Science.gov

Sample records for embryonic expression landscape

  1. Maternal diet programs embryonic kidney gene expression.

    PubMed

    Welham, Simon J M; Riley, Paul R; Wade, Angie; Hubank, Mike; Woolf, Adrian S

    2005-06-16

    Human epidemiological data associating birth weight with adult disease suggest that organogenesis is "programmed" by maternal diet. In rats, protein restriction in pregnancy produces offspring with fewer renal glomeruli and higher systemic blood pressures than controls. We tested the hypothesis that maternal diet alters gene expression in the metanephros, the precursor of the definitive mammalian kidney. We demonstrated that maternal low-protein diet initiated when pregnancy starts and maintained to embryonic day 13, when the metanephros consists of mesenchyme surrounding a once-branched ureteric bud, is sufficient to significantly reduce glomerular numbers in offspring by about 20%. As assessed by representational difference analyses and real-time quantitative polymerase chain reactions, low-protein diet modulated gene expression in embryonic day 13 metanephroi. In particular, levels of prox-1, the ortholog of Drosophila transcription factor prospero, and cofilin-1, a regulator of the actin cytoskeleton, were reduced. During normal metanephrogenesis, prox-1 protein was first detected in mesenchymal cells around the ureteric tree and thereafter in nascent nephron epithelia, whereas cofilin-1 immunolocalized to bud derivatives and condensing mesenchyme. Previously, we reported that low-protein diets increased mesenchymal apoptosis cells when metanephrogenesis began and thereafter reduced numbers of precursor cells. Collectively, these studies prove that the maternal diet programs the embryonic kidney, altering cell turnover and gene expression at a time when nephrons and glomeruli have yet to form. The human implication is that the maternal diet ingested between conception and 5- 6-wk gestation contributes to the variation in glomerular numbers that are known to occur between healthy and hypertensive populations.

  2. Gene Expression Noise, Fitness Landscapes, and Evolution

    NASA Astrophysics Data System (ADS)

    Charlebois, Daniel

    The stochastic (or noisy) process of gene expression can have fitness consequences for living organisms. For example, gene expression noise facilitates the development of drug resistance by increasing the time scale at which beneficial phenotypic states can be maintained. The present work investigates the relationship between gene expression noise and the fitness landscape. By incorporating the costs and benefits of gene expression, we track how the fluctuation magnitude and timescale of expression noise evolve in simulations of cell populations under stress. We find that properties of expression noise evolve to maximize fitness on the fitness landscape, and that low levels of expression noise emerge when the fitness benefits of gene expression exceed the fitness costs (and that high levels of noise emerge when the costs of expression exceed the benefits). The findings from our theoretical/computational work offer new hypotheses on the development of drug resistance, some of which are now being investigated in evolution experiments in our laboratory using well-characterized synthetic gene regulatory networks in budding yeast. Nserc Postdoctoral Fellowship (Grant No. PDF-453977-2014).

  3. PICKLE acts during germination to repress expression of embryonic traits

    PubMed Central

    Li, Hui-Chun; Chuang, King; Henderson, James T.; Rider, Stanley Dean; Bai, Yinglin; Zhang, Heng; Fountain, Matthew; Gerber, Jacob; Ogas, Joe

    2008-01-01

    SUMMARY PICKLE (PKL) codes for a CHD3 chromatin remodeling factor that plays multiple roles in Arabidopsis growth and development. Previous analysis of the expression of genes that exhibit PKL-dependent regulation suggested that PKL acts during germination to repress expression of embryonic traits. In this study, we examined the expression of PKL protein to investigate when and where PKL acts to regulate development. A PKL:eGFP translational fusion is preferentially localized in the nucleus of cells, consistent with the proposed role for PKL as a chromatin remodeling factor. A steroid-inducible version of PKL - a fusion of PKL to the glucocorticoid receptor (PKL:GR) - was used to examine when PKL acts to repress expression of embryonic traits. We found that activation of PKL:GR during germination was sufficient to repress expression of embryonic traits in the primary roots of pkl seedlings whereas activation of PKL:GR after germination had little effect. In contrast, we observed that PKL is required continuously after germination to repress expression of PHERES1, a type I MADS box gene that is normally expressed during early embryogenesis in wild-type plants. Thus PKL acts at multiple points during development to regulate patterns of gene expression in Arabidopsis. PMID:16359393

  4. PICKLE acts during germination to repress expression of embryonic traits.

    PubMed

    Li, Hui-Chun; Chuang, King; Henderson, James T; Rider, Stanley Dean; Bai, Yinglin; Zhang, Heng; Fountain, Matthew; Gerber, Jacob; Ogas, Joe

    2005-12-01

    PICKLE (PKL) codes for a CHD3 chromatin remodeling factor that plays multiple roles in Arabidopsis growth and development. Previous analysis of the expression of genes that exhibit PKL-dependent regulation suggested that PKL acts during germination to repress expression of embryonic traits. In this study, we examined the expression of PKL protein to investigate when and where PKL acts to regulate development. A PKL:eGFP translational fusion is preferentially localized in the nucleus of cells, consistent with the proposed role for PKL as a chromatin remodeling factor. A steroid-inducible version of PKL [a fusion of PKL to the glucocorticoid receptor (PKL:GR)] was used to examine when PKL acts to repress expression of embryonic traits. We found that activation of PKL:GR during germination was sufficient to repress expression of embryonic traits in the primary roots of pkl seedlings, whereas activation of PKL:GR after germination had little effect. In contrast, we observed that PKL is required continuously after germination to repress expression of PHERES1, a type I MADS box gene that is normally expressed during early embryogenesis in wild-type plants. Thus, PKL acts at multiple points during development to regulate patterns of gene expression in Arabidopsis.

  5. Caffeine exposure alters cardiac gene expression in embryonic cardiomyocytes.

    PubMed

    Fang, Xiefan; Mei, Wenbin; Barbazuk, William B; Rivkees, Scott A; Wendler, Christopher C

    2014-12-15

    Previous studies demonstrated that in utero caffeine treatment at embryonic day (E) 8.5 alters DNA methylation patterns, gene expression, and cardiac function in adult mice. To provide insight into the mechanisms, we examined cardiac gene and microRNA (miRNA) expression in cardiomyocytes shortly after exposure to physiologically relevant doses of caffeine. In HL-1 and primary embryonic cardiomyocytes, caffeine treatment for 48 h significantly altered the expression of cardiac structural genes (Myh6, Myh7, Myh7b, Tnni3), hormonal genes (Anp and BnP), cardiac transcription factors (Gata4, Mef2c, Mef2d, Nfatc1), and microRNAs (miRNAs; miR208a, miR208b, miR499). In addition, expressions of these genes were significantly altered in embryonic hearts exposed to in utero caffeine. For in utero experiments, pregnant CD-1 dams were treated with 20-60 mg/kg of caffeine, which resulted in maternal circulation levels of 37.3-65.3 μM 2 h after treatment. RNA sequencing was performed on embryonic ventricles treated with vehicle or 20 mg/kg of caffeine daily from E6.5-9.5. Differential expression (DE) analysis revealed that 124 genes and 849 transcripts were significantly altered, and differential exon usage (DEU) analysis identified 597 exons that were changed in response to prenatal caffeine exposure. Among the DE genes identified by RNA sequencing were several cardiac structural genes and genes that control DNA methylation and histone modification. Pathway analysis revealed that pathways related to cardiovascular development and diseases were significantly affected by caffeine. In addition, global cardiac DNA methylation was reduced in caffeine-treated cardiomyocytes. Collectively, these data demonstrate that caffeine exposure alters gene expression and DNA methylation in embryonic cardiomyocytes.

  6. Caffeine exposure alters cardiac gene expression in embryonic cardiomyocytes

    PubMed Central

    Fang, Xiefan; Mei, Wenbin; Barbazuk, William B.; Rivkees, Scott A.

    2014-01-01

    Previous studies demonstrated that in utero caffeine treatment at embryonic day (E) 8.5 alters DNA methylation patterns, gene expression, and cardiac function in adult mice. To provide insight into the mechanisms, we examined cardiac gene and microRNA (miRNA) expression in cardiomyocytes shortly after exposure to physiologically relevant doses of caffeine. In HL-1 and primary embryonic cardiomyocytes, caffeine treatment for 48 h significantly altered the expression of cardiac structural genes (Myh6, Myh7, Myh7b, Tnni3), hormonal genes (Anp and BnP), cardiac transcription factors (Gata4, Mef2c, Mef2d, Nfatc1), and microRNAs (miRNAs; miR208a, miR208b, miR499). In addition, expressions of these genes were significantly altered in embryonic hearts exposed to in utero caffeine. For in utero experiments, pregnant CD-1 dams were treated with 20–60 mg/kg of caffeine, which resulted in maternal circulation levels of 37.3–65.3 μM 2 h after treatment. RNA sequencing was performed on embryonic ventricles treated with vehicle or 20 mg/kg of caffeine daily from E6.5-9.5. Differential expression (DE) analysis revealed that 124 genes and 849 transcripts were significantly altered, and differential exon usage (DEU) analysis identified 597 exons that were changed in response to prenatal caffeine exposure. Among the DE genes identified by RNA sequencing were several cardiac structural genes and genes that control DNA methylation and histone modification. Pathway analysis revealed that pathways related to cardiovascular development and diseases were significantly affected by caffeine. In addition, global cardiac DNA methylation was reduced in caffeine-treated cardiomyocytes. Collectively, these data demonstrate that caffeine exposure alters gene expression and DNA methylation in embryonic cardiomyocytes. PMID:25354728

  7. Epigenetic Control of Retrotransposon Expression in Human Embryonic Stem Cells▿

    PubMed Central

    Macia, Angela; Muñoz-Lopez, Martin; Cortes, Jose Luis; Hastings, Robert K.; Morell, Santiago; Lucena-Aguilar, Gema; Marchal, Juan Antonio; Badge, Richard M.; Garcia-Perez, Jose Luis

    2011-01-01

    Long interspersed element 1s (LINE-1s or L1s) are a family of non-long-terminal-repeat retrotransposons that predominate in the human genome. Active LINE-1 elements encode proteins required for their mobilization. L1-encoded proteins also act in trans to mobilize short interspersed elements (SINEs), such as Alu elements. L1 and Alu insertions have been implicated in many human diseases, and their retrotransposition provides an ongoing source of human genetic diversity. L1/Alu elements are expected to ensure their transmission to subsequent generations by retrotransposing in germ cells or during early embryonic development. Here, we determined that several subfamilies of Alu elements are expressed in undifferentiated human embryonic stem cells (hESCs) and that most expressed Alu elements are active elements. We also exploited expression from the L1 antisense promoter to map expressed elements in hESCs. Remarkably, we found that expressed Alu elements are enriched in the youngest subfamily, Y, and that expressed L1s are mostly located within genes, suggesting an epigenetic control of retrotransposon expression in hESCs. Together, these data suggest that distinct subsets of active L1/Alu elements are expressed in hESCs and that the degree of somatic mosaicism attributable to L1 insertions during early development may be higher than previously anticipated. PMID:21041477

  8. Epigenetic control of retrotransposon expression in human embryonic stem cells.

    PubMed

    Macia, Angela; Muñoz-Lopez, Martin; Cortes, Jose Luis; Hastings, Robert K; Morell, Santiago; Lucena-Aguilar, Gema; Marchal, Juan Antonio; Badge, Richard M; Garcia-Perez, Jose Luis

    2011-01-01

    Long interspersed element 1s (LINE-1s or L1s) are a family of non-long-terminal-repeat retrotransposons that predominate in the human genome. Active LINE-1 elements encode proteins required for their mobilization. L1-encoded proteins also act in trans to mobilize short interspersed elements (SINEs), such as Alu elements. L1 and Alu insertions have been implicated in many human diseases, and their retrotransposition provides an ongoing source of human genetic diversity. L1/Alu elements are expected to ensure their transmission to subsequent generations by retrotransposing in germ cells or during early embryonic development. Here, we determined that several subfamilies of Alu elements are expressed in undifferentiated human embryonic stem cells (hESCs) and that most expressed Alu elements are active elements. We also exploited expression from the L1 antisense promoter to map expressed elements in hESCs. Remarkably, we found that expressed Alu elements are enriched in the youngest subfamily, Y, and that expressed L1s are mostly located within genes, suggesting an epigenetic control of retrotransposon expression in hESCs. Together, these data suggest that distinct subsets of active L1/Alu elements are expressed in hESCs and that the degree of somatic mosaicism attributable to L1 insertions during early development may be higher than previously anticipated.

  9. Expression and role of Roundabout-1 in embryonic Xenopus forebrain.

    PubMed

    Connor, R M; Key, B

    2002-09-01

    The receptor Roundabout-1 (Robo1) and its ligand Slit are known to influence axon guidance and central nervous system (CNS) patterning in both vertebrate and nonvertebrate systems. Although Robo-Slit interactions mediate axon guidance in the Drosophila CNS, their role in establishing the early axon scaffold in the embryonic vertebrate brain remains unclear. We report here the identification and expression of a Xenopus Robo1 orthologue that is highly homologous to mammalian Robo1. By using overexpression studies and immunohistochemical and in situ hybridization techniques, we have investigated the role of Robo1 in the development of a subset of neurons and axon tracts in the Xenopus forebrain. Robo1 is expressed in forebrain nuclei and in neuroepithelial cells underlying the main axon tracts. Misexpression of Robo1 led to aberrant development of axon tracts as well as the ectopic differentiation of forebrain neurons. These results implicate Robo1 in both neuronal differentiation and axon guidance in embryonic vertebrate forebrain.

  10. Distinct expression patterns of syndecans in the embryonic zebrafish brain.

    PubMed

    Hofmeister, Wolfgang; Devine, Christine A; Key, Brian

    2013-01-01

    Axon pathfinding in the neuroepithelium of embryonic brain is dependent on a variety of short and long range guidance cues. Heparan sulfate proteoglycans such as syndecans act as modulators of these cues and their importance in neural development is highlighted by their phylogenetic conservation. In Drosophilia, a single syndecan is present on the surface of axon growth cones and is required for chemorepulsive signalling during midline crossing. Understanding the role of syndecans in the vertebrate nervous system is challenging given that there are four homologous genes, syndecans 1-4. We show here that syndecans 2-4 are expressed in the zebrafish embryonic brain during the major period of axon growth. These genes show differing expression patterns in the brain which provides putative insights into their functional specificity.

  11. Expression Patterns of Atlantic Sturgeon (Acipenser oxyrinchus) During Embryonic Development

    PubMed Central

    Kaitetzidou, Elisavet; Ludwig, Arne; Gessner, Jörn; Sarropoulou, Elena

    2016-01-01

    During teleost ontogeny the larval and embryonic stages are key stages, since failure during this period of tissue differentiation may cause malformations, developmental delays, poor growth, and massive mortalities. Despite the rapid advances in sequencing technologies, the molecular backgrounds of the development of economically important but endangered fish species like the Atlantic sturgeon (Acipenser oxyrinchus) have not yet been thoroughly investigated. The current study examines the differential expression of transcripts involved in embryonic development of the Atlantic sturgeon. Addressing this goal, a reference transcriptome comprising eight stages was generated using an Illumina HiSequation 2500 platform. The constructed de novo assembly counted to 441,092 unfiltered and 179,564 filtered transcripts. Subsequently, the expression profile of four developmental stages ranging from early (gastrula) to late stages of prelarval development [2 d posthatching (dph)] were investigated applying an Illumina MiSeq platform. Differential expression analysis revealed distinct expression patterns among stages, especially between the two early and the two later stages. Transcripts upregulated at the two early stages were mainly enriched in transcripts linked to developmental processes, while transcripts expressed at the last two stages were mainly enriched in transcripts important to muscle contraction. Furthermore, important stage-specific expression has been detected for the hatching stage with transcripts enriched in molecule transport, and for the 2 dph stage with transcripts enriched in visual perception and lipid digestion. Our investigation represents a significant contribution to the understanding of Atlantic sturgeon embryonic development, and transcript characterization along with the differential expression results will significantly contribute to sturgeon research and aquaculture. PMID:27974440

  12. Random Monoallelic Gene Expression Increases upon Embryonic Stem Cell Differentiation

    PubMed Central

    Eckersley-Maslin, Mélanie A.; Thybert, David; Bergmann, Jan H.; Marioni, John C.; Flicek, Paul; Spector, David L.

    2014-01-01

    Summary Random autosomal monoallelic gene expression refers to the transcription of a gene from one of two homologous alleles. We assessed the dynamics of monoallelic expression during development through an allele-specific RNA sequencing screen in clonal populations of hybrid mouse embryonic stem cells (ESCs) and neural progenitor cells (NPCs). We identified 67 and 376 inheritable autosomal random monoallelically expressed genes in ESCs and NPCs respectively, a 5.6-fold increase upon differentiation. While DNA methylation and nuclear positioning did not distinguish the active and inactive alleles, specific histone modifications were differentially enriched between the two alleles. Interestingly, expression levels of 8% of the monoallelically expressed genes remained similar between monoallelic and biallelic clones. These results support a model in which random monoallelic expression occurs stochastically during differentiation, and for some genes is compensated for by the cell to maintain the required transcriptional output of these genes. PMID:24576421

  13. Reelin expression during embryonic brain development in Crocodylus niloticus.

    PubMed

    Tissir, F; Lambert De Rouvroit, C; Sire, J-Y; Meyer, G; Goffinet, A M

    2003-03-10

    The expression of reelin mRNA and protein was studied during embryonic brain development in the Nile crocodile Crocodylus niloticus, using in situ hybridization and immunohistochemistry. In the forebrain, reelin was highly expressed in the olfactory bulb, septal nuclei, and subpial neurons in the marginal zone of the cerebral cortex, dorsal ventricular ridge, and basal forebrain. At early stages, reelin mRNA was also detected in subventricular zones. In the diencephalon, the ventral lateral geniculate nuclei and reticular nuclei were strongly positive, with moderate expression in the habenula and focal expression in the hypothalamus. High expression levels were noted in the retina, the tectum, and the external granule cell layer of the cerebellum. In the brainstem, there was a high level of signal in cochleovestibular, sensory trigeminal, and some reticular nuclei. No expression was observed in the cortical plate or Purkinje cells. Comparison with reelin expression during brain development in mammals, birds, turtles, and lizards reveals evolutionarily conserved, homologous features that presumably define the expression profile in stem amniotes. The crocodilian cortex contains subpial reelin-positive cells that are also p73 positive, suggesting that they are homologous to mammalian Cajal-Retzius cells, although they express the reelin gene less intensely. Furthermore, the crocodilian cortex does not contain the subcortical reelin-positive cells that are typical of lizards but expresses reelin in subventricular zones at early stages. These observations confirm that reelin is prominently expressed in many structures of the embryonic brain in all amniotes and further emphasize the unique amplification of reelin expression in mammalian Cajal-Retzius cells and its putative role in the evolution of the cerebral cortex.

  14. The regulation of Dkk1 expression during embryonic development.

    PubMed

    Lieven, Oliver; Knobloch, Jürgen; Rüther, Ulrich

    2010-04-15

    During embryogenesis, the Dkk1 mediated Wnt inhibition controls the spatiotemporal dynamics of cell fate determination, cell differentiation and cell death. Furthermore, the Dkk1 dose is critical for the normal Wnt homeostasis, as alteration of the Dkk1 activity is associated with various diseases. We investigated the regulation of Dkk1 expression during embryonic development. We identified nine conserved non-coding elements (CNEs), located 3' to the Dkk1 locus. Analyses of the regulatory potential revealed that four of these CNEs in combination drive reporter expression very similar to Dkk1 expression in several organs of transgenic embryos. We extended the knowledge of Dkk1 expression during hypophysis, external genitalia and kidney development, suggesting so far to unexplored functions of Dkk1 during the development of these organs. Characterization of the regulatory potential of four individual CNEs revealed that each of these promotes Dkk1 expression in brain and kidney. In combination, two enhancers are responsible for expression in the pituitary and the genital tubercle. Furthermore, individual CNEs mediates craniofacial, optic cup and limb specific Dkk1 regulation. Our study substantially improves the knowledge of Dkk1 regulation during embryonic development and thus might be of high relevance for therapeutic approaches.

  15. Changing nuclear landscape and unique PML structures during early epigenetic transitions of human embryonic stem cells.

    PubMed

    Butler, John T; Hall, Lisa L; Smith, Kelly P; Lawrence, Jeanne B

    2009-07-01

    The complex nuclear structure of somatic cells is important to epigenomic regulation, yet little is known about nuclear organization of human embryonic stem cells (hESC). Here we surveyed several nuclear structures in pluripotent and transitioning hESC. Observations of centromeres, telomeres, SC35 speckles, Cajal Bodies, lamin A/C and emerin, nuclear shape and size demonstrate a very different "nuclear landscape" in hESC. This landscape is remodeled during a brief transitional window, concomitant with or just prior to differentiation onset. Notably, hESC initially contain abundant signal for spliceosome assembly factor, SC35, but lack discrete SC35 domains; these form as cells begin to specialize, likely reflecting cell-type specific genomic organization. Concomitantly, nuclear size increases and shape changes as lamin A/C and emerin incorporate into the lamina. During this brief window, hESC exhibit dramatically different PML-defined structures, which in somatic cells are linked to gene regulation and cancer. Unlike the numerous, spherical somatic PML bodies, hES cells often display approximately 1-3 large PML structures of two morphological types: long linear "rods" or elaborate "rosettes", which lack substantial SUMO-1, Daxx, and Sp100. These occur primarily between Day 0-2 of differentiation and become rare thereafter. PML rods may be "taut" between other structures, such as centromeres, but clearly show some relationship with the lamina, where PML often abuts or fills a "gap" in early lamin A/C staining. Findings demonstrate that pluripotent hES cells have a markedly different overall nuclear architecture, remodeling of which is linked to early epigenomic programming and involves formation of unique PML-defined structures.

  16. The Assessment of Landscape Expressivity: A Free Choice Profiling Approach

    PubMed Central

    2017-01-01

    In this paper we explore a relational understanding of landscape qualities. We asked three independent groups of human observers to assess the expressive qualities of a range of landscapes in the UK and in Spain, either by means of personal visits or from a projected digital image. We employed a Free Choice Profiling (FCP) methodology, in which observers generated their own descriptive terminologies and then used these to quantify perceived landscape qualities on visual analogue scales. Data were analysed using Generalised Procrustes Analysis, a multivariate statistical technique that does not rely on fixed variables to identify underlying dimensions of assessment. The three observer groups each showed significant agreement, and generated two main consensus dimensions that suggested landscape ‘health’ and ‘development in time’ as common perceived themes of landscape expressivity. We critically discuss these outcomes in context of the landscape assessment literature, and suggest ways forward for further development and research. PMID:28114425

  17. Efficient dielectrophoretic patterning of embryonic stem cells in energy landscapes defined by hydrogel geometries.

    PubMed

    Tsutsui, Hideaki; Yu, Edmond; Marquina, Sabrina; Valamehr, Bahram; Wong, Ieong; Wu, Hong; Ho, Chih-Ming

    2010-12-01

    In this study, we have developed an integrated microfluidic platform for actively patterning mammalian cells, where poly(ethylene glycol) (PEG) hydrogels play two important roles as a non-fouling layer and a dielectric structure. The developed system has an embedded array of PEG microwells fabricated on a planar indium tin oxide (ITO) electrode. Due to its dielectric properties, the PEG microwells define electrical energy landscapes, effectively forming positive dielectrophoresis (DEP) traps in a low-conductivity environment. Distribution of DEP forces on a model cell was first estimated by computationally solving quasi-electrostatic Maxwell's equations, followed by an experimental demonstration of cell and particle patterning without an external flow. Furthermore, efficient patterning of mouse embryonic stem (mES) cells was successfully achieved in combination with an external flow. With a seeding density of 10⁷ cells/mL and a flow rate of 3 μL/min, trapping of cells in the microwells was completed in tens of seconds after initiation of the DEP operation. Captured cells subsequently formed viable and homogeneous monolayer patterns. This simple approach could provide an efficient strategy for fabricating various cell microarrays for applications such as cell-based biosensors, drug discovery, and cell microenvironment studies.

  18. Prediction of gene expression in embryonic structures of Drosophila melanogaster.

    PubMed

    Samsonova, Anastasia A; Niranjan, Mahesan; Russell, Steven; Brazma, Alvis

    2007-07-01

    Understanding how sets of genes are coordinately regulated in space and time to generate the diversity of cell types that characterise complex metazoans is a major challenge in modern biology. The use of high-throughput approaches, such as large-scale in situ hybridisation and genome-wide expression profiling via DNA microarrays, is beginning to provide insights into the complexities of development. However, in many organisms the collection and annotation of comprehensive in situ localisation data is a difficult and time-consuming task. Here, we present a widely applicable computational approach, integrating developmental time-course microarray data with annotated in situ hybridisation studies, that facilitates the de novo prediction of tissue-specific expression for genes that have no in vivo gene expression localisation data available. Using a classification approach, trained with data from microarray and in situ hybridisation studies of gene expression during Drosophila embryonic development, we made a set of predictions on the tissue-specific expression of Drosophila genes that have not been systematically characterised by in situ hybridisation experiments. The reliability of our predictions is confirmed by literature-derived annotations in FlyBase, by overrepresentation of Gene Ontology biological process annotations, and, in a selected set, by detailed gene-specific studies from the literature. Our novel organism-independent method will be of considerable utility in enriching the annotation of gene function and expression in complex multicellular organisms.

  19. Landscape of monoallelic DNA accessibility in mouse embryonic stem cells and neural progenitor cells

    PubMed Central

    Xu, Jin; Carter, Ava C; Gendrel, Anne-Valerie; Attia, Mikael; Loftus, Joshua; Greenleaf, William J; Tibshirani, Robert; Heard, Edith; Chang, Howard Y

    2017-01-01

    We developed an allele-specific assay for transposase-accessible chromatin with high-throughput sequencing (ATAC–seq) to genotype and profile active regulatory DNA across the genome. Using a mouse hybrid F1 system, we found that monoallelic DNA accessibility across autosomes was pervasive, developmentally programmed and composed of several patterns. Genetically determined accessibility was enriched at distal enhancers, but random monoallelically accessible (RAMA) elements were enriched at promoters and may act as gatekeepers of monoallelic mRNA expression. Allelic choice at RAMA elements was stable across cell generations and bookmarked through mitosis. RAMA elements in neural progenitor cells were biallelically accessible in embryonic stem cells but premarked with bivalent histone modifications; one allele was silenced during differentiation. Quantitative analysis indicated that allelic choice at the majority of RAMA elements is consistent with a stochastic process; however, up to 30% of RAMA elements may deviate from the expected pattern, suggesting a regulated or counting mechanism. PMID:28112738

  20. Spatiotemporal Control of Embryonic Gene Expression Using Caged Morpholinos

    PubMed Central

    Shestopalov, Ilya A.; Chen, James K.

    2015-01-01

    Embryonic development depends on spatial and temporal control of gene function, and deciphering the molecular mechanisms that underlie pattern formation requires methods for perturbing gene expression with similar precision. Emerging chemical technologies can enable such perturbations, as exemplified by the use of caged morpholino (cMO) oligonucleotides to photo-inactivate genes in zebrafish embryos with spatiotemporal control. This chapter describes general principles for cMO design and methods for cMO assembly in three steps from commercially available reagents. Experimental techniques for the microinjection and photoactivation of these reagents are described in detail, as well as the preparation and application of caged fluorescein dextran (cFD) for labeling irradiated cells. Using these protocols, cMOs can be effective tools for functional genomic studies in zebrafish and other model organisms. PMID:21924162

  1. Removal of maternal retinoic acid by embryonic CYP26 is required for correct Nodal expression during early embryonic patterning

    PubMed Central

    Uehara, Masayuki; Yashiro, Kenta; Takaoka, Katsuyoshi; Yamamoto, Masamichi; Hamada, Hiroshi

    2009-01-01

    The abundance of retinoic acid (RA) is determined by the balance between its synthesis by retinaldehyde dehydrogenase (RALDH) and its degradation by CYP26. In particular, the dynamic expression of three CYP26 genes controls the regional level of RA within the body. Pregastrulation mouse embryos express CYP26 but not RALDH. We now show that mice lacking all three CYP26 genes manifest duplication of the body axis as a result of expansion of the Nodal expression domain throughout the epiblast. Mouse Nodal was found to contain an RA-responsive element in intron 1 that is highly conserved among mammals. In the absence of CYP26, maternally derived RA activates Nodal expression in the entire epiblast of pregastrulation embryos via this element. These observations suggest that maternal RA must be removed by embryonic CYP26 for correct Nodal expression during embryonic patterning. PMID:19605690

  2. SSAO/VAP-1 protein expression during mouse embryonic development.

    PubMed

    Valente, Tony; Solé, Montse; Unzeta, Mercedes

    2008-09-01

    SSAO/VAP-1 is a multifunctional enzyme depending on in which tissue it is expressed. SSAO/VAP-1 is present in almost all adult mammalian tissues, especially in highly vascularised ones and in adipocytes. SSAO/VAP-1 is an amine oxidase able to metabolise various endogenous or exogenous primary amines. Its catalytic activity can lead to cellular oxidative stress, which has been implicated in several pathologies (atherosclerosis, diabetes, and Alzheimer's disease). The aim of this work is to achieve a study of SSAO/VAP-1 protein expression during mouse embryogenesis. Our results show that SSAO/VAP-1 appears early in the development of the vascular system, adipose tissue, and smooth muscle cells. Moreover, its expression is strong in several epithelia of the sensory organs, as well as in the development of cartilage sites. Altogether, this suggests that SSAO/VAP-1 enzyme could be involved in the differentiation processes that take place during embryonic development, concretely in tissue vascularisation.

  3. Prion protein expression regulates embryonic stem cell pluripotency and differentiation.

    PubMed

    Miranda, Alberto; Pericuesta, Eva; Ramírez, Miguel Ángel; Gutierrez-Adan, Alfonso

    2011-04-04

    Cellular prion protein (PRNP) is a glycoprotein involved in the pathogenesis of transmissible spongiform encephalopathies (TSEs). Although the physiological function of PRNP is largely unknown, its key role in prion infection has been extensively documented. This study examines the functionality of PRNP during the course of embryoid body (EB) differentiation in mouse Prnp-null (KO) and WT embryonic stem cell (ESC) lines. The first feature observed was a new population of EBs that only appeared in the KO line after 5 days of differentiation. These EBs were characterized by their expression of several primordial germ cell (PGC) markers until Day 13. In a comparative mRNA expression analysis of genes playing an important developmental role during ESC differentiation to EBs, Prnp was found to participate in the transcription of a key pluripotency marker such as Nanog. A clear switching off of this gene on Day 5 was observed in the KO line as opposed to the WT line, in which maximum Prnp and Nanog mRNA levels appeared at this time. Using a specific antibody against PRNP to block PRNP pathways, reduced Nanog expression was confirmed in the WT line. In addition, antibody-mediated inhibition of ITGB5 (integrin αvβ5) in the KO line rescued the low expression of Nanog on Day 5, suggesting the regulation of Nanog transcription by Prnp via this Itgb5. mRNA expression analysis of the PRNP-related proteins PRND (Doppel) and SPRN (Shadoo), whose PRNP function is known to be redundant, revealed their incapacity to compensate for the absence of PRNP during early ESC differentiation. Our findings provide strong evidence for a relationship between Prnp and several key pluripotency genes and attribute Prnp a crucial role in regulating self-renewal/differentiation status of ESC, confirming the participation of PRNP during early embryogenesis.

  4. Expression of non-symbiotic hemoglobin 1 and 2 genes in rice (Oryza sativa) embryonic organs

    PubMed Central

    Lira-Ruan, Verónica; Ruiz-Kubli, Mariel

    2011-01-01

    Rice (Oryza sativa) contains five copies of the non-symbiotic hemoglobin (hb) gene, namely hb1 to hb5. Previous analysis by RT-PCR revealed that rice hb1 expresses in roots and leaves and hb2 expresses in leaves. However, it is not known whether or not hb1 and hb2 express in rice embryonic organs. Here, we report the expression of hb1 and hb2 genes in rice embryonic organs using RT-PCR and specific oligos for Hb1 and Hb2. Our results indicate that hb1 and hb2 genes express in embryonic organs in rice growing under normal conditions. Specifically, hb1 expresses in rice embryos and seminal roots, and hb2 expresses in embryos, coleoptiles and seminal roots. These observations suggest that Hb1 and Hb2 coexist and function in rice embryonic organs. PMID:21966570

  5. Embryonic cerebrospinal fluid collaborates with the isthmic organizer to regulate mesencephalic gene expression.

    PubMed

    Parada, Carolina; Martín, Cristina; Alonso, María I; Moro, José A; Bueno, David; Gato, Angel

    2005-11-01

    Early in development, the behavior of neuroepithelial cells is controlled by several factors acting in a developmentally regulated manner. Recently it has been shown that diffusible factors contained within embryonic cerebrospinal fluid (CSF) promote neuroepithelial cell survival, proliferation, and neurogenesis in mesencephalic explants lacking any known organizing center. In this paper, we show that mesencephalic and mesencephalic+isthmic organizer explants cultured only with basal medium do not express the typically expressed mesencephalic or isthmic organizer genes analyzed (otx2 and fgf8, respectively) and that mesencephalic explants cultured with embryonic CSF-supplemented medium do effect such expression, although they exhibit an altered pattern of gene expression, including ectopic shh expression domains. Other trophic sources that are able to maintain normal neuroepithelial cell behavior, i.e., fibroblast growth factor-2, fail to activate this ectopic shh expression. Conversely, the expression pattern of the analyzed genes in mesencephalic+isthmic organizer explants cultured with embryonic cerebrospinal fluid-supplemented medium mimics the pattern for control embryos developed in ovo. We demonstrate that embryonic CSF collaborates with the isthmic organizer in regulation of the expression pattern of some characteristic neuroectodermal genes during early stages of central nervous system (CNS) development, and we suggest that this collaboration is not restricted to the maintenance of neuroepithelial cell survival. Data reported in this paper corroborate the hypothesis that factors contained within embryonic CSF contribute to the patterning of the CNS during early embryonic development.

  6. c-jun is differentially expressed in embryonic and adult neural precursor cells.

    PubMed

    Kawashima, Fumiaki; Saito, Kengo; Kurata, Hirofumi; Maegaki, Yoshihiro; Mori, Tetsuji

    2017-01-16

    c-jun, a major component of AP-1 transcription factor, has a wide variety of functions. In the embryonic brain, c-jun mRNA is abundantly expressed in germinal layers around the ventricles. Although the subventricular zone (SVZ) of the adult brain is a derivative of embryonic germinal layers and contains neural precursor cells (NPCs), the c-jun expression pattern is not clear. To study the function of c-jun in adult neurogenesis, we analyzed c-jun expression in the adult SVZ by immunohistochemistry and compared it with that of the embryonic brain. We found that almost all proliferating embryonic NPCs expressed c-jun, but the number of c-jun immunopositive cells among proliferating adult NPCs was about half. In addition, c-jun was hardly expressed in post-mitotic migrating neurons in the embryonic brain, but the majority of c-jun immunopositive cells were tangentially migrating neuroblasts heading toward the olfactory bulb in the adult brain. In addition, status epilepticus is known to enhance the transient proliferation of adult NPCs, but the c-jun expression pattern was not significantly affected. These expression patterns suggest that c-jun has a pivotal role in the proliferation of embryonic NPCs, but it has also other roles in adult neurogenesis.

  7. The metabolome regulates the epigenetic landscape during naïve to primed human embryonic stem cell transition

    PubMed Central

    Sperber, Henrik; Mathieu, Julie; Wang, Yuliang; Ferreccio, Amy; Hesson, Jennifer; Xu, Zhuojin; Fischer, Karin A.; Devi, Arikketh; Detraux, Damien; Gu, Haiwei; Battle, Stephanie L.; Showalter, Megan; Valensisi, Cristina; Bielas, Jason H.; Ericson, Nolan G.; Margaretha, Lilyana; Robitaille, Aaron M.; Margineantu, Daciana; Fiehn, Oliver; Hockenbery, David; Blau, C. Anthony; Raftery, Daniel; Margolin, Adam; Hawkins, R. David; Moon, Randall T.; Ware, Carol B.; Ruohola-Baker, Hannele

    2015-01-01

    For nearly a century developmental biologists have recognized that cells from embryos can differ in their potential to differentiate into distinct cell types. Recently, it has been recognized that embryonic stem cells derived from both mice and humans display two stable yet epigenetically distinct states of pluripotency, naïve and primed. We now show that nicotinamide-N-methyl transferase (NNMT) and metabolic state regulate pluripotency in hESCs. Specifically, in naïve hESCs NNMT and its enzymatic product 1-methylnicotinamide (1-MNA) are highly upregulated, and NNMT is required for low SAM levels and H3K27me3 repressive state. NNMT consumes SAM in naïve cells, making it unavailable for histone methylation that represses Wnt and activates HIF pathway in primed hESCs. These data support the hypothesis that the metabolome regulates the epigenetic landscape of the earliest steps in human development. PMID:26571212

  8. Shh expression is required for embryonic hair follicle but not mammary gland development.

    PubMed

    Michno, Kinga; Boras-Granic, Kata; Mill, Pleasantine; Hui, C C; Hamel, Paul A

    2003-12-01

    The embryonic mammary gland and hair follicle are both derived from the ventral ectoderm, and their development depends on a number of common fundamental developmental pathways. While the Hedgehog (Hh) signaling pathway is required for hair follicle morphogenesis, the role of this pathway during embryonic mammary gland development remains undetermined. We demonstrate here that, unlike the hair follicle, both Shh and Ihh are expressed in the developing embryonic mouse mammary rudiment as early as E12.5. In Shh(-/-) embryos, hair follicle development becomes arrested at an early stage, while the mammary rudiment, which continues to express Ihh, develops in a manner indistinguishable from that of wild-type littermates. The five pairs of mammary buds in Shh(-/-) female embryos exhibit normal branching morphogenesis at E16.5, forming a rudimentary ductal structure identical to wild-type embryonic mammary glands. We further demonstrate that loss of Hh signaling causes altered cyclin D1 expression in the embryonic dermal mesenchyme. Specifically, cyclin D1 is expressed at E14.5 principally in the condensed mesenchymal cells of the presumptive hair follicles and in both mesenchymal and epithelial cells of the mammary rudiments in wild-type and Shh-deficient embryos. By E18.5, robust cyclin D1 expression is maintained in mammary rudiments of both wild-type and Shh-deficient embryos. In hair follicles of wild-type embryos by E18.5, cyclin D1 expression switches to follicular epithelial cells. In contrast, strong cyclin D1 expression is observed principally in the mesenchymal cells of arrested hair follicles in Shh(-/-) embryos at E18.5. These data reveal that, despite the common embryonic origin of hair follicles and mammary glands, distinct patterns of Hh-family expression occur in these two tissues. Furthermore, these data suggest that cyclin D1 expression in the embryonic hair follicle is mediated by both Hh-independent and Hh-dependent mechanisms.

  9. Manipulation of estrogen synthesis alters MIR202* expression in embryonic chicken gonads.

    PubMed

    Bannister, Stephanie C; Smith, Craig A; Roeszler, Kelly N; Doran, Timothy J; Sinclair, Andrew H; Tizard, Mark L V

    2011-07-01

    Tissue-specific patterns of microRNA (miRNA) expression contribute to organogenesis during embryonic development. Using the embryonic chicken gonads as a model for vertebrate gonadogenesis, we previously reported that miRNAs are expressed in a sexually dimorphic manner during gonadal sex differentiation. Being male biased, we hypothesised that up-regulation of microRNA 202* (MIR202*) is characteristic of testicular differentiation. To address this hypothesis, we used estrogen modulation to induce gonadal sex reversal in embryonic chicken gonads and analyzed changes in MIR202* expression. In ovo injection of estradiol-17beta at Embryonic Day 4.5 (E4.5) caused feminization of male gonads at E9.5 and reduced MIR202* expression to female levels. Female gonads treated at E3.5 with an aromatase inhibitor, which blocks estrogen synthesis, were masculinized by E9.5, and MIR202* expression was increased. Reduced MIR202* expression correlated with reduced expression of the testis-associated genes DMRT1 and SOX9, and up-regulation of ovary-associated genes FOXL2 and CYP19A1 (aromatase). Increased MIR202* expression correlated with down-regulation of FOXL2 and aromatase and up-regulation of DMRT1 and SOX9. These results confirm that up-regulation of MIR202* coincides with testicular differentiation in embryonic chicken gonads.

  10. Enhanced expression of FNDC5 in human embryonic stem cell-derived neural cells along with relevant embryonic neural tissues.

    PubMed

    Ghahrizjani, Fatemeh Ahmadi; Ghaedi, Kamran; Salamian, Ahmad; Tanhaei, Somayeh; Nejati, Alireza Shoaraye; Salehi, Hossein; Nabiuni, Mohammad; Baharvand, Hossein; Nasr-Esfahani, Mohammad Hossein

    2015-02-25

    Availability of human embryonic stem cells (hESCs) has enhanced the capability of basic and clinical research in the context of human neural differentiation. Derivation of neural progenitor (NP) cells from hESCs facilitates the process of human embryonic development through the generation of neuronal subtypes. We have recently indicated that fibronectin type III domain containing 5 protein (FNDC5) expression is required for appropriate neural differentiation of mouse embryonic stem cells (mESCs). Bioinformatics analyses have shown the presence of three isoforms for human FNDC5 mRNA. To differentiate which isoform of FNDC5 is involved in the process of human neural differentiation, we have used hESCs as an in vitro model for neural differentiation by retinoic acid (RA) induction. The hESC line, Royan H5, was differentiated into a neural lineage in defined adherent culture treated by RA and basic fibroblast growth factor (bFGF). We collected all cell types that included hESCs, rosette structures, and neural cells in an attempt to assess the expression of FNDC5 isoforms. There was a contiguous increase in all three FNDC5 isoforms during the neural differentiation process. Furthermore, the highest level of expression of the isoforms was significantly observed in neural cells compared to hESCs and the rosette structures known as neural precursor cells (NPCs). High expression levels of FNDC5 in human fetal brain and spinal cord tissues have suggested the involvement of this gene in neural tube development. Additional research is necessary to determine the major function of FDNC5 in this process.

  11. Gene expression within a dynamic nuclear landscape

    PubMed Central

    Shav-Tal, Yaron; Darzacq, Xavier; Singer, Robert H

    2006-01-01

    Molecular imaging in living cells or organisms now allows us to observe macromolecular assemblies with a time resolution sufficient to address cause-and-effect relationships on specific molecules. These emerging technologies have gained much interest from the scientific community since they have been able to reveal novel concepts in cell biology, thereby changing our vision of the cell. One main paradigm is that cells stochastically vary, thus implying that population analysis may be misleading. In fact, cells should be analyzed within time-resolved single-cell experiments rather than being compared to other cells within a population. Technological imaging developments as well as the stochastic events present in gene expression have been reviewed. Here, we discuss how the structural organization of the nucleus is revealed using noninvasive single-cell approaches, which ultimately lead to the resolution required for the analysis of highly controlled molecular processes taking place within live cells. We also describe the efforts being made towards physiological approaches within the context of living organisms. PMID:16900099

  12. GLUT3 gene expression is critical for embryonic growth, brain development and survival.

    PubMed

    Carayannopoulos, Mary O; Xiong, Fuxia; Jensen, Penny; Rios-Galdamez, Yesenia; Huang, Haigen; Lin, Shuo; Devaskar, Sherin U

    2014-04-01

    Glucose is the primary energy source for eukaryotic cells and the predominant substrate for the brain. GLUT3 is essential for trans-placental glucose transport and highly expressed in the mammalian brain. To further elucidate the role of GLUT3 in embryonic development, we utilized the vertebrate whole animal model system of Danio rerio as a tractable system for defining the cellular and molecular mechanisms altered by impaired glucose transport and metabolism related to perturbed expression of GLUT3. The comparable orthologue of human GLUT3 was identified and the expression of this gene abrogated during early embryonic development. In a dose-dependent manner embryonic brain development was disrupted resulting in a phenotype of aberrant brain organogenesis, associated with embryonic growth restriction and increased cellular apoptosis. Rescue of the morphant phenotype was achieved by providing exogenous GLUT3 mRNA. We conclude that GLUT3 is critically important for brain organogenesis and embryonic growth. Disruption of GLUT3 is responsible for the phenotypic spectrum of embryonic growth restriction to demise and neural apoptosis with microcephaly.

  13. Computational analysis of expression of human embryonic stem cell-associated signatures in tumors

    PubMed Central

    2011-01-01

    Background The cancer stem cell model has been proposed based on the linkage between human embryonic stem cells and human cancer cells. However, the evidences supporting the cancer stem cell model remain to be collected. In this study, we extensively examined the expression of human embryonic stem cell-associated signatures including core genes, transcription factors, pathways and microRNAs in various cancers using the computational biology approach. Results We used the class comparison analysis and survival analysis algorithms to identify differentially expressed genes and their associated transcription factors, pathways and microRNAs among normal vs. tumor or good prognosis vs. poor prognosis phenotypes classes based on numerous human cancer gene expression data. We found that most of the human embryonic stem cell- associated signatures were frequently identified in the analysis, suggesting a strong linkage between human embryonic stem cells and cancer cells. Conclusions The present study revealed the close linkage between the human embryonic stem cell associated gene expression profiles and cancer-associated gene expression profiles, and therefore offered an indirect support for the cancer stem cell theory. However, many interest issues remain to be addressed further. PMID:22041030

  14. Expression of Active Tectonics in Erosional Landscapes (Invited)

    NASA Astrophysics Data System (ADS)

    Whipple, K. X.; McDermott, J. A.; Adams, B. A.

    2010-12-01

    Landform analysis has become a standard tool in neotectonic studies. Most commonly the offset, tilting, and warping of abandoned depositional landforms is used to infer deformation rates and patterns. The timescales recorded in deformed landforms importantly bridge the gap between geodetic and geologic methods. Whereas such analyses of static landforms has become well developed, complementary approaches to extract quantitative information about tectonics from erosional landscapes are relatively new, rapidly evolving, and can provide powerful insight. Over the last decade, some useful general rules about the expression of rock uplift rate in erosional landscapes have been developed that can guide and augment studies of the spatial distribution of active rock uplift. At catchment scale, the relationship between landscape form and rock uplift is dictated largely by the response of stream profiles to rock uplift (particularly in rocky landscapes where uplift exceeds soil production), which is largely one of changing channel steepness (gradient adjusted for drainage area). Changes in channel steepness along stream can be either abrupt (discrete slope-break knickpoints) or gradual (expressed as zones of enhanced or reduced river profile concavity) depending on the deformation pattern. Landforms can record information about both spatial and temporal patterns in rock uplift rate. Landscapes in various parts of the Himalaya exemplify both spatial and temporal influences. The Siwalik Hills in the Himalayan foreland are a type locality for the topographic expression of spatial patterns in rock uplift rate. Here an independently known pattern of rock uplift rate over a fault-bend fold affords an opportunity to study landscape response and test landscape evolution models. Once calibrated, such models can be used to evaluate along-strike variability in the rate and pattern of rock uplift far more effectively and efficiently than can be achieved with other methods. Applying these

  15. Stage-specific embryonic antigen: determining expression in canine glioblastoma, melanoma, and mammary cancer cells.

    PubMed

    Lin, Weiming; Modiano, Jaime F; Ito, Daisuke

    2017-03-30

    The expression of stage-specific embryonic antigens (SSEAs) was determined in several types of canine cancer cells. Flow cytometry showed SSEA-1 expression in glioblastoma, melanoma, and mammary cancer cells, although none expressed SSEA-3 or SSEA-4. Expression of SSEA-1 was not detected in lymphoma, osteosarcoma, or hemangiosarcoma cell lines. Relatively stable SSEA-1 expression was observed between 24 and 72 h of culture. After 8 days in culture, sorted SSEA-1(-) and SSEA-1(+) cells re-established SSEA-1 expression to levels comparable to those observed in unsorted cells. Our results document, for the first time, the expression of SSEA-1 in several canine cancer cell lines.

  16. Correlation of Versican Expression, Accumulation, and Degradation during Embryonic Development by Quantitative Immunohistochemistry

    PubMed Central

    Snyder, Jessica M.; Washington, Ida M.; Birkland, Timothy; Chang, Mary Y.; Frevert, Charles W.

    2015-01-01

    Versican, a chondroitin sulfate proteoglycan, is important in embryonic development, and disruption of the versican gene is embryonically lethal in the mouse. Although several studies show that versican is increased in various organs during development, a focused quantitative study on versican expression and distribution during lung and central nervous system development in the mouse has not previously been performed. We tracked changes in versican (Vcan) gene expression and in the accumulation and degradation of versican. Vcan expression and quantitative immunohistochemistry performed from embryonic day (E) 11.5 to E15.5 showed peak Vcan expression at E13.5 in the lungs and brain. Quantitative mRNA analysis and versican immunohistochemistry showed differences in the expression of the versican isoforms in the embryonic lung and head. The expression of Vcan mRNA and accumulation of versican in tissues was complementary. Immunohistochemistry demonstrated co-localization of versican accumulation and degradation, suggesting distinct roles of versican deposition and degradation in embryogenesis. Very little versican mRNA or protein was found in the lungs of 12- to 16-week-old mice but versican accumulation was significantly increased in mice with Pseudomonas aeruginosa lung infection. These data suggest that versican plays an important role in fundamental, overlapping cellular processes in lung development and infection. PMID:26385570

  17. Correlation of Versican Expression, Accumulation, and Degradation during Embryonic Development by Quantitative Immunohistochemistry.

    PubMed

    Snyder, Jessica M; Washington, Ida M; Birkland, Timothy; Chang, Mary Y; Frevert, Charles W

    2015-12-01

    Versican, a chondroitin sulfate proteoglycan, is important in embryonic development, and disruption of the versican gene is embryonically lethal in the mouse. Although several studies show that versican is increased in various organs during development, a focused quantitative study on versican expression and distribution during lung and central nervous system development in the mouse has not previously been performed. We tracked changes in versican (Vcan) gene expression and in the accumulation and degradation of versican. Vcan expression and quantitative immunohistochemistry performed from embryonic day (E) 11.5 to E15.5 showed peak Vcan expression at E13.5 in the lungs and brain. Quantitative mRNA analysis and versican immunohistochemistry showed differences in the expression of the versican isoforms in the embryonic lung and head. The expression of Vcan mRNA and accumulation of versican in tissues was complementary. Immunohistochemistry demonstrated co-localization of versican accumulation and degradation, suggesting distinct roles of versican deposition and degradation in embryogenesis. Very little versican mRNA or protein was found in the lungs of 12- to 16-week-old mice but versican accumulation was significantly increased in mice with Pseudomonas aeruginosa lung infection. These data suggest that versican plays an important role in fundamental, overlapping cellular processes in lung development and infection.

  18. Embryonic Expression of the Chicken Krüppel-like (KLF) Transcription Factor Gene Family

    PubMed Central

    Antin, Parker B.; Pier, Maricela; Sesepasara, Terry; Yatskievych, Tatiana A; Darnell, Diana K.

    2010-01-01

    The Krüppel-like transcription factors are zinc finger proteins that activate and suppress target gene transcription. Although KLF factors have been implicated in regulating many developmental processes, a comprehensive gene expression analysis has not been reported. Here we present the chicken KLF gene family and expression during the first five days of embryonic development. Fourteen chicken KLF genes or expressed sequences have been previously identified. Through synteny analysis and cDNA mapping we have identified the KLF9 gene and determined that the gene presently named KLF1 is the true ortholog of KLF17 in other species. In situ hybridization expression analyses show that in general KLFs are broadly expressed in multiple cell and tissue types. Expression of KLFs 3, 7, 8, and 9, is widespread at all stages examined. KLFs 2, 4, 5, 6, 10, 11, 15 and 17 show more restricted patterns that suggest multiple functions during early stages of embryonic development. PMID:20503383

  19. Spatiotemporal expression of histone acetyltransferases, p300 and CBP, in developing embryonic hearts

    PubMed Central

    Chen, Guozhen; Zhu, Jing; Lv, Tiewei; Wu, Gang; Sun, Huichao; Huang, Xupei; Tian, Jie

    2009-01-01

    Histone acetyltransferases (HATs), p300 and cAMP response element binding protein (CREB)-binding protein (CBP) are two structurally related transcriptional co-activators that activate expression of many eukaryotic genes involved in cellular growth and signaling, muscle differentiation and embryogenesis. However, whether these proteins play important and different roles in mouse cardiogenesis is not clear. Here, we investigate the protein distributions and mRNA expression of the two HATs in embryonic and adult mouse heart during normal heart development by using immunohistochemical and RT-PCR techniques. The data from immunohistochemical experiments revealed that p300 was extensively present in nearly every region of the hearts from embryonic stages to the adulthood. However, no CBP expression was detected in embryonic hearts at day E7.5. CBP expression appeared at the later stages, and the distribution of CBP was less than that of p300. In the developmental hearts after E10.5, both for p300 and CBP, the mRNA expression levels reached a peak on day E10.5, and then were gradually decreased afterwards. These results reveal that both p300 and CBP are related to embryonic heart development. The dynamic expression patterns of these two enzymes during mouse heart development indicate that they may play an important role on heart development. However, there is a difference in spatiotemporal expression patterns between these two enzymes during heart development. The expression of p300 is earlier and more predominate, suggesting that p300 may play a more important role in embryonic heart development especially during cardiac precursor cell induction and interventricular septum formation. PMID:19272189

  20. Gene expression analysis of embryonic photoreceptor precursor cells using BAC-Crx-EGFP transgenic mouse.

    PubMed

    Muranishi, Yuki; Sato, Shigeru; Inoue, Tatsuya; Ueno, Shinji; Koyasu, Toshiyuki; Kondo, Mineo; Furukawa, Takahisa

    2010-02-12

    Crx is a transcription factor which is predominantly expressed in developing and mature photoreceptor cells in the retina, and plays a crucial role in the terminal differentiation of both rods and cones. Crx is one of the earliest-expressed genes specifically in photoreceptor precursors, allowing us to trace photoreceptor precursor cells from embryonic stages to adult stage by visualizing Crx-expressing cells. In the current study, we generated a transgenic mouse line which expresses enhanced green fluorescence protein (EGFP) in the retina driven by the Crx promoter using bacterial artificial chromosome (BAC) transgenesis. EGFP-positive cells were observed in the presumptive photoreceptor layer in the retina at embryonic day 15.5 (E15.5), and continued to be expressed in developing and mature photoreceptor cells up to adult stage. We sorted EGFP-positive photoreceptor precursors at E17.5 using fluorescence-activated cell sorter (FACS), and subsequently performed microarray analysis of the FACS-sorted cells. We observed various photoreceptor genes, especially cone genes, are enriched in the EGFP-positive cells, indicating that embryonic cone photoreceptor precursors are enriched. In addition, we found that most of the EGFP-positive cells were post-mitotic cells. Thus, the transgenic line we established can serve as a useful tool to study both developing and mature photoreceptor cells, including embryonic cone precursors whose analysis has been difficult.

  1. Gli1 is not required for Pdgfralpha expression during mouse embryonic development.

    PubMed

    Zhang, Xiao-Qun; Afink, Gijs B; Hu, Xin-Rong; Forsberg-Nilsson, Karin; Nistér, Monica

    2005-03-01

    Pdgfra is expressed in the mesenchyme of multiple organs during embryonic development and Pdgfralpha is involved in cell proliferation, differentiation, migration, and apoptosis in many tissues. A fine-tuned regulation of gene transcription is required to achieve these effects. To investigate if the Shh signaling pathway is involved in the tightly regulated Pdgfra expression during embryogenesis, we systematically compared Gli1 and Pdgfralpha mRNA expression patterns in vivo from mouse embryonic day 9.5 to 14.5. We found that an initial partly overlapping expression of Gli1 and Pdgfralpha in the mesenchyme of foregut and somites was changed to different expression patterns when the mesenchyme differentiated into specialized structures such as intestinal villi and chondrocytes. Gli1 and Pdgfra were also expressed differently in the developing lung, heart, central nervous system, skin, tooth, and eye. Importantly, neither Pdgfralpha mRNA patterns nor levels were altered in Ihh mutant embryos although Gli1 and Ptc mRNA levels were dramatically reduced. Our results demonstrate that Gli1 is not required to induce Pdgfra expression during embryonic bone development, and are consistent with previous findings that Pdgfralpha and Hh pathways serve different functions in, e.g., bone, gut, and lung development. However, we cannot exclude the possibility that Glis can have more complex regulatory effects on Pdgfra gene activity, nor can we exclude such effects in pathological conditions.

  2. Embryonic IGF2 Expression Is Not Associated with Offspring Size among Populations of a Placental Fish

    PubMed Central

    Schrader, Matthew; Travis, Joseph

    2012-01-01

    In organisms that provision young between fertilization and birth, mothers and their developing embryos are expected to be in conflict over embryonic growth. In mammalian embryos, the expression of Insulin-like growth factor II (IGF2) plays a key role in maternal-fetal interactions and is thought to be a focus of maternal-fetal conflict. Recent studies have suggested that IGF2 is also a focus of maternal-fetal conflict in placental fish in the family Poeciliidae. However, whether the expression of IGF2 influences offspring size, the trait over which mothers and embryos are likely to be in conflict, has not been assessed in a poeciliid. We tested whether embryonic IGF2 expression varied among four populations of a placental poeciliid that display large and consistent differences in offspring size at birth. We found that IGF2 expression varied significantly among embryonic stages with expression being 50% higher in early stage embryos than late stage embryos. There were no significant differences among populations in IGF2 expression; small differences in expression between population pairs with different offspring sizes were comparable in magnitude to those between population pairs with the same offspring sizes. Our results indicate that variation in IGF2 transcript abundance does not contribute to differences in offspring size among H. formosa populations. PMID:23029026

  3. Vestigial expression in the Drosophila embryonic central nervous system.

    PubMed

    Guss, Kirsten A; Mistry, Hemlata; Skeath, James B

    2008-09-01

    The Drosophila central nervous system is an excellent model system in which to resolve the genetic and molecular control of neuronal differentiation. Here we show that the wing selector vestigial is expressed in discrete sets of neurons. We track the axonal trajectories of VESTIGIAL-expressing cells in the ventral nerve cord and show that these cells descend from neuroblasts 1-2, 5-1, and 5-6. In addition, along the midline, VESTIGIAL is expressed in ventral unpaired median motorneurons and cells that may descend from the median neuroblast. These studies form the requisite descriptive foundation for functional studies addressing the role of vestigial during interneuron differentiation.

  4. carboxypeptidase E-ΔN, a neuroprotein transiently expressed during development protects embryonic neurons against glutamate neurotoxicity.

    PubMed

    Qin, Xiao-Yan; Cheng, Yong; Murthy, Saravana R K; Selvaraj, Prabhuanand; Loh, Y Peng

    2014-01-01

    Neuroprotective proteins expressed in the fetus play a critical role during early embryonic neurodevelopment, especially during maternal exposure to alcohol and drugs that cause stress, glutamate neuroexcitotoxicity, and damage to the fetal brain, if prolonged. We have identified a novel protein, carboxypeptidase E-ΔN (CPE-ΔN), which is a splice variant of CPE that has neuroprotective effects on embryonic neurons. CPE-ΔN is transiently expressed in mouse embryos from embryonic day 5.5 to postnatal day 1. It is expressed in embryonic neurons, but not in 3 week or older mouse brains, suggesting a function primarily in utero. CPE-ΔN expression was up-regulated in embryonic hippocampal neurons in response to dexamethasone treatment. CPE-ΔN transduced into rat embryonic cortical and hippocampal neurons protected them from glutamate- and H2O2-induced cell death. When transduced into embryonic cortical neurons, CPE-ΔN was found in the nucleus and enhanced the transcription of FGF2 mRNA. Embryonic cortical neurons challenged with glutamate resulted in attenuated FGF2 levels and cell death, but CPE-ΔN transduced neurons treated in the same manner showed increased FGF2 expression and normal viability. This neuroprotective effect of CPE-ΔN was mediated by secreted FGF2. Through receptor signaling, FGF2 activated the AKT and ERK signaling pathways, which in turn increased BCL-2 expression. This led to inhibition of caspase-3 activity and cell survival.

  5. Carboxypeptidase E-ΔN, a Neuroprotein Transiently Expressed during Development Protects Embryonic Neurons against Glutamate Neurotoxicity

    PubMed Central

    Murthy, Saravana R. K.; Selvaraj, Prabhuanand; Loh, Y. Peng

    2014-01-01

    Neuroprotective proteins expressed in the fetus play a critical role during early embryonic neurodevelopment, especially during maternal exposure to alcohol and drugs that cause stress, glutamate neuroexcitotoxicity, and damage to the fetal brain, if prolonged. We have identified a novel protein, carboxypeptidase E-ΔN (CPE-ΔN), which is a splice variant of CPE that has neuroprotective effects on embryonic neurons. CPE-ΔN is transiently expressed in mouse embryos from embryonic day 5.5 to postnatal day 1. It is expressed in embryonic neurons, but not in 3 week or older mouse brains, suggesting a function primarily in utero. CPE-ΔN expression was up-regulated in embryonic hippocampal neurons in response to dexamethasone treatment. CPE-ΔN transduced into rat embryonic cortical and hippocampal neurons protected them from glutamate- and H2O2-induced cell death. When transduced into embryonic cortical neurons, CPE-ΔN was found in the nucleus and enhanced the transcription of FGF2 mRNA. Embryonic cortical neurons challenged with glutamate resulted in attenuated FGF2 levels and cell death, but CPE-ΔN transduced neurons treated in the same manner showed increased FGF2 expression and normal viability. This neuroprotective effect of CPE-ΔN was mediated by secreted FGF2. Through receptor signaling, FGF2 activated the AKT and ERK signaling pathways, which in turn increased BCL-2 expression. This led to inhibition of caspase-3 activity and cell survival. PMID:25426952

  6. Pluripotency Factors and Polycomb Group Proteins Repress Aryl Hydrocarbon Receptor Expression in Murine Embryonic Stem Cells

    PubMed Central

    Ko, Chia-I; Wang, Qin; Fan, Yunxia; Xia, Ying; Puga, Alvaro

    2013-01-01

    The aryl hydrocarbon receptor (AHR) is a transcription factor and environmental sensor that regulates expression of genes involved in drug-metabolism and cell cycle regulation. Chromatin immunoprecipitation analyses, Ahr ablation in mice and studies with orthologous genes in invertebrates suggest that AHR may also play a significant role in embryonic development. To address this hypothesis, we studied the regulation of Ahr expression in mouse embryonic stem cells and their differentiated progeny. In ES cells, interactions between OCT3/4, NANOG, SOX2 and Polycomb Group proteins at the Ahr promoter repress AHR expression, which can also be repressed by ectopic expression of reprogramming factors in hepatoma cells. In ES cells, unproductive RNA polymerase II binds at the Ahr transcription start site and drives the synthesis of short abortive transcripts. Activation of Ahr expression during differentiation follows from reversal of repressive marks in Ahr promoter chromatin, release of pluripotency factors and PcG proteins, binding of Sp factors, establishment of histone marks of open chromatin, and engagement of active RNAPII to drive full-length RNA transcript elongation. Our results suggest that reversible Ahr repression in ES cells holds the gene poised for expression and allows for a quick switch to activation during embryonic development. PMID:24316986

  7. Regulation of hypocretin (orexin) expression in embryonic zebrafish.

    PubMed

    Faraco, Juliette H; Appelbaum, Lior; Marin, Wilfredo; Gaus, Stephanie E; Mourrain, Philippe; Mignot, Emmanuel

    2006-10-06

    Hypocretins/orexins are neuropeptides involved in the regulation of sleep and energy balance in mammals. Conservation of gene sequence, hypothalamic localization of cell bodies, and projection patterns in adult zebrafish suggest that the architecture and function of the hypocretin system are conserved in fish. We report on the complete genomic structure of the zebrafish and Tetraodon hypocretin genes and the complete predicted hypocretin protein sequences from five teleosts. Using whole mount in situ hybridization, we have traced the development of hypocretin cells in zebrafish from onset of expression at 22 h post-fertilization through the first week of development. Promoter elements of similar size from zebrafish and Tetraodon were capable of driving efficient and specific expression of enhanced green fluorescent protein in developing zebrafish embryos, thus defining a minimal promoter region able to accurately mimic the native hypocretin pattern. This enhanced green fluorescent protein expression also revealed a complex pattern of projections within the hypothalamus, to the midbrain, and to the spinal cord. To further analyze the promoter, a series of deletion and substitution constructs were injected into embryos, and resulting promoter activity was monitored in the first week of development. A critical region of 250 base pairs was identified containing a core 13-base pair element essential for hypocretin expression.

  8. Expression of small intestinal nutrient transporters in embryonic and posthatch turkeys.

    PubMed

    Weintraut, M L; Kim, S; Dalloul, R A; Wong, E A

    2016-01-01

    Nutrients are absorbed in the small intestine through a variety of transporter proteins, which have not been as well characterized in turkeys as in chickens. The objective of this study was to profile the mRNA expression of amino acid and monosaccharide transporters in the small intestine of male and female turkeys. Jejunum was collected during embryonic development (embryonic d 21 and 24, and d of hatch (DOH)) and duodenum, jejunum, and ileum were collected in a separate experiment during posthatch development (DOH, d 7, 14, 21, and 28). Real-time PCR was used to determine expression of aminopeptidase N (APN), one peptide (PepT1), 6 amino acid (ASCT1, b(o,+)AT, CAT1, EAAT3, LAT1, y(+)LAT2) and 3 monosaccharide (GLUT2, GLUT5, SGLT1) transporters. Data were analyzed by ANOVA using JMP Pro 11.0. APN, b(o,+)AT, PepT1, y(+)LAT2, GLUT5, and SGLT1 showed increased expression from embryonic d 21 and 24 to DOH. During posthatch, all genes except GLUT2 and SGLT1 were expressed greater in females than males. GLUT2 was expressed the same in males as females and SGLT1 was expressed greater in males than females. All basolateral membrane transporters were expressed greater during early development then decreased with age, while the brush border membrane transporters EAAT3, GLUT5, and SGLT1 showed increased expression later in development. Because turkeys showed high-level expression of the anionic amino acid transporter EAAT3, a direct comparison of tissue-specific expression of EAAT3 between chicken and turkey was conducted. The anionic amino acid transporter EAAT3 showed 6-fold greater expression in the ileum of turkeys at d 14 compared to chickens. This new knowledge can be used not only to better formulate turkey diets to accommodate increased glutamate transport, but also to optimize nutrition for both sexes.

  9. Characterization and embryonic expression of four amphioxus Frizzled genes with important functions during early embryogenesis.

    PubMed

    Qian, Guanghui; Li, Guang; Chen, Xiaoying; Wang, Yiquan

    2013-12-01

    The Wnt signaling pathway plays crucial roles in the embryonic patterning of all metazoans. Recent studies on Wnt genes in amphioxus have shed important insights into the evolution of the vertebrate Wnt gene family and their functions. Nevertheless, the potential roles of Wnt family receptors encoded by Frizzled (Fz) genes in amphioxus embryonic development remain to be investigated. In the present study, we identified four amphioxus Fz genes-AmphiFz1/2/7, AmphiFz4, AmphiFz5/8, and AmphiFz9/10-and analyzed their expression patterns during amphioxus embryogenesis. We found that these four Fz genes were maternally expressed and might be involved in early animal-vegetal axis establishment. The AmphiFz1/2/7 transcripts were detected in the central dorsal neural plate, mesoderm, the Hatschek's pit, and rim of the mouth, whereas those of AmphiFz4 were detected in the mesoderm, pharyngeal endoderm, and entire gut region. AmphiFz5/8 was exclusively expressed in the anterior-most region, whereas AmphiFz9/10 was expressed in the neural plate, somites, and tail bud. The dynamic and diverse expression patterns of amphioxus Fz genes suggest that these genes are not only associated with early embryonic axis establishment but also are involved in the development of several organs in amphioxus.

  10. Thalidomide induced early gene expression perturbations indicative of human embryopathy in mouse embryonic stem cells

    SciTech Connect

    Gao, Xiugong Sprando, Robert L.; Yourick, Jeffrey J.

    2015-08-15

    Developmental toxicity testing has traditionally relied on animal models which are costly, time consuming, and require the sacrifice of large numbers of animals. In addition, there are significant disparities between human beings and animals in their responses to chemicals. Thalidomide is a species-specific developmental toxicant that causes severe limb malformations in humans but not in mice. Here, we used microarrays to study transcriptomic changes induced by thalidomide in an in vitro model based on differentiation of mouse embryonic stem cells (mESCs). C57BL/6 mESCs were allowed to differentiate spontaneously and RNA was collected at 24, 48, and 72 h after exposure to 0.25 mM thalidomide. Global gene expression analysis using microarrays revealed hundreds of differentially expressed genes upon thalidomide exposure that were enriched in gene ontology (GO) terms and canonical pathways associated with embryonic development and differentiation. In addition, many genes were found to be involved in small GTPases-mediated signal transduction, heart development, and inflammatory responses, which coincide with clinical evidences and may represent critical embryotoxicities of thalidomide. These results demonstrate that transcriptomics in combination with mouse embryonic stem cell differentiation is a promising alternative model for developmental toxicity assessment. - Highlights: • Studied genomic changes in mouse embryonic stem cells upon thalidomide exposure • Identified gene expression changes that may represent thalidomide embryotoxicity • The toxicogenomic changes coincide well with known thalidomide clinical outcomes. • The mouse embryonic stem cell model is suitable for developmental toxicity testing. • The model has the potential for high-throughput screening of a multitude of compounds.

  11. Expression of macro non-coding RNAs Meg8 and Irm in mouse embryonic development.

    PubMed

    Gu, Tiantian; He, Hongjuan; Han, Zhengbin; Zeng, Tiebo; Huang, Zhijun; Liu, Qi; Gu, Ning; Chen, Yan; Sugimoto, Kenkichi; Jiang, Huijie; Wu, Qiong

    2012-07-01

    Non-coding RNAs (ncRNAs) Meg8 and Irm were previously identified as alternatively splicing isoforms of Rian gene. Ascertaining ncRNAs spatiotemporal expression patterns is crucial for understanding the physiological roles of ncRNAs during tissue and organ development. In this study in mouse embryos, we focused on the developmental regulation expression of imprinted macro ncRNAs, Meg8 and Irm by using in situ hybridization and quantitative real-time RT-PCR (QRT-PCR). The in situ hybridization results showed that Meg8 and Irm were expressed in the developing brain at embryonic day 10.5 (E10.5) and E11.5, while Irm expression signals were strikingly detected in the somite, where Meg8 expression signals were undetectable. By E15.5, they were expressed in brain, tongue, liver, lung and neuroendocrine tissues, while Irm displayed more restricted expression in tongue and skeletal muscle than Meg8. Furthermore, quantitative analysis confirmed that they were highly expressed in tongue and brain at E12.5, E15.5 and E18.5. These results indicated that Meg8 and Irm might be coordinately expressed and functionally correlated in diverse of organs. Notably, Irm was more closely associated with morphogenesis of skeletal muscle in contrast to Meg8 during embryonic development.

  12. Expression of liver fatty acid binding protein alters growth and differentiation of embryonic stem cells.

    PubMed

    Schroeder, F; Atshaves, B P; Starodub, O; Boedeker, A L; Smith, R R; Roths, J B; Foxworth, W B; Kier, A B

    2001-03-01

    Although expression of liver fatty acid binding protein (L-FABP) modulates cell growth, it is not known if L-FABP also alters cell morphology and differentiation. Therefore, pluripotent embryonic stem cells were transfected with cDNA encoding L-FABP and a series of clones expressing increasing levels of L-FABP were isolated. Untransfected ES cells, as well as ES cells transfected only with empty vector, spontaneously differentiated from rounded adipocyte-like to fibroblast-like morphology, concomitant with marked reduction in expression of stage-specific embryonic antigen (SSEA-1). These changes in morphology and expression of SSEA-1 were greatest in ES cell clones expressing L-FABP above a threshold level. Immunofluorescence confocal microscopy revealed that L-FABP was primarily localized in a diffuse-cytosolic pattern along with a lesser degree of punctate L-FABP expression in the nucleus. Nuclear localization of L-FABP was preferentially increased in clones expressing higher levels of L-FABP. In summary, L-FABP expression altered ES cell morphology and expression of SSEA-1. Taken together with the fact that L-FABP was detected in the nucleus, these data suggested that L-FABP may play a more direct, heretofore unknown, role in regulating ES cell differentiation by acting in the nucleus as well as cytoplasm.

  13. Wls is expressed in the epidermis and regulates embryonic hair follicle induction in mice.

    PubMed

    Huang, Sixia; Zhu, Xuming; Liu, Yanfang; Tao, Yixin; Feng, Guoyin; He, Lin; Guo, Xizhi; Ma, Gang

    2012-01-01

    Wnt proteins are secreted molecules that play multiple roles during hair follicle development and postnatal hair cycling. Wntless (Wls) is a cargo protein required for the secretion of various Wnt ligands. However, its role during hair follicle development and hair cycling remains unclear. Here, we examined the expression of Wls during hair follicle induction and postnatal hair cycling. We also conditionally deleted Wls with K14-cre to investigate its role in hair follicle induction. K14-cre;Wls(c/c) mice exhibited abnormal hair follicle development, which is possibly caused by impaired canonical Wnt signaling. Meanwhile, Wnt5a is also expressed in embryonic epidermis, but Wnt5a null mice showed no significant defect in embryonic hair follicle morphogenesis. Therefore, Wls may regulate hair follicle induction by mediating the Wnt/β-catenin pathway.

  14. Stage-specific embryonic antigen: determining expression in canine glioblastoma, melanoma, and mammary cancer cells

    PubMed Central

    Ito, Daisuke

    2017-01-01

    The expression of stage-specific embryonic antigens (SSEAs) was determined in several types of canine cancer cells. Flow cytometry showed SSEA-1 expression in glioblastoma, melanoma, and mammary cancer cells, although none expressed SSEA-3 or SSEA-4. Expression of SSEA-1 was not detected in lymphoma, osteosarcoma, or hemangiosarcoma cell lines. Relatively stable SSEA-1 expression was observed between 24 and 72 h of culture. After 8 days in culture, sorted SSEA-1− and SSEA-1+ cells re-established SSEA-1 expression to levels comparable to those observed in unsorted cells. Our results document, for the first time, the expression of SSEA-1 in several canine cancer cell lines. PMID:27456773

  15. Influences of reduced expression of maternal bone morphogenetic protein 2 on mouse embryonic development.

    PubMed

    Singh, A P; Castranio, T; Scott, G; Guo, D; Harris, M A; Ray, M; Harris, S E; Mishina, Y

    2008-01-01

    Bone morphogenetic protein 2 (BMP2) was originally found by its osteoinductive ability, and recent genetic analyses have revealed that it plays critical roles during early embryogenesis, cardiogenesis, decidualization as well as skeletogenesis. In the course of evaluation of the conditional allele for Bmp2, we found that the presence of a neo cassette, a selection marker needed for gene targeting events in embryonic stem cells, in the 3' untranslated region of exon 3 of Bmp2, reduced the expression levels of Bmp2 both in embryonic and maternal mouse tissues. Some of the embryos that were genotyped as transheterozygous for the floxed allele with the neo cassette over the conventional null allele (fn/-) showed a lethal phenotype including defects in cephalic neural tube closure and ventral abdominal wall closure. The number of embryos exhibiting these abnormalities was increased when, due to different genotypes, expression levels of Bmp2 in maternal tissues were lower. These results suggest that the expression levels of Bmp2 in both embryonic and maternal tissues influence the normal neural tube closure and body wall closure with different thresholds.

  16. Over-expression of DMRT1 induces the male pathway in embryonic chicken gonads.

    PubMed

    Lambeth, Luke S; Raymond, Christopher S; Roeszler, Kelly N; Kuroiwa, Asato; Nakata, Tomohiro; Zarkower, David; Smith, Craig A

    2014-05-15

    DMRT1 encodes a conserved transcription factor with an essential role in gonadal function. In the chicken, DMRT1 in located on the Z sex chromosome and is currently the best candidate master regulator of avian gonadal sex differentiation. We previously showed that knockdown of DMRT1 expression during the period of sexual differentiation induces feminisation of male embryonic chicken gonads. This gene is therefore necessary for proper testis development in the chicken. However, whether it is sufficient to induce testicular differentiation has remained unresolved. We show here that over-expression of DMRT1 induces male pathway genes and antagonises the female pathway in embryonic chicken gonads. Ectopic DMRT1 expression in female gonads induces localised SOX9 and AMH expression. It also induces expression of the recently identified Z-linked male factor, Hemogen (HEMGN). Masculinised gonads show evidence of cord-like structures and retarded female-type cortical development. Furthermore, expression of the critical feminising enzyme, aromatase, is reduced in the presence of over-expressed DMRT1. These data indicate that DMRT1 is an essential sex-linked regulator of gonadal differentiation in avians, and that it likely acts via a dosage mechanism established through the lack of global Z dosage compensation in birds.

  17. Cis-regulatory underpinnings of human GLI3 expression in embryonic craniofacial structures and internal organs.

    PubMed

    Abbasi, Amir A; Minhas, Rashid; Schmidt, Ansgar; Koch, Sabine; Grzeschik, Karl-Heinz

    2013-10-01

    The zinc finger transcription factor Gli3 is an important mediator of Sonic hedgehog (Shh) signaling. During early embryonic development Gli3 participates in patterning and growth of the central nervous system, face, skeleton, limb, tooth and gut. Precise regulation of the temporal and spatial expression of Gli3 is crucial for the proper specification of these structures in mammals and other vertebrates. Previously we reported a set of human intronic cis-regulators controlling almost the entire known repertoire of endogenous Gli3 expression in mouse neural tube and limbs. However, the genetic underpinning of GLI3 expression in other embryonic domains such as craniofacial structures and internal organs remain elusive. Here we demonstrate in a transgenic mice assay the potential of a subset of human/fish conserved non-coding sequences (CNEs) residing within GLI3 intronic intervals to induce reporter gene expression at known regions of endogenous Gli3 transcription in embryonic domains other than central nervous system (CNS) and limbs. Highly specific reporter expression was observed in craniofacial structures, eye, gut, and genitourinary system. Moreover, the comparison of expression patterns directed by these intronic cis-acting regulatory elements in mouse and zebrafish embryos suggests that in accordance with sequence conservation, the target site specificity of a subset of these elements remains preserved among these two lineages. Taken together with our recent investigations, it is proposed here that during vertebrate evolution the Gli3 expression control acquired multiple, independently acting, intronic enhancers for spatiotemporal patterning of CNS, limbs, craniofacial structures and internal organs.

  18. Chronic ethanol exposure increases goosecoid (GSC) expression in human embryonic carcinoma cell differentiation.

    PubMed

    Halder, Debasish; Park, Ji Hyun; Choi, Mi Ran; Chai, Jin Choul; Lee, Young Seek; Mandal, Chanchal; Jung, Kyoung Hwa; Chai, Young Gyu

    2014-01-01

    Fetal alcohol spectrum disorder (FASD) is a set of developmental malformations caused by excess alcohol consumption during pregnancy. Using an in vitro system, we examined the role that chronic ethanol (EtOH) exposure plays in gene expression changes during the early stage of embryonic differentiation. We demonstrated that EtOH affected the cell morphology, cell cycle progression and also delayed the down-regulation of OCT4 and NANOG during differentiation. Gene expression profiling and pathway analysis demonstrated that EtOH deregulates many genes and pathways that are involved in early embryogenesis. Follow-up analyzes revealed that EtOH exposure to embryoid bodies (EBs) induced the expression of an organizer-specific gene, goosecoid (GSC), in comparison to controls. Moreover, EtOH treatment altered several important genes that are involved in embryonic structure formation, nervous system development, and placental and embryonic vascularization, which are all common processes that FASD can disrupt. Specifically, EtOH treatment let to a reduction in ALDOC, ENO2 and CDH1 expression, whereas EtOH treatment induced the expression of PTCH1, EGLN1, VEGFA and DEC2 in treated EBs. We also found that folic acid (FA) treatment was able to correct the expression of the majority of genes deregulated by EtOH exposure during early embryo development. Finally, the present study identified a gene set including GSC, which was deregulated by EtOH exposure that may contribute to the etiology of fetal alcohol syndrome (FAS). We also reported that EtOH-induced GSC expression is mediated by Nodal signaling, which may provide a new avenue for analyzing the molecular mechanisms behind EtOH teratogenicity in FASD individuals.

  19. Time-Series Interactions of Gene Expression, Vascular Growth and Hemodynamics during Early Embryonic Arterial Development

    PubMed Central

    Goktas, Selda; Uslu, Fazil E.; Kowalski, William J.; Ermek, Erhan; Keller, Bradley B.

    2016-01-01

    The role of hemodynamic forces within the embryo as biomechanical regulators for cardiovascular morphogenesis, growth, and remodeling is well supported through the experimental studies. Furthermore, clinical experience suggests that perturbed flow disrupts the normal vascular growth process as one etiology for congenital heart diseases (CHD) and for fetal adaptation to CHD. However, the relationships between hemodynamics, gene expression and embryonic vascular growth are poorly defined due to the lack of concurrent, sequential in vivo data. In this study, a long-term, time-lapse optical coherence tomography (OCT) imaging campaign was conducted to acquire simultaneous blood velocity, pulsatile micro-pressure and morphometric data for 3 consecutive early embryonic stages in the chick embryo. In conjunction with the in vivo growth and hemodynamics data, in vitro reverse transcription polymerase chain reaction (RT-PCR) analysis was performed to track changes in transcript expression relevant to histogenesis and remodeling of the embryonic arterial wall. Our non-invasive extended OCT imaging technique for the microstructural data showed continuous vessel growth. OCT data coupled with the PIV technique revealed significant but intermitted increases in wall shear stress (WSS) between first and second assigned stages and a noticeable decrease afterwards. Growth rate, however, did not vary significantly throughout the embryonic period. Among all the genes studied, only the MMP-2 and CASP-3 expression levels remained unchanged during the time course. Concurrent relationships were obtained among the transcriptional modulation of the genes, vascular growth and hemodynamics-related changes. Further studies are indicated to determine cause and effect relationships and reversibility between mechanical and molecular regulation of vasculogenesis. PMID:27552150

  20. Identification of embryonic precursor cells that differentiate into thymic epithelial cells expressing autoimmune regulator

    PubMed Central

    Takizawa, Nobukazu; Miyauchi, Maki; Yanai, Hiromi; Tateishi, Ryosuke; Shinzawa, Miho; Yoshinaga, Riko; Kurihara, Masaaki; Yasuda, Hisataka; Sakamoto, Reiko; Yoshida, Nobuaki

    2016-01-01

    Medullary thymic epithelial cells (mTECs) expressing autoimmune regulator (Aire) are critical for preventing the onset of autoimmunity. However, the differentiation program of Aire-expressing mTECs (Aire+ mTECs) is unclear. Here, we describe novel embryonic precursors of Aire+ mTECs. We found the candidate precursors of Aire+ mTECs (pMECs) by monitoring the expression of receptor activator of nuclear factor-κB (RANK), which is required for Aire+ mTEC differentiation. pMECs unexpectedly expressed cortical TEC molecules in addition to the mTEC markers UEA-1 ligand and RANK and differentiated into mTECs in reaggregation thymic organ culture. Introduction of pMECs in the embryonic thymus permitted long-term maintenance of Aire+ mTECs and efficiently suppressed the onset of autoimmunity induced by Aire+ mTEC deficiency. Mechanistically, pMECs differentiated into Aire+ mTECs by tumor necrosis factor receptor-associated factor 6-dependent RANK signaling. Moreover, nonclassical nuclear factor-κB activation triggered by RANK and lymphotoxin-β receptor signaling promoted pMEC induction from progenitors exhibiting lower RANK expression and higher CD24 expression. Thus, our findings identified two novel stages in the differentiation program of Aire+ mTECs. PMID:27401343

  1. Identification of embryonic precursor cells that differentiate into thymic epithelial cells expressing autoimmune regulator.

    PubMed

    Akiyama, Nobuko; Takizawa, Nobukazu; Miyauchi, Maki; Yanai, Hiromi; Tateishi, Ryosuke; Shinzawa, Miho; Yoshinaga, Riko; Kurihara, Masaaki; Demizu, Yosuke; Yasuda, Hisataka; Yagi, Shintaro; Wu, Guoying; Matsumoto, Mitsuru; Sakamoto, Reiko; Yoshida, Nobuaki; Penninger, Josef M; Kobayashi, Yasuhiro; Inoue, Jun-Ichiro; Akiyama, Taishin

    2016-07-25

    Medullary thymic epithelial cells (mTECs) expressing autoimmune regulator (Aire) are critical for preventing the onset of autoimmunity. However, the differentiation program of Aire-expressing mTECs (Aire(+) mTECs) is unclear. Here, we describe novel embryonic precursors of Aire(+) mTECs. We found the candidate precursors of Aire(+) mTECs (pMECs) by monitoring the expression of receptor activator of nuclear factor-κB (RANK), which is required for Aire(+) mTEC differentiation. pMECs unexpectedly expressed cortical TEC molecules in addition to the mTEC markers UEA-1 ligand and RANK and differentiated into mTECs in reaggregation thymic organ culture. Introduction of pMECs in the embryonic thymus permitted long-term maintenance of Aire(+) mTECs and efficiently suppressed the onset of autoimmunity induced by Aire(+) mTEC deficiency. Mechanistically, pMECs differentiated into Aire(+) mTECs by tumor necrosis factor receptor-associated factor 6-dependent RANK signaling. Moreover, nonclassical nuclear factor-κB activation triggered by RANK and lymphotoxin-β receptor signaling promoted pMEC induction from progenitors exhibiting lower RANK expression and higher CD24 expression. Thus, our findings identified two novel stages in the differentiation program of Aire(+) mTECs.

  2. Characterization of tweety gene (ttyh1-3) expression in Xenopus laevis during embryonic development

    PubMed Central

    Rabe, Brian A.; Huyck, Ryan W.; Williams, Cheyenne C.; Saha, Margaret S.

    2015-01-01

    The tweety family of genes encodes large-conductance chloride channels and has been implicated in a wide array of cellular processes including cell division, cell adhesion, regulation of calcium activity, and tumorigenesis, particularly in neuronal cells. However, their expression patterns during early development remain largely unknown. Here, we describe the spatial and temporal patterning of ttyh1, ttyh2, and ttyh3 in Xenopus laevis during early embryonic development. Ttyh1 and ttyh3 are initially expressed at the late neurula stage are and primarily localized to the developing nervous system; however ttyh1 and ttyh3 both show transient expression in the somites. By swimming tadpole stages, all three genes are expressed in the brain, spinal cord, eye, and cranial ganglia. While ttyh1 is restricted to proliferative, ventricular zones, ttyh3 is primarily localized to postmitotic regions of the developing nervous system. Ttyh2, however, is strongly expressed in cranial ganglia V, VII, IX and X. The differing temporal and spatial expression patterns of ttyh1, ttyh2, and ttyh3 suggest that they may play distinct roles throughout embryonic development. PMID:25541457

  3. Embryonic and Postnatal Expression of Aryl Hydrocarbon Receptor mRNA in Mouse Brain

    PubMed Central

    Kimura, Eiki; Tohyama, Chiharu

    2017-01-01

    Aryl hydrocarbon receptor (AhR), a member of the basic helix-loop-helix-Per-Arnt-Sim transcription factor family, plays a critical role in the developing nervous system of invertebrates and vertebrates. Dioxin, a ubiquitous environmental pollutant, avidly binds to this receptor, and maternal exposure to dioxin has been shown to impair higher brain functions and dendritic morphogenesis, possibly via an AhR-dependent mechanism. However, there is little information on AhR expression in the developing mammalian brain. To address this issue, the present study analyzed AhR mRNA expression in the brains of embryonic, juvenile, and adult mice by reverse transcription (RT)-PCR and in situ hybridization. In early brain development (embryonic day 12.5), AhR transcript was detected in the innermost cortical layer. The mRNA was also expressed in the hippocampus, cerebral cortex, cerebellum, olfactory bulb, and rostral migratory stream on embryonic day 18.5, postnatal days 3, 7, and 14, and in 12-week-old (adult) mice. Hippocampal expression was abundant in the CA1 and CA3 pyramidal and dentate gyrus granule cell layers, where expression level of AhR mRNA in 12-week old is higher than that in 7-day old. These results reveal temporal and spatial patterns of AhR mRNA expression in the mouse brain, providing the information that may contribute to the elucidation of the physiologic and toxicologic significance of AhR in the developing brain. PMID:28223923

  4. Variability of Gene Expression Identifies Transcriptional Regulators of Early Human Embryonic Development

    PubMed Central

    Hasegawa, Yu; Taylor, Deanne; Ovchinnikov, Dmitry A.; Wolvetang, Ernst J.; de Torrenté, Laurence; Mar, Jessica C.

    2015-01-01

    An analysis of gene expression variability can provide an insightful window into how regulatory control is distributed across the transcriptome. In a single cell analysis, the inter-cellular variability of gene expression measures the consistency of transcript copy numbers observed between cells in the same population. Application of these ideas to the study of early human embryonic development may reveal important insights into the transcriptional programs controlling this process, based on which components are most tightly regulated. Using a published single cell RNA-seq data set of human embryos collected at four-cell, eight-cell, morula and blastocyst stages, we identified genes with the most stable, invariant expression across all four developmental stages. Stably-expressed genes were found to be enriched for those sharing indispensable features, including essentiality, haploinsufficiency, and ubiquitous expression. The stable genes were less likely to be associated with loss-of-function variant genes or human recessive disease genes affected by a DNA copy number variant deletion, suggesting that stable genes have a functional impact on the regulation of some of the basic cellular processes. Genes with low expression variability at early stages of development are involved in regulation of DNA methylation, responses to hypoxia and telomerase activity, whereas by the blastocyst stage, low-variability genes are enriched for metabolic processes as well as telomerase signaling. Based on changes in expression variability, we identified a putative set of gene expression markers of morulae and blastocyst stages. Experimental validation of a blastocyst-expressed variability marker demonstrated that HDDC2 plays a role in the maintenance of pluripotency in human ES and iPS cells. Collectively our analyses identified new regulators involved in human embryonic development that would have otherwise been missed using methods that focus on assessment of the average expression

  5. Thalidomide induced early gene expression perturbations indicative of human embryopathy in mouse embryonic stem cells.

    PubMed

    Gao, Xiugong; Sprando, Robert L; Yourick, Jeffrey J

    2015-08-15

    Developmental toxicity testing has traditionally relied on animal models which are costly, time consuming, and require the sacrifice of large numbers of animals. In addition, there are significant disparities between human beings and animals in their responses to chemicals. Thalidomide is a species-specific developmental toxicant that causes severe limb malformations in humans but not in mice. Here, we used microarrays to study transcriptomic changes induced by thalidomide in an in vitro model based on differentiation of mouse embryonic stem cells (mESCs). C57BL/6 mESCs were allowed to differentiate spontaneously and RNA was collected at 24, 48, and 72h after exposure to 0.25mM thalidomide. Global gene expression analysis using microarrays revealed hundreds of differentially expressed genes upon thalidomide exposure that were enriched in gene ontology (GO) terms and canonical pathways associated with embryonic development and differentiation. In addition, many genes were found to be involved in small GTPases-mediated signal transduction, heart development, and inflammatory responses, which coincide with clinical evidences and may represent critical embryotoxicities of thalidomide. These results demonstrate that transcriptomics in combination with mouse embryonic stem cell differentiation is a promising alternative model for developmental toxicity assessment.

  6. Micro RNA expression pattern of undifferentiated and differentiated human embryonic stem cells

    PubMed Central

    Lakshmipathy, Uma; Love, Brad; Goff, Loyal A.; Jörnsten, Rebecka; Graichen, Ralph; Hart, Ronald P.; Chesnut, Jonathan D.

    2009-01-01

    Many of the currently established human embryonic stem cell lines have been characterized extensively in terms of their gene expression profiles and genetic stability in culture. Recent studies have indicated that miRNA, a class of non-coding small RNA that participate in the regulation of gene expression, may play a key role in stem cell self renewal and differentiation. Using both microarrays and quantitative PCR, we report here the differences in miRNA expression between undifferentiated human embryonic stem cells (hESC) and their corresponding differentiated cells that underwent differentiation in vitro over a period of two weeks. Our results confirm the identity of a signature miRNA profile in pluripotent cells, comprising a small subset of differentially expressed miRNAs in hESCs. Examining both mRNA and miRNA profiles under multiple conditions using cross-correlation, we find clusters of miRNAs grouped with specific, biologically-interpretable mRNAs. We identify patterns of expression in the progression from hESC to differentiated cells that suggest a role for selected miRNAs in maintenance of the undifferentiated, pluripotent state. Profiling of the hESC “miRNA-ome” provides an insight into molecules that control cellular differentiation and maintenance of the pluripotent state, findings that have broad implications in development, homeostasis and human disease states. PMID:18004940

  7. Spatiotemporal expression patterns of Pax6 in the brain of embryonic, newborn, and adult mice.

    PubMed

    Duan, Deyi; Fu, Yuhong; Paxinos, George; Watson, Charles

    2013-03-01

    The transcription factor Pax6 has been reported to specify neural progenitor cell fates during development and maintain neuronal commitments in the adult. The spatiotemporal patterns of Pax6 expression were examined in sagittal and horizontal sections of the embryonic, postnatal, and adult brains using immunohistochemistry and double immunolabeling. The proportion of Pax6-immunopositive cells in various parts of the adult brain was estimated using the isotropic fractionator methodology. It was shown that at embryonic day 11 (E11) Pax6 was robustly expressed in the proliferative neuroepithelia of the ventricular zone in the forebrain and hindbrain, and in the floor and the mesencephalic reticular formation (mRt) in the midbrain. At E12, its expression emerged in the nucleus of the lateral lemniscus in the rhombencephalon and disappeared from the floor of the midbrain. As neurodevelopment proceeds, the expression pattern of Pax6 changes from the mitotic germinal zone in the ventricular zone to become extensively distributed in cell groups in the forebrain and hindbrain, and the expression persisted in the mRt. The majority of Pax6-positive cell groups were maintained until adult life, but the intensity of Pax6 expression became much weaker. Pax6 expression was maintained in the mitotic subventricular zone in the adult brain, but not in the germinal region dentate gyrus in the adult hippocampus. There was no obvious colocalization of Pax6 and NeuN during embryonic development, suggesting Pax6 is found primarily in developing progenitor cells. In the adult brain, however, Pax6 maintains neuronal features of some subtypes of neurons, as indicated by 97.1% of Pax6-positive cells co-expressing NeuN in the cerebellum, 40.7% in the olfactory bulb, 38.3% in the cerebrum, and 73.9% in the remaining brain except the hippocampus. Differentiated tyrosine hydroxylase (TH) neurons were observed in the floor of the E11 midbrain where Pax6 was also expressed, but no obvious

  8. The impact of caffeine on connexin expression in the embryonic chick cardiomyocyte micromass culture system.

    PubMed

    Ahir, Bhavesh K; Pratten, Margaret K

    2016-07-01

    Cardiomyocytes are electrically coupled by gap junctions, defined as clusters of low-resistance multisubunit transmembrane channels composed of connexins (Cxs). The expression of Cx40, Cx43 and Cx45, which are present in cardiomyocytes, is known to be developmentally regulated. This study investigates the premise that alterations in gap junction proteins are one of the mechanisms by which teratogens may act. Specifically, those molecules known to be teratogenic in humans could cause their effects via disruption of cell-to-cell communication pathways, resulting in an inability to co-ordinate tissue development. Caffeine significantly inhibited contractile activity at concentrations above and including 1500 μm (P < 0.05), while not affecting cell viability and total protein, in the embryonic chick cardiomyocyte micromass culture system. The effects of caffeine on key cardiac gap junction protein (Cx40, Cx43 and Cx45) expression were analysed using immunocytochemistry and in-cell Western blotting. The results indicated that caffeine altered the expression pattern of Cx40, Cx43 and Cx45 at non-cytotoxic concentrations (≥2000 μm), i.e., at concentrations that did not affect total cell protein and cell viability. In addition the effects of caffeine on cardiomyocyte formation and function (contractile activity score) were correlated with modulation of Cxs (Cx40, Cx43 and Cx45) expression, at above and including 2000 μm caffeine concentrations (P < 0.05). These experiments provide evidence that embryonic chick cardiomyocyte micromass culture may be a useful in vitro method for mechanistic studies of perturbation of embryonic heart development. Copyright © 2015 John Wiley & Sons, Ltd.

  9. Parental vitamin deficiency affects the embryonic gene expression of immune-, lipid transport- and apolipoprotein genes

    PubMed Central

    Skjærven, Kaja H.; Jakt, Lars Martin; Dahl, John Arne; Espe, Marit; Aanes, Håvard; Hamre, Kristin; Fernandes, Jorge M. O.

    2016-01-01

    World Health Organization is concerned for parental vitamin deficiency and its effect on offspring health. This study examines the effect of a marginally dietary-induced parental one carbon (1-C) micronutrient deficiency on embryonic gene expression using zebrafish. Metabolic profiling revealed a reduced 1-C cycle efficiency in F0 generation. Parental deficiency reduced the fecundity and a total of 364 genes were differentially expressed in the F1 embryos. The upregulated genes (53%) in the deficient group were enriched in biological processes such as immune response and blood coagulation. Several genes encoding enzymes essential for the 1-C cycle and for lipid transport (especially apolipoproteins) were aberrantly expressed. We show that a parental diet deficient in micronutrients disturbs the expression in descendant embryos of genes associated with overall health, and result in inherited aberrations in the 1-C cycle and lipid metabolism. This emphasises the importance of parental micronutrient status for the health of the offspring. PMID:27731423

  10. Parental vitamin deficiency affects the embryonic gene expression of immune-, lipid transport- and apolipoprotein genes

    NASA Astrophysics Data System (ADS)

    Skjærven, Kaja H.; Jakt, Lars Martin; Dahl, John Arne; Espe, Marit; Aanes, Håvard; Hamre, Kristin; Fernandes, Jorge M. O.

    2016-10-01

    World Health Organization is concerned for parental vitamin deficiency and its effect on offspring health. This study examines the effect of a marginally dietary-induced parental one carbon (1-C) micronutrient deficiency on embryonic gene expression using zebrafish. Metabolic profiling revealed a reduced 1-C cycle efficiency in F0 generation. Parental deficiency reduced the fecundity and a total of 364 genes were differentially expressed in the F1 embryos. The upregulated genes (53%) in the deficient group were enriched in biological processes such as immune response and blood coagulation. Several genes encoding enzymes essential for the 1-C cycle and for lipid transport (especially apolipoproteins) were aberrantly expressed. We show that a parental diet deficient in micronutrients disturbs the expression in descendant embryos of genes associated with overall health, and result in inherited aberrations in the 1-C cycle and lipid metabolism. This emphasises the importance of parental micronutrient status for the health of the offspring.

  11. Gene expression analysis of mouse embryonic stem cells following levitation in an ultrasound standing wave trap.

    PubMed

    Bazou, Despina; Kearney, Roisin; Mansergh, Fiona; Bourdon, Celine; Farrar, Jane; Wride, Michael

    2011-02-01

    In the present paper, gene expression analysis of mouse embryonic stem (ES) cells levitated in a novel ultrasound standing wave trap (USWT) (Bazou et al. 2005a) at variable acoustic pressures (0.08-0.85 MPa) and times (5-60 min) was performed. Our results showed that levitation of ES cells at the highest employed acoustic pressure for 60 min does not modify gene expression and cells maintain their pluripotency. Embryoid bodies (EBs) also expressed the early and late neural differentiation markers, which were also unaffected by the acoustic field. Our results suggest that the ultrasound trap microenvironment is minimally invasive as the biologic consequences of ES cell replication and EB differentiation proceed without significantly affecting gene expression. The technique holds great promise in safe cell manipulation techniques for a variety of applications including tissue engineering and regenerative medicine.

  12. mRNA expression profiling of laser microbeam microdissected cells from slender embryonic structures.

    PubMed

    Scheidl, Stefan J; Nilsson, Sven; Kalén, Mattias; Hellström, Mats; Takemoto, Minoru; Håkansson, Joakim; Lindahl, Per

    2002-03-01

    Microarray hybridization has rapidly evolved as an important tool for genomic studies and studies of gene regulation at the transcriptome level. Expression profiles from homogenous samples such as yeast and mammalian cell cultures are currently extending our understanding of biology, whereas analyses of multicellular organisms are more difficult because of tissue complexity. The combination of laser microdissection, RNA amplification, and microarray hybridization has the potential to provide expression profiles from selected populations of cells in vivo. In this article, we present and evaluate an experimental procedure for global gene expression analysis of slender embryonic structures using laser microbeam microdissection and laser pressure catapulting. As a proof of principle, expression profiles from 1000 cells in the mouse embryonic (E9.5) dorsal aorta were generated and compared with profiles for captured mesenchymal cells located one cell diameter further away from the aortic lumen. A number of genes were overexpressed in the aorta, including 11 previously known markers for blood vessels. Among the blood vessel markers were endoglin, tie-2, PDGFB, and integrin-beta1, that are important regulators of blood vessel formation. This demonstrates that microarray analysis of laser microbeam micro-dissected cells is sufficiently sensitive for identifying genes with regulative functions.

  13. Two human homeobox genes, c1 and c8: structure analysis and expression in embryonic development

    SciTech Connect

    Simeone, A.; Mavilio, F.; Acampora, D.; Giampaolo, A.; Faiella, A.; Zappavigna, V.; D'Esposito, M.; Pannese, M.; Russo, G.; Boncinelli, E.; Peschle, C.

    1987-07-01

    Two human cDNA clones (HHO.c1.95 and HHO.c8.5111) containing a homeobox region have been characterized, and the respective genomic regions have been partially analyzed. Expression of the corresponding genes, termed c1 and c8, was evaluated in different organs and body parts during human embryonic/fetal development. HHO.c1.95 apparently encodes a 217-amino acid protein containing a class I homeodomain that shares 60 out of 61 amino acid residues with the Antennapedia homeodomain of Drosophila melanogaster. HHO.c8.5111 encodes a 153-amino acid protein containing a homeodomains identical to that of the frog AC1 gene. Clones HHO.c1 and HHO.c8 detect by blot-hybridization one and two specific polyadenylylated transcripts, respectively. These are differentially expressed in spinal cord, backbone rudiments, limb buds (or limbs), heart, and skin of human embryos and early fetuses in the 5- to 9-week postfertilization period, thus suggesting that the c1 and c8 genes play a key role in a variety of developmental processes. Together, the results of the embryonic/fetal expression of c1 and c8 and those of two previously analyzed genes (c10 and c13) indicate a coherent pattern of expression of these genes in early human ontogeny.

  14. Embryonic toxin expression in the cone snail Conus victoriae: primed to kill or divergent function?

    PubMed

    Safavi-Hemami, Helena; Siero, William A; Kuang, Zhihe; Williamson, Nicholas A; Karas, John A; Page, Louise R; MacMillan, David; Callaghan, Brid; Kompella, Shiva Nag; Adams, David J; Norton, Raymond S; Purcell, Anthony W

    2011-06-24

    Predatory marine cone snails (genus Conus) utilize complex venoms mainly composed of small peptide toxins that target voltage- and ligand-gated ion channels in their prey. Although the venoms of a number of cone snail species have been intensively profiled and functionally characterized, nothing is known about the initiation of venom expression at an early developmental stage. Here, we report on the expression of venom mRNA in embryos of Conus victoriae and the identification of novel α- and O-conotoxin sequences. Embryonic toxin mRNA expression is initiated well before differentiation of the venom gland, the organ of venom biosynthesis. Structural and functional studies revealed that the embryonic α-conotoxins exhibit the same basic three-dimensional structure as the most abundant adult toxin but significantly differ in their neurological targets. Based on these findings, we postulate that the venom repertoire of cone snails undergoes ontogenetic changes most likely reflecting differences in the biotic interactions of these animals with their prey, predators, or competitors. To our knowledge, this is the first study to show toxin mRNA transcripts in embryos, a finding that extends our understanding of the early onset of venom expression in animals and may suggest alternative functions of peptide toxins during development.

  15. Expression of the Otx2 homeobox gene in the developing mammalian brain: embryonic and adult expression in the pineal gland.

    PubMed

    Rath, Martin F; Muñoz, Estela; Ganguly, Surajit; Morin, Fabrice; Shi, Qiong; Klein, David C; Møller, Morten

    2006-04-01

    Otx2 is a vertebrate homeobox gene, which has been found to be essential for the development of rostral brain regions and appears to play a role in the development of retinal photoreceptor cells and pinealocytes. In this study, the temporal expression pattern of Otx2 was revealed in the rat brain, with special emphasis on the pineal gland throughout late embryonic and postnatal stages. Widespread high expression of Otx2 in the embryonic brain becomes progressively restricted in the adult to the pineal gland. Crx (cone-rod homeobox), a downstream target gene of Otx2, showed a pineal expression pattern similar to that of Otx2, although there was a distinct lag in time of onset. Otx2 protein was identified in pineal extracts and found to be localized in pinealocytes. Total pineal Otx2 mRNA did not show day-night variation, nor was it influenced by removal of the sympathetic input, indicating that the level of Otx2 mRNA appears to be independent of the photoneural input to the gland. Our results are consistent with the view that pineal expression of Otx2 is required for development and we hypothesize that it plays a role in the adult in controlling the expression of the cluster of genes associated with phototransduction and melatonin synthesis.

  16. Post-embryonic Fish Brain Proliferation Zones Exhibit Neuroepithelial-type Gene Expression Profile.

    PubMed

    Dambroise, E; Simion, M; Bourquard, T; Bouffard, S; Rizzi, B; Jaszczyszyn, Y; Bourge, M; Affaticati, P; Heuzé, A; Jouralet, J; Edouard, J; Brown, S; Thermes, C; Poupon, A; Reiter, E; Sohm, F; Bourrat, F; Joly, J-S

    2017-02-09

    In mammals, neuroepithelial cells play an essential role in embryonic neurogenesis, whereas glial stem cells are the principal source of neurons at post-embryonic stages. By contrast, neuroepithelial-like stem/progenitor (NE) cells have been shown to be present throughout life in teleosts. We used 3-dimensional (3D) reconstructions of cleared transgenic wdr12:GFP medaka brains to demonstrate that this cell type is widespread in juvenile and to identify new regions containing NE cells. We established the gene expression profile of optic tectum (OT) NE cells by cell sorting followed by RNA-seq. Our results demonstrate that most OT NE cells are indeed active stem cells and that some of them exhibit long G2 phases. We identified several novel pathways (e.g., DNA repair pathways) potentially involved in NE cell homeostasis. In situ hybridization studies showed that all NE populations in the post-embryonic medaka brain have a similar molecular signature. Our findings highlight the importance of NE progenitors in medaka and improve our understanding of NE-cell biology. These cells are potentially useful not only for neural stem cell studies, but also for improving the characterization of neurodevelopmental diseases, such as microcephaly. This article is protected by copyright. All rights reserved.

  17. Adult, embryonic and fetal hemoglobin are expressed in human glioblastoma cells.

    PubMed

    Emara, Marwan; Turner, A Robert; Allalunis-Turner, Joan

    2014-02-01

    Hemoglobin is a hemoprotein, produced mainly in erythrocytes circulating in the blood. However, non-erythroid hemoglobins have been previously reported in other cell types including human and rodent neurons of embryonic and adult brain, but not astrocytes and oligodendrocytes. Human glioblastoma multiforme (GBM) is the most aggressive tumor among gliomas. However, despite extensive basic and clinical research studies on GBM cells, little is known about glial defence mechanisms that allow these cells to survive and resist various types of treatment. We have shown previously that the newest members of vertebrate globin family, neuroglobin (Ngb) and cytoglobin (Cygb), are expressed in human GBM cells. In this study, we sought to determine whether hemoglobin is also expressed in GBM cells. Conventional RT-PCR, DNA sequencing, western blot analysis, mass spectrometry and fluorescence microscopy were used to investigate globin expression in GBM cell lines (M006x, M059J, M059K, M010b, U87R and U87T) that have unique characteristics in terms of tumor invasion and response to radiotherapy and hypoxia. The data showed that α, β, γ, δ, ζ and ε globins are expressed in all tested GBM cell lines. To our knowledge, we are the first to report expression of fetal, embryonic and adult hemoglobin in GBM cells under normal physiological conditions that may suggest an undefined function of those expressed hemoglobins. Together with our previous reports on globins (Ngb and Cygb) expression in GBM cells, the expression of different hemoglobins may constitute a part of series of active defence mechanisms supporting these cells to resist various types of treatments including chemotherapy and radiotherapy.

  18. Cloning and expression analysis of cadherin7 in the central nervous system of the embryonic zebrafish.

    PubMed

    Liu, Bei; Joel Duff, R; Londraville, Richard L; Marrs, J A; Liu, Qin

    2007-01-01

    Cadherin cell adhesion molecules exhibit unique expression patterns during development of the vertebrate central nervous system. In this study, we obtained a full-length cDNA of a novel zebrafish cadherin using reverse transcriptase-polymerase chain reaction (RT-PCR) and 5' and 3' rapid amplification of cDNA ends (RACE). The deduced amino acid sequence of this molecule is most similar to the published amino acid sequences of chicken and mammalian cadherin7 (Cdh7), a member of the type II cadherin subfamily. cadherin7 message (cdh7) expression in embryonic zebrafish was studied using in situ hybridization and RT-PCR methods. cdh7 expression begins at about 12h postfertilization (hpf) in a small patch in the anterior neural keel, and along the midline of the posterior neural keel. By 24 hpf, cdh7 expression in the brain shows a distinct segmental pattern that reflects the neuromeric organization of the brain, while its expression domain in the spinal cord is continuous, but confined to the middle region of the spinal cord. As development proceeds, cdh7 expression is detected in more regions of the brain, including the major visual structures in the fore- and midbrains, while its expression domain in the hindbrain becomes more restricted, and its expression in the spinal cord becomes undetectable. cdh7 expression becomes reduced in 3-day old embryos. Our results show that cdh7 expression in the zebrafish developing central nervous system is both spatially and temporally regulated.

  19. Adenine nucleotide translocase 4 is expressed within embryonic ovaries and dispensable during oogenesis.

    PubMed

    Lim, Chae Ho; Brower, Jeffrey V; Resnick, James L; Oh, S Paul; Terada, Naohiro

    2015-02-01

    Adenine nucleotide translocase (Ant) facilitates the exchange of adenosine triphosphate across the mitochondrial inner membrane and plays a critical role for bioenergetics in eukaryotes. Mice have 3 Ant paralogs, Ant1 (Slc25a4), Ant2 (Slc25a5), and Ant4 (Slc25a31), which are expressed in a tissue-dependent manner. We previously identified that Ant4 was expressed exclusively in testicular germ cells in adult mice and essential for spermatogenesis and subsequently male fertility. Further investigation into the process of spermatogenesis revealed that Ant4 was particularly highly expressed during meiotic prophase I and indispensable for normal progression of leptotene spermatocytes to the stages thereafter. In contrast, the expression and roles of Ant4 in female germ cells have not previously been elucidated. Here, we demonstrate that the Ant4 gene is expressed during embryonic ovarian development during which meiotic prophase I occurs. We confirmed embryonic ovary-specific Ant4 expression using a bacterial artificial chromosome transgene. In contrast to male, however, Ant4 null female mice were fertile although the litter size was slightly decreased. They showed apparently normal ovarian development which was morphologically indistinguishable from the control animals. These data indicate that Ant4 is a meiosis-specific gene expressed during both male and female gametogenesis however indispensable only during spermatogenesis and not oogenesis. The differential effects of Ant4 depletion within the processes of male and female gametogenesis may be explained by meiosis-specific inactivation of the X-linked Ant2 gene in male, a somatic paralog of the Ant4 gene.

  20. Expression pattern of pluripotent markers in different embryonic developmental stages of buffalo (Bubalus bubalis) embryos and putative embryonic stem cells generated by parthenogenetic activation.

    PubMed

    Singh, Karn P; Kaushik, Ramakant; Garg, Veena; Sharma, Ruchi; George, Aman; Singh, Manoj K; Manik, Radhey S; Palta, Prabhat; Singla, Suresh K; Chauhan, Manmohan S

    2012-12-01

    In this study, we describe the production of buffalo parthenogenetic blastocysts and subsequent isolation of parthenogenetic embryonic stem cell (PGESC)-like cells. PGESC colonies exhibited dome-shaped morphology and were clearly distinguishable from the feeder layer cells. Different stages of development of parthenogenetic embryos and derived embryonic stem cell (ESC)-like cells expressed key ESC-specific markers, including OCT-4, NANOG, SOX-2, FOXD3, REX-1, STAT-3, TELOMERASE, NUCLEOSTEMIN, and cMYC. Immunofluorescence-based studies revealed that the PGESCs were positive for surface-based pluripotent markers, viz., SSEA-3, SSEA-4, TRA 1-80, TRA 1-60, CD-9, and CD-90 and exhibited high alkaline phosphatase (ALP) activity. PGEC cell-like cells formed embryoid body (EB)-like structures in hanging drop cultures and when cultured for extended period of time spontaneously differentiated into derivatives of three embryonic germ layers as confirmed by RT-PCR for ectodermal (CYTOKERATIN8, NF-68), mesodermal (MSX1, BMP-4, ASA), and endodermal markers (AFP, HNF-4, GATA-4). Differentiation of PGESCs toward the neuronal lineage was successfully directed by supplementation of serum-containing media with retinoic acid. Our results indicate that the isolated ESC-like cells from parthenogenetic blastocyst hold properties of ESCs and express markers of pluripotency. The pluripotency markers were also expressed by early cleavage-stage of buffalo embryos.

  1. Effects of whole genome duplication on cell size and gene expression in mouse embryonic stem cells

    PubMed Central

    IMAI, Hiroyuki; FUJII, Wataru; KUSAKABE, Ken Takeshi; KISO, Yasuo; KANO, Kiyoshi

    2016-01-01

    Alterations in ploidy tend to influence cell physiology, which in the long-term, contribute to species adaptation and evolution. Polyploid cells are observed under physiological conditions in the nerve and liver tissues, and in tumorigenic processes. Although tetraploid cells have been studied in mammalian cells, the basic characteristics and alterations caused by whole genome duplication are still poorly understood. The purpose of this study was to acquire basic knowledge about the effect of whole genome duplication on the cell cycle, cell size, and gene expression. Using flow cytometry, we demonstrate that cell cycle subpopulations in mouse tetraploid embryonic stem cells (TESCs) were similar to those in embryonic stem cells (ESCs). We performed smear preparations and flow cytometric analysis to identify cell size alterations. These indicated that the relative cell volume of TESCs was approximately 2.2–2.5 fold that of ESCs. We also investigated the effect of whole genome duplication on the expression of housekeeping and pluripotency marker genes using quantitative real-time PCR with external RNA. We found that the target transcripts were 2.2 times more abundant in TESCs than those in ESCs. This indicated that gene expression and cell volume increased in parallel. Our findings suggest the existence of a homeostatic mechanism controlling the cytoplasmic transcript levels in accordance with genome volume changes caused by whole genome duplication. PMID:27569766

  2. Cyclic stretch of Embryonic Cardiomyocytes Increases Proliferation, Growth, and Expression While Repressing Tgf-β Signaling

    PubMed Central

    Banerjee, Indroneal; Carrion, Katrina; Serrano, Ricardo; Dyo, Jeffrey; Sasik, Roman; Lund, Sean; Willems, Erik; Aceves, Seema; Meili, Rudolph; Mercola, Mark; Chen, Ju; Zambon, Alexander; Hardiman, Gary; Doherty, Taylor A; Lange, Stephan; del Álamo, Juan C.; Nigam, Vishal

    2014-01-01

    Perturbed biomechanical stimuli are thought to be critical for the pathogenesis of a number of congenital heart defects, including Hypoplastic Left Heart Syndrome (HLHS). While embryonic cardiomyocytes experience biomechanical stretch every heart beat, their molecular responses to biomechanical stimuli during heart development are poorly understood. We hypothesized that biomechanical stimuli activate specific signaling pathways that impact proliferation, gene expression and myocyte contraction. The objective of this study was to expose embryonic mouse cardiomyocytes (EMCM) to cyclic stretch and examine key molecular and phenotypic responses. Analysis of RNA-Sequencing data demonstrated that gene ontology groups associated with myofibril and cardiac development were significantly modulated. Stretch increased EMCM proliferation, size, cardiac gene expression, and myofibril protein levels. Stretch also repressed several components belonging to the Transforming Growth Factor-β (Tgf-β) signaling pathway. EMCMs undergoing cyclic stretch had decreased Tgf-β expression, protein levels, and signaling. Furthermore, treatment of EMCMs with a Tgf-β inhibitor resulted in increased EMCM size. Functionally, Tgf-β signaling repressed EMCM proliferation and contractile function, as assayed via dynamic monolayer force microscopy (DMFM). Taken together, these data support the hypothesis that biomechanical stimuli play a vital role in normal cardiac development and for cardiac pathology, including HLHS. PMID:25446186

  3. Human fetal liver stromal cells expressing erythropoietin promote hematopoietic development from human embryonic stem cells.

    PubMed

    Yang, Chao; Ji, Lei; Yue, Wen; Shi, Shuang-Shuang; Wang, Ruo-Yong; Li, Yan-Hua; Xie, Xiao-Yan; Xi, Jia-Fei; He, Li-Juan; Nan, Xue; Pei, Xue-Tao

    2012-02-01

    Blood cells transfusion and hematopoietic stem cells (HSCs) transplantation are important methods for cell therapy. They are widely used in the treatment of incurable hematological disorder, infectious diseases, genetic diseases, and immunologic deficiency. However, their availability is limited by quantity, capacity of proliferation and the risk of blood transfusion complications. Recently, human embryonic stem cells (hESCs) have been shown to be an alternative resource for the generation of hematopoietic cells. In the current study, we describe a novel method for the efficient production of hematopoietic cells from hESCs. The stable human fetal liver stromal cell lines (hFLSCs) expressing erythropoietin (EPO) were established using the lentiviral system. We observed that the supernatant from the EPO transfected hFLSCs could induce the hESCs differentiation into hematopoietic cells, especially erythroid cells. They not only expressed fetal and embryonic globins but also expressed the adult-globin chain on further maturation. In addition, these hESCs-derived erythroid cells possess oxygen-transporting capacity, which indicated hESCs could generate terminally mature progenies. This should be useful for ultimately developing an animal-free culture system to generate large numbers of erythroid cells from hESCs and provide an experimental model to study early human erythropoiesis.

  4. Zscan4: a novel gene expressed exclusively in late 2-cell embryos and embryonic stem cells

    PubMed Central

    Falco, Geppino; Lee, Sung-Lim; Stanghellini, Ilaria; Bassey, Uwem C.; Hamatani, Toshio; Ko, Minoru S. H.

    2007-01-01

    The first wave of transcription, called zygotic genome activation (ZGA), begins during the 2-cell stage in mouse preimplantation development and marks a vital transition from the maternal genetic to the embryonic genetic program. Utilizing DNA microarray data, we looked for genes that are expressed only during ZGA and found Zscan4, whose expression is restricted to late 2-cell stage embryos. Sequence analysis of genomic DNA and cDNA clones revealed nine paralogous genes tightly clustered in 0.85 Mb on mouse Chromosome 7. Three genes are not transcribed and are thus considered pseudogenes. Among the six expressed genes named Zscan4a-Zscan4f, three -- Zscan4c, Zscan4d, and Zscan4f -- encode full-length ORFs with 506 amino acids. Zscan4d is a predominant transcript at the late 2-cell stage, whereas Zscan4c is a predominant transcript in embryonic stem (ES) cells. No transcripts of any Zscan4 genes are detected in any other cell types. Reduction of Zscan4 transcript levels by siRNAs delays the progression from the 2-cell to the 4-cell stage and produces blastocysts that fail to implant or proliferate in blastocyst outgrowth culture. Zscan4 thus seems to be essential for preimplantation development. PMID:17553482

  5. Expression pattern of embryonic stem cell markers in DFAT cells and ADSCs.

    PubMed

    Gao, Qian; Zhao, Lili; Song, Ziyi; Yang, Gongshe

    2012-05-01

    Mature adipocytes can revert to a more primitive phenotype and gain cell proliferative ability under the condition of ceiling method, named dedifferentiated fat cells (DFAT cells). These cells exhibit multilineage potential as adipose tissue-derived stromal cells (ADSCs). However, the stem molecular signature of DFAT cells and the difference distinct from ADSCs are still not sure. To study the molecular signature of DFAT cells better, highly purified mature adipocytes were obtained from rats and the purity was more than 98%, and about 98.6% were monocytes. These mature adipocytes dedifferentiated into fibroblast-like cells spontaneously by the ceiling culture method, these cells proliferated rapidly in vitro, grew in the same direction and formed vertex, and expressed extensively embryonic stem cell markers such as Oct4, Sox2, c-Myc, and Nanog, surface antigen SSEA-1, CD105, and CD31, moreover, these cells possessed ALP and telomerase activity. The expression level was Oct4 1.3%, Sox2 1.3%, c-Myc 1.2%, Nanog 1.2%, CD105 0.6%, CD31 0.6% and SSEA-1 0.4%, respectively, which was lower than that in ADSCs, but the purity of DFAT cells was much higher than that of ADSCs. In conclusion, DFAT cells is a highly purified stem cell population, and expressed some embryonic stem cell markers like ADSCs, which seems to be a good candidate source of adult stem cells for the future cell replacement therapy.

  6. BRD4 regulates Nanog expression in mouse embryonic stem cells and preimplantation embryos.

    PubMed

    Liu, W; Stein, P; Cheng, X; Yang, W; Shao, N-Y; Morrisey, E E; Schultz, R M; You, J

    2014-12-01

    Bromodomain-containing protein 4 (BRD4) is an important epigenetic reader implicated in the pathogenesis of a number of different cancers and other diseases. Brd4-null mouse embryos die shortly after implantation and are compromised in their ability to maintain the inner cell mass, which gives rise to embryonic stem cells (ESCs). Here we report that BRD4 regulates expression of the pluripotency factor Nanog in mouse ESCs and preimplantation embryos, as well as in human ESCs and embryonic cancer stem cells. Inhibition of BRD4 function using a chemical inhibitor, small interfering RNAs, or a dominant-negative approach suppresses Nanog expression, and abolishes the self-renewal ability of ESCs. We also find that BRD4 associates with BRG1 (brahma-related gene 1, aka Smarca4 (SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin, subfamily a, member 4)), a key regulator of ESC self-renewal and pluripotency, in the Nanog regulatory regions to regulate Nanog expression. Our study identifies Nanog as a novel BRD4 target gene, providing new insights for the biological function of BRD4 in stem cells and mouse embryos. Knowledge gained from these non-cancerous systems will facilitate future investigations of how Brd4 dysfunction leads to cancers.

  7. Early embryonic failure: Expression and imprinted status of candidate genes on human chromosome 21

    SciTech Connect

    Sherman, L.S.; Bennett, P.R.; Moore, G.E.

    1994-09-01

    Two cases of maternal uniparental (hetero)disomy for human chromosome 21 (mUPD21) have been identified in a systematic search for UPD in 23 cases of early embryonic failure (EEF). Bi-parental origin of the other chromosome pairs was confirmed using specific VNTR probes or dinucleotide repeat analysis. Both maternally and paternally derived isochromosomes 21q have previously been identified in two individuals with normal phenotypes. Full UPD21 has a different mechanism of origin than uniparental isochromosome 21q and its effect on imprinted genes and phenotypic outcome will therefore not necessarily be the same. EEF associated with mUPD21 suggests that developmentally important genes on HSA 21 may be imprinted such that they are only expressed from either the maternally or paternally derived alleles. We have searched for monoallelic expression of candidate genes on HSA 21 in human pregnancy (CBS, IFNAR, COL6A1) using intragenic DNA polymorphisms. These genes were chosen either because their murine homologues lie in imprinted regions or because they are potentially important in embryogenesis. Once imprinted candidate genes have been identified, their methylation status and expression in normal, early embryonic failure and uniparental disomy 21 pregnancies will be studied. At the same time, a larger number of cases of EEF are being examined to further investigate the incidence of UPD21 in this group.

  8. Analysis of the sequence and embryonic expression of chicken neurofibromin mRNA.

    PubMed

    Schafer, G L; Ciment, G; Stocker, K M; Baizer, L

    1993-04-01

    Neurofibromatosis type 1 (NF1) is a common inherited disorder that primarily affects tissues derived from the neural crest. Recent identification and characterization of the human NF1 gene has revealed that it encodes a protein (now called neurofibromin) that is similar in sequence to the ras-GTPase activator protein (or ras-GAP), suggesting that neurofibromin may be a component of cellular signal transduction pathways regulating cellular proliferation and/or differentiation. To initiate investigations on the role of the NF1 gene product in embryonic development, we have isolated a partial cDNA for chicken neurofibromin. Sequence analysis reveals that the predicted amino acid sequence is highly conserved between chick and human. The chicken cDNA hybridizes to a 12.5-kb transcript on RNA blots, a mol wt similar to that reported for the human and murine mRNAs. Ribonuclease protection assays indicate that NF1 mRNA is expressed in a variety of tissues in the chick embryo; this is confirmed by in situ hybridization analysis. NF1 mRNA expression is detectable as early as embryonic stage 18 in the neural plate. This pattern of expression may suggest a role for neurofibromin during normal development, including that of the nervous system.

  9. Over Expression of NANOS3 and DAZL in Human Embryonic Stem Cells

    PubMed Central

    Panula, Sarita; Reda, Ahmed; Stukenborg, Jan-Bernd; Ramathal, Cyril; Sukhwani, Meena; Albalushi, Halima; Edsgärd, Daniel; Nakamura, Michiko; Söder, Olle; Orwig, Kyle E.; Yamanaka, Shinya; Reijo Pera, Renee A.; Hovatta, Outi

    2016-01-01

    The mechanisms underlying human germ cell development are largely unknown, partly due to the scarcity of primordial germ cells and the inaccessibility of the human germline to genetic analysis. Human embryonic stem cells can differentiate to germ cells in vitro and can be genetically modified to study the genetic requirements for germ cell development. Here, we studied NANOS3 and DAZL, which have critical roles in germ cell development in several species, via their over expression in human embryonic stem cells using global transcriptional analysis, in vitro germ cell differentiation, and in vivo germ cell formation assay by xenotransplantation. We found that NANOS3 over expression prolonged pluripotency and delayed differentiation. In addition, we observed a possible connection of NANOS3 with inhibition of apoptosis. For DAZL, our results suggest a post-transcriptional regulation mechanism in hES cells. In addition, we found that DAZL suppressed the translation of OCT4, and affected the transcription of several genes associated with germ cells, cell cycle arrest, and cell migration. Furthermore, DAZL over expressed cells formed spermatogonia-like colonies in a rare instance upon xenotransplantation. These data can be used to further elucidate the role of NANOS3 and DAZL in germ cell development both in vitro and in vivo. PMID:27768780

  10. Regulatory mutations in CHO cells induce expression of the mouse embryonic antigen SSEA-1.

    PubMed

    Campbell, C; Stanley, P

    1983-11-01

    Two rare and dominant mutants of Chinese hamster ovary (CHO) cells, LEC11 and LEC12, express the mouse embryonic antigen SSEA-1. Parental CHO cells and the revertants, LEC11.R9 and LEC12.R10, do not express this antigen as detected by a sensitive radioimmunoassay with a monoclonal antibody to SSEA-1. The presence of the SSEA-1 determinant correlates with the apparent de novo expression of specific N-acetylglucosaminide alpha(1,3)fucosyltransferase activities not detected in parental or revertant cell extracts. Several differences in the enzymes substrate specificities and their products have been identified. The combined data suggest that LEC11 and LEC12 mutants result from regulatory mutations affecting different fucosyltransferase genes.

  11. Spatio-temporal expression patterns of anterior Hox genes during Nile tilapia (Oreochromis niloticus) embryonic development.

    PubMed

    Lyon, R Stewart; Davis, Adam; Scemama, Jean-Luc

    2013-01-01

    Hox genes encode transcription factors that function to pattern regional tissue identities along the anterior-posterior axis during animal embryonic development. Divergent nested Hox gene expression patterns within the posterior pharyngeal arches may play an important role in patterning morphological variation in the pharyngeal jaw apparatus (PJA) between evolutionarily divergent teleost fishes. Recent gene expression studies have shown the expression patterns from all Hox paralog group (PG) 2-6 genes in the posterior pharyngeal arches (PAs) for the Japanese medaka (Oryzias latipes) and from most genes of these PGs for the Nile tilapia (Oreochromis niloticus). While several orthologous Hox genes exhibit divergent spatial and temporal expression patterns between these two teleost species in the posterior PAs, several tilapia Hox gene expression patterns from PG3-6 must be documented for a full comparative study. Here we present the spatio-temporal expression patterns of hoxb3b, c3a, b4a, a5a, b5a, b5b, b6a and b6b in the neural tube and posterior PAs of the Nile tilapia. We show that several of these tilapia Hox genes exhibit divergent expression patterns in the posterior PAs from their medaka orthologs. We also compare these gene expression patterns to orthologs in other gnathostome vertebrates, including the dogfish shark.

  12. Dynamic expression of the cell adhesion molecule fasciclin I during embryonic development in Drosophila.

    PubMed

    McAllister, L; Goodman, C S; Zinn, K

    1992-05-01

    A number of different cell surface glycoproteins expressed in the central nervous system (CNS) have been identified in insects and shown to mediate cell adhesion in tissue culture systems. The fasciclin I protein is expressed on a subset of CNS axon pathways in both grasshopper and Drosophila. It consists of four homologous 150-amino acid domains which are unrelated to other sequences in the current databases, and is tethered to the cell surface by a glycosyl-phosphatidylinositol linkage. In this paper we examine in detail the expression of fasciclin I mRNA and protein during Drosophila embryonic development. We find that fasciclin I is expressed in several distinct patterns at different stages of development. In blastoderm embryos it is briefly localized in a graded pattern. During the germ band extended period its expression evolves through two distinct phases. Fasciclin I mRNA and protein are initially localized in a 14-stripe pattern which corresponds to segmentally repeated patches of neuroepithelial cells and neuroblasts. Expression then becomes confined to CNS and peripheral sensory (PNS) neurons. Fasciclin I is expressed on all PNS neurons, and this expression is stably maintained for several hours. In the CNS, fasciclin I is initially expressed on all commissural axons, but then becomes restricted to specific axon bundles. The early commissural expression pattern is not observed in grasshopper embryos, but the later bundle-specific pattern is very similar to that seen in grasshopper. The existence of an initial phase of expression on all commissural bundles helps to explain the loss-of-commissures phenotype of embryos lacking expression of both fasciclin I and of the D-abl tyrosine kinase. Fasciclin I is also expressed in several nonneural tissues in the embryo.

  13. Expression pattern of glypican-3 (GPC3) during human embryonic and fetal development.

    PubMed

    Iglesias, Bibiana V; Centeno, Gloria; Pascuccelli, Hector; Ward, Flavia; Peters, María Giselle; Filmus, Jorge; Puricelli, Lydia; de Kier Joffé, Elisa Bal

    2008-11-01

    Glypicans represent a family of cell surface proteoglycans. Loss-of-function mutations in the human glypican-3 (GPC3) gene results in the Simpson-Golabi-Behmel syndrome, characterized by severe malformations and pre- and postnatal overgrowth. Because the expression of GPC3 during human embryonic and fetal periods remains largely unknown, we investigated by immunohistochemistry its pattern of expression during four periods of human development covering the embryonic period (P1) from 5 to 8 weeks of development, and the fetal periods (P2, P3 and P4) from 9 to 28 weeks of development. Hepatocytes were homogeneously positive for GPC3 during the four periods while pancreatic acini and ducts showed a rather high staining only during P1. GPC3 was also detected in several kidney structures and in the genital system where the sex cords were weakly positive in P1 and P2. In later developmental stages the male's genital system expressed GPC3 while the female's did not. While the mesenchyme in the limbs showed positive staining in P1, GPC3 was not detected during the following stages. The mesenchymal tissue localized between the most caudal vertebrae was also positive in P1. A strong GPC3 signal was observed in neurons of the spinal cord and dorsal root ganglia in P2 and P3, while the brain was negative. In sum our studies revealed that GPC3 expression is highly tissue- and stage-specific during human development. The expression pattern of GPC3 is consistent with the abnormalities seen in the Simpson-Golabi-Behmel syndrome.

  14. Selective MicroRNA-Offset RNA Expression in Human Embryonic Stem Cells

    PubMed Central

    Juhila, Juuso; Holm, Frida; Weltner, Jere; Trokovic, Ras; Mikkola, Milla; Toivonen, Sanna; Balboa, Diego; Lampela, Riina; Icay, Katherine; Tuuri, Timo; Otonkoski, Timo; Wong, Garry; Hovatta, Outi

    2015-01-01

    Small RNA molecules, including microRNAs (miRNAs), play critical roles in regulating pluripotency, proliferation and differentiation of embryonic stem cells. miRNA-offset RNAs (moRNAs) are similar in length to miRNAs, align to miRNA precursor (pre-miRNA) loci and are therefore believed to derive from processing of the pre-miRNA hairpin sequence. Recent next generation sequencing (NGS) studies have reported the presence of moRNAs in human neurons and cancer cells and in several tissues in mouse, including pluripotent stem cells. In order to gain additional knowledge about human moRNAs and their putative development-related expression, we applied NGS of small RNAs in human embryonic stem cells (hESCs) and fibroblasts. We found that certain moRNA isoforms are notably expressed in hESCs from loci coding for stem cell-selective or cancer-related miRNA clusters. In contrast, we observed only sparse moRNAs in fibroblasts. Consistent with earlier findings, most of the observed moRNAs derived from conserved loci and their expression did not appear to correlate with the expression of the adjacent miRNAs. We provide here the first report of moRNAs in hESCs, and their expression profile in comparison to fibroblasts. Moreover, we expand the repertoire of hESC miRNAs. These findings provide an expansion on the known repertoire of small non-coding RNA contents in hESCs. PMID:25822230

  15. Differential gene expression patterns during embryonic development of sea urchin exposed to triclosan.

    PubMed

    Hwang, Jinik; Suh, Sung-Suk; Park, Mirye; Park, So Yun; Lee, Sukchan; Lee, Taek-Kyun

    2017-02-01

    Triclosan (TCS; 2,4,4'-trichloro-2'-hydroxydiphenyl ether) is a broad-spectrum antibacterial agent used in common industrial, personal care and household products which are eventually rinsed down the drain and discharged with wastewater effluent. It is therefore commonly found in the aquatic environment, leading to the continual exposure of aquatic organisms to TCS and the accumulation of the antimicrobial and its harmful degradation products in their bodies. Toxic effects of TCS on reproductive and developmental progression of some aquatic organisms have been suggested but the underlying molecular mechanisms have not been defined. We investigated the expression patterns of genes involved in the early development of TCS-treated sea urchin Strongylocentrotus nudus using cDNA microarrays. We observed that the predominant consequence of TCS treatment in this model system was the widespread repression of TCS-modulated genes. In particular, empty spiracles homeobox 1 (EMX-1), bone morphogenic protein, and chromosomal binding protein genes showed a significant decrease in expression in response to TCS. These results suggest that TCS can induce abnormal development of sea urchin embryos through the concomitant suppression of a number of genes that are necessary for embryonic differentiation in the blastula stage. Our data provide new insight into the crucial role of genes associated with embryonic development in response to TCS. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 426-433, 2017.

  16. Defining Developmental Potency and Cell Lineage Trajectories by Expression Profiling of Differentiating Mouse Embryonic Stem Cells

    PubMed Central

    Aiba, Kazuhiro; Nedorezov, Timur; Piao, Yulan; Nishiyama, Akira; Matoba, Ryo; Sharova, Lioudmila V.; Sharov, Alexei A.; Yamanaka, Shinya; Niwa, Hitoshi; Ko, Minoru S. H.

    2009-01-01

    Biologists rely on morphology, function and specific markers to define the differentiation status of cells. Transcript profiling has expanded the repertoire of these markers by providing the snapshot of cellular status that reflects the activity of all genes. However, such data have been used only to assess relative similarities and differences of these cells. Here we show that principal component analysis of global gene expression profiles map cells in multidimensional transcript profile space and the positions of differentiating cells progress in a stepwise manner along trajectories starting from undifferentiated embryonic stem (ES) cells located in the apex. We present three ‘cell lineage trajectories’, which represent the differentiation of ES cells into the first three lineages in mammalian development: primitive endoderm, trophoblast and primitive ectoderm/neural ectoderm. The positions of the cells along these trajectories seem to reflect the developmental potency of cells and can be used as a scale for the potential of cells. Indeed, we show that embryonic germ cells and induced pluripotent cells are mapped near the origin of the trajectories, whereas mouse embryo fibroblast and fibroblast cell lines are mapped near the far end of the trajectories. We suggest that this method can be used as the non-operational semi-quantitative definition of cell differentiation status and developmental potency. Furthermore, the global expression profiles of cell lineages provide a framework for the future study of in vitro and in vivo cell differentiation. PMID:19112179

  17. Human embryonic stem cells passaged using enzymatic methods retain a normal karyotype and express CD30.

    PubMed

    Thomson, Alison; Wojtacha, Davina; Hewitt, Zoë; Priddle, Helen; Sottile, Virginie; Di Domenico, Alex; Fletcher, Judy; Waterfall, Martin; Corrales, Néstor López; Ansell, Ray; McWhir, Jim

    2008-03-01

    Human embryonic stem cells (hESCs) are thought to be susceptible to chromosomal rearrangements as a consequence of single cell dissociation. Compared in this study are two methods of dissociation that do not generate single cell suspensions (collagenase and EDTA) with an enzymatic procedure using trypsin combined with the calcium-specific chelator EGTA (TEG), that does generate a single cell suspension, over 10 passages. Cells passaged by single cell dissociation using TEG retained a normal karyotype. However, cells passaged using EDTA, without trypsin, acquired an isochromosome p7 in three replicates of one experiment. In all of the TEG, collagenase and EDTA-treated cultures, cells retained consistent telomere length and potentiality, demonstrating that single cell dissociation can be used to maintain karyotypically and phenotypically normal hESCs. However, competitive genomic hybridization revealed that subkaryotypic deletions and amplifications could accumulate over time, reinforcing that present culture regimes remain suboptimal. In all cultures the cell surface marker CD30, reportedly expressed on embryonal carcinoma but not karyoptically normal ESCs, was expressed on hESCs with both normal and abnormal karyotype, but was upregulated on the latter.

  18. Heterogeneous lineage marker expression in naive embryonic stem cells is mostly due to spontaneous differentiation

    PubMed Central

    Nair, Gautham; Abranches, Elsa; Guedes, Ana M. V.; Henrique, Domingos; Raj, Arjun

    2015-01-01

    Populations of cultured mouse embryonic stem cells (ESCs) exhibit a subfraction of cells expressing uncharacteristically low levels of pluripotency markers such as Nanog. Yet, the extent to which individual Nanog-negative cells are differentiated, both from ESCs and from each other, remains unclear. Here, we show the transcriptome of Nanog-negative cells exhibits expression of classes of genes associated with differentiation that are not yet active in cells exposed to differentiation conditions for one day. Long non-coding RNAs, however, exhibit more changes in expression in the one-day-differentiated cells than in Nanog-negative cells. These results are consistent with the concept that Nanog-negative cells may contain subpopulations of both lineage-primed and differentiated cells. Single cell analysis showed that Nanog-negative cells display substantial and coherent heterogeneity in lineage marker expression in progressively nested subsets of cells exhibiting low levels of Nanog, then low levels of Oct4, and then a set of lineage markers, which express intensely in a small subset of these more differentiated cells. Our results suggest that the observed enrichment of lineage-specific marker gene expression in Nanog-negative cells is associated with spontaneous differentiation of a subset of these cells rather than the more random expression that may be associated with reversible lineage priming. PMID:26292941

  19. Regulation and expression of sexual differentiation factors in embryonic and extragonadal tissues of Atlantic salmon

    PubMed Central

    2011-01-01

    Background The products of cyp19, dax, foxl2, mis, sf1 and sox9 have each been associated with sex-determining processes among vertebrates. We provide evidence for expression of these regulators very early in salmonid development and in tissues outside of the hypothalamic-pituitary-adrenal/gonadal (HPAG) axis. Although the function of these factors in sexual differentiation have been defined, their roles in early development before sexual fate decisions and in tissues beyond the brain or gonad are essentially unknown. Results Bacterial artificial chromosomes containing salmon dax1 and dax2, foxl2b and mis were isolated and the regulatory regions that control their expression were characterized. Transposon integrations are implicated in the shaping of the dax and foxl2 loci. Splice variants for cyp19b1 and mis in both embryonic and adult tissues were detected and characterized. We found that cyp19b1 transcripts are generated that contain 5'-untranslated regions of different lengths due to cryptic splicing of the 3'-end of intron 1. We also demonstrate that salmon mis transcripts can encode prodomain products that present different C-termini and terminate before translation of the MIS hormone. Regulatory differences in the expression of two distinct aromatases cyp19a and cyp19b1 are exerted, despite transcription of their transactivators (ie; dax1, foxl2, sf1) occurring much earlier during embryonic development. Conclusions We report the embryonic and extragonadal expression of dax, foxl2, mis and other differentiation factors that indicate that they have functions that are more general and not restricted to steroidogenesis and gonadogenesis. Spliced cyp19b1 and mis transcripts are generated that may provide regulatory controls for tissue- or development-specific activities. Selection of cyp19b1 transcripts may be regulated by DAX-1, FOXL2 and SF-1 complexes that bind motifs in intron 1, or by signals within exon 2 that recruit splicing factors, or both. The

  20. Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells.

    PubMed

    D'Amour, Kevin A; Bang, Anne G; Eliazer, Susan; Kelly, Olivia G; Agulnick, Alan D; Smart, Nora G; Moorman, Mark A; Kroon, Evert; Carpenter, Melissa K; Baetge, Emmanuel E

    2006-11-01

    Of paramount importance for the development of cell therapies to treat diabetes is the production of sufficient numbers of pancreatic endocrine cells that function similarly to primary islets. We have developed a differentiation process that converts human embryonic stem (hES) cells to endocrine cells capable of synthesizing the pancreatic hormones insulin, glucagon, somatostatin, pancreatic polypeptide and ghrelin. This process mimics in vivo pancreatic organogenesis by directing cells through stages resembling definitive endoderm, gut-tube endoderm, pancreatic endoderm and endocrine precursor--en route to cells that express endocrine hormones. The hES cell-derived insulin-expressing cells have an insulin content approaching that of adult islets. Similar to fetal beta-cells, they release C-peptide in response to multiple secretory stimuli, but only minimally to glucose. Production of these hES cell-derived endocrine cells may represent a critical step in the development of a renewable source of cells for diabetes cell therapy.

  1. Mechanisms Involved in Glucocorticoid Induction of Pituitary GH Expression During Embryonic Development

    PubMed Central

    Ellestad, Laura E.; Puckett, Stefanie A.

    2015-01-01

    Glucocorticoid hormones are involved in functional differentiation of GH-producing somatotrophs. Glucocorticoid treatment prematurely induces GH expression in mammals and birds in a process requiring protein synthesis and Rat sarcoma (Ras) signaling. The objective of this study was to investigate mechanisms through which glucocorticoids initiate GH expression during embryogenesis, taking advantage of the unique properties of chicken embryos as a developmental model. We determined that stimulation of GH expression occurred through transcriptional activation of GH, rather than enhancement of mRNA stability, and this process requires histone deacetylase activity. Through pharmacological inhibition, we identified the ERK1/2 pathway as a likely downstream Ras effector necessary for glucocorticoid stimulation of GH. However, we also found that chronic activation of ERK1/2 activity with a constitutively active mutant or stimulatory ligand reduced initiation of GH expression by glucocorticoid treatment. Corticosterone treatment of cultured embryonic pituitary cells increased ERK1/2 activity in an apparent cyclical manner, with a rapid increase within 5 minutes, followed by a reduction to near-basal levels at 3 hours, and a subsequent increase again at 6 hours. Therefore, we conclude that ERK1/2 signaling must be strictly controlled for maximal glucocorticoid induction of GH to occur. These results are the first in any species to demonstrate that Ras- and ERK1/2-mediated transcriptional events requiring histone deacetylase activity are involved in glucocorticoid induction of pituitary GH during embryonic development. This report increases our understanding of the molecular mechanisms underlying glucocorticoid recruitment of somatotrophs during embryogenesis and should provide insight into glucocorticoid-induced developmental changes in other tissues and cell types. PMID:25560830

  2. Effects of simulated-microgravity on zebrafish embryonic development and microRNA expression

    NASA Astrophysics Data System (ADS)

    Hang, Xiaoming; Sun, Yeqing; Zhang, Meng; Li, Hui

    2012-07-01

    Microgravity is a constant physical factor astronauts must meet during space flight. Therefore, the mechanism of microgravity-induced biological effects is one of the most important issues in space biological studies. In this research, zebrafish (Danio rerio) embryos at different development stages were exposed to simulated microgravity, respectively, using a rotary cell culture system (RCCS) designed by NASA. Biological effects of simulated microgravity on zebrafish embryos were investigated at the phenotypic and microRNA expression levels. Malformation rate and mortality rate were found increased after simulated microgravity exposure. Body length and heart rate were also increased during microgravity exposure and after a shot period of gravity recovery, but both returned to normal level after 10 days and 7 days of gravity recovery, respectively. Additionally, significant changes in microRNA expression profiles of zebrafish embryos were observed, depending on the development stages of embyos exposed to simulated microgravity and the exposure time. All together, nine miRNAs showed significant changes after three different microgravity exposures (8-72hpf, 24-72hpf and 24-48hpf). Four miRNAs, dre-miR-738, dre-miR-133a, dre-miR-133b and dre-miR-22a, were up-regulated. Two miRNAs, dre-miR-1 and dre-miR-16a, were down-regulated. The other three miRNAs, dre-miR-204, dre-miR-9* and dre-miR-429, were found up-regulated when microgravity exposures ended at 72hpf, but down-regulated when microgravity exposures ended at 48hpf. Above results demonstrated microRNA expression of zebrafish embryos could be induced by both embryonic development stage and simulated microgravity. Key Words: Danio rerio; Simulated-microgravity; embryonic devlopment; microRNA expression

  3. nanos expression at the embryonic posterior pole and the medusa phase in the hydrozoan Podocoryne carnea.

    PubMed

    Torras, Raquel; Yanze, Nathalie; Schmid, Volker; González-Crespo, Sergio

    2004-01-01

    Summary The distinction between soma and germline is an important process in the development of animals with sexual reproduction. It is regulated by a number of germline-specific genes, most of which appear conserved in evolution and therefore can be used to study the formation of the germline in diverged animal groups. Here we report the isolation of two orthologs of one such gene, nanos (nos), in the cnidarian Podocoryne carnea, a species with representative zoological features among the hydrozoans. By studying nos gene expression throughout the Podocoryne biphasic life cycle, we find that the germline differentiates exclusively during medusa development, whereas the polyp does not contribute to the process. An early widespread nos expression in developing medusae progressively refines into a mainly germline-specific pattern at terminal stages of medusa formation. Thus, the distinction between germline and soma is a late event in hydrozoan development. Also, we show that the formation of the medusa is a de novo process that relies on active local cell proliferation and differentiation of novel cell and tissue types not present in the polyp, including nos-expressing cells. Finally, we find nos expression at the posterior pole of Podocoryne developing embryos, not related to germline formation. This second aspect of nos expression is also found in Drosophila, where nos functions as a posterior determinant essential for the formation of the fly abdomen. This raises the possibility that nos embryonic expression could play a role in establishing axial polarity in cnidarians.

  4. Endogenous and ectopic expression of telomere regulating genes in chicken embryonic fibroblasts

    SciTech Connect

    Michailidis, Georgios; Saretzki, Gabriele; Hall, Judith , E-Mail: Judith.hall@ncl.ac.uk

    2005-09-16

    In this study, we compared the endogenous expression of genes encoding telomere regulating proteins in cultured chicken embryonic fibroblasts (CEFs) and 10-day-old chicken embryos. CEFs maintained in vitro senesced and senescence was accompanied by reduced telomere length, telomerase activity, and expression of the chicken (c) TRF1 gene. There was no change in TRF2 gene expression although the major TRF2 transcript identified in 10-day-old chicken embryos encoded a truncated TRF2 protein (TRF2'), containing an N-terminal dimerisation domain but lacking a myb-related DNA binding domain and nuclear localisation signal. Senescence of the CEFs in vitro was associated with the loss of the TRF2' transcript, indicative of a novel function for the encoded protein. Senescence was also coupled with decreased expression of RAD51, but increased RAD52 expression. These data support that RAD51 independent recombination mechanisms do not function in vitro to maintain chicken telomeres. To attempt to rescue the CEFs from replicative senescence, we stably transfected passage 3 CEFs with the human telomerase reverse transcriptase (hTERT) catalytic subunit. While hTERT expression was detected in the stable transfectants neither telomerase activity nor the stabilisation of telomere length was observed, and the transfectant cells senesced at the same passage number as the untransfected cells. These data indicate that the human TERT is incompatible with the avian telomere maintenance apparatus and suggest the functioning of a species specific telomere system in the avian.

  5. Dynamic expression and heterogeneous intracellular location of En-1 during late mouse embryonic development.

    PubMed

    Zhong, Shan-chuan; Chen, Xing-shu; Cai, Qi-yan; Luo, Xue; Chen, Xing-hua; Liu, Jing; Yao, Zhong-xiang

    2010-01-01

    Engrailed-1 (En-1) is a transcription factor involved in the development of the midbrain/hindbrain during mouse early embryogenesis. Although En-1 is expressed from embryogenesis to adulthood, there has been no detailed description of its expression during late mouse embryonic development. Here we report the expression pattern of En-1 in the mouse embryo from E10.5 to the neonatal state. With immunohistochemistry we found that En-1 was expressed in the central nervous system (CNS) from E10.5 to the neonatal state, mostly restricted to the midbrain/hindbrain junction. Outside the CNS, En-1 is dynamically expressed in several neural crest-associated structures including the cranial mesenchyme, the mandibular arches, the vagus nerve, the dorsal root ganglia, the sympathetic ganglia, the somites, the heart and the cloaca. Additionally, we found that in the CNS, most of the En-1 was located in the nuclei, while outside the CNS, En-1 was mainly expressed in the cytoplasm. These findings provided additional evidence that En-1 may be involved in the development of neural crest cells.

  6. Knockdown of p53 suppresses Nanog expression in embryonic stem cells

    SciTech Connect

    Abdelalim, Essam Mohamed; Tooyama, Ikuo

    2014-01-10

    Highlights: •We investigate the role of p53 in ESCs in the absence of DNA damage. •p53 knockdown suppresses ESC proliferation. •p53 knockdown downregulates Nanog expression. •p53 is essential for mouse ESC self-renewal. -- Abstract: Mouse embryonic stem cells (ESCs) express high levels of cytoplasmic p53. Exposure of mouse ESCs to DNA damage leads to activation of p53, inducing Nanog suppression. In contrast to earlier studies, we recently reported that chemical inhibition of p53 suppresses ESC proliferation. Here, we confirm that p53 signaling is involved in the maintenance of mouse ESC self-renewal. RNA interference-mediated knockdown of p53 induced downregulation of p21 and defects in ESC proliferation. Furthermore, p53 knockdown resulted in a significant downregulation in Nanog expression at 24 and 48 h post-transfection. p53 knockdown also caused a reduction in Oct4 expression at 48 h post-transfection. Conversely, exposure of ESCs to DNA damage caused a higher reduction of Nanog expression in control siRNA-treated cells than in p53 siRNA-treated cells. These data show that in the absence of DNA damage, p53 is required for the maintenance of mouse ESC self-renewal by regulating Nanog expression.

  7. Changes in Laminin Expression Pattern during Early Differentiation of Human Embryonic Stem Cells.

    PubMed

    Pook, Martin; Teino, Indrek; Kallas, Ade; Maimets, Toivo; Ingerpuu, Sulev; Jaks, Viljar

    2015-01-01

    Laminin isoforms laminin-511 and -521 are expressed by human embryonic stem cells (hESC) and can be used as a growth matrix to culture these cells under pluripotent conditions. However, the expression of these laminins during the induction of hESC differentiation has not been studied in detail. Furthermore, the data regarding the expression pattern of laminin chains in differentiating hESC is scarce. In the current study we aimed to fill this gap and investigated the potential changes in laminin expression during early hESC differentiation induced by retinoic acid (RA). We found that laminin-511 but not -521 accumulates in the committed cells during early steps of hESC differentiation. We also performed a comprehensive analysis of the laminin chain repertoire and found that pluripotent hESC express a more diverse range of laminin chains than shown previously. In particular, we provide the evidence that in addition to α1, α5, β1, β2 and γ1 chains, hESC express α2, α3, β3, γ2 and γ3 chain proteins and mRNA. Additionally, we found that a variant of laminin α3 chain-145 kDa-accumulated in RA-treated hESC showing that these cells produce prevalently specifically modified version of α3 chain in early phase of differentiation.

  8. Embryonic expression and evolutionary analysis of the amphioxus Dickkopf and Kremen family genes.

    PubMed

    Zhang, Yujun; Mao, Bingyu

    2010-09-01

    The secreted Wnt signaling inhibitor Dickkopf1 (Dkk1) plays key role in vertebrate head induction. Its receptor Kremen synergizes with Dkk1 in Wnt inhibition. Here we have carried out expression and functional studies of the Dkk and Kremen genes in amphioxus (Branchiostoma belcheri). During embryonic and larval development, BbDkk1/2/4 is expressed in the posterior mesoendoderm, anterior somatic mesoderm and the pharyngeal regions. Its expression becomes restricted to the pharyngeal region on the left side at larval stages. In 45 h larvae, BbDkk1/2/4 is expressed specifically in the cerebral vesicle. BbDkk3 was only detected at larval stages in the mid-intestine region. Seven Kremen related genes were identified in the genome of the Florida amphioxus (Branchiostoma floridae), clustered in 4 scaffolds, and are designated Kremen1-4 and Kremen-like 1-3, respectively. In B. belcheri, Kremen1 is strongly expressed in the mesoendoderm during early development and Kremen3 is expressed asymmetrically in spots in the larval pharyngeal region. In luciferase reporter assays, BbDkk1/2/4 can strongly inhibit Wnt signaling, while BbDkk3, BbKremen1 and BbKremen3 can not. No co-operative effect was observed between amphioxus Dkk1/2/4 and Kremens, suggesting that the interaction between Dkk and Kremen likely originated later during evolution.

  9. Satb1 and Satb2 regulate embryonic stem cell differentiation and Nanog expression

    PubMed Central

    Savarese, Fabio; Dávila, Amparo; Nechanitzky, Robert; De La Rosa-Velazquez, Inti; Pereira, Carlos F.; Engelke, Rudolf; Takahashi, Keiko; Jenuwein, Thomas; Kohwi-Shigematsu, Terumi; Fisher, Amanda G.; Grosschedl, Rudolf

    2009-01-01

    Satb1 and the closely related Satb2 proteins regulate gene expression and higher-order chromatin structure of multigene clusters in vivo. In examining the role of Satb proteins in murine embryonic stem (ES) cells, we find that Satb1−/− cells display an impaired differentiation potential and augmented expression of the pluripotency determinants Nanog, Klf4, and Tbx3. Metastable states of self-renewal and differentiation competence have been attributed to heterogeneity of ES cells in the expression of Nanog. Satb1−/− cultures have a higher proportion of Nanoghigh cells, and an increased potential to reprogram human B lymphocytes in cell fusion experiments. Moreover, Satb1-deficient ES cells show an increased expression of Satb2, and we find that forced Satb2 expression in wild-type ES cells antagonizes differentiation-associated silencing of Nanog and enhances the induction of NANOG in cell fusions with human B lymphocytes. An antagonistic function of Satb1 and Satb2 is also supported by the almost normal differentiation potential of Satb1−/−Satb2−/− ES cells. Taken together with the finding that both Satb1 and Satb2 bind the Nanog locus in vivo, our data suggest that the balance of Satb1 and Satb2 contributes to the plasticity of Nanog expression and ES cell pluripotency. PMID:19933152

  10. Ectopic expression of Cripto-1 in transgenic mouse embryos causes hemorrhages, fatal cardiac defects and embryonic lethality

    PubMed Central

    Lin, Xiaolin; Zhao, Wentao; Jia, Junshuang; Lin, Taoyan; Xiao, Gaofang; Wang, Shengchun; Lin, Xia; Liu, Yu; Chen, Li; Qin, Yujuan; Li, Jing; Zhang, Tingting; Hao, Weichao; Chen, Bangzhu; Xie, Raoying; Cheng, Yushuang; Xu, Kang; Yao, Kaitai; Huang, Wenhua; Xiao, Dong; Sun, Yan

    2016-01-01

    Targeted disruption of Cripto-1 in mice caused embryonic lethality at E7.5, whereas we unexpectedly found that ectopic Cripto-1 expression in mouse embryos also led to embryonic lethality, which prompted us to characterize the causes and mechanisms underlying embryonic death due to ectopic Cripto-1 expression. RCLG/EIIa-Cre embryos displayed complex phenotypes between embryonic day 14.5 (E14.5) and E17.5, including fatal hemorrhages (E14.5-E15.5), embryo resorption (E14.5-E17.5), pale body surface (E14.5-E16.5) and no abnormal appearance (E14.5-E16.5). Macroscopic and histological examination revealed that ectopic expression of Cripto-1 transgene in RCLG/EIIa-Cre embryos resulted in lethal cardiac defects, as evidenced by cardiac malformations, myocardial thinning, failed assembly of striated myofibrils and lack of heartbeat. In addition, Cripto-1 transgene activation beginning after E8.5 also caused the aforementioned lethal cardiac defects in mouse embryos. Furthermore, ectopic Cripto-1 expression in embryonic hearts reduced the expression of cardiac transcription factors, which is at least partially responsible for the aforementioned lethal cardiac defects. Our results suggest that hemorrhages and cardiac abnormalities are two important lethal factors in Cripto-1 transgenic mice. Taken together, these findings are the first to demonstrate that sustained Cripto-1 transgene expression after E11.5 causes fatal hemorrhages and lethal cardiac defects, leading to embryonic death at E14.5-17.5. PMID:27687577

  11. A microfluidic processor for gene expression profiling of single human embryonic stem cells.

    PubMed

    Zhong, Jiang F; Chen, Yan; Marcus, Joshua S; Scherer, Axel; Quake, Stephen R; Taylor, Clive R; Weiner, Leslie P

    2008-01-01

    The gene expression of human embryonic stem cells (hESC) is a critical aspect for understanding the normal and pathological development of human cells and tissues. Current bulk gene expression assays rely on RNA extracted from cell and tissue samples with various degree of cellular heterogeneity. These 'cell population averaging' data are difficult to interpret, especially for the purpose of understanding the regulatory relationship of genes in the earliest phases of development and differentiation of individual cells. Here, we report a microfluidic approach that can extract total mRNA from individual single-cells and synthesize cDNA on the same device with high mRNA-to-cDNA efficiency. This feature makes large-scale single-cell gene expression profiling possible. Using this microfluidic device, we measured the absolute numbers of mRNA molecules of three genes (B2M, Nodal and Fzd4) in a single hESC. Our results indicate that gene expression data measured from cDNA of a cell population is not a good representation of the expression levels in individual single cells. Within the G0/G1 phase pluripotent hESC population, some individual cells did not express all of the 3 interrogated genes in detectable levels. Consequently, the relative expression levels, which are broadly used in gene expression studies, are very different between measurements from population cDNA and single-cell cDNA. The results underscore the importance of discrete single-cell analysis, and the advantages of a microfluidic approach in stem cell gene expression studies.

  12. Smooth-muscle-specific expression of neurotrophin-3 in mouse embryonic and neonatal gastrointestinal tract.

    PubMed

    Fox, Edward A; McAdams, Jennifer

    2010-05-01

    Vagal gastrointestinal (GI) afferents are essential for the regulation of eating, body weight, and digestion. However, their functional organization and the way that this develops are poorly understood. Neurotrophin-3 (NT-3) is crucial for the survival of vagal sensory neurons and is expressed in the developing GI tract, possibly contributing to their survival and to other aspects of vagal afferent development. The identification of the functions of this peripheral NT-3 thus requires a detailed understanding of the localization and timing of its expression in the developing GI tract. We have studied embryos and neonates expressing the lacZ reporter gene from the NT-3 locus and found that NT-3 is expressed predominantly in the smooth muscle of the outer GI wall of the stomach, intestines, and associated blood vessels and in the stomach lamina propria and esophageal epithelium. NT-3 expression has been detected in the mesenchyme of the GI wall by embryonic day 12.5 (E12.5) and becomes restricted to smooth muscle and lamina propria by E15.5, whereas its expression in blood vessels and esophageal epithelium is first observed at E15.5. Expression in most tissues is maintained at least until postnatal day 4. The lack of colocalization of beta-galactosidase and markers for myenteric ganglion cell types suggests that NT-3 is not expressed in these ganglia. Therefore, NT-3 expression in the GI tract is largely restricted to smooth muscle at ages when vagal axons grow into the GI tract, and when vagal mechanoreceptors form in smooth muscle, consistent with its role in these processes and in vagal sensory neuron survival.

  13. c-Rel Regulates Inscuteable Gene Expression during Mouse Embryonic Stem Cell Differentiation*

    PubMed Central

    Ishibashi, Riki; Kozuki, Satoshi; Kamakura, Sachiko; Sumimoto, Hideki; Toyoshima, Fumiko

    2016-01-01

    Inscuteable (Insc) regulates cell fate decisions in several types of stem cells. Although it is recognized that the expression levels of mouse INSC govern the balance between symmetric and asymmetric stem cell division, regulation of mouse Insc gene expression remains poorly understood. Here, we showed that mouse Insc expression transiently increases at an early stage of differentiation, when mouse embryonic stem (mES) cells differentiate into bipotent mesendoderm capable of producing both endoderm and mesoderm in defined culture conditions. We identified the minimum transcriptional regulatory element (354 bases) that drives mouse Insc transcription in mES cells within a region >5 kb upstream of the mouse Insc transcription start site. We found that the transcription factor reticuloendotheliosis oncogene (c-Rel) bound to the minimum element and promoted mouse Insc expression in mES cells. In addition, short interfering RNA-mediated knockdown of either mouse INSC or c-Rel protein decreased mesodermal cell populations without affecting differentiation into the mesendoderm or endoderm. Furthermore, overexpression of mouse INSC rescued the mesoderm-reduced phenotype induced by knockdown of c-Rel. We propose that regulation of mouse Insc expression by c-Rel modulates cell fate decisions during mES cell differentiation. PMID:26694615

  14. c-Rel Regulates Inscuteable Gene Expression during Mouse Embryonic Stem Cell Differentiation.

    PubMed

    Ishibashi, Riki; Kozuki, Satoshi; Kamakura, Sachiko; Sumimoto, Hideki; Toyoshima, Fumiko

    2016-02-12

    Inscuteable (Insc) regulates cell fate decisions in several types of stem cells. Although it is recognized that the expression levels of mouse INSC govern the balance between symmetric and asymmetric stem cell division, regulation of mouse Insc gene expression remains poorly understood. Here, we showed that mouse Insc expression transiently increases at an early stage of differentiation, when mouse embryonic stem (mES) cells differentiate into bipotent mesendoderm capable of producing both endoderm and mesoderm in defined culture conditions. We identified the minimum transcriptional regulatory element (354 bases) that drives mouse Insc transcription in mES cells within a region >5 kb upstream of the mouse Insc transcription start site. We found that the transcription factor reticuloendotheliosis oncogene (c-Rel) bound to the minimum element and promoted mouse Insc expression in mES cells. In addition, short interfering RNA-mediated knockdown of either mouse INSC or c-Rel protein decreased mesodermal cell populations without affecting differentiation into the mesendoderm or endoderm. Furthermore, overexpression of mouse INSC rescued the mesoderm-reduced phenotype induced by knockdown of c-Rel. We propose that regulation of mouse Insc expression by c-Rel modulates cell fate decisions during mES cell differentiation.

  15. HOX-mediated LMO2 expression in embryonic mesoderm is recapitulated in acute leukaemias

    PubMed Central

    Calero-Nieto, F J; Joshi, A; Bonadies, N; Kinston, S; Chan, W-I; Gudgin, E; Pridans, C; Landry, J-R; Kikuchi, J; Huntly, B J; Gottgens, B

    2013-01-01

    The Lim Domain Only 2 (LMO2) leukaemia oncogene encodes an LIM domain transcriptional cofactor required for early haematopoiesis. During embryogenesis, LMO2 is also expressed in developing tail and limb buds, an expression pattern we now show to be recapitulated in transgenic mice by an enhancer in LMO2 intron 4. Limb bud expression depended on a cluster of HOX binding sites, while posterior tail expression required the HOX sites and two E-boxes. Given the importance of both LMO2 and HOX genes in acute leukaemias, we further demonstrated that the regulatory hierarchy of HOX control of LMO2 is activated in leukaemia mouse models as well as in patient samples. Moreover, Lmo2 knock-down impaired the growth of leukaemic cells, and high LMO2 expression at diagnosis correlated with poor survival in cytogenetically normal AML patients. Taken together, these results establish a regulatory hierarchy of HOX control of LMO2 in normal development, which can be resurrected during leukaemia development. Redeployment of embryonic regulatory hierarchies in an aberrant context is likely to be relevant in human pathologies beyond the specific example of ectopic activation of LMO2. PMID:23708655

  16. Production of stable GFP-expressing neural cells from P19 embryonal carcinoma stem cells.

    PubMed

    Shirzad, Hedayatollah; Esmaeili, Fariba; Bakhshalizadeh, Shabnam; Ebrahimie, Marzieh; Ebrahimie, Esmaeil

    2017-04-01

    Murine P19 embryonal carcinoma (EC) cells are convenient to differentiate into all germ layer derivatives. One of the advantages of P19 cells is that the exogenous DNA can be easily inserted into them. Here, at the first part of this study, we generated stable GFP-expressing P19 cells (P19-GFP(+)). FACS and western-blot analysis confirmed stable expression of GFP in the cells. We previously demonstrated the efficient induction of neuronal differentiation from mouse ES and EC cells by application of a neuroprotective drug, selegiline In the second part of this study selegiline was used to induce differentiation of P19-GFP(+) into stable GFP-expressing neuron-like cells. Cresyl violet staining confirmed neuronal morphology of the differentiated cells. Furthermore, real-time PCR and immunoflourescence approved the expression of neuron specific markers. P19-GFP(+) cells were able to survive, migrate and integrated into host tissues when transplanted to developing chick embryo CNS. The obtained live GFP-expressing cells can be used as an abundant source of developmentally pluripotent material for transplantation studies, investigating the cellular and molecular aspects of early differentiation.

  17. Molecular characterization and expression analysis of ADAM12 during chicken embryonic development.

    PubMed

    Lin, Juntang; Luo, Jiankai; Redies, Christoph

    2010-12-01

    ADAM12 is a member of the disintegrin and metalloprotease (ADAM) family of molecules, which consist of multiple domains. ADAM12 is involved in different physiological and pathological processes. In the present study, full-length sequences of two chicken ADAM12 isoforms were cloned and identified by reverse transcription-polymerase chain reaction (RT-PCR), rapid amplification of cDNA ends methods and bioinformatics analysis. The long isoform consists of all domains characteristic for ADAMs and is strongly expressed in different tissues, whereas the short isoform lacks large parts of the metalloprotease and disintegrin domains and is only expressed weakly. Results from semi-quantitative RT-PCR show that the complete ADAM12 is stably expressed throughout chicken embryonic development, while the short isoform is only regionally detectable in the lung and brain. Results from in situ hybridization show that chicken ADAM12 is expressed exclusively in tissues and organs derived from the neural tube, the neural crest or the mesoderm, with a highly regulated spatiotemporal expression pattern. Our data confirm and extend studies of ADAM12 in other species, and suggest that ADAM12 may play a role in the development of several organs, including the formation of feather buds.

  18. Induced expression of Fndc5 significantly increased cardiomyocyte differentiation rate of mouse embryonic stem cells.

    PubMed

    Rabiee, Farzaneh; Forouzanfar, Mahboobeh; Ghazvini Zadegan, Faezeh; Tanhaei, Somayeh; Ghaedi, Kamran; Motovali Bashi, Majid; Baharvand, Hossein; Nasr-Esfahani, Mohammad Hossein

    2014-11-10

    Fibronectin type III domain-containing 5 protein (Fndc5) is an exercise hormone and its transcript profile in mouse showed high degree of expression in heart, skeletal muscle and brain. Our previous studies indicated a significant increase (approximately 10 fold) in mRNA level of Fndc5 when embryonic stem cells were differentiated into beating bodies. As a step closer to identify the involvement of Fndc5 in the process of cardiomyocyte differentiation, we generated a stably inducible transduced mouse embryonic stem cell (mESC) line that overexpressed Fndc5 following Doxycycline induction. Our results indicated that the overexpression of Fndc5 during spontaneous cardiac differentiation significantly increased not only at RNA levels for mesodermal markers but also at the transcriptional levels for cardiac progenitor and cardiac genes. These data suggest that Fndc5 may be involved in cardiomyocyte differentiation. Therefore, a new hope will be arisen for potential application of this myokine for regeneration of damaged cardiac tissues especially in cardiac failure.

  19. Mammary phenotypic expression induced in epidermal cells by embryonic mammary mesenchyme.

    PubMed

    Cunha, G R; Young, P; Christov, K; Guzman, R; Nandi, S; Talamantes, F; Thordarson, G

    1995-01-01

    The goal of this research was to establish methods for inducing mammary epithelial differentiation from nonmammary epithelium. For this purpose, mid-ventral or dorsal epidermis (skin epithelium; SKE) from 13-day rat or mouse embryos was associated with 13-day embryonic mouse mammary mesenchyme (mammary gland mesenchyme; MGM) (mouse MGM+rat or mouse SKE). The resultant MGM+SKE recombinants as well as controls (homotypic mouse mammary recombinants, homotypic mouse skin recombinants and mouse mammary mesenchyme by itself) were grafted under the renal capsule of syngeneic or athymic female nude mouse hosts. Most female hosts were induced to undergo lactogenesis by grafting an adult pituitary which elicited a state of hyperprolactinemia. Tissue recombinants of mouse MGM+rat or mouse SKE grown for 1 month in vivo formed a hair-bearing keratinized skin from which mammary ductal structures extended into the mesenchyme. The ducts were composed of columnar luminal epithelial cells as well as basal, actin-positive myoepithelial cells. When grown in pituitary-grafted hosts, the ductal epithelial cells expressed casein and alpha-lactalbumin as judged by immunocytochemistry. The expression of caseins in MGM+SKE recombinants was confirmed by Western blot. The epithelial cells in mouse MGM+rat SKE recombinants expressing milk proteins were shown to be rat cells while the surrounding connective tissue was composed of mouse cells based upon staining with Hoechst dye 33258. Using mammary-specific markers, these studies confirmed the earlier morphological studies of Propper and unequivocally demonstrated for the first time that embryonic mammary mesenchyme can induce morphological and functional mammary differentiation from nonmammary epithelium.

  20. Embryonic development and implantation related gene expression of oocyte reconstructed with bovine trophoblast cells.

    PubMed

    Saadeldin, Islam M; Choi, WooJae; Roibas Da Torre, Bego; Kim, BongHan; Lee, ByeongChun; Jang, Goo

    2012-01-01

    The temporal progressive increase of interferon tau (IFNτ) secretion from the bovine trophoblast is a major embryonic signal of establishing pregnancy. Here, we cultured and isolated bovine trophoblast cells (BTs) from IVM/IVF oocytes and in vitro produced blastocysts, used them, for the first time, as donor cells for nuclear transfer and compared them with adult fibroblasts (AFs) as donor cells. BTs were reprogrammed in enucleated oocytes to blastocysts with similar efficiency to AFs (14.5% and 15.6% respectively, P≤0.05). The levels of IFNτ, CDX2 and OCT4 expression in IVF-, BT- and AF-derived blastocysts were analyzed using reverse transcription polymerase chain reaction and reverse transcription quantitative polymerase chain reaction (RT-PCR and RT-qPCR). IVF-produced embryos were used as reference to analyze the linear progressive expression of IFNτ through mid, expanded and hatching blastocysts. RT-PCR and RT-qPCR studies showed that IFNτ expression was higher in BT-derived blastocysts than IVF- and AF-derived blastocysts. Both IVF- and BT-derived blastocysts showed a progressive increase in IFNτ expression as blastocyst development advanced when it compared with AF-derived blastocysts. OCT4 was inversely related with IFNτ expression, while CDX2 was found to be directly related with IFNτ temporal expression. Persistence of high expression of IFNτ and CDX2 was found to be higher in BT-derived embryos than in IVF- or AF-derived embryos. In conclusion, using BTs expressing IFNτ as donor cells for bovine NT could be a useful tool for understanding the IFNτ genetics and epigenetics.

  1. Differential gene expression in mouse spermatogonial stem cells and embryonic stem cells

    PubMed Central

    Bai, Yinshan; Feng, Meiying; Liu, Shanshan; Wei, Hengxi; Li, Li; Zhang, Xianwei; Shen, Chao; Zhang, Shouquan; Ma, Ningfang

    2016-01-01

    Mouse spermatogonial stem cells (mSSCs) may be reprogrammed to become pluripotent stem cells under in vitro culture conditions, due to epigenetic modifications, which are closely associated with the expression of transcription factors and epigenetic factors. Thus, this study was conducted to compare the gene expression of transcription factors and epigenetic factors in mSSCs and mouse embryonic stem cells (mESCs). Firstly, the freshly isolated mSSCs [mSSCs (f)] were enriched by magnetic-activated cell sorting with Thy1.2 (CD90.2) microbeads, and the typical morphological characteristics were maintained under in vitro culture conditions for over 5 months to form long-term propagated mSSCs [mSSCs (l)]. These mSSCs (l) expressed pluripotency-associated genes and were induced to differentiate into sperm. Our findings indicated that the mSSCs (l) expressed high levels of the transcription factors, Lin28 and Prmt5, and the epigenetic factors, Tet3, Parp1, Max, Tert and Trf1, in comparison with the mESCs, with the levels of Prmt5, Tet3, Parp1 and Tert significantly higher than those in the mESCs. There was no significant difference in Kdm2b expression between mSSCs (l) and mESCs. Furthermore, the gene expression of N-Myc, Dppa2, Tbx3, Nr5a2, Prmt5, Tet3, Parp1, Max, Tert and Trf1 in the mSSCs (l) was markedly higher in comparison to that in the mSSCs (f). Collectively, our results suggest that the mSSCs and the mESCs displayed differential gene expression profiles, and the mSSCs possessed the potential to acquire pluripotency based on the high expression of transcription factors and epigenetic factors. These data may provide novel insights into the reprogramming mechanism of mSSCs. PMID:27353491

  2. Increasing doublecortin expression promotes migration of human embryonic stem cell-derived neurons.

    PubMed

    Filipovic, Radmila; Santhosh Kumar, Saranya; Fiondella, Chris; Loturco, Joseph

    2012-09-01

    Human embryonic stem cell-derived neuronal progenitors (hNPs) provide a potential source for cellular replacement following neurodegenerative diseases. One of the greatest challenges for future neuron replacement therapies will be to control extensive cell proliferation and stimulate cell migration of transplanted cells. The doublecortin (DCX) gene encodes the protein DCX, a microtubule-associated protein essential for the migration of neurons in the human brain. In this study, we tested whether increasing the expression of DCX in hNPs would favorably alter their proliferation and migration. Migration and proliferation of hNPs was compared between hNPs expressing a bicistronic DCX/IRES-GFP transgene and those expressing a green fluorescent protein (GFP) transgene introduced by piggyBac-mediated transposition. The DCX-transfected hNPs showed a significant decrease in their proliferation and migrated significantly further on two different substrates, Matrigel and brain slices. Additionally, a dense network of nestin-positive (+) and vimentin+ fibers were found to extend from neurospheres transplanted onto brain slices, and this fiber growth was increased from neurospheres containing DCX-transfected hNPs. In summary, our results show that increased DCX expression inhibits proliferation and promotes migration of hNPs.

  3. Comprehensive Gene Expression Analysis of Human Embryonic Stem Cells during Differentiation into Neural Cells

    PubMed Central

    Fathi, Ali; Hatami, Maryam; Hajihosseini, Vahid; Fattahi, Faranak; Kiani, Sahar; Baharvand, Hossein; Salekdeh, Ghasem Hosseini

    2011-01-01

    Global gene expression analysis of human embryonic stem cells (hESCs) that differentiate into neural cells would help to further define the molecular mechanisms involved in neurogenesis in humans. We performed a comprehensive transcripteome analysis of hESC differentiation at three different stages: early neural differentiation, neural ectoderm, and differentiated neurons. We identified and validated time-dependent gene expression patterns and showed that the gene expression patterns reflect early ESC differentiation. Sets of genes are induced in primary ectodermal lineages and then in differentiated neurons, constituting consecutive waves of known and novel genes. Pathway analysis revealed dynamic expression patterns of members of several signaling pathways, including NOTCH, mTOR and Toll like receptors (TLR), during neural differentiation. An interaction network analysis revealed that the TGFβ family of genes, including LEFTY1, ID1 and ID2, are possible key players in the proliferation and maintenance of neural ectoderm. Collectively, these results enhance our understanding of the molecular dynamics underlying neural commitment and differentiation. PMID:21829537

  4. Real-time PCR quantification of gene expression in embryonic mouse tissue.

    PubMed

    Villalon, Eric; Schulz, David J; Waters, Samuel T

    2014-01-01

    The Gbx family of transcription factors consists of two closely related proteins GBX1 and GBX2. A defining feature of the GBX family is a highly conserved 60 amino acid DNA-binding domain, which differs by just two amino acids. Gbx1 and Gbx2 are co-expressed in several areas of the developing central nervous system including the forebrain, anterior hindbrain, and spinal cord, suggesting the potential for genetic redundancy. However, there is a spatiotemporal difference in expression of Gbx1 and Gbx2 in the forebrain and spinal cord. Gbx2 has been shown to play a critical role in positioning the midbrain/hindbrain boundary and developing anterior hindbrain, whereas gene-targeting experiments in mice have revealed an essential function for Gbx1 in the spinal cord for normal locomotion. To determine if Gbx2 could potentially compensate for a loss of Gbx1 in the developing spinal cord, we performed real-time PCR to examine levels of Gbx2 expression in Gbx1(-/-) spinal cord at embryonic day (E) 13.5, a developmental stage when Gbx2 is rapidly downregulated. We demonstrate that Gbx2 expression is elevated in the spinal cord of Gbx1(-/-) embryos.

  5. Transient expression of GAP-43 in nonneuronal cells of the embryonic chicken limb.

    PubMed

    Stocker, K M; Baizer, L; Ciment, G

    1992-02-01

    Growth associated protein (GAP)-43 is a membrane-bound phosphoprotein expressed in neurons and is particularly abundant during periods of axonal outgrowth in development and regeneration of the nervous system. In previous work, we cloned a full-length chicken GAP-43 cDNA and described the expression of its corresponding mRNA during early development of the chicken nervous system. We report here that the GAP-43 mRNA is also expressed transiently in developing limbs of chicken embryos, which contain axons of spinal cord and dorsal root ganglion neurons, but do not contain neuronal cell bodies. GAP-43 mRNA was first detectable by RNA blot analysis in limbs from Embryonic Day 5 (E5) embryos, reached maximal levels between E6 and E8, and diminished by E10. In situ hybridization analysis showed that the GAP-43 mRNA was localized in distal regions of developing limbs and was particularly abundant in the mesenchyme surrounding the digital cartilage. In some regions of the limb, GAP-43 immunoreactivity colocalized in cells that were also immunoreactive for meromyosin, a muscle-specific marker. These data suggest that both GAP-43 mRNA and the protein are expressed in nonneuronal cells of the developing limb, some of which may be part of the muscle cell lineage.

  6. The importance of HLA-G expression in embryos, trophoblast cells, and embryonic stem cells.

    PubMed

    Rizzo, Roberta; Vercammen, Martine; van de Velde, Hilde; Horn, Peter A; Rebmann, Vera

    2011-02-01

    The nonclassical HLA-G molecule is a trophoblast-specific molecule present in almost every pregnancy. It differs from classical HLA class I molecules by the low degree of allelic variants and the high diversity of protein structures. HLA-G is reported to be a tolerogenic molecule that acts on cells of both innate and adaptive immunity. At the maternal-fetal interface HLA-G seems to be responsible largely for the reprogramming of local maternal immune response. This review will focus on the HLA-G gene expression profile in pregnancy, in preimplantation embryos, and in human embryonic stem cells with emphasis on the structural diversity of the HLA-G protein and its potential functional and diagnostic implications.

  7. CP27 affects viability, proliferation, attachment and gene expression in embryonic fibroblasts.

    PubMed

    Luan, X; Diekwisch, T G H

    2002-08-01

    CP27 is a gene that has been cloned from an E11 early embryonic library and has been suggested to mediate early organogenesis (Diekwisch et al., 1999, Gene 235, 19). We have hypothesized that CP27 exhibits its effects on organogenesis by affecting individual cell function. Based on the CP27 expression pattern we have selected the CP27 expressing embryonic fibroblast cell line BALB/c 3T3 to determine the effects of CP27 on cell function. CP27 loss of function strategies were performed by adding 5, 12.5 or 25 micro g/ml anti-CP27 antibody to cultured BALB/c 3T3 cells and comparing the results to controls in which identical concentrations of rabbit serum were added to the culture medium. Other controls included an antibody against another extracellular matrix protein amelogenin (negative control) and anti-CP27 antibodies directed against other areas of the CP27 molecule (positive control). Following cell culture, cell viability, apoptosis, cell proliferation, cell shape, cellular attachment and fibronectin matrix production were assayed using MTT colourimetric assay, BrdU staining, morphometry, immunostaining and western blot analysis. Block of CP27 function using an antibody strategy resulted in the following significant changes: (i) reduced viability, (ii) increased number of apoptotic cells, (iii) reduced proliferation, (iv) alterations in cell shape, (v) loss of attachment, and (vi) reduction in fibronectin matrix production. There was also a redistribution in fibronectin matrix organization demonstrated by immunohistochemistry. We conclude that CP27 plays an important role in the maintance of normal cell function and that CP27 block leads to significant changes in cellular behaviour.

  8. ELT-3: A Caenorhabditis elegans GATA factor expressed in the embryonic epidermis during morphogenesis.

    PubMed

    Gilleard, J S; Shafi, Y; Barry, J D; McGhee, J D

    1999-04-15

    We have identified a gene encoding a new member of the Caenorhabditis elegans GATA transcription factor family, elt-3. The predicted ELT-3 polypeptide contains a single GATA-type zinc finger (C-X2-C-X17-C-X2-C) along with a conserved adjacent basic region. elt-3 mRNA is present in all stages of C. elegans development but is most abundant in embryos. Reporter gene analysis and antibody staining show that elt-3 is first expressed in the dorsal and ventral hypodermal cells, and in hypodermal cells of the head and tail, immediately after the final embryonic cell division that gives rise to these cells. No expression is seen in the lateral hypodermal (seam) cells. elt-3 expression is maintained at a constant level in the epidermis until the 2(1/2)-fold stage of development, after which reporter gene expression declines to a low level and endogenous protein can no longer be detected by specific antibody. A second phase of elt-3 expression in cells immediately anterior and posterior to the gut begins in pretzel-stage embryos. elt-1 and lin-26 are two genes known to be important in specification and maintenance of hypodermal cell fates. We have found that elt-1 is required for the formation of most, but not all, elt-3-expressing cells. In contrast, lin-26 function does not appear necessary for elt-3 expression. Finally, we have characterised the candidate homologue of elt-3 in the nematode Caenorhabditis briggsae. Many features of the elt-3 genomic and transcript structure are conserved between the two species, suggesting that elt-3 is likely to perform an evolutionarily significant function during development.

  9. CHANGES IN EXPRESSION OF PHOSPHORYLATED AND TOTAL ERK 1/2 IN TCDD-EXPOSED EMBRYONIC MOUSE PALATES

    EPA Science Inventory

    CHANGES IN EXPRESSION OF PHOSPHORYLATED AND TOTAL ERK1/2 IN TCDD-EXPOSED EMBRYONIC MOUSE PALATES.
    C Wolf and B Abbott, USEPA, ORD, NHEERL, Reproductive Toxicology Division, Research Triangle Park, NC 27711

    2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induces cleft palate...

  10. Expression patterns of ubiquitin conjugating enzyme UbcM2 during mouse embryonic development.

    PubMed

    Yanjiang, Xing; Hongjuan, He; Tiantian, Gu; Yan, Zhang; Zhijun, Huang; Qiong, Wu

    2012-01-01

    Ubiquitin conjugating enzyme UbcM2 (Ubiquitin-conjugating enzymes from Mice, the number reveals the identification order) has been implicated in many critical processes, such like growth-inhibiting, mediating cell proliferation and regulation of some transcription factor, but the expression profile during mouse embryo development remains unclear. Hereby, during mid-later embryonic stage, the expression patterns of UbcM2 were examined using in situ hybridization and quantitative real-time PCR (qRT-PCR). The signals were significantly intense in central nervous system and skeletal system, weak in tongue, heart, lung, liver, and kidney. In the central nervous system, UbcM2 was principally expressed in thalamus, external germinal layer of cerebellum (EGL), mitral cell layer of olfactory bulb, hippocampus, marginal zone and ventricular zone of cerebral cortex, and spinal cord. In the skeletal system, UbcM2 was primarily expressed in proliferating cartilage. Furthermore, qRT-PCR analysis displayed that the expression of UbcM2 was ubiquitous at E15.5, most prominent in brain, weaker in lung liver and kidney, accompanied by the lowest level in tongue and heart. During brain development, the expression level of UbcM2 first ascended and then decreased from E12.5 to E18.5, the peak of which sustained starting at E14.5 until E16.5. Together, these results suggest that UbcM2 may play potential roles in the development of mouse diverse tissues and organs, particularly in the development of brain and skeleton.

  11. Expression of TGF-betas in the embryonic nervous system: analysis of interbalance between isoforms.

    PubMed

    Mecha, M; Rabadán, M A; Peña-Melián, A; Valencia, M; Mondéjar, T; Blanco, M J

    2008-06-01

    Transforming growth factor-beta (TGF-beta) is a family of growth factors with essential and multiple roles during embryonic development. In mammals, three isoforms (TGF-beta1, TGF-beta2, TGF-beta3) have been described. In the nervous system, the presence of TGF-beta1 has remained undetectable in other structures than meninges and choroids plexus, while TGF-beta2 and TGF-beta3 were considered as the neural members of the family. In the present study, we have analysed the expression pattern of the three isoforms in the neural tube, brain, and spinal cord during development in both mouse and chicken. The data reveal specific patterns for each isoform. This work also shows that both TGF-beta1 and TGF-beta3 are expressed in neural crest cells. In addition, we demonstrate the existence of interbalance between TGF-beta1 and TGF-beta3 with possible functional implications, which, together with the expression of TGF-beta1 in the CNS, represents one of the most important contributions of this work.

  12. An Orthologous Epigenetic Gene Expression Signature Derived from Differentiating Embryonic Stem Cells Identifies Regulators of Cardiogenesis.

    PubMed

    Busser, Brian W; Lin, Yongshun; Yang, Yanqin; Zhu, Jun; Chen, Guokai; Michelson, Alan M

    2015-01-01

    Here we used predictive gene expression signatures within a multi-species framework to identify the genes that underlie cardiac cell fate decisions in differentiating embryonic stem cells. We show that the overlapping orthologous mouse and human genes are the most accurate candidate cardiogenic genes as these genes identified the most conserved developmental pathways that characterize the cardiac lineage. An RNAi-based screen of the candidate genes in Drosophila uncovered numerous novel cardiogenic genes. shRNA knockdown combined with transcriptome profiling of the newly-identified transcription factors zinc finger protein 503 and zinc finger E-box binding homeobox 2 and the well-known cardiac regulatory factor NK2 homeobox 5 revealed that zinc finger E-box binding homeobox 2 activates terminal differentiation genes required for cardiomyocyte structure and function whereas zinc finger protein 503 and NK2 homeobox 5 are required for specification of the cardiac lineage. We further demonstrated that an essential role of NK2 homeobox 5 and zinc finger protein 503 in specification of the cardiac lineage is the repression of gene expression programs characteristic of alternative cell fates. Collectively, these results show that orthologous gene expression signatures can be used to identify conserved cardiogenic pathways.

  13. Electrophysiological characterization of ionic transport by the retinal exchanger expressed in human embryonic kidney cells.

    PubMed Central

    Navanglone, A; Rispoli, G; Gabellini, N; Carafoli, E

    1997-01-01

    The retinal Na+:Ca2+, K+exchanger cDNA was transiently expressed in human embryonic kidney (HEK 293) cells by transfection with plasmid DNA. The correct targeting of the expressed protein to the plasma membrane was confirmed by immunocytochemistry. The reverse exchange offrent (Ca2+ imported per Na+ extruded) was measured in whole-cell voltage-clamp experiments after intracellular perfusion with Na+ (Na+i, 128 mM) and extracellular perfusion with Ca2+ (Ca2o+, 1 mM) and Ko+ (20 mM). As expected, the exchange current was suppressed by removing Ca2o+. Surprisingly, however, it was also abolished by increasing Na+o to almost abolish the Na+ gradient, and it was almost unaffected by the removal of Ko+. Apparently, then, at variance with the exchanger in the rod outer segment, the retinal exchanger expressed in 293 cells acts essentially as a Na+:Ca2+ exchanger and does not require K+ for its electrogenic activity. Images FIGURE 1 PMID:9199770

  14. Electrical coupling can prevent expression of adult-like properties in an embryonic neural circuit.

    PubMed

    Bem, Tiaza; Le Feuvre, Yves; Simmers, John; Meyrand, Pierre

    2002-01-01

    Electrical coupling is widespread in developing nervous systems and plays a major role in circuit formation and patterning of activity. In most reported cases, such coupling between rhythmogenic neurons tends to synchronize and enhance their oscillatory behavior, thereby producing monophasic rhythmic output. However, in many adult networks, such as those responsible for rhythmic motor behavior, oscillatory neurons are linked by synaptic inhibition to produce rhythmic output with multiple phases. The question then arises whether such networks are still able to generate multiphasic output in the early stage of development when electrical coupling is abundant. A suitable model for addressing this issue is the lobster stomatogastric nervous system (STNS). In the adult animal, the STNS consists of three discrete neural networks that are comprised of oscillatory neurons interconnected by reciprocal inhibition. These networks generate three distinct rhythmic motor patterns with large amplitude neuronal oscillations. By contrast, in the embryo the same neuronal population expresses a single multiphasic rhythm with small-amplitude oscillations. Recent findings have revealed that adult-like network properties are already present early in the embryonic system but are masked by an as yet unknown mechanism. Here we use computer simulation to test whether extensive electrical coupling may be involved in masking adult-like properties in the embryonic STNS. Our basic model consists of three different adult-like STNS networks that are built of relaxation oscillators interconnected by reciprocal synaptic inhibition. Individual model cells generate slow membrane potential oscillations without action potentials. The introduction of widespread electrical coupling between members of these networks dampens oscillation amplitudes and, at moderate coupling strengths, may coordinate neuronal activity into a single rhythm with different phases, which is strongly reminiscent of embryonic STNS

  15. Proteomic Analysis of the Ubiquitin Landscape in the Drosophila Embryonic Nervous System and the Adult Photoreceptor Cells

    PubMed Central

    Ramirez, Juanma; Martinez, Aitor; Lectez, Benoit; Lee, So Young; Franco, Maribel; Barrio, Rosa; Dittmar, Gunnar; Mayor, Ugo

    2015-01-01

    Background Ubiquitination is known to regulate physiological neuronal functions as well as to be involved in a number of neuronal diseases. Several ubiquitin proteomic approaches have been developed during the last decade but, as they have been mostly applied to non-neuronal cell culture, very little is yet known about neuronal ubiquitination pathways in vivo. Methodology/Principal Findings Using an in vivo biotinylation strategy we have isolated and identified the ubiquitinated proteome in neurons both for the developing embryonic brain and for the adult eye of Drosophila melanogaster. Bioinformatic comparison of both datasets indicates a significant difference on the ubiquitin substrates, which logically correlates with the processes that are most active at each of the developmental stages. Detection within the isolated material of two ubiquitin E3 ligases, Parkin and Ube3a, indicates their ubiquitinating activity on the studied tissues. Further identification of the proteins that do accumulate upon interference with the proteasomal degradative pathway provides an indication of the proteins that are targeted for clearance in neurons. Last, we report the proof-of-principle validation of two lysine residues required for nSyb ubiquitination. Conclusions/Significance These data cast light on the differential and common ubiquitination pathways between the embryonic and adult neurons, and hence will contribute to the understanding of the mechanisms by which neuronal function is regulated. The in vivo biotinylation methodology described here complements other approaches for ubiquitome study and offers unique advantages, and is poised to provide further insight into disease mechanisms related to the ubiquitin proteasome system. PMID:26460970

  16. Differences in egg deposition of corticosterone and embryonic expression of corticosterone metabolic enzymes between slow and fast growing broiler chickens.

    PubMed

    Ahmed, Abdelkareem A; Ma, Wenqiang; Guo, Feng; Ni, Yingdong; Grossmann, Roland; Zhao, Ruqian

    2013-01-01

    Glucocorticoids (GCs) are vital for embryonic development and their bioactivity is regulated by the intracellular metabolism involving 11β-hydroxysteroid dehydrogenases (11β-HSDs) and 20-hydroxysteroid dehydrogenase (20-HSD). Here we sought to reveal the differences in egg deposition of corticosterone and embryonic expression of corticosterone metabolic enzymes between slow and fast growing broiler chickens (Gallus gallus). Eggs of fast-growing breed contained significantly higher (P<0.05) corticosterone in the yolk and albumen, compared with that of a slow-growing breed. 11β-HSD1 and 11β-HSD2 were expressed in relatively higher abundance in the liver, kidney and intestine, following similar tissue-specific ontogenic patterns. In the liver, expression of both 11β-HSD1 and 11β-HSD2 was upregulated (P<0.05) towards hatching, yet 20-HSD displayed distinct pattern showing a significant decrease (P<0.05) on posthatch day 1 (D1). Hepatic mRNA expression of 11β-HSD1 and 11β-HSD2 was significantly higher in fast-growing chicken embryos at all the embryonic stages investigated and so was the hepatic protein content on embryonic day of 14 (E14) for 11β-HSD1 and on E14 and D1 for 11β-HSD2. 20-HSD mRNA was higher in fast-growing chicken embryos only on E14. Our data provide the first evidence that egg deposition of corticosterone, as well as the hepatic expression of glucocorticoid metabolic enzymes, differs between fast-growing and slow-growing chickens, which may account, to some extent, for the breed disparities in embryonic development.

  17. Kisspeptin Activates Ankrd 26 Gene Expression in Migrating Embryonic GnRH Neurons.

    PubMed

    Soga, Tomoko; Lim, Wei Ling; Khoo, Alan Soo-Beng; Parhar, Ishwar S

    2016-01-01

    Kisspeptin, a newly discovered neuropeptide, regulates gonadotropin-releasing hormone (GnRH). Kisspeptins are a large RF-amide family of peptides. The kisspeptin coded by KiSS-1 gene is a 145-amino acid protein that is cleaved to C-terminal peptide kisspeptin-10. G-protein-coupled receptor 54 (GPR54) has been identified as a kisspeptin receptor, and it is expressed in GnRH neurons and in a variety of cancer cells. In this study, enhanced green fluorescent protein (EGFP) labeled GnRH cells with migratory properties, which express GPR54, served as a model to study the effects of kisspeptin on cell migration. We monitored EGFP-GnRH neuronal migration in brain slide culture of embryonic day 14 transgenic rat by live cell imaging system and studied the effects of kisspeptin-10 (1 nM) treatment for 36 h on GnRH migration. Furthermore, to determine kisspeptin-induced molecular pathways related with apoptosis and cytoskeletal changes during neuronal migration, we studied the expression levels of candidate genes in laser-captured EGFP-GnRH neurons by real-time PCR. We found that there was no change in the expression level of genes related to cell proliferation and apoptosis. The expression of ankyrin repeat domain-containing protein (ankrd) 26 in EGFP-GnRH neurons was upregulated by the exposure to kisspeptin. These studies suggest that ankrd 26 gene plays an unidentified role in regulating neuronal movement mediated by kisspeptin-GPR54 signaling, which could be a potential pathway to suppress cell migration.

  18. Kisspeptin Activates Ankrd 26 Gene Expression in Migrating Embryonic GnRH Neurons

    PubMed Central

    Soga, Tomoko; Lim, Wei Ling; Khoo, Alan Soo-Beng; Parhar, Ishwar S.

    2016-01-01

    Kisspeptin, a newly discovered neuropeptide, regulates gonadotropin-releasing hormone (GnRH). Kisspeptins are a large RF-amide family of peptides. The kisspeptin coded by KiSS-1 gene is a 145-amino acid protein that is cleaved to C-terminal peptide kisspeptin-10. G-protein-coupled receptor 54 (GPR54) has been identified as a kisspeptin receptor, and it is expressed in GnRH neurons and in a variety of cancer cells. In this study, enhanced green fluorescent protein (EGFP) labeled GnRH cells with migratory properties, which express GPR54, served as a model to study the effects of kisspeptin on cell migration. We monitored EGFP–GnRH neuronal migration in brain slide culture of embryonic day 14 transgenic rat by live cell imaging system and studied the effects of kisspeptin-10 (1 nM) treatment for 36 h on GnRH migration. Furthermore, to determine kisspeptin-induced molecular pathways related with apoptosis and cytoskeletal changes during neuronal migration, we studied the expression levels of candidate genes in laser-captured EGFP–GnRH neurons by real-time PCR. We found that there was no change in the expression level of genes related to cell proliferation and apoptosis. The expression of ankyrin repeat domain-containing protein (ankrd) 26 in EGFP–GnRH neurons was upregulated by the exposure to kisspeptin. These studies suggest that ankrd 26 gene plays an unidentified role in regulating neuronal movement mediated by kisspeptin–GPR54 signaling, which could be a potential pathway to suppress cell migration. PMID:26973595

  19. Embryonic stem cell gene expression signatures in the canine mammary tumor: a bioinformatics approach.

    PubMed

    Zamani-Ahmadmahmudi, Mohamad

    2016-08-01

    Canine breast cancer was considered as an ideal model of comparative oncology for the human breast cancer, as there is significant overlap between biological and clinical characteristics of the human and canine breast cancer. We attempt to clarify expression profile of the embryonic stem cell (ES) gene signatures in canine breast cancer. Using microarray datasets (GSE22516 and GSE20718), expression of the three major ES gene signatures (modules or gene-sets), including Myc, ESC-like, and PRC modules, was primarily analyzed through Gene-Set Enrichment Analysis (GSEA) method in tumor and healthy datasets. For confirmation of the primary results, an additional 13 ES gene-sets which were categorized into four groups including ES expressed (ES exp1 and ES exp2), NOS targets (Nanog targets, Oct4 targets, Sox2 targets, NOS targets, and NOS TFs), Polycomb targets (Suz12 targets, Eed targets, H3K27 bound, and PRC2 targets), and Myc targets (Myc targets1, and Myc targets2) were tested in the tumor and healthy datasets. Our results revealed that there is a valuable overlap between canine and human breast cancer ES gene-sets expression profile, where Myc and ESC-like modules were up-regulated and PRC module was down-regulated in metastatic canine mammary gland tumors. Further analysis of the secondary gene-sets indicated overexpression of the ES expressed, NOS targets (Nanog targets, Oct4 targets, Sox2 targets, and NOS targets), and Myc targets and underexpression of the Polycomb targets in metastatic canine breast cancer.

  20. Inference of the Xenopus tropicalis embryonic regulatory network and spatial gene expression patterns

    PubMed Central

    2014-01-01

    Background During embryogenesis, signaling molecules produced by one cell population direct gene regulatory changes in neighboring cells and influence their developmental fates and spatial organization. One of the earliest events in the development of the vertebrate embryo is the establishment of three germ layers, consisting of the ectoderm, mesoderm and endoderm. Attempts to measure gene expression in vivo in different germ layers and cell types are typically complicated by the heterogeneity of cell types within biological samples (i.e., embryos), as the responses of individual cell types are intermingled into an aggregate observation of heterogeneous cell types. Here, we propose a novel method to elucidate gene regulatory circuits from these aggregate measurements in embryos of the frog Xenopus tropicalis using gene network inference algorithms and then test the ability of the inferred networks to predict spatial gene expression patterns. Results We use two inference models with different underlying assumptions that incorporate existing network information, an ODE model for steady-state data and a Markov model for time series data, and contrast the performance of the two models. We apply our method to both control and knockdown embryos at multiple time points to reconstruct the core mesoderm and endoderm regulatory circuits. Those inferred networks are then used in combination with known dorsal-ventral spatial expression patterns of a subset of genes to predict spatial expression patterns for other genes. Both models are able to predict spatial expression patterns for some of the core mesoderm and endoderm genes, but interestingly of different gene subsets, suggesting that neither model is sufficient to recapitulate all of the spatial patterns, yet they are complementary for the patterns that they do capture. Conclusion The presented methodology of gene network inference combined with spatial pattern prediction provides an additional layer of validation to

  1. Analysis of transcription factor Stk40 expression and function during mouse pre-implantation embryonic development.

    PubMed

    Zhang, Junqiang; Zhang, Juanjuan; Zhao, Chun; Shen, Rong; Guo, Xirong; Li, Chaojun; Ling, Xiufeng; Liu, Chang

    2014-02-01

    Determining the molecular mechanisms in the regulation of early embryonic development is crucial for assisted reproductive technology clinical applications. Serine/threonine protein kinase 40 (Stk40) is a member of the serine/threonine kinase family. It is essential in diverse signaling pathways associated with a wide range of cellular activities, including proliferation, differentiation, survival and apoptosis. However, its involvement and molecular mechanisms in pre‑implantation embryonic development have not been well‑defined. In the present study, it was demonstrated that Stk40 was involved in the development of mouse pre‑implantation embryos. Immunofluorescence and confocal microscopy analyses showed that Stk40 was equally expressed in the nuclei and cytoplasm during all stages of pre‑implantation mouse embryos of imprinting control region mice. Reverse transcription‑polymerase chain reaction showed a significantly higher transcription rate of Stk40 mRNA in the two‑cell stage. The results demonstrated that Stk40 downregulation by microinjection of small interfering RNA into the mouse zygote markedly decreased the blastulation compared with that in the control (Stk40i‑1 vs. control: 65.2% and 77.0%, P<0.05 and Stk40i‑2 vs. control: 49.8% and 70.1%, respectively, P<0.05). In addition, silencing of Stk40 significantly increased the transcription rate of reticulocalbin‑2, whereas that of the homeobox protein, Cdx2, was decreased. In conclusion, the results suggested that Stk40 may be critical in the development of pre‑implantation embryos.

  2. Concentration-dependent gene expression responses to flusilazole in embryonic stem cell differentiation cultures

    SciTech Connect

    Dartel, Dorien A.M. van; Pennings, Jeroen L.A.; Fonteyne, Liset J.J. de la; Brauers, Karen J.J.; Claessen, Sandra; Delft, Joost H. van; Kleinjans, Jos C.S.; Piersma, Aldert H.

    2011-03-01

    The murine embryonic stem cell test (EST) is designed to evaluate developmental toxicity based on compound-induced inhibition of embryonic stem cell (ESC) differentiation into cardiomyocytes. The addition of transcriptomic evaluation within the EST may result in enhanced predictability and improved characterization of the applicability domain, therefore improving usage of the EST for regulatory testing strategies. Transcriptomic analyses assessing factors critical for risk assessment (i.e. dose) are needed to determine the value of transcriptomic evaluation in the EST. Here, using the developmentally toxic compound, flusilazole, we investigated the effect of compound concentration on gene expression regulation and toxicity prediction in ESC differentiation cultures. Cultures were exposed for 24 h to multiple concentrations of flusilazole (0.54-54 {mu}M) and RNA was isolated. In addition, we sampled control cultures 0, 24, and 48 h to evaluate the transcriptomic status of the cultures across differentiation. Transcriptomic profiling identified a higher sensitivity of development-related processes as compared to cell division-related processes in flusilazole-exposed differentiation cultures. Furthermore, the sterol synthesis-related mode of action of flusilazole toxicity was detected. Principal component analysis using gene sets related to normal ESC differentiation was used to describe the dynamics of ESC differentiation, defined as the 'differentiation track'. The concentration-dependent effects on development were reflected in the significance of deviation of flusilazole-exposed cultures from this transcriptomic-based differentiation track. Thus, the detection of developmental toxicity in EST using transcriptomics was shown to be compound concentration-dependent. This study provides further insight into the possible application of transcriptomics in the EST as an improved alternative model system for developmental toxicity testing.

  3. CD44 in Differentiated Embryonic Stem Cells: Surface Expression and Transcripts Encoding Multiple Variants

    PubMed Central

    Haegel, Hélène; Dierich, Andrée

    1994-01-01

    Expression of the surface-adhesion molecule CD44 was investigated during the in vitro differentiation of the embryonic stem (ES) cell line D3. By immunofluorescence analysis, totipotent, undifferentiated ES cells did not show surface expression of CD44, although two transcripts of approximately 1.6 and 3.3 kb were detected on Northern blots. Following 1 week of differentiation in either suspension or substrate-attached cultures, CD44 appeared on the surface of some D3 cells, and synthesis of an additional 4.5 kb mRNA species was detected on Northern blots. At this stage, at least three distinct transcripts encoding CD44 variants were induced within the cultures, resulting from alternative splicing of additional exons in the variable domains of CD44. From PCR analysis, they all appeared to contain the variable exon v10, and two of them in addition contained v6. Taken together, these results suggest that CD44 may play a role in cell migration and adhesion in the early development of the mouse embryo. PMID:7542511

  4. Novel embryonic stem cells expressing tdKaede protein photoconvertible from green to red fluorescence.

    PubMed

    Shigematsu, Yoko; Yoshida, Naoki; Miwa, Yoshihiro; Mizobuti, Atsushi; Suzuki, Yuko; Tanimoto, Yoko; Takahashi, Satoru; Kunita, Satoshi; Sugiyama, Fumihiro; Yagami, Ken-Ichi

    2007-10-01

    Kaede protein is a photoconvertible tracer that emits green fluorescence after synthesis, which changes to stable red fluorescence upon irradiation with violet or UV illumination. This color-change characteristic is a very effective means of optically marking living cells of interest. We established novel embryonic stem (ES) cell lines, B6KED-1 and -2, from C57BL/6J transgenic mouse blastocysts ubiquitously expressing tandem dimeric Kaede (tdKaede) protein. Undifferentiated B6KED-1 and -2 cells showed bright green fluorescence and mRNAs of pluripotent marker genes. Photoconversion of tdKaede protein in undifferentiated and differentiated B6KED cells in vitro occurred upon short-term UV irradiation. B6KED cells completely generated ES cell-derived females on transfer into tetraploid blastomeres. All organs showed strong green emission in the females derived completely from B6KED cells. These novel ES cell lines ubiquitously expressing photoconvertible Kaede protein, B6KED-1 and -2, are useful for basic research in developmental biology and regenerative medicine.

  5. Gene expression signatures defining fundamental biological processes in pluripotent, early, and late differentiated embryonic stem cells.

    PubMed

    Gaspar, John Antonydas; Doss, Michael Xavier; Winkler, Johannes; Wagh, Vilas; Hescheler, Jürgen; Kolde, Raivo; Vilo, Jaak; Schulz, Herbert; Sachinidis, Agapios

    2012-09-01

    Investigating the molecular mechanisms controlling the in vivo developmental program postembryogenesis is challenging and time consuming. However, the developmental program can be partly recapitulated in vitro by the use of cultured embryonic stem cells (ESCs). Similar to the totipotent cells of the inner cell mass, gene expression and morphological changes in cultured ESCs occur hierarchically during their differentiation, with epiblast cells developing first, followed by germ layers and finally somatic cells. Combination of high throughput -omics technologies with murine ESCs offers an alternative approach for studying developmental processes toward organ-specific cell phenotypes. We have made an attempt to understand differentiation networks controlling embryogenesis in vivo using a time kinetic, by identifying molecules defining fundamental biological processes in the pluripotent state as well as in early and the late differentiation stages of ESCs. Our microarray data of the differentiation of the ESCs clearly demonstrate that the most critical early differentiation processes occur at days 2 and 3 of differentiation. Besides monitoring well-annotated markers pertinent to both self-renewal and potency (capacity to differentiate to different cell lineage), we have identified candidate molecules for relevant signaling pathways. These molecules can be further investigated in gain and loss-of-function studies to elucidate their role for pluripotency and differentiation. As an example, siRNA knockdown of MageB16, a gene highly expressed in the pluripotent state, has proven its influence in inducing differentiation when its function is repressed.

  6. Monitoring Long Interspersed Nuclear Element 1 Expression During Mouse Embryonic Stem Cell Differentiation.

    PubMed

    Bodak, Maxime; Ciaudo, Constance

    2016-01-01

    Long Interspersed Elements-1 (LINE-1 or L1) are a class of transposable elements which account for almost 19 % of the mouse genome. This represents around 600,000 L1 fragments, among which it is estimated that 3000 intact copies still remain capable to retrotranspose and to generate deleterious mutation by insertion into genomic coding region. In differentiated cells, full length L1 are transcriptionally repressed by DNA methylation. However at the blastocyst stage, L1 elements are subject to a demethylation wave and able to be expressed and to be inserted into new genomic locations. Mouse Embryonic Stem Cells (mESCs) are pluripotent stem cells derived from the inner cell mass of blastocysts. Mouse ESCs can be maintained undifferentiated under controlled culture conditions or induced into the three primary germ layers, therefore they represent a suitable model to follow mechanisms involved in L1 repression during the process of differentiation of mESCs. This protocol presents how to maintain culture of undifferentiated mESCs, induce their differentiation, and monitor L1 expression at the transcriptional and translational levels. L1 transcriptional levels are assessed by real-time qRT-PCR performed on total RNA extracts using specific L1 primers and translation levels are measured by Western blot analysis of L1 protein ORF1 using a specific L1 antibody.

  7. Over-expression of HSP47 augments mouse embryonic stem cell smooth muscle differentiation and chemotaxis.

    PubMed

    Wong, Mei Mei; Yin, Xiaoke; Potter, Claire; Yu, Baoqi; Cai, Hao; Di Bernardini, Elisabetta; Xu, Qingbo

    2014-01-01

    In the recent decade, embryonic stem cells (ESC) have emerged as an attractive cell source of smooth muscle cells (SMC) for vascular tissue engineering owing to their unlimited self-renewal and differentiation capacities. Despite their promise in therapy, their efficacy is still hampered by the lack of definitive SMC differentiation mechanisms and difficulties in successful trafficking of the ESC towards a site of injury or target tissue. Heat shock protein 47 (HSP47) is a 47-kDa molecular chaperone that is required for the maturation of various types of collagen and has been shown to be a critical modulator of different pathological and physiological processes. To date, the role of HSP47 on ESC to SMC differentiation or ESC chemotaxis is not known and may represent a potential molecular approach by which ESC can be manipulated to increase their efficacy in clinic. We provide evidence that HSP47 is highly expressed during ESC differentiation into the SMC lineage and that HSP47 reduction results in an attenuation of the differentiation. Our experiments using a HSP47 plasmid transfection system show that gene over-expression is sufficient to induce ESC-SMC differentiation, even in the absence of exogenous stimuli. Furthermore, HSP47 over-expression in ESC also increases their chemotaxis and migratory responses towards a panel of chemokines, likely via the upregulation of chemokine receptors. Our findings provide direct evidence of induced ESC migration and differentiation into SMC via the over-expression of HSP47, thus identifying a novel approach of molecular manipulation that can potentially be exploited to improve stem cell therapy for vascular repair and regeneration.

  8. Hmga1 null mouse embryonic fibroblasts display downregulation of spindle assembly checkpoint gene expression associated to nuclear and karyotypic abnormalities

    PubMed Central

    Pierantoni, Giovanna Maria; Conte, Andrea; Rinaldo, Cinzia; Tornincasa, Mara; Gerlini, Raffaele; Valente, Davide; Izzo, Antonella; Fusco, Alfredo

    2016-01-01

    ABSTRACT The High Mobility Group A1 proteins (HMGA1) are nonhistone chromatinic proteins with a critical role in development and cancer. We have recently reported that HMGA1 proteins are able to increase the expression of spindle assembly checkpoint (SAC) genes, thus impairing SAC function and causing chromosomal instability in cancer cells. Moreover, we found a significant correlation between HMGA1 and SAC genes expression in human colon carcinomas. Here, we report that mouse embryonic fibroblasts null for the Hmga1 gene show downregulation of Bub1, Bub1b, Mad2l1 and Ttk SAC genes, and present several features of chromosomal instability, such as nuclear abnormalities, binucleation, micronuclei and karyotypic alterations. Interestingky, also MEFs carrying only one impaired Hmga1 allele present karyotypic alterations. These results indicate that HMGA1 proteins regulate SAC genes expression and, thereby, genomic stability also in embryonic cells. PMID:26889953

  9. Undifferentiated embryonic stem cells express ionotropic glutamate receptor mRNAs

    PubMed Central

    Pachernegg, Svenja; Joshi, Illah; Muth-Köhne, Elke; Pahl, Steffen; Münster, Yvonne; Terhag, Jan; Karus, Michael; Werner, Markus; Ma-Högemeier, Zhan-Lu; Körber, Christoph; Grunwald, Thomas; Faissner, Andreas; Wiese, Stefan; Hollmann, Michael

    2013-01-01

    Ionotropic glutamate receptors (iGluRs) do not only mediate the majority of excitatory neurotransmission in the vertebrate CNS, but also modulate pre- and postnatal neurogenesis. Most of the studies on the developmental role of iGluRs are performed on neural progenitors and neural stem cells (NSCs). We took a step back in our study by examining the role of iGluRs in the earliest possible cell type, embryonic stem cells (ESCs), by looking at the mRNA expression of the major iGluR subfamilies in undifferentiated mouse ESCs. For that, we used two distinct murine ES cell lines, 46C ESCs and J1 ESCs. Regarding 46C ESCs, we found transcripts of kainate receptors (KARs) (GluK2 to GluK5), AMPA receptors (AMPARs) (GluA1, GluA3, and GluA4), and NMDA receptors (NMDARs) (GluN1, and GluN2A to GluN2D). Analysis of 46C-derived cells of later developmental stages, namely neuroepithelial precursor cells (NEPs) and NSCs, revealed that the mRNA expression of KARs is significantly upregulated in NEPs and, subsequently, downregulated in NSCs. However, we could not detect any protein expression of any of the KAR subunits present on the mRNA level either in ESCs, NEPs, or NSCs. Regarding AMPARs and NMDARs, GluN2A is weakly expressed at the protein level only in NSCs. Matching our findings for iGluRs, all three cell types were found to weakly express pre- and postsynaptic markers of glutamatergic synapses only at the mRNA level. Finally, we performed patch-clamp recordings of 46C ESCs and could not detect any current upon iGluR agonist application. Similar to 46C ESCs, J1 ESCs express KARs (GluK2 to GluK5), AMPARs (GluA3), and NMDARs (GluN1, and GluN2A to GluN2D) at the mRNA level, but these transcripts are not translated into receptor proteins either. Thus, we conclude that ESCs do not contain functional iGluRs, although they do express an almost complete set of iGluR subunit mRNAs. PMID:24348335

  10. Chamber Specific Gene Expression Landscape of the Zebrafish Heart

    PubMed Central

    Singh, Angom Ramcharan; Sivadas, Ambily; Sabharwal, Ankit; Vellarikal, Shamsudheen Karuthedath; Jayarajan, Rijith; Verma, Ankit; Kapoor, Shruti; Joshi, Adita; Scaria, Vinod; Sivasubbu, Sridhar

    2016-01-01

    The organization of structure and function of cardiac chambers in vertebrates is defined by chamber-specific distinct gene expression. This peculiarity and uniqueness of the genetic signatures demonstrates functional resolution attributed to the different chambers of the heart. Altered expression of the cardiac chamber genes can lead to individual chamber related dysfunctions and disease patho-physiologies. Information on transcriptional repertoire of cardiac compartments is important to understand the spectrum of chamber specific anomalies. We have carried out a genome wide transcriptome profiling study of the three cardiac chambers in the zebrafish heart using RNA sequencing. We have captured the gene expression patterns of 13,396 protein coding genes in the three cardiac chambers—atrium, ventricle and bulbus arteriosus. Of these, 7,260 known protein coding genes are highly expressed (≥10 FPKM) in the zebrafish heart. Thus, this study represents nearly an all-inclusive information on the zebrafish cardiac transcriptome. In this study, a total of 96 differentially expressed genes across the three cardiac chambers in zebrafish were identified. The atrium, ventricle and bulbus arteriosus displayed 20, 32 and 44 uniquely expressing genes respectively. We validated the expression of predicted chamber-restricted genes using independent semi-quantitative and qualitative experimental techniques. In addition, we identified 23 putative novel protein coding genes that are specifically restricted to the ventricle and not in the atrium or bulbus arteriosus. In our knowledge, these 23 novel genes have either not been investigated in detail or are sparsely studied. The transcriptome identified in this study includes 68 differentially expressing zebrafish cardiac chamber genes that have a human ortholog. We also carried out spatiotemporal gene expression profiling of the 96 differentially expressed genes throughout the three cardiac chambers in 11 developmental stages and 6

  11. Phenotypic correction and stable expression of factor VIII in hemophilia A mice by embryonic stem cell therapy.

    PubMed

    Wang, J J; Kuang, Y; Zhang, L L; Shen, C L; Wang, L; Lu, S Y; Lu, X B; Fei, J; Gu, M M; Wang, Z G

    2013-05-13

    Hereditary deficiency of factor VIII (FVIII) leads to hemophilia A, a severe X-linked bleeding disorder. Current therapies include fixed-dose FVIII prophylaxis, factor replacement therapy, and most recently, gene therapy. Prophylaxis and FVIII replacement therapies are limited by incomplete efficacy, high cost, restricted availability, and development of neutralizing antibodies in chronically treated individuals. Limited success has been obtained in preclinical trials using gene therapy for the treatment of hemophilia. Therefore, new options for therapy for hemophilia A are needed. We evaluated the potential of embryonic stem cells for correcting hemophilia A in mice. FVIII-deficient mouse blastocysts were collected and injected with mouse embryonic stem cells stably expressing green-fluorescent protein (GFP) and transferred to pseudopregnant recipient mice. Expression of FVIII was measured in the liver and plasma of the 5 chimeric mice that were produced. Three of these mice were GFP-positive at the age of 6 months. The plasma FVIII activity levels were equal to those of wild-type mice. These data demonstrate that embryonic stem cell transplantation at an early embryonic stage has potential as therapy for this progressively debilitating, life-threatening bleeding disorder.

  12. Induced Wnt5a expression perturbs embryonic outgrowth and intestinal elongation, but is well-tolerated in adult mice.

    PubMed

    Bakker, Elvira R M; Raghoebir, Lalini; Franken, Patrick F; Helvensteijn, Werner; van Gurp, Léon; Meijlink, Frits; van der Valk, Martin A; Rottier, Robbert J; Kuipers, Ernst J; van Veelen, Wendy; Smits, Ron

    2012-09-01

    Wnt5a is essential during embryonic development, as indicated by mouse Wnt5a knockout embryos displaying outgrowth defects of multiple structures including the gut. The dynamics of Wnt5a involvement in these processes is unclear, and perinatal lethality of Wnt5a knockout embryos has hampered investigation of Wnt5a during postnatal stages in vivo. Although in vitro studies have suggested a relevant role for Wnt5a postnatally, solid evidence for a significant impact of Wnt5a within the complexity of an adult organism is lacking. We generated a tightly-regulated inducible Wnt5a transgenic mouse model and investigated the effects of Wnt5a induction during different time-frames of embryonic development and in adult mice, focusing on the gastrointestinal tract. When induced in embryos from 10.5 dpc onwards, Wnt5a expression led to severe outgrowth defects affecting the gastrointestinal tracts, limbs, facial structures and tails, closely resembling the defects observed in Wnt5a knockout mice. However, Wnt5a induction from 13.5 dpc onwards did not cause this phenotype, indicating that the most critical period for Wnt5a in embryonic development is prior to 13.5 dpc. In adult mice, induced Wnt5a expression did not reveal abnormalities, providing the first in vivo evidence that Wnt5a has no major impact on mouse intestinal homeostasis postnatally. Protein expression of Wnt5a receptor Ror2 was strongly reduced in adult intestine compared to embryonic stages. Moreover, we uncovered a regulatory process where induction of Wnt5a causes downregulation of its receptor Ror2. Taken together, our results indicate a role for Wnt5a during a restricted time-frame of embryonic development, but suggest no impact during homeostatic postnatal stages.

  13. Expression of PINK1 in the brain, eye and ear of mouse during embryonic development.

    PubMed

    d'Amora, Marta; Angelini, Cristiano; Marcoli, Manuela; Cervetto, Chiara; Kitada, Tohru; Vallarino, Mauro

    2011-03-01

    PINK1 is a 581 amino acid protein with a serine/threonine kinase domain and an N-terminal mitochondrial targeting motif. The enzyme is expressed in the brain as well as in several tissues such as heart, skeletal muscle, liver, kidney, pancreas and testis. In the present study, we have investigated by Western blot analysis and immunohistochemistry the presence and distribution of PINK1 in the brain, eye and inner ear of mouse during embryonic development. In the brain we detected two PINK1 molecular isoforms of 55 kDa and 66 kDa. Immunoreactive perikarya first appeared at stage E15 in the diencephalon within the thalamus, the hypothalamus, the periventricular layers of the third ventricle and in the rhombencephalon at level of the pons. Subsequently, new PINK1-positive neurons were found in the midbrain within the floor and the periventricular layers of the ventral wall of the mesencephalic vesicle (stage E17) as well as in the neopallial cortex, the tegmentum of the midbrain and the periventricular region of the caudal part of the rhombencephalon (stage E19). At P0, PINK1-immunoreactive cells appeared in the striatum, the mantle layer and caudal part of the medulla oblongata and the cerebellum. The spatio-temporal expression of PINK1 and its heterogeneous distribution suggest that the enzyme might be involved in neuroregulatory processes during embryogenesis. In the eye, PINK1-immunoreactivity was found in the lens and in the cornea, whereas in the inner ear the enzyme was expressed in the ependymal and subependymal cells of the saccule and in the semicircular canals indicating that PINK1 plays a role in the development of these sensory organs.

  14. In situ hybridization analysis of the temporospatial expression of the midkine/pleiotrophin family in rat embryonic pituitary gland.

    PubMed

    Fujiwara, Ken; Maliza, Rita; Tofrizal, Alimuddin; Batchuluun, Khongorzul; Ramadhani, Dini; Tsukada, Takehiro; Azuma, Morio; Horiguchi, Kotaro; Kikuchi, Motoshi; Yashiro, Takashi

    2014-07-01

    Pituitary gland development is controlled by numerous signaling molecules, which are produced in the oral ectoderm and diencephalon. A newly described family of heparin-binding growth factors, namely midkine (MK)/pleiotrophin (PTN), is involved in regulating the growth and differentiation of many tissues and organs. Using in situ hybridization with digoxigenin-labeled cRNA probes, we detected cells expressing MK and PTN in the developing rat pituitary gland. At embryonic day 12.5 (E12.5), MK expression was localized in Rathke's pouch (derived from the oral ectoderm) and in the neurohypophyseal bud (derived from the diencephalon). From E12.5 to E19.5, MK mRNA was expressed in the developing neurohypophysis, and expression gradually decreased in the developing adenohypophysis. To characterize MK-expressing cells, we performed double-staining of MK mRNA and anterior pituitary hormones. At E19.5, no MK-expressing cells were stained with any hormone. In contrast, PTN was expressed only in the neurohypophysis primordium during all embryonic stages. In situ hybridization clearly showed that MK was expressed in primitive (immature/undifferentiated) adenohypophyseal cells and neurohypophyseal cells, whereas PTN was expressed only in neurohypophyseal cells. Thus, MK and PTN might play roles as signaling molecules during pituitary development.

  15. Generation of embryonic stem cells and transgenic mice expressing green fluorescence protein in midbrain dopaminergic neurons.

    PubMed

    Zhao, Suling; Maxwell, Sarah; Jimenez-Beristain, Antonio; Vives, Joaquim; Kuehner, Eva; Zhao, Jiexin; O'Brien, Carmel; de Felipe, Carmen; Semina, Elena; Li, Meng

    2004-03-01

    We have generated embryonic stem (ES) cells and transgenic mice with green fluorescent protein (GFP) inserted into the Pitx3 locus via homologous recombination. In the central nervous system, Pitx3-directed GFP was visualized in dopaminergic (DA) neurons in the substantia nigra and ventral tegmental area. Live primary DA neurons can be isolated by fluorescence-activated cell sorting from these transgenic mouse embryos. In culture, Pitx3-GFP is coexpressed in a proportion of ES-derived DA neurons. Furthermore, ES cell-derived Pitx3-GFP expressing DA neurons responded to neurotrophic factors and were sensitive to DA-specific neurotoxin N-4-methyl-1, 2, 3, 6-tetrahydropyridine. We anticipate that the Pitx3-GFP ES cells could be used as a powerful model system for functional identification of molecules governing mDA neuron differentiation and for preclinical research including pharmaceutical drug screening and transplantation. The Pitx3 knock-in mice, on the other hand, could be used for purifying primary neurons for molecular studies associated with the midbrain-specific DA phenotype at a level not previously feasible. These mice would also provide a useful tool to study DA fate determination from embryo- or adult-derived neural stem cells.

  16. Embryonic mosaic deletion of APP results in displaced Reelin-expressing cells in the cerebral cortex.

    PubMed

    Callahan, D G; Taylor, W M; Tilearcio, M; Cavanaugh, T; Selkoe, D J; Young-Pearse, T L

    2017-03-08

    It is widely accepted that amyloid precursor protein (APP) plays a central role in the pathogenesis of Alzheimer's disease. In addition, APP has been proposed to have functions in numerous biological processes including neuronal proliferation, differentiation, migration, axon guidance, and neurite outgrowth, as well as in synapse formation and function. However, germline knockout of APP yields relatively subtle phenotypes, and brain development appears grossly normal. This is thought to be due in part to functional compensation by APP family members and other type I transmembrane proteins. Here, we have generated a conditional mouse knockout for APP that is controlled temporally using Cre(ER) and tamoxifen administration. We show that total cortical expression of APP is reduced following tamoxifen administration during embryonic time points critical for cortical lamination, and that this results in displacement of Reelin-positive cells below the cortical plate with a concurrent elevation in Reelin protein levels. These results support a role for APP in cortical lamination and demonstrate the utility of a conditional knockout approach in which APP can be deleted with temporal control in vivo. This new tool should be useful for many different applications in the study of APP function across the mammalian life span.

  17. Airway basal cells of healthy smokers express an embryonic stem cell signature relevant to lung cancer.

    PubMed

    Shaykhiev, Renat; Wang, Rui; Zwick, Rachel K; Hackett, Neil R; Leung, Roland; Moore, Malcolm A S; Sima, Camelia S; Chao, Ion Wa; Downey, Robert J; Strulovici-Barel, Yael; Salit, Jacqueline; Crystal, Ronald G

    2013-09-01

    Activation of the human embryonic stem cell (hESC) signature genes has been observed in various epithelial cancers. In this study, we found that the hESC signature is selectively induced in the airway basal stem/progenitor cell population of healthy smokers (BC-S), with a pattern similar to that activated in all major types of human lung cancer. We further identified a subset of 6 BC-S hESC genes, whose coherent overexpression in lung adenocarcinoma (AdCa) was associated with reduced lung function, poorer differentiation grade, more advanced tumor stage, remarkably shorter survival, and higher frequency of TP53 mutations. BC-S shared with hESC and a considerable subset of lung carcinomas a common TP53 inactivation molecular pattern which strongly correlated with the BC-S hESC gene expression. These data provide transcriptome-based evidence that smoking-induced reprogramming of airway BC toward the hESC-like phenotype might represent a common early molecular event in the development of aggressive lung carcinomas in humans.

  18. Generation and gene expression profiling of 48 transcription-factor-inducible mouse embryonic stem cell lines

    PubMed Central

    Yamamizu, Kohei; Sharov, Alexei A.; Piao, Yulan; Amano, Misa; Yu, Hong; Nishiyama, Akira; Dudekula, Dawood B.; Schlessinger, David; Ko, Minoru S. H.

    2016-01-01

    Mouse embryonic stem cells (ESCs) can differentiate into a wide range – and possibly all cell types in vitro, and thus provide an ideal platform to study systematically the action of transcription factors (TFs) in cell differentiation. Previously, we have generated and analyzed 137 TF-inducible mouse ESC lines. As an extension of this “NIA Mouse ESC Bank,” we generated and characterized 48 additional mouse ESC lines, in which single TFs in each line could be induced in a doxycycline-controllable manner. Together, with the previous ESC lines, the bank now comprises 185 TF-manipulable ESC lines (>10% of all mouse TFs). Global gene expression (transcriptome) profiling revealed that the induction of individual TFs in mouse ESCs for 48 hours shifts their transcriptomes toward specific differentiation fates (e.g., neural lineages by Myt1 Isl1, and St18; mesodermal lineages by Pitx1, Pitx2, Barhl2, and Lmx1a; white blood cells by Myb, Etv2, and Tbx6, and ovary by Pitx1, Pitx2, and Dmrtc2). These data also provide and lists of inferred target genes of each TF and possible functions of these TFs. The results demonstrate the utility of mouse ESC lines and their transcriptome data for understanding the mechanism of cell differentiation and the function of TFs. PMID:27150017

  19. FACS-based isolation, propagation and characterization of mouse embryonic cardiomyocytes based on VCAM-1 surface marker expression.

    PubMed

    Pontén, Annica; Walsh, Stuart; Malan, Daniela; Xian, Xiaojie; Schéele, Susanne; Tarnawski, Laura; Fleischmann, Bernd K; Jovinge, Stefan

    2013-01-01

    Purification of cardiomyocytes from the embryonic mouse heart, embryonic stem (ES) or induced pluripotent stem cells (iPS) is a challenging task and will require specific isolation procedures. Lately the significance of surface markers for the isolation of cardiac cell populations with fluorescence activated cell sorting (FACS) has been acknowledged, and the hunt for cardiac specific markers has intensified. As cardiomyocytes have traditionally been characterized by their expression of specific transcription factors and structural proteins, and not by specific surface markers, this constitutes a significant bottleneck. Lately, Flk-1, c-kit and the cellular prion protein have been reported to specify cardiac progenitors, however, no surface markers have so far been reported to specify a committed cardiomyocyte. Herein show for the first time, that embryonic cardiomyocytes can be isolated with 98% purity, based on their expression of vascular cell adhesion molecule-1 (VCAM-1). The FACS-isolated cells express phenotypic markers for embryonic committed cardiomyocytes but not cardiac progenitors. An important aspect of FACS is to provide viable cells with retention of functionality. We show that VCAM-1 positive cardiomyocytes can be isolated with 95% viability suitable for in vitro culture, functional assays or expression analysis. In patch-clamp experiments we provide evidence of functionally intact cardiomyocytes of both atrial and ventricular subtypes. This work establishes that cardiomyocytes can be isolated with a high degree of purity and viability through FACS, based on specific surface marker expression as has been done in the hematopoietic field for decades. Our FACS protocol represents a significant advance in which purified populations of cardiomyocytes may be isolated and utilized for downstream applications, such as purification of ES-cell derived cardiomyocytes.

  20. Members of the high mobility group B protein family are dynamically expressed in embryonic neural stem cells

    PubMed Central

    2013-01-01

    Neural Stem Cells (NSCs) are a distinct group of cells present in the embryonic and adult mammalian central nervous system (CNS) that are able to differentiate into neurons, astrocytes and oligodendrocytes. As NSC proliferation declines with age, factors that regulate this process need to be defined. To search for NSC regulatory factors, we performed a quantitative shotgun proteomics study that revealed that members of the High Mobility Group B (HMGB) family are highly expressed in NSCs. Using a neurosphere assay, we report the differential expression of HMGB 1, 2, 3, and 4 mRNAs in proliferating NSCs isolated from various time points during embryonic development, as well as the dynamic expression of HMGB1 and B2 mRNAs and proteins in differentiating embryonic NSCs. Expression of HMGB2 underwent the most dramatic changes during the developmental ages examined; as a result, we assessed its role in NSC proliferation and differentiation. We report the predominance of small diameter HMGB2-/- neurospheres in comparison to wild-type, which correlated with increased proliferation in these smaller HMGB2-/- neurospheres. Our data suggest that HMGB2 plays a regulatory role in NSC cell proliferation and maintenance pathways. PMID:23621913

  1. Regulation and expression of the ATP-binding cassette transporter ABCG2 in human embryonic stem cells.

    PubMed

    Padmanabhan, Raji; Chen, Kevin G; Gillet, Jean-Pierre; Handley, Misty; Mallon, Barbara S; Hamilton, Rebecca S; Park, Kyeyoon; Varma, Sudhir; Mehaffey, Michele G; Robey, Pamela G; McKay, Ronald D G; Gottesman, Michael M

    2012-10-01

    The expression and function of several multidrug transporters (including ABCB1 and ABCG2) have been studied in human cancer cells and in mouse and human adult stem cells. However, the expression of ABCG2 in human embryonic stem cells (hESCs) remains unclear. Limited and contradictory results in the literature from two research groups have raised questions regarding its expression and function. In this study, we used quantitative real-time PCR, Northern blots, whole genome RNA sequencing, Western blots, and immunofluorescence microscopy to study ABCG2 expression in hESCs. We found that full-length ABCG2 mRNA transcripts are expressed in undifferentiated hESC lines. However, ABCG2 protein was undetectable even under embryoid body differentiation or cytotoxic drug induction. Moreover, surface ABCG2 protein was coexpressed with the differentiation marker stage-specific embryonic antigen-1 of hESCs, following constant BMP-4 signaling at days 4 and 6. This expression was tightly correlated with the downregulation of two microRNAs (miRNAs) (i.e., hsa-miR-519c and hsa-miR-520h). Transfection of miRNA mimics and inhibitors of these two miRNAs confirmed their direct involvement in the regulation ABCG2 translation. Our findings clarify the controversy regarding the expression of the ABCG2 gene and also provide new insights into translational control of the expression of membrane transporter mRNAs by miRNAs in hESCs.

  2. Expression of a set of glial cell-specific markers in the Drosophila embryonic central nervous system.

    PubMed

    Ahn, Hui Jeong; Jeon, Sang-Hak; Kim, Sang Hee

    2014-06-01

    The types of glia in the central nervous system (CNS) of the Drosophila embryo include longitudinal glia (LG), cell body glia (CBG), and peripheral glia (PG). Transcription factors, such as glial cell missing and reverse polarity, are well-established general glial cell markers. Only a few glial cell-specific markers have been identified in the Drosophila embryonic CNS, thus far. In the present study, we employed the glial cell-specific markers for LG (vir-1/CG5453 and CG31235), CBG (fabp/CG6783 and CG11902), and PG (CG2310 and moody/CG4322), and comprehensively analyzed their expression patterns, during the embryonic CNS development. Our study validated the specificity of a set of glial markers, and further revealed their spatio-temporal expression patterns, which will aid in the understanding of the developmental lineage, and investigating their role in the development and homeostasis of the Drosophila CNS in vivo.

  3. [Expression of regulatory genes Oct-4, Pax-6, Prox-1, Ptx-2 at the initial stages of differentiation of embryonic stem cells in vitro].

    PubMed

    Gordeeva, O F; Manuilova, E S; Grivennikov, I A; Smirnova, Iu A; Krasnikova, N Iu; Zinov'eva, R D; Khrushchov, N G

    2003-01-01

    The expression of regulatory genes of the POU, Pax, Prox, and Ptx gene families was studied at the initial stages of differentiation of murine embryonic stem cells of R1 line. mRNAs were isolated from undifferentiated embryonic stem cells and embryoid bodies formed at the early stages of in vitro differentiation and cDNA sequences were synthesized for comparative PCR analysis of the expression of studied genes. The levels of expression of the gene Oct-4 involved in maintenance of the pluripotent status of embryonic stem cells proved to be practically indistinguishable in undifferentiated cells and embryoid bodies, while the expression of Pax-6 markedly increased in the latter. The levels and patterns of expression of the homeobox transcription factors Prox-1 and Ptx-2 were compared on this cell model for the first time. A probable role of these genes in differentiation of the murine embryonic stem cells is discussed.

  4. Mouse matriptase-2: identification, characterization and comparative mRNA expression analysis with mouse hepsin in adult and embryonic tissues.

    PubMed Central

    Hooper, John D; Campagnolo, Luisa; Goodarzi, Goodarz; Truong, Tony N; Stuhlmann, Heidi; Quigley, James P

    2003-01-01

    We report the identification and characterization of mouse matriptase-2 (m-matriptase-2), an 811-amino-acid protein composed of an N-terminal cytoplasmic domain, a membrane-spanning domain, two CUB (complement protein subcomponents C1r/C1s, urchin embryonic growth factor and bone morphogenetic protein 1) domains, three LDLR (low-density-lipoprotein receptor class A) domains and a C-terminal serine-protease domain. All m-matriptase-2 protein domain boundaries corresponded with intron/exon junctions of the encoding gene, which spans approx. 29 kb and comprises 18 exons. Matriptase-2 is highly conserved in human, mouse and rat, with the rat matriptase-2 gene ( r-maltriptase-2 ) predicted to encode transmembrane and soluble isoforms. Western-blot analysis indicated that m-matriptase-2 migrates close to its theoretical molecular mass of 91 kDa, and immunofluorescence analysis was consistent with the proposed surface membrane localization of this protein. Reverse-transcription PCR and in-situ -hybridization analysis indicated that m-matriptase-2 expression overlaps with the distribution of mouse hepsin (m-hepsin, a cell-surface serine protease identified in hepatoma cells) in adult tissues and during embryonic development. In adult tissues both are expressed at highest levels in liver, kidney and uterus. During embryogenesis m-matriptase-2 expression peaked between days 12.5 and 15.5. m-hepsin expression was biphasic, with peaks at day 7.5 to 8.5 and again between days 12.5 and 15.5. In situ hybridization of embryonic tissues indicated abundant expression of both m-matriptase-2 and m-hepsin in the developing liver and at lower levels in developing pharyngo-tympanic tubes. While m-hepsin was detected in the residual embryonic yolk sac and with lower intensity in lung, heart, gastrointestinal tract, developing kidney tubules and epithelium of the oral cavity, m-matriptase-2 was absent in these tissues, but strongly expressed within the nasal cavity by olfactory epithelial

  5. Microarray Analysis of LTR Retrotransposon Silencing Identifies Hdac1 as a Regulator of Retrotransposon Expression in Mouse Embryonic Stem Cells

    PubMed Central

    Madej, Monika J.; Taggart, Mary; Gautier, Philippe; Garcia-Perez, Jose Luis; Meehan, Richard R.; Adams, Ian R.

    2012-01-01

    Retrotransposons are highly prevalent in mammalian genomes due to their ability to amplify in pluripotent cells or developing germ cells. Host mechanisms that silence retrotransposons in germ cells and pluripotent cells are important for limiting the accumulation of the repetitive elements in the genome during evolution. However, although silencing of selected individual retrotransposons can be relatively well-studied, many mammalian retrotransposons are seldom analysed and their silencing in germ cells, pluripotent cells or somatic cells remains poorly understood. Here we show, and experimentally verify, that cryptic repetitive element probes present in Illumina and Affymetrix gene expression microarray platforms can accurately and sensitively monitor repetitive element expression data. This computational approach to genome-wide retrotransposon expression has allowed us to identify the histone deacetylase Hdac1 as a component of the retrotransposon silencing machinery in mouse embryonic stem cells, and to determine the retrotransposon targets of Hdac1 in these cells. We also identify retrotransposons that are targets of other retrotransposon silencing mechanisms such as DNA methylation, Eset-mediated histone modification, and Ring1B/Eed-containing polycomb repressive complexes in mouse embryonic stem cells. Furthermore, our computational analysis of retrotransposon silencing suggests that multiple silencing mechanisms are independently targeted to retrotransposons in embryonic stem cells, that different genomic copies of the same retrotransposon can be differentially sensitive to these silencing mechanisms, and helps define retrotransposon sequence elements that are targeted by silencing machineries. Thus repeat annotation of gene expression microarray data suggests that a complex interplay between silencing mechanisms represses retrotransposon loci in germ cells and embryonic stem cells. PMID:22570599

  6. SpSM30 gene family expression patterns in embryonic and adult biomineralized tissues of the sea urchin, Strongylocentrotus purpuratus.

    PubMed

    Killian, Christopher E; Croker, Lindsay; Wilt, Fred H

    2010-01-01

    The SpSM30 gene family of the sea urchin, Strongylocentrotus purpuratus, is comprised of six members, designated SpSM30A through SpSM30F (Livingston et al., 2006). The SpSM30 proteins are found uniquely in embryonic and adult mineralized tissues of the sea urchin. Previous studies have revealed that SpSM30 proteins are occluded within the embryonic endoskeleton and adult mineralized tissues (Killian and Wilt, 1996; Mann et al., 2008a,b; Urry et al., 2000). Furthermore, some of the SpSM30 proteins are among the most abundant of the approximately four-dozen integral matrix proteins of the larval spicule (Killian and Wilt, 1996). The amino acid sequence, protein domain architecture, and contiguity within the genome strongly support the supposition that the six genes constitute a gene family. Reverse transcription-polymerase chain reaction (RT-PCR) is used in the present study to describe the time course of expression of the family members during embryonic development, and their expression in adult tissues. SpSM30A, B, C and E are expressed, albeit at different levels, during overt spicule deposition in the embryo with some differences in the precise timing of expression. SpSM30D is not expressed in the embryo, and SpSM30F is expressed transiently and at low levels just prior to overt spicule formation. Whole mount in situ hybridization studies show that SpSM30A, B, C, and E are expressed exclusively in primary mesenchyme (PMC) cells and their descendants. In addition, tissue fractionation studies indicate that SpSM30F expression is highly enriched in PMCs. Each adult tissue examined expresses a different cohort of the SpSM30 family members at varying levels: SpSM30A mRNA is not expressed in adult tissues. Its expression is limited to the embryo. Conversely, SpSM30D mRNA is not expressed in the embryo, but is expressed in adult spines and teeth. SpSM30B and SpSM30C are expressed at modest levels in all mineralized adult tissues; SpSM30E is expressed highly in tooth and

  7. Similarities in Gene Expression Profiles during In Vitro Aging of Primary Human Embryonic Lung and Foreskin Fibroblasts.

    PubMed

    Marthandan, Shiva; Priebe, Steffen; Baumgart, Mario; Groth, Marco; Cellerino, Alessandro; Guthke, Reinhard; Hemmerich, Peter; Diekmann, Stephan

    2015-01-01

    Replicative senescence is of fundamental importance for the process of cellular aging, since it is a property of most of our somatic cells. Here, we elucidated this process by comparing gene expression changes, measured by RNA-seq, in fibroblasts originating from two different tissues, embryonic lung (MRC-5) and foreskin (HFF), at five different time points during their transition into senescence. Although the expression patterns of both fibroblast cell lines can be clearly distinguished, the similar differential expression of an ensemble of genes was found to correlate well with their transition into senescence, with only a minority of genes being cell line specific. Clustering-based approaches further revealed common signatures between the cell lines. Investigation of the mRNA expression levels at various time points during the lifespan of either of the fibroblasts resulted in a number of monotonically up- and downregulated genes which clearly showed a novel strong link to aging and senescence related processes which might be functional. In terms of expression profiles of differentially expressed genes with age, common genes identified here have the potential to rule the transition into senescence of embryonic lung and foreskin fibroblasts irrespective of their different cellular origin.

  8. Molecular mechanisms of human hemoglobin switching: selective undermethylation and expression of globin genes in embryonic, fetal, and adult erythroblasts.

    PubMed Central

    Mavilio, F; Giampaolo, A; Carè, A; Migliaccio, G; Calandrini, M; Russo, G; Pagliardi, G L; Mastroberardino, G; Marinucci, M; Peschle, C

    1983-01-01

    The globin chain synthetic pattern and the extent of DNA methylation within embryonic, fetal, and adult beta-like globin gene domains were evaluated in greater than or equal to 90% purified human erythroblasts from yolk sacs and fetal livers in the 6- to 12-wk gestational period as well as from adult marrows. The 6-wk erythroblasts produce essentially embryonic epsilon chains, whereas the 12-wk erythroblasts synthesize largely fetal gamma globin and the adult marrow erythroblasts synthesize almost exclusively adult beta chains. In all phases of ontogenic development, a strong correlation exists between DNA hypomethylation in the close flanking sequences of globin genes and their expression. These results suggest that modulation of the methylation pattern may represent a key mechanism for regulating expression of human globin genes during embryonic leads to fetal and fetal leads to adult Hb switches in humans. In ontogenic development this mechanism might in turn correlate with a gradual modification of chromatin structure in the non-alpha gene cluster, thus leading to a 5' leads to 3' activation of globin genes in a balanced fashion. Images PMID:6316333

  9. Acute loss of Cited2 impairs Nanog expression and decreases self-renewal of mouse embryonic stem cells.

    PubMed

    Kranc, Kamil R; Oliveira, Daniel V; Armesilla-Diaz, Alejandro; Pacheco-Leyva, Ivette; Catarina Matias, Ana; Luisa Escapa, Ana; Subramani, Chithra; Wheadon, Helen; Trindade, Marlene; Nichols, Jennifer; Kaji, Keisuke; Enver, Tariq; Bragança, José

    2015-03-01

    Identifying novel players of the pluripotency gene regulatory network centered on Oct4, Sox2, and Nanog as well as delineating the interactions within the complex network is key to understanding self-renewal and early cell fate commitment of embryonic stem cells (ESC). While overexpression of the transcriptional regulator Cited2 sustains ESC pluripotency, its role in ESC functions remains unclear. Here, we show that Cited2 is important for proliferation, survival, and self-renewal of mouse ESC. We position Cited2 within the pluripotency gene regulatory network by defining Nanog, Tbx3, and Klf4 as its direct targets. We also demonstrate that the defects caused by Cited2 depletion are, at least in part, rescued by Nanog constitutive expression. Finally, we demonstrate that Cited2 is required for and enhances reprogramming of mouse embryonic fibroblasts to induced pluripotent stem cells.

  10. Dynamic expression of calretinin in embryonic and early fetal human cortex

    PubMed Central

    González-Gómez, Miriam; Meyer, Gundela

    2014-01-01

    Calretinin (CR) is one of the earliest neurochemical markers in human corticogenesis. In embryos from Carnegie stages (CS) 17 to 23, calbindin (CB) and CR stain opposite poles of the incipient cortex suggesting early regionalization: CB marks the neuroepithelium of the medial boundary of the cortex with the choroid plexus (cortical hem). By contrast, CR is confined to the subventricular zone (SVZ) of the lateral and caudal ganglionic eminences at the pallial-subpallial boundary (PSB, or antihem), from where CR+/Tbr1- neurons migrate toward piriform cortex and amygdala as a component of the lateral cortical stream. At CS 19, columns of CR+ cells arise in the rostral cortex, and contribute at CS 20 to the “monolayer” of horizontal Tbr1+/CR+ and GAD+ cells in the preplate. At CS 21, the “pioneer cortical plate” appears as a radial aggregation of CR+/Tbr1+ neurons, which cover the entire future neocortex and extend the first corticofugal axons. CR expression in early human corticogenesis is thus not restricted to interneurons, but is also present in the first excitatory projection neurons of the cortex. At CS 21/22, the cortical plate is established following a lateral to medial gradient, when Tbr1+/CR- neurons settle within the pioneer cortical plate, and thus separate superficial and deep pioneer neurons. CR+ pioneer neurons disappear shortly after the formation of the cortical plate. Reelin+ Cajal-Retzius cells begin to express CR around CS21 (7/8 PCW). At CS 21–23, the CR+ SVZ at the PSB is the source of CR+ interneurons migrating into the cortical SVZ. In turn, CB+ interneurons migrate from the subpallium into the intermediate zone following the fibers of the internal capsule. Early CR+ and CB+ interneurons thus have different origins and migratory routes. CR+ cell populations in the embryonic telencephalon take part in a complex sequence of events not analyzed so far in other mammalian species, which may represent a distinctive trait of the initial

  11. Expression of serum albumin and of alphafetoprotein in murine normal and neoplastic primitive embryonic structures.

    PubMed

    Trojan, J; Naval, X; Johnson, T; Lafarge-Frayssinet, C; Hajeri-Germond, M; Farges, O; Pan, Y; Uriel, J; Abramasky, O; Ilan, J

    1995-12-01

    Alphafetoprotein (AFP), a major serum protein synthesized during the embryo-fetal and postnatal period (in the yolk sac, then in the liver), is also an oncoprotein. The intracellular presence of AFP and of serum albumin (SA) in normal and neoplastic neural crest and neural tube derivatives was previously demonstrated. In this work we have studied the comparative expression of AFP and SA in primitive neuroectoblastic structures of mouse embryos (6 and 7 days "post coitum") and mouse teratocarcinomas (derived from the PCC4 cell line). Using immunofluorescence technique, antibodies to SA gave a positive reaction in embryos of 7 days, while AFP was not detected during this period. By mRNA in situ hybridization, SA mRNA gave a strong signal in both 6 and 7 day embryos, whereas AFP mRNA gave a weak signal only in 7-day embryos. The distribution of SA and AFP and their mRNAs was investigated in primitive neuroectoblastic structures of the teratocarcinomas by in situ hybridization and immunostaining. Only SA protein was detectable by immunostaining. SA mRNA gave a strong signal in differentiating structures as well as in undifferentiated cell clusters. AFP mRNA was observed only in differentiating structure. Dot-blot hybridization indicated that the level of SA transcripts was at least 6-fold higher than that of AFP transcripts in the teratocarcinomas investigated. In teratocarcinoma-bearing mice injected intraperitoneally with 125I-radiolabeled SA and AFP, significant accumulations of both SA and AFP were demonstrated in the tumors, SA being about 3-fold higher than that of AFP after normalization to quantity of uptake in liver. External in vivo photoscanning confirmed this relationship of accumulated radiolabeled proteins. The last observation could be useful in vivo for diagnosis of teratocarcinoma. We conclude that the expression of SA relative to AFP and the external cellular uptake of SA relative to AFP are similar in normal embryonic developing tissues and in the

  12. The miR-17-92 cluster regulates FOG-2 expression and inhibits proliferation of mouse embryonic cardiomyocytes.

    PubMed

    Xiang, Rui; Lei, Han; Chen, Mianzhi; Li, Qinwei; Sun, Huan; Ai, Jianzhong; Chen, Tielin; Wang, Honglian; Fang, Yin; Zhou, Qin

    2012-02-01

    MicroRNAs (miRNAs) have gradually been recognized as regulators of embryonic development; however, relatively few miRNAs have been identified that regulate cardiac development. A series of recent papers have established an essential role for the miRNA-17-92 (miR-17-92) cluster of miRNAs in the development of the heart. Previous research has shown that the Friend of Gata-2 (FOG-2) is critical for cardiac development. To investigate the possibility that the miR-17-92 cluster regulates FOG-2 expression and inhibits proliferation in mouse embryonic cardiomyocytes we initially used bioinformatics to analyze 3' untranslated regions (3'UTR) of FOG-2 to predict the potential of miR-17-92 to target it. We used luciferase assays to demonstrate that miR-17-5p and miR-20a of miR-17-92 interact with the predicted target sites in the 3'UTR of FOG-2. Furthermore, RT-PCR and Western blot were used to demonstrate the post-transcriptional regulation of FOG-2 by miR-17-92 in embryonic cardiomyocytes from E12.5-day pregnant C57BL/6J mice. Finally, EdU cell assays together with the FOG-2 rescue strategy were employed to evaluate the effect of proliferation on embryonic cardiomyocytes. We first found that the miR-17-5p and miR-20a of miR-17-92 directly target the 3'UTR of FOG-2 and post-transcriptionally repress the expression of FOG-2. Moreover, our findings demonstrated that over-expression of miR-17-92 may inhibit cell proliferation via post-transcriptional repression of FOG-2 in embryonic cardiomyocytes. These results indicate that the miR-17-92 cluster regulates the expression of FOG-2 protein and suggest that the miR-17-92 cluster might play an important role in heart development.

  13. Distinct gene expression responses of two anticonvulsant drugs in a novel human embryonic stem cell based neural differentiation assay protocol.

    PubMed

    Schulpen, Sjors H W; de Jong, Esther; de la Fonteyne, Liset J J; de Klerk, Arja; Piersma, Aldert H

    2015-04-01

    Hazard assessment of chemicals and pharmaceuticals is increasingly gaining from knowledge about molecular mechanisms of toxic action acquired in dedicated in vitro assays. We have developed an efficient human embryonic stem cell neural differentiation test (hESTn) that allows the study of the molecular interaction of compounds with the neural differentiation process. Within the 11-day differentiation protocol of the assay, embryonic stem cells lost their pluripotency, evidenced by the reduced expression of stem cell markers Pou5F1 and Nanog. Moreover, stem cells differentiated into neural cells, with morphologically visible neural structures together with increased expression of neural differentiation-related genes such as βIII-tubulin, Map2, Neurogin1, Mapt and Reelin. Valproic acid (VPA) and carbamazepine (CBZ) exposure during hESTn differentiation led to concentration-dependent reduced expression of βIII-tubulin, Neurogin1 and Reelin. In parallel VPA caused an increased gene expression of Map2 and Mapt which is possibly related to the neural protective effect of VPA. These findings illustrate the added value of gene expression analysis for detecting compound specific effects in hESTn. Our findings were in line with and could explain effects observed in animal studies. This study demonstrates the potential of this assay protocol for mechanistic analysis of specific compound-induced inhibition of human neural cell differentiation.

  14. The C2H2 zinc finger genes of Strongylocentrotus purpuratus and their expression in embryonic development.

    PubMed

    Materna, Stefan C; Howard-Ashby, Meredith; Gray, Rachel F; Davidson, Eric H

    2006-12-01

    The C2H2 zinc finger is one of the most abundant protein domains and is thought to have been extensively replicated in diverse animal clades. Some well-studied proteins that contain this domain are transcriptional regulators. As part of an attempt to delineate all transcription factors encoded in the Strongylocentrotus purpuratus genome, we identified the C2H2 zinc finger genes indicated in the sequence, and examined their involvement in embryonic development. We found 377 zinc finger genes in the sea urchin genome, about half the number found in mice or humans. Their expression was measured by quantitative PCR. Up to the end of gastrulation less than a third of these genes is expressed, and about 75% of the expressed genes are maternal; both parameters distinguish these from all other classes of regulatory genes as measured in other studies. Spatial expression pattern was determined by whole mount in situ hybridization for 43 genes transcribed at a sufficient level, and localized expression was observed in diverse embryonic tissues. These genes may execute important regulatory functions in development. However, the functional meaning of the majority of this large gene family remains undefined.

  15. Variation in embryonic mortality and maternal transcript expression among Atlantic cod (Gadus morhua) broodstock: a functional genomics study.

    PubMed

    Rise, Matthew L; Nash, Gordon W; Hall, Jennifer R; Booman, Marije; Hori, Tiago S; Trippel, Edward A; Gamperl, A Kurt

    2014-12-01

    Early life stage mortality is an important issue for Atlantic cod aquaculture, yet the impact of the cod maternal (egg) transcriptome on egg quality and mortality during embryonic development is poorly understood. In the present work, we studied embryonic mortality and maternal transcript expression using eggs from 15 females. Total mortality at 7days post-fertilization (7 dpf, segmentation stage) was used as an indice of egg quality. A 20,000 probe (20K) microarray experiment compared the 7hours post-fertilization (7 hpf, ~2-cell stage) egg transcriptome of the two lowest quality females (>90% mortality at 7 dpf) to that of the highest quality female (~16% mortality at 7 dpf). Forty-three microarray probes were consistently differentially expressed in both low versus high quality egg comparisons (25 higher expressed in low quality eggs, and 18 higher expressed in high quality eggs). The microarray experiment also identified many immune-relevant genes [e.g. interferon (IFN) pathway genes ifngr1 and ifrd1)] that were highly expressed in eggs of all 3 females regardless of quality. Twelve of the 43 candidate egg quality-associated genes, and ifngr1, ifrd1 and irf7, were included in a qPCR study with 7 hpf eggs from all 15 females. Then, the genes that were confirmed by qPCR to be greater than 2-fold differentially expressed between 7 hpf eggs from the lowest and highest quality females (dcbld1, ddc, and acy3 more highly expressed in the 2 lowest quality females; kpna7 and hacd1 more highly expressed in the highest quality female), and the 3 IFN pathway genes, were included in a second qPCR study with unfertilized eggs. While some maternal transcripts included in these qPCR studies were associated with extremes in egg quality, there was little correlation between egg quality and gene expression when all females were considered. Both dcbld1 and ddc showed greater than 100-fold differences in transcript expression between females and were potentially influenced by

  16. Embryonic expression of Tbx1, a DiGeorge syndrome candidate gene, in the lamprey Lampetra fluviatilis.

    PubMed

    Sauka-Spengler, Tatjana; Le Mentec, Chantal; Lepage, Mario; Mazan, Sylvie

    2002-11-01

    We report the embryonic expression in the lamprey Lampetra fluviatilis of Tbx1, the main candidate gene involved in DiGeorge/velo-cardio-facial syndrome (DGS/VCFS). From the end of neurulation to stage 26, Tbx1 becomes progressively expressed in all developing pharyngeal arches, as they form. Transcripts are mainly restricted to the mesodermal core and to the posterior pharyngeal endoderm, excluding ingressing neural crest cells. They are also present in the otic vesicle, in a ventral and posterior location. From a later stage (stage 27) onwards, additional expression domains in the head mesenchyme, later contributing to labial muscle precursors, and in the cloacal region, become visible. The comparison of these data with those reported in the chick and the mouse indicates a high conservation of Tbx1 expression in the pharyngeal arches among vertebrates.

  17. Reduction of XNkx2-10 expression leads to anterior defects and malformation of the embryonic heart

    PubMed Central

    Allen, Bryan G.; Allen-Brady, Kristina; Weeks, Daniel L.

    2007-01-01

    Normal vertebrate heart development depends upon the expression of homeodomain containing proteins related to the Drosophila gene, tinman. In Xenopus laevis, three such genes have been identified in regions that will eventually give rise to the heart, XNkx2-3, XNkx2-5 and XNkx2-10. Although the expression domains of all three overlap in early development, distinctive differences have been noted. By the time the heart tube forms, there is little XNkx2-10 mRNA detected by in situ analysis in the embryonic heart while both XNkx2-3 and XNkx2-5 are clearly present. In addition, unlike XNkx2-3 and XNkx2-5, injection of XNkx2-10 mRNA does not increase the size of the embryonic heart. We have reexamined the expression and potential role of XNkx2-10 in development via oligonucleotide-mediated reduction of XNkx2-10 protein expression. We find that a decrease in XNkx2-10 leads to a broad spectrum of developmental abnormalities including a reduction in heart size. We conclude that XNkx2-10, like XNkx2-3 and XNkx2-5, is necessary for normal Xenopus heart development. PMID:16949797

  18. Expression of early developmental markers predicts the efficiency of embryonic stem cell differentiation into midbrain dopaminergic neurons.

    PubMed

    Salti, Ahmad; Nat, Roxana; Neto, Sonya; Puschban, Zoe; Wenning, Gregor; Dechant, Georg

    2013-02-01

    Dopaminergic neurons derived from pluripotent stem cells are among the best investigated products of in vitro stem cell differentiation owing to their potential use for neurorestorative therapy of Parkinson's disease. However, the classical differentiation protocols for both mouse and human pluripotent stem cells generate a limited percentage of dopaminergic neurons and yield a considerable cellular heterogeneity comprising numerous scarcely characterized cell populations. To improve pluripotent stem cell differentiation protocols for midbrain dopaminergic neurons, we established extensive and strictly quantitative gene expression profiles, including markers for pluripotent cells, neural progenitors, non-neural cells, pan-neuronal and glial cells, neurotransmitter phenotypes, midbrain and nonmidbrain populations, floor plate and basal plate populations, as well as for Hedgehog, Fgf, and Wnt signaling pathways. The profiles were applied to discrete stages of in vitro differentiation of mouse embryonic stem cells toward the dopaminergic lineage and after transplantation into the striatum of 6-hydroxy-dopamine-lesioned rats. The comparison of gene expression in vitro with stages in the developing ventral midbrain between embryonic day 11.5 and 13.5 ex vivo revealed dynamic changes in the expression of transcription factors and signaling molecules. Based on these profiles, we propose quantitative gene expression milestones that predict the efficiency of dopaminergic differentiation achieved at the end point of the protocol, already at earlier stages of differentiation.

  19. Expression of the ephrin receptor B2 in the embryonic chicken bursa of Fabricius

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chicken B-cells develop in a specific organ, the bursa of Fabricius. To understand the bursal microenvironment guiding B-cell development, previous studies identified ephrin (Eph) receptor B2 (EphB2) gene transcripts in the embryonic bursa. We hypothesize that the EphB2 receptors and their ligands r...

  20. Association analysis between the distributions of histone modifications and gene expression in the human embryonic stem cell.

    PubMed

    Su, Wen-Xia; Li, Qian-Zhong; Zuo, Yong-Chun; Zhang, Lu-Qiang

    2016-01-01

    It is well known that histone modifications are associated with gene expression. In order to further study this relationship, 16 kinds of Chip-seq histone modification data and mRNA-seq data of the human embryonic stem cell H1 are chosen. The distributions of histone modifications in the regions flanking transcription start sites (TSSs) for highly expressed and lowly expressed genes are computed, respectively. And four types of distributions of histone modifications in regions flanking TSSs and the spatial patterning of the correlations between histone modifications and gene expression are detected. Our results suggest that the correlations between the regions overlapped by peaks are higher than the non-overlapped ones for each histone modification. In addition, to obtain the effect of the cooperative action of histone modification on gene expression, five histone modification clusters are found in highly expressed and lowly expressed genes, histone modification and gene expression interaction network is constructed. To further explore which region is the main target region for the specific histone modification, the human genes are divided into five functional regions. The results indicate that histone modifications are mostly located in the promoters of highly expressed genes versus the exons of lowly expressed genes, and exons have a smaller range of normalized tag counts than other gene elements in the two groups of genes. Finally, the type specificity and regional bias of histone modifications for 11 key transcription factor genes regulating the stem cell renewal are analyzed.

  1. Impacts of Neanderthal-Introgressed Sequences on the Landscape of Human Gene Expression.

    PubMed

    McCoy, Rajiv C; Wakefield, Jon; Akey, Joshua M

    2017-02-23

    Regulatory variation influencing gene expression is a key contributor to phenotypic diversity, both within and between species. Unfortunately, RNA degrades too rapidly to be recovered from fossil remains, limiting functional genomic insights about our extinct hominin relatives. Many Neanderthal sequences survive in modern humans due to ancient hybridization, providing an opportunity to assess their contributions to transcriptional variation and to test hypotheses about regulatory evolution. We developed a flexible Bayesian statistical approach to quantify allele-specific expression (ASE) in complex RNA-seq datasets. We identified widespread expression differences between Neanderthal and modern human alleles, indicating pervasive cis-regulatory impacts of introgression. Brain regions and testes exhibited significant downregulation of Neanderthal alleles relative to other tissues, consistent with natural selection influencing the tissue-specific regulatory landscape. Our study demonstrates that Neanderthal-inherited sequences are not silent remnants of ancient interbreeding but have measurable impacts on gene expression that contribute to variation in modern human phenotypes.

  2. Embryonic catalase protects against ethanol-initiated DNA oxidation and teratogenesis in acatalasemic and transgenic human catalase-expressing mice.

    PubMed

    Miller, Lutfiya; Shapiro, Aaron M; Wells, Peter G

    2013-08-01

    Reactive oxygen species (ROS) are implicated in fetal alcohol spectrum disorders (FASD) caused by alcohol (ethanol, EtOH). Although catalase detoxifies hydrogen peroxide, embryonic catalase activity is only about 5% of maternal levels. To determine the roles of ROS and embryonic catalase in FASD, pregnant mice with enhanced (expressing human catalase, hCat) or deficient (acatalasemic, aCat) catalase activity, or their respective wild-type (WT) controls, were treated ip on gestational day 9 with 4 or 6g/kg EtOH or its saline vehicle, and embryos and fetuses were, respectively, evaluated for oxidatively damaged DNA and structural anomalies. Untreated hCat and aCat dams had, respectively, more and less offspring than their WT controls. hCat progenies were protected from all EtOH fetal anomalies at the low dose (p < .01) and from reduced head diameter and resorptions at the high dose (p < .001). Conversely, aCat progenies were more sensitive to dose-dependent EtOH fetal anomalies (p < .001) and exhibited a 50% increase in maternal lethality (p < .05) at the high dose. Maternal pretreatment of aCat mice with polyethylene glycol-conjugated catalase (PEG-Cat) reduced EtOH fetal anomalies (p < .001). EtOH-initiated embryonic DNA oxidation was reduced in hCat and WT mice pretreated with PEG-Cat and enhanced in aCat mice. Plasma concentrations of EtOH in catalase-altered mice were similar to controls, precluding a pharmacokinetic basis for altered EtOH teratogenesis. Endogenous embryonic catalase, despite its low level, is an important embryoprotective enzyme for EtOH teratogenesis and a likely determinant of individual risk.

  3. Embryonic catalase protects against ethanol embryopathies in acatalasemic mice and transgenic human catalase-expressing mice in embryo culture.

    PubMed

    Miller-Pinsler, Lutfiya; Wells, Peter G

    2015-09-15

    Reactive oxygen species (ROS) have been implicated in the mechanism of ethanol (EtOH) teratogenicity, but the protective role of the embryonic antioxidative enzyme catalase is unclear, as embryonic activity is only about 5% of maternal levels. We addressed this question in a whole embryo culture model. C57BL/6 mouse embryos expressing human catalase (hCat) or their wild-type (C57BL/6 WT) controls, and C3Ga.Cg-Cat(b)/J catalase-deficient, acatalasemic (aCat) mouse embryos or their wild-type C3HeB/FeJ (C3H WT) controls, were explanted on gestational day (GD) 9 (plug=GD 1), exposed for 24h to 2 or 4mg/mL EtOH or vehicle, and evaluated for functional and morphological changes. hCat and C57BL/6 WT vehicle-exposed embryos developed normally, while EtOH was embryopathic in C57BL/6 WT embryos, evidenced by decreases in anterior neuropore closure, somites developed, turning and head length, whereas hCat embryos were protected (p<0.001). Maternal pretreatment of C57BL/6 WT dams with 50kU/kg PEG-catalase (PEG-cat) 8h prior to embryo culture, which increases embryonic catalase activity, blocked all EtOH embryopathies (p<0.001). Vehicle-exposed aCat mouse embryos had lower yolk sac diameters compared to WT controls, suggesting that endogenous ROS are embryopathic. EtOH was more embryopathic in aCat embryos than WT controls, evidenced by reduced head length and somite development (p<0.01), and trends for reduced anterior neuropore closure, turning and crown-rump length. Maternal pretreatment of aCat dams with PEG-Cat blocked all EtOH embryopathies (p<0.05). These data suggest that embryonic catalase is a determinant of risk for EtOH embryopathies.

  4. Expression of embryonic fibronectin isoform EIIIA parallels alpha-smooth muscle actin in maturing and diseased kidney.

    PubMed

    Barnes, V L; Musa, J; Mitchell, R J; Barnes, J L

    1999-06-01

    In this study we examined if an association exists between expression of an alternatively spliced "embryonic" fibronectin isoform EIIIA (Fn-EIIIA) and alpha-smooth muscle actin (alpha-SMA) in the maturing and adult rat kidney and in two unrelated models of glomerular disease, passive accelerated anti-glomerular basement membrane (GBM) nephritis and Habu venom (HV)-induced proliferative glomerulonephritis, using immunohistochemistry and in situ hybridization. Fn-EIIIA and alpha-SMA proteins were abundantly expressed in mesangium and in periglomerular and peritubular interstitium of 20-day embryonic and 7-day (D-7) postnatal kidneys in regions of tubule and glomerular development. Staining was markedly reduced in these structures in maturing juvenile (D-14) kidney and was largely lost in adult kidney. Expression of Fn-EIIIA and alpha-SMA was reinitiated in the mesangium and the periglomerular and peritubular interstitium in both models and was also observed in glomerular crescents in anti-GBM nephritis. Increased expression of Fn-EIIIA mRNA by in situ hybridization corresponded to the localization of protein staining. Dual labeling experiments verified co-localization of Fn-EIIIA and alpha-SMA, showing a strong correlation of staining between location and staining intensity during kidney development, maturation, and disease. Expression of EIIIA mRNA corresponded to protein expression in developing and diseased kidneys and was lost in adult kidney. These studies show a recapitulation of the co-expression of Fn-EIIIA and alpha-SMA in anti-GBM disease and suggest a functional link for these two proteins.

  5. Dynamic structure and protein expression of the live embryonic heart captured by 2-photon light sheet microscopy and retrospective registration

    PubMed Central

    Trivedi, Vikas; Truong, Thai V.; Trinh, Le A.; Holland, Daniel B.; Liebling, Michael; Fraser, Scott E.

    2015-01-01

    We present an imaging and image reconstruction pipeline that captures the dynamic three-dimensional beating motion of the live embryonic zebrafish heart at subcellular resolution. Live, intact zebrafish embryos were imaged using 2-photon light sheet microscopy, which offers deep and fast imaging at 70 frames per second, and the individual optical sections were assembled into a full 4D reconstruction of the beating heart using an optimized retrospective image registration algorithm. This imaging and reconstruction platform permitted us to visualize protein expression patterns at endogenous concentrations in zebrafish gene trap lines. PMID:26114028

  6. Differential expression of ETS family transcription factors in NCCIT human embryonic carcinoma cells upon retinoic acid-induced differentiation.

    PubMed

    Park, Sung-Won; Do, Hyun-Jin; Ha, Woo Tae; Han, Mi-Hee; Song, Hyuk; Uhm, Sang-Jun; Chung, Hak-Jae; Kim, Jae-Hwan

    2014-01-01

    E26 transformation-specific (ETS) transcription factors play important roles in normal and tumorigenic processes during development, differentiation, homeostasis, proliferation, and apoptosis. To identify critical ETS factor(s) in germ cell-derived cancer cells, we examined the expression patterns of the 27 ETS transcription factors in naive and differentiated NCCIT human embryonic carcinoma cells, which exhibit both pluripotent and tumorigenic characteristics. Overall, expression of ETS factors was relatively low in NCCIT cells. Among the 27 ETS factors, polyomavirus enhancer activator 3 (PEA3) and epithelium-specific ETS transcription factor-1 (ESE-1) exhibited the most significant changes in their expression levels. Western blot analysis confirmed these patterns, revealing reduced levels of PEA3 protein and elevated levels of ESE-1 protein in differentiated cells. PEA3 increased the proportion of cells in S-phase and promoted cell growth, whereas ESE-1 reduced proliferation potential. These data suggest that PEA3 and ESE-1 may play important roles in pluripotent and tumorigenic embryonic carcinoma cells. These findings contribute to our understanding of the functions of oncogenic ETS factors in germ cell-derived stem cells during processes related to tumorigenesis and pluripotency.

  7. Nitric oxide synthase during early embryonic development in silkworm Bombyx mori: Gene expression, enzyme activity, and tissue distribution.

    PubMed

    Kitta, Ryo; Kuwamoto, Marina; Yamahama, Yumi; Mase, Keisuke; Sawada, Hiroshi

    2016-12-01

    To elucidate the mechanism for embryonic diapause or the breakdown of diapause in Bombyx mori, we biochemically analyzed nitric oxide synthase (NOS) during the embryogenesis of B. mori. The gene expression and enzyme activity of B. mori NOS (BmNOS) were examined in diapause, non-diapause, and HCl-treated diapause eggs. In the case of HCl-treated diapause eggs, the gene expression and enzyme activity of BmNOS were induced by HCl treatment. However, in the case of diapause and non-diapause eggs during embryogenesis, changes in the BmNOS activity and gene expressions did not coincide except 48-60 h after oviposition in diapause eggs. The results imply that changes in BmNOS activity during the embryogenesis of diapause and non-diapause eggs are regulated not only at the level of transcription but also post-transcription. The distribution and localization of BmNOS were also investigated with an immunohistochemical technique using antibodies against the universal NOS; the localization of BmNOS was observed mainly in the cytoplasm of yolk cells in diapause eggs and HCl-treated diapause eggs. These data suggest that BmNOS has an important role in the early embryonic development of the B. mori.

  8. Serum-based culture conditions provoke gene expression variability in mouse embryonic stem cells as revealed by single cell analysis

    PubMed Central

    Guo, Guoji; Pinello, Luca; Han, Xiaoping; Lai, Shujing; Shen, Li; Lin, Ta-Wei; Zou, Keyong; Yuan, Guo-Cheng; Orkin, Stuart H.

    2015-01-01

    Summary Variation in gene expression is an important feature of mouse embryonic stem cells (ESCs). However, the mechanisms responsible for global gene expression variation in ESCs are not fully understood. We performed single cell mRNA-seq analysis of mouse ESCs and uncovered significant heterogeneity in ESCs cultured in serum. We define highly variable gene clusters with distinct chromatin states; and show that bivalent genes are prone to expression variation. At the same time, we identify an ESC priming pathway that initiates the exit from the naïve ESC state. Finally, we provide evidence that a large proportion of intracellular network variability is due to the extracellular culture environment. Serum free culture reduces cellular heterogeneity and transcriptome variation in ESCs. PMID:26804902

  9. [Expression of TGFbeta family factors and FGF2 in mouse and human embryonic stem cells maintained in different culture systems].

    PubMed

    Lifantseva, N V; Kol'tsova, A M; Polianskaia, G G; Gordeeva, O F

    2013-01-01

    Mouse and human embryonic stem cells are in different states of pluripotency (naive/ground and primed states). Mechanisms of signaling regulation in cells with ground and primed states of pluripotency are considerably different. In order to understand the contribution of endogenous and exogenous factors in the maintenance of a metastable state of the cells in different phases ofpluripotency, we examined the expression of TGFbeta family factors (ActivinA, Nodal, Leftyl, TGFbeta1, GDF3, BMP4) and FGF2 initiating the appropriate signaling pathways in mouse and human embryonic stem cells (mESCs, hESCs) and supporting feeder cells. Quantitative real-time PCR analysis of gene expression showed that the expression patterns of endogenous factors studied were considerably different in mESCs and hESCs. The most significant differences were found in the levels of endogenous expression of TGFbeta1, BMP4 and ActivinA. The sources of exogenous factors ActivnA, TGFbeta1, and FGF2 for hESCs are feeder cells (mouse and human embryonic fibroblasts) expressing high levels of these factors, as well as low levels of BMP4. Thus, our data demonstrated that the in vitro maintenance of metastable state of undifferentiated pluripotent cells is achieved in mESCs and hESCs using different schemes of the regulations of ActivinA/Nodal/Lefty/Smad2/3BMP/Smad1/5/8 endogenous branches of TGFbeta signaling. The requirement for exogenous stimulation or inhibition of these signaling pathways is due to different patterns of endogenous expression of TGFbeta family factors and FGF2 in the mESCs and hESCs. For the hESCs, enhanced activity of ActivinA/Nodal/Lefty/Smad2/3 signaling by exogenous factor stimulation is necessary to mitigate the effects of BMP/Smadl/5/8 signaling pathways that promote cell differentiation into the extraembryonic structures. Significant differences in endogenous FGF2 expression in the cells in the ground and primary states of pluripotency demonstrate diverse involvement of this

  10. Cyclic mechanical strain maintains Nanog expression through PI3K/Akt signaling in mouse embryonic stem cells

    SciTech Connect

    Horiuchi, Rie; Akimoto, Takayuki; Hong, Zhang; Ushida, Takashi

    2012-08-15

    Mechanical strain has been reported to affect the proliferation/differentiation of many cell types; however, the effects of mechanotransduction on self-renewal as well as pluripotency of embryonic stem (ES) cells remains unknown. To investigate the effects of mechanical strain on mouse ES cell fate, we examined the expression of Nanog, which is an essential regulator of self-renewal and pluripotency as well as Nanog-associated intracellular signaling during uniaxial cyclic mechanical strain. The mouse ES cell line, CCE was plated onto elastic membranes, and we applied 10% strain at 0.17 Hz. The expression of Nanog was reduced during ES cell differentiation in response to the withdrawal of leukemia inhibitory factor (LIF); however, two days of cyclic mechanical strain attenuated this reduction of Nanog expression. On the other hand, the cyclic mechanical strain promoted PI3K-Akt signaling, which is reported as an upstream of Nanog transcription. The cyclic mechanical strain-induced Akt phosphorylation was blunted by the PI3K inhibitor wortmannin. Furthermore, cytochalasin D, an inhibitor of actin polymerization, also inhibited the mechanical strain-induced increase in phospho-Akt. These findings imply that mechanical force plays a role in regulating Nanog expression in ES cells through the actin cytoskeleton-PI3K-Akt signaling. -- Highlights: Black-Right-Pointing-Pointer The expression of Nanog, which is an essential regulator of 'stemness' was reduced during embryonic stem (ES) cell differentiation. Black-Right-Pointing-Pointer Cyclic mechanical strain attenuated the reduction of Nanog expression. Black-Right-Pointing-Pointer Cyclic mechanical strain promoted PI3K-Akt signaling and mechanical strain-induced Akt phosphorylation was blunted by the PI3K inhibitor and an inhibitor of actin polymerization.

  11. Developmental expression of glycine immunoreactivity and its colocalization with GABA in the embryonic chick lumbosacral spinal cord.

    PubMed

    Berki, A C; O'Donovan, M J; Antal, M

    1995-11-27

    The development of immunoreactivity for the putative inhibitory amino acid neurotransmitter glycine was investigated in the embryonic and posthatched chick lumbosacral spinal cord by using postembedding immunocytochemical methods. Glycine immunoreactive perikarya were first observed at embryonic day 8 (E8) both in the dorsal and ventral gray matters. The number of immunostained neurons sharply increased by E10 and was gradually augmented further at later developmental stages. The general pattern of glycine immunoreactivity characteristic of mature animals had been achieved by E12 and was only slightly altered afterward. Most of the immunostained neurons were located in the presumptive deep dorsal horn (laminae IV-VI) and lamina VII, although glycine-immunoreactive neurons were scattered throughout the entire extent of the spinal gray matter. By using some of our previously obtained and published data concerning the development of gamma-aminobutyric acid (GABA)-ergic neurons in the embryonic chick lumbosacral spinal cord, we have compared the numbers, sizes, and distribution of glycine- and GABA-immunoreactive spinal neurons at various developmental stages and found the following marked differences in the developmental characteristics of these two populations of putative inhibitory interneurons. (i) GABA immunoreactivity was expressed very early (E4), whereas immunoreactivity for glycine appeared relatively late (E8) in embryonic development. (ii) In the ventral horn, GABA immunoreactivity declined, whereas immunoreactivity for glycine gradually increased from E8 onward in such a manner that the sum of glycinergic and GABAergic perikarya remained constant during the second half of embryonic development. (iii) Glycinergic and GABAergic neurons showed different distribution patterns in the spinal gray matter throughout the entire course of embryogenesis as well as in the posthatched animal. When investigating the colocalization of glycine and GABA immunoreactivities

  12. Embryonic catalase protects against ethanol embryopathies in acatalasemic mice and transgenic human catalase-expressing mice in embryo culture

    SciTech Connect

    Miller-Pinsler, Lutfiya; Wells, Peter G.

    2015-09-15

    Reactive oxygen species (ROS) have been implicated in the mechanism of ethanol (EtOH) teratogenicity, but the protective role of the embryonic antioxidative enzyme catalase is unclear, as embryonic activity is only about 5% of maternal levels. We addressed this question in a whole embryo culture model. C57BL/6 mouse embryos expressing human catalase (hCat) or their wild-type (C57BL/6 WT) controls, and C3Ga.Cg-Cat{sup b}/J catalase-deficient, acatalasemic (aCat) mouse embryos or their wild-type C3HeB/FeJ (C3H WT) controls, were explanted on gestational day (GD) 9 (plug = GD 1), exposed for 24 h to 2 or 4 mg/mL EtOH or vehicle, and evaluated for functional and morphological changes. hCat and C57BL/6 WT vehicle-exposed embryos developed normally, while EtOH was embryopathic in C57BL/6 WT embryos, evidenced by decreases in anterior neuropore closure, somites developed, turning and head length, whereas hCat embryos were protected (p < 0.001). Maternal pretreatment of C57BL/6 WT dams with 50 kU/kg PEG-catalase (PEG-cat) 8 h prior to embryo culture, which increases embryonic catalase activity, blocked all EtOH embryopathies (p < 0.001). Vehicle-exposed aCat mouse embryos had lower yolk sac diameters compared to WT controls, suggesting that endogenous ROS are embryopathic. EtOH was more embryopathic in aCat embryos than WT controls, evidenced by reduced head length and somite development (p < 0.01), and trends for reduced anterior neuropore closure, turning and crown–rump length. Maternal pretreatment of aCat dams with PEG-Cat blocked all EtOH embryopathies (p < 0.05). These data suggest that embryonic catalase is a determinant of risk for EtOH embryopathies. - Highlights: • Ethanol (EtOH) exposure causes structural embryopathies in embryo culture. • Genetically enhanced catalase (hCat) protects against EtOH embryopathies. • Genetically deficient catalase (aCat) exacerbates EtOH embryopathies. • Embryonic catalase is developmentally important. • Et

  13. Differential expression and function of the Drosophila Pax6 genes eyeless and twin of eyeless in embryonic central nervous system development.

    PubMed

    Kammermeier, L; Leemans, R; Hirth, F; Flister, S; Wenger, U; Walldorf, U; Gehring, W J; Reichert, H

    2001-05-01

    We analyzed the expression and function of eyeless (ey) and twin of eyeless (toy) in the embryonic central nervous system (CNS) of Drosophila. Both genes are differentially expressed in specific neuronal subsets (but not in glia) in every CNS neuromere, and in the brain, specific cell populations co-expressing both proteins define a longitudinal domain which is intercalated between broad exclusive expression domains of ey and toy. Studies of genetic null alleles and dsRNA interference did not reveal any gross neuroanatomical effects of ey, toy, or ey/toy elimination in the embryonic CNS. In contrast, targeted misexpression of ey, but not of toy, resulted in profound axonal abnormalities in the embryonic ventral nerve cord and brain.

  14. Growth factor independence 1b (gfi1b) is important for the maturation of erythroid cells and the regulation of embryonic globin expression.

    PubMed

    Vassen, Lothar; Beauchemin, Hugues; Lemsaddek, Wafaa; Krongold, Joseph; Trudel, Marie; Möröy, Tarik

    2014-01-01

    Growth factor independence 1b (GFI1B) is a DNA binding repressor of transcription with vital functions in hematopoiesis. Gfi1b-null embryos die at midgestation very likely due to defects in erythro- and megakaryopoiesis. To analyze the full functionality of Gfi1b, we used conditionally deficient mice that harbor floxed Gfi1b alleles and inducible (Mx-Cre, Cre-ERT) or erythroid specific (EpoR-Cre) Cre expressing transgenes. In contrast to the germline knockout, EpoR-Cre mediated erythroid specific ablation of Gfi1b allows full gestation, but causes perinatal lethality with very few mice surviving to adulthood. Both the embryonic deletion of Gfi1b by EpoR-Cre and the deletion in adult mice by Mx-Cre or Cre-ERT leads to reduced numbers of erythroid precursors, perturbed and delayed erythroid maturation, anemia and extramedullary erythropoiesis. Global expression analyses showed that the Hba-x, Hbb-bh1 and Hbb-y embryonic globin genes were upregulated in Gfi1b deficient TER119+ fetal liver cells over the gestation period from day 12.5-17.5 p.c. and an increased level of Hbb-bh1 and Hbb-y embryonic globin gene expression was even maintained in adult Gfi1b deficient mice. While the expression of Bcl11a, a regulator of embryonic globin expression was not affected by Gfi1b deficiency, the expression of Gata1 was reduced and the expression of Sox6, also involved in globin switch, was almost entirely lost when Gfi1b was absent. These findings establish Gfi1b as a regulator of embryonic globin expression and embryonic and adult erythroid maturation.

  15. Gene Expression Profile of Adult Human Olfactory Bulb and Embryonic Neural Stem Cell Suggests Distinct Signaling Pathways and Epigenetic Control

    PubMed Central

    Marei, Hany E. S.; Ahmed, Abd-Elmaksoud; Michetti, Fabrizio; Pescatori, Mario; Pallini, Roberto; Casalbore, Patricia; Cenciarelli, Carlo; Elhadidy, Mohamed

    2012-01-01

    Global gene expression profiling was performed using RNA from human embryonic neural stem cells (hENSC), and adult human olfactory bulb-derived neural stem cells (OBNSCs), to define a gene expression pattern and signaling pathways that are specific for each cell lineage. We have demonstrated large differences in the gene expression profile of human embryonic NSC, and adult human OBNSCs, but less variability between parallel cultures. Transcripts of genes involved in neural tube development and patterning (ALDH1A2, FOXA2), progenitor marker genes (LMX1a, ALDH1A1, SOX10), proliferation of neural progenitors (WNT1 and WNT3a), neuroplastin (NPTN), POU3F1 (OCT6), neuroligin (NLGN4X), MEIS2, and NPAS1 were up-regulated in both cell populations. By Gene Ontology, 325 out of 3875 investigated gene sets were scientifically different. 41 out of the 307 investigated Cellular Component (CC) categories, 45 out of the 620 investigated Molecular Function (MF) categories, and 239 out of the 2948 investigated Biological Process (BP) categories were significant. KEGG Pathway Class Comparison had revealed that 75 out of 171 investigated gene sets passed the 0.005 significance threshold. Levels of gene expression were explored in three signaling pathways, Notch, Wnt, and mTOR that are known to be involved in NS cell fates determination. The transcriptional signature also deciphers the role of genes involved in epigenetic modifications. SWI/SNF DNA chromatin remodeling complex family, including SMARCC1 and SMARCE1, were found specifically up-regulated in our OBNSC but not in hENSC. Differences in gene expression profile of transcripts controlling epigenetic modifications, and signaling pathways might indicate differences in the therapeutic potential of our examined two cell populations in relation to in cell survival, proliferation, migration, and differentiation following engraftments in different CNS insults. PMID:22485144

  16. Infrared laser-induced gene expression for tracking development and function of single C. elegans embryonic neurons

    PubMed Central

    Singhal, Anupriya; Shaham, Shai

    2017-01-01

    Visualizing neural-circuit assembly in vivo requires tracking growth of optically resolvable neurites. The Caenorhabditis elegans embryonic nervous system, comprising 222 neurons and 56 glia, is attractive for comprehensive studies of development; however, embryonic reporters are broadly expressed, making single-neurite tracking/manipulation challenging. We present a method, using an infrared laser, for reproducible heat-dependent gene expression in small sublineages (one to four cells) without radiation damage. We go beyond proof-of-principle, and use our system to label and track single neurons during early nervous-system assembly. We uncover a retrograde extension mechanism for axon growth, and reveal the aetiology of axon-guidance defects in sax-3/Robo and vab-1/EphR mutants. We also perform cell-specific rescues, determining DAF-6/patched-related site of action during sensory-organ development. Simultaneous ablation and labelling of cells using our system reveals roles for glia in dendrite extension. Our method can be applied to other optically/IR-transparent organisms, and opens the door to high-resolution systematic analyses of C. elegans morphogenesis. PMID:28098184

  17. Dynamic expression of N-myc in mouse embryonic development using an enhanced green fluorescent protein reporter gene in the N-myc locus.

    PubMed

    Ma, Ming; Zhao, Kai; Wu, Wenting; Sun, Ruilin; Fei, Jian

    2014-02-01

    N-myc belongs to the Myc oncogene family and plays an essential role in mammalian embryonic development. The expression of N-myc is dynamically regulated during embryonic development; however, its expression pattern has not been well characterized due to the lack of a suitable animal model. In this paper, a genetically modified mouse model was generated in which the enhanced green fluorescent protein (EGFP) coding sequence was inserted into the N-myc locus, so that endogenous N-myc expression could be traced by the signal of EGFP. The EGFP signal in the transgenic mouse was confirmed to be consistent with the expression pattern of endogenous N-myc by fluorescence microscopy and immunohistochemical staining. Furthermore, the spatial and temporal expression of EGFP was observed in the central and peripheral nervous system, heart, lung and kidney, given the known indispensable role of N-myc in their formation. EGFP was also strongly detected in the liver, paranephros and the epithelium of the intestine. The EGFP signal can be used to trace N-myc expression in this transgenic mouse model. N-myc expression was observed in specific locations and cell lineages, and dynamically changed during embryonic development. The changing N-myc expression pattern seen in mouse embryonic development and the animal model described in this paper provide important insights and a new tool to research N-myc function.

  18. The turnip Mutant of Arabidopsis Reveals That LEAFY COTYLEDON1 Expression Mediates the Effects of Auxin and Sugars to Promote Embryonic Cell Identity1[W

    PubMed Central

    Casson, Stuart A.; Lindsey, Keith

    2006-01-01

    The transition from embryonic to vegetative growth marks an important developmental stage in the plant life cycle. The turnip (tnp) mutant was identified in a screen for modifiers of POLARIS expression, a gene required for normal root growth. Mapping and molecular characterization of tnp shows that it represents a gain-of-function mutant of LEAFY COTYLEDON1 (LEC1), due to a promoter mutation. This results in the ectopic expression of LEC1, but not of other LEC genes, in vegetative tissues. The LEC class of genes are known regulators of embryogenesis, involved in the control of embryonic cell identity by currently unknown mechanisms. Activation of the LEC-dependent pathway in tnp leads to the loss of hypocotyl epidermal cell marker expression and loss of SCARECROW expression in the endodermis, the ectopic accumulation of starch and lipids, and the up-regulation of early and late embryonic genes. tnp also shows partial deetiolation during dark growth. Penetrance of the mutant phenotype is strongly enhanced in the presence of exogenous auxin and sugars, but not by gibberellin or abscisic acid, and is antagonized by cytokinin. We propose that the role of LEC1 in embryonic cell fate control requires auxin and sucrose to promote cell division and embryonic differentiation. PMID:16935993

  19. Differential expression of embryonic epicardial progenitor markers and localization of cardiac fibrosis in adult ischemic injury and hypertensive heart disease.

    PubMed

    Braitsch, Caitlin M; Kanisicak, Onur; van Berlo, Jop H; Molkentin, Jeffery D; Yutzey, Katherine E

    2013-12-01

    During embryonic heart development, the transcription factors Tcf21, Wt1, and Tbx18 regulate activation and differentiation of epicardium-derived cells, including fibroblast lineages. Expression of these epicardial progenitor factors and localization of cardiac fibrosis were examined in mouse models of cardiovascular disease and in human diseased hearts. Following ischemic injury in mice, epicardial fibrosis is apparent in the thickened layer of subepicardial cells that express Wt1, Tbx18, and Tcf21. Perivascular fibrosis with predominant expression of Tcf21, but not Wt1 or Tbx18, occurs in mouse models of pressure overload or hypertensive heart disease, but not following ischemic injury. Areas of interstitial fibrosis in ischemic and hypertensive hearts actively express Tcf21, Wt1, and Tbx18. In all areas of fibrosis, cells that express epicardial progenitor factors are distinct from CD45-positive immune cells. In human diseased hearts, differential expression of Tcf21, Wt1, and Tbx18 also is detected with epicardial, perivascular, and interstitial fibrosis, indicating conservation of reactivated developmental mechanisms in cardiac fibrosis in mice and humans. Together, these data provide evidence for distinct fibrogenic mechanisms that include Tcf21, separate from Wt1 and Tbx18, in different fibroblast populations in response to specific types of cardiac injury.

  20. Defining a developmental path to neural fate by global expression profiling of mouse embryonic stem cells and adult neural stem/progenitor cells.

    PubMed

    Aiba, Kazuhiro; Sharov, Alexei A; Carter, Mark G; Foroni, Chiara; Vescovi, Angelo L; Ko, Minoru S H

    2006-04-01

    To understand global features of gene expression changes during in vitro neural differentiation, we carried out the microarray analysis of embryonic stem cells (ESCs), embryonal carcinoma cells, and adult neural stem/progenitor (NS) cells. Expression profiling of ESCs during differentiation in monolayer culture revealed three distinct phases: undifferentiated ESCs, primitive ectoderm-like cells, and neural progenitor cells. Principal component (PC) analysis revealed that these cells were aligned on PC1 over the course of 6 days. This PC1 represents approximately 4,000 genes, the expression of which increased with neural commitment/differentiation. Furthermore, NS cells derived from adult brain and their differentiated cells were positioned along this PC axis further away from undifferentiated ESCs than embryonic stem-derived neural progenitors. We suggest that this PC1 defines a path to neural fate, providing a scale for the degree of commitment/differentiation.

  1. Identification of cis elements necessary for glucocorticoid induction of growth hormone gene expression in chicken embryonic pituitary cells.

    PubMed

    Heuck-Knubel, Kristina; Proszkowiec-Weglarz, Monika; Narayana, Jyoti; Ellestad, Laura E; Prakobsaeng, Nattiya; Porter, Tom E

    2012-03-01

    Glucocorticoid (GC) treatment of rat or chicken embryonic pituitary (CEP) cells induces premature production of growth hormone (GH). GC induction of the GH gene requires ongoing protein synthesis, and the GH genes lack a canonical GC response element (GRE). To characterize cis-acting elements and identify trans-acting proteins involved in this process, we characterized the regulation of a luciferase reporter containing a fragment of the chicken GH gene (-1727/+48) in embryonic day 11 CEP cells. Corticosterone (Cort) increased luciferase activity and mRNA expression, and mRNA induction was blocked by protein synthesis inhibition. Through deletion analysis, we identified a GC-responsive region (GCRR) at -1045 to -954. The GCRR includes an ETS-1 binding site and a degenerate GRE (dGRE) half site. Nuclear proteins, including ETS-1, bound to a GCRR probe in electrophoretic mobility shift assays, and Cort regulated protein binding. Using chromatin immunoprecipitation, we found that ETS-1 and GC receptor (GR) were associated with the GCRR in CEP cells, and Cort increased GR recruitment to the GCRR. Mutation of the ETS-1 site or dGRE site in the -1045/+48 GH reporter abolished Cort responsiveness. We conclude that GC regulation of the GH gene during development requires cis-acting elements in the GCRR and involves ETS-1 and GR binding to these elements. Similar ETS-1 elements/dGREs are located in the 5'-flanking regions of GH genes in mammals, including rodents and humans. This is the first study to demonstrate involvement of ETS-1 in GC regulation of the GH gene during embryonic development in any species, enhancing our understanding of GH regulation in vertebrates.

  2. Primordial dwarfism gene maintains Lin28 expression to safeguard embryonic stem cells from premature differentiation.

    PubMed

    Dai, Qian; Luan, Guangxin; Deng, Li; Lei, Tingjun; Kang, Han; Song, Xu; Zhang, Yujun; Xiao, Zhi-Xiong; Li, Qintong

    2014-05-08

    Primordial dwarfism (PD) is characterized by global growth failure, both during embryogenesis and postnatally. Loss-of-function germline mutations in La ribonucleoprotein domain family, member 7 (LAPR7) have recently been linked to PD. Paradoxically, LARP7 deficiency was previously assumed to be associated with increased cell growth and proliferation via activation of positive transcription elongation factor b (P-TEFb). Here, we show that Larp7 deficiency likely does not significantly increase P-TEFb activity. We further discover that Larp7 knockdown does not affect pluripotency but instead primes embryonic stem cells (ESCs) for differentiation via downregulation of Lin28, a positive regulator of organismal growth. Mechanistically, we show that Larp7 interacts with a poly(A) polymerase Star-PAP to maintain Lin28 mRNA stability. We propose that proper regulation of Lin28 and PTEFb is essential for embryonic cells to achieve a sufficient number of cell divisions prior to differentiation and ultimately to maintain proper organismal size.

  3. Embryonic transcription factor expression in mice predicts medial amygdala neuronal identity and sex-specific responses to innate behavioral cues

    PubMed Central

    Lischinsky, Julieta E; Sokolowski, Katie; Li, Peijun; Esumi, Shigeyuki; Kamal, Yasmin; Goodrich, Meredith; Oboti, Livio; Hammond, Timothy R; Krishnamoorthy, Meera; Feldman, Daniel; Huntsman, Molly; Liu, Judy; Corbin, Joshua G

    2017-01-01

    The medial subnucleus of the amygdala (MeA) plays a central role in processing sensory cues required for innate behaviors. However, whether there is a link between developmental programs and the emergence of inborn behaviors remains unknown. Our previous studies revealed that the telencephalic preoptic area (POA) embryonic niche is a novel source of MeA destined progenitors. Here, we show that the POA is comprised of distinct progenitor pools complementarily marked by the transcription factors Dbx1 and Foxp2. As determined by molecular and electrophysiological criteria this embryonic parcellation predicts postnatal MeA inhibitory neuronal subtype identity. We further find that Dbx1-derived and Foxp2+ cells in the MeA are differentially activated in response to innate behavioral cues in a sex-specific manner. Thus, developmental transcription factor expression is predictive of MeA neuronal identity and sex-specific neuronal responses, providing a potential developmental logic for how innate behaviors could be processed by different MeA neuronal subtypes. DOI: http://dx.doi.org/10.7554/eLife.21012.001 PMID:28244870

  4. Maternal Experience with Predation Risk Influences Genome-Wide Embryonic Gene Expression in Threespined Sticklebacks (Gasterosteus aculeatus)

    PubMed Central

    Mommer, Brett C.; Bell, Alison M.

    2014-01-01

    There is growing evidence for nongenetic effects of maternal experience on offspring. For example, previous studies have shown that female threespined stickleback fish (Gasterosteus aculeatus) exposed to predation risk produce offspring with altered behavior, metabolism and stress physiology. Here, we investigate the effect of maternal exposure to predation risk on the embryonic transcriptome in sticklebacks. Using RNA-sequencing we compared genome-wide transcription in three day post-fertilization embryos of predator-exposed and control mothers. There were hundreds of differentially expressed transcripts between embryos of predator-exposed mothers and embryos of control mothers including several non-coding RNAs. Gene Ontology analysis revealed biological pathways involved in metabolism, epigenetic inheritance, and neural proliferation and differentiation that differed between treatments. Interestingly, predation risk is associated with an accelerated life history in many vertebrates, and several of the genes and biological pathways that were identified in this study suggest that maternal exposure to predation risk accelerates the timing of embryonic development. Consistent with this hypothesis, embryos of predator-exposed mothers were larger than embryos of control mothers. These findings point to some of the molecular mechanisms that might underlie maternal effects. PMID:24887438

  5. Bitter, sweet and umami taste receptors and downstream signaling effectors: Expression in embryonic and growing chicken gastrointestinal tract.

    PubMed

    Cheled-Shoval, Shira L; Druyan, Shelly; Uni, Zehava

    2015-08-01

    Taste perception is a crucial biological mechanism affecting food and water choices and consumption in the animal kingdom. Bitter taste perception is mediated by a G-protein-coupled receptor (GPCR) family-the taste 2 receptors (T2R)-and their downstream proteins, whereas sweet and umami tastes are mediated by the GPCR family -taste 1 receptors (T1R) and their downstream proteins. Taste receptors and their downstream proteins have been identified in extra-gustatory tissues in mammals, such as the lungs and gastrointestinal tract (GIT), and their GIT activation has been linked with different metabolic and endocrinic pathways in the GIT. The chicken genome contains three bitter taste receptors termed ggTas2r1, ggTas2r2, and ggTas2r7, and the sweet/umami receptors ggTas1r1 and ggTas1r3, but it lacks the sweet receptor ggTas1r2. The aim of this study was to identify and determine the expression of genes related to taste perception in the chicken GIT, both at the embryonic stage and in growing chickens. The results of this study demonstrate for the first time, using real-time PCR, expression of the chicken taste receptor genes ggTas2r1, ggTas2r2, ggTas2r7, ggTas1r1, and ggTas1r3 and of their downstream protein-encoding genes TRPM5, α-gustducin, and PLCβ2 in both gustatory tissues-the palate and tongue, and extra-gustatory tissues-the proventriculus, duodenum, jejunum, ileum, cecum, and colon of embryonic day 19 (E19) and growing (21 d old) chickens. Expression of these genes suggests the involvement of taste pathways for sensing carbohydrates, amino acids and bitter compounds in the chicken GIT.

  6. Compound-specific effects of diverse neurodevelopmental toxicants on global gene expression in the neural embryonic stem cell test (ESTn)

    SciTech Connect

    Theunissen, P.T.; Robinson, J.F.; Pennings, J.L.A.; Herwijnen, M.H. van; Kleinjans, J.C.S.; Piersma, A.H.

    2012-08-01

    Alternative assays for developmental toxicity testing are needed to reduce animal use in regulatory toxicology. The in vitro murine neural embryonic stem cell test (ESTn) was designed as an alternative for neurodevelopmental toxicity testing. The integration of toxicogenomic-based approaches may further increase predictivity as well as provide insight into underlying mechanisms of developmental toxicity. In the present study, we investigated concentration-dependent effects of six mechanistically diverse compounds, acetaldehyde (ACE), carbamazepine (CBZ), flusilazole (FLU), monoethylhexyl phthalate (MEHP), penicillin G (PENG) and phenytoin (PHE), on the transcriptome and neural differentiation in the ESTn. All compounds with the exception of PENG altered ESTn morphology (cytotoxicity and neural differentiation) in a concentration-dependent manner. Compound induced gene expression changes and corresponding enriched gene ontology biological processes (GO–BP) were identified after 24 h exposure at equipotent differentiation-inhibiting concentrations of the compounds. Both compound-specific and common gene expression changes were observed between subsets of tested compounds, in terms of significance, magnitude of regulation and functionality. For example, ACE, CBZ and FLU induced robust changes in number of significantly altered genes (≥ 687 genes) as well as a variety of GO–BP, as compared to MEHP, PHE and PENG (≤ 55 genes with no significant changes in GO–BP observed). Genes associated with developmentally related processes (embryonic morphogenesis, neuron differentiation, and Wnt signaling) showed diverse regulation after exposure to ACE, CBZ and FLU. In addition, gene expression and GO–BP enrichment showed concentration dependence, allowing discrimination of non-toxic versus toxic concentrations on the basis of transcriptomics. This information may be used to define adaptive versus toxic responses at the transcriptome level.

  7. Force via integrins but not E-cadherin decreases Oct3/4 expression in embryonic stem cells

    SciTech Connect

    Uda, Yuhei; Poh, Yeh-Chuin; Chowdhury, Farhan; Wu, Douglas C.; Tanaka, Tetsuya S.; Sato, Masaaki; Wang, Ning

    2011-11-18

    Highlights: Black-Right-Pointing-Pointer Force via integrins or cadherins induces similar cell stiffening responses. Black-Right-Pointing-Pointer Force via integrins but not cadherins induces cell spreading. Black-Right-Pointing-Pointer Force via integrins but not cadherins induces differentiation of embryonic stem cells. -- Abstract: Increasing evidence suggests that mechanical factors play a critical role in fate decisions of stem cells. Recently we have demonstrated that a local force applied via Arg-Gly-Asp (RGD) peptides coated magnetic beads to mouse embryonic stem (ES) cells increases cell spreading and cell stiffness and decreases Oct3/4 (Pou5f1) gene expression. However, it is not clear whether the effects of the applied stress on these functions of ES cells can be extended to natural extracellular matrix proteins or cell-cell adhesion molecules. Here we show that a local cyclic shear force applied via fibronectin or laminin to integrin receptors increased cell spreading and stiffness, downregulated Oct3/4 gene expression, and decreased cell proliferation rate. In contrast, the same cyclic force applied via cell-cell adhesion molecule E-cadherin (Cdh1) had no effects on cell spreading, Oct3/4 gene expression, and the self-renewal of mouse ES cells, but induced significant cell stiffening. Our findings demonstrate that biological responses of ES cells to force applied via integrins are different from those to force via E-cadherin, suggesting that mechanical forces might play different roles in different force transduction pathways to shape early embryogenesis.

  8. Bone morphogenetic protein 1 is expressed in porcine ovarian follicles and promotes oocyte maturation and early embryonic development

    PubMed Central

    LEI, Xiaocan; CUI, Kuiqing; CAI, Xiaoyan; REN, Yanping; LIU, Qingyou; SHI, Deshun

    2016-01-01

    In the present study, we tried to determine whether bone morphogenetic protein 1 (BMP1) plays a role in ovarian follicular development and early embryo development. We systematically investigated the expression and influence of BMP1 during porcine follicle and early embryonic development. Immunohistochemistry demonstrated that the BMP1 protein is expressed in granular cells and oocytes during follicular development, from primary to pre-ovulatory follicles, including atretic follicles and the corpus luteum. The mRNA expression of BMP1 significantly increased as the porcine follicles grew. Immunofluorescence analysis indicated that BMP1 was expressed in cumulus-oocyte complexes (COCs), oocytes and porcine embryos during early in vitro culture. qPCR and western blot analysis showed that the expression of BMP1 was significantly up-regulated in mature porcine oocytes and COCs compared to immature oocytes and COCs. BMP1 is expressed in early porcine embryos, and its expression reaches a peak at the 8-cell stage. To determine the effect of BMP1 on the maturation of oocytes and the development of early embryos, various concentrations of BMP1 recombinant protein or antibody were added to the in vitro culture media, respectively. BMP1 significantly affected the porcine oocyte maturation rate, the cleavage rate and the blastocyst development rate of embryos cultured in vitro in a positive way, as well as the blastocyst cell number. In conclusion, BMP1 is expressed throughout porcine ovarian follicle development and early embryogenesis, and it promotes oocyte maturation and the developmental ability of embryos during early in vitro culture. PMID:27890905

  9. A diverse epigenetic landscape at human exons with implication for expression

    PubMed Central

    Singer, Meromit; Kosti, Idit; Pachter, Lior; Mandel-Gutfreund, Yael

    2015-01-01

    DNA methylation is an important epigenetic marker associated with gene expression regulation in eukaryotes. While promoter methylation is relatively well characterized, the role of intragenic DNA methylation remains unclear. Here, we investigated the relationship of DNA methylation at exons and flanking introns with gene expression and histone modifications generated from a human fibroblast cell-line and primary B cells. Consistent with previous work we found that intragenic methylation is positively correlated with gene expression and that exons are more highly methylated than their neighboring intronic environment. Intriguingly, in this study we identified a unique subset of hypomethylated exons that demonstrate significantly lower methylation levels than their surrounding introns. Furthermore, we observed a negative correlation between exon methylation and the density of the majority of histone modifications. Specifically, we demonstrate that hypo-methylated exons at highly expressed genes are associated with open chromatin and have a characteristic histone code comprised of significantly high levels of histone markings. Overall, our comprehensive analysis of the human exome supports the presence of regulatory hypomethylated exons in protein coding genes. In particular our results reveal a previously unrecognized diverse and complex role of the epigenetic landscape within the gene body. PMID:25765649

  10. Eye-Specific Gene Expression following Embryonic Ethanol Exposure in Zebrafish: Roles for Heat Shock Factor 1

    PubMed Central

    Kashyap, Bhavani; Pegorsch, Laurel; Frey, Ruth A.; Sun, Chi; Shelden, Eric A.; Stenkamp, Deborah L.

    2014-01-01

    The mechanisms through which ethanol exposure results in developmental defects remain unclear. We used the zebrafish model to elucidate eye-specific mechanisms that underlie ethanol-mediated microphthalmia (reduced eye size), through time-series microarray analysis of gene expression within eyes of embryos exposed to 1.5% ethanol. 62 genes were differentially expressed (DE) in ethanol-treated as compared to control eyes sampled during retinal neurogenesis (24-48 hours post-fertilization). The EDGE (extraction of differential gene expression) algorithm identified >3000 genes DE over developmental time in ethanol-exposed eyes as compared to controls. The DE lists included several genes indicating a mis-regulated cellular stress response due to ethanol exposure. Combined treatment with sub-threshold levels of ethanol and a morpholino targeting heat shock factor 1 mRNA resulted in microphthalmia, suggesting convergent molecular pathways. Thermal preconditioning partially prevented ethanol-mediated microphthalmia while maintaining Hsf-1 expression. These data suggest roles for reduced Hsf-1 in mediating microphthalmic effects of embryonic ethanol exposure. PMID:24355176

  11. The role of methylation, DNA polymorphisms and microRNAs on HLA-G expression in human embryonic stem cells.

    PubMed

    Verloes, A; Spits, C; Vercammen, M; Geens, M; LeMaoult, J; Sermon, K; Coucke, W; Van de Velde, H

    2017-03-01

    The human leukocyte antigen (HLA)-G gene seems to play a pivotal role in maternal tolerance to the fetus. Little is known about HLA-G expression and its molecular control during in vivo human embryogenesis. Human embryonic stem cells (hESC) provide an interesting in vitro model to study early human development. Different studies reported discrepant findings on whether HLA-G mRNA and protein are present or absent in hESC. Several lines of evidence indicate that promoter CpG methylation and 3' untranslated region (3'UTR) polymorphisms may influence HLA-G expression. We investigated how HLA-G expression is linked to the patterns of promoter methylation and explored the role of the 3'UTR polymorphic sites and their binding microRNAs on the post-transcriptional regulation of HLA-G in eight hESC lines. We showed that, while the gross expression levels of HLA-G are controlled by promoter methylation, the genetic constitution of the HLA-G 3'UTR, more specifically the 14bp insertion in combination with the +3187A/A and +3142G/G SNP, plays a major role in HLA-G mRNA regulation in hESC. Our findings provide a solid first step towards future work using hESC as tools for the study of early human developmental processes in normal and pregnancy-related disorders such as preeclampsia.

  12. Embryonic expression of endothelins and their receptors in lamprey and frog reveals stem vertebrate origins of complex Endothelin signaling

    PubMed Central

    Square, Tyler; Jandzik, David; Cattell, Maria; Hansen, Andrew; Medeiros, Daniel Meulemans

    2016-01-01

    Neural crest cells (NCCs) are highly patterned embryonic cells that migrate along stereotyped routes to give rise to a diverse array of adult tissues and cell types. Modern NCCs are thought to have evolved from migratory neural precursors with limited developmental potential and patterning. How this occurred is poorly understood. Endothelin signaling regulates several aspects of NCC development, including their migration, differentiation, and patterning. In jawed vertebrates, Endothelin signaling involves multiple functionally distinct ligands (Edns) and receptors (Ednrs) expressed in various NCC subpopulations. To test the potential role of endothelin signaling diversification in the evolution of modern, highly patterned NCC, we analyzed the expression of the complete set of endothelin ligands and receptors in the jawless vertebrate, the sea lamprey (Petromyzon marinus). To better understand ancestral features of gnathostome edn and ednr expression, we also analyzed all known Endothelin signaling components in the African clawed frog (Xenopus laevis). We found that the sea lamprey has a gnathsotome-like complement of edn and ednr duplicates, and these genes are expressed in patterns highly reminiscent of their gnathostome counterparts. Our results suggest that the duplication and specialization of vertebrate Endothelin signaling coincided with the appearance of highly patterned and multipotent NCCs in stem vertebrates. PMID:27677704

  13. Transient bursts of Zscan4 expression are accompanied by the rapid derepression of heterochromatin in mouse embryonic stem cells

    PubMed Central

    Akiyama, Tomohiko; Xin, Li; Oda, Mayumi; Sharov, Alexei A.; Amano, Misa; Piao, Yulan; Cadet, J. Scotty; Dudekula, Dawood B.; Qian, Yong; Wang, Weidong; Ko, Shigeru B. H.; Ko, Minoru S. H.

    2015-01-01

    Mouse embryonic stem cells (mESCs) have a remarkable capacity to maintain normal genome stability and karyotype in culture. We previously showed that infrequent bursts of Zscan4 expression (Z4 events) are important for the maintenance of telomere length and genome stability in mESCs. However, the molecular details of Z4 events remain unclear. Here we show that Z4 events involve unexpected transcriptional derepression in heterochromatin regions that usually remain silent. During a Z4 event, we see rapid derepression and rerepression of heterochromatin leading to a burst of transcription that coincides with transient histone hyperacetylation and DNA demethylation, clustering of pericentromeric heterochromatin around the nucleolus, and accumulation of activating and repressive chromatin remodelling complexes. This heterochromatin-based transcriptional activity suggests that mESCs may maintain their extraordinary genome stability at least in part by transiently resetting their heterochromatin. PMID:26324425

  14. Correlation between receptor-interacting protein 140 expression and directed differentiation of human embryonic stem cells into neural stem cells.

    PubMed

    Zhao, Zhu-Ran; Yu, Wei-Dong; Shi, Cheng; Liang, Rong; Chen, Xi; Feng, Xiao; Zhang, Xue; Mu, Qing; Shen, Huan; Guo, Jing-Zhu

    2017-01-01

    Overexpression of receptor-interacting protein 140 (RIP140) promotes neuronal differentiation of N2a cells via extracellular regulated kinase 1/2 (ERK1/2) signaling. However, involvement of RIP140 in human neural differentiation remains unclear. We found both RIP140 and ERK1/2 expression increased during neural differentiation of H1 human embryonic stem cells. Moreover, RIP140 negatively correlated with stem cell markers Oct4 and Sox2 during early stages of neural differentiation, and positively correlated with the neural stem cell marker Nestin during later stages. Thus, ERK1/2 signaling may provide the molecular mechanism by which RIP140 takes part in neural differentiation to eventually affect the number of neurons produced.

  15. Up-regulation of HP1γ expression during neuronal maturation promotes axonal and dendritic development in mouse embryonic neocortex.

    PubMed

    Oshiro, Hiroaki; Hirabayashi, Yusuke; Furuta, Yasuhide; Okabe, Shigeo; Gotoh, Yukiko

    2015-02-01

    Immature neurons undergo morphological and physiological changes including axonal and dendritic development to establish neuronal networks. As the transcriptional status changes at a large number of genes during neuronal maturation, global changes in chromatin modifiers may take place in this process. We now show that the amount of heterochromatin protein 1γ (HP1γ) increases during neuronal maturation in the mouse neocortex. Knockdown of HP1γ suppressed axonal and dendritic development in mouse embryonic neocortical neurons in culture, and either knockdown or knockout of HP1γ impaired the projection of callosal axons of superficial layer neurons to the contralateral hemisphere in the developing neocortex. Conversely, forced expression of HP1γ facilitated axonal and dendritic development, suggesting that the increase of HP1γ is a rate limiting step in neuronal maturation. These results together show an important role for HP1γ in promoting axonal and dendritic development in maturing neurons.

  16. Large-scale time-lapse microscopy of Oct4 expression in human embryonic stem cell colonies.

    PubMed

    Bhadriraju, Kiran; Halter, Michael; Amelot, Julien; Bajcsy, Peter; Chalfoun, Joe; Vandecreme, Antoine; Mallon, Barbara S; Park, Kye-Yoon; Sista, Subhash; Elliott, John T; Plant, Anne L

    2016-07-01

    Identification and quantification of the characteristics of stem cell preparations is critical for understanding stem cell biology and for the development and manufacturing of stem cell based therapies. We have developed image analysis and visualization software that allows effective use of time-lapse microscopy to provide spatial and dynamic information from large numbers of human embryonic stem cell colonies. To achieve statistically relevant sampling, we examined >680 colonies from 3 different preparations of cells over 5days each, generating a total experimental dataset of 0.9 terabyte (TB). The 0.5 Giga-pixel images at each time point were represented by multi-resolution pyramids and visualized using the Deep Zoom Javascript library extended to support viewing Giga-pixel images over time and extracting data on individual colonies. We present a methodology that enables quantification of variations in nominally-identical preparations and between colonies, correlation of colony characteristics with Oct4 expression, and identification of rare events.

  17. Correlation between receptor-interacting protein 140 expression and directed differentiation of human embryonic stem cells into neural stem cells

    PubMed Central

    Zhao, Zhu-ran; Yu, Wei-dong; Shi, Cheng; Liang, Rong; Chen, Xi; Feng, Xiao; Zhang, Xue; Mu, Qing; Shen, Huan; Guo, Jing-zhu

    2017-01-01

    Overexpression of receptor-interacting protein 140 (RIP140) promotes neuronal differentiation of N2a cells via extracellular regulated kinase 1/2 (ERK1/2) signaling. However, involvement of RIP140 in human neural differentiation remains unclear. We found both RIP140 and ERK1/2 expression increased during neural differentiation of H1 human embryonic stem cells. Moreover, RIP140 negatively correlated with stem cell markers Oct4 and Sox2 during early stages of neural differentiation, and positively correlated with the neural stem cell marker Nestin during later stages. Thus, ERK1/2 signaling may provide the molecular mechanism by which RIP140 takes part in neural differentiation to eventually affect the number of neurons produced. PMID:28250757

  18. Delayed Rectifier and A-Type Potassium Channels Associated with Kv 2.1 and Kv 4.3 Expression in Embryonic Rat Neural Progenitor Cells

    PubMed Central

    Smith, Dean O.; Rosenheimer, Julie L.; Kalil, Ronald E.

    2008-01-01

    Background Because of the importance of voltage-activated K+ channels during embryonic development and in cell proliferation, we present here the first description of these channels in E15 rat embryonic neural progenitor cells derived from the subventricular zone (SVZ). Activation, inactivation, and single-channel conductance properties of recorded progenitor cells were compared with those obtained by others when these Kv gene products were expressed in oocytes. Methodology/Principal Findings Neural progenitor cells derived from the subventricular zone of E15 embryonic rats were cultured under conditions that did not promote differentiation. Immunocytochemical and Western blot assays for nestin expression indicated that almost all of the cells available for recording expressed this intermediate filament protein, which is generally accepted as a marker for uncommitted embryonic neural progenitor cells. However, a very small numbers of the cells expressed GFAP, a marker for astrocytes, O4, a marker for immature oligodendrocytes, and βIII-tubulin, a marker for neurons. Using immunocytochemistry and Western blots, we detected consistently the expression of Kv2.1, and 4.3. In whole-cell mode, we recorded two outward currents, a delayed rectifier and an A-type current. Conclusions/Significance We conclude that Kv2.1, and 4.3 are expressed in E15 SVZ neural progenitor cells, and we propose that they may be associated with the delayed-rectifier and the A-type currents, respectively, that we recorded. These results demonstrate the early expression of delayed rectifier and A-type K+ currents and channels in embryonic neural progenitor cells prior to the differentiation of these cells. PMID:18270591

  19. Cloning, embryonic expression, and alternative splicing of a murine kidney-specific Na-K-Cl cotransporter.

    PubMed

    Igarashi, P; Vanden Heuvel, G B; Payne, J A; Forbush, B

    1995-09-01

    A full-length cDNA encoding the murine renal Na-K-Cl cotransporter (NKCC2) was cloned using library screening and anchored polymerase chain reaction. The deduced protein sequence contained 1,095 amino acids and was 93.5% identical to rabbit NKCC2 and 97.6% identical to rat BSC1. Two potential sites of phosphorylation by adenosine 3',5'-cyclic monophosphate-dependent protein kinase and seven potential sites of phosphorylation by protein kinase C, which were previously identified in the rabbit and rat sequences, were phylogenetically conserved in the mouse. The expression of NKCC2 in the mouse was examined with Northern blot analysis and in situ hybridization. Expression of NKCC2 was kidney specific in both adult and embryonic mice. In the developing metanephros, NKCC2 was induced at 14.5 days post coitus and was expressed in distal limbs of immature loops of Henle but was absent from the ureteric bud, S-shaped bodies, and earlier nephrogenic structures. Similar to the rabbit, isoforms of NKCC2 that differed in the sequence of a 96-bp segment were identified in the mouse. In situ hybridization revealed that the isoforms exhibited different patterns of expression in the mature thick ascending limb of the loop of Henle as follows: isoform F was most highly expressed in the inner stripe of outer medulla, isoform A was most highly expressed in the outer stripe of the outer medulla, and isoform B was most highly expressed in the cortical thick ascending limb. To verify that the isoforms were generated by alternative splicing of mutually exclusive cassette exons, genomic clones encoding murine NKCC2 were characterized. Cassette exons were identified that corresponded to each of the three isoforms and were flanked by consensus splice donor and acceptor sequences.

  20. Changes in WNT signaling-related gene expression associated with development and cloning in bovine extra-embryonic and endometrial tissues during the peri-implantation period.

    PubMed

    Biase, Fernando H; Rabel, Chanaka; Guillomot, Michel; Sandra, Olivier; Andropolis, Kalista; Olmstead, Colleen; Oliveira, Rosane; Wallace, Richard; Le Bourhis, Daniel; Richard, Christophe; Campion, Evelyne; Chaulot-Talmon, Aurélie; Giraud-Delville, Corinne; Taghouti, Géraldine; Jammes, Hélène; Hue, Isabelle; Renard, Jean Paul; Lewin, Harris A

    2013-12-01

    We determined if somatic cell nuclear transfer (SCNT) cloning is associated with WNT-related gene expression in cattle development, and if the expression of genes in the WNT pathway changes during the peri-implantation period. Extra-embryonic and endometrial tissues were collected at gestation days 18 and 34 (d18, d34). WNT5A, FZD4, FZD5, LRP5, CTNNB1, GNAI2, KDM1A, BCL2L1, and SFRP1 transcripts were localized in extra-embryonic tissue, whereas SFRP1 and DKK1 were localized in the endometrium. There were no differences in the localization of these transcripts in extra-embryonic tissue or endometrium from SCNT or artificial insemination (AI) pregnancies. Expression levels of WNT5A were 11-fold greater in the allantois of SCNT than AI samples. In the trophoblast, expression of WNT5A, FZD5, CTNNB1, and DKK1 increased significantly from d18 to d34, whereas expression of KDM1A and SFRP1 decreased, indicating that implantation is associated with major changes in WNT signaling. SCNT was associated with altered WNT5A expression in trophoblasts, with levels increasing 2.3-fold more in AI than SCNT conceptuses from d18 to d34. In the allantois, expression of WNT5A increased 6.3-fold more in SCNT than AI conceptuses from d18 to d34. Endometrial tissue expression levels of the genes tested did not differ between AI or SCNT pregnancies, although expression of individual genes showed variation across developmental stages. Our results demonstrate that SCNT is associated with altered expression of specific WNT-related genes in extra-embryonic tissue in a time- and tissue-specific manner. The pattern of gene expression in the WNT pathway suggests that noncanonical WNT signal transduction is important for implantation of cattle conceptuses.

  1. PICKLE acts throughout the plant to repress expression of embryonic traits and may play a role in gibberellin-dependent responses.

    PubMed

    Henderson, Jim T; Li, Hui-Chun; Rider, Stanley Dean; Mordhorst, Andreas P; Romero-Severson, Jeanne; Cheng, Jin-Chen; Robey, Jennifer; Sung, Z Renee; de Vries, Sacco C; Ogas, Joe

    2004-03-01

    A seed marks the transition between two developmental states; a plant is an embryo during seed formation, whereas it is a seedling after emergence from the seed. Two factors have been identified in Arabidopsis that play a role in establishment of repression of the embryonic state: PKL (PICKLE), which codes for a putative CHD3 chromatin remodeling factor, and gibberellin (GA), a plant growth regulator. Previous observations have also suggested that PKL mediates some aspects of GA responsiveness in the adult plant. To investigate possible mechanisms by which PKL and GA might act to repress the embryonic state, we further characterized the ability of PKL and GA to repress embryonic traits and reexamined the role of PKL in mediating GA-dependent responses. We found that PKL acts throughout the seedling to repress expression of embryonic traits. Although the ability of pkl seedlings to express embryonic traits is strongly induced by inhibiting GA biosynthesis, it is only marginally responsive to abscisic acid and SPY (SPINDLY), factors that have previously been demonstrated to inhibit GA-dependent responses during germination. We also observed that pkl plants exhibit the phenotypic hallmarks of a mutation in a positive regulator of a GA response pathway including reduced GA responsiveness and increased synthesis of bioactive GAs. These observations indicate that PKL may mediate a subset of GA-dependent responses during shoot development.

  2. Transcriptional Profiling Identifies Location-Specific and Breed-Specific Differentially Expressed Genes in Embryonic Myogenesis in Anas Platyrhynchos.

    PubMed

    Zhang, Rong-Ping; Liu, He-He; Liu, Jun-Ying; Hu, Ji-Wei; Yan, Xi-Ping; Wang, Ding-Min-Cheng; Li, Liang; Wang, Ji-Wen

    2015-01-01

    Skeletal muscle growth and development are highly orchestrated processes involving significant changes in gene expressions. Differences in the location-specific and breed-specific genes and pathways involved have important implications for meat productions and meat quality. Here, RNA-Seq was performed to identify differences in the muscle deposition between two muscle locations and two duck breeds for functional genomics studies. To achieve those goals, skeletal muscle samples were collected from the leg muscle (LM) and the pectoral muscle (PM) of two genetically different duck breeds, Heiwu duck (H) and Peking duck (P), at embryonic 15 days. Functional genomics studies were performed in two experiments: Experiment 1 directly compared the location-specific genes between PM and LM, and Experiment 2 compared the two breeds (H and P) at the same developmental stage (embryonic 15 days). Almost 13 million clean reads were generated using Illumina technology (Novogene, Beijing, China) on each library, and more than 70% of the reads mapped to the Peking duck (Anas platyrhynchos) genome. A total of 168 genes were differentially expressed between the two locations analyzed in Experiment 1, whereas only 8 genes were differentially expressed when comparing the same location between two breeds in Experiment 2. Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes pathways (KEGG) were used to functionally annotate DEGs (differentially expression genes). The DEGs identified in Experiment 1 were mainly involved in focal adhesion, the PI3K-Akt signaling pathway and ECM-receptor interaction pathways (corrected P-value<0.05). In Experiment 2, the DEGs were associated with only the ribosome signaling pathway (corrected P-value<0.05). In addition, quantitative real-time PCR was used to confirm 15 of the differentially expressed genes originally detected by RNA-Seq. A comparative transcript analysis of the leg and pectoral muscles of two duck breeds not only improves our

  3. Transcriptional Profiling Identifies Location-Specific and Breed-Specific Differentially Expressed Genes in Embryonic Myogenesis in Anas Platyrhynchos

    PubMed Central

    Zhang, Rong-Ping; Liu, He-He; Liu, Jun-Ying; Hu, Ji-Wei; Yan, Xi-Ping; Wang, Ding-Min-Cheng; Li, Liang; Wang, Ji-Wen

    2015-01-01

    Skeletal muscle growth and development are highly orchestrated processes involving significant changes in gene expressions. Differences in the location-specific and breed-specific genes and pathways involved have important implications for meat productions and meat quality. Here, RNA-Seq was performed to identify differences in the muscle deposition between two muscle locations and two duck breeds for functional genomics studies. To achieve those goals, skeletal muscle samples were collected from the leg muscle (LM) and the pectoral muscle (PM) of two genetically different duck breeds, Heiwu duck (H) and Peking duck (P), at embryonic 15 days. Functional genomics studies were performed in two experiments: Experiment 1 directly compared the location-specific genes between PM and LM, and Experiment 2 compared the two breeds (H and P) at the same developmental stage (embryonic 15 days). Almost 13 million clean reads were generated using Illumina technology (Novogene, Beijing, China) on each library, and more than 70% of the reads mapped to the Peking duck (Anas platyrhynchos) genome. A total of 168 genes were differentially expressed between the two locations analyzed in Experiment 1, whereas only 8 genes were differentially expressed when comparing the same location between two breeds in Experiment 2. Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes pathways (KEGG) were used to functionally annotate DEGs (differentially expression genes). The DEGs identified in Experiment 1 were mainly involved in focal adhesion, the PI3K-Akt signaling pathway and ECM-receptor interaction pathways (corrected P-value<0.05). In Experiment 2, the DEGs were associated with only the ribosome signaling pathway (corrected P-value<0.05). In addition, quantitative real-time PCR was used to confirm 15 of the differentially expressed genes originally detected by RNA-Seq. A comparative transcript analysis of the leg and pectoral muscles of two duck breeds not only improves our

  4. Oct3/4 directly regulates expression of E2F3a in mouse embryonic stem cells

    SciTech Connect

    Kanai, Dai; Ueda, Atsushi; Akagi, Tadayuki; Yokota, Takashi; Koide, Hiroshi

    2015-04-10

    Embryonic stem (ES) cells, derived from the inner cell mass of blastocysts, have a characteristic cell cycle with truncated G1 and G2 phases. Recent findings that suppression of Oct3/4 expression results in a reduced proliferation rate of ES cells suggest the involvement of Oct3/4 in the regulation of ES cell growth, although the underlying molecular mechanism remains unclear. In the present study, we identified E2F3a as a direct target gene of Oct3/4 in ES cells. Oct3/4 directly bound to the promoter region of the E2F3a gene and positively regulated expression of E2F3a in mouse ES cells. Suppression of E2F3a activity by E2F6 overexpression led to the reduced proliferation in ES cells, which was relieved by co-expression of E2F3a. Furthermore, cell growth retardation caused by loss of Oct3/4 was rescued by E2F3a expression. These results suggest that Oct3/4 upregulates E2F3a expression to promote ES cell growth. - Highlights: • Oct3/4 positively regulates E2F3a expression in ES cells. • Oct3/4 binds to the promoter region of the E2F3a gene. • Overexpression of E2F6, an inhibitor of E2F3a, reduces ES cell growth. • E2F3a recovers growth retardation of ES cells caused by Oct3/4 reduction.

  5. Generation and characterization of novel tetracycline-inducible pancreatic transcription factor-expressing murine embryonic stem cell lines.

    PubMed

    Vincent, Robert; Treff, Nathan; Budde, Melisa; Kastenberg, Zachary; Odorico, Jon

    2006-12-01

    Pancreatic development in mammals is controlled in part by the expression and function of numerous genes encoding transcription factors. Yet, how these regulate each other and their target genes is incompletely understood. Embryonic stem (ES) cells have recently been shown to be capable of differentiating into pancreatic progenitor cells and insulin-producing cells, representing a useful in vitro model system for studying pancreatic and islet development. To generate tools to study the relationships of transcription factors in pancreatic development we have established seven unique mouse ES cell lines with tetracycline-inducible expression of either Hnf4alpha, Hnf6, Nkx2.2, Nkx6.1, Pax4, Pdx1, and Ptf1a cDNAs. Each of the cell lines was characterized for induction of transgene expression after exposure to doxycycline (DOX) by quantitative real-time PCR and immunofluorescence microscopy. Transgene expression in the presence of DOX was at least 97-fold that seen in untreated cells. Immunofluorescent staining of DOX-treated cultures showed efficient (>95% of cells) transgene protein expression while showing <5% positive staining in uninduced cells. Each of the ES cell lines maintained their pluripotency as measured by teratoma formation. Furthermore, transgene expression can be efficiently achieved in vivo through DOX administration to mice. The establishment of ES cell lines with temporally controllable induction of critical pancreatic transcription factor genes provides a new set of tools that could be used to interrogate gene regulatory networks in pancreatic development and potentially generate greater numbers of beta cells from ES cells.

  6. Analysis of RNA Interference Lines Identifies New Functions of Maternally-Expressed Genes Involved in Embryonic Patterning in Drosophila melanogaster.

    PubMed

    Liu, Niankun; Lasko, Paul

    2015-03-31

    Embryonic patterning in Drosophila melanogaster is initially established through the activity of a number of maternally expressed genes that are expressed during oogenesis. mRNAs from some of these genes accumulate in the posterior pole plasm of the oocyte and early embryo and localize further into RNA islands, which are transient ring-like structures that form around the nuclei of future primordial germ cells (pole cells) at stage 3 of embryogenesis. As mRNAs from several genes with known functions in anterior-posterior patterning and/or germ cell specification accumulate in RNA islands, we hypothesized that some other mRNAs that localize in this manner might also function in these developmental processes. To test this, we investigated the developmental functions of 51 genes whose mRNAs accumulate in RNA islands by abrogating their activity in the female germline using RNA interference. This analysis revealed requirements for ttk, pbl, Hip14, eIF5, eIF4G, and CG9977 for progression through early oogenesis. We observed dorsal appendage defects in a proportion of eggs produced by females expressing double-stranded RNA targeting Mkrn1 or jvl, implicating these two genes in dorsal-ventral patterning. In addition, posterior patterning defects and a reduction in pole cell number were seen in the progeny of Mkrn1 females. Because the mammalian ortholog of Mkrn1 acts as an E3 ubiquitin ligase, these results suggest an additional link between protein ubiquitination and pole plasm activity.

  7. The impact of microRNAs on transcriptional heterogeneity and gene co-expression across single embryonic stem cells

    PubMed Central

    Gambardella, Gennaro; Carissimo, Annamaria; Chen, Amy; Cutillo, Luisa; Nowakowski, Tomasz J.; di Bernardo, Diego; Blelloch, Robert

    2017-01-01

    MicroRNAs act posttranscriptionally to suppress multiple target genes within a cell population. To what extent this multi-target suppression occurs in individual cells and how it impacts transcriptional heterogeneity and gene co-expression remains unknown. Here we used single-cell sequencing combined with introduction of individual microRNAs. miR-294 and let-7c were introduced into otherwise microRNA-deficient Dgcr8 knockout mouse embryonic stem cells. Both microRNAs induce suppression and correlated expression of their respective gene targets. The two microRNAs had opposing effects on transcriptional heterogeneity within the cell population, with let-7c increasing and miR-294 decreasing the heterogeneity between cells. Furthermore, let-7c promotes, whereas miR-294 suppresses, the phasing of cell cycle genes. These results show at the individual cell level how a microRNA simultaneously has impacts on its many targets and how that in turn can influence a population of cells. The findings have important implications in the understanding of how microRNAs influence the co-expression of genes and pathways, and thus ultimately cell fate. PMID:28102192

  8. Laminin-511 expression is associated with the functionality of feeder cells in human embryonic stem cell culture.

    PubMed

    Hongisto, Heidi; Vuoristo, Sanna; Mikhailova, Alexandra; Suuronen, Riitta; Virtanen, Ismo; Otonkoski, Timo; Skottman, Heli

    2012-01-01

    Fibroblast feeder cells play an important role in supporting the derivation and long term culture of undifferentiated, pluripotent human embryonic stem cells (hESCs). The feeder cells secrete various growth factors and extracellular matrix (ECM) proteins into extracellular milieu. However, the roles of the feeder cell-secreted factors are largely unclear. Animal feeder cells and use of animal serum also make current feeder cell culture conditions unsuitable for derivation of clinical grade hESCs. We established xeno-free feeder cell lines using human serum (HS) and studied their function in hESC culture. While human foreskin fibroblast (hFF) feeder cells were clearly hESC supportive, none of the established xeno-free human dermal fibroblast (hDF) feeder cells were able to maintain undifferentiated hESC growth. The two fibroblast types were compared for their ECM protein synthesis, integrin receptor expression profiles and key growth factor secretion. We show that hESC supportive feeder cells produce laminin-511 and express laminin-binding integrins α3ß1, α6ß1 and α7ß1. These results indicate specific laminin isoforms and integrins in maintenance of hESC pluripotency in feeder-dependent cultures. In addition, several genes with a known or possible role for hESC pluripotency were differentially expressed in distinct feeder cells.

  9. Connexin30.3 is expressed in mouse embryonic stem cells and is responsive to leukemia inhibitory factor

    PubMed Central

    Saito, Mikako; Asai, Yuma; Imai, Keiichi; Hiratoko, Shoya; Tanaka, Kento

    2017-01-01

    The expression of 19 connexin (Cx) isoforms was observed in the mouse embryonic stem (ES) cell line, EB3. Their expression patterns could be classified into either pluripotent state-specific, differentiating stage-specific, or non-specific Cxs. We focused on Cx30.3 as typical of the first category. Cx30.3 was pluripotent state-specific and upregulated by leukemia inhibitory factor (LIF), a specific cytokine that maintains the pluripotent state of ES cell, via a Jak signaling pathway. Cx30.3 protein was localized to both the cell membrane and cytosol. The dynamic movement of Cx30.3 in the cell membrane was suggested by the imaging analysis by means of overexpressed Cx30.3-EGFP fusion protein. The cytosolic portion was postulated to be a ready-to-use Cx pool. The Cx30.3 expression level in ES cell colonies dramatically decreased immediately after their separation into single cells. It was suggested that mRNA for Cx30.3 and Cx30.3 protein might be decomposed more rapidly than mRNA for Cx43 and Cx43 protein, respectively. These indicate possible involvement of Cx30.3 in the rapid formation and/or decomposition of gap junctions; implying a functional relay between Cx30.3 and other systems such as adhesion proteins. PMID:28205646

  10. DNMT3B7, a truncated DNMT3B isoform expressed in human tumors, disrupts embryonic development and accelerates lymphomagenesis

    PubMed Central

    Shah, Mrinal Y.; Vasanthakumar, Aparna; Barnes, Natalie Y.; Figueroa, Maria E.; Kamp, Anna; Hendrick, Christopher; Ostler, Kelly R.; Davis, Elizabeth M.; Lin, Shang; Anastasi, John; Le Beau, Michelle M.; Moskowitz, Ivan; Melnick, Ari; Pytel, Peter; Godley, Lucy A.

    2010-01-01

    Epigenetic changes are among the most common alterations observed in cancer cells, yet the mechanism by which cancer cells acquire and maintain abnormal DNA methylation patterns is not understood. Cancer cells have an altered distribution of DNA methylation and express aberrant DNA methyltransferase 3B transcripts, which encode truncated proteins, some of which lack the C-terminal catalytic domain. To test if a truncated DNMT3B isoform disrupts DNA methylation in vivo, we constructed two lines of transgenic mice expressing DNMT3B7, a truncated DNMT3B isoform commonly found in cancer cells. DNMT3B7 transgenic mice exhibit altered embryonic development, including lymphopenia, craniofacial abnormalities, and cardiac defects, similar to Dnmt3b-deficient animals, but rarely develop cancer. However, when DNMT3B7 transgenic are bred with Eμ-Myc transgenic mice, which model aggressive B cell lymphoma, DNMT3B7 expression increases the frequency of mediastinal lymphomas in Eμ-Myc animals. Eμ-Myc/DNMT3B7 mediastinal lymphomas have more chromosomal rearrangements, increased global DNA methylation levels, and more locus-specific perturbations in DNA methylation patterns compared to Eμ-Myc lymphomas. These data represent the first in vivo modeling of cancer-associated DNA methylation changes and suggest that truncated DNMT3B isoforms contribute to the re-distribution of DNA methylation characterizing virtually every human tumor. PMID:20587527

  11. Expression of the novel maternal centrosome assembly factor Wdr8 is required for vertebrate embryonic mitoses

    PubMed Central

    Inoue, Daigo; Stemmer, Manuel; Thumberger, Thomas; Ruppert, Thomas; Bärenz, Felix; Wittbrodt, Joachim; Gruss, Oliver J.

    2017-01-01

    The assembly of the first centrosome occurs upon fertilisation when male centrioles recruit pericentriolar material (PCM) from the egg cytoplasm. The mechanisms underlying the proper assembly of centrosomes during early embryogenesis remain obscure. We identify Wdr8 as a novel maternally essential protein that is required for centrosome assembly during embryonic mitoses of medaka (Oryzias latipes). By CRISPR–Cas9-mediated knockout, maternal/zygotic Wdr8-null (m/zWdr8−/−) blastomeres exhibit severe defects in centrosome structure that lead to asymmetric division, multipolar mitotic spindles and chromosome alignment errors. Via its WD40 domains, Wdr8 interacts with the centriolar satellite protein SSX2IP. Combining targeted gene knockout and in vivo reconstitution of the maternally essential Wdr8–SSX2IP complex reveals an essential link between maternal centrosome proteins and the stability of the zygotic genome for accurate vertebrate embryogenesis. Our approach provides a way of distinguishing maternal from paternal effects in early embryos and should contribute to understanding molecular defects in human infertility. PMID:28098238

  12. Renal collecting system growth and function depend upon embryonic γ1 laminin expression.

    PubMed

    Yang, Dong-Hua; McKee, Karen K; Chen, Zu-Lin; Mernaugh, Glenda; Strickland, Sidney; Zent, Roy; Yurchenco, Peter D

    2011-10-01

    In order to understand the functions of laminins in the renal collecting system, the Lamc1 gene was inactivated in the developing mouse ureteric bud (UB). Embryos bearing null alleles exhibited laminin deficiency prior to mesenchymal tubular induction and either failed to develop a UB with involution of the mesenchyme, or developed small kidneys with decreased proliferation and branching, delayed renal vesicle formation and postnatal emergence of a water transport deficit. Embryonic day 12.5 kidneys revealed an almost complete absence of basement membrane proteins and reduced levels of α6 integrin and FGF2. mRNA levels for fibroblast growth factor 2 (FGF2) and mediators of the GDNF/RET and WNT11 signaling pathway were also decreased. Furthermore, collecting duct cells derived from laminin-deficient kidneys and grown in collagen gels were found to proliferate and branch slowly. The laminin-deficient cells exhibited decreased activation of growth factor- and integrin-dependent pathways, whereas heparin lyase-treated and β1 integrin-null cells exhibited more selective decreases. Collectively, these data support a requirement of γ1 laminins for assembly of the collecting duct system basement membrane, in which immobilized ligands act as solid-phase agonists to promote branching morphogenesis, growth and water transport functions.

  13. Differential expression of hoxa2a and hoxa2b genes during striped bass embryonic development.

    PubMed

    Scemama, Jean-Luc; Vernon, Jamie L; Stellwag, Edmund J

    2006-10-01

    Here, we report the cloning and expression analysis of two previously uncharacterized paralogs group 2 Hox genes, striped bass hoxa2a and hoxa2b, and the developmental regulatory gene egr2. We demonstrate that both Hox genes are expressed in the rhombomeres of the developing hindbrain and the pharyngeal arches albeit with different spatio-temporal distributions relative to one another. While both hoxa2a and hoxa2b share the r1/r2 anterior boundary of expression characteristic of the hoxa2 paralog genes of other species, hoxa2a gene expression extends throughout the hindbrain, whereas hoxa2b gene expression is restricted to the r2-r5 region. Egr2, which is used in this study as an early developmental marker of rhombomeres 3 and 5, is expressed in two distinct bands with a location and spacing typical for these two rhombomeres in other species. Within the pharyngeal arches, hoxa2a is expressed at higher levels in the second pharyngeal arch, while hoxa2b is more strongly expressed in the posterior arches. Further, hoxa2b expression within the arches becomes undetectable at 60hpf, while hoxa2a expression is maintained at least up until the beginning of chondrogenesis. Comparison of the striped bass HoxA cluster paralog group 2 (PG2) genes to their orthologs and trans-orthologs shows that the striped bass hoxa2a gene expression pattern is similar to the overall expression pattern described for the hoxa2 genes in the lobe-finned fish lineage and for the hoxa2b gene from zebrafish. It is notable that the pharyngeal arch expression pattern of the striped bass hoxa2a gene is more divergent from its sister paralog, hoxa2b, than from the zebrafish hoxa2b gene. Overall, our results suggest that differences in the Hox PG2 gene complement of striped bass and zebrafish affects both their rhombomeric and pharyngeal arch expression patterns and may account for the similarities in pharyngeal arch expression between striped bass hoxa2a and zebrafish hoxa2b.

  14. Landscape features impact on soil available water, corn biomass, and gene expression during the late vegetative stage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In rolling landscapes, plant available water can vary drastically by topographic location with growth impaired by too much water in footslope locations and too little water in summit locations. This study examined corn (Zea mays) gene expression and plant productivity differences between two landsc...

  15. Spatio-Temporally Restricted Expression of Cell Adhesion Molecules during Chicken Embryonic Development

    PubMed Central

    Roy, Priti; Bandyopadhyay, Amitabha

    2014-01-01

    Differential cell adhesive properties are known to regulate important developmental events like cell sorting and cell migration. Cadherins and protocadherins are known to mediate these cellular properties. Though a large number of such molecules have been predicted, their characterization in terms of interactive properties and cellular roles is far from being comprehensive. To narrow down the tissue context and collect correlative evidence for tissue specific roles of these molecules, we have carried out whole-mount in situ hybridization based RNA expression study for seven cadherins and four protocadherins. In developing chicken embryos (HH stages 18, 22, 26 and 28) cadherins and protocadherins are expressed in tissue restricted manner. This expression study elucidates precise expression domains of cell adhesion molecules in the context of developing embryos. These expression domains provide spatio-temporal context in which the function of these genes can be further explored. PMID:24806091

  16. Embryonic expression patterns of Hox genes in the oligochaete annelid Tubifex tubifex.

    PubMed

    Endo, Mao; Sakai, Chiharu; Shimizu, Takashi

    2016-09-01

    We have cloned and characterized the expression of seven Hox genes (designated Ttu-lab, Ttu-Dfd, Ttu-Scr1, Ttu-Scr2, Ttu-Lox5, Ttu-Lox4 and Ttu-Lox2) from the oligochaete annelid Tubifex tubifex. RT-PCR analyses show that except for Ttu-Lox4 and Ttu-Lox2 which begin expression as early as cleavage stages, Tubifex Hox genes are expressed during stages 13-18 when embryos undergo germ band formation, segmentation and body elongation. In terms of combination of tissues (or organs) exhibiting positive cells, the Tubifex Hox genes examined in this study are classified into three groups. Ttu-lab, Ttu-Scr1 and Ttu-Lox5 are expressed only in the ventral nerve cord; Ttu-Scr2 and Ttu-Lox4 are expressed not only in the ventral nerve cord but also in distinct lateral segmental tissues; and Ttu-Dfd and Ttu-Lox2 are expressed not only in the segmental ectoderm along the length of the AP body axis but also in the prostomium. Anterior expression boundaries of Ttu-lab, Ttu-Scr1, Ttu-Lox5 and Ttu-Lox4 are at segments 3, 4, 5, and 9, respectively. Anterior expression boundary of Ttu-Scr2 is at segment 2, and Ttu-Dfd and Ttu-Lox2 are expressed even at the anteriormost portion, the prostomium. These observations suggest that as in other annelids, so-called "spatial colinearity" of anterior expression boundaries of Hox genes has been conserved in the oligochaetes. It is also evident that there are some oligochaete Hox genes which violate the spatial colinearity rule.

  17. Live fluorescent RNA-based detection of pluripotency gene expression in embryonic and induced pluripotent stem cells of different species.

    PubMed

    Lahm, Harald; Doppler, Stefanie; Dreßen, Martina; Werner, Astrid; Adamczyk, Klaudia; Schrambke, Dominic; Brade, Thomas; Laugwitz, Karl-Ludwig; Deutsch, Marcus-André; Schiemann, Matthias; Lange, Rüdiger; Moretti, Alessandra; Krane, Markus

    2015-02-01

    The generation of induced pluripotent stem (iPS) cells has successfully been achieved in many species. However, the identification of truly reprogrammed iPS cells still remains laborious and the detection of pluripotency markers requires fixation of cells in most cases. Here, we report an approach with nanoparticles carrying Cy3-labeled sense oligonucleotide reporter strands coupled to gold-particles. These molecules are directly added to cultured cells without any manipulation and gene expression is evaluated microscopically after overnight incubation. To simultaneously detect gene expression in different species, probe sequences were chosen according to interspecies homology. With a common target-specific probe we could successfully demonstrate expression of the GAPDH house-keeping gene in somatic cells and expression of the pluripotency markers NANOG and GDF3 in embryonic stem cells and iPS cells of murine, human, and porcine origin. The population of target gene positive cells could be purified by fluorescence-activated cell sorting. After lentiviral transduction of murine tail-tip fibroblasts Nanog-specific probes identified truly reprogrammed murine iPS cells in situ during development based on their Cy3-fluorescence. The intensity of Nanog-specific fluorescence correlated positively with an increased capacity of individual clones to differentiate into cells of all three germ layers. Our approach offers a universal tool to detect intracellular gene expression directly in live cells of any desired origin without the need for manipulation, thus allowing conservation of the genetic background of the target cell. Furthermore, it represents an easy, scalable method for efficient screening of pluripotency which is highly desirable during high-throughput cell reprogramming and after genomic editing of pluripotent stem cells.

  18. Paternal poly (ADP-ribose) metabolism modulates retention of inheritable sperm histones and early embryonic gene expression.

    PubMed

    Ihara, Motomasa; Meyer-Ficca, Mirella L; Leu, N Adrian; Rao, Shilpa; Li, Fan; Gregory, Brian D; Zalenskaya, Irina A; Schultz, Richard M; Meyer, Ralph G

    2014-05-01

    To achieve the extreme nuclear condensation necessary for sperm function, most histones are replaced with protamines during spermiogenesis in mammals. Mature sperm retain only a small fraction of nucleosomes, which are, in part, enriched on gene regulatory sequences, and recent findings suggest that these retained histones provide epigenetic information that regulates expression of a subset of genes involved in embryo development after fertilization. We addressed this tantalizing hypothesis by analyzing two mouse models exhibiting abnormal histone positioning in mature sperm due to impaired poly(ADP-ribose) (PAR) metabolism during spermiogenesis and identified altered sperm histone retention in specific gene loci genome-wide using MNase digestion-based enrichment of mononucleosomal DNA. We then set out to determine the extent to which expression of these genes was altered in embryos generated with these sperm. For control sperm, most genes showed some degree of histone association, unexpectedly suggesting that histone retention in sperm genes is not an all-or-none phenomenon and that a small number of histones may remain associated with genes throughout the genome. The amount of retained histones, however, was altered in many loci when PAR metabolism was impaired. To ascertain whether sperm histone association and embryonic gene expression are linked, the transcriptome of individual 2-cell embryos derived from such sperm was determined using microarrays and RNA sequencing. Strikingly, a moderate but statistically significant portion of the genes that were differentially expressed in these embryos also showed different histone retention in the corresponding gene loci in sperm of their fathers. These findings provide new evidence for the existence of a linkage between sperm histone retention and gene expression in the embryo.

  19. Embryonic Stem Cell-Derived Microvesicles Induce Gene Expression Changes in Müller Cells of the Retina

    PubMed Central

    Katsman, Diana; Stackpole, Emma J.; Domin, Daniel R.; Farber, Debora B.

    2012-01-01

    Cell-derived microvesicles (MVs), recognized as important components of cell-cell communication, contain mRNAs, miRNAs, proteins and lipids and transfer their bioactive contents from parent cells to cells of other origins. We have studied the effect that MVs released from embryonic stem cells (ESMVs) have on retinal progenitor Müller cells. Cultured human Müller cells were exposed to mouse ESMVs every 48 hours for a total of 9 treatments. Morphological changes were observed by light microscopy in the treated cells, which grew as individual heterogeneous cells, compared to the uniform, spindle-like adherent cellular sheets of untreated cells. ESMVs transferred to Müller cells embryonic stem cell (ESC) mRNAs involved in the maintenance of pluripotency, including Oct4 and Sox2, and the miRNAs of the 290 cluster, important regulators of the ESC-specific cell cycle. Moreover, ESMV exposure induced up-regulation of the basal levels of endogenous human Oct4 mRNA in Müller cells. mRNA and miRNA microarrays of ESMV-treated vs. untreated Müller cells revealed the up-regulation of genes and miRNAs involved in the induction of pluripotency, cellular proliferation, early ocular genes and genes important for retinal protection and remodeling, as well as the down-regulation of inhibitory and scar-related genes and miRNAs involved in differentiation and cell cycle arrest. To further characterize the heterogeneous cell population of ESMV-treated Müller cells, their expression of retinal cell markers was compared to that in untreated control cells by immunocytochemistry. Markers for amacrine, ganglion and rod photoreceptors were present in treated but not in control Müller cells. Together, our findings indicate that ESMs induce de-differentiation and pluripotency in their target Müller cells, which may turn on an early retinogenic program of differentiation. PMID:23226281

  20. Gene Expression Profiling of Embryonic Human Neural Stem Cells and Dopaminergic Neurons from Adult Human Substantia Nigra

    PubMed Central

    Marei, Hany E. S.; Althani, Asma; Afifi, Nahla; Michetti, Fabrizio; Pescatori, Mario; Pallini, Roberto; Casalbore, Patricia; Cenciarelli, Carlo; Schwartz, Philip; Ahmed, Abd-Elmaksoud

    2011-01-01

    Neural stem cells (NSC) with self-renewal and multipotent properties serve as an ideal cell source for transplantation to treat neurodegenerative insults such as Parkinson's disease. We used Agilent's and Illumina Whole Human Genome Oligonucleotide Microarray to compare the genomic profiles of human embryonic NSC at a single time point in culture, and a multicellular tissue from postmortem adult substantia nigra (SN) which are rich in dopaminergic (DA) neurons. We identified 13525 up-regulated genes in both cell types of which 3737 (27.6%) genes were up-regulated in the hENSC, 4116 (30.4%) genes were up-regulated in the human substantia nigra dopaminergic cells, and 5672 (41.93%) were significantly up-regulated in both cell population. Careful analysis of the data that emerged using DAVID has permitted us to distinguish several genes and pathways that are involved in dopaminergic (DA) differentiation, and to identify the crucial signaling pathways that direct the process of differentiation. The set of genes expressed more highly at hENSC is enriched in molecules known or predicted to be involved in the M phase of the mitotic cell cycle. On the other hand, the genes enriched in SN cells include a different set of functional categories, namely synaptic transmission, central nervous system development, structural constituents of the myelin sheath, the internode region of axons, myelination, cell projection, cell somata, ion transport, and the voltage-gated ion channel complex. Our results were also compared with data from various databases, and between different types of arrays, Agilent versus Illumina. This approach has allowed us to confirm the consistency of our obtained results for a large number of genes that delineate the phenotypical differences of embryonic NSCs, and SN cells. PMID:22163301

  1. Embryonic stem cell-derived microvesicles induce gene expression changes in Müller cells of the retina.

    PubMed

    Katsman, Diana; Stackpole, Emma J; Domin, Daniel R; Farber, Debora B

    2012-01-01

    Cell-derived microvesicles (MVs), recognized as important components of cell-cell communication, contain mRNAs, miRNAs, proteins and lipids and transfer their bioactive contents from parent cells to cells of other origins. We have studied the effect that MVs released from embryonic stem cells (ESMVs) have on retinal progenitor Müller cells. Cultured human Müller cells were exposed to mouse ESMVs every 48 hours for a total of 9 treatments. Morphological changes were observed by light microscopy in the treated cells, which grew as individual heterogeneous cells, compared to the uniform, spindle-like adherent cellular sheets of untreated cells. ESMVs transferred to Müller cells embryonic stem cell (ESC) mRNAs involved in the maintenance of pluripotency, including Oct4 and Sox2, and the miRNAs of the 290 cluster, important regulators of the ESC-specific cell cycle. Moreover, ESMV exposure induced up-regulation of the basal levels of endogenous human Oct4 mRNA in Müller cells. mRNA and miRNA microarrays of ESMV-treated vs. untreated Müller cells revealed the up-regulation of genes and miRNAs involved in the induction of pluripotency, cellular proliferation, early ocular genes and genes important for retinal protection and remodeling, as well as the down-regulation of inhibitory and scar-related genes and miRNAs involved in differentiation and cell cycle arrest. To further characterize the heterogeneous cell population of ESMV-treated Müller cells, their expression of retinal cell markers was compared to that in untreated control cells by immunocytochemistry. Markers for amacrine, ganglion and rod photoreceptors were present in treated but not in control Müller cells. Together, our findings indicate that ESMs induce de-differentiation and pluripotency in their target Müller cells, which may turn on an early retinogenic program of differentiation.

  2. Acepromazine inhibits hERG potassium ion channels expressed in human embryonic kidney 293 cells

    PubMed Central

    Joo, Young Shin; Lee, Hong Joon; Choi, Jin-Sung

    2017-01-01

    The effects of acepromazine on human ether-à-go-go-related gene (hERG) potassium channels were investigated using whole-cell voltage-clamp technique in human embryonic kidney (HEK293) cells transfected with hERG. The hERG currents were recorded with or without acepromazine, and the steady-state and peak tail currents were analyzed for the evaluating the drug effects. Acepromazine inhibited the hERG currents in a concentration-dependent manner with an IC50 value of 1.5 µM and Hill coefficient of 1.1. Acepromazine blocked hERG currents in a voltage-dependent manner between –40 and +10 mV. Before and after application of acepromazine, the half activation potentials of hERG currents changed to hyperpolarizing direction. Acepromazine blocked both the steady-state hERG currents by depolarizing pulse and the peak tail currents by repolarizing pulse; however, the extent of blocking by acepromazine in the repolarizing pulse was more profound than that in the depolarizing pulse, indicating that acepromazine has a high affinity for the open state of the channels, with a relatively lower affinity for the closed state of hERG channels. A fast application of acepromazine during the tail currents inhibited the open state of hERG channels in a concentration-dependent. The steady-state inactivation of hERG currents shifted to the hyperpolarized direction by acepromazine. These results suggest that acepromazine inhibits the hERG channels probably by an open- and inactivated-channel blocking mechanism. Regarding to the fact that the hERG channels are the potential target of drug-induced long QT syndrome, our results suggest that acepromazine can possibly induce a cardiac arrhythmia through the inhibition of hERG channels. PMID:28066143

  3. POU5F1 isoforms show different expression patterns in human embryonic stem cells and preimplantation embryos.

    PubMed

    Cauffman, Greet; Liebaers, Inge; Van Steirteghem, André; Van de Velde, Hilde

    2006-12-01

    The contribution of the POU domain, class 5, transcription factor-1 (POU5F1) in maintaining totipotency in human embryonic stem cells (hESCs) has been repeatedly proven. In humans, two isoforms are encoded: POU5F1_iA and POU5F1_iB. So far, no discrimination has been made between the isoforms in POU5F1 studies, and it is unknown which isoform contributes to the undifferentiated phenotype. Using immunocytochemistry, expression of POU5F1_iA and POU5F1_iB was examined in hESCs and all stages of human preimplantation development to look for differences in expression, biological activity, and relation to totipotency. POU5F1_iA and POU5F1_iB displayed different temporal and spatial expression patterns. During human preimplantation development, a significant POU5F1_iA expression was seen in all nuclei of compacted embryos and blastocysts and a clear POU5F1_iB expression was detected from the four-cell stage onwards in the cytoplasm of all cells. The cytoplasmic localization might imply no or other biological functions beyond transcription activation for POU5F1_iB. The stemness properties of POU5F1 can be assigned to POU5F1_iA because hESCs expressed POU5F1_iA but not POU5F1_iB. However, POU5F1_iA is not the appropriate marker to identify totipotent cells, because POU5F1_iA was also expressed in the nontotipotent trophectoderm and was not expressed in zygotes and early cleavage stage embryos, which are assumed to be totipotent. The expression pattern of POU5F1_iA may suggest that POU5F1_iA alone cannot sustain totipotency and that coexpression with other stemness factors might be the key to totipotency.

  4. Embryonic Nkx2.1-expressing neural precursor cells contribute to the regional heterogeneity of adult V-SVZ neural stem cells.

    PubMed

    Delgado, Ryan N; Lim, Daniel A

    2015-11-15

    The adult ventricular-subventricular zone (V-SVZ) of the lateral ventricle produces several subtypes of olfactory bulb (OB) interneurons throughout life. Neural stem cells (NSCs) within this zone are heterogeneous, with NSCs located in different regions of the lateral ventricle wall generating distinct OB interneuron subtypes. The regional expression of specific transcription factors appears to correspond to such geographical differences in the developmental potential of V-SVZ NSCs. However, the transcriptional definition and developmental origin of V-SVZ NSC regional identity are not well understood. In this study, we found that a population of NSCs in the ventral region of the V-SVZ expresses the transcription factor Nkx2.1 and is derived from Nkx2.1-expressing (Nkx2.1+) embryonic precursors. To follow the fate of Nkx2.1+ cells and their progeny in vivo, we used mice with an Nkx2.1-CreER "knock-in" allele. Nkx2.1+ V-SVZ NSCs labeled in adult mice generated interneurons for the deep granule cell layer of the OB. Embryonic brain Nkx2.1+ precursors labeled at embryonic day 12.5 gave rise to Nkx2.1+ NSCs of the ventral V-SVZ in postnatal and adult mice. Thus, embryonic Nkx2.1+ neural precursors give rise to a population of Nkx2.1+ NSCs in the ventral V-SVZ where they contribute to the regional heterogeneity of V-SVZ NSCs.

  5. Cloning and expression of the TALE superclass homeobox Meis2 gene during zebrafish embryonic development.

    PubMed

    Biemar, F; Devos, N; Martial, J A; Driever, W; Peers, B

    2001-12-01

    Meis and Prep/Pknox (MEINOX family) proteins, together with Pbx (PBC family) proteins, belong to the TALE superfamily characterized by an atypical homeodomain containing three additional amino acids between helix 1 and helix 2. Members of the MEINOX and PBC families have been isolated in Caenorhabditis elegans, Drosophila, Xenopus, chick, mouse and human, and play crucial roles in many aspects of embryogenesis. Here, we report the isolation of meis2 in zebrafish. Expression of meis2 is first detected at the beginning of gastrulation. Later during embryogenesis, meis2 transcripts are found in distinct domains of the central nervous system with the strongest expression in the hindbrain. Expression was also detected in the isthmus, along the spinal cord and in the lateral mesoderm. As development proceeds, meis2 is also expressed in the developing retina, pharyngeal arches, and in the vicinity of the gut tube.

  6. Ectopic Atoh1 expression drives Merkel cell production in embryonic, postnatal and adult mouse epidermis

    PubMed Central

    Ostrowski, Stephen M.; Wright, Margaret C.; Bolock, Alexa M.; Geng, Xuehui; Maricich, Stephen M.

    2015-01-01

    Merkel cells are mechanosensitive skin cells whose production requires the basic helix-loop-helix transcription factor Atoh1. We induced ectopic Atoh1 expression in the skin of transgenic mice to determine whether Atoh1 was sufficient to create additional Merkel cells. In embryos, ectopic Atoh1 expression drove ectopic expression of the Merkel cell marker keratin 8 (K8) throughout the epidermis. Epidermal Atoh1 induction in adolescent mice similarly drove widespread K8 expression in glabrous skin of the paws, but in the whisker pads and body skin ectopic K8+ cells were confined to hair follicles and absent from interfollicular regions. Ectopic K8+ cells acquired several characteristics of mature Merkel cells in a time frame similar to that seen during postnatal development of normal Merkel cells. Although ectopic K8+ cell numbers decreased over time, small numbers of these cells remained in deep regions of body skin hair follicles at 3 months post-induction. In adult mice, greater numbers of ectopic K8+ cells were created by Atoh1 induction during anagen versus telogen and following disruption of Notch signaling by conditional deletion of Rbpj in the epidermis. Our data demonstrate that Atoh1 expression is sufficient to produce new Merkel cells in the epidermis, that epidermal cell competency to respond to Atoh1 varies by skin location, developmental age and hair cycle stage, and that the Notch pathway plays a key role in limiting epidermal cell competency to respond to Atoh1 expression. PMID:26138479

  7. Shh and Pax6 have unconventional expression patterns in embryonic morphogenesis in Sepia officinalis (Cephalopoda).

    PubMed

    Navet, Sandra; Andouche, Aude; Baratte, Sébastien; Bonnaud, Laure

    2009-10-01

    Cephalopods show a very complex nervous system, particularly derived when compared to other molluscs. In vertebrates, the setting up of the nervous system depends on genes such as Shh and Pax6. In this paper we assess Shh and Pax6 expression patterns during Sepia officinalis development by whole-mount in situ hybridization. In vertebrates, Shh has been shown to indirectly inhibit Pax6. This seems to be the case in cephalopods as the expression patterns of these genes do not overlap during S. officinalis development. Pax6 is expressed in the optic region and brain and Shh in gut structures, as already seen in vertebrates and Drosophila. Thus, both genes show expression in analogous structures in vertebrates. Surprisingly, they also exhibit unconventional expressions such as in gills for Pax6 and ganglia borders for Shh. They are also expressed in many cephalopods' derived characters among molluscs as in arm suckers for Pax6 and beak producing tissues, nuchal organ and neural cord of the arms for Shh. This new data supports the fact that molecular control patterns have evolved with the appearance of morphological novelties in cephalopods as shown in this new model, S. officinalis.

  8. Ectopic Atoh1 expression drives Merkel cell production in embryonic, postnatal and adult mouse epidermis.

    PubMed

    Ostrowski, Stephen M; Wright, Margaret C; Bolock, Alexa M; Geng, Xuehui; Maricich, Stephen M

    2015-07-15

    Merkel cells are mechanosensitive skin cells whose production requires the basic helix-loop-helix transcription factor Atoh1. We induced ectopic Atoh1 expression in the skin of transgenic mice to determine whether Atoh1 was sufficient to create additional Merkel cells. In embryos, ectopic Atoh1 expression drove ectopic expression of the Merkel cell marker keratin 8 (K8) throughout the epidermis. Epidermal Atoh1 induction in adolescent mice similarly drove widespread K8 expression in glabrous skin of the paws, but in the whisker pads and body skin ectopic K8+ cells were confined to hair follicles and absent from interfollicular regions. Ectopic K8+ cells acquired several characteristics of mature Merkel cells in a time frame similar to that seen during postnatal development of normal Merkel cells. Although ectopic K8+ cell numbers decreased over time, small numbers of these cells remained in deep regions of body skin hair follicles at 3 months post-induction. In adult mice, greater numbers of ectopic K8+ cells were created by Atoh1 induction during anagen versus telogen and following disruption of Notch signaling by conditional deletion of Rbpj in the epidermis. Our data demonstrate that Atoh1 expression is sufficient to produce new Merkel cells in the epidermis, that epidermal cell competency to respond to Atoh1 varies by skin location, developmental age and hair cycle stage, and that the Notch pathway plays a key role in limiting epidermal cell competency to respond to Atoh1 expression.

  9. C9ORF135 encodes a membrane protein whose expression is related to pluripotency in human embryonic stem cells

    PubMed Central

    Zhou, Shixin; Liu, Yinan; Ma, Yumin; Zhang, Xiaoyan; Li, Yang; Wen, Jinhua

    2017-01-01

    Human embryonic stem cells (hESCs) are a unique population of cells defined by their capacity for self-renewal and pluripotency. Here, we identified a previously uncharacterized gene in hESCs, C9ORF135, which is sharply downregulated during gastrulation and gametogenesis, along with the pluripotency factors OCT4, SOX2, and NANOG. Human ESCs express two C9ORF135 isoforms, the longer of which encodes a membrane-associated protein, as determined by immunostaining and western blotting of fractionated cell lysates. Moreover, the results of chromatin immunoprecipitation (ChIP), mass spectrometry (MS), and co-immunoprecipitation (co-IP) analyses demonstrated that C9ORF135 expression is regulated by OCT4 and SOX2 and that C9ORF135 interacts with non-muscle myosin IIA and myosin IIB. Collectively, these data indicated that C9ORF135 encodes a membrane-associated protein that may serve as a surface marker for undifferentiated hESCs. PMID:28345668

  10. Transgenic expression of the N525S-tuberin variant in Tsc2 mutant (Eker) rats causes dominant embryonic lethality

    PubMed Central

    Shiono, Masatoshi; Kobayashi, Toshiyuki; Takahashi, Riichi; Ueda, Masatsugu; Ishioka, Chikashi; Hino, Okio

    2014-01-01

    The Tsc2 product, tuberin, negatively regulates the mTOR pathway. We have exploited the Eker (Tsc2-mutant) rat system to analyse various Tsc2 mutations. Here, we focus on the N525S-Tsc2 variant (NSM), which is known to cause distinct symptoms in patients even though normal suppression of mTOR is observed. Unexpectedly, we were repeatedly unable to generate viable rats carrying the NSM transgene. Genotypic analysis revealed that most of the embryos carrying the transgene died around embryonic day after 14.5—similar to the stage of lethality observed for Eker homozygotes. Thus, the NSM transgene appeared to have a dominant lethal effect in our rat model. Further, no significant differences were observed for various signal transduction molecules in transiently expressed NSM cells compared to WT. These results indicate that a non-mTOR pathway, critical for embryogenesis, is being regulated by tuberin, providing a link between tuberin expression and the severity of Tsc2 mutation-related pathogenesis. PMID:25088526

  11. Divergent palate morphology in turtles and birds correlates with differences in proliferation and BMP2 expression during embryonic development.

    PubMed

    Abramyan, John; Leung, Kelvin Jia-Mien; Richman, Joy Marion

    2014-02-01

    During embryonic development, amniotes typically form outgrowths from the medial sides of the maxillary prominences called palatal shelves or palatine processes. In mammals the shelves fuse in the midline and form a bony hard palate that completely separates the nasal and oral cavities. In birds and lizards, palatine processes develop but remain unfused, leaving a natural cleft. Adult turtles do not possess palatine processes and unlike other amniotes, the internal nares open into the oral cavity. Here we investigate craniofacial ontogeny in the turtle, Emydura subglobosa to determine whether vestigial palatine processes develop and subsequently regress, or whether development fails entirely. We found that the primary palate in turtles develops similarly to other amniotes, but secondary palate ontogeny diverges. Using histology, cellular dynamics and in situ hybridization we found no evidence of palatine process development at any time during ontogeny of the face in the turtle. Furthermore, detailed comparisons with chicken embryos (the model organism most closely related to turtles from a molecular phylogeny perspective), we identified differences in proliferation and gene expression patterns that correlate with the differences in palate morphology. We propose that, in turtles, palatine process outgrowth is never initiated due to a lack of mesenchymal bone morphogenetic protein 2 (BMP2) expression in the maxillary mesenchyme, which in turn fails to induce the relatively higher cellular proliferation required for medial tissue outgrowth. It is likely that these differences between turtles and birds arose after the divergence of the lineage leading to modern turtles.

  12. C9ORF135 encodes a membrane protein whose expression is related to pluripotency in human embryonic stem cells.

    PubMed

    Zhou, Shixin; Liu, Yinan; Ma, Yumin; Zhang, Xiaoyan; Li, Yang; Wen, Jinhua

    2017-03-27

    Human embryonic stem cells (hESCs) are a unique population of cells defined by their capacity for self-renewal and pluripotency. Here, we identified a previously uncharacterized gene in hESCs, C9ORF135, which is sharply downregulated during gastrulation and gametogenesis, along with the pluripotency factors OCT4, SOX2, and NANOG. Human ESCs express two C9ORF135 isoforms, the longer of which encodes a membrane-associated protein, as determined by immunostaining and western blotting of fractionated cell lysates. Moreover, the results of chromatin immunoprecipitation (ChIP), mass spectrometry (MS), and co-immunoprecipitation (co-IP) analyses demonstrated that C9ORF135 expression is regulated by OCT4 and SOX2 and that C9ORF135 interacts with non-muscle myosin IIA and myosin IIB. Collectively, these data indicated that C9ORF135 encodes a membrane-associated protein that may serve as a surface marker for undifferentiated hESCs.

  13. Divergent Palate Morphology in Turtles and Birds Correlates With Differences in Proliferation and BMP2 Expression During Embryonic Development

    PubMed Central

    ABRAMYAN, JOHN; JIA-MIEN LEUNG, KELVIN; RICHMAN, JOY MARION

    2014-01-01

    During embryonic development, amniotes typically form outgrowths from the medial sides of the maxillary prominences called palatal shelves or palatine processes. In mammals the shelves fuse in the midline and form a bony hard palate that completely separates the nasal and oral cavities. In birds and lizards, palatine processes develop but remain unfused, leaving a natural cleft. Adult turtles do not possess palatine processes and unlike other amniotes, the internal nares open into the oral cavity. Here we investigate craniofacial ontogeny in the turtle, Emydura subglobosa to determine whether vestigial palatine processes develop and subsequently regress, or whether development fails entirely. We found that the primary palate in turtles develops similarly to other amniotes, but secondary palate ontogeny diverges. Using histology, cellular dynamics and in situ hybridization we found no evidence of palatine process development at any time during ontogeny of the face in the turtle. Furthermore, detailed comparisons with chicken embryos (the model organism most closely related to turtles from a molecular phylogeny perspective), we identified differences in proliferation and gene expression patterns that correlate with the differences in palate morphology. We propose that, in turtles, palatine process outgrowth is never initiated due to a lack of mesenchymal bone morphogenetic protein 2 (BMP2) expression in the maxillary mesenchyme, which in turn fails to induce the relatively higher cellular proliferation required for medial tissue outgrowth. It is likely that these differences between turtles and birds arose after the divergence of the lineage leading to modern turtles. PMID:24323766

  14. Dual mode of embryonic development is highlighted by expression and function of Nasonia pair-rule genes

    PubMed Central

    Rosenberg, Miriam I; Brent, Ava E; Payre, François; Desplan, Claude

    2014-01-01

    Embryonic anterior–posterior patterning is well understood in Drosophila, which uses ‘long germ’ embryogenesis, in which all segments are patterned before cellularization. In contrast, most insects use ‘short germ’ embryogenesis, wherein only head and thorax are patterned in a syncytial environment while the remainder of the embryo is generated after cellularization. We use the wasp Nasonia (Nv) to address how the transition from short to long germ embryogenesis occurred. Maternal and gap gene expression in Nasonia suggest long germ embryogenesis. However, the Nasonia pair-rule genes even-skipped, odd-skipped, runt and hairy are all expressed as early blastoderm pair-rule stripes and late-forming posterior stripes. Knockdown of Nv eve, odd or h causes loss of alternate segments at the anterior and complete loss of abdominal segments. We propose that Nasonia uses a mixed mode of segmentation wherein pair-rule genes pattern the embryo in a manner resembling Drosophila at the anterior and ancestral Tribolium at the posterior. DOI: http://dx.doi.org/10.7554/eLife.01440.001 PMID:24599282

  15. Chronic nicotine exposure systemically alters microRNA expression profiles during post-embryonic stages in Caenorhabditis elegans.

    PubMed

    Taki, Faten A; Pan, Xiaoping; Zhang, Baohong

    2014-01-01

    Tobacco smoking is associated with many diseases. Addiction is of the most notorious tobacco-related syndrome and is mainly attributed to nicotine. In this study, we employed Caenorhabditis elegans as a biological model to systemically investigate the effect of chronic nicotine exposure on microRNA (miRNA) expression profile and their regulated biochemical pathways. Nicotine treatment (20 µM and 20 mM) was limited to the post-embryonic stage from L1 to L4 (∼31 h) period after which worms were collected for genome-wide miRNA profiling. Our results show that nicotine significantly altered the expression patterns of 40 miRNAs. The effect was proportional to the nicotine dose and was expected to have an additive, more robust response. Based on pathway enrichment analyses coupled with nicotine-induced miRNA patterns, we inferred that miRNAs as a system mediates "regulatory hormesis", manifested in biphasic behavioral and physiological phenotypes. We proposed a model where nicotine addiction is mediated by miRNAs' regulation of fos-1 and is maintained by epigenetic factors. Thus, our study offers new insights for a better understanding of the sensitivity of early developmental stages to nicotine.

  16. Effects of maternal treatment of dehydroepiandrosterone (DHEA) on serum lipid profile and hepatic lipid metabolism-related gene expression in embryonic chickens.

    PubMed

    Chen, Juan; Tang, Xue; Zhang, Yuanshu; Ma, Haitian; Zou, Sixiang

    2010-04-01

    Over the last decade, much evidence emerged to suggest that alterations in maternal diets during pregnancy may irreversibly affect aspects of physiological and biochemical functions in the fetus. To explore the effects of maternal dietary treatments with dehydroepiandrosterone (DHEA) on lipid metabolism in the embryo, we investigated serum lipid profile and hepatic lipid metabolism-related gene expression in the maternal and embryonic chicken. Sixteen-week-old pullets were allocated into 3 groups (n=30), and after laying, they were provided with a commercial diet supplemented with DHEA at 0, 20 or 100mg/kg diet. Eggs were collected after DHEA treatment and incubated at 37.5 degrees C and a relative humidity of 60%. Blood and liver samples were collected from hens and embryonic chickens. DHEA treatment resulted in decreased body weight and increased relative liver weight in both maternal and embryonic chickens, while the concentrations of blood triglyceride (TG), total cholesterol (TC), low-density lipoprotein-cholesterol (LDL-C) and non-esterified fatty acid (NEFA) were significantly lower in the 20mg DHEA/kg group as compared to the control group during embryonic development. The expression of acetyl CoA carboxylase (ACC) and carnitine palmitoyl transferase I (CPTI) gene was also reduced following treatment with 20mg DHEA/kg at hatching. However, blood TC, and hepatic fatty acid synthase (FAS) and hydroxy methylglutaryl-CoA reductase (HMGR) gene expression were significantly up-regulated in the 100mg DHEA/kg group during embryonic development and hatching. Overall, the results of this study indicate that maternal dietary treatment with DHEA regulates serum lipid metabolism and hepatic gene expression.

  17. Topographical and physiological characterization of interneurons that express engrailed-1 in the embryonic chick spinal cord.

    PubMed

    Wenner, P; O'Donovan, M J; Matise, M P

    2000-11-01

    A number of homeodomain transcription factors have been implicated in controlling the differentiation of various types of neurons including spinal motoneurons. Some of these proteins are also expressed in spinal interneurons, but their function is unknown. Progress in understanding the role of transcription factors in interneuronal development has been slow because the synaptic connections of interneurons, which in part define their identity, are difficult to establish. Using whole cell recording in the isolated spinal cord of chick embryos, we assessed the synaptic connections of lumbosacral interneurons expressing the Engrailed-1 (En1) transcription factor. Specifically we established whether En1-expressing interneurons made direct connections with motoneurons and whether they constitute a single interneuron class. Cells were labeled with biocytin and subsequently processed for En1 immunoreactivity. Our findings indicate that the connections of En1-expressing cells with motoneurons and with sensory afferents were diverse, suggesting that the population was heterogeneous. In addition, the synaptic connections we tested were similar in interneurons that expressed the En1 protein and in many that did not. The majority of sampled En1 cells did, however, exhibit a direct synaptic connection to motoneurons that is likely to be GABAergic. Because our physiological methods underestimate the number of direct connections with motoneurons, it is possible that the great majority, perhaps all, En1-expressing cells make direct synaptic connections with motoneurons. Our results raise the possibility that En1 could be involved in interneuron-motoneuron connectivity but that its expression is not restricted to a distinct functional subclass of ventral interneuron. These findings constrain hypotheses about the role of En-1 in interneuron development and function.

  18. Facilitated maturation of Ca2+ handling properties of human embryonic stem cell-derived cardiomyocytes by calsequestrin expression

    PubMed Central

    Liu, Jing; Lieu, Deborah K.; Siu, Chung Wah; Fu, Ji-Dong; Tse, Hung-Fat; Li, Ronald A.

    2009-01-01

    Cardiomyocytes (CMs) are nonregenerative. Self-renewable pluripotent human embryonic stem cells (hESCs) can differentiate into CMs for cell-based therapies. We recently reported that Ca2+ handling, crucial to excitation-contraction coupling of hESC-derived CMs (hESC-CMs), is functional but immature. Such immature properties as smaller cytosolic Ca2+ transient amplitudes, slower kinetics, and reduced Ca2+ content of sarcoplasmic reticulum (SR) can be attributed to the differential developmental expression profiles of specific Ca2+ handling and regulatory proteins in hESC-CMs and their adult counterparts. In particular, calsequestrin (CSQ), the most abundant, high-capacity but low-affinity, Ca2+-binding protein in the SR that is anchored to the ryanodine receptor, is robustly expressed in adult CMs but completely absent in hESC-CMs. Here we hypothesized that gene transfer of CSQ in hESC-CMs suffices to induce functional improvement of SR. Transduction of hESC-CMs by the recombinant adenovirus Ad-CMV-CSQ-IRES-GFP (Ad-CSQ) significantly increased the transient amplitude, upstroke velocity, and transient decay compared with the control Ad-CMV-GFP (Ad-GFP) and Ad-CMV-CSQΔ-IRES-GFP (Ad-CSQΔ, which mediated the expression of a nonfunctional, truncated version of CSQ) groups. Ad-CSQ increased the SR Ca2+ content but did not alter L-type Ca2+ current. Pharmacologically, untransduced wild-type, Ad-GFP-, Ad-CSQΔ-, and Ad-CSQ-transduced hESC-CMs behaved similarly. Whereas ryanodine significantly reduced the Ca2+ transient amplitude and slowed the upstroke, thapsigargin slowed the decay. Neither triadin nor junctin was affected. We conclude that CSQ expression in hESC-CMs facilitates Ca2+ handling maturation. Our results shed insights into the suitability of hESC-CMs for therapies and as certain heart disease models for drug screening. PMID:19357236

  19. Developmentally regulated expression of the regulator of G-protein signaling gene 2 (Rgs2) in the embryonic mouse pituitary.

    PubMed

    Wilson, L D; Ross, S A; Lepore, D A; Wada, T; Penninger, J M; Thomas, P Q

    2005-02-01

    During the development of the anterior pituitary gland, five distinct hormone-producing cell types emerge in a spatially and temporally regulated pattern from an invagination of oral ectoderm termed Rathke's Pouch. Evidence from mouse knockout and ectopic expression studies indicates that 12.5 days post coitum (dpc) to 14.5 dpc is a critical period for the expansion of the progenitor cell pool and the determination of most hormone-secreting cell types. While signaling proteins and transcription factors have been identified as having key roles in pituitary cell differentiation, little is known about the identity and function of proteins that mediate signal transduction in progenitor cells. To identify genes that are enriched in the embryonic pituitary gland, we compared gene expression in 14.5 dpc pituitary and 14.5 dpc embryo minus pituitary tissues using the NIA 15K microarray. Analysis of the data using the R program revealed that the Regulator of G Protein Signaling 2 (Rgs2) gene was 3.9-fold more abundant in the 14.5 dpc pituitary. In situ hybridisation confirmed this finding, and showed that Rgs2 expression in midline tissues was restricted to the pituitary and discrete regions of the nervous system. Within the pituitary, Rgs2 was expressed in undifferentiated cells, and was downregulated at the completion of the hormone cell differentiation. To investigate Rgs2 function in the pituitary, we examined hormone cell differentiation in Rgs2 null neonate mice. Pituitary cell differentiation and morphology appeared normal in the Rgs2 mutant animals, suggesting that other Rgs family members with similar activities may be present in the developing pituitary.

  20. Polo-Like Kinase 3 Appears Dispensable for Normal Retinal Development Despite Robust Embryonic Expression

    PubMed Central

    Goetz, Jillian J.; Laboissonniere, Lauren A.; Wester, Andrea K.; Lynch, Madison R.; Trimarchi, Jeffrey M.

    2016-01-01

    During retinogenesis seven different cell types are generated in distinct yet overlapping timepoints from a population of retinal progenitor cells. Previously, we performed single cell transcriptome analyses of retinal progenitor cells to identify candidate genes that may play roles in the generation of early-born retinal neurons. Based on its expression pattern in subsets of early retinal cells, polo-like kinase 3 (Plk3) was identified as one such candidate gene. Further characterization of Plk3 expression by in situ hybridization revealed that this gene is expressed as cells exit the cell cycle. We obtained a Plk3 deficient mouse and investigated changes in the retina’s morphology and transcriptome through immunohistochemistry, in situ hybridization and gene expression profiling. These experiments have been performed initially on adult mice and subsequently extended throughout retinal development. Although morphological studies revealed no consistent changes in retinogenesis upon Plk3 loss, microarray profiling revealed potential candidate genes altered in Plk3-KO mice. Further studies will be necessary to understand the connection between these changes in gene expression and the loss of a protein kinase such as Plk3. PMID:26949938

  1. Expression of the Ca2+-binding protein, parvalbumin, during embryonic development of the frog, Xenopus laevis

    PubMed Central

    1987-01-01

    A cDNA segment encoding the Ca2+-binding protein, parvalbumin, was isolated with the use of antibodies, from a lambda gtll expression library of Xenopus laevis tadpole poly(A)+ RNAs. The bacterially expressed beta-galactosidase-parvalbumin fusion protein of one lambda recombinant shows high affinity 45Ca2+ binding. The sequence of the tadpole parvalbumin is highly similar to previously characterized beta- parvalbumins of other organisms. Data from protein and RNA blotting experiments demonstrate that parvalbumin is absent in oocytes, eggs, and early staged embryos, and only becomes expressed during embryogenesis at the time of myogenesis. The protein can be detected in individual developing muscle cells and in muscle fibers of tadpole tail muscles. A simple method is also described for the isolation of neural tube-notochord-somite complexes from Xenopus embryos. PMID:3558484

  2. Early embryonic expression patterns of the mouse Flamingo and Prickle orthologues.

    PubMed

    Crompton, Lucy A; Du Roure, Camille; Rodriguez, Tristan A

    2007-11-01

    The Drosophila melanogaster proteins Flamingo and Prickle act in the planar cell polarity (PCP) pathway, which is required for acquisition of epithelial polarity in the wing, eye, and epidermis. In mammals, PCP signaling has been shown to regulate cell movements and polarity in a variety of tissues. Here, we show that the murine Flamingo orthologues Celsr1-3 and the Prickle orthologues Prickle1, Prickle2, and Testin have dynamic patterns of expression during pregastrulation and gastrulation stages. Celsr1 is expressed in the anterior visceral endoderm and nascent mesoderm, Celsr2 and Celsr3 mark the prospective neuroectoderm, Prickle1 is expressed in the primitive streak and mesoderm, Prickle2 in the node, and Testin in the anterior visceral endoderm, the extraembryonic ectoderm, primitive streak, and mesoderm. Analysis of a gene-trap mutation in Testin indicates that this gene is not required for embryogenesis; therefore, other Prickle homologues may compensate for its function during development.

  3. Expression of putative markers of pluripotency in equine embryonic and adult tissues.

    PubMed

    Esteves, Cristina L; Sharma, Ruchi; Dawson, Lucy; Taylor, Sarah E; Pearson, Gemma; Keen, John A; McDonald, Kieran; Aurich, Christine; Donadeu, F Xavier

    2014-12-01

    Expression of several putative markers of pluripotency (OCT4, SOX2, NANOG, LIN28A, REX1, DNMT3B and TERT) was examined in a range of equine tissues, including early embryos, induced pluripotent stem cells (iPSCs), testis, adipose- and bone marrow-derived mesenchymal stromal cells (MSCs), and keratinocytes. Transcript levels of all markers were highest in embryos and iPSCs and, except for SOX2, were very low or undetectable in keratinocytes. Mean expression levels of all markers were lower in testis than in embryos or iPSCs and, except for DNMT3B, were higher in testis than in MSCs. Expression of OCT4, NANOG and DNMT3B, but not the other markers, was detected in MSCs. Of all markers analysed, only LIN28A, REX1 and TERT were associated exclusively with pluripotent cells in the horse.

  4. Dissecting Oct3/4-Regulated Gene Networks in Embryonic Stem Cells by Expression Profiling

    PubMed Central

    Matoba, Ryo; Niwa, Hitoshi; Masui, Shinji; Ohtsuka, Satoshi; Carter, Mark G.; Sharov, Alexei A.; Ko, Minoru S.H.

    2006-01-01

    POU transcription factor Pou5f1 (Oct3/4) is required to maintain ES cells in an undifferentiated state. Here we show that global expression profiling of Oct3/4-manipulated ES cells delineates the downstream target genes of Oct3/4. Combined with data from genome-wide chromatin-immunoprecipitation (ChIP) assays, this analysis identifies not only primary downstream targets of Oct3/4, but also secondary or tertiary targets. Furthermore, the analysis also reveals that downstream target genes are regulated either positively or negatively by Oct3/4. Identification of a group of genes that show both activation and repression depending on Oct3/4 expression levels provides a possible mechanism for the requirement of appropriate Oct3/4 expression to maintain undifferentiated ES cells. As a proof-of-principle study, one of the downstream genes, Tcl1, has been analyzed in detail. We show that Oct3/4 binds to the promoter region of Tcl1 and activates its transcription. We also show that Tcl1 is involved in the regulation of proliferation, but not differentiation, in ES cells. These findings suggest that the global expression profiling of gene-manipulated ES cells can help to delineate the structure and dynamics of gene regulatory networks. PMID:17183653

  5. Comparison of epigenetic mediator expression and function in mouse and human embryonic blastomeres.

    PubMed

    Chavez, Shawn L; McElroy, Sohyun L; Bossert, Nancy L; De Jonge, Christopher J; Rodriguez, Maria Vera; Leong, Denise E; Behr, Barry; Westphal, Lynn M; Reijo Pera, Renee A

    2014-09-15

    A map of human embryo development that combines imaging, molecular, genetic and epigenetic data for comparisons to other species and across pathologies would be greatly beneficial for basic science and clinical applications. Here, we compared mRNA and protein expression of key mediators of DNA methylation and histone modifications between mouse and human embryos, embryos from fertile/infertile couples, and following growth factor supplementation. We observed that individual mouse and human embryos are characterized by similarities and distinct differences in DNA methylation and histone modification patterns especially at the single-cell level. In particular, while mouse embryos first exhibited sub-compartmentalization of different histone modifications between blastomeres at the morula stage and cell sub-populations in blastocysts, differential histone modification expression was detected between blastomeres earlier in human embryos at the four- to eight-cell stage. Likewise, differences in epigenetic mediator expression were also observed between embryos from fertile and infertile couples, which were largely equalized in response to growth factor supplementation, suggesting that select growth factors might prevent alterations in epigenetic profiles during prolonged embryo culture. Finally, we determined that reduced expression via morpholino technologies of a single histone-modifying enzyme, Rps6ka4/Msk2, resulted in cleavage-stage arrest as assessed by time-lapse imaging and was associated with aneuploidy generation. Taken together, data document differences in epigenetic patterns between species with implications for fertility and suggest functional roles for individual epigenetic factors during pre-implantation development.

  6. Transient expression of GAP-43 in nonneuronal cells of the embryonic chick limb.

    PubMed

    Stocker, K M; Baizer, L; Ciment, G

    1993-01-01

    Growth-associated protein (GAP)-43 is highly expressed in neuronal growth cones during periods of axonal outgrowth in development and regeneration of the nervous system. Although GAP-43 is generally considered to be neuron-specific, it is also expressed in some glial cells of the peripheral and central nervous systems and in at least two populations of mesodermally-derived cells in the developing chick limb. GAP-43 mRNA is expressed transiently in developing limbs; although this expression is correlated temporally with the ingrowth of neurites and axons to the limbs, it appears to be independent of nerves. Immunoreactivity for GAP-43 colocalizes in some developing limb muscle and GAP-43 mRNA and protein are particularly abundant in the interdigital mesenchyme that undergoes programmed cell death. GAP-43 has been postulated to mediate rapid changes in cell shape in neurons and glial cells and may serve a similar function in myoblasts fusing to form myotubes and in apototic and phagocytic cells of the interdigital mesenchyme.

  7. Expression of Immune-Related Genes during Loach (Misgurnus anguillicaudatus) Embryonic and Early Larval Development

    PubMed Central

    Lee, Jang Wook; Kim, Jung Eun; Goo, In Bon; Hwang, Ju-Ae; Im, Jea Hyun; Choi, Hye-Sung; Lee, Jeong-Ho

    2015-01-01

    Early life stage mortality in fish is one of the problems faced by loach aquaculture. However, our understanding of immune system in early life stage fish is still incomplete, and the information available is restricted to a few fish species. In the present work, we investigated the expression of immune-related transcripts in loach during early development. In fishes, recombination-activating gene 1 (RAG-1) and sacsin (SACS) have been considered as immunological function. In this study, the expression of the both genes was assessed throughout the early developmental stages of loach using real-time PCR method. maRAG-1 mRNA was first detected in 0 dph, observed the increased mostly until 40 dph. Significant expression of maRAG-1 was detected in 0 to 40 dph. These patterns of expression may suggest that the loach start to develop its function after hatching. On the other hand, maSACS was detected in unfertilized oocyte to molura stages and 0 to 40 dph. maSACS mRNA transcripts were detected in unfertilized oocytes, suggesting that they are maternally transferred. PMID:26973969

  8. A population of serumdeprivation-induced bone marrow stem cells (SD-BMSC) expresses marker typical for embryonic and neural stem cells

    SciTech Connect

    Sauerzweig, Steven Munsch, Thomas; Lessmann, Volkmar; Reymann, Klaus G.; Braun, Holger

    2009-01-01

    The bone marrow represents an easy accessible source of adult stem cells suitable for various cell based therapies. Several studies in recent years suggested the existence of pluripotent stem cells within bone marrow stem cells (BMSC) expressing marker proteins of both embryonic and tissue committed stem cells. These subpopulations were referred to as MAPC, MIAMI and VSEL-cells. Here we describe SD-BMSC (serumdeprivation-induced BMSC) which are induced as a distinct subpopulation after complete serumdeprivation. SD-BMSC are generated from small-sized nestin-positive BMSC (S-BMSC) organized as round-shaped cells in the top layer of BMSC-cultures. The generation of SD-BMSC is caused by a selective proliferation of S-BMSC and accompanied by changes in both morphology and gene expression. SD-BMSC up-regulate not only markers typical for neural stem cells like nestin and GFAP, but also proteins characteristic for embryonic cells like Oct4 and SOX2. We hypothesize, that SD-BMSC like MAPC, MIAMI and VSEL-cells represent derivatives from a single pluripotent stem cell fraction within BMSC exhibiting characteristics of embryonic and tissue committed stem cells. The complete removal of serum might offer a simple way to specifically enrich this fraction of pluripotent embryonic like stem cells in BMSC cultures.

  9. Expression profiling and pathway analysis of Krüppel-like factor 4 in mouse embryonic fibroblasts

    PubMed Central

    Hagos, Engda G; Ghaleb, Amr M; Kumar, Amrita; Neish, Andrew S; Yang, Vincent W

    2011-01-01

    Background: Krüppel-like factor 4 (KLF4) is a zinc-finger transcription factor with diverse regulatory functions in proliferation, differentiation, and development. KLF4 also plays a role in inflammation, tumorigenesis, and reprogramming of somatic cells to induced pluripotent stem (iPS) cells. To gain insight into the mechanisms by which KLF4 regulates these processes, we conducted DNA microarray analyses to identify differentially expressed genes in mouse embryonic fibroblasts (MEFs) wild type and null for Klf4. Methods: Expression profiles of fibroblasts isolated from mouse embryos wild type or null for the Klf4 alleles were examined by DNA microarrays. Differentially expressed genes were subjected to the Database for Annotation, Visualization and Integrated Discovery (DAVID). The microarray data were also interrogated with the Ingenuity Pathway Analysis (IPA) and Gene Set Enrichment Analysis (GSEA) for pathway identification. Results obtained from the microarray analysis were confirmed by Western blotting for select genes with biological relevance to determine the correlation between mRNA and protein levels. Results: One hundred and sixty three up-regulated and 88 down-regulated genes were identified that demonstrated a fold-change of at least 1.5 and a P-value < 0.05 in Klf4-null MEFs compared to wild type MEFs. Many of the up-regulated genes in Klf4-null MEFs encode proto-oncogenes, growth factors, extracellular matrix, and cell cycle activators. In contrast, genes encoding tumor suppressors and those involved in JAK-STAT signaling pathways are down-regulated in Klf4-null MEFs. IPA and GSEA also identified various pathways that are regulated by KLF4. Lastly, Western blotting of select target genes confirmed the changes revealed by microarray data. Conclusions: These data are not only consistent with previous functional studies of KLF4's role in tumor suppression and somatic cell reprogramming, but also revealed novel target genes that mediate KLF4's

  10. Expression pattern of mUBPy in the brain and sensory organs of mouse during embryonic development.

    PubMed

    d'Amora, Marta; Angelini, Cristiano; Aluigi, Maria Grazia; Marcoli, Manuela; Maura, Guido; Berruti, Giovanna; Vallarino, Mauro

    2010-10-08

    Mouse UBPy (mUBPy) belongs to the family of ubiquitin-specific processing proteases (UBPs). In this study we have investigated the expression of mUBPy in the brain and sensory organs of mouse at different embryonic stages (E9, E11, E13, E15, E17, E19) and during the postnatal stages P0, P1, P2, P4 and P5 using Western blot and immunohistochemistry. mUBPy-immunoreactive cell bodies first appeared at stage E11 in several brain regions, particularly in the walls surrounding the vesicles and the ventricles. Subsequently, at stage E13, new mUBPy-positive cells appeared in the corpus striatum, the caudate nucleus, the thalamus, the epithalamus, the hypothalamus and the pons. At E15 the mUBPy pattern was very similar to that observed at E13, whereas at stage E17 mUBPy-immunoreactivity significantly decreased and a high number of mUBPy-immunoreactive cells was found only to line the third ventricle and within the mantle layer of the fourth ventricle. At E19 and P0, no mUBPy-immunoreactive element was found in the brain. At the postnatal stages P2 and P5, mUBPy-positive cells were detected in all subdivisions of the brain, with high concentrations in several cortex regions. Double labeling with the mUBPy antiserum and antisera against specific cell markers showed that the enzyme is expressed both in neurons and astrocytes. Outside the brain, mUBPy was detected, from stage E11, in the eye, within the lens and the cornea, in the inner ear, at the level of the cochlear and vestibular systems and in the olfactory epithelium. The spatio-temporal expression of mUBPy suggests that the enzyme may be involved in neuroregulatory processes during embryogenesis.

  11. Embryonic Mechanical and Soluble Cues Regulate Tendon Progenitor Cell Gene Expression as a Function of Developmental Stage and Anatomical Origin

    PubMed Central

    Brown, Jeffrey P; Finley, Violet G; Kuo, Catherine K

    2014-01-01

    Stem cell-based engineering strategies for tendons have yet to yield a normal functional tissue, due in part to a need for tenogenic factors. Additionally, the ability to evaluate differentiation has been challenged by a lack of markers for differentiation. We propose to inform tendon regeneration with developmental cues involved in normal tissue formation and with phenotypic markers that are characteristic of differentiating tendon progenitor cells (TPCs). Mechanical forces, fibroblast growth factor (FGF)-4 and transforming growth factor (TGF)-β2 are implicated in embryonic tendon development, yet the isolated effects of these factors on differentiating TPCs are unknown. Additionally, developmental mechanisms vary between limb and axial tendons, suggesting the respective cell types are programmed to respond uniquely to exogenous factors. To characterize developmental cues and benchmarks for differentiation toward limb vs. axial phenotypes, we dynamically loaded and treated TPCs with growth factors and assessed gene expression profiles as a function of developmental stage and anatomical origin. Based on scleraxis expression, TGFβ2 was tenogenic for TPCs at all stages, while loading was for late-stage cells only, and FGF4 had no effect despite regulation of other genes. When factors were combined, TGF 2 continued to be tenogenic, while FGF4 appeared anti-tenogenic. Various treatments elicited distinct responses by axial vs. limb TPCs of specific stages. These results identified tenogenic factors, suggest tendon engineering strategies should be customized for tissues by anatomical origin, and provide stage-specific gene expression profiles of limb and axial TPCs as benchmarks with which to monitor tenogenic differentiation of stem cells. PMID:24231248

  12. Comparative gene expression analysis of avian embryonic facial structures reveals new candidates for human craniofacial disorders.

    PubMed

    Brugmann, S A; Powder, K E; Young, N M; Goodnough, L H; Hahn, S M; James, A W; Helms, J A; Lovett, M

    2010-03-01

    Mammals and birds have common embryological facial structures, and appear to employ the same molecular genetic developmental toolkit. We utilized natural variation found in bird beaks to investigate what genes drive vertebrate facial morphogenesis. We employed cross-species microarrays to describe the molecular genetic signatures, developmental signaling pathways and the spectrum of transcription factor (TF) gene expression changes that differ between cranial neural crest cells in the developing beaks of ducks, quails and chickens. Surprisingly, we observed that the neural crest cells established a species-specific TF gene expression profile that predates morphological differences between the species. A total of 232 genes were differentially expressed between the three species. Twenty-two of these genes, including Fgfr2, Jagged2, Msx2, Satb2 and Tgfb3, have been previously implicated in a variety of mammalian craniofacial defects. Seventy-two of the differentially expressed genes overlap with un-cloned loci for human craniofacial disorders, suggesting that our data will provide a valuable candidate gene resource for human craniofacial genetics. The most dramatic changes between species were in the Wnt signaling pathway, including a 20-fold up-regulation of Dkk2, Fzd1 and Wnt1 in the duck compared with the other two species. We functionally validated these changes by demonstrating that spatial domains of Wnt activity differ in avian beaks, and that Wnt signals regulate Bmp pathway activity and promote regional growth in facial prominences. This study is the first of its kind, extending on previous work in Darwin's finches and provides the first large-scale insights into cross-species facial morphogenesis.

  13. Polymorphic core promoter GA-repeats alter gene expression of the early embryonic developmental genes.

    PubMed

    Valipour, E; Kowsari, A; Bayat, H; Banan, M; Kazeminasab, S; Mohammadparast, S; Ohadi, M

    2013-12-01

    Protein complexes that bind to 'GAGA' DNA elements are necessary to replace nucleosomes to create a local chromatin environment that facilitates a variety of site-specific regulatory responses. Three to four elements are required for the disruption of a preassembled nucleosome. We have previously identified human protein-coding gene core promoters that are composed of exceptionally long GA-repeats. The functional implication of those GA-repeats is beginning to emerge in the core promoter of the human SOX5 gene, which is involved in multiple developmental processes. In the current study, we analyze the functional implication of GA-repeats in the core promoter of two additional genes, MECOM and GABRA3, whose expression is largely limited to embryogenesis. We report a significant difference in gene expression as a result of different alleles across those core promoters in the HEK-293 cell line. Across-species homology check for the GABRA3 GA-repeats revealed that those repeats are evolutionary conserved in mouse and primates (p<1 × 10(-8)). The MECOM core promoter GA-repeats are also conserved in numerous species, of which human has the longest repeat and complexity. We propose a novel role for GA-repeat core promoters to regulate gene expression in the genes involved in development and evolution.

  14. Far Upstream Element Binding Protein Plays a Crucial Role in Embryonic Development, Hematopoiesis, and Stabilizing Myc Expression Levels

    PubMed Central

    Zhou, Weixin; Chung, Yang Jo; Parrilla Castellar, Edgardo R.; Zheng, Ying; Chung, Hye-Jung; Bandle, Russell; Liu, Juhong; Tessarollo, Lino; Batchelor, Eric; Aplan, Peter D.; Levens, David

    2017-01-01

    The transcription factor far upstream element binding protein (FBP) binds and activates the MYC promoter when far upstream element is via TFIIH helicase activity early in the transcription cycle. The fundamental biology and pathology of FBP are complex. In some tumors FBP seems pro-oncogenic, whereas in others it is a tumor suppressor. We generated an FBP knockout (Fubp1−/−) mouse to study FBP deficiency. FBP is embryo lethal from embryonic day 10.5 to birth. A spectrum of pathology is associated with FBP loss; besides cerebral hyperplasia and pulmonary hypoplasia, pale livers, hypoplastic spleen, thymus, and bone marrow, cardiac hypertrophy, placental distress, and small size were all indicative of anemia. Immunophenotyping of hematopoietic cells in wild-type versus knockout livers revealed irregular trilineage anemia, with deficits in colony formation. Despite normal numbers of hematopoietic stem cells, transplantation of Fubp1−/− hematopoietic stem cells into irradiated mice entirely failed to reconstitute hematopoiesis. In competitive transplantation assays against wild-type donor bone marrow, Fubp1−/− hematopoietic stem cells functioned only sporadically at a low level. Although cultures of wild-type mouse embryo fibroblasts set Myc levels precisely, Myc levels of mouse varied wildly between fibroblasts harvested from different Fubp1−/− embryos, suggesting that FBP contributes to Myc set point fixation. FBP helps to hold multiple physiologic processes to close tolerances, at least in part by constraining Myc expression. PMID:26774856

  15. TGF beta-mediated RhoA expression is necessary for epithelial-mesenchymal transition in the embryonic chick heart.

    PubMed

    Tavares, André Luiz P; Mercado-Pimentel, Melania E; Runyan, Raymond B; Kitten, Gregory T

    2006-06-01

    Endothelia in the atrioventricular canal (AVC) of the embryonic heart undergo an epithelial-mesenchymal transition (EMT) and migrate into the underlying extracellular matrix. We explore here whether RhoA mediates this EMT. RhoA was detected in all cells of the chick heart during the stages studied. Expression was elevated when EMT was actively occurring. Explants treated with C3 exoenzyme in collagen gel cultures showed a significant decrease in mesenchymal cell numbers. siRNA was used to inhibit RhoA mRNA, and both activated endothelial and mesenchymal cells decreased significantly with treatment. Loss of RhoA produced a reduction of RhoB, cyclin-b2, and beta-catenin messages showing that these genes are regulated downstream of RhoA. In contrast, runx-2 was not reduced. Inhibition of TGFbeta3 or TGFbeta2 activity caused a large reduction of RhoA message. These data place RhoA in TGFbeta regulated pathways for both endothelial activation and mesenchymal invasion and demonstrate a functional requirement during EMT.

  16. Characteristics of glycine receptors expressed by embryonic rat brain mRNAs

    PubMed Central

    García-Alcocer, Guadalupe; García-Colunga, Jesús; Martínez-Torres, Ataúlfo; Miledi, Ricardo

    2001-01-01

    A study was made of glycine (Gly) and γ-aminobutyric acid (GABA) receptors expressed in Xenopus oocytes injected with rat mRNAs isolated from the encephalon, midbrain, and brainstem of 18-day-old rat embryos. In oocytes injected with encephalon, midbrain, or brainstem mRNAs, the Gly-current amplitudes (membrane current elicited by Gly; 1 mM Gly) were respectively 115 ± 35, 346 ± 28, and 389 ± 22 nA, whereas the GABA-currents (1 mM GABA) were all ≤40 nA. Moreover, the Gly-currents desensitized faster in oocytes injected with encephalon or brainstem mRNAs. The EC50 for Gly was 611 ± 77 μM for encephalon, 661 ± 28 μM for midbrain, and 506 ± 18 μM for brainstem mRNA-injected oocytes, and the corresponding Hill coefficients were all ≈2. Strychnine inhibited all of the Gly-currents, with an IC50 of 56 ± 3 nM for encephalon, 97 ± 4 nM for midbrain, and 72 ± 4 nM for brainstem mRNAs. During repetitive Gly applications, the Gly-currents were potentiated by 1.6-fold for encephalon, 2.1-fold for midbrain, and 1.3-fold for brainstem RNA-injected oocytes. Raising the extracellular Ca2+ concentration significantly increased the Gly-currents in oocytes injected with midbrain and brainstem mRNAs. Reverse transcription–PCR studies showed differences in the Gly receptor (GlyR) α-subunits expressed, whereas the β-subunit was present in all three types of mRNA. These results indicate differential expression of GlyR mRNAs in the brain areas examined, and these mRNAs lead to the expression of GlyRs that have different properties. The modulation of GlyRs by Ca2+ could play important functions during brain development. PMID:11226317

  17. Embryonic Stem Cell (ES)-Specific Enhancers Specify the Expression Potential of ES Genes in Cancer

    PubMed Central

    Levy, Revital; Meron, Nurit; Toperoff, Gidon; Edrei, Yifat; Bergman, Yehudit; Hellman, Asaf

    2016-01-01

    Cancers often display gene expression profiles resembling those of undifferentiated cells. The mechanisms controlling these expression programs have yet to be identified. Exploring transcriptional enhancers throughout hematopoietic cell development and derived cancers, we uncovered a novel class of regulatory epigenetic mutations. These epimutations are particularly enriched in a group of enhancers, designated ES-specific enhancers (ESSEs) of the hematopoietic cell lineage. We found that hematopoietic ESSEs are prone to DNA methylation changes, indicative of their chromatin activity states. Strikingly, ESSE methylation is associated with gene transcriptional activity in cancer. Methylated ESSEs are hypermethylated in cancer relative to normal somatic cells and co-localized with silenced genes, whereas unmethylated ESSEs tend to be hypomethylated in cancer and associated with reactivated genes. Constitutive or hematopoietic stem cell-specific enhancers do not show these trends, suggesting selective reactivation of ESSEs in cancer. Further analyses of a hypomethylated ESSE downstream to the VEGFA gene revealed a novel regulatory circuit affecting VEGFA transcript levels across cancers and patients. We suggest that the discovered enhancer sites provide a framework for reactivation of ES genes in cancer. PMID:26886256

  18. Ionizing Radiation Alters Human Embryonic Stem Cell Properties and Differentiation Capacity by Diminishing the Expression of Activin Receptors.

    PubMed

    Luft, Sabine; Arrizabalaga, Onetsine; Kulish, Ireen; Nasonova, Elena; Durante, Marco; Ritter, Sylvia; Schroeder, Insa S

    2017-03-01

    Exposure of the embryo to ionizing radiation (IR) is detrimental as it can cause genotoxic stress leading to immediate and latent consequences such as functional defects, malformations, or cancer. Human embryonic stem (hES) cells can mimic the preimplantation embryo and help to assess the biological effects of IR during early development. In this study, we describe the alterations H9 hES cells exhibit after X-ray irradiation in respect to cell cycle progression, apoptosis, genomic stability, stem cell signaling, and their capacity to differentiate into definitive endoderm. Early postirradiation, hES cells responded with an arrest in G2/M phase, elevated apoptosis, and increased chromosomal aberrations. Significant downregulation of stem cell signaling markers of the TGF beta-, Wnt-, and Hedgehog pathways was observed. Most prominent were alterations in the expression of activin receptors. However, hES cells responded differently depending on the culture conditions chosen for maintenance. Enzymatically passaged cells were less sensitive to IR than mechanically passaged ones showing fewer apoptotic cells and fewer changes in the stem cell signaling 24 h after irradiation, but displayed higher levels of chromosomal aberrations. Even though many of the observed changes were transient, surviving hES cells, which were differentiated 4 days postirradiation, showed a lower efficiency to form definitive endoderm than their mock-irradiated counterparts. This was demonstrated by lower expression levels of SOX17 and microRNA miR-375. In conclusion, hES cells are a suitable tool for the IR risk assessment during early human development. However, careful choice of the culture methods and a vigorous monitoring of the stem cell quality are mandatory for the use of these cells. Exposure to IR influences the stem cell properties of hES cells even when immediate radiation effects are overcome. This warrants consideration in the risk assessment of radiation effects during the

  19. Embryonic development and skeletogenic gene expression affected by X-rays in the Mediterranean sea urchin Paracentrotus lividus.

    PubMed

    Matranga, Valeria; Zito, Francesca; Costa, Caterina; Bonaventura, Rosa; Giarrusso, Salvatore; Celi, Filippo

    2010-03-01

    International concern over environmental nuclear contamination of salt water fisheries and coastal resources has attracted the interests of ecologists, marine biologists and stakeholders. There are not many studies on the effects of X-rays, a component of radionuclides emissions, on embryonic development and gene expression. The sea urchin embryo is emerging as a useful model system for environmental and eco-toxicological studies. Here, we describe how X-rays affect development and gene expression in embryos of the Mediterranean sea urchin Paracentrotus lividus. Cleavage embryos were exposed to doses from 0.1 to 5 Gy, using an Ag source of X radiation. We found a dose-dependent increase in developmental delays and severe morphological defects in embryos microscopically inspected at two endpoints, 24 and 48 h after irradiation. By analogy with classical toxicity tests parameters we defined the No Observed Effect Dose at 0.1 Gy, the Lowest Observed Effect Dose at 0.5 Gy and ED50 at 1.0 Gy. Major perturbations concerned primitive intestine and skeleton differentiation and development: X-rays exposed embryos had both no gut and arms or poorly and abnormally developed ones. We found a dose-dependent reduction in the mRNA levels of two skeleton-specific genes, Pl-SM30 (spicule matrix 30) and Pl-msp130 (matrix spicule protein 130), as measured by semi-quantitative RT-PCR and whole mount in situ hybridization, respectively. These findings indicate the sea urchin embryo as a sensible bioindicator of X-radiation and propose its use as an alternative model, emphasizing the need for further investigation aimed to protect ecosystem health.

  20. Hydrogen gas attenuates embryonic gene expression and prevents left ventricular remodeling induced by intermittent hypoxia in cardiomyopathic hamsters.

    PubMed

    Kato, Ryuji; Nomura, Atsuo; Sakamoto, Aiji; Yasuda, Yuki; Amatani, Koyuha; Nagai, Sayuri; Sen, Yoko; Ijiri, Yoshio; Okada, Yoshikatsu; Yamaguchi, Takehiro; Izumi, Yasukatsu; Yoshiyama, Minoru; Tanaka, Kazuhiko; Hayashi, Tetsuya

    2014-12-01

    The prevalence of sleep apnea is very high in patients with heart failure (HF). The aims of this study were to investigate the influence of intermittent hypoxia (IH) on the failing heart and to evaluate the antioxidant effect of hydrogen gas. Normal male Syrian hamsters (n = 22) and cardiomyopathic (CM) hamsters (n = 33) were exposed to IH (repeated cycles of 1.5 min of 5% oxygen and 5 min of 21% oxygen for 8 h during the daytime) or normoxia for 14 days. Hydrogen gas (3.05 vol/100 vol) was inhaled by some CM hamsters during hypoxia. IH increased the ratio of early diastolic mitral inflow velocity to mitral annulus velocity (E/e', 21.8 vs. 16.9) but did not affect the LV ejection fraction (EF) in normal Syrian hamsters. However, IH increased E/e' (29.4 vs. 21.5) and significantly decreased the EF (37.2 vs. 47.2%) in CM hamsters. IH also increased the cardiomyocyte cross-sectional area (672 vs. 443 μm(2)) and interstitial fibrosis (29.9 vs. 9.6%), along with elevation of oxidative stress and superoxide production in the left ventricular (LV) myocardium. Furthermore, IH significantly increased the expression of brain natriuretic peptide, β-myosin heavy chain, c-fos, and c-jun mRNA in CM hamsters. Hydrogen gas inhalation significantly decreased both oxidative stress and embryonic gene expression, thus preserving cardiac function in CM hamsters. In conclusion, IH accelerated LV remodeling in CM hamsters, at least partly by increasing oxidative stress in the failing heart. These findings might explain the poor prognosis of patients with HF and sleep apnea.

  1. Contribution of distinct homeodomain DNA binding specificities to Drosophila embryonic mesodermal cell-specific gene expression programs.

    PubMed

    Busser, Brian W; Gisselbrecht, Stephen S; Shokri, Leila; Tansey, Terese R; Gamble, Caitlin E; Bulyk, Martha L; Michelson, Alan M

    2013-01-01

    Homeodomain (HD) proteins are a large family of evolutionarily conserved transcription factors (TFs) having diverse developmental functions, often acting within the same cell types, yet many members of this family paradoxically recognize similar DNA sequences. Thus, with multiple family members having the potential to recognize the same DNA sequences in cis-regulatory elements, it is difficult to ascertain the role of an individual HD or a subclass of HDs in mediating a particular developmental function. To investigate this problem, we focused our studies on the Drosophila embryonic mesoderm where HD TFs are required to establish not only segmental identities (such as the Hox TFs), but also tissue and cell fate specification and differentiation (such as the NK-2 HDs, Six HDs and identity HDs (I-HDs)). Here we utilized the complete spectrum of DNA binding specificities determined by protein binding microarrays (PBMs) for a diverse collection of HDs to modify the nucleotide sequences of numerous mesodermal enhancers to be recognized by either no or a single subclass of HDs, and subsequently assayed the consequences of these changes on enhancer function in transgenic reporter assays. These studies show that individual mesodermal enhancers receive separate transcriptional input from both I-HD and Hox subclasses of HDs. In addition, we demonstrate that enhancers regulating upstream components of the mesodermal regulatory network are targeted by the Six class of HDs. Finally, we establish the necessity of NK-2 HD binding sequences to activate gene expression in multiple mesodermal tissues, supporting a potential role for the NK-2 HD TF Tinman (Tin) as a pioneer factor that cooperates with other factors to regulate cell-specific gene expression programs. Collectively, these results underscore the critical role played by HDs of multiple subclasses in inducing the unique genetic programs of individual mesodermal cells, and in coordinating the gene regulatory networks

  2. Tumorigenic Xenopus cells express several maternal and early embryonic mRNAs

    SciTech Connect

    Picard, J.J.; Pelle, R.; Schonne, E.; Dworkin-Rastl, E.; Dworkin, M.B.

    1986-11-01

    Recombinant cDNA libraries were constructed from poly (A)/sup +/ RNA isolated from different stages of oogenesis and embryogenesis from the clawed toad Xenopus laevis. Hybridization analyses were used to describe the accumulation of specific RNAs represented by these cDNA clones in oocytes, embryos, adult liver, a cell line derived from Xenopus borealis embryos (Xb693), and a tumorigenic substrain of that cell line (Xb693T). It was found that from 550 cDNA clones analyses, six sequences accumulate to higher titers in poly(A)/sup +/ RNA isolated from the tumorigenic cell line compared with the nontumorigenic cell line. All six sequences were expressed at high levels during oogenesis. DNA sequencing of these three sequences followed by a computer search of protein data banks has identified them as coding for the glycolytic enzyme enolase, the ATP-ADP carrier protein, and a-tubulin.

  3. Expression of extracellular matrix metalloproteinase inducer and matrix metalloproteinases during mouse embryonic development.

    PubMed

    Chen, Li; Nakai, Masaaki; Belton, Robert J; Nowak, Romana A

    2007-02-01

    Mouse embryo implantation is a highly invasive and controlled process that involves remodeling and degradation of the extracellular matrix of the uterus. Matrix metalloproteinases (MMPs) are the main proteinases facilitating this process. Extracellular matrix metalloproteinase inducer (EMMPRIN) can stimulate the production of MMPs and is required for successful implantation in the mouse. The aims of the present study were to examine the expression profiles of mRNA and proteins for EMMPRIN and MMPs in the developing mouse embryo in vitro, and to study whether EMMPRIN protein induces the production of MMPs by mouse blastocysts. EMMPRIN mRNA, detected by RT-PCR, was present at all stages of embryo development from the one-cell to the blastocyst outgrowth. EMMPRIN protein, observed by confocal microscopy, was present on the cell surface at the same stages of development as was the mRNA. Of seven MMPs studied, murine collagenase-like A (Mcol-A), murine collagenase-like B (Mcol-B) and gelatinase A (MMP-2) mRNAs were detected only in blastocyst outgrowths by RT-PCR. Gelatinase B (MMP-9) mRNA was detected both in expanded blastocysts and blastocyst outgrowths. MMP-2 and -9 proteins were detected in the cytoplasm of outgrowing trophoblast cells. Collagenase-2 (MMP-8), collagenase-3 (MMP-13), or stromelysin-1 (MMP-3) mRNAs were not present at any stage of pre- or peri-implantation mouse embryo development. Quantitative RT-PCR analyses showed that recombinant EMMPRIN protein did not stimulate MMP-2 or -9 expression by mouse blastocyst outgrowths. These data suggest that EMMPRIN may regulate physiological functions other than MMP production by mouse embryos during implantation.

  4. Sex-specific embryonic gene expression in species with newly evolved sex chromosomes.

    PubMed

    Lott, Susan E; Villalta, Jacqueline E; Zhou, Qi; Bachtrog, Doris; Eisen, Michael B

    2014-02-01

    Sex chromosome dosage differences between females and males are a significant form of natural genetic variation in many species. Like many species with chromosomal sex determination, Drosophila females have two X chromosomes, while males have one X and one Y. Fusions of sex chromosomes with autosomes have occurred along the lineage leading to D. pseudoobscura and D. miranda. The resulting neo-sex chromosomes are gradually evolving the properties of sex chromosomes, and neo-X chromosomes are becoming targets for the molecular mechanisms that compensate for differences in X chromosome dose between sexes. We have previously shown that D. melanogaster possess at least two dosage compensation mechanisms: the well- characterized MSL-mediated dosage compensation active in most somatic tissues, and another system active during early embryogenesis prior to the onset of MSL-mediated dosage compensation. To better understand the developmental constraints on sex chromosome gene expression and evolution, we sequenced mRNA from individual male and female embryos of D. pseudoobscura and D. miranda, from ∼0.5 to 8 hours of development. Autosomal expression levels are highly conserved between these species. But, unlike D. melanogaster, we observe a general lack of dosage compensation in D. pseudoobscura and D. miranda prior to the onset of MSL-mediated dosage compensation. Thus, either there has been a lineage-specific gain or loss in early dosage compensation mechanism(s) or increasing X chromosome dose may strain dosage compensation systems and make them less effective. The extent of female bias on the X chromosomes decreases through developmental time with the establishment of MSL-mediated dosage compensation, but may do so more slowly in D. miranda than D. pseudoobscura. These results also prompt a number of questions about whether species with more sex-linked genes have more sex-specific phenotypes, and how much transcript level variance is tolerable during critical stages

  5. Specific vaginal lactobacilli suppress the inflammation induced by lipopolysaccharide stimulation through downregulation of toll-like receptor 4 expression in human embryonic intestinal epithelial cells

    PubMed Central

    TOBITA, Keisuke; WATANABE, Itsuki; SAITO, Masanori

    2016-01-01

    Vaginal lactobacilli (VLB) spread from the mother to the infant during vaginal delivery. However, the effects of VLB on infant intestinal function remain unclear. We investigated the probiotic function and immune effects of VLB on the human embryonic intestinal epithelial cell line INT-407. VLB survived artificial gastric juice and adhered to INT-407 cells. Exposure of INT-407 cells to VLB attenuated both the lipopolysaccharide (LPS)-induced stimulation of interleukin-8 and tumor necrosis factor alpha production and the LPS-stimulated upregulation of TLR4 expression. These results suggest that specific VLB suppresses the inflammation induced by LPS stimulation through downregulation of TLR4 expression in human embryonic intestinal epithelial cells. PMID:28243550

  6. Profiles of mRNA expression of related genes in the duck hypothalamus-pituitary growth axis during embryonic and early post-hatch development.

    PubMed

    Hu, Yan; Liu, Hongxiang; Song, Chi; Xu, Wenjuan; Ji, Gaige; Zhu, Chunhong; Shu, Jingting; Li, Huifang

    2015-03-15

    In this study, the ontogeny of body and liver weight and the pattern of related gene mRNA expression in the hypothalamus-pituitary growth axis (HPGA) of two different duck breeds (Anas platyrhynchos domestica) were compared during embryonic and post-hatch development. Duck hypothalamic growth hormone release hormone (GHRH), somatostatin (SS), pituitary growth hormone (GH), liver growth hormone receptor (GHR) and insulin-like growth factor-I (IGF-1) mRNA were first detected on the 13th embryonic day. During early duck development, SS maintained a lower expression status, whereas the other four genes exhibited highly significant variations in an age-specific manner. Highly significant breed specificity was observed with respect to hepatic IGF-1 mRNA expression, which showed a significant breed-age interaction effect. Compared with previous studies on chickens, significant species differences were observed regarding the mRNA expression of bird embryonic HPGA-related genes. During early development, highly significant breed and age specificity were observed with respect to developmental changes in body and liver weight, and varying degrees of significant linear correlation were found between these performances and the mRNA expression of HPGA-related genes in the duck HPGA. These results suggest that different genetic backgrounds may lead to differences in duck growth and HPGA-related gene mRNA expression, and the differential mRNA expression of related genes in the duck HPGA may be particularly important in the early growth of ducks. Furthermore, hepatic IGF-1 mRNA expression presented highly significant breed specificity, and evidence suggests the involvement of hepatic IGF-1 in mediating genetic effects on embryo and offspring growth in ducks.

  7. Self-renewal and pluripotency is maintained in human embryonic stem cells by co-culture with human fetal liver stromal cells expressing hypoxia inducible factor 1alpha.

    PubMed

    Ji, Lei; Liu, Yu-xiao; Yang, Chao; Yue, Wen; Shi, Shuang-shuang; Bai, Ci-xian; Xi, Jia-fei; Nan, Xue; Pei, Xue-Tao

    2009-10-01

    Human embryonic stem (hES) cells are typically maintained on mouse embryonic fibroblast (MEF) feeders or with MEF-conditioned medium. However, these xenosupport systems greatly limit the therapeutic applications of hES cells because of the risk of cross-transfer of animal pathogens. The stem cell niche is a unique tissue microenvironment that regulates the self-renewal and differentiation of stem cells. Recent evidence suggests that stem cells are localized in the microenvironment of low oxygen. We hypothesized that hypoxia could maintain the undifferentiated phenotype of embryonic stem cells. We have co-cultured a human embryonic cell line with human fetal liver stromal cells (hFLSCs) feeder cells stably expressing hypoxia-inducible factor-1 alpha (HIF-1alpha), which is known as the key transcription factor in hypoxia. The results suggested HIF-1alpha was critical for preventing differentiation of hES cells in culture. Consistent with this observation, hypoxia upregulated the expression of Nanog and Oct-4, the key factors expressed in undifferentiated stem cells. We further demonstrated that HIF-1alpha could upregulate the expression of some soluble factors including bFGF and SDF-1alpha, which are released into the microenvironment to maintain the undifferentiated status of hES cells. This suggests that the targets of HIF-1alpha are secreted soluble factors rather than a cell-cell contact mechanism, and defines an important mechanism for the inhibition of hESCs differentiation by hypoxia. Our findings developed a transgene feeder co-culture system and will provide a more reliable alternative for future therapeutic applications of hES cells.

  8. Expression of insulin-like growth factor system genes in liver and brain tissue during embryonic and post-hatch development of the turkey.

    PubMed

    Richards, Mark P; Poch, Stephen M; McMurtry, John P

    2005-05-01

    A molecular cloning strategy employing primer-directed reverse transcription polymerase chain reaction (RT-PCR) was devised to sequence 1300 bp of a turkey liver-derived cDNA corresponding to the complete coding region and the 5'- and 3'-untranslated regions of the insulin-like growth factor (IGF)-II mRNA transcript (GenBank accession no. ). The turkey IGF-II gene codes for a 187 amino acid precursor protein that includes a signal peptide, the mature IGF-II hormone, and a C-terminal extension peptide comprised of 24, 67 and 96 amino acids, respectively. Turkey IGF-II showed greater than 95% sequence identity at both the nucleotide and amino acid level with chicken IGF-II. Expression of IGF-I, IGF-II, IGF type-I receptor (IGF-IR), and IGF binding protein (IGFBP)-2 and -5 genes was quantified relative to an internal 18S rRNA standard by RT-PCR in liver and whole brain tissue on days 14, 16, 18, 20, 22, 24 and 26 of embryonic development, as well as at hatch (H, day 28) and at 3 weeks post-hatching (PH). Expression of liver IGF-I was low throughout embryonic development, but increased more than 8-fold by 3 weeks PH. In contrast, IGF-I was expressed in brain tissue at much higher levels than liver throughout development and this level of expression in brain increased gradually, reaching its highest point at 3 weeks PH. IGF-II was expressed at comparable levels in brain and liver tissue during embryonic development, except for transient increases in liver just prior to hatching (days 24 and 26) and at 3 weeks PH. Expression of IGF-IR declined in brain throughout development reaching its lowest level at 3 weeks PH. In liver, IGF-IR expression was lower than that of brain throughout development. An inverse relationship was observed for the expression of IGF-I and IGF-IR genes in brain, but not in liver, through 3 weeks PH. Expression of the IGFBP-2 gene increased in liver around the time of hatch (days 26-28) and declined by 3 weeks PH, whereas the level of expression of

  9. Expression of human oxoguanine glycosylase 1 or formamidopyrimidine glycosylase in human embryonic kidney 293 cells exacerbates methylmercury toxicity in vitro

    SciTech Connect

    Ondovcik, Stephanie L.; Preston, Thomas J.; McCallum, Gordon P.; Wells, Peter G.

    2013-08-15

    Exposure to methylmercury (MeHg) acutely at high levels, or via chronic low-level dietary exposure from daily fish consumption, can lead to adverse neurological effects in both the adult and developing conceptus. To determine the impact of variable DNA repair capacity, and the role of reactive oxygen species (ROS) and oxidatively damaged DNA in the mechanism of toxicity, transgenic human embryonic kidney (HEK) 293 cells that stably express either human oxoguanine glycosylase 1 (hOgg1) or its bacterial homolog, formamidopyrimidine glycosylase (Fpg), which primarily repair the oxidative lesion 8-oxo-2′-deoxyguanosine (8-oxodG), were used to assess the in vitro effects of MeHg. Western blotting confirmed the expression of hOgg1 or Fpg in both the nuclear and mitochondrial compartments of their respective cell lines. Following acute (1–2 h) incubations with 0–10 μM MeHg, concentration-dependent decreases in clonogenic survival and cell growth accompanied concentration-dependent increases in lactate dehydrogenase (LDH) release, ROS formation, 8-oxodG levels and apurinic/apyrimidinic (AP) sites, consistent with the onset of cytotoxicity. Paradoxically, hOgg1- and Fpg-expressing HEK 293 cells were more sensitive than wild-type cells stably transfected with the empty vector control to MeHg across all cellular and biochemical parameters, exhibiting reduced clonogenic survival and cell growth, and increased LDH release and DNA damage. Accordingly, upregulation of specific components of the base excision repair (BER) pathway may prove deleterious potentially due to the absence of compensatory enhancement of downstream processes to repair toxic intermediary abasic sites. Thus, interindividual variability in DNA repair activity may constitute an important risk factor for environmentally-initiated, oxidatively damaged DNA and its pathological consequences. - Highlights: • hOgg1 and Fpg repair oxidatively damaged DNA. • hOgg1- and Fpg-expressing cells are more

  10. Global gene expression changes in human embryonic lung fibroblasts induced by organic extracts from respirable air particles

    PubMed Central

    2012-01-01

    Background Recently, we used cell-free assays to demonstrate the toxic effects of complex mixtures of organic extracts from urban air particles (PM2.5) collected in four localities of the Czech Republic (Ostrava-Bartovice, Ostrava-Poruba, Karvina and Trebon) which differed in the extent and sources of air pollution. To obtain further insight into the biological mechanisms of action of the extractable organic matter (EOM) from ambient air particles, human embryonic lung fibroblasts (HEL12469) were treated with the same four EOMs to assess changes in the genome-wide expression profiles compared to DMSO treated controls. Method For this purpose, HEL cells were incubated with subtoxic EOM concentrations of 10, 30, and 60 μg EOM/ml for 24 hours and global gene expression changes were analyzed using human whole genome microarrays (Illumina). The expression of selected genes was verified by quantitative real-time PCR. Results Dose-dependent increases in the number of significantly deregulated transcripts as well as dose-response relationships in the levels of individual transcripts were observed. The transcriptomic data did not differ substantially between the localities, suggesting that the air pollution originating mainly from various sources may have similar biological effects. This was further confirmed by the analysis of deregulated pathways and by identification of the most contributing gene modulations. The number of significantly deregulated KEGG pathways, as identified by Goeman's global test, varied, depending on the locality, between 12 to 29. The Metabolism of xenobiotics by cytochrome P450 exhibited the strongest upregulation in all 4 localities and CYP1B1 had a major contribution to the upregulation of this pathway. Other important deregulated pathways in all 4 localities were ABC transporters (involved in the translocation of exogenous and endogenous metabolites across membranes and DNA repair), the Wnt and TGF-β signaling pathways (associated

  11. FUS affects circular RNA expression in murine embryonic stem cell-derived motor neurons

    PubMed Central

    Errichelli, Lorenzo; Dini Modigliani, Stefano; Laneve, Pietro; Colantoni, Alessio; Legnini, Ivano; Capauto, Davide; Rosa, Alessandro; De Santis, Riccardo; Scarfò, Rebecca; Peruzzi, Giovanna; Lu, Lei; Caffarelli, Elisa; Shneider, Neil A.; Morlando, Mariangela; Bozzoni, Irene

    2017-01-01

    The RNA-binding protein FUS participates in several RNA biosynthetic processes and has been linked to the pathogenesis of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia. Here we report that FUS controls back-splicing reactions leading to circular RNA (circRNA) production. We identified circRNAs expressed in in vitro-derived mouse motor neurons (MNs) and determined that the production of a considerable number of these circRNAs is regulated by FUS. Using RNAi and overexpression of wild-type and ALS-associated FUS mutants, we directly correlate the modulation of circRNA biogenesis with alteration of FUS nuclear levels and with putative toxic gain of function activities. We also demonstrate that FUS regulates circRNA biogenesis by binding the introns flanking the back-splicing junctions and that this control can be reproduced with artificial constructs. Most circRNAs are conserved in humans and specific ones are deregulated in human-induced pluripotent stem cell-derived MNs carrying the FUSP525L mutation associated with ALS. PMID:28358055

  12. FUS affects circular RNA expression in murine embryonic stem cell-derived motor neurons.

    PubMed

    Errichelli, Lorenzo; Dini Modigliani, Stefano; Laneve, Pietro; Colantoni, Alessio; Legnini, Ivano; Capauto, Davide; Rosa, Alessandro; De Santis, Riccardo; Scarfò, Rebecca; Peruzzi, Giovanna; Lu, Lei; Caffarelli, Elisa; Shneider, Neil A; Morlando, Mariangela; Bozzoni, Irene

    2017-03-30

    The RNA-binding protein FUS participates in several RNA biosynthetic processes and has been linked to the pathogenesis of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia. Here we report that FUS controls back-splicing reactions leading to circular RNA (circRNA) production. We identified circRNAs expressed in in vitro-derived mouse motor neurons (MNs) and determined that the production of a considerable number of these circRNAs is regulated by FUS. Using RNAi and overexpression of wild-type and ALS-associated FUS mutants, we directly correlate the modulation of circRNA biogenesis with alteration of FUS nuclear levels and with putative toxic gain of function activities. We also demonstrate that FUS regulates circRNA biogenesis by binding the introns flanking the back-splicing junctions and that this control can be reproduced with artificial constructs. Most circRNAs are conserved in humans and specific ones are deregulated in human-induced pluripotent stem cell-derived MNs carrying the FUS(P525L) mutation associated with ALS.

  13. An essential role for RAX homeoprotein and NOTCH-HES signaling in Otx2 expression in embryonic retinal photoreceptor cell fate determination.

    PubMed

    Muranishi, Yuki; Terada, Koji; Inoue, Tatsuya; Katoh, Kimiko; Tsujii, Toshinori; Sanuki, Rikako; Kurokawa, Daisuke; Aizawa, Shinichi; Tamaki, Yasuhiro; Furukawa, Takahisa

    2011-11-16

    The molecular mechanisms underlying cell fate determination from common progenitors in the vertebrate CNS remain elusive. We previously reported that the OTX2 homeoprotein regulates retinal photoreceptor cell fate determination. While Otx2 transactivation is a pivotal process for photoreceptor cell fate determination, its transactivation mechanism in the retina is unknown. Here, we identified an evolutionarily conserved Otx2 enhancer of ∼500 bp, named embryonic enhancer locus for photoreceptor Otx2 transcription (EELPOT), which can recapitulate initial Otx2 expression in the embryonic mouse retina. We found that the RAX homeoprotein interacts with EELPOT to transactivate Otx2, mainly in the final cell cycle of retinal progenitors. Conditional inactivation of Rax results in downregulation of Otx2 expression in vivo. We also showed that NOTCH-HES signaling negatively regulates EELPOT to suppress Otx2 expression. These results suggest that the integrated activity of cell-intrinsic and -extrinsic factors on EELPOT underlies the molecular basis of photoreceptor cell fate determination in the embryonic retina.

  14. Effects of Ethanol on the Expression Level of Various BDNF mRNA Isoforms and Their Encoded Protein in the Hippocampus of Adult and Embryonic Rats

    PubMed Central

    Shojaei, Shahla; Ghavami, Saeid; Panjehshahin, Mohammad Reza; Owji, Ali Akbar

    2015-01-01

    We aimed to compare the effects of oral ethanol (Eth) alone or combined with the phytoestrogen resveratrol (Rsv) on the expression of various brain-derived neurotrophic factor (BDNF) transcripts and the encoded protein pro-BDNF in the hippocampus of pregnant and embryonic rats. A low (0.25 g/kg body weight (BW)/day) dose of Eth produced an increase in the expression of BDNF exons I, III and IV and a decrease in that of the exon IX in embryos, but failed to affect BDNF transcript and pro-BDNF protein expression in adults. However, co-administration of Eth 0.25 g/kg·BW/day and Rsv led to increased expression of BDNF exons I, III and IV and to a small but significant increase in the level of pro-BDNF protein in maternal rats. A high (2.5 g/kg·BW/day) dose of Eth increased the expression of BDNF exons III and IV in embryos, but it decreased the expression of exon IX containing BDNF mRNAs in the maternal rats. While the high dose of Eth alone reduced the level of pro-BDNF in adults, it failed to change the levels of pro-BDNF in embryos. Eth differentially affects the expression pattern of BDNF transcripts and levels of pro-BDNF in the hippocampus of both adult and embryonic rats. PMID:26703578

  15. Cloning of leukemia inhibitory factor (LIF) and its expression in the uterus during embryonic diapause and implantation in the mink (Mustela vison).

    PubMed

    Song, J H; Houde, A; Murphy, B D

    1998-09-01

    Leukemia inhibitory factor (LIF) is essential for embryo implantation in mice. Whether LIF plays a role in termination of embryonic diapause and initiation of implantation in carnivores, especially in species with obligate delayed implantation such as the mink, is not known. The objectives of this study were to clone the LIF coding sequence in the mink and determine its mRNA abundance in the uterus through embryonic diapause, implantation, and early postimplantation. We show that the mink LIF cDNA contains 609 nt encoding a deduced protein of 203 amino acids. The homologies are 80.6, 90, 88.2, 87.6, and 86.8% in coding sequence and 79.2, 90.1, 91, 90.1 and 85.4% in amino acid sequence with mouse, human, pig, cow, and sheep respectively. Glycosylation sites and disulfide bonds present in other species are generally conserved in the mink LIF sequence. Quantitation by polymerase chain reaction amplification indicates that LIF mRNA is expressed in mink uterus just prior to implantation and during the first two days after implantation, but not during diapause or later after implantation pregnancy. The abundance of LIF mRNA was significantly higher in the uterus at the embryo expansion stage (P < 0.05) than at days 1-2 of postimplantation. By immunohistochemical localization it was shown that LIF is expressed in the uterine epithelial glands at time of embryonic expansion and in early postimplantation. The coincidence of LIF expression with implantation in this species suggests that LIF is involved in the implantation process, and may be a maternal signal which terminates obligate embryonic diapause.

  16. Expression of insulin-like growth factor system genes in liver tissue during embryonic and early post-hatch development in duck (Anas platyrhynchos Domestica).

    PubMed

    Jianmin, Zou; Jingting, Shu; Yanju, Shan; Yan, Hu; Chi, Song; Wenqi, Zhu

    2014-04-03

    The IGF system is one of the most important endocrine and paracrine growth factor systems that regulate fetal and placental growth, whereas the liver is the principal source of circulation IGF-I. In the present study, expression of IGF-I, IGF type-I receptor (IGF-IR), and IGF binding protein (IGFBP)-3 genes was quantified by RT-PCR in the liver tissue on days 13, 17, 21, 25, and 27 of embryonic development, as well as at 7 days post-hatching (PH) in meat-type Gaoyou ducks and egg-type Jinding ducks. The results showed that IGF-I mRNA could be detected as early as on E 13d, but the expression level was low throughout embryonic development before increasing dramatically by E 27d and 7 days PH in both duck breeds. However, Gaoyou ducks exhibited higher IGF-I mRNA level than Jinding ducks, and the differences were significant on E 13d, E 21d, and at 7 days PH. Expression of IGF-IR in liver increased gradually in the former stages of the embryonic development, reaching its highest point on E 21d, and then declined up until 7 days PH. The expression pattern of IGFBP-3 gene was similar to that of IGF-IR gene, increasing significantly from E 17d. The expression peak appeared on E 25d, then declined significantly just prior to hatching (day 27) and was followed by an increase at 7 days PH. In general, the expression level of IGF-IR and IGFBP-3 genes in Jinding ducks was higher than that in Gaoyou ducks. Inverse relationships were observed for the expression of IGF-I and IGF-IR, and IGF-I and IGFBP-3, whereas a positive relationship was observed for the expression of IGF-IR and IGFBP-3. Our data indicate a differential expression of selected genes that comprise the IGF system in the duck liver tissue during embryonic and early PH growth and development.

  17. Cloning the Dmrt1 and DmrtA2 genes of ayu (Plecoglossus altivelis) and mapping their expression in adult, larval, and embryonic stages

    PubMed Central

    WANG, Jin-Hua; MIAO, Liang; LI, Ming-Yun; GUO, Xiao-Fei; PAN, Na; CHEN, Ying-Ying; ZHAO, Liang

    2014-01-01

    The Dmrt family of genes are involved in sex differentiation in different species of invertebrates, and some vertebrates including human. In this study, we cloned the full-length cDNA of ayu (Plecoglossus altivelis) Dmrt1 and DmrtA2. Sequence and phylogenetic tree analyses showed ayu Dmrt1 showed highest similarity to that of Oncorhynchus mykiss while ayu DmrtA2 is most similar to that of Oryzias latipes. Fluorescence-based quantitative reverse transcription PCR (qRT-PCR) revealed the Dmrt1 was predominantly expressed in the testis. At the larval stages, Dmrt1 mRNA expression level was highest during 52-64 days post hatching (dph) and at the gastrula stage during embryonic development. DmrtA2, meanwhile, was specifically expressed in the ovary and was highly expressed in the female brain tissue, but not male brain tissue. During the larval stages, DmrtA2 expression remained high before day 34, and then fluctuated while generally decreasing. During embryonic development, DmrtA2 expression increased gradually and peaked at the hatching stage. Our data suggest that ayu Dmrt1 might participate in the differentiation and maintenance of testis while DmrtA2 may play a role in ovary-differentiation and mature-ovary maintenance. DmrtA2 might also participate in brain development. PMID:24668652

  18. Immune-privileged embryonic Swiss mouse STO and STO cell-derived progenitor cells: major histocompatibility complex and cell differentiation antigen expression patterns resemble those of human embryonic stem cell lines.

    PubMed

    Koch, Katherine S; Son, Kyung-Hwa; Maehr, Rene; Pellicciotta, Illenia; Ploegh, Hidde L; Zanetti, Maurizio; Sell, Stewart; Leffert, Hyam L

    2006-09-01

    Embryonic mouse STO (S, SIM; T, 6-thioguanine resistant; O, ouabain resistant) and 3(8)21-enhanced green fluorescent protein (EGFP) cell lines exhibit long-term survival and hepatic progenitor cell behaviour after xenogeneic engraftment in non-immunosuppressed inbred rats, and were previously designated major histocompatibility complex (MHC) class I- and class II-negative lines. To determine the molecular basis for undetectable MHC determinants, the expression and haplotype of H-2K, H-2D, H-2L and I-A proteins were reassessed by reverse transcriptase-polymerase chain reaction (RT-PCR), cDNA sequencing, RNA hybridization, immunoblotting, quantitative RT-PCR (QPCR), immunocytochemistry and flow cytometry. To detect cell differentiation (CD) surface antigens characteristic of stem cells, apoptotic regulation or adaptive immunity that might facilitate progenitor cell status or immune privilege, flow cytometry was also used to screen untreated and cytokine [interferon (IFN)-gamma]-treated cultures. Despite prior PCR genotyping analyses suggestive of H-2q haplotypes in STO, 3(8)21-EGFP and parental 3(8)21 cells, all three lines expressed H-2K cDNA sequences identical to those of d-haplotype BALB/c mice, as well as constitutive and cytokine-inducible H-2K(d) determinants. In contrast, apart from H-2L(d[LOW]) display in 3(8)21 cells, H-2Dd, H-2Ld and I-Ad determinants were undetectable. All three lines expressed constitutive and cytokine-inducible CD34; however, except for inducible CD117([LOW]) expression in 3(8)21 cells, no expression of CD45, CD117, CD62L, CD80, CD86, CD90.1 or CD95L/CD178 was observed. Constitutive and cytokine-inducible CD95([LOW]) expression was detected in STO and 3(8)21 cells, but not in 3(8)21-EGFP cells. MHC (class I(+[LOW])/class II-) and CD (CD34+/CD80-/CD86-/CD95L-) expression patterns in STO and STO cell-derived progenitor cells resemble patterns reported for human embryonic stem cell lines. Whether these patterns reflect associations with

  19. Overexpression of COUP-TF1 in murine embryonic stem cells reduces retinoic acid-associated growth arrest and increases extraembryonic endoderm gene expression.

    PubMed

    Zhuang, Yong; Gudas, Lorraine J

    2008-09-01

    Vitamin A (retinol [Rol]) and its metabolites are essential for embryonic development. The Rol metabolite all-trans retinoic acid (RA) is a biologically active form of Rol. The orphan nuclear receptor chicken ovalbumin upstream promoter-transcription-factors (COUP-TF) proteins have been implicated in the regulation of several important biological processes, such as embryonic development and neuronal cell differentiation. Because there is evidence that COUP-TFs function in the retinoid signaling network during development and differentiation, we generated murine embryonic stem (ES) cell lines which stably and constitutively overexpress COUP-TF1 (NR2F1) and we analyzed RA-induced differentiation. COUP-TF1 overexpression resulted in reduced RA-associated growth arrest. A 2.4+/-0.17-fold higher Nanog mRNA level was seen in COUP-TF1 overexpressing lines, as compared with wild-type (WT) ES cells, after a 72 hr RA treatment. We also showed that COUP-TF1 overexpression enhanced RA-induced extraembryonic endoderm gene expression. Specifically, COUP-TF1 overexpression increased mRNA levels of GATA6 by 3.3+/-0.3-fold, GATA4 by 3.6+/-0.1-fold, laminin B1 (LAMB1) by 3.4+/-0.1-fold, LAMC1 by 3.4+/-0.2-fold, Dab2 by 2.4+0.1-fold, and SOX17 by 2.5-fold at 72 hr after RA treatment plus LIF, as compared with the increases seen in WT ES cells. However, RA-induced neurogenesis was unaffected by COUP-TF1 overexpression, as shown by the equivalent levels of expression of NeuroD1, nestin, GAP43 and other neuronal markers. Our results revealed for the first time that COUP-TF1 is an important signaling molecule during vitamin A (Rol)-mediated very early stage of embryonic development.

  20. Granulosa cells and retinoic acid co-treatment enrich potential germ cells from manually selected Oct4-EGFP expressing human embryonic stem cells.

    PubMed

    Chen, Hsin-Fu; Jan, Pey-Shynan; Kuo, Hung-Chih; Wu, Fang-Chun; Lan, Chen-Wei; Huang, Mei-Chi; Chien, Chung-Liang; Ho, Hong-Nerng

    2014-09-01

    Differentiation of human embryonic stem (HES) cells to germ cells may become clinically useful in overcoming diseases related to germ-cell development. Niches were used to differentiate HES cell lines, NTU1 and H9 Oct4-enhanced green fluorescence protein (EGFP), including laminin, granulosa cell co-culture or conditioned medium, ovarian stromal cell co-culture or conditioned medium, retinoic acid, stem cell factor (SCF) and BMP4-BMP7-BMP8b treatment. Flow cytometry showed that granulosa cell co-culture (P < 0.001) or conditioned medium (P = 0.007) treatment for 14 days significantly increased the percentages of differentiated H9 Oct4-EGFP cells expressing early germ cell marker stage-specific embryonic antigen 1(SSEA1); sorted SSEA1[+] cells did not express higher levels of germ cell gene VASA and GDF9. Manually collected H9 Oct4-EGFP[+] cells expressed significantly higher levels of VASA (P = 0.005) and GDF9 (P = 0.001). H9 Oct4-EGFP[+] cells developed to ovarian follicle-like structures after culture for 28 days but with low efficiency. Unlike SCF and BMP4, retinoic acid co-treatment enhanced VASA, GDF9 and SCP3 expression. A protocol is recommended to enrich differentiated HES cells with germ-cell potential by culture with granulosa cells, conditioned medium or retinoic acid, manual selection of Oct4-EGFP[+] cells, and analysis of VASA, GDF9 expression, or both.

  1. Effects of the EVCAM chemical validation library on differentiation using marker gene expression in lmouse embryonic stem cells

    EPA Science Inventory

    The adherent cell differentiation and cytotoxicity (ACDC) assay was used to profile the effects of the ECVAM EST validation chemical library (19 compounds) on J1 mouse embryonic stem cells (mESC). PCR-based TaqMan Low Density Arrays (TLDA) provided a high-content assessment of al...

  2. Insulin-like growth factors I and II in starry flounder (Platichthys stellatus): molecular cloning and differential expression during embryonic development.

    PubMed

    Xu, Yongjiang; Zang, Kun; Liu, Xuezhou; Shi, Bao; Li, Cunyu; Shi, Xueying

    2015-02-01

    In order to elucidate the possible roles of insulin-like growth factors I and II (IGF-I and IGF-II) in the embryonic development of Platichthys stellatus, their cDNAs were isolated and their spatial expression pattern in adult organs and temporal expression pattern throughout embryonic development were examined by quantitative real-time PCR assay. The IGF-I cDNA sequence was 1,268 bp in length and contained an open reading frame (ORF) of 558 bp, which encoded 185 amino acid residues. With respect to IGF-II, the full-length cDNA was 899 bp in length and contained a 648-bp ORF, which encoded 215 amino acid residues. The amino acid sequences of IGF-I and IGF-II exhibited high identities with their fish counterparts. The highest IGF-I mRNA level was found in the liver for both sexes, whereas the IGF-II gene was most abundantly expressed in female liver and male liver, gill, and brain. The sex-specific and spatial expression patterns of IGF-I and IGF-II mRNAs are thought to be related to the sexually dimorphic growth and development of starry flounder. Both IGF-I and IGF-II mRNAs were detected in unfertilized eggs, which indicated that IGF-I and IGF-II were parentally transmitted. Nineteen embryonic development stages were tested. IGF-I mRNA level remained high from unfertilized eggs to low blastula followed by a significant decrease at early gastrula and then maintained a lower level. In contrast, IGF-II mRNA level was low from unfertilized eggs to high blastula and peaked at low blastula followed by a gradual decrease. Moreover, higher levels of IGF-I mRNA than that of IGF-II were found from unfertilized eggs to high blastula, vice versa from low blastula to newly hatched larva, and the different expression pattern verified the differential roles of IGF-I and IGF-II in starry flounder embryonic development. These results could help in understanding the endocrine mechanism involved in the early development and growth of starry flounder.

  3. Embryonic exposure to o,p'-DDT causes eggshell thinning and altered shell gland carbonic anhydrase expression in the domestic hen.

    PubMed

    Holm, Lena; Blomqvist, Alexandra; Brandt, Ingvar; Brunström, Björn; Ridderstråle, Yvonne; Berg, Cecilia

    2006-10-01

    The mechanism for contaminant-induced eggshell thinning in wild birds remains to be clarified. It is generally assumed, however, that it results from exposure of the adult laying female. We have reported that embryonic exposure to the synthetic estrogen ethynylestradiol (EE2) results in eggshell thinning in the domestic hen. The objective of this study was to investigate whether eggshell thinning can be induced following in ovo exposure to a bioaccumulating estrogenic environmental contaminant, o,p'-DDT. Ethynylestradiol was used as a positive control. Domestic hens exposed in ovo to o,p'-DDT (37 or 75 microg/g egg) or EE2 (60 ng/g egg) laid eggs with thinner shells than the control birds. The hens from these exposure groups also had a significantly reduced frequency of shell gland capillaries with carbonic anhydrase (CA) activity, a key enzyme in eggshell formation. The decreased number of capillaries with CA activity suggests that a developmentally induced disruption of CA expression in the shell gland was involved in the eggshell thinning found in this study. Egg laying was not affected in hens exposed embryonically to 37 or 75 microg o,p'-DDT/g egg, whereas it was inhibited in hens exposed to higher doses. Decreased lengths of the left oviduct and its infundibulum were seen after embryonic treatment with o,p'-DDT or EE2. In addition, o,p'-DDT exposure resulted in right oviduct retention. The results support our hypothesis that eggshell thinning in avian wildlife can result from a functional malformation in the shell gland, induced by embryonic exposure to estrogenic substances.

  4. Expression analysis of the insulin-like growth factors I and II during embryonic and early larval development of turbot ( Scophthalmus maximus)

    NASA Astrophysics Data System (ADS)

    Wen, Haishen; Qi, Qian; Hu, Jian; Si, Yufeng; He, Feng; Li, Jifang

    2015-04-01

    The insulin-like growth factors I and II (IGF-I and IGF-II) are important proteins involved in fish growth and development. Here, we report the isolation of IGF-II and expression analysis of IGFs in turbot Scophthalmus maximus, aiming to clarify their function in embryonic and larval development of fish. The deduced IGF-II gene is 808 bp in full length, which encodes a protein of 219 amino acids and is 93% similar with that of Paralichthys olicaceus in amino acid sequence. The tissue abundance and the expression pattern of IGFs in a turbot at early development stages were investigated via reverse transcription-polymer chain reaction. Result showed that the IGF-I and IGF-II genes were widely expressed in tissues of S. maximus. IGF-I was detected in all tissues except intestines with the highest level in liver, while IGF-II transcript presented in all tissues except muscle. At the stages of embryonic and larval development, the mRNA levels of IGFs sharply increased from the stage of unfertilized egg to post larva, followed by a decrease with larval development. However, there was an increase in IGF-I at the embryonic stage and IGF-II at the gastrula stage, respectively. These results suggested that IGFs play important roles in cell growth and division of the turbot. Our study provides reference data for further investigation of growth regulation in turbot, which can guarantee better understanding of the physiological role that IGFs play in fish.

  5. Global gene expression analysis of very small embryonic-like stem cells reveals that the Ezh2-dependent bivalent domain mechanism contributes to their pluripotent state.

    PubMed

    Shin, Dong-Myung; Liu, Rui; Wu, Wan; Waigel, Sabine J; Zacharias, Wolfgang; Ratajczak, Mariusz Z; Kucia, Magda

    2012-07-01

    Recently, we identified a population of Oct4(+)Sca-1(+)Lin(-)CD45(-) very small embryonic-like stem cells (VSELs) in murine and human adult tissues. VSELs can differentiate in vitro into cells from all 3 germ layers and in vivo tissue-committed stem cells. Open chromatin structure of core pluripotency transcription factors (TFs) supports the pluripotent state of VSELs. However, it has been difficult to determine how primitive VSELs maintain pluripotency, owing to their limited number in adult tissues. Here, we demonstrate by genome-wide gene-expression analysis with a small number of highly purified murine bone marrow-derived VSELs that Oct4(+) VSELs (i) express a similar, yet nonidentical, transcriptome as embryonic stem cells (ESCs), (ii) highly express cell cycle checkpoint genes, (iii) express at a low level genes involved in protein turnover and mitogenic pathways, and (iv) highly express enhancer of zeste drosophila homolog 2 (Ezh2), a polycomb group protein. Furthermore, as a result of high expression of Ezh2, VSELs, like ESCs, exhibit bivalently modified nucleosomes (trimethylated H3K27 and H3K4) at promoters of important homeodomain-containing developmental TFs, thus preventing premature activation of the lineage-committing factors. Notably, spontaneous or RNA interference-enforced downregulation of Ezh2 during VSEL differentiation removes the bivalent domain (BD) structure, which leads to de-repression of several BD-regulated genes. Therefore, we suggest that Oct4(+) VSELs, like other pluripotent stem cells, maintain their pluripotent state through an Ezh2-dependent BD-mediated epigenetic mechanism. Furthermore, our global survey of VSEL gene expression signature would not only advance our understanding of biological process for their pluripotency, differentiation, and quiescence but should also help to develop better protocols for ex vivo expansion of VSELs.

  6. Regulation of expression driven by human immunodeficiency virus type 1 and human T-cell leukemia virus type I long terminal repeats in pluripotential human embryonic cells

    SciTech Connect

    Maio, J.; Brown, F.L. )

    1988-04-01

    Human pluripotential embryonic teratocarcinoma cells differentially expressed gene activity controlled by the human immunodeficiency virus type 1 (HIV-1) and human T-cell leukemia virus type I (HTLV-I) long terminal repeats (LTRs) when differentiation was induced by the morphogen all-trans retinoic acid. The alterations occurred after commitment and before the appearance of the multiple cell types characteristic of these pluripotential cells. After commitment, gene activity controlled by the HIV-1 LTR markedly increased, whereas that controlled by the HTLV-I LTR decreased. Steady-state mRNA levels and nuclear run-on transcription indicated that the increased HIV-1-directed activity during differentiation occurred posttranscriptionally, whereas the decreased HTLV-I activity was at the transcriptional level. Phorbol esters did not cause commitment but strongly enhanced expression by both viral LTRs at the transcriptional level. Differentiating cells gradually lost the ability to respond to phorbol ester stimulation. Experiments with a deletion mutant of the HIV-1 LTR suggested that this was due to imposition of negative regulation during differentiation that was not reversed by phorbol ester induction. Cycloheximide, with or without phorbol ester, slightly stimulated HIV-1-directed activity at the transcriptional level and massively increased the amounts of steady-state mRNA by posttranscriptional superinduction. It appeared, however, that new nuclear protein synthesis was required for maximal transcriptional stimulation by phorbol esters. Thus, changing cellular regulatory mechanisms influenced human retrovirus expression during human embryonic cell differentiation.

  7. A cDNA encoding a cold-induced glycine-rich RNA binding protein from Prunus avium expressed in embryonic axes.

    PubMed

    Stephen, John R; Dent, Katherine C; Finch-Savage, William E

    2003-11-27

    A cDNA clone encoding a presumed full-length glycine-rich ribonucleic acid (RNA) binding protein was isolated from a lambda-ZAP Express cDNA library generated from primarily nondormant Prunus avium (wild cherry) embryonic axes. The cDNA, designated Pa-RRM-GRP1 (Prunus avium RNA recognition motif glycine-rich protein 1), contains a single N-terminal RNA recognition motif (RRM) and single C-terminal glycine-rich domain. The glycine-rich domain is unusually long at 91 amino acids, 58 of which are glycines. The 534-base pair (bp) open reading frame (ORF) of this clone encodes a 178-amino-acid polypeptide with a predicted molecular weight of 17.33 kDa and pI of 7.84. Comparative sequence alignment of Pa-RRM-GRP1 reveals extensive homology to known and presumed glycine-rich RNA binding proteins from angiosperms and gymnosperms. Genomic Southern blot analysis suggests that this gene exists as a single copy in P. avium. Expression of this gene in P. avium embryonic axes during low-temperature dormancy-breaking treatments was studied and found to be induced by cold (3 degrees C) using real-time PCR of total cDNA supported by Northern blot analysis of total RNA. Expression dropped during prolonged storage at 3 degrees C and was reduced to control levels by interruption of cold treatment by warming to 20 degrees C.

  8. Serum-Based Culture Conditions Provoke Gene Expression Variability in Mouse Embryonic Stem Cells as Revealed by Single-Cell Analysis.

    PubMed

    Guo, Guoji; Pinello, Luca; Han, Xiaoping; Lai, Shujing; Shen, Li; Lin, Ta-Wei; Zou, Keyong; Yuan, Guo-Cheng; Orkin, Stuart H

    2016-02-02

    Variation in gene expression is an important feature of mouse embryonic stem cells (ESCs). However, the mechanisms responsible for global gene expression variation in ESCs are not fully understood. We performed single-cell mRNA-seq analysis of mouse ESCs and uncovered significant heterogeneity in ESCs cultured in serum. We define highly variable gene clusters with distinct chromatin states and show that bivalent genes are prone to expression variation. At the same time, we identify an ESC-priming pathway that initiates the exit from the naive ESC state. Finally, we provide evidence that a large proportion of intracellular network variability is due to the extracellular culture environment. Serum-free culture reduces cellular heterogeneity and transcriptome variation in ESCs.

  9. A Retinoic Acid Responsive Hoxa3 Transgene Expressed in Embryonic Pharyngeal Endoderm, Cardiac Neural Crest and a Subdomain of the Second Heart Field

    PubMed Central

    Diman, Nata Y. S.-G.; Remacle, Sophie; Bertrand, Nicolas; Picard, Jacques J.; Zaffran, Stéphane; Rezsohazy, René

    2011-01-01

    A transgenic mouse line harbouring a β-galacdosidase reporter gene controlled by the proximal 2 kb promoter of Hoxa3 was previously generated to investigate the regulatory cues governing Hoxa3 expression in the mouse. Examination of transgenic embryos from embryonic day (E) 8.0 to E15.5 revealed regionally restricted reporter activity in the developing heart. Indeed, transgene expression specifically delineated cells from three distinct lineages: a subpopulation of the second heart field contributing to outflow tract myocardium, the cardiac neural crest cells and the pharyngeal endoderm. Manipulation of the Retinoic Acid (RA) signaling pathway showed that RA is required for correct expression of the transgene. Therefore, this transgenic line may serve as a cardiosensor line of particular interest for further analysis of outflow tract development. PMID:22110697

  10. The effect of cancer procoagulant on expression of metastatic and angiogenic markers in breast cancer and embryonic stem cell lines.

    PubMed

    Kee, Nalise Low Ah; Naudé, Ryno J; Blatch, Gregory L; Frost, Carminita L

    2012-03-01

    Cancer procoagulant is present only in malignant tumours and the undifferentiated tissues of human placenta. Its possible role in angiogenesis and metastasis was investigated. Cancer procoagulant increased the steady-state mRNA level of L1 cell adhesion molecule (L1CAM) in MCF-7 breast cancer cells and E14 mouse embryonic stem cells (MESCs), while an increase in angiogenin mRNA was observed in MDA-MB-231 breast cancer cells. Furthermore, production of vascular endothelial growth factor (VEGF) protein in MCF-7 breast cancer cells and E14 MESCs, but decreased in MDA-MB-231 breast cancer cells. We conclude that cancer procoagulant could potentially play a part in angiogenesis in cancer and vascular development during embryonic development.

  11. Differentiation of human embryonic stem cells into osteogenic or hematopoietic lineages: a dose-dependent effect of osterix over-expression.

    PubMed

    Kärner, Elerin; Unger, Christian; Cerny, Radim; Ahrlund-Richter, Lars; Ganss, Bernhard; Dilber, M Sirac; Wendel, Mikael

    2009-02-01

    Enhanced differentiation of human embryonic stem cells (HESCs), induced by genetic modification could potentially generate a vast number of diverse cell types. Such genetic modifications have frequently been achieved by over-expression of individual regulatory proteins. However, careful evaluation of the expression levels is critical, since this might have important implications for the differentiation potential of HESCs. To date, attempts to promote osteogenesis by means of gene transfer into HESCs using the early bone "master" transcription factor osterix (Osx) have not been reported. In this study, we attained HESC subpopulations expressing two significantly different levels of Osx, following lentiviral gene transfer. Both subpopulations exhibited spontaneous differentiation and reduced expression of markers characteristic of the pluripotent phenotype, such as SSEA3, Tra1-60, and Nanog, In order to promote bone differentiation, the cells were treated with ascorbic acid, beta-glycerophosphate and dexamethasone. The high level of Osx, compared to endogenous levels found in primary human osteoblasts, did not enhance osteogenic differentiation, and did not up-regulate collagen I expression. We show that the high Osx levels instead induced the commitment towards the hematopoietic-endothelial lineage-by up-regulating the expression of CD34 and Gata1. However, low levels of Osx up-regulated collagen I, bone sialoprotein and osteocalcin. Conversely, forced high level expression of the homeobox transcription factor HoxB4, a known regulator for early hematopoiesis, promoted osteogenesis in HESCs, while low levels of HoxB4 lead to hematopoietic gene expression.

  12. Induction and repression of mammalian achaete-scute homologue (MASH) gene expression during neuronal differentiation of P19 embryonal carcinoma cells.

    PubMed

    Johnson, J E; Zimmerman, K; Saito, T; Anderson, D J

    1992-01-01

    MASH1 and MASH2, mammalian homologues of the Drosophila neural determination genes achaete-scute, are members of the basic helix-loop-helix (bHLH) family of transcription factors. We show here that murine P19 embryonal carcinoma cells can be used as a model system to study the regulation and function of these genes. MASH1 and MASH2 display complementary patterns of expression during the retinoic-acid-induced neuronal differentiation of P19 cells. MASH1 mRNA is undetectable in undifferentiated P19 cells but is induced to high levels by retinoic acid coincident with neuronal differentiation. In contrast, MASH2 mRNA is expressed in undifferentiated P19 cells and is repressed by retinoic acid treatment. These complementary expression patterns suggest distinct functions for MASH1 and MASH2 in development, despite their sequence homology. In retinoic-acid-treated P19 cells, MASH1 protein expression precedes and then overlaps expression of neuronal markers. However, MASH1 is expressed by a smaller proportion of cells than expresses such markers. MASH1 immunoreactivity is not detected in differentiated cells displaying a neuronal morphology, suggesting that its expression is transient. These features of MASH1 expression are similar to those observed in vivo, and suggest that P19 cells represent a good model system in which to study the regulation of this gene. Forced expression of MASH1 was achieved in undifferentiated P19 cells by transfection of a cDNA expression construct. The transfected cells expressing exogenous MASH1 protein contained E-box-binding activity that could be super-shifted by an anti-MASH1 antibody, but exhibited no detectable phenotypic changes. Thus, unlike myogenic bHLH genes, such as MyoD, which are sufficient to induce muscle differentiation, expression of MASH1 appears insufficient to promote neurogenesis.

  13. Hair cell regeneration or the expression of related factors that regulate the fate specification of supporting cells in the cochlear ducts of embryonic and posthatch chickens.

    PubMed

    Jiang, Lingling; Jin, Ran; Xu, Jincao; Ji, Yubin; Zhang, Meiguang; Zhang, Xuebo; Zhang, Xinwen; Han, Zhongming; Zeng, Shaoju

    2016-02-01

    Hair cells in posthatch chickens regenerate spontaneously through mitosis or the transdifferentiation of supporting cells in response to antibiotic injury. However, how embryonic chicken cochleae respond to antibiotic treatment remains unknown. This study is the first to indicate that unlike hair cells in posthatch chickens, the auditory epithelium was free from antibiotic injury (25-250 mg gentamicin/kg) in embryonic chickens, although FITC-conjugated gentamicin actually reached embryonic hair cells. Next, we examined and counted the cells and performed labeling for BrdU, Sox2, Atoh1/Math1, PV or p27(kip1) (triple or double labeling) in the injured cochlea ducts after gentamicin treatment at 2 h (h), 15 h, 24 h, 2 days (d), 3 d and 7 d after BrdU treatment in posthatch chickens. Our results indicated that following gentamicin administration, proliferating cells (BrdU+) were labeled for Atoh1/Math1 in the damaged areas 3d after gentamicin administration, whereas hair cells (PV+) renewed through mitosis (BrdU+) or direct transdifferentiation (BrdU-) were evident only after 5 d of gentamicin administration. In addition, Sox2 expression was up-regulated in triggered supporting cells at an early stage of regeneration, but stopped at the advent of mature hair cells. Our study also indicated that p27(kip1) was expressed in both hair cells and supporting cells but was down-regulated in a subgroup of the supporting cells that gave rise to hair cells. These data and the obtained dynamic changes of the cells labeled for BrdU, Sox2, Atoh1/Math1, PV or p27(kip1) are useful for understanding supporting cell behaviors and their fate specification during hair cell regeneration.

  14. Expression of thyroid hormone transporters and deiodinases at the brain barriers in the embryonic chicken: Insights into the regulation of thyroid hormone availability during neurodevelopment.

    PubMed

    Van Herck, Stijn L J; Delbaere, Joke; Bourgeois, Nele M A; McAllan, Bronwyn M; Richardson, Samantha J; Darras, Veerle M

    2015-04-01

    Thyroid hormones (THs) are key regulators in the development of the vertebrate brain. Therefore, TH access to the developing brain needs to be strictly regulated. The brain barriers separate the central nervous system from the rest of the body and impose specific transport mechanisms on the exchange of molecules between the general circulation and the nervous system. As such they form ideal structures for regulating TH exchange between the blood and the brain. To investigate the mechanism by which the developing brain regulates TH availability, we investigated the ontogenetic expression profiles of TH transporters, deiodinases and the TH distributor protein transthyretin (TTR) at the brain barriers during embryonic and early postnatal development using the chicken as a model. In situ hybridisation revealed expression of the TH transporters monocarboxylate transporter 8 (MCT8) and 10 (MCT10), organic anion transporting polypeptide 1C1 (OATP1C1) and L-type amino acid transporter 1 (LAT1) and the inactivating type 3 deiodinase (D3) in the choroid plexus which forms the blood-cerebrospinal fluid barrier. This was confirmed by quantitative PCR which additionally indicated strongly increasing expression of TTR as well as detectable expression of the activating type 2 deiodinase (D2) and the (in)activating type 1 deiodinase (D1). In the brain capillaries forming the blood-brain barrier in situ hybridisation showed exclusive expression of LAT1 and D2. The combined presence of LAT1 and D2 in brain capillaries suggests that the blood-brain barrier forms the main route for receptor-active T3 uptake into the embryonic chicken brain. Expression of multiple transporters, deiodinases and TTR in the choroid plexus indicates that the blood-cerebrospinal fluid barrier is also important in regulating early TH availability. The impact of these barrier systems can be deduced from the clear difference in T3 and T4 levels as well as the T3/T4 ratio between the developing brain and the

  15. Regional distribution of calretinin and calbindin-D28k expression in the brain of the urodele amphibian Pleurodeles waltl during embryonic and larval development.

    PubMed

    Joven, Alberto; Morona, Ruth; Moreno, Nerea; González, Agustín

    2013-07-01

    The sequence of appearance of calretinin and calbindin-D28k immunoreactive (CRir and CBir, respectively) cells and fibers has been studied in the brain of the urodele amphibian Pleurodeles waltl. Embryonic, larval and juvenile stages were studied. The early expression and the dynamics of the distribution of CBir and CRir structures have been used as markers for developmental aspects of distinct neuronal populations, highlighting the accurate extent of many regions in the developing brain, not observed on the basis of cytoarchitecture alone. CR and, to a lesser extent, CB are expressed early in the central nervous system and show a progressively increasing expression from the embryonic stages throughout the larval life and, in general, the labeled structures in the developing brain retain their ability to express these proteins in the adult brain. The onset of CRir cells primarily served to follow the development of the olfactory bulbs, subpallium, thalamus, alar hypothalamus, mesencephalic tegmentum, and distinct cell populations in the rhombencephalic reticular formation. CBir cells highlighted the development of, among others, the pallidum, hypothalamus, dorsal habenula, midbrain tegmentum, cerebellum, and central gray of the rostral rhombencephalon. However, it was the relative and mostly segregated distribution of both proteins in distinct cell populations which evidenced the developing regionalization of the brain. The results have shown the usefulness in neuroanatomy of the analysis during development of the onset of CBir and CRir structures, but the comparison with previous data has shown extensive variability across vertebrate classes. Therefore, one should be cautious when comparing possible homologue structures across species only on the basis of the expression of these proteins, due to the variation of the content of calcium-binding proteins observed in well-established homologous regions in the brain of different vertebrates.

  16. Analysis of imprinted IGF2/H19 gene methylation and expression in normal fertilized and parthenogenetic embryonic stem cells of pigs.

    PubMed

    Uh, Kyung-Jun; Park, Chi-Hun; Choi, Kwang-Hwan; Park, Jin-Kyu; Jeong, Yeon-Woo; Roh, Sangho; Hyun, Sang-Hwan; Shin, Taeyoung; Lee, Chang-Kyu; Hwang, Woo Suk

    2014-06-10

    To determine whether the genomic imprinting can be maintained during the process of embryonic stem (ES) cell derivation from pig blastocysts, mRNA and DNA methylation at the IGF2/H19 imprinting control region in putative ES cells derived from in vitro fertilized (IVF) and parthenogenetic (PG) embryos were investigated. In the present study, one IVF- and three PG ES-like cell lines were established and analyzed for cellular characteristics such as pluripotent marker expression and differentiation capacity. The results showed that these putative ES cells derived from pig blastocysts fulfilled the general "stemness" criteria. The expression of the H19 gene was significantly greater in PG blastocysts than IVF blastocysts, but there were greater amounts of IGF2 in IVF than PG blastocysts. Of these putative ES cell lines, one PG line had less H19 gene expression than a IVF ES cell line while the other two PG lines had much greater expression of the H19 gene than the IVF line. In contrast, the IGF2 gene was upregulated in the same PG cell line relative to the other two PG cell lines and transcript abundance was similar to IVF ES-like cells. Despite the variable amounts of mRNA among the PG cell lines, the IGF2/H19 gene had a differentially methylated region (DMR) 3 was typically un-methylated in all PG cells, and hemi-methylated in the IVF cells. These findings indicated that the mRNA of H19 and IGF2 genes is susceptible to in vitro environments during the process of ES cell derivation from blastocysts but DNA methylation status at this region was well maintained. These altered gene expressions may not be associated with the methylation of the imprinting control region at this locus. Therefore, with their uni-parental genotype, the pluripotent differentiation potentials of PG ES cells could be a valuable tool for understanding genomic imprinting in embryonic development.

  17. Hemato-endothelial differentiation from lentiviral-transduced human embryonic stem cells retains durable reporter gene expression under the control of ubiquitin promoter.

    PubMed

    Jiang, Hua; Lin, Xiaolong; Feng, Youji; Xie, Yi; Han, Jinlan; Zhang, Yueping; Wang, Zack Z; Chen, Tong

    2010-01-01

    Human embryonic stem (hES) cells are able to give rise to a variety of cell lineages under specific culture condition. An effective strategy for stable genetic modification in hES cells may provide a powerful tool for study of human embryogenesis and cell-based therapies. However, gene silences are documented in hES cells. In current study, we investigated whether genes controlled under ubiquitin promoter are expressed during hematopoietic-endothelial differentiation in hES cells. Undifferentiated hES cells (H1) were transduced by lentivirus encoding green fluorescent protein (GFP) gene under ubiquitin promoter. GFP-expressing hES cells (GFP-H1) were established after several rounds of mechanical selection under fluorescence microscope. GFP gene was stably expressed in hES cells throughout prolonged (> 50 passages) cultivation, and in differentiated embryo body (EB) and teratoma. Hematopoietic and endothelial markers, including KDR (VEGFR2), CD34, CD31, Tie-2, GATA-1 and GATA-2, were expressed at similar levels during hES cell differentiation in parent hES cells and GFP-H1 hES cells. CD34(+) cells isolated from GFP-H1 hES cells were capable to generate hematopoietic colony-forming cells and tubular structure-forming cells. Differentiated GFP-EB formed vasculature structures in a semi-solid sprouting EB model. These results indicated that a transgene under ubiquitin promoter in lentiviral transduced hES cells retained its expression in undifferentiated hES cells and in hES-derived hematopoietic and endothelial cells. With the view of embryonic mesodermal developing events in humans, genetic modification of hES cells by lentiviral vectors provides a powerful tool for study of hematopoiesis and vasculogenesis.

  18. Neph1 regulates steady-state surface expression of Slo1 Ca(2+)-activated K(+) channels: different effects in embryonic neurons and podocytes.

    PubMed

    Kim, Eun Young; Chiu, Yu-Hsin; Dryer, Stuart E

    2009-12-01

    Large-conductance Ca(2+)-activated K(+) (BK(Ca)) channels encoded by the Slo1 gene are often components of large multiprotein complexes in excitable and nonexcitable cells. Here we show that Slo1 proteins interact with Neph1, a member of the immunoglobulin superfamily expressed in slit diaphragm domains of podocytes and in vertebrate and invertebrate nervous systems. This interaction was established by reciprocal coimmunoprecipitation of endogenous proteins from differentiated cells of a podocyte cell line, from parasympathetic neurons of the embryonic chick ciliary ganglion, and from HEK293T cells heterologously expressing both proteins. Neph1 can interact with all three extreme COOH-terminal variants of Slo1 (Slo1(VEDEC), Slo1(QEERL), and Slo1(EMVYR)) as ascertained by glutathione S-transferase (GST) pull-down assays and by coimmunoprecipitation. Neph1 is partially colocalized in intracellular compartments with endogenous Slo1 in podocytes and ciliary ganglion neurons. Coexpression in HEK293T cells of Neph1 with any of the Slo1 extreme COOH-terminal splice variants suppresses their steady-state expression on the cell surface, as assessed by cell surface biotinylation assays, confocal microscopy, and whole cell recordings. Consistent with this, small interfering RNA (siRNA) knockdown of endogenous Neph1 in embryonic day 10 ciliary ganglion neurons causes an increase in steady-state surface expression of Slo1 and an increase in whole cell Ca(2+)-dependent K(+) current. Surprisingly, a comparable Neph1 knockdown in podocytes causes a decrease in surface expression of Slo1 and a decrease in whole cell BK(Ca) currents. In podocytes, Neph1 siRNA also caused a decrease in nephrin, even though the Neph1 siRNA had no sequence homology with nephrin. However, we could not detect nephrin in ciliary ganglion neurons.

  19. Marked change in microRNA expression during neuronal differentiation of human teratocarcinoma NTera2D1 and mouse embryonal carcinoma P19 cells

    SciTech Connect

    Hohjoh, Hirohiko Fukushima, Tatsunobu

    2007-10-19

    MicroRNAs (miRNAs) are small noncoding RNAs, with a length of 19-23 nucleotides, which appear to be involved in the regulation of gene expression by inhibiting the translation of messenger RNAs carrying partially or nearly complementary sequences to the miRNAs in their 3' untranslated regions. Expression analysis of miRNAs is necessary to understand their complex role in the regulation of gene expression during the development, differentiation and proliferation of cells. Here we report on the expression profile analysis of miRNAs in human teratocarcinoma NTere2D1, mouse embryonic carcinoma P19, mouse neuroblastoma Neuro2a and rat pheochromocytoma PC12D cells, which can be induced into differentiated cells with long neuritic processes, i.e., after cell differentiation, such that the resultant cells look similar to neuronal cells. The data presented here indicate marked changes in the expression of miRNAs, as well as genes related to neuronal development, occurred in the differentiation of NTera2D1 and P19 cells. Significant changes in miRNA expression were not observed in Neuro2a and PC12D cells, although they showed apparent morphologic change between undifferentiated and differentiated cells. Of the miRNAs investigated, the expression of miRNAs belonging to the miR-302 cluster, which is known to be specifically expressed in embryonic stem cells, and of miR-124a specific to the brain, appeared to be markedly changed. The miR-302 cluster was potently expressed in undifferentiated NTera2D1 and P19 cells, but hardly in differentiated cells, such that miR-124a showed an opposite expression pattern to the miR-302 cluster. Based on these observations, it is suggested that the miR-302 cluster and miR-124a may be useful molecular indicators in the assessment of degree of undifferentiation and/or differentiation in the course of neuronal differentiation.

  20. Increased expression of prion protein gene is accompanied by demethylation of CpG sites in a mouse embryonal carcinoma cell line, P19C6

    PubMed Central

    DALAI, Wuyun; MATSUO, Eiko; TAKEYAMA, Natsumi; KAWANO, Junichi; SAEKI, Keiichi

    2017-01-01

    Elucidation of the processes regulating the prion protein gene (Prnp) is an important key to understanding the development of prion disorders. In this study, we explored the involvement of DNA methylation in Prnp transcriptional regulation during neuronal differentiation of embryonic carcinoma P19C6 cells. When P19C6 cells were differentiated into neuronal cells, the expression of Prnp was markedly increased, while CpG methylation was significantly demethylated at the nucleotide region between −599 and −238 from the transcription start site. In addition, when P19C6 cells were applied in a DNA methyltransferase inhibitor, RG108, Prnp transcripts were also significantly increased in relation to the decreased methylation statuses. These findings helped to elucidate the DNA methylation-mediated regulation of Prnp expression during neuronal differentiation. PMID:28132962

  1. Expression of neuropeptides and anoctamin 1 in the embryonic and adult zebrafish intestine, revealing neuronal subpopulations and ICC-like cells.

    PubMed

    Uyttebroek, Leen; Shepherd, Iain T; Hubens, Guy; Timmermans, Jean-Pierre; Van Nassauw, Luc

    2013-11-01

    This immunohistochemical study in zebrafish aims to extend the neurochemical characterization of enteric neuronal subpopulations and to validate a marker for identification of interstitial cells of Cajal (ICC). The expression of neuropeptides and anoctamin 1 (Ano1), a selective ICC marker in mammals, was analyzed in both embryonic and adult intestine. Neuropeptides were present from 3 days postfertilization (dpf). At 3 dpf, galanin-positive nerve fibers were found in the proximal intestine, while calcitonin gene-related peptide (CGRP)- and substance P-expressing fibers appeared in the distal intestine. At 5 dpf, immunoreactive fibers were present along the entire intestinal length, indicating a well-developed peptidergic innervation at the onset of feeding. In the adult intestine, vasoactive intestinal peptide (VIP), pituitary adenylate cyclase-activating peptide (PACAP), galanin, CGRP and substance P were detected in nerve fibers. Colchicine pretreatment enhanced only VIP and PACAP immunoreactivity. VIP and PACAP were coexpressed in enteric neurons. Colocalization stainings revealed three neuronal subpopulations expressing VIP and PACAP: a nitrergic noncholinergic subpopulation, a serotonergic subpopulation and a subpopulation expressing no other markers. Ano1-immunostaining revealed a 3-dimensional network in the adult intestine containing multipolar cells at the myenteric plexus and bipolar cells interspersed between circular smooth muscle cells. Ano1 immunoreactivity first appeared at 3 dpf, indicative of the onset of proliferation of ICC-like cells. It is shown that the Ano1 antiserum is a selective marker of ICC-like cells in the zebrafish intestine. Finally, it is hypothesized that ICC-like cells mediate the spontaneous regular activity of the embryonic intestine.

  2. Effect of transforming growth factor-beta1 on decorin expression and muscle morphology during chicken embryonic and posthatch growth and development.

    PubMed

    Li, X; Velleman, S G

    2009-02-01

    During skeletal muscle development, transforming growth factor-beta1 (TGF-beta1) is a potent inhibitor of muscle cell proliferation and differentiation, as well as a regulator of extracellular matrix (ECM) production. Decorin, a member of the small leucine-rich ECM proteoglycans, binds to TGF-beta1 and modulates TGF-beta1-dependent cell growth stimulation or inhibition. The expression of decorin can be regulated by TGF-beta1 during muscle proliferation and differentiation. How TGF-beta1 affects decorin and muscle growth, however, has not been well documented in vivo. The present study investigated the effect of TGF-beta1 on decorin expression and intracellular connective tissue development during skeletal muscle growth. Exogenous TGF-beta1 significantly decreased the number of myofibers in a given area at both 1 d and 6 wk posthatch. The TGF-beta1-treated muscle had a significant decrease in decorin mRNA expression at embryonic day (ED) 10, whereas protein amounts decreased at 17 ED and 1 d posthatch compared to the control muscle. Decorin was localized in both the endomysium and perimysium in the control pectoralis major muscle. Transforming growth factor-beta1 reduced decorin in both the endomysium and perimysium from 17 ED to 6 wk posthatch. Compared to the control muscle, the perimysium space in the pectoralis major muscle was dramatically decreased by TGF-beta1 during embryonic development through posthatch growth. Because decorin regulates collagen fibrillogenesis, a major component of the ECM, the reduction of decorin by TGF-beta1 treatment may cause the irregular formation of collagen fibrils, leading to the decrease in endomysium and perimysium space. The results from the current study suggest that the effect of TGF-beta1 on decorin expression and localization was likely associated with altered development of the perimysium and the regulation of muscle fiber development.

  3. A regulatory sequence from the retinoid X receptor γ gene directs expression to horizontal cells and photoreceptors in the embryonic chicken retina

    PubMed Central

    Blixt, Maria K. E.

    2016-01-01

    Purpose Combining techniques of episomal vector gene-specific Cre expression and genomic integration using the piggyBac transposon system enables studies of gene expression–specific cell lineage tracing in the chicken retina. In this work, we aimed to target the retinal horizontal cell progenitors. Methods A 208 bp gene regulatory sequence from the chicken retinoid X receptor γ gene (RXRγ208) was used to drive Cre expression. RXRγ is expressed in progenitors and photoreceptors during development. The vector was combined with a piggyBac “donor” vector containing a floxed STOP sequence followed by enhanced green fluorescent protein (EGFP), as well as a piggyBac helper vector for efficient integration into the host cell genome. The vectors were introduced into the embryonic chicken retina with in ovo electroporation. Tissue electroporation targets specific developmental time points and in specific structures. Results Cells that drove Cre expression from the regulatory RXRγ208 sequence excised the floxed STOP-sequence and expressed GFP. The approach generated a stable lineage with robust expression of GFP in retinal cells that have activated transcription from the RXRγ208 sequence. Furthermore, GFP was expressed in cells that express horizontal or photoreceptor markers when electroporation was performed between developmental stages 22 and 28. Electroporation of a stage 12 optic cup gave multiple cell types in accordance with RXRγ gene expression in the early retina. Conclusions In this study, we describe an easy, cost-effective, and time-efficient method for testing regulatory sequences in general. More specifically, our results open up the possibility for further studies of the RXRγ-gene regulatory network governing the formation of photoreceptor and horizontal cells. In addition, the method presents approaches to target the expression of effector genes, such as regulators of cell fate or cell cycle progression, to these cells and their progenitor. PMID

  4. Expression of Maternally and Embryonically Derived Hypoxanthine Phosphoribosyl Transferase (Hprt) Activity in Mouse Eggs and Early Embryos

    PubMed Central

    Kratzer, Paul G.

    1983-01-01

    X-chromosome activity in early mouse development has been studied by a gene dosage method that involves measuring the activity level of the X-linked enzyme hypoxanthine phosphoribosyl transferase (HPRT) in single eggs and embryos from XO females and from females heterozygous for In(X)1H, a paracentric inversion of the X chromosome. The HPRT activity in oocytes increased threefold over a 24-hr period beginning after ovulation. Afterward, the activity plateaued in unfertilized eggs but continued to increase for at least 66 hr in presumed OY embryos. Both before and after ovulation, the level of activity in unfertilized eggs from In(X)/X females was twice that from XO females, and the distributions of activity in eggs for both sets of females remained unimodal. Beginning with the two-cell stage, distributions of activity for embryos from In(X)/X females were trimodal, which is evidence for embryonic activity. It is proposed that activation of a maternal mRNA or proenzyme is responsible for the HPRT activity increase in oocytes and early embryos and is supplemented by dosage-dependent activity of the embryonic Hprt gene as early as the two-cell stage. PMID:6618165

  5. Undifferentiated embryonic cell transcription factor 1 (UTF1) and deleted in azoospermia-like (DAZL) expression in the testes of donkeys.

    PubMed

    Lee, Y S; Jung, H J; Yoon, M J

    2017-04-01

    Putative markers for each specific germ cell stage can be a useful tool to study the fate and functions of these cells. Undifferentiated embryonic cell transcription factor 1 (UTF1) is a putative marker for undifferentiated spermatogonia in humans, rats and horses. The deleted in azoospermia-like (DAZL) protein is also expressed by differentiated spermatogonia and primary spermatocytes in several species. However, whether the expression patterns of these molecular markers are identical and applicable to donkeys remains to be elucidated. The objective of this study was to investigate the expression patterns of UTF1 and DAZL in donkey testicular tissue, using immunohistochemistry (IHC). Testicular samples were collected from routine field castration of donkeys in Korea. The reproductive stages (pre- or post-puberty) of the testes were determined from the morphological characteristics of cross-sections of the seminiferous tubules. For IHC, the UTF1 and DAZL primary antibodies were diluted at 1:100 and 1:200, respectively. The immunolabelling revealed that UTF1 was expressed in approximately 50% of spermatogonia in the pre-pubertal stage, whereas its expression was limited to an early subset of spermatogonia in the post-pubertal stage. DAZL was expressed in some, but not all, spermatogonia in the pre-pubertal spermatogonia, and interestingly, its expression was also observed in spermatogonia and primary spermatocytes in the post-pubertal stage. Co-immunolabelling of the germ cells with both UTF1 and DAZL revealed three types of protein expression patterns at both reproductive stages, namely UTF1 only, DAZL only and both UTF1 and DAZL. These protein molecules were not expressed in Sertoli and Leydig cells. In conclusion, a co-immunolabelling system with UTF1 and DAZL antibodies may be used to identify undifferentiated (UTF1 only), differentiating (UTF1 and DAZL), and differentiated spermatogonia (DAZL only) in donkey testes.

  6. Human Parthenogenetic Embryonic Stem Cell–Derived Neural Stem Cells Express HLA-G and Show Unique Resistance to NK Cell–Mediated Killing

    PubMed Central

    Schmitt, Jessica; Eckardt, Sigrid; Schlegel, Paul G; Sirén, Anna-Leena; Bruttel, Valentin S; McLaughlin, K John; Wischhusen, Jörg; Müller, Albrecht M

    2015-01-01

    Parent-of-origin imprints have been implicated in the regulation of neural differentiation and brain development. Previously we have shown that, despite the lack of a paternal genome, human parthenogenetic (PG) embryonic stem cells (hESCs) can form proliferating neural stem cells (NSCs) that are capable of differentiation into physiologically functional neurons while maintaining allele-specific expression of imprinted genes. Since biparental (“normal”) hESC–derived NSCs (N NSCs) are targeted by immune cells, we characterized the immunogenicity of PG NSCs. Flow cytometry and immunocytochemistry revealed that both N NSCs and PG NSCs exhibited surface expression of human leukocyte antigen (HLA) class I but not HLA-DR molecules. Functional analyses using an in vitro mixed lymphocyte reaction assay resulted in less proliferation of peripheral blood mononuclear cells (PBMC) with PG compared with N NSCs. In addition, natural killer (NK) cells cytolyzed PG less than N NSCs. At a molecular level, expression analyses of immune regulatory factors revealed higher HLA-G levels in PG compared with N NSCs. In line with this finding, MIR152, which represses HLA-G expression, is less transcribed in PG compared with N cells. Blockage of HLA-G receptors ILT2 and KIR2DL4 on natural killer cell leukemia (NKL) cells increased cytolysis of PG NSCs. Together this indicates that PG NSCs have unique immunological properties due to elevated HLA-G expression. PMID:25811991

  7. Control of germline torso expression by the BTB/POZ domain protein pipsqueak is required for embryonic terminal patterning in Drosophila.

    PubMed

    Grillo, Marco; Furriols, Marc; Casanova, Jordi; Luschnig, Stefan

    2011-02-01

    Early embryogenesis in Drosophila melanogaster is controlled by maternal gene products, which are deposited in the egg during oogenesis. It is not well understood how maternal gene expression is controlled during germline development. pipsqueak (psq) is a complex locus that encodes several nuclear protein variants containing a PSQ DNA-binding domain and a BTB/POZ domain. Psq proteins are thought to regulate germline gene expression through epigenetic silencing. While psq was originally identified as a posterior-group gene, we show here a novel role of psq in embryonic terminal patterning. We characterized a new psq loss-of-function allele, psq(rum), which specifically affects signaling by the Torso (Tor) receptor tyrosine kinase (RTK). Using genetic epistasis, gene expression analyses, and rescue experiments, we demonstrate that the sole function impaired by the psq(rum) mutation in the terminal system is an essential requirement for controlling transcription of the tor gene in the germline. In contrast, the expression of several other maternal genes, including those encoding Tor pathway components, is not affected by the mutation. Rescue of the psq(rum) terminal phenotype does not require the BTB/POZ domain, suggesting that the PSQ DNA-binding domain can function independently of the BTB/POZ domain. Our finding that tor expression is subject to dedicated transcriptional regulation suggests that different maternal genes may be regulated by multiple distinct mechanisms, rather than by a general program controlling nurse-cell transcription.

  8. Coordinated waves of gene expression during neuronal differentiation of embryonic stem cells as basis for novel approaches to developmental neurotoxicity testing

    PubMed Central

    Zimmer, B; Kuegler, P B; Baudis, B; Genewsky, A; Tanavde, V; Koh, W; Tan, B; Waldmann, T; Kadereit, S; Leist, M

    2011-01-01

    As neuronal differentiation of embryonic stem cells (ESCs) recapitulates embryonic neurogenesis, disturbances of this process may model developmental neurotoxicity (DNT). To identify the relevant steps of in vitro neurodevelopment, we implemented a differentiation protocol yielding neurons with desired electrophysiological properties. Results from focussed transcriptional profiling suggested that detection of non-cytotoxic developmental disturbances triggered by toxicants such as retinoic acid (RA) or cyclopamine was possible. Therefore, a broad transcriptional profile of the 20-day differentiation process was obtained. Cluster analysis of expression kinetics, and bioinformatic identification of overrepresented gene ontologies revealed waves of regulation relevant for DNT testing. We further explored the concept of superimposed waves as descriptor of ordered, but overlapping biological processes. The initial wave of transcripts indicated reorganization of chromatin and epigenetic changes. Then, a transient upregulation of genes involved in the formation and patterning of neuronal precursors followed. Simultaneously, a long wave of ongoing neuronal differentiation started. This was again superseded towards the end of the process by shorter waves of neuronal maturation that yielded information on specification, extracellular matrix formation, disease-associated genes and the generation of glia. Short exposure to lead during the final differentiation phase, disturbed neuronal maturation. Thus, the wave kinetics and the patterns of neuronal specification define the time windows and end points for examination of DNT. PMID:20865013

  9. Ultrasound backscatter microscopy image-guided intraventricular gene delivery at murine embryonic age 9.5 and 10.5 produces distinct transgene expression patterns at the adult stage.

    PubMed

    Jang, Jiwon; Ahn, Jyhyun; Lee, Nayeon; Kim, Seong-Tae; Kweon, Dae-Hyuk; Cho, Jae Youl; Park, Kye Won; Kim, Sunyoung; Yoon, Keejung

    2013-01-01

    In utero injection of a retroviral vector into the embryonic telencephalon aided by ultrasound backscatter microscopy permits introduction of a gene of interest at an early stage of development. In this study, we compared the tissue distribution of gene expression in adult mice injected with retroviral vectors at different embryonic ages in utero. Following ultrasound image-guided gene delivery (UIGD) into the embryonic telencephalon, adult mice were subjected to whole-body luciferase imaging and immunohistochemical analysis at 6 weeks and 1 year postinjection. Luciferase activity was observed in a wide range of tissues in animals injected at embryonic age 9.5 (E9.5), whereas animals injected at E10.5 showed brain-localized reporter gene expression. These results suggest that mouse embryonic brain creates a closed and impermeable structure around E10. Therefore, by injecting a transgene before or after E10, transgene expression can be manipulated to be local or systemic. Our results also provide information that widens the applicability of UIGD beyond neuroscience studies.

  10. The synergistic effect of beta-boswellic acid and Nurr1 overexpression on dopaminergic programming of antioxidant glutathione peroxidase-1-expressing murine embryonic stem cells.

    PubMed

    Abasi, M; Massumi, M; Riazi, G; Amini, H

    2012-10-11

    Parkinson's disease (PD) is a neurodegenerative disorder in which the nigro-striatal dopaminergic (DAergic) neurons have been selectively lost. Due to side effects of levodopa, a dopamine precursor drug, recently cell replacement therapy for PD has been considered. Lack of sufficient amounts of, embryos and ethical problems regarding the use of dopamine-rich embryonic neural cells have limited the application of these cells for PD cell therapy. Therefore, many investigators have focused on using the pluripotent stem cells to generate DAergic neurons. This study is aimed first to establish a mouse embryonic stem (mES) cell line that can stably co-express Nurr1 (Nuclear receptor subfamily 4, group A, member 2) transcription factor in order to efficiently generate DAergic neurons, and glutathione peroxidase-1 (GPX-1) to protect the differentiated DAergic-like cells against oxidative stress. In addition to genetic engineering of ES cells, the effect of Beta-boswellic acid (BBA) on DAergic differentiation course of mES cells was sought in the present study. To that end, the feeder-independent CGR8 mouse embryonic stem cells were transduced by Nurr1- and GPX-1-harboring Lentiviruses and the generated Nurr1/GPX-1-expresssing ES clones were characterized and verified. Gene expression analyses demonstrated that BBA treatment and overexpression of Nurr1 has a synergistic effect on derivation of DAergic neurons from Nurr1/GPX-1-expressing ES cells. The differentiated cells could exclusively synthesize and secrete dopamine in response to stimuli. Overexpression of GPX-1 in genetically engineered Nurr1/GPX-1-ES cells increased the viability of these cells during their differentiation into CNS stem cells. In conclusion, the results demonstrated that Nurr1-overexpressing feeder-independent ES cells like the feeder-dependent ES cells, can be efficiently programmed into functional DAergic neurons and additional treatment of cells by BBA can even augment this efficiency. GPX-1

  11. Expression patterns of sirtuin genes in porcine preimplantation embryos and effects of sirtuin inhibitors on in vitro embryonic development after parthenogenetic activation and in vitro fertilization.

    PubMed

    Kwak, Seong-Sung; Cheong, Seung-A; Yoon, Junchul David; Jeon, Yubyeol; Hyun, Sang-Hwan

    2012-10-15

    We examined the expression patterns of porcine sirtuin 1 to 3 (Sirt1-3) genes in preimplantation embryos derived from parthenogenetic activation (PA), in vitro fertilization (IVF) and somatic cell nuclear transfer (SCNT). We also investigated the effects of sirtuin inhibitors (5 mM nicotinamide [NAM] and 100 μM sirtinol) on embryonic development of PA and IVF embryos under in vitro culture (IVC). The expression patterns of Sirt1-3 mRNA in preimplantation embryos of PA, IVF, and SCNT were significantly (P < 0.05) decreased from metaphase stage of oocyte to blastocyst stage. Especially, the expressions of Sirt1-3 in SCNT blastocysts were significantly (P < 0.05) lower and Sirt2 in PA blastocyst was significantly higher compared with the IVF blastocysts. Treatment with sirtuin inhibitors during IVC resulted in significantly (P < 0.05) decreased blastocyst formation and total cell number of blastocyst derived from PA (NAM: 29.4% and 29.6, sirtinol: 31.0% and 30.3, and control: 40.9% and 41.7, respectively) and IVF embryos (NAM: 10.4% and 30.9, sirtinol: 6.3% and 30.5, and control: 16.7% and 42.8, respectively). There was no significant difference in cleavage rate in both PA and IVF embryos. The early and expanded blastocyst formations at Day 7 were significantly lower in the sirtuin inhibitors-treated groups than the control. It was demonstrated that sirtuin inhibitor (NAM) influenced the percentage of blastocyst formation and total cell number of PA derived blastocyst when NAM was added during day 4 to 7 (22.1% and 32.4) or day 0 to 7 (23.1% and 31.6) of IVC compared with the control (41.8% and 41.5). No significant difference in cleavage rates appeared among the groups. The blastocysts derived from PA embryos treated with sirtuin inhibitors showed lower (P < 0.05) expressions of POU5F1 and Cdx2 genes. Also, Sirt2 mRNA expression was significantly decreased in sirtinol treated group and Sirt3 mRNA expression was also significantly decreased in both NAM and sirtinol

  12. sRNA-seq analysis of human embryonic stem cells and definitive endoderm reveals differentially expressed microRNAs and novel IsomiRs with distinct targets.

    PubMed

    Hinton, Andrew; Hunter, Shaun E; Afrikanova, Ivka; Jones, G Adam; Lopez, Ana D; Fogel, Gary B; Hayek, Alberto; King, Charles C

    2014-09-01

    MicroRNAs (miRNAs) are noncoding, regulatory RNAs expressed dynamically during differentiation of human embryonic stem cells (hESCs) into defined lineages. Mapping developmental expression of miRNAs during transition from pluripotency to definitive endoderm (DE) should help to elucidate the mechanisms underlying lineage specification and ultimately enhance differentiation protocols. In this report, next generation sequencing was used to build upon our previous analysis of miRNA expression in human hESCs and DE. From millions of sequencing reads, 747 and 734 annotated miRNAs were identified in pluripotent and DE cells, respectively, including 77 differentially expressed miRNAs. Among these, four of the top five upregulated miRNAs were previously undetected in DE. Furthermore, the stem-loop for miR-302a, an important miRNA for both hESCs self-renewal and endoderm specification, produced several highly expressed miRNA species (isomiRs). Overall, isomiRs represented >10% of sequencing reads in >40% of all detected stem-loop arms, suggesting that the impact of these abundant miRNA species may have been overlooked in previous studies. Because of their relative abundance, the role of differential isomiR targeting was studied using the miR-302 cluster as a model system. A miRNA mimetic for miR-302a-5p, but not miR-302a-5p(+3), decreased expression of orthodenticle homeobox 2 (OTX2). Conversely, isomiR 302a-5p(+3) selectively decreased expression of tuberous sclerosis protein 1, but not OTX2, indicating nonoverlapping specificity of miRNA processing variants. Taken together, our characterization of miRNA expression, which includes novel miRNAs and isomiRs, helps establish a foundation for understanding the role of miRNAs in DE formation and selective targeting by isomiRs.

  13. Equarin, a novel soluble molecule expressed with polarity at chick embryonic lens equator, is involved in eye formation.

    PubMed

    Mu, Hong; Ohta, Kunimasa; Kuriyama, Sei; Shimada, Naoko; Tanihara, Hidenobu; Yasuda, Kunio; Tanaka, Hideaki

    2003-02-01

    The lens plays an important role in eye development. To investigate the molecular mechanisms involved, we used signal sequence trap screens with a chicken lens cDNA library and identified a novel secreted molecule, equarin. Equarin encodes consensus repeat domains conserved in human SRPX and mouse Urb. In the embryonic eye, equarin transcript is detected exclusively in the lens, and persists in the lens equatorial region in a high-dorsal-to-low-ventral gradient. In vitro analysis of equarin protein indicated that after translation, it is modified, cleaved, and secreted to extracellular locations. Microinjection of equarin mRNA into Xenopus embryos induced abnormal eye development. These data suggest that equarin is involved in eye formation.

  14. Large-scale atlas of microarray data reveals the distinct expression landscape of different tissues in Arabidopsis

    SciTech Connect

    He, Fei; Maslov, Sergei; Yoo, Shinjae; Wang, Daifeng; Kumari, Sunita; Gerstein, Mark; Ware, Doreen

    2016-05-25

    Here, transcriptome datasets from thousands of samples of the model plant Arabidopsis thaliana have been collectively generated by multiple individual labs. Although integration and meta-analysis of these samples has become routine in the plant research community, it is often hampered by the lack of metadata or differences in annotation styles by different labs. In this study, we carefully selected and integrated 6,057 Arabidopsis microarray expression samples from 304 experiments deposited to NCBI GEO. Metadata such as tissue type, growth condition, and developmental stage were manually curated for each sample. We then studied global expression landscape of the integrated dataset and found that samples of the same tissue tend to be more similar to each other than to samples of other tissues, even in different growth conditions or developmental stages. Root has the most distinct transcriptome compared to aerial tissues, but the transcriptome of cultured root is more similar to those of aerial tissues as the former samples lost their cellular identity. Using a simple computational classification method, we showed that the tissue type of a sample can be successfully predicted based on its expression profile, opening the door for automatic metadata extraction and facilitating re-use of plant transcriptome data. As a proof of principle we applied our automated annotation pipeline to 708 RNA-seq samples from public repositories and verified accuracy of our predictions with samples’ metadata provided by authors.

  15. Large-scale atlas of microarray data reveals the distinct expression landscape of different tissues in Arabidopsis

    DOE PAGES

    He, Fei; Maslov, Sergei; Yoo, Shinjae; ...

    2016-05-25

    Here, transcriptome datasets from thousands of samples of the model plant Arabidopsis thaliana have been collectively generated by multiple individual labs. Although integration and meta-analysis of these samples has become routine in the plant research community, it is often hampered by the lack of metadata or differences in annotation styles by different labs. In this study, we carefully selected and integrated 6,057 Arabidopsis microarray expression samples from 304 experiments deposited to NCBI GEO. Metadata such as tissue type, growth condition, and developmental stage were manually curated for each sample. We then studied global expression landscape of the integrated dataset andmore » found that samples of the same tissue tend to be more similar to each other than to samples of other tissues, even in different growth conditions or developmental stages. Root has the most distinct transcriptome compared to aerial tissues, but the transcriptome of cultured root is more similar to those of aerial tissues as the former samples lost their cellular identity. Using a simple computational classification method, we showed that the tissue type of a sample can be successfully predicted based on its expression profile, opening the door for automatic metadata extraction and facilitating re-use of plant transcriptome data. As a proof of principle we applied our automated annotation pipeline to 708 RNA-seq samples from public repositories and verified accuracy of our predictions with samples’ metadata provided by authors.« less

  16. Sequence and expression pattern of the Stra7 (Gbx-2) homeobox-containing gene induced by retinoic acid in P19 embryonal carcinoma cells.

    PubMed

    Bouillet, P; Chazaud, C; Oulad-Abdelghani, M; Dollé, P; Chambon, P

    1995-12-01

    The cDNA sequence of Stra7, a retinoic acid (RA)-inducible gene in P19 embryonal carcinoma (EC) cells, was determined. The deduced Stra7 protein contains a homeodomain highly similar to that of the previously described chicken CHox7 gene product, and is highly conserved during evolution, from hemichordates to vertebrates. The mouse Stra7 cDNA corresponds to the full-length form of the 77 bp homeodomain-encoding cDNA fragment which was previously cloned and termed MMoxA or Gbx-2. Reverse-transcriptase-PCR analysis revealed the presence of Stra7/Gbx-2 transcripts in the adult brain, spleen, and female genital tract, whereas no expression could be observed in heart, liver, lung, kidney, or testes. In situ hybridization analysis showed a restricted expression pattern of Stra7/Gbx-2 in the three primitive germ layers during gastrulation. Restricted expression was also detected in the pharyngeal arches. Subsequently, there were specific expression domains in the developing central nervous system, at the midbrain/hindbrain boundary and later in the cerebellum anlage, in certain rhombomeres, in dorsal regions of the spinal cord, and in the developing dorsal thalamus and corpus striatum.

  17. Genetic modification of human embryonic stem cells with adenoviral vectors: differences of infectability between lines and correlation of infectability with expression of the coxsackie and adenovirus receptor.

    PubMed

    Brokhman, Irina; Pomp, Oz; Fishman, Lital; Tennenbaum, Tamar; Amit, Michal; Itzkovitz-Eldor, Joseph; Goldstein, Ronald S

    2009-04-01

    Adenovirus is an efficient vector for expression of transgenes in dividing and nondividing cells. However, very few studies of human embryonic stem cells (hESCs) have utilized adenoviral vectors. We examine here the ability of adenovirus to infect naive hESCs and the differentiated derivatives of multiple hESC lines. We found a striking variation in adenovirus infection rates between lines. The variability in infection rates was positively correlated with the expression of the coxsackievirus and adenovirus receptor, but not that of alpha(nu)-integrin. Adenoviral infection did not interfere with the expression of pluripotency markers, even after passaging. In addition, infection did not affect differentiation of hESC-derived neural precursors in vitro. We also found that green fluorescent protein expression mediated by adenovirus can be a useful marker for tracking hESC in xenografts. We conclude that adenovirus is a practical vector for genetic modification of naive hESC from most, but not all lines, but may be more generally useful for gene transfer into differentiated derivatives of hESC lines.

  18. Neural differentiation of human embryonic stem cells as an in vitro tool for the study of the expression patterns of the neuronal cytoskeleton during neurogenesis.

    PubMed

    Liu, Chao; Zhong, Yongwang; Apostolou, Andria; Fang, Shengyun

    2013-09-13

    The neural differentiation of human embryonic stem cells (ESCs) is a potential tool for elucidating the key mechanisms involved in human neurogenesis. Nestin and β-III-tubulin, which are cytoskeleton proteins, are marker proteins of neural stem cells (NSCs) and neurons, respectively. However, the expression patterns of nestin and β-III-tubulin in neural derivatives from human ESCs remain unclear. In this study, we found that neural progenitor cells (NPCs) derived from H9 cells express high levels of nestin and musashi-1. In contrast, β-III-tubulin was weakly expressed in a few NPCs. Moreover, in these cells, nestin formed filament networks, whereas β-III-tubulin was distributed randomly as small particles. As the differentiation proceeded, the nestin filament networks and the β-III-tubulin particles were found in both the cell soma and the cellular processes. Moreover, the colocalization of nestin and β-III-tubulin was found mainly in the cell processes and neurite-like structures and not in the cell soma. These results may aid our understanding of the expression patterns of nestin and β-III-tubulin during the neural differentiation of H9 cells.

  19. The cell cycle- and insulin-signaling-inhibiting miRNA expression pattern of very small embryonic-like stem cells contributes to their quiescent state.

    PubMed

    Maj, Magdalena; Schneider, Gabriela; Ratajczak, Janina; Suszynska, Malwina; Kucia, Magda; Ratajczak, Mariusz Z

    2015-08-01

    Murine Oct4(+), very small embryonic-like stem cells (VSELs), are a quiescent stem cell population that requires a supportive co-culture layer to proliferate and/or to differentiate in vitro. Gene expression studies have revealed that the quiescence of these cells is due to changes in expression of parentally imprinted genes, including genes involved in cell cycle regulation and insulin and insulin-like growth factor signaling (IIS). To investigate the role of microRNAs (miRNAs) in VSEL quiescence, we performed miRNA studies in highly purified VSELs and observed a unique miRNA expression pattern in these cells. Specifically, we observed significant differences in the expression of certain miRNA species (relative to a reference cell population), including (i) miRNA-25_1 and miRNA-19 b, whose downregulation has the effect of upregulating cell cycle checkpoint genes and (ii) miRNA-675-3 p and miRNA-675-5 p, miRNA-292-5 p, miRNA-184, and miRNA-125 b, whose upregulation attenuates IIS. These observations are important for understanding the biology of these cells and for developing efficient ex vivo expansion strategies for VSELs isolated from adult tissues.

  20. Identification of stem cell transcriptional programs normally expressed in embryonic and neural stem cells in alloreactive CD8+ T cells mediating graft-versus-host disease

    PubMed Central

    Kato, Koji; Cui, Shuaiying; Kuick, Rork; Mineishi, Shin; Hexner, Elizabeth; Ferrara, James LM; Emerson, Stephen G.; Zhang, Yi

    2010-01-01

    A hallmark of graft-versus-host-disease (GVHD), a life-threatening complication after allogeneic hematopoietic stem cell transplantation, is the cytopathic injury of host tissues mediated by persistent alloreactive effector T cells (TE). However, the mechanisms that regulate the persistence of alloreactive TE during GVHD remain largely unknown. Using mouse GVHD models, we demonstrate that alloreactive CD8+ TE rapidly diminished in vivo when adoptively transferred into irradiated secondary congenic recipient mice. In contrast, although alloreactive CD8+ TE underwent massive apoptosis upon chronic exposure to alloantigens, they proliferated in vivo in secondary allogeneic recipients, persisted and caused severe GVHD. Thus, the continuous proliferation of alloreactive CD8+ TE, which is mediated by alloantigenic stimuli rather than homeostatic factors, is critical to maintaining their persistence. Gene expression profile analysis revealed that while alloreactive CD8+ TE increased the expression of genes associated with cell death, they activated a group of stem cell genes normally expressed in embryonic and neural stem cells. Most of these stem cell genes are associated with cell cycle regulation, DNA replication, chromatin modification and transcription. One of these genes, Ezh2, which encodes a chromatin modifying enzyme, was abundantly expressed in CD8+ TE. Silencing Ezh2 significantly reduced the proliferation of alloantigen-activated CD8+ T cells. Thus, these findings identify that a group of stem cell genes could play important roles in sustaining terminally differentiated alloreactive CD8+ TE and may be therapeutic targets for controlling GVHD. PMID:20116439

  1. Toxic responses in rat embryonic cells to silver nanoparticles and released silver ions as analyzed via gene expression profiles and transmission electron microscopy.

    PubMed

    Xu, Liming; Shi, Chang; Shao, Anliang; Li, Xuefei; Cheng, Xiang; Ding, Rigao; Wu, Gang; Chou, Laisheng Lee

    2015-05-01

    After exposing rat embryonic cells to 20 μg/mL of silver nanoparticle (NP) suspension and their released ions for different time periods, silver nanoparticles were found in cellular nuclei, mitochondria, cytoplasm and lysosomes by transmission electron microscopy (TEM). We also observed mitochondrial destruction, distension of endoplasmic reticulum and apoptotic bodies. Global gene expression analysis showed a total of 279 genes that were up-regulated and 389 genes that were down-regulated in the silver-NP suspension exposure group, while 3 genes were up-regulated and 41 genes were down-regulated in the silver ion exposure group. Further, the GO pathway analysis suggested that these differentially expressed genes are involved in several biological processes, such as energy metabolism, oxygen transport, enzyme activities, molecular binding, etc. It is possible that inhibition of oxygen transport is mediated by the significant down-regulation of genes of the globin family, which might play an important role in silver ion-induced toxicity. KEGG pathway analysis showed that there were 23 signal pathways that were affected in the cells after exposure to silver-NP suspension, but not silver ion alone. The most significant change concerned inflammatory signal pathways, which were only found in silver-NP suspension exposed cells, indicating that inflammatory response might play an important role in the mechanism(s) of silver-NP-induced toxicity. The significant up-regulation of matrix metalloproteinases 3 and 9 suggests that silver NPs could induce extracellular matrix degradation via an inflammatory signaling pathway. The significant up-regulation of secretory leukocyte peptidase inhibitor and serine protease inhibitor 2c was considered to be an embryonic cellular defense mechanism in response to silver-NP-induced inflammation.

  2. Adamts5, the gene encoding a proteoglycan-degrading metalloprotease, is expressed by specific cell lineages during mouse embryonic development and in adult tissues.

    PubMed

    McCulloch, Daniel R; Le Goff, Carine; Bhatt, Sumantha; Dixon, Laura J; Sandy, John D; Apte, Suneel S

    2009-06-01

    The secreted metalloprotease ADAMTS5 is implicated in destruction of the cartilage proteoglycan aggrecan in arthritis, but its physiological functions are unknown. Its expression profile during embryogenesis and in adult tissues is therefore of considerable interest. beta-Galactosidase (beta-gal) histochemistry, enabled by a LacZ cassette inserted in the Adamts5 locus, and validated by in situ hybridization with an Adamts5 cRNA probe and ADAMTS5 immunohistochemistry, was used to profile Adamts5 expression during mouse embryogenesis and in adult mouse tissues. Embryonic expression was scarce prior to 11.5 days of gestation (E11.5) and noted only in the floor plate of the developing brain at E 9.5. After E11.5 there was continued expression in brain, especially in the choroid plexus, peripheral nerves, dorsal root ganglia, cranial nerve ganglia, spinal and cranial nerves, and neural plexuses of the gut. In addition to nerves, developing limbs have Adamts5 expression in skeletal muscle (from E13.5), tendons (from E16.5), and inter-digital mesenchyme of the developing autopod (E13.5-15.5). In adult tissues, there is constitutive Adamts5 expression in arterial smooth muscle cells, mesothelium lining the peritoneal, pericardial and pleural cavities, smooth muscle cells in bronchi and pancreatic ducts, glomerular mesangial cells in the kidney, dorsal root ganglia, and in Schwann cells of the peripheral and autonomic nervous system. Expression of Adamts5 during neuromuscular development and in smooth muscle cells coincides with the broadly distributed proteoglycan versican, an ADAMTS5 substrate. These observations suggest the major contexts in which developmental and physiological roles could be sought for this protease.

  3. Multiple positive and negative 5' regulatory elements control the cell-type-specific expression of the embryonic skeletal myosin heavy-chain gene.

    PubMed Central

    Bouvagnet, P F; Strehler, E E; White, G E; Strehler-Page, M A; Nadal-Ginard, B; Mahdavi, V

    1987-01-01

    To identify the DNA sequences that regulate the expression of the sarcomeric myosin heavy-chain (MHC) genes in muscle cells, a series of deletion constructs of the rat embryonic MHC gene was assayed for transient expression after introduction into myogenic and nonmyogenic cells. The sequences in 1.4 kilobases of 5'-flanking DNA were found to be sufficient to direct expression of the MHC gene constructs in a tissue-specific manner (i.e., in differentiated muscle cells but not in undifferentiated muscle and nonmuscle cells). Three main distinct regulatory domains have been identified: (i) the upstream sequences from positions -1413 to -174, which determine the level of expression of the MHC gene and are constituted of three positive regulatory elements and two negative ones; (ii) a muscle-specific regulatory element from positions -173 to -142, which restricts the expression of the MHC gene to muscle cells; and (iii) the promoter region, downstream from position -102, which directs transcription initiation. Introduction of the simian virus 40 enhancer into constructs where subportions of or all of the upstream sequences are deleted (up to position -173) strongly increases the level of expression of such truncated constructs but without changing their muscle specificity. These upstream sequences, which can be substituted for by the simian virus 40 enhancer, function in an orientation-, position-, and promoter-dependent fashion. The muscle-specific element is also promoter specific but does not support efficient expression of the MHC gene. The MHC promoter in itself is not muscle specific. These results underline the importance of the concerted action of multiple regulatory elements that are likely to represent targets for DNA-binding-regulatory proteins. Images PMID:2830491

  4. Characterization of an In Vitro Differentiation Assay for Pancreatic-Like Cell Development from Murine Embryonic Stem Cells: Detailed Gene Expression Analysis

    PubMed Central

    Chen, Chialin; Chai, Jing; Singh, Lipi; Kuo, Ching-Ying; Jin, Liang; Feng, Tao; Marzano, Scott; Galeni, Sheetal; Zhang, Nan; Iacovino, Michelina; Qin, Lihui; Hara, Manami; Stein, Roland; Bromberg, Jonathan S.; Kyba, Michael

    2011-01-01

    Abstract Embryonic stem (ES) cell technology may serve as a platform for the discovery of drugs to treat diseases such as diabetes. However, because of difficulties in establishing reliable ES cell differentiation methods and in creating cost-effective plating conditions for the high-throughput format, screening for molecules that regulate pancreatic beta cells and their immediate progenitors has been limited. A relatively simple and inexpensive differentiation protocol that allows efficient generation of insulin-expressing cells from murine ES cells was previously established in our laboratories. In this report, this system is characterized in greater detail to map developmental cell stages for future screening experiments. Our results show that sequential activation of multiple gene markers for undifferentiated ES cells, epiblast, definitive endoderm, foregut, and pancreatic lineages was found to follow the sequence of events that mimics pancreatic ontogeny. Cells that expressed enhanced green fluorescent protein, driven by pancreatic and duodenal homeobox 1 or insulin 1 promoter, correctly expressed known beta cell lineage markers. Overexpression of Sox17, an endoderm fate-determining transcription factor, at a very early stage of differentiation (days 2–3) enhanced pancreatic gene expression. Overexpression of neurogenin3, an endocrine progenitor cell marker, induced glucagon expression at stages when pancreatic and duodenal homeobox 1 message was present (days 10–16). Forced expression (between days 16 and 25) of MafA, a pancreatic maturation factor, resulted in enhanced expression of insulin genes, glucose transporter 2 and glucokinase, and glucose-responsive insulin secretion. Day 20 cells implanted in vivo resulted in pancreatic-like cells. Together, our differentiation assay recapitulates the proceedings and behaviors of pancreatic development and will be valuable for future screening of beta cell effectors. PMID:21395400

  5. The thyroid hormone receptor gene (c-erbA alpha) is expressed in advance of thyroid gland maturation during the early embryonic development of Xenopus laevis.

    PubMed Central

    Banker, D E; Bigler, J; Eisenman, R N

    1991-01-01

    The c-erbA proto-oncogene encodes the thyroid hormone receptor, a ligand-dependent transcription factor which plays an important role in vertebrate growth and development. To define the role of the thyroid hormone receptor in developmental processes, we have begun studying c-erbA gene expression during the ontogeny of Xenopus laevis, an organism in which thyroid hormone has well-documented effects on morphogenesis. Using polymerase chain reactions (PCR) as a sensitive assay of specific gene expression, we found that polyadenylated erbA alpha RNA is present in Xenopus cells at early developmental stages, including the fertilized egg, blastula, gastrula, and neurula. By performing erbA alpha-specific PCR on reverse-transcribed RNAs from high-density sucrose gradient fractions prepared from early-stage embryos, we have demonstrated that these erbA transcripts are recruited to polysomes. Therefore, erbA is expressed in Xenopus development prior to the appearance of the thyroid gland anlage in tailbud-stage embryos. This implies that erbA alpha/thyroid hormone receptors may play ligand-independent roles during the early development of X. laevis. Quantitative PCR revealed a greater than 25-fold range in the steady-state levels of polyadenylated erbA alpha RNA across early stages of development, as expressed relative to equimolar amounts of total embryonic RNA. Substantial increases in the levels of erbA alpha RNA were noted at stages well after the onset of zygotic transcription at the mid-blastula transition, with accumulation of erbA alpha transcripts reaching a relative maximum in advance of metamorphosis. We also show that erbA alpha RNAs are expressed unequally across Xenopus neural tube embryos. This differential expression continues through later stages of development, including metamorphosis. This finding suggests that erbA alpha/thyroid hormone receptors may play roles in tissue-specific processes across all of Xenopus development. Images PMID:1656222

  6. Relationship between entropy and diffusion: A statistical mechanical derivation of Rosenfeld expression for a rugged energy landscape

    NASA Astrophysics Data System (ADS)

    Seki, Kazuhiko; Bagchi, Biman

    2015-11-01

    Diffusion—a measure of dynamics, and entropy—a measure of disorder in the system are found to be intimately correlated in many systems, and the correlation is often strongly non-linear. We explore the origin of this complex dependence by studying diffusion of a point Brownian particle on a model potential energy surface characterized by ruggedness. If we assume that the ruggedness has a Gaussian distribution, then for this model, one can obtain the excess entropy exactly for any dimension. By using the expression for the mean first passage time, we present a statistical mechanical derivation of the well-known and well-tested scaling relation proposed by Rosenfeld between diffusion and excess entropy. In anticipation that Rosenfeld diffusion-entropy scaling (RDES) relation may continue to be valid in higher dimensions (where the mean first passage time approach is not available), we carry out an effective medium approximation (EMA) based analysis of the effective transition rate and hence of the effective diffusion coefficient. We show that the EMA expression can be used to derive the RDES scaling relation for any dimension higher than unity. However, RDES is shown to break down in the presence of spatial correlation among the energy landscape values.

  7. The murine homologue of HIRA, a DiGeorge syndrome candidate gene, is expressed in embryonic structures affected in human CATCH22 patients.

    PubMed

    Wilming, L G; Snoeren, C A; van Rijswijk, A; Grosveld, F; Meijers, C

    1997-02-01

    A wide spectrum of birth defects is caused by deletions of the DiGeorge syndrome chromosomal region at 22q11. Characteristic features include cranio-facial, cardiac and thymic malformations, which are thought to arise form disturbances in the interactions between hindbrain neural crest cells and the endoderm of the pharyngeal pouches. Several genes have been identified in the shortest region of deletion overlap at 22q11, but nothing is known about the expression of these genes in mammalian embryos. We report here the isolation of several murine embryonic cDNAs of the DiGeorge syndrome candidate gene HIRA. We identified several alternatively spliced transcripts. Sequence analysis reveals that Hira bears homology to the p60 subunit of the human Chromatin Assembly Factor I and yeast hir1p and Hir2p, suggesting that Hira might have some role in chromatin assembly and/or histone regulation. Whole mount in situ hybridization of mouse embryos at various stages of development show that Hira is ubiquitously expressed. However, higher levels of transcripts are detected in the cranial neural folds, frontonasal mass, first two pharyngeal arches, circumpharyngeal neural crest and the limb buds. Since many of the structures affected in DiGeorge syndrome derive from these Hira expressing cell populations we propose that haploinsufficiency of HIRA contributes to at least some of the features of the DiGeorge phenotype.

  8. Disruption of O-GlcNAc cycling by deletion of O-GlcNAcase (Oga/Mgea5) changed gene expression pattern in mouse embryonic fibroblast (MEF) cells.

    PubMed

    Keembiyehetty, Chithra

    2015-09-01

    Adding a single O-GlcNAc moiety to a Ser/Thr molecule of a protein by O-GlcNAc transferase and transiently removing it by O-GlcNAcase is referred to as O-GlcNAc cycling (or O-GlcNAcylation). This O-GlcNAc modification is sensitive to nutrient availability and also shows cross talk with phosphorylation signaling, affecting downstream targets. A mouse model system was developed and evaluated to show genome wide transcriptional changes associated with disruption of O-GlcNAc cycling. Mouse embryonic fibroblast cells derived from O-GlcNAcase (Oga) knock out (KO), heterozygous (Het) and wild type (WT) embryos were used for an Affymetrix based microarray. Results are deposited in GEO dataset GSE52721. Data reveals that Oga KO MEFs had 2534 transcripts differentially expressed at 1.5 fold level while Oga heterozygous MEFs had 959 transcripts changed compared to WT MEFs. There were 1835 transcripts differentially expressed at 1.5 fold Het versus WT comparison group. Gene ontology analysis indicated differentially expressed genes enriched in metabolic, growth, and cell proliferation categories.

  9. Effects of mipafox, paraoxon, chlorpyrifos and its metabolite chlorpyrifos-oxon on the expression of biomarker genes of differentiation in D3 mouse embryonic stem cells.

    PubMed

    Sogorb, Miguel A; Fuster, Encarnación; Del Río, Eva; Estévez, Jorge; Vilanova, Eugenio

    2016-11-25

    Chlorpyrifos (CPS) is an organophosphorus compound (OP) capable of causing well-known cholinergic and delayed syndromes through the inhibition of acetylcholinesterase and Neuropathy Target Esterase (NTE), respectively. CPS is also able to induce neurodevelopmental toxicity in animals. NTE is codified by the Pnpla6 gene and plays a central role in differentiation and neurodifferentiation. We tested, in D3 mouse embryonic stem cells under differentiation, the effects of the NTE inhibition by the OPs mipafox, CPS and its main active metabolite chlorpyrifos-oxon (CPO) on the expression of genes Vegfa, Bcl2, Amot, Nes and Jun, previously reported to be under- or overexpressed after Pnpla6 silencing in this same cellular model. Mipafox did not significantly alter the expression of such genes at concentrations that significantly inhibited NTE. However, CPS and CPO at concentrations that caused NTE inhibition at similar levels to mipafox statistically and significantly altered the expression of most of these genes. Paraoxon (another OP with capability to inhibit esterases but not NTE) caused similar effects to CPS and CPO. These findings suggest that the molecular mechanism for the neurodevelopmental toxicity induced by CPS is not based on NTE inhibition, and that other unknown esterases might be potential targets of neurodevelopmental toxicity.

  10. Expression of GFP in nuclear transplants generated by transplantation of embryonic cell nuclei from GFP-transgenic fish into nonenucleated eggs of medaka, Oryzias latipes.

    PubMed

    Niwa, K; Kani, S; Kinoshita, M; Ozato, K; Wakamatsu, Y

    2000-01-01

    In order to investigate whether foreign genes can be used as genetic markers of donor nuclei in fish nuclear transplantation, expression of the GFP gene derived from donor nuclei was examined in nuclear transplants in medaka (Oryzias latipes). Embryonic nuclei were obtained from blastula embryos produced by crossing of transgenic fish of the wild-type strain heterozygous for the GFP gene with nontransgenic ones or by mutual crossing between transgenic fish. The GFP gene was driven by the promoter of the medaka elongation factor gene, EF-1alpha-A, which is known to induce GFP expression in many tissues except for the muscle in the transgenic fish. The nuclei were transplanted into nonenucleated unfertilized eggs of the orange-red strain. Adult nuclear transplants were successfully obtained at the rate of about 2% of the operated eggs. They were triploid and had no reproductive potential. The GFP gene was expressed in embryos, fry, and adults of nuclear transplants in a pattern similar to that in the transgenic fish. These results indicate that GFP is useful as a foreign genetic marker of donor nuclei in fish nuclear transplantation.

  11. Embryonic mouse STO cell-derived xenografts express hepatocytic functions in the livers of nonimmunosuppressed adult rats.

    PubMed

    Zhang, Mingjun; Joseph, Brigid; Gupta, Sanjeev; Guest, I; Xu, Meng; Sell, Stewart; Son, Kyung-Hwa; Koch, Katherine S; Leffert, Hyam L

    2005-02-01

    Cells derived from embryonic mouse STO cell lines differentiate into hepatocytes when transplanted into the livers of nonimmunosuppressed dipeptidylpeptidase IV (DPPIV)-negative F344 rats. Within 1 day after intrasplenic injection, donor cells moved rapidly into the liver and were found in intravascular and perivascular sites; by 1 month, they were intrasinusoidal and also integrated into hepatic plates with approximately 2% efficiency and formed conjoint bile canaliculi. Neither donor cell proliferation nor host inflammatory responses were observed during this time. Detection of intrahepatic mouse COX1 mitochondrial DNA and mouse albumin mRNA in recipient rats indicated survival and differentiation of donor cells for at least 3 months. Mouse COX1 targets were also detected intrahepatically 4-9 weeks after STO cell injection into nonimmunosuppressed wild-type rats. In contrast to STO-transplanted rats, mouse DNA or RNA was not detectable in untreated or mock-transplanted rats or in rats injected with donor cell DNA. In cultured STO donor cells, DPPIV and glucose-6-phosphatase activities were observed in small clusters; in contrast, mouse major histocompatibility complex class I H-2Kq, H-2Dq, and H-2Lq and class II I-Aq markers were undetectable in vitro before or after interferon gamma treatment. Together with H-2K allele typing, which confirmed the Swiss mouse origin of the donor cells, these observations indicate that mouse-derived STO cell lines can differentiate along hepatocytic lineage and engraft into rat liver across major histocompatibility barriers.

  12. Pituitary adenylate cyclase-activating polypeptide type 1 (PAC1) receptor is expressed during embryonic development of the earthworm.

    PubMed

    Boros, Akos; Somogyi, Ildikó; Engelmann, Péter; Lubics, Andrea; Reglodi, Dóra; Pollák, Edit; Molnár, László

    2010-03-01

    Pituitary adenylate cyclase activating polypeptide (PACAP)-like molecules have been shown to be present in cocoon albumin and in Eisenia fetida embryos at an early developmental stage (E1) by immunocytochemistry and radioimmunoassay. Here, we focus on detecting the stage at which PAC1 receptor (PAC1R)-like immunoreactivity first appears in germinal layers and structures, e.g., various parts of the central nervous system (CNS), in developing earthworm embryos. PAC1R-like immunoreactivity was revealed by Western blot and Far Western blot as early as the E2 developmental stage, occurring in the ectoderm and later in specific neurons of the developing CNS. Labeled CNS neurons were first seen in the supraesophageal ganglion (brain) and subsequently in the subesophageal and ventral nerve cord ganglia. Ultrastructurally, PAC1Rs were located mainly on plasma membranes and intracellular membranes, especially on cisternae of the endoplasmic reticulum. Therefore, PACAP-like compounds probably influence the differentiation of germinal layers (at least the ectoderm) and of some neurons and might act as signaling molecules during earthworm embryonic development.

  13. The Information in the Folds of the Complex Adaptive Landscapes of a Verbal Expression.

    ERIC Educational Resources Information Center

    Bierschenk, Bernhard

    This paper advances the bio-kinetic hypothesis that the Agent-action-Objective (AaO) axiom constitutes the only valid foundation for a behavioral expression of the informational dimensions contained in natural language. Based on the bookkeeping capacity of the discovered AaO mechanism, it is shown that this mechanism can capture emergent (AaO)…

  14. Exogenous Fibroblast Growth Factor-10 Induces Cystic Lung Development with Altered Target Gene Expression in the Presence of Heparin in Cultures of Embryonic Rat Lung

    PubMed Central

    Hashimoto, Shuichi; Nakano, Hiroshi; Suguta, Yuko; Irie, Seiko; Jianhua, Luo; Katyal, Sikardar L.

    2012-01-01

    Objectives Signaling by fibroblast growth factor (FGF) receptor (FGFR) 2IIIb regulates branching morphogenesis in the mammalian lung. FGFR2IIIb is primarily expressed in epithelial cells, whereas its ligands, FGF-10 and keratinocyte growth factor (KGF; FGF-7), are expressed in mesenchymal cells. FGF-10 null mice lack lungs, whereas KGF null animals have normal lung development, indicating that FGF-10 regulates lung branching morphogenesis. In this study, we determined the effects of FGF-10 on lung branching morphogenesis and accompanying gene expression in cultures of embryonic rat lungs. Methods Embryonic day 14 rat lungs were cultured with FGF-10 (0–250 ng/ml) in the absence or presence of heparin (30 ng/ml) for 4 days. Gene expression profiles were analyzed by Affymetrix microchip array including pathway analysis. Some of these genes, functionally important in FGF-10 signaling, were further analyzed by Northern blot, real-time PCR, in situ hybridization and immunohistochemistry. Results Exogenous FGF-10 inhibited branching and induced cystic lung growth only in cultures containing heparin. In total, 252 upregulated genes and 164 downregulated genes were identified, and these included Spry1 (Sprouty-1), Spry2 (Sprouty-2), Spred-1, Bmp4 (bone morphogenetic protein-4, BMP-4), Shh(sonic hedgehog, SHH), Pthlh (parathyroid hormone-related protein, PTHrP), Dusp6 (MAP kinase phosphatase-3, MKP-3) and Clic4 (chloride intracellular channel-4, CLIC-4) among the upregulated genes and Igf1 (insulin-like growth factor-1, IGF-1), Tcf21 (POD), Gyg1 (glycogenin 1), Sparc (secreted protein acidic and rich in cysteine, SPARC), Pcolce (procollagen C-endopeptidase enhancer protein, Pro CEP) and Lox (lysyl oxidase) among the downregulated genes. Gsk3β and Wnt2, which are involved in canonical Wnt signaling, were up- and downregulated, respectively. Conclusions Unlike FGF-7, FGF-10 effects on lung branching morphogenesis are heparin-dependent. Sprouty-2, BMP-4, SHH, IGF-1, SPARC

  15. Mouse embryonic stem cells are deficient in type I interferon expression in response to viral infections and double-stranded RNA.

    PubMed

    Wang, Ruoxing; Wang, Jundi; Paul, Amber M; Acharya, Dhiraj; Bai, Fengwei; Huang, Faqing; Guo, Yan-Lin

    2013-05-31

    Embryonic stem cells (ESCs) are considered to be a promising cell source for regenerative medicine because of their unlimited capacity for self-renewal and differentiation. However, little is known about the innate immunity in ESCs and ESC-derived cells. We investigated the responses of mouse (m)ESCs to three types of live viruses as follows: La Crosse virus, West Nile virus, and Sendai virus. Our results demonstrated mESCs were susceptible to viral infection, but they were unable to express type I interferons (IFNα and IFNβ, IFNα/β), which differ from fibroblasts (10T1/2 cells) that robustly express IFNα/β upon viral infections. The failure of mESCs to express IFNα/β was further demonstrated by treatment with polyIC, a synthetic viral dsRNA analog that strongly induced IFNα/β in 10T1/2 cells. Although polyIC transiently inhibited the transcription of pluripotency markers, the stem cell morphology was not significantly affected. However, polyIC can induce dsRNA-activated protein kinase in mESCs, and this activation resulted in a strong inhibition of cell proliferation. We conclude that the cytosolic receptor dsRNA-activated protein kinase is functional, but the mechanisms that mediate type I IFN expression are deficient in mESCs. This conclusion is further supported by the findings that the major viral RNA receptors are either expressed at very low levels (TLR3 and MDA5) or may not be active (retinoic acid-inducible gene I) in mESCs.

  16. Differentiation of monkey embryonic stem cells to hepatocytes by feeder-free dispersion culture and expression analyses of cytochrome p450 enzymes responsible for drug metabolism.

    PubMed

    Maruyama, Junya; Matsunaga, Tamihide; Yamaori, Satoshi; Sakamoto, Sakae; Kamada, Noboru; Nakamura, Katsunori; Kikuchi, Shinji; Ohmori, Shigeru

    2013-01-01

    We reported previously that monkey embryonic stem cells (ESCs) were differentiated into hepatocytes by formation of embryoid bodies (EBs). However, this EB formation method is not always efficient for assays using a large number of samples simultaneously. A dispersion culture system, one of the differentiation methods without EB formation, is able to more efficiently provide a large number of feeder-free undifferentiated cells. A previous study demonstrated the effectiveness of the Rho-associated kinase inhibitor Y-27632 for feeder-free dispersion culture and induction of differentiation of monkey ESCs into neural cells. In the present study, the induction of differentiation of cynomolgus monkey ESCs (cmESCs) into hepatocytes was performed by the dispersion culture method, and the expression and drug inducibility of cytochrome P450 (CYP) enzymes in these hepatocytes were examined. The cmESCs were successfully differentiated into hepatocytes under feeder-free dispersion culture conditions supplemented with Y-27632. The hepatocytes differentiated from cmESCs expressed the mRNAs for three hepatocyte marker genes (α-fetoprotein, albumin, CYP7A1) and several CYP enzymes, as measured by real-time polymerase chain reaction. In particular, the basal expression of cmCYP3A4 (3A8) in these hepatocytes was detected at mRNA and enzyme activity (testosterone 6β-hydroxylation) levels. Furthermore, the expression and activity of cmCYP3A4 (3A8) were significantly upregulated by rifampicin. These results indicated the effectiveness of Y-27632 supplementation for feeder-free dispersed culture and induction of differentiation into hepatocytes, and the expression of functional CYP enzyme(s) in cmESC-derived hepatic cells.

  17. Identification and evaluation of reference genes for expression studies by RT-qPCR during embryonic development of the emerging model organism, Macrobrachium olfersii.

    PubMed

    Jaramillo, Michael L; Ammar, Dib; Quispe, Ruth L; Guzman, Frank; Margis, Rogerio; Nazari, Evelise M; Müller, Yara M R

    2017-01-20

    RT-qPCR is a sensitive and highly efficient technique that is widely used in gene expression analysis and to provide insight into the molecular mechanisms underlying embryonic development. The freshwater prawn, Macrobrachium olfersii is an emerging model organism, but, the stable reference genes of this species need to be identified and validated for RT-qPCR analysis. Thus, the aim of this study was to evaluate the expression stability of six genes (β-act, GAPDH, EF-1α, RpL8, RpS6, AK) in embryos and in adult tissues (cerebral ganglia, muscle and hepatopancreas) of M. olfersii. The expression stabilities of these genes were evaluated using geNorm, NormFinder, BestKeeper, ΔCt method and integrated tool RefFinder. In the general ranking, RpL8 and RpS6 were the most stable genes in embryos, while RpS6 and RpL8 were the most stable in a combined adult tissue analysis. Analysis of the adult tissues revealed that β-act and AK were the most stable genes in cerebral ganglia, RpL8 and AK in muscle, and RpS6 and β-act in hepatopancreas. EF-1α and GAPDH were the least stable genes and as normalizer genes in RT-qPCR affected expression of the Distal-less gene during M. olfersii development. This study provides suitable reference genes for RT-qPCR analysis and allows future studies of the gene expression in M. olfersii for understanding the molecular mechanisms of their development. To our knowledge, this is the first published study that identifies and evaluates reference genes for RT-qPCR analysis in M. olfersii and could be useful as basis for evaluations of reference genes in other prawns.

  18. Tris(2-butoxyethyl)phosphate and triethyl phosphate alter embryonic development, hepatic mRNA expression, thyroid hormone levels, and circulating bile acid concentrations in chicken embryos

    SciTech Connect

    Egloff, Caroline; Crump, Doug; Porter, Emily; Williams, Kim L.; Letcher, Robert J.; Gauthier, Lewis T.; Kennedy, Sean W.

    2014-09-15

    The organophosphate flame retardants tris(2-butoxyethyl) phosphate (TBOEP) and triethyl phosphate (TEP) are used in a wide range of applications to suppress or delay the ignition and spread of fire. Both compounds have been detected in the environment and TBOEP was recently measured in free-living avian species. In this study, TBOEP and TEP were injected into the air cell of chicken embryos at concentrations ranging from 0 to 45,400 ng/g and 0 to 241,500 ng/g egg, respectively. Pipping success, development, hepatic mRNA expression of 9 target genes, thyroid hormone levels, and circulating bile acid concentrations were determined. Exposure to the highest doses of TBOEP and TEP resulted in negligible detection of the parent compounds in embryonic contents at pipping indicating their complete metabolic degradation. TBOEP exposure had limited effects on chicken embryos, with the exception of hepatic CYP3A37 mRNA induction. TEP exposure decreased pipping success to 68%, altered growth, increased liver somatic index (LSI) and plasma bile acids, and modulated genes associated with xenobiotic and lipid metabolism and the thyroid hormone pathway. Plasma thyroxine levels were decreased at all TEP doses, including an environmentally-relevant concentration (8 ng/g), and gallbladder hypotrophy was evident at ≥ 43,200 ng/g. Tarsus length and circulating thyroxine concentration emerged as potential phenotypic anchors for the modulation of transthyretin mRNA. The increase in plasma bile acids and LSI, gallbladder hypotrophy, and discoloration of liver tissue represented potential phenotypic outcomes associated with modulation of hepatic genes involved with xenobiotic and lipid metabolism. - Highlights: • TBOEP is not embryolethal to chicken embryos. • TEP affected embryonic viability, morphometric endpoints, and thyroid hormone levels. • TEP altered mRNA levels of xenobiotic and lipid metabolism genes. • TEP increased plasma bile acids and caused gallbladder hypotrophy

  19. Cloning of a novel phospholipase C-delta isoform from pacific purple sea urchin (Strongylocentrotus purpuratus) gametes and its expression during early embryonic development.

    PubMed

    Coward, Kevin; Owen, Helen; Poustka, Albert J; Hibbitt, Olivia; Tunwell, Richard; Kubota, Hiroki; Swann, Karl; Parrington, John

    2004-01-23

    Calcium (Ca(2+)) is a ubiquitous intracellular messenger, controlling a diverse range of cellular processes, including fertilization and development of the embryo. One of the key mechanisms involved in triggering intracellular calcium release is the generation of the second messenger inositol-1,4,5-phosphate (IP(3)) by the phospholipase C (PLC) class of enzymes. Although five distinct forms of PLC have been identified in mammals (beta, gamma, delta, epsilon, and zeta), only one, PLCgamma, has thus far been detected in echinoderms. In the present study, we describe the isolation of a cDNA encoding a novel PLC isoform of the delta (delta) subclass, PLC-deltasu, from the egg of the Pacific purple sea urchin Strongylocentrotus purpuratus. We also demonstrate the presence of this PLC within the sperm and in the early embryo. The PLC-deltasu cDNA (2.44kb) encodes a 742 amino acid polypeptide with an open reading frame of 84.6kDa and a pI of 6.04. All of the characteristic domains found in mammalian PLCdelta isoforms (PH domain, EF hands, an X-Y catalytic region, and a C2 domain) are present in PLC-deltasu. A homology search revealed that PLC-deltasu shares most sequence identity with bovine PLCdelta2 (39%). We present evidence that PLC-deltasu is expressed in unfertilized eggs, fertilized eggs, and in the early embryo. In addition to Northern and polymerase chain reaction (PCR) analyses, in situ hybridization experiments further demonstrated that the embryonic regions within which the PLC-deltasu transcript can be detected during early embryonic development are associated with the highest levels of proliferative activity, suggesting a possible involvement with metabolism or cell cycle regulation.

  20. Enforced Expression of HOXB4 in Human Embryonic Stem Cells Enhances the Production of Hematopoietic Progenitors but Has No Effect on the Maturation of Red Blood Cells

    PubMed Central

    Jackson, Melany; Ma, Rui; Taylor, A. Helen; Axton, Richard A.; Easterbrook, Jennifer; Kydonaki, Maria; Olivier, Emmanuel; Marenah, Lamin; Stanley, Edouard G.; Elefanty, Andrew G.; Mountford, Joanne C.

    2016-01-01

    We have developed a robust, Good Manufacturing Practice-compatible differentiation protocol capable of producing scalable quantities of red blood cells (RBCs) from human pluripotent stem cells (hPSCs). However, translation of this protocol to the clinic has been compromised because the RBCs produced are not fully mature; thus, they express embryonic and fetal, rather than adult globins, and they do not enucleate efficiently. Based on previous studies, we predicted that activation of exogenous HOXB4 would increase the production of hematopoietic progenitor cells (HPCs) from hPSCs and hypothesized that it might also promote the production of more mature, definitive RBCs. Using a tamoxifen-inducible HOXB4-ERT2 expression system, we first demonstrated that activation of HOXB4 does increase the production of HPCs from hPSCs as determined by colony-forming unit culture activity and the presence of CD43+CD34+ progenitors. Activation of HOXB4 caused a modest, but significant, increase in the proportion of immature CD235a+/CD71+ erythroid cells. However, this did not result in a significant increase in more mature CD235a+/CD71− cells. RBCs produced in the presence of enhanced HOXB4 activity expressed embryonic (ε) and fetal (γ) but not adult (β) globins, and the proportion of enucleated cells was comparable to that of the control cultures. We conclude that programming with the transcription factor HOXB4 increases the production of hematopoietic progenitors and immature erythroid cells but does not resolve the inherent challenges associated with the production of mature adult-like enucleated RBCs. Significance As worldwide blood donations decrease and transfusable transmitted infections increase, intense interest has ensued in deriving red blood cells (RBCs) in vitro from alternative sources such as pluripotent stem cells. A translatable protocol was developed to generate RBCs; however, these RBCs have an immature phenotype. It was hypothesized that the transcription

  1. Clock Gene Expression in Gravid Uterus and Extra-Embryonic Tissues During Late Gestation in the Mouse

    PubMed Central

    Ratajczak, Christine K.; Herzog, Erik D.; Muglia, Louis J.

    2013-01-01

    Evidence in humans and rodents suggests the importance of circadian rhythmicity in parturition. A molecular clock underlies the generation of circadian rhythmicity. While this molecular clock has been identified in numerous tissues, the expression and regulation of clock genes in tissues relevant to parturition is largely undefined. Here, we examine the expression and regulation of the clock genes Bmal1, Clock, Cry(Cryptochrome)1/2, and Per(Period)1/2 in the murine gravid uterus, placenta, and fetal membranes during late gestation. All clock genes examined were expressed in the tissues of interest throughout the last third of gestation. Upregulation of a subset of these clock genes was observed in each of these tissues in the final two days of gestation. Oscillating expression of mRNA for a subset of the examined clock genes was detected in the gravid uterus, placenta, and fetal membranes. Furthermore, bioluminescence recording on explants from gravid Per2::luciferase mice indicated rhythmic expression of PER2 protein in these tissues. These data demonstrate expression and rhythmicity of clock genes in tissues relevant to parturition indicating a potential contribution of peripheral molecular clocks to this process. PMID:20450826

  2. A Perturbed MicroRNA Expression Pattern Characterizes Embryonic Neural Stem Cells Derived from a Severe Mouse Model of Spinal Muscular Atrophy (SMA)

    PubMed Central

    Luchetti, Andrea; Ciafrè, Silvia Anna; Murdocca, Michela; Malgieri, Arianna; Masotti, Andrea; Sanchez, Massimo; Farace, Maria Giulia; Novelli, Giuseppe; Sangiuolo, Federica

    2015-01-01

    Spinal muscular atrophy (SMA) is an inherited neuromuscular disorder and the leading genetic cause of death in infants. Despite the disease-causing gene, survival motor neuron (SMN1), encodes a ubiquitous protein, SMN1 deficiency preferentially affects spinal motor neurons (MNs), leaving the basis of this selective cell damage still unexplained. As neural stem cells (NSCs) are multipotent self-renewing cells that can differentiate into neurons, they represent an in vitro model for elucidating the pathogenetic mechanism of neurodegenerative diseases such as SMA. Here we characterize for the first time neural stem cells (NSCs) derived from embryonic spinal cords of a severe SMNΔ7 SMA mouse model. SMNΔ7 NSCs behave as their wild type (WT) counterparts, when we consider neurosphere formation ability and the expression levels of specific regional and self-renewal markers. However, they show a perturbed cell cycle phase distribution and an increased proliferation rate compared to wild type cells. Moreover, SMNΔ7 NSCs are characterized by the differential expression of a limited number of miRNAs, among which miR-335-5p and miR-100-5p, reduced in SMNΔ7 NSCs compared to WT cells. We suggest that such miRNAs may be related to the proliferation differences characterizing SMNΔ7 NSCs, and may be potentially involved in the molecular mechanisms of SMA. PMID:26258776

  3. The engrailed-expressing secondary head spots in the embryonic crayfish brain: examples for a group of homologous neurons in Crustacea and Hexapoda?

    PubMed

    Sintoni, Silvia; Fabritius-Vilpoux, Kathia; Harzsch, Steffen

    2007-12-01

    Hexapoda have been traditionally seen as the closest relatives of the Myriapoda (Tracheata hypothesis) but molecular studies have challenged this hypothesis and rather have suggested a close relationship of hexapods and crustaceans (Tetraconata hypothesis). In this new debate, data on the structure and development of the arthropod nervous system contribute important new data ("neurophylogeny"). Neurophylogenetic studies have already provided several examples for individually identifiably neurons in the ventral nerve cord that are homologous between insects and crustaceans. In the present report, we have analysed the emergence of Engrailed-expressing cells in the embryonic brain of a parthenogenetic crayfish, the marbled crayfish (Marmorkrebs), and have compared our findings to the pattern previously reported from insects. Our data suggest that a group of six Engrailed-expressing neurons in the optic anlagen, the so-called secondary head spot cells can be homologised between crayfish and the grasshopper. In the grasshopper, these cells are supposed to be involved in establishing the primary axon scaffold of the brain. Our data provide the first example for a cluster of brain neurons that can be homologised between insects and crustaceans and show that even at the level of certain cell groups, brain structures are evolutionary conserved in these two groups.

  4. The PR/SET domain zinc finger protein Prdm4 regulates gene expression in embryonic stem cells but plays a nonessential role in the developing mouse embryo.

    PubMed

    Bogani, Debora; Morgan, Marc A J; Nelson, Andrew C; Costello, Ita; McGouran, Joanna F; Kessler, Benedikt M; Robertson, Elizabeth J; Bikoff, Elizabeth K

    2013-10-01

    Prdm4 is a highly conserved member of the Prdm family of PR/SET domain zinc finger proteins. Many well-studied Prdm family members play critical roles in development and display striking loss-of-function phenotypes. Prdm4 functional contributions have yet to be characterized. Here, we describe its widespread expression in the early embryo and adult tissues. We demonstrate that DNA binding is exclusively mediated by the Prdm4 zinc finger domain, and we characterize its tripartite consensus sequence via SELEX (systematic evolution of ligands by exponential enrichment) and ChIP-seq (chromatin immunoprecipitation-sequencing) experiments. In embryonic stem cells (ESCs), Prdm4 regulates key pluripotency and differentiation pathways. Two independent strategies, namely, targeted deletion of the zinc finger domain and generation of a EUCOMM LacZ reporter allele, resulted in functional null alleles. However, homozygous mutant embryos develop normally and adults are healthy and fertile. Collectively, these results strongly suggest that Prdm4 functions redundantly with other transcriptional partners to cooperatively regulate gene expression in the embryo and adult animal.

  5. A Perturbed MicroRNA Expression Pattern Characterizes Embryonic Neural Stem Cells Derived from a Severe Mouse Model of Spinal Muscular Atrophy (SMA).

    PubMed

    Luchetti, Andrea; Ciafrè, Silvia Anna; Murdocca, Michela; Malgieri, Arianna; Masotti, Andrea; Sanchez, Massimo; Farace, Maria Giulia; Novelli, Giuseppe; Sangiuolo, Federica

    2015-08-06

    Spinal muscular atrophy (SMA) is an inherited neuromuscular disorder and the leading genetic cause of death in infants. Despite the disease-causing gene, survival motor neuron (SMN1), encodes a ubiquitous protein, SMN1 deficiency preferentially affects spinal motor neurons (MNs), leaving the basis of this selective cell damage still unexplained. As neural stem cells (NSCs) are multipotent self-renewing cells that can differentiate into neurons, they represent an in vitro model for elucidating the pathogenetic mechanism of neurodegenerative diseases such as SMA. Here we characterize for the first time neural stem cells (NSCs) derived from embryonic spinal cords of a severe SMNΔ7 SMA mouse model. SMNΔ7 NSCs behave as their wild type (WT) counterparts, when we consider neurosphere formation ability and the expression levels of specific regional and self-renewal markers. However, they show a perturbed cell cycle phase distribution and an increased proliferation rate compared to wild type cells. Moreover, SMNΔ7 NSCs are characterized by the differential expression of a limited number of miRNAs, among which miR-335-5p and miR-100-5p, reduced in SMNΔ7 NSCs compared to WT cells. We suggest that such miRNAs may be related to the proliferation differences characterizing SMNΔ7 NSCs, and may be potentially involved in the molecular mechanisms of SMA.

  6. Constitutive Smad signaling and Smad-dependent collagen gene expression in mouse embryonic fibroblasts lacking peroxisome proliferator-activated receptor-{gamma}

    SciTech Connect

    Ghosh, Asish K Wei, Jun; Wu, Minghua; Varga, John

    2008-09-19

    Transforming growth factor-{beta} (TGF-{beta}), a potent inducer of collagen synthesis, is implicated in pathological fibrosis. Peroxisome proliferator-activated receptor-{gamma} (PPAR-{gamma}) is a nuclear hormone receptor that regulates adipogenesis and numerous other biological processes. Here, we demonstrate that collagen gene expression was markedly elevated in mouse embryonic fibroblasts (MEFs) lacking PPAR-{gamma} compared to heterozygous control MEFs. Treatment with the PPAR-{gamma} ligand 15d-PGJ{sub 2} failed to down-regulate collagen gene expression in PPAR-{gamma} null MEFs, whereas reconstitution of these cells with ectopic PPAR-{gamma} resulted in their normalization. Compared to control MEFs, PPAR-{gamma} null MEFs displayed elevated levels of the Type I TGF-{beta} receptor (T{beta}RI), and secreted more TGF-{beta}1 into the media. Furthermore, PPAR-{gamma} null MEFs showed constitutive phosphorylation of cellular Smad2 and Smad3, even in the absence of exogenous TGF-{beta}, which was abrogated by the ALK5 inhibitor SB431542. Constitutive Smad2/3 phosphorylation in PPAR-{gamma} null MEFs was associated with Smad3 binding to its cognate DNA recognition sequences, and interaction with coactivator p300 previously implicated in TGF-{beta} responses. Taken together, these results indicate that loss of PPAR-{gamma} in MEFs is associated with upregulation of collagen synthesis, and activation of intracellular Smad signal transduction, due, at least in part, to autocrine TGF-{beta} stimulation.

  7. Efficient generation of human embryonic stem cell-derived cardiac progenitors based on tissue-specific enhanced green fluorescence protein expression.

    PubMed

    Szebényi, Kornélia; Péntek, Adrienn; Erdei, Zsuzsa; Várady, György; Orbán, Tamás I; Sarkadi, Balázs; Apáti, Ágota

    2015-01-01

    Cardiac progenitor cells (CPCs) are committed to the cardiac lineage but retain their proliferative capacity before becoming quiescent mature cardiomyocytes (CMs). In medical therapy and research, the use of human pluripotent stem cell-derived CPCs would have several advantages compared with mature CMs, as the progenitors show better engraftment into existing heart tissues, and provide unique potential for cardiovascular developmental as well as for pharmacological studies. Here, we demonstrate that the CAG promoter-driven enhanced green fluorescence protein (EGFP) reporter system enables the identification and isolation of embryonic stem cell-derived CPCs. Tracing of CPCs during differentiation confirmed up-regulation of surface markers, previously described to identify cardiac precursors and early CMs. Isolated CPCs express cardiac lineage-specific transcripts, still have proliferating capacity, and can be re-aggregated into embryoid body-like structures (CAG-EGFP(high) rEBs). Expression of troponin T and NKX2.5 mRNA is up-regulated in long-term cultured CAG-EGFP(high) rEBs, in which more than 90% of the cells become Troponin I positive mature CMs. Moreover, about one third of the CAG-EGFP(high) rEBs show spontaneous contractions. The method described here provides a powerful tool to generate expandable cultures of pure human CPCs that can be used for exploring early markers of the cardiac lineage, as well as for drug screening or tissue engineering applications.

  8. Smooth muscles and stem cells of embryonic guts express KIT, PDGFRRA, CD34 and many other stem cell antigens: suggestion that GIST arise from smooth muscles and gut stem cells.

    PubMed

    Terada, Tadashi

    2013-01-01

    Gastrointestinal stromal tumor (GIST) is believed to original from interstitial cells of (ICC) present in Auerbach's nerve plexus. GIST frequently shows gain-of-function mutations of KIT and PDGFRA. In practical pathology, GIST is diagnosed by positive immunostaining or KIT and/or CD34. The author herein demonstrates that human embryonic gastrointestinal tract smooth muscles (HEGITSM) and human embryonic stem gastrointestinal cells (HEGISC) consistently express KIT, CD34, NCAM, PDGFRA and other stem cell (SC) antigens NSE, synaptophysin, chromogranin, bcl-2, ErbB, and MET throughout the embryonic development of 7-40 gestational week (GW). CK14 was negative. The author examines 42 cases (7-40 GW) of embryonic GI tract (EGI). The HEGISM, HEGIST, and gall bladder smooth muscles (SM) were consistently positive for KIT, CD34, NCAM, PDGFRA, synaptophysin, chromogranin, NSE, bcl-2, ErbB2, and MET in foregut, stomach, GB, midgut, and hindgut throughout the fetal life (7-40 GW). The stem cells (SC) were seen to create the SM, nerves, ICC, and other all structures of GI tract. In adult gastrointestinal walls (n=30), KIT, CD34, PDGFRA, and S100 proteins were expressed in Auerbach's nerve plexus and ICC. The bronchial and vascular SM of embryos did not express these molecules. In GIST, frequent expressions of KIT (100%, 30/30), CD34 (90%, 27/30), and PDGFRA (83%, 25/30) were seen. In general, characteristics of tumors recapitulate their embryonic life. Therefore, it is strongly suggested that GIST may be originated from GI SM and/or GI SC in addition to ICC.

  9. CHIR99021 promotes self-renewal of mouse embryonic stem cells by modulation of protein-encoding gene and long intergenic non-coding RNA expression

    SciTech Connect

    Wu, Yongyan; Ai, Zhiying; Yao, Kezhen; Cao, Lixia; Du, Juan; Shi, Xiaoyan; Guo, Zekun; Zhang, Yong

    2013-10-15

    Embryonic stem cells (ESCs) can proliferate indefinitely in vitro and differentiate into cells of all three germ layers. These unique properties make them exceptionally valuable for drug discovery and regenerative medicine. However, the practical application of ESCs is limited because it is difficult to derive and culture ESCs. It has been demonstrated that CHIR99021 (CHIR) promotes self-renewal and enhances the derivation efficiency of mouse (m)ESCs. However, the downstream targets of CHIR are not fully understood. In this study, we identified CHIR-regulated genes in mESCs using microarray analysis. Our microarray data demonstrated that CHIR not only influenced the Wnt/β-catenin pathway by stabilizing β-catenin, but also modulated several other pluripotency-related signaling pathways such as TGF-β, Notch and MAPK signaling pathways. More detailed analysis demonstrated that CHIR inhibited Nodal signaling, while activating bone morphogenetic protein signaling in mESCs. In addition, we found that pluripotency-maintaining transcription factors were up-regulated by CHIR, while several developmental-related genes were down-regulated. Furthermore, we found that CHIR altered the expression of epigenetic regulatory genes and long intergenic non-coding RNAs. Quantitative real-time PCR results were consistent with microarray data, suggesting that CHIR alters the expression pattern of protein-encoding genes (especially transcription factors), epigenetic regulatory genes and non-coding RNAs to establish a relatively stable pluripotency-maintaining network. - Highlights: • Combined use of CHIR with LIF promotes self-renewal of J1 mESCs. • CHIR-regulated genes are involved in multiple pathways. • CHIR inhibits Nodal signaling and promotes Bmp4 expression to activate BMP signaling. • Expression of epigenetic regulatory genes and lincRNAs is altered by CHIR.

  10. Protein profile of basal prostate epithelial progenitor cells--stage-specific embryonal antigen 4 expressing cells have enhanced regenerative potential in vivo.

    PubMed

    Höfner, Thomas; Klein, Corinna; Eisen, Christian; Rigo-Watermeier, Teresa; Haferkamp, Axel; Sprick, Martin R

    2016-04-01

    The long-term propagation of basal prostate progenitor cells ex vivo has been very difficult in the past. The development of novel methods to expand prostate progenitor cells in vitro allows determining their cell surface phenotype in greater detail. Mouse (Lin(-)Sca-1(+) CD49f(+) Trop2(high)-phenotype) and human (Lin(-) CD49f(+) TROP2(high)) basal prostate progenitor cells were expanded in vitro. Human and mouse cells were screened using 242 anti-human or 176 antimouse monoclonal antibodies recognizing the cell surface protein profile. Quantitative expression was evaluated at the single-cell level using flow cytometry. Differentially expressed cell surface proteins were evaluated in conjunction with the known CD49f(+)/TROP2(high) phenotype of basal prostate progenitor cells and characterized by in vivo sandwich-transplantation experiments using nude mice. The phenotype of basal prostate progenitor cells was determined as CD9(+)/CD24(+)/CD29(+)/CD44(+)/CD47(+)/CD49f(+)/CD104(+)/CD147(+)/CD326(+)/Trop2(high) of mouse as well as human origin. Our analysis revealed several proteins, such as CD13, Syndecan-1 and stage-specific embryonal antigens (SSEAs), as being differentially expressed on murine and human CD49f(+) TROP2(+) basal prostate progenitor cells. Transplantation experiments suggest that CD49f(+) TROP2(high) SSEA-4(high) human prostate basal progenitor cells to be more potent to regenerate prostate tubules in vivo as compared with CD49f(+) TROP2(high) or CD49f(+) TROP2(high) SSEA-4(low) cells. Determination of the cell surface protein profile of functionally defined murine and human basal prostate progenitor cells reveals differentially expressed proteins that may change the potency and regenerative function of epithelial progenitor cells within the prostate. SSEA-4 is a candidate cell surface marker that putatively enables a more accurate identification of the basal PESC lineage.

  11. Early embryonic expression of a putative ecdysteroid-phosphate phosphatase in the water flea, Daphnia magna (Cladocera: Daphniidae).

    PubMed

    Asada, Miki; Kato, Yasuhiko; Matsuura, Tomoaki; Watanabe, Hajime

    2014-01-01

    Ecdysteroids, known as molting hormones, play central roles in the onset of molting, metamorphosis, and reproduction in arthropods. The ecdysteroids stored in eggs also play an important role in embryogenesis. In insects, ecdysteroids are stored as phosphate esters, which are converted to an active form by ecdysteroid-phosphate phosphatase (EPPase). Although EPPase is believed to be widely conserved in the Ecdysozoa, little is known about its expression in clades other than Insecta. In this study, we cloned a putative EPPase gene from a small fresh water crustacean known as a water flea, Daphnia magna Straus (Cladocera: Daphniidae), and examined its expression during embryogenesis. The amino acid sequence of the putative crustacean EPPase cDNA showed high similarity to insect EPPase and human suppressor of T-cell receptor signaling-1. We also found that the D. magna EPPase was highly expressed during early embryogenesis; its expression rapidly decreased 6 h after oviposition. This timing corresponds to the onset of organogenesis in D. magna. The expression of EPPase could not be detected in diapaused eggs. This is the first report of an EPPase from crustaceans, and the results suggest that the function of EPPase is conserved between insects and crustaceans.

  12. Combined lineage mapping and gene expression profiling of embryonic brain patterning using ultrashort pulse microscopy and image registration

    NASA Astrophysics Data System (ADS)

    Gibbs, Holly C.; Dodson, Colin R.; Bai, Yuqiang; Lekven, Arne C.; Yeh, Alvin T.

    2014-12-01

    During embryogenesis, presumptive brain compartments are patterned by dynamic networks of gene expression. The spatiotemporal dynamics of these networks, however, have not been characterized with sufficient resolution for us to understand the regulatory logic resulting in morphogenetic cellular behaviors that give the brain its shape. We have developed a new, integrated approach using ultrashort pulse microscopy [a high-resolution, two-photon fluorescence (2PF)-optical coherence microscopy (OCM) platform using 10-fs pulses] and image registration to study brain patterning and morphogenesis in zebrafish embryos. As a demonstration, we used time-lapse 2PF to capture midbrain-hindbrain boundary morphogenesis and a wnt1 lineage map from embryos during brain segmentation. We then performed in situ hybridization to deposit NBT/BCIP, where wnt1 remained actively expressed, and reimaged the embryos with combined 2PF-OCM. When we merged these datasets using morphological landmark registration, we found that the mechanism of boundary formation differs along the dorsoventral axis. Dorsally, boundary sharpening is dominated by changes in gene expression, while ventrally, sharpening may be accomplished by lineage sorting. We conclude that the integrated visualization of lineage reporter and gene expression domains simultaneously with brain morphology will be useful for understanding how changes in gene expression give rise to proper brain compartmentalization and structure.

  13. Combined lineage mapping and gene expression profiling of embryonic brain patterning using ultrashort pulse microscopy and image registration.

    PubMed

    Gibbs, Holly C; Dodson, Colin R; Bai, Yuqiang; Lekven, Arne C; Yeh, Alvin T

    2014-12-01

    During embryogenesis, presumptive brain compartments are patterned by dynamic networks of gene expression. The spatiotemporal dynamics of these networks, however, have not been characterized with sufficient resolution for us to understand the regulatory logic resulting in morphogenetic cellular behaviors that give the brain its shape. We have developed a new, integrated approach using ultrashort pulse microscopy [a high-resolution, two-photon fluorescence (2PF)-optical coherence microscopy (OCM) platform using 10-fs pulses] and image registration to study brain patterning and morphogenesis in zebrafish embryos. As a demonstration, we used time-lapse 2PF to capture midbrain-hindbrain boundary morphogenesis and a wnt1 lineage map from embryos during brain segmentation. We then performed in situ hybridization to deposit NBT/BCIP, where wnt1 remained actively expressed, and reimaged the embryos with combined 2PF-OCM. When we merged these datasets using morphological landmark registration, we found that the mechanism of boundary formation differs along the dorsoventral axis. Dorsally, boundary sharpening is dominated by changes in gene expression, while ventrally, sharpening may be accomplished by lineage sorting. We conclude that the integrated visualization of lineage reporter and gene expression domains simultaneously with brain morphology will be useful for understanding how changes in gene expression give rise to proper brain compartmentalization and structure.

  14. Assessment of cathepsin mRNA expression and enzymatic activity during early embryonic development in the yellowtail kingfish Seriola lalandi.

    PubMed

    Palomino, Jaime; Herrera, Giannina; Torres-Fuentes, Jorge; Dettleff, Phillip; Patel, Alok; Martínez, Víctor

    2017-02-21

    In pelagic species such as Seriola lalandi, survival of both the eggs and embryos depends on yolk processing during oocyte maturation and embryo development. The main enzymes involved in these processes are the cathepsins, which are essential for the hydration process, acquiring buoyancy and nutrition of the embryo before hatching. This study aimed to investigate the mRNA expression profiles of cathepsins B, D and L (catb, catd and catl) and the activity of these enzymes during early development in S. lalandi. We included previtellogenic oocytes (PO). All three enzymes were highly expressed in PO, but the expression was reduced throughout development. Between PO and recently spawned eggs (E1) the transcript to catb and catd decreased, unlike catl. Cathepsin B activity, showed stable levels between PO until blastula stage (E4). High activities levels of cathepsins D and L were observed in E1 in comparison with later developmental stages. Cathepsin L activity remained constant until E1, consistent with observations in other pelagic spawners, where its participation in a second protolithic cleavage of the yolk proteins, has been proposed for this enzyme. Their profiles of both mRNA expression and enzymatic activity indicate the importance of these enzymes during early development and suggest different roles in egg yolk processing for the hydration process and nutrition in early embryos in this species.

  15. Modelling mutational landscapes of human cancers in vitro

    NASA Astrophysics Data System (ADS)

    Olivier, Magali; Weninger, Annette; Ardin, Maude; Huskova, Hana; Castells, Xavier; Vallée, Maxime P.; McKay, James; Nedelko, Tatiana; Muehlbauer, Karl-Rudolf; Marusawa, Hiroyuki; Alexander, John; Hazelwood, Lee; Byrnes, Graham; Hollstein, Monica; Zavadil, Jiri

    2014-03-01

    Experimental models that recapitulate mutational landscapes of human cancers are needed to decipher the rapidly expanding data on human somatic mutations. We demonstrate that mutation patterns in immortalised cell lines derived from primary murine embryonic fibroblasts (MEFs) exposed in vitro to carcinogens recapitulate key features of mutational signatures observed in human cancers. In experiments with several cancer-causing agents we obtained high genome-wide concordance between human tumour mutation data and in vitro data with respect to predominant substitution types, strand bias and sequence context. Moreover, we found signature mutations in well-studied human cancer driver genes. To explore endogenous mutagenesis, we used MEFs ectopically expressing activation-induced cytidine deaminase (AID) and observed an excess of AID signature mutations in immortalised cell lines compared to their non-transgenic counterparts. MEF immortalisation is thus a simple and powerful strategy for modelling cancer mutation landscapes that facilitates the interpretation of human tumour genome-wide sequencing data.

  16. Cell cycle-dependent expression of Dub3, Nanog and the p160 family of nuclear receptor coactivators (NCoAs) in mouse embryonic stem cells.

    PubMed

    van der Laan, Siem; Golfetto, Eleonora; Vanacker, Jean-Marc; Maiorano, Domenico

    2014-01-01

    Pluripotency of embryonic stem cells (ESC) is tightly regulated by a network of transcription factors among which the estrogen-related receptor β (Esrrb). Esrrb contributes to the relaxation of the G1 to S-phase (G1/S) checkpoint in mouse ESCs by transcriptional control of the deubiquitylase Dub3 gene, contributing to Cdc25A persistence after DNA damage. We show that in mESCs, Dub3 gene expression is cell cycle regulated and is maximal prior G1/S transition. In addition, following UV-induced DNA damage in G1, Dub3 expression markedly increases in S-phase also suggesting a role in checkpoint recovery. Unexpectedly, we also observed cell cycle-regulation of Nanog expression, and not Oct4, reaching high levels prior to G1/S transition, finely mirroring Cyclin E1 fluctuations. Curiously, while Esrrb showed only limited cell-cycle oscillations, transcript levels of the p160 family of nuclear receptor coactivators (NCoAs) displayed strong cell cycle-dependent fluctuations. Since NCoAs function in concert with Esrrb in transcriptional activation, we focussed on NCoA1 whose levels specifically increase prior onset of Dub3 transcription. Using a reporter assay, we show that NCoA1 potentiates Esrrb-mediated transcription of Dub3 and we present evidence of protein interaction between the SRC1 splice variant NCoA1 and Esrrb. Finally, we show a differential developmental regulation of all members of the p160 family during neural conversion of mESCs. These findings suggest that in mouse ESCs, changes in the relative concentration of a coactivator at a given cell cycle phase, may contribute to modulation of the transcriptional activity of the core transcription factors of the pluripotent network and be implicated in cell fate decisions upon onset of differentiation.

  17. Cell Cycle-Dependent Expression of Dub3, Nanog and the p160 Family of Nuclear Receptor Coactivators (NCoAs) in Mouse Embryonic Stem Cells

    PubMed Central

    van der Laan, Siem; Golfetto, Eleonora; Vanacker, Jean-Marc; Maiorano, Domenico

    2014-01-01

    Pluripotency of embryonic stem cells (ESC) is tightly regulated by a network of transcription factors among which the estrogen-related receptor β (Esrrb). Esrrb contributes to the relaxation of the G1 to S-phase (G1/S) checkpoint in mouse ESCs by transcriptional control of the deubiquitylase Dub3 gene, contributing to Cdc25A persistence after DNA damage. We show that in mESCs, Dub3 gene expression is cell cycle regulated and is maximal prior G1/S transition. In addition, following UV-induced DNA damage in G1, Dub3 expression markedly increases in S-phase also suggesting a role in checkpoint recovery. Unexpectedly, we also observed cell cycle-regulation of Nanog expression, and not Oct4, reaching high levels prior to G1/S transition, finely mirroring Cyclin E1 fluctuations. Curiously, while Esrrb showed only limited cell-cycle oscillations, transcript levels of the p160 family of nuclear receptor coactivators (NCoAs) displayed strong cell cycle-dependent fluctuations. Since NCoAs function in concert with Esrrb in transcriptional activation, we focussed on NCoA1 whose levels specifically increase prior onset of Dub3 transcription. Using a reporter assay, we show that NCoA1 potentiates Esrrb-mediated transcription of Dub3 and we present evidence of protein interaction between the SRC1 splice variant NCoA1 and Esrrb. Finally, we show a differential developmental regulation of all members of the p160 family during neural conversion of mESCs. These findings suggest that in mouse ESCs, changes in the relative concentration of a coactivator at a given cell cycle phase, may contribute to modulation of the transcriptional activity of the core transcription factors of the pluripotent network and be implicated in cell fate decisions upon onset of differentiation. PMID:24695638

  18. Embryonic Expression of the Putative γ Subunit of the Sodium Pump Is Required for Acquisition of Fluid Transport Capacity during Mouse Blastocyst Development

    PubMed Central

    Jones, D. Holstead; Davies, Tyler C.; Kidder, Gerald M.

    1997-01-01

    The sodium/potassium pump, Na+,K+-ATPase, is generally understood to function as a heterodimer of two subunits, a catalytic α subunit and a noncatalytic, glycosylated β subunit. Recently, a putative third subunit, the γ subunit, was cloned. This small protein (6.5 kD) coimmunoprecipitates with the α and β subunits and is closely associated with the ouabain binding site on the holoenzyme, but its function is unknown. We have investigated the expression of the γ subunit in preimplantation mouse development, where Na+,K+-ATPase plays a critical role as the driving force for blastocoel formation (cavitation). Using reverse transcriptase-polymerase chain reaction, we demonstrated that the γ subunit mRNA accumulates continuously from the eight-cell stage onward and that it cosediments with polyribosomes from its time of first appearance. Confocal immunofluorescence microscopy revealed that the γ subunit itself accumulates and is localized at the blastomere surfaces up to the blastocyst stage. In contrast with the α and β subunits, the γ subunit is not concentrated in the basolateral surface of the polarized trophectoderm layer, but is strongly expressed at the apical surface as well. When embryos were treated with antisense oligodeoxynucleotide complementary to the γ subunit mRNA, ouabain-sensitive K+ transport (as indicated by 86Rb+ uptake) was reduced and cavitation delayed. However, Na+,K+-ATPase enzymatic activity was unaffected as determined by a direct phosphorylation assay (“back door” phosphorylation) applied to plasma membrane preparations. These results indicate that the γ subunit, although not an integral component of Na+,K+-ATPase, is an important determinant of active cation transport and that, as such, its embryonic expression is essential for blastocoel formation in the mouse. PMID:9396759

  19. Differential expression of estrogen receptor alpha in the embryonic adrenal-kidney-gonadal complex of the oviparous lizard, Calotes versicolor (Daud.).

    PubMed

    Inamdar, L S; Khodnapur, B S; Nindi, R S; Dasari, S; Seshagiri, P B

    2015-09-01

    Estrogen signalling is critical for ovarian differentiation in reptiles with temperature-dependent sex determination (TSD). To elucidate the involvement of estrogen in this process, adrenal-kidney-gonadal (AKG) expression of estrogen receptor (ERα) was studied at female-producing temperature (FPT) in the developing embryos of the lizard, Calotes versicolor which exhibits a distinct pattern of TSD. The eggs of this lizard were incubated at 31.5±0.5°C (100% FPT). The torso of embryos containing adrenal-kidney-gonadal complex (AKG) was collected during different stages of development and subjected to Western blotting and immunohistochemistry analysis. The ERα antibody recognized two protein bands with apparent molecular weight ∼55 and ∼45kDa in the total protein extracts of embryonic AKG complex of C. versicolor. The observed results suggest the occurrence of isoforms of ERα. The differential expression of two different protein isoforms may reveal their distinct role in cell proliferation during gonadal differentiation. This is the first report to reveal two isoforms of the ERα in a reptile during development. Immunohistochemical studies reveal a weak, but specific, cytoplasmic ERα immunostaining exclusively in the AKG during late thermo-sensitive period suggesting the responsiveness of AKG to estrogens before gonadal differentiation at FPT. Further, cytoplasmic as well as nuclear expression of ERα in the medulla and in oogonia of the cortex (faint activity) at gonadal differentiation stage suggests that the onset of gonadal estrogen activity coincides with sexual differentiation of gonad. Intensity and pattern of the immunoreactions of ERα in the medullary region at FPT suggest endogenous production of estrogen which may act in a paracrine fashion to induce neighboring cells into ovarian differentiation pathway.

  20. The flamingo-related mouse Celsr family (Celsr1-3) genes exhibit distinct patterns of expression during embryonic development.

    PubMed

    Formstone, C J; Little, P F

    2001-11-01

    We have isolated cDNAs for three members of a family of seven-pass transmembrane cadherins in mouse (Celsr1, 2 and 3). These three genes represent vertebrate homologues of flamingo/starry night, recently identified as an essential component of the Drosophila planar cell polarity pathway and for the correct formation of dendritic fields within the Drosophila peripheral nervous system. In this study, we show that each member of the mouse Celsr family exhibit distinct patterns of expression within a range of different tissues within the developing embryo. Celsr1 and Celsr2 expression is observed during gastrulation and within the developing nervous system. Celsr3 transcripts, however, are found only at sites of active neurogenesis.

  1. Identification and characterization of homeobox transcription factor genes in Strongylocentrotus purpuratus, and their expression in embryonic development.

    PubMed

    Howard-Ashby, Meredith; Materna, Stefan C; Brown, C Titus; Chen, Lili; Cameron, R Andrew; Davidson, Eric H

    2006-12-01

    A set of 96 homeobox transcription factors was identified in the Strongylocentrotus purpuratus genome using permissive blast searches with a large collection of authentic homeodomain sequences from mouse, human and fly. A phylogenetic tree was constructed to compare the sea urchin homeobox gene family to those of vertebrates, with the result that with the only a few exceptions, orthologs of all vertebrate homeodomain genes were uncovered by our search. QPCR time course measurements revealed that 65% of these genes are expressed within the first 48 h of development (late gastrula). For genes displaying sufficiently high levels of transcript during the first 24 h of development (late blastula), whole mount in situ hybridization was carried out up to 48 h to determine spatial patterns of expression. The results demonstrate that homeodomain transcription factors participate in multiple and diverse developmental functions, in that they are used at a range of time points and in every territory of the developing embryo.

  2. Expression of spicule matrix protein gene SM30 in embryonic and adult mineralized tissues of sea urchin Hemicentrotus pulcherrimus

    NASA Technical Reports Server (NTRS)

    Kitajima, T.; Tomita, M.; Killian, C. E.; Akasaka, K.; Wilt, F. H.

    1996-01-01

    We have isolated a cDNA clone for spicule matrix protein, SM30, from sea urchin Hemicentrotus pulcherrimus and have studied the expression of this gene in comparison with that of another spicule matrix protein gene, SM50. In cultured micromeres as well as in intact embryos transcripts of SM30 were first detectable around the onset of spicule formation and rapidly increased with the growth of spicules, which accompanied accumulation of glycosylated SM30 protein(s). When micromeres were cultured in the presence of Zn2+, spicule formation and SM30 expression were suppressed, while both events resumed concurrently after the removal of Zn2+ from the culture medium. Expression of SM50, in contrast, started before the appearance of spicules and was not sensitive to Zn2+. Differences were also observed in adult tissues; SM30 mRNA was detected in spines and tube feet but not in the test, while SM50 mRNA was apparent in all of these mineralized tissues at similar levels. These results strongly suggest that the SM30 gene is regulated by a different mechanism to that of the SM50 gene and that the products of these two genes are differently involved in sea urchin biomineralization. A possible role of SM30 protein in skeleton formation is discussed.

  3. Changes in the fibronectin-specific integrin expression pattern modify the migratory behavior of sarcoma S180 cells in vitro and in the embryonic environment

    PubMed Central

    1995-01-01

    The molecules that mediate cell-matrix recognition, such as fibronectins (FN) and integrins, modulate cell behavior. We have previously demonstrated that FN and the beta 1-integrins are used during neural crest cell (NCC) migration in vitro as well as in vivo, and that the FN cell-binding domains I and II exhibit functional specificity in controlling either NCC attachment, spreading, or motility in vitro. In the present study, we have analyzed the effect of changes in the integrin expression patterns on migratory cell behavior in vivo. We have generated, after stable transfection, S180 cells expressing different levels of alpha 4 beta 1 or alpha 5 beta 1 integrins, two integrins that recognize distinct FN cell-binding domains. Murine S180 cells were chosen because they behave similarly to NCC after they are grafted into the NCC embryonic pathways in the chicken embryo. Thus, they provide a model system with which to investigate the mechanisms controlling in vitro and in vivo migratory cell behavior. We have observed that either the overexpression of alpha 5 beta 1 integrin or the induction of alpha 4 beta 1 expression in transfected S180 cells enhances their motility on FN in vitro. These genetically modified S180 cells also exhibit different migratory properties when grafted into the early trunk NCC migratory pathways. We observe that alpha 5 and low alpha 4 expressors migrate in both the ventral and dorsolateral paths simultaneously, in contrast to the parental S180 cells or the host NCC, which are delayed by 24 h in their invasion of the dorsolateral path. Moreover, the alpha 4 expressors exhibit different migratory properties according to their level of alpha 4 expression at the cell surface. Cells of the low alpha 4 expressor line invade both the ventral and dorsolateral pathways. In contrast, the high expressors remain as an aggregate at the graft site, possibly the result of alpha 4 beta 1-dependent homotypic aggregation. Thus, changes in the repertoire of

  4. ZFP57 maintains the parent-of-origin-specific expression of the imprinted genes and differentially affects non-imprinted targets in mouse embryonic stem cells

    PubMed Central

    Riso, Vincenzo; Cammisa, Marco; Kukreja, Harpreet; Anvar, Zahra; Verde, Gaetano; Sparago, Angela; Acurzio, Basilia; Lad, Shraddha; Lonardo, Enza; Sankar, Aditya; Helin, Kristian; Feil, Robert; Fico, Annalisa; Angelini, Claudia; Grimaldi, Giovanna; Riccio, Andrea

    2016-01-01

    ZFP57 is necessary for maintaining repressive epigenetic modifications at Imprinting control regions (ICRs). In mouse embryonic stem cells (ESCs), ZFP57 binds ICRs (ICRBS) and many other loci (non-ICRBS). To address the role of ZFP57 on all its target sites, we performed high-throughput and multi-locus analyses of inbred and hybrid mouse ESC lines carrying different gene knockouts. By using an allele-specific RNA-seq approach, we demonstrate that ZFP57 loss results in derepression of the imprinted allele of multiple genes in the imprinted clusters. We also find marked epigenetic differences between ICRBS and non-ICRBS suggesting that different cis-acting regulatory functions are repressed by ZFP57 at these two classes of target loci. Overall, these data demonstrate that ZFP57 is pivotal to maintain the allele-specific epigenetic modifications of ICRs that in turn are necessary for maintaining the imprinted expression over long distances. At non-ICRBS, ZFP57 inactivation results in acquisition of epigenetic features that are characteristic of poised enhancers, suggesting that another function of ZFP57 in early embryogenesis is to repress cis-acting regulatory elements whose activity is not yet required. PMID:27257070

  5. ASW: a gene with conserved avian W-linkage and female specific expression in chick embryonic gonad.

    PubMed

    O'Neill, M; Binder, M; Smith, C; Andrews, J; Reed, K; Smith, M; Millar, C; Lambert, D; Sinclair, A

    2000-05-01

    Vertebrates exhibit a variety of sex determining mechanisms which fall broadly into two classes: environmental or genetic. In birds and mammals sex is determined by a genetic mechanism. In mammals males are the heterogametic sex (XY) with the Y chromosome acting as a dominant determiner of sex due to the action of the testis-determining factor, SRY. In birds females are the heterogametic sex (ZW); however, it is not known whether the W chromosome carries a dominant ovary-determining gene, or whether Z chromosome dosage determines sex. Using an experimental approach, which assumes only that the sex-determining event in birds is accompanied by sex-specific changes in gene expression, we have identified a novel gene, ASW (Avian Sex-specific W-linked). The putative protein for ASW is related to the HIT (histidine triad) family of proteins. ASW shows female-specific expression in genital ridges and maps to the chicken W chromosome. In addition, we show that, with the exception of ratites, ASW is linked to the W chromosome in each of 17 bird species from nine different families of the class Aves.

  6. Stimulation with monochromatic green light during incubation alters satellite cell mitotic activity and gene expression in relation to embryonic and posthatch muscle growth of broiler chickens.

    PubMed

    Zhang, L; Zhang, H J; Wang, J; Wu, S G; Qiao, X; Yue, H Y; Yao, J H; Qi, G H

    2014-01-01

    Previous studies showed that monochromatic green light stimuli during embryogenesis accelerated posthatch body weight (BW) and pectoral muscle growth of broilers. In this experiment, we further investigated the morphological and molecular basis of this phenomenon. Fertile broiler eggs (Arbor Acres, n=880) were pre-weighed and randomly assigned to 1 of the 2 incubation treatment groups: (1) dark condition (control group), and (2) monochromatic green light group (560 nm). The monochromatic lighting systems sourced from light-emitting diode lamps and were equalized at the intensity of 15 lx at eggshell level. The dark condition was set as a commercial control from day 1 until hatching. After hatch, 120 male 1-day-old chicks from each group were housed under incandescent white light with an intensity of 30 lx at bird-head level. No effects of light stimuli during embryogenesis on hatching time, hatchability, hatching weight and bird mortality during the feeding trial period were observed in the present study. Compared with the dark condition, the BW, pectoral muscle weight and myofiber cross-sectional areas were significantly greater on 7-day-old chicks incubated under green light. Green light also increased the satellite cell mitotic activity of pectoral muscle on 1- and 3-day-old birds. In addition, green light upregulated MyoD, myogenin and myostatin mRNA expression in late embryos and/ or newly hatched chicks. These data suggest that stimulation with monochromatic green light during incubation promote muscle growth by enhancing proliferation and differentiation of satellite cells in late embryonic and newly hatched stages. Higher expression of myostatin may ultimately help prevent excessive proliferation and differentiation of satellite cells in birds incubated under green light.

  7. Noise modulation in retinoic acid signaling sharpens segmental boundaries of gene expression in the embryonic zebrafish hindbrain.

    PubMed

    Sosnik, Julian; Zheng, Likun; Rackauckas, Christopher V; Digman, Michelle; Gratton, Enrico; Nie, Qing; Schilling, Thomas F

    2016-04-12

    Morphogen gradients induce sharply defined domains of gene expression in a concentration-dependent manner, yet how cells interpret these signals in the face of spatial and temporal noise remains unclear. Using fluorescence lifetime imaging microscopy (FLIM) and phasor analysis to measure endogenous retinoic acid (RA) directly in vivo, we have investigated the amplitude of noise in RA signaling, and how modulation of this noise affects patterning of hindbrain segments (rhombomeres) in the zebrafish embryo. We demonstrate that RA forms a noisy gradient during critical stages of hindbrain patterning and that cells use distinct intracellular binding proteins to attenuate noise in RA levels. Increasing noise disrupts sharpening of rhombomere boundaries and proper patterning of the hindbrain. These findings reveal novel cellular mechanisms of noise regulation, which are likely to play important roles in other aspects of physiology and disease.

  8. Noise modulation in retinoic acid signaling sharpens segmental boundaries of gene expression in the embryonic zebrafish hindbrain

    PubMed Central

    Sosnik, Julian; Zheng, Likun; Rackauckas, Christopher V; Digman, Michelle; Gratton, Enrico; Nie, Qing; Schilling, Thomas F

    2016-01-01

    Morphogen gradients induce sharply defined domains of gene expression in a concentration-dependent manner, yet how cells interpret these signals in the face of spatial and temporal noise remains unclear. Using fluorescence lifetime imaging microscopy (FLIM) and phasor analysis to measure endogenous retinoic acid (RA) directly in vivo, we have investigated the amplitude of noise in RA signaling, and how modulation of this noise affects patterning of hindbrain segments (rhombomeres) in the zebrafish embryo. We demonstrate that RA forms a noisy gradient during critical stages of hindbrain patterning and that cells use distinct intracellular binding proteins to attenuate noise in RA levels. Increasing noise disrupts sharpening of rhombomere boundaries and proper patterning of the hindbrain. These findings reveal novel cellular mechanisms of noise regulation, which are likely to play important roles in other aspects of physiology and disease. DOI: http://dx.doi.org/10.7554/eLife.14034.001 PMID:27067377

  9. Embryonic Expression and Evolution of Duplicated E-Protein Genes in Xenopus Laevis: Parallels with Ancestral E-Protein Genes

    PubMed Central

    Shain, D. H.; Neuman, T.; Zuber, M. X.

    1997-01-01

    E-proteins comprise a subfamily of helix-loop-helix transcription factors that have been identified in arthropods and several chordate taxa. In mammals, there are three classes of E-protein genes (E2A, E2-2, and HEB) that encode related, and often interchangeable, gene products. We have determined that the clawed frog Xenopus laevis contains twice the number of transcriptionally active E-protein genes when compared with other vertebrate species. Based upon genomic Southern blots and nucleotide sequence comparisons, it is likely that the additional X. laevis genes arose from tetraploidization. During embryogenesis, XE2A (homologue of mammalian E2A) transcripts were broadly expressed in anterior and posterior regions of the embryo while homologues of E2-2 (XE2.2) and HEB (XE1.2) appeared in vertebrate-specific structures including the pineal gland, olfactory bulb, and brachial arches. A phylogenetic analysis of these genes and other known metazoan E-proteins suggests that there were two periods of marked E-protein gene expansion; one that predated the radiation of vertebrates, and the other that coincided with Xenopus tetraploidization. Both of these periods were characterized by the rapid evolution of E2-2 and HEB-class genes, but not of E2A. We propose that the former genes acquired new or specialized roles during early chordate evolution and also more recently in Xenopus, as reflected by the stereotypic expression patterns of these genes during X. laevis development. PMID:9136023

  10. Gene expression profiles uncover individual identities of gnathal neuroblasts and serial homologies in the embryonic CNS of Drosophila

    PubMed Central

    Urbach, Rolf; Jussen, David; Technau, Gerhard M.

    2016-01-01

    The numbers and types of progeny cells generated by neural stem cells in the developing CNS are adapted to its region-specific functional requirements. In Drosophila, segmental units of the CNS develop from well-defined patterns of neuroblasts. Here we constructed comprehensive neuroblast maps for the three gnathal head segments. Based on the spatiotemporal pattern of neuroblast formation and the expression profiles of 46 marker genes (41 transcription factors), each neuroblast can be uniquely identified. Compared with the thoracic ground state, neuroblast numbers are progressively reduced in labial, maxillary and mandibular segments due to smaller sizes of neuroectodermal anlagen and, partially, to suppression of neuroblast formation and induction of programmed cell death by the Hox gene Deformed. Neuroblast patterns are further influenced by segmental modifications in dorsoventral and proneural gene expression. With the previously published neuroblast maps and those presented here for the gnathal region, all neuroectodermal neuroblasts building the CNS of the fly (ventral nerve cord and brain, except optic lobes) are now individually identified (in total 2×567 neuroblasts). This allows, for the first time, a comparison of the characteristics of segmental populations of stem cells and to screen for serially homologous neuroblasts throughout the CNS. We show that approximately half of the deutocerebral and all of the tritocerebral (posterior brain) and gnathal neuroblasts, but none of the protocerebral (anterior brain) neuroblasts, display serial homology to neuroblasts in thoracic/abdominal neuromeres. Modifications in the molecular signature of serially homologous neuroblasts are likely to determine the segment-specific characteristics of their lineages. PMID:27095493

  11. Extinction of Oct-3/4 gene expression in embryonal carcinoma [times] fibroblast somatic cell hybrids is accompanied by changes in the methylation status, chromatin structure, and transcriptional activity of the Oct-3/4 upstream region

    SciTech Connect

    Ben-Shushan, E.; Pikarsky, E.; Klar, A.; Bergman, Y. )

    1993-02-01

    The OCT-3/4 gene provides an excellent model system with which to study the extinction phenomenon in somatic cell hybrids. The molecular mechanism that underlies the extinction of a tissue-specific transcription factor in somatic cell hybrides is evaluated and compared with its down-regulation in retinoic acid treated embryonal carcinoma cells. This study draws a connection between the shutdown of OCT-3/4 expression in retinoic acid (RA)-differentiated embryonal carcinoma (EC) cells and its extinction in hybrid cells. This repression of OCT-3/4 expression is achieved through changes in the methylation status, chromatin structure, and transcriptional activity of the OCT-3/4 upstream regulatory region. 59 refs.

  12. Mechanotransduction in Embryonic Vascular Development

    PubMed Central

    Roman, Beth L.; Pekkan, Kerem

    2015-01-01

    A plethora of biochemical signals provides spatial and temporal cues that carefully orchestrate the complex process of vertebrate embryonic development. The embryonic vasculature develops not only in the context of these biochemical cues, but also in the context of the biomechanical forces imparted by blood flow. In the mature vasculature, different blood flow regimes induce distinct genetic programs, and significant progress has been made toward understanding how these forces are perceived by endothelial cells and transduced into biochemical signals. However, it cannot be assumed that paradigms that govern the mature vasculature are pertinent to the developing embryonic vasculature. The embryonic vasculature can respond to the mechanical forces of blood flow, and these responses are critical in vascular remodeling, certain aspects of sprouting angiogenesis, and maintenance of arterial-venous identity. Here, we review data regarding mechanistic aspects of endothelial cell mechanotransduction, with a focus on the response to shear stress, and elaborate upon the multifarious effects of shear stress on the embryonic vasculature. In addition, we discuss emerging predictive vascular growth models and highlight the prospect of combining signaling pathway information with computational modeling. We assert that correlation of precise measurements of hemodynamic parameters with effects on endothelial cell gene expression and cell behavior is required for fully understanding how blood flow-induced loading governs normal vascular development and shapes congenital cardiovascular abnormalities. PMID:22744845

  13. Embryonic markers of cone differentiation

    PubMed Central

    Rodgers, Helen M.; Belcastro, Marycharmain; Sokolov, Maxim

    2016-01-01

    Purpose Photoreceptor cells are born in two distinct phases of vertebrate retinogenesis. In the mouse retina, cones are born primarily during embryogenesis, while rod formation occurs later in embryogenesis and early postnatal ages. Despite this dichotomy in photoreceptor birthdates, the visual pigments and phototransduction machinery are not reactive to visual stimulus in either type of photoreceptor cell until the second postnatal week. Several markers of early cone formation have been identified, including Otx2, Crx, Blimp1, NeuroD, Trβ2, Rorβ, and Rxrγ, and all are thought to be involved in cellular determination. However, little is known about the expression of proteins involved in cone visual transduction during early retinogenesis. Therefore, we sought to characterize visual transduction proteins that are expressed specifically in photoreceptors during mouse embryogenesis. Methods Eye tissue was collected from control and phosducin-null mice at embryonic and early postnatal ages. Immunohistochemistry and quantitative reverse transcriptase-PCR (qPCR) were used to measure the spatial and temporal expression patterns of phosducin (Pdc) and cone transducin γ (Gngt2) proteins and transcripts in the embryonic and early postnatal mouse retina. Results We identified the embryonic expression of phosducin (Pdc) and cone transducin γ (Gngt2) that coincides temporally and spatially with the earliest stages of cone histogenesis. Using immunohistochemistry, the phosducin protein was first detected in the retina at embryonic day (E)12.5, and cone transducin γ was observed at E13.5. The phosducin and cone transducin γ proteins were seen only in the outer neuroblastic layer, consistent with their expression in photoreceptors. At the embryonic ages, phosducin was coexpressed with Rxrγ, a known cone marker, and with Otx2, a marker of photoreceptors. Pdc and Gngt2 mRNAs were detected as early as E10.5 with qPCR, although at low levels. Conclusions Visual transduction

  14. Silencing of TBX20 gene expression in rat myocardial and human embryonic kidney cells leads to cell cycle arrest in G2 phase

    PubMed Central

    Liu, Peiyan; Sun, Yueling; Qiu, Guangbin; Jiang, Hongkun; Qiu, Guangrong

    2016-01-01

    Congenital heart diseases (CHDs) are the most common birth defects due to abnormal cardiac development. The T-box 20 (TBX20) gene is a member of the T-box family of transcription factors and encodes TBX20, which is essential for early heart development. In the present study, reduced TBX20 expression was observed in CHD tissue samples compared with normal tissues, and the function of TBX20 in Rattus norvegicus myocardial cells [H9c2(2-1)] and human embryonic kidney cells (HEK293) was investigated. TBX20 was silenced in H9c2 and HEK293 cells via transfection of small interfering RNA and short hairpin RNA duplexes, respectively, and TBX20 mRNA and protein levels were subsequently examined using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot analysis. Cell proliferation was assessed using a cell counting kit and proliferating cell nuclear antigen expression was determined by western blotting. Analysis of cell apoptosis was achieved by annexin V-fluorescein isothiocyanate/propidium iodide staining and a fluorometric terminal deoxynucleotidyl transferase dUTP nick-end labeling system. Cell cycle analysis was achieved using fluorescence-activated cell sorting, and, an RT-qPCR array was used to profile the expression of TBX20-related genes. Silencing of TBX20 in H9c2 and HEK293 cells significantly inhibited cell proliferation, induced cell apoptosis and led to G2/M cell cycle arrest. A reduction in cyclin B1 mRNA levels and an increase in cyclin-dependent kinase inhibitor 1B mRNA levels was observed, which indicated that cells were arrested in G2 phase. Concurrently, the mRNA levels of GATA binding protein 4 were increased in both cell lines, which may provide an explanation for the abnormal cardiac hypertrophy observed in patients with congenital heart disease. These results suggest that TBX20 is required for heart morphogenesis, and inhibition of TBX20 expression may lead to the suppression of cell proliferation and cell cycle

  15. A MICROARRAY ANALYSIS OF GENE EXPRESSION IN THE EMBRYONIC FORELIMB OF THE C57BL/6J MOUSE REVEALS SIGNIFICANT ALTERATIONS METABOLIC AND DEVELOPMENTAL REGULATION FOLLOWING ETHANOL EXPOSURE.

    EPA Science Inventory

    The observation of transcriptional changes following embryonic ethanol exposure may provide significant insights into the biological response to ethanol exposure. In this study, we used microarray analysis to examine the transcriptional response of the developing limb to a dose ...

  16. Pleiotropic functions of embryonic sonic hedgehog expression link jaw and taste bud amplification with eye loss during cavefish evolution.

    PubMed

    Yamamoto, Yoshiyuki; Byerly, Mardi S; Jackman, William R; Jeffery, William R

    2009-06-01

    This study addresses the role of sonic hedgehog (shh) in increasing oral-pharyngeal constructive traits (jaws and taste buds) at the expense of eyes in the blind cavefish Astyanax mexicanus. In cavefish embryos, eye primordia degenerate under the influence of hyperactive Shh signaling. In concert, cavefish show amplified jaw size and taste bud numbers as part of a change in feeding behavior. To determine whether pleiotropic effects of hyperactive Shh signaling link these regressive and constructive traits, shh expression was compared during late development of the surface-dwelling (surface fish) and cave-dwelling (cavefish) forms of Astyanax. After an initial expansion along the midline of early embryos, shh was elevated in the oral-pharyngeal region in cavefish and later was confined to taste buds. The results of shh inhibition and overexpression experiments indicate that Shh signaling has an important role in oral and taste bud development. Conditional overexpression of an injected shh transgene at specific times in development showed that taste bud amplification and eye degeneration are sensitive to shh overexpression during the same early developmental period, although taste buds are not formed until much later. Genetic crosses between cavefish and surface fish revealed an inverse relationship between eye size and jaw size/taste bud number, supporting a link between oral-pharyngeal constructive traits and eye degeneration. The results suggest that hyperactive Shh signaling increases oral and taste bud amplification in cavefish at the expense of eyes. Therefore, selection for constructive oral-pharyngeal traits may be responsible for eye loss during cavefish evolution via pleiotropic function of the Shh signaling pathway.

  17. Assembly of embryonic and extra-embryonic stem cells to mimic embryogenesis in vitro.

    PubMed

    Harrison, Sarah Ellys; Sozen, Berna; Christodoulou, Neophytos; Kyprianou, Christos; Zernicka-Goetz, Magdalena

    2017-03-02

    Mammalian embryogenesis requires intricate interactions between embryonic and extra-embryonic tissues to orchestrate and coordinate morphogenesis with changes in developmental potential. Here, we combine mouse embryonic stem cells (ESCs) and extra-embryonic trophoblast stem cells (TSCs) in a 3D-scaffold to generate structures whose morphogenesis is remarkably similar to natural embryos. By using genetically-modified stem cells and specific inhibitors, we show embryogenesis of ESC- and TSC-derived embryos, ETS-embryos, depends on crosstalk involving Nodal signaling. When ETS-embryos develop, they spontaneously initiate expression of mesoderm and primordial germ cell markers asymmetrically on the embryonic and extra-embryonic border, in response to Wnt and BMP signaling. Our study demonstrates the ability of distinct stem cell types to self-assemble in vitro to generate embryos whose morphogenesis, architecture, and constituent cell-types resemble natural embryos.

  18. Structures and biosynthesis of the N- and O-glycans of recombinant human oviduct-specific glycoprotein expressed in human embryonic kidney cells.

    PubMed

    Yang, Xiaojing; Tao, Shujuan; Orlando, Ron; Brockhausen, Inka; Kan, Frederick W K

    2012-09-01

    Oviduct-specific glycoprotein (OVGP1) is a major mucin-like glycoprotein synthesized and secreted exclusively by non-ciliated secretory cells of mammalian oviduct. In vitro functional studies showed that OVGP1 plays important roles during fertilization and early embryo development. We have recently produced recombinant human oviduct-specific glycoprotein (rhOVGP1) in human embryonic kidney 293 (HEK293) cells. The present study was undertaken to characterize the structures and determine the biosynthetic pathways of the N- and O-glycans of rhOVGP1. Treatment of the stable rhOVGP1-expressing HEK293 cells with either GalNAcα-Bn to block O-glycan extension, tunicamycin to block N-glycosylation, or neuraminidase increased the electrophoretic mobility of rhOVGP1. A detailed analysis of O- and N-linked glycans of rhOVGP1 by mass spectrometry showed a broad range of many simple and complex glycan structures. In order to identify the enzymes involved in the glycosylation of rhOVGP1, we assayed glycosyltransferase activities involved in the assembly of O- and N-glycans in HEK293 cells, and compared these to those from the immortalized human oviductal cells (OE-E6/E7). Our results demonstrate that HEK293 and OE-E6/E7 cells exhibit a similar spectrum of glycosyltransferase activities that can synthesize elongated and sialylated O-glycans with core 1 and 2 structures, as well as complex multiantennary N-glycans. It is anticipated that the knowledge gained from the present study will facilitate future studies of the role of the glycans of human OVGP1 in fertilization and early embryo development.

  19. Altered expression of BRG1 and histone demethylases, and aberrant H3K4 methylation in less developmentally competent embryos at the time of embryonic genome activation.

    PubMed

    Glanzner, Werner G; Wachter, Audrey; Coutinho, Ana Rita S; Albornoz, Marcelo S; Duggavathi, Raj; GonÇAlves, Paulo B D; Bordignon, Vilceu

    2017-01-01

    Epigenetics is a fundamental regulator underlying many biological functions, such as development and cell differentiation. Epigenetic modifications affect key chromatin regulation, including transcription and DNA repair, which are critical for normal embryo development. In this study, we profiled the expression of epigenetic modifiers and patterns of epigenetic changes in porcine embryos around the period of embryonic genome activation (EGA). We observed that Brahma-related gene 1 (BRG1) and Lysine demethylase 1A (KDM1A), which can alter the methylation status of lysine 4 in histone 3 (H3K4), localize to the nucleus at Day 3-4 of development. We then compared the abundance of epigenetic modifiers between early- and late-cleaving embryos, which were classified based on the time to the first cell cleavage, to investigate if their nuclear localization contributes to developmental competence. The mRNA abundance of BRG1, KDM1A, as well as other lysine demethylases (KDM1B, KDM5A, KDM5B, and KDM5C), were significantly higher in late- compared to early-cleaving embryos near the EGA period, although these difference disappeared at the blastocyst stage. The abundance of H3K4 mono- (H3K4me) and di-methylation (H3K4me2) during the EGA period was reduced in late-cleaving and less developmentally competent embryos. By contrast, BRG1, KDM1A, and H3K4me2 abundance was greater in embryos with more than eight cells at Day 3-4 of development compared to those with fewer than four cells. These findings suggest that altered epigenetic modifications of H3K4 around the EGA period may affect the developmental capacity of porcine embryos to reach the blastocyst stage. Mol. Reprod. Dev. 84: 19-29, 2017. © 2016 Wiley Periodicals, Inc.

  20. Six3, a medaka homologue of the Drosophila homeobox gene sine oculis is expressed in the anterior embryonic shield and the developing eye.

    PubMed

    Loosli, F; Köster, R W; Carl, M; Krone, A; Wittbrodt, J

    1998-06-01

    homologue Six3 (Oliver, G., Mailhos, A., Wehr, R., Copeland, N.G., Jenkins, N.A., Gruss, P., 1995. Six3, a murine homologue of the sine oculis gene, demarcates the most anterior border of the developing neural plate and is expressed during eye development. Development 121, 4045-4055). sine oculis (so) is essential for the development of the larval and adult visual system (Cheyette, B.N.R., Green, P.J., Martin, K., Garren, H., Hartenstein, V., Zipursky, S.L., 1994. The Drosophila sine oculis locus encodes a homeodomain-containing protein required for the development of the entire visual system. Neuron l2, 977-996). Six3 is expressed in the anterior neural plate and optic vesicles, lens, olfactory placodes and ventral forebrain (Oliver, G., Mailhos, A., Wehr, R., Copeland, N.G., Jenkins, N.A., Gruss, P., 1995. Six3, a murine homologue of the sine oculis gene, demarcates the most anterior border of the developing neural plate and is expressed during eye development. Development 121, 4045-4055). Overexpression of mouse Six3 gene in medaka fish embryos (Orvzias latipes) results in the formation of an ectopic lens, indicating that Six3 activity can trigger the genetic pathway leading to lens formation (Oliver, G., Loosli, F., Koster, R., Wittbrodt, J., Gruss, P., 1996. Ectopic lens induction in fish in response to the murine homeobox gene Six3. Mech. Dev. 60, 233-239). We isolated the medaka Six3 homologue and analyzed its expression pattern in the medaka embryo. It is expressed initially in the anterior embryonic shield and later in the developing eye and prosencephalon. The early localized expression of Six3 suggests a role in the regionalization of the rostral head.

  1. Single-cell RNA-Seq profiling of human preimplantation embryos and embryonic stem cells.

    PubMed

    Yan, Liying; Yang, Mingyu; Guo, Hongshan; Yang, Lu; Wu, Jun; Li, Rong; Liu, Ping; Lian, Ying; Zheng, Xiaoying; Yan, Jie; Huang, Jin; Li, Ming; Wu, Xinglong; Wen, Lu; Lao, Kaiqin; Li, Ruiqiang; Qiao, Jie; Tang, Fuchou

    2013-09-01

    Measuring gene expression in individual cells is crucial for understanding the gene regulatory network controlling human embryonic development. Here we apply single-cell RNA sequencing (RNA-Seq) analysis to 124 individual cells from human preimplantation embryos and human embryonic stem cells (hESCs) at different passages. The number of maternally expressed genes detected in our data set is 22,687, including 8,701 long noncoding RNAs (lncRNAs), which represents a significant increase from 9,735 maternal genes detected previously by cDNA microarray. We discovered 2,733 novel lncRNAs, many of which are expressed in specific developmental stages. To address the long-standing question whether gene expression signatures of human epiblast (EPI) and in vitro hESCs are the same, we found that EPI cells and primary hESC outgrowth have dramatically different transcriptomes, with 1,498 genes showing differential expression between them. This work provides a comprehensive framework of the transcriptome landscapes of human early embryos and hESCs.

  2. Gene Expression and Gene Ontology Enrichment Analysis for H3K4me3 and H3K4me1 in Mouse Liver and Mouse Embryonic Stem Cell Using ChIP-Seq and RNA-Seq

    PubMed Central

    Tran, Ngoc Tam L.; Huang, Chun-Hsi

    2014-01-01

    Recent study has identified the cis-regulatory elements in the mouse genome as well as their genomic localizations. Recent discoveries have shown the enrichment of H3 lysine 4 trimethylation (H3K4me3) binding as an active promoter and the presence of H3 lysine 4 monomethylation (H3K4me1) outside promoter regions as a mark for an enhancer. In this work, we further identified highly expressed genes by H3K4me3 mark or by both H3K4me3 and H3K4me1 marks in mouse liver using ChIP-Seq and RNA-Seq. We found that in mice, the liver carries embryonic stem cell-related functions while the embryonic stem cell also carries liver-related functions. We also identified novel genes in RNA-Seq experiments for mouse liver and for mouse embryonic stem cells. These genes are not currently in the Ensemble gene database at NCBI. PMID:24526835

  3. The gene expression landscape of thermogenic skunk cabbage suggests critical roles for mitochondrial and vacuolar metabolic pathways in the regulation of thermogenesis.

    PubMed

    Ito-Inaba, Yasuko; Hida, Yamato; Matsumura, Hideo; Masuko, Hiromi; Yazu, Fumiko; Terauchi, Ryohei; Watanabe, Masao; Inaba, Takehito

    2012-03-01

    Floral thermogenesis has been described in several plant species. Because of the lack of comprehensive gene expression profiles in thermogenic plants, the molecular mechanisms by which floral thermogenesis is regulated remain to be established. We examined the gene expression landscape of skunk cabbage (Symplocarpus renifolius) during thermogenic and post-thermogenic stages and identified expressed sequence tags from different developmental stages of the inflorescences using super serial analysis of gene expression (SuperSAGE). In-depth analysis suggested that cellular respiration and mitochondrial functions are significantly enhanced during the thermogenic stage. In contrast, genes involved in stress responses and protein degradation were significantly up-regulated during post-thermogenic stages. Quantitative comparisons indicated that the expression levels of genes involved in cellular respiration were higher in thermogenic spadices than in Arabidopsis inflorescences. Thermogenesis-associated genes seemed to be expressed abundantly in the peripheral tissues of the spadix. Our results suggest that cellular respiration and mitochondrial metabolism play key roles in heat production during floral thermogenesis. On the other hand, vacuolar cysteine protease and other degradative enzymes seem to accelerate senescence and terminate thermogenesis in the post-thermogenic stage.

  4. Fantasy Landscapes with a Message

    ERIC Educational Resources Information Center

    D'Amico, Elizabeth

    2005-01-01

    The author of this article describes using a Fantasy Landscapes lesson to get students expressing environmental issues through art. The Fantasy Landscapes lesson is an exploration of art elements and design principles through visual problem solving that links ideas, language, and theory to art. To get students thinking specifically about…

  5. In silico Testing of Environmental Impact on Embryonic Vascular Development

    EPA Science Inventory

    Understanding risks to embryonic development from exposure to environmental chemicals is a significant challenge given the diverse chemical landscape and paucity of data for most of these compounds. EPA’s Virtual Embryo project is building in silico models of morphogenesis to tes...

  6. Reverse serial analysis of gene expression (SAGE) characterization of orphan SAGE tags from human embryonic stem cells identifies the presence of novel transcripts and antisense transcription of key pluripotency genes.

    PubMed

    Richards, Mark; Tan, Siew-Peng; Chan, Woon-Khiong; Bongso, Ariff

    2006-05-01

    Serial analysis of gene expression (SAGE) is a powerful technique for the analysis of gene expression. A significant portion of SAGE tags, designated as orphan tags, however, cannot be reliably assigned to known transcripts. We used an improved reverse SAGE (rSAGE) strategy to convert human embryonic stem cell (hESC)-specific orphan SAGE tags into longer 3' cDNAs. We show that the systematic analysis of these 3' cDNAs permitted the discovery of hESC-specific novel transcripts and cis-natural antisense transcripts (cis-NATs) and improved the assignment of SAGE tags that resulted from splice variants, insertion/deletion, and single-nucleotide polymorphisms. More importantly, this is the first description of cis-NATs for several key pluripotency markers in hESCs and mouse embryonic stem cells, suggesting that the formation of short interfering RNA could be an important regulatory mechanism. A systematic large-scale analysis of the remaining orphan SAGE tags in the hESC SAGE libraries by rSAGE or other 3' cDNA extension strategies should unravel additional novel transcripts and cis-NATs that are specifically expressed in hESCs. Besides contributing to the complete catalog of human transcripts, many of them should prove to be a valuable resource for the elucidation of the molecular pathways involved in the self-renewal and lineage commitment of hESCs.

  7. The absence of expression of the three isoenzymes of the inositol 1,4,5-trisphosphate 3-kinase does not prevent the formation of inositol pentakisphosphate and hexakisphosphate in mouse embryonic fibroblasts.

    PubMed

    Leyman, Alexandre; Pouillon, Valérie; Bostan, Alionka; Schurmans, Stéphane; Erneux, Christophe; Pesesse, Xavier

    2007-07-01

    The activation of phospholipase C leads to the formation of both I(1,4,5)P(3) and diacylglycerol (DAG). I(1,4,5)P(3) can be metabolized by dephosphorylation catalyzed by Type I I(1,4,5)P(3) 5-phosphatase and by enzymatic phosphorylation to various inositol phosphates. This last step is catalyzed by three mammalian isoenzymes that specifically phosphorylate the 3-phosphate position of the inositol ring Itpka, Itpkb and Itpkc and a less specific enzyme Ipmk (or inositol multikinase) that phosphorylates I(1,4,5)P(3) at the D-3 and D-6 positions. This study was performed in mice cells in order to understand the synthetic pathway of IP5 and IP6 following PLC stimulation and possible link with Itpk activity. Mouse embryonic fibroblasts (MEF) were prepared from Itpkb(-/-) Itpkc(-/-) mice. Western blot and RT-PCR analysis show that the cells do not express Itpka. In contrast, they do express Ipmk. The cells still produce IP5 and IP6. Our data show that the absence of expression of the three isoenzymes of Itpk does not prevent the formation of IP5 and IP6, at least in mouse embryonic fibroblasts. The nuclear Ipmk plays therefore a critical role in the metabolism of I(1,4,5)P(3) and production of highly phosphorylated IP5 and IP6.

  8. Temporal expression of CD184(CXCR4) and CD171(L1CAM) identifies distinct early developmental stages of human retinal ganglion cells in embryonic stem cell derived retina.

    PubMed

    Aparicio, J G; Hopp, H; Choi, A; Mandayam Comar, J; Liao, V C; Harutyunyan, N; Lee, T C

    2016-11-17

    Human retinal ganglion cells (RGCs) derived from pluripotent stem cells (PSCs) have anticipated value for human disease study, drug screening, and therapeutic applications; however, their full potential remains underdeveloped. To characterize RGCs in human embryonic stem cell (hESC) derived retinal organoids we examined RGC markers and surface antigen expression and made comparisons to human fetal retina. RGCs in both tissues exhibited CD184 and CD171 expression and distinct expression patterns of the RGC markers BRN3 and RBPMS. The retinal progenitor cells (RPCs) of retinal organoids expressed CD184, consistent with its expression in the neuroblastic layer in fetal retina. In retinal organoids CD184 expression was enhanced in RGC competent RPCs and high CD184 expression was retained on post-mitotic RGC precursors; CD171 was detected on maturing RGCs. The differential expression timing of CD184 and CD171 permits identification and enrichment of RGCs from retinal organoids at differing maturation states from committed progenitors to differentiating neurons. These observations will facilitate molecular characterization of PSC-derived RGCs during differentiation, critical knowledge for establishing the veracity of these in vitro produced cells. Furthermore, observations made in the retinal organoid model closely parallel those in human fetal retina further validating use of retinal organoid to model early retinal development.

  9. Embryonic exposure to 10 μg L(-1) lead results in female-specific expression changes in genes associated with nervous system development and function and Alzheimer's disease in aged adult zebrafish brain.

    PubMed

    Lee, Jinyoung; Freeman, Jennifer L

    2016-06-01

    A developmental lead (Pb) exposure has been proposed as an environmental risk factor for adult neurodegenerative diseases including Alzheimer's disease (AD). Recent animal studies showed pathological characteristics of AD in adults with a developmental Pb exposure, but additional studies are needed to investigate this phenomenon. To further assess the relationship between an embryonic Pb exposure and latent neurological alterations, the brain of adult female and male zebrafish aged 12 months that were exposed to a control treatment or 10 μg L(-1) Pb only during embryogenesis (1-72 hours after fertilization) were analyzed on a zebrafish-specific microarray platform. Gene ontology and pathway analysis revealed similarities in the top disease and functional categories in both sexes, but females had 4.3 times more genes altered than males. In addition, alterations in genes associated with nervous system development and function were more pronounced with a set of 89 genes associated with AD including amyloid precursor protein (APP), apolipoprotein (APOE), and sortlin-related receptor precursor (SORL1) observed to be changed in adult females. Our observations suggest that an embryonic exposure to Pb at levels as low as 10 μg L(-1) disturb global gene expression patterns in a sex-specific manner that could lead to neurological alterations in later life. With these findings, future studies investigating the adverse neurological outcomes of these changes in gene expression will facilitate our understanding of the impact of an embryonic 10 μg L(-1) Pb exposure on neurological disease pathogenesis and the inclusion of additional concentrations will broaden our knowledge of dose-dependent changes.

  10. Mars Landscapes

    NASA Video Gallery

    Spacecraft have studied the Martian surface for decades, giving Earthlings insights into the history, climate and geology of our nearest neighbor, Mars. These images are from "Mars Landscapes," a v...

  11. Origin of the Fragile-to-Strong Crossover in Liquid Silica as Expressed by its Potential-Energy Landscape

    NASA Astrophysics Data System (ADS)

    Saksaengwijit, A.; Reinisch, J.; Heuer, A.

    2004-12-01

    The origin of the fragile-to-strong crossover in liquid silica is characterized in terms of properties of the potential-energy landscape (PEL). Using the standard BKS model [B. W. H. van Beest, G. J. Kramer, and R. A. van Santen,

    Phys. Rev. Lett. 64, 1955 (1990)
    ] of silica we observe a low-energy cutoff of the PEL. It is shown that this feature of the PEL is responsible for the occurrence of the fragile-to-strong crossover and may also explain the avoidance of the Kauzmann paradox. The number of defects, i.e., deviations from the ideal tetrahedral structure, vanishes for configurations with energies close to this cutoff. This suggests a structural reason for this cutoff.

  12. Characterization of glucagon-like peptide 2 receptor (GLP2R) gene in chickens: functional analysis, tissue distribution, and developmental expression profile of GLP2R in embryonic intestine.

    PubMed

    Mo, C; Zhong, Y; Wang, Y; Yan, Z; Li, J

    2014-07-01

    This study characterized the glucagon-like peptide 2 receptor (GLP2R) gene of chickens because relatively little is known about the underlying mechanism of GLP2 actions in nonmammalian species. With the use of reverse transcription PCR, we first cloned the chicken GLP2R (cGLP2R) from adult intestine, which was predicted to encode a 529-amino acid receptor precursor. With the use of a pGL3-CRE luciferase reporter system, we demonstrated that cGLP2R expressed in Chinese hamster ovary cells could be potently activated by cGLP2 (half maximal effective concentration, 1.06 nM) but not by its structurally related peptides, including the newly identified glucagon-like peptide, indicating that cGLP2R is a functional receptor specific to cGLP2. Reverse transcription PCR assay revealed that cGLP2R mRNA was widely expressed in adult chicken tissues, including pancreas and various parts of the gastrointestinal tract. With the use of quantitative real-time reverse transcription PCR assays, we further investigated the mRNA expression of cGLP2R and its potential downstream mediators, epidermal growth factor receptor (EGFR) ligands (heparin-binding EGF-like growth factor, epiregulin, and amphiregulin), in the distal duodenum of developing embryos. The mRNA expression levels of GLP2R and EGFR ligands (heparin-binding EGF-like growth factor and amphiregulin) were shown to increase (P < 0.05 or 0.01) during the late embryonic stages (E16 and E20), implying a potential coordinated action of GLP2 and EGFR ligands on embryonic intestine development. Taken together, our findings not only establish a molecular basis to explore the physiological roles of GLP2 in birds, but they also provide comparative insights into the roles of GLP2R and its ligand in vertebrates, such as its roles in embryonic intestine development.

  13. Expression of a retinoic acid receptor (RAR)-like protein in the embryonic and adult nervous system of a protostome species.

    PubMed

    Carter, Christopher J; Rand, Christopher; Mohammad, Imtiaz; Lepp, Amanda; Vesprini, Nicholas; Wiebe, Olivia; Carlone, Robert; Spencer, Gaynor E

    2015-01-01

    The vitamin A metabolite, retinoic acid, is an important molecule in nervous system development and regeneration in vertebrates. Retinoic acid signaling in vertebrates is mediated by two classes of nuclear receptors, the retinoid X receptors (RXRs) and the retinoic acid receptors (RARs). Recently, evidence has emerged to suggest that many effects of retinoic acid are conserved between vertebrate and invertebrate nervous systems, even though the RARs were previously thought to be a vertebrate innovation and to not exist in non-chordates. We have cloned a full-length putative RAR from the CNS of the mollusc Lymnaea stagnalis (LymRAR). Immunoreactivity for the RAR protein was found in axons of adult neurons in the central nervous system and in growth cones of regenerating neurons in vitro. A vertebrate RAR antagonist blocked growth cone turning induced by exogenous all-trans retinoic acid, possibly suggesting a role for this receptor in axon guidance. We also provide immunostaining evidence for the presence of RAR protein in the developing, embryonic CNS, where it is also found in axonal processes. Using qPCR, we determined that LymRAR mRNA is detectable in the early veliger stage embryo and that mRNA levels increase significantly during embryonic development. Putative disruption of retinoid signaling in Lymnaea embryos using vertebrate RAR antagonists resulted in abnormal eye and shell development and in some instances completely halted development, resembling the effects of all-trans retinoic acid. This study provides evidence for RAR functioning in a protostome species.

  14. Inhibition and transcriptional silencing of a subtilisin-like proprotein convertase, PACE4/SPC4, reduces the branching morphogenesis of and AQP5 expression in rat embryonic submandibular gland.

    PubMed

    Akamatsu, Tetsuya; Azlina, Ahmad; Purwanti, Nunuk; Karabasil, Mileva Ratko; Hasegawa, Takahiro; Yao, Chenjuan; Hosoi, Kazuo

    2009-01-15

    The submandibular gland (SMG) develops through the epithelial-mesenchymal interaction mediated by many growth/differentiation factors including activin and BMPs, which are synthesized as inactive precursors and activated by subtilisin-like proprotein convertases (SPC) following cleavage at their R-X-K/R-R site. Here, we found that Dec-RVKR-CMK, a potent inhibitor of SPC, inhibited the branching morphogenesis of the rat embryonic SMG, and caused low expression of a water channel AQP5, in an organ culture system. Dec-RVKR-CMK also decreased the expression of PACE4, a SPC member, but not furin, another SPC member, suggesting the involvement of PACE4 in the SMG development. Heparin, which is known to translocate PACE4 in the extracellular matrix into the medium, and an antibody specific for the catalytic domain of PACE4, both reduced the branching morphogenesis and AQP5 expression in the SMG. The inhibitory effects of Dec-RVKR-CMK were partially rescued by the addition of recombinant BMP2, whose precursor is one of the candidate substrates for PACE4 in vivo. Further, the suppression of PACE4 expression by siRNAs resulted in decreased expression of AQP5 and inhibition of the branching morphogenesis in the present organ culture system. These observations suggest that PACE4 regulates the SMG development via the activation of some growth/differentiation factors.

  15. Fusion of TTYH1 with the C19MC microRNA cluster drives expression of a brain-specific DNMT3B isoform in the embryonal brain tumor ETMR.

    PubMed

    Kleinman, Claudia L; Gerges, Noha; Papillon-Cavanagh, Simon; Sin-Chan, Patrick; Pramatarova, Albena; Quang, Dong-Anh Khuong; Adoue, Véronique; Busche, Stephan; Caron, Maxime; Djambazian, Haig; Bemmo, Amandine; Fontebasso, Adam M; Spence, Tara; Schwartzentruber, Jeremy; Albrecht, Steffen; Hauser, Peter; Garami, Miklos; Klekner, Almos; Bognar, Laszlo; Montes, Jose-Luis; Staffa, Alfredo; Montpetit, Alexandre; Berube, Pierre; Zakrzewska, Magdalena; Zakrzewski, Krzysztof; Liberski, Pawel P; Dong, Zhifeng; Siegel, Peter M; Duchaine, Thomas; Perotti, Christian; Fleming, Adam; Faury, Damien; Remke, Marc; Gallo, Marco; Dirks, Peter; Taylor, Michael D; Sladek, Robert; Pastinen, Tomi; Chan, Jennifer A; Huang, Annie; Majewski, Jacek; Jabado, Nada

    2014-01-01

    Embryonal tumors with multilayered rosettes (ETMRs) are rare, deadly pediatric brain tumors characterized by high-level amplification of the microRNA cluster C19MC. We performed integrated genetic and epigenetic analyses of 12 ETMR samples and identified, in all cases, C19MC fusions to TTYH1 driving expression of the microRNAs. ETMR tumors, cell lines and xenografts showed a specific DNA methylation pattern distinct from those of other tumors and normal tissues. We detected extreme overexpression of a previously uncharacterized isoform of DNMT3B originating at an alternative promoter that is active only in the first weeks of neural tube development. Transcriptional and immunohistochemical analyses suggest that C19MC-dependent DNMT3B deregulation is mediated by RBL2, a known repressor of DNMT3B. Transfection with individual C19MC microRNAs resulted in DNMT3B upregulation and RBL2 downregulation in cultured cells. Our data suggest a potential oncogenic re-engagement of an early developmental program in ETMR via epigenetic alteration mediated by an embryonic, brain-specific DNMT3B isoform.

  16. Human second trimester amniotic fluid cells are able to create embryoid body-like structures in vitro and to show typical expression profiles of embryonic and primordial germ cells.

    PubMed

    Antonucci, Ivana; Di Pietro, Roberta; Alfonsi, Melissa; Centurione, Maria Antonietta; Centurione, Lucia; Sancilio, Silvia; Pelagatti, Francesca; D'Amico, Maria Angela; Di Baldassarre, Angela; Piattelli, Adriano; Tetè, Stefano; Palka, Giandomenico; Borlongan, Cesar V; Stuppia, Liborio

    2014-01-01

    Human amniotic fluid-derived stem cells (AFSCs) represent a novel class of broadly multipotent stem cells sharing characteristics of both embryonic and adult stem cells. However, both the origin of these cells and their actual properties in terms of pluripotent differentiation potential are still debated. In order to verify the presence of features of pluripotency in human second trimester AFSCs, we have investigated the ability of these cells to form in vitro three-dimensional aggregates, known as embryoid bodies (EBs), and to express specific genes of embryonic stem cells (ESCs) and primordial germ cells (PGCs). EBs were obtained after 5 days of AFSC culture in suspension and showed positivity for alkaline phosphatase (AP) staining and for specific markers of pluripotency (OCT4 and SOX2). Moreover, EB-derived cells showed the expression of specific transcripts of the three germ layers. RT-PCR analysis, carried out at different culture times (second, third, fourth, fifth, and eighth passages), revealed the presence of specific markers of ESCs (such as FGF4 and DAPPA4), as well as of markers typical of PGCs and, in particular, genes involved in early stages of germ cell development (Fragilis, Stella, Vasa, c-Kit, Rnf17). Finally, the expression of genes related to the control of DNA methylation (DNMT3A, DNMT3b1, DNMT1, DNMT3L, MBD1, MBD2, MBD3, MDB4, MeCP2), as well as the lack of inactivation of the X-chromosome in female samples, was also demonstrated. Taken together, these data provide further evidence for the presence of common features among human AFSCs, PGCs, and ESCs.

  17. Evaluation of 309 environmental chemicals using a mouse embryonic stem cell adherent cell differentiation and cytotoxicity assay

    EPA Science Inventory

    The vast landscape of environmental chemicals has motivated the need for alternative methods to traditional whole-animal bioassays in toxicity testing. Embryonic stem (ES) cells provide an in vitro model of embryonic development and an alternative method for assessing development...

  18. Featured Article: Transcriptional landscape analysis identifies differently expressed genes involved in follicle-stimulating hormone induced postmenopausal osteoporosis.

    PubMed

    Maasalu, Katre; Laius, Ott; Zhytnik, Lidiia; Kõks, Sulev; Prans, Ele; Reimann, Ene; Märtson, Aare

    2017-01-01

    Osteoporosis is a disorder associated with bone tissue reorganization, bone mass, and mineral density. Osteoporosis can severely affect postmenopausal women, causing bone fragility and osteoporotic fractures. The aim of the current study was to compare blood mRNA profiles of postmenopausal women with and without osteoporosis, with the aim of finding different gene expressions and thus targets for future osteoporosis biomarker studies. Our study consisted of transcriptome analysis of whole blood serum from 12 elderly female osteoporotic patients and 12 non-osteoporotic elderly female controls. The transcriptome analysis was performed with RNA sequencing technology. For data analysis, the edgeR package of R Bioconductor was used. Two hundred and fourteen genes were expressed differently in osteoporotic compared with non-osteoporotic patients. Statistical analysis revealed 20 differently expressed genes with a false discovery rate of less than 1.47 × 10(-4) among osteoporotic patients. The expression of 10 genes were up-regulated and 10 down-regulated. Further statistical analysis identified a potential osteoporosis mRNA biomarker pattern consisting of six genes: CACNA1G, ALG13, SBK1, GGT7, MBNL3, and RIOK3. Functional ingenuity pathway analysis identified the strongest candidate genes with regard to potential involvement in a follicle-stimulating hormone activated network of increased osteoclast activity and hypogonadal bone loss. The differentially expressed genes identified in this study may contribute to future research of postmenopausal osteoporosis blood biomarkers.

  19. Geomorpho-Landscapes

    NASA Astrophysics Data System (ADS)

    Farabollini, Piero; Lugeri, Francesca; Amadio, Vittorio

    2014-05-01

    Landscape is the object of human perceptions, being the image of spatial organization of elements and structures: mankind lives the first approach with the environment, viewing and feeling the landscape. Many definitions of landscape have been given over time: in this case we refer to the Landscape defined as the result of interaction among physical, biotic and anthropic phenomena acting in a different spatial-temporal scale (Foreman & Godron) Following an Aristotelic approach in studying nature, we can assert that " Shape is synthesis": so it is possible to read the land features as the expression of the endogenous and exogenous processes that mould earth surfaces; moreover, Landscape is the result of the interaction of natural and cultural components, and conditions the spatial-temporal development of a region. The study of the Landscape offers results useful in order to promote sustainable development, ecotourism, enhancement of natural and cultural heritage, popularization of the scientific knowledge. In Italy, a very important GIS-based tool to represent the territory is the "Carta della Natura" ("Map of Nature", presently coordinated by the ISPRA) that aims at assessing the state of the whole Italian territory, analyzing Landscape. The methodology follows a holistic approach, taking into consideration all the components of a landscape and then integrating the information. Each individual landscape, studied at different scales, shows distinctive elements: structural, which depend on physical form and specific spatial organization; functional, which depend on relationships created between biotic and abiotic elements, and dynamic, which depend on the successive evolution of the structure. The identification of the landscape units, recognized at different scales of analysis, allows an evaluation of the state of the land, referring to the dual risk/resource which characterizes the Italian country. An interesting opportunity is to discover those areas of unusual

  20. A Global View of the Oncogenic Landscape in Nasopharyngeal Carcinoma: An Integrated Analysis at the Genetic and Expression Levels

    PubMed Central

    Hu, Chunfang; Wei, Wenbin; Chen, Xiaoyi; Woodman, Ciaran B.; Yao, Yunhong; Nicholls, John M.; Joab, Irène; Sihota, Sim K.; Shao, Jian-Yong; Derkaoui, K. Dalia; Amari, Aicha; Maloney, Stephanie L.; Bell, Andrew I.; Murray, Paul G.; Dawson, Christopher W.; Young, Lawrence S.; Arrand, John R.

    2012-01-01

    Previous studies have reported that the tumour cells of nasopharyngeal carcinoma (NPC) exhibit recurrent chromosome abnormalities. These genetic changes are broadly assumed to lead to changes in gene expression which are important for the pathogenesis of this tumour. However, this assumption has yet to be formally tested at a global level. Therefore a genome wide analysis of chromosome copy number and gene expression was performed in tumour cells micro-dissected from the same NPC biopsies. Cellular tumour suppressor and tumour-promoting genes (TSG, TPG) and Epstein-Barr Virus (EBV)-encoded oncogenes were examined. The EBV-encoded genome maintenance protein EBNA1, along with the putative oncogenes LMP1, LMP2 and BARF1 were expressed in the majority of NPCs that were analysed. Significant downregulation of expression in an average of 76 cellular TSGs per tumour was found, whilst a per-tumour average of 88 significantly upregulated, TPGs occurred. The expression of around 60% of putative TPGs and TSGs was both up-and down-regulated in different types of cancer, suggesting that the simplistic classification of genes as TSGs or TPGs may not be entirely appropriate and that the concept of context-dependent onco-suppressors may be more extensive than previously recognised. No significant enrichment of TPGs within regions of frequent genomic gain was seen but TSGs were significantly enriched within regions of frequent genomic loss. It is suggested that loss of the FHIT gene may be a driver of NPC tumourigenesis. Notwithstanding the association of TSGs with regions of genomic loss, on a gene by gene basis and excepting homozygous deletions and high-level amplification, there is very little correlation between chromosomal copy number aberrations and expression levels of TSGs and TPGs in NPC. PMID:22815911

  1. A genome landscape of SRSF3-regulated splicing events and gene expression in human osteosarcoma U2OS cells

    PubMed Central

    Ajiro, Masahiko; Jia, Rong; Yang, Yanqin; Zhu, Jun; Zheng, Zhi-Ming

    2016-01-01

    Alternative RNA splicing is an essential process to yield proteomic diversity in eukaryotic cells, and aberrant splicing is often associated with numerous human diseases and cancers. We recently described serine/arginine-rich splicing factor 3 (SRSF3 or SRp20) being a proto-oncogene. However, the SRSF3-regulated splicing events responsible for its oncogenic activities remain largely unknown. By global profiling of the SRSF3-regulated splicing events in human osteosarcoma U2OS cells, we found that SRSF3 regulates the expression of 60 genes including ERRFI1, ANXA1 and TGFB2, and 182 splicing events in 164 genes, including EP300, PUS3, CLINT1, PKP4, KIF23, CHK1, SMC2, CKLF, MAP4, MBNL1, MELK, DDX5, PABPC1, MAP4K4, Sp1 and SRSF1, which are primarily associated with cell proliferation or cell cycle. Two SRSF3-binding motifs, CCAGC(G)C and A(G)CAGCA, are enriched to the alternative exons. An SRSF3-binding site in the EP300 exon 14 is essential for exon 14 inclusion. We found that the expression of SRSF1 and SRSF3 are mutually dependent and coexpressed in normal and tumor tissues/cells. SRSF3 also significantly regulates the expression of at least 20 miRNAs, including a subset of oncogenic or tumor suppressive miRNAs. These data indicate that SRSF3 affects a global change of gene expression to maintain cell homeostasis. PMID:26704980

  2. A bivalent chromatin structure marks key developmental genes in embryonic stem cells.

    PubMed

    Bernstein, Bradley E; Mikkelsen, Tarjei S; Xie, Xiaohui; Kamal, Michael; Huebert, Dana J; Cuff, James; Fry, Ben; Meissner, Alex; Wernig, Marius; Plath, Kathrin; Jaenisch, Rudolf; Wagschal, Alexandre; Feil, Robert; Schreiber, Stuart L; Lander, Eric S

    2006-04-21

    The most highly conserved noncoding elements (HCNEs) in mammalian genomes cluster within regions enriched for genes encoding developmentally important transcription factors (TFs). This suggests that HCNE-rich regions may contain key regulatory controls involved in development. We explored this by examining histone methylation in mouse embryonic stem (ES) cells across 56 large HCNE-rich loci. We identified a specific modification pattern, termed "bivalent domains," consisting of large regions of H3 lysine 27 methylation harboring smaller regions of H3 lysine 4 methylation. Bivalent domains tend to coincide with TF genes expressed at low levels. We propose that bivalent domains silence developmental genes in ES cells while keeping them poised for activation. We also found striking correspondences between genome sequence and histone methylation in ES cells, which become notably weaker in differentiated cells. These results highlight the importance of DNA sequence in defining the initial epigenetic landscape and suggest a novel chromatin-based mechanism for maintaining pluripotency.

  3. Portraying the Expression Landscapes of B-CellLymphoma-Intuitive Detection of Outlier Samples and of Molecular Subtypes.

    PubMed

    Hopp, Lydia; Lembcke, Kathrin; Binder, Hans; Wirth, Henry

    2013-12-02

    We present an analytic framework based on Self-Organizing Map (SOM) machine learning to study large scale patient data sets. The potency of the approach is demonstrated in a case study using gene expression data of more than 200 mature aggressive B-cell lymphoma patients. The method portrays each sample with individual resolution, characterizes the subtypes, disentangles the expression patterns into distinct modules, extracts their functional context using enrichment techniques and enables investigation of the similarity relations between the samples. The method also allows to detect and to correct outliers caused by contaminations. Based on our analysis, we propose a refined classification of B-cell Lymphoma into four molecular subtypes which are characterized by differential functional and clinical characteristics.

  4. Mutational Landscape and Gene Expression Patterns in Adult Acute Myeloid Leukemias with Monosomy 7 as a Sole Abnormality.

    PubMed

    Eisfeld, Ann-Kathrin; Kohlschmidt, Jessica; Mrózek, Krzysztof; Volinia, Stefano; Blachly, James S; Nicolet, Deedra; Oakes, Christopher; Kroll, Karl; Orwick, Shelley; Carroll, Andrew J; Stone, Richard M; Byrd, John C; de la Chapelle, Albert; Bloomfield, Clara D

    2017-01-01

    Monosomy of chromosome 7 is the most frequent autosomal monosomy in acute myeloid leukemia (AML), where it associates with poor clinical outcomes. However, molecular features associated with this sole monosomy subtype (-7 AML), which may give insights into the basis for its poor prognosis, have not been characterized. In this study, we analyzed 36 cases of -7 AML for mutations in 81 leukemia/cancer-associated genes using a customized targeted next-generation sequencing panel (Miseq). Global gene and miRNA expression profiles were also determined using paired RNA and small RNA sequencing data. Notably, gene mutations were detected in all the major AML-associated functional groups, which include activated signaling, chromatin remodeling, cohesin complex, methylation, NPM1, spliceosome, transcription factors, and tumor suppressors. Gene mutations in the chromatin remodeling groups were relatively more frequent in patients <60 years of age, who also had less mutations in the methylation and spliceosome groups compared with patients ≥60 years of age. Novel recurrent mutational events in AML were identified in the SMARCA2 gene. In patients ≥60 years of age, the presence of spliceosome mutations associated with a lower complete remission rate (P = 0.03). RNA sequencing revealed distinct gene and miRNA expression patterns between the sole -7 and non -7 AML cases, with reduced expression, as expected, of many genes and miRNAs mapped to chromosome 7, and overexpression of ID1, MECOM, and PTPRM, among others. Overall, our findings illuminate a number of molecular features of the underlying aggressive pathobiology in -7 AML patients. Cancer Res; 77(1); 207-18. ©2016 AACR.

  5. Mutational landscape and gene-expression patterns in adult acute myeloid leukemias with monosomy 7 as a sole abnormality

    PubMed Central

    Eisfeld, Ann-Kathrin; Kohlschmidt, Jessica; Mrózek, Krzysztof; Volinia, Stefano; Blachly, James S.; Nicolet, Deedra; Oakes, Christopher; Kroll, Karl; Orwick, Shelley; Carroll, Andrew J.; Stone, Richard M.; Byrd, John C.; de la Chapelle, Albert; Bloomfield, Clara D.

    2016-01-01

    Monosomy of chromosome 7 is the most frequent autosomal monosomy in acute myeloid leukemia (AML), where it associates with poor clinical outcomes. However, molecular features associated with this sole monosomy subtype (-7 AML) which may give insights into the basis for its poor prognosis have not been characterized. In this study, we analyzed 36 cases of -7 AML for mutations in 81 leukemia/cancer-associated genes using a customized targeted next-generation sequencing panel (Miseq). Global gene and microRNA expression profiles were also determined using paired RNA and small RNA sequencing data. Notably, gene mutations were detected in all the major AML-associated functional groups, which include activated signaling, chromatin remodeling, cohesin complex, methylation, NPM1, spliceosome, transcription factors and tumor suppressors. Gene mutations in the activated signaling and chromatin remodeling groups were relatively more frequent in patients <60 years of age, who also had more mutations in the methylation and spliceosome groups compared to patients {greater than or equal to} 60 years of age. Novel recurrent mutational events in AML were identified in the SMARCA2 gene. In patients {greater than or equal to} 60 years of age, the presence of spliceosome mutations associated with a lower complete remission rate (p=0.03). RNA sequencing revealed distinct gene and microRNA expression patterns between the sole -7 and non-7 AML cases, with reduced expression as expected of many genes and microRNAs mapped to chromosome 7, and overexpression of ID1, MECOM, and PTPRM, among others. Overall, our findings illuminate a number of molecular features of the underlying aggressive pathobiology in -7 AML patients. PMID:27784745

  6. Embryonal cancers in Europe.

    PubMed

    Gatta, Gemma; Ferrari, Andrea; Stiller, Charles A; Pastore, Guido; Bisogno, Gianni; Trama, Annalisa; Capocaccia, Riccardo

    2012-07-01

    Embryonal cancers are a heterogeneous group of rare cancers which mainly occur in children and adolescents. The aim of the present study was to estimate the burden (incidence, prevalence, survival and proportion of cured) for the principal embryonal cancers in Europe (EU27), using population-based data from cancer registries (CRs) participating in RARECARE. We identified 3322 cases diagnosed from 1995 to 2002 (latest period for which data are available): 44% neuroblastoma, 35% nephroblastoma, 13% retinoblastoma and 6% hepatoblastoma. Very few cases of pulmonary blastoma (43 cases) and pancreatoblastoma (seven cases) were diagnosed. About 2000 new embryonal cancers were estimated every year in EU27, for an annual incidence rate of 4 per million (1.8 neuroblastoma, 1.4 nephroblastoma, and 0.5 retinoblastoma); 91% of cases occurred in patients under 15 years. Five-year relative survival for all embryonal cancers was 80% (99% retinoblastoma, 90% nephroblastoma, 71% hepatoblastoma and 68% neuroblastoma). Overall survival was lower in adolescents and adults than in those under 15 years. The cure rate was estimated at 80%. Slightly less than 40,000 persons were estimated alive in EU27 with a diagnosis of embryonal cancer in 2008. Nephroblastoma was the most prevalent (18,150 cases in EU27), followed by neuroblastoma (12,100), retinoblastoma (5200), hepatoblastoma (2700) and pulmonary blastoma (614). This is the first study to delineate the embryonal cancer burden in Europe by age, sex and European region. Survival/cure rate is generally high, but there are considerable gaps in our understanding of the natural histories of these rare diseases particularly in adults.

  7. Repression of Global Protein Synthesis by Eif1a-Like Genes That Are