Microinjection of equarin mRNA into Xenopus embryos induced abnormal eye development. These data suggest that equarin is involved in eye formation.

  10. High throughput screening for inhibitors of REST in neural derivatives of human embryonic stem cells reveals a chemical compound that promotes expression of neuronal genes.

    PubMed

    Charbord, Jérémie; Poydenot, Pauline; Bonnefond, Caroline; Feyeux, Maxime; Casagrande, Fabrice; Brinon, Benjamin; Francelle, Laetitia; Aurégan, Gwenaelle; Guillermier, Martine; Cailleret, Michel; Viegas, Pedro; Nicoleau, Camille; Martinat, Cécile; Brouillet, Emmanuel; Cattaneo, Elena; Peschanski, Marc; Lechuga, Marc; Perrier, Anselme L

    2013-09-01

    Decreased expression of neuronal genes such as brain-derived neurotrophic factor (BDNF) is associated with several neurological disorders. One molecular mechanism associated with Huntington disease (HD) is a discrete increase in the nuclear activity of the transcriptional repressor REST/NRSF binding to repressor element-1 (RE1) sequences. High-throughput screening of a library of 6,984 compounds with luciferase-assay measuring REST activity in neural derivatives of human embryonic stem cells led to identify two benzoimidazole-5-carboxamide derivatives that inhibited REST silencing in a RE1-dependent manner. The most potent compound, X5050, targeted REST degradation, but neither REST expression, RNA splicing nor binding to RE1 sequence. Differential transcriptomic analysis revealed the upregulation of neuronal genes targeted by REST in wild-type neural cells treated with X5050. This activity was confirmed in neural cells produced from human induced pluripotent stem cells derived from a HD patient. Acute intraventricular delivery of X5050 increased the expressions of BDNF and several other REST-regulated genes in the prefrontal cortex of mice with quinolinate-induced striatal lesions. This study demonstrates that the use of pluripotent stem cell derivatives can represent a crucial step toward the identification of pharmacological compounds with therapeutic potential in neurological affections involving decreased expression of neuronal genes associated to increased REST activity, such as Huntington disease. PMID:23712629

  11. Germ line and embryonic expression of Fex, a member of the Drosophila F-element retrotransposon family, is mediated by an internal cis-regulatory control region.

    PubMed Central

    Kerber, B; Fellert, S; Taubert, H; Hoch, M

    1996-01-01

    The F elements of Drosophila melanogaster belong to the superfamily of long interspersed nucleotide element retrotransposons. To date, F-element transcription has not been detected in flies. Here we describe the isolation of a member of the F-element family, termed Fex, which is transcribed in specific cells of the female and male germ lines and in various tissues during embryogenesis of D. melanogaster. Sequence analysis revealed that this element contains two complete open reading frames coding for a putative nucleic acid-binding protein and a putative reverse transcriptase. Functional analysis of the 5' region, using germ line transformation of Fex-lacZ reporter gene constructs, demonstrates that major aspects of tissue-specific Fex expression are controlled by internal cis-acting elements that lie in the putative coding region of open reading frame 1. These sequences mediate dynamic gene expression in eight expression domains during embryonic and germ line development. The capacity of the cis-regulatory region of the Fex element to mediate such complex expression patterns is unique among members of the long interspersed nucleotide element superfamily of retrotransposons and is reminiscent of regulatory regions of developmental control genes. PMID:8649411

  12. Neural differentiation of human embryonic stem cells as an in vitro tool for the study of the expression patterns of the neuronal cytoskeleton during neurogenesis.

    PubMed

    Liu, Chao; Zhong, Yongwang; Apostolou, Andria; Fang, Shengyun

    2013-09-13

    The neural differentiation of human embryonic stem cells (ESCs) is a potential tool for elucidating the key mechanisms involved in human neurogenesis. Nestin and β-III-tubulin, which are cytoskeleton proteins, are marker proteins of neural stem cells (NSCs) and neurons, respectively. However, the expression patterns of nestin and β-III-tubulin in neural derivatives from human ESCs remain unclear. In this study, we found that neural progenitor cells (NPCs) derived from H9 cells express high levels of nestin and musashi-1. In contrast, β-III-tubulin was weakly expressed in a few NPCs. Moreover, in these cells, nestin formed filament networks, whereas β-III-tubulin was distributed randomly as small particles. As the differentiation proceeded, the nestin filament networks and the β-III-tubulin particles were found in both the cell soma and the cellular processes. Moreover, the colocalization of nestin and β-III-tubulin was found mainly in the cell processes and neurite-like structures and not in the cell soma. These results may aid our understanding of the expression patterns of nestin and β-III-tubulin during the neural differentiation of H9 cells.

  13. The cell cycle- and insulin-signaling-inhibiting miRNA expression pattern of very small embryonic-like stem cells contributes to their quiescent state

    PubMed Central

    Maj, Magdalena; Schneider, Gabriela; Ratajczak, Janina; Suszynska, Malwina; Kucia, Magda

    2015-01-01

    Murine Oct4+, very small embryonic-like stem cells (VSELs), are a quiescent stem cell population that requires a supportive co-culture layer to proliferate and/or to differentiate in vitro. Gene expression studies have revealed that the quiescence of these cells is due to changes in expression of parentally imprinted genes, including genes involved in cell cycle regulation and insulin and insulin-like growth factor signaling (IIS). To investigate the role of microRNAs (miRNAs) in VSEL quiescence, we performed miRNA studies in highly purified VSELs and observed a unique miRNA expression pattern in these cells. Specifically, we observed significant differences in the expression of certain miRNA species (relative to a reference cell population), including (i) miRNA-25_1 and miRNA-19 b, whose downregulation has the effect of upregulating cell cycle checkpoint genes and (ii) miRNA-675-3 p and miRNA-675-5 p, miRNA-292-5 p, miRNA-184, and miRNA-125 b, whose upregulation attenuates IIS. These observations are important for understanding the biology of these cells and for developing efficient ex vivo expansion strategies for VSELs isolated from adult tissues. PMID:25966979

  14. The cell cycle- and insulin-signaling-inhibiting miRNA expression pattern of very small embryonic-like stem cells contributes to their quiescent state.

    PubMed

    Maj, Magdalena; Schneider, Gabriela; Ratajczak, Janina; Suszynska, Malwina; Kucia, Magda; Ratajczak, Mariusz Z

    2015-08-01

    Murine Oct4(+), very small embryonic-like stem cells (VSELs), are a quiescent stem cell population that requires a supportive co-culture layer to proliferate and/or to differentiate in vitro. Gene expression studies have revealed that the quiescence of these cells is due to changes in expression of parentally imprinted genes, including genes involved in cell cycle regulation and insulin and insulin-like growth factor signaling (IIS). To investigate the role of microRNAs (miRNAs) in VSEL quiescence, we performed miRNA studies in highly purified VSELs and observed a unique miRNA expression pattern in these cells. Specifically, we observed significant differences in the expression of certain miRNA species (relative to a reference cell population), including (i) miRNA-25_1 and miRNA-19 b, whose downregulation has the effect of upregulating cell cycle checkpoint genes and (ii) miRNA-675-3 p and miRNA-675-5 p, miRNA-292-5 p, miRNA-184, and miRNA-125 b, whose upregulation attenuates IIS. These observations are important for understanding the biology of these cells and for developing efficient ex vivo expansion strategies for VSELs isolated from adult tissues.

  15. Spatiotemporal expression pattern of KIF21A during normal embryonic development and in congenital fibrosis of the extraocular muscles type 1 (CFEOM1).

    PubMed

    Desai, Jigar; Velo, Marie Pia Rogines; Yamada, Koki; Overman, Lynne M; Engle, Elizabeth C

    2012-01-01

    Congenital fibrosis of the extraocular muscles type 1 (CFEOM1) is a rare inherited strabismus syndrome characterized by non-progressive ophthalmoplegia. We previously identified that CFEOM1 results from heterozygous missense mutations in KIF21A, which encodes a kinesin motor protein. Here we evaluate the expression pattern of KIF21A in human brain and muscles of control and CFEOM1 patients, and during human and mouse embryonic development. KIF21A is expressed in the cell bodies, axons, and dendrites of many neuronal populations including those in the hippocampus, cerebral cortex, cerebellum, striatum, and motor neurons of the oculomotor, trochlear, and abducens nuclei from early development into maturity, and its spatial distribution is not altered in the CFEOM1 tissues available for study. Multiple splice isoforms of KIF21A are identified in human fetal brain, but none of the reported CFEOM1 mutations are located in or near the alternatively spliced exons. KIF21A immunoreactivity is also observed in extraocular and skeletal muscle biopsies of control and CFEOM1 patients, where it co-localizes with triadin, a marker of the excitation-contractile coupling system. The diffuse and widespread expression of KIF21A in the developing human and mouse central and peripheral nervous system as well as in extraocular muscle does not account for the restricted ocular phenotype observed in CFEOM1, nor does it permit the formal exclusion of a myogenic etiology based on expression patterns alone. PMID:22465342

  16. Stem cell-specific expression of Dax1 is conferred by STAT3 and Oct3/4 in embryonic stem cells

    SciTech Connect

    Sun Chuanhai; Nakatake, Yuhki; Ura, Hiroki; Akagi, Tadayuki; Niwa, Hitoshi; Koide, Hiroshi Yokota, Takashi

    2008-07-18

    Embryonic stem (ES) cells are pluripotent cells derived from inner cell mass of blastocysts. An orphan nuclear receptor, Dax1, is specifically expressed in undifferentiated ES cells and plays an important role in their self-renewal. The regulatory mechanism of Dax1 expression in ES cells, however, remains unknown. In this study, we found that STAT3 and Oct3/4, essential transcription factors for ES cell self-renewal, are involved in the regulation of Dax1 expression. Suppression of either STAT3 or Oct3/4 resulted in down-regulation of Dax1. Reporter assay identified putative binding sites for these factors in the promoter/enhancer region of the Dax1 gene. Chromatin immunoprecipitation analysis suggested the in vivo association of STAT3 and Oct3/4 with the putative sites. Furthermore, gel shift assay indicated that these transcription factors directly bind to their putative binding sites. These results suggest that STAT3 and Oct3/4 control the expression of Dax1 to maintain the self-renewal of ES cells.

  17. Transforming growth factor (TGF)beta, fibroblast growth factor (FGF) and retinoid signalling pathways promote pancreatic exocrine gene expression in mouse embryonic stem cells.

    PubMed Central

    Skoudy, Anouchka; Rovira, Meritxell; Savatier, Pierre; Martin, Franz; León-Quinto, Trinidad; Soria, Bernat; Real, Francisco X

    2004-01-01

    Extracellular signalling cues play a major role in the activation of differentiation programmes. Mouse embryonic stem (ES) cells are pluripotent and can differentiate into a wide variety of specialized cells. Recently, protocols designed to induce endocrine pancreatic differentiation in vitro have been designed but little information is currently available concerning the potential of ES cells to differentiate into acinar pancreatic cells. By using conditioned media of cultured foetal pancreatic rudiments, we demonstrate that ES cells can respond in vitro to signalling pathways involved in exocrine development and differentiation. In particular, modulation of the hedgehog, transforming growth factor beta, retinoid, and fibroblast growth factor pathways in ES cell-derived embryoid bodies (EB) resulted in increased levels of transcripts encoding pancreatic transcription factors and cytodifferentiation markers, as demonstrated by RT-PCR. In EB undergoing spontaneous differentiation, expression of the majority of the acinar genes (i.e. amylase, carboxypeptidase A and elastase) was induced after the expression of endocrine genes, as occurs in vivo during development. These data indicate that ES cells can undergo exocrine pancreatic differentiation with a kinetic pattern of expression reminiscent of pancreas development in vivo and that ES cells can be coaxed to express an acinar phenotype by activation of signalling pathways known to play a role in pancreatic development and differentiation. PMID:14733613

  18. Identification of stem cell transcriptional programs normally expressed in embryonic and neural stem cells in alloreactive CD8+ T cells mediating graft-versus-host disease

    PubMed Central

    Kato, Koji; Cui, Shuaiying; Kuick, Rork; Mineishi, Shin; Hexner, Elizabeth; Ferrara, James LM; Emerson, Stephen G.; Zhang, Yi

    2010-01-01

    A hallmark of graft-versus-host-disease (GVHD), a life-threatening complication after allogeneic hematopoietic stem cell transplantation, is the cytopathic injury of host tissues mediated by persistent alloreactive effector T cells (TE). However, the mechanisms that regulate the persistence of alloreactive TE during GVHD remain largely unknown. Using mouse GVHD models, we demonstrate that alloreactive CD8+ TE rapidly diminished in vivo when adoptively transferred into irradiated secondary congenic recipient mice. In contrast, although alloreactive CD8+ TE underwent massive apoptosis upon chronic exposure to alloantigens, they proliferated in vivo in secondary allogeneic recipients, persisted and caused severe GVHD. Thus, the continuous proliferation of alloreactive CD8+ TE, which is mediated by alloantigenic stimuli rather than homeostatic factors, is critical to maintaining their persistence. Gene expression profile analysis revealed that while alloreactive CD8+ TE increased the expression of genes associated with cell death, they activated a group of stem cell genes normally expressed in embryonic and neural stem cells. Most of these stem cell genes are associated with cell cycle regulation, DNA replication, chromatin modification and transcription. One of these genes, Ezh2, which encodes a chromatin modifying enzyme, was abundantly expressed in CD8+ TE. Silencing Ezh2 significantly reduced the proliferation of alloantigen-activated CD8+ T cells. Thus, these findings identify that a group of stem cell genes could play important roles in sustaining terminally differentiated alloreactive CD8+ TE and may be therapeutic targets for controlling GVHD. PMID:20116439

  19. Characterization of an In Vitro Differentiation Assay for Pancreatic-Like Cell Development from Murine Embryonic Stem Cells: Detailed Gene Expression Analysis

    PubMed Central

    Chen, Chialin; Chai, Jing; Singh, Lipi; Kuo, Ching-Ying; Jin, Liang; Feng, Tao; Marzano, Scott; Galeni, Sheetal; Zhang, Nan; Iacovino, Michelina; Qin, Lihui; Hara, Manami; Stein, Roland; Bromberg, Jonathan S.; Kyba, Michael

    2011-01-01

    Abstract Embryonic stem (ES) cell technology may serve as a platform for the discovery of drugs to treat diseases such as diabetes. However, because of difficulties in establishing reliable ES cell differentiation methods and in creating cost-effective plating conditions for the high-throughput format, screening for molecules that regulate pancreatic beta cells and their immediate progenitors has been limited. A relatively simple and inexpensive differentiation protocol that allows efficient generation of insulin-expressing cells from murine ES cells was previously established in our laboratories. In this report, this system is characterized in greater detail to map developmental cell stages for future screening experiments. Our results show that sequential activation of multiple gene markers for undifferentiated ES cells, epiblast, definitive endoderm, foregut, and pancreatic lineages was found to follow the sequence of events that mimics pancreatic ontogeny. Cells that expressed enhanced green fluorescent protein, driven by pancreatic and duodenal homeobox 1 or insulin 1 promoter, correctly expressed known beta cell lineage markers. Overexpression of Sox17, an endoderm fate-determining transcription factor, at a very early stage of differentiation (days 2–3) enhanced pancreatic gene expression. Overexpression of neurogenin3, an endocrine progenitor cell marker, induced glucagon expression at stages when pancreatic and duodenal homeobox 1 message was present (days 10–16). Forced expression (between days 16 and 25) of MafA, a pancreatic maturation factor, resulted in enhanced expression of insulin genes, glucose transporter 2 and glucokinase, and glucose-responsive insulin secretion. Day 20 cells implanted in vivo resulted in pancreatic-like cells. Together, our differentiation assay recapitulates the proceedings and behaviors of pancreatic development and will be valuable for future screening of beta cell effectors. PMID:21395400

  20. Toxic responses in rat embryonic cells to silver nanoparticles and released silver ions as analyzed via gene expression profiles and transmission electron microscopy.

    PubMed

    Xu, Liming; Shi, Chang; Shao, Anliang; Li, Xuefei; Cheng, Xiang; Ding, Rigao; Wu, Gang; Chou, Laisheng Lee

    2015-05-01

    After exposing rat embryonic cells to 20 μg/mL of silver nanoparticle (NP) suspension and their released ions for different time periods, silver nanoparticles were found in cellular nuclei, mitochondria, cytoplasm and lysosomes by transmission electron microscopy (TEM). We also observed mitochondrial destruction, distension of endoplasmic reticulum and apoptotic bodies. Global gene expression analysis showed a total of 279 genes that were up-regulated and 389 genes that were down-regulated in the silver-NP suspension exposure group, while 3 genes were up-regulated and 41 genes were down-regulated in the silver ion exposure group. Further, the GO pathway analysis suggested that these differentially expressed genes are involved in several biological processes, such as energy metabolism, oxygen transport, enzyme activities, molecular binding, etc. It is possible that inhibition of oxygen transport is mediated by the significant down-regulation of genes of the globin family, which might play an important role in silver ion-induced toxicity. KEGG pathway analysis showed that there were 23 signal pathways that were affected in the cells after exposure to silver-NP suspension, but not silver ion alone. The most significant change concerned inflammatory signal pathways, which were only found in silver-NP suspension exposed cells, indicating that inflammatory response might play an important role in the mechanism(s) of silver-NP-induced toxicity. The significant up-regulation of matrix metalloproteinases 3 and 9 suggests that silver NPs could induce extracellular matrix degradation via an inflammatory signaling pathway. The significant up-regulation of secretory leukocyte peptidase inhibitor and serine protease inhibitor 2c was considered to be an embryonic cellular defense mechanism in response to silver-NP-induced inflammation.

  1. Large-scale atlas of microarray data reveals the distinct expression landscape of different tissues in Arabidopsis

    DOE PAGES

    He, Fei; Maslov, Sergei; Yoo, Shinjae; Wang, Daifeng; Kumari, Sunita; Gerstein, Mark; Ware, Doreen

    2016-03-25

    Here, transcriptome datasets from thousands of samples of the model plant Arabidopsis thaliana have been collectively generated by multiple individual labs. Although integration and meta-analysis of these samples has become routine in the plant research community, it is often hampered by the lack of metadata or differences in annotation styles by different labs. In this study, we carefully selected and integrated 6,057 Arabidopsis microarray expression samples from 304 experiments deposited to NCBI GEO. Metadata such as tissue type, growth condition, and developmental stage were manually curated for each sample. We then studied global expression landscape of the integrated dataset andmore » found that samples of the same tissue tend to be more similar to each other than to samples of other tissues, even in different growth conditions or developmental stages. Root has the most distinct transcriptome compared to aerial tissues, but the transcriptome of cultured root is more similar to those of aerial tissues as the former samples lost their cellular identity. Using a simple computational classification method, we showed that the tissue type of a sample can be successfully predicted based on its expression profile, opening the door for automatic metadata extraction and facilitating re-use of plant transcriptome data. As a proof of principle we applied our automated annotation pipeline to 708 RNA-seq samples from public repositories and verified accuracy of our predictions with samples’ metadata provided by authors.« less

  2. The thyroid hormone receptor gene (c-erbA alpha) is expressed in advance of thyroid gland maturation during the early embryonic development of Xenopus laevis.

    PubMed Central

    Banker, D E; Bigler, J; Eisenman, R N

    1991-01-01

    The c-erbA proto-oncogene encodes the thyroid hormone receptor, a ligand-dependent transcription factor which plays an important role in vertebrate growth and development. To define the role of the thyroid hormone receptor in developmental processes, we have begun studying c-erbA gene expression during the ontogeny of Xenopus laevis, an organism in which thyroid hormone has well-documented effects on morphogenesis. Using polymerase chain reactions (PCR) as a sensitive assay of specific gene expression, we found that polyadenylated erbA alpha RNA is present in Xenopus cells at early developmental stages, including the fertilized egg, blastula, gastrula, and neurula. By performing erbA alpha-specific PCR on reverse-transcribed RNAs from high-density sucrose gradient fractions prepared from early-stage embryos, we have demonstrated that these erbA transcripts are recruited to polysomes. Therefore, erbA is expressed in Xenopus development prior to the appearance of the thyroid gland anlage in tailbud-stage embryos. This implies that erbA alpha/thyroid hormone receptors may play ligand-independent roles during the early development of X. laevis. Quantitative PCR revealed a greater than 25-fold range in the steady-state levels of polyadenylated erbA alpha RNA across early stages of development, as expressed relative to equimolar amounts of total embryonic RNA. Substantial increases in the levels of erbA alpha RNA were noted at stages well after the onset of zygotic transcription at the mid-blastula transition, with accumulation of erbA alpha transcripts reaching a relative maximum in advance of metamorphosis. We also show that erbA alpha RNAs are expressed unequally across Xenopus neural tube embryos. This differential expression continues through later stages of development, including metamorphosis. This finding suggests that erbA alpha/thyroid hormone receptors may play roles in tissue-specific processes across all of Xenopus development. Images PMID:1656222

  3. Investigating the utility of human embryonic stem cell-derived neurons to model ageing and neurodegenerative disease using whole-genome gene expression and splicing analysis

    PubMed Central

    Patani, Rickie; Lewis, Patrick A; Trabzuni, Daniah; Puddifoot, Clare A; Wyllie, David J A; Walker, Robert; Smith, Colin; Hardingham, Giles E; Weale, Michael; Hardy, John; Chandran, Siddharthan; Ryten, Mina

    2012-01-01

    A major goal in regenerative medicine is the predictable manipulation of human embryonic stem cells (hESCs) to defined cell fates that faithfully represent their somatic counterparts. Directed differentiation of hESCs into neuronal populations has galvanized much interest into their potential application in modelling neurodegenerative disease. However, neurodegenerative diseases are age-related, and therefore establishing the maturational comparability of hESC-derived neural derivatives is critical to generating accurate in vitro model systems. We address this issue by comparing genome-wide, exon-specific expression analyses of pluripotent hESCs, multipotent neural precursor cells and a terminally differentiated enriched neuronal population to expression data from post-mortem foetal and adult human brain samples. We show that hESC-derived neuronal cultures (using a midbrain differentiation protocol as a prototypic example of lineage restriction), while successful in generating physiologically functional neurons, are closer to foetal than adult human brain in terms of molecular maturation. These findings suggest that developmental stage has a more dominant influence on the cellular transcriptome than regional identity. In addition, we demonstrate that developmentally regulated gene splicing is common, and potentially a more sensitive measure of maturational state than gene expression profiling alone. In summary, this study highlights the value of genomic indices in refining and validating optimal cell populations appropriate for modelling ageing and neurodegeneration. PMID:22681703

  4. Mouse embryonic stem cells that express a NUP98-HOXD13 fusion protein are impaired in their ability to differentiate and can be complemented by BCR-ABL.

    PubMed Central

    Slape, Christopher; Chung, Yang Jo; Soloway, Paul D.; Tessarollo, Lino; Aplan, Peter D

    2007-01-01

    NUP98-HOXD13 (NHD13) fusions have been identified in patients with myelodysplastic syndrome (MDS), acute myelogenous leukemia (AML) and chronic myeloid leukemia blast crisis (CML-BC). We generated “knock-in” mouse embryonic stem (ES) cells that express a NHD13 fusion gene from the endogenous murine NUP98 promoter, and used an in vitro differentiation system to differentiate the ES cells to haematopoietic colonies. Replating assays demonstrated that the partially differentiated NHD13 ES cells were immortal, and two of these cultures were transferred to liquid culture. These cell lines are partially differentiated immature haematopoietic cells, as determined by morphology, immunophenotype and gene expression profile. Despite these characteristics, they were unable to differentiate when exposed to high concentrations of Epo, G-CSF, or M-CSF. The cell lines are incompletely transformed, as evidenced by their dependence on IL3, and their failure to initiate tumours when injected into immunodeficient mice. We attempted genetic complementation of the NHD13 gene using IL3 independence and tumorigenicity in immunodeficient mice as markers of transformation, and found that BCR-ABL successfully transformed the cell lines. These findings support the hypothesis that expression of a NHD13 fusion gene impairs haematopoietic differentiation, and that these cell lines present a model system to study the nature of this impaired differentiation. PMID:17377591

  5. Embryonic stem cells lacking the epigenetic regulator Cfp1 are hypersensitive to DNA-damaging agents and exhibit decreased Ape1/Ref-1 protein expression and endonuclease activity.

    PubMed

    Tate, Courtney M; Fishel, Melissa L; Holleran, Julianne L; Egorin, Merrill J; Skalnik, David G

    2009-12-01

    Modulation of chromatin structure plays an important role in the recruitment and function of DNA repair proteins. CXXC finger protein 1 (Cfp1), encoded by the CXXC1 gene, is essential for mammalian development and is an important regulator of chromatin structure. Murine embryonic stem (ES) cells lacking Cfp1 (CXXC1(-/-)) are viable but demonstrate a dramatic decrease in cytosine methylation, altered histone methylation, and an inability to differentiate. We find that ES cells lacking Cfp1 are hypersensitive to a variety of DNA-damaging agents. In addition, CXXC1(-/-) ES cells accumulate more DNA damage and exhibit decreased protein expression and endonuclease activity of AP endonuclease (Ape1/Ref-1), an enzyme involved in DNA base excision repair. Expression in CXXC1(-/-) ES cells of either the amino half of Cfp1 (amino acids 1-367) or the carboxyl half of Cfp1 (amino acids 361-656) restores normal Ape1/Ref-1 protein expression and rescues the hypersensitivity to DNA-damaging agents, demonstrating that Cfp1 contains redundant functional domains. Furthermore, retention of either the DNA-binding activity of Cfp1 or interaction with the Setd1A and Setd1B histone H3-Lys4 methyltransferase complexes is required to restore normal sensitivity of CXXC1(-/-) ES cells to DNA-damaging agents. These results implicate Cfp1 as a regulator of DNA repair processes. PMID:19836314

  6. Comparison of gene expression regulation in mouse- and human embryonic stem cell assays during neural differentiation and in response to valproic acid exposure.

    PubMed

    Schulpen, Sjors H W; Theunissen, Peter T; Pennings, Jeroen L A; Piersma, Aldert H

    2015-08-15

    Embryonic stem cell tests (EST) are considered promising alternative assays for developmental toxicity testing. Classical mouse derived assays (mEST) are being replaced by human derived assays (hEST), in view of their relevance for human hazard assessment. We have compared mouse and human neural ESTn assays for neurodevelopmental toxicity as to regulation of gene expression during cell differentiation in both assays. Commonalities were observed in a range of neurodevelopmental genes and gene ontology (GO) terms. The mESTn showed a higher specificity in neurodevelopment than the hESTn, which may in part be caused by necessary differences in test protocols. Moreover, gene expression responses to the anticonvulsant and human teratogen valproic acid were compared. Both assays detected pharmacological and neurodevelopmental gene sets regulated by valproic acid. Common significant expression changes were observed in a subset of homologous neurodevelopmental genes. We suggest that these genes and related GO terms may provide good candidates for robust biomarkers of neurodevelopmental toxicity in hESTn.

  7. The murine homologue of HIRA, a DiGeorge syndrome candidate gene, is expressed in embryonic structures affected in human CATCH22 patients.

    PubMed

    Wilming, L G; Snoeren, C A; van Rijswijk, A; Grosveld, F; Meijers, C

    1997-02-01

    A wide spectrum of birth defects is caused by deletions of the DiGeorge syndrome chromosomal region at 22q11. Characteristic features include cranio-facial, cardiac and thymic malformations, which are thought to arise form disturbances in the interactions between hindbrain neural crest cells and the endoderm of the pharyngeal pouches. Several genes have been identified in the shortest region of deletion overlap at 22q11, but nothing is known about the expression of these genes in mammalian embryos. We report here the isolation of several murine embryonic cDNAs of the DiGeorge syndrome candidate gene HIRA. We identified several alternatively spliced transcripts. Sequence analysis reveals that Hira bears homology to the p60 subunit of the human Chromatin Assembly Factor I and yeast hir1p and Hir2p, suggesting that Hira might have some role in chromatin assembly and/or histone regulation. Whole mount in situ hybridization of mouse embryos at various stages of development show that Hira is ubiquitously expressed. However, higher levels of transcripts are detected in the cranial neural folds, frontonasal mass, first two pharyngeal arches, circumpharyngeal neural crest and the limb buds. Since many of the structures affected in DiGeorge syndrome derive from these Hira expressing cell populations we propose that haploinsufficiency of HIRA contributes to at least some of the features of the DiGeorge phenotype.

  8. Pontin functions as an essential coactivator for Oct4-dependent lincRNA expression in mouse embryonic stem cells.

    PubMed

    Boo, Kyungjin; Bhin, Jinhyuk; Jeon, Yoon; Kim, Joomyung; Shin, Hi-Jai R; Park, Jong-Eun; Kim, Kyeongkyu; Kim, Chang Rok; Jang, Hyonchol; Kim, In-Hoo; Kim, V Narry; Hwang, Daehee; Lee, Ho; Baek, Sung Hee

    2015-04-10

    The actions of transcription factors, chromatin modifiers and noncoding RNAs are crucial for the programming of cell states. Although the importance of various epigenetic machineries for controlling pluripotency of embryonic stem (ES) cells has been previously studied, how chromatin modifiers cooperate with specific transcription factors still remains largely elusive. Here, we find that Pontin chromatin remodelling factor plays an essential role as a coactivator for Oct4 for maintenance of pluripotency in mouse ES cells. Genome-wide analyses reveal that Pontin and Oct4 share a substantial set of target genes involved in ES cell maintenance. Intriguingly, we find that the Oct4-dependent coactivator function of Pontin extends to the transcription of large intergenic noncoding RNAs (lincRNAs) and in particular linc1253, a lineage programme repressing lincRNA, is a Pontin-dependent Oct4 target lincRNA. Together, our findings demonstrate that the Oct4-Pontin module plays critical roles in the regulation of genes involved in ES cell fate determination.

  9. Pontin functions as an essential coactivator for Oct4-dependent lincRNA expression in mouse embryonic stem cells

    PubMed Central

    Boo, Kyungjin; Bhin, Jinhyuk; Jeon, Yoon; Kim, Joomyung; Shin, Hi-Jai R.; Park, Jong-Eun; Kim, Kyeongkyu; Kim, Chang Rok; Jang, Hyonchol; Kim, In-Hoo; Kim, V. Narry; Hwang, Daehee; Lee, Ho; Baek, Sung Hee

    2015-01-01

    The actions of transcription factors, chromatin modifiers and noncoding RNAs are crucial for the programming of cell states. Although the importance of various epigenetic machineries for controlling pluripotency of embryonic stem (ES) cells has been previously studied, how chromatin modifiers cooperate with specific transcription factors still remains largely elusive. Here, we find that Pontin chromatin remodelling factor plays an essential role as a coactivator for Oct4 for maintenance of pluripotency in mouse ES cells. Genome-wide analyses reveal that Pontin and Oct4 share a substantial set of target genes involved in ES cell maintenance. Intriguingly, we find that the Oct4-dependent coactivator function of Pontin extends to the transcription of large intergenic noncoding RNAs (lincRNAs) and in particular linc1253, a lineage programme repressing lincRNA, is a Pontin-dependent Oct4 target lincRNA. Together, our findings demonstrate that the Oct4-Pontin module plays critical roles in the regulation of genes involved in ES cell fate determination. PMID:25857206

  10. Differentiation of monkey embryonic stem cells to hepatocytes by feeder-free dispersion culture and expression analyses of cytochrome p450 enzymes responsible for drug metabolism.

    PubMed

    Maruyama, Junya; Matsunaga, Tamihide; Yamaori, Satoshi; Sakamoto, Sakae; Kamada, Noboru; Nakamura, Katsunori; Kikuchi, Shinji; Ohmori, Shigeru

    2013-01-01

    We reported previously that monkey embryonic stem cells (ESCs) were differentiated into hepatocytes by formation of embryoid bodies (EBs). However, this EB formation method is not always efficient for assays using a large number of samples simultaneously. A dispersion culture system, one of the differentiation methods without EB formation, is able to more efficiently provide a large number of feeder-free undifferentiated cells. A previous study demonstrated the effectiveness of the Rho-associated kinase inhibitor Y-27632 for feeder-free dispersion culture and induction of differentiation of monkey ESCs into neural cells. In the present study, the induction of differentiation of cynomolgus monkey ESCs (cmESCs) into hepatocytes was performed by the dispersion culture method, and the expression and drug inducibility of cytochrome P450 (CYP) enzymes in these hepatocytes were examined. The cmESCs were successfully differentiated into hepatocytes under feeder-free dispersion culture conditions supplemented with Y-27632. The hepatocytes differentiated from cmESCs expressed the mRNAs for three hepatocyte marker genes (α-fetoprotein, albumin, CYP7A1) and several CYP enzymes, as measured by real-time polymerase chain reaction. In particular, the basal expression of cmCYP3A4 (3A8) in these hepatocytes was detected at mRNA and enzyme activity (testosterone 6β-hydroxylation) levels. Furthermore, the expression and activity of cmCYP3A4 (3A8) were significantly upregulated by rifampicin. These results indicated the effectiveness of Y-27632 supplementation for feeder-free dispersed culture and induction of differentiation into hepatocytes, and the expression of functional CYP enzyme(s) in cmESC-derived hepatic cells.

  11. Tris(2-butoxyethyl)phosphate and triethyl phosphate alter embryonic development, hepatic mRNA expression, thyroid hormone levels, and circulating bile acid concentrations in chicken embryos

    SciTech Connect

    Egloff, Caroline; Crump, Doug; Porter, Emily; Williams, Kim L.; Letcher, Robert J.; Gauthier, Lewis T.; Kennedy, Sean W.

    2014-09-15

    The organophosphate flame retardants tris(2-butoxyethyl) phosphate (TBOEP) and triethyl phosphate (TEP) are used in a wide range of applications to suppress or delay the ignition and spread of fire. Both compounds have been detected in the environment and TBOEP was recently measured in free-living avian species. In this study, TBOEP and TEP were injected into the air cell of chicken embryos at concentrations ranging from 0 to 45,400 ng/g and 0 to 241,500 ng/g egg, respectively. Pipping success, development, hepatic mRNA expression of 9 target genes, thyroid hormone levels, and circulating bile acid concentrations were determined. Exposure to the highest doses of TBOEP and TEP resulted in negligible detection of the parent compounds in embryonic contents at pipping indicating their complete metabolic degradation. TBOEP exposure had limited effects on chicken embryos, with the exception of hepatic CYP3A37 mRNA induction. TEP exposure decreased pipping success to 68%, altered growth, increased liver somatic index (LSI) and plasma bile acids, and modulated genes associated with xenobiotic and lipid metabolism and the thyroid hormone pathway. Plasma thyroxine levels were decreased at all TEP doses, including an environmentally-relevant concentration (8 ng/g), and gallbladder hypotrophy was evident at ≥ 43,200 ng/g. Tarsus length and circulating thyroxine concentration emerged as potential phenotypic anchors for the modulation of transthyretin mRNA. The increase in plasma bile acids and LSI, gallbladder hypotrophy, and discoloration of liver tissue represented potential phenotypic outcomes associated with modulation of hepatic genes involved with xenobiotic and lipid metabolism. - Highlights: • TBOEP is not embryolethal to chicken embryos. • TEP affected embryonic viability, morphometric endpoints, and thyroid hormone levels. • TEP altered mRNA levels of xenobiotic and lipid metabolism genes. • TEP increased plasma bile acids and caused gallbladder hypotrophy

  12. Relationship between entropy and diffusion: A statistical mechanical derivation of Rosenfeld expression for a rugged energy landscape.

    PubMed

    Seki, Kazuhiko; Bagchi, Biman

    2015-11-21

    Diffusion-a measure of dynamics, and entropy-a measure of disorder in the system are found to be intimately correlated in many systems, and the correlation is often strongly non-linear. We explore the origin of this complex dependence by studying diffusion of a point Brownian particle on a model potential energy surface characterized by ruggedness. If we assume that the ruggedness has a Gaussian distribution, then for this model, one can obtain the excess entropy exactly for any dimension. By using the expression for the mean first passage time, we present a statistical mechanical derivation of the well-known and well-tested scaling relation proposed by Rosenfeld between diffusion and excess entropy. In anticipation that Rosenfeld diffusion-entropy scaling (RDES) relation may continue to be valid in higher dimensions (where the mean first passage time approach is not available), we carry out an effective medium approximation (EMA) based analysis of the effective transition rate and hence of the effective diffusion coefficient. We show that the EMA expression can be used to derive the RDES scaling relation for any dimension higher than unity. However, RDES is shown to break down in the presence of spatial correlation among the energy landscape values. PMID:26590530

  13. Mitochondrial MTHFD2L is a dual redox cofactor-specific methylenetetrahydrofolate dehydrogenase/methenyltetrahydrofolate cyclohydrolase expressed in both adult and embryonic tissues.

    PubMed

    Shin, Minhye; Bryant, Joshua D; Momb, Jessica; Appling, Dean R

    2014-05-30

    Mammalian mitochondria are able to produce formate from one-carbon donors such as serine, glycine, and sarcosine. This pathway relies on the mitochondrial pool of tetrahydrofolate (THF) and several folate-interconverting enzymes in the mitochondrial matrix. We recently identified MTHFD2L as the enzyme that catalyzes the oxidation of 5,10-methylenetetrahydrofolate (CH2-THF) in adult mammalian mitochondria. We show here that the MTHFD2L enzyme is bifunctional, possessing both CH2-THF dehydrogenase and 5,10-methenyl-THF cyclohydrolase activities. The dehydrogenase activity can use either NAD(+) or NADP(+) but requires both phosphate and Mg(2+) when using NAD(+). The NADP(+)-dependent dehydrogenase activity is inhibited by inorganic phosphate. MTHFD2L uses the mono- and polyglutamylated forms of CH2-THF with similar catalytic efficiencies. Expression of the MTHFD2L transcript is low in early mouse embryos but begins to increase at embryonic day 10.5 and remains elevated through birth. In adults, MTHFD2L is expressed in all tissues examined, with the highest levels observed in brain and lung. PMID:24733394

  14. CHIR99021 promotes self-renewal of mouse embryonic stem cells by modulation of protein-encoding gene and long intergenic non-coding RNA expression.

    PubMed

    Wu, Yongyan; Ai, Zhiying; Yao, Kezhen; Cao, Lixia; Du, Juan; Shi, Xiaoyan; Guo, Zekun; Zhang, Yong

    2013-10-15

    Embryonic stem cells (ESCs) can proliferate indefinitely in vitro and differentiate into cells of all three germ layers. These unique properties make them exceptionally valuable for drug discovery and regenerative medicine. However, the practical application of ESCs is limited because it is difficult to derive and culture ESCs. It has been demonstrated that CHIR99021 (CHIR) promotes self-renewal and enhances the derivation efficiency of mouse (m)ESCs. However, the downstream targets of CHIR are not fully understood. In this study, we identified CHIR-regulated genes in mESCs using microarray analysis. Our microarray data demonstrated that CHIR not only influenced the Wnt/β-catenin pathway by stabilizing β-catenin, but also modulated several other pluripotency-related signaling pathways such as TGF-β, Notch and MAPK signaling pathways. More detailed analysis demonstrated that CHIR inhibited Nodal signaling, while activating bone morphogenetic protein signaling in mESCs. In addition, we found that pluripotency-maintaining transcription factors were up-regulated by CHIR, while several developmental-related genes were down-regulated. Furthermore, we found that CHIR altered the expression of epigenetic regulatory genes and long intergenic non-coding RNAs. Quantitative real-time PCR results were consistent with microarray data, suggesting that CHIR alters the expression pattern of protein-encoding genes (especially transcription factors), epigenetic regulatory genes and non-coding RNAs to establish a relatively stable pluripotency-maintaining network.

  15. Maintenance of Self-Renewal and Pluripotency in J1 Mouse Embryonic Stem Cells through Regulating Transcription Factor and MicroRNA Expression Induced by PD0325901

    PubMed Central

    Ai, Zhiying; Shao, Jingjing; Shi, Xinglong; Yu, Mengying; Wu, Yongyan; Du, Juan; Zhang, Yong; Guo, Zekun

    2016-01-01

    Embryonic stem cells (ESCs) have the ability to grow indefinitely and retain their pluripotency in culture, and this self-renewal capacity is governed by several crucial molecular pathways controlled by specific regulatory genes and epigenetic modifications. It is reported that multiple epigenetic regulators, such as miRNA and pluripotency factors, can be tightly integrated into molecular pathways and cooperate to maintain self-renewal of ESCs. However, mouse ESCs in serum-containing medium seem to be heterogeneous due to the self-activating differentiation signal of MEK/ERK. Thus, to seek for the crucial miRNA and key regulatory genes that establish ESC properties in MEK/ERK pathway, we performed microarray analysis and small RNA deep-sequencing of J1 mESCs treated with or without PD0325901 (PD), a well-known inhibitor of MEK/ERK signal pathway, followed by verification of western blot analysis and quantitative real-time PCR verification; we found that PD regulated the transcript expressions related to self-renewal and differentiation and antagonized the action of retinoic acid- (RA-) induced differentiation. Moreover, PD can significantly modulate the expressions of multiple miRNAs that have crucial functions in ESC development. Overall, our results demonstrate that PD could enhance ESC self-renewal capacity both by key regulatory genes and ES cell-specific miRNA, which in turn influences ESC self-renewal and cellular differentiation. PMID:26770202

  16. Transcriptome profiling of induced hair cells (iHCs) generated by combined expression of Gfi1, Pou4f3 and Atoh1 during embryonic stem cell differentiation.

    PubMed

    Costa, Aida; Henrique, Domingos

    2015-12-01

    To gain new insights about the genetic networks controlling hair cell (HC) development, we previously developed a direct genetic programming strategy to generate an inexhaustible supply of HC-like cells (induced HCs, iHCs) in vitro, starting from mouse embryonic stem cells (ESC). We found that combined activity of three transcription factors, Gfi1, Pou4f3, and Atoh1, can program ESC-derived progenitors towards HC fate with efficiencies of 55%-80%. These iHCs express several HC markers and exhibit polarized structures that are highly reminiscent of the mechanosensitive hair bundles, with many microvilli-like stereocilia. Here, we describe the experimental design, methodology, and data validation for the microarray analysis used to characterize the transcriptome profile of iHCs at different stages of their differentiation. This approach based on FACS sorting and microarray analysis revealed a highly similar iHC transcriptome to that of endogenous HCs in vivo. The data obtained in this study is available in the Gene Expression Omnibus (GEO) database (accession number GSE60352). PMID:26697340

  17. Efficient generation of human embryonic stem cell-derived cardiac progenitors based on tissue-specific enhanced green fluorescence protein expression.

    PubMed

    Szebényi, Kornélia; Péntek, Adrienn; Erdei, Zsuzsa; Várady, György; Orbán, Tamás I; Sarkadi, Balázs; Apáti, Ágota

    2015-01-01

    Cardiac progenitor cells (CPCs) are committed to the cardiac lineage but retain their proliferative capacity before becoming quiescent mature cardiomyocytes (CMs). In medical therapy and research, the use of human pluripotent stem cell-derived CPCs would have several advantages compared with mature CMs, as the progenitors show better engraftment into existing heart tissues, and provide unique potential for cardiovascular developmental as well as for pharmacological studies. Here, we demonstrate that the CAG promoter-driven enhanced green fluorescence protein (EGFP) reporter system enables the identification and isolation of embryonic stem cell-derived CPCs. Tracing of CPCs during differentiation confirmed up-regulation of surface markers, previously described to identify cardiac precursors and early CMs. Isolated CPCs express cardiac lineage-specific transcripts, still have proliferating capacity, and can be re-aggregated into embryoid body-like structures (CAG-EGFP(high) rEBs). Expression of troponin T and NKX2.5 mRNA is up-regulated in long-term cultured CAG-EGFP(high) rEBs, in which more than 90% of the cells become Troponin I positive mature CMs. Moreover, about one third of the CAG-EGFP(high) rEBs show spontaneous contractions. The method described here provides a powerful tool to generate expandable cultures of pure human CPCs that can be used for exploring early markers of the cardiac lineage, as well as for drug screening or tissue engineering applications.

  18. A Perturbed MicroRNA Expression Pattern Characterizes Embryonic Neural Stem Cells Derived from a Severe Mouse Model of Spinal Muscular Atrophy (SMA).

    PubMed

    Luchetti, Andrea; Ciafrè, Silvia Anna; Murdocca, Michela; Malgieri, Arianna; Masotti, Andrea; Sanchez, Massimo; Farace, Maria Giulia; Novelli, Giuseppe; Sangiuolo, Federica

    2015-01-01

    Spinal muscular atrophy (SMA) is an inherited neuromuscular disorder and the leading genetic cause of death in infants. Despite the disease-causing gene, survival motor neuron (SMN1), encodes a ubiquitous protein, SMN1 deficiency preferentially affects spinal motor neurons (MNs), leaving the basis of this selective cell damage still unexplained. As neural stem cells (NSCs) are multipotent self-renewing cells that can differentiate into neurons, they represent an in vitro model for elucidating the pathogenetic mechanism of neurodegenerative diseases such as SMA. Here we characterize for the first time neural stem cells (NSCs) derived from embryonic spinal cords of a severe SMNΔ7 SMA mouse model. SMNΔ7 NSCs behave as their wild type (WT) counterparts, when we consider neurosphere formation ability and the expression levels of specific regional and self-renewal markers. However, they show a perturbed cell cycle phase distribution and an increased proliferation rate compared to wild type cells. Moreover, SMNΔ7 NSCs are characterized by the differential expression of a limited number of miRNAs, among which miR-335-5p and miR-100-5p, reduced in SMNΔ7 NSCs compared to WT cells. We suggest that such miRNAs may be related to the proliferation differences characterizing SMNΔ7 NSCs, and may be potentially involved in the molecular mechanisms of SMA. PMID:26258776

  19. MicroRNAs regulate p21(Waf1/Cip1) protein expression and the DNA damage response in human embryonic stem cells.

    PubMed

    Dolezalova, Dasa; Mraz, Marek; Barta, Tomas; Plevova, Karla; Vinarsky, Vladimir; Holubcova, Zuzana; Jaros, Josef; Dvorak, Petr; Pospisilova, Sarka; Hampl, Ales

    2012-07-01

    Studies of human embryonic stem cells (hESCs) commonly describe the nonfunctional p53-p21 axis of the G1/S checkpoint pathway with subsequent relevance for cell cycle regulation and the DNA damage response (DDR). Importantly, p21 mRNA is clearly present and upregulated after the DDR in hESCs, but p21 protein is not detectable. In this article, we provide evidence that expression of p21 protein is directly regulated by the microRNA (miRNA) pathway under standard culture conditions and after DNA damage. The DDR in hESCs leads to upregulation of tens of miRNAs, including hESC-specific miRNAs such as those of the miR-302 family, miR-371-372 family, or C19MC miRNA cluster. Most importantly, we show that the hESC-enriched miRNA family miR-302 (miR-302a, miR-302b, miR-302c, and miR-302d) directly contributes to regulation of p21 expression in hESCs and, thus, demonstrate a novel function for miR-302s in hESCS. The described mechanism elucidates the role of miRNAs in regulation of important molecular pathway governing the G1/S transition checkpoint before as well as after DNA damage.

  20. A Perturbed MicroRNA Expression Pattern Characterizes Embryonic Neural Stem Cells Derived from a Severe Mouse Model of Spinal Muscular Atrophy (SMA).

    PubMed

    Luchetti, Andrea; Ciafrè, Silvia Anna; Murdocca, Michela; Malgieri, Arianna; Masotti, Andrea; Sanchez, Massimo; Farace, Maria Giulia; Novelli, Giuseppe; Sangiuolo, Federica

    2015-08-06

    Spinal muscular atrophy (SMA) is an inherited neuromuscular disorder and the leading genetic cause of death in infants. Despite the disease-causing gene, survival motor neuron (SMN1), encodes a ubiquitous protein, SMN1 deficiency preferentially affects spinal motor neurons (MNs), leaving the basis of this selective cell damage still unexplained. As neural stem cells (NSCs) are multipotent self-renewing cells that can differentiate into neurons, they represent an in vitro model for elucidating the pathogenetic mechanism of neurodegenerative diseases such as SMA. Here we characterize for the first time neural stem cells (NSCs) derived from embryonic spinal cords of a severe SMNΔ7 SMA mouse model. SMNΔ7 NSCs behave as their wild type (WT) counterparts, when we consider neurosphere formation ability and the expression levels of specific regional and self-renewal markers. However, they show a perturbed cell cycle phase distribution and an increased proliferation rate compared to wild type cells. Moreover, SMNΔ7 NSCs are characterized by the differential expression of a limited number of miRNAs, among which miR-335-5p and miR-100-5p, reduced in SMNΔ7 NSCs compared to WT cells. We suggest that such miRNAs may be related to the proliferation differences characterizing SMNΔ7 NSCs, and may be potentially involved in the molecular mechanisms of SMA.

  1. A Perturbed MicroRNA Expression Pattern Characterizes Embryonic Neural Stem Cells Derived from a Severe Mouse Model of Spinal Muscular Atrophy (SMA)

    PubMed Central

    Luchetti, Andrea; Ciafrè, Silvia Anna; Murdocca, Michela; Malgieri, Arianna; Masotti, Andrea; Sanchez, Massimo; Farace, Maria Giulia; Novelli, Giuseppe; Sangiuolo, Federica

    2015-01-01

    Spinal muscular atrophy (SMA) is an inherited neuromuscular disorder and the leading genetic cause of death in infants. Despite the disease-causing gene, survival motor neuron (SMN1), encodes a ubiquitous protein, SMN1 deficiency preferentially affects spinal motor neurons (MNs), leaving the basis of this selective cell damage still unexplained. As neural stem cells (NSCs) are multipotent self-renewing cells that can differentiate into neurons, they represent an in vitro model for elucidating the pathogenetic mechanism of neurodegenerative diseases such as SMA. Here we characterize for the first time neural stem cells (NSCs) derived from embryonic spinal cords of a severe SMNΔ7 SMA mouse model. SMNΔ7 NSCs behave as their wild type (WT) counterparts, when we consider neurosphere formation ability and the expression levels of specific regional and self-renewal markers. However, they show a perturbed cell cycle phase distribution and an increased proliferation rate compared to wild type cells. Moreover, SMNΔ7 NSCs are characterized by the differential expression of a limited number of miRNAs, among which miR-335-5p and miR-100-5p, reduced in SMNΔ7 NSCs compared to WT cells. We suggest that such miRNAs may be related to the proliferation differences characterizing SMNΔ7 NSCs, and may be potentially involved in the molecular mechanisms of SMA. PMID:26258776

  2. Constitutive Smad signaling and Smad-dependent collagen gene expression in mouse embryonic fibroblasts lacking peroxisome proliferator-activated receptor-{gamma}

    SciTech Connect

    Ghosh, Asish K Wei, Jun; Wu, Minghua; Varga, John

    2008-09-19

    Transforming growth factor-{beta} (TGF-{beta}), a potent inducer of collagen synthesis, is implicated in pathological fibrosis. Peroxisome proliferator-activated receptor-{gamma} (PPAR-{gamma}) is a nuclear hormone receptor that regulates adipogenesis and numerous other biological processes. Here, we demonstrate that collagen gene expression was markedly elevated in mouse embryonic fibroblasts (MEFs) lacking PPAR-{gamma} compared to heterozygous control MEFs. Treatment with the PPAR-{gamma} ligand 15d-PGJ{sub 2} failed to down-regulate collagen gene expression in PPAR-{gamma} null MEFs, whereas reconstitution of these cells with ectopic PPAR-{gamma} resulted in their normalization. Compared to control MEFs, PPAR-{gamma} null MEFs displayed elevated levels of the Type I TGF-{beta} receptor (T{beta}RI), and secreted more TGF-{beta}1 into the media. Furthermore, PPAR-{gamma} null MEFs showed constitutive phosphorylation of cellular Smad2 and Smad3, even in the absence of exogenous TGF-{beta}, which was abrogated by the ALK5 inhibitor SB431542. Constitutive Smad2/3 phosphorylation in PPAR-{gamma} null MEFs was associated with Smad3 binding to its cognate DNA recognition sequences, and interaction with coactivator p300 previously implicated in TGF-{beta} responses. Taken together, these results indicate that loss of PPAR-{gamma} in MEFs is associated with upregulation of collagen synthesis, and activation of intracellular Smad signal transduction, due, at least in part, to autocrine TGF-{beta} stimulation.

  3. Smooth muscles and stem cells of embryonic guts express KIT, PDGFRRA, CD34 and many other stem cell antigens: suggestion that GIST arise from smooth muscles and gut stem cells.

    PubMed

    Terada, Tadashi

    2013-01-01

    Gastrointestinal stromal tumor (GIST) is believed to original from interstitial cells of (ICC) present in Auerbach's nerve plexus. GIST frequently shows gain-of-function mutations of KIT and PDGFRA. In practical pathology, GIST is diagnosed by positive immunostaining or KIT and/or CD34. The author herein demonstrates that human embryonic gastrointestinal tract smooth muscles (HEGITSM) and human embryonic stem gastrointestinal cells (HEGISC) consistently express KIT, CD34, NCAM, PDGFRA and other stem cell (SC) antigens NSE, synaptophysin, chromogranin, bcl-2, ErbB, and MET throughout the embryonic development of 7-40 gestational week (GW). CK14 was negative. The author examines 42 cases (7-40 GW) of embryonic GI tract (EGI). The HEGISM, HEGIST, and gall bladder smooth muscles (SM) were consistently positive for KIT, CD34, NCAM, PDGFRA, synaptophysin, chromogranin, NSE, bcl-2, ErbB2, and MET in foregut, stomach, GB, midgut, and hindgut throughout the fetal life (7-40 GW). The stem cells (SC) were seen to create the SM, nerves, ICC, and other all structures of GI tract. In adult gastrointestinal walls (n=30), KIT, CD34, PDGFRA, and S100 proteins were expressed in Auerbach's nerve plexus and ICC. The bronchial and vascular SM of embryos did not express these molecules. In GIST, frequent expressions of KIT (100%, 30/30), CD34 (90%, 27/30), and PDGFRA (83%, 25/30) were seen. In general, characteristics of tumors recapitulate their embryonic life. Therefore, it is strongly suggested that GIST may be originated from GI SM and/or GI SC in addition to ICC.

  4. CHIR99021 promotes self-renewal of mouse embryonic stem cells by modulation of protein-encoding gene and long intergenic non-coding RNA expression

    SciTech Connect

    Wu, Yongyan; Ai, Zhiying; Yao, Kezhen; Cao, Lixia; Du, Juan; Shi, Xiaoyan; Guo, Zekun; Zhang, Yong

    2013-10-15

    Embryonic stem cells (ESCs) can proliferate indefinitely in vitro and differentiate into cells of all three germ layers. These unique properties make them exceptionally valuable for drug discovery and regenerative medicine. However, the practical application of ESCs is limited because it is difficult to derive and culture ESCs. It has been demonstrated that CHIR99021 (CHIR) promotes self-renewal and enhances the derivation efficiency of mouse (m)ESCs. However, the downstream targets of CHIR are not fully understood. In this study, we identified CHIR-regulated genes in mESCs using microarray analysis. Our microarray data demonstrated that CHIR not only influenced the Wnt/β-catenin pathway by stabilizing β-catenin, but also modulated several other pluripotency-related signaling pathways such as TGF-β, Notch and MAPK signaling pathways. More detailed analysis demonstrated that CHIR inhibited Nodal signaling, while activating bone morphogenetic protein signaling in mESCs. In addition, we found that pluripotency-maintaining transcription factors were up-regulated by CHIR, while several developmental-related genes were down-regulated. Furthermore, we found that CHIR altered the expression of epigenetic regulatory genes and long intergenic non-coding RNAs. Quantitative real-time PCR results were consistent with microarray data, suggesting that CHIR alters the expression pattern of protein-encoding genes (especially transcription factors), epigenetic regulatory genes and non-coding RNAs to establish a relatively stable pluripotency-maintaining network. - Highlights: • Combined use of CHIR with LIF promotes self-renewal of J1 mESCs. • CHIR-regulated genes are involved in multiple pathways. • CHIR inhibits Nodal signaling and promotes Bmp4 expression to activate BMP signaling. • Expression of epigenetic regulatory genes and lincRNAs is altered by CHIR.

  5. Characterization and early embryonic expression of a neural specific transcription factor xSOX3 in Xenopus laevis.

    PubMed

    Penzel, R; Oschwald, R; Chen, Y; Tacke, L; Grunz, H

    1997-10-01

    Using the powerful RDA-PCR-technique we could identify a novel Xenopus specific Sox-gene (xSox3) a transcription factor closely related to the sox sub-group B, which contains a HMG box. In normogenesis the xSox3 gene is expressed in the presumptive central nervous system. Furthermore a maternal component is also found in oocytes and in early cleavage stages in the animal hemisphere only. By whole-mount in situ hybridization the first zygotic transcription activities can be detected in the late blastula in the dorsal ectoderm and the dorsal and lateral part of the marginal zone. The expression reaches the highest level atthe late gastrula till the late neurula and fades after stage 30. The expression is restricted from gastrulation onwards to the presumptive brain area and the lens epithelium. Furthermore we could show that the gene is expressed in isolated Spemann organizer with adjacent neuroectoderm. The signal can be suppressed by suramin treatment, which inhibits neural development and causes a shift of dorsal to ventral mesoderm. The treatment of whole embryos with LiCl and UV results in an overexpression or an inhibition of the expression, respectively. In exogastrulae (pseudo-exogastrulae) the gene is expressed in the close vicinity to the endomesoderm only, but not in the distal most part of the ectoderm. This result indicates that it is unlikely that the gene can be activated by planar signals. The gene can also be activated in dissociated gastrula ectoderm without mesodermal or neural inducers. That means that the gene can be expressed in ectodermal cells in a cell autonomous manner. PMID:9415486

  6. ETS transcription factors in embryonic vascular development.

    PubMed

    Craig, Michael P; Sumanas, Saulius

    2016-07-01

    At least thirteen ETS-domain transcription factors are expressed during embryonic hematopoietic or vascular development and potentially function in the formation and maintenance of the embryonic vasculature or blood lineages. This review summarizes our current understanding of the specific roles played by ETS factors in vasculogenesis and angiogenesis and the implications of functional redundancies between them.

  7. Tissue inhibitor of metalloproteinases-2 is expressed in the interstitial matrix in adult mouse organs and during embryonic development.

    PubMed Central

    Blavier, L; DeClerck, Y A

    1997-01-01

    Tissue inhibitor of metalloproteinases-2 (TIMP-2) is a member of a family of inhibitors of matrix-degrading metalloproteinases. A better insight into the role of this inhibitor during development and in organ function was obtained by examining the temporospatial expression of TIMP-2 in mice. Northern blot analysis indicated high levels of TIMP-2 mRNA in the lung, skin, reproductive organs, and brain. Lower levels of expression were found in all other organs with the exception of the liver and gastrointestinal tissue, which were negative of these tissues with complete absence of TIMP-2 mRNA in the epithelium. In the testis, TIMP-2 was present in the Leydig cells, and in the brain, it was expressed in pia matter and in neuronal tissues. TIMP-2 expression in the placenta increased during late gestation and was particularly abundant in spongiotrophoblasts In mouse embryo (day 10.5-18.5), TIMP-2 mRNA was abundant in mesenchymal tissues that surrounded developing epithelia and maturing skeleton. The pattern of expression significantly differs from that observed with TIMP-1 and TIMP-3, therefore, suggesting specific roles for each inhibitor during tissue remodeling and development. Images PMID:9285822

  8. Combined lineage mapping and gene expression profiling of embryonic brain patterning using ultrashort pulse microscopy and image registration

    NASA Astrophysics Data System (ADS)

    Gibbs, Holly C.; Dodson, Colin R.; Bai, Yuqiang; Lekven, Arne C.; Yeh, Alvin T.

    2014-12-01

    During embryogenesis, presumptive brain compartments are patterned by dynamic networks of gene expression. The spatiotemporal dynamics of these networks, however, have not been characterized with sufficient resolution for us to understand the regulatory logic resulting in morphogenetic cellular behaviors that give the brain its shape. We have developed a new, integrated approach using ultrashort pulse microscopy [a high-resolution, two-photon fluorescence (2PF)-optical coherence microscopy (OCM) platform using 10-fs pulses] and image registration to study brain patterning and morphogenesis in zebrafish embryos. As a demonstration, we used time-lapse 2PF to capture midbrain-hindbrain boundary morphogenesis and a wnt1 lineage map from embryos during brain segmentation. We then performed in situ hybridization to deposit NBT/BCIP, where wnt1 remained actively expressed, and reimaged the embryos with combined 2PF-OCM. When we merged these datasets using morphological landmark registration, we found that the mechanism of boundary formation differs along the dorsoventral axis. Dorsally, boundary sharpening is dominated by changes in gene expression, while ventrally, sharpening may be accomplished by lineage sorting. We conclude that the integrated visualization of lineage reporter and gene expression domains simultaneously with brain morphology will be useful for understanding how changes in gene expression give rise to proper brain compartmentalization and structure.

  9. Luminous Landscapes.

    ERIC Educational Resources Information Center

    Okrent, Inez

    2000-01-01

    Describes an activity for third-grade students in which they learn about early American landscape painters, specifically Frederick Church, Thomas Moran, and Albert Bierstadt. Students create natural landscapes, using the basic elements of landscape compositions. Discusses the process. (CMK)

  10. oct4-EGFP reporter gene expression marks the stem cells in embryonic development and in adult gonads of transgenic medaka.

    PubMed

    Froschauer, Alexander; Khatun, Mst Muslima; Sprott, David; Franz, Alexander; Rieger, Christiane; Pfennig, Frank; Gutzeit, Herwig O

    2013-01-01

    Maintenance of pluripotency in stem cells is tightly regulated among vertebrates. One of the key genes in this process is oct4, also referred to as pou5f1 in mammals and pou2 in teleosts. Pou5f1 evolved by duplication of pou2 early in the tetrapod lineage, but only monotremes and marsupials retained both genes. Either pou2 or pou5f1 was lost from the genomes of the other tetrapods that have been analyzed to date. Consequently, these two homologous genes are often designated oct4 in functional studies. In most vertebrates oct4 is expressed in pluripotent cells of the early embryo until the blastula stage, and later persist in germline stem cells until adulthood. The isolation and analysis of stem cells from embryo or adult individuals is hampered by the need for reliable markers that can identify and define the cell populations. Here, we report the faithful expression of EGFP under the control of endogenous pou2/oct4 promoters in transgenic medaka (Oryzias latipes). In vivo imaging in oct4-EGFP transgenic medaka reveals the temporal and spatial expression of pou2 in embryos and adults alike. We describe the temporal and spatial patterns of endogenous pou2 and oct4-EGFP expression in medaka with respect to germline and adult stem cells, and discuss applications of oct4-EGFP transgenic medaka in reproductive and stem cell biology. PMID:23139203

  11. Ethanol alters the balance of Sox2, Oct4, and Nanog expression in distinct subpopulations during differentiation of embryonic stem cells.

    PubMed

    Ogony, Joshua W; Malahias, Evangelia; Vadigepalli, Rajanikanth; Anni, Helen

    2013-08-01

    The transcription factors Sox2, Oct4, and Nanog regulate within a narrow dose-range embryonic stem (ES) cell pluripotency and cell lineage commitment. Excess of Oct4 relative to Sox2 guides cells to mesoendoderm (ME), while abundance of Sox2 promotes neuroectoderm (NE) formation. Literature does not address whether ethanol interferes with these regulatory interactions during neural development. We hypothesized that ethanol exposure of ES cells in early differentiation causes an imbalance of Oct4 and Sox2 that diverts cells away from NE to ME lineage, consistent with the teratogenesis effects caused by prenatal alcohol exposure. Mouse ES cells were exposed to ethanol (0, 25, 50, and 100 mM) during retinoic acid (10 nM)-directed differentiation to NE for 0-6 days, and the expression of Sox2, Oct4, and Nanog was measured in single live cells by multiparametric flow cytometry, and the cellular phenotype was characterized by immunocytochemistry. Our data showed an ethanol dose- and time-dependent asymmetric modulation of Oct4 and Sox2 expression, as early as after 2 days of exposure. Single-cell analysis of the correlated expression of Sox2, Oct4, and Nanog revealed that ethanol promoted distinct subpopulations with a high Oct4/Sox2 ratio. Ethanol-exposed cells differentiated to fewer β-III tubulin-immunoreactive cells with an immature neuronal phenotype by 4 days. We interpret these data as suggesting that ethanol diverted cells in early differentiation from the NE fate toward the ME lineage. Our results provide a novel insight into the mode of ethanol action and opportunities for discovery of prenatal biomarkers at early stages.

  12. Efficient delivery and functional expression of transfected modified mRNA in human embryonic stem cell-derived retinal pigmented epithelial cells.

    PubMed

    Hansson, Magnus L; Albert, Silvia; González Somermeyer, Louisa; Peco, Rubén; Mejía-Ramírez, Eva; Montserrat, Núria; Izpisua Belmonte, Juan Carlos

    2015-02-27

    Gene- and cell-based therapies are promising strategies for the treatment of degenerative retinal diseases such as age-related macular degeneration, Stargardt disease, and retinitis pigmentosa. Cellular engineering before transplantation may allow the delivery of cellular factors that can promote functional improvements, such as increased engraftment or survival of transplanted cells. A current challenge in traditional DNA-based vector transfection is to find a delivery system that is both safe and efficient, but using mRNA as an alternative to DNA can circumvent these major roadblocks. In this study, we show that both unmodified and modified mRNA can be delivered to retinal pigmented epithelial (RPE) cells with a high efficiency compared with conventional plasmid delivery systems. On the other hand, administration of unmodified mRNA induced a strong innate immune response that was almost absent when using modified mRNA. Importantly, transfection of mRNA encoding a key regulator of RPE gene expression, microphthalmia-associated transcription factor (MITF), confirmed the functionality of the delivered mRNA. Immunostaining showed that transfection with either type of mRNA led to the expression of roughly equal levels of MITF, primarily localized in the nucleus. Despite these findings, quantitative RT-PCR analyses showed that the activation of the expression of MITF target genes was higher following transfection with modified mRNA compared with unmodified mRNA. Our findings, therefore, show that modified mRNA transfection can be applied to human embryonic stem cell-derived RPE cells and that the method is safe, efficient, and functional.

  13. Differential expression of estrogen receptor alpha in the embryonic adrenal-kidney-gonadal complex of the oviparous lizard, Calotes versicolor (Daud.).

    PubMed

    Inamdar, L S; Khodnapur, B S; Nindi, R S; Dasari, S; Seshagiri, P B

    2015-09-01

    Estrogen signalling is critical for ovarian differentiation in reptiles with temperature-dependent sex determination (TSD). To elucidate the involvement of estrogen in this process, adrenal-kidney-gonadal (AKG) expression of estrogen receptor (ERα) was studied at female-producing temperature (FPT) in the developing embryos of the lizard, Calotes versicolor which exhibits a distinct pattern of TSD. The eggs of this lizard were incubated at 31.5±0.5°C (100% FPT). The torso of embryos containing adrenal-kidney-gonadal complex (AKG) was collected during different stages of development and subjected to Western blotting and immunohistochemistry analysis. The ERα antibody recognized two protein bands with apparent molecular weight ∼55 and ∼45kDa in the total protein extracts of embryonic AKG complex of C. versicolor. The observed results suggest the occurrence of isoforms of ERα. The differential expression of two different protein isoforms may reveal their distinct role in cell proliferation during gonadal differentiation. This is the first report to reveal two isoforms of the ERα in a reptile during development. Immunohistochemical studies reveal a weak, but specific, cytoplasmic ERα immunostaining exclusively in the AKG during late thermo-sensitive period suggesting the responsiveness of AKG to estrogens before gonadal differentiation at FPT. Further, cytoplasmic as well as nuclear expression of ERα in the medulla and in oogonia of the cortex (faint activity) at gonadal differentiation stage suggests that the onset of gonadal estrogen activity coincides with sexual differentiation of gonad. Intensity and pattern of the immunoreactions of ERα in the medullary region at FPT suggest endogenous production of estrogen which may act in a paracrine fashion to induce neighboring cells into ovarian differentiation pathway.

  14. Efficient delivery and functional expression of transfected modified mRNA in human embryonic stem cell-derived retinal pigmented epithelial cells.

    PubMed

    Hansson, Magnus L; Albert, Silvia; González Somermeyer, Louisa; Peco, Rubén; Mejía-Ramírez, Eva; Montserrat, Núria; Izpisua Belmonte, Juan Carlos

    2015-02-27

    Gene- and cell-based therapies are promising strategies for the treatment of degenerative retinal diseases such as age-related macular degeneration, Stargardt disease, and retinitis pigmentosa. Cellular engineering before transplantation may allow the delivery of cellular factors that can promote functional improvements, such as increased engraftment or survival of transplanted cells. A current challenge in traditional DNA-based vector transfection is to find a delivery system that is both safe and efficient, but using mRNA as an alternative to DNA can circumvent these major roadblocks. In this study, we show that both unmodified and modified mRNA can be delivered to retinal pigmented epithelial (RPE) cells with a high efficiency compared with conventional plasmid delivery systems. On the other hand, administration of unmodified mRNA induced a strong innate immune response that was almost absent when using modified mRNA. Importantly, transfection of mRNA encoding a key regulator of RPE gene expression, microphthalmia-associated transcription factor (MITF), confirmed the functionality of the delivered mRNA. Immunostaining showed that transfection with either type of mRNA led to the expression of roughly equal levels of MITF, primarily localized in the nucleus. Despite these findings, quantitative RT-PCR analyses showed that the activation of the expression of MITF target genes was higher following transfection with modified mRNA compared with unmodified mRNA. Our findings, therefore, show that modified mRNA transfection can be applied to human embryonic stem cell-derived RPE cells and that the method is safe, efficient, and functional. PMID:25555917

  15. A Genomic Duplication is Associated with Ectopic Eomesodermin Expression in the Embryonic Chicken Comb and Two Duplex-comb Phenotypes

    PubMed Central

    Dorshorst, Ben; Rubin, Carl-Johan; Ashwell, Chris; Gourichon, David; Tixier-Boichard, Michèle; Hallböök, Finn; Andersson, Leif

    2015-01-01

    Duplex-comb (D) is one of three major loci affecting comb morphology in the domestic chicken. Here we show that the two Duplex-comb alleles, V-shaped (D*V) and Buttercup (D*C), are both associated with a 20 Kb tandem duplication containing several conserved putative regulatory elements located 200 Kb upstream of the eomesodermin gene (EOMES). EOMES is a T-box transcription factor that is involved in mesoderm specification during gastrulation. In D*V and D*C chicken embryos we find that EOMES is ectopically expressed in the ectoderm of the comb-developing region as compared to wild-type embryos. The confinement of the ectopic expression of EOMES to the ectoderm is in stark contrast to the causal mechanisms underlying the two other major comb loci in the chicken (Rose-comb and Pea-comb) in which the transcription factors MNR2 and SOX5 are ectopically expressed strictly in the mesenchyme. Interestingly, the causal mutations of all three major comb loci in the chicken are now known to be composed of large-scale structural genomic variants that each result in ectopic expression of transcription factors. The Duplex-comb locus also illustrates the evolution of alleles in domestic animals, which means that alleles evolve by the accumulation of two or more consecutive mutations affecting the phenotype. We do not yet know whether the V-shaped or Buttercup allele correspond to the second mutation that occurred on the haplotype of the original duplication event. PMID:25789773

  16. Expression of spicule matrix protein gene SM30 in embryonic and adult mineralized tissues of sea urchin Hemicentrotus pulcherrimus

    NASA Technical Reports Server (NTRS)

    Kitajima, T.; Tomita, M.; Killian, C. E.; Akasaka, K.; Wilt, F. H.

    1996-01-01

    We have isolated a cDNA clone for spicule matrix protein, SM30, from sea urchin Hemicentrotus pulcherrimus and have studied the expression of this gene in comparison with that of another spicule matrix protein gene, SM50. In cultured micromeres as well as in intact embryos transcripts of SM30 were first detectable around the onset of spicule formation and rapidly increased with the growth of spicules, which accompanied accumulation of glycosylated SM30 protein(s). When micromeres were cultured in the presence of Zn2+, spicule formation and SM30 expression were suppressed, while both events resumed concurrently after the removal of Zn2+ from the culture medium. Expression of SM50, in contrast, started before the appearance of spicules and was not sensitive to Zn2+. Differences were also observed in adult tissues; SM30 mRNA was detected in spines and tube feet but not in the test, while SM50 mRNA was apparent in all of these mineralized tissues at similar levels. These results strongly suggest that the SM30 gene is regulated by a different mechanism to that of the SM50 gene and that the products of these two genes are differently involved in sea urchin biomineralization. A possible role of SM30 protein in skeleton formation is discussed.

  17. Cloning and expression patterns of two Smad genes during embryonic development and shell formation of the Pacific oyster Crassostrea gigas

    NASA Astrophysics Data System (ADS)

    Liu, Gang; Huan, Pin; Liu, Baozhong

    2014-11-01

    Increasing evidence indicates that transforming growth factor β (TGF-β) signaling pathways play many important roles in the early development of mollusks. However, limited information is known concerning their detailed mechanisms. Here, we describe the identification, cloning and characterization of two Smad genes, the key components of TGF-β signaling pathways, from the Pacific oyster Crassostrea gigas. Sequence analysis of the two genes, designated as cgi-smad1/ 5/ 8 and cgi-smad4, revealed conserved functional characteristics. The two genes were widely expressed in embryos and larvae, suggesting multiple roles in the early development of C. gigas. The mRNA of the two genes aggregated in the D quadrant and cgi-smad4 was highly expressed on the dorsal side of the gastrula, indicating that TGF-β signaling pathways may be involved in dorsoventral patterning in C. gigas. Furthermore, high expression levels of the two genes in the shell fields of embryos at different stages suggested important roles for TGF-β signaling pathways in particular phases of shell development, including the formation of the initial shell field and the biomineralization of larval shells. The results of this study provide fundamental support for elucidating how TGF-β signaling pathways participate in the early development of bivalve mollusks, and suggest that further work is warranted to this end.

  18. Inducible VEGF Expression by Human Embryonic Stem Cell-Derived Mesenchymal Stromal Cells Reduces the Minimal Islet Mass Required to Reverse Diabetes

    PubMed Central

    Hajizadeh-Saffar, E.; Tahamtani, Y.; Aghdami, N.; Azadmanesh, K.; Habibi-Anbouhi, M.; Heremans, Y.; De Leu, N.; Heimberg, H.; Ravassard, P.; Shokrgozar, M. A.; Baharvand, H.

    2015-01-01

    Islet transplantation has been hampered by loss of function due to poor revascularization. We hypothesize that co-transplantation of islets with human embryonic stem cell-derived mesenchymal stromal cells that conditionally overexpress VEGF (hESC-MSC:VEGF) may augment islet revascularization and reduce the minimal islet mass required to reverse diabetes in mice. HESC-MSCs were transduced by recombinant lentiviruses that allowed conditional (Dox-regulated) overexpression of VEGF. HESC-MSC:VEGF were characterized by tube formation assay. After co-transplantation of hESC-MSC:VEGF with murine islets in collagen-fibrin hydrogel in the omental pouch of diabetic nude mice, we measured blood glucose, body weight, glucose tolerance and serum C-peptide. As control, islets were transplanted alone or with non-transduced hESC-MSCs. Next, we compared functional parameters of 400 islets alone versus 200 islets co-transplanted with hESC-MSC:VEGF. As control, 200 islets were transplanted alone. Metabolic function of islets transplanted with hESC-MSC:VEGF significantly improved, accompanied by superior graft revascularization, compared with control groups. Transplantation of 200 islets with hESC-MSC:VEGF showed superior function over 400 islets alone. We conclude that co-transplantation of islets with VEGF-expressing hESC-MSCs allowed for at least a 50% reduction in minimal islet mass required to reverse diabetes in mice. This approach may contribute to alleviate the need for multiple donor organs per patient. PMID:25818803

  19. ZFP57 maintains the parent-of-origin-specific expression of the imprinted genes and differentially affects non-imprinted targets in mouse embryonic stem cells

    PubMed Central

    Riso, Vincenzo; Cammisa, Marco; Kukreja, Harpreet; Anvar, Zahra; Verde, Gaetano; Sparago, Angela; Acurzio, Basilia; Lad, Shraddha; Lonardo, Enza; Sankar, Aditya; Helin, Kristian; Feil, Robert; Fico, Annalisa; Angelini, Claudia; Grimaldi, Giovanna; Riccio, Andrea

    2016-01-01

    ZFP57 is necessary for maintaining repressive epigenetic modifications at Imprinting control regions (ICRs). In mouse embryonic stem cells (ESCs), ZFP57 binds ICRs (ICRBS) and many other loci (non-ICRBS). To address the role of ZFP57 on all its target sites, we performed high-throughput and multi-locus analyses of inbred and hybrid mouse ESC lines carrying different gene knockouts. By using an allele-specific RNA-seq approach, we demonstrate that ZFP57 loss results in derepression of the imprinted allele of multiple genes in the imprinted clusters. We also find marked epigenetic differences between ICRBS and non-ICRBS suggesting that different cis-acting regulatory functions are repressed by ZFP57 at these two classes of target loci. Overall, these data demonstrate that ZFP57 is pivotal to maintain the allele-specific epigenetic modifications of ICRs that in turn are necessary for maintaining the imprinted expression over long distances. At non-ICRBS, ZFP57 inactivation results in acquisition of epigenetic features that are characteristic of poised enhancers, suggesting that another function of ZFP57 in early embryogenesis is to repress cis-acting regulatory elements whose activity is not yet required. PMID:27257070

  20. Germ Cell Nuclear Factor (GCNF) Represses Oct4 Expression and Globally Modulates Gene Expression in Human Embryonic Stem (hES) Cells*

    PubMed Central

    Wang, Hongran; Wang, Xiaohong; Xu, Xueping; Kyba, Michael; Cooney, Austin J.

    2016-01-01

    Oct4 is considered a key transcription factor for pluripotent stem cell self-renewal. It binds to specific regions within target genes to regulate their expression and is downregulated upon induction of differentiation of pluripotent stem cells; however, the mechanisms that regulate the levels of human Oct4 expression remain poorly understood. Here we show that expression of human Oct4 is directly repressed by germ cell nuclear factor (GCNF), an orphan nuclear receptor, in hES cells. Knockdown of GCNF by siRNA resulted in maintenance of Oct4 expression during RA-induced hES cell differentiation. While overexpression of GCNF promoted repression of Oct4 expression in both undifferentiated and differentiated hES cells. The level of Oct4 repression was dependent on the level of GCNF expression in a dose-dependent manner. mRNA microarray analysis demonstrated that overexpression of GCNF globally regulates gene expression in undifferentiated and differentiated hES cells. Within the group of altered genes, GCNF down-regulated 36% of the genes, and up-regulated 64% in undifferentiated hES cells. In addition, GCNF also showed a regulatory gene pattern that is different from RA treatment during hES cell differentiation. These findings increase our understanding of the mechanisms that maintain hES cell pluripotency and regulate gene expression during the differentiation process. PMID:26769970

  1. Germ Cell Nuclear Factor (GCNF) Represses Oct4 Expression and Globally Modulates Gene Expression in Human Embryonic Stem (hES) Cells.

    PubMed

    Wang, Hongran; Wang, Xiaohong; Xu, Xueping; Kyba, Michael; Cooney, Austin J

    2016-04-15

    Oct4 is considered a key transcription factor for pluripotent stem cell self-renewal. It binds to specific regions within target genes to regulate their expression and is downregulated upon induction of differentiation of pluripotent stem cells; however, the mechanisms that regulate the levels of human Oct4 expression remain poorly understood. Here we show that expression of human Oct4 is directly repressed by germ cell nuclear factor (GCNF), an orphan nuclear receptor, in hES cells. Knockdown of GCNF by siRNA resulted in maintenance of Oct4 expression during RA-induced hES cell differentiation. While overexpression of GCNF promoted repression of Oct4 expression in both undifferentiated and differentiated hES cells. The level of Oct4 repression was dependent on the level of GCNF expression in a dose-dependent manner. mRNA microarray analysis demonstrated that overexpression of GCNF globally regulates gene expression in undifferentiated and differentiated hES cells. Within the group of altered genes, GCNF down-regulated 36% of the genes, and up-regulated 64% in undifferentiated hES cells. In addition, GCNF also showed a regulatory gene pattern that is different from RA treatment during hES cell differentiation. These findings increase our understanding of the mechanisms that maintain hES cell pluripotency and regulate gene expression during the differentiation process.

  2. Gene expression profiling reveals the heterogeneous transcriptional activity of Oct3/4 and its possible interaction with Gli2 in mouse embryonic stem cells.

    PubMed

    Li, Yanzhen; Drnevich, Jenny; Akraiko, Tatiana; Band, Mark; Li, Dong; Wang, Fei; Matoba, Ryo; Tanaka, Tetsuya S

    2013-01-01

    We examined the transcriptional activity of Oct3/4 (Pou5f1) in mouse embryonic stem cells (mESCs) maintained under standard culture conditions to gain a better understanding of self-renewal in mESCs. First, we built an expression vector in which the Oct3/4 promoter drives the monocistronic transcription of Venus and a puromycin-resistant gene via the foot-and-mouth disease virus self-cleaving peptide T2A. Then, a genetically-engineered mESC line with the stable integration of this vector was isolated and cultured in the presence or absence of puromycin. The cultures were subsequently subjected to Illumina expression microarray analysis. We identified approximately 4600 probes with statistically significant differential expression. The genes involved in nucleic acid synthesis were overrepresented in the probe set associated with mESCs maintained in the presence of puromycin. In contrast, the genes involved in cell differentiation were overrepresented in the probe set associated with mESCs maintained in the absence of puromycin. Therefore, it is suggested with these data that the transcriptional activity of Oct3/4 fluctuates in mESCs and that Oct3/4 plays an essential role in sustaining the basal transcriptional activities required for cell duplication in populations with equal differentiation potential. Heterogeneity in the transcriptional activity of Oct3/4 was dynamic. Interestingly, we found that genes involved in the hedgehog signaling pathway showed unique expression profiles in mESCs and validated this observation by RT-PCR analysis. The expression of Gli2, Ptch1 and Smo was consistently detected in other types of pluripotent stem cells examined in this study. Furthermore, the Gli2 protein was heterogeneously detected in mESC nuclei by immunofluorescence microscopy and this result correlated with the detection of the Oct3/4 protein. Finally, forced activation of Gli2 in mESCs increased their proliferation rate. Collectively, it is suggested with these results

  3. Ontogeny of B cells expressing IgM in embryonic and larval tissues of the American grass frog, Rana pipiens.

    PubMed

    Zettergren, L D

    2000-06-01

    Affinity-purified, fluorochrome-tagged F(ab')(2) antibody fragments specific for heavy (mu) chains of Rana pipiens IgM were prepared from hyperimmune rabbit sera. By using two-color immunofluorescent procedures we observed that (1) the first cells expressing IgM, termed pre-B cells, lack detectable quantities of membrane or surface IgM but contain detectable quantities of cytoplasmic IgM (smu(-)/cmu(+)), (2) sIgM(+) B cells were the second type of IgM containing cell to appear in development, and (3) plasma cells, which contain copious quantities of cIgM, were the final phenotype to appear in the development of B cells expressing IgM. These cells were first observed in the pronephros of the developing urogenital system. Shortly after their appearance in the pronephros, cells in B lineages were observed in the liver. These observations (1) are consistent with recent studies of B lymphopoiesis in the aorta-gonad-mesonephros (AGM) region in endothermic vertebrates, including mice, (2) suggest that there are fundamental ontogenetic and phylogenetic similarities between cells and tissues of developing vertebrate immune systems, and (3) evoke questions concerning the possible function(s) of lymphocytes in developing anurans up to metamorphosis and beyond.

  4. Left-sided embryonic expression of the BCL-6 corepressor, BCOR, is required for vertebrate laterality determination.

    PubMed

    Hilton, Emma N; Manson, Forbes D C; Urquhart, Jill E; Johnston, Jennifer J; Slavotinek, Anne M; Hedera, Peter; Stattin, Eva-Lena; Nordgren, Ann; Biesecker, Leslie G; Black, Graeme C M

    2007-07-15

    Oculofaciocardiodental (OFCD) syndrome is an X-linked male lethal condition encompassing cardiac septal defects, as well as ocular and dental anomalies. The gene mutated in OFCD syndrome, the BCL-6 corepressor (BCOR), is part of a transcriptional repression complex whose transcriptional targets remain largely unknown. We reviewed cases of OFCD syndrome and identified patients exhibiting defective lateralization including dextrocardia, asplenia and intestinal malrotation, suggesting that BCOR is required in normal laterality determination. To study the function of BCOR, we used morpholino oligonucleotides (MOs) to knockdown expression of xtBcor in Xenopus tropicalis, thus creating an animal model for OFCD syndrome. The resulting tadpoles had cardiac and ocular features characteristic of OFCD syndrome. Reversed cardiac orientation and disorganized gut patterning were seen when MOs were injected into the left side of embryos, demonstrating a left-sided requirement for xtBcor in lateral determination in Xenopus. Ocular defects displayed no left-right bias and included anterior and posterior segment disorders such as microphthalmia and coloboma. Expression of xtPitx2c was shown to be downregulated when xtBcor was depleted. This identifies a pathway in which xtBcor is required for lateral specification, a process intrinsically linked to correct cardiac septal development. PMID:17517692

  5. Stimulation with monochromatic green light during incubation alters satellite cell mitotic activity and gene expression in relation to embryonic and posthatch muscle growth of broiler chickens.

    PubMed

    Zhang, L; Zhang, H J; Wang, J; Wu, S G; Qiao, X; Yue, H Y; Yao, J H; Qi, G H

    2014-01-01

    Previous studies showed that monochromatic green light stimuli during embryogenesis accelerated posthatch body weight (BW) and pectoral muscle growth of broilers. In this experiment, we further investigated the morphological and molecular basis of this phenomenon. Fertile broiler eggs (Arbor Acres, n=880) were pre-weighed and randomly assigned to 1 of the 2 incubation treatment groups: (1) dark condition (control group), and (2) monochromatic green light group (560 nm). The monochromatic lighting systems sourced from light-emitting diode lamps and were equalized at the intensity of 15 lx at eggshell level. The dark condition was set as a commercial control from day 1 until hatching. After hatch, 120 male 1-day-old chicks from each group were housed under incandescent white light with an intensity of 30 lx at bird-head level. No effects of light stimuli during embryogenesis on hatching time, hatchability, hatching weight and bird mortality during the feeding trial period were observed in the present study. Compared with the dark condition, the BW, pectoral muscle weight and myofiber cross-sectional areas were significantly greater on 7-day-old chicks incubated under green light. Green light also increased the satellite cell mitotic activity of pectoral muscle on 1- and 3-day-old birds. In addition, green light upregulated MyoD, myogenin and myostatin mRNA expression in late embryos and/ or newly hatched chicks. These data suggest that stimulation with monochromatic green light during incubation promote muscle growth by enhancing proliferation and differentiation of satellite cells in late embryonic and newly hatched stages. Higher expression of myostatin may ultimately help prevent excessive proliferation and differentiation of satellite cells in birds incubated under green light.

  6. Regulation of embryonic development and apoptotic-related gene expression by brain-derived neurotrophic factor in two different culture conditions in ovine.

    PubMed

    Abazari-Kia, Amir Hossein; Dehghani-Mohammadabadi, Maryam; Mohammadi-Sangcheshmeh, Abdollah; Zhandi, Mahdi; Salehi, Mohammad

    2015-07-01

    In the present study, we aimed to evaluate effects of brain-derived neurotrophic factor (BDNF) which is a member of neurotrophic factor family on developmental competence of oocytes in sheep. In vitro maturation was performed in presence of various concentrations (0, 10, and 100 ng/mL) of BDNF. Meiotic maturation, levels of intracellular glutathione, embryonic developmental potential after parthenogenetic activation, number of total and apoptotic cells in blastocysts, and expression of Bax and Bcl-2 genes in blastocyst cells were determined. Under unstressed condition, while at 100 ng/mL concentration, BDNF increased the IVM rate; an increase of glutathione level was observed at 10 ng/mL concentration. Moreover, when BDNF-treated oocytes were used for parthenogenetic activation, more blastocyst at both 10 and 100 ng/mL levels was obtained in comparison with the untreated group. Under heat stress (HS), the blastocyst rate was dramatically reduced in untreated oocytes compared to that obtained from 10 ng/mL BDNF groups. Total cell number in blastocysts was not affected by the treatment groups. The mean of Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive nuclei in blastocysts was not influenced by addition of BDNF in medium and that presence or absence of thermal stress during IVM than the control group. Moreover, our data revealed that the expression of Bax and Bcl-2 genes in blastocysts was affected by both BDNF concentration and HS. Conclusively, supplementation of IVM medium with 10 ng/mL BDNF had a beneficial effect on sheep oocyte competence by increasing the rate of blastocyst especially when HS exists.

  7. Changes in the NS1 gene of avian influenza viruses isolated in Thailand affect expression of type I interferon in primary chicken embryonic fibroblast cells.

    PubMed

    Thepmalee, Chutamas; Sanguansermsri, Phanchana; Suwanankhon, Naratchala; Chamnanpood, Chanpen; Chamnanpood, Pornchai; Pongcharoen, Sutatip; Niumsap, Pannika R; Surangkul, Damratsamon; Sanguansermsri, Donruedee

    2013-12-01

    The non-structural protein 1 (NS1) of avian influenza virus was defined as one of the virulent factors. To understand the effect of NS1 protein of influenza virus H5N1 isolated in Thailand on type I (α/β) interferon (IFN) synthesis, five reverse genetic viruses were constructed and used as models. The viruses were generated using NS genomic segment from A/Peurto Rico/8/1934 (H1N1) and four avian influenza viruses isolated from the first outbreak in Thailand. All the viruses have the rest of the genome from A/Peurto Rico/8/1934 (H1N1). The constructed viruses were named (1) NS1 PR8/34, (2) NS1 wild type, (3) NS1 L15FD53G, (4) NS1 N171I and (5) NS1 E71K, respectively. The type I (α/β) IFN gene expression in control and infected primary chicken embryonic fibroblast cells were analyzed by quantitative polymerase chain reaction. The results show that the inhibition of IFN-β gene expression by NS1 wild type infected cells is stronger than NS1 N171I, NS1 E71K, NS1 PR8/34 and NS1 L15FD53G, respectively. The data suggest that the difference of amino acid sequence of NS1 protein contributes to the IFN-β antagonist. In contrast, the difference of the NS1 protein does not influence in the IFN-α antagonistic activity.

  8. Modelling mutational landscapes of human cancers in vitro

    NASA Astrophysics Data System (ADS)

    Olivier, Magali; Weninger, Annette; Ardin, Maude; Huskova, Hana; Castells, Xavier; Vallée, Maxime P.; McKay, James; Nedelko, Tatiana; Muehlbauer, Karl-Rudolf; Marusawa, Hiroyuki; Alexander, John; Hazelwood, Lee; Byrnes, Graham; Hollstein, Monica; Zavadil, Jiri

    2014-03-01

    Experimental models that recapitulate mutational landscapes of human cancers are needed to decipher the rapidly expanding data on human somatic mutations. We demonstrate that mutation patterns in immortalised cell lines derived from primary murine embryonic fibroblasts (MEFs) exposed in vitro to carcinogens recapitulate key features of mutational signatures observed in human cancers. In experiments with several cancer-causing agents we obtained high genome-wide concordance between human tumour mutation data and in vitro data with respect to predominant substitution types, strand bias and sequence context. Moreover, we found signature mutations in well-studied human cancer driver genes. To explore endogenous mutagenesis, we used MEFs ectopically expressing activation-induced cytidine deaminase (AID) and observed an excess of AID signature mutations in immortalised cell lines compared to their non-transgenic counterparts. MEF immortalisation is thus a simple and powerful strategy for modelling cancer mutation landscapes that facilitates the interpretation of human tumour genome-wide sequencing data.

  9. Extinction of Oct-3/4 gene expression in embryonal carcinoma [times] fibroblast somatic cell hybrids is accompanied by changes in the methylation status, chromatin structure, and transcriptional activity of the Oct-3/4 upstream region

    SciTech Connect

    Ben-Shushan, E.; Pikarsky, E.; Klar, A.; Bergman, Y. )

    1993-02-01

    The OCT-3/4 gene provides an excellent model system with which to study the extinction phenomenon in somatic cell hybrids. The molecular mechanism that underlies the extinction of a tissue-specific transcription factor in somatic cell hybrides is evaluated and compared with its down-regulation in retinoic acid treated embryonal carcinoma cells. This study draws a connection between the shutdown of OCT-3/4 expression in retinoic acid (RA)-differentiated embryonal carcinoma (EC) cells and its extinction in hybrid cells. This repression of OCT-3/4 expression is achieved through changes in the methylation status, chromatin structure, and transcriptional activity of the OCT-3/4 upstream regulatory region. 59 refs.

  10. Expression of Notch pathway genes in the embryonic mouse metanephros suggests a role in proximal tubule development.

    PubMed

    Leimeister, Cornelia; Schumacher, Nina; Gessler, Manfred

    2003-10-01

    The interaction of neighboring cells via Notch signalling leads to cell fate determination, differentiation and patterning of highly organized tissues. Mice with targeted disruption of genes from the Notch signal transduction pathway display defects in the developing somites, neurogenic structures, blood vessels, heart and other organs. Recent studies have added requirements for Notch signalling during kidney, pancreas and thymus morphogenesis. Here, we describe the expression of all four receptors (Notch1-4), the five transmembrane ligands (Dll1, 3, 4, Jag1 and Jag2), intracellular effectors (the Hey genes) and extracellular modulators (Lfng, Mfng, Rfng) in the developing mouse metanephros. Our results point to a Lfng-dependent role for Notch signalling in the development of nephron segments, especially the proximal tubules.

  11. Noise modulation in retinoic acid signaling sharpens segmental boundaries of gene expression in the embryonic zebrafish hindbrain

    PubMed Central

    Sosnik, Julian; Zheng, Likun; Rackauckas, Christopher V; Digman, Michelle; Gratton, Enrico; Nie, Qing; Schilling, Thomas F

    2016-01-01

    Morphogen gradients induce sharply defined domains of gene expression in a concentration-dependent manner, yet how cells interpret these signals in the face of spatial and temporal noise remains unclear. Using fluorescence lifetime imaging microscopy (FLIM) and phasor analysis to measure endogenous retinoic acid (RA) directly in vivo, we have investigated the amplitude of noise in RA signaling, and how modulation of this noise affects patterning of hindbrain segments (rhombomeres) in the zebrafish embryo. We demonstrate that RA forms a noisy gradient during critical stages of hindbrain patterning and that cells use distinct intracellular binding proteins to attenuate noise in RA levels. Increasing noise disrupts sharpening of rhombomere boundaries and proper patterning of the hindbrain. These findings reveal novel cellular mechanisms of noise regulation, which are likely to play important roles in other aspects of physiology and disease. DOI: http://dx.doi.org/10.7554/eLife.14034.001 PMID:27067377

  12. Drosophila homolog of the mammalian jun oncogene is expressed during embryonic development and activates transcription in mammalian cells.

    PubMed Central

    Zhang, K; Chaillet, J R; Perkins, L A; Halazonetis, T D; Perrimon, N

    1990-01-01

    By means of low-stringency cross-species hybridization to Southern DNA blots, human c-jun sequences were used to identify a unique Drosophila melanogaster locus (Djun). The predicted DJun protein is highly homologous to members of the mammalian Jun family in both the DNA binding and leucine zipper regions. Djun was mapped by in situ hybridization to position 46E of the second chromosome. It encodes a 1.7-kilobase transcript constitutively expressed at all developmental stages. Functionally, Djun in cooperation with mouse c-fos can trans-activate activator protein 1 DNA binding site when introduced into mammalian cells. Taken together, these data suggest that Djun, much like its mammalian homolog, may activate transcription of genes involved in regulation of cell growth, differentiation, and development. Furthermore, the identification of Djun allows one to exploit the genetics of Drosophila to identify genes in signal transduction pathways involving Djun and thus c-jun. Images PMID:1696724

  13. Gene expression profiles uncover individual identities of gnathal neuroblasts and serial homologies in the embryonic CNS of Drosophila

    PubMed Central

    Urbach, Rolf; Jussen, David; Technau, Gerhard M.

    2016-01-01

    The numbers and types of progeny cells generated by neural stem cells in the developing CNS are adapted to its region-specific functional requirements. In Drosophila, segmental units of the CNS develop from well-defined patterns of neuroblasts. Here we constructed comprehensive neuroblast maps for the three gnathal head segments. Based on the spatiotemporal pattern of neuroblast formation and the expression profiles of 46 marker genes (41 transcription factors), each neuroblast can be uniquely identified. Compared with the thoracic ground state, neuroblast numbers are progressively reduced in labial, maxillary and mandibular segments due to smaller sizes of neuroectodermal anlagen and, partially, to suppression of neuroblast formation and induction of programmed cell death by the Hox gene Deformed. Neuroblast patterns are further influenced by segmental modifications in dorsoventral and proneural gene expression. With the previously published neuroblast maps and those presented here for the gnathal region, all neuroectodermal neuroblasts building the CNS of the fly (ventral nerve cord and brain, except optic lobes) are now individually identified (in total 2×567 neuroblasts). This allows, for the first time, a comparison of the characteristics of segmental populations of stem cells and to screen for serially homologous neuroblasts throughout the CNS. We show that approximately half of the deutocerebral and all of the tritocerebral (posterior brain) and gnathal neuroblasts, but none of the protocerebral (anterior brain) neuroblasts, display serial homology to neuroblasts in thoracic/abdominal neuromeres. Modifications in the molecular signature of serially homologous neuroblasts are likely to determine the segment-specific characteristics of their lineages. PMID:27095493

  14. Bisphenol S alters embryonic viability, development, gallbladder size, and messenger RNA expression in chicken embryos exposed via egg injection.

    PubMed

    Crump, Doug; Chiu, Suzanne; Williams, Kim L

    2016-06-01

    Amid concerns about the toxicological effects and environmental prevalence of bisphenol A (BPA), efforts to find suitable, safer replacement alternatives are essential. Bisphenol S (BPS) is a potential chemical substitute for BPA; however, few studies are available confirming that it has a more desirable ecotoxicological profile. In the present study, BPS was injected into the air cell of unincubated, fertilized chicken embryos at 6 concentrations ranging from 0 μg/g to 207 μg/g egg to determine effects on pipping success, development, hepatic messenger ribonucleic acid (mRNA) expression, thyroid hormone levels, and circulating bile acid concentrations. Concentrations of BPS increased in a dose-dependent manner in whole-embryo homogenates, and exposure to the highest dose, 207 μg/g, resulted in decreased pipping success (estimated median lethal dose  = 279 μg/g; 95% confidence interval = 161-486 μg/g). Exposure to BPS also reduced growth metrics including embryo mass and tarsus length, whereas the most pronounced phenotypic effect was the concentration-dependent, significant increase in gallbladder size at concentrations ≥52.8 μg/g. These adverse phenotypic outcomes were associated with the modulation of gene targets from a chicken ToxChip polymerase chain reaction array, which are involved with xenobiotic metabolism, lipid homeostasis, bile acid synthesis, and the thyroid hormone pathway. Expression levels of 2 estrogen-responsive genes, apolipoprotein II and vitellogenin, were too low at the sampling time point assessed (i.e., pipping embryos) to quantify changes, and no effects were observed on circulating free thyroxine or bile acid concentrations. The present study provides novel, whole-animal toxicological data for a BPA replacement alternative that is not well characterized. Environ Toxicol Chem 2016;35:1541-1549. © 2015 SETAC.

  15. Silencing of TBX20 gene expression in rat myocardial and human embryonic kidney cells leads to cell cycle arrest in G2 phase

    PubMed Central

    Liu, Peiyan; Sun, Yueling; Qiu, Guangbin; Jiang, Hongkun; Qiu, Guangrong

    2016-01-01

    Congenital heart diseases (CHDs) are the most common birth defects due to abnormal cardiac development. The T-box 20 (TBX20) gene is a member of the T-box family of transcription factors and encodes TBX20, which is essential for early heart development. In the present study, reduced TBX20 expression was observed in CHD tissue samples compared with normal tissues, and the function of TBX20 in Rattus norvegicus myocardial cells [H9c2(2-1)] and human embryonic kidney cells (HEK293) was investigated. TBX20 was silenced in H9c2 and HEK293 cells via transfection of small interfering RNA and short hairpin RNA duplexes, respectively, and TBX20 mRNA and protein levels were subsequently examined using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot analysis. Cell proliferation was assessed using a cell counting kit and proliferating cell nuclear antigen expression was determined by western blotting. Analysis of cell apoptosis was achieved by annexin V-fluorescein isothiocyanate/propidium iodide staining and a fluorometric terminal deoxynucleotidyl transferase dUTP nick-end labeling system. Cell cycle analysis was achieved using fluorescence-activated cell sorting, and, an RT-qPCR array was used to profile the expression of TBX20-related genes. Silencing of TBX20 in H9c2 and HEK293 cells significantly inhibited cell proliferation, induced cell apoptosis and led to G2/M cell cycle arrest. A reduction in cyclin B1 mRNA levels and an increase in cyclin-dependent kinase inhibitor 1B mRNA levels was observed, which indicated that cells were arrested in G2 phase. Concurrently, the mRNA levels of GATA binding protein 4 were increased in both cell lines, which may provide an explanation for the abnormal cardiac hypertrophy observed in patients with congenital heart disease. These results suggest that TBX20 is required for heart morphogenesis, and inhibition of TBX20 expression may lead to the suppression of cell proliferation and cell cycle

  16. Enrichment of human embryonic stem cell-derived NKX6.1-expressing pancreatic progenitor cells accelerates the maturation of insulin-secreting cells in vivo.

    PubMed

    Rezania, Alireza; Bruin, Jennifer E; Xu, Jean; Narayan, Kavitha; Fox, Jessica K; O'Neil, John J; Kieffer, Timothy J

    2013-11-01

    Human embryonic stem cells (hESCs) are considered a potential alternative to cadaveric islets as a source of transplantable cells for treating patients with diabetes. We previously described a differentiation protocol to generate pancreatic progenitor cells from hESCs, composed of mainly pancreatic endoderm (PDX1/NKX6.1-positive), endocrine precursors (NKX2.2/synaptophysin-positive, hormone/NKX6.1-negative), and polyhormonal cells (insulin/glucagon-positive, NKX6.1-negative). However, the relative contributions of NKX6.1-negative versus NKX6.1-positive cell fractions to the maturation of functional β-cells remained unclear. To address this question, we generated two distinct pancreatic progenitor cell populations using modified differentiation protocols. Prior to transplant, both populations contained a high proportion of PDX1-expressing cells (~85%-90%) but were distinguished by their relatively high (~80%) or low (~25%) expression of NKX6.1. NKX6.1-high and NKX6.1-low progenitor populations were transplanted subcutaneously within macroencapsulation devices into diabetic mice. Mice transplanted with NKX6.1-low cells remained hyperglycemic throughout the 5-month post-transplant period whereas diabetes was reversed in NKX6.1-high recipients within 3 months. Fasting human C-peptide levels were similar between groups throughout the study, but only NKX6.1-high grafts displayed robust meal-, glucose- and arginine-responsive insulin secretion as early as 3 months post-transplant. NKX6.1-low recipients displayed elevated fasting glucagon levels. Theracyte devices from both groups contained almost exclusively pancreatic endocrine tissue, but NKX6.1-high grafts contained a greater proportion of insulin-positive and somatostatin-positive cells, whereas NKX6.1-low grafts contained mainly glucagon-expressing cells. Insulin-positive cells in NKX6.1-high, but not NKX6.1-low grafts expressed nuclear MAFA. Collectively, this study demonstrates that a pancreatic endoderm

  17. Silencing of TBX20 gene expression in rat myocardial and human embryonic kidney cells leads to cell cycle arrest in G2 phase.

    PubMed

    Liu, Peiyan; Sun, Yueling; Qiu, Guangbin; Jiang, Hongkun; Qiu, Guangrong

    2016-10-01

    Congenital heart diseases (CHDs) are the most common birth defects due to abnormal cardiac development. The T-box 20 (TBX20) gene is a member of the T‑box family of transcription factors and encodes TBX20, which is essential for early heart development. In the present study, reduced TBX20 expression was observed in CHD tissue samples compared with normal tissues, and the function of TBX20 in Rattus norvegicus myocardial cells [H9c2(2-1)] and human embryonic kidney cells (HEK293) was investigated. TBX20 was silenced in H9c2 and HEK293 cells via transfection of small interfering RNA and short hairpin RNA duplexes, respectively, and TBX20 mRNA and protein levels were subsequently examined using reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) and western blot analysis. Cell proliferation was assessed using a cell counting kit and proliferating cell nuclear antigen expression was determined by western blotting. Analysis of cell apoptosis was achieved by annexin V‑fluorescein isothiocyanate/propidium iodide staining and a fluorometric terminal deoxynucleotidyl transferase dUTP nick‑end labeling system. Cell cycle analysis was achieved using fluorescence‑activated cell sorting, and, an RT‑qPCR array was used to profile the expression of TBX20‑related genes. Silencing of TBX20 in H9c2 and HEK293 cells significantly inhibited cell proliferation, induced cell apoptosis and led to G2/M cell cycle arrest. A reduction in cyclin B1 mRNA levels and an increase in cyclin‑dependent kinase inhibitor 1B mRNA levels was observed, which indicated that cells were arrested in G2 phase. Concurrently, the mRNA levels of GATA binding protein 4 were increased in both cell lines, which may provide an explanation for the abnormal cardiac hypertrophy observed in patients with congenital heart disease. These results suggest that TBX20 is required for heart morphogenesis, and inhibition of TBX20 expression may lead to the suppression of cell

  18. A MICROARRAY ANALYSIS OF GENE EXPRESSION IN THE EMBRYONIC FORELIMB OF THE C57BL/6J MOUSE REVEALS SIGNIFICANT ALTERATIONS METABOLIC AND DEVELOPMENTAL REGULATION FOLLOWING ETHANOL EXPOSURE.

    EPA Science Inventory

    The observation of transcriptional changes following embryonic ethanol exposure may provide significant insights into the biological response to ethanol exposure. In this study, we used microarray analysis to examine the transcriptional response of the developing limb to a dose ...

  19. The sex-linked fidget mutation abolishes Brn4/Pou3f4 gene expression in the embryonic inner ear.

    PubMed

    Phippard, D; Boyd, Y; Reed, V; Fisher, G; Masson, W K; Evans, E P; Saunders, J C; Crenshaw, E B

    2000-01-01

    We have demonstrated that the phenotype of the mouse mutant sex-linked fidget ( slf ) is caused by developmental malformations of the inner ear that result in hearing loss and vestibular dysfunction. Recently, pilot mapping experiments suggested that the mouse Brn4 / Pou3f4 gene co-segregated with the slf locus on the mouse X chromosome. These mapping data, in conjunction with the observation that the vertical head-shaking phenotype of slf mutants is identical to that observed in mice with a targeted deletion of the Brn4 gene, suggested that slf is a mutant allele of the Brn4 gene. In this paper, we have identified the nature of the slf mutation, and demonstrated that it is an X chromosomal inversion with one breakpoint close to Brn4. This inversion selectively eliminates the expression of the Brn4 gene in the developing inner ear, but not the neural tube. Finally, these results demonstrate that the slf mutation is a good mouse model for the most prevalent form of X-linked congenital deafness in man, which is associated with mutations in the human Brn4 ortholog, POU3F4.

  20. Tris(2-butoxyethyl)phosphate and triethyl phosphate alter embryonic development, hepatic mRNA expression, thyroid hormone levels, and circulating bile acid concentrations in chicken embryos.

    PubMed

    Egloff, Caroline; Crump, Doug; Porter, Emily; Williams, Kim L; Letcher, Robert J; Gauthier, Lewis T; Kennedy, Sean W

    2014-09-15

    The organophosphate flame retardants tris(2-butoxyethyl) phosphate (TBOEP) and triethyl phosphate (TEP) are used in a wide range of applications to suppress or delay the ignition and spread of fire. Both compounds have been detected in the environment and TBOEP was recently measured in free-living avian species. In this study, TBOEP and TEP were injected into the air cell of chicken embryos at concentrations ranging from 0 to 45,400 ng/g and 0 to 241,500 ng/g egg, respectively. Pipping success, development, hepatic mRNA expression of 9 target genes, thyroid hormone levels, and circulating bile acid concentrations were determined. Exposure to the highest doses of TBOEP and TEP resulted in negligible detection of the parent compounds in embryonic contents at pipping indicating their complete metabolic degradation. TBOEP exposure had limited effects on chicken embryos, with the exception of hepatic CYP3A37 mRNA induction. TEP exposure decreased pipping success to 68%, altered growth, increased liver somatic index (LSI) and plasma bile acids, and modulated genes associated with xenobiotic and lipid metabolism and the thyroid hormone pathway. Plasma thyroxine levels were decreased at all TEP doses, including an environmentally-relevant concentration (8 ng/g), and gallbladder hypotrophy was evident at ≥ 43,200 ng/g. Tarsus length and circulating thyroxine concentration emerged as potential phenotypic anchors for the modulation of transthyretin mRNA. The increase in plasma bile acids and LSI, gallbladder hypotrophy, and discoloration of liver tissue represented potential phenotypic outcomes associated with modulation of hepatic genes involved with xenobiotic and lipid metabolism.

  1. Structures and biosynthesis of the N- and O-glycans of recombinant human oviduct-specific glycoprotein expressed in human embryonic kidney cells

    PubMed Central

    Yang, Xiaojing; Tao, Shujuan; Orlando, Ron; Brockhausen, Inka; Kan, Frederick W.K.

    2012-01-01

    Oviduct-specific glycoprotein (OVGP1) is a major mucin-like glycoprotein synthesized and secreted exclusively by non-ciliated secretory cells of mammalian oviduct. In vitro functional studies showed that OVGP1 plays important roles during fertilization and early embryo development. We have recently produced recombinant human oviduct-specific glycoprotein (rhOVGP1) in human embryonic kidney 293 (HEK293) cells. The present study was undertaken to characterize the structures and determine the biosynthetic pathways of the N- and O-glycans of rhOVGP1. Treatment of the stable rhOVGP1-expressing HEK293 cells with either GalNAcα-Bn to block O-glycan extension, tunicamycin to block N-glycosylation, or neuraminidase increased the electrophoretic mobility of rhOVGP1. A detailed analysis of O- and N-linked glycans of rhOVGP1 by mass spectrometry showed a broad range of many simple and complex glycan structures. In order to identify the enzymes involved in the glycosylation of rhOVGP1, we assayed glycosyltransferase activities involved in the assembly of O- and N-glycans in HEK293 cells, and compared these to those from the immortalized human oviductal cells (OE-E6/E7). Our results demonstrate that HEK293 and OE-E6/E7 cells exhibit a similar spectrum of glycosyltransferase activities that can synthesize elongated and sialylated O-glycans with core 1 and 2 structures, as well as complex multiantennary N-glycans. It is anticipated that the knowledge gained from the present study will facilitate future studies of the role of the glycans of human OVGP1 in fertilization and early embryo development. PMID:22817996

  2. Structures and biosynthesis of the N- and O-glycans of recombinant human oviduct-specific glycoprotein expressed in human embryonic kidney cells.

    PubMed

    Yang, Xiaojing; Tao, Shujuan; Orlando, Ron; Brockhausen, Inka; Kan, Frederick W K

    2012-09-01

    Oviduct-specific glycoprotein (OVGP1) is a major mucin-like glycoprotein synthesized and secreted exclusively by non-ciliated secretory cells of mammalian oviduct. In vitro functional studies showed that OVGP1 plays important roles during fertilization and early embryo development. We have recently produced recombinant human oviduct-specific glycoprotein (rhOVGP1) in human embryonic kidney 293 (HEK293) cells. The present study was undertaken to characterize the structures and determine the biosynthetic pathways of the N- and O-glycans of rhOVGP1. Treatment of the stable rhOVGP1-expressing HEK293 cells with either GalNAcα-Bn to block O-glycan extension, tunicamycin to block N-glycosylation, or neuraminidase increased the electrophoretic mobility of rhOVGP1. A detailed analysis of O- and N-linked glycans of rhOVGP1 by mass spectrometry showed a broad range of many simple and complex glycan structures. In order to identify the enzymes involved in the glycosylation of rhOVGP1, we assayed glycosyltransferase activities involved in the assembly of O- and N-glycans in HEK293 cells, and compared these to those from the immortalized human oviductal cells (OE-E6/E7). Our results demonstrate that HEK293 and OE-E6/E7 cells exhibit a similar spectrum of glycosyltransferase activities that can synthesize elongated and sialylated O-glycans with core 1 and 2 structures, as well as complex multiantennary N-glycans. It is anticipated that the knowledge gained from the present study will facilitate future studies of the role of the glycans of human OVGP1 in fertilization and early embryo development.

  3. Mifepristone-inducible caspase-1 expression in mouse embryonic stem cells eliminates tumor formation but spares differentiated cells in vitro and in vivo.

    PubMed

    Wang, Yi; Yang, Dehua; Song, Lin; Li, Ting; Yang, Juan; Zhang, Xiaojie; Le, Weidong

    2012-02-01

    Embryonic stem cell (ESC)-based therapy is a promising treatment for neurodegenerative diseases. But there is always a risk of tumor formation that is due to contamination of undifferentiated ESCs. To reduce the risk and improve ESC-based therapy, we have established a novel strategy by which we can selectively eliminate tumor cells derived from undifferentiated ESCs but spare differentiated cells. In this study, we generated a caspase-1-ESC line transfected with a mifepristone-regulated caspase-1 expression system. Mifepristone induced caspase-1 overexpression both in differentiated and undifferentiated caspase-1-ESCs. All the undifferentiated caspase-1-ESCs were induced to death after mifepristone treatment. Tumors derived from undifferentiated caspase-1-ESCs were eliminated following 3 weeks of mifepristone treatment in vivo. However, differentiated caspase-1-ESCs survived well under the condition of mifepristone-induced caspase-1 overexpression. To examine in vivo the impact of mifepristone-induced caspase-1 activation on grafted cells, we transplanted wild-type ESCs or caspase-1-ESCs into nude mice brains. After 8 weeks of mifepristone treatment, we could not detect any tumor cells in the caspase-1-ESC grafts in the brains of mice. However, we found that donor dopamine neurons survived in the recipient brains. These data demonstrate that mifepristone-induced caspase-1 overexpression in ESCs can eliminate the potential tumor formation meanwhile spares the differentiated cells in the host brains. These results suggest that this novel ESC-based therapy can be used in Parkinson's disease and other related disorders without the risk of tumor formation.

  4. Changes in the levels, expression, and possible roles of serotonin and dopamine during embryonic development in the giant freshwater prawn, Macrobrachium rosenbergii.

    PubMed

    Tinikul, Yotsawan; Poljaroen, Jaruwan; Tinikul, Ruchanok; Sobhon, Prasert

    2016-01-01

    We investigated the changes in the levels of serotonin (5-HT) and dopamine (DA), and their possible roles during embryonic development of the freshwater prawn, Macrobrachium rosenbergii. The 5-HT and DA concentrations were quantified using high performance liquid chromatography with electrochemical detection (HPLC-ECD). The levels of 5-HT and DA gradually increased from early developing embryos to late developing embryos. The 5-HT concentrations gradually increased from the pale yellow egg to orange egg stages, and reaching a maximum at the black egg stage. DA concentrations were much lower in the early embryos than those of 5-HT (P<0.05), and gradually increased to reach the highest level at the black egg stage. Immunohistochemically, 5-HT was firstly detected in the early embryonic stages, whereas DA developed later than 5-HT. Functionally, 5-HT-treated female prawns at doses of 2.5×10(-5), 2.5×10(-6) and 2.5×10(-7)mol/prawn, produced embryos with significantly shortened lengths of early embryonic stages, whereas DA-treated prawns at all three doses, exerted its effects by significantly lengthening the period of mid-embryonic stage onwards. These results suggest significant involvement of 5-HT and DA in embryonic developmental processes of this species.

  5. Photolytic degradation products of two highly brominated flame retardants cause cytotoxicity and mRNA expression alterations in chicken embryonic hepatocytes.

    PubMed

    Su, Guanyong; Letcher, Robert J; Crump, Doug; Farmahin, Reza; Giesy, John P; Kennedy, Sean W

    2014-10-21

    Tetradecabromo-1,4-diphenoxybenzene (TeDB-DiPhOBz) and 2,2',3,3',4,4',5,5',6,6'-decabromodiphenyl ether (BDE-209) are photolytically unstable flame retarding chemicals. Here, photocatalyzed byproducts of TeDB-DiPhOBz and BDE-209 (i.e Br(8)- to Br(11)-PB-DiPhOBz congeners from TeDB-DiPhOBz, and Br(6)- to Br(8)-BDE congeners from BDE-209), formed after 21 days of natural sunlight irradiation (SI), were assessed for exposure effects on cytotoxicity and mRNA expression levels of selected genes in chicken embryonic hepatocytes (CEH). CEHs were exposed for 36 h to concentrations of SI- and nonirradiated (NI)-TeDB-DiPhOBz and BDE-209. Cytotoxic effects were observed only in CEH exposed to 50 μM SI-BDE-209. Results from a custom-designed Avian ToxChip polymerase chain reaction array showed that NI-TeDB-DiPhOBz and NI-BDE-209, up to maximum concentrations of 1.9 and 9 μM, respectively, caused limited changes in mRNA levels of 27 genes from toxicologically relevant pathways, including phase I/II metabolism, the thyroid hormone pathway, lipid/cholesterol metabolism, oxidative stress, immune response, and cell death. In contrast, 12 and 14 of the 27 genes were altered after exposure to 25 μM SI-TeDB-DiPhOBz or 10 μM SI-BDE-209, respectively. Aryl hydrocarbon receptor (AhR)-related CYP1A4 mRNA levels were the most altered on the PCR array with an induction of 560- and 5200-fold after exposure to 1 or 25 μM SI-TeDB-DiPhOBz, respectively, and 2500- and 2300-fold after exposure to 1 or 10 μM SI-BDE-209, respectively. A dioxin-responsive luciferase reporter gene assay confirmed that the CYP1A4 inductions were independent of the dissolution solvents used (tetrahydrofuran/n-hexane, n-hexane, or methanol) during photolysis. Overall, degradation of TeDB-DiPhOBz and BDE-209 by natural sunlight generates byproducts that affect in vitro expression of genes, especially the AhR-mediated CYP1A4. PMID:25222814

  6. Geomorpho-Landscapes

    NASA Astrophysics Data System (ADS)

    Farabollini, Piero; Lugeri, Francesca; Amadio, Vittorio

    2014-05-01

    Landscape is the object of human perceptions, being the image of spatial organization of elements and structures: mankind lives the first approach with the environment, viewing and feeling the landscape. Many definitions of landscape have been given over time: in this case we refer to the Landscape defined as the result of interaction among physical, biotic and anthropic phenomena acting in a different spatial-temporal scale (Foreman & Godron) Following an Aristotelic approach in studying nature, we can assert that " Shape is synthesis": so it is possible to read the land features as the expression of the endogenous and exogenous processes that mould earth surfaces; moreover, Landscape is the result of the interaction of natural and cultural components, and conditions the spatial-temporal development of a region. The study of the Landscape offers results useful in order to promote sustainable development, ecotourism, enhancement of natural and cultural heritage, popularization of the scientific knowledge. In Italy, a very important GIS-based tool to represent the territory is the "Carta della Natura" ("Map of Nature", presently coordinated by the ISPRA) that aims at assessing the state of the whole Italian territory, analyzing Landscape. The methodology follows a holistic approach, taking into consideration all the components of a landscape and then integrating the information. Each individual landscape, studied at different scales, shows distinctive elements: structural, which depend on physical form and specific spatial organization; functional, which depend on relationships created between biotic and abiotic elements, and dynamic, which depend on the successive evolution of the structure. The identification of the landscape units, recognized at different scales of analysis, allows an evaluation of the state of the land, referring to the dual risk/resource which characterizes the Italian country. An interesting opportunity is to discover those areas of unusual

  7. Murine embryonic stem cell line CGR8 expresses all subtypes of muscarinic receptors and multiple nicotinic receptor subunits: Down-regulation of α4- and β4-subunits during early differentiation.

    PubMed

    Kaltwasser, Susanne; Schmitz, Luise; Michel-Schmidt, Rosmarie; Anspach, Laura; Kirkpatrick, Charles James; Wessler, Ignaz

    2015-11-01

    Non-neuronal acetylcholine mediates its cellular effects via stimulation of the G-protein-coupled muscarinic receptors and the ligand-gated ion channel nicotinic receptors. The murine embryonic stem cell line CGR8 synthesizes and releases non-neuronal acetylcholine. In the present study a systematic investigation of the expression of nicotinic receptor subunits and muscarinic receptors was performed, when the stem cells were grown in the presence or absence of LIF, as the latter condition induces early differentiation. CGR8 cells expressed multiple nicotinic receptor subtypes (α3, α4, α7, α9, α10, β1, β2, β3, β4, γ, δ, ε) and muscarinic receptors (M1, M3, M4, M5); M2 was detected only in 2 out of 8 cultures. LIF removal caused a down-regulation only of the α4- and β4-subunit. In conclusion, more or less the whole repertoire of cholinergic receptors is expressed on the murine embryonic stem cell line CGR8 for mediating cellular signaling of non-neuronal acetylcholine which acts via auto- and paracrine pathways. During early differentiation of the murine CGR8 stem cell signaling via nicotinic receptors containing α4- or β4 subunits is reduced. Thus, the so-called neuronal α4 nicotine receptor composed of these subunits may be involved in the regulation of pluripotency in this murine stem cell line.

  8. The gene expression landscape of thermogenic skunk cabbage suggests critical roles for mitochondrial and vacuolar metabolic pathways in the regulation of thermogenesis.

    PubMed

    Ito-Inaba, Yasuko; Hida, Yamato; Matsumura, Hideo; Masuko, Hiromi; Yazu, Fumiko; Terauchi, Ryohei; Watanabe, Masao; Inaba, Takehito

    2012-03-01

    Floral thermogenesis has been described in several plant species. Because of the lack of comprehensive gene expression profiles in thermogenic plants, the molecular mechanisms by which floral thermogenesis is regulated remain to be established. We examined the gene expression landscape of skunk cabbage (Symplocarpus renifolius) during thermogenic and post-thermogenic stages and identified expressed sequence tags from different developmental stages of the inflorescences using super serial analysis of gene expression (SuperSAGE). In-depth analysis suggested that cellular respiration and mitochondrial functions are significantly enhanced during the thermogenic stage. In contrast, genes involved in stress responses and protein degradation were significantly up-regulated during post-thermogenic stages. Quantitative comparisons indicated that the expression levels of genes involved in cellular respiration were higher in thermogenic spadices than in Arabidopsis inflorescences. Thermogenesis-associated genes seemed to be expressed abundantly in the peripheral tissues of the spadix. Our results suggest that cellular respiration and mitochondrial metabolism play key roles in heat production during floral thermogenesis. On the other hand, vacuolar cysteine protease and other degradative enzymes seem to accelerate senescence and terminate thermogenesis in the post-thermogenic stage.

  9. In ovo electroporation in embryonic chick retina.

    PubMed

    Islam, Mohammed M; Doh, Sung Tae; Cai, Li

    2012-02-05

    Chicken embryonic retina is an excellent tool to study retinal development in higher vertebrates. Because of large size and external development, it is comparatively very easy to manipulate the chick embryonic retina using recombinant DNA/RNA technology. Electroporation of DNA/RNA constructs into the embryonic retina have a great advantage to study gene regulation in retinal stem/progenitor cells during retinal development. Different type of assays such as reporter gene assay, gene over-expression, gene knock down (shRNA) etc. can be performed using the electroporation technique. This video demonstrates targeted retinal injection and in ovo electroporation into the embryonic chick retina at the Hamburger and Hamilton stage 22-23, which is about embryonic day 4 (E4). Here we show a rapid and convenient in ovo electroporation technique whereby a plasmid DNA that expresses green fluorescent protein (GFP) as a marker is directly delivered into the chick embryonic subretinal space and followed by electric pulses to facilitate DNA uptake by retinal stem/progenitor cells. The new method of retinal injection and electroporation at E4 allows the visualization of all retinal cell types, including the late-born neurons(1), which has been difficult with the conventional method of injection and electroporation at E1.5(2).

  10. In silico Testing of Environmental Impact on Embryonic Vascular Development

    EPA Science Inventory

    Understanding risks to embryonic development from exposure to environmental chemicals is a significant challenge given the diverse chemical landscape and paucity of data for most of these compounds. EPA’s Virtual Embryo project is building in silico models of morphogenesis to tes...

  11. Fantasy Landscapes with a Message

    ERIC Educational Resources Information Center

    D'Amico, Elizabeth

    2005-01-01

    The author of this article describes using a Fantasy Landscapes lesson to get students expressing environmental issues through art. The Fantasy Landscapes lesson is an exploration of art elements and design principles through visual problem solving that links ideas, language, and theory to art. To get students thinking specifically about…

  12. Uncoupled Embryonic and Extra-Embryonic Tissues Compromise Blastocyst Development after Somatic Cell Nuclear Transfer

    PubMed Central

    Degrelle, Séverine A.; Jaffrezic, Florence; Campion, Evelyne; Lê Cao, Kim-Anh; Le Bourhis, Daniel; Richard, Christophe; Rodde, Nathalie; Fleurot, Renaud; Everts, Robin E.; Lecardonnel, Jérôme; Heyman, Yvan; Vignon, Xavier; Tian, Xiuchun C.; Lewin, Harris A.; Renard, Jean-Paul; Hue, Isabelle

    2012-01-01

    Somatic cell nuclear transfer (SCNT) is the most efficient cell reprogramming technique available, especially when working with bovine species. Although SCNT blastocysts performed equally well or better than controls in the weeks following embryo transfer at Day 7, elongation and gastrulation defects were observed prior to implantation. To understand the developmental implications of embryonic/extra-embryonic interactions, the morphological and molecular features of elongating and gastrulating tissues were analysed. At Day 18, 30 SCNT conceptuses were compared to 20 controls (AI and IVP: 10 conceptuses each); one-half of the SCNT conceptuses appeared normal while the other half showed signs of atypical elongation and gastrulation. SCNT was also associated with a high incidence of discordance in embryonic and extra-embryonic patterns, as evidenced by morphological and molecular “uncoupling”. Elongation appeared to be secondarily affected; only 3 of 30 conceptuses had abnormally elongated shapes and there were very few differences in gene expression when they were compared to the controls. However, some of these differences could be linked to defects in microvilli formation or extracellular matrix composition and could thus impact extra-embryonic functions. In contrast to elongation, gastrulation stages included embryonic defects that likely affected the hypoblast, the epiblast, or the early stages of their differentiation. When taking into account SCNT conceptus somatic origin, i.e. the reprogramming efficiency of each bovine ear fibroblast (Low: 0029, Med: 7711, High: 5538), we found that embryonic abnormalities or severe embryonic/extra-embryonic uncoupling were more tightly correlated to embryo loss at implantation than were elongation defects. Alternatively, extra-embryonic differences between SCNT and control conceptuses at Day 18 were related to molecular plasticity (high efficiency/high plasticity) and subsequent pregnancy loss. Finally, because it alters

  13. Characterization of glucagon-like peptide 2 receptor (GLP2R) gene in chickens: functional analysis, tissue distribution, and developmental expression profile of GLP2R in embryonic intestine.

    PubMed

    Mo, C; Zhong, Y; Wang, Y; Yan, Z; Li, J

    2014-07-01

    This study characterized the glucagon-like peptide 2 receptor (GLP2R) gene of chickens because relatively little is known about the underlying mechanism of GLP2 actions in nonmammalian species. With the use of reverse transcription PCR, we first cloned the chicken GLP2R (cGLP2R) from adult intestine, which was predicted to encode a 529-amino acid receptor precursor. With the use of a pGL3-CRE luciferase reporter system, we demonstrated that cGLP2R expressed in Chinese hamster ovary cells could be potently activated by cGLP2 (half maximal effective concentration, 1.06 nM) but not by its structurally related peptides, including the newly identified glucagon-like peptide, indicating that cGLP2R is a functional receptor specific to cGLP2. Reverse transcription PCR assay revealed that cGLP2R mRNA was widely expressed in adult chicken tissues, including pancreas and various parts of the gastrointestinal tract. With the use of quantitative real-time reverse transcription PCR assays, we further investigated the mRNA expression of cGLP2R and its potential downstream mediators, epidermal growth factor receptor (EGFR) ligands (heparin-binding EGF-like growth factor, epiregulin, and amphiregulin), in the distal duodenum of developing embryos. The mRNA expression levels of GLP2R and EGFR ligands (heparin-binding EGF-like growth factor and amphiregulin) were shown to increase (P < 0.05 or 0.01) during the late embryonic stages (E16 and E20), implying a potential coordinated action of GLP2 and EGFR ligands on embryonic intestine development. Taken together, our findings not only establish a molecular basis to explore the physiological roles of GLP2 in birds, but they also provide comparative insights into the roles of GLP2R and its ligand in vertebrates, such as its roles in embryonic intestine development.

  14. [Epigenetic influence on embryonic development].

    PubMed

    Donkin, Ida; Barrès, Romain; Pinborg, Anja

    2016-09-12

    The epigenome is sensitive to environmental changes and can sustainably alter gene expression, notably during embryonic development. New research indicates that epigenetic factors are heritable, which is why paternal lifestyle may affect fetal development and risk of disease. Children conceived by assisted reproduction technology (ART) have an increased risk of peri- and postnatal complications, and as specific ART protocols associate with specific risk profiles, the procedures themselves may cause epigenetic changes contributing to the altered outcomes of the 5,000 Danish children annually conceived by ART. PMID:27649584

  15. Human second trimester amniotic fluid cells are able to create embryoid body-like structures in vitro and to show typical expression profiles of embryonic and primordial germ cells.

    PubMed

    Antonucci, Ivana; Di Pietro, Roberta; Alfonsi, Melissa; Centurione, Maria Antonietta; Centurione, Lucia; Sancilio, Silvia; Pelagatti, Francesca; D'Amico, Maria Angela; Di Baldassarre, Angela; Piattelli, Adriano; Tetè, Stefano; Palka, Giandomenico; Borlongan, Cesar V; Stuppia, Liborio

    2014-01-01

    Human amniotic fluid-derived stem cells (AFSCs) represent a novel class of broadly multipotent stem cells sharing characteristics of both embryonic and adult stem cells. However, both the origin of these cells and their actual properties in terms of pluripotent differentiation potential are still debated. In order to verify the presence of features of pluripotency in human second trimester AFSCs, we have investigated the ability of these cells to form in vitro three-dimensional aggregates, known as embryoid bodies (EBs), and to express specific genes of embryonic stem cells (ESCs) and primordial germ cells (PGCs). EBs were obtained after 5 days of AFSC culture in suspension and showed positivity for alkaline phosphatase (AP) staining and for specific markers of pluripotency (OCT4 and SOX2). Moreover, EB-derived cells showed the expression of specific transcripts of the three germ layers. RT-PCR analysis, carried out at different culture times (second, third, fourth, fifth, and eighth passages), revealed the presence of specific markers of ESCs (such as FGF4 and DAPPA4), as well as of markers typical of PGCs and, in particular, genes involved in early stages of germ cell development (Fragilis, Stella, Vasa, c-Kit, Rnf17). Finally, the expression of genes related to the control of DNA methylation (DNMT3A, DNMT3b1, DNMT1, DNMT3L, MBD1, MBD2, MBD3, MDB4, MeCP2), as well as the lack of inactivation of the X-chromosome in female samples, was also demonstrated. Taken together, these data provide further evidence for the presence of common features among human AFSCs, PGCs, and ESCs.

  16. Landscape Architecture.

    ERIC Educational Resources Information Center

    American School and University, 1985

    1985-01-01

    Members of the American Society of Landscape Architects shape open spaces on the campuses of Georgetown University, District of Columbia; the University of Missouri; Auraria Higher Education Center, Colorado; and the University of Michigan. (MLF)

  17. Mars Landscapes

    NASA Video Gallery

    Spacecraft have studied the Martian surface for decades, giving Earthlings insights into the history, climate and geology of our nearest neighbor, Mars. These images are from "Mars Landscapes," a v...

  18. Evaluation of 309 environmental chemicals using a mouse embryonic stem cell adherent cell differentiation and cytotoxicity assay

    EPA Science Inventory

    The vast landscape of environmental chemicals has motivated the need for alternative methods to traditional whole-animal bioassays in toxicity testing. Embryonic stem (ES) cells provide an in vitro model of embryonic development and an alternative method for assessing development...

  19. Global Landscape of a Co-Expressed Gene Network in Barley and its Application to Gene Discovery in Triticeae Crops

    PubMed Central

    Mochida, Keiichi; Uehara-Yamaguchi, Yukiko; Yoshida, Takuhiro; Sakurai, Tetsuya; Shinozaki, Kazuo

    2011-01-01

    Accumulated transcriptome data can be used to investigate regulatory networks of genes involved in various biological systems. Co-expression analysis data sets generated from comprehensively collected transcriptome data sets now represent efficient resources that are capable of facilitating the discovery of genes with closely correlated expression patterns. In order to construct a co-expression network for barley, we analyzed 45 publicly available experimental series, which are composed of 1,347 sets of GeneChip data for barley. On the basis of a gene-to-gene weighted correlation coefficient, we constructed a global barley co-expression network and classified it into clusters of subnetwork modules. The resulting clusters are candidates for functional regulatory modules in the barley transcriptome. To annotate each of the modules, we performed comparative annotation using genes in Arabidopsis and Brachypodium distachyon. On the basis of a comparative analysis between barley and two model species, we investigated functional properties from the representative distributions of the gene ontology (GO) terms. Modules putatively involved in drought stress response and cellulose biogenesis have been identified. These modules are discussed to demonstrate the effectiveness of the co-expression analysis. Furthermore, we applied the data set of co-expressed genes coupled with comparative analysis in attempts to discover potentially Triticeae-specific network modules. These results demonstrate that analysis of the co-expression network of the barley transcriptome together with comparative analysis should promote the process of gene discovery in barley. Furthermore, the insights obtained should be transferable to investigations of Triticeae plants. The associated data set generated in this analysis is publicly accessible at http://coexpression.psc.riken.jp/barley/. PMID:21441235

  20. Differential expression of preprosomatostatin- and somatostatin receptor-encoding mRNAs in association with the growth hormone-insulin-like growth factor system during embryonic development of rainbow trout (Oncorhynchus mykiss).

    PubMed

    Malkuch, Heidi; Walock, Chad; Kittilson, Jeffery D; Raine, Jason C; Sheridan, Mark A

    2008-01-01

    Rainbow trout were used to evaluate the relationship between the somatostatin (SS) signaling and the growth hormone (GH)-insulin-like growth factor (IGF) systems during pre-hatch and post-hatch embryonic development. The expression of preprosomatostatins (PPSS), SS receptors (SSTR), GH receptors (GHR), IGF-1, IGF-2, and IGF type 1 receptors (IGFR1) was examined in various regions at the eyed-egg (29 days post-fertilization, dpf;), post-hatch (53dpf), swim-up (68dpf), and complete yolk-absorbed (90dpf) stages. In head, PPSSI mRNA abundance increased during development while that of PPSSII' decreased and that of PPSSII'' remained unchanged. In body and tail, mRNA abundance of all PPSSs remained unchanged except that of PPSSII'' which declined in the tail. SSTR expression increased as development progressed in all regions with the exception of SSTR1A mRNA which remained unchanged. mRNA levels of GHR1 declined in all regions of post-hatch embryos, whereas those of GHR2 remained unchanged. Expression of IGF-1 and IGF-2 in head and tail regions increased immediately after hatching, and then declined, whereas the expression of neither IGF changed during development in the body. The expression of IGFR1 mRNAs declined in all regions, reaching their lowest levels at 90dpf, with the exception of IGFR1A mRNA in the body which remained unchanged. The general decline in the expression of GH-IGF system components during development appears inversely related to a general increase in the expression of SS system elements, and suggests that these two systems interact to regulate the tissue expansion and tissue regression of embryogenesis. PMID:18783723

  1. Structure, expression, and chromosome location of the gene for the beta subunit of brain-specific Ca2+/calmodulin-dependent protein kinase II identified by transgene integration in an embryonic lethal mouse mutant.

    PubMed Central

    Karls, U; Müller, U; Gilbert, D J; Copeland, N G; Jenkins, N A; Harbers, K

    1992-01-01

    The transgenic mouse strain CAT40 carries in its germ line one copy of a DNA construct consisting of the chloramphenicol acetyltransferase gene and the immunoglobulin heavy-chain enhancer. We show that transgene integration has resulted in a recessive lethal mutation that leads to death of homozygous CAT40 embryos shortly after implantation. The transgene has integrated adjacent to the 3' end of the gene coding for the beta subunit of the brain-specific Ca2+/calmodulin-dependent protein kinase II (Camk-2). The complete cDNA sequence of the Camk-2 gene and most of its exon/intron structure was determined. The deduced amino acid sequence is highly homologous to the previously described rat protein. The chromosomal location of the Camk-2 locus was mapped by interspecific backcross analysis to the proximal region of mouse chromosome 11. This region lacks previously identified recessive embryonic lethal mutations. During embryonic development, Camk-2-specific transcripts are first seen in the head section of 12.5-day-old embryos, and in adult mice the gene is expressed almost exclusively in the brain. Although transcription of the Camk-2 gene in heterozygous CAT40 mice is affected by transgene integration, it is unlikely that this gene is responsible for the mutant phenotype, since it is not expressed in blastocysts and the first transcripts during normal development are detected after the death of homozygous CAT40 embryos. Transgene integration is accompanied by a large deletion of cellular DNA; death is therefore most likely caused by the loss of a gene or genes that are important for early postimplantation development. Images PMID:1321343

  2. Constitutive expression of the embryonic stem cell marker OCT4 in bovine somatic donor cells influences blastocysts rate and quality after nucleus transfer.

    PubMed

    Rodríguez-Alvarez, Lleretny; Manriquez, Jose; Velasquez, Alejandra; Castro, Fidel Ovidio

    2013-10-01

    Nuclear transfer (NT) is associated with epigenetic reprogramming of donor cells. Expression of certain genes in these cells might facilitate their expression in the NT embryo. This research was aimed to investigate the effect of constitutive expression of OCT4 in bovine somatic cells used for NT on the developmental potential of derived cloned embryos as well as in the expression of pluripotency markers in the Day-7 resulting embryos. Cloned blastocysts were generated from five cell lines that expressed OCT4. Pools of blastocysts were screened to detect OCT4, SOX2, and NANOG by qPCR. In vitro-fertilized time-matched blastocysts were used as controls. The development potential was assessed on the basis of blastocysts rate; grading and total cell counts at Day 7. OCT4 expression in the cell lines positively correlates with blastocysts rate (r = 0.92; p = 0.02), number of grade I blastocysts (r = 0.96; p = 0.01), and total cell number (r = 0.98; p = 0.002). The high expression of OCT4 in the cell line did not improve the final outcome of cloning. Somatic expression of OCT4 lead to increased expression of OCT4 and SOX2 in cloned grade I blastocysts; however, there was a bigger variability in OCT4 and SOX2 (p = 0.03; p = 0.02) expression in the embryos generated from cells expressing highest levels of OCT4. Probably the higher variability in OCT4 expression in cloned embryos is due to incorrect reprogramming and incapability of the oocyte to correct for higher OCT4 levels. For that reason, we concluded that OCT4 expression in somatic cells is not a good prognosis marker for selecting cell lines. PMID:23846396

  3. A genome landscape of SRSF3-regulated splicing events and gene expression in human osteosarcoma U2OS cells

    PubMed Central

    Ajiro, Masahiko; Jia, Rong; Yang, Yanqin; Zhu, Jun; Zheng, Zhi-Ming

    2016-01-01

    Alternative RNA splicing is an essential process to yield proteomic diversity in eukaryotic cells, and aberrant splicing is often associated with numerous human diseases and cancers. We recently described serine/arginine-rich splicing factor 3 (SRSF3 or SRp20) being a proto-oncogene. However, the SRSF3-regulated splicing events responsible for its oncogenic activities remain largely unknown. By global profiling of the SRSF3-regulated splicing events in human osteosarcoma U2OS cells, we found that SRSF3 regulates the expression of 60 genes including ERRFI1, ANXA1 and TGFB2, and 182 splicing events in 164 genes, including EP300, PUS3, CLINT1, PKP4, KIF23, CHK1, SMC2, CKLF, MAP4, MBNL1, MELK, DDX5, PABPC1, MAP4K4, Sp1 and SRSF1, which are primarily associated with cell proliferation or cell cycle. Two SRSF3-binding motifs, CCAGC(G)C and A(G)CAGCA, are enriched to the alternative exons. An SRSF3-binding site in the EP300 exon 14 is essential for exon 14 inclusion. We found that the expression of SRSF1 and SRSF3 are mutually dependent and coexpressed in normal and tumor tissues/cells. SRSF3 also significantly regulates the expression of at least 20 miRNAs, including a subset of oncogenic or tumor suppressive miRNAs. These data indicate that SRSF3 affects a global change of gene expression to maintain cell homeostasis. PMID:26704980

  4. A genome landscape of SRSF3-regulated splicing events and gene expression in human osteosarcoma U2OS cells.

    PubMed

    Ajiro, Masahiko; Jia, Rong; Yang, Yanqin; Zhu, Jun; Zheng, Zhi-Ming

    2016-02-29

    Alternative RNA splicing is an essential process to yield proteomic diversity in eukaryotic cells, and aberrant splicing is often associated with numerous human diseases and cancers. We recently described serine/arginine-rich splicing factor 3 (SRSF3 or SRp20) being a proto-oncogene. However, the SRSF3-regulated splicing events responsible for its oncogenic activities remain largely unknown. By global profiling of the SRSF3-regulated splicing events in human osteosarcoma U2OS cells, we found that SRSF3 regulates the expression of 60 genes including ERRFI1, ANXA1 and TGFB2, and 182 splicing events in 164 genes, including EP300, PUS3, CLINT1, PKP4, KIF23, CHK1, SMC2, CKLF, MAP4, MBNL1, MELK, DDX5, PABPC1, MAP4K4, Sp1 and SRSF1, which are primarily associated with cell proliferation or cell cycle. Two SRSF3-binding motifs, CCAGC(G)C and A(G)CAGCA, are enriched to the alternative exons. An SRSF3-binding site in the EP300 exon 14 is essential for exon 14 inclusion. We found that the expression of SRSF1 and SRSF3 are mutually dependent and coexpressed in normal and tumor tissues/cells. SRSF3 also significantly regulates the expression of at least 20 miRNAs, including a subset of oncogenic or tumor suppressive miRNAs. These data indicate that SRSF3 affects a global change of gene expression to maintain cell homeostasis.

  5. Repression of global protein synthesis by Eif1a-like genes that are expressed specifically in the two-cell embryos and the transient Zscan4-positive state of embryonic stem cells.

    PubMed

    Hung, Sandy S C; Wong, Raymond C B; Sharov, Alexei A; Nakatake, Yuhki; Yu, Hong; Ko, Minoru S H

    2013-08-01

    Mouse embryonic stem (ES) cells are prototypical stem cells that remain undifferentiated in culture for long periods, yet maintain the ability to differentiate into essentially all cell types. Previously, we have reported that ES cells oscillate between two distinct states, which can be distinguished by the transient expression of Zscan4 genes originally identified for its specific expression in mouse two-cell stage embryos. Here, we report that the nascent protein synthesis is globally repressed in the Zscan4-positive state of ES cells, which is mediated by the transient expression of newly identified eukaryotic translation initiation factor 1A (Eif1a)-like genes. Eif1a-like genes, clustered on Chromosome 12, show the high sequence similarity to the Eifa1 and consist of 10 genes (Eif1al1-Eif1al10) and 9 pseudogenes (Eif1al-ps1-Eif1al-ps9). The analysis of the expressed sequence tag database showed that Eif1a-like genes are expressed mostly in the two-cell stage mouse embryos. Microarray analyses and quantitative real-time polymerase chain reaction analyses show that Eif1a-like genes are expressed specifically in the Zscan4-positive state of ES cells. These results indicate a novel mechanism to repress protein synthesis by Eif1a-like genes and a unique mode of protein synthesis regulation in ES cells, which undergo a transient and reversible repression of global protein synthesis in the Zscan4-positive state.

  6. Effects of cytosine arabinoside on differential gene expression in embryonic neural retina. II. Immunochemical studies on the accumulation of glutamine synthetase

    PubMed Central

    1977-01-01

    Cytosine arabinoside (Ara-C) elicits a significant increase in the level of the enzyme glutamine synthetase (GS) while it markedly reduces overall RNA and protein synthesis in cultures of embryonic chick neural retina. This increase was analyzed by radioimmunochemical procedures and compared with the induction of GS by hydrocortisone (HC). Accumulation of GS in Ara-C-treated retinas was found to be due to de novo synthesis of the enzyme; however, unlike the induction of GS by HC, Ara-C caused no measurable increase in the rate of GS synthesis. The results indicate that Ara-C facilitates GS accumulation largely by preventing degradation of the enzyme. Even though Ara-C inhibits the bulk of RNA synthesis in the retina, it does not stop the formation of GS-specific RNA templates. However, the progressive accumulation of these templates does not result in an increased rate of GS synthesis unless Ara-C is withdrawn from such cultures under suitable experimental conditions. Thus, it is suggested that the continuous presence of Ara-C imposes a reversible hindrance at the translational level which limits the rate of GS synthesis. The results demonstrate that the increase in retinal GS elicited by Ara-C is achieved through mechanisms which are quite different from those involved in the hydrocortisone-mediated induction of this enzyme. PMID:17616

  7. Portraying the Expression Landscapes of B-Cell Lymphoma-Intuitive Detection of Outlier Samples and of Molecular Subtypes

    PubMed Central

    Hopp, Lydia; Lembcke, Kathrin; Binder, Hans; Wirth, Henry

    2013-01-01

    We present an analytic framework based on Self-Organizing Map (SOM) machine learning to study large scale patient data sets. The potency of the approach is demonstrated in a case study using gene expression data of more than 200 mature aggressive B-cell lymphoma patients. The method portrays each sample with individual resolution, characterizes the subtypes, disentangles the expression patterns into distinct modules, extracts their functional context using enrichment techniques and enables investigation of the similarity relations between the samples. The method also allows to detect and to correct outliers caused by contaminations. Based on our analysis, we propose a refined classification of B-cell Lymphoma into four molecular subtypes which are characterized by differential functional and clinical characteristics. PMID:24833231

  8. Embryonal cancers in Europe.

    PubMed

    Gatta, Gemma; Ferrari, Andrea; Stiller, Charles A; Pastore, Guido; Bisogno, Gianni; Trama, Annalisa; Capocaccia, Riccardo

    2012-07-01

    Embryonal cancers are a heterogeneous group of rare cancers which mainly occur in children and adolescents. The aim of the present study was to estimate the burden (incidence, prevalence, survival and proportion of cured) for the principal embryonal cancers in Europe (EU27), using population-based data from cancer registries (CRs) participating in RARECARE. We identified 3322 cases diagnosed from 1995 to 2002 (latest period for which data are available): 44% neuroblastoma, 35% nephroblastoma, 13% retinoblastoma and 6% hepatoblastoma. Very few cases of pulmonary blastoma (43 cases) and pancreatoblastoma (seven cases) were diagnosed. About 2000 new embryonal cancers were estimated every year in EU27, for an annual incidence rate of 4 per million (1.8 neuroblastoma, 1.4 nephroblastoma, and 0.5 retinoblastoma); 91% of cases occurred in patients under 15 years. Five-year relative survival for all embryonal cancers was 80% (99% retinoblastoma, 90% nephroblastoma, 71% hepatoblastoma and 68% neuroblastoma). Overall survival was lower in adolescents and adults than in those under 15 years. The cure rate was estimated at 80%. Slightly less than 40,000 persons were estimated alive in EU27 with a diagnosis of embryonal cancer in 2008. Nephroblastoma was the most prevalent (18,150 cases in EU27), followed by neuroblastoma (12,100), retinoblastoma (5200), hepatoblastoma (2700) and pulmonary blastoma (614). This is the first study to delineate the embryonal cancer burden in Europe by age, sex and European region. Survival/cure rate is generally high, but there are considerable gaps in our understanding of the natural histories of these rare diseases particularly in adults.

  9. Geomorpho-Landscapes

    NASA Astrophysics Data System (ADS)

    Farabollini, Piero; Lugeri, Francesca; Amadio, Vittorio

    2014-05-01

    Landscape is the object of human perceptions, being the image of spatial organization of elements and structures: mankind lives the first approach with the environment, viewing and feeling the landscape. Many definitions of landscape have been given over time: in this case we refer to the Landscape defined as the result of interaction among physical, biotic and anthropic phenomena acting in a different spatial-temporal scale (Foreman & Godron) Following an Aristotelic approach in studying nature, we can assert that " Shape is synthesis": so it is possible to read the land features as the expression of the endogenous and exogenous processes that mould earth surfaces; moreover, Landscape is the result of the interaction of natural and cultural components, and conditions the spatial-temporal development of a region. The study of the Landscape offers results useful in order to promote sustainable development, ecotourism, enhancement of natural and cultural heritage, popularization of the scientific knowledge. In Italy, a very important GIS-based tool to represent the territory is the "Carta della Natura" ("Map of Nature", presently coordinated by the ISPRA) that aims at assessing the state of the whole Italian territory, analyzing Landscape. The methodology follows a holistic approach, taking into consideration all the components of a landscape and then integrating the information. Each individual landscape, studied at different scales, shows distinctive elements: structural, which depend on physical form and specific spatial organization; functional, which depend on relationships created between biotic and abiotic elements, and dynamic, which depend on the successive evolution of the structure. The identification of the landscape units, recognized at different scales of analysis, allows an evaluation of the state of the land, referring to the dual risk/resource which characterizes the Italian country. An interesting opportunity is to discover those areas of unusual

  10. Learning Landscapes

    ERIC Educational Resources Information Center

    Noyes, Andrew

    2004-01-01

    This article explores the metaphor of learning landscapes, a tool developed in order to map children's experiences of, and attitudes to, learning (mathematics) before and after the transfer from primary to secondary school. Firstly, the continuing problems surrounding school transfer and why a re-examination of this is required are considered.…

  11. Lazarillo expression reveals a subset of neurons contributing to the primary axon scaffold of the embryonic brain of the grasshopper Schistocerca gregaria.

    PubMed

    Graf, S; Ludwig, P; Boyan, G

    2000-04-10

    The authors studied the contribution of seven clusters of Lazarillo-expressing cells to the primary axon scaffold of the brain in the grasshopper Schistocerca gregaria from 26% to 43% of embryogenesis. Each cluster, which was numbered according to when Lazarillo expression first appeared, was uniquely identifiable on the basis of its stereotypic position in the brain and the number of Lazarillo-expressing cells it contained. At no time during embryogenesis was Lazarillo expression found in brain neuroblasts: It was found only in progeny. For ease of analysis, axogenesis was followed in a cell cluster that contained only a single Lazarillo-expressing cell (the lateral cell) in the dorsal median domain of the brain midline. Bromodeoxyuridine incorporation revealed the presence of only a single midline precursor cell in this region during embryogenesis. Intracellular injection of Lucifer yellow into the lateral cell at various ages showed that there was no dye coupling to the midline precursor or to the nearby term-1-expressing primary commissure pioneers. The lateral cell is not related lineally to these cells and most likely differentiates directly from the neuroectoderm of the brain midline. Lazarillo expression appears at the onset of axogenesis as the lateral cell projects an axon laterally toward the next Lazarillo-expressing cell cluster. The cells of this target cluster direct axons into separate brain regions, thereby establishing an orthogonally organized scaffold that the lateral cell axon follows as it navigates away from the brain midline. The primary axon scaffold of the brain results from a stepwise interlinking of discrete brain regions, as exemplified by axons from neighboring Lazarillo-expressing cell clusters.

  12. Global Expressions Landscape of NAC Transcription Factor Family and Their Responses to Abiotic Stresses in Citrullus lanatus

    PubMed Central

    Lv, Xiaolong; Lan, Shanrong; Guy, Kateta Malangisha; Yang, Jinghua; Zhang, Mingfang; Hu, Zhongyuan

    2016-01-01

    Watermelon (Citrullus lanatus) is one xerophyte that has relative higher tolerance to drought and salt stresses as well as more sensitivity to cold stress, compared with most model plants. These characteristics facilitate it a potential model crop for researches on salt, drought or cold tolerance. In this study, a genome-wide comprehensive analysis of the ClNAC transcription factor (TF) family was carried out for the first time, to investigate their transcriptional profiles and potential functions in response to these abiotic stresses. The expression profiling analysis reveals that several NAC TFs are highly responsive to abiotic stresses and development, for instance, subfamily IV NACs may play roles in maintaining water status under drought or salt conditions, as well as water and metabolites conduction and translocation toward fruit. In contrast, rapid and negative responses of most of the ClNACs to low-temperature adversity may be related to the sensitivity to cold stress. Crosstalks among these abiotic stresses and hormone (abscisic acid and jasmonic acid) pathways were also discussed based on the expression of ClNAC genes. Our results will provide useful insights for the functional mining of NAC family in watermelon, as well as into the mechanisms underlying abiotic tolerance in other cash crops. PMID:27491393

  13. Global Expressions Landscape of NAC Transcription Factor Family and Their Responses to Abiotic Stresses in Citrullus lanatus.

    PubMed

    Lv, Xiaolong; Lan, Shanrong; Guy, Kateta Malangisha; Yang, Jinghua; Zhang, Mingfang; Hu, Zhongyuan

    2016-01-01

    Watermelon (Citrullus lanatus) is one xerophyte that has relative higher tolerance to drought and salt stresses as well as more sensitivity to cold stress, compared with most model plants. These characteristics facilitate it a potential model crop for researches on salt, drought or cold tolerance. In this study, a genome-wide comprehensive analysis of the ClNAC transcription factor (TF) family was carried out for the first time, to investigate their transcriptional profiles and potential functions in response to these abiotic stresses. The expression profiling analysis reveals that several NAC TFs are highly responsive to abiotic stresses and development, for instance, subfamily IV NACs may play roles in maintaining water status under drought or salt conditions, as well as water and metabolites conduction and translocation toward fruit. In contrast, rapid and negative responses of most of the ClNACs to low-temperature adversity may be related to the sensitivity to cold stress. Crosstalks among these abiotic stresses and hormone (abscisic acid and jasmonic acid) pathways were also discussed based on the expression of ClNAC genes. Our results will provide useful insights for the functional mining of NAC family in watermelon, as well as into the mechanisms underlying abiotic tolerance in other cash crops. PMID:27491393

  14. Global Expressions Landscape of NAC Transcription Factor Family and Their Responses to Abiotic Stresses in Citrullus lanatus.

    PubMed

    Lv, Xiaolong; Lan, Shanrong; Guy, Kateta Malangisha; Yang, Jinghua; Zhang, Mingfang; Hu, Zhongyuan

    2016-08-05

    Watermelon (Citrullus lanatus) is one xerophyte that has relative higher tolerance to drought and salt stresses as well as more sensitivity to cold stress, compared with most model plants. These characteristics facilitate it a potential model crop for researches on salt, drought or cold tolerance. In this study, a genome-wide comprehensive analysis of the ClNAC transcription factor (TF) family was carried out for the first time, to investigate their transcriptional profiles and potential functions in response to these abiotic stresses. The expression profiling analysis reveals that several NAC TFs are highly responsive to abiotic stresses and development, for instance, subfamily IV NACs may play roles in maintaining water status under drought or salt conditions, as well as water and metabolites conduction and translocation toward fruit. In contrast, rapid and negative responses of most of the ClNACs to low-temperature adversity may be related to the sensitivity to cold stress. Crosstalks among these abiotic stresses and hormone (abscisic acid and jasmonic acid) pathways were also discussed based on the expression of ClNAC genes. Our results will provide useful insights for the functional mining of NAC family in watermelon, as well as into the mechanisms underlying abiotic tolerance in other cash crops.

  15. New facets of keratin K77: interspecies variations of expression and different intracellular location in embryonic and adult skin of humans and mice.

    PubMed

    Langbein, Lutz; Reichelt, Julia; Eckhart, Leopold; Praetzel-Wunder, Silke; Kittstein, Walter; Gassler, Nikolaus; Schweizer, Juergen

    2013-12-01

    The differential expression of keratins is central to the formation of various epithelia and their appendages. Structurally, the type II keratin K77 is closely related to K1, the prototypical type II keratin of the suprabasal epidermis. Here, we perform a developmental study on K77 expression in human and murine skin. In both species, K77 is expressed in the suprabasal fetal epidermis. While K77 appears after K1 in the human epidermis, the opposite is true for the murine tissue. This species-specific pattern of expression is also found in conventional and organotypic cultures of human and murine keratinocytes. Ultrastructure investigation shows that, in contrast to K77 intermediate filaments of mice, those of the human ortholog are not attached to desmosomes. After birth, K77 disappears without deleterious consequences from human epidermis while it is maintained in the adult mouse epidermis, where its presence has so far gone unnoticed. After targeted Krt1 gene deletion in mice, K77 is normally expressed but fails to functionally replace K1. Besides the epidermis, both human and mouse K77 are present in luminal duct cells of eccrine sweat glands. The demonstration of a K77 ortholog in platypus but not in non-mammalian vertebrates identifies K77 as an evolutionarily ancient component of the mammalian integument that has evolved different patterns of intracellular distribution and adult tissue expression in primates. PMID:24057875

  16. Comparative Analysis of Whole-Genome Gene Expression Changes in Cultured Human Embryonic Stem Cells in Response to Low, Clinical Diagnostic Relevant, and High Doses of Ionizing Radiation Exposure.

    PubMed

    Sokolov, Mykyta; Nguyen, Van; Neumann, Ronald

    2015-01-01

    The biological effects of low-dose ionizing radiation (LDIR) exposure in humans are not comprehensively understood, generating a high degree of controversy in published literature. The earliest stages of human development are known to be among the most sensitive to stress exposures, especially genotoxic stresses. However, the risks stemming from exposure to LDIR, particularly within the clinical diagnostic relevant dose range, have not been directly evaluated in human embryonic stem cells (hESCs). Here, we describe the dynamics of the whole genome transcriptional responses of different hESC lines to both LDIR and, as a reference, high-dose IR (HDIR). We found that even doses as low as 0.05 Gy could trigger statistically significant transient changes in a rather limited subset of genes in all hESCs lines examined. Gene expression signatures of hESCs exposed to IR appear to be highly dose-, time-, and cell line-dependent. We identified 50 genes constituting consensus gene expression signature as an early response to HDIR across all lines of hESC examined. We observed substantial differences in biological pathways affected by either LDIR or HDIR in hESCs, suggesting that the molecular mechanisms underpinning the responses of hESC may fundamentally differ depending on radiation doses. PMID:26133243

  17. Embryonic expression of Xenopus SGLT-1L, a novel member of the solute carrier family 5 (SLC5), is confined to tubules of the pronephric kidney.

    PubMed

    Eid, Samer R; Terrettaz, Anne; Nagata, Katsumi; Brändli, André W

    2002-01-01

    Plasma membrane proteins of the solute carrier family 5 (SLC5) are responsible for sodium-coupled uptake of ions, sugars and nutrients in the vertebrate body. Mutations in SLC5 genes are the cause of several inherited human disorders. We have recently reported the cloning and transport properties of SGLT-1L, a Xenopus homologue of the sodium-dependent glucose cotransporter 1 (SGLT-1) [Nagata et al. (1999) Am. J. Physiol. 276: G1251 -G 1259]. Here, we describe the phylogenetic relationship of SGLT-1L with other members of the SLC5 family and characterize its expression during Xenopus embryogenesis and in organ cultures. Sequence comparisons and phylogenetic analyses of all known vertebrate SLC5 sequences indicated that Xenopus SGLT-1L encodes a novel SLC5 member, which shares highest amino acid identity with mammalian ST-1 proteins. Temporal and spatial expression of SGLT-1L during Xenopus embryogenesis was examined by whole mount in situ hybridization. Initiation of SGLT-1L expression occurred in the late tailbud embryo. Remarkably, expression was restricted to the developing pronephric kidney. SGLT-1L was highly expressed in tubular epithelia, but completely absent from the epithelia of the duct. Analysis of growth factor-treated animal caps indicated that expression of SGLT-1L could also be induced in organ cultures. Taken together, our findings indicate that the expression of sodium-dependent solute cotransporter genes in early segments of the excretory system appears to be conserved between pronephric and metanephric kidneys. Furthermore, we establish SGLT-1L as a novel, highly specific molecular marker for pronephric tubule epithelia undergoing maturation and terminal differentiation in Xenopus. PMID:11902681

  18. Analysis of human embryonic stem cells with regulatable expression of the cell adhesion molecule l1 in regeneration after spinal cord injury.

    PubMed

    Yoo, Myungsik; Lee, Gunho Anthony; Park, Christopher; Cohen, Rick I; Schachner, Melitta

    2014-03-15

    Cell replacement therapy is one potential avenue for central nervous system (CNS) repair. However, transplanted stem cells may not contribute to long-term recovery of the damaged CNS unless they are engineered for functional advantage. To fine tune regenerative capabilities, we developed a human neural cell line expressing L1, a regeneration-conducive adhesion molecule, under the control of a doxycycline regulatable Tet-off promoter. Controlled expression of L1 is desired because overexpression after regenerative events may lead to adverse consequences. The regulated system was tested in several cell lines, where doxycycline completely eliminated green fluorescent protein or L1 expression by 3-5 days in vitro. Increased colony formation as well as decreased proliferation were observed in H9NSCs without doxycycline (hL1-on). To test the role of L1 in vivo after acute compression spinal cord injury of immunosuppressed mice, quantum dot labeled hL1-on or hL1-off cells were injected at three sites: lesion; proximal; and caudal. Mice transplanted with hL1-on cells showed a better Basso Mouse Scale score, when compared to those with hL1-off cells. As compared to the hL1-off versus hL1-on cell transplanted mice 6 weeks post-transplantation, expression levels of L1, migration of transplanted cells, and immunoreactivity for tyrosine hydroxylase were higher, whereas expression of chondroitin sulfate proteoglycans was lower. Results indicate that L1 expression is regulatable in human stem cells by doxycycline in a nonviral engineering approach. Regulatable expression in a prospective nonleaky Tet-off system could hold promise for therapy, based on the multifunctional roles of L1, including neuronal migration and survival, neuritogenesis, myelination, and synaptic plasticity. PMID:24125017

  19. Isolation of cDNAs partially encoding four Xenopus Wnt-1/int-1-related proteins and characterization of their transient expression during embryonic development.

    PubMed

    Christian, J L; Gavin, B J; McMahon, A P; Moon, R T

    1991-02-01

    To begin to study the functions of the Wnt-1/int-1 gene family during vertebrate development, we have isolated four Xenopus laevis cDNAs encoding the partial sequence of proteins homologous to Wnt-1/int-1. Xwnt-3, Xwnt-4, Xwnt-5A, and Xwnt-8 demonstrate between 35 and 50% amino acid identity with X. laevis Wnt-1/int-1 and most cysteine residues are conserved. Xwnt-4 and Xwnt-3 transcripts are detected only during the neurula through tadpole stages of development. Expression of Xwnt-8 is observable during gastrulation, declines during neurulation, and is undetectable by the tadpole stage of development. Xwnt-5A transcripts are most prevalent in RNA from oocytes and tadpoles, although low level expression is detected at all stages examined. The temporal changes in expression of these transcripts imply a unique role for each Xwnt during embryogenesis.

  20. Effect of Embryonic Thermal Exposure on Heat Shock Proteins (HSPs) Gene Expression and Serum T3 Concentration in Two Broiler Populations.

    PubMed

    Rajkumar, U; Vinoth, A; Shanmugam, M; Rajaravindra, K S; Rama Rao, S V

    2015-01-01

    The present experiment was conducted to evaluate the Hsp-70, 27 and Ubiquitin mRNA expressions and serum T3 concentration in synthetic colored broiler female lines, Punjab Broiler-2 (PB-2), and Naked neck (NN) broiler chicken whose eggs were exposed to 2°C increased incubation temperature for 3 hours each on the 16th, 17 th, and 18th day of incubation. Another set of eggs were incubated at normal conditions that were utilized as the control. A total of 432 chicks, 216 from each breed (PB-2; NN) and treatment (Heat exposed: HE; normal: N), were randomly distributed and reared at high ambient temperatures (32°C-45°C) during the summer season in battery brooders. Birds were sacrificed at 0 and the 28th day post hatch and different tissues (heart, liver, muscle, spleen, and bursa) were collected to study Hsps and ubiquitin mRNA expression. There was no difference between the breeds and age of slaughter in Hsp-70 mRNA expression. The Hsp(70, 27, and ubiquitin) mRNA expression was significantly (P≤0.001) lower in HE birds than that of N birds in PB-2 chickens. Nonsignificant variation was observed in NN chicken. The Hsp-70 mRNA expression was highest in bursa and lowest in muscle and liver. Serum T3 concentration was similar in both HE and N birds. The study concludes that exposure to increased temperature during incubation results in reduced expressions of Hsp mRNA in almost all tissues indicating better thermotolerance of the HE birds.

  1. Effect of Embryonic Thermal Exposure on Heat Shock Proteins (HSPs) Gene Expression and Serum T3 Concentration in Two Broiler Populations.

    PubMed

    Rajkumar, U; Vinoth, A; Shanmugam, M; Rajaravindra, K S; Rama Rao, S V

    2015-01-01

    The present experiment was conducted to evaluate the Hsp-70, 27 and Ubiquitin mRNA expressions and serum T3 concentration in synthetic colored broiler female lines, Punjab Broiler-2 (PB-2), and Naked neck (NN) broiler chicken whose eggs were exposed to 2°C increased incubation temperature for 3 hours each on the 16th, 17 th, and 18th day of incubation. Another set of eggs were incubated at normal conditions that were utilized as the control. A total of 432 chicks, 216 from each breed (PB-2; NN) and treatment (Heat exposed: HE; normal: N), were randomly distributed and reared at high ambient temperatures (32°C-45°C) during the summer season in battery brooders. Birds were sacrificed at 0 and the 28th day post hatch and different tissues (heart, liver, muscle, spleen, and bursa) were collected to study Hsps and ubiquitin mRNA expression. There was no difference between the breeds and age of slaughter in Hsp-70 mRNA expression. The Hsp(70, 27, and ubiquitin) mRNA expression was significantly (P≤0.001) lower in HE birds than that of N birds in PB-2 chickens. Nonsignificant variation was observed in NN chicken. The Hsp-70 mRNA expression was highest in bursa and lowest in muscle and liver. Serum T3 concentration was similar in both HE and N birds. The study concludes that exposure to increased temperature during incubation results in reduced expressions of Hsp mRNA in almost all tissues indicating better thermotolerance of the HE birds. PMID:26158456

  2. Combined Effects of High-Dose Bisphenol A and Oxidizing Agent (KBrO3) on Cellular Microenvironment, Gene Expression, and Chromatin Structure of Ku70-deficient Mouse Embryonic Fibroblasts

    PubMed Central

    Gassman, Natalie R.; Coskun, Erdem; Jaruga, Pawel; Dizdaroglu, Miral; Wilson, Samuel H.

    2016-01-01

    Background: Exposure to bisphenol A (BPA) has been reported to alter global gene expression, induce epigenetic modifications, and interfere with complex regulatory networks of cells. In addition to these reprogramming events, we have demonstrated that BPA exposure generates reactive oxygen species and promotes cellular survival when co-exposed with the oxidizing agent potassium bromate (KBrO3). Objectives: We determined the cellular microenvironment changes induced by co-exposure of BPA and KBrO3 versus either agent alone. Methods: Ku70-deficient cells were exposed to 150 μM BPA, 20 mM KBrO3, or co-exposed to both agents. Four and 24 hr post-damage initiation by KBrO3, with BPA-only samples timed to coincide with these designated time points, we performed whole-genome microarray analysis and evaluated chromatin structure, DNA lesion load, glutathione content, and intracellular pH. Results: We found that 4 hr post-damage initiation, BPA exposure and co-exposure transiently condensed chromatin compared with untreated and KBrO3-only treated cells; the transcription of DNA repair proteins was also reduced. At this time point, BPA exposure and co-exposure also reduced the change in intracellular pH observed after treatment with KBrO3 alone. Twenty-four hours post-damage initiation, BPA-exposed cells showed less condensed chromatin than cells treated with KBrO3 alone; the intracellular pH of the co-exposed cells was significantly reduced compared with untreated and KBrO3-treated cells; and significant up-regulation of DNA repair proteins was observed after co-exposure. Conclusion: These results support the induction of an adaptive response by BPA co-exposure that alters the microcellular environment and modulates DNA repair. Further work is required to determine whether BPA induces similar DNA lesions in vivo at environmentally relevant doses; however, in the Ku70-deficient mouse embryonic fibroblasts, exposure to a high dose of BPA was associated with changes in the

  3. Gene Expression Analysis of Parthenogenetic Embryonic Development of the Pea Aphid, Acyrthosiphon pisum, Suggests That Aphid Parthenogenesis Evolved from Meiotic Oogenesis

    PubMed Central

    Srinivasan, Dayalan G.; Abdelhady, Ahmed; Stern, David L.

    2014-01-01

    Aphids exhibit a form of phenotypic plasticity, called polyphenism, in which genetically identical females reproduce sexually during one part of the life cycle and asexually (via parthenogenesis) during the remainder of the life cycle. The molecular basis for aphid parthenogenesis is unknown. Cytological observations of aphid parthenogenesis suggest that asexual oogenesis evolved either through a modification of meiosis or from a mitotic process. As a test of these alternatives, we assessed the expression levels and expression patterns of canonical meiotic recombination and germline genes in the sexual and asexual ovaries of the pea aphid, Acyrthosiphon pisum. We observed expression of all meiosis genes in similar patterns in asexual and sexual ovaries, with the exception that some genes encoding Argonaute-family members were not expressed in sexual ovaries. In addition, we observed that asexual aphid tissues accumulated unspliced transcripts of Spo11, whereas sexual aphid tissues accumulated primarily spliced transcripts. In situ hybridization revealed Spo11 transcript in sexual germ cells and undetectable levels of Spo11 transcript in asexual germ cells. We also found that an obligately asexual strain of pea aphid produced little spliced Spo11 transcript. Together, these results suggest that parthenogenetic oogenesis evolved from a meiosis-like, and not a mitosis-like, process and that the aphid reproductive polyphenism may involve a modification of Spo11 gene activity. PMID:25501006

  4. Transient expression of an intermediate filament-associated protein (IFAPa-400) during in vivo and in vitro differentiation of chick embryonic cells derived from neuroectoderm.

    PubMed

    Chabot, P; Vincent, M

    1990-07-01

    The expression of an intermediate filament (IF) associated protein (IFAPa-400) and IF proteins was investigated during chick neurogenesis. Using immunoblots and indirect immunofluorescence we have found that IFAPa-400 was strongly expressed during the early events of nervous tissue ontogenesis and disappeared thereafter. IFAPa-400 was elevated in the brain and retina until ED 10 and until hatching in the cerebellum. This protein was shown to be transiently expressed in the Müller glia of the developing retina. In the brain, IFAPa-400 decreased as development proceeded in a way similar to vimentin but the latter remained elevated in the retina and the cerebellum radial glia (Müller and Bergmann cells). In all tissues examined, GFAP was detected long after the disappearance of IFAPa-400. In dorsal root ganglion cell cultures, IFAPa-400 and vimentin were absent from mature neurons but were coexpressed into supportive cells. In trunk neural crest cell cultures, IFAPa-400 and vimentin were present in all cells after one day but IFAPa-400 became undetectable after a few days of culture in differentiated melanocytes and catecholaminergic neurons. The transient expression of this giant cytoskeletal protein in non-differentiated cells deriving from the neuroectoderm could reflect a structural change which precedes overt cytodifferentiation.

  5. Glucose metabolism and gene expression in juvenile zebrafish (Danio rerio) challenged with a high carbohydrate diet: effects of an acute glucose stimulus during late embryonic life.

    PubMed

    Rocha, Filipa; Dias, Jorge; Engrola, Sofia; Gavaia, Paulo; Geurden, Inge; Dinis, Maria Teresa; Panserat, Stephane

    2015-02-14

    Knowledge on the role of early nutritional stimuli as triggers of metabolic pathways in fish is extremely scarce. The objective of the present study was to assess the long-term effects of glucose injection in the yolk (early stimulus) on carbohydrate metabolism and gene regulation in zebrafish juveniles challenged with a high-carbohydrate low-protein (HC) diet. Eggs were microinjected at 1 d post-fertilisation (dpf) with either glucose (2 M) or saline solutions. Up to 25 dpf, fish were fed a low-carbohydrate high-protein (LC) control diet, which was followed by a challenge with the HC diet. Survival and growth of 35 dpf juveniles were not affected by injection or the HC diet. Glucose stimulus induced some long-term metabolic changes in the juveniles, as shown by the altered expression of genes involved in glucose metabolism. On glycolysis, the expression levels of hexokinase 1 (HK1) and phosphofructokinase-6 (6PFK) were up-regulated in the visceral and muscle tissues, respectively, of juveniles exposed to the glucose stimulus, indicating a possible improvement in glucose oxidation. On gluconeogenesis, the inhibition of the expression levels of PEPCK in fish injected with glucose suggested lower production of hepatic glucose. Unexpectedly, fructose-1,6-bisphosphatase (FBP) expression was induced and 6PFK expression reduced by glucose stimulus, leaving the possibility of a specific regulation of the FBP-6PFK metabolic cycle. Glucose metabolism in juveniles was estimated using a [¹⁴C]glucose tracer; fish previously exposed to the stimulus showed lower retention of [¹⁴C]glucose in visceral tissue (but not in muscle tissue) and, accordingly, higher glucose catabolism, in comparison with the saline group. Globally, our data suggest that glucose stimulus at embryo stage has the potential to alter particular steps of glucose metabolism in zebrafish juveniles.

  6. Ephrin-Eph signaling in embryonic tissue separation

    PubMed Central

    Fagotto, Francois; Winklbauer, Rudolf; Rohani, Nazanin

    2014-01-01

    The physical separation of the embryonic regions that give rise to the tissues and organs of multicellular organisms is a fundamental aspect of morphogenesis. Pioneer experiments by Holtfreter had shown that embryonic cells can sort based on “tissue affinities,” which have long been considered to rely on differences in cell-cell adhesion. However, vertebrate embryonic tissues also express a variety of cell surface cues, in particular ephrins and Eph receptors, and there is now firm evidence that these molecules are systematically used to induce local repulsion at contacts between different cell types, efficiently preventing mixing of adjacent cell populations. PMID:25482630

  7. OFD1, the gene mutated in oral-facial-digital syndrome type 1, is expressed in the metanephros and in human embryonic renal mesenchymal cells.

    PubMed

    Romio, Leila; Wright, Victoria; Price, Karen; Winyard, Paul J D; Donnai, Dian; Porteous, Mary E; Franco, Brunella; Giorgio, Giovanna; Malcolm, Sue; Woolf, Adrian S; Feather, Sally A

    2003-03-01

    Oral-facial-digital syndrome type 1 (OFD1) causes polycystic kidney disease (PKD) and malformations of the mouth, face and digits. Recently, a gene on Xp22, OFD1, was reported to be mutated in a limited set of OFD1 patients. This study describes mutation analysis in six further OFD1 families. Additionally, gene expression was sought in human development. In two OFD1 kindreds affected by PKD, a frameshift mutation and a splice-site mutation were detected. In four apparently sporadic cases, three frameshift and a missense mutation were found. Using RT-PCR of RNA from first-trimester normal human embryos, both alternative splice forms of mRNA (OFD1a and OFD1b) were found to be widely expressed in organogenesis. Northern blot detected OFD1 mRNA in metanephros, brain, tongue, and limb, all organs affected in the syndrome. A polyclonal antibody directed to a C-terminal OFD1a epitope detected a 120-kD protein in the metanephros and in human renal mesenchymal cell lines. In normal human embryos, OFD1a immunolocalized to the metanephric mesenchyme, oral mucosa, nasal and cranial cartilage, and brain. Moreover, using normal human renal mesenchymal cell lines, the immunoreactive protein colocalized with gamma-tubulin, suggesting that OFD1 is associated with the centrosome. First, it is concluded that OFD1 mutations would generally be predicted to result in unstable transcripts or nonfunctional proteins. Second, OFD1 is expressed in human organogenesis; on the basis of the metanephric expression pattern, the results suggest that OFD1 plays a role in differentiation of metanephric precursor cells.

  8. The combined expression of Pdx1 and MafA with either Ngn3 or NeuroD improves the differentiation efficiency of mouse embryonic stem cells into insulin-producing cells.

    PubMed

    Xu, Huiming; Tsang, Kam Sze; Chan, Juliana C N; Yuan, Ping; Fan, Rongrong; Kaneto, Hideaki; Xu, Gang

    2013-01-01

    The use of pancreatic β-cells differentiated from embryonic stem (ES) cells or induced pluripotent stem (iPS) cells is a promising strategy in cell therapy. Pancreatic β-cell development is regulated by the sequential expression of a molecular network of transcription factors. In this experiment, we adopted a three-step differentiation protocol to differentiate mES (mouse ES) cells into insulin-secreting cells and overexpressed transcription factors by adenoviral vectors at various combinations at different time of differentiation. We found that the coexpression of Pdx1 and MafA with either Ngn3 or NeuroD, especially at the final stage of the three-step differentiation, significantly increased the differentiation efficiency. It also increased the glucose-stimulated insulin and C-peptide secretion in insulin-secreting cells derived from mES cells compared to the control green fluorescent protein (GFP) vector-transduced group. For the first time, we have demonstrated that the coexpression of Pdx1 and MafA during a specific time window of development can act synergistically with either Ngn3 or NeuroD to promote the differentiation of mES cells into insulin-secreting cells.

  9. Effects of exposing rat embryos in utero to physical or chemical teratogens are expressed later as enhanced induction of heat-shock proteins when embryonic hearts are cultured in vitro

    SciTech Connect

    Higo, H.; Higo, K.; Lee, J.Y.; Hori, H.; Satow, Y.

    1988-01-01

    In order to get more insight into the effects of teratogens on developing embryos, we investigated the protein synthesis patterns of the target organs isolated from teratogen-treated embryos. Rat embryos were either irradiated in utero with either 252Cf fission neutrons or 60Co gamma rays on day 8 of gestation or treated in utero with a bis(dichloroacetyl)diamine (a chemical teratogen) on days 9 and 10. Hearts were removed from the embryos on day 12 and were incubated in vitro at 37 degrees C in the presence of (35S)methionine for up to 8 hr. The newly synthesized labeled proteins were then analyzed qualitatively by two-dimensional polyacrylamide gel electrophoresis. Enhanced and prolonged induction of a family of heat-shock (stress) proteins with a molecular weight of about 70,000 (SP70s) was observed as compared with those of controls. Among the teratogen-treated hearts, those with gross malformations already detectable at this early stage showed especially higher inductions of SP70s than did the others. The abnormal expression of SP70s observed in the present study appears to be a reflection of persisting cellular (tissue) damage inflicted by the teratogens, and the extent of the induction may be indicative of the degree and/or type of the damage. Such persisting defects in surviving cells, manifested by abnormal induction of SP70s in the present study, might be related to malformation of embryonic hearts.

  10. Expression Pattern of Inflammatory Response Genes and Their Regulatory MicroRNAs in Bovine Oviductal Cells in Response to Lipopolysaccharide: Implication for Early Embryonic Development

    PubMed Central

    Ibrahim, Sally; Salilew-Wondim, Dessie; Rings, Franca; Hoelker, Michael; Neuhoff, Christiane; Tholen, Ernst; Looft, Christian; Schellander, Karl; Tesfaye, Dawit

    2015-01-01

    In the present study, we used an in vitro model to investigate the response of the oviduct with respect to inflammatory mediators and their regulatory microRNAs in case of bacterial infection and subsequent association with embryo survival. For this, we conducted two experiments. In the first experiment, cultured primary bovine oviductal cells (BOEC) were challenged with lipopolysaccharide (LPS) for 24h and the temporal expression pattern of inflammatory mediators and their regulatory microRNAs were measured at 0, 3, 6, 12, 24 and 48h after LPS treatment. Intriguingly, the temporal patterns of all miRNAs except miR-21 were significantly up-regulated at 6h after LPS treatment. Whereas, we observed significant overexpression of pro-inflammatory mediators as tumor necrosis factor alpha (TNFα) and interleukin-1 beta (IL1β) after LPS challenge for 24h. On the other hand, the expression level of essential elements like oviductal glycoprotein 1 (OVGP1) and insulin-like growth factor 2 (IGF2) was significantly decreased in challenged groups compared with control. Moreover, miR-155, miR-146a, miR-223, miR-21, miR-16 and miR-215 have shown a clear suppression in challenged group after LPS treatment. In the 2nd experiment there were four groups of blastocysts produced, namely embryo+LPS free media, embryo+LPS, BOEC+embryo and BOEC+embryo+LPS. The suboptimal oviduct environment due to LPS challenge is found to have a significant influence on the expression of inflammatory response genes (TNFα and CSF1), stress response genes (SOD and CAT), mitochondrial activity, reactive oxygen species (ROS) accumulation and apoptotic level either in cultured or co-cultured blastocysts. Collectively, LPS challenge led to aberrant changes in oviductal transcriptome profile, which could lead to a suboptimal environment for embryo development. PMID:25764515

  11. The Ontogeny of Nuclear Estrogen Receptor Isoform Expression and the Effect of 17β Estradiol in Embryonic Rainbow Trout (Oncorhynchus mykiss)

    PubMed Central

    Boyce-Derricott, Josh; Nagler, James J.; Cloud, J.G.

    2009-01-01

    Ligand bound nuclear estrogen receptor (ER) acts as a transcription factor regulating the expression of estrogen dependent genes. There are four nuclear ER isoforms in rainbow trout (Oncorhynchus mykiss). The objective of this study was to measure whole body mRNA levels of the two ERα isoforms (α1/α2) and the two ERβ isoforms (β1/β2) in male and female embryos from 50 to 600 degree-days (DD; days post-fertilization x water temperature) and in embryos exposed to vehicle or 17β-estradiol E2) for 2 hours at 230, 240 and 250 DD. All four isoforms were detected at every time point in both sexes. Sexual dimorphism was rarely observed; at 50 DD the level of ERα2 mRNA was significantly greater in males than in females and at 100 DD the level of ERβ1 mRNA was significantly greater in females than in males (p<0.05). Expression profiles of the two ERα isoforms were slightly different from one another, whereas the ERβ isoforms exhibited similar expression patterns. The effect of E2 was not different between male and female embryos. The level of ERα1 mRNA increased significantly at 240 DD; a similar but not statistically significant trend was observed at 230 and 250 DD. Despite the critical role of estrogen during sex differentiation in rainbow trout, the receptivity to this hormone as measured by the response in mRNA levels of ER appears to be largely the same between males and females and ERα1 is the only E2 responsive isoform. PMID:19818378

  12. Expression pattern of inflammatory response genes and their regulatory micrornas in bovine oviductal cells in response to lipopolysaccharide: implication for early embryonic development.

    PubMed

    Ibrahim, Sally; Salilew-Wondim, Dessie; Rings, Franca; Hoelker, Michael; Neuhoff, Christiane; Tholen, Ernst; Looft, Christian; Schellander, Karl; Tesfaye, Dawit

    2015-01-01

    In the present study, we used an in vitro model to investigate the response of the oviduct with respect to inflammatory mediators and their regulatory microRNAs in case of bacterial infection and subsequent association with embryo survival. For this, we conducted two experiments. In the first experiment, cultured primary bovine oviductal cells (BOEC) were challenged with lipopolysaccharide (LPS) for 24h and the temporal expression pattern of inflammatory mediators and their regulatory microRNAs were measured at 0, 3, 6, 12, 24 and 48h after LPS treatment. Intriguingly, the temporal patterns of all miRNAs except miR-21 were significantly up-regulated at 6h after LPS treatment. Whereas, we observed significant overexpression of pro-inflammatory mediators as tumor necrosis factor alpha (TNFα) and interleukin-1 beta (IL1β) after LPS challenge for 24h. On the other hand, the expression level of essential elements like oviductal glycoprotein 1 (OVGP1) and insulin-like growth factor 2 (IGF2) was significantly decreased in challenged groups compared with control. Moreover, miR-155, miR-146a, miR-223, miR-21, miR-16 and miR-215 have shown a clear suppression in challenged group after LPS treatment. In the 2nd experiment there were four groups of blastocysts produced, namely embryo+LPS free media, embryo+LPS, BOEC+embryo and BOEC+embryo+LPS. The suboptimal oviduct environment due to LPS challenge is found to have a significant influence on the expression of inflammatory response genes (TNFα and CSF1), stress response genes (SOD and CAT), mitochondrial activity, reactive oxygen species (ROS) accumulation and apoptotic level either in cultured or co-cultured blastocysts. Collectively, LPS challenge led to aberrant changes in oviductal transcriptome profile, which could lead to a suboptimal environment for embryo development. PMID:25764515

  13. Gli3-mediated somitic Fgf10 expression gradients are required for the induction and patterning of mammary epithelium along the embryonic axes.

    PubMed

    Veltmaat, Jacqueline M; Relaix, Frédéric; Le, Lendy T; Kratochwil, Klaus; Sala, Frédéric G; van Veelen, Wendy; Rice, Ritva; Spencer-Dene, Bradley; Mailleux, Arnaud A; Rice, David P; Thiery, Jean Paul; Bellusci, Saverio

    2006-06-01

    Little is known about the regulation of cell fate decisions that lead to the formation of five pairs of mammary placodes in the surface ectoderm of the mouse embryo. We have previously shown that fibroblast growth factor 10 (FGF10) is required for the formation of mammary placodes 1, 2, 3 and 5. Here, we have found that Fgf10 is expressed only in the somites underlying placodes 2 and 3, in gradients across and within these somites. To test whether somitic FGF10 is required for the formation of these two placodes, we analyzed a number of mutants with different perturbations of somitic Fgf10 gradients for the presence of WNT signals and ectodermal multilayering, markers for mammary line and placode formation. The mammary line is displaced dorsally, and formation of placode 3 is impaired in Pax3ILZ/ILZ mutants, which do not form ventral somitic buds. Mammary line formation is impaired and placode 3 is absent in Gli3Xt-J/Xt-J and hypomorphic Fgf10 mutants, in which the somitic Fgf10 gradient is shortened dorsally and less overall Fgf10 is expressed, respectively. Recombinant FGF10 rescued mammogenesis in Fgf10(-/-) and Gli3Xt-J/Xt-J flanks. We correlate increasing levels of somitic FGF10 with progressive maturation of the surface ectoderm, and show that full expression of somitic Fgf10, co-regulated by GLI3, is required for the anteroposterior pattern in which the flank ectoderm acquires a mammary epithelial identity. We propose that the intra-somitic Fgf10 gradient, together with ventral elongation of the somites, determines the correct dorsoventral position of mammary epithelium along the flank.

  14. Ornithine-δ-Aminotransferase Inhibits Neurogenesis During Xenopus Embryonic Development

    PubMed Central

    Peng, Ying; Cooper, Sandra K.; Li, Yi; Mei, Jay M.; Qiu, Shuwei; Borchert, Gregory L.; Donald, Steven P.; Kung, Hsiang-fu; Phang, James M.

    2015-01-01

    Purpose. In humans, deficiency of ornithine-δ-aminotransferase (OAT) results in progressive degeneration of the neural retina (gyrate atrophy) with blindness in the fourth decade. In this study, we used the Xenopus embryonic developmental model to study functions of the OAT gene on embryonic development. Methods. We cloned and sequenced full-length OAT cDNA from Xenopus oocytes (X-OAT) and determined X-OAT expression in various developmental stages of Xenopus embryos and in a variety of adult tissues. The phenotype, gene expression of neural developmental markers, and enzymatic activity were detected by gain-of-function and loss-of-function manipulations. Results. We showed that X-OAT is essential for Xenopus embryonic development, and overexpression of X-OAT produces a ventralized phenotype characterized by a small head, lack of axial structure, and defective expression of neural developmental markers. Using X-OAT mutants based on mutations identified in humans, we found that substitution of both Arg 180 and Leu 402 abrogated both X-OAT enzymatic activity and ability to modulate the developmental phenotype. Neurogenesis is inhibited by X-OAT during Xenopus embryonic development. Conclusions. Neurogenesis is inhibited by X-OAT during Xenopus embryonic development, but it is essential for Xenopus embryonic development. The Arg 180 and Leu 402 are crucial for these effects of the OAT molecule in development. PMID:25783604

  15. Modulation by general anaesthetics of rat GABAA receptors comprised of α1β3 and β3 subunits expressed in human embryonic kidney 293 cells

    PubMed Central

    Davies, Paul A; Kirkness, Ewen F; Hales, Tim G

    1997-01-01

    Radioligand binding and patch-clamp techniques were used to study the actions of γ-aminobutyric acid (GABA) and the general anaesthetics propofol (2,6-diisopropylphenol), pentobarbitone and 5α-pregnan-3α-ol-20-one on rat α1 and β3 GABAA receptor subunits, expressed either alone or in combination.Membranes from HEK293 cells after transfection with α1 cDNA did not bind significant levels of [35S]-tert-butyl bicyclophosphorothionate ([35S]-TBPS) (<0.03 pmol mg−1 protein). GABA (100 μM) applied to whole-cells transfected with α1 cDNA and clamped at −60 mV, also failed to activate discernible currents.The membranes of cells expressing β3 cDNAs bound [35S]-TBPS (∼1 pmol mg−1 protein). However, the binding was not influenced by GABA (10 nM–100 μM). Neither GABA (100 μM) nor picrotoxin (10 μM) affected currents recorded from cells expressing β3 cDNA, suggesting that β3 subunits do not form functional GABAA receptors or spontaneously active ion channels.GABA (10 nM–100 μM) modulated [35S]-TBPS binding to the membranes of cells transfected with both α1 and β3 cDNAs. GABA (0.1 μM–1 mM) also dose-dependently activated inward currents with an EC50 of 9 μM recorded from cells transfected with α1 and β3 cDNAs, clamped at −60 mV.Propofol (10 nM–100 μM), pentobarbitone (10 nM–100 μM) and 5α-pregnan-3α-ol-20-one (1 nM–30 μM) modulated [35S]-TBPS binding to the membranes of cells expressing either α1β3 or β3 receptors. Propofol (100 μM), pentobarbitone (1 mM) and 5α-pregnan-3α-ol-20-one (10 μM) also activated currents recorded from cells expressing α1β3 receptors.Propofol (1 μM–1 mM) and pentobarbitone (1 mM) both activated currents recorded from cells expressing β3 homomers. In contrast, application of 5α-pregnan-3α-ol-20-one (10 μM) failed to activate detectable currents.Propofol (100 μM)-activated currents recorded from cells expressing either α1β3 or β3

  16. PRC2 Is Required to Maintain Expression of the Maternal Gtl2-Rian-Mirg Locus by Preventing De Novo DNA Methylation in Mouse Embryonic Stem Cells.

    PubMed

    Das, Partha Pratim; Hendrix, David A; Apostolou, Effie; Buchner, Alice H; Canver, Matthew C; Beyaz, Semir; Ljuboja, Damir; Kuintzle, Rachael; Kim, Woojin; Karnik, Rahul; Shao, Zhen; Xie, Huafeng; Xu, Jian; De Los Angeles, Alejandro; Zhang, Yingying; Choe, Junho; Jun, Don Leong Jia; Shen, Xiaohua; Gregory, Richard I; Daley, George Q; Meissner, Alexander; Kellis, Manolis; Hochedlinger, Konrad; Kim, Jonghwan; Orkin, Stuart H

    2015-09-01

    Polycomb Repressive Complex 2 (PRC2) function and DNA methylation (DNAme) are typically correlated with gene repression. Here, we show that PRC2 is required to maintain expression of maternal microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) from the Gtl2-Rian-Mirg locus, which is essential for full pluripotency of iPSCs. In the absence of PRC2, the entire locus becomes transcriptionally repressed due to gain of DNAme at the intergenic differentially methylated regions (IG-DMRs). Furthermore, we demonstrate that the IG-DMR serves as an enhancer of the maternal Gtl2-Rian-Mirg locus. Further analysis reveals that PRC2 interacts physically with Dnmt3 methyltransferases and reduces recruitment to and subsequent DNAme at the IG-DMR, thereby allowing for proper expression of the maternal Gtl2-Rian-Mirg locus. Our observations are consistent with a mechanism through which PRC2 counteracts the action of Dnmt3 methyltransferases at an imprinted locus required for full pluripotency. PMID:26299972

  17. Embryonic stem cell factors and pancreatic cancer

    PubMed Central

    Herreros-Villanueva, Marta; Bujanda, Luis; Billadeau, Daniel D; Zhang, Jin-San

    2014-01-01

    Pancreatic ductal adenocarcinoma (PDAC), the most common type of pancreatic tumor, is a highly aggressive human cancer with the lowest five-year survival rate of any human maligancy primarily due to its early- metastasis and lack of response to chemotherapy and radiation. Recent research suggests that PDAC cells comprise a hierarchy of tumor cells that develop around a population of cancer stem cells (CSCs), a small and distinct population of cancer cells that mediates tumoregenesis, metastasis and resistance to standard treatments. Thus, CSCs could be a target for more effective treatment options. Interestingly, pancreatic CSCs are subject to regulation by some of key embryonic stem cell (ESC) transctiption factors abberently expressed in PDAC, such as SOX2, OCT4 and NANOG. ESC transcription factors are important DNA-binding proteins present in both embryonic and adult somatic cells. The critical role of these factors in reprogramming processes makes them essential not only for embryonic development but also tumorigenesis. Here we provide an overview of stem cell transcription factors, particularly SOX2, OCT4, and NANOG, on their expression and function in pancreatic cancer. In contrast to embryonic stem cells, in which OCT4 and SOX2 are tightly regulated and physically interact to regulate a wide spectrum of target genes, de novo SOX2 expression alone in pancreatic cancer cells is sufficient to promote self-renewal, de-differentiation and imparting stemness characteristics via impacting specific cell cycle regulatory genes and epithelial-mesnechymal transtion driver genes. Thus, targeting ESC factors, particularly SOX2, could be a worthy strategy for pancreatic cancer therapy. PMID:24605024

  18. Embryonic stem cell factors and pancreatic cancer.

    PubMed

    Herreros-Villanueva, Marta; Bujanda, Luis; Billadeau, Daniel D; Zhang, Jin-San

    2014-03-01

    Pancreatic ductal adenocarcinoma (PDAC), the most common type of pancreatic tumor, is a highly aggressive human cancer with the lowest five-year survival rate of any human maligancy primarily due to its early- metastasis and lack of response to chemotherapy and radiation. Recent research suggests that PDAC cells comprise a hierarchy of tumor cells that develop around a population of cancer stem cells (CSCs), a small and distinct population of cancer cells that mediates tumoregenesis, metastasis and resistance to standard treatments. Thus, CSCs could be a target for more effective treatment options. Interestingly, pancreatic CSCs are subject to regulation by some of key embryonic stem cell (ESC) transctiption factors abberently expressed in PDAC, such as SOX2, OCT4 and NANOG. ESC transcription factors are important DNA-binding proteins present in both embryonic and adult somatic cells. The critical role of these factors in reprogramming processes makes them essential not only for embryonic development but also tumorigenesis. Here we provide an overview of stem cell transcription factors, particularly SOX2, OCT4, and NANOG, on their expression and function in pancreatic cancer. In contrast to embryonic stem cells, in which OCT4 and SOX2 are tightly regulated and physically interact to regulate a wide spectrum of target genes, de novo SOX2 expression alone in pancreatic cancer cells is sufficient to promote self-renewal, de-differentiation and imparting stemness characteristics via impacting specific cell cycle regulatory genes and epithelial-mesnechymal transtion driver genes. Thus, targeting ESC factors, particularly SOX2, could be a worthy strategy for pancreatic cancer therapy.

  19. Identification and expression of Helios, a member of the Ikaros family, in the Mexican axolotl: implications for the embryonic origin of lymphocyte progenitors.

    PubMed

    Durand, Charles; Kerfourn, Fabienne; Charlemagne, Jacques; Fellah, Julien S

    2002-06-01

    Transcription factors of the Ikaros gene family are critical for the differentiation of T and B lymphocytes from pluripotent hematopoietic stem cells. To study the first steps of lymphopoiesis in the Mexican axolotl, we have cloned the Helios ortholog in this urodele amphibian species. We demonstrated that the axolotl Helios contains a 144-bp deletion at the 5' end of the activation domain. Helios is expressed in both the thymus and spleen but not in the liver of the pre-adult axolotl. During ontogeny, Helios transcripts are detected from neurula stage, before the apparition of the first Ikaros transcripts and the colonization of lymphoid tissues. Interestingly, Helios and Ikaros mRNA are found predominantly in the ventral blood islands of late tail-bud embryos. These results suggest that in contrast to the Xenopus and amniote embryos where two sites of hematopoiesis have been characterized, the ventral blood islands could be the major site of hematopoiesis in the axolotl. PMID:12115658

  20. Effect of multiple cysteine substitutions on the functionality of human multidrug resistance protein 1 expressed in human embryonic kidney 293 cells: identification of residues essential for function.

    PubMed

    Qin, Lei; Tam, Shui-Pang; Deeley, Roger G

    2012-07-01

    Multidrug resistance protein 1 (MRP1) is a broad-specificity membrane transporter belonging to the C branch of the ATP binding cassette (ABC) superfamily. MRP1 confers resistance to various chemotherapeutic drugs and transports a wide range of conjugated organic anions. Several ABCC proteins, including MRP1, are unusual among ABC transporters in having a third membrane-spanning domain (MSD), MSD0, at their N termini. MRP1 lacking this additional MSD (ΔMRP1) is able to traffic to the plasma membrane of mammalian cells and to transport a number of well characterized substrates. A cysteineless (cysless) ΔMRP1 has been expressed in yeast and reported to be functional. However, we found that trafficking of such a construct in human cells was severely compromised, and, even when expressed in insect Sf21 cells, the protein had extremely low transport activity. Therefore, we have systematically examined the effects of substituting cysteines in the four domains of ΔMRP1, initially with alanine. These studies allowed us to identify five cysteines that cannot be replaced with alanine without inactivating the protein. Substitution of two of these residues with alternative amino acids has allowed us to produce an almost cysless form of ΔMRP1 that traffics to the plasma membrane and transports leukotriene C(4), 17β-estradiol 17-β-D-glucuronide, and estrone-3-sulfate with kinetic characteristics similar to those of the wild-type protein. The distribution of the remaining Cys residues is such that the protein will provide a useful template for a variety of cysteine based mutagenesis studies.

  1. Transient Early Embryonic Expression of Nkx2-5 Mutations Linked to Congenital Heart Defects in Human Causes Heart Defects in Xenopus laevis

    PubMed Central

    Bartlett, Heather L.; Sutherland, Lillian; Kolker, Sandra J.; Welp, Chelsea; Tajchman, Urszula; Desmarais, Vera; Weeks, Daniel L.

    2007-01-01

    Nkx2-5 is a homeobox containing transcription factor that is conserved and expressed in organisms that form hearts. Fruit flies lacking the gene (tinman) fail to form a dorsal vessel, mice that are homozygous null for Nkx2-5 form small, deformed hearts, and several human cardiac defects have been linked to dominant mutations in the Nkx2-5 gene. The Xenopus homologs (XNkx2-5) of two truncated forms of Nkx2-5 that have been identified in humans with congenital heart defects were used in the studies reported here. mRNAs encoding these mutations were injected into single cell Xenopus embryos, and heart development was monitored. Our results indicate that the introduction of truncated XNkx2-5 variants leads to three principle developmental defects. The atrial septum and the valve of the atrioventricular canal were both abnormal. In addition, video microscopic timing of heart contraction indicated that embryos injected with either mutant form of XNkx2-5 have conduction defects. PMID:17685485

  2. Why Go Native? Landscaping for Biodiversity and Sustainability Education

    ERIC Educational Resources Information Center

    Kermath, Brian

    2007-01-01

    Purpose: The purpose of this paper is to illustrate that campus and urban landscaping has important connections to biodiversity conservation, perceptions of natural heritage, sense-of-place, ecological literacy and the role of campus landscapes in the larger community. It also aims to show how campus landscapes express values and perform as a…

  3. Landscaping for energy efficiency

    SciTech Connect

    1995-04-01

    This publication by the National Renewable Energy Laboratory addresses the use of landscaping for energy efficiency. The topics of the publication include minimizing energy expenses; landscaping for a cleaner environment; climate, site, and design considerations; planning landscape; and selecting and planting trees and shrubs. A source list for more information on landscaping for energy efficiency and a reading list are included.

  4. Compatibility of embryonic stem cells with biomaterials.

    PubMed

    Handschel, Jörg; Berr, Karin; Depprich, Rita; Naujoks, Christian; Kübler, Norbert R; Meyer, Ulrich; Ommerborn, Michelle; Lammers, Lydia

    2009-05-01

    Periodontal bone defects and atrophy of the jaws in an aging population are of special concern. Tissue engineering using embryonic stem cells (ESCs) and biomaterials may offer new therapeutic options. The purpose of this study is to evaluate the compatibility of ESCs with biomaterials and the influence of biomaterials on the osteogenic gene expression profile.Therefore, ESCs are cultured with various biomaterials. The cytocompatibility of murine ESCs is measured regarding the proliferation of the cells on the materials by CyQUANT assay, the morphology by scanning electron microscopy, and the influence on the gene expression by real time PCR.The results show that insoluble collagenous bone matrix, followed by beta-tricalciumphosphate, is most suitable for bone tissue engineering regarding cell proliferation, and phenotype. The gene expression analysis indicates that biomaterials do influence the gene expression of ESCs.Our results provide new insight into the cytocompatibility of ESCs on different scaffolds.

  5. Evolution of the mammalian embryonic pluripotency gene regulatory network.

    PubMed

    Fernandez-Tresguerres, Beatriz; Cañon, Susana; Rayon, Teresa; Pernaute, Barbara; Crespo, Miguel; Torroja, Carlos; Manzanares, Miguel

    2010-11-16

    Embryonic pluripotency in the mouse is established and maintained by a gene-regulatory network under the control of a core set of transcription factors that include octamer-binding protein 4 (Oct4; official name POU domain, class 5, transcription factor 1, Pou5f1), sex-determining region Y (SRY)-box containing gene 2 (Sox2), and homeobox protein Nanog. Although this network is largely conserved in eutherian mammals, very little information is available regarding its evolutionary conservation in other vertebrates. We have compared the embryonic pluripotency networks in mouse and chick by means of expression analysis in the pregastrulation chicken embryo, genomic comparisons, and functional assays of pluripotency-related regulatory elements in ES cells and blastocysts. We find that multiple components of the network are either novel to mammals or have acquired novel expression domains in early developmental stages of the mouse. We also find that the downstream action of the mouse core pluripotency factors is mediated largely by genomic sequence elements nonconserved with chick. In the case of Sox2 and Fgf4, we find that elements driving expression in embryonic pluripotent cells have evolved by a small number of nucleotide changes that create novel binding sites for core factors. Our results show that the network in charge of embryonic pluripotency is an evolutionary novelty of mammals that is related to the comparatively extended period during which mammalian embryonic cells need to be maintained in an undetermined state before engaging in early differentiation events.

  6. Dynamic Proteomic Profiling of Extra-Embryonic Endoderm Differentiation in Mouse Embryonic Stem Cells.

    PubMed

    Mulvey, Claire M; Schröter, Christian; Gatto, Laurent; Dikicioglu, Duygu; Fidaner, Isik Baris; Christoforou, Andy; Deery, Michael J; Cho, Lily T Y; Niakan, Kathy K; Martinez-Arias, Alfonso; Lilley, Kathryn S

    2015-09-01

    During mammalian preimplantation development, the cells of the blastocyst's inner cell mass differentiate into the epiblast and primitive endoderm lineages, which give rise to the fetus and extra-embryonic tissues, respectively. Extra-embryonic endoderm (XEN) differentiation can be modeled in vitro by induced expression of GATA transcription factors in mouse embryonic stem cells. Here, we use this GATA-inducible system to quantitatively monitor the dynamics of global proteomic changes during the early stages of this differentiation event and also investigate the fully differentiated phenotype, as represented by embryo-derived XEN cells. Using mass spectrometry-based quantitative proteomic profiling with multivariate data analysis tools, we reproducibly quantified 2,336 proteins across three biological replicates and have identified clusters of proteins characterized by distinct, dynamic temporal abundance profiles. We first used this approach to highlight novel marker candidates of the pluripotent state and XEN differentiation. Through functional annotation enrichment analysis, we have shown that the downregulation of chromatin-modifying enzymes, the reorganization of membrane trafficking machinery, and the breakdown of cell-cell adhesion are successive steps of the extra-embryonic differentiation process. Thus, applying a range of sophisticated clustering approaches to a time-resolved proteomic dataset has allowed the elucidation of complex biological processes which characterize stem cell differentiation and could establish a general paradigm for the investigation of these processes.

  7. Comparing the effects of tetrabromobisphenol-A, bisphenol A, and their potential replacement alternatives, TBBPA-bis(2,3-dibromopropyl ether) and bisphenol S, on cell viability and messenger ribonucleic acid expression in chicken embryonic hepatocytes.

    PubMed

    Ma, Melissa; Crump, Doug; Farmahin, Reza; Kennedy, Sean W

    2015-02-01

    A market for alternative brominated flame retardants (BFRs) has emerged recently due to the phase out of persistent and inherently toxic BFRs. Several of these replacement compounds have been detected in environmental matrices, including wild birds. A chicken embryonic hepatocyte (CEH) assay was utilized to assess the effects of the BFR, tetrabromobisphenol-A (TBBPA), and its replacement alternative, tetrabromobisphenol A bis(2,3-dibromopropyl ether [TBBPA-DBPE]) on cell viability and messenger ribonucleic acid (mRNA) expression. Bisphenol A (BPA) and 1 of its replacement alternatives, bisphenol S (BPS), were also screened for effects. Both TBBPA and BPA decreased CEH viability with calculated median lethal concentration (LC50) values of 40.6 μM and 61.7 μM, respectively. However, the replacement alternatives, TBBPA-DBPE and BPS, did not affect cell viability (up to 300 μM). Effects on mRNA expression were determined using an Avian ToxChip polymerse chain reaction (PCR) array and a real-time (RT)-PCR assay for the estrogen-responsive genes, apolipoproteinII (ApoII) and vitellogenin (Vtg). A luciferase reporter gene assay was used to assess dioxin-like effects. Tetrabromobisphenol-A altered mRNA levels of 4 genes from multiple toxicity pathways and increased luciferase activity in the luciferase reporter gene assay, whereas its alternative, TBBPA-DBPE, only altered 1 gene on the array, Cyp1a4, and increased luciferase activity. At 300 μM, a concentration that decreased cell viability for TBBPA and BPA, the BPA replacement, BPS, altered the greatest number of transcripts, including both ApoII and Vtg. Bisphenol A exposure did not alter any genes on the array but did up-regulate Vtg at 10 μM. Characterization of the potential toxicological and molecular-level effects of these compounds will ideally be useful to chemical regulators tasked with assessing the risk of new and existing chemicals. PMID:25470364

  8. Comparing the effects of tetrabromobisphenol-A, bisphenol A, and their potential replacement alternatives, TBBPA-bis(2,3-dibromopropyl ether) and bisphenol S, on cell viability and messenger ribonucleic acid expression in chicken embryonic hepatocytes.

    PubMed

    Ma, Melissa; Crump, Doug; Farmahin, Reza; Kennedy, Sean W

    2015-02-01

    A market for alternative brominated flame retardants (BFRs) has emerged recently due to the phase out of persistent and inherently toxic BFRs. Several of these replacement compounds have been detected in environmental matrices, including wild birds. A chicken embryonic hepatocyte (CEH) assay was utilized to assess the effects of the BFR, tetrabromobisphenol-A (TBBPA), and its replacement alternative, tetrabromobisphenol A bis(2,3-dibromopropyl ether [TBBPA-DBPE]) on cell viability and messenger ribonucleic acid (mRNA) expression. Bisphenol A (BPA) and 1 of its replacement alternatives, bisphenol S (BPS), were also screened for effects. Both TBBPA and BPA decreased CEH viability with calculated median lethal concentration (LC50) values of 40.6 μM and 61.7 μM, respectively. However, the replacement alternatives, TBBPA-DBPE and BPS, did not affect cell viability (up to 300 μM). Effects on mRNA expression were determined using an Avian ToxChip polymerse chain reaction (PCR) array and a real-time (RT)-PCR assay for the estrogen-responsive genes, apolipoproteinII (ApoII) and vitellogenin (Vtg). A luciferase reporter gene assay was used to assess dioxin-like effects. Tetrabromobisphenol-A altered mRNA levels of 4 genes from multiple toxicity pathways and increased luciferase activity in the luciferase reporter gene assay, whereas its alternative, TBBPA-DBPE, only altered 1 gene on the array, Cyp1a4, and increased luciferase activity. At 300 μM, a concentration that decreased cell viability for TBBPA and BPA, the BPA replacement, BPS, altered the greatest number of transcripts, including both ApoII and Vtg. Bisphenol A exposure did not alter any genes on the array but did up-regulate Vtg at 10 μM. Characterization of the potential toxicological and molecular-level effects of these compounds will ideally be useful to chemical regulators tasked with assessing the risk of new and existing chemicals.

  9. DNA Methylation Variation Trends during the Embryonic Development of Chicken

    PubMed Central

    Li, Shizhao; Zhu, Yufei; Zhi, Lihui; Han, Xiaoying; Shen, Jing; Liu, Yanli; Yao, Junhu; Yang, Xiaojun

    2016-01-01

    The embryogenesis period is critical for epigenetic reprogramming and is thus of great significance in the research field of poultry epigenetics for elucidation of the trends in DNA methylation variations during the embryonic development of birds, particularly due to differences in embryogenesis between birds and mammals. Here, we first examined the variations in genomic DNA methylation during chicken embryogenesis through high-performance liquid chromatography using broilers as the model organism. We then identified the degree of DNA methylation of the promoters and gene bodies involved in two specific genes (IGF2 and TNF-α) using the bisulfite sequencing polymerase chain reaction method. In addition, we measured the expression levels of IGF2, TNF-α and DNA methyltransferase (DNMT) 1, 3a and 3b. Our results showed that the genomic DNA methylation levels in the liver, heart and muscle increased during embryonic development and that the methylation level of the liver was significantly higher in mid-anaphase. In both the muscle and liver, the promoter methylation levels of TNF-α first increased and then decreased, whereas the gene body methylation levels remained lower at embryonic ages E8, 11 and 14 before increasing notably at E17. The promoter methylation level of IGF2 decreased persistently, whereas the methylation levels in the gene body showed a continuous increase. No differences in the expression of TNF-α were found among E8, 11 and 14, whereas a significant increase was observed at E17. IGF2 showed increasing expression level during the examined embryonic stages. In addition, the mRNA and protein levels of DNMTs increased with increasing embryonic ages. These results suggest that chicken shows increasing genomic DNA methylation patterns during the embryonic period. Furthermore, the genomic DNA methylation levels in tissues are closely related to the genes expression levels, and gene expression may be simultaneously regulated by promoter hypomethylation

  10. TEAD and YAP regulate the enhancer network of human embryonic pancreatic progenitors.

    PubMed

    Cebola, Inês; Rodríguez-Seguí, Santiago A; Cho, Candy H-H; Bessa, José; Rovira, Meritxell; Luengo, Mario; Chhatriwala, Mariya; Berry, Andrew; Ponsa-Cobas, Joan; Maestro, Miguel Angel; Jennings, Rachel E; Pasquali, Lorenzo; Morán, Ignasi; Castro, Natalia; Hanley, Neil A; Gomez-Skarmeta, Jose Luis; Vallier, Ludovic; Ferrer, Jorge

    2015-05-01

    The genomic regulatory programmes that underlie human organogenesis are poorly understood. Pancreas development, in particular, has pivotal implications for pancreatic regeneration, cancer and diabetes. We have now characterized the regulatory landscape of embryonic multipotent progenitor cells that give rise to all pancreatic epithelial lineages. Using human embryonic pancreas and embryonic-stem-cell-derived progenitors we identify stage-specific transcripts and associated enhancers, many of which are co-occupied by transcription factors that are essential for pancreas development. We further show that TEAD1, a Hippo signalling effector, is an integral component of the transcription factor combinatorial code of pancreatic progenitor enhancers. TEAD and its coactivator YAP activate key pancreatic signalling mediators and transcription factors, and regulate the expansion of pancreatic progenitors. This work therefore uncovers a central role for TEAD and YAP as signal-responsive regulators of multipotent pancreatic progenitors, and provides a resource for the study of embryonic development of the human pancreas. PMID:25915126

  11. TEAD and YAP regulate the enhancer network of human embryonic pancreatic progenitors.

    PubMed

    Cebola, Inês; Rodríguez-Seguí, Santiago A; Cho, Candy H-H; Bessa, José; Rovira, Meritxell; Luengo, Mario; Chhatriwala, Mariya; Berry, Andrew; Ponsa-Cobas, Joan; Maestro, Miguel Angel; Jennings, Rachel E; Pasquali, Lorenzo; Morán, Ignasi; Castro, Natalia; Hanley, Neil A; Gomez-Skarmeta, Jose Luis; Vallier, Ludovic; Ferrer, Jorge

    2015-05-01

    The genomic regulatory programmes that underlie human organogenesis are poorly understood. Pancreas development, in particular, has pivotal implications for pancreatic regeneration, cancer and diabetes. We have now characterized the regulatory landscape of embryonic multipotent progenitor cells that give rise to all pancreatic epithelial lineages. Using human embryonic pancreas and embryonic-stem-cell-derived progenitors we identify stage-specific transcripts and associated enhancers, many of which are co-occupied by transcription factors that are essential for pancreas development. We further show that TEAD1, a Hippo signalling effector, is an integral component of the transcription factor combinatorial code of pancreatic progenitor enhancers. TEAD and its coactivator YAP activate key pancreatic signalling mediators and transcription factors, and regulate the expansion of pancreatic progenitors. This work therefore uncovers a central role for TEAD and YAP as signal-responsive regulators of multipotent pancreatic progenitors, and provides a resource for the study of embryonic development of the human pancreas.

  12. TEAD and YAP regulate the enhancer network of human embryonic pancreatic progenitors

    PubMed Central

    Luengo, Mario; Chhatriwala, Mariya; Berry, Andrew; Ponsa-Cobas, Joan; Maestro, Miguel Angel; Jennings, Rachel E.; Pasquali, Lorenzo; Morán, Ignasi; Castro, Natalia; Hanley, Neil A.; Gomez-Skarmeta, Jose Luis; Vallier, Ludovic; Ferrer, Jorge

    2015-01-01

    SUMMARY The genomic regulatory programs that underlie human organogenesis are poorly understood. Pancreas development, in particular, has pivotal implications for pancreatic regeneration, cancer, and diabetes. We have now characterized the regulatory landscape of embryonic multipotent progenitor cells that give rise to all pancreatic epithelial lineages. Using human embryonic pancreas and embryonic stem cell-derived progenitors we identify stage-specific transcripts and associated enhancers, many of which are co-occupied by transcription factors that are essential for pancreas development. We further show that TEAD1, a Hippo signaling effector, is an integral component of the transcription factor combinatorial code of pancreatic progenitor enhancers. TEAD and its coactivator YAP activate key pancreatic signaling mediators and transcription factors, and regulate the expansion of pancreatic progenitors. This work therefore uncovers a central role of TEAD and YAP as signal-responsive regulators of multipotent pancreatic progenitors, and provides a resource for the study of embryonic development of the human pancreas. PMID:25915126

  13. Brachyury and SMAD signalling collaboratively orchestrate distinct mesoderm and endoderm gene regulatory networks in differentiating human embryonic stem cells.

    PubMed

    Faial, Tiago; Bernardo, Andreia S; Mendjan, Sasha; Diamanti, Evangelia; Ortmann, Daniel; Gentsch, George E; Mascetti, Victoria L; Trotter, Matthew W B; Smith, James C; Pedersen, Roger A

    2015-06-15

    The transcription factor brachyury (T, BRA) is one of the first markers of gastrulation and lineage specification in vertebrates. Despite its wide use and importance in stem cell and developmental biology, its functional genomic targets in human cells are largely unknown. Here, we use differentiating human embryonic stem cells to study the role of BRA in activin A-induced endoderm and BMP4-induced mesoderm progenitors. We show that BRA has distinct genome-wide binding landscapes in these two cell populations, and that BRA interacts and collaborates with SMAD1 or SMAD2/3 signalling to regulate the expression of its target genes in a cell-specific manner. Importantly, by manipulating the levels of BRA in cells exposed to different signalling environments, we demonstrate that BRA is essential for mesoderm but not for endoderm formation. Together, our data illuminate the function of BRA in the context of human embryonic development and show that the regulatory role of BRA is context dependent. Our study reinforces the importance of analysing the functions of a transcription factor in different cellular and signalling environments.

  14. Brachyury and SMAD signalling collaboratively orchestrate distinct mesoderm and endoderm gene regulatory networks in differentiating human embryonic stem cells

    PubMed Central

    Faial, Tiago; Bernardo, Andreia S.; Mendjan, Sasha; Diamanti, Evangelia; Ortmann, Daniel; Gentsch, George E.; Mascetti, Victoria L.; Trotter, Matthew W. B.; Smith, James C.; Pedersen, Roger A.

    2015-01-01

    The transcription factor brachyury (T, BRA) is one of the first markers of gastrulation and lineage specification in vertebrates. Despite its wide use and importance in stem cell and developmental biology, its functional genomic targets in human cells are largely unknown. Here, we use differentiating human embryonic stem cells to study the role of BRA in activin A-induced endoderm and BMP4-induced mesoderm progenitors. We show that BRA has distinct genome-wide binding landscapes in these two cell populations, and that BRA interacts and collaborates with SMAD1 or SMAD2/3 signalling to regulate the expression of its target genes in a cell-specific manner. Importantly, by manipulating the levels of BRA in cells exposed to different signalling environments, we demonstrate that BRA is essential for mesoderm but not for endoderm formation. Together, our data illuminate the function of BRA in the context of human embryonic development and show that the regulatory role of BRA is context dependent. Our study reinforces the importance of analysing the functions of a transcription factor in different cellular and signalling environments. PMID:26015544

  15. High commitment of embryonic keratinocytes to terminal differentiation through a Notch1-caspase 3 regulatory mechanism.

    PubMed

    Okuyama, Ryuhei; Nguyen, Bach-Cuc; Talora, Claudio; Ogawa, Eisaku; Tommasi di Vignano, Alice; Lioumi, Maria; Chiorino, Giovanna; Tagami, Hachiro; Woo, Minna; Dotto, G Paolo

    2004-04-01

    Embryonic cells are expected to possess high growth/differentiation potential, required for organ morphogenesis and expansion during development. However, little is known about the intrinsic properties of embryonic epithelial cells due to difficulties in their isolation and cultivation. We report here that pure keratinocyte populations from E15.5 mouse embryos commit irreversibly to differentiation much earlier than newborn cells. Notch signaling, which promotes keratinocyte differentiation, is upregulated in embryonic keratinocyte and epidermis, and elevated caspase 3 expression, which we identify as a transcriptional Notch1 target, accounts in part for the high commitment of embryonic keratinocytes to terminal differentiation. In vivo, lack of caspase 3 results in increased proliferation and decreased differentiation of interfollicular embryonic keratinocytes, together with decreased activation of PKC-delta, a caspase 3 substrate which functions as a positive regulator of keratinocyte differentiation. Thus, a Notch1-caspase 3 regulatory mechanism underlies the intrinsically high commitment of embryonic keratinocytes to terminal differentiation.

  16. A small set of extra-embryonic genes defines a new landmark for bovine embryo staging.

    PubMed

    Degrelle, Séverine A; Lê Cao, Kim-Anh; Heyman, Yvan; Everts, Robin E; Campion, Evelyne; Richard, Christophe; Ducroix-Crépy, Céline; Tian, X Cindy; Lewin, Harris A; Renard, Jean-Paul; Robert-Granié, Christèle; Hue, Isabelle

    2011-01-01

    Axis specification in mouse is determined by a sequence of reciprocal interactions between embryonic and extra-embryonic tissues so that a few extra-embryonic genes appear as 'patterning' the embryo. Considering these interactions as essential, but lacking in most mammals the genetically driven approaches used in mouse and the corresponding patterning mutants, we examined whether a molecular signature originating from extra-embryonic tissues could relate to the developmental stage of the embryo proper and predict it. To this end, we have profiled bovine extra-embryonic tissues at peri-implantation stages, when gastrulation and early neurulation occur, and analysed the subsequent expression profiles through the use of predictive methods as previously reported for tumour classification. A set of six genes (CALM1, CPA3, CITED1, DLD, HNRNPDL, and TGFB3), half of which had not been previously associated with any extra-embryonic feature, appeared significantly discriminative and mainly dependent on embryonic tissues for its faithful expression. The predictive value of this set of genes for gastrulation and early neurulation stages, as assessed on naive samples, was remarkably high (93%). In silico connected to the bovine orthologues of the mouse patterning genes, this gene set is proposed as a new trait for embryo staging. As such, this will allow saving the bovine embryo proper for molecular or cellular studies. To us, it offers as well new perspectives for developmental phenotyping and modelling of embryonic/extra-embryonic co-differentiation.

  17. Automated maintenance of embryonic stem cell cultures.

    PubMed

    Terstegge, Stefanie; Laufenberg, Iris; Pochert, Jörg; Schenk, Sabine; Itskovitz-Eldor, Joseph; Endl, Elmar; Brüstle, Oliver

    2007-01-01

    Embryonic stem cell (ESC) technology provides attractive perspectives for generating unlimited numbers of somatic cells for disease modeling and compound screening. A key prerequisite for these industrial applications are standardized and automated systems suitable for stem cell processing. Here we demonstrate that mouse and human ESC propagated by automated culture maintain their mean specific growth rates, their capacity for multi-germlayer differentiation, and the expression of the pluripotency-associated markers SSEA-1/Oct-4 and Tra-1-60/Tra-1-81/Oct-4, respectively. The feasibility of ESC culture automation may greatly facilitate the use of this versatile cell source for a variety of biomedical applications.

  18. The embryonic stem cell test.

    PubMed

    Schulpen, Sjors H W; Piersma, Aldert H

    2013-01-01

    The embryonic stem cell test is an animal-free alternative test method for developmental toxicity. Mouse embryonic stem cells are cultured in a hanging drop method to form embryoid bodies. These embryoid bodies, when plated on tissue culture dishes, differentiate to form contracting myocardial cell foci within 10 days. Inhibition of cardiomyocyte differentiation by test compounds serves as the end point of the assay, as monitored by counting contracting muscle foci under the microscope.

  19. Differential state-dependent modification of rat Na{sub v}1.6 sodium channels expressed in human embryonic kidney (HEK293) cells by the pyrethroid insecticides tefluthrin and deltamethrin

    SciTech Connect

    He, Bingjun; Soderlund, David M.

    2011-12-15

    We expressed rat Na{sub v}1.6 sodium channels in combination with the rat {beta}1 and {beta}2 auxiliary subunits in human embryonic kidney (HEK293) cells and evaluated the effects of the pyrethroid insecticides tefluthrin and deltamethrin on expressed sodium currents using the whole-cell patch clamp technique. Both pyrethroids produced concentration-dependent, resting modification of Na{sub v}1.6 channels, prolonging the kinetics of channel inactivation and deactivation to produce persistent 'late' currents during depolarization and tail currents following repolarization. Both pyrethroids also produced concentration dependent hyperpolarizing shifts in the voltage dependence of channel activation and steady-state inactivation. Maximal shifts in activation, determined from the voltage dependence of the pyrethroid-induced late and tail currents, were {approx} 25 mV for tefluthrin and {approx} 20 mV for deltamethrin. The highest attainable concentrations of these compounds also caused shifts of {approx} 5-10 mV in the voltage dependence of steady-state inactivation. In addition to their effects on the voltage dependence of inactivation, both compounds caused concentration-dependent increases in the fraction of sodium current that was resistant to inactivation following strong depolarizing prepulses. We assessed the use-dependent effects of tefluthrin and deltamethrin on Na{sub v}1.6 channels by determining the effect of trains of 1 to 100 5-ms depolarizing prepulses at frequencies of 20 or 66.7 Hz on the extent of channel modification. Repetitive depolarization at either frequency increased modification by deltamethrin by {approx} 2.3-fold but had no effect on modification by tefluthrin. Tefluthrin and deltamethrin were equally potent as modifiers of Na{sub v}1.6 channels in HEK293 cells using the conditions producing maximal modification as the basis for comparison. These findings show that the actions of tefluthrin and deltamethrin of Na{sub v}1.6 channels in HEK293

  20. Human embryonic stem cells and embryonal carcinoma cells have overlapping and distinct metabolic signatures.

    PubMed

    Abu Dawud, Raed; Schreiber, Kerstin; Schomburg, Dietmar; Adjaye, James

    2012-01-01

    While human embryonic stem cells (hESCs) and human embryonal carcinoma cells (hECCs) have been studied extensively at the levels of the genome, transcriptome, proteome and epigenome our knowledge of their corresponding metabolomes is limited. Here, we present the metabolic signatures of hESCs and hESCs obtained by untargeted gas chromatography coupled to mass spectrometry (GC-MS). Whilst some metabolites are common to both cell types, representing the self-renewal and house-keeping signatures, others were either higher (e.g., octadecenoic acid, glycerol-3-phosphate, 4-hydroxyproline) or lower (e.g., glutamic acid, mannitol, malic acid, GABA) in hESCs (H9) compared to hECCs (NTERA2), these represent cell type specific signatures. Further, our combined results of GC-MS and microarray based gene expression profiling of undifferentiated and OCT4-depleted hESCs are consistent with the Warburg effect which is increased glycolysis in embryonic cells and tumor cells in the presence of O(2) while oxidative phosphorylation (OXPHOS) is impaired or even shut down. RNAi-based OCT4 knock down mediated differentiation resulted in the activation of the poised OXPHOS machinery by expressing missing key proteins such as NDUFC1, UQCRB and COX, increase in TCA cycle activity and decreased lactate metabolism. These results shed light on the metabolite layer of pluripotent stem cells and could potentially establish novel metabolic markers of self renewal and pluripotency. PMID:22768158

  1. Human embryonic stem cells and embryonal carcinoma cells have overlapping and distinct metabolic signatures.

    PubMed

    Abu Dawud, Raed; Schreiber, Kerstin; Schomburg, Dietmar; Adjaye, James

    2012-01-01

    While human embryonic stem cells (hESCs) and human embryonal carcinoma cells (hECCs) have been studied extensively at the levels of the genome, transcriptome, proteome and epigenome our knowledge of their corresponding metabolomes is limited. Here, we present the metabolic signatures of hESCs and hESCs obtained by untargeted gas chromatography co