Sample records for embryonic eye development

  1. In utero mouse embryonic imaging with OCT for ophthalmologic research

    NASA Astrophysics Data System (ADS)

    Syed, Saba H.; Larina, Irina V.; Dickinson, Mary E.; Larin, Kirill V.

    2011-03-01

    Live imaging of an eye during embryonic development in mammalian model is important for understanding dynamic aspects of normal and abnormal eye morphogenesis. In this study, we used Swept Source Optical Coherence Tomography (SS-OCT) for live structural imaging of mouse embryonic eye through the uterine wall. The eye structure was reconstructed in mouse embryos at 13.5 to 17.5 days post coitus (dpc). Despite the limited imaging depth of OCT in turbid tissues, we were able to visualize the whole eye globe at these stages. These results suggest that live in utero OCT imaging is a useful tool to study embryonic eye development in the mouse model.

  2. Generation of structures formed by lens and retinal cells differentiating from embryonic stem cells.

    PubMed

    Hirano, Mariko; Yamamoto, Akitsugu; Yoshimura, Naoko; Tokunaga, Tomoyuki; Motohashi, Tsutomu; Ishizaki, Katsuhiko; Yoshida, Hisahiro; Okazaki, Kenji; Yamazaki, Hidetoshi; Hayashi, Shin-Ichi; Kunisada, Takahiro

    2003-12-01

    Embryonic stem cells have the potential to give rise to all cell lineages when introduced into the early embryo. They also give rise to a limited number of different cell types in vitro in specialized culture systems. In this study, we established a culture system in which a structure consisting of lens, neural retina, and pigmented retina was efficiently induced from embryonic stem cells. Refractile cell masses containing lens and neural retina were surrounded by retinal pigment epithelium layers and, thus, designated as eye-like structures. Developmental processes required for eye development appear to proceed in this culture system, because the formation of the eye-like structures depended on the expression of Pax6, a key transcription factor for eye development. The present culture system opens up the possibility of examining early stages of eye development and also of producing cells for use in cellular therapy for various diseases of the eye. Copyright 2003 Wiley-Liss, Inc.

  3. Magnetic resonance imaging study of eye congenital birth defects in mouse model

    PubMed Central

    Tucker, Zachary; Mongan, Maureen; Meng, Qinghang; Xia, Ying

    2017-01-01

    Purpose Embryonic eyelid closure is a well-documented morphogenetic episode in mammalian eye development. Detection of eyelid closure defect in humans is a major challenge because eyelid closure and reopen occur entirely in utero. As a consequence, congenital eye defects that are associated with failure of embryonic eyelid closure remain unknown. To fill the gap, we developed a mouse model of defective eyelid closure. This preliminary work demonstrates that the magnetic resonance imaging (MRI) approach can be used for the detection of extraocular muscle abnormalities in the mouse model. Methods Mice with either normal (Map3k1+/−) or defective (Map3k1−/−) embryonic eyelid closure were used in this study. Images of the extraocular muscles were obtained with a 9.4 T high resolution microimaging MRI system. The extraocular muscles were identified, segmented, and measured in each imaging slice using an in-house program. Results In agreement with histological findings, the imaging data show that mice with defective embryonic eyelid closure develop less extraocular muscle than normal mice. In addition, the size of the eyeballs was noticeably reduced in mice with defective embryonic eyelid closure. Conclusions We demonstrated that MRI can potentially be used for the study of extraocular muscle in the mouse model of the eye open-at-birth defect, despite the lack of specificity of muscle group provided by the current imaging resolution. PMID:28848319

  4. Adrenal hormones interact with sympathetic innervation to modulate growth of embryonic heart in oculo.

    PubMed

    Tucker, D C; Torres, A

    1992-02-01

    To allow experimental manipulation of adrenal hormone and autonomic influences on developing myocardium without alteration of hemodynamic load, embryonic rat heart was cultured in the anterior eye chamber of an adult rat. Sympathetic innervation of embryonic day 12 heart grafts was manipulated by surgical sympathectomy of one eye chamber in each host rat. Adrenal hormone exposure was manipulated by host adrenal medullectomy (MEDX) in experiment 1 and by host adrenalectomy (ADX) in experiment 2. In experiment 1, whole heart grafts were larger in MEDX than in sham-operated hosts by 8 wk in oculo (6.14 +/- 0.71 vs. 5.09 +/- 0.69 mm2 with innervation intact and 7.97 +/- 2.07 vs. 3.09 +/- 0.63 mm2 with sympathetic innervation prevented). In experiment 2, host ADX increased growth of embryonic day 12 ventricles grafted into sympathectomized eye chambers (0.69 +/- 0.10 vs. 0.44 +/- 0.04 mm2) but did not affect growth of grafts in intact eye chambers (0.85 +/- 0.09 vs. 1.05 +/- 0.15 mm2). Corticosterone replacement (4 mg/day) entirely reversed the effect of host ADX on graft growth (superior cervical ganglionectomy, 0.47 +/- 0.03 mm2; intact eye chambers, 0.90 +/- 0.91 mm2). Beating rate of grafts was not affected by adrenal hormone manipulations. These experiments indicate that the compromised growth of embryonic heart grafts placed in sympathectomized eye chambers requires exposure to adult levels of glucocorticoids during the early days after grafting. These results suggest that interactions between neural and hormonal stimulation influence cardiac growth in the in oculo culture system and during normal development.

  5. Case Study: Organotypic human in vitro models of embryonic morphogenetic fusion

    EPA Science Inventory

    Morphogenetic fusion of tissues is a common event in embryonic development and disruption of fusion is associated with birth defects of the eye, heart, neural tube, phallus, palate, and other organ systems. Embryonic tissue fusion requires precise regulation of cell-cell and cell...

  6. Transmembrane voltage potential controls embryonic eye patterning in Xenopus laevis

    PubMed Central

    Pai, Vaibhav P.; Aw, Sherry; Shomrat, Tal; Lemire, Joan M.; Levin, Michael

    2012-01-01

    Uncovering the molecular mechanisms of eye development is crucial for understanding the embryonic morphogenesis of complex structures, as well as for the establishment of novel biomedical approaches to address birth defects and injuries of the visual system. Here, we characterize change in transmembrane voltage potential (Vmem) as a novel biophysical signal for eye induction in Xenopus laevis. During normal embryogenesis, a striking hyperpolarization demarcates a specific cluster of cells in the anterior neural field. Depolarizing the dorsal lineages in which these cells reside results in malformed eyes. Manipulating Vmem of non-eye cells induces well-formed ectopic eyes that are morphologically and histologically similar to endogenous eyes. Remarkably, such ectopic eyes can be induced far outside the anterior neural field. A Ca2+ channel-dependent pathway transduces the Vmem signal and regulates patterning of eye field transcription factors. These data reveal a new, instructive role for membrane voltage during embryogenesis and demonstrate that Vmem is a crucial upstream signal in eye development. Learning to control bioelectric initiators of organogenesis offers significant insight into birth defects that affect the eye and might have significant implications for regenerative approaches to ocular diseases. PMID:22159581

  7. Eye development and the appearance and maintenance of corneal transparency

    NASA Technical Reports Server (NTRS)

    Conrad, G. W.; Funderburgh, J. L.; Spooner, B. S. (Principal Investigator)

    1992-01-01

    Embryonic development of the eye, including the cornea, depends on the appearance and steady maintenance of intraocular pressure. The eye is a gravity-sensitive organ, as evidence by changes in pupil diameter during parabolic flight. The cornea is largely a paracrystal of extracellular matrix. The extent to which it will polymerize normally in microgravity has yet to be determined.

  8. Congenital disorder of true cyclopia with polydactylia: case report and review of the literature.

    PubMed

    Deftereou, T E; Tsoulopoulos, V; Alexiadis, G; Papadopoulos, E; Chouridou, E; Katotomichelakis, M; Lambropoulou, M

    2013-01-01

    Cyclopia is a rare type of holoprosencephaly and a congenital disorder characterized by the failure of the embryonic forebrain to properly divide the orbits of the eye into two cavities (the embryonic forebrain is normally responsible for inducing the development of the orbits). As a result a birth defect in which there is only one eye is developed. This eye is centrally placed in the area normally occupied by the root of the nose. As a rule, there is a missing nose or a non-functioning nose in the form of a proboscis (a tubular appendage) located above the central eye. In this report the macroscopic, radiographic, and immunohistochemical findings of a case of true cyclopia in a female fetus are described. Cyclopia is a lethal condition that is associated with dramatic symmetric deformities of the nose, skull, orbits, and brain.

  9. Specification of embryonic stem cell-derived tissues into eye fields by Wnt signaling using rostral diencephalic tissue-inducing culture.

    PubMed

    Sakakura, Eriko; Eiraku, Mototsugu; Takata, Nozomu

    2016-08-01

    The eyes are subdivided from the rostral diencephalon in early development. How the neuroectoderm regulates this subdivision, however, is largely unknown. Taking advantage of embryonic stem cell (ESC) culture using a Rax reporter line to monitor rostral diencephalon formation, we found that ESC-derived tissues at day 7 grown in Glasgow Minimum Expression Media (GMEM) containing knockout serum replacement (KSR) exhibited higher levels of expression of axin2, a Wnt target gene, than those grown in chemically defined medium (CDM). Surprisingly, Wnt agonist facilitated eye field-like tissue specification in CDM. In contrast, the addition of Wnt antagonist diminished eye field tissue formation in GMEM+KSR. Furthermore, the morphological formation of the eye tissue anlage, including the optic vesicle, was accompanied by Wnt signaling activation. Additionally, using CDM culture, we developed an efficient method for generating Rax+/Chx10+ retinal progenitors, which could become fully stratified retina. Here we provide a new avenue for exploring the mechanisms of eye field specification in vitro. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. Sma- and Mad-related protein 7 (Smad7) is required for embryonic eye development in the mouse.

    PubMed

    Zhang, Rui; Huang, Heng; Cao, Peijuan; Wang, Zhenzhen; Chen, Yan; Pan, Yi

    2013-04-12

    Smad7 is an intracellular inhibitory protein that antagonizes the signaling of TGF-β family members. Deletion of Smad7 in the mouse leads to an abnormality in heart development. However, whether Smad7 has a functional role in the development of other organs has been elusive. Here we present evidence that Smad7 imparts a role to eye development in the mouse. Smad7 is expressed in both the lens and retina in the developing embryonic eye. Depletion of Smad7 caused various degrees of coloboma and microphthalmia with alterations in cell apoptosis and proliferation in eyes. Smad7 was implicated in lens differentiation but was not required for the induction of the lens placode. The development of the periocular mesenchyme was retarded with the down-regulation of Bmp7 and Pitx2 in mutant mice. Retinal spatial patterning was affected by Smad7 deletion and was accompanied by altered bone morphogenetic protein (BMP) signaling. At late gestation stages, TGF-β signaling was up-regulated in the differentiating retina. Smad7 mutant mice displayed an expanded optic disc with increasing of sonic hedgehog (SHH) signaling. Furthermore, loss of Smad7 led to a temporal change in retinal neurogenesis. In conclusion, our study suggests that Smad7 is essential for eye development. In addition, our data indicate that alterations in the signaling of BMP, TGF-β, and SHH likely underlie the defects in eye development caused by Smad7 deletion.

  11. Human Eye Development Is Characterized by Coordinated Expression of Fibrillin Isoforms

    PubMed Central

    Hubmacher, Dirk; Reinhardt, Dieter P.; Plesec, Thomas; Schenke-Layland, Katja; Apte, Suneel S.

    2014-01-01

    Purpose. Mutations in human fibrillin-1 and -2, which are major constituents of tissue microfibrils, can affect multiple ocular components, including the ciliary zonule, lens, drainage apparatus, cornea, and retina. However, the expression pattern of the three human fibrillins and an integral microfibrillar component, MAGP1, during human eye development is not known. Methods. We analyzed sections from human eyes at gestational weeks (GWs) 6, 8, and 11 and at 1 and 3 years of age with antibodies specific for each human fibrillin isoform or MAGP1, using immunofluorescence microscopy. Results. During embryonic development, each fibrillin isoform was detected in vascular structures bridging the ciliary body and the developing lens, hyaloid vasculature, and retina. In addition, they were present in the developing corneal basement membranes and lens capsule. MAGP1 codistributed with the fibrillin isoforms. In contrast, the juvenile zonule was composed of fibrillin-1 microfibrils containing MAGP1, but fibrillin-2 was absent and fibrillin-3 was only sparsely detected. Conclusions. Fibrillin-1, -2, and, unique to humans, fibrillin-3 are found in various ocular structures during human embryonic eye development, whereas fibrillin-1 dominates the postnatal zonule. We speculate that vasculature spanning the ciliary body and lens, which elaborates fibrillin-2 and -3, may provide an initial scaffold for fibrillin assembly and zonule formation. PMID:25406291

  12. Lipid metabolism during embryonic development of the common snapping turtle, Chelydra serpentina.

    PubMed

    Lawniczak, Cynthia J; Teece, Mark A

    2009-05-01

    The metabolism of lipids and fatty acids during embryonic development of Chelydra serpentina (common snapping turtle) was investigated. Substantial changes in lipid class and fatty acid composition occurred as lipids were transferred from the yolk to the yolk sac membrane (YSM) and then to the brain, eyes, heart, and lungs of the hatchling. Lipids were hydrolyzed in the yolk prior to transport to the YSM, shown by a large increase in free fatty acids (FFAs) during the second half of development. Triglyceride-derived docosahexaenoic acid (DHA) was utilized preferentially to phospholipid-derived DHA. In the YSM, arachidonic acid (ARA) was selectively incorporated into phospholipids while DHA was preferentially incorporated into triglycerides. Selective incorporation of DHA and ARA into the brain and eyes, and ARA into the heart was observed, indicating the importance of these PUFAs for organ development and function. The amount of DHA and ARA in each organ was less than 1% of that measured in the yolk of the freshly laid egg, indicating that only a small portion of yolk PUFAs were incorporated into the hatchling organs studied. We discuss the differences in the mechanisms and utilization of yolk lipids in turtles compared with lipid uptake during embryonic development in birds.

  13. Paternal identity impacts embryonic development for two species of freshwater fish.

    PubMed

    Siddique, Mohammad Abdul Momin; Linhart, Otomar; Krejszeff, Sławomir; Żarski, Daniel; Pitcher, Trevor E; Politis, Sebastian Nikitas; Butts, Ian Anthony Ernest

    2017-05-01

    Paternal, compared to maternal, contributions were believed to have only a limited influence on embryonic development and larval fitness traits in fishes. Therefore, the perspective of male influence on early life history traits has come under scrutiny. This study was conducted to determine parental effects on the rate of eyed embryos of Ide Leuciscus idus and Northern pike Esox lucius. Five sires and five dams from each species were crossed using a quantitative genetic breeding design and the resulting 25 sib groups of each species were reared to the embryonic eyed stage. We then partition variation in embryonic phenotypic performance to maternal, paternal, and parental interactions using the Restricted Maximum Likelihood (REML) model. Results showed that paternal, maternal, and the paternal×maternal interaction terms were highly significant for both species; clearly demonstrating that certain family combinations were more compatible than others. Paternal effects explained 20.24% of the total variance, which was 2-fold higher than the maternal effects (10.73%) in Ide, while paternal effects explained 18.9% of the total variance, which was 15-fold higher than the maternal effects (1.3%) in Northern pike. Together, these results indicate that male effects are of major importance during embryonic development for these species. Furthermore, this study demonstrates that genetic compatibility between sires and dams plays an important role and needs to be taken into consideration for reproduction of these and likely other economically important fish species. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Isolation and expression of homeobox genes from the embryonic chicken eye.

    PubMed

    Dhawan, R R; Schoen, T J; Beebe, D C

    1997-06-11

    To identify homeobox-containing genes that may play a role in the differentiation of ocular tissues. Total RNA was isolated from microdissected chicken embryo eye tissues at 3.5 days of development (embryonic day 3.5; E3.5). An "anchor-oligo-dT primer" was used for the synthesis of cDNA. Degenerate oligonucleotides designed from highly-conserved sequences in the third helix of the homeobox and the "anchor-primer" were used to amplify cDNAs by polymerase chain reaction (PCR). PCR products were cloned and sequenced. The spatial and temporal expression of selected transcripts was mapped by whole-mount in situ hybridization and northern blot analysis. After sequencing eighteen clones we identified a member of the distal-less family (dlx-3) in cDNA from presumptive neural retina and three chicken homologs of the Xenopus "anterior neural fold" (Xanf-1) in cDNA from anterior eye tissue. Dlx transcripts were mapped by in situ hybridization. Expression began at Hamburger and Hamilton stage 14 (E2.5) and was widely distributed in embryonic mesenchyme on E3 and E4. Expression increased in the retina during early development and persisted until after hatching. The one anf clone selected for further study was not detected by in situ or northern blot analysis. It is feasible to isolate homeobox cDNAs directly from microdissected embryonic tissues. Chicken dlx-3 mRNA has a wider distribution in the embryo than expected, based on the expression of the mouse homolog. Dlx-3 may play a role in establishing or maintaining the differentiation of the retina.

  15. Microgravity, stem cells, and embryonic development: challenges and opportunities for 3D tissue generation

    NASA Astrophysics Data System (ADS)

    Andreazzoli, Massimiliano; Angeloni, Debora; Broccoli, Vania; Demontis, Gian C.

    2017-04-01

    Space is a challenging environment for the human body, due to the combined effects of reduced gravity (microgravity) and cosmic radiation. Known effects of microgravity range from the blood redistribution that affects the cardiovascular system and the eye to muscle wasting, bone loss, anemia and immune depression. About cosmic radiation, the shielding provided by the spaceship hull is far less efficient than that afforded at ground level by the combined effects of the Earth atmosphere and magnetic field. The eye and its nervous layer (the retina) are affected by both microgravity and heavy ions exposure. Considering the importance of sight for long-term manned flights, visual research aimed at devising measures to protect the eye from environmental conditions of the outer space represents a special challenge to meet. In this review we focus on the impact of microgravity on embryonic development, discussing the roles of mechanical forces in the context of the neutral buoyancy the embryo experiences in the womb. At variance with its adverse effects on the adult human body, simulated microgravity may provide a unique tool for understanding the biomechanical events involved in the development and assembly in vitro of three-dimensional (3D) ocular tissues. Prospective benefits are the development of novel safety measures to protect the human eye from cosmic radiation in microgravity during long-term manned spaceflights in the outer space, as well as the generation of human 3D-retinas with its supporting structures to develop innovative and effective therapeutic options for degenerative eye diseases.

  16. Genes relacionados con microftalmia y anoftalmia hereditarias.

    PubMed

    Matías-Pérez, Diana; García-Montalvo, Iván Antonio; Zenteno, Juan Carlos

    2017-01-01

    Congenital eye malformations are the second most common cause of childhood blindness and are originated by disruption of the normal process of eye development during embryonic stage. Their etiology is variable, although monogenic causes are of great importance as they have a high risk of familial recurrence. Included among the most severe congenital eye abnormalities are microphthalmia, defined by an abnormally small eye, and anophthalmia, characterized by congenital absence of ocular structures. The currrent knowledge of the genes involved in human microphthalmia and anophthalmia in humans is revised in this work. Copyright: © 2017 SecretarÍa de Salud.

  17. Differential toxicity of copper, zinc, and lead during the embryonic development of Chasmagnathus granulatus (Brachyura, Varunidae).

    PubMed

    Lavolpe, Mariano; Greco, Laura López; Kesselman, Daniela; Rodríguez, Enrique

    2004-04-01

    Ovigerous females of the estuarine crab Chasmagnathus granulatus were exposed to copper (0.01 and 1 mg/L), zinc (0.05, 1, and 10 mg/L), or lead (0.01 and 1 mg/L) during early, late, or whole embryonic development. None of the assayed heavy metals produced a significant mortality of females, neither a decrease in the number of hatched larvae nor a decrease in the egg incubation time, but several morphological abnormalities were detected in hatched larvae. The abnormalities were classified in three categories: eye, body pigmentary, and body morphological abnormalities. Those larvae with eye and body pigmentary abnormalities, particularly those involving retinal pigments and chromatophores, showed the highest incidence by exposure to the assayed metals. In addition, embryos were more susceptible to copper and zinc during the late period of development, whereas the effect of lead was greater during the early period of embryogenesis. Some teratogenic effects observed in C. granulatus embryos exposed to heavy metals, particularly the hypertrophy and hypopigmentation of eyes observed in the laboratory at a lead concentration as low as that reported for the natural environment, could be considered as sensitive biomarkers for this kind of pollutant.

  18. Rax : developmental and daily expression patterns in the rat pineal gland and retina.

    PubMed

    Rohde, Kristian; Klein, David C; Møller, Morten; Rath, Martin F

    2011-09-01

    Retina and anterior neural fold homeobox (Rax) gene encodes a transcription factor essential for vertebrate eye development. Recent microarray studies indicate that Rax is expressed in the adult rat pineal gland and retina. The present study reveals that Rax expression levels in the rat change significantly during retinal development with a peak occurring at embryonic day 18, whereas Rax expression in the pineal is relatively delayed and not detectable until embryonic day 20. In both tissues, Rax is expressed throughout postnatal development into adulthood. In the mature rat pineal gland, the abundance of Rax transcripts increases 2-fold during the light period with a peak occurring at dusk. These findings are consistent with the evidence that Rax is of functional importance in eye development and suggest a role of Rax in the developing pineal gland. In addition, it would appear possible that Rax contributes to phenotype maintenance in the mature retina and pineal gland and may facilitate 24-h changes in the pineal transcriptome. © 2011 The Authors. Journal of Neurochemistry © 2011 International Society for Neurochemistry.

  19. Subretinally transplanted embryonic stem cells rescue photoreceptor cells from degeneration in the RCS rats.

    PubMed

    Schraermeyer, U; Thumann, G; Luther, T; Kociok, N; Armhold, S; Kruttwig, K; Andressen, C; Addicks, K; Bartz-Schmidt, K U

    2001-01-01

    The Royal College of Surgeons (RCS) rat is an animal model for retinal degeneration such as the age-related macular degeneration. The RCS rat undergoes a progressive retinal degeneration during the early postnatal period. A potential treatment to prevent this retinal degeneration is the transplantation into the subretinal space of cells that would replace functions of the degenerating retinal pigment epithelium (RPE) cells or may form neurotrophic factors. In this study we have investigated the potential of subretinally transplanted embryonic stem cells to prevent the genetically determined photoreceptor cell degeneration in the RCS rat. Embryonic stem cells from the inner cell mass of the mouse blastocyst were allowed to differentiate to neural precursor cells in vitro and were then transplanted into the subretinal space of 20-day-old RCS rats. Transplanted and sham-operated rats were sacrificed 2 months following cell transplantation. The eyes were enucleated and photoreceptor degeneration was quantified by analyzing and determining the thickness of the outer nuclear layer by light and electron microscopy. In the eyes transplanted with embryonic cells up to 8 rows of photoreceptor cell nuclei were observed, whereas in nontreated control eyes the outer nuclear layer had degenerated completely. Transplantation of embryonic stem cells appears to delay photoreceptor cell degeneration in RCS rats.

  20. Analysis of Pax6 contiguous gene deletions in the mouse, Mus musculus, identifies regions distinct from Pax6 responsible for extreme small-eye and belly-spotting phenotypes.

    PubMed

    Favor, Jack; Bradley, Alan; Conte, Nathalie; Janik, Dirk; Pretsch, Walter; Reitmeir, Peter; Rosemann, Michael; Schmahl, Wolfgang; Wienberg, Johannes; Zaus, Irmgard

    2009-08-01

    In the mouse Pax6 function is critical in a dose-dependent manner for proper eye development. Pax6 contiguous gene deletions were shown to be homozygous lethal at an early embryonic stage. Heterozygotes express belly spotting and extreme microphthalmia. The eye phenotype is more severe than in heterozygous Pax6 intragenic null mutants, raising the possibility that deletions are functionally different from intragenic null mutations or that a region distinct from Pax6 included in the deletions affects eye phenotype. We recovered and identified the exact regions deleted in three new Pax6 deletions. All are homozygous lethal at an early embryonic stage. None express belly spotting. One expresses extreme microphthalmia and two express the milder eye phenotype similar to Pax6 intragenic null mutants. Analysis of Pax6 expression levels and the major isoforms excluded the hypothesis that the deletions expressing extreme microphthalmia are directly due to the action of Pax6 and functionally different from intragenic null mutations. A region distinct from Pax6 containing eight genes was identified for belly spotting. A second region containing one gene (Rcn1) was identified for the extreme microphthalmia phenotype. Rcn1 is a Ca(+2)-binding protein, resident in the endoplasmic reticulum, participates in the secretory pathway and expressed in the eye. Our results suggest that deletion of Rcn1 directly or indirectly contributes to the eye phenotype in Pax6 contiguous gene deletions.

  1. Whole-organism clone tracing using single-cell sequencing.

    PubMed

    Alemany, Anna; Florescu, Maria; Baron, Chloé S; Peterson-Maduro, Josi; van Oudenaarden, Alexander

    2018-04-05

    Embryonic development is a crucial period in the life of a multicellular organism, during which limited sets of embryonic progenitors produce all cells in the adult body. Determining which fate these progenitors acquire in adult tissues requires the simultaneous measurement of clonal history and cell identity at single-cell resolution, which has been a major challenge. Clonal history has traditionally been investigated by microscopically tracking cells during development, monitoring the heritable expression of genetically encoded fluorescent proteins and, more recently, using next-generation sequencing technologies that exploit somatic mutations, microsatellite instability, transposon tagging, viral barcoding, CRISPR-Cas9 genome editing and Cre-loxP recombination. Single-cell transcriptomics provides a powerful platform for unbiased cell-type classification. Here we present ScarTrace, a single-cell sequencing strategy that enables the simultaneous quantification of clonal history and cell type for thousands of cells obtained from different organs of the adult zebrafish. Using ScarTrace, we show that a small set of multipotent embryonic progenitors generate all haematopoietic cells in the kidney marrow, and that many progenitors produce specific cell types in the eyes and brain. In addition, we study when embryonic progenitors commit to the left or right eye. ScarTrace reveals that epidermal and mesenchymal cells in the caudal fin arise from the same progenitors, and that osteoblast-restricted precursors can produce mesenchymal cells during regeneration. Furthermore, we identify resident immune cells in the fin with a distinct clonal origin from other blood cell types. We envision that similar approaches will have major applications in other experimental systems, in which the matching of embryonic clonal origin to adult cell type will ultimately allow reconstruction of how the adult body is built from a single cell.

  2. Fundal variations in the eyes of the osteoglossomorph fishes.

    PubMed

    Saidel, W M; Braford, M R

    1985-01-01

    The appearance of the fundus of the eye varies among the families of osteoglossomorph teleosts. In this study, four different fundal patterns were observed: (i) an anteroposterior (or horizontal) embryonic fissure with a septal falciform process (family Osteoglossidae); (ii) an embryonic fissure from the optic disc nasoventrally with a falciform process (family Arapaimidae); (iii) an embryonic fissure nasoventrally from the optic disc without a falciform process (family Hiodontidae); and (iv) neither an embryonic fissure nor a falciform process (families Notopteridae and Mormyridae). The distribution of these various forms among the osteoglossomorph fishes is consistent with the recent cladogram for the Osteoglossomorpha [Lauder and Liem, 1983] which was based on many characters. The embryonic fissure in adult Amia calva was also examined. Its existence in adult Amia, in most Osteoglossomorpha, and in many non-euteleostean bony fishes suggests that its persistence in the adult stage is a primitive trait of bony fishes, and its absence in the Notopteroidei (with the exception of Hiodon) is a derived condition.

  3. Eye-specification genes in the bacterial light organ of the bobtail squid Euprymna scolopes, and their expression in response to symbiont cues

    PubMed Central

    Peyer, Suzanne M.; Pankey, M. Sabrina; Oakley, Todd H.; McFall-Ngai, Margaret J.

    2014-01-01

    The squid Euprymna scolopes has evolved independent sets of tissues capable of light detection, including a complex eye and a photophore or ‘light organ’, which houses the luminous bacterial symbiont Vibrio fischeri. As the eye and light organ originate from different embryonic tissues, we examined whether the eye-specification genes, pax6, eya, six, and dac, are shared by these two organs, and if so, whether they are regulated in the light organ by symbiosis. We obtained sequences of the four genes with PCR, confirmed orthology with phylogenetic analysis, and determined that each was expressed in the eye and light organ. With in situ hybridization (ISH), we localized the gene transcripts in developing embryos, comparing the patterns of expression in the two organs. The four transcripts localized to similar tissues, including those associated with the visual system ~1/4 into embryogenesis (Naef stage 18) and the light organ ~3/4 into embryogenesis (Naef stage 26). We used ISH and quantitative real-time PCR to examine transcript expression and differential regulation in postembryonic light organs in response to the following colonization conditions: wild-type, luminescent V. fischeri; a mutant strain defective in light production; and as a control, no symbiont. In ISH experiments light organs showed down regulation of the pax6, eya, and six transcripts in response to wild-type V. fischeri. Mutant strains also induced down regulation of the pax6 and eya transcripts, but not of the six transcript. Thus, luminescence was required for down regulation of the six transcript. We discuss these results in the context of symbiont-induced light-organ development. Our study indicates that the eye-specification genes are expressed in light-interacting tissues independent of their embryonic origin and are capable of responding to bacterial cues. These results offer evidence for evolutionary tinkering or the recruitment of eye development genes for use in a light-sensing photophore. PMID:24157521

  4. Preliminary observations on the effects of selenate on the development of the embryonic skate, Raja eglanteria

    NASA Technical Reports Server (NTRS)

    Conrad, G. W.; Luer, C. A.; Paulsen, A. Q.; Funderburgh, J. L.; Spooner, B. S. (Principal Investigator)

    1993-01-01

    Morphogenesis of the clearnose skate, Raja eglanteria, was not significantly inhibited as a result of 7 days of exposure to 1-2 mM selenate in the sea water during Days 59-69 of embryonic development (hatching would normally have occurred at 82 +/- 4 days of incubation). Although corneal transparency appeared normal in the eye, preliminary measurements of the thickness of Bowman's layer of the cornea suggested that it was significantly thinner in the corneas of embryos exposed to 1-2 mM selenate. Selenate is an ion reported to inhibit sulfation of glycosaminoglycans in connective tissue.

  5. Fibroblast growth factor receptor 2 (FGFR2) is required for corneal epithelial cell proliferation and differentiation during embryonic development.

    PubMed

    Zhang, Jinglin; Upadhya, Dinesh; Lu, Lin; Reneker, Lixing W

    2015-01-01

    Fibroblast growth factors (FGFs) play important roles in many aspects of embryonic development. During eye development, the lens and corneal epithelium are derived from the same surface ectodermal tissue. FGF receptor (FGFR)-signaling is essential for lens cell differentiation and survival, but its role in corneal development has not been fully investigated. In this study, we examined the corneal defects in Fgfr2 conditional knockout mice in which Cre expression is activated at lens induction stage by Pax6 P0 promoter. The cornea in LeCre, Fgfr2(loxP/loxP) mice (referred as Fgfr2(CKO)) was analyzed to assess changes in cell proliferation, differentiation and survival. We found that Fgfr2(CKO) cornea was much thinner in epithelial and stromal layer when compared to WT cornea. At embryonic day 12.5-13.5 (E12.5-13.5) shortly after the lens vesicle detaches from the overlying surface ectoderm, cell proliferation (judged by labeling indices of Ki-67, BrdU and phospho-histone H3) was significantly reduced in corneal epithelium in Fgfr2(CKO) mice. At later stage, cell differentiation markers for corneal epithelium and underlying stromal mesenchyme, keratin-12 and keratocan respectively, were not expressed in Fgfr2(CKO) cornea. Furthermore, Pax6, a transcription factor essential for eye development, was not present in the Fgfr2(CKO) mutant corneal epithelial at E16.5 but was expressed normally at E12.5, suggesting that FGFR2-signaling is required for maintaining Pax6 expression in this tissue. Interestingly, the role of FGFR2 in corneal epithelial development is independent of ERK1/2-signaling. In contrast to the lens, FGFR2 is not required for cell survival in cornea. This study demonstrates for the first time that FGFR2 plays an essential role in controlling cell proliferation and differentiation, and maintaining Pax6 levels in corneal epithelium via ERK-independent pathways during embryonic development.

  6. Eye-Specific Gene Expression following Embryonic Ethanol Exposure in Zebrafish: Roles for Heat Shock Factor 1

    PubMed Central

    Kashyap, Bhavani; Pegorsch, Laurel; Frey, Ruth A.; Sun, Chi; Shelden, Eric A.; Stenkamp, Deborah L.

    2014-01-01

    The mechanisms through which ethanol exposure results in developmental defects remain unclear. We used the zebrafish model to elucidate eye-specific mechanisms that underlie ethanol-mediated microphthalmia (reduced eye size), through time-series microarray analysis of gene expression within eyes of embryos exposed to 1.5% ethanol. 62 genes were differentially expressed (DE) in ethanol-treated as compared to control eyes sampled during retinal neurogenesis (24-48 hours post-fertilization). The EDGE (extraction of differential gene expression) algorithm identified >3000 genes DE over developmental time in ethanol-exposed eyes as compared to controls. The DE lists included several genes indicating a mis-regulated cellular stress response due to ethanol exposure. Combined treatment with sub-threshold levels of ethanol and a morpholino targeting heat shock factor 1 mRNA resulted in microphthalmia, suggesting convergent molecular pathways. Thermal preconditioning partially prevented ethanol-mediated microphthalmia while maintaining Hsf-1 expression. These data suggest roles for reduced Hsf-1 in mediating microphthalmic effects of embryonic ethanol exposure. PMID:24355176

  7. The Development of the Ciliary Epithelium in the Embryonic Chicken Eye

    DTIC Science & Technology

    1989-08-04

    aqueous humor, which nourishes the avascular tissues in the anterior segment and generates intraocular pressure (IOP). IOP is the pressure contained...lightly stained. At higher magnification, tissue necrosis is evident in the central region. (60x). j 168 Figure 44. Graph of the labelling index

  8. Effect of parental exposure to trenbolone and the brominated flame retardant BDE-47 on fertility in rainbow trout (Oncorhynchus mykiss)

    PubMed Central

    Schultz, Irv; Brown, Kim H.; Nagler, James J.

    2008-01-01

    We exposed sexually maturing male rainbow trout (Oncorhynchus mykiss) to BDE-47 (a polybrominated diphenyl ether) and female rainbow trout to trenbolone (an anabolic steroid). Male trout were orally exposed for 17 days to 55 μg/kg/day BDE-47 and female trout continuously exposed for 60–77 days to a measured trenbolone water concentration of 35 ng/L. After the exposure, eggs and semen were collected and in vitro fertilization trials performed using a sperm:egg ratio of 300,000:1. In the BDE-47 study, eggs from control females were fertilized with semen from exposed males, while in the trenbolone study, eggs from exposed females were fertilized with semen from control males. All treatments were evaluated at two–three early developmental time-points representing first cleavage (0.5 day), embryonic keel (9 days), and eyed stages (19 days), respectively. The results indicated that BDE-47 exposure did not alter fertility as embryonic survival was similar between control and exposed groups. Trenbolone exposure also did not alter embryo survival. However, in the embryos fertilized with eggs from trenbolone exposed females, a noticeable delay in developmental progress was observed. On day 19 when eye development is normally complete, the majority of the embryos either lacked eyes or displayed under-developed eyes, in contrast to control embryos. This finding suggests steroidal androgen exposure in sexually maturing female rainbow trout can impact developmental timing of F1 offspring. PMID:18397801

  9. Effect of parental exposure to trenbolone and the brominated flame retardant BDE-47 on fertility in rainbow trout (Oncorhynchus mykiss).

    PubMed

    Schultz, Irv; Brown, Kim H; Nagler, James J

    2008-07-01

    We exposed sexually maturing male rainbow trout (Oncorhynchus mykiss) to BDE-47 (a polybrominated diphenyl ether) and female rainbow trout to trenbolone (an anabolic steroid). Male trout were orally exposed for 17 days to 55 microg/kg/day BDE-47 and female trout continuously exposed for 60-77 days to a measured trenbolone water concentration of 35 ng/L. After the exposure, eggs and semen were collected and in vitro fertilization trials performed using a sperm:egg ratio of 300,000:1. In the BDE-47 study, eggs from control females were fertilized with semen from exposed males, while in the trenbolone study, eggs from exposed females were fertilized with semen from control males. All treatments were evaluated at two-three early developmental time-points representing first cleavage (0.5 day), embryonic keel (9 days), and eyed stages (19 days), respectively. The results indicated that BDE-47 exposure did not alter fertility as embryonic survival was similar between control and exposed groups. Trenbolone exposure also did not alter embryo survival. However, in the embryos fertilized with eggs from trenbolone exposed females, a noticeable delay in developmental progress was observed. On day 19 when eye development is normally complete, the majority of the embryos either lacked eyes or displayed under-developed eyes, in contrast to control embryos. This finding suggests steroidal androgen exposure in sexually maturing female rainbow trout can impact developmental timing of F1 offspring.

  10. BMP signaling is required for development of the ciliary body.

    PubMed

    Zhao, Shulei; Chen, Qin; Hung, Fang-Cheng; Overbeek, Paul A

    2002-10-01

    The ciliary body in the eye secretes aqueous humor and glycoproteins of the vitreous body and maintains the intraocular pressure. The ciliary muscle controls the shape of the lens through the ciliary zonules to focus the image onto the retina. During embryonic development, the ciliary epithelium is derived from the optic vesicle, but the molecular signals that control morphogenesis of the ciliary body are unknown. We report that lens-specific expression of a transgenic protein, Noggin, can block BMP signaling in the mouse eye and result in failure in formation of the ciliary processes. Co-expression of transgenic BMP7 restores normal development of the ciliary epithelium. Ectopic expression of Noggin also promotes differentiation of retinal ganglion cells. These results indicate that BMP signaling is required for development of the ciliary body and may also play a role in regulation of neuronal differentiation in the developing eye.

  11. The zebrafish orphan nuclear receptor genes nr2e1 and nr2e3 are expressed in developing eye and forebrain.

    PubMed

    Kitambi, Satish Srinivas; Hauptmann, Giselbert

    2007-02-01

    Mammalian Nr2e1 (Tailless, Mtll or Tlx) and Nr2e3 (photoreceptor-specific nuclear receptor, Pnr) are highly related orphan nuclear receptors, that are expressed in eye and forebrain-derived structures. In this study, we analyzed the developmental expression patterns of zebrafish nr2e1 and nr2e3. RT-PCR analysis showed that nr2e1 and nr2e3 are both expressed during embryonic and post-embryonic development. To examine the spatial distribution of nr2e1 and nr2e3 during development whole-mount in situ hybridization was performed. At tailbud stage, initial nr2e1 expression was localized to the rostral brain rudiment anterior to pax2.1 and eng2 expression at the prospective midbrain-hindbrain boundary. During subsequent stages, nr2e1 became widely expressed in fore- and midbrain primordia, eye and olfactory placodes. At 24hpf, strong nr2e1 expression was detected in telencephalon, hypothalamus, dorsal thalamus, pretectum, midbrain tectum, and retina. At 2dpf, the initially widespread nr2e1 expression became more restricted to distinct regions within the fore- and midbrain and to the retinal ciliary margin, the germinal zone which gives rise to retina and presumptive iris. Expression of nr2e3 was exclusively found in the developing retina and epiphysis. In both structures, nr2e3 expression was found in photoreceptor cells. The developmental expression profile of zebrafish nr2e1 and nr2e3 is consistent with evolutionary conserved functions in eye and rostral brain structures.

  12. Transplantation of cells from eye-like structures differentiated from embryonic stem cells in vitro and in vivo regeneration of retinal ganglion-like cells.

    PubMed

    Aoki, Hitomi; Hara, Akira; Niwa, Masayuki; Motohashi, Tsutomu; Suzuki, Takashi; Kunisada, Takahiro

    2008-02-01

    An embryonic stem (ES) cell-derived eye-like structure, made up of neural retinal lineage cells, retinal pigment epithelial (RPE) cells, and lens cells was constructed in our laboratory. We have shown that cells from these eye-like structures can be integrated into the developing optic vesicle of chicks. The purpose of this study was to determine whether the cells from these eye-like structures can differentiate into retinal ganglion cells (RGCs) when transplanted into the vitreous of an injured adult mouse retina. ES cells were induced to differentiate into eye-like structures in vitro for 6 or 11 days. Recipient mouse eyes were injected with NMDA to injure the RGCs prior to the transplantation. Sham-treated eyes received the same amount of carrier vehicle. Cells were extracted from the eye-like structures and transplanted into the vitreous of damaged and control eyes. The host eyes were analyzed both qualitatively and quantitatively by immunohistochemistry 10 days or 8 weeks after transplantation. Cells from the ES cell-derived eye-like structures were integrated into the RGC layer, and differentiated into neurons when transplanted into control (non-NMDA-treated) adult eyes. However, they rarely expressed RGC markers. When they were transplanted into NMDA-treated eyes, the cells spread on the surface of the retina and covered a relatively large area of the host RGC layer that had been injured by the NMDA. The cells from the ES cell-derived eye cells frequently differentiated into cells expressing RGC-specific markers, and formed a new RGC layer. In addition, a small number of these ES cell-derived cells were observed to extend axon-like processes toward the optic disc of the host. However, visually evoked responses could not be recorded from the visual cortex. These findings suggest that ES cell-derived eye-like structures contain cells that can differentiate into RG-like cells and regenerate a new RGC layer. These cells also appeared to be integrated into the retina and extend axon-like processes toward the optic nerve head.

  13. Long-term in vivo harmonics imaging of zebrafish embryonic development based on a femtosecond Cr:forsterite laser

    NASA Astrophysics Data System (ADS)

    Chen, S.-Y.; Tsai, T.-H.; Hsieh, C.-S.; Tai, S.-P.; Lin, C.-Y.; Ko, C.-Y.; Chen, Y.-C.; Tsai, H.-J.; Hu, C.-H.; Sun, C.-K.

    2005-03-01

    Based on a femtosecond Cr:forsterite laser, harmonics optical microscopy (HOM) provides a truly "noninvasive" tool for in vivo and long-term study of vertebrate embryonic development. Based on optical nonlinearity, HOM provides sub-micrometer 3D spatial resolution and high 3D optical-sectioning power without using invasive and toxic fluorophores. Since only virtual-level-transition is involved, HOM is known to leave no energy deposition and no photodamage. Combined with second harmonic generation, which is sensitive to specific structure such as nerve and muscle fibers, HOM can perform functional studies of early developmental dynamics of many vertebrate physiological systems. Recently, zebrafish has become a standard model for many biological and medical studies of vertebrates, due to the similarity between embryonic development of zebrafish and human being. Here we demonstrate in vivo HOM studies of developmental dynamics of several important embryonic physiological systems in live zebrafish embryos, with focuses on the developments of brains, eyes, ears, and hearts. Based on a femtosecond Cr:forsterite laser, which provides the deepest penetration (~1.5mm) and least photodamage in the zebrafish embryo, complete developing processes of different physiological systems within a period of time longer than 20 hours can be non-invasively observed inside the same embryo.

  14. Conserved genetic pathways associated with microphthalmia, anophthalmia, and coloboma

    PubMed Central

    Reis, Linda M.; Semina, Elena V.

    2016-01-01

    The human eye is a complex organ whose development requires extraordinary coordination of developmental processes. The conservation of ocular developmental steps in vertebrates suggests possible common genetic mechanisms. Genetic diseases involving the eye represent a leading cause of blindness in children and adults. During the last decades, there has been an exponential increase in genetic studies of ocular disorders. In this review, we summarize current success in identification of genes responsible for microphthalmia, anophthalmia and coloboma (MAC) phenotypes, which are associated with early defects in embryonic eye development. Studies in animal models for the orthologous genes identified overlapping phenotypes for most factors confirming the conservation of their function in vertebrate development. These animal models allow for further investigation of the mechanisms of MAC, integration of various identified genes into common developmental pathways and, finally, provide an avenue for the development and testing of therapeutic interventions. PMID:26046913

  15. Conserved genetic pathways associated with microphthalmia, anophthalmia, and coloboma.

    PubMed

    Reis, Linda M; Semina, Elena V

    2015-06-01

    The human eye is a complex organ whose development requires extraordinary coordination of developmental processes. The conservation of ocular developmental steps in vertebrates suggests possible common genetic mechanisms. Genetic diseases involving the eye represent a leading cause of blindness in children and adults. During the last decades, there has been an exponential increase in genetic studies of ocular disorders. In this review, we summarize current success in identification of genes responsible for microphthalmia, anophthalmia, and coloboma (MAC) phenotypes, which are associated with early defects in embryonic eye development. Studies in animal models for the orthologous genes identified overlapping phenotypes for most factors, confirming the conservation of their function in vertebrate development. These animal models allow for further investigation of the mechanisms of MAC, integration of various identified genes into common developmental pathways and finally, provide an avenue for the development and testing of therapeutic interventions. © 2015 Wiley Periodicals, Inc.

  16. E2F4 is required for early eye patterning.

    PubMed

    Ruzhynsky, Vladimir A; Furimsky, Marosh; Park, David S; Wallace, Valerie A; Slack, Ruth S

    2009-01-01

    Increasingly, studies reveal novel functions for cell cycle proteins during development. Here, we investigated the role of E2F4 in eye development. E2F4-deficient mouse embryos exhibit severe early eye patterning defects, which are evident from embryonic day 11.5 and characterized by aberrant shape of the optic cup, coloboma as well as abnormal eye pigmentation. Loss of E2F4 is associated with proximal-distal patterning defects in the optic vesicle. These defects are characterized by the expansion of optic stalk marker gene expression to the optic cup and reduced expression of ventral optic cup markers. These defects are associated with a split of Shh expression domain at the ventral midline of the forebrain and expansion of the Shh activity into the ventral optic cup. Despite these patterning defects, early neuronal differentiation and Shh expression in the retina are not affected by E2F4 deletion. Overall, the results of our studies show a novel role of E2F4 in the early eye development. 2009 S. Karger AG, Basel.

  17. Eye-specification genes in the bacterial light organ of the bobtail squid Euprymna scolopes, and their expression in response to symbiont cues.

    PubMed

    Peyer, Suzanne M; Pankey, M Sabrina; Oakley, Todd H; McFall-Ngai, Margaret J

    2014-02-01

    The squid Euprymna scolopes has evolved independent sets of tissues capable of light detection, including a complex eye and a photophore or 'light organ', which houses the luminous bacterial symbiont Vibrio fischeri. As the eye and light organ originate from different embryonic tissues, we examined whether the eye-specification genes, pax6, eya, six, and dac, are shared by these two organs, and if so, whether they are regulated in the light organ by symbiosis. We obtained sequences of the four genes with PCR, confirmed orthology with phylogenetic analysis, and determined that each was expressed in the eye and light organ. With in situ hybridization (ISH), we localized the gene transcripts in developing embryos, comparing the patterns of expression in the two organs. The four transcripts localized to similar tissues, including those associated with the visual system ∼1/4 into embryogenesis (Naef stage 18) and the light organ ∼3/4 into embryogenesis (Naef stage 26). We used ISH and quantitative real-time PCR to examine transcript expression and differential regulation in postembryonic light organs in response to the following colonization conditions: wild-type, luminescent V. fischeri; a mutant strain defective in light production; and as a control, no symbiont. In ISH experiments light organs showed down regulation of the pax6, eya, and six transcripts in response to wild-type V. fischeri. Mutant strains also induced down regulation of the pax6 and eya transcripts, but not of the six transcript. Thus, luminescence was required for down regulation of the six transcript. We discuss these results in the context of symbiont-induced light-organ development. Our study indicates that the eye-specification genes are expressed in light-interacting tissues independent of their embryonic origin and are capable of responding to bacterial cues. These results offer evidence for evolutionary tinkering or the recruitment of eye development genes for use in a light-sensing photophore. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  18. Effects of Microgravity on Embryonic Quail Eye Development

    NASA Technical Reports Server (NTRS)

    Barrett, Joyce E.; Wells, Diane C.; Paulsen, Avelina Q.; Conrad, Gary W.

    1997-01-01

    Immunohistochemical methods were used to stain neurofilament protein in corneal nerves of Embryonic Day 16 (E16) quail eyes that had been fixed in 4% paraformaldehyde at room temperature for several months. Fixation was according to the methods used by the Mir 21/NASA 2 Avian Developmental Biology Flight Experiments for quail embryos incubated on the Mir Space Station. After fixation, corneas were pretreated to improve immunohistochemical visualization of neurofilaments. A sequential combination of three pretreatments [microwave heating in saline G, followed by extraction with sodium dodecyl sulfate (SDS) at 37 C, followed by digestion with hyaluronidase at 37 C], produced increased antibody staining of corneal nerve neurofilament proteins, compared with corneas subjected to no prior pretreatments. Darker nerve staining and increased numbers of fine branches were observed, together with lower background staining after such pretreatments. In contrast, use of any single pretreatment or pair of pretreatments resulted in only slight and inconsistent enhancement of nerve staining. Only the sequential combination of all three pretreatments resulted in consistently better nerve staining.

  19. Embryonic development of Ampheres leucopheus and Iporangaia pustulosa (Arachnida: Opiliones: Gonyleptidae).

    PubMed

    Gnaspini, Pedro; Lerche, Cristiano Frederico

    2010-09-15

    The first studies concerning the embryonic development of harvestmen started in the late 19th century, and focused mostly on holarctic species, and only three species of the suborder Laniatores (the largest, among the four suborders considered presently) were studied. Moreover, the last studies on embryology of harvestmen were made during the late 1970s. This study focused on the embryonic development of Ampheres leucopheus (Gonyleptidae, Caelopyginae) and Iporangaia pustulosa (Gonyleptidae, Progonyleptoidellinae). The embryonic development was followed in the field, by taking daily photographs of different eggs during about 2 months. When laid, eggs of A. leucopheus and I. pustulosa have approximately 1.13 and 1.30 mm in diameter, respectively, and the second is embedded in a large amount of mucus. The eggs grow, mainly due to water absorption at the beginning of the process, and they reach a diameter of about 1.35 and 1.59 mm, respectively, close to hatching. It took, respectively, 29-56 days and 35-66 days from egg laying to hatching. For the description of the embryonic development, we use photographs from the field, SEM micrographs, and histological analysis. This allowed us, for instance, to document the progression of structures and pigmentation directly from live embryos in the field, and to record microstructures, such as the presence of perforations in the cuticle of the embryo in the place where eyes are developing. Yet, contrary to what was expected in the literature, we record an egg tooth in one of the studied laniatoreans. (c) 2010 Wiley-Liss, Inc.

  20. The temporal requirement for vitamin A in the developing eye: mechanism of action in optic fissure closure and new roles for the vitamin in regulating cell proliferation and adhesion in the embryonic retina.

    PubMed

    See, Angela Wai-Man; Clagett-Dame, Margaret

    2009-01-01

    Mammalian eye development requires vitamin A (retinol, ROL). The role of vitamin A at specific times during eye development was studied in rat fetuses made vitamin A deficient (VAD) after embryonic day (E) 10.5 (late VAD). The optic fissure does not close in late VAD embryos, and severe folding and collapse of the retina is observed at E18.5. Pitx2, a gene required for normal optic fissure closure, is dramatically downregulated in the periocular mesenchyme in late VAD embryos, and dissolution of the basal lamina does not occur at the optic fissure margin. The addition of ROL to late VAD embryos by E12.5 restores Pitx2 expression, supports dissolution of the basal lamina, and prevents coloboma, whereas supplementation at E13.5 does not. Surprisingly, ROL given as late as E13.5 completely prevents folding of the retina despite the presence of an open fetal fissure, showing that coloboma and retinal folding represent distinct VAD-dependent defects. Retinal folding due to VAD is preceded by an overall reduction in the percentage of cyclin D1 positive cells in the developing retina, (initially resulting in retinal thinning), as well as a dramatic reduction in the cell adhesion-related molecules, N-cadherin and beta-catenin. Reduction of retinal cell number combined with a loss of the normal cell-cell adhesion proteins may contribute to the collapse and folding of the retina that occurs in late VAD fetuses.

  1. Long-term in vivo study of vertebrate embryonic development using noninvasive harmonics optical microscopy

    NASA Astrophysics Data System (ADS)

    Chen, Szu-Yu; Hsieh, C.-S.; Chu, S.-W.; Lin, Cheng-Yung; Ko, C.-Y.; Chen, Y.-C.; Tsai, Huai-Jen; Hu, C.-H.; Sun, Chi-Kuang

    2005-03-01

    Harmonics optical microscopy (HOM) provides a truly "noninvasive" tool for in vivo and long-term study of vertebrate embryonic development. Based on the nonlinear natures, it provides sub-micrometer 3D spatial resolution and high 3D optical-sectioning power (~1μm axial resolution) without using invasive and toxic fluorophores. Since only virtual-level-transition is involved, HOM is known to leave no energy deposition and no photodamages. Combined with second harmonic generation, which is sensitive to specific structure such as nerve and muscle fibers, HOM can be used to do functional studies of early developmental dynamics of many vertebrate physiological systems. Recently, zebrafish has become a standard model for many biological and medical studies of vertebrates, due to the similarity between embryonic development of zebrafish and human being. Zebrafish embryos now have been used to study many vertebrate physiological systems. We have demonstrated an in vivo HOM study of developmental dynamics of several embryonic physiological systems in live zebrafish embryos, with focuses on the developments of brains, eyes, ears, and hearts. Based on a femtosecond Cr:forsterite laser, which provides the deepest penetration (~1.5mm) and least photodamage in the zebrafish embryo, complete developing processes of different physiological systems within a period of time longer than 20 hours can be non-invasively observed inside the same embryo.

  2. Lipid content and fatty acid profile during lake whitefish embryonic development at different incubation temperatures.

    PubMed

    Mueller, Casey A; Doyle, Liam; Eme, John; Manzon, Richard G; Somers, Christopher M; Boreham, Douglas R; Wilson, Joanna Y

    2017-01-01

    Lipids serve as energy sources, structural components, and signaling molecules during fish embryonic development, and utilization of lipids may vary with temperature. Embryonic energy utilization under different temperatures is an important area of research in light of the changing global climate. Therefore, we examined percent lipid content and fatty acid profiles of lake whitefish (Coregonus clupeaformis) throughout embryonic development at three incubation temperatures. We sampled fertilized eggs and embryos at gastrulation, eyed and fin flutter stages following chronic incubation at temperatures of 1.8, 4.9 and 8.0°C. Hatchlings were also sampled following incubation at temperatures of 3.3, 4.9 and 8.0°C. Fertilized eggs had an initial high percentage of dry mass composed of lipid (percent lipid content; ~29%) consisting of ~20% saturated fatty acids (SFA), ~32% monounsaturated fatty acids (MUFA), ~44% polyunsaturated fatty acids (PUFA), and 4% unidentified. The most abundant fatty acids were 16:0, 16:1, 18:1(n-9c), 20:4(n-6), 20:5(n-3) and 22:6(n-3). This lipid profile matches that of other cold-water fish species. Percent lipid content increased during embryonic development, suggesting protein or other yolk components were preferentially used for energy. Total percentage of MUFA decreased during development, which indicated MUFA were the primary lipid catabolized for energy during embryonic development. Total percentage of PUFA increased during development, driven largely by an increase in 22:6(n-3). Temperature did not influence percent lipid content or percent MUFA at any development stage, and had inconsistent effects on percent SFA and percent PUFA during development. Thus, lake whitefish embryos appear to be highly adapted to low temperatures, and do not alter lipids in response to temperature within their natural incubation conditions. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Mutations in zebrafish pitx2 model congenital malformations in Axenfeld-Rieger syndrome but do not disrupt left-right placement of visceral organs.

    PubMed

    Ji, Yongchang; Buel, Sharleen M; Amack, Jeffrey D

    2016-08-01

    Pitx2 is a conserved homeodomain transcription factor that has multiple functions during embryonic development. Mutations in human PITX2 cause autosomal dominant Axenfeld-Rieger syndrome (ARS), characterized by congenital eye and tooth malformations. Pitx2(-/-) knockout mouse models recapitulate aspects of ARS, but are embryonic lethal. To date, ARS treatments remain limited to managing individual symptoms due to an incomplete understanding of PITX2 function. In addition to regulating eye and tooth development, Pitx2 is a target of a conserved Nodal (TGFβ) signaling pathway that mediates left-right (LR) asymmetry of visceral organs. Based on its highly conserved asymmetric expression domain, the Nodal-Pitx2 axis has long been considered a common denominator of LR development in vertebrate embryos. However, functions of Pitx2 during asymmetric organ morphogenesis are not well understood. To gain new insight into Pitx2 function we used genome editing to create mutations in the zebrafish pitx2 gene. Mutations in the pitx2 homeodomain caused phenotypes reminiscent of ARS, including aberrant development of the cornea and anterior chamber of the eye and reduced or absent teeth. Intriguingly, LR asymmetric looping of the heart and gut was normal in pitx2 mutants. These results suggest conserved roles for Pitx2 in eye and tooth development and indicate Pitx2 is not required for asymmetric looping of zebrafish visceral organs. This work establishes zebrafish pitx2 mutants as a new animal model for investigating mechanisms underlying congenital malformations in ARS and high-throughput drug screening for ARS therapeutics. Additionally, pitx2 mutants present a unique opportunity to identify new genes involved in vertebrate LR patterning. We show Nodal signaling-independent of Pitx2-controls asymmetric expression of the fatty acid elongase elovl6 in zebrafish, pointing to a potential novel pathway during LR organogenesis. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. 5D imaging via light sheet microscopy reveals cell dynamics during the eye-antenna disc primordium formation in Drosophila

    NASA Astrophysics Data System (ADS)

    Huang, Yu Shan; Ku, Hui Yu; Tsai, Yun Chi; Chang, Chin Hao; Pao, Sih Hua; Sun, Y. Henry; Chiou, Arthur

    2017-03-01

    5D images of engrailed (en) and eye gone (eyg) gene expressions during the course of the eye-antenna disc primordium (EADP) formation of Drosophila embryos from embryonic stages 13 through 16 were recorded via light sheet microscopy and analyzed to reveal the cell dynamics involved in the development of the EADP. Detailed analysis of the time-lapsed images revealed the process of EADP formation and its invagination trajectory, which involved an inversion of the EADP anterior-posterior axis relative to the body. Furthermore, analysis of the en-expression pattern in the EADP provided strong evidence that the EADP is derived from one of the en-expressing head segments.

  5. Neurally Derived Tissues in Xenopus laevis Embryos Exhibit a Consistent Bioelectrical Left-Right Asymmetry

    PubMed Central

    Pai, Vaibhav P.; Vandenberg, Laura N.; Blackiston, Douglas; Levin, Michael

    2012-01-01

    Consistent left-right asymmetry in organ morphogenesis is a fascinating aspect of bilaterian development. Although embryonic patterning of asymmetric viscera, heart, and brain is beginning to be understood, less is known about possible subtle asymmetries present in anatomically identical paired structures. We investigated two important developmental events: physiological controls of eye development and specification of neural crest derivatives, in Xenopus laevis embryos. We found that the striking hyperpolarization of transmembrane potential (V mem) demarcating eye induction usually occurs in the right eye field first. This asymmetry is randomized by perturbing visceral left-right patterning, suggesting that eye asymmetry is linked to mechanisms establishing primary laterality. Bilateral misexpression of a depolarizing channel mRNA affects primarily the right eye, revealing an additional functional asymmetry in the control of eye patterning by V mem. The ATP-sensitive K+ channel subunit transcript, SUR1, is asymmetrically expressed in the eye primordia, thus being a good candidate for the observed physiological asymmetries. Such subtle asymmetries are not only seen in the eye: consistent asymmetry was also observed in the migration of differentiated melanocytes on the left and right sides. These data suggest that even anatomically symmetrical structures may possess subtle but consistent laterality and interact with other developmental left-right patterning pathways. PMID:23346115

  6. Neurally Derived Tissues in Xenopus laevis Embryos Exhibit a Consistent Bioelectrical Left-Right Asymmetry.

    PubMed

    Pai, Vaibhav P; Vandenberg, Laura N; Blackiston, Douglas; Levin, Michael

    2012-01-01

    Consistent left-right asymmetry in organ morphogenesis is a fascinating aspect of bilaterian development. Although embryonic patterning of asymmetric viscera, heart, and brain is beginning to be understood, less is known about possible subtle asymmetries present in anatomically identical paired structures. We investigated two important developmental events: physiological controls of eye development and specification of neural crest derivatives, in Xenopus laevis embryos. We found that the striking hyperpolarization of transmembrane potential (V(mem)) demarcating eye induction usually occurs in the right eye field first. This asymmetry is randomized by perturbing visceral left-right patterning, suggesting that eye asymmetry is linked to mechanisms establishing primary laterality. Bilateral misexpression of a depolarizing channel mRNA affects primarily the right eye, revealing an additional functional asymmetry in the control of eye patterning by V(mem). The ATP-sensitive K(+) channel subunit transcript, SUR1, is asymmetrically expressed in the eye primordia, thus being a good candidate for the observed physiological asymmetries. Such subtle asymmetries are not only seen in the eye: consistent asymmetry was also observed in the migration of differentiated melanocytes on the left and right sides. These data suggest that even anatomically symmetrical structures may possess subtle but consistent laterality and interact with other developmental left-right patterning pathways.

  7. The RNA-binding protein Musashi-1 is produced in the developing and adult mouse eye.

    PubMed

    Raji, B; Dansault, A; Leemput, J; de la Houssaye, G; Vieira, V; Kobetz, A; Arbogast, L; Masson, C; Menasche, M; Abitbol, M

    2007-08-10

    Musashi-1 (Msi1) is an RNA-binding protein produced in various types of stem cells including neural stem/progenitor cells and astroglial progenitor cells in the vertebrate central nervous system. Other RNA-binding proteins such as Pumilio-1, Pumilio-2, Staufen-1, and Staufen-2 have been characterized as potential markers of several types of stem or progenitor cells. We investigated the involvement of Msi1 in mouse eye development and adult mouse eye functions by analyzing the profile of Msi1 production in all ocular structures during development and adulthood. We studied Msi1 production by in situ hybridization and immunohistochemistry of ocular tissue sections and by semi-quantitative RT-PCR and western blot analysis from the embryonic stage of 12.5 days post coitum (E12.5 dpc) when the first retinal ganglion cells (RGCs) begin to appear to the adult stage when all retinal cell types are present. Msi1 mRNA was present at all studied stages of eye development. Msi1 protein was detected in the primitive neuroblastic layer (NbL), the ganglion cell layer (GCL), and in all major differentiated neurons of postnatal developing and adult retinae. During postnatal developing stages, faint diffuse Msi1 protein staining is converted to a more specific distribution once mouse retina is fully differentiated. The most striking result of our study concerns the large amounts of Msi1 protein and mRNA in several unexpected sites of adult mouse eyes including the corneal epithelium and endothelium, stromal keratocytes, progenitor cells of the limbus, equatorial lens stem cells, differentiated lens epithelial cells, and differentiating lens fibers. Msi1 was also found in the pigmented and nonpigmented cells of the ciliary processes, the melanocytes of the ciliary body, the retinal pigment epithelium, differentiated retinal neurons, and most probably in the retinal glial cells such as Müller glial cells, astrocytes, and the oligodendocytes surrounding the axons of the optic nerve. Msi1 expression was detected in the outer plexiform layer, the inner plexiform layer, and the nerve fiber layer of fully differentiated adult retina. We provide here the first demonstration that the RNA-binding protein, Msi1, is produced in mouse eyes from embryonic stages until adulthood. The relationship between the presence of Msi1 in developing ocular compartments and the possible stem/progenitor cell characteristics of these compartments remains unclear. Finally, the expression of Msi1 in several different cell types in the adult eye is extremely intriguing and should lead to further attempts to unravel the role of Msi1 in cellular and subcellular RNA metabolism and in the control of translational processes in adult eye cells particularly in adult neuronal dendrites, axons, and synapses.

  8. Toward an Understanding of Divergent Compound Eye Development in Drones and Workers of the Honeybee (Apis mellifera L.): A Correlative Analysis of Morphology and Gene Expression.

    PubMed

    Marco Antonio, David S; Hartfelder, Klaus

    2017-01-01

    Eye development in insects is best understood in Drosophila melanogaster, but little is known for other holometabolous insects. Combining a morphological with a gene expression analysis, we investigated eye development in the honeybee, putting emphasis on the sex-specific differences in eye size. Optic lobe development starts from an optic lobe anlage in the larval brain, which sequentially gives rise to the lobula, medulla, and lamina. The lamina differentiates in the last larval instar, when it receives optic nerve projections from the developing retina. The expression analysis focused on seven genes important for Drosophila eye development: eyes absent, sine oculis, embryonic lethal abnormal vision, minibrain, small optic lobes, epidermal growth factor receptor, and roughest. All except small optic lobes were more highly expressed in third-instar drone larvae, but then, in the fourth and fifth instar, their expression was sex-specifically modulated, showing shifts in temporal dynamics. The clearest differences were seen for small optic lobes, which is highly expressed in the developing eye of workers, and minibrain and roughest, which showed a strong expression peak coinciding with retina differentiation. A microarray analysis for optic lobe/retina complexes revealed the differential expression of several metabolism-related genes, as well as of two micro-RNAs. While we could not see major morphological differences in the developing eye structures before the pupal stage, the expression differences observed for the seven candidate genes and in the transcriptional microarray profiles indicate that molecular signatures underlying sex-specific optic lobe and retina development become established throughout the larval stages. © 2016 Wiley Periodicals, Inc.

  9. Strand displacement amplification for ultrasensitive detection of human pluripotent stem cells.

    PubMed

    Wu, Wei; Mao, Yiping; Zhao, Shiming; Lu, Xuewen; Liang, Xingguo; Zeng, Lingwen

    2015-06-30

    Human pluripotent stem cells (hPSCs), such as embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), provide a powerful model system for studies of cellular identity and early mammalian development, which hold great promise for regenerative medicine. It is necessary to develop a convenient method to discriminate hPSCs from other cells in clinics and basic research. Herein, a simple and reliable biosensor for stem cell detection was established. In this biosensor system, stage-specific embryonic antigen-3 (SSEA-3) and stage-specific embryonic antigen-4 (SSEA-4) were used to mark human pluripotent stem cells (hPSCs). Antibody specific for SSEA-3 was coated onto magnetic beads for hPSCs enrichment, and antibody specific for SSEA-4 was conjugated with carboxyl-modified tDNA sequence which was used as template for strand displacement amplification (SDA). The amplified single strand DNA (ssDNA) was detected with a lateral flow biosensor (LFB). This biosensor is capable of detecting a minimum of 19 human embryonic stem cells by a strip reader and 100 human embryonic stem cells by the naked eye within 80min. This approach has also shown excellent specificity to distinguish hPSCs from other types of cells, showing that it is promising for specific and handy detection of human pluripotent stem cells. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Bisphenol A causes malformation of the head region in embryos of Xenopus laevis and decreases the expression of the ESR-1 gene mediated by Notch signaling.

    PubMed

    Imaoka, Susumu; Mori, Tomohiro; Kinoshita, Tsutomu

    2007-02-01

    Bisphenol A (BpA) is widely used in industry and dentistry. Its effects on the embryonic development of Xenopus laevis were investigated. Xenopus embryos at stage 10.5 were treated with BpA. Developmental abnormalities were observed at stage 35; malformation of the head region including eyes and scoliosis. The expression of several markers of embryonic development was investigated by reverse transcription-polymerase chain reaction (RT-PCR). The pan-neural marker SOX-2, the neural stem cell marker nrp-1, the mesodermal marker MyoD, and the endodermal marker sox17alpha, were used. Although the expression of marker genes was not changed by treatment with BpA, that of Pax-6, a key regulator of the morphogenesis of the eyes, was decreased by BpA. Pax-6 is a downstream factor of Notch signaling. So, the expression of a typical Notch-dependent factor, ESR-1, was investigated in the presence of BpA. The expression of ESR-1 was efficiently suppressed by BpA. In whole mount in situ hybridization (WISH), Pax-6 was expressed in the central nervous system and eyes. The expression was lost completely on treatment with BpA. The expression of ESR-1 in the central nervous system and eyes also disappeared with BpA treatment. Injection of the intracellular domain of Notch efficiently recovered ESR-1 expression in the presence of BpA although injection of a ligand for notch, Delta, did not. These results suggest that BpA decreased the expression of ESR-1 by disrupting the Notch signal.

  11. [Persistence of the primordial vitreous body and buphthalmos].

    PubMed

    Cernea, P; Simionescu, C; Bosun, I

    1995-01-01

    Persistence of the hyperplasic primordial vitreous body is determined by a deletion of embryonal development of the vitreous body and of the hyaloid vascular system. Infant aged 3.5 years presents persistence of primordial vitreous body with crystalline dislocation in the camera aquosa and secondary buphthalmos of the left eye and microphthalmos with dislocation of the crystalline in the vitreous body of the right eye. At the back of the right eye we noticed a whitish mass, richly vascularized with vestiges from the hyaloid artery, but the posterior half of the vitreous cavity is filled with microscopic blood; the fibrovascular membrane is made of conjunctive tissue set in parallel layers and vessels with macrolipophagic degeneration. Microscopic investigation of retina reveals glial hyperplasia zones in the neighbourhood of the vitreous body. In the present paper the authors show the persistence of the primordial vitreous body in the left eye and bilateral dislocation of the crystalline, revealing multiple ocular malformations.

  12. Case Study: Organotypic human in vitro models of embryonic ...

    EPA Pesticide Factsheets

    Morphogenetic fusion of tissues is a common event in embryonic development and disruption of fusion is associated with birth defects of the eye, heart, neural tube, phallus, palate, and other organ systems. Embryonic tissue fusion requires precise regulation of cell-cell and cell-matrix interactions that drive proliferation, differentiation, and morphogenesis. Chemical low-dose exposures can disrupt morphogenesis across space and time by interfering with key embryonic fusion events. The Morphogenetic Fusion Task uses computer and in vitro models to elucidate consequences of developmental exposures. The Morphogenetic Fusion Task integrates multiple approaches to model responses to chemicals that leaad to birth defects, including integrative mining on ToxCast DB, ToxRefDB, and chemical structures, advanced computer agent-based models, and human cell-based cultures that model disruption of cellular and molecular behaviors including mechanisms predicted from integrative data mining and agent-based models. The purpose of the poster is to indicate progress on the CSS 17.02 Virtual Tissue Models Morphogenesis Task 1 products for the Board of Scientific Counselors meeting on Nov 16-17.

  13. Studies of Weak, ELF Electromagnetic Fields Effects on the Early Embryonic Development

    DTIC Science & Technology

    1988-12-29

    characters: - General aspect: stage; size of the embryo; size of the head relatively to the trunk. - Head : morphology of the skull; development of...the eyes; size and morphology of the beak; size of the neck . - Trunk: morphology of the vertebral column; development of the tail; closure of thorax and...mishandled, the orientation of the embryo was not taken into account. As indicated in Fig. 7, the head -tail axis orientation of an embryo was North (N

  14. Meis2 is essential for cranial and cardiac neural crest development.

    PubMed

    Machon, Ondrej; Masek, Jan; Machonova, Olga; Krauss, Stefan; Kozmik, Zbynek

    2015-11-06

    TALE-class homeodomain transcription factors Meis and Pbx play important roles in formation of the embryonic brain, eye, heart, cartilage or hematopoiesis. Loss-of-function studies of Pbx1, 2 and 3 and Meis1 documented specific functions in embryogenesis, however, functional studies of Meis2 in mouse are still missing. We have generated a conditional allele of Meis2 in mice and shown that systemic inactivation of the Meis2 gene results in lethality by the embryonic day 14 that is accompanied with hemorrhaging. We show that neural crest cells express Meis2 and Meis2-defficient embryos display defects in tissues that are derived from the neural crest, such as an abnormal heart outflow tract with the persistent truncus arteriosus and abnormal cranial nerves. The importance of Meis2 for neural crest cells is further confirmed by means of conditional inactivation of Meis2 using crest-specific AP2α-IRES-Cre mouse. Conditional mutants display perturbed development of the craniofacial skeleton with severe anomalies in cranial bones and cartilages, heart and cranial nerve abnormalities. Meis2-null mice are embryonic lethal. Our results reveal a critical role of Meis2 during cranial and cardiac neural crest cells development in mouse.

  15. Mfsd2a Is a Transporter for the Essential ω-3 Fatty Acid Docosahexaenoic Acid (DHA) in Eye and Is Important for Photoreceptor Cell Development*

    PubMed Central

    Wong, Bernice H.; Chan, Jia Pei; Cazenave-Gassiot, Amaury; Poh, Rebecca W.; Foo, Juat Chin; Galam, Dwight L. A.; Ghosh, Sujoy; Nguyen, Long N.; Barathi, Veluchamy A.; Yeo, Sia W.; Luu, Chi D.; Wenk, Markus R.; Silver, David L.

    2016-01-01

    Eye photoreceptor membrane discs in outer rod segments are highly enriched in the visual pigment rhodopsin and the ω-3 fatty acid docosahexaenoic acid (DHA). The eye acquires DHA from blood, but transporters for DHA uptake across the blood-retinal barrier or retinal pigment epithelium have not been identified. Mfsd2a is a newly described sodium-dependent lysophosphatidylcholine (LPC) symporter expressed at the blood-brain barrier that transports LPCs containing DHA and other long-chain fatty acids. LPC transport via Mfsd2a has been shown to be necessary for human brain growth. Here we demonstrate that Mfsd2a is highly expressed in retinal pigment epithelium in embryonic eye, before the development of photoreceptors, and is the primary site of Mfsd2a expression in the eye. Eyes from whole body Mfsd2a-deficient (KO) mice, but not endothelium-specific Mfsd2a-deficient mice, were DHA-deficient and had significantly reduced LPC/DHA transport in vivo. Fluorescein angiography indicated normal blood-retinal barrier function. Histological and electron microscopic analysis indicated that Mfsd2a KO mice exhibited a specific reduction in outer rod segment length, disorganized outer rod segment discs, and mislocalization of and reduction in rhodopsin early in postnatal development without loss of photoreceptors. Minor photoreceptor cell loss occurred in adult Mfsd2a KO mice, but electroretinography indicated visual function was normal. The developing eyes of Mfsd2a KO mice had activated microglia and up-regulation of lipogenic and cholesterogenic genes, likely adaptations to loss of LPC transport. These findings identify LPC transport via Mfsd2a as an important pathway for DHA uptake in eye and for development of photoreceptor membrane discs. PMID:27008858

  16. Embryology of Maldives clownfish, Amphiprion nigripes (Amphiprioninae)

    NASA Astrophysics Data System (ADS)

    Ghosh, Swagat; Kumar, Thipramalai Thankappanpillai Ajith; Balasubramanian, Thangavel

    2012-06-01

    This study investigated the embryonic development of Maldives clownfish Amphiprion nigripes under natural conditions (28-30°C) at a lagoon of Agatti Island, Lakshadweep, India. The newly deposited fish egg was capsule-shaped and orange-red, with a (0.73 ± 0.04) mm3 yolk containing 5-10 fat globules. The embryonic development of fertilized eggs was divided into 26 stages and the time elapsing for each stage was recorded. Results showed that the cleavage was rapid, with the first division observed 1 h 20 min after fertilization. Blastulation occurred 4 h later, followed by gastrulation 12 h after fertilization, with a yolk volume of (0.61 ± 0.06) mm3. The organogenesis process started 22 h after fertilization when the blastopores closed and notochord formation began. The embryonic stage was recorded 24 h later, with the appearance of forebrain, midbrain, hindbrain, melanophores on yolk-sac and 22 somites, and a decreased yolk volume of (0.54 ± 0.08) mm3. Other organs developed well 31 h after fertilization, whereas the heart started beating and blood circulation began 78 h later. Red pigmentation (erytrophores) appeared 96 h after fertilization, with a small yolk volume of (0.22 ± 0.02) mm3. Mouth developed well and eyes were noticeable 120 h later, with head, pectoral fin and tail frequently moving 144 h after fertilization. The embryo reached the pre-hatching stage 168 h later and started to hatch after 170-180 h incubation. This study first detailed the embryonic development and yolk absorption of A. nigripes under natural conditions.

  17. Developmental sources of conservation and variation in the evolution of the primate eye.

    PubMed

    Dyer, Michael A; Martins, Rodrigo; da Silva Filho, Manoel; Muniz, José Augusto P C; Silveira, Luiz Carlos L; Cepko, Constance L; Finlay, Barbara L

    2009-06-02

    Conserved developmental programs, such as the order of neurogenesis in the mammalian eye, suggest the presence of useful features for evolutionary stability and variability. The owl monkey, Aotus azarae, has developed a fully nocturnal retina in recent evolution. Description and quantification of cell cycle kinetics show that embryonic cytogenesis is extended in Aotus compared with the diurnal New World monkey Cebus apella. Combined with the conserved mammalian pattern of retinal cell specification, this single change in retinal progenitor cell proliferation can produce the multiple alterations of the nocturnal retina, including coordinated reduction in cone and ganglion cell numbers, increase in rod and rod bipolar numbers, and potentially loss of the fovea.

  18. Embryonic fate map of first pharyngeal arch structures in the sox10: kaede zebrafish transgenic model.

    PubMed

    Dougherty, Max; Kamel, George; Shubinets, Valeriy; Hickey, Graham; Grimaldi, Michael; Liao, Eric C

    2012-09-01

    Cranial neural crest cells follow stereotypic patterns of migration to form craniofacial structures. The zebrafish is a powerful vertebrate genetic model where transgenics with reporter proteins under the transcriptional regulation of lineage-specific promoters can be generated. Numerous studies demonstrate that the zebrafish ethmoid plate is embryologically analogous to the mammalian palate. A fate map correlating embryonic cranial neural crest to defined jaw structures would provide a useful context for the morphogenetic analysis of craniofacial development. To that end, the sox10:kaede transgenic was generated, where sox10 provides lineage restriction to the neural crest. Specific regions of neural crest were labeled at the 10-somite stage by photoconversion of the kaede reporter protein. Lineage analysis was carried out during pharyngeal development in wild-type animals, after miR140 injection, and after estradiol treatment. At the 10-somite stage, cranial neural crest cells anterior of the eye contributed to the median ethmoid plate, whereas cells medial to the eye formed the lateral ethmoid plate and trabeculae and a posterior population formed the mandible. miR-140 overexpression and estradiol inhibition of Hedgehog signaling resulted in cleft development, with failed migration of the anterior cell population to form the median ethmoid plate. The sox10:kaede transgenic line provides a useful tool for neural crest lineage analysis. These studies illustrate the advantages of the zebrafish model for application in morphogenetic studies of vertebrate craniofacial development.

  19. RNAi-induced silencing of embryonic tryptophan oxygenase in the Pyralid moth, Plodia interpunctella

    PubMed Central

    Fabrick, Jeffrey A.; Kanost, Michael R.; Baker, James E.

    2004-01-01

    Gene silencing through the introduction of double-stranded RNA (RNA interference, RNAi) provides a powerful tool for the elucidation of gene function in many systems, including those where genomics and proteomics are incomplete. The use of RNAi technology for gene silencing in Lepidoptera has lacked significant attention compared to other systems. To demonstrate that RNAi can be utilized in the lepidopteran, Plodia interpunctella, we cloned a cDNA for tryptophan oxygenase, and showed that silencing of tryptophan oxygenase through RNAi during embryonic development resulted in loss of eye-color pigmentation. The complete amino acid sequence of Plodia tryptophan oxygenase can be accessed through NCBI Protein Database under NCBI Accession # AY427951. Abbreviation RNAi RNA interference PCR polymerase chain reaction RT-PCR reverse transcription-PCR PMID:15861231

  20. Psf2 plays important roles in normal eye development in Xenopus laevis

    PubMed Central

    Walter, Brian E.; Perry, Kimberly J.; Fukui, Lisa; Malloch, Erica L.; Wever, Jason

    2008-01-01

    Purpose Psf2 (partner of Sld5 2) represents a member of the GINS (go, ichi, ni, san) heterotetramer [1] and functions in DNA replication as a “sliding clamp.” Previous in situ hybridization analyses revealed that Psf2 is expressed during embryonic development in a tissue-specific manner, including the optic cup (retina) and the lens [2]. This article provides an analysis of Psf2 function during eye development in Xenopus laevis. Methods A morpholino targeted to Psf2 mRNA was designed to knockdown Psf2 translation and was injected into specific embryonic cells during early cleavage stages in the frog, Xenopus laevis. Injected embryos were assayed for specific defects in morphology, cell proliferation, and apoptosis. Synthetic Psf2 RNA was also co-injected with the morpholino to rescue morpholino-mediated developmental defects. It is well known that reciprocal inductive interactions control the development of the optic cup and lens. Therefore, control- and morpholino-injected embryos were used for reciprocal transplantation experiments to distinguish the intrinsic role of Psf2 in the development of the optic cup (retina) versus the lens. Results Morpholino-mediated knockdown of Psf2 expression resulted in dosage-dependent phenotypes, which included microphthalmia, incomplete closure of the ventral retinal fissure, and retinal and lens dysgenesis. Defects were also observed in other embryonic tissues that normally express Psf2 including the pharyngeal arches and the otic vesicle, although other tissues that express Psf2 were not found to be grossly defective. Eye defects could be rescued by co-injection of synthetic Psf2 RNA. Examination of cell proliferation via an antibody against phospho-histone H3 S10P revealed no significant differences in the retina and lens following Psf2 knockdown. However, there was a significant increase in the level of apoptosis in retinal as well as forebrain tissues, as revealed by TUNEL (terminal deoxynucleotide transferase dUTP nick end labeling) assay. Conclusions The results demonstrate intrinsic roles for Psf2 in both retinal and to a lesser extent, lens tissues. Observed lens defects can mainly be attributed to deficiencies in retinal development and consequently the late phase of lens induction, which involves instructive cues from the optic cup. Developmental defects were not observed in all tissues that express Psf2, which could be related to differences in the translation of Psf2 or redundant effects of related factors such as proliferating cell nuclear antigen (PCNA). PMID:18509549

  1. Electro-oculography of smooth pursuit and optokinetic nystagmus eye movements in type I Duane's retraction syndrome.

    PubMed

    Melek, Nélida B; Blanco, Susana; Garcia, Horacio

    2006-01-01

    These two eye movements have not been previously studied in this condition by this method. Five cases were studied. Both visual acuity and eye examination of anterior and posterior segments were normal. A Nicolet Nystar Plus system with chloride silver electrodes was used to record the EOG. Of the two systems under study, the smooth pursuit system showed the most relevant anomalies, both in the Duane's eye and in the apparently healthy eye. No correlation was found between the pursuit and optokinetic nystagmus disorders. In some cases, more significant abnormalities were observed in the clinically normal eye. The results clearly demonstrated a significant impairment of the pursuit system. This suggests that this motor disorder is not exclusively caused by hypoplasia or aplasia of the nucleus of the abducens nerve (VIth cranial nerve). These abnormalities might be related to a poor development of the rhombencephalon since both supramotor nuclei as well as the pathways of this system arise from this region of the embryonic brain. In the particular case of OKN, the supramotor nuclei have a different origin. Therefore, these systems might be affected differently.

  2. The character of abnormalities found in eye development of quail embruos exposed under space flight conditions

    NASA Astrophysics Data System (ADS)

    Grigoryan, E.; Dadheva, O.; Polinskaya, V.; Guryeva, T.

    The avian embryonic eye is used as a model system for studies on the environmental effects on central nervous system development. Here we present results of qualitative investigation of the eye development in quail embryos incubated in micro-"g" environment. In this study we used eyes of Japanese quail (Coturnix coturnix Japonica) embryos "flown" onboard biosatellite Kosmos-1129 and on Mir station within the framework of Mir-NASA Program. Eyes obtained from embryos ranging in age from 3-12 days (E3-E12) were prepared histologically and compared with those of the synchronous and laboratory gound controls. Ther most careful consideration was given to finding and analysis of eye developmental abnormalities. Then they were compared with those already described by experimental teratology for birds and mammals. At the stage of the "eye cup" (E3) we found the case of invalid formation of the inner retina. The latter was represented by disorganized neuroblasts occupying whole posterior chamber of the eye. On the 7th day of quail eye development, at the period of cellular growth activation some cases of small eyes with many folds of overgrowing neural and pigmented retinal layers were detected. In retinal folds of these eyes the normal layering was disturbed as well as the formation of aqueous body and pecten oculi. At this time point the changes were also found in the anterior part of the eye. The peculiarities came out of the bigger width of the cornea and separation of its layers, but were found in synchronous control as well. Few embryos of E10 had also eyes with the abnormities described for E7 but this time they were more vivid because of the completion of eye tissue differentiation. At the stage E12 we found the case evaluated as microphthalmia attending by overgrowth of anterior pigmented tissues - iris and ciliary body attached with the cornea. Most, but not all, of abnormalities we found in eye morphogeneses belonged to the birds "flown" aboard Kosmos- 1129 and were likely induced by specific conditions of that flight. All sorts of disturbances we observed in eye development were similar with dom inated types found in birds and mammals on ground and could be induced by factors we intend to discuss in our report.

  3. Pleiotropic functions of embryonic sonic hedgehog expression link jaw and taste bud amplification with eye loss during cavefish evolution.

    PubMed

    Yamamoto, Yoshiyuki; Byerly, Mardi S; Jackman, William R; Jeffery, William R

    2009-06-01

    This study addresses the role of sonic hedgehog (shh) in increasing oral-pharyngeal constructive traits (jaws and taste buds) at the expense of eyes in the blind cavefish Astyanax mexicanus. In cavefish embryos, eye primordia degenerate under the influence of hyperactive Shh signaling. In concert, cavefish show amplified jaw size and taste bud numbers as part of a change in feeding behavior. To determine whether pleiotropic effects of hyperactive Shh signaling link these regressive and constructive traits, shh expression was compared during late development of the surface-dwelling (surface fish) and cave-dwelling (cavefish) forms of Astyanax. After an initial expansion along the midline of early embryos, shh was elevated in the oral-pharyngeal region in cavefish and later was confined to taste buds. The results of shh inhibition and overexpression experiments indicate that Shh signaling has an important role in oral and taste bud development. Conditional overexpression of an injected shh transgene at specific times in development showed that taste bud amplification and eye degeneration are sensitive to shh overexpression during the same early developmental period, although taste buds are not formed until much later. Genetic crosses between cavefish and surface fish revealed an inverse relationship between eye size and jaw size/taste bud number, supporting a link between oral-pharyngeal constructive traits and eye degeneration. The results suggest that hyperactive Shh signaling increases oral and taste bud amplification in cavefish at the expense of eyes. Therefore, selection for constructive oral-pharyngeal traits may be responsible for eye loss during cavefish evolution via pleiotropic function of the Shh signaling pathway.

  4. From Blood Islands to Blood Vessels: Morphologic Observations and Expression of Key Molecules during Hyaloid Vascular System Development

    PubMed Central

    McLeod, D. Scott; Hasegawa, Takuya; Baba, Takayuki; Grebe, Rhonda; Galtier d'Auriac, Ines; Merges, Carol; Edwards, Malia; Lutty, Gerard A.

    2012-01-01

    Purpose. The mode of development of the human hyaloid vascular system (HVS) remains unclear. Early studies suggested that these blood vessels formed by vasculogenesis, while the current concept seems to favor angiogenesis as the mode of development. We examined embryonic and fetal human HVS using a variety of techniques to gain new insights into formation of this vasculature. Methods. Embryonic and fetal human eyes from 5.5 to 12 weeks gestation (WG) were prepared for immunohistochemical analysis or for light and electron microscopy. Immunolabeling of sections with a panel of antibodies directed at growth factors, transcription factors, and hematopoietic stem cell markers was employed. Results. Light microscopic examination revealed free blood islands (BI) in the embryonic vitreous cavity (5.5–7 WG). Giemsa stain revealed that BI were aggregates of mesenchymal cells and primitive nucleated erythroblasts. Free cells were also observed. Immunolabeling demonstrated that BI were composed of mesenchymal cells that expressed hemangioblast markers (CD31, CD34, C-kit, CXCR4, Runx1, and VEGFR2), erythroblasts that expressed embryonic hemoglobin (Hb-ε), and cells that expressed both. Few cells were proliferating as determined by lack of Ki67 antigen. As development progressed (12 WG), blood vessels became more mature structurally with pericyte investment and basement membrane formation. Concomitantly, Hb-ε and CXCR4 expression was down-regulated and von Willebrand factor expression was increased with the formation of Weibel-Palade bodies. Conclusions. Our results support the view that the human HVS, like the choriocapillaris, develops by hemo-vasculogenesis, the process by which vasculogenesis, erythropoiesis, and hematopoiesis occur simultaneously from common precursors, hemangioblasts. PMID:23092923

  5. Local and long-range endogenous resting potential gradients antagonistically regulate apoptosis and proliferation in the embryonic CNS.

    PubMed

    Pai, Vaibhav P; Lemire, Joan M; Chen, Ying; Lin, Gufa; Levin, Michael

    2015-01-01

    Bioelectric signals, particularly transmembrane voltage potentials (Vmem), play an important role in large-scale patterning during embryonic development. Endogenous bioelectric gradients across tissues function as instructive factors during eye, brain, and other morphogenetic processes. An important and still poorly-understood aspect is the control of cell behaviors by the voltage states of distant cell groups. Here, experimental alteration of endogenous Vmem was induced in Xenopus laevis embryos by misexpression of well-characterized ion channel mRNAs, a strategy often used to identify functional roles of Vmem gradients during embryonic development and regeneration. Immunofluorescence analysis (for activated caspase 3 and phosphor-histone H3P) on embryonic sections was used to characterize apoptosis and proliferation. Disrupting local bioelectric signals (within the developing neural tube region) increased caspase 3 and decreased H3P in the brain, resulting in brain mispatterning. Disrupting remote (ventral, non-neural region) bioelectric signals decreased caspase 3 and highly increased H3P within the brain, with normal brain patterning. Disrupting both the local and distant bioelectric signals produced antagonistic effects on caspase 3 and H3P. Thus, two components of bioelectric signals regulate apoptosis-proliferation balance within the developing brain and spinal cord: local (developing neural tube region) and distant (ventral non-neural region). Together, the local and long-range bioelectric signals create a binary control system capable of fine-tuning apoptosis and proliferation with the brain and spinal cord to achieve correct pattern and size control. Our data suggest a roadmap for utilizing bioelectric state as a diagnostic modality and convenient intervention parameter for birth defects and degenerative disease states of the CNS.

  6. Rax: Developmental and Daily Expression Patterns in the Rat Pineal Gland and Retina

    PubMed Central

    Rohde, Kristian; Klein, David C.; Møller, Morten; Rath, Martin F.

    2011-01-01

    Retina and anterior neural fold homeobox (Rax) gene encodes a transcription factor essential for vertebrate eye development. Recent microarray studies indicate that Rax is expressed in the adult rat pineal gland and retina. The present study reveals that Rax expression levels in the rat change significantly during retinal development with a peak occurring at embryonic day (E) 18, whereas Rax expression in the pineal is relatively delayed and not detectable until E20. In both tissues, Rax is expressed throughout postnatal development into adulthood. In the mature rat pineal gland, the abundance of Rax transcripts increases 2-fold during the light period with a peak occurring at dusk. These findings are consistent with the evidence that Rax is of functional importance in eye development and suggest a role of Rax in the developing pineal gland. In addition, it would appear possible that Rax contributes to phenotype maintenance in the mature retina and pineal gland and may facilitate 24-h changes in the pineal transcriptome. PMID:21749377

  7. Mfsd2a Is a Transporter for the Essential ω-3 Fatty Acid Docosahexaenoic Acid (DHA) in Eye and Is Important for Photoreceptor Cell Development.

    PubMed

    Wong, Bernice H; Chan, Jia Pei; Cazenave-Gassiot, Amaury; Poh, Rebecca W; Foo, Juat Chin; Galam, Dwight L A; Ghosh, Sujoy; Nguyen, Long N; Barathi, Veluchamy A; Yeo, Sia W; Luu, Chi D; Wenk, Markus R; Silver, David L

    2016-05-13

    Eye photoreceptor membrane discs in outer rod segments are highly enriched in the visual pigment rhodopsin and the ω-3 fatty acid docosahexaenoic acid (DHA). The eye acquires DHA from blood, but transporters for DHA uptake across the blood-retinal barrier or retinal pigment epithelium have not been identified. Mfsd2a is a newly described sodium-dependent lysophosphatidylcholine (LPC) symporter expressed at the blood-brain barrier that transports LPCs containing DHA and other long-chain fatty acids. LPC transport via Mfsd2a has been shown to be necessary for human brain growth. Here we demonstrate that Mfsd2a is highly expressed in retinal pigment epithelium in embryonic eye, before the development of photoreceptors, and is the primary site of Mfsd2a expression in the eye. Eyes from whole body Mfsd2a-deficient (KO) mice, but not endothelium-specific Mfsd2a-deficient mice, were DHA-deficient and had significantly reduced LPC/DHA transport in vivo Fluorescein angiography indicated normal blood-retinal barrier function. Histological and electron microscopic analysis indicated that Mfsd2a KO mice exhibited a specific reduction in outer rod segment length, disorganized outer rod segment discs, and mislocalization of and reduction in rhodopsin early in postnatal development without loss of photoreceptors. Minor photoreceptor cell loss occurred in adult Mfsd2a KO mice, but electroretinography indicated visual function was normal. The developing eyes of Mfsd2a KO mice had activated microglia and up-regulation of lipogenic and cholesterogenic genes, likely adaptations to loss of LPC transport. These findings identify LPC transport via Mfsd2a as an important pathway for DHA uptake in eye and for development of photoreceptor membrane discs. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Influence of incubation temperature on hatching success, energy expenditure for embryonic development, and size and morphology of hatchlings in the oriental garden lizard, Calotes versicolor (Agamidae).

    PubMed

    Ji, Xiang; Qiu, Qing-Bo; Diong, Cheong-Hoong

    2002-06-01

    We incubated eggs of Calotes versicolor at four constant temperatures ranging from 24 degrees C to 33 degrees C to assess the effects of incubation temperature on hatching success, embryonic use of energy, and hatchling phenotypes that are likely to affect fitness. All viable eggs increased in mass throughout incubation due to absorption of water, and mass gain during incubation was dependent on initial egg mass and incubation temperature. The average duration of incubation at 24 degrees C, 27 degrees C, 30 degrees C, and 33 degrees C was 82.1 days, 60.5 days, 51.4 days, and 50.3 days, respectively. Incubation temperature affected hatching success, energy expenditure for embryonic development, and several hatchling traits examined, but it did not affect the sex ratio of hatchlings. Hatching success was lowest (3.4%) at 33 degrees C, but a higher incidence of deformed embryos was recorded from eggs incubated at this temperature compared to eggs incubated at lower temperatures. Most of the deformed embryos died at the last stage of incubation. Energy expenditure for embryonic development was, however, higher in eggs incubated at 33 degrees C than those similarly incubated at lower temperatures. A prolonged exposure of eggs of C. versicolor at 33 degrees C appears to have an adverse and presumably lethal effect on embryonic development. Hatching success at 24 degrees C was also low (43.3%), but hatchlings incubated at 24 degrees C did not differ in any of the examined traits from those incubated at two intermediate temperatures (27 degrees C and 30 degrees C). Hatchlings incubated at 33 degrees C were smaller (snout-vent length, SVL) than those incubated at lower incubation temperatures and had larger mass residuals (from the regression on SVL) as well as shorter head length, hindlimb length, tympanum diameter, and eye diameter relative to SVL. Hatchlings from 33 degrees C had significantly lower scores on the first axis of a principal component analysis representing mainly SVL-free head size (length and width) and fore- and hindlimb lengths, but they had significantly higher scores on the second axis mainly representing SVL-free wet body mass. Variation in the level of fluctuating asymmetry in eye diameter associated with incubation temperatures was quite high, and it was clearly consistent with the prediction that environmental stress associated with the highest incubation temperatures might produce the highest level of asymmetry. Newly emerged hatchlings exhibited sexual dimorphism in head width, with male hatchlings having larger head width than females. Copyright 2002 Wiley-Liss, Inc.

  9. Pattern of Expression of p53, Its Family Members, and Regulators during Early Ocular Development and in the Post-Mitotic Retina

    PubMed Central

    Vuong, Linda; Brobst, Daniel E.; Saadi, Anisse; Ivanovic, Ivana; Al-Ubaidi, Muayyad R.

    2012-01-01

    Purpose. Because of its role in cell cycle regulation and apoptosis, p53 may be involved in maintaining the post-mitotic state of the adult eye. To shed light on the role of p53 in retinal development and maintenance, this study investigated the pattern of expression of p53, its family members, and its regulators during the development of the mouse eye. Methods. Relative quantitative real-time PCR (qRT-PCR) was used to determine the steady-state levels of target transcripts in RNA extracted from wild-type mouse whole eyes or retinas between embryonic day (E) 15 and post-natal day (P) 30. Immunoblotting was used to compare the steady-state levels of the protein to that of the transcript. Results. Transcript and protein levels for p53 in the eye were highest at E17 and E18, respectively. However, both p53 transcript and protein levels dropped precipitously thereafter, and no protein was detected on immunoblots after P3. Expression patterns of p63, p73, Mdm2, Mdm4, and Yy1 did not follow that of p53. Immunohistochemistry analysis of the developing eye showed that both p53 and Mdm2 are abundantly expressed at E18 in all layers of the retinal neuroblast. Conclusions. Downregulation of p53 in the post-mitotic retina suggests that, although p53 may be involved in ocular and retinal development, it may play a minimal role in healthy adult retinal function. PMID:22714890

  10. Nestin is essential for zebrafish brain and eye development through control of progenitor cell apoptosis.

    PubMed

    Chen, Hua-Ling; Yuh, Chiou-Hwa; Wu, Kenneth K

    2010-02-19

    Nestin is expressed in neural progenitor cells (NPC) of developing brain. Despite its wide use as an NPC marker, the function of nestin in embryo development is unclear. As nestin is conserved in zebrafish and its predicted sequence is clustered with the mammalian nestin orthologue, we used zebrafish as a model to investigate its role in embryogenesis. Injection of nestin morpholino (MO) into fertilized eggs induced time- and dose-dependent brain and eye developmental defects. Nestin morphants exhibited characteristic morphological changes including small head, small eyes and hydrocephalus. Histological examinations show reduced hind- and mid-brain size, dilated ventricle, poorly organized retina and underdeveloped lens. Injection of control nestin MO did not induce brain or eye changes. Nestin MO injection reduced expression of ascl1b (achaete-scute complex-like 1b), a marker of NPCs, without affecting its distribution. Nestin MO did not influence Elavl3/4 (Embryonic lethal, abnormal vision, Drosophila-like 3/4) (a neuronal marker), or otx2 (a midbrain neuronal marker), but severely perturbed cranial motor nerve development and axon distribution. To determine whether the developmental defects are due to excessive NPC apoptosis and/or reduced NPC proliferation, we analyzed apoptosis by TUNEL assay and acridine orange staining and proliferation by BrdU incorporation, pcna and mcm5 expressions. Excessive apoptosis was noted in hindbrain and midbrain cells. Apoptotic signals were colocalized with ascl1b. Proliferation markers were not significantly altered by nestin MO. These results suggest that nestin is essential for zebrafish brain and eye development probably through control of progenitor cell apoptosis.

  11. Effects of low-dose heavy ions on embryonic development in mice and on melanocyte differentiation in the epidermis and hair bulb.

    PubMed

    Hirobe, Tomohisa; Eguchi-Kasai, Kiyomi; Sugaya, Kimihiko; Murakami, Masahiro

    2013-05-01

    The effects of prenatal low-dose irradiation with heavy ions on embryonic development in mice and on melanocyte differentiation are not well understood. We performed whole-body irradiation of pregnant C57BL/10J mice at embryonic Day 9 (E9) with a single dose of γ-rays, silicon, argon or iron ions. The number of living embryos and embryonic body weight at E18 decreased after exposure to heavy ions at high doses. Malformations such as small eyes and limb anomalies were observed in heavy-ion-treated embryos, but not in γ-ray-treated embryos. The frequency of abnormally curved tails was increased by exposure to γ-rays and argon and iron ions even at a dose of 0.1 Gy (P < 0.05). In contrast, a dose-dependent decrease in the number of epidermal melanoblasts/melanocytes and hair bulb melanocytes was observed after 0.1 Gy irradiation with γ-rays or heavy ions (P < 0.01). The decrease in the number of dorsal hair bulb melanocytes, dorsal and ventral epidermal melanoblasts/melanocytes and ventral hair bulb melanocytes was not necessarily correlated with the linear energy transfer of the radiation tested. Moreover, the effects of heavy ions were larger on the ventral skin than on the dorsal skin, indicating that the sensitivity of melanocytes to heavy ions differs between the dorsal and ventral skin. Taken together, these results suggest that the effects of the low-dose heavy ions differ between cell types and tissues, and the effects on the prenatal development of mice and melanocyte development are not necessarily greater than those of γ-rays.

  12. Effects of low-dose heavy ions on embryonic development in mice and on melanocyte differentiation in the epidermis and hair bulb

    PubMed Central

    Hirobe, Tomohisa; Eguchi-Kasai, Kiyomi; Sugaya, Kimihiko; Murakami, Masahiro

    2013-01-01

    The effects of prenatal low-dose irradiation with heavy ions on embryonic development in mice and on melanocyte differentiation are not well understood. We performed whole-body irradiation of pregnant C57BL/10J mice at embryonic Day 9 (E9) with a single dose of γ-rays, silicon, argon or iron ions. The number of living embryos and embryonic body weight at E18 decreased after exposure to heavy ions at high doses. Malformations such as small eyes and limb anomalies were observed in heavy-ion-treated embryos, but not in γ-ray-treated embryos. The frequency of abnormally curved tails was increased by exposure to γ-rays and argon and iron ions even at a dose of 0.1 Gy (P < 0.05). In contrast, a dose-dependent decrease in the number of epidermal melanoblasts/melanocytes and hair bulb melanocytes was observed after 0.1 Gy irradiation with γ-rays or heavy ions (P < 0.01). The decrease in the number of dorsal hair bulb melanocytes, dorsal and ventral epidermal melanoblasts/melanocytes and ventral hair bulb melanocytes was not necessarily correlated with the linear energy transfer of the radiation tested. Moreover, the effects of heavy ions were larger on the ventral skin than on the dorsal skin, indicating that the sensitivity of melanocytes to heavy ions differs between the dorsal and ventral skin. Taken together, these results suggest that the effects of the low-dose heavy ions differ between cell types and tissues, and the effects on the prenatal development of mice and melanocyte development are not necessarily greater than those of γ-rays. PMID:23230241

  13. The G-protein-coupled receptor, GPR84, is important for eye development in Xenopus laevis.

    PubMed

    Perry, Kimberly J; Johnson, Verity R; Malloch, Erica L; Fukui, Lisa; Wever, Jason; Thomas, Alvin G; Hamilton, Paul W; Henry, Jonathan J

    2010-11-01

    G-protein-coupled receptors (GPCRs) represent diverse, multifamily groups of cell signaling receptors involved in many cellular processes. We identified Xenopus laevis GPR84 as a member of the A18 subfamily of GPCRs. During development, GPR84 is detected in the embryonic lens placode, differentiating lens fiber cells, retina, and cornea. Anti-sense morpholino oligonucleotide-mediated knockdown and RNA rescue experiments demonstrate GPR84's importance in lens, cornea, and retinal development. Examination of cell proliferation using an antibody against histone H3 S10P reveals significant increases in the lens and retina following GPR84 knockdown. Additionally, there was also an increase in apoptosis in the retina and lens, as revealed by TUNEL assay. Reciprocal transplantation of the presumptive lens ectoderm between uninjected controls and morpholino-injected embryos demonstrates that GPR84 is necessary in the retina for proper development of the retina, as well as other eye tissues including the lens and cornea. © 2010 Wiley-Liss, Inc.

  14. The G-protein-coupled receptor, GPR84, is important for eye development in Xenopus laevis

    PubMed Central

    Perry, Kimberly J.; Johnson, Verity R.; Malloch, Erica L.; Fukui, Lisa; Wever, Jason; Thomas, Alvin G.; Hamilton, Paul W.; Henry, Jonathan J.

    2010-01-01

    G-protein-coupled receptors (GPCRs) represent diverse, multifamily groups of cell signaling receptors involved in many cellular processes. We identified Xenopus laevis GPR84 as a member of the A18 subfamily of GPCRs. During development, GPR84 is detected in the embryonic lens placode, differentiating lens fiber cells, retina and cornea. Anti-sense morpholino oligonucleotide-mediated knockdown and RNA rescue experiments demonstrate GPR84’s importance in lens, cornea and retinal development. Examination of cell proliferation using an antibody against histone H3 S10P reveals significant increases in the lens and retina following GPR84 knockdown. Additionally, there was also an increase in apoptosis in the retina and lens, as revealed by TUNEL assay. Reciprocal transplantation of the presumptive lens ectoderm between uninjected controls and morpholino injected embryos demonstrates that GPR84 is necessary in the retina for proper development of the retina, as well as other eye tissues including the lens and cornea. PMID:20925114

  15. Positional cloning identifies zebrafish one-eyed pinhead as a permissive EGF-related ligand required during gastrulation.

    PubMed

    Zhang, J; Talbot, W S; Schier, A F

    1998-01-23

    The zebrafish one-eyed pinhead (oep) mutation disrupts embryonic development, resulting in cyclopia and defects in endoderm, prechordal plate, and ventral neuroectoderm formation. We report the molecular isolation of oep using a positional cloning approach. The oep gene encodes a novel EGF-related protein with similarity to the EGF-CFC proteins cripto, cryptic, and FRL-1. Wild-type oep protein contains a functional signal sequence and is membrane-associated. Following ubiquitous maternal and zygotic expression, highest levels of oep mRNA are found in the gastrula margin and in axial structures and forebrain. Widespread misexpression of both membrane-attached and secreted forms of oep rescues prechordal plate and forebrain development in mutant embryos but does not lead to the ectopic induction of these cell types in wild-type fish. These results establish an essential but permissive role for an EGF-related ligand during vertebrate gastrulation.

  16. The Drosophila T-box transcription factor Midline functions within the Notch–Delta signaling pathway to specify sensory organ precursor cell fates and regulates cell survival within the eye imaginal disc

    PubMed Central

    Das, Sudeshna; Chen, Q. Brent; Saucier, Joseph D.; Drescher, Brandon; Zong, Yan; Morgan, Sarah; Forstall, John; Meriwether, Andrew; Toranzo, Randy; Leal, Sandra M.

    2014-01-01

    We report that the T-box transcription factor Midline (Mid), an evolutionary conserved homolog of the vertebrate Tbx20 protein, functions within the Notch–Delta signaling pathway essential for specifying the fates of sensory organ precursor cells. This complements an established history of research showing that Mid regulates the cell-fate specification of diverse cell types within the developing heart, epidermis and central nervous system. Tbx20 has been detected in diverse neuronal and epithelial cells of embryonic eye tissues in both mice and humans. However, the mechanisms by which either Mid or Tbx20 function to regulate cell-fate specification or other critical aspects of eye development including cell survival have not yet been elucidated. We have also gathered preliminary evidence suggesting that Mid may play an indirect, but vital role in selecting SOP cells within the third-instar larval eye disc by regulating the expression of the proneural gene atonal. During subsequent pupal stages, Mid specifies SOP cell fates as a member of the Notch–Delta signaling hierarchy and is essential for maintaining cell viability within by inhibiting apoptotic pathways. We present several new hypotheses that seek to understand the role of Mid in regulating developmental processes downstream of the Notch receptor that are critical for specifying unique cell fates, patterning the adult eye and maintaining cellular homeostasis during eye disc morphogenesis. PMID:23962751

  17. Embryonic development of the sea bass Dicentrarchus labrax

    NASA Astrophysics Data System (ADS)

    Cucchi, Patricia; Sucré, Elliott; Santos, Raphaël; Leclère, Jeremy; Charmantier, Guy; Castille, René

    2012-06-01

    The embryonic development of the sea bass Dicentrarchus labrax during the endotrophic period is discussed. An 8 cells stage, not reported for other studied species, results from two rapid successive cleavages. Blastula occurs at the eighth division when the embryo is made of 128 cells. During gastrulation, the infolded blastoderm creates the endomesoblastic layer. The Kupffer's vesicle is reported to drive the left/right patterning of brain, heart and digestive tract. Heart formation starts at 8 pairs of somites, differentiation of myotomes and sclerotomes starts at the stage 18 pairs of somites; main parts of the digestive tract are entirely formed at 25 pairs of somites. At 28 pairs of somites, a rectal region is detected, however, the digestive tube is closed at both ends, the jaw appears the fourth day after hatching, but the mouth is not opened before the fifth day. Although cardiac beating and blood circulation are observed, gills are not reported in newly hatched individuals; eye melanization appears concomitant with exotrophic behavior.

  18. Abelson Interactor 1 (Abi1) and Its Interaction with Wiskott-Aldrich Syndrome Protein (Wasp) Are Critical for Proper Eye Formation in Xenopus Embryos*

    PubMed Central

    Singh, Arvinder; Winterbottom, Emily F.; Ji, Yon Ju; Hwang, Yoo-Seok; Daar, Ira O.

    2013-01-01

    Abl interactor 1 (Abi1) is a scaffold protein that plays a central role in the regulation of actin cytoskeleton dynamics as a constituent of several key protein complexes, and homozygous loss of this protein leads to embryonic lethality in mice. Because this scaffold protein has been shown in cultured cells to be a critical component of pathways controlling cell migration and actin regulation at cell-cell contacts, we were interested to investigate the in vivo role of Abi1 in morphogenesis during the development of Xenopus embryos. Using morpholino-mediated translation inhibition, we demonstrate that knockdown of Abi1 in the whole embryo, or specifically in eye field progenitor cells, leads to disruption of eye morphogenesis. Moreover, signaling through the Src homology 3 domain of Abi1 is critical for proper movement of retinal progenitor cells into the eye field and their appropriate differentiation, and this process is dependent upon an interaction with the nucleation-promoting factor Wasp (Wiskott-Aldrich syndrome protein). Collectively, our data demonstrate that the Abi1 scaffold protein is an essential regulator of cell movement processes required for normal eye development in Xenopus embryos and specifically requires an Src homology 3 domain-dependent interaction with Wasp to regulate this complex morphogenetic process. PMID:23558677

  19. Highly variable penetrance of abnormal phenotypes in embryonic lethal knockout mice

    PubMed Central

    Wilson, Robert; Geyer, Stefan H.; Reissig, Lukas; Rose, Julia; Szumska, Dorota; Hardman, Emily; Prin, Fabrice; McGuire, Christina; Ramirez-Solis, Ramiro; White, Jacqui; Galli, Antonella; Tudor, Catherine; Tuck, Elizabeth; Mazzeo, Cecilia Icoresi; Smith, James C.; Robertson, Elizabeth; Adams, David J.; Mohun, Timothy; Weninger, Wolfgang J.

    2017-01-01

    Background: Identifying genes that are essential for mouse embryonic development and survival through term is a powerful and unbiased way to discover possible genetic determinants of human developmental disorders. Characterising the changes in mouse embryos that result from ablation of lethal genes is a necessary first step towards uncovering their role in normal embryonic development and establishing any correlates amongst human congenital abnormalities. Methods: Here we present results gathered to date in the Deciphering the Mechanisms of Developmental Disorders (DMDD) programme, cataloguing the morphological defects identified from comprehensive imaging of 220 homozygous mutant and 114 wild type embryos from 42 lethal and subviable lines, analysed at E14.5. Results: Virtually all mutant embryos show multiple abnormal phenotypes and amongst the 42 lines these affect most organ systems. Within each mutant line, the phenotypes of individual embryos form distinct but overlapping sets. Subcutaneous edema, malformations of the heart or great vessels, abnormalities in forebrain morphology and the musculature of the eyes are all prevalent phenotypes, as is loss or abnormal size of the hypoglossal nerve. Conclusions: Overall, the most striking finding is that no matter how profound the malformation, each phenotype shows highly variable penetrance within a mutant line. These findings have challenging implications for efforts to identify human disease correlates. PMID:27996060

  20. Developmental expression of membrane type 4-matrix metalloproteinase (Mt4-mmp/Mmp17) in the mouse embryo

    PubMed Central

    Clemente, Cristina; Montalvo, María Gregoria; Seiki, Motoharu; Arroyo, Alicia G.

    2017-01-01

    Matrix metalloproteinases (MMPs) constitute a large group of endoproteases that play important functions during embryonic development, tumor metastasis and angiogenesis by degrading components of the extracellular matrix. Within this family, we focused our study on Mt4-mmp (also called Mmp17) that belongs to a distinct subset that is anchored to the cell surface via a glycosylphosphatidylinositol (GPI) moiety and with the catalytic site exposed to the extracellular space. Information about its function and substrates is very limited to date, and little has been reported on its role in the developing embryo. Here, we report a detailed expression analysis of Mt4-mmp during mouse embryonic development by using a LacZ reporter transgenic mouse line. We showed that Mt4-mmp is detected from early stages of development to postnatal stages following a dynamic and restricted pattern of expression. Mt4-mmp was first detected at E8.5 limited to the intersomitic vascularization, the endocardial endothelium and the dorsal aorta. Mt4-mmpLacZ/+ cells were also observed in the neural crest cells, somites, floor plate and notochord at early stages. From E10.5, expression localized in the limb buds and persists during limb development. A strong expression in the brain begins at E12.5 and continues to postnatal stages. Specifically, staining was observed in the olfactory bulb, cerebral cortex, hippocampus, striatum, septum, dorsal thalamus and the spinal cord. In addition, LacZ-positive cells were also detected during eye development, initially at the hyaloid artery and later on located in the lens and the neural retina. Mt4-mmp expression was confirmed by quantitative RT-PCR and western blot analysis in some embryonic tissues. Our data point to distinct functions for this metalloproteinase during embryonic development, particularly during brain formation, angiogenesis and limb development. PMID:28926609

  1. Abnormal placental development and early embryonic lethality in EpCAM-null mice.

    PubMed

    Nagao, Keisuke; Zhu, Jianjian; Heneghan, Mallorie B; Hanson, Jeffrey C; Morasso, Maria I; Tessarollo, Lino; Mackem, Susan; Udey, Mark C

    2009-12-31

    EpCAM (CD326) is encoded by the tacstd1 gene and expressed by a variety of normal and malignant epithelial cells and some leukocytes. Results of previous in vitro experiments suggested that EpCAM is an intercellular adhesion molecule. EpCAM has been extensively studied as a potential tumor marker and immunotherapy target, and more recent studies suggest that EpCAM expression may be characteristic of cancer stem cells. To gain insights into EpCAM function in vivo, we generated EpCAM -/- mice utilizing an embryonic stem cell line with a tacstd1 allele that had been disrupted. Gene trapping resulted in a protein comprised of the N-terminus of EpCAM encoded by 2 exons of the tacstd1 gene fused in frame to betageo. EpCAM +/- mice were viable and fertile and exhibited no obvious abnormalities. Examination of EpCAM +/- embryos revealed that betageo was expressed in several epithelial structures including developing ears (otocysts), eyes, branchial arches, gut, apical ectodermal ridges, lungs, pancreas, hair follicles and others. All EpCAM -/- mice died in utero by E12.5, and were small, developmentally delayed, and displayed prominent placental abnormalities. In developing placentas, EpCAM was expressed throughout the labyrinthine layer and by spongiotrophoblasts as well. Placentas of EpCAM -/- embryos were compact, with thin labyrinthine layers lacking prominent vascularity. Parietal trophoblast giant cells were also dramatically reduced in EpCAM -/- placentas. EpCAM was required for differentiation or survival of parietal trophoblast giant cells, normal development of the placental labyrinth and establishment of a competent maternal-fetal circulation. The findings in EpCAM-reporter mice suggest involvement of this molecule in development of vital organs including the gut, kidneys, pancreas, lungs, eyes, and limbs.

  2. Eye Development in Sepia officinalis Embryo: What the Uncommon Gene Expression Profiles Tell Us about Eye Evolution.

    PubMed

    Imarazene, Boudjema; Andouche, Aude; Bassaglia, Yann; Lopez, Pascal-Jean; Bonnaud-Ponticelli, Laure

    2017-01-01

    In metazoans, there is a remarkable diversity of photosensitive structures; their shapes, physiology, optical properties, and development are different. To approach the evolution of photosensitive structures and visual function, cephalopods are particularly interesting organisms due to their most highly centralized nervous system and their camerular eyes which constitute a convergence with those of vertebrates. The eye morphogenesis in numerous metazoans is controlled mainly by a conserved Retinal Determination Gene Network (RDGN) including pax, six, eya , and dac playing also key developmental roles in non-retinal structures and tissues of vertebrates and Drosophila . Here we have identified and explored the role of Sof-dac, Sof-six1/2, Sof-eya in eye morphogenesis, and nervous structures controlling the visual function in Sepia officinalis . We compare that with the already shown expressions in eye development of Sof-otx and Sof-pax genes. Rhodopsin is the pigment responsible for light sensitivity in metazoan, which correlate to correlate visual function and eye development. We studied Sof-rhodopsin expression during retina differentiation. By in situ hybridization, we show that (1) all of the RDGN genes, including Sof-pax6 , are expressed in the eye area during the early developmental stages but they are not expressed in the retina, unlike Sof-otx , which could have a role in retina differentiation; (2) Sof-rhodopsin is expressed in the retina just before vision gets functional, from stage 23 to hatching. Our results evidence a role of Sof-six1/2, Sof-eya , and Sof-dac in eye development. However, the gene network involved in the retinal photoreceptor differentiation remains to be determined. Moreover, for the first time, Sof-rhodopsin expression is shown in the embryonic retina of cuttlefish suggesting the evolutionary conservation of the role of rhodopsin in visual phototransduction within metazoans. These findings are correlated with the physiological and behavioral observations suggesting that S. officinalis is able to react to light stimuli from stage 25 of organogenesis on, as soon as the first retinal pigments appear.

  3. Eye Development in Sepia officinalis Embryo: What the Uncommon Gene Expression Profiles Tell Us about Eye Evolution

    PubMed Central

    Imarazene, Boudjema; Andouche, Aude; Bassaglia, Yann; Lopez, Pascal-Jean; Bonnaud-Ponticelli, Laure

    2017-01-01

    In metazoans, there is a remarkable diversity of photosensitive structures; their shapes, physiology, optical properties, and development are different. To approach the evolution of photosensitive structures and visual function, cephalopods are particularly interesting organisms due to their most highly centralized nervous system and their camerular eyes which constitute a convergence with those of vertebrates. The eye morphogenesis in numerous metazoans is controlled mainly by a conserved Retinal Determination Gene Network (RDGN) including pax, six, eya, and dac playing also key developmental roles in non-retinal structures and tissues of vertebrates and Drosophila. Here we have identified and explored the role of Sof-dac, Sof-six1/2, Sof-eya in eye morphogenesis, and nervous structures controlling the visual function in Sepia officinalis. We compare that with the already shown expressions in eye development of Sof-otx and Sof-pax genes. Rhodopsin is the pigment responsible for light sensitivity in metazoan, which correlate to correlate visual function and eye development. We studied Sof-rhodopsin expression during retina differentiation. By in situ hybridization, we show that (1) all of the RDGN genes, including Sof-pax6, are expressed in the eye area during the early developmental stages but they are not expressed in the retina, unlike Sof-otx, which could have a role in retina differentiation; (2) Sof-rhodopsin is expressed in the retina just before vision gets functional, from stage 23 to hatching. Our results evidence a role of Sof-six1/2, Sof-eya, and Sof-dac in eye development. However, the gene network involved in the retinal photoreceptor differentiation remains to be determined. Moreover, for the first time, Sof-rhodopsin expression is shown in the embryonic retina of cuttlefish suggesting the evolutionary conservation of the role of rhodopsin in visual phototransduction within metazoans. These findings are correlated with the physiological and behavioral observations suggesting that S. officinalis is able to react to light stimuli from stage 25 of organogenesis on, as soon as the first retinal pigments appear. PMID:28883798

  4. SIGNALLING THROUGH RETINOIC ACID RECEPTORS IN CARDIAC DEVELOPMENT: DOING THE RIGHT THINGS AT THE RIGHT TIMES

    PubMed Central

    Xavier-Neto, José; Costa, Ângela M. Sousa; Figueira, Ana Carolina M.; Caiaffa, Carlo Donato; do Amaral, Fabio Neves; Peres, Lara Maldanis Cerqueira; da Silva, Bárbara Santos Pires; Santos, Luana Nunes; Moise, Alexander R.; Castillo, Hozana Andrade

    2015-01-01

    Retinoic acid (RA) is a terpenoid that is synthesized from Vitamin A/retinol (ROL) and binds to the nuclear receptors retinoic acid receptor (RAR)/retinoid X receptor (RXR) to control multiple developmental processes in vertebrates. The available clinic and experimental data provide uncontested evidence for the pleiotropic roles of RA signalling in development of multiple embryonic structures and organs such eyes, central nervous system, gonads, lungs and heart. The development of any of these above-mentioned embryonic organ systems can be effectively utilized to showcase the many strategies utilized by RA signalling. However, it is very likely that the strategies employed to transfer RA signals during cardiac development comprise the majority of the relevant and sophisticated ways through which retinoid signals can be conveyed in a complex biological system. Here, we provide the reader with arguments indicating that RA signalling is exquisitely regulated according to specific phases of cardiac development and that RA signalling itself is one of the major regulators of the timing of cardiac morphogenesis and differentiation. We will focus on the role of signalling by RA receptors (RARs) in early phases of heart development. PMID:25134739

  5. Disruption of Msx-1 and Msx-2 reveals roles for these genes in craniofacial, eye, and axial development.

    PubMed

    Foerst-Potts, L; Sadler, T W

    1997-05-01

    In mouse embryos, the muscle segment homeobox genes, Msx-1 and Msx-2 are expressed during critical stages of neural tube, neural crest, and craniofacial development, suggesting that these genes play important roles in organogenesis and cell differentiation. Although the patterns of expression are intriguing, little is known about the function of these genes in vertebrate embryonic development. Therefore, the expression of both genes, separately and together, was disrupted using antisense oligodeoxynucleotides and whole embryo culture techniques. Antisense attenuation of Msx-1 during early stages of neurulation produced hypoplasia of the maxillary, mandibular, and frontonasal prominences, eye anomalies, and somite and neural tube abnormalities. Eye defects consisted of enlarged optic vesicles, which may ultimately result in micropthalmia similar to that observed in Small eye mice homozygous for mutations in the Pax-6 gene. Histological sections and SEM analysis revealed a thinning of the neuroepithelium in the diencephalon and optic vesicle and mesenchymal deficiencies in the craniofacial region. Injections of Msx-2 antisense oligodeoxynucleotides produced similar malformations as those targeting Msx-1, with the exception that there was an increase in number and severity of neural tube and somite defects. Embryos injected with the combination of Msx-1 + Msx-2 antisense oligodeoxynucleotides showed no novel abnormalities, suggesting that the genes do not operate in a redundant manner.

  6. Cavefish and the basis for eye loss.

    PubMed

    Krishnan, Jaya; Rohner, Nicolas

    2017-02-05

    Animals have colonized the entire world from rather moderate to the harshest environments, some of these so extreme that only few animals are able to survive. Cave environments present such a challenge and obligate cave animals have adapted to perpetual darkness by evolving a multitude of traits. The most common and most studied cave characteristics are the regression of eyes and the overall reduction in pigmentation. Studying these traits can provide important insights into how evolutionary forces drive convergent and regressive adaptation. The blind Mexican cavefish (Astyanax mexicanus) has emerged as a useful model to study cave evolution owing to the availability of genetic and genomic resources, and the amenability of embryonic development as the different populations remain fertile with each other. In this review, we give an overview of our current knowledge underlying the process of regressive and convergent evolution using eye degeneration in cavefish as an example.This article is part of the themed issue 'Evo-devo in the genomics era, and the origins of morphological diversity'. © 2016 The Author(s).

  7. Cavefish and the basis for eye loss

    PubMed Central

    Krishnan, Jaya

    2017-01-01

    Animals have colonized the entire world from rather moderate to the harshest environments, some of these so extreme that only few animals are able to survive. Cave environments present such a challenge and obligate cave animals have adapted to perpetual darkness by evolving a multitude of traits. The most common and most studied cave characteristics are the regression of eyes and the overall reduction in pigmentation. Studying these traits can provide important insights into how evolutionary forces drive convergent and regressive adaptation. The blind Mexican cavefish (Astyanax mexicanus) has emerged as a useful model to study cave evolution owing to the availability of genetic and genomic resources, and the amenability of embryonic development as the different populations remain fertile with each other. In this review, we give an overview of our current knowledge underlying the process of regressive and convergent evolution using eye degeneration in cavefish as an example. This article is part of the themed issue ‘Evo-devo in the genomics era, and the origins of morphological diversity’. PMID:27994128

  8. Maternal folic acid-deficient diet causes congenital malformations in the mouse eye.

    PubMed

    Maestro-de-las-Casas, Carmen; Pérez-Miguelsanz, Juliana; López-Gordillo, Yamila; Maldonado, Estela; Partearroyo, Teresa; Varela-Moreiras, Gregorio; Martínez-Álvarez, Concepción

    2013-09-01

    The eye is a very complex structure derived from the neural tube, surface ectoderm, and migratory mesenchyme from a neural crest origin. Because structures that evolve from the neural tube may be affected by a folate/folic acid (FA) deficiency, the aim of this work was to investigate whether a maternal folic acid-deficient diet may cause developmental alterations in the mouse eye. Female C57BL/6J mice (8 weeks old) were assigned into two different folic acid groups for periods ranging between 2 and 16 weeks. Animals were killed at gestation day 17. Hepatic folate was analyzed, and the eyes from 287 fetuses were macroscopically studied, sectioned and immunolabeled with anti-transforming growth factor (TGF)-β2 and anti-TGF-βRII. Mice exposed to a FA-deficient diet exhibited numerous eye macroscopic anomalies, such as anophthalmia and microphthalmia. Microscopically, the eye was the most affected organ (43.7% of the fetuses). The highest incidence of malformations occurred from the 8th week onward. A statistically significant linear association between the number of maternal weeks on the FA-deficient diet and embryonic microscopic eye malformations was observed. The optic cup derivatives and structures forming the eye anterior segment showed severe abnormalities. In addition, TGF-β2 and TGF-βRII expression in the eye was also altered. This study suggests that an adequate folic acid/folate status plays a key role in the formation of ocular tissues and structures, whereas a vitamin deficiency is negatively associated with a normal eye development even after a short-term exposure. Copyright © 2013 Wiley Periodicals, Inc.

  9. iSyTE 2.0: a database for expression-based gene discovery in the eye

    PubMed Central

    Kakrana, Atul; Yang, Andrian; Anand, Deepti; Djordjevic, Djordje; Ramachandruni, Deepti; Singh, Abhyudai; Huang, Hongzhan

    2018-01-01

    Abstract Although successful in identifying new cataract-linked genes, the previous version of the database iSyTE (integrated Systems Tool for Eye gene discovery) was based on expression information on just three mouse lens stages and was functionally limited to visualization by only UCSC-Genome Browser tracks. To increase its efficacy, here we provide an enhanced iSyTE version 2.0 (URL: http://research.bioinformatics.udel.edu/iSyTE) based on well-curated, comprehensive genome-level lens expression data as a one-stop portal for the effective visualization and analysis of candidate genes in lens development and disease. iSyTE 2.0 includes all publicly available lens Affymetrix and Illumina microarray datasets representing a broad range of embryonic and postnatal stages from wild-type and specific gene-perturbation mouse mutants with eye defects. Further, we developed a new user-friendly web interface for direct access and cogent visualization of the curated expression data, which supports convenient searches and a range of downstream analyses. The utility of these new iSyTE 2.0 features is illustrated through examples of established genes associated with lens development and pathobiology, which serve as tutorials for its application by the end-user. iSyTE 2.0 will facilitate the prioritization of eye development and disease-linked candidate genes in studies involving transcriptomics or next-generation sequencing data, linkage analysis and GWAS approaches. PMID:29036527

  10. The Drosophila T-box transcription factor Midline functions within the Notch-Delta signaling pathway to specify sensory organ precursor cell fates and regulates cell survival within the eye imaginal disc.

    PubMed

    Das, Sudeshna; Chen, Q Brent; Saucier, Joseph D; Drescher, Brandon; Zong, Yan; Morgan, Sarah; Forstall, John; Meriwether, Andrew; Toranzo, Randy; Leal, Sandra M

    2013-01-01

    We report that the T-box transcription factor Midline (Mid), an evolutionary conserved homolog of the vertebrate Tbx20 protein, functions within the Notch-Delta signaling pathway essential for specifying the fates of sensory organ precursor (SOP) cells. These findings complement an established history of research showing that Mid regulates the cell-fate specification of diverse cell types within the developing heart, epidermis and central nervous system. Tbx20 has been detected in unique neuronal and epithelial cells of embryonic eye tissues in both mice and humans. However, the mechanisms by which either Mid or Tbx20 function to regulate cell-fate specification or other critical aspects of eye development including cell survival have not yet been elucidated. We have also gathered preliminary evidence suggesting that Mid may play an indirect, but vital role in selecting SOP cells within the third-instar larval eye disc by regulating the expression of the proneural gene atonal. During subsequent pupal stages, Mid specifies SOP cell fates as a member of the Notch-Delta signaling hierarchy and is essential for maintaining cell viability by inhibiting apoptotic pathways. We present several new hypotheses that seek to understand the role of Mid in regulating developmental processes downstream of the Notch receptor that are critical for specifying unique cell fates, patterning the adult eye and maintaining cellular homeostasis during eye disc morphogenesis. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  11. Drosophila Lin-52 Acts in Opposition to Repressive Components of the Myb-MuvB/dREAM Complex

    PubMed Central

    Lewis, Peter W.; Sahoo, Debashis; Geng, Cuiyun; Bell, Maren

    2012-01-01

    The Drosophila melanogaster Myb-MuvB/dREAM complex (MMB/dREAM) participates in both the activation and repression of developmentally regulated genes and origins of DNA replication. Mutants in MMB subunits exhibit diverse phenotypes, including lethality, eye defects, reduced fecundity, and sterility. Here, we used P-element excision to generate mutations in lin-52, which encodes the smallest subunit of the MMB/dREAM complex. lin-52 is required for viability, as null mutants die prior to pupariation. The generation of somatic and germ line mutant clones indicates that lin-52 is required for adult eye development and for early embryogenesis via maternal effects. Interestingly, the maternal-effect embryonic lethality, larval lethality, and adult eye defects could be suppressed by mutations in other subunits of the MMB/dREAM complex. These results suggest that a partial MMB/dREAM complex is responsible for the lethality and eye defects of lin-52 mutants. Furthermore, these findings support a model in which the Lin-52 and Myb proteins counteract the repressive activities of the other members of the MMB/dREAM complex at specific genomic loci in a developmentally controlled manner. PMID:22688510

  12. Expression patterns of Eph genes in the "dual visual development" of the lamprey and their significance in the evolution of vision in vertebrates.

    PubMed

    Suzuki, Daichi G; Murakami, Yasunori; Yamazaki, Yuji; Wada, Hiroshi

    2015-01-01

    Image-forming vision is crucial to animals for recognizing objects in their environment. In vertebrates, this type of vision is achieved with paired camera eyes and topographic projection of the optic nerve. Topographic projection is established by an orthogonal gradient of axon guidance molecules, such as Ephs. To explore the evolution of image-forming vision in vertebrates, lampreys, which belong to the basal lineage of vertebrates, are key animals because they show unique "dual visual development." In the embryonic and pre-ammocoete larval stage (the "primary" phase), photoreceptive "ocellus-like" eyes develop, but there is no retinotectal optic nerve projection. In the late ammocoete larval stage (the "secondary" phase), the eyes grow and form into camera eyes, and retinotectal projection is newly formed. After metamorphosis, this retinotectal projection in adult lampreys is topographic, similar to that of gnathostomes. In this study, we explored the involvement of Ephs in lamprey "dual visual development" and establishment of the image-form vision. We found that gnathostome-like orthogonal gradient expression was present in the retina during the "secondary" phase; i.e., EphB showed a gradient of expression along the dorsoventral axis, while EphC was expressed along the anteroposterior axis. However, no orthogonal gradient expression was observed during the "primary" phase. These observations suggest that Ephs are likely recruited de novo for the guidance of topographical "second" optic nerve projection. Transformations during lamprey "dual visual development" may represent "recapitulation" from a protochordate-like ancestor to a gnathostome-like vertebrate ancestor. © 2015 Wiley Periodicals, Inc.

  13. Cited2 is required for the proper formation of the hyaloid vasculature and for lens morphogenesis

    PubMed Central

    Chen, Yu; Doughman, Yong-qiu; Gu, Shi; Jarrell, Andrew; Aota, Shin-ichi; Cvekl, Ales; Watanabe, Michiko; Dunwoodie, Sally L.; Johnson, Randall S.; van Heyningen, Veronica; Kleinjan, Dirk A.; Beebe, David C.; Yang, Yu-Chung

    2009-01-01

    Cited2 is a transcriptional modulator with pivotal roles in different biological processes. Cited2-deficient mouse embryos manifested two major defects in the developing eye. An abnormal corneal-lenticular stalk was characteristic of Cited2−/− developing eyes, a feature reminiscent of Peters’ anomaly, which can be rescued by increased Pax6 gene dosage in Cited2−/− embryonic eyes. In addition, the hyaloid vascular system showed hyaloid hypercellularity consisting of aberrant vasculature, which might be correlated with increased VEGF expression in the lens. Deletion of Hif1a (which encodes HIF-1α) in Cited2−/− lens specifically eliminated the excessive accumulation of cellular mass and aberrant vasculature in the developing vitreous without affecting the corneal-lenticular stalk phenotype. These in vivo data demonstrate for the first time dual functions for Cited2: one upstream of, or together with, Pax6 in lens morphogenesis; and another in the normal formation of the hyaloid vasculature through its negative modulation of HIF-1 signaling. Taken together, our study provides novel mechanistic revelation for lens morphogenesis and hyaloid vasculature formation and hence might offer new insights into the etiology of Peters’ anomaly and ocular hypervascularity. PMID:18653562

  14. Analysis of Temporal-spatial Co-variation within Gene Expression Microarray Data in an Organogenesis Model

    NASA Astrophysics Data System (ADS)

    Ehler, Martin; Rajapakse, Vinodh; Zeeberg, Barry; Brooks, Brian; Brown, Jacob; Czaja, Wojciech; Bonner, Robert F.

    The gene networks underlying closure of the optic fissure during vertebrate eye development are poorly understood. We used a novel clustering method based on Laplacian Eigenmaps, a nonlinear dimension reduction method, to analyze microarray data from laser capture microdissected (LCM) cells at the site and developmental stages (days 10.5 to 12.5) of optic fissure closure. Our new method provided greater biological specificity than classical clustering algorithms in terms of identifying more biological processes and functions related to eye development as defined by Gene Ontology at lower false discovery rates. This new methodology builds on the advantages of LCM to isolate pure phenotypic populations within complex tissues and allows improved ability to identify critical gene products expressed at lower copy number. The combination of LCM of embryonic organs, gene expression microarrays, and extracting spatial and temporal co-variations appear to be a powerful approach to understanding the gene regulatory networks that specify mammalian organogenesis.

  15. Cis-regulatory underpinnings of human GLI3 expression in embryonic craniofacial structures and internal organs.

    PubMed

    Abbasi, Amir A; Minhas, Rashid; Schmidt, Ansgar; Koch, Sabine; Grzeschik, Karl-Heinz

    2013-10-01

    The zinc finger transcription factor Gli3 is an important mediator of Sonic hedgehog (Shh) signaling. During early embryonic development Gli3 participates in patterning and growth of the central nervous system, face, skeleton, limb, tooth and gut. Precise regulation of the temporal and spatial expression of Gli3 is crucial for the proper specification of these structures in mammals and other vertebrates. Previously we reported a set of human intronic cis-regulators controlling almost the entire known repertoire of endogenous Gli3 expression in mouse neural tube and limbs. However, the genetic underpinning of GLI3 expression in other embryonic domains such as craniofacial structures and internal organs remain elusive. Here we demonstrate in a transgenic mice assay the potential of a subset of human/fish conserved non-coding sequences (CNEs) residing within GLI3 intronic intervals to induce reporter gene expression at known regions of endogenous Gli3 transcription in embryonic domains other than central nervous system (CNS) and limbs. Highly specific reporter expression was observed in craniofacial structures, eye, gut, and genitourinary system. Moreover, the comparison of expression patterns directed by these intronic cis-acting regulatory elements in mouse and zebrafish embryos suggests that in accordance with sequence conservation, the target site specificity of a subset of these elements remains preserved among these two lineages. Taken together with our recent investigations, it is proposed here that during vertebrate evolution the Gli3 expression control acquired multiple, independently acting, intronic enhancers for spatiotemporal patterning of CNS, limbs, craniofacial structures and internal organs. © 2013 The Authors Development, Growth & Differentiation © 2013 Japanese Society of Developmental Biologists.

  16. Simple explant culture of the embryonic chicken retina with long-term preservation of photoreceptors.

    PubMed

    Thangaraj, Gopenath; Greif, Alexander; Layer, Paul G

    2011-10-01

    Structurally stable in vitro-model systems are indispensible to analyse neural development during embryogenesis, follow cellular differentiation and evaluate neurotoxicological or growth factor effects. Here we describe a three-dimensional, long-term in vitro-culture system of the embryonic chick retina which supports photoreceptor development. Retinal tissue was isolated from E6 chick eye, and cultured as explants by continuous orbital rotation to allow free floatation without any supporting materials. Young stage (E6) immature retinas were cultured for various time periods in order to follow the differentiation of cell types and plexiform layers by immunocytochemical methods. These explants could be cultured for at least 2-3 weeks with remarkable retention of retinal architecture. Interestingly, photoreceptors developed in the absence of pigment epithelium. Electron microscopic studies revealed formation of structures resembling photoreceptor outer segments, a feature not reported previously. Thus, the verification of photoreceptors, Müller cells, inner retinal cells and the inner plexiform layer described in our study establishes this explant culture as a valuable in vivo-like model system. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  17. Anterior segment dysgenesis correlation with epithelial-mesenchymal transition in Smad4 knockout mice.

    PubMed

    Li, Jing; Qin, Yu; Zhao, Fang-Kun; Wu, Di; He, Xue-Fei; Liu, Jia; Zhao, Jiang-Yue; Zhang, Jin-Song

    2016-01-01

    To explore the molecular mechanisms in lens development and the pathogenesis of Peters anomaly in Smad4 defective mice. Le-Cre transgenic mouse line was employed to inactivate Smad4 in the surface ectoderm selectively. Pathological techniques were used to reveal the morphological changes of the anterior segment in Smad4 defective eye. Immunohistochemical staining was employed to observe the expression of E-cadherin, N-cadherin and α-SMA in anterior segment of Smad4 defective mice and control mice at embryonic (E) day 16.5. Real-time quantitative polymerase chain reaction (qPCR) was performed to detect the expression of Snail, Zeb1, Zeb2 and Twist2 in lens of Smad4 defective mice and control mice at E16.5. Statistical evaluations were performed using the unpaired Student's t-test (two-tailed) by SPSS 11.0 software. Conditional deletion of Smad4 on eye surface ectoderm resulted in corneal dysplasia, iridocorneal angle closure, corneolenticular adhesions and cataract resembling Peters anomaly. Loss of Smad4 function inhibited E-cadherin expression in the lens epithelium cells and corneal epithelium cells in Smad4 defective eye. Expression of N-cadherin was up-regulated in corneal epithelium and corneal stroma. Both E-cadherin and N-cadherin were down-regulated at the future trabecular meshwork region in mutant eye. The qPCR results showed that the expression of Twist2 was increased significantly in the mutant lens (P<0.01). Smad4 is essential to eye development and likely a candidate pathogenic gene to Peters anomaly by regulating epithelial-mesenchymal transition. Twist2 can be regulated by Smad4 and plays an essential role in lens development.

  18. A Homolog of Subtilisin-Like Proprotein Convertase 7 Is Essential to Anterior Neural Development in Xenopus

    PubMed Central

    Senturker, Sema; Thomas, John Terrig; Mateshaytis, Jennifer; Moos, Malcolm

    2012-01-01

    Background Subtilisin-like Proprotein Convertase 7 (SPC7) is a member of the subtilisin/kexin family of pro-protein convertases. It cleaves many pro-proteins to release their active proteins, including members of the bone morphogenetic protein (BMP) family of signaling molecules. Other SPCs are known to be required during embryonic development but corresponding data regarding SPC7 have not been reported previously. Methodology/Principal Findings We demonstrated that Xenopus SPC7 (SPC7) was expressed predominantly in the developing brain and eye, throughout the neural plate initially, then more specifically in the lens and retina primordia as development progressed. Since no prior functional information has been reported for SPC7, we used gain- and loss-of-function experiments to investigate the possibility that it may also convey patterning or tissue specification information similarly to Furin, SPC4, and SPC6. Overexpression of SPC7 was without effect. In contrast, injection of SPC7 antisense morpholino oligonucleotides (MO) into a single blastomere at the 2- or 4-cell stage produced marked disruption of head structures; anophthalmia was salient. Bilateral injections suppressed head and eye formation completely. In parallel with suppression of eye and brain development by SPC7 knockdown, expression of early anterior neural markers (Sox2, Otx2, Rx2, and Pax6) and late eye-specific markers (β-Crystallin and Opsin), and of BMP target genes such as Tbx2 and Tbx3, was reduced or eliminated. Taken together, these findings suggest a critical role for SPC7–perhaps, at least in part, due to activation of one or more BMPs–in early patterning of the anterior neural plate and its derivatives. Conclusion/Significance SPC7 is required for normal development of the eye and brain, possibly through processing BMPs, though other potential substrates cannot be excluded. PMID:22761776

  19. Applicability, usability, and limitations of murine embryonic imaging with optical coherence tomography and optical projection tomography

    PubMed Central

    Singh, Manmohan; Raghunathan, Raksha; Piazza, Victor; Davis-Loiacono, Anjul M.; Cable, Alex; Vedakkan, Tegy J.; Janecek, Trevor; Frazier, Michael V.; Nair, Achuth; Wu, Chen; Larina, Irina V.; Dickinson, Mary E.; Larin, Kirill V.

    2016-01-01

    We present an analysis of imaging murine embryos at various embryonic developmental stages (embryonic day 9.5, 11.5, and 13.5) by optical coherence tomography (OCT) and optical projection tomography (OPT). We demonstrate that while OCT was capable of rapid high-resolution live 3D imaging, its limited penetration depth prevented visualization of deeper structures, particularly in later stage embryos. In contrast, OPT was able to image the whole embryos, but could not be used in vivo because the embryos must be fixed and cleared. Moreover, the fixation process significantly altered the embryo morphology, which was quantified by the volume of the eye-globes before and after fixation. All of these factors should be weighed when determining which imaging modality one should use to achieve particular goals of a study. PMID:27375945

  20. The genetics of anophthalmia and microphthalmia.

    PubMed

    Bardakjian, Tanya M; Schneider, Adele

    2011-09-01

    To summarize recent breakthroughs regarding the genes known to play a role in normal ocular development in humans and to elucidate the role mutations in these genes play in anophthalmia and microphthalmia. The main themes discussed within this article are the various documented genetic advances in identifying the various causes of anophthalmia and microphthalmia. In addition, the complex interplay of these genes during critical embryonic development will be addressed. The recent identification of many eye development genes has changed the ability to identify a cause of anophthalmia and microphthalmia in many individuals. Syndrome identification and the availability of genetic testing underscores the desirability of evaluation by a geneticist for all individuals with anophthalmia and microphthalmia in order to provide appropriate management, long-term guidance, and genetic counseling.

  1. Mice embryology: a microscopic overview.

    PubMed

    Salvadori, Maria Letícia Baptista; Lessa, Thais Borges; Russo, Fabiele Baldino; Fernandes, Renata Avancini; Kfoury, José Roberto; Braga, Patricia Cristina Baleeiro Beltrão; Miglino, Maria Angélica

    2012-10-01

    In this work, we studied the embryology of mice of 12, 14, and 18 days of gestation by gross observation, light microscopy, and scanning electron microscopy. Grossly, the embryos of 12 days were observed in C-shaped region of the brain, eye pigmentation of the retina, first, second, and third pharyngeal arches gill pit nasal region on the fourth ventricle brain, cervical curvature, heart, liver, limb bud thoracic, spinal cord, tail, umbilical cord, and place of the mesonephric ridge. Microscopically, the liver, cardiovascular system and spinal cord were observed. In the embryo of 14 days, we observed structures that make up the liver and heart. At 18 days of gestation fetuses, it was noted the presence of eyes, mouth, and nose in the cephalic region, chest and pelvic region with the presence of well-developed limbs, umbilical cord, and placenta. Scanning electron microscopy in 18 days of gestation fetuses evidenced head, eyes closed eyelids, nose, vibrissae, forelimb, heart, lung, kidney, liver, small bowel, diaphragm, and part of the spine. The results obtained in this work describe the internal and external morphology of mice, provided by an integration of techniques and review of the morphological knowledge of the embryonic development of this species, as this animal is of great importance to scientific studies. Copyright © 2012 Wiley Periodicals, Inc.

  2. The Corneal Epithelial Barrier and Its Developmental Role in Isolating Corneal Epithelial and Conjunctival Cells From One Another

    PubMed Central

    Kubilus, James K.; Zapater i Morales, Carolina; Linsenmayer, Thomas F.

    2017-01-01

    Purpose During development, the corneal epithelium (CE) and the conjunctiva are derived from the surface ectoderm. Here we have examined how, during development, the cells of these two issues become isolated from each other. Methods Epithelia from the anterior eyes of chicken embryos were labeled with the fluorescent, lipophilic dye, 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate (DiI). DiI was placed on the epithelial surface of the developing anterior eye and its diffusion was monitored by fluorescence microscopy. Concomitant morphologic changes in the surface cells of these epithelial were examined by scanning electron microscopy. Immunofluorescence was used to analyze the expression of cytokeratin K3, ZO-1, N-cadherin and Connexin-43 and the function of gap junctions was analyzed using a cut-loading with the fluorescent dye rhodamine-dextran. Results Prior to embryonic day 8 (E8), DiI placed on the surface of the CE spreads throughout all the epithelial cells of the anterior eye. When older eyes were similarly labeled, dye diffusion was restricted to the CE. Similarly, diffusion of DiI placed on the conjunctival surface after E8 was restricted to the conjunctiva. Scanning electron microscopy showed that developmentally (1) physical separations progressively form between the cells of the CE and those of the conjunctiva, and (2) by E8 these separations form a ring that completely encompasses the cornea. The functional restriction of gap junctions between these tissues did not occur until E14. Conclusions During ocular development, a barrier to the diffusion of DiI forms between the contiguous CE and conjunctiva prior to the differential expression of gap junctions within these tissues. PMID:28319640

  3. Lxr regulates lipid metabolic and visual perception pathways during zebrafish development.

    PubMed

    Pinto, Caroline Lucia; Kalasekar, Sharanya Maanasi; McCollum, Catherine W; Riu, Anne; Jonsson, Philip; Lopez, Justin; Swindell, Eric C; Bouhlatouf, Abdel; Balaguer, Patrick; Bondesson, Maria; Gustafsson, Jan-Åke

    2016-01-05

    The Liver X Receptors (LXRs) play important roles in multiple metabolic pathways, including fatty acid, cholesterol, carbohydrate and energy metabolism. To expand the knowledge of the functions of LXR signaling during embryonic development, we performed a whole-genome microarray analysis of Lxr target genes in zebrafish larvae treated with either one of the synthetic LXR ligands T0901317 or GW3965. Assessment of the biological processes enriched by differentially expressed genes revealed a prime role for Lxr in regulating lipid metabolic processes, similarly to the function of LXR in mammals. In addition, exposure to the Lxr ligands induced changes in expression of genes in the neural retina and lens of the zebrafish eye, including the photoreceptor guanylate cyclase activators and lens gamma crystallins, suggesting a potential novel role for Lxr in modulating the transcription of genes associated with visual function in zebrafish. The regulation of expression of metabolic genes was phenotypically reflected in an increased absorption of yolk in the zebrafish larvae, and changes in the expression of genes involved in visual perception were associated with morphological alterations in the retina and lens of the developing zebrafish eye. The regulation of expression of both lipid metabolic and eye specific genes was sustained in 1 month old fish. The transcriptional networks demonstrated several conserved effects of LXR activation between zebrafish and mammals, and also identified potential novel functions of Lxr, supporting zebrafish as a promising model for investigating the role of Lxr during development. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. Lxr regulates lipid metabolic and visual perception pathways during zebrafish development

    PubMed Central

    Pinto, Caroline Lucia; Kalasekar, Sharanya Maanasi; McCollum, Catherine W.; Riu, Anne; Jonsson, Philip; Lopez, Justin; Swindell, Eric; Bouhlatouf, Abdel; Balaguer, Patrick; Bondesson, Maria; Gustafsson, Jan-Åke

    2015-01-01

    The Liver X Receptors (LXRs) play important roles in multiple metabolic pathways, including fatty acid, cholesterol, carbohydrate and energy metabolism. To expand the knowledge of the functions of LXR signaling during embryonic development, we performed a whole-genome microarray analysis of Lxr target genes in zebrafish larvae treated with either one of the synthetic LXR ligands T0901317 or GW3965. Assessment of the biological processes enriched by differentially expressed genes revealed a prime role for Lxr in regulating lipid metabolic processes, similarly to the function of LXR in mammals. In addition, exposure to the Lxr ligands induced changes in expression of genes in the neural retina and lens of the zebrafish eye, including the photoreceptor guanylate cyclase activators and lens gamma crystallins, suggesting a potential novel role for Lxr in modulating the transcription of genes associated with visual function in zebrafish. The regulation of expression of metabolic genes was phenotypically reflected in an increased absorption of yolk in the zebrafish larvae, and changes in the expression of genes involved in visual perception were associated with morphological alterations in the retina and lens of the developing zebrafish eye. The regulation of expression of both lipid metabolic and eye specific genes was sustained in 1 month old fish. The transcriptional networks demonstrated several conserved effects of LXR activation between zebrafish and mammals, and also identified potential novel functions of Lxr, supporting zebrafish as a promising model for investigating the role of Lxr during development. PMID:26427652

  5. Selenium teratogenesis in natural populations of aquatic birds in central California

    USGS Publications Warehouse

    Hoffman, D.J.; Ohlendorf, H.M.; Aldrich, T.W.

    1988-01-01

    The frequency and types of malformations are described that were encountered during the spring of 1983 in a natural population of aquatic birds exposed to agricultural drainwater ponds and food items containing high concentrations of selenium in central California. A total of 347 nests of aquatic birds containing 1,681 eggs was selected for study at Kesterson Reservoir located in the Kesterson National Wildlife Refuge (NWR), Merced County, California. Embryos collected during incubation or from eggs that failed to hatch were examined to determine the age at death and presence of malformations. Embryonic death was generally high; approximately 17?60% of the nests of different species contained at least one dead embryo. The incidence of malformed embryos was also high; approximately 22?65% of the nests where at least two embryos were examined contained abnormal embryos. American coots (Fulica americana) and black-necked stilts (Himantopus mexicanus) experienced the highest incidence of malformed embryos. For all species, the average percentage of eggs containing dead or live abnormal embryos was 16.1 whereas the average percentage containing live abnormal embryos was 10.7. Multiple gross malformations of the eyes, brain, and feet were often present. Brain defects included hydrocephaly and exencephaly. Eye defects included both unilateral and bilateral anophthalmia and microphthalmia. Eye and foot defects with ectrodactyly and swollen joints were the most common in coots. Beak defects also occurred frequently and most often included incomplete development of the lower beak of ducks (Anas spp.) and stilts. Wing and leg defects were most prevalent in stilts and ducks, with ectromelia and amelia most prevalent in stilts. Other malformations occurring at lower frequencies included enlarged hearts with thin ventricular walls, liver hypopiasia, and gastroschisis. Based upon simultaneous examination of a control population of aquatic birds of the same species and published studies, the incidences of embryonic mortality and deformities were 9?30 times greater than expected. The role of the form of selenium responsible for teratogenesis in laboratory studies is discussed.

  6. Time dependent effect of chronic embryonic exposure to ethanol on zebrafish: Morphology, biochemical and anxiety alterations.

    PubMed

    Ramlan, Nurul Farhana; Sata, Nurul Syafida Asma Mohd; Hassan, Siti Norhidayah; Bakar, Noraini Abu; Ahmad, Syahida; Zulkifli, Syaizwan Zahmir; Abdullah, Che Azurahanim Che; Ibrahim, Wan Norhamidah Wan

    2017-08-14

    Exposure to ethanol during critical period of development can cause severe impairments in the central nervous system (CNS). This study was conducted to assess the neurotoxic effects of chronic embryonic exposure to ethanol in the zebrafish, taking into consideration the time dependent effect. Two types of exposure regimen were applied in this study. Withdrawal exposure group received daily exposure starting from gastrulation until hatching, while continuous exposure group received daily exposure from gastrulation until behavioural assessment at 6dpf (days post fertilization). Chronic embryonic exposure to ethanol decreased spontaneous tail coiling at 24hpf (hour post fertilization), heart rate at 48hpf and increased mortality rate at 72hpf. The number of apoptotic cells in the embryos treated with ethanol was significantly increased as compared to the control. We also measured the morphological abnormalities and the most prominent effects can be observed in the treated embryos exposed to 1.50% and 2.00%. The treated embryos showed shorter body length, larger egg yolk, smaller eye diameter and heart edema as compared to the control. Larvae received 0.75% continuous ethanol exposure exhibited decreased swimming activity and increased anxiety related behavior, while withdrawal ethanol exposure showed increased swimming activity and decreased anxiety related behavior as compared to the respective control. Biochemical analysis exhibited that ethanol exposure for both exposure regimens altered proteins, lipids, carbohydrates and nucleic acids of the zebrafish larvae. Our results indicated that time dependent effect of ethanol exposure during development could target the biochemical processes thus leading to induction of apoptosis and neurobehavioral deficits in the zebrafish larvae. Thus it raised our concern about the safe limit of alcohol consumption for pregnant mother especially during critical periods of vulnerability for developing nervous system. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Transient Exposure to Ethanol during Zebrafish Embryogenesis Results in Defects in Neuronal Differentiation: An Alternative Model System to Study FASD

    PubMed Central

    Joya, Xavier; Garcia-Algar, Oscar; Vall, Oriol; Pujades, Cristina

    2014-01-01

    Background The exposure of the human embryo to ethanol results in a spectrum of disorders involving multiple organ systems, including the impairment of the development of the central nervous system (CNS). In spite of the importance for human health, the molecular basis of prenatal ethanol exposure remains poorly understood, mainly to the difficulty of sample collection. Zebrafish is now emerging as a powerful organism for the modeling and the study of human diseases. In this work, we have assessed the sensitivity of specific subsets of neurons to ethanol exposure during embryogenesis and we have visualized the sensitive embryonic developmental periods for specific neuronal groups by the use of different transgenic zebrafish lines. Methodology/Principal Findings In order to evaluate the teratogenic effects of acute ethanol exposure, we exposed zebrafish embryos to ethanol in a given time window and analyzed the effects in neurogenesis, neuronal differentiation and brain patterning. Zebrafish larvae exposed to ethanol displayed small eyes and/or a reduction of the body length, phenotypical features similar to the observed in children with prenatal exposure to ethanol. When neuronal populations were analyzed, we observed a clear reduction in the number of differentiated neurons in the spinal cord upon ethanol exposure. There was a decrease in the population of sensory neurons mainly due to a decrease in cell proliferation and subsequent apoptosis during neuronal differentiation, with no effect in motoneuron specification. Conclusion Our investigation highlights that transient exposure to ethanol during early embryonic development affects neuronal differentiation although does not result in defects in early neurogenesis. These results establish the use of zebrafish embryos as an alternative research model to elucidate the molecular mechanism(s) of ethanol-induced developmental toxicity at very early stages of embryonic development. PMID:25383948

  8. The effect of maternal diabetes on the Wnt-PCP pathway during embryogenesis as reflected in the developing mouse eye

    PubMed Central

    López-Escobar, Beatriz; Cano, David A.; Rojas, Anabel; de Felipe, Beatriz; Palma, Francisco; Sánchez-Alcázar, José A.; Henderson, Deborah; Ybot-González, Patricia

    2015-01-01

    Embryopathies that develop as a consequence of maternal diabetes have been studied intensely in both experimental and clinical scenarios. Accordingly, hyperglycaemia has been shown to downregulate the expression of elements in the non-canonical Wnt-PCP pathway, such as the Dishevelled-associated activator of morphogenesis 1 (Daam1) and Vangl2. Daam1 is a formin that is essential for actin polymerization and for cytoskeletal reorganization, and it is expressed strongly in certain organs during mouse development, including the eye, neural tube and heart. Daam1gt/gt and Daam1gt/+ embryos develop ocular defects (anophthalmia or microphthalmia) that are similar to those detected as a result of hyperglycaemia. Indeed, studying the effects of maternal diabetes on the Wnt-PCP pathway demonstrated that there was strong association with the Daam1 genotype, whereby the embryopathy observed in Daam1gt/+ mutant embryos of diabetic dams was more severe. There was evidence that embryonic exposure to glucose in vitro diminishes the expression of genes in the Wnt-PCP pathway, leading to altered cytoskeletal organization, cell shape and cell polarity in the optic vesicle. Hence, the Wnt-PCP pathway appears to influence cell morphology and cell polarity, events that drive the cellular movements required for optic vesicle formation and that, in turn, are required to maintain the fate determination. Here, we demonstrate that the Wnt-PCP pathway is involved in the early stages of mouse eye development and that it is altered by diabetes, provoking the ocular phenotype observed in the affected embryos. PMID:25540130

  9. Unilateral microphthalmia or anophthalmia in eight pythons (Pythonidae).

    PubMed

    Da Silva, Mari-Ann O; Bertelsen, Mads F; Wang, Tobias; Pedersen, Michael; Lauridsen, Henrik; Heegaard, Steffen

    2015-01-01

    To provide morphological descriptions of microphthalmia or anophthalmia in eight pythons using microcomputerized tomography (μCT), magnetic resonance imaging (MRI), and histopathology. Seven Burmese pythons (Python bivittatus) and one ball python (P. regius) with clinically normal right eyes and an abnormal or missing left eye. At the time of euthanasia, four of the eight snakes underwent necropsy. Hereafter, the heads of two Burmese pythons and one ball python were examined using μCT, and another Burmese python was subjected to MRI. Following these procedures, the heads of these four pythons along with the heads of an additional three Burmese pythons were prepared for histology. All eight snakes had left ocular openings seen as dermal invaginations between 0.2 and 2.0 mm in diameter. They also had varying degrees of malformations of the orbital bones and a limited presence of nervous, glandular, and muscle tissue in the posterior orbit. Two individuals had small but identifiable eyes. Furthermore, remnants of the pigmented embryonic framework of the hyaloid vessels were found in the anophthalmic snakes. Necropsies revealed no other macroscopic anomalies. Eight pythons with unilateral left-sided microphthalmia or anophthalmia had one normal eye and a left orbit with malformed or incompletely developed ocular structures along with remnants of fetal structures. These cases lend further information to a condition that is often seen in snakes, but infrequently described. © 2014 American College of Veterinary Ophthalmologists.

  10. Role of adiponectin in delayed embryonic development of the short-nosed fruit bat, Cynopterus sphinx.

    PubMed

    Anuradha; Krishna, Amitabh

    2014-12-01

    The aim of this study was to evaluate the role of adiponectin in the delayed embryonic development of Cynopterus sphinx. Adiponectin receptor (ADIPOR1) abundance was first observed to be lower during the delayed versus non-delayed periods of utero-embryonic unit development. The effects of adiponectin treatment on embryonic development were then evaluated during the period of delayed development. Exogenous treatment increased the in vivo rate of embryonic development, as indicated by an increase in weight, ADIPOR1 levels in the utero-embryonic unit, and histological changes in embryonic development. Treatment with adiponectin during embryonic diapause showed a significant increase in circulating progesterone and estradiol concentrations, and in production of their receptors in the utero-embryonic unit. The adiponectin-induced increase in estradiol synthesis was correlated with increased cell survival (BCL2 protein levels) and cell proliferation (PCNA protein levels) in the utero-embryonic unit, suggesting an indirect effect of adiponectin via estradiol synthesis by the ovary. An in vitro study further confirmed the in vivo findings that adiponectin treatment increases PCNA levels together with increased uptake of glucose by increasing the abundance of glucose transporter 8 (GLUT8) in the utero-embryonic unit. The in vitro study also revealed that adiponectin, together with estradiol but not alone, significantly increased ADIPOR1 protein levels. Thus, adiponectin works in concert with estradiol to increase glucose transport to the utero-embryonic unit and promote cell proliferation, which together accelerate embryonic development. © 2014 Wiley Periodicals, Inc.

  11. The histone demethylase Jarid1b ensures faithful mouse development by protecting developmental genes from aberrant H3K4me3.

    PubMed

    Albert, Mareike; Schmitz, Sandra U; Kooistra, Susanne M; Malatesta, Martina; Morales Torres, Cristina; Rekling, Jens C; Johansen, Jens V; Abarrategui, Iratxe; Helin, Kristian

    2013-04-01

    Embryonic development is tightly regulated by transcription factors and chromatin-associated proteins. H3K4me3 is associated with active transcription and H3K27me3 with gene repression, while the combination of both keeps genes required for development in a plastic state. Here we show that deletion of the H3K4me2/3 histone demethylase Jarid1b (Kdm5b/Plu1) results in major neonatal lethality due to respiratory failure. Jarid1b knockout embryos have several neural defects including disorganized cranial nerves, defects in eye development, and increased incidences of exencephaly. Moreover, in line with an overlap of Jarid1b and Polycomb target genes, Jarid1b knockout embryos display homeotic skeletal transformations typical for Polycomb mutants, supporting a functional interplay between Polycomb proteins and Jarid1b. To understand how Jarid1b regulates mouse development, we performed a genome-wide analysis of histone modifications, which demonstrated that normally inactive genes encoding developmental regulators acquire aberrant H3K4me3 during early embryogenesis in Jarid1b knockout embryos. H3K4me3 accumulates as embryonic development proceeds, leading to increased expression of neural master regulators like Pax6 and Otx2 in Jarid1b knockout brains. Taken together, these results suggest that Jarid1b regulates mouse development by protecting developmental genes from inappropriate acquisition of active histone modifications.

  12. The Histone Demethylase Jarid1b Ensures Faithful Mouse Development by Protecting Developmental Genes from Aberrant H3K4me3

    PubMed Central

    Kooistra, Susanne M.; Malatesta, Martina; Morales Torres, Cristina; Rekling, Jens C.; Johansen, Jens V.; Abarrategui, Iratxe; Helin, Kristian

    2013-01-01

    Embryonic development is tightly regulated by transcription factors and chromatin-associated proteins. H3K4me3 is associated with active transcription and H3K27me3 with gene repression, while the combination of both keeps genes required for development in a plastic state. Here we show that deletion of the H3K4me2/3 histone demethylase Jarid1b (Kdm5b/Plu1) results in major neonatal lethality due to respiratory failure. Jarid1b knockout embryos have several neural defects including disorganized cranial nerves, defects in eye development, and increased incidences of exencephaly. Moreover, in line with an overlap of Jarid1b and Polycomb target genes, Jarid1b knockout embryos display homeotic skeletal transformations typical for Polycomb mutants, supporting a functional interplay between Polycomb proteins and Jarid1b. To understand how Jarid1b regulates mouse development, we performed a genome-wide analysis of histone modifications, which demonstrated that normally inactive genes encoding developmental regulators acquire aberrant H3K4me3 during early embryogenesis in Jarid1b knockout embryos. H3K4me3 accumulates as embryonic development proceeds, leading to increased expression of neural master regulators like Pax6 and Otx2 in Jarid1b knockout brains. Taken together, these results suggest that Jarid1b regulates mouse development by protecting developmental genes from inappropriate acquisition of active histone modifications. PMID:23637629

  13. Pretreatment methods to improve nerve immunostaining in corneas from long-term fixed embryonic quail eyes

    NASA Technical Reports Server (NTRS)

    Barrett, J. E.; Wells, D. C.; Conrad, G. W.

    1999-01-01

    Pretreatment methods were used to improve neurofilament immunostaining in corneas from embryonic day 16 Japanese quail corneas that had been stored in fixative solution for several months. A sequential combination of the following three pretreatments: brief microwave heating in saline, followed by extraction with sodium dodecyl sulfate (SDS) at 37 degrees C, followed by digestion with hyaluronidase at 37 degrees C, produced significantly increased antibody staining of corneal neurofilament proteins, compared with embryonic corneas subjected to no prior pretreatments or to single or two-step protocols. After applying the sequence of all three pretreatments, darkest nerve staining and increased numbers of fine branches were observed, together with lower background staining. Thus, the result of applying the three-step pretreatment sequence is better than that of applying any of its component single pretreatments or even combinations of any two of them. These findings therefore suggest that each of these three pretreatments causes a unique effect, beneficial to immunostaining of neurofilament proteins, and that their individual effects are independent and additive. In addition to embryonic corneas, the three-step procedure also may be useful for immunostaining of nerves in other very delicate, highly-hydrated tissues containing an abundance of extracellular matrix.

  14. Genetic mechanisms involved in the evolution of the cephalopod camera eye revealed by transcriptomic and developmental studies

    PubMed Central

    2011-01-01

    Background Coleoid cephalopods (squids and octopuses) have evolved a camera eye, the structure of which is very similar to that found in vertebrates and which is considered a classic example of convergent evolution. Other molluscs, however, possess mirror, pin-hole, or compound eyes, all of which differ from the camera eye in the degree of complexity of the eye structures and neurons participating in the visual circuit. Therefore, genes expressed in the cephalopod eye after divergence from the common molluscan ancestor could be involved in eye evolution through association with the acquisition of new structural components. To clarify the genetic mechanisms that contributed to the evolution of the cephalopod camera eye, we applied comprehensive transcriptomic analysis and conducted developmental validation of candidate genes involved in coleoid cephalopod eye evolution. Results We compared gene expression in the eyes of 6 molluscan (3 cephalopod and 3 non-cephalopod) species and selected 5,707 genes as cephalopod camera eye-specific candidate genes on the basis of homology searches against 3 molluscan species without camera eyes. First, we confirmed the expression of these 5,707 genes in the cephalopod camera eye formation processes by developmental array analysis. Second, using molecular evolutionary (dN/dS) analysis to detect positive selection in the cephalopod lineage, we identified 156 of these genes in which functions appeared to have changed after the divergence of cephalopods from the molluscan ancestor and which contributed to structural and functional diversification. Third, we selected 1,571 genes, expressed in the camera eyes of both cephalopods and vertebrates, which could have independently acquired a function related to eye development at the expression level. Finally, as experimental validation, we identified three functionally novel cephalopod camera eye genes related to optic lobe formation in cephalopods by in situ hybridization analysis of embryonic pygmy squid. Conclusion We identified 156 genes positively selected in the cephalopod lineage and 1,571 genes commonly found in the cephalopod and vertebrate camera eyes from the analysis of cephalopod camera eye specificity at the expression level. Experimental validation showed that the cephalopod camera eye-specific candidate genes include those expressed in the outer part of the optic lobes, which unique to coleoid cephalopods. The results of this study suggest that changes in gene expression and in the primary structure of proteins (through positive selection) from those in the common molluscan ancestor could have contributed, at least in part, to cephalopod camera eye acquisition. PMID:21702923

  15. Rhabdomyosarcoma of the orbit in the newborn.

    PubMed

    Ellenbogen, E; Lasky, M A

    1975-12-01

    A full-term black boy had a 2- to 3-cm, round, bluish mass on his right lower eye-lid at birth, later diagnosed as rhabdomyosarcoma. It was cystic in nature and extended into the nasal cavity. The tumor was initially classified as neuroblastoma. The child died eitht months later and necropsy report confirmed an original ophthalmologic pathology diagnosis of embryonal rhabdomyosarcoma.

  16. RMND5 from Xenopus laevis is an E3 ubiquitin-ligase and functions in early embryonic forebrain development.

    PubMed

    Pfirrmann, Thorsten; Villavicencio-Lorini, Pablo; Subudhi, Abinash K; Menssen, Ruth; Wolf, Dieter H; Hollemann, Thomas

    2015-01-01

    In Saccharomyces cerevisiae the Gid-complex functions as an ubiquitin-ligase complex that regulates the metabolic switch between glycolysis and gluconeogenesis. In higher organisms six conserved Gid proteins form the CTLH protein-complex with unknown function. Here we show that Rmnd5, the Gid2 orthologue from Xenopus laevis, is an ubiquitin-ligase embedded in a high molecular weight complex. Expression of rmnd5 is strongest in neuronal ectoderm, prospective brain, eyes and ciliated cells of the skin and its suppression results in malformations of the fore- and midbrain. We therefore suggest that Xenopus laevis Rmnd5, as a subunit of the CTLH complex, is a ubiquitin-ligase targeting an unknown factor for polyubiquitination and subsequent proteasomal degradation for proper fore- and midbrain development.

  17. Perturbation of nuclear architecture by long-distance chromosome interactions.

    PubMed

    Dernburg, A F; Broman, K W; Fung, J C; Marshall, W F; Philips, J; Agard, D A; Sedat, J W

    1996-05-31

    Position-effect variegation (PEV) describes the stochastic transcriptional silencing of a gene positioned adjacent to heterochromatin. Using FISH, we have tested whether variegated expression of the eye-color gene brown in Drosophila is influenced by its nuclear localization. In embryonic nuclei, a heterochromatic insertion at the brown locus is always spatially isolated from other heterochromatin. However, during larval development this insertion physically associates with other heterochromatic regions on the same chromosome in a stochastic manner. These observations indicate that the brown gene is silenced by specific contact with centromeric heterochromatin. Moreover, they provide direct evidence for long-range chromosome interactions and their impact on three-dimensional nuclear architecture, while providing a cohesive explanation for the phenomenon of PEV.

  18. The effect of maternal diabetes on the Wnt-PCP pathway during embryogenesis as reflected in the developing mouse eye.

    PubMed

    López-Escobar, Beatriz; Cano, David A; Rojas, Anabel; de Felipe, Beatriz; Palma, Francisco; Sánchez-Alcázar, José A; Henderson, Deborah; Ybot-González, Patricia

    2015-02-01

    Embryopathies that develop as a consequence of maternal diabetes have been studied intensely in both experimental and clinical scenarios. Accordingly, hyperglycaemia has been shown to downregulate the expression of elements in the non-canonical Wnt-PCP pathway, such as the Dishevelled-associated activator of morphogenesis 1 (Daam1) and Vangl2. Daam1 is a formin that is essential for actin polymerization and for cytoskeletal reorganization, and it is expressed strongly in certain organs during mouse development, including the eye, neural tube and heart. Daam1(gt/gt) and Daam1(gt/+) embryos develop ocular defects (anophthalmia or microphthalmia) that are similar to those detected as a result of hyperglycaemia. Indeed, studying the effects of maternal diabetes on the Wnt-PCP pathway demonstrated that there was strong association with the Daam1 genotype, whereby the embryopathy observed in Daam1(gt/+) mutant embryos of diabetic dams was more severe. There was evidence that embryonic exposure to glucose in vitro diminishes the expression of genes in the Wnt-PCP pathway, leading to altered cytoskeletal organization, cell shape and cell polarity in the optic vesicle. Hence, the Wnt-PCP pathway appears to influence cell morphology and cell polarity, events that drive the cellular movements required for optic vesicle formation and that, in turn, are required to maintain the fate determination. Here, we demonstrate that the Wnt-PCP pathway is involved in the early stages of mouse eye development and that it is altered by diabetes, provoking the ocular phenotype observed in the affected embryos. © 2015. Published by The Company of Biologists Ltd.

  19. Genetic background and embryonic temperature affect DNA methylation and expression of myogenin and muscle development in Atlantic salmon (Salmo salar)

    PubMed Central

    Burgerhout, Erik; Mommens, Maren; Johnsen, Hanne; Aunsmo, Arnfinn; Santi, Nina

    2017-01-01

    The development of ectothermic embryos is strongly affected by incubation temperature, and thermal imprinting of body growth and muscle phenotype has been reported in various teleost fishes. The complex epigenetic regulation of muscle development in vertebrates involves DNA methylation of the myogenin promoter. Body growth is a heritable and highly variable trait among fish populations that allows for local adaptations, but also for selective breeding. Here we studied the epigenetic effects of embryonic temperature and genetic background on body growth, muscle cellularity and myogenin expression in farmed Atlantic salmon (Salmo salar). Eggs from salmon families with either high or low estimated breeding values for body growth, referred to as Fast and Slow genotypes, were incubated at 8°C or 4°C until the embryonic ‘eyed-stage’ followed by rearing at the production temperature of 8°C. Rearing temperature strongly affected the growth rates, and the 8°C fish were about twice as heavy as the 4°C fish in the order Fast8>Slow8>Fast4>Slow4 prior to seawater transfer. Fast8 was the largest fish also at harvest despite strong growth compensation in the low temperature groups. Larval myogenin expression was approximately 4–6 fold higher in the Fast8 group than in the other groups and was associated with relative low DNA methylation levels, but was positively correlated with the expression levels of the DNA methyltransferase genes dnmt1, dnmt3a and dnmt3b. Juvenile Fast8 fish displayed thicker white muscle fibres than Fast4 fish, while Slow 8 and Slow 4 showed no difference in muscle cellularity. The impact of genetic background on the thermal imprinting of body growth and muscle development in Atlantic salmon suggests that epigenetic variation might play a significant role in the local adaptation to fluctuating temperatures over short evolutionary time. PMID:28662198

  20. Genetic background and embryonic temperature affect DNA methylation and expression of myogenin and muscle development in Atlantic salmon (Salmo salar).

    PubMed

    Burgerhout, Erik; Mommens, Maren; Johnsen, Hanne; Aunsmo, Arnfinn; Santi, Nina; Andersen, Øivind

    2017-01-01

    The development of ectothermic embryos is strongly affected by incubation temperature, and thermal imprinting of body growth and muscle phenotype has been reported in various teleost fishes. The complex epigenetic regulation of muscle development in vertebrates involves DNA methylation of the myogenin promoter. Body growth is a heritable and highly variable trait among fish populations that allows for local adaptations, but also for selective breeding. Here we studied the epigenetic effects of embryonic temperature and genetic background on body growth, muscle cellularity and myogenin expression in farmed Atlantic salmon (Salmo salar). Eggs from salmon families with either high or low estimated breeding values for body growth, referred to as Fast and Slow genotypes, were incubated at 8°C or 4°C until the embryonic 'eyed-stage' followed by rearing at the production temperature of 8°C. Rearing temperature strongly affected the growth rates, and the 8°C fish were about twice as heavy as the 4°C fish in the order Fast8>Slow8>Fast4>Slow4 prior to seawater transfer. Fast8 was the largest fish also at harvest despite strong growth compensation in the low temperature groups. Larval myogenin expression was approximately 4-6 fold higher in the Fast8 group than in the other groups and was associated with relative low DNA methylation levels, but was positively correlated with the expression levels of the DNA methyltransferase genes dnmt1, dnmt3a and dnmt3b. Juvenile Fast8 fish displayed thicker white muscle fibres than Fast4 fish, while Slow 8 and Slow 4 showed no difference in muscle cellularity. The impact of genetic background on the thermal imprinting of body growth and muscle development in Atlantic salmon suggests that epigenetic variation might play a significant role in the local adaptation to fluctuating temperatures over short evolutionary time.

  1. Analysis of the Ush2a gene in medaka fish (Oryzias latipes).

    PubMed

    Aller, Elena; Sánchez-Sánchez, Ana V; Chicote, Javier U; García-García, Gema; Udaondo, Patricia; Cavallé, Laura; Piquer-Gil, Marina; García-España, Antonio; Díaz-Llopis, Manuel; Millán, José M; Mullor, José L

    2013-01-01

    Patients suffering from Usher syndrome (USH) exhibit sensorineural hearing loss, retinitis pigmentosa (RP) and, in some cases, vestibular dysfunction. USH is the most common genetic disorder affecting hearing and vision and is included in a group of hereditary pathologies associated with defects in ciliary function known as ciliopathies. This syndrome is clinically classified into three types: USH1, USH2 and USH3. USH2 accounts for well over one-half of all Usher cases and mutations in the USH2A gene are responsible for the majority of USH2 cases, but also for atypical Usher syndrome and recessive non-syndromic RP. Because medaka fish (Oryzias latypes) is an attractive model organism for genetic-based studies in biomedical research, we investigated the expression and function of the USH2A ortholog in this teleost species. Ol-Ush2a encodes a protein of 5.445 aa codons, containing the same motif arrangement as the human USH2A. Ol-Ush2a is expressed during early stages of medaka fish development and persists into adulthood. Temporal Ol-Ush2a expression analysis using whole mount in situ hybridization (WMISH) on embryos at different embryonic stages showed restricted expression to otoliths and retina, suggesting that Ol-Ush2a might play a conserved role in the development and/or maintenance of retinal photoreceptors and cochlear hair cells. Knockdown of Ol-Ush2a in medaka fish caused embryonic developmental defects (small eyes and heads, otolith malformations and shortened bodies with curved tails) resulting in late embryo lethality. These embryonic defects, observed in our study and in other ciliary disorders, are associated with defective cell movement specifically implicated in left-right (LR) axis determination and planar cell polarity (PCP).

  2. Gene expression dynamics during embryonic development in rainbow trout

    USDA-ARS?s Scientific Manuscript database

    The supply of maternal RNAs in fertilized egg and activation of embryonic genome during maternal-zygotic transition (MZT) are important for normal embryonic development. In order to identify genes and gene products that are essential in the regulation of embryonic development in rainbow trout, RNA-S...

  3. A trade-off between embryonic development rate and immune function of avian offspring is concealed by embryonic temperature

    USGS Publications Warehouse

    Martin, Thomas E.; Arriero, Elena; Majewska, Ania

    2011-01-01

    Long embryonic periods are assumed to reflect slower intrinsic development that are thought to trade off to allow enhanced physiological systems, such as immune function. Yet, the relatively rare studies of this trade-off in avian offspring have not found the expected trade-off. Theory and tests have not taken into account the strong extrinsic effects of temperature on embryonic periods of birds. Here, we show that length of the embryonic period did not explain variation in two measures of immune function when temperature was ignored, based on studies of 34 Passerine species in tropical Venezuela (23 species) and north temperate Arizona (11 species). Variation in immune function was explained when embryonic periods were corrected for average embryonic temperature, in order to better estimate intrinsic rates of development. Immune function of offspring trades off with intrinsic rates of embryonic development once the extrinsic effects of embryonic temperatures are taken into account.

  4. Evolution of the NET (NocA, Nlz, Elbow, TLP-1) protein family in metazoans: insights from expression data and phylogenetic analysis

    PubMed Central

    Pereira, Filipe; Duarte-Pereira, Sara; Silva, Raquel M.; da Costa, Luís Teixeira; Pereira-Castro, Isabel

    2016-01-01

    The NET (for NocA, Nlz, Elbow, TLP-1) protein family is a group of conserved zinc finger proteins linked to embryonic development and recently associated with breast cancer. The members of this family act as transcriptional repressors interacting with both class I histone deacetylases and Groucho/TLE co-repressors. In Drosophila, the NET family members Elbow and NocA are vital for the development of tracheae, eyes, wings and legs, whereas in vertebrates ZNF703 and ZNF503 are important for the development of the nervous system, eyes and limbs. Despite the relevance of this protein family in embryogenesis and cancer, many aspects of its origin and evolution remain unknown. Here, we show that NET family members are present and expressed in multiple metazoan lineages, from cnidarians to vertebrates. We identified several protein domains conserved in all metazoan species or in specific taxonomic groups. Our phylogenetic analysis suggests that the NET family emerged in the last common ancestor of cnidarians and bilaterians and that several rounds of independent events of gene duplication occurred throughout evolution. Overall, we provide novel data on the expression and evolutionary history of the NET family that can be relevant to understanding its biological role in both normal conditions and disease. PMID:27929068

  5. Complement factor H: spatial and temporal expression and localization in the eye.

    PubMed

    Mandal, Md Nawajes A; Ayyagari, Radha

    2006-09-01

    Complement factor H (CFH) is a component of the mammalian complement system, which regulates the alternative pathway of complement activation and protects the host cell from inappropriate complement activation. CFH is a key regulator of innate immunity, and CFH deficiency leads to membranoproliferative glomerulonephritis type II. A variation in human CFH, Y402H, has been shown to be associated with an increased risk for age-related macular degeneration. The authors describe studies on the spatial and temporal expression of the CFH gene and localization of this protein in ocular tissues to gain insight into its role in the eye. CFH expression in human and mouse tissues was studied by quantitative RT-PCR and Western blot analysis, and localization of CFH was studied by immunohistochemical analysis followed by fluorescence microscopy. In human and mouse, CFH expression was found to be similar to the highest level of expression in the liver. In ocular tissue, CFH was detected in the distalmost optic nerve (3 mm) cut from the scleral surface of the eyeball, sclera, RPE-choroid, retina, lens, and ciliary body. In mouse, Cfh expression was observed from early embryonic stages, and in the eye its expression increased with age. A significant level of CFH expression is maintained in different ocular tissues during development and aging. Sustained high levels of CFH expression in eye tissues suggest that this protein may play a role in protecting these tissues from indiscriminate complement activation and inflammatory insult.

  6. The relationship of parthenogenesis in virgin Chinese Painted quail (Coturnix chinensis) hens with embryonic mortality and hatchability following mating.

    PubMed

    Parker, H M; Kiess, A S; Robertson, M L; Wells, J B; McDaniel, C D

    2012-06-01

    Unfertilized chicken, turkey, and quail eggs are capable of developing embryos by parthenogenesis. However, it is unknown if the physiological mechanisms regulating parthenogenesis in virgin hens may actually work against fertilization, embryonic development, and hatchability of eggs from these same hens following mating. Additionally, because most parthenogenic development closely resembles early embryonic mortality in fertilized eggs during the first 2 to 3 d of incubation, it is possible that many unhatched eggs classified as containing early embryonic mortality may actually be unfertilized eggs that contain parthenogens. Therefore, the objective of this study was to examine the relationship of parthenogenesis before mating with embryonic development and hatchability characteristics after mating. Based upon their ability to produce unfertilized eggs that contain parthenogens, 372 virgin Chinese Painted quail hens were divided into 7 groups, according to their incidence of parthenogenesis: 0, 10, 20, 30, 40, 50, and greater than 50% parthenogenesis. Males were then placed with these hens so that fertility, embryonic mortality, and hatchability could be evaluated for each hen. Hatchability of eggs set, hatchability of fertile eggs, and late embryonic mortality declined dramatically as the incidence of parthenogenesis increased. On the other hand, early embryonic mortality increased as parthenogenesis increased. Fertility was not different across the 7 parthenogenesis hen groups, perhaps because unfertilized eggs that exhibited parthenogenesis resembled and were therefore classified as early embryonic mortality. In conclusion, virgin quail hens that exhibit parthenogenesis appear to have impaired embryonic development and hatchability following mating. Additional sperm-egg interaction and embryonic research is needed to determine if a large portion of the early embryonic mortality experienced by mated hens that exhibit parthenogenesis as virgin hens is in fact embryonic development in unfertilized eggs.

  7. Short-term exposure to 17alpha-ethynylestradiol decreases the fertility of sexually maturing male rainbow trout (Oncorhynchus mykiss)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schultz, Irv R.; Skillman, Ann D.; Nicolas, Jean-Marc

    The synthetic estrogen 17alpha-ethynylestradiol (EE2) is a commonly used oral contraceptive that has been increasingly detected in sewage effluents. This study determined whether EE2 exposure adversely affected reproduction in sexually maturing male rainbow trout (Oncorhynchus mykiss). We exposed male trout to graded water concentrations of EE2 (10, 100, and 1,000 ng/ L) for 62 d leading up to the time of spawning. Semen and blood plasma samples were removed from each fish. Semen was used to fertilize groups of eggs from one nonexposed female. As a measure of fertility, eggs were incubated for 28 d after fertilization to determine themore » proportion that attained the eyed stage of embryonic development. Additional endpoints also measured included sperm motility, spermatocrit, gonadosomatic and hepatosomatic indices, testis histology, and circulating plasma levels of the sex steroids 17alpha, 20beta-dihydroxyprogesterone (17,20-DHP) and 11-ketotestosterone (11-KT). Exposure to 1,000 ng/L of EE2 caused complete mortality of the treatment group by day 57. Exposure to lower EE2 water concentrations (10 and 100 ng/L) caused an increase in sperm density, while a significant reduction in testis mass was observed only in the 100-ng/L exposure group. Most significantly, semen harvested from fish exposed to 10 and 100 ng/L EE2 caused an approximately 50% reduction in the number of eggs attaining the eyed stage of embryonic development. Plasma levels of 17,20-DHP in exposed fish were roughly twice the level of the controls, while levels of 11-KT were significantly reduced in fish exposed to 100 ng/L EE2. These results suggest that sexually maturing male rainbow trout are susceptible to detrimental reproductive effects of short-term exposures to environmentally relevant levels of EE2.« less

  8. Short-term exposure to 17 alpha-ethynylestradiol decreases the fertility of sexually maturing male rainbow trout (Oncorhynchus mykiss).

    PubMed

    Schultz, Irvin R; Skillman, Ann; Nicolas, Jean-Marc; Cyr, Daniel G; Nagler, James J

    2003-06-01

    The synthetic estrogen 17 alpha-ethynylestradiol (EE2) is a commonly used oral contraceptive that has been increasingly detected in sewage effluents. This study determined whether EE2 exposure adversely affected reproduction in sexually maturing male rainbow trout (Oncorhynchus mykiss). We exposed male trout to graded water concentrations of EE2 (10, 100, and 1,000 ng/ L) for 62 d leading up to the time of spawning. Semen and blood plasma samples were removed from each fish. Semen was used to fertilize groups of eggs from one nonexposed female. As a measure of fertility, eggs were incubated for 28 d after fertilization to determine the proportion that attained the eyed stage of embryonic development. Additional endpoints also measured included sperm motility, spermatocrit, gonadosomatic and hepatosomatic indices, testis histology, and circulating plasma levels of the sex steroids 17 alpha, 20 beta-dihydroxyprogesterone (17,20-DHP) and 11-ketotestosterone (11-KT). Exposure to 1,000 ng/L of EE2 caused complete mortality of the treatment group by day 57. Exposure to lower EE2 water concentrations (10 and 100 ng/L) caused an increase in sperm density, while a significant reduction in testis mass was observed only in the 100-ng/L exposure group. Most significantly, semen harvested from fish exposed to 10 and 100 ng/L EE2 caused an approximately 50% reduction in the number of eggs attaining the eyed stage of embryonic development. Plasma levels of 17,20-DHP in exposed fish were roughly twice the level of the controls, while levels of 11-KT were significantly reduced in fish exposed to 100 ng/L EE2. These results suggest that sexually maturing male rainbow trout are susceptible to detrimental reproductive effects of short-term exposures to environmentally relevant levels of EE2.

  9. Inactivation of USP14 Perturbs Ubiquitin Homeostasis and Delays the Cell Cycle in Mouse Embryonic Fibroblasts and in Fruit Fly Drosophila.

    PubMed

    Lee, Jung Hoon; Park, Seoyoung; Yun, Yejin; Choi, Won Hoon; Kang, Min-Ji; Lee, Min Jae

    2018-01-01

    The 26S proteasome is the key proteolytic complex for recognition and degradation of polyubiquitinated target substrates in eukaryotes. Among numerous proteasome-associated proteins, a deubiquitinating enzyme (DUB) USP14 has been identified as an endogenous inhibitor of the proteasome. Here, we explored the complex regulatory functions of USP14 that involve ubiquitin (Ub) homeostasis and substrate degradation in flies and mammals. USP14-null primary and immortalized mouse embryonic fibroblasts (MEFs) and USP14 knocked-down Drosophila were analyzed in this study. We measured proteasome and DUB activities using fluorogenic reporter substrates and adduct-forming probes. To examine the levels of ubiquitin, we performed immunoblotting and immunohistochemistry. Mass spectrometry (MS) was used to examine polyUb chain linkages and USP14-interacing proteins. Cell cycle was analyzed by flow cytometry, BrdU labeling, and phospho-histone H3 staining. The homeostasis of Ub in USP14-/-MEFs was markedly perturbed because of facilitated clearance of Ub. This phenomenon was recapitulated in muscles of USP14-deficient Drosophila with old ages. Absolute quantitation using MS also revealed that USP14-/- MEFs contained significantly increased amounts of Ub, compared with wild-type. The key phenotype of USP14-/- MEFs was their delayed proliferation originated from prolonged interphase possibly through aberrant degradation of cyclins A and B1. We found that knocking down USP14 in Drosophila resulted in delayed eye development associated with reduced mitotic activity. Our study identifies novel cellular functions of USP14 not only in cellular Ub hometostasis but also in cell cycle progression. USP14 was also essential for proper Drosophila eye development. These results strongly suggest that the USP14-mediated proteasome activity regulation may be directly related to various human diseases including cancer. © 2018 The Author(s). Published by S. Karger AG, Basel.

  10. Altered glucose transport to utero-embryonic unit in relation to delayed embryonic development in the Indian short-nosed fruit bat, Cynopterus sphinx.

    PubMed

    Arnab, Banerjee; Amitabh, Krishna

    2011-02-10

    The aim of this study was to compare the changes in concentration of glucose and glucose transporters (GLUTs) in the utero-embryonic unit, consisting of decidua, trophoblast and embryo, during delayed and non-delayed periods to understand the possible cause of delayed embryonic development in Cynopterus sphinx. The results showed a significantly decreased concentration of glucose in the utero-embryonic unit due to decline in the expression of insulin receptor (IR) and GLUT 3, 4 and 8 proteins in the utero-embryonic unit during delayed period. The in vitro study showed suppressive effect of insulin on expression of GLUTs 4 and 8 in the utero-embryonic unit and a significant positive correlation between the decreased amount of glucose consumed by the utero-embryonic unit and decreased expression of GLUTs 4 (r=0.99; p<0.05) and 8 (r=0.98; p<0.05). The in vivo study showed expression of IR and GLUT 4 proteins in adipose tissue during November suggesting increased transport of glucose to adipose tissue for adipogenesis. This study showed increased expression of HSL and OCTN2 and increased availability of l-carnitine to utero-embryonic unit suggesting increased transport of fatty acid to utero-embryonic unit during the period of delayed embryonic development. Hence it appears that due to increased transport of glucose for adipogenesis prior to winter, glucose utilization by utero-embryonic unit declines and this may be responsible for delayed embryonic development in C. sphinx. Increased supply of fatty acid to the delayed embryo may be responsible for its survival under low glucose condition but unable to promote embryonic development in C. sphinx. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  11. A model system for testing gene vectors using murine tumor cells on the chorioallantoic membrane of the chick embryo.

    PubMed

    Dani, Sergio U; Espindola, Rachel

    2002-06-30

    We developed a model system for testing gene vectors, based on the growth of murine tumors on the chorioallantoic membrane (CAM) of embryonic chickens. The ability of selected murine cells to grow on the CAM was rated according to the following criteria: i) formation of tumor masses; ii) metastasis formation; iii) reproducibility; iv) yield, indicated as the number of embryos surviving to assessment time with visible tumors on the CAM; v) maintainability of the cell, both in the original host and the embryonic chick, or 'shuttle maintainability'; vi) detection by the naked eye, and vii) cost/benefit relation. The murine melanoma cell lineage, B16F10, which efficiently forms distinct, pigmented tumor masses and metastases on the CAM, performed better in this model than the murine B61 cell line. In vitro transduction of B16F10 cells with a recombinant adenovirus carrying a construct of the E. coli LacZ gene followed by inoculation onto the CAM resulted in beta-galactosidase expression in the tumor mass growing on the CAM. This model is potentially applicable to preclinical evaluation of gene vectors, especially for gene therapy of cancer.

  12. mus304 encodes a novel DNA damage checkpoint protein required during Drosophila development

    PubMed Central

    Brodsky, Michael H.; Sekelsky, Jeff J.; Tsang, Garson; Hawley, R. Scott; Rubin, Gerald M.

    2000-01-01

    Checkpoints block cell cycle progression in eukaryotic cells exposed to DNA damaging agents. We show that several Drosophila homologs of checkpoint genes, mei-41, grapes, and 14-3-3ε, regulate a DNA damage checkpoint in the developing eye. We have used this assay to show that the mutagen-sensitive gene mus304 is also required for this checkpoint. mus304 encodes a novel coiled-coil domain protein, which is targeted to the cytoplasm. Similar to mei-41, mus304 is required for chromosome break repair and for genomic stability. mus304 animals also exhibit three developmental defects, abnormal bristle morphology, decreased meiotic recombination, and arrested embryonic development. We suggest that these phenotypes reflect distinct developmental consequences of a single underlying checkpoint defect. Similar mechanisms may account for the puzzling array of symptoms observed in humans with mutations in the ATM tumor suppressor gene. PMID:10733527

  13. Melatonin regulates delayed embryonic development in the short-nosed fruit bat, Cynopterus sphinx.

    PubMed

    Banerjee, Arnab; Meenakumari, K J; Udin, S; Krishna, A

    2009-12-01

    The aim of the present study was to evaluate the seasonal variation in serum melatonin levels and their relationship to the changes in the serum progesterone level, ovarian steroidogenesis, and embryonic development during two successive pregnancies of Cynopterus sphinx. Circulating melatonin concentrations showed two peaks; one coincided with the period of low progesterone synthesis and delayed embryonic development, whereas the second peak coincided with regressing corpus luteum. This finding suggests that increased serum melatonin level during November-December may be responsible for delayed embryonic development by suppressing progesterone synthesis. The study showed increased melatonin receptors (MTNR1A and MTNR1B) in the corpus luteum and in the utero-embryonic unit during the period of delayed embryonic development. The in vitro study showed that a high dose of melatonin suppressed progesterone synthesis, whereas a lower dose of melatonin increased progesterone synthesis by the ovary. The effects of melatonin on ovarian steroidogenesis are mediated through changes in the expression of peripheral-type benzodiazepine receptor, P450 side chain cleavage enzyme, and LH receptor proteins. This study further showed a suppressive impact of melatonin on the progesterone receptor (PGR) in the utero-embryonic unit; this effect might contribute to delayed embryonic development in C. sphinx. The results of the present study thus suggest that a high circulating melatonin level has a dual contribution in retarding embryonic development in C. sphinx by impairing progesterone synthesis as well as by inhibiting progesterone action by reducing expression of PGR in the utero-embryonic unit.

  14. A novel function for the pineal organ in the control of swim depth in the Atlantic halibut larva

    NASA Astrophysics Data System (ADS)

    Novales Flamarique, Iñigo

    2002-02-01

    The pineal organ of vertebrates is a photo-sensitive structure that conveys photoperiod information to the brain. This information influences circadian rhythm and related metabolic processes such as thermoregulation, hatching time, body growth, and the timing of reproduction. This study demonstrates extra-ocular light responses that control swim depth in the larva of the Atlantic halibut, Hyppoglosus hyppoglosus. Young larvae without a functional eye (<29 days) swim upwards after an average delay of 5 s following the onset of a downwelling light stimulus, but sink downwards a few seconds later. Older larvae (>=29 days), which possess a functional eye, swim immediately downwards (microsecond delay) following the onset of the light stimulus, but proceed to swim upwards several seconds later. These two response patterns are thus opposite in polarity and have different time kinetics. Because the pineal organ of the Atlantic halibut develops during the embryonic stage, and because it is the only centre in the brain that expresses functional visual pigments (opsins) at early larval stages, it is the only photosensory organ capable of generating the extra-ocular responses observed.

  15. Toxoplasma Gondii Infection of Chicken Embryos Causes Retinal Changes and Modulates HSP90B1 Gene Expression: A Promising Ocular Toxoplasmosis Model.

    PubMed

    Nasaré, Alex M; Tedesco, Roberto C; Cristovam, Priscila C; Cenedese, Marcos A; Galisteo, Andrés J; Andrade, Heitor F; Gomes, José Álvaro P; Guimarães, Érik V; Barbosa, Helene S; Alonso, Luis G

    2015-12-01

    HSP90B1 is a gene that codifies heat shock protein 108 (HSP108) that belongs to a group of proteins induced under stress situation, and it has close relation with the nervous system, especially in the retina. Toxoplasma gondii causes ocular toxoplasmosis that has been associated with a late manifestation of the congenital toxoplasmosis although experimental models show that morphological alterations are already present during embryological development. Here, we used 18 eyes of Gallus domesticus embryos in 7th and 20th embryonic days to establish a model of congenital ocular toxoplasmosis, experimentally infected in its fifth day correlating with HSP90B1 gene expression. Embryos' eyes were histologically evaluated, and gene expression was performed by real-time polymerase chain reaction (PCR). Our data showed parasite present in the choroid, unusual migration of retinal pigment epithelium, and chorioretinal scars, and a tendency to a lower expression of the HSP90B1 gene upon experimental infection. This is a promising model to better understand T. gondii etiopathogeny.

  16. Structure and function of embryonic rat retinal sheet transplants.

    PubMed

    Peng, Qing; Thomas, Biju B; Aramant, Robert B; Chen, Zhenhai; Sadda, Srinivas R; Seiler, Magdalene J

    2007-09-01

    To evaluate retinal sheet transplants in S334ter-line-3 retinal degenerate rats by comparing visual responses recorded electrophysiologically with morphology based on light and electron microscopy. S334ter-line-3 retinal degenerate rats (n = 7) received retinal sheet transplants between postnatal days 28 and 31. The donor tissue was derived from transgenic embryonic day 19 (E19) rat retinae expressing human placental alkaline phosphatase (hPAP). Fresh retinal sheets were gently transplanted into the subretinal space of the left eye with the help of a custom-made implantation tool. Selected rats (n = 5) were subjected to electrophysiologic evaluation of visual responses from the superior colliculus about 84-121 days after surgery. Transplanted eyes were processed for light microscopy (LM) and electron microscopy (EM) evaluations. All the transplanted rats that were evaluated for visual responses in the brain showed responses to very low light stimulation (-3.42 to -2.8 log cd/m(2)) of the eye in a small area of the superior colliculus corresponding with the placement of the transplant in the host retina. Histologic evaluation showed that most of the transplants contained well-laminated areas with correct polarity in the subretinal space. Inside the transplant areas, rosettes of photoreceptors with inner and outer segments were found. In the laminated areas, the outer segments of photoreceptors were facing the host retinal pigment epithelium (RPE). Immunohistochemical evaluation of hPAP donor cells revealed areas with specific staining of the transplants in the subretinal space. Electron microscopic evaluation showed a glial demarcation membrane between the host and the transplant, however, processes originating from the transplant were observed inside the host retina. Sheets of E19 rat retina transplanted into the subretinal space of S334ter-line-3 rats survived without immune rejection and continued to show visual function when tested after 3 months. Well-developed photoreceptors and many synapse types were seen within the transplants. hPAP staining showed a certain degree of integration between the host retina and the transplant suggesting that transplanted photoreceptors contributed to the restored light sensitivity.

  17. The Visual System of Zebrafish and its Use to Model Human Ocular Diseases

    PubMed Central

    Gestri, Gaia; Link, Brian A; Neuhauss, Stephan CF

    2011-01-01

    Free swimming zebrafish larvae depend mainly on their sense of vision to evade predation and to catch prey. Hence there is strong selective pressure on the fast maturation of visual function and indeed the visual system already supports a number of visually-driven behaviors in the newly hatched larvae. The ability to exploit the genetic and embryonic accessibility of the zebrafish in combination with a behavioral assessment of visual system function has made the zebrafish a popular model to study vision and its diseases. Here, we review the anatomy, physiology and development of the zebrafish eye as the basis to relate the contributions of the zebrafish to our understanding of human ocular diseases. PMID:21595048

  18. Blastocyst-like structures generated solely from stem cells.

    PubMed

    Rivron, Nicolas C; Frias-Aldeguer, Javier; Vrij, Erik J; Boisset, Jean-Charles; Korving, Jeroen; Vivié, Judith; Truckenmüller, Roman K; van Oudenaarden, Alexander; van Blitterswijk, Clemens A; Geijsen, Niels

    2018-05-01

    The blastocyst (the early mammalian embryo) forms all embryonic and extra-embryonic tissues, including the placenta. It consists of a spherical thin-walled layer, known as the trophectoderm, that surrounds a fluid-filled cavity sheltering the embryonic cells 1 . From mouse blastocysts, it is possible to derive both trophoblast 2 and embryonic stem-cell lines 3 , which are in vitro analogues of the trophectoderm and embryonic compartments, respectively. Here we report that trophoblast and embryonic stem cells cooperate in vitro to form structures that morphologically and transcriptionally resemble embryonic day 3.5 blastocysts, termed blastoids. Like blastocysts, blastoids form from inductive signals that originate from the inner embryonic cells and drive the development of the outer trophectoderm. The nature and function of these signals have been largely unexplored. Genetically and physically uncoupling the embryonic and trophectoderm compartments, along with single-cell transcriptomics, reveals the extensive inventory of embryonic inductions. We specifically show that the embryonic cells maintain trophoblast proliferation and self-renewal, while fine-tuning trophoblast epithelial morphogenesis in part via a BMP4/Nodal-KLF6 axis. Although blastoids do not support the development of bona fide embryos, we demonstrate that embryonic inductions are crucial to form a trophectoderm state that robustly implants and triggers decidualization in utero. Thus, at this stage, the nascent embryo fuels trophectoderm development and implantation.

  19. Long-range activation of Sox9 in Odd Sex (Ods) mice.

    PubMed

    Qin, Yangjun; Kong, Ling-kun; Poirier, Christophe; Truong, Cavatina; Overbeek, Paul A; Bishop, Colin E

    2004-06-15

    The Odd Sex mouse mutation arose in a transgenic line of mice carrying a tyrosinase minigene driven by the dopachrome tautomerase (Dct) promoter region. The minigene integrated 0.98 Mb upstream of Sox9 and was accompanied by a deletion of 134 kb. This mutation causes female to male sex reversal in XX Ods/+ mice, and a characteristic eye phenotype of microphthalmia with cataracts in all mice carrying the transgene. Ods causes sex reversal in the absence of Sry by upregulating Sox9 expression and maintaining a male pattern of Sox9 expression in XX Ods/+ embryonic gonads. This expression, which begins at E11.5, triggers downstream events leading to the formation of a testis. We report here that the 134 kb deletion, in itself, is insufficient to cause sex reversal. We demonstrate that in Ods, the Dct promoter is capable of acting over a distance of 1 Mb to induce inappropriate expression of Sox9 in the retinal pigmented epithelium of the eye, causing the observed microphthalmia. In addition, it induces Sox9 expression in the melanocytes where it causes pigmentation defects. We propose that Ods sex reversal is due to the Dct promoter element interacting with gonad-specific enhancer elements to produce the observed male pattern expression of Sox9 in the embryonic gonads.

  20. Teratogenic effects of 4-nonylphenol on early embryonic and larval development of the catfish Heteropneustes fossilis.

    PubMed

    Chaube, Radha; Gautam, Geeta J; Joy, Keerikattil P

    2013-05-01

    Alkylphenol polyethoxylates (APEs), which are widely used in detergents, paints, herbicides, insecticides, and in many other formulations, have been widely detected in aquatic environments. 4-Nonylphenol (NP) is an important APE detected at microgram levels per litre (0.1-336 μg/L) in water. The objective of the present study was to evaluate NP's toxic effects at low and high sublethal concentrations (0.1 and 1 μg/L) on embryonic development of the catfish Heteropneustes fossilis at different time intervals. The data show that fertilization rate was decreased and cleavage and blastula were severely affected leading to complete mortality of embryos. NP exposure resulted in various body malformations in larvae, such as vertebral deformations, e.g., fin blistering/necrosis, axial deformities (lordosis, kyphosis, and scoliosis) of the spine in the abdominal and caudal region, tail curved completely backward, shortened body, severe spinal and yolk sac malformations, C-shaped severe spinal curvature, cranial malformation with undeveloped head, and failure of eye development. The level of body malformations increased with the concentration and exposure time. After 72 h of exposure, all larvae were dead at both concentrations. Scanning electron microscope study showed that epidermal cells (keratinocytes) were severely damaged in both low- and high-dose treatments throughout development, leading to development of numerous depressions representing sinking holes on the skin. Mucous glands increased significantly in treatment groups compared with control groups. The present study highlights the severe teratogenic effects of NP. The prevalence of the contaminant, if not checked, can lead to decreased population and ultimate disappearance of the species.

  1. A developmental staging series for the African house snake, Boaedon (Lamprophis) fuliginosus.

    PubMed

    Boback, Scott M; Dichter, Eric K; Mistry, Hemlata L

    2012-02-01

    Embryonic staging series are important tools in the study of morphological evolution as they establish a common standard for future studies. In this study, we describe the in ovo embryological development of the African house snake (Boaedon fuliginosus), a non-venomous, egg-laying species within the superfamily Elapoidea. We develop our staging series based on external morphology of the embryo including the head, eye, facial prominences, pharyngeal slits, heart, scales, and endolymphatic ducts. An analysis of embryonic growth in length and mass is presented, as well as preliminary data on craniofacial skeletal development. Our results indicate that B. fuliginosus embryos are well into organogenesis but lack well-defined facial prominences at the time of oviposition. Mandibular and maxillary processes extend rostrally within 8 days (stage 3), corresponding to the first appearance of Meckel's cartilages. Overall, the development of the craniofacial skeleton in B. fuliginosus appears similar to that of other snake species with intramembraneous bones (e.g., dentary and compound bones) ossifying before most of the endochondral bones, the first of which to ossify are the quadrate and the otic capsule. Our staging series is the first to describe the post-ovipositional development of a non-venomous elapoid based on external morphology. This species is an extremely tractable captive that can produce large clutches of eggs every 45 days throughout the year. As such, B. fuliginosus should be a good model for evolutionary developmental biologists focusing on the craniofacial skeleton, loss of limbs, generational teeth, and venom delivery systems. Copyright © 2011 Elsevier GmbH. All rights reserved.

  2. Astrocytes as gate-keepers in optic nerve regeneration--a mini-review.

    PubMed

    García, Dana M; Koke, Joseph R

    2009-02-01

    Animals that develop without extra-embryonic membranes (anamniotes--fish, amphibians) have impressive regenerative capacity, even to the extent of replacing entire limbs. In contrast, animals that develop within extra-embryonic membranes (amniotes--reptiles, birds, mammals) have limited capacity for regeneration as adults, particularly in the central nervous system (CNS). Much is known about the process of nerve development in fish and mammals and about regeneration after lesions in the CNS in fish and mammals. Because the retina of the eye and optic nerve are functionally part of the brain and are accessible in fish, frogs, and mice, optic nerve lesion and regeneration (ONR) has been extensively used as a model system for study of CNS nerve regeneration. When the optic nerve of a mouse is severed, the axons leading into the brain degenerate. Initially, the cut end of the axons on the proximal, eye-side of the injury sprout neurites which begin to grow into the lesion. Simultaneously, astrocytes of the optic nerve become activated to initiate wound repair as a first step in reestablishing the structural integrity of the optic nerve. This activation appears to initiate a cascade of molecular signals resulting in apoptotic cell death of the retinal ganglion cells axons of which make up the neural component of the optic nerve; regeneration fails and the injury is permanent. Evidence specifically implicating astrocytes comes from studies showing selective poisoning of astrocytes at the optic nerve lesion, along with activation of a gene whose product blocks apoptosis in retinal ganglion cells, creates conditions favorable to neurites sprouting from the cut proximal stump, growing through the lesion and into the distal portion of the injured nerve, eventually reaching appropriate targets in the brain. In anamniotes, astrocytes ostensibly present no such obstacle since optic nerve regeneration occurs without intervention; however, no systematic study of glial involvement has been done. In fish, vigorously growing neurites sprout from the cut axons and within a few days begin to re-enervate the brain. This review offers a new perspective on the role of glia, particularly astrocytes, as "gate-keepers;" i.e., as being permissive or inhibitory, by comparison between fish and mammals of glial function during ONR.

  3. Morpho-histological and ultra architectural changes during early development of endangered golden mahseer Tor putitora.

    PubMed

    Sarma, D; Das, R; Akhtar, M S; Ciji, A; Sharma, N K; Singh, A K

    2016-10-01

    Ultrastructural and histological changes in the embryonic and larval surface during ontogenesis of the endangered golden mahseer Tor putitora is studied here for the first time. Embryonic development was completed 91-92 h after fertilization at an ambient temperature of 23° ± 1° C (mean ± s.d.). The gastrula stage was characterized by presence of the Kupffer's vesicle, notochord, ectoderm and endoderm cells. Primordial germ cells were clearly identifiable from c. 55 h post-fertilization at the organogenesis stage. Mean total length of newly hatched larvae was 7·0 ± 0·5 mm. Scanning electron microscopy of newly hatched larvae demonstrated vitelline arteries, microridged epithelial cells and mucous gland openings over much of the body surface. Eye, oral cavity, pharyngeal arches, heart, intestinal loop, prosencephalon, cephalic vesicle and nasal epithelium were clearly distinguished in 3 day old hatched individuals. In 6 day old individuals, caudal-fin rays and internal organs were evident. The dorsal fin became prominent at this stage and larvae began swimming at the surface. The reserved yolk material was totally absorbed 8-11 days after hatching and larvae began feeding exogenously. Tor putitora exhibited a longer early developmental period than other cyprinids reared at similar temperatures. © 2016 The Fisheries Society of the British Isles.

  4. Adamts18 deletion results in distinct developmental defects and provides a model for congenital disorders of lens, lung, and female reproductive tract development

    PubMed Central

    Ataca, Dalya; Caikovski, Marian; Piersigilli, Alessandra; Moulin, Alexandre; Benarafa, Charaf; Earp, Sarah E.; Guri, Yakir; Kostic, Corinne; Arsenivic, Yvan; Soininen, Raija; Apte, Suneel S.

    2016-01-01

    ABSTRACT The ADAMTS family comprises 19 secreted metalloproteinases that cleave extracellular matrix components and have diverse functions in numerous disease and physiological contexts. A number of them remain ‘orphan’ proteases and among them is ADAMTS18, which has been implicated in developmental eye disorders, platelet function and various malignancies. To assess in vivo function of ADAMTS18, we generated a mouse strain with inactivated Adamts18 alleles. In the C57Bl6/Ola background, Adamts18-deficient mice are born in a normal Mendelian ratio, and are viable but show a transient growth delay. Histological examination revealed a 100% penetrant eye defect resulting from leakage of lens material through the lens capsule occurring at embryonic day (E)13.5, when the lens grows rapidly. Adamts18-deficient lungs showed altered bronchiolar branching. Fifty percent of mutant females are infertile because of vaginal obstruction due to either a dorsoventral vaginal septum or imperforate vagina. The incidence of ovarian rete is increased in the mutant mouse strain. Thus, Adamts18 is essential in the development of distinct tissues and the new mouse strain is likely to be useful for investigating ADAMTS18 function in human disease, particularly in the contexts of infertility and carcinogenesis. PMID:27638769

  5. The roles of ERAS during cell lineage specification of mouse early embryonic development.

    PubMed

    Zhao, Zhen-Ao; Yu, Yang; Ma, Huai-Xiao; Wang, Xiao-Xiao; Lu, Xukun; Zhai, Yanhua; Zhang, Xiaoxin; Wang, Haibin; Li, Lei

    2015-08-01

    Eras encodes a Ras-like GTPase protein that was originally identified as an embryonic stem cell-specific Ras. ERAS has been known to be required for the growth of embryonic stem cells and stimulates somatic cell reprogramming, suggesting its roles on mouse early embryonic development. We now report a dynamic expression pattern of Eras during mouse peri-implantation development: its expression increases at the blastocyst stage, and specifically decreases in E7.5 mesoderm. In accordance with its expression pattern, the increased expression of Eras promotes cell proliferation through controlling AKT activation and the commitment from ground to primed state through ERK activation in mouse embryonic stem cells; and the reduced expression of Eras facilitates primitive streak and mesoderm formation through AKT inhibition during gastrulation. The expression of Eras is finely regulated to match its roles in mouse early embryonic development during which Eras expression is negatively regulated by the β-catenin pathway. Thus, beyond its well-known role on cell proliferation, ERAS may also play important roles in cell lineage specification during mouse early embryonic development. © 2015 The Authors.

  6. Embryonic mammary signature subsets are activated in Brca1-/- and basal-like breast cancers

    PubMed Central

    2013-01-01

    Introduction Cancer is often suggested to result from development gone awry. Links between normal embryonic development and cancer biology have been postulated, but no defined genetic basis has been established. We recently published the first transcriptomic analysis of embryonic mammary cell populations. Embryonic mammary epithelial cells are an immature progenitor cell population, lacking differentiation markers, which is reflected in their very distinct genetic profiles when compared with those of their postnatal descendents. Methods We defined an embryonic mammary epithelial signature that incorporates the most highly expressed genes from embryonic mammary epithelium when compared with the postnatal mammary epithelial cells. We looked for activation of the embryonic mammary epithelial signature in mouse mammary tumors that formed in mice in which Brca1 had been conditionally deleted from the mammary epithelium and in human breast cancers to determine whether any genetic links exist between embryonic mammary cells and breast cancers. Results Small subsets of the embryonic mammary epithelial signature were consistently activated in mouse Brca1-/- tumors and human basal-like breast cancers, which encoded predominantly transcriptional regulators, cell-cycle, and actin cytoskeleton components. Other embryonic gene subsets were found activated in non-basal-like tumor subtypes and repressed in basal-like tumors, including regulators of neuronal differentiation, transcription, and cell biosynthesis. Several embryonic genes showed significant upregulation in estrogen receptor (ER)-negative, progesterone receptor (PR)-negative, and/or grade 3 breast cancers. Among them, the transcription factor, SOX11, a progenitor cell and lineage regulator of nonmammary cell types, is found highly expressed in some Brca1-/- mammary tumors. By using RNA interference to silence SOX11 expression in breast cancer cells, we found evidence that SOX11 regulates breast cancer cell proliferation and cell survival. Conclusions Specific subsets of embryonic mammary genes, rather than the entire embryonic development transcriptomic program, are activated in tumorigenesis. Genes involved in embryonic mammary development are consistently upregulated in some breast cancers and warrant further investigation, potentially in drug-discovery research endeavors. PMID:23506684

  7. Neurotransmitter signaling pathways required for normal development in Xenopus laevis embryos: a pharmacological survey screen

    PubMed Central

    Sullivan, Kelly G.; Levin, Michael

    2016-01-01

    Neurotransmitters are not only involved in brain function but are also important signaling molecules for many diverse cell types. Neurotransmitters are widely conserved, from evolutionarily ancient organisms lacking nervous systems through man. Here, we report results from a loss- and gain-of-function survey, using pharmacologic modulators of several neurotransmitter pathways to examine possible roles in normal embryogenesis. Applying reagents targeting the glutamatergic, adrenergic, and dopaminergic pathways to embryos of Xenopus laevis from gastrulation to organogenesis stages, we observed and quantified numerous malformations including craniofacial defects, hyperpigmentation, muscle mispatterning, and miscoiling of the gut. These data implicate several key neurotransmitters in new embryonic patterning roles, reveal novel earlier stages for processes involved in eye development, suggest new targets for subsequent molecular-genetic investigation, and highlight the necessity for in-depth toxicology studies of psychoactive compounds to which human embryos might be exposed during pregnancy. PMID:27060969

  8. A case of chorioretinal coloboma in a patient with achondroplasia.

    PubMed

    Yoo, Woong Sun; Park, Yeon Jung; Yoo, Ji Myung

    2010-10-01

    Achondroplasia is a congenital disorder resulting from a specific disturbance in endochondral bone formation. The ophthalmic features reportedly associated with achondroplasia are telecanthus, exotropia, inferior oblique overaction, angle anomalies and cone-rod dystrophy. This is first report of chorioretinal coloboma in achondroplasia. An 8-year-old female was diagnosed with a developmental delay, known as achondroplasia, seven months after birth. Upon her initial visit, visual acuity was 0.3 in both eyes. The patient had telecanthus but normal ocular motility. Findings were normal upon anterior segment examination. Fundus examination of both eyes revealed about 1,500 µm sized chorioretinal coloboma inferior to the optic nerve head. Upon fluorescent angiography, there was chorioretinal coloboma without any other lesions. Afterward, there was no change in the fundus lesion, and best corrected visual acuity was 0.6 in both eyes. Chorioretinal coloboma is associated with choroidal and retinal detachment. As chorioretinal coloboma and achondroplasia are developmental disorders in the embryonic stage, early detection and regular ophthalmologic examination would be essential in patients with achondroplasia.

  9. A Case of Chorioretinal Coloboma in a Patient with Achondroplasia

    PubMed Central

    Yoo, Woong Sun; Park, Yeon Jung

    2010-01-01

    Achondroplasia is a congenital disorder resulting from a specific disturbance in endochondral bone formation. The ophthalmic features reportedly associated with achondroplasia are telecanthus, exotropia, inferior oblique overaction, angle anomalies and cone-rod dystrophy. This is first report of chorioretinal coloboma in achondroplasia. An 8-year-old female was diagnosed with a developmental delay, known as achondroplasia, seven months after birth. Upon her initial visit, visual acuity was 0.3 in both eyes. The patient had telecanthus but normal ocular motility. Findings were normal upon anterior segment examination. Fundus examination of both eyes revealed about 1,500 µm sized chorioretinal coloboma inferior to the optic nerve head. Upon fluorescent angiography, there was chorioretinal coloboma without any other lesions. Afterward, there was no change in the fundus lesion, and best corrected visual acuity was 0.6 in both eyes. Chorioretinal coloboma is associated with choroidal and retinal detachment. As chorioretinal coloboma and achondroplasia are developmental disorders in the embryonic stage, early detection and regular ophthalmologic examination would be essential in patients with achondroplasia. PMID:21052511

  10. The plurennial life cycles of the European Tettigoniidae (Insecta: Orthoptera) : 1. The effect of temperature on embryonic development and hatching.

    PubMed

    Ingrisch, Sigfrid

    1986-11-01

    The effect of temperature on embryonic development, voltinism, and hatching was studied in the laboratory in eggs of 21 Central and Southeastern European Tettigoniidae species. In most species, the embryo has to arrive at a postkatatrepsis stage prior to the onset of cold to be able to hatch in the following spring. The rate of embryonic development differs: quickly developing species need 4 weeks at 24°C (prior to cold) and almost all eggs hatch after the first cold treatment, slowly developing species would need 8-12 weeks to do the same. In Central Europe, warmth is not enough for the slowly developing species to have an univoltine life cycle, but they could have it in southern Europe. Most species make use of a dormancy sequence to pass successive winters as follows: an initial embryonic dormancy (either quiscence or diapause in embryonic stage 4) and a final diapause in embryonic stage 23/24. Additionally, 3 forms of aestivation or summer dormancy were observed facultatively: an initial diapause in embryonic stage 4 (induced and terminated at 30°C), a median dormancy shortly before or after katatrepsis (at 30°C), and a penultimate diapause in embryonic stage 20 (at 24°C).The life cycles of the European Tettigoniidae species can follow one of 3 types: 1. annual life cycle (no initial embryonic dormancy); 2. annual or biennial depending on whether laid early or late; 3. biennial or many year life cycle (up to 8 years due to a prolonged initial diapause).

  11. Early first trimester maternal 'high fish and olive oil and low meat' dietary pattern is associated with accelerated human embryonic development.

    PubMed

    Parisi, Francesca; Rousian, Melek; Steegers-Theunissen, Régine P M; Koning, Anton H J; Willemsen, Sten P; de Vries, Jeanne H M; Cetin, Irene; Steegers, Eric A P

    2018-04-20

    Maternal dietary patterns were associated with embryonic growth and congenital anomalies. We aim to evaluate associations between early first trimester maternal dietary patterns and embryonic morphological development among pregnancies with non-malformed outcome. A total of 228 strictly dated, singleton pregnancies without congenital malformations were enrolled in a periconceptional hospital-based cohort. Principal component analysis was performed to extract early first trimester maternal dietary patterns from food frequency questionnaires. Serial transvaginal three-dimensional ultrasound (3D US) scans were performed between 6 +0 and 10 +2 gestational weeks and internal and external morphological criteria were used to define Carnegie stages in a virtual reality system. Associations between dietary patterns and Carnegie stages were investigated using linear mixed models. A total of 726 3D US scans were included (median: three scans per pregnancy). The 'high fish and olive oil and low meat' dietary pattern was associated with accelerated embryonic development in the study population (β = 0.12 (95%CI: 0.00; 0.24), p < 0.05). Weak adherence to this dietary pattern delayed embryonic development by 2.1 days (95%CI: 1.6; 2.6) compared to strong adherence. The 'high vegetables, fruit and grain' dietary pattern accelerated embryonic development in the strictly dated spontaneous pregnancy subgroup without adjustment for energy intake. Early first trimester maternal dietary patterns impacts human embryonic morphological development among pregnancies without congenital malformations. The clinical meaning of delayed embryonic development needs further investigation.

  12. Loss of MAP3K1 enhances proliferation and apoptosis during retinal development

    PubMed Central

    Mongan, Maureen; Wang, Jingcai; Liu, Hongshan; Fan, Yunxia; Jin, Chang; Kao, Winston Y.-W.; Xia, Ying

    2011-01-01

    Precise coordination of progenitor cell proliferation and differentiation is essential for proper organ morphogenesis and function during mammalian development. The mitogen-activated protein kinase kinase kinase 1 (MAP3K1) has a well-established role in anterior eyelid development, as Map3k1-knockout mice have defective embryonic eyelid closure and an `eye-open at birth' (EOB) phenotype. Here, we show that MAP3K1 is highly expressed in the posterior of the developing eye and is required for retina development. The MAP3K1-deficient mice exhibit increased proliferation and apoptosis, and Müller glial cell overproduction in the developing retinas. Consequently, the retinas of these mice show localized rosette-like arrangements in the outer nuclear layer, and develop abnormal vascularization, broken down retinal pigment epithelium, photoreceptor loss and early onset of retinal degeneration. Although the retinal defect is associated with increased cyclin D1 and CDK4/6 expression, and RB phosphorylation and E2F-target gene upregulation, it is independent of the EOB phenotype and of JNK. The retinal developmental defect still occurs in knockout mice that have undergone tarsorrhaphy, but is absent in compound mutant Map3k1+/ΔKDJnk1–/– and Map3k1+/ΔKDJnk+/–Jnk2+/– mice that have EOB and reduced JNK signaling. Our results unveil a novel role for MAP3K1 in which it crosstalks with the cell cycle regulatory pathways in the prevention of retina malformation and degeneration. PMID:21862560

  13. Embryonic development of lake whitefish Coregonus clupeaformis: a staging series, analysis of growth and effects of fixation.

    PubMed

    Sreetharan, S; Thome, C; Mitz, C; Eme, J; Mueller, C A; Hulley, E N; Manzon, R G; Somers, C M; Boreham, D R; Wilson, J Y

    2015-09-01

    A reference staging series of 18 morphological stages of laboratory reared lake whitefish Coregonus clupeaformis is provided. The developmental processes of blastulation, gastrulation, neurulation as well as development of the eye, circulatory system, chromatophores and mouth are included and accompanied by detailed descriptions and live imaging. Quantitative measurements of embryo size and mass were taken at each developmental stage. Eggs were 3·19 ± 0·16 mm (mean ± s.d.) in diameter at fertilization and embryos reached a total length (LT ) of 14·25 ± 0·41 mm at hatch. Separated yolk and embryo dry mass were 0·25 ± 0·08 mg and 1·39 ± 0·17 mg, respectively, at hatch. The effects of two common preservatives (formalin and ethanol) were examined throughout development and post hatch. Embryo LT significantly decreased following fixation at all points in development. A correction factor to estimate live LT from corresponding fixed LT was determined as live LT = (fixed LT )(1·025) . Eye diameter and yolk area measurements significantly increased in fixed compared with live embryos up to 85-90% development for both measurements. The described developmental stages can be generalized to teleost species, and is particularly relevant for the study of coregonid development due to additionally shared developmental characteristics. The results of this study and staging series are therefore applicable across various research streams encompassing numerous species that require accurate staging of embryos and descriptions of morphological development. © 2015 The Fisheries Society of the British Isles.

  14. Arrested embryonic development: a review of strategies to delay hatching in egg-laying reptiles

    PubMed Central

    Rafferty, Anthony R.; Reina, Richard D.

    2012-01-01

    Arrested embryonic development involves the downregulation or cessation of active cell division and metabolic activity, and the capability of an animal to arrest embryonic development results in temporal plasticity of the duration of embryonic period. Arrested embryonic development is an important reproductive strategy for egg-laying animals that provide no parental care after oviposition. In this review, we discuss each type of embryonic developmental arrest used by oviparous reptiles. Environmental pressures that might have directed the evolution of arrest are addressed and we present previously undiscussed environmentally dependent physiological processes that may occur in the egg to bring about arrest. Areas for future research are proposed to clarify how ecology affects the phenotype of developing embryos. We hypothesize that oviparous reptilian mothers are capable of providing their embryos with a level of phenotypic adaptation to local environmental conditions by incorporating maternal factors into the internal environment of the egg that result in different levels of developmental sensitivity to environmental conditions after they are laid. PMID:22438503

  15. New Views of a Familiar Beauty

    NASA Image and Video Library

    2005-01-12

    This image composite compares the well-known visible-light picture of the glowing Trifid Nebula (left panel) with infrared views from NASA's Spitzer Space Telescope (remaining three panels). The Trifid Nebula is a giant star-forming cloud of gas and dust located 5,400 light-years away in the constellation Sagittarius. The false-color Spitzer images reveal a different side of the Trifid Nebula. Where dark lanes of dust are visible trisecting the nebula in the visible-light picture, bright regions of star-forming activity are seen in the Spitzer pictures. All together, Spitzer uncovered 30 massive embryonic stars and 120 smaller newborn stars throughout the Trifid Nebula, in both its dark lanes and luminous clouds. These stars are visible in all the Spitzer images, mainly as yellow or red spots. Embryonic stars are developing stars about to burst into existence. Ten of the 30 massive embryos discovered by Spitzer were found in four dark cores, or stellar "incubators," where stars are born. Astronomers using data from the Institute of Radioastronomy millimeter telescope in Spain had previously identified these cores but thought they were not quite ripe for stars. Spitzer's highly sensitive infrared eyes were able to penetrate all four cores to reveal rapidly growing embryos. http://photojournal.jpl.nasa.gov/catalog/PIA07225

  16. The thyroid hormone receptor-associated protein TRAP220 is required at distinct embryonic stages in placental, cardiac, and hepatic development.

    PubMed

    Landles, Christian; Chalk, Sara; Steel, Jennifer H; Rosewell, Ian; Spencer-Dene, Bradley; Lalani, El-Nasir; Parker, Malcolm G

    2003-12-01

    Recent work indicates that thyroid hormone receptor-associated protein 220 (TRAP220), a subunit of the multiprotein TRAP coactivator complex, is essential for embryonic survival. We have generated TRAP220 conditional null mice that are hypomorphic and express the gene at reduced levels. In contrast to TRAP220 null mice, which die at embryonic d 11.5 (E11.5), hypomorphic mice survive until E13.5. The reduced expression in hypomorphs results in hepatic necrosis, defects in hematopoiesis, and hypoplasia of the ventricular myocardium, similar to that observed in TRAP220 null embryos at an earlier stage. The embryonic lethality of null embryos at E11.5 is due to placental insufficiency. Tetraploid aggregation assays partially rescues embryonic development until E13.5, when embryonic loss occurs due to hepatic necrosis coupled with poor myocardial development as observed in hypomorphs. These findings demonstrate that, for normal placental function, there is an absolute requirement for TRAP220 in extraembryonic tissues at E11.5, with an additional requirement in embryonic tissues for hepatic and cardiovascular development thereafter.

  17. GLUT3 gene expression is critical for embryonic growth, brain development and survival.

    PubMed

    Carayannopoulos, Mary O; Xiong, Fuxia; Jensen, Penny; Rios-Galdamez, Yesenia; Huang, Haigen; Lin, Shuo; Devaskar, Sherin U

    2014-04-01

    Glucose is the primary energy source for eukaryotic cells and the predominant substrate for the brain. GLUT3 is essential for trans-placental glucose transport and highly expressed in the mammalian brain. To further elucidate the role of GLUT3 in embryonic development, we utilized the vertebrate whole animal model system of Danio rerio as a tractable system for defining the cellular and molecular mechanisms altered by impaired glucose transport and metabolism related to perturbed expression of GLUT3. The comparable orthologue of human GLUT3 was identified and the expression of this gene abrogated during early embryonic development. In a dose-dependent manner embryonic brain development was disrupted resulting in a phenotype of aberrant brain organogenesis, associated with embryonic growth restriction and increased cellular apoptosis. Rescue of the morphant phenotype was achieved by providing exogenous GLUT3 mRNA. We conclude that GLUT3 is critically important for brain organogenesis and embryonic growth. Disruption of GLUT3 is responsible for the phenotypic spectrum of embryonic growth restriction to demise and neural apoptosis with microcephaly. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. GLUT3 Gene Expression is Critical for Embryonic Growth, Brain Development and Survival

    PubMed Central

    Carayannopoulos, Mary O.; Xiong, Fuxia; Jensen, Penny; Rios-Galdamez, Yesenia; Huang, Haigen; Lin, Shuo; Devaskar, Sherin U.

    2015-01-01

    Glucose is the primary energy source for eukaryotic cells and the predominant substrate for the brain. GLUT3 is essential for trans-placental glucose transport and highly expressed in the mammalian brain. To further elucidate the role of GLUT3 in embryonic development, we utilized the vertebrate whole animal model system of Danio rerio as a tractable system for defining the cellular and molecular mechanisms altered by impaired glucose transport and metabolism related to perturbed expression of GLUT3. The comparable orthologue of human GLUT3 was identified and the expression of this gene abrogated during early embryonic development. In a dose-dependent manner embryonic brain development was disrupted resulting in a phenotype of aberrant brain organogenesis, associated with embryonic growth restriction and increased cellular apoptosis. Rescue of the morphant phenotype was achieved by providing exogenous GLUT3 mRNA. We conclude that GLUT3 is critically important for brain organogenesis and embryonic growth. Disruption of GLUT3 is responsible for the phenotypic spectrum of embryonic growth restriction to demise and neural apoptosis with microcephaly. PMID:24529979

  19. Intraspecific Variation in and Environment-Dependent Resource Allocation to Embryonic Development Time in Common Terns.

    PubMed

    Vedder, Oscar; Kürten, Nathalie; Bouwhuis, Sandra

    Embryonic development time is thought to impact life histories through trade-offs against life-history traits later in life, yet the inference is based on interspecific comparative analyses only. It is largely unclear whether intraspecific variation in embryonic development time that is not caused by environmental differences occurs, which would be required to detect life-history trade-offs. Here we performed a classical common-garden experiment by incubating fresh eggs of free-living common terns (Sterna hirundo) in a controlled incubation environment at two different temperatures. Hatching success was high but was slightly lower at the lower temperature. While correcting for effects of year, incubation temperature, and laying order, we found significant variation in the incubation time embryos required until hatching and in their heart rate. Embryonic heart rate was significantly positively correlated within clutches, and a similar tendency was found for incubation time, suggesting that intrinsic differences in embryonic development rate between offspring of different parents exist. Incubation time and embryonic heart rate were strongly correlated: embryos with faster heart rates required shorter incubation time. However, after correction for heart rate, embryos still required more time for development at the lower incubation temperature. This suggests that processes other than development require a greater share of resources in a suboptimal environment and that relative resource allocation to development is, therefore, environment dependent. We conclude that there is opportunity to detect intraspecific life-history trade-offs with embryonic development time and that the resolution of trade-offs may differ between embryonic environments.

  20. The level of BMP4 signaling is critical for the regulation of distinct T-box gene expression domains and growth along the dorso-ventral axis of the optic cup

    PubMed Central

    Behesti, Hourinaz; Holt, James KL; Sowden, Jane C

    2006-01-01

    Background Polarised gene expression is thought to lead to the graded distribution of signaling molecules providing a patterning mechanism across the embryonic eye. Bone morphogenetic protein 4 (Bmp4) is expressed in the dorsal optic vesicle as it transforms into the optic cup. Bmp4 deletions in human and mouse result in failure of eye development, but little attempt has been made to investigate mammalian targets of BMP4 signaling. In chick, retroviral gene overexpression studies indicate that Bmp4 activates the dorsally expressed Tbx5 gene, which represses ventrally expressed cVax. It is not known whether the Tbx5 related genes, Tbx2 and Tbx3, are BMP4 targets in the mammalian retina and whether BMP4 acts at a distance from its site of expression. Although it is established that Drosophila Dpp (homologue of vertebrate Bmp4) acts as a morphogen, there is little evidence that BMP4 gradients are interpreted to create domains of BMP4 target gene expression in the mouse. Results Our data show that the level of BMP4 signaling is critical for the regulation of distinct Tbx2, Tbx3, Tbx5 and Vax2 gene expression domains along the dorso-ventral axis of the mouse optic cup. BMP4 signaling gradients were manipulated in whole mouse embryo cultures during optic cup development, by implantation of beads soaked in BMP4, or the BMP antagonist Noggin, to provide a local signaling source. Tbx2, Tbx3 and Tbx5, showed a differential response to alterations in the level of BMP4 along the entire dorso-ventral axis of the optic cup, suggesting that BMP4 acts across a distance. Increased levels of BMP4 caused expansion of Tbx2 and Tbx3, but not Tbx5, into the ventral retina and repression of the ventral marker Vax2. Conversely, Noggin abolished Tbx5 expression but only shifted Tbx2 expression dorsally. Increased levels of BMP4 signaling caused decreased proliferation, reduced retinal volume and altered the shape of the optic cup. Conclusion Our findings suggest the existence of a dorsal-high, ventral-low BMP4 signaling gradient across which distinct domains of Tbx2, Tbx3, Tbx5 and Vax2 transcription factor gene expression are set up. Furthermore we show that the correct level of BMP4 signaling is critical for normal growth of the mammalian embryonic eye. PMID:17173667

  1. Brief Embryonic Strychnine Exposure in Zebrafish Causes Long-Term Adult Behavioral Impairment with Indications of Embryonic Synaptic Changes

    PubMed Central

    Roy, Nicole M.; Arpie, Brianna; Lugo, Joseph; Linney, Elwood; Levin, Edward D.; Cerutti, Daniel

    2015-01-01

    Zebrafish provide a powerful model of the impacts of embryonic toxicant exposure on neural development that may result in long-term behavioral dysfunction. In this study, zebrafish embryos were treated with 1.5 mM strychnine for short embryonic time windows to induce transient changes in inhibitory neural signaling, and were subsequently raised in untreated water until adulthood. PCR analysis showed indications that strychnine exposure altered expression of some genes related to glycinergic, GABAergic and glutamatergic neuronal synapses during embryonic development. In adulthood, treated fish showed significant changes in swimming speed and tank diving behavior compared to controls. Taken together, these data show that a short embryonic exposure to a neurotoxicant can alter development of neural synapses and lead to changes in adult behavior. PMID:23022260

  2. Brief embryonic strychnine exposure in zebrafish causes long-term adult behavioral impairment with indications of embryonic synaptic changes.

    PubMed

    Roy, Nicole M; Arpie, Brianna; Lugo, Joseph; Linney, Elwood; Levin, Edward D; Cerutti, Daniel

    2012-01-01

    Zebrafish provide a powerful model of the impacts of embryonic toxicant exposure on neural development that may result in long-term behavioral dysfunction. In this study, zebrafish embryos were treated with 1.5mM strychnine for short embryonic time windows to induce transient changes in inhibitory neural signaling, and were subsequently raised in untreated water until adulthood. PCR analysis showed indications that strychnine exposure altered expression of some genes related to glycinergic, GABAergic and glutamatergic neuronal synapses during embryonic development. In adulthood, treated fish showed significant changes in swimming speed and tank diving behavior compared to controls. Taken together, these data show that a short embryonic exposure to a neurotoxicant can alter development of neural synapses and lead to changes in adult behavior. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. High-throughput identification of small molecules that affect human embryonic vascular development

    PubMed Central

    Vazão, Helena; Rosa, Susana; Barata, Tânia; Costa, Ricardo; Pitrez, Patrícia R.; Honório, Inês; de Vries, Margreet R.; Papatsenko, Dimitri; Benedito, Rui; Saris, Daniel; Khademhosseini, Ali; Quax, Paul H. A.; Pereira, Carlos F.; Mercader, Nadia; Ferreira, Lino

    2017-01-01

    Birth defects, which are in part caused by exposure to environmental chemicals and pharmaceutical drugs, affect 1 in every 33 babies born in the United States each year. The current standard to screen drugs that affect embryonic development is based on prenatal animal testing; however, this approach yields low-throughput and limited mechanistic information regarding the biological pathways and potential adverse consequences in humans. To develop a screening platform for molecules that affect human embryonic development based on endothelial cells (ECs) derived from human pluripotent stem cells, we differentiated human pluripotent stem cells into embryonic ECs and induced their maturation under arterial flow conditions. These cells were then used to screen compounds that specifically affect embryonic vasculature. Using this platform, we have identified two compounds that have higher inhibitory effect in embryonic than postnatal ECs. One of them was fluphenazine (an antipsychotic), which inhibits calmodulin kinase II. The other compound was pyrrolopyrimidine (an antiinflammatory agent), which inhibits vascular endothelial growth factor receptor 2 (VEGFR2), decreases EC viability, induces an inflammatory response, and disrupts preformed vascular networks. The vascular effect of the pyrrolopyrimidine was further validated in prenatal vs. adult mouse ECs and in embryonic and adult zebrafish. We developed a platform based on human pluripotent stem cell-derived ECs for drug screening, which may open new avenues of research for the study and modulation of embryonic vasculature. PMID:28348206

  4. High-throughput identification of small molecules that affect human embryonic vascular development.

    PubMed

    Vazão, Helena; Rosa, Susana; Barata, Tânia; Costa, Ricardo; Pitrez, Patrícia R; Honório, Inês; de Vries, Margreet R; Papatsenko, Dimitri; Benedito, Rui; Saris, Daniel; Khademhosseini, Ali; Quax, Paul H A; Pereira, Carlos F; Mercader, Nadia; Fernandes, Hugo; Ferreira, Lino

    2017-04-11

    Birth defects, which are in part caused by exposure to environmental chemicals and pharmaceutical drugs, affect 1 in every 33 babies born in the United States each year. The current standard to screen drugs that affect embryonic development is based on prenatal animal testing; however, this approach yields low-throughput and limited mechanistic information regarding the biological pathways and potential adverse consequences in humans. To develop a screening platform for molecules that affect human embryonic development based on endothelial cells (ECs) derived from human pluripotent stem cells, we differentiated human pluripotent stem cells into embryonic ECs and induced their maturation under arterial flow conditions. These cells were then used to screen compounds that specifically affect embryonic vasculature. Using this platform, we have identified two compounds that have higher inhibitory effect in embryonic than postnatal ECs. One of them was fluphenazine (an antipsychotic), which inhibits calmodulin kinase II. The other compound was pyrrolopyrimidine (an antiinflammatory agent), which inhibits vascular endothelial growth factor receptor 2 (VEGFR2), decreases EC viability, induces an inflammatory response, and disrupts preformed vascular networks. The vascular effect of the pyrrolopyrimidine was further validated in prenatal vs. adult mouse ECs and in embryonic and adult zebrafish. We developed a platform based on human pluripotent stem cell-derived ECs for drug screening, which may open new avenues of research for the study and modulation of embryonic vasculature.

  5. Human toxocariasis: diagnosis, worldwide seroprevalences and clinical expression of the systemic and ocular forms.

    PubMed

    Rubinsky-Elefant, G; Hirata, C E; Yamamoto, J H; Ferreira, M U

    2010-01-01

    Although human toxocariasis ranks among the most common zoonotic infections worldwide, it remains relatively unknown to the public. The causal agents are the nematode parasites Toxocara canis and T. cati, whose definitive hosts are dogs and cats, respectively. When embryonated eggs are accidentally ingested by humans, larvae hatch in the small intestine, penetrate the intestinal wall and migrate, via the bloodstream, to the liver, lungs, muscles, eye and central nervous system. Although most human infections are asymptomatic, two well-defined clinical syndromes are classically recognised: visceral larva migrans (a systemic disease caused by larval migration through major organs) and ocular larva migrans (a disease limited to the eyes and optic nerves). Two less-severe syndromes have recently been described, one mainly in children (covert toxocariasis) and the other mainly in adults (common toxocariasis). Here, the current laboratory diagnosis, epidemiology and main clinical features of both the systemic and ocular forms of human toxocariasis are reviewed. New developments in serological diagnosis are described, the available seroprevalence data are analysed, and the results of relevant clinical studies that have been published over the last decade are explored, to provide an updated overview of this neglected but highly prevalent human infection.

  6. Diploid, but not haploid, human embryonic stem cells can be derived from microsurgically repaired tripronuclear human zygotes

    PubMed Central

    Fan, Yong; Li, Rong; Huang, Jin; Yu, Yang; Qiao, Jie

    2013-01-01

    Human embryonic stem cells have shown tremendous potential in regenerative medicine, and the recent progress in haploid embryonic stem cells provides new insights for future applications of embryonic stem cells. Disruption of normal fertilized embryos remains controversial; thus, the development of a new source for human embryonic stem cells is important for their usefulness. Here, we investigated the feasibility of haploid and diploid embryo reconstruction and embryonic stem cell derivation using microsurgically repaired tripronuclear human zygotes. Diploid and haploid zygotes were successfully reconstructed, but a large proportion of them still had a tripolar spindle assembly. The reconstructed embryos developed to the blastocyst stage, although the loss of chromosomes was observed in these zygotes. Finally, triploid and diploid human embryonic stem cells were derived from tripronuclear and reconstructed zygotes (from which only one pronucleus was removed), but haploid human embryonic stem cells were not successfully derived from the reconstructed zygotes when two pronuclei were removed. Both triploid and diploid human embryonic stem cells showed the general characteristics of human embryonic stem cells. These results indicate that the lower embryo quality resulting from abnormal spindle assembly contributed to the failure of the haploid embryonic stem cell derivation. However, the successful derivation of diploid embryonic stem cells demonstrated that microsurgical tripronuclear zygotes are an alternative source of human embryonic stem cells. In the future, improving spindle assembly will facilitate the application of triploid zygotes to the field of haploid embryonic stem cells. PMID:23255130

  7. Three-dimensional microCT imaging of murine embryonic development from immediate post-implantation to organogenesis: application for phenotyping analysis of early embryonic lethality in mutant animals.

    PubMed

    Ermakova, Olga; Orsini, Tiziana; Gambadoro, Alessia; Chiani, Francesco; Tocchini-Valentini, Glauco P

    2018-04-01

    In this work, we applied three-dimensional microCT imaging to study murine embryogenesis in the range from immediate post-implantation period (embryonic day 5.5) to mid-gestation (embryonic day 12.5) with the resolution up to 1.4 µm/voxel. Also, we introduce an imaging procedure for non-invasive volumetric estimation of an entire litter of embryos within the maternal uterine structures. This method allows for an accurate, detailed and systematic morphometric analysis of both embryonic and extra-embryonic components during embryogenesis. Three-dimensional imaging of unperturbed embryos was performed to visualize the egg cylinder, primitive streak, gastrulation and early organogenesis stages of murine development in the C57Bl6/N mouse reference strain. Further, we applied our microCT imaging protocol to determine the earliest point when embryonic development is arrested in a mouse line with knockout for tRNA splicing endonuclease subunit Tsen54 gene. Our analysis determined that the embryonic development in Tsen54 null embryos does not proceed beyond implantation. We demonstrated that application of microCT imaging to entire litter of non-perturbed embryos greatly facilitate studies to unravel gene function during early embryogenesis and to determine the precise point at which embryonic development is arrested in mutant animals. The described method is inexpensive, does not require lengthy embryos dissection and can be applicable for detailed analysis of mutant mice at laboratory scale as well as for high-throughput projects.

  8. Delayed embryonic development in the Indian short-nosed fruit bat, Cynopterus sphinx.

    PubMed

    Meenakumari, Karukayil J; Krishna, Amitabh

    2005-01-01

    The unusual feature of the breeding cycle of Cynopterus sphinx at Varanasi is the significant variation in gestation length of the two successive pregnancies of the year. The aim of this study was to investigate whether the prolongation of the first pregnancy in C. sphinx is due to delayed embryonic development. The first (winter) pregnancy commences in late October and lasts until late March and has a gestation period of about 150 days. The second (summer) pregnancy commences in April and lasts until the end of July or early August with a gestation period of about 125 days. Changes in the size and weight of uterine cornua during the two successive pregnancies suggest retarded embryonic growth during November and December. Histological analysis during the period of retarded embryonic development in November and December showed a slow gastrulation process. The process of amniogenesis was particularly slow. When the embryos attained the early primitive streak stage, their developmental rate suddenly increased considerably. During the summer pregnancy, on the other hand, the process of gastrulation was much faster and proceeded quickly. A comparison of the pattern of embryonic development for 4 consecutive years consistently showed retarded or delayed embryonic development during November and December. The time of parturition and post-partum oestrus showed only a limited variation from 1 year to another. This suggests that delayed embryonic development in C. sphinx may function to synchronize parturition among females. The period of delayed embryonic development in this species clearly coincides with the period of fat deposition. The significance of this correlation warrants further investigation.

  9. GLUCOCORTICOID RECEPTOR EXPRESSION DURING THE DEVELOPMENT OF THE EMBRYONIC MOUSE SECONDARY PALATE

    EPA Science Inventory

    Glucocorticoids are important regulators of embryonic growth and development. hese effects are mediated through glucocorticoid receptors (GR) which bind to glucocorticoid response elements upstream of regulated genes. his study examines the expression of GR and GR mRNA in embryon...

  10. Luteal cell steroidogenesis in relation to delayed embryonic development in the Indian short-nosed fruit bat, Cynopterus sphinx.

    PubMed

    Meenakumari, Karukayil J; Banerjee, Arnab; Krishna, Amitabh

    2009-01-01

    The primary aim of this study was to determine the possible cause of slow or delayed embryonic development in Cynopterus sphinx by investigating morphological and steroidogenic changes in the corpus luteum (CL) and circulating hormone concentrations during two pregnancies of a year. This species showed delayed post-implantational embryonic development during gastrulation of the first pregnancy. Morphological features of the CL showed normal luteinization during both pregnancies. The CL did not change significantly in luteal cell size during the delay period of the first pregnancy as compared with the second pregnancy. The circulating progesterone and 17beta-estradiol concentrations were significantly lower during the period of delayed embryonic development as compared with the same stage of embryonic development during the second pregnancy. We also showed a marked decline in the activity of 3beta-hydroxysteroid dehydrogenase, P450 side chain cleavage enzyme, and steroidogenic acute regulatory peptide in the CL during the delay period. This may cause low circulating progesterone and estradiol synthesis and consequently delay embryonic development. What causes the decrease in steroidogenic factors in the CL during the period of delayed development in C. sphinx is under investigation.

  11. Jaw muscle development as evidence for embryonic repatterning in direct-developing frogs.

    PubMed Central

    Hanken, J; Klymkowsky, M W; Alley, K E; Jennings, D H

    1997-01-01

    The Puerto Rican direct-developing frog Eleutherodactylus coqui (Leptodactylidae) displays a novel mode of jaw muscle development for anuran amphibians. Unlike metamorphosing species, several larval-specific features never form in E. coqui; embryonic muscle primordia initially assume an abbreviated, mid-metamorphic configuration that is soon remodelled to form the adult morphology before hatching. Also lacking are both the distinct population of larval myofibres and the conspicuous, larval-to-adult myofibre turnover that are characteristic of muscle development in metamorphosing species. These modifications are part of a comprehensive alteration in embryonic cranial patterning that has accompanied life history evolution in this highly speciose lineage. Embryonic 'repatterning' in Eleutherodactylus may reflect underlying developmental mechanisms that mediate the integrated evolution of complex structures. Such mechanisms may also facilitate, in organisms with a primitively complex life cycle, the evolutionary dissociation of embryonic, larval, and adult features. PMID:9332017

  12. Von Hippel-Lindau protein in the RPE is essential for normal ocular growth and vascular development.

    PubMed

    Lange, Clemens A K; Luhmann, Ulrich F O; Mowat, Freya M; Georgiadis, Anastasios; West, Emma L; Abrahams, Sabu; Sayed, Haroon; Powner, Michael B; Fruttiger, Marcus; Smith, Alexander J; Sowden, Jane C; Maxwell, Patrick H; Ali, Robin R; Bainbridge, James W B

    2012-07-01

    Molecular oxygen is essential for the development, growth and survival of multicellular organisms. Hypoxic microenvironments and oxygen gradients are generated physiologically during embryogenesis and organogenesis. In the eye, oxygen plays a crucial role in both physiological vascular development and common blinding diseases. The retinal pigment epithelium (RPE) is a monolayer of cells essential for normal ocular development and in the mature retina provides support for overlying photoreceptors and their vascular supply. Hypoxia at the level of the RPE is closely implicated in pathogenesis of age-related macular degeneration. Adaptive tissue responses to hypoxia are orchestrated by sophisticated oxygen sensing mechanisms. In particular, the von Hippel-Lindau tumour suppressor protein (pVhl) controls hypoxia-inducible transcription factor (HIF)-mediated adaptation. However, the role of Vhl/Hif1a in the RPE in the development of the eye and its vasculature is unknown. In this study we explored the function of Vhl and Hif1a in the developing RPE using a tissue-specific conditional-knockout approach. We found that deletion of Vhl in the RPE results in RPE apoptosis, aniridia and microphthalmia. Increased levels of Hif1a, Hif2a, Epo and Vegf are associated with a highly disorganised retinal vasculature, chorioretinal anastomoses and the persistence of embryonic vascular structures into adulthood. Additional inactivation of Hif1a in the RPE rescues the RPE morphology, aniridia, microphthalmia and anterior vasoproliferation, but does not rescue retinal vasoproliferation. These data demonstrate that Vhl-dependent regulation of Hif1a in the RPE is essential for normal RPE and iris development, ocular growth and vascular development in the anterior chamber, whereas Vhl-dependent regulation of other downstream pathways is crucial for normal development and maintenance of the retinal vasculature.

  13. Parthenogenesis in unfertilized eggs of Coturnix chinensis, the Chinese painted quail, and the effect of egg clutch position on embryonic development.

    PubMed

    Parker, H M; McDaniel, C D

    2009-04-01

    Parthenogenesis, embryonic development of an unfertilized egg, was studied for many years in turkeys. In fact, as many as 49% of unfertilized Beltsville Small White turkey eggs develop embryos. However, no research exists on parthenogenesis in quail. The Chinese painted quail is a close relative of the more common Japanese quail and, unlike turkeys or chickens, the small Chinese painted quail reaches sexual maturity rapidly, making it a great candidate for further research on parthenogenesis. Obviously, a better understanding of avian parthenogenesis should increase our knowledge of avian fertilization and early embryonic development. Therefore, we determined if unfertilized Chinese painted quail hens produce embryos. Second, we explored the possibility that position of the egg within the clutch influences parthenogenesis. When initial secondary sexual plumage was apparent at 4 wk of age, male chicks were separated from females to prevent fertilization. Hens were placed in individual cages near sexual maturity, at approximately 6 wk of age. Individual eggs were collected daily and labeled with hen number and date. Eggs were stored for 0 to 3 d at 20 degrees C before incubation at 37.5 degrees C. After 10 d of incubation, approximately 4,000 eggs from 300 laying hens were examined for embryonic development under a magnifying lamp. On average, 4.8% of the unfertilized eggs contained an abortive form of embryonic development consisting of undifferentiated cells and unorganized membranes. Approximately 27% of the laying hens produced at least 1 egg with parthenogenic development. However, about 10% (30) of these hens exhibited a predisposition for parthenogenesis by producing 2 or more unfertilized eggs with embryonic development. Twenty percent of the eggs from 2 hens produced embryonic development. Additionally, the first egg laid in a clutch was most likely to produce embryonic development, with a steady decline in the percentage of eggs with embryonic development as position in the clutch increased. In conclusion, the Chinese painted quail does exhibit parthenogenesis and clutch position influences the rate of naturally occurring parthenogenesis.

  14. Early lens ablation causes dramatic long-term effects on the shape of bones in the craniofacial skeleton of Astyanax mexicanus.

    PubMed

    Dufton, Megan; Hall, Brian K; Franz-Odendaal, Tamara A

    2012-01-01

    The Mexican tetra, Astyanax mexicanus, exists as two morphs of a single species, a sighted surface morph and a blind cavefish. In addition to eye regression, cavefish have an increased number of taste buds, maxillary teeth and have an altered craniofacial skeleton compared to the sighted morph. We investigated the effect the lens has on the development of the surrounding skeleton, by ablating the lens at different time points during ontogeny. This unique long-term study sheds light on how early embryonic manipulations on the eye can affect the shape of the adult skull more than a year later, and the developmental window during which time these effects occur. The effects of lens ablation were analyzed by whole-mount bone staining, immunohistochemisty and landmark based morphometric analyzes. Our results indicate that lens ablation has the greatest impact on the skeleton when it is ablated at one day post fertilisation (dpf) compared to at four dpf. Morphometric analyzes indicate that there is a statistically significant difference in the shape of the supraorbital bone and suborbital bones four through six. These bones expand into the eye orbit exhibiting plasticity in their shape. Interestingly, the number of caudal teeth on the lower jaw is also affected by lens ablation. In contrast, the shape of the calvariae, the length of the mandible, and the number of mandibular taste buds are unaltered by lens removal. We demonstrate the plasticity of some craniofacial elements and the stability of others in the skull. Furthermore, this study highlights interactions present between sensory systems during early development and sheds light on the cavefish phenotype.

  15. Evaluation of 309 environmental chemicals using a mouse embryonic stem cell adherent cell differentiation and cytotoxicity assay

    EPA Science Inventory

    The vast landscape of environmental chemicals has motivated the need for alternative methods to traditional whole-animal bioassays in toxicity testing. Embryonic stem (ES) cells provide an in vitro model of embryonic development and an alternative method for assessing development...

  16. Adverse Outcome Pathway for Embryonic Vascular Disruption and Alternative Methods to Identify Chemical Vascular Disruptors During Development

    EPA Science Inventory

    Chemically induced vascular toxicity during embryonic development can result in a wide range of adverse prenatal outcomes. We used information from genetic mouse models linked to phenotypic outcomes and a vascular toxicity knowledge base to construct an embryonic vascular disrupt...

  17. Adamts18 deletion results in distinct developmental defects and provides a model for congenital disorders of lens, lung, and female reproductive tract development.

    PubMed

    Ataca, Dalya; Caikovski, Marian; Piersigilli, Alessandra; Moulin, Alexandre; Benarafa, Charaf; Earp, Sarah E; Guri, Yakir; Kostic, Corinne; Arsenijevic, Yvan; Soininen, Raija; Apte, Suneel S; Brisken, Cathrin

    2016-11-15

    The ADAMTS family comprises 19 secreted metalloproteinases that cleave extracellular matrix components and have diverse functions in numerous disease and physiological contexts. A number of them remain 'orphan' proteases and among them is ADAMTS18, which has been implicated in developmental eye disorders, platelet function and various malignancies. To assess in vivo function of ADAMTS18, we generated a mouse strain with inactivated Adamts18 alleles. In the C57Bl6/Ola background, Adamts18-deficient mice are born in a normal Mendelian ratio, and are viable but show a transient growth delay. Histological examination revealed a 100% penetrant eye defect resulting from leakage of lens material through the lens capsule occurring at embryonic day (E)13.5, when the lens grows rapidly. Adamts18-deficient lungs showed altered bronchiolar branching. Fifty percent of mutant females are infertile because of vaginal obstruction due to either a dorsoventral vaginal septum or imperforate vagina. The incidence of ovarian rete is increased in the mutant mouse strain. Thus, Adamts18 is essential in the development of distinct tissues and the new mouse strain is likely to be useful for investigating ADAMTS18 function in human disease, particularly in the contexts of infertility and carcinogenesis. © 2016. Published by The Company of Biologists Ltd.

  18. Relationship between delayed embryonic development and metabolic factors and fat deposition in fruit bat Cynopterus sphinx.

    PubMed

    Banerjee, Arnab; Meenakumari, K J; Krishna, Amitabh

    2007-01-01

    The present study was undertaken in the fruit bat Cynopterus sphinx, which breeds twice in quick succession at Varanasi, India. Its gestation period varies significantly in the two successive pregnancies of the year owing to delayed embryonic development during the first (winter) pregnancy. The primary aim of the present study was to determine the role of metabolic factors in delayed embryonic development in the fruit bat C. sphinx. Variation in bodyweight, fat deposition, oxygen (O(2)) consumption rate, basal metabolic rate (BMR), body temperature (Tb) and hepatic succinate dehydrogenase (SDH) activity, along with circulating levels of thyroid hormones (tri-iodothyronine and thyroxine), were examined as metabolic factors during the two successive pregnancies in C. sphinx. The increase in bodyweight observed in November was due to accumulation of white adipose tissue in the posterior abdominal region. A significant decline in O(2) consumption rate, BMR, Tb and SDH activity was found in early winter in November-December, which coincides closely with the period of fat accumulation and with the period of delayed embryonic development in C. sphinx. A significantly higher O(2) consumption rate, BMR, Tb and SDH activity was noted during the second pregnancy in, when embryonic development was relatively faster. Thyroid hormone levels were high during the period of embryonic delay compared with levels during the remaining months. The results of the present study suggest that the delayed embryonic development in C. sphinx during early winter may be due to a low O(2) consumption rate, BMR, Tb and SDH activity in November-December. The energy saved by suppressing embryonic development in this species may be advantageous for fat accumulation. Increased thyroid hormone levels during the early winter period might facilitate fat accumulation in C. sphinx.

  19. Embryonic and larval development in barfin flounder Verasper moseri (Jordan and Gilbert)

    NASA Astrophysics Data System (ADS)

    Du, Rongbin; Wang, Yongqiang; Jiang, Haibin; Liu, Liming; Wang, Maojian; Li, Tianbao; Zhang, Shubao

    2010-01-01

    Broodstock of Verasper moseri (Jordan and Gilbert) aged 3-4 years old were selected, and reinforced cultivation was conducted to promote maturation under controlled water temperature and photoperiod conditions. Fertilized eggs were obtained by artificial fertilization, and the development of embryos, larvae and juveniles was observed continuously. The results showed that the fertilized eggs of V. moseri were spherical, with transparent yolk and homogeneous bioplasm, and had no oil globule inside. The average diameter of the eggs was 1.77±0.02 mm. The eggs of V. moseri were buoyant in water with salinity above 35. The cleavage type was typical discoidal. Young pigment cells appeared when olfactory plates began to form. Hatching occurred at 187 h after fertilization at a water temperature of 8.5°C. The newly hatched larvae, floating on the water surface, were transparent with an average total length of 4.69±0.15 mm. During the cultivation period, when the water temperature was raised from 9 to 14.5°C, 4-day old larvae showed more melanophores on the body surface, making the larvae gray in color. The pectoral fins began to develop, which enabled the larvae to swim horizontally and in a lively manner. On days 7-8, the digestive duct formed. The yolk sac was small and black. The yolk sac was absorbed on day 11. Larvae took food actively, and body length and body height clearly increased. The rudiments of dorsal and anal fin pterygiophores were discernible and caudal fin ray elements formed on day 19. On day 24, the larval notochord flexed upwards, and the rays of unpaired fins began to differentiate. Pigment cells converged on the dorsal and anal fin rays, and the mastoid teeth on the mandible appeared. On day 29, the left eyes of juveniles began to move upwards. Depigmentation began in some juveniles and they became sandy brown in color on day 37. Most juveniles began to settle on the bottom of the tank. The left eyes of juveniles migrated completely to the right side on day 50, when the average body length attained 2.5±0.18 cm, and juveniles accomplished metamorphosis to young. The embryonic and larval characters of several flounder species are compared.

  20. Embryonic development rates of northern grasshoppers (Orthoptera: Acrididae): implications for climate change and habitat management

    USDA-ARS?s Scientific Manuscript database

    Temperature-dependent rates of embryonic development are a primary determinant of the life cycle of many species of grasshoppers which, in cold climates, spend two winters in the egg stage. Knowledge of embryonic developmental rates is important for an assessment of the effects of climate change and...

  1. Embryonic development of the cornea in the eye of the clearnose skate, Raja eglanteria: I. Stromal development in the absence of an endothelium

    NASA Technical Reports Server (NTRS)

    Conrad, G. W.; Paulsen, A. Q.; Luer, C. A.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    Embryos of the clearnose skate, Raja eglanteria, develop in sea water at 20-22 degrees C, hatching after 82 +/- 4 days (Luer and Gilbert, Environ. Biol. Fishes, 13:161-171, 1985). Eyes develop as steadily enlarging spheres whose corneas have the same radius of curvature as the sclera. The cornea begins development as a 2-cell thick epithelium beneath which by Day 12 there is only a basal lamina and a wispy matrix separating it from the underlying lens. This matrix, modified by Day 16, is displaced on Day 22 by a few orthogonal plies of fibrillar primary stroma. Ply number increases to at least 13 by Day 30, reaching the final number of 20 +/- 2 by Day 42. Stromal fibroblasts (keratocytes) appear at the corneal periphery by Day 22, and in increased numbers by Day 30, a time at which no keratocytes are seen in the central stroma. However, by Day 40, many fibroblasts are present at the corneal periphery, invading the primary stroma between plies, occasionally reaching even the central cornea. By Day 53, keratocytes are present between all plies, from corneal periphery to center. Thickness of each ply in this secondary stroma increases, but the number of plies remains the same as in the primary stroma. Bowman's layer, non-invaded matrix beneath the epithelial basal lamina, is not evident until Day 53. Sutural fibers, first seen on Day 22, originate in the corneal epithelial basal lamina, traversing perpendicularly the plies of the primary stroma. Sutural fibers persist throughout development of the secondary stroma and into adulthood. In contrast to chicks, skate corneas remain transparent throughout development, and never form an endothelium.

  2. Spatial distributions of AQP5 and AQP0 in embryonic and postnatal mouse lens development

    PubMed Central

    Petrova, Rosica S.; Schey, Kevin L.; Donaldson, Paul J.; Grey, Angus C.

    2015-01-01

    The expression of the water channel protein aquaporin (AQP)-5 in adult rodent and human lenses was recently reported using immunohistochemistry, molecular biology, and mass spectrometry techniques, confirming a second transmembrane water channel that is present in lens fibre cells in addition to the abundant AQP0 protein. Interestingly, the sub-cellular distribution and level of post-translational modification of both proteins changes with fibre cell differentiation and location in the adult rodent lens. This study compares the sub-cellular distribution of AQP0 and AQP5 during embryonic and postnatal fibre cell development in the mouse lens to understand how the immunolabelling patterns for both AQPs observed in adult lens are first established. Immunohistochemistry was used to map the cellular and sub-cellular distribution of AQP5 and AQP0 throughout the lens in cryosections from adult (6 weeks to 8 months) and postnatal (0-2 weeks) mouse lenses and in sections from paraffin embedded mouse embryos (E10-E19). All sections were imaged by fluorescence confocal microscopy. Using antibodies directed against the C-terminus of each AQP, AQP5 was abundantly expressed early in development, being found in the cytoplasm of cells of the lens vesicle and surrounding tissues (E10), while AQP0 was detected later (E11), and only in the membranes of elongating primary fibre cells. During the course of subsequent embryonic and postnatal development the pattern of cytoplasmic AQP5 and membranous AQP0 labelling was maintained until postnatal day 6 (P6). From P6 AQP5 labelling became progressively more membranous initially in the lens nucleus and then later in all regions of the lens, while AQP0 labelling was abruptly lost in the lens nucleus due to C-terminal truncation. Our results show that the spatial distribution patterns of AQP0 and AQP5 observed in the adult lens are established during a narrow window of post natal development (P6-P15) that precedes eye opening and coincides with regression of the hyaloid vascular system. Our results support the hypothesis that, in the older fibre cells, insertion of AQP5 into the fibre cell membrane may compensate for any change in the functionality of AQP0 induced by truncation of its C-terminal tail. PMID:25595964

  3. Role of leptin in delayed embryonic development in the Indian short-nosed fruit bat, Cynopterus sphinx.

    PubMed

    Banerjee, A; Meenakumari, K J; Krishna, A

    2010-08-01

    An adiposity-associated rise in leptin occurs at the time of delayed embryonic development in Cynopterus sphinx. The aim of present study was to examine the mechanism by which leptin may inhibit progesterone, and therefore could be responsible for delayed development. The study showed a significant increase in circulating leptin level during the period of increased fat accumulation, which coincided with significant decrease in serum progesterone level and delayed embryonic development in C. sphinx. The study showed increased Ob-R expression in the corpus luteum and in the utero-embryonic unit during the period of delayed embryonic development. The in vitro study showed suppressive effect of leptin on progesterone synthesis. The effect of high dose of leptin on ovarian steroidogenesis was found to be mediated through decreased expression of StAR and LH-R proteins in the ovary. The treatment with leptin caused increased expression of STAT 3 and iNOS proteins in the ovary, which correlated with decreased expression of StAR protein in the ovary. The inhibitory effects of leptin on progesterone synthesis in the ovary are thus mediated through STAT 3 and iNOS-NO signaling pathways. This study further demonstrated low expression of PCNA coinciding with the increased concentration of the leptin receptor in the utero-embryonic unit and high circulating leptin level during November. In conclusion, adiposity associated increased leptin level during November-December might play role in suppressing progesterone synthesis in the corpus luteum as well as suppressing the rate of cell-proliferation in the utero-embryonic unit thereby causing delayed embryonic development in C. sphinx. Copyright 2010 Elsevier Inc. All rights reserved.

  4. The business of human embryonic stem cell research and an international analysis of relevant laws.

    PubMed

    De Trizio, Ella; Brennan, Christopher S

    2004-01-01

    Few sciences have held out such therapeutic promise and correspondingly stirred so much controversy in countries throughout the world as the developing science surrounding human embryonic stem cells. Since the first reported development of several lines of human embryonic stem cells in 1988, many governments around the world have attempted to address the thorny ethical issues raised by human embryonic stem cell research by the passage of laws. In some cases these laws have directly regulated governmental funding of the science; in other cases they have created a legal environment that has either encouraged or discouraged both governmental and private funding of the science. This article first differentiates human embryonic stem cells from other types of stem cells and frames the ethical controversy surrounding human embryonic stem cell research, then surveys laws governing human embryonic stem cell research in various scientifically advanced countries located throughout the Pacific Rim, Europe and North America and explains the impact these laws have had on governmental and private funding of human embryonic stem cell research.

  5. Effect of temperature on embryonic development of Melanotaenia boesemani (Allen and Cross, 1982).

    PubMed

    Radael, Marcella Costa; Cardoso, Leonardo Demier; de Andrade, Dalcio Ricardo; Ferreira, André Veloso; da Cruz Mattos, Douglas; Vidal, Manuel Vazquez

    2016-04-01

    The present study aimed to provide data on the time required for Melanotaenia boesemani to complete embryonic development, and to investigate the influence that incubation at different temperatures caused in this species. The effects of temperature on the time and hatching rate are presented, as well as information related to embryonic development stages. After fertilization, the eggs were kept in incubators at 23, 26, 29 or 32°C and observed at predetermined times until the moment of hatching. Stages of development were identified and classified according to morphological and physiological characteristics. Oil droplets were visualized inside the eggs as well as filament adhesion present at the chorion. Embryonic development was similar to that observed in other species of the genus Melanotaenia with hatching and faster development in higher temperatures.

  6. Activity-dependent regulation of NMDAR1 immunoreactivity in the developing visual cortex.

    PubMed

    Catalano, S M; Chang, C K; Shatz, C J

    1997-11-01

    NMDA receptors have been implicated in activity-dependent synaptic plasticity in the developing visual cortex. We examined the distribution of immunocytochemically detectable NMDAR1 in visual cortex of cats and ferrets from late embryonic ages to adulthood. Cortical neurons are initially highly immunostained. This level declines gradually over development, with the notable exception of cortical layers 2/3, where levels of NMDAR1 immunostaining remain high into adulthood. Within layer 4, the decline in NMDAR1 immunostaining to adult levels coincides with the completion of ocular dominance column formation and the end of the critical period for layer 4. To determine whether NMDAR1 immunoreactivity is regulated by retinal activity, animals were dark-reared or retinal activity was completely blocked in one eye with tetrodotoxin (TTX). Dark-rearing does not cause detectable changes in NMDAR1 immunoreactivity. However, 2 weeks of monocular TTX administration decreases NMDAR1 immunoreactivity in layer 4 of the columns of the blocked eye. Thus, high levels of NMDAR1 immunostaining within the visual cortex are temporally correlated with ocular dominance column formation and developmental plasticity; the persistence of staining in layers 2/3 also correlates with the physiological plasticity present in these layers in the adult. In addition, visual experience is not required for the developmental changes in the laminar pattern of NMDAR1 levels, but the presence of high levels of NMDAR1 in layer 4 during the critical period does require retinal activity. These observations are consistent with a central role for NMDA receptors in promoting and ultimately limiting synaptic rearrangements in the developing neocortex.

  7. Congenital orbital cysts of neural tissue in two dogs.

    PubMed

    Regnier, Alain; Raymond-Letron, Isabelle; Peiffer, Robert L

    2008-01-01

    A 3-month-old English Cocker Spaniel and a 6-month-old miniature poodle presented with clinical signs related to an abnormal right eye since birth. In both dogs, the right globe could not be identified and was replaced by a fluctuant intraorbital mass covered by a vascularized mucous membrane. Ultrasonography demonstrated that both masses were cystic structures markedly larger in size than the normal contralateral globes. In both cases, surgical excision revealed a multilobular cyst filling the whole orbital cavity. Histopathologic examination and immunostaining for glial fibrillary acid protein and S100 protein supported a diagnosis of neural cysts associated with ocular dysplasia. The definitive diagnosis was congenital cystic eye and microphthalmos with cyst for the Cocker Spaniel and miniature poodle, respectively. Karyotype was normal in both dogs. Congenital cystic eye and microphthalmos with cyst result from defects in early embryonic life that arise following formation of the optic vesicle and prior to closure of the optic fissure. To the authors' knowledge neither has been reported in the canine species. They should be considered in the differential diagnosis of orbital cysts in dogs.

  8. Derivation of Multipotent Mesenchymal Precursors from Human Embryonic Stem Cells

    PubMed Central

    Barberi, Tiziano; Willis, Lucy M; Socci, Nicholas D; Studer, Lorenz

    2005-01-01

    Background Human embryonic stem cells provide access to the earliest stages of human development and may serve as a source of specialized cells for regenerative medicine. Thus, it becomes crucial to develop protocols for the directed differentiation of embryonic stem cells into tissue-restricted precursors. Methods and Findings Here, we present culture conditions for the derivation of unlimited numbers of pure mesenchymal precursors from human embryonic stem cells and demonstrate multilineage differentiation into fat, cartilage, bone, and skeletal muscle cells. Conclusion Our findings will help to elucidate the mechanism of mesoderm specification during embryonic stem cell differentiation and provide a platform to efficiently generate specialized human mesenchymal cell types for future clinical applications. PMID:15971941

  9. Elevated temperature enhances normal early embryonic development in the coral Platygyra acuta under low salinity conditions

    NASA Astrophysics Data System (ADS)

    Chui, Apple Pui Yi; Ang, Put

    2015-06-01

    To better understand the possible consequences of climate change on reef building scleractinian corals in a marginal environment, laboratory experiments were conducted to examine the interactive effects of changes in salinity and temperature on percent fertilization success and early embryonic development of the coral Platygyra acuta. In the present study, a salinity of 24 psu (ambient 32 psu) reduced fertilization success by 60 %. Normal embryonic development was reduced by >80 % at 26 psu (ambient 33 psu) with 100 % abnormal development at 22 psu under ambient temperature. Elevated temperature (+3 °C) above the ambient spawning temperature did not show any negative effects on fertilization success. However, there was a trend for more abnormal embryos to develop at elevated temperature in the 2 d of the spawning event. The interactive effects between salinity and temperature are statistically significant only on normal embryonic development of P. acuta, but not on its fertilization success. Salinity was revealed to be the main factor affecting both fertilization success and normal embryonic development. Interestingly, the much lower fertilization success (76 %) observed in the second day of spawning (Trial 2) under ambient temperature recovered to 99 % success under elevated (+3 °C) temperature conditions. Moreover, elevated temperature enhanced normal early embryonic development under lowered salinity (26 psu). This antagonistic interactive effect was consistently observed in two successive nights of spawning. Overall, our results indicate that, in terms of its fertilization success and embryonic development, P. acuta is the most tolerant coral species to reduced salinity thus far reported in the literature. Elevated temperature, at least that within the tolerable range of the corals, could apparently alleviate the potential negative effects from salinity stresses. This mitigating role of elevated temperature appears not to have been reported on corals before.

  10. Development of an invitro technique to use mouse embryonic stem cell in evaluating effects of xenobiotics

    EPA Science Inventory

    Our goal has been to develop a high-throughput, in vitro technique for evaluating the effects of xenobiotics using mouse embryonic stem cells (mESCs). We began with the Embryonic Stem Cell Test (EST), which is used to predict the embryotoxic potential of a test compound by combin...

  11. High- and low-temperature manipulation during late incubation: effects on embryonic development, the hatching process, and metabolism in broilers.

    PubMed

    Willemsen, H; Kamers, B; Dahlke, F; Han, H; Song, Z; Ansari Pirsaraei, Z; Tona, K; Decuypere, E; Everaert, N

    2010-12-01

    Temperatures continuously higher and lower than the standard incubation temperature by 3°C from embryonic d 16 until embryonic d 18.5 result in differential effects on embryonic development, the hatching process, and embryonic metabolism. Embryos in the high-temperature group were forced into a state of malnutrition by the temperature treatment, as reflected by reduced embryo growth and yolk consumption, resulting in a significantly lower chick weight at hatch. In addition, altered air cell and blood gases as well as a retarded hatching process further indicated reduced growth of embryos exposed to higher incubation temperatures during the latter part of incubation. In addition, hatchability was significantly reduced by the high-temperature treatment due to higher embryonic mortality during the treatment period and the hatching process. Levels of blood glucose, lactate, liver glycogen, plasma triglycerides, and nonesterified fatty acids indicated an altered carbohydrate and lipid metabolism for the high-temperature group. Although the hatching process of embryos exposed to lower incubation temperatures was also significantly retarded, their embryonic development and growth were strikingly similar to those of the control group.

  12. The developmental basis for germline mosaicism in mouse and Drosophila melanogaster.

    PubMed

    Drost, J B; Lee, W R

    1998-01-01

    Data involving germline mosaics in Drosophila melanogaster and mouse are reconciled with developmental observations. Mutations that become fixed in the early embryo before separation of soma from the germline may, by the sampling process of development, continue as part of germline and/or differentiate into any somatic tissue. The cuticle of adult D. melanogaster, because of segmental development, can be used to estimate the proportion of mutant nuclei in the early embryo, but most somatic tissues and the germlines of both species continue from samples too small to be representative of the early embryo. Because of the small sample of cells/nuclei that remain in the germline after separation of soma in both species, mosaic germlines have percentages of mutant cells that vary widely, with a mean of 50% and an unusual platykurtic, flat-topped distribution. While the sampling process leads to similar statistical results for both species, their patterns of development are very different. In D. melanogaster the first differentiation is the separation of soma from germline with the germline continuing from a sample of only two to four nuclei, whereas the adult cuticle is a representative sample of cleavage nuclei. The presence of mosaicism in D. melanogaster germline is independent of mosaicism in the eye, head, and thorax. This independence was used to determine that mutations can occur at any of the early embryonic cell divisions and still average 50% mutant germ cells when the germline is mosaic; however, the later the mutation occurs, the higher the proportion of completely nonmutant germlines. In contrast to D. melanogaster, the first differentiation in the mouse does not separate soma from germline but produces the inner cell mass that is representative of the cleavage nuclei. Following formation of the primitive streak, the primordial germ cells develop at the base of the allantois and among a clonally related sample of cells, providing the same statistical distribution in the mouse germlines as in D. melanogaster. The proportion of mutations that are fixed during early embryonic development is greatly underestimated. For example, a DNA lesion in a postmeiotic gamete that becomes fixed as a dominant mutation during early embryonic development of the F1 may produce an individual completely mutant in the germ line and relevant somatic tissue or, alternatively, the F1 germline may be completely mutant but with no relevant somatic tissues for detecting the mutation until the F2. In both cases the mutation would be classified as complete in the F1 and F2, respectively, and not recognized as embryonic in origin. Because germ cells differentiate later in mammalian development, there are more opportunities for correlation between germline and soma in the mammal than Drosophila. However, because the germ cells and any somatic tissue, like blood, are derived from small samples, there may be many individuals that test negative in blood but have germlines that are either mosaic or entirely mutant.

  13. [Embryos and embryo-like entities: problem of definition in the draft of the Swiss embryonic research law].

    PubMed

    Bürgin, M T; Bürkli, P

    2002-11-01

    At the end of May 2002, the draft of the Swiss "Federal Act on Research on Surplus Embryos and Embryonic Stem Cells" (EFG, Embryonic Research Act) reached the pre-legislative consultation stage. Under certain conditions, it would allow research on "surplus" embryos from in-vitro fertilization, and the derivation of embryonic stem cells from surplus embryos for research purposes. The EFG draft defines an embryo as "the developing organism from the point of nuclear fusion until the completion of organ development". New technological developments show that embryo-like entities can also be created without nuclear fusion having taken place. It remains unclear how to treat embryonic entities that don't fall under the draft's narrow definition of an embryo. Expanding this definition would be a welcome improvement.

  14. A novel approach for studying the temporal modulation of embryonic skeletal development using organotypic bone cultures and microcomputed tomography.

    PubMed

    Kanczler, Janos M; Smith, Emma L; Roberts, Carol A; Oreffo, Richard O C

    2012-10-01

    Understanding the structural development of embryonic bone in a three dimensional framework is fundamental to developing new strategies for the recapitulation of bone tissue in latter life. We present an innovative combined approach of an organotypic embryonic femur culture model, microcomputed tomography (μCT) and immunohistochemistry to examine the development and modulation of the three dimensional structures of the developing embryonic femur. Isolated embryonic chick femurs were organotypic (air/liquid interface) cultured for 10 days in either basal, chondrogenic, or osteogenic supplemented culture conditions. The growth development and modulating effects of basal, chondrogenic, or osteogenic culture media of the embryonic chick femurs was investigated using μCT, immunohistochemistry, and histology. The growth and development of noncultured embryonic chick femur stages E10, E11, E12, E13, E15, and E17 were very closely correlated with increased morphometric indices of bone formation as determined by μCT. After 10 days in the organotpyic culture set up, the early aged femurs (E10 and E11) demonstrated a dramatic response to the chondrogenic or osteogenic culture conditions compared to the basal cultured femurs as determined by a change in μCT morphometric indices and modified expression of chondrogenic and osteogenic markers. Although the later aged femurs (E12 and E13) increased in size and structure after 10 days organotpypic culture, the effects of the osteogenic and chondrogenic organotypic cultures on these femurs were not significantly altered compared to basal conditions. We have demonstrated that the embryonic chick femur organotpyic culture model combined with the μCT and immunohistochemical analysis can provide an integral methodology for investigating the modulation of bone development in an ex vivo culture setting. Hence, these interdisciplinary techniques of μCT and whole organ bone cultures will enable us to delineate some of the temporal, structural developmental paradigms and modulation of bone tissue formation to underpin innovative skeletal regenerative technology for clinical therapeutic strategies in musculoskeletal trauma and diseases.

  15. Transplantation of Human Embryonic Stem Cells in Patients with Multiple Sclerosis and Lyme Disease

    PubMed Central

    Shroff, Geeta

    2016-01-01

    Case series Patient: Male, 42 • Female, 30 Final Diagnosis: Human embryonic stem cells showed good therapeutic potential for treatment of multiple sclerosis with lyme disease Symptoms: Fatigue • weakness in limbs Medication: — Clinical Procedure: Human embryonic stem cells transplantation Specialty: Transplantology Objective: Rare disease Background: Multiple sclerosis (MS) is an inflammatory and neurodegenerative disease in which the myelin sheath of nerve cells is damaged. It can cause delayed neurologic symptoms similar to those seen in Lyme disease (LD) patients. Thymus derived T-cells (myelin reactive) migrate to the blood brain barrier and stimulate an inflammatory cascade in the central nervous system. Cell based therapies play an important role in treating neurological diseases such as MS and LD. Case Report: Human embryonic stem cell (hESC) therapy was used to treat two patients with both MS and LD. The hESCs were administered via different routes including intramuscular, intravenous, and supplemental routes (e.g., deep spinal, caudal, intercostal through eye drops) to regenerate the injured cells. Both the patients showed remarkable improvement in their functional skills, overall stamina, cognitive abilities, and muscle strength. Furthermore, the improvement in the patients’ conditions were assessed by magnetic resonance tractography and single photon emission computed tomography (SPECT). Conclusions: Therapy with hESCs might emerge as an effective and safe treatment for patients with both MS and LD. Well-designed clinical trials and follow-up studies are needed to prove the long-term efficacy and safety of hESC therapy in the treatment of patients with MS and LD. PMID:27956736

  16. Activation of the Hedgehog Signaling Pathway in the Developing Lens Stimulates Ectopic FoxE3 Expression and Disruption in Fiber Cell Differentiation

    PubMed Central

    Kerr, Christine L.; Huang, Jian; Williams, Trevor; West-Mays, Judith A.

    2012-01-01

    Purpose. The signaling pathways and transcriptional effectors responsible for directing mammalian lens development provide key regulatory molecules that can inform our understanding of human eye defects. The hedgehog genes encode extracellular signaling proteins responsible for patterning and tissue formation during embryogenesis. Signal transduction of this pathway is mediated through activation of the transmembrane proteins smoothened and patched, stimulating downstream signaling resulting in the activation or repression of hedgehog target genes. Hedgehog signaling is implicated in eye development, and defects in hedgehog signaling components have been shown to result in defects of the retina, iris, and lens. Methods. We assessed the consequences of constitutive hedgehog signaling in the developing mouse lens using Cre-LoxP technology to express the conditional M2 smoothened allele in the embryonic head and lens ectoderm. Results. Although initial lens development appeared normal, morphological defects were apparent by E12.5 and became more significant at later stages of embryogenesis. Altered lens morphology correlated with ectopic expression of FoxE3, which encodes a critical gene required for human and mouse lens development. Later, inappropriate expression of the epithelial marker Pax6, and as well as fiber cell markers c-maf and Prox1 also occurred, indicating a failure of appropriate lens fiber cell differentiation accompanied by altered lens cell proliferation and cell death. Conclusions. Our findings demonstrate that the ectopic activation of downstream effectors of the hedgehog signaling pathway in the mouse lens disrupts normal fiber cell differentiation by a mechanism consistent with a sustained epithelial cellular developmental program driven by FoxE3. PMID:22491411

  17. A regulatory toolbox of MiniPromoters to drive selective expression in the brain.

    PubMed

    Portales-Casamar, Elodie; Swanson, Douglas J; Liu, Li; de Leeuw, Charles N; Banks, Kathleen G; Ho Sui, Shannan J; Fulton, Debra L; Ali, Johar; Amirabbasi, Mahsa; Arenillas, David J; Babyak, Nazar; Black, Sonia F; Bonaguro, Russell J; Brauer, Erich; Candido, Tara R; Castellarin, Mauro; Chen, Jing; Chen, Ying; Cheng, Jason C Y; Chopra, Vik; Docking, T Roderick; Dreolini, Lisa; D'Souza, Cletus A; Flynn, Erin K; Glenn, Randy; Hatakka, Kristi; Hearty, Taryn G; Imanian, Behzad; Jiang, Steven; Khorasan-zadeh, Shadi; Komljenovic, Ivana; Laprise, Stéphanie; Liao, Nancy Y; Lim, Jonathan S; Lithwick, Stuart; Liu, Flora; Liu, Jun; Lu, Meifen; McConechy, Melissa; McLeod, Andrea J; Milisavljevic, Marko; Mis, Jacek; O'Connor, Katie; Palma, Betty; Palmquist, Diana L; Schmouth, Jean-François; Swanson, Magdalena I; Tam, Bonny; Ticoll, Amy; Turner, Jenna L; Varhol, Richard; Vermeulen, Jenny; Watkins, Russell F; Wilson, Gary; Wong, Bibiana K Y; Wong, Siaw H; Wong, Tony Y T; Yang, George S; Ypsilanti, Athena R; Jones, Steven J M; Holt, Robert A; Goldowitz, Daniel; Wasserman, Wyeth W; Simpson, Elizabeth M

    2010-09-21

    The Pleiades Promoter Project integrates genomewide bioinformatics with large-scale knockin mouse production and histological examination of expression patterns to develop MiniPromoters and related tools designed to study and treat the brain by directed gene expression. Genes with brain expression patterns of interest are subjected to bioinformatic analysis to delineate candidate regulatory regions, which are then incorporated into a panel of compact human MiniPromoters to drive expression to brain regions and cell types of interest. Using single-copy, homologous-recombination "knockins" in embryonic stem cells, each MiniPromoter reporter is integrated immediately 5' of the Hprt locus in the mouse genome. MiniPromoter expression profiles are characterized in differentiation assays of the transgenic cells or in mouse brains following transgenic mouse production. Histological examination of adult brains, eyes, and spinal cords for reporter gene activity is coupled to costaining with cell-type-specific markers to define expression. The publicly available Pleiades MiniPromoter Project is a key resource to facilitate research on brain development and therapies.

  18. Proximate effects of temperature versus evolved intrinsic constraints for embryonic development times among temperate and tropical songbirds

    USGS Publications Warehouse

    Ton, Riccardo; Martin, Thomas E.

    2017-01-01

    The relative importance of intrinsic constraints imposed by evolved physiological trade-offs versus the proximate effects of temperature for interspecific variation in embryonic development time remains unclear. Understanding this distinction is important because slow development due to evolved trade-offs can yield phenotypic benefits, whereas slow development from low temperature can yield costs. We experimentally increased embryonic temperature in free-living tropical and north temperate songbird species to test these alternatives. Warmer temperatures consistently shortened development time without costs to embryo mass or metabolism. However, proximate effects of temperature played an increasingly stronger role than intrinsic constraints for development time among species with colder natural incubation temperatures. Long development times of tropical birds have been thought to primarily reflect evolved physiological trade-offs that facilitate their greater longevity. In contrast, our results indicate a much stronger role of temperature in embryonic development time than currently thought.

  19. Embryotoxic effects of benzo[a]pyrene, chrysene and 7,12-dimethylbenz[a]-anthracene in petroleum hydrocarbon mixtures in mallard ducks

    USGS Publications Warehouse

    Hoffman, D.J.; Gay, M.L.

    1981-01-01

    Studies with different avian species have revealed that surface applications of microliter amounts of some crude and fuel oils that coat less than 70% of the egg surface result in considerable reduction in hatching with teratogenicity and stunted growth. Other stUdies have shown that the embryo toxicity is dependent on the aromatic hydrocarbon content, further suggesting that the toxicity is due to causes other than asphyxia. In the present study the effects of three polycyclic aromatic hydrocarbons identified in petroleum were examined on mallard (Anas platyrhynchos) embryo development. Addition of benzo[a]pyrene (BaP), chrysene, or 7,7 2-dimethylbenz[ a]anthracene (DMBA) to a synthetic petroleum hydrocarbon mixture of known composition and relatively low embryotoxicity resulted in embryo toxicity that was enhanced or equal to that of crude oil when 10 :I was applied externally to eggs at 72 h of development. The order of ability to enhance embryo toxicity was DMBA > BaP > chrysene. The temporal pattern of embryonic death was similar to that reported after exposure to crude oil, with additional mortality occurring after outgrowth of the chorioallantois. Retarded growth, as reflected by embryonic body weight, crown-rump length, and bill length, was accompanied by teratogenicity. Abnormal embryos exhibited extreme stunting; eye, brain, and bill defects; and incomplete ossification. Gas chromatographic-mass spectral analysis of externally treated eggs showed the passage of aromatic hydrocarbons including chrysene through the shell and shell membranes to the developing embryos. These findings suggest that the presence of polycyclic aromatic hydrocarbons in petroleum, including BaP, chrysene, and DMBA, significantly enhances the overall embryotoxicity in avian species.

  20. FoxK1 splice variants show developmental stage-specific plasticity of expression with temperature in the tiger pufferfish.

    PubMed

    Fernandes, Jorge M O; MacKenzie, Matthew G; Kinghorn, James R; Johnston, Ian A

    2007-10-01

    FoxK1 is a member of the highly conserved forkhead/winged helix (Fox) family of transcription factors and it is known to play a key role in mammalian muscle development and myogenic stem cell function. The tiger pufferfish (Takifugu rubripes) orthologue of mammalian FoxK1 (TFoxK1) has seven exons and is located in a region of conserved synteny between pufferfish and mouse. TFoxK1 is expressed as three alternative transcripts: TFoxK1-alpha, TFoxK1-gamma and TFoxK1-delta. TFoxK1-alpha is the orthologue of mouse FoxK1-alpha, coding for a putative protein of 558 residues that contains the forkhead and forkhead-associated domains typical of Fox proteins and shares 53% global identity with its mammalian homologue. TFoxK1-gamma and TFoxK1-delta arise from intron retention events and these transcripts translate into the same 344-amino acid protein with a truncated forkhead domain. Neither are orthologues of mouse FoxK1-beta. In adult fish, the TFoxK1 splice variants were differentially expressed between fast and slow myotomal muscle, as well as other tissues, and the FoxK1-alpha protein was expressed in myogenic progenitor cells of fast myotomal muscle. During embryonic development, TFoxK1 was transiently expressed in the developing somites, heart, brain and eye. The relative expression of TFoxK1-alpha and the other two alternative transcripts varied with the incubation temperature regime for equivalent embryonic stages and the differences were particularly marked at later developmental stages. The developmental expression pattern of TFoxK1 and its localisation to mononuclear myogenic progenitor cells in adult fast muscle indicate that it may play an essential role in myogenesis in T. rubripes.

  1. Transplantation of reprogrammed embryonic stem cells improves visual function in a mouse model for retinitis pigmentosa.

    PubMed

    Wang, Nan-Kai; Tosi, Joaquin; Kasanuki, Jennifer Mie; Chou, Chai Lin; Kong, Jian; Parmalee, Nancy; Wert, Katherine J; Allikmets, Rando; Lai, Chi-Chun; Chien, Chung-Liang; Nagasaki, Takayuki; Lin, Chyuan-Sheng; Tsang, Stephen H

    2010-04-27

    To study whether C57BL/6J-Tyr/J (C2J) mouse embryonic stem (ES) cells can differentiate into retinal pigment epithelial (RPE) cells in vitro and then restore retinal function in a model for retinitis pigmentosa: Rpe65/Rpe65 C57BL6 mice. Yellow fluorescent protein (YFP)-labeled C2J ES cells were induced to differentiate into RPE-like structures on PA6 feeders. RPE-specific markers are expressed from differentiated cells in vitro. After differentiation, ES cell-derived RPE-like cells were transplanted into the subretinal space of postnatal day 5 Rpe65/Rpe65 mice. Live imaging of YFP-labeled C2J ES cells demonstrated survival of the graft. Electroretinograms (ERGs) were performed on transplanted mice to evaluate the functional outcome of transplantation. RPE-like cells derived from ES cells sequentially express multiple RPE-specific markers. After transplantation, YFP-labeled cells can be tracked with live imaging for as long as 7 months. Although more than half of the mice were complicated with retinal detachments or tumor development, one fourth of the mice showed increased electroretinogram responses in the transplanted eyes. Rpe65/Rpe65 mice transplanted with RPE-like cells showed significant visual recovery during a 7-month period, whereas those injected with saline, PA6 feeders, or undifferentiated ES cells showed no rescue. ES cells can differentiate, morphologically, and functionally, into RPE-like cells. Based on these findings, differentiated ES cells have the potential for the development of new therapeutic approaches for RPE-specific diseases such as certain forms of retinitis pigmentosa and macular degeneration. Nevertheless, stringent control of retinal detachment and teratoma development will be necessary before initiation of treatment trials.

  2. Eyeing the Cyr61/CTGF/NOV (CCN) group of genes in development and diseases: highlights of their structural likenesses and functional dissimilarities.

    PubMed

    Krupska, Izabela; Bruford, Elspeth A; Chaqour, Brahim

    2015-09-23

    "CCN" is an acronym referring to the first letter of each of the first three members of this original group of mammalian functionally and phylogenetically distinct extracellular matrix (ECM) proteins [i.e., cysteine-rich 61 (CYR61), connective tissue growth factor (CTGF), and nephroblastoma-overexpressed (NOV)]. Although "CCN" genes are unlikely to have arisen from a common ancestral gene, their encoded proteins share multimodular structures in which most cysteine residues are strictly conserved in their positions within several structural motifs. The CCN genes can be subdivided into members developmentally indispensable for embryonic viability (e.g., CCN1, 2 and 5), each assuming unique tissue-specific functions, and members not essential for embryonic development (e.g., CCN3, 4 and 6), probably due to a balance of functional redundancy and specialization during evolution. The temporo-spatial regulation of the CCN genes and the structural information contained within the sequences of their encoded proteins reflect diversity in their context and tissue-specific functions. Genetic association studies and experimental anomalies, replicated in various animal models, have shown that altered CCN gene structure or expression is associated with "injury" stimuli--whether mechanical (e.g., trauma, shear stress) or chemical (e.g., ischemia, hyperglycemia, hyperlipidemia, inflammation). Consequently, increased organ-specific susceptibility to structural damages ensues. These data underscore the critical functions of CCN proteins in the dynamics of tissue repair and regeneration and in the compensatory responses preceding organ failure. A better understanding of the regulation and mode of action of each CCN member will be useful in developing specific gain- or loss-of-function strategies for therapeutic purposes.

  3. Foxc2CreERT2 knock-in mice mark stage-specific Foxc2-expressing cells during mouse organogenesis.

    PubMed

    Amin, Mohammed Badrul; Miura, Naoyuki; Uddin, Mohammad Khaja Mafij; Islam, Mohammod Johirul; Yoshida, Nobuaki; Iseki, Sachiko; Kume, Tsutomu; Trainor, Paul A; Saitsu, Hirotomo; Aoto, Kazushi

    2017-01-01

    Foxc2, a member of the winged helix transcription factor family, is essential for eye, calvarial bone, cardiovascular and kidney development in mice. Nevertheless, how Foxc2-expressing cells and their descendent cells contribute to the development of these tissues and organs has not been elucidated. Here, we generated a Foxc2 knock-in (Foxc2 CreERT2 ) mouse, in which administration of estrogen receptor antagonist tamoxifen induces nuclear translocation of Cre recombinase in Foxc2-expressing cells. By crossing with ROSA-LacZ reporter mice (Foxc2 CreERT2 ; R26R), the fate of Foxc2 positive (Foxc2 + ) cells was analyzed through LacZ staining at various embryonic stages. We found Foxc2 + cell descendants in the supraoccipital and exoccipital bone in E18.5 embryos, when tamoxifen was administered at embryonic day (E) 8.5. Furthermore, Foxc2 + descendant cranial neural crest cells at E8-10 were restricted to the corneal mesenchyme, while Foxc2 + cell derived cardiac neural crest cells at E6-12 were found in the aorta, pulmonary trunk and valves, and endocardial cushions. Foxc2 + cell descendant contributions to the glomerular podocytes in the kidney were also observed following E6.5 tamoxifen treatment. Our results are consistent with previous reports of Foxc2 expression during early embryogenesis and the Foxc2 CreERT2 mouse provides a tool to investigate spatiotemporal roles of Foxc2 and contributions of Foxc2 + expressing cells during mouse embryogenesis. © 2016 Japanese Teratology Society.

  4. Transforming Growth Factor Beta (TGFβ1, TGFβ2 and TGFβ3) Null-Mutant Phenotypes in Embryonic Gonadal Development

    PubMed Central

    Memon, Mushtaq A.; Anway, Matthew D.; Covert, Trevor R.; Uzumcu, Mehmet; Skinner, Michael K.

    2008-01-01

    The role transforming growth factor beta (TGFb) isoforms TGFb1, TGFb2 and TGFb3 have in the regulation of embryonic gonadal development was investigated with the use of null-mutant (i.e. knockout) mice for each of the TGFb isoforms. Late embryonic gonadal development was investigated because homozygote TGFb null-mutant mice generally die around birth, with some embryonic loss as well. In the testis, the TGFb1 null-mutant mice had a decrease in the number of germ cells at birth, postnatal day 0 (P0). In the testis, the TGFb2 null-mutant mice had a decrease in the number of seminiferous cords at embryonic day 15 (E15). In the ovary, the TGFb2 null-mutant mice had an increase in the number of germ cells at P0. TGFb isoforms appear to have a role in gonadal development, but interactions between the isoforms is speculated to compensate in the different TGFb isoform null-mutant mice. PMID:18790002

  5. TEAD and YAP regulate the enhancer network of human embryonic pancreatic progenitors.

    PubMed

    Cebola, Inês; Rodríguez-Seguí, Santiago A; Cho, Candy H-H; Bessa, José; Rovira, Meritxell; Luengo, Mario; Chhatriwala, Mariya; Berry, Andrew; Ponsa-Cobas, Joan; Maestro, Miguel Angel; Jennings, Rachel E; Pasquali, Lorenzo; Morán, Ignasi; Castro, Natalia; Hanley, Neil A; Gomez-Skarmeta, Jose Luis; Vallier, Ludovic; Ferrer, Jorge

    2015-05-01

    The genomic regulatory programmes that underlie human organogenesis are poorly understood. Pancreas development, in particular, has pivotal implications for pancreatic regeneration, cancer and diabetes. We have now characterized the regulatory landscape of embryonic multipotent progenitor cells that give rise to all pancreatic epithelial lineages. Using human embryonic pancreas and embryonic-stem-cell-derived progenitors we identify stage-specific transcripts and associated enhancers, many of which are co-occupied by transcription factors that are essential for pancreas development. We further show that TEAD1, a Hippo signalling effector, is an integral component of the transcription factor combinatorial code of pancreatic progenitor enhancers. TEAD and its coactivator YAP activate key pancreatic signalling mediators and transcription factors, and regulate the expansion of pancreatic progenitors. This work therefore uncovers a central role for TEAD and YAP as signal-responsive regulators of multipotent pancreatic progenitors, and provides a resource for the study of embryonic development of the human pancreas.

  6. Complement anaphylatoxin C3a is a potent inducer of embryonic chick retina regeneration

    PubMed Central

    Haynes, Tracy; Luz-Madrigal, Agustin; Reis, Edimara S.; Echeverri Ruiz, Nancy P.; Grajales-Esquivel, Erika; Tzekou, Apostolia; Tsonis, Panagiotis A.; Lambris, John D.; Del Rio-Tsonis, Katia

    2013-01-01

    Identifying the initiation signals for tissue regeneration in vertebrates is one of the major challenges in regenerative biology. Much of the research thus far has indicated that certain growth factors have key roles. Here we show that complement fragment C3a is sufficient to induce complete regeneration of the embryonic chick retina from stem/progenitor cells present in the eye, independent of fibroblast growth factor receptor signaling. Instead, C3a induces retina regeneration via STAT3 activation, which in turn activates the injury- and inflammation-responsive factors, IL-6, IL-8 and TNF-α. This activation sets forth regulation of Wnt2b, Six3 and Sox2, genes associated with retina stem and progenitor cells. Thus, our results establish a mechanism for retina regeneration based on injury and inflammation signals. Furthermore, our results indicate a unique function for complement anaphylatoxins that implicate these molecules in the induction and complete regeneration of the retina, opening new avenues of experimentation in the field. PMID:23942241

  7. KEEPING AN EYE ON RETINOBLASTOMA CONTROL OF HUMAN EMBRYONIC STEM CELLS

    PubMed Central

    Conklin, Jamie F.; Sage, Julien

    2010-01-01

    Human embryonic stem cells (hESCs) hold great promise in regenerative medicine. However, before the full potential of these cells is achieved, major basic biological questions need to be addressed. In particular, there are still gaps in our knowledge of the molecular mechanisms underlying the derivation of hESCs from blastocysts, the regulation of the undifferentiated, pluripotent state, and the control of differentiation into specific lineages. Furthermore, we still do not fully understand the tumorigenic potential of hESCs, limiting their use in regenerative medicine. The RB pathway is a key signaling module that controls cellular proliferation, cell survival, chromatin structure, and cellular differentiation in mammalian cells. Members of the RB pathway are important regulators of hESC biology and manipulation of the activity of this pathway may provide novel means to control the fate of hESCs. Here we review what is known about the expression and function of members of the RB pathway in hESCs and discuss areas of interest in this field. PMID:19760644

  8. Utilization of ketone bodies by chick brain and spinal cord during embryonic and postnatal development.

    PubMed

    Linares, A; Caamaño, G J; Diaz, R; Gonzalez, F J; Garcia-Peregrin, E

    1993-10-01

    Lipid synthesis from acetoacetate and 3-hydroxybutyrate was studied in chick embryo from 15 to 21 days and in chick neonate from 1 to 21 days. Embryonic spinal cord showed higher ability than brain to incorporate acetoacetate into total lipids, although a sharp decrease was found at hatching. 3-Hydroxybutyrate incorporation into total lipids was also higher in spinal cord than in brain, especially during the embryonic period. Phospholipids were the main lipids formed in both tissues from both precursors. An appreciable percentage of radioactivity was also recovered as free cholesterol, especially during the embryonic phase. The developmental patterns of amino acid synthesis from acetoacetate and 3-hydroxybutyrate were similar in both tissues: a clear increase after hatching was followed by a decrease at day 4 of neonatal life. Acetoacetate was a better substrate for amino acid synthesis than 3-hydroxybutyrate during the embryonic development in both tissues. Oxidation of both precursors to CO2 strongly decreased between 15 and 21 days of embryonic development both in brain and spinal cord.

  9. PTBP1 Is Required for Embryonic Development before Gastrulation

    PubMed Central

    Suckale, Jakob; Wendling, Olivia; Masjkur, Jimmy; Jäger, Melanie; Münster, Carla; Anastassiadis, Konstantinos; Stewart, A. Francis; Solimena, Michele

    2011-01-01

    Polypyrimidine-tract binding protein 1 (PTBP1) is an important cellular regulator of messenger RNAs influencing the alternative splicing profile of a cell as well as its mRNA stability, location and translation. In addition, it is diverted by some viruses to facilitate their replication. Here, we used a novel PTBP1 knockout mouse to analyse the tissue expression pattern of PTBP1 as well as the effect of its complete removal during development. We found evidence of strong PTBP1 expression in embryonic stem cells and throughout embryonic development, especially in the developing brain and spinal cord, the olfactory and auditory systems, the heart, the liver, the kidney, the brown fat and cartilage primordia. This widespread distribution points towards a role of PTBP1 during embryonic development. Homozygous offspring, identified by PCR and immunofluorescence, were able to implant but were arrested or retarded in growth. At day 7.5 of embryonic development (E7.5) the null mutants were about 5x smaller than the control littermates and the gap in body size widened with time. At mid-gestation, all homozygous embryos were resorbed/degraded. No homozygous mice were genotyped at E12 and the age of weaning. Embryos lacking PTBP1 did not display differentiation into the 3 germ layers and cavitation of the epiblast, which are hallmarks of gastrulation. In addition, homozygous mutants displayed malformed ectoplacental cones and yolk sacs, both early supportive structure of the embryo proper. We conclude that PTBP1 is not required for the earliest isovolumetric divisions and differentiation steps of the zygote up to the formation of the blastocyst. However, further post-implantation development requires PTBP1 and stalls in homozygous null animals with a phenotype of dramatically reduced size and aberration in embryonic and extra-embryonic structures. PMID:21423341

  10. PTBP1 is required for embryonic development before gastrulation.

    PubMed

    Suckale, Jakob; Wendling, Olivia; Masjkur, Jimmy; Jäger, Melanie; Münster, Carla; Anastassiadis, Konstantinos; Stewart, A Francis; Solimena, Michele

    2011-02-17

    Polypyrimidine-tract binding protein 1 (PTBP1) is an important cellular regulator of messenger RNAs influencing the alternative splicing profile of a cell as well as its mRNA stability, location and translation. In addition, it is diverted by some viruses to facilitate their replication. Here, we used a novel PTBP1 knockout mouse to analyse the tissue expression pattern of PTBP1 as well as the effect of its complete removal during development. We found evidence of strong PTBP1 expression in embryonic stem cells and throughout embryonic development, especially in the developing brain and spinal cord, the olfactory and auditory systems, the heart, the liver, the kidney, the brown fat and cartilage primordia. This widespread distribution points towards a role of PTBP1 during embryonic development. Homozygous offspring, identified by PCR and immunofluorescence, were able to implant but were arrested or retarded in growth. At day 7.5 of embryonic development (E7.5) the null mutants were about 5x smaller than the control littermates and the gap in body size widened with time. At mid-gestation, all homozygous embryos were resorbed/degraded. No homozygous mice were genotyped at E12 and the age of weaning. Embryos lacking PTBP1 did not display differentiation into the 3 germ layers and cavitation of the epiblast, which are hallmarks of gastrulation. In addition, homozygous mutants displayed malformed ectoplacental cones and yolk sacs, both early supportive structure of the embryo proper. We conclude that PTBP1 is not required for the earliest isovolumetric divisions and differentiation steps of the zygote up to the formation of the blastocyst. However, further post-implantation development requires PTBP1 and stalls in homozygous null animals with a phenotype of dramatically reduced size and aberration in embryonic and extra-embryonic structures.

  11. CHALLENGES IN THE STUDY OF NEURONAL DIFFERENTIATION: A VIEW FROM THE EMBRYONIC EYE

    PubMed Central

    2005-01-01

    Progress in the study of the molecular mechanisms that regulate neuronal differentiation has been quite impressive in recent years, and promises to continue to an equally fast pace. This should not lead us into a sense of complacency, however, because there are still significant barriers that cannot be overcome by simply conducting the same type of experiments that we have been performing thus far. This article will describe some of these challenges, while highlighting the conceptual and methodological breakthroughs that will be necessary to overcome them. PMID:16110510

  12. Temporal and spatial expression of Drosophila DLGS97 during neural development.

    PubMed

    Albornoz, Valeria; Mendoza-Topaz, Carolina; Oliva, Carlos; Tello, Judith; Olguín, Patricio; Sierralta, Jimena

    2008-07-01

    The products of the Drosophila discs-large (dlg) gene are members of the MAGUK family of proteins, a group of proteins involved in localization, transport and recycling of receptors and channels in cell junctions, including the synapse. In vertebrates, four genes with multiple splice variants homologous to dlg are described. dlg originates two main proteins, DLGA, similar to the vertebrate neuronal protein PSD95, and DLGS97, similar to the vertebrate neuronal and epithelial protein SAP97. DLGA is expressed in epithelia, neural tissue and muscle. DLGS97 is expressed in neural tissue and muscle but not in epithelia. The distinctive difference between them is the presence in DLGS97 of an L27 domain. The differential expression between these variants makes the study of DLGS97 of key relevance to understand the in vivo role of synaptic MAGUKs in neurons. Here we present the temporal and spatial expression pattern of DLGS97 during embryonic and larval nervous system development, during eye development and in adult brain. Our results show that DLGS97 is expressed zygotically, in neurons in the embryo, larvae and adult, and is absent at all stages in glial cells. During eye development DLGS97 starts to be expressed in photoreceptor cells at early stages of differentiation and localizes basal to the basolateral junctions. In the brain, DLGS97 is expressed in the mushroom bodies and optic lobes at larval and adult stages; and in the antennal lobe in the adult stage. In addition we show that both, dlgS97 and dlgA transcripts, express during development multiple splice variants with differences in the use of exons in two sites.

  13. The role of sensory organs and the forebrain for the development of the craniofacial shape as revealed by Foxg1-cre mediated microRNA loss

    PubMed Central

    Kersigo, Jennifer; D’Angelo, Alex; Gray, Brian; Soukup, Garrett A.; Fritzsch, Bernd

    2011-01-01

    Cranial development is critically influenced by the relative growth of distinct elements. Previous studies have shown the transcription factor Foxg1 to be expressed is essential for development of telencephalon, olfactory epithelium, parts of the eye and the ear. Here we investigate the effects of a Foxg1-cre mediated conditional deletion of Dicer1 and microRNA (miRNA) on mouse embryos. We report the rapid and complete loss of the telencephalon and cerebellum as well as severe reduction in the ears and loss of the anterior half of the eyes. These losses result in unexpectedly limited malformations of anterodorsal aspects of the skull. We investigated the progressive disappearance of these initially developing structures and found a specific miRNA of nervous tissue, miR-124, to disappear prior to reduction in growth of the specific neurosensory areas. Correlated with the absence of miR-124, these areas showed numerous apoptotic cells that stained positive for anti-cleaved caspase 3 and the phosphatidylserine stain PSVue prior to the near or complete loss of those brain and sensory areas (forebrain, cerebellum, anterior retina, ear). We conclude that Foxg1-cre mediated conditional deletion of Dicer1 leads to absence of functional miRNA followed by complete or nearly complete loss of neurons. Embryonic neurosensory development therefore depends critically on miRNA. Our data suggest that loss of a given neuronal compartment can be triggered using early deletion of Dicer1 and thus provides a novel means to genetically remove specific neurosensory areas to investigate loss of their function on morphology (this study) or signal processing within the brain. PMID:21225654

  14. Analysis of 14-3-3 Family Member Function in Xenopus Embryos by Microinjection of Antisense Morpholino Oligos

    NASA Astrophysics Data System (ADS)

    Lau, Jeffrey M. C.; Muslin, Anthony J.

    The 14-3-3 intracellular phosphoserine/threonine-binding proteins are adapter molecules that regulate signal transduction, cell cycle, nutrient sensing, apoptotic, and cytoskeletal pathways. There are seven 14-3-3 family members, encoded by separate genes, in vertebrate organisms. To evaluate the role of individual 14-3-3 proteins in vertebrate embryonic development, we utilized an antisense morpholino oligo microinjection technique in Xenopus laevis embryos. By use of this method, we showed that embryos lacking specific 14-3-3 proteins displayed unique phenotypic abnormalities. Specifically, embryos lacking 14-3-3 τ exhibited gastrulation and axial patterning defects, but embryos lacking 14-3-3 γ exhibited eye defects without other abnormalities, and embryos lacking 14-3-3 ζ appeared completely normal. These and other results demonstrate the power and specificity of the morpholino antisense oligo microinjection technique.

  15. STS-70 Post Flight Presentation

    NASA Technical Reports Server (NTRS)

    Peterson, Glen (Editor)

    1995-01-01

    In this post-flight overview, the flight crew of the STS-70 mission, Tom Henricks (Cmdr.), Kevin Kregel (Pilot), Major Nancy Currie (MS), Dr. Mary Ellen Weber (MS), and Dr. Don Thomas (MS), discuss their mission and accompanying experiments. Pre-flight, launch, and orbital footage is followed by the in-orbit deployment of the Tracking and Data Relay Satellite (TDRS) and a discussion of the following spaceborne experiments: a microgravity bioreactor experiment to grow 3D body-like tissue; pregnant rat muscular changes in microgravity; embryonic development in microgravity; Shuttle Amateur Radio Experiment (SAREX); terrain surface imagery using the HERCULES camera; and a range of other physiological tests, including an eye and vision test. Views of Earth include: tropical storm Chantal; the Nile River and Red Sea; lightning over Brazil. A three planet view (Earth, Mars, and Venus) was taken right before sunrise. The end footage shows shuttle pre-landing checkout, entry, and landing, along with a slide presentation of the flight.

  16. The Maternal to Zygotic Transition in Mammals

    PubMed Central

    Li, Lei; Lu, Xukun; Dean, Jurrien

    2013-01-01

    Prior to activation of the embryonic genome, the initiating events of mammalian development are under maternal control and include fertilization, the block to polyspermy and processing sperm DNA. Following gamete union, the transcriptionally inert sperm DNA is repackaged into the male pronucleus which fuses with the female pronucleus to form a 1-cell zygote. Embryonic transcription begins during the maternal to zygotic transfer of control in directing development. This transition occurs at species-specific times after one or several rounds of blastomere cleavage and is essential for normal development. However, even after activation of the embryonic genome, successful development relies on stored maternal components without which embryos fail to progress beyond initial cell divisions. Better understanding of the molecular basis of maternal to zygotic transition including fertilization, the activation of the embryonic genome and cleavage-stage development will provide insight into early human development that should translate into clinical applications for regenerative medicine and assisted reproductive technologies. PMID:23352575

  17. Genome-Wide Identification and Expression of Xenopus F-Box Family of Proteins.

    PubMed

    Saritas-Yildirim, Banu; Pliner, Hannah A; Ochoa, Angelica; Silva, Elena M

    2015-01-01

    Protein degradation via the multistep ubiquitin/26S proteasome pathway is a rapid way to alter the protein profile and drive cell processes and developmental changes. Many key regulators of embryonic development are targeted for degradation by E3 ubiquitin ligases. The most studied family of E3 ubiquitin ligases is the SCF ubiquitin ligases, which use F-box adaptor proteins to recognize and recruit target proteins. Here, we used a bioinformatics screen and phylogenetic analysis to identify and annotate the family of F-box proteins in the Xenopus tropicalis genome. To shed light on the function of the F-box proteins, we analyzed expression of F-box genes during early stages of Xenopus development. Many F-box genes are broadly expressed with expression domains localized to diverse tissues including brain, spinal cord, eye, neural crest derivatives, somites, kidneys, and heart. All together, our genome-wide identification and expression profiling of the Xenopus F-box family of proteins provide a foundation for future research aimed to identify the precise role of F-box dependent E3 ubiquitin ligases and their targets in the regulatory circuits of development.

  18. A Novel Approach for Studying the Temporal Modulation of Embryonic Skeletal Development Using Organotypic Bone Cultures and Microcomputed Tomography

    PubMed Central

    Smith, Emma L.; Roberts, Carol A.

    2012-01-01

    Understanding the structural development of embryonic bone in a three dimensional framework is fundamental to developing new strategies for the recapitulation of bone tissue in latter life. We present an innovative combined approach of an organotypic embryonic femur culture model, microcomputed tomography (μCT) and immunohistochemistry to examine the development and modulation of the three dimensional structures of the developing embryonic femur. Isolated embryonic chick femurs were organotypic (air/liquid interface) cultured for 10 days in either basal, chondrogenic, or osteogenic supplemented culture conditions. The growth development and modulating effects of basal, chondrogenic, or osteogenic culture media of the embryonic chick femurs was investigated using μCT, immunohistochemistry, and histology. The growth and development of noncultured embryonic chick femur stages E10, E11, E12, E13, E15, and E17 were very closely correlated with increased morphometric indices of bone formation as determined by μCT. After 10 days in the organotpyic culture set up, the early aged femurs (E10 and E11) demonstrated a dramatic response to the chondrogenic or osteogenic culture conditions compared to the basal cultured femurs as determined by a change in μCT morphometric indices and modified expression of chondrogenic and osteogenic markers. Although the later aged femurs (E12 and E13) increased in size and structure after 10 days organotpypic culture, the effects of the osteogenic and chondrogenic organotypic cultures on these femurs were not significantly altered compared to basal conditions. We have demonstrated that the embryonic chick femur organotpyic culture model combined with the μCT and immunohistochemical analysis can provide an integral methodology for investigating the modulation of bone development in an ex vivo culture setting. Hence, these interdisciplinary techniques of μCT and whole organ bone cultures will enable us to delineate some of the temporal, structural developmental paradigms and modulation of bone tissue formation to underpin innovative skeletal regenerative technology for clinical therapeutic strategies in musculoskeletal trauma and diseases. PMID:22472170

  19. Development and maintenance of a telescoping debris flow fan in response to human-induced fan surface channelization, Chalk Creek Valley Natural Debris Flow Laboratory, Colorado, USA

    NASA Astrophysics Data System (ADS)

    Wasklewicz, T.; Scheinert, C.

    2016-01-01

    Channel change has been a constant theme throughout William L. Graf's research career. Graf's work has examined channel changes in the context of natural environmental fluctuations, but more often has focused on quantifying channel change in the context of anthropogenic modifications. Here, we consider how channelization of a debris flows along a bajada has perpetuated and sustained the development of 'telescoping' alluvial fan. Two-dimensional debris-flow modeling shows the importance of the deeply entrenched channelized flow in the development of a telescoping alluvial fan. GIS analyses of repeat (five different debris flows), high-resolution (5 cm) digital elevation models (DEMs) generated from repeat terrestrial laser scanning (TLS) data elucidate sediment and topographic dynamics of the new telescoping portion of the alluvial fan (the embryonic fan). Flow constriction from channelization helps to perpetuate debris-flow runout and to maintain the embryonic fan and telescoping nature of the alluvial fan complex. Embryonic fan development, in response to five debris flows, proceeds with a major portion of the flows depositing on the southern portion of the embryonic fan. The third through the fifth debris flows also begin to shift some deposition to the northern portion of the embryonic. The transfer of sediment from a higher portion of the embryonic fan to a lower portion continues currently on the embryonic fan. While channelized flow has been shown to be critical to the maintenance of the telescoping fan, the flow constriction has led to higher than background levels of sediment deposition in Chalk Creek, a tributary of the Arkansas River. A majority of the sediment from each debris flow is incorporated into Chalk Creek as opposed to being stored on the embryonic fan.

  20. Transcriptional profiles of bovine in vivo pre-implantation development.

    PubMed

    Jiang, Zongliang; Sun, Jiangwen; Dong, Hong; Luo, Oscar; Zheng, Xinbao; Obergfell, Craig; Tang, Yong; Bi, Jinbo; O'Neill, Rachel; Ruan, Yijun; Chen, Jingbo; Tian, Xiuchun Cindy

    2014-09-04

    During mammalian pre-implantation embryonic development dramatic and orchestrated changes occur in gene transcription. The identification of the complete changes has not been possible until the development of the Next Generation Sequencing Technology. Here we report comprehensive transcriptome dynamics of single matured bovine oocytes and pre-implantation embryos developed in vivo. Surprisingly, more than half of the estimated 22,000 bovine genes, 11,488 to 12,729 involved in more than 100 pathways, is expressed in oocytes and early embryos. Despite the similarity in the total numbers of genes expressed across stages, the nature of the expressed genes is dramatically different. A total of 2,845 genes were differentially expressed among different stages, of which the largest change was observed between the 4- and 8-cell stages, demonstrating that the bovine embryonic genome is activated at this transition. Additionally, 774 genes were identified as only expressed/highly enriched in particular stages of development, suggesting their stage-specific roles in embryogenesis. Using weighted gene co-expression network analysis, we found 12 stage-specific modules of co-expressed genes that can be used to represent the corresponding stage of development. Furthermore, we identified conserved key members (or hub genes) of the bovine expressed gene networks. Their vast association with other embryonic genes suggests that they may have important regulatory roles in embryo development; yet, the majority of the hub genes are relatively unknown/under-studied in embryos. We also conducted the first comparison of embryonic expression profiles across three mammalian species, human, mouse and bovine, for which RNA-seq data are available. We found that the three species share more maternally deposited genes than embryonic genome activated genes. More importantly, there are more similarities in embryonic transcriptomes between bovine and humans than between humans and mice, demonstrating that bovine embryos are better models for human embryonic development. This study provides a comprehensive examination of gene activities in bovine embryos and identified little-known potential master regulators of pre-implantation development.

  1. Endothelin-1 signalling controls early embryonic heart rate in vitro and in vivo.

    PubMed

    Karppinen, S; Rapila, R; Mäkikallio, K; Hänninen, S L; Rysä, J; Vuolteenaho, O; Tavi, P

    2014-02-01

    Spontaneous activity of embryonic cardiomyocytes originates from sarcoplasmic reticulum (SR) Ca(2+) release during early cardiogenesis. However, the regulation of heart rate during embryonic development is still not clear. The aim of this study was to determine how endothelin-1 (ET-1) affects the heart rate of embryonic mice, as well as the pathway through which it exerts its effects. The effects of ET-1 and ET-1 receptor inhibition on cardiac contraction were studied using confocal Ca(2+) imaging of isolated mouse embryonic ventricular cardiomyocytes and ultrasonographic examination of embryonic cardiac contractions in utero. In addition, the amount of ET-1 peptide and ET receptor a (ETa) and b (ETb) mRNA levels were measured during different stages of development of the cardiac muscle. High ET-1 concentration and expression of both ETa and ETb receptors was observed in early cardiac tissue. ET-1 was found to increase the frequency of spontaneous Ca(2+) oscillations in E10.5 embryonic cardiomyocytes in vitro. Non-specific inhibition of ET receptors with tezosentan caused arrhythmia and bradycardia in isolated embryonic cardiomyocytes and in whole embryonic hearts both in vitro (E10.5) and in utero (E12.5). ET-1-mediated stimulation of early heart rate was found to occur via ETb receptors and subsequent inositol trisphosphate receptor activation and increased SR Ca(2+) leak. Endothelin-1 is required to maintain a sufficient heart rate, as well as to prevent arrhythmia during early development of the mouse heart. This is achieved through ETb receptor, which stimulates Ca(2+) leak through IP3 receptors. © 2013 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  2. Identification and Characterization of Long Non-Coding RNAs Related to Mouse Embryonic Brain Development from Available Transcriptomic Data

    PubMed Central

    He, Hongjuan; Xiu, Youcheng; Guo, Jing; Liu, Hui; Liu, Qi; Zeng, Tiebo; Chen, Yan; Zhang, Yan; Wu, Qiong

    2013-01-01

    Long non-coding RNAs (lncRNAs) as a key group of non-coding RNAs have gained widely attention. Though lncRNAs have been functionally annotated and systematic explored in higher mammals, few are under systematical identification and annotation. Owing to the expression specificity, known lncRNAs expressed in embryonic brain tissues remain still limited. Considering a large number of lncRNAs are only transcribed in brain tissues, studies of lncRNAs in developmental brain are therefore of special interest. Here, publicly available RNA-sequencing (RNA-seq) data in embryonic brain are integrated to identify thousands of embryonic brain lncRNAs by a customized pipeline. A significant proportion of novel transcripts have not been annotated by available genomic resources. The putative embryonic brain lncRNAs are shorter in length, less spliced and show less conservation than known genes. The expression of putative lncRNAs is in one tenth on average of known coding genes, while comparable with known lncRNAs. From chromatin data, putative embryonic brain lncRNAs are associated with active chromatin marks, comparable with known lncRNAs. Embryonic brain expressed lncRNAs are also indicated to have expression though not evident in adult brain. Gene Ontology analysis of putative embryonic brain lncRNAs suggests that they are associated with brain development. The putative lncRNAs are shown to be related to possible cis-regulatory roles in imprinting even themselves are deemed to be imprinted lncRNAs. Re-analysis of one knockdown data suggests that four regulators are associated with lncRNAs. Taken together, the identification and systematic analysis of putative lncRNAs would provide novel insights into uncharacterized mouse non-coding regions and the relationships with mammalian embryonic brain development. PMID:23967161

  3. The ‘Ventral Organs’ of Pycnogonida (Arthropoda) Are Neurogenic Niches of Late Embryonic and Post-Embryonic Nervous System Development

    PubMed Central

    Brenneis, Georg; Scholtz, Gerhard

    2014-01-01

    Early neurogenesis in arthropods has been in the focus of numerous studies, its cellular basis, spatio-temporal dynamics and underlying genetic network being by now comparably well characterized for representatives of chelicerates, myriapods, hexapods and crustaceans. By contrast, neurogenesis during late embryonic and/or post-embryonic development has received less attention, especially in myriapods and chelicerates. Here, we apply (i) immunolabeling, (ii) histology and (iii) scanning electron microscopy to study post-embryonic ventral nerve cord development in Pseudopallene sp., a representative of the sea spiders (Pycnogonida), the presumable sister group of the remaining chelicerates. During early post-embryonic development, large neural stem cells give rise to additional ganglion cell material in segmentally paired invaginations in the ventral ectoderm. These ectodermal cell regions – traditionally designated as ‘ventral organs’ – detach from the surface into the interior and persist as apical cell clusters on the ventral ganglion side. Each cluster is a post-embryonic neurogenic niche that features a tiny central cavity and initially still houses larger neural stem cells. The cluster stays connected to the underlying ganglionic somata cortex via an anterior and a posterior cell stream. Cell proliferation remains restricted to the cluster and streams, and migration of newly produced cells along the streams seems to account for increasing ganglion cell numbers in the cortex. The pycnogonid cluster-stream-systems show striking similarities to the life-long neurogenic system of decapod crustaceans, and due to their close vicinity to glomerulus-like neuropils, we consider their possible involvement in post-embryonic (perhaps even adult) replenishment of olfactory neurons – as in decapods. An instance of a potentially similar post-embryonic/adult neurogenic system in the arthropod outgroup Onychophora is discussed. Additionally, we document two transient posterior ganglia in the ventral nerve cord of Pseudopallene sp. and evaluate this finding in light of the often discussed reduction of a segmented ‘opisthosoma’ during pycnogonid evolution. PMID:24736377

  4. Virtual reality imaging techniques in the study of embryonic and early placental health.

    PubMed

    Rousian, Melek; Koster, Maria P H; Mulders, Annemarie G M G J; Koning, Anton H J; Steegers-Theunissen, Régine P M; Steegers, Eric A P

    2018-04-01

    Embryonic and placental growth and development in the first trimester of pregnancy have impact on the health of the fetus, newborn, child and even the adult. This emphasizes the importance of this often neglected period in life. The development of three-dimensional transvaginal ultrasonography in combination with virtual reality (VR) opens the possibility of accurate and reliable visualization of embryonic and placental structures with real depth perception. These techniques enable new biometry and volumetry measurements that contribute to the knowledge of the (patho)physiology of embryonic and early placental health. Examples of such measurements are the length of complex structures like the umbilical cord, vitelline duct, limbs and cerebellum or the volume of the whole embryo and brain cavities. Moreover, for the first time, embryos can now be staged in vivo (Carnegie stages) and vasculature volumes of both the embryo and the early placenta can be measured when VR is combined with power Doppler signals. These innovative developments have already been used to study associations between periconceptional maternal factors, such as age, smoking, alcohol use, diet and vitamin status, and embryonic and early placental growth and development. Future studies will also focus on the identification of abnormal embryonic and early placental development already in the earliest weeks of pregnancy, which provides opportunities for early prevention of pregnancy complications. Copyright © 2018 IFPA, Elsevier Ltd. Published by Elsevier Ltd.. All rights reserved.

  5. Dietary genistein supplementation in laying broiler breeder hens alters the development and metabolism of offspring embryos as revealed by hepatic transcriptome analysis.

    PubMed

    Lv, Zengpeng; Fan, Hao; Zhang, Beibei; Ning, Chao; Xing, Kun; Guo, Yuming

    2018-03-08

    Genistein (GEN) is a type of isoflavone mainly derived from soy products. In this experiment, we added 40 and 400 mg/kg GEN to the diet of laying broiler breeder hens to clarify the maternal effects of GEN on the development and metabolism of chick embryos. GEN treatment at 40 mg/kg increased embryonic length, weight, and liver index, as well as the width of the proliferative zone in the tibial growth plate of chick embryos. Gene ontology (GO) cluster analysis of the hepatic transcriptome showed that GEN treatment promoted embryonic development and cell proliferation. Low-dose GEN treatment increased insulin growth factor-binding protein (IGFBP)3 mRNA expression in the embryonic liver, whereas high-dose GEN treatment increased IGFBP5 expression and activated the apoptosis and protein tyrosine kinase signaling pathways. Furthermore, adding supplemental GEN to the diet of hens promoted the glycolysis process in the embryonic liver through the insulin-signaling pathway, upregulated target genes (phosphoglucomutase-2, hexokinase 1, dihydroxyacetone phosphate by aldolase, phosphofructokinase, platelet, and enolase 2), and enhanced the transport of carboxylic acids and cholesterol and the synthesis of unsaturated fatty acid (arachidonic acid) in the embryonic liver through upregulation of liver X receptor, sterol regulatory element-binding protein 1, and patatin-like phospholipase A. Additionally, GEN treatment increased fatty acid β-oxidation and Na + /K + -ATPase activity in the embryonic liver through activation of peroxisome proliferator-activated receptors (PPARs; PPARα and PPARδ) and the AMPK signaling pathway, which could provide energy for embryonic development. In addition, GEN treatment in hens increased superoxide dismutase activity and metallothionein expression in the chick embryonic liver and promoted lymphocyte proliferation through upregulation of mRNA expression of CDKN1A, IL12RB1, Sox11, PRKAR1A, PRKCQ, and TCF3. The improved immunity and antioxidant capacity, as a result of maternal GEN effects, was conducive to embryonic development. In conclusion, the addition of GEN to the diet of laying broiler breeder hens significantly promoted the development and metabolism of chick embryos.-Lv, Z., Fan, H., Zhang, B., Ning, C., Xing, K., Guo, Y. Dietary genistein supplementation in laying broiler breeder hens alters the development and metabolism of offspring embryos as revealed by hepatic transcriptome analysis.

  6. Embryonic Cerebrospinal Fluid Increases Neurogenic Activity in the Brain Ventricular-Subventricular Zone of Adult Mice.

    PubMed

    Alonso, Maria I; Lamus, Francisco; Carnicero, Estela; Moro, Jose A; de la Mano, Anibal; Fernández, Jose M F; Desmond, Mary E; Gato, Angel

    2017-01-01

    Neurogenesis is a very intensive process during early embryonic brain development, becoming dramatically restricted in the adult brain in terms of extension and intensity. We have previously demonstrated the key role of embryonic cerebrospinal fluid (CSF) in developing brain neurogenic activity. We also showed that cultured adult brain neural stem cells (NSCs) remain competent when responding to the neurogenic influence of embryonic CSF. However, adult CSF loses its neurogenic inductive properties. Here, by means of an organotypic culture of adult mouse brain sections, we show that local administration of embryonic CSF in the subventricular zone (SVZ) niche is able to trigger a neurogenic program in NSCs. This leads to a significant increase in the number of non-differentiated NSCs, and also in the number of new neurons which show normal migration, differentiation and maturation. These new data reveal that embryonic CSF activates adult brain NSCs, supporting the previous idea that it contains key instructive components which could be useful in adult brain neuroregenerative strategies.

  7. Embryonic Cerebrospinal Fluid Increases Neurogenic Activity in the Brain Ventricular-Subventricular Zone of Adult Mice

    PubMed Central

    Alonso, Maria I.; Lamus, Francisco; Carnicero, Estela; Moro, Jose A.; de la Mano, Anibal; Fernández, Jose M. F.; Desmond, Mary E.; Gato, Angel

    2017-01-01

    Neurogenesis is a very intensive process during early embryonic brain development, becoming dramatically restricted in the adult brain in terms of extension and intensity. We have previously demonstrated the key role of embryonic cerebrospinal fluid (CSF) in developing brain neurogenic activity. We also showed that cultured adult brain neural stem cells (NSCs) remain competent when responding to the neurogenic influence of embryonic CSF. However, adult CSF loses its neurogenic inductive properties. Here, by means of an organotypic culture of adult mouse brain sections, we show that local administration of embryonic CSF in the subventricular zone (SVZ) niche is able to trigger a neurogenic program in NSCs. This leads to a significant increase in the number of non-differentiated NSCs, and also in the number of new neurons which show normal migration, differentiation and maturation. These new data reveal that embryonic CSF activates adult brain NSCs, supporting the previous idea that it contains key instructive components which could be useful in adult brain neuroregenerative strategies. PMID:29311854

  8. Early Cambrian Pentamerous Cubozoan Embryos from South China

    PubMed Central

    Han, Jian; Kubota, Shin; Li, Guoxiang; Yao, Xiaoyong; Yang, Xiaoguang; Shu, Degan; Li, Yong; Kinoshita, Shunichi; Sasaki, Osamu; Komiya, Tsuyoshi; Yan, Gang

    2013-01-01

    Background Extant cubozoans are voracious predators characterized by their square shape, four evenly spaced outstretched tentacles and well-developed eyes. A few cubozoan fossils are known from the Middle Cambrian Marjum Formation of Utah and the well-known Carboniferous Mazon Creek Formation of Illinois. Undisputed cubozoan fossils were previously unknown from the early Cambrian; by that time probably all representatives of the living marine phyla, especially those of basal animals, should have evolved. Methods Microscopic fossils were recovered from a phosphatic limestone in the Lower Cambrian Kuanchuanpu Formation of South China using traditional acetic-acid maceration. Seven of the pre-hatched pentamerous cubozoan embryos, each of which bears five pairs of subumbrellar tentacle buds, were analyzed in detail through computed microtomography (Micro-CT) and scanning electron microscopy (SEM) without coating. Results The figured microscopic fossils are unequivocal pre-hatching embryos based on their spherical fertilization envelope and the enclosed soft-tissue that has preserved key anatomical features arranged in perfect pentaradial symmetry, allowing detailed comparison with modern cnidarians, especially medusozoans. A combination of features, such as the claustrum, gonad-lamella, suspensorium and velarium suspended by the frenula, occur exclusively in the gastrovascular system of extant cubozoans, indicating a cubozoan affinity for these fossils. Additionally, the interior anatomy of these embryonic cubozoan fossils unprecedentedly exhibits the development of many new septum-derived lamellae and well-partitioned gastric pockets unknown in living cubozoans, implying that ancestral cubozoans had already evolved highly specialized structures displaying unexpected complexity at the dawn of the Cambrian. The well-developed endodermic lamellae and gastric pockets developed in the late embryonic stages of these cubozoan fossils are comparable with extant pelagic juvenile cubomedusae rather than sessile cubopolyps, whcih indicates a direct development in these fossil taxa, lacking characteristic stages of a typical cnidarian metagenesis such as planktonic planula and sessile polyps. PMID:23950993

  9. Microfluidic-based patterning of embryonic stem cells for in vitro development studies.

    PubMed

    Suri, Shalu; Singh, Ankur; Nguyen, Anh H; Bratt-Leal, Andres M; McDevitt, Todd C; Lu, Hang

    2013-12-07

    In vitro recapitulation of mammalian embryogenesis and examination of the emerging behaviours of embryonic structures require both the means to engineer complexity and accurately assess phenotypes of multicellular aggregates. Current approaches to study multicellular populations in 3D configurations are limited by the inability to create complex (i.e. spatially heterogeneous) environments in a reproducible manner with high fidelity thus impeding the ability to engineer microenvironments and combinations of cells with similar complexity to that found during morphogenic processes such as development, remodelling and wound healing. Here, we develop a multicellular embryoid body (EB) fusion technique as a higher-throughput in vitro tool, compared to a manual assembly, to generate developmentally relevant embryonic patterns. We describe the physical principles of the EB fusion microfluidic device design; we demonstrate that >60 conjoined EBs can be generated overnight and emulate a development process analogous to mouse gastrulation during early embryogenesis. Using temporal delivery of bone morphogenic protein 4 (BMP4) to embryoid bodies, we recapitulate embryonic day 6.5 (E6.5) during mouse embryo development with induced mesoderm differentiation in murine embryonic stem cells leading to expression of Brachyury-T-green fluorescent protein (T-GFP), an indicator of primitive streak development and mesoderm differentiation during gastrulation. The proposed microfluidic approach could be used to manipulate hundreds or more of individual embryonic cell aggregates in a rapid fashion, thereby allowing controlled differentiation patterns in fused multicellular assemblies to generate complex yet spatially controlled microenvironments.

  10. Microfluidic-based patterning of embryonic stem cells for in vitro development studies

    PubMed Central

    Suri, Shalu; Singh, Ankur; Nguyen, Anh H.; Bratt-Leal, Andres M.; McDevitt, Todd C.

    2013-01-01

    In vitro recapitulation of mammalian embryogenesis and examination of the emerging behaviours of embryonic structures require both the means to engineer complexity and accurately assess phenotypes of multicellular aggregates. Current approaches to study multicellular populations in 3D configurations are limited by the inability to create complex (i.e. spatially heterogeneous) environments in a reproducible manner with high fidelity thus impeding the ability to engineer microenvironments and combinations of cells with similar complexity to that found during morphogenic processes such as development, remodelling and wound healing. Here, we develop a multicellular embryoid body (EB) fusion technique as a higher-throughput in vitro tool, compared to a manual assembly, to generate developmentally relevant embryonic patterns. We describe the physical principles of the EB fusion microfluidic device design; we demonstrate that >60 conjoined EBs can be generated overnight and emulate a development process analogous to mouse gastrulation during early embryogenesis. Using temporal delivery of bone morphogenic protein 4 (BMP4) to embryoid bodies, we recapitulate embryonic day 6.5 (E6.5) during mouse embryo development with induced mesoderm differentiation in murine embryonic stem cells leading to expression of Brachyury-T-green fluorescent protein (T-GFP), an indicator of primitive streak development and mesoderm differentiation during gastrulation. The proposed microfluidic approach could be used to manipulate hundreds or more of individual embryonic cell aggregates in a rapid fashion, thereby allowing controlled differentiation patterns in fused multicellular assemblies to generate complex yet spatially controlled microenvironments. PMID:24113509

  11. Nuclear receptor TLX regulates cell cycle progression in neural stem cells of the developing brain.

    PubMed

    Li, Wenwu; Sun, Guoqiang; Yang, Su; Qu, Qiuhao; Nakashima, Kinichi; Shi, Yanhong

    2008-01-01

    TLX is an orphan nuclear receptor that is expressed exclusively in vertebrate forebrains. Although TLX is known to be expressed in embryonic brains, the mechanism by which it influences neural development remains largely unknown. We show here that TLX is expressed specifically in periventricular neural stem cells in embryonic brains. Significant thinning of neocortex was observed in embryonic d 14.5 TLX-null brains with reduced nestin labeling and decreased cell proliferation in the germinal zone. Cell cycle analysis revealed both prolonged cell cycles and increased cell cycle exit in TLX-null embryonic brains. Increased expression of a cyclin-dependent kinase inhibitor p21 and decreased expression of cyclin D1 provide a molecular basis for the deficiency of cell cycle progression in embryonic brains of TLX-null mice. Furthermore, transient knockdown of TLX by in utero electroporation led to precocious cell cycle exit and differentiation of neural stem cells followed by outward migration. Together these results indicate that TLX plays an important role in neural development by regulating cell cycle progression and exit of neural stem cells in the developing brain.

  12. Nuclear Receptor TLX Regulates Cell Cycle Progression in Neural Stem Cells of the Developing Brain

    PubMed Central

    Li, Wenwu; Sun, Guoqiang; Yang, Su; Qu, Qiuhao; Nakashima, Kinichi; Shi, Yanhong

    2008-01-01

    TLX is an orphan nuclear receptor that is expressed exclusively in vertebrate forebrains. Although TLX is known to be expressed in embryonic brains, the mechanism by which it influences neural development remains largely unknown. We show here that TLX is expressed specifically in periventricular neural stem cells in embryonic brains. Significant thinning of neocortex was observed in embryonic d 14.5 TLX-null brains with reduced nestin labeling and decreased cell proliferation in the germinal zone. Cell cycle analysis revealed both prolonged cell cycles and increased cell cycle exit in TLX-null embryonic brains. Increased expression of a cyclin-dependent kinase inhibitor p21 and decreased expression of cyclin D1 provide a molecular basis for the deficiency of cell cycle progression in embryonic brains of TLX-null mice. Furthermore, transient knockdown of TLX by in utero electroporation led to precocious cell cycle exit and differentiation of neural stem cells followed by outward migration. Together these results indicate that TLX plays an important role in neural development by regulating cell cycle progression and exit of neural stem cells in the developing brain. PMID:17901127

  13. Type 1 and 3 inositol trisphosphate receptors are required for extra-embryonic vascular development.

    PubMed

    Uchida, Keiko; Nakazawa, Maki; Yamagishi, Chihiro; Mikoshiba, Katsuhiko; Yamagishi, Hiroyuki

    2016-10-01

    The embryonic-maternal interface of the placental labyrinth, allantois, and yolk sac are vital during embryogenesis; however, the precise mechanism underlying the vascularization of these structures remains unknown. Herein we focus on the role of inositol 1,4,5-trisphosphate (IP3) receptors (IP3R), which are intracellular Ca(2+) release channels, in placentation. Double knockout (DKO) of type 1 and 3 IP3Rs (IP3R1 and IP3R3, respectively) in mice resulted in embryonic lethality around embryonic day (E) 11.5. Because IP3R1 and IP3R3 were co-expressed in endothelial cells in the labyrinth, allantois, and yolk sac, we investigated extra-embryonic vascular development in IP3R1- and IP3R3-DKO mice. The formation of chorionic plates and yolk sac vessels seemed dysregulated around the timing of the chorio-allantoic attachment, immediately followed by the disorganization of allantoic vessels, the decreased expression of the spongiotrophoblast cell marker Tpbpa and the growth retardation of the embryos in DKO mice. Fluorescent immunohistochemistry demonstrated downregulation of a vascular endothelial marker, CD31, in labyrinth embryonic vessels and poor elongation of extra-embryonic mesoderm into the labyrinth layer in DKO placenta, whereas the branching of the DKO chorionic trophoblast was initiated. In addition, allantoic and yolk sac vessels in extra-embryonic tissues were less remodeled in DKO mice. In vitro endothelial cord formation and migration activities of cultured vascular endothelial cells derived from human umbilical vein were downregulated under the inhibition of IP3R. Our results suggest that IP3R1 and IP3R3 are required for extra-embryonic vascularization in the placenta, allantois, and yolk sac. This is the first demonstration of the essential role of IP3/IP3Rs signaling in the development of the vasculature at the embryonic-maternal interface. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Embryonic integument and "molts" in Manduca sexta (Insecta, Lepidoptera).

    PubMed

    Ziese, Stefanie; Dorn, August

    2003-02-01

    In Manduca sexta the germ band is formed 12 h post-oviposition (p.o.) (=10% development completed) and is located above the yolk at the egg surface. The cells show a polar organization. They are engaged in the uptake and degradation of yolk globules, pinched off from the yolk cells. This process can be observed in the integumental cells during the first growth phase of the embryo that lasts until "katatrepsis," an embryonic movement that takes place at 40% development completed. At 37% development completed, the ectoderm deposits a thin membrane at its apical surface, the first embryonic membrane, which detaches immediately before katatrepsis. The second period of embryonic growth--from katatrepsis to 84 h p.o. (70% development completed)--starts with the deposition of a second embryonic membrane that is somewhat thicker than the first one and shows a trilaminar, cuticulin-like structure. Whereas the apical cell surface is largely smooth during the deposition of the first embryonic membrane, it forms microvilli during deposition of the second one. At the same time, uptake of formed yolk material ceases and the epidermal cells now contain clusters of mitochondria below the apical surface. Rough endoplasmic reticulum (RER) increases in the perinuclear region. The second embryonic membrane detaches about 63 h p.o. At 69 h p.o., a new generation of microvilli forms and islands of a typical cuticulin layer indicate the onset of the deposition of the larval cuticle. The third growth phase is characterized by a steady increase in the embryo length, the deposition of the larval procuticle, and by cuticular tanning at about 100 h p.o. Beginning at that stage, electron-lucent vesicles aggregate below the epidermal surface and are apparently released below the larval cuticle. Manduca sexta is the first holometabolous insect in which the deposition of embryonic membranes and cuticles has been examined by electron microscopy. In correspondence with hemimetabolous insects, the embryo of M. sexta secretes three covers at approximately the same developmental stage. A marked difference: the second embryonic cover, which in Hemimetabola clearly exhibits a cuticular organization, has instead a membranous, cuticulin-like structure. We see the difference as the result of an evolutionary reductional process promoted by the redundancy of embryonic covers in the egg shell. Embryonic "molts" also occur in noninsect arthropods; their phylogenetical aspects are discussed. Copyright 2002 Wiley-Liss, Inc.

  15. Experimental evaluation of reproductive response to climate warming in an oviparous skink.

    PubMed

    Lu, Hongliang; Wang, Yong; Tang, Wenqi; DU, Weiguo

    2013-06-01

    The impact of climate warming on organisms is increasingly being recognized. The experimental evaluation of phenotypically plastic responses to warming is a critical step in understanding the biological effects and adaptive capacity of organisms to future climate warming. Oviparous Scincella modesta live in deeply-shaded habitats and they require low optimal temperatures during embryonic development, which makes them suitable subjects for testing the effects of warming on reproduction. We raised adult females and incubated their eggs under different thermal conditions that mimicked potential climate warming. Female reproduction, embryonic development and hatchling traits were monitored to evaluate the reproductive response to warming. Experimental warming induced females to lay eggs earlier, but it did not affect the developmental stage of embryos at oviposition or the reproductive output. The high temperatures experienced by gravid females during warming treatments reduced the incubation period and increased embryonic mortality. The locomotor performance of hatchlings was not affected by the maternal thermal environment, but it was affected by the warming treatment during embryonic development. Our results suggest that climate warming might have a profound effect on fitness-relevant traits both at embryonic and post-embryonic stages in oviparous lizards. © 2012 Wiley Publishing Asia Pty Ltd, ISZS and IOZ/CAS.

  16. Promotion of human early embryonic development and blastocyst outgrowth in vitro using autocrine/paracrine growth factors.

    PubMed

    Kawamura, Kazuhiro; Chen, Yuan; Shu, Yimin; Cheng, Yuan; Qiao, Jie; Behr, Barry; Pera, Renee A Reijo; Hsueh, Aaron J W

    2012-01-01

    Studies using animal models demonstrated the importance of autocrine/paracrine factors secreted by preimplantation embryos and reproductive tracts for embryonic development and implantation. Although in vitro fertilization-embryo transfer (IVF-ET) is an established procedure, there is no evidence that present culture conditions are optimal for human early embryonic development. In this study, key polypeptide ligands known to be important for early embryonic development in animal models were tested for their ability to improve human early embryo development and blastocyst outgrowth in vitro. We confirmed the expression of key ligand/receptor pairs in cleavage embryos derived from discarded human tri-pronuclear zygotes and in human endometrium. Combined treatment with key embryonic growth factors (brain-derived neurotrophic factor, colony-stimulating factor, epidermal growth factor, granulocyte macrophage colony-stimulating factor, insulin-like growth factor-1, glial cell-line derived neurotrophic factor, and artemin) in serum-free media promoted >2.5-fold the development of tri-pronuclear zygotes to blastocysts. For normally fertilized embryos, day 3 surplus embryos cultured individually with the key growth factors showed >3-fold increases in the development of 6-8 cell stage embryos to blastocysts and >7-fold increase in the proportion of high quality blastocysts based on Gardner's criteria. Growth factor treatment also led to a 2-fold promotion of blastocyst outgrowth in vitro when day 7 surplus hatching blastocysts were used. When failed-to-be-fertilized oocytes were used to perform somatic cell nuclear transfer (SCNT) using fibroblasts as donor karyoplasts, inclusion of growth factors increased the progression of reconstructed SCNT embryos to >4-cell stage embryos. Growth factor supplementation of serum-free cultures could promote optimal early embryonic development and implantation in IVF-ET and SCNT procedures. This approach is valuable for infertility treatment and future derivation of patient-specific embryonic stem cells.

  17. Adverse Outcome Pathways for Embryonic Vascular Disruption and Alternative Methods to Identify Chemical Vascular Disruptor

    EPA Science Inventory

    Chemically induced vascular toxicity during embryonic development can result in a wide range of adverse prenatal outcomes. We used information from genetic mouse models linked to phenotypic outcomes and a vascular toxicity knowledge base to construct an embryonic vascular disrupt...

  18. Effects of different feeder layers on culture of bovine embryonic stem cell-like cells in vitro.

    PubMed

    Cong, Shan; Cao, Guifang; Liu, Dongjun

    2014-12-01

    To find a suitable feeder layer is important for successful culture conditions of bovine embryonic stem cell-like cells. In this study, expression of pluripotency-related genes OCT4, SOX2 and NANOG in bovine embryonic stem cell-like cells on mouse embryonic fibroblast feeder layers at 1-5 passages were monitored in order to identify the possible reason that bovine embryonic stem cell-like cells could not continue growth and passage. Here, we developed two novel feeder layers, mixed embryonic fibroblast feeder layers of mouse and bovine embryonic fibroblast at different ratios and sources including mouse fibroblast cell lines. The bovine embryonic stem cell-like cells generated in our study displayed typical stem cell morphology and expressed specific markers such as OCT4, stage-specific embryonic antigen 1 and 4, alkaline phosphatase, SOX2, and NANOG mRNA levels. When feeder layers and cell growth factors were removed, the bovine embryonic stem cell-like cells formed embryoid bodies in a suspension culture. Furthermore, we compared the expression of the pluripotent markers during bovine embryonic stem cell-like cell in culture on mixed embryonic fibroblast feeder layers, including mouse fibroblast cell lines feeder layers and mouse embryonic fibroblast feeder layers by real-time quantitative polymerase chain reaction. Results suggested that mixed embryonic fibroblast and sources including mouse fibroblast cell lines feeder layers were more suitable for long-term culture and growth of bovine embryonic stem cell-like cells than mouse embryonic fibroblast feeder layers. The findings may provide useful experimental data for the establishment of an appropriate culture system for bovine embryonic stem cell lines.

  19. Large-scale production of embryonic red blood cells from human embryonic stem cells.

    PubMed

    Olivier, Emmanuel N; Qiu, Caihong; Velho, Michelle; Hirsch, Rhoda Elison; Bouhassira, Eric E

    2006-12-01

    To develop a method to produce in culture large number of erythroid cells from human embryonic stem cells. Human H1 embryonic stem cells were differentiated into hematopoietic cells by coculture with a human fetal liver cell line, and the resulting CD34-positive cells were expanded in vitro in liquid culture using a three-step method. The erythroid cells produced were then analyzed by light microscopy and flow cytometry. Globin expression was characterized by quantitative reverse-transcriptase polymerase chain reaction and by high-performance liquid chromatography. CD34-positive cells produced from human embryonic stem cells could be efficiently differentiated into erythroid cells in liquid culture leading to a more than 5000-fold increase in cell number. The erythroid cells produced are similar to primitive erythroid cells present in the yolk sac of early human embryos and did not enucleate. They are fully hemoglobinized and express a mixture of embryonic and fetal globins but no beta-globin. We have developed an experimental protocol to produce large numbers of primitive erythroid cells starting from undifferentiated human embryonic stem cells. As the earliest human erythroid cells, the nucleated primitive erythroblasts, are not very well characterized because experimental material at this stage of development is very difficult to obtain, this system should prove useful to answer a number of experimental questions regarding the biology of these cells. In addition, production of mature red blood cells from human embryonic stem cells is of great potential practical importance because it could eventually become an alternate source of cell for transfusion.

  20. Maternal dietary manganese protects chick embryos against maternal heat stress via epigenetic-activated antioxidant and anti-apoptotic abilities.

    PubMed

    Zhu, Yongwen; Lu, Lin; Liao, Xiudong; Li, Wenxiang; Zhang, Liyang; Ji, Cheng; Lin, Xi; Liu, Hsiao-Ching; Odle, Jack; Luo, Xugang

    2017-10-27

    Maternal heat stress induced the aberrant epigenetic patterns resulting in the abnormal development of offspring embryos. It is unclear whether maternal dietary manganese supplementation as an epigenetic modifier could protect the chick embryonic development against maternal heat stress via epigenetic mechanisms. To test this hypothesis using an avian model, a completely randomized design with a 2 (maternal normal and high environmental temperatures of 21 and 32°C, respectively) × 3 (maternal dietary manganese sources, the control diet without manganese supplementation and the control diet + 120 mg/kg as either inorganic or organic manganese) factorial arrangement was adopted. Maternal environmental hyperthermia increased mRNA expressions of heat shock proteins 90 and 70, cyclin-dependent kinase 6 and B-cell CLL/lymphoma 2-associated X protein displaying oxidative damage and apoptosis in the embryonic heart. Maternal environmental hyperthermia impaired the embryonic development associated with the alteration of epigenetic status, as evidenced by global DNA hypomethylation and histone 3 lysine 9 hypoacetylation in the embryonic heart. Maternal dietary manganese supplementation increased the heart anti-apoptotic gene B-cell CLL/lymphoma 2 expressions under maternal environmental hyperthermia and manganese superoxide dismutase enzyme activity in the embryonic heart. Maternal dietary organic Mn supplementation effectively eliminated the impairment of maternal environmental hyperthermia on the embryonic development. Maternal dietary manganese supplementation up-regulated manganese superoxide dismutase mRNA expression by reducing DNA methylation and increasing histone 3 lysine 9 acetylation of its promoter. It is suggested that maternal dietary manganese addition could protect the chick embryonic development against maternal heat stress via enhancing epigenetic-activated antioxidant and anti-apoptotic abilities.

  1. Arabidopsis LEAFY COTYLEDON1 controls cell fate determination during post-embryonic development

    PubMed Central

    Huang, Mingkun; Hu, Yilong; Liu, Xu; Li, Yuge; Hou, Xingliang

    2015-01-01

    Arabidopsis LEAFY COTYLEDON1 (LEC1) transcription factor is a master regulator that shapes plant embryo development and post-embryonic seedling establishment. Loss-of-function of LEC1 alters the cotyledon identity, causing the formation of ectopic trichomes, which does not occur in wild-type seedlings, implying that LEC1 might regulate embryonic cell fate determination during post-embryonic development. To test this hypothesis, we compared the expression of trichome development-related genes between the wild-type and the lec1 mutant. We observed that transcripts of GLABROUS1 (GL1), GL2, and GL3, genes encoding the positive regulators in trichome development, were significantly upregulated, while the TRICHOMELESS1 (TCL2), ENHANCER OF TRY AND CPC1 (ETC1), and ETC2 genes, encoding the negative regulators in trichome development, were downregulated in the lec1 mutant. Furthermore, overexpression of LEC1 activated the expressions of TCL2, CAPPICE (CPC), and ETC1, resulting in production of cotyledonary leaves with no or fewer trichomes during vegetative development. In addition, we demonstrated that LEC1 interacts with TCL2 in yeast and in vitro. A genetic experiment showed that loss-of-function of GL2 rescued the ectopic trichome formation in the lec1 mutant. These findings strongly support that LEC1 regulates trichome development, providing direct evidence for the role of LEC1 in cell fate determination during post-embryonic development. PMID:26579186

  2. Post-embryonic changes in the hindgut of honeybee Apis mellifera workers: Morphology, cuticle deposition, apoptosis, and cell proliferation.

    PubMed

    Gonçalves, Wagner Gonzaga; Fernandes, Kenner Morais; Santana, Weyder Cristiano; Martins, Gustavo Ferreira; Zanuncio, José Cola; Serrão, José Eduardo

    2017-11-15

    In insects, the hindgut is a homeostatic region of the digestive tract, divided into pylorus, ileum, and rectum, that reabsorbs water, ions, and small molecules produced during hemolymph filtration. The hindgut anatomy in bee larvae is different from that of adult workers. This study reports the morphological changes and cellular events that occur in the hindgut during the metamorphosis of the honeybee Apis mellifera. We describe the occurrence of autophagosomes and the ultrastructure of the epithelial cells and cuticle, suggesting that cuticular degradation begins in prepupae, with the cuticle being reabsorbed and recycled by autophagosomes in white- and pink-eyed pupae, followed by the deposition of new cuticle in light-brown-eyed pupae. In L5S larvae and prepupae, the hindgut undergoes cell proliferation in the anterior and posterior ends. In the pupae, the pylorus, ileum, and rectum regions are differentiated, and cell proliferation ceases in dark-brown-eyed pupae. Apoptosis occurs in the hindgut from the L5S larval to the pink-eyed pupal stage. In light-brown- and dark-brown-eyed pupae, the ileum epithelium changes from pseudostratified to simple only after the production of the basal lamina, whereas the rectal epithelium is always flattened. In black-eyed pupae, ileum epithelial cells have large vacuoles and subcuticular spaces, while in adult forager workers these cells have long invaginations in the cell apex and many mitochondria, indicating a role in the transport of compounds. Our findings show that hindgut morphogenesis is a dynamic process, with tissue remodeling and cellular events taking place for the formation of different regions of the organ, the reconstruction of a new cuticle, and the remodeling of visceral muscles. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Ocular Stem Cell Research from Basic Science to Clinical Application: A Report from Zhongshan Ophthalmic Center Ocular Stem Cell Symposium

    PubMed Central

    Ouyang, Hong; Goldberg, Jeffrey L.; Chen, Shuyi; Li, Wei; Xu, Guo-Tong; Li, Wei; Zhang, Kang; Nussenblatt, Robert B.; Liu, Yizhi; Xie, Ting; Chan, Chi-Chao; Zack, Donald J.

    2016-01-01

    Stem cells hold promise for treating a wide variety of diseases, including degenerative disorders of the eye. The eye is an ideal organ for stem cell therapy because of its relative immunological privilege, surgical accessibility, and its being a self-contained system. The eye also has many potential target diseases amenable to stem cell-based treatment, such as corneal limbal stem cell deficiency, glaucoma, age-related macular degeneration (AMD), and retinitis pigmentosa (RP). Among them, AMD and glaucoma are the two most common diseases, affecting over 200 million people worldwide. Recent results on the clinical trial of retinal pigment epithelial (RPE) cells from human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) in treating dry AMD and Stargardt’s disease in the US, Japan, England, and China have generated great excitement and hope. This marks the beginning of the ocular stem cell therapy era. The recent Zhongshan Ophthalmic Center Ocular Stem Cell Symposium discussed the potential applications of various stem cell types in stem cell-based therapies, drug discoveries and tissue engineering for treating ocular diseases. PMID:27102165

  4. ModuleMiner - improved computational detection of cis-regulatory modules: are there different modes of gene regulation in embryonic development and adult tissues?

    PubMed Central

    Van Loo, Peter; Aerts, Stein; Thienpont, Bernard; De Moor, Bart; Moreau, Yves; Marynen, Peter

    2008-01-01

    We present ModuleMiner, a novel algorithm for computationally detecting cis-regulatory modules (CRMs) in a set of co-expressed genes. ModuleMiner outperforms other methods for CRM detection on benchmark data, and successfully detects CRMs in tissue-specific microarray clusters and in embryonic development gene sets. Interestingly, CRM predictions for differentiated tissues exhibit strong enrichment close to the transcription start site, whereas CRM predictions for embryonic development gene sets are depleted in this region. PMID:18394174

  5. Stem cell treatment of degenerative eye disease.

    PubMed

    Mead, Ben; Berry, Martin; Logan, Ann; Scott, Robert A H; Leadbeater, Wendy; Scheven, Ben A

    2015-05-01

    Stem cell therapies are being explored extensively as treatments for degenerative eye disease, either for replacing lost neurons, restoring neural circuits or, based on more recent evidence, as paracrine-mediated therapies in which stem cell-derived trophic factors protect compromised endogenous retinal neurons from death and induce the growth of new connections. Retinal progenitor phenotypes induced from embryonic stem cells/induced pluripotent stem cells (ESCs/iPSCs) and endogenous retinal stem cells may replace lost photoreceptors and retinal pigment epithelial (RPE) cells and restore vision in the diseased eye, whereas treatment of injured retinal ganglion cells (RGCs) has so far been reliant on mesenchymal stem cells (MSC). Here, we review the properties of non-retinal-derived adult stem cells, in particular neural stem cells (NSCs), MSC derived from bone marrow (BMSC), adipose tissues (ADSC) and dental pulp (DPSC), together with ESC/iPSC and discuss and compare their potential advantages as therapies designed to provide trophic support, repair and replacement of retinal neurons, RPE and glia in degenerative retinal diseases. We conclude that ESCs/iPSCs have the potential to replace lost retinal cells, whereas MSC may be a useful source of paracrine factors that protect RGC and stimulate regeneration of their axons in the optic nerve in degenerate eye disease. NSC may have potential as both a source of replacement cells and also as mediators of paracrine treatment. Copyright © 2015. Published by Elsevier B.V.

  6. Mouse Embryonic Stem Cell Adherent Cell Differentiation and Cytotoxicity (ACDC) assay

    EPA Science Inventory

    The Embryonic Stem Cell Test (EST) is an assay which evaluates xenobiotic-induced effects using three endpoints: mouse embryonic stem cell (mESC) differentiation, mESC viability, and 3T3-cell viability. Our research goal was to develop an improved high-throughput assay by establi...

  7. Informing Stem Cell-Based Tendon Tissue Engineering Approaches with Embryonic Tendon Development.

    PubMed

    Okech, William; Kuo, Catherine K

    Adult tendons fail to regenerate normal tissue after injury, and instead form dysfunctional scar tissue with abnormal mechanical properties. Surgical repair with grafts is the current standard to treat injuries, but faces significant limitations including pain and high rates of re-injury. To address this, we aim to regenerate new, normal tendons to replace dysfunctional tendons. A common approach to tendon tissue engineering is to design scaffolds and bioreactors based on adult tendon properties that can direct adult stem cell tenogenesis. Despite significant progress, advances have been limited due, in part, to a need for markers and potent induction cues. Our goal is to develop novel tendon tissue engineering approaches informed by embryonic tendon development. We are characterizing structure-property relationships of embryonic tendon to identify design parameters for three-dimensional scaffolds and bioreactor mechanical loading systems to direct adult stem cell tenogenesis. We will review studies in which we quantified changes in the mechanical and biochemical properties of tendon during embryonic development and elucidated specific mechanisms of functional property elaboration. We then examined the effects of these mechanical and biochemical factors on embryonic tendon cell behavior. Using custom-designed bioreactors, we also examined the effects of dynamic mechanical loading and growth factor treatment on embryonic tendon cells. Our findings have established cues to induce tenogenesis as well as metrics to evaluate differentiation. We finish by discussing how we have evaluated the tenogenic differentiation potential of adult stem cells by comparing their responses to that of embryonic tendon cells in these culture systems.

  8. The embryonic development of the cnidarian Hydractinia echinata.

    PubMed

    Kraus, Yulia; Flici, Hakima; Hensel, Katrin; Plickert, Günter; Leitz, Thomas; Frank, Uri

    2014-01-01

    With the rapid increase of the quantity of molecular data, many animals joined the ranks of the so-called 'emerging models' of Evo-Devo. One of the necessary steps in converting an emerging model into an established one is gaining comprehensive knowledge of its normal embryonic development. The marine colonial hydrozoan Hydractinia echinata - an excellent model for research on stem cells, metamorphosis, and allorecognition - has been studied for decades. Yet knowledge of its embryonic development remains fragmentary and incomplete. Here we provide a detailed account of H. echinata embryonic development using in vivo observations, histology, immunohistochemistry, and electron microscopy. Furthermore, we propose a model describing the cellular basis of the morphogenetic movements occurring during development and also reveal a functional link between canonical Wnt signaling and regional differences in the morphology of the embryo. Hydractinia embryogenesis is an example of the diversity and plasticity of hydrozoan development where multiple routes lead to the same result - the formation of a normal planula larva. © 2014 Wiley Periodicals, Inc.

  9. Egr1 gene knockdown affects embryonic ocular development in zebrafish.

    PubMed

    Hu, Chao-Yu; Yang, Chang-Hao; Chen, Wei-Yu; Huang, Chiu-Ju; Huang, Hsing-Yen; Chen, Muh-Shy; Tsai, Huai-Jen

    2006-10-26

    To identify the changes in zebrafish embryonic ocular development after early growth response factor 1 (Egr1) gene knockdown by Egr1-specific translation inhibitor, morpholino oligonucleotides (MO). Two kinds of Egr1-MO were microinjected separately with various dosages into one to four celled zebrafish embryos to find an optimal dose generating an acceptable mortality rate and high frequency of specific phenotype. Chordin-MO served as the positive control; a 5 mismatch MO of Egr1-MO1 and a nonspecific MO served as negative controls. We graded the Egr1 morphants according to their gross abnormalities, and measured their ocular dimensions accordingly. Western blot analysis and synthetic Egr1 mRNA rescue experiments confirmed whether the deformities were caused by Egr1 gene knockdown. Histological examination and three kinds of immunohistochemical staining were applied to identify glutamate receptor one expression in retinal ganglion cells and amacrine cells, to recognize acetylated alpha-tubulin expression which indicated axonogenesis, and to label photoreceptor cells with zpr-1 antibody. After microinjection of 8 ng Egr1-MO1 or 2 ng Egr1-MO2, 81.8% and 97.3% of larvae at 72 h postfertilization had specific defects, respectively. The gross phenotype included string-like heart, flat head, and deformed tail. The more severely deformed larvae had smaller eyes and pupils. Co-injection of 8 ng Egr1-MO1 and supplementary 12 pg synthetic Egr1 mRNA reduced the gross abnormality rate from 84.4% to 29.7%, and decreased the severity of deformities. Egr1 protein appeared in the wildtype and rescued morphants, but was lacking in the Egr1 morphants with specific deformities. Lenses of Egr1 morphants were smaller and had some residual nucleated lens fiber cells. Morphants' retinal cells arranged disorderly and compactly with thin plexiform layers. Immunohistochemical studies showed that morphants had a markedly decreased number of mature retinal ganglion cells, amacrine cells, and photoreceptor cells. Retinal axonogenesis was prominently reduced in morphants. The Egr1 gene plays an important role in zebrafish embryonic oculogenesis. Ocular structures including lens and retina were primitive and lacked appropriate differentiation. Such arrested retinal and lenticular development in Egr1 morphants resulted in microphthalmos.

  10. Transplantation of Human Embryonic Stem Cell-Derived Retinal Pigment Epithelial Cells in Macular Degeneration.

    PubMed

    Mehat, Manjit S; Sundaram, Venki; Ripamonti, Caterina; Robson, Anthony G; Smith, Alexander J; Borooah, Shyamanga; Robinson, Martha; Rosenthal, Adam N; Innes, William; Weleber, Richard G; Lee, Richard W J; Crossland, Michael; Rubin, Gary S; Dhillon, Baljean; Steel, David H W; Anglade, Eddy; Lanza, Robert P; Ali, Robin R; Michaelides, Michel; Bainbridge, James W B

    2018-06-05

    Transplantation of human embryonic stem cell (hESC)-derived retinal pigment epithelial (RPE) cells offers the potential for benefit in macular degeneration. Previous trials have reported improved visual acuity (VA), but lacked detailed analysis of retinal structure and function in the treated area. Phase 1/2 open-label dose-escalation trial to evaluate safety and potential efficacy (clinicaltrials.gov identifier, NCT01469832). Twelve participants with advanced Stargardt disease (STGD1), the most common cause of macular degeneration in children and young adults. Subretinal transplantation of up to 200 000 hESC-derived RPE cells with systemic immunosuppressive therapy for 13 weeks. The primary end points were the safety and tolerability of hESC-derived RPE cell administration. We also investigated evidence of the survival of transplanted cells and measured retinal structure and function using microperimetry and spectral-domain OCT. Focal areas of subretinal hyperpigmentation developed in all participants in a dose-dependent manner in the recipient retina and persisted after withdrawal of systemic immunosuppression. We found no evidence of uncontrolled proliferation or inflammatory responses. Borderline improvements in best-corrected VA in 4 participants either were unsustained or were matched by a similar improvement in the untreated contralateral eye. Microperimetry demonstrated no evidence of benefit at 12 months in the 12 participants. In one instance at the highest dose, localized retinal thinning and reduced sensitivity in the area of hyperpigmentation suggested the potential for harm. Participant-reported quality of life using the 25-item National Eye Institute Visual Function Questionnaire indicated no significant change. Subretinal hyperpigmentation is consistent with the survival of viable transplanted hESC-derived RPE cells, but may reflect released pigment in their absence. The findings demonstrate the value of detailed analysis of spatial correlation of retinal structure and function in determining with appropriate sensitivity the impact of cell transplantation and suggest that intervention in early stage of disease should be approached with caution. Given the slow rate of progressive degeneration at this advanced stage of disease, any protection against further deterioration may be evident only after a more extended period of observation. Crown Copyright © 2018. Published by Elsevier Inc. All rights reserved.

  11. The physiological basis of geographic variation in rates of embryonic development within a widespread lizard species.

    PubMed

    Du, Wei-Guo; Warner, Daniel A; Langkilde, Tracy; Robbins, Travis; Shine, Richard

    2010-10-01

    The duration of embryonic development (e.g., egg incubation period) is a critical life-history variable because it affects both the amount of time that an embryo is exposed to conditions within the nest and the seasonal timing of hatching. Variation in incubation periods among oviparous reptiles might result from variation in either the amount of embryogenesis completed before laying or the subsequent developmental rates of embryos. Selection on incubation duration could change either of those traits. We examined embryonic development of fence lizards (Sceloporus undulatus) from three populations (Indiana, Mississippi, and Florida) that occur at different latitudes and therefore experience different temperatures and season lengths. These data reveal countergradient variation: at identical temperatures in the laboratory, incubation periods were shorter for lizards from cooler areas. This variation was not related to stage at oviposition; eggs of all populations were laid at similar developmental stages. Instead, embryonic development proceeded more rapidly in cooler-climate populations, compensating for the delayed development caused by lower incubation temperatures in the field. The accelerated development appears to occur via an increase in heart mass (and, thus, stroke volume) in one population and an increase in heart rate in the other. Hence, superficially similar adaptations of embryonic developmental rate to local conditions may be generated by dissimilar proximate mechanisms.

  12. Structure and function of gap junction proteins: role of gap junction proteins in embryonic heart development.

    PubMed

    Ahir, Bhavesh K; Pratten, Margaret K

    2014-01-01

    Intercellular (cell-to-cell) communication is a crucial and complex mechanism during embryonic heart development. In the cardiovascular system, the beating of the heart is a dynamic and key regulatory process, which is functionally regulated by the coordinated spread of electrical activity through heart muscle cells. Heart tissues are composed of individual cells, each bearing specialized cell surface membrane structures called gap junctions that permit the intercellular exchange of ions and low molecular weight molecules. Gap junction channels are essential in normal heart function and they assist in the mediated spread of electrical impulses that stimulate synchronized contraction (via an electrical syncytium) of cardiac tissues. This present review describes the current knowledge of gap junction biology. In the first part, we summarise some relevant biochemical and physiological properties of gap junction proteins, including their structure and function. In the second part, we review the current evidence demonstrating the role of gap junction proteins in embryonic development with particular reference to those involved in embryonic heart development. Genetics and transgenic animal studies of gap junction protein function in embryonic heart development are considered and the alteration/disruption of gap junction intercellular communication which may lead to abnormal heart development is also discussed.

  13. Periods of cardiovascular susceptibility to hypoxia in embryonic american alligators (Alligator mississippiensis)

    PubMed Central

    Tate, Kevin B.; Rhen, Turk; Eme, John; Kohl, Zachary F.; Crossley, Janna; Elsey, Ruth M.

    2016-01-01

    During embryonic development, environmental perturbations can affect organisms' developing phenotype, a process known as developmental plasticity. Resulting phenotypic changes can occur during discrete, critical windows of development. Critical windows are periods when developing embryos are most susceptible to these perturbations. We have previously documented that hypoxia reduces embryo size and increases relative heart mass in American alligator, and this study identified critical windows when hypoxia altered morphological, cardiovascular function and cardiac gene expression of alligator embryos. We hypothesized that incubation in hypoxia (10% O2) would increase relative cardiac size due to cardiac enlargement rather than suppression of somatic growth. We exposed alligator embryos to hypoxia during discrete incubation periods to target windows where the embryonic phenotype is altered. Hypoxia affected heart growth between 20 and 40% of embryonic incubation, whereas somatic growth was affected between 70 and 90% of incubation. Arterial pressure was depressed by hypoxic exposure during 50–70% of incubation, whereas heart rate was depressed in embryos exposed to hypoxia during a period spanning 70–90% of incubation. Expression of Vegf and PdgfB was increased in certain hypoxia-exposed embryo treatment groups, and hypoxia toward the end of incubation altered β-adrenergic tone for arterial pressure and heart rate. It is well known that hypoxia exposure can alter embryonic development, and in the present study, we have identified brief, discrete windows that alter the morphology, cardiovascular physiology, and gene expression in embryonic American alligator. PMID:27101296

  14. Early intrauterine embryonic development in Khawia sinensis Hsü, 1935 (Cestoda, Caryophyllidea, Lytocestidae), an invasive tapeworm of carp (Cyprinus carpio): an ultrastructural study.

    PubMed

    Bruňanská, Magdaléna; Mackiewicz, John S; Młocicki, Daniel; Swiderski, Zdzisław; Nebesářová, Jana

    2012-02-01

    Intrauterine embryonic development in the caryophyllidean tapeworm Khawia sinensis has been investigated using transmission electron microscopy and cytochemical staining with periodic acid-thiosemicarbazide-silver proteinate for glycogen. Contrary to previous light microscopy findings that reported the release of non-embryonated eggs of K. sinenesis to the external environment, the present study documents various stages of embryonation (ovoviviparity) within the intrauterine eggs of this cestode. At the initial stage of embryonic development, each fertilised oocyte is accompanied by several vitellocytes that become enclosed within the operculate, electrondense shell. Cleavage divisions result in formation of blastomeres (up to about 24 cells) of various sizes. Mitotic divisions and apparent rosette arrangment of the blastomeres, the latter atypical within the Eucestoda, are observed for the first time in the intrauterine eggs of K. sinenesis. The early embryo enclosed within the electrondense shell is surrounded by a thin membraneous layer which in some enlarged regions shows presence of nuclei. Simultaneously to multiplication and differentiation, some of the blastomeres undergo deterioration. A progressive degeneration of the vitellocytes within eggs provides nutritive reserves, including lipids, for the developing embryo. The possible significance of this atypical timing of the intrauterine embryonic development to (1) the ecology of K. sinensis and that of a recent introduction of another invasive tapeworm, the caryophyllidean Atractolytocestus huronensis Anthony, 1958 to Europe; and (2) the affiliation of caryophyllideans with other lower cestodes, are discussed.

  15. The influence of serum substituents on serum-free Vero cell conditioned culture media manufactured from Dulbecco's modified Eagle medium in mouse embryo culture.

    PubMed

    Lee, Jong-Seon; Kim, Ju-Hwan; Seo, Young-Seok; Yang, Jung-Bo; Kim, Yong-Il; Kim, Hye-Jin; Lee, Ki-Hwan

    2013-09-01

    This study was conducted to examine the influences of supplementation of the serum substituents and available period of serum-free Vero cell conditioned media (SF-VCM) manufactured from Dulbecco's modified Eagle medium cultured with Vero cells for in vitro development of mouse preimplantation embryos. A total of 1,099 two-cell embryos collected from imprinting control region mice were cultured in SF-VCM with 10% and 20% human follicular fluid (hFF), serum substitute supplement (SSS), and serum protein substitute (SPS). Development of embryos was observed every 24 hours. Results between different groups were analyzed by chi-square test, and considered statistically significant when P-value was less than 0.05. The rates of embryonic development cultured in SF-VCM supplemented with serum substituents were significantly higher compare with serum-free group (P < 0.05). The rates of embryonic development after 48 hours (morula≤) and 96 hours (blastocyst≤) were significantly higher in 20% SSS and 10% SPS than in 20% hFF supplementation (P < 0.05). And the rates of embryonic development after 96 hours (hatching blastocyst≤) were significantly higher in 10% SPS (94.5%) than in 20% SSS (82.6%) and 20% hFF supplementation (68.5%). The rates of embryonic development according to storage period of the SF-VCM supplemented with 10% SPS showed no significant difference between control, 2 weeks and 4 weeks group. However developmental rate in 6 weeks storage group was significantly lower than other groups. The rate of embryonic development after 96 hours (hatching blastocyst≤) was significantly higher in SF-VCM supplemented with 10% SPS. And storage period of media up to 4 weeks did not affect on embryonic development.

  16. Normal embryonic and germ cell development in mice lacking alpha 1,3-fucosyltransferase IX (Fut9) which show disappearance of stage-specific embryonic antigen 1.

    PubMed

    Kudo, Takashi; Kaneko, Mika; Iwasaki, Hiroko; Togayachi, Akira; Nishihara, Shoko; Abe, Kuniya; Narimatsu, Hisashi

    2004-05-01

    Stage-specific embryonic antigen 1 (SSEA-1), an antigenic epitope defined as a Lewis x carbohydrate structure, is expressed during the 8-cell to blastocyst stages in mouse embryos and in primordial germ cells, undifferentiated embryonic stem cells, and embryonic carcinoma cells. For many years, SSEA-1 has been implicated in the development of mouse embryos as a functional carbohydrate epitope in cell-to-cell interaction during morula compaction. In a previous study, alpha 1,3-fucosyltransferase IX (Fut9) exhibited very strong activity for the synthesis of Lewis x compared to other alpha 1,3-fucosyltransferases in an in vitro substrate specificity assay. Fut4 and Fut9 transcripts were expressed in mouse embryos. The Fut9 transcript was detected in embryonic-day-13.5 gonads containing primordial germ cells, but the Fut4 transcript was not. In order to identify the role of SSEA-1 and determine the key enzyme for SSEA-1 synthesis in vivo, we have generated Fut9-deficient (Fut9(-/-)) mice. Fut9(-/-) mice develop normally, with no gross phenotypic abnormalities, and are fertile. Immunohistochemical analysis revealed an absence of SSEA-1 expression in early embryos and primordial germ cells of Fut9(-/-) mice. Therefore, we conclude that expression of the SSEA-1 epitope in the developing mouse embryo is not essential for embryogenesis in vivo.

  17. DNA methylation, an epigenetic mechanism connecting folate to healthy embryonic development and aging

    USDA-ARS?s Scientific Manuscript database

    Experimental studies demonstrated that maternal environmental factors including diet during early embryonic development can influence the phenotype of offspring as well as the risk of disease development at the later life. DNA methylation, an epigenetic phenomenon, has been suggested as a mechanism ...

  18. A toolbox to explore the mechanics of living embryonic tissues

    PubMed Central

    Campàs, Otger

    2016-01-01

    The sculpting of embryonic tissues and organs into their functional morphologies involves the spatial and temporal regulation of mechanics at cell and tissue scales. Decades of in vitro work, complemented by some in vivo studies, have shown the relevance of mechanical cues in the control of cell behaviors that are central to developmental processes, but the lack of methodologies enabling precise, quantitative measurements of mechanical cues in vivo have hindered our understanding of the role of mechanics in embryonic development. Several methodologies are starting to enable quantitative studies of mechanics in vivo and in situ, opening new avenues to explore how mechanics contributes to shaping embryonic tissues and how it affects cell behavior within developing embryos. Here we review the present methodologies to study the role of mechanics in living embryonic tissues, considering their strengths and drawbacks as well as the conditions in which they are most suitable. PMID:27061360

  19. A toolbox to explore the mechanics of living embryonic tissues.

    PubMed

    Campàs, Otger

    2016-07-01

    The sculpting of embryonic tissues and organs into their functional morphologies involves the spatial and temporal regulation of mechanics at cell and tissue scales. Decades of in vitro work, complemented by some in vivo studies, have shown the relevance of mechanical cues in the control of cell behaviors that are central to developmental processes, but the lack of methodologies enabling precise, quantitative measurements of mechanical cues in vivo have hindered our understanding of the role of mechanics in embryonic development. Several methodologies are starting to enable quantitative studies of mechanics in vivo and in situ, opening new avenues to explore how mechanics contributes to shaping embryonic tissues and how it affects cell behavior within developing embryos. Here we review the present methodologies to study the role of mechanics in living embryonic tissues, considering their strengths and drawbacks as well as the conditions in which they are most suitable. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Fibroblast growth factor receptors in in vitro and in vivo chondrogenesis: relating tissue engineering using adult mesenchymal stem cells to embryonic development.

    PubMed

    Hellingman, Catharine A; Koevoet, Wendy; Kops, Nicole; Farrell, Eric; Jahr, Holger; Liu, Wei; Baatenburg de Jong, Robert J; Frenz, Dorothy A; van Osch, Gerjo J V M

    2010-02-01

    Adult mesenchymal stem cells (MSCs) are considered promising candidate cells for therapeutic cartilage and bone regeneration. Because tissue regeneration and embryonic development may involve similar pathways, understanding common pathways may lead to advances in regenerative medicine. In embryonic limb development, fibroblast growth factor receptors (FGFRs) play a role in chondrogenic differentiation. The aim of this study was to investigate and compare FGFR expression in in vivo embryonic limb development and in vitro chondrogenesis of MSCs. Our study showed that in in vitro chondrogenesis of MSCs three sequential stages can be found, as in embryonic limb development. A mesenchymal condensation (indicated by N-cadherin) is followed by chondrogenic differentiation (indicated by collagen II), and hypertrophy (indicated by collagen X). FGFR1-3 are expressed in a stage-dependent pattern during in vitro differentiation and in vivo embryonic limb development. In both models FGFR2 is clearly expressed by cells in the condensation phase. No FGFR expression was observed in differentiating and mature hyaline chondrocytes, whereas hypertrophic chondrocytes stained strongly for all FGFRs. To evaluate whether stage-specific modulation of chondrogenic differentiation in MSCs is possible with different subtypes of FGF, FGF2 and FGF9 were added to the chondrogenic medium during different stages in the culture process (early or late). FGF2 and FGF9 differentially affected the amount of cartilage formed by MSCs depending on the stage in which they were added. These results will help us understand the role of FGF signaling in chondrogenesis and find new tools to monitor and control chondrogenic differentiation.

  1. Student Learning of Early Embryonic Development via the Utilization of Research Resources from the Nematode "Caenorhabditis elegans"

    ERIC Educational Resources Information Center

    Lu, Fong-Mei; Eliceiri, Kevin W.; Squirrell, Jayne M.; White, John G.; Stewart, James

    2008-01-01

    This study was undertaken to gain insights into undergraduate students' understanding of early embryonic development, specifically, how well they comprehend the concepts of volume constancy, cell lineages, body plan axes, and temporal and spatial dimensionality in development. To study student learning, a curriculum was developed incorporating…

  2. Early onset and differential temporospatial expression of melanopsin isoforms in the developing chicken retina.

    PubMed

    Verra, Daniela M; Contín, Maria Ana; Hicks, David; Guido, Mario E

    2011-07-07

    Retinal ganglion cells (RGCs) expressing the photopigment melanopsin (Opn4) display intrinsic photosensitivity. In this study, the presence of nonvisual phototransduction cascade components in the developing chicken retina and primary RGCs cultures was investigated, focusing on the two Opn4 genes: the Xenopus (Opn4x) and the mammalian (Opn4m) orthologs. Retinas were dissected at different embryonic (E) and postnatal (P) days, and primary RGC cultures were obtained at E8 and kept for 1 hour to 5 days. Samples were processed for RT-PCR and immunochemistry. Embryonic retinas expressed the master eye gene Pax6, the prospective RGC specification gene Brn3, and components of the nonvisual phototransduction cascade, such as Opn4m and the G protein q (Gq) mRNAs at very early stages (E4-E5). By contrast, expression of photoreceptor cell markers (CRX, red-opsin, rhodopsin, and α-transducin) was observed from E7 to E12. Opn4m protein was visualized in the whole retina as early as E4 and remained elevated from E6 to the postnatal days, whereas Opn4x was weakly detected at E8 and highly expressed after E11. RGC cultures expressed Gq mRNA, as well as both Opn4 mRNAs and proteins. Opn4m was restricted exclusively to the GC layer at all ages, whereas Opn4x was limited to the forming GC layer and optic nerve at E8, but by E15, its expression was mostly in Prox1(+) horizontal cells. The early expression onset of nonvisual phototransduction molecules could confer premature photosensitivity to RGCs, while the appearance of Opn4x expression in horizontal cells suggests the identification of a novel type of photosensitive cell in birds.

  3. Science in the Era of Facebook and Twitter: Get Used to It

    NASA Astrophysics Data System (ADS)

    Falcke, H.

    2018-02-01

    Astrophysicist Heino Falcke reflects on the increased transparency of the scientific process with the rise of social media. He discusses the positives and negatives of having a spotlight shone on scientific results in the embryonic stage and, as a result, the rising number of false findings and claims that find their way into the public eye. What does this new age of communication mean for science? And how do scientists, science journalists and the public need to adapt to ensure a positive change in the way we conduct, communicate and trust science and scientific evidence?

  4. Shared and Unique Patterns of Embryo Development in Extremophile Poeciliids

    PubMed Central

    Riesch, Rüdiger; Schlupp, Ingo; Langerhans, R. Brian; Plath, Martin

    2011-01-01

    Background Closely related lineages of livebearing fishes have independently adapted to two extreme environmental factors: toxic hydrogen sulphide (H2S) and perpetual darkness. Previous work has demonstrated in adult specimens that fish from these extreme habitats convergently evolved drastically increased head and offspring size, while cave fish are further characterized by reduced pigmentation and eye size. Here, we traced the development of these (and other) divergent traits in embryos of Poecilia mexicana from benign surface habitats (“surface mollies”) and a sulphidic cave (“cave mollies”), as well as in embryos of the sister taxon, Poecilia sulphuraria from a sulphidic surface spring (“sulphur mollies”). We asked at which points during development changes in the timing of the involved processes (i.e., heterochrony) would be detectible. Methods and Results Data were extracted from digital photographs taken of representative embryos for each stage of development and each type of molly. Embryo mass decreased in convergent fashion, but we found patterns of embryonic fat content and ovum/embryo diameter to be divergent among all three types of mollies. The intensity of yellow colouration of the yolk (a proxy for carotenoid content) was significantly lower in cave mollies throughout development. Moreover, while relative head size decreased through development in surface mollies, it increased in both types of extremophile mollies, and eye growth was arrested in mid-stage embryos of cave mollies but not in surface or sulphur mollies. Conclusion Our results clearly demonstrate that even among sister taxa convergence in phenotypic traits is not always achieved by the same processes during embryo development. Furthermore, teleost development is crucially dependent on sufficient carotenoid stores in the yolk, and so we discuss how the apparent ability of cave mollies to overcome this carotenoid-dependency may represent another potential mechanism explaining the lack of gene flow between surface and cave mollies. PMID:22087302

  5. COMPARATIVE EMBRYONIC AND LARVAL DEVELOPMENTAL RESPONSES OF AN ESTUARINE SHRIMP (PALAEMONETES PUGIO) TO THE JUVENILE HORMONE AGONIST, FENOXYCARB.

    EPA Science Inventory

    Grass shrimp (Palaemonetes pugio) were reared separately through both embryonic and total larval development during exposure to fenoxycarb at measured concentrations of <2.2 to 888 ug L-1. A fenoxycarb concentration of 888 ug L-1significantly (p<0.05) inhibited embryonic developm...

  6. Developmental plasticity of mitochondrial function in American alligators, Alligator mississippiensis

    PubMed Central

    Crossley, Janna; Elsey, Ruth M.; Dzialowski, Edward M.; Shiels, Holly A.; Crossley, Dane A.

    2016-01-01

    The effect of hypoxia on cellular metabolism is well documented in adult vertebrates, but information is entirely lacking for embryonic organisms. The effect of hypoxia on embryonic physiology is particularly interesting, as metabolic responses during development may have life-long consequences, due to developmental plasticity. To this end, we investigated the effects of chronic developmental hypoxia on cardiac mitochondrial function in embryonic and juvenile American alligators (Alligator mississippiensis). Alligator eggs were incubated in 21% or 10% oxygen from 20 to 90% of embryonic development. Embryos were either harvested at 90% development or allowed to hatch and then reared in 21% oxygen for 3 yr. Ventricular mitochondria were isolated from embryonic/juvenile alligator hearts. Mitochondrial respiration and enzymatic activities of electron transport chain complexes were measured with a microrespirometer and spectrophotometer, respectively. Developmental hypoxia induced growth restriction and increased relative heart mass, and this phenotype persisted into juvenile life. Embryonic mitochondrial function was not affected by developmental hypoxia, but at the juvenile life stage, animals from hypoxic incubations had lower levels of Leak respiration and higher respiratory control ratios, which is indicative of enhanced mitochondrial efficiency. Our results suggest developmental hypoxia can have life-long consequences for alligator morphology and metabolic function. Further investigations are necessary to reveal the adaptive significance of the enhanced mitochondrial efficiency in the hypoxic phenotype. PMID:27707718

  7. Environmental and epigenetic effects upon preimplantation embryo metabolism and development

    PubMed Central

    Chason, Rebecca J; Csokmay, John; Segars, James H.; DeCherney, Alan H.; Armant, D. Randall

    2011-01-01

    In vitro fertilization has provided a unique window into the metabolic processes that drive embryonic growth and development from a fertilized ovum to a competent blastocyst. Post-fertilization development is dependent upon a dramatic reshuffling of the parental genomes during meiosis, as well as epigenetic changes that provide a new and autonomous set of instructions to guide cellular differentiation both in the embryo and beyond. While early literature focused simply on the substrates and culture conditions required for progress through embryonic development, more recent insights lead us to suggest that the surrounding environment can alter the epigenome, which can, in turn, impact embryonic metabolism and developmental competence. PMID:21741268

  8. Non-destructive monitoring of mouse embryo development and its qualitative evaluation at the molecular level using Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Ishigaki, Mika; Hashimoto, Kosuke; Sato, Hidetoshi; Ozaki, Yukihiro

    2017-03-01

    Current research focuses on embryonic development and quality not only by considering fundamental biology, but also by aiming to improve assisted reproduction technologies, such as in vitro fertilization. In this study, we explored the development of mouse embryo and its quality based on molecular information, obtained nondestructively using Raman spectroscopy. The detailed analysis of Raman spectra measured in situ during embryonic development revealed a temporary increase in protein content after fertilization. Proteins with a β-sheet structure—present in the early stages of embryonic development—are derived from maternal oocytes, while α-helical proteins are additionally generated by switching on a gene after fertilization. The transition from maternal to embryonic control during development can be non-destructively profiled, thus facilitating the in situ assessment of structural changes and component variation in proteins generated by metabolic activity. Furthermore, it was indicated that embryos with low-grade morphology had high concentrations of lipids and hydroxyapatite. This technique could be used for embryo quality testing in the future.

  9. Identification of Estrogen Target Genes during Zebrafish Embryonic Development through Transcriptomic Analysis

    EPA Science Inventory

    Estrogen signaling is important for vertebrate embryonic development. Here we have used zebrafish (Danio rerio) as a vertebrate model to analyze estrogen signaling during development. Zebrafish embryos were exposed to 1 μM 17β-estradiol (E2) or vehicle from 3 hours to 4 days post...

  10. Observations on germ band development in the cellar spider Pholcus phalangioides.

    PubMed

    Turetzek, Natascha; Prpic, Nikola-Michael

    2016-11-01

    Most recent studies of spider embryonic development have focused on representatives of the species-rich group of entelegyne spiders (over 80 % of all extant species). Embryogenesis in the smaller spider groups, however, is less well studied. Here, we describe the development of the germ band in the spider species Pholcus phalangioides, a representative of the haplogyne spiders that are phylogenetically the sister group of the entelegyne spiders. We show that the transition from radially symmetric embryonic anlage to the bilaterally symmetric germ band involves the accumulation of cells in the centre of the embryonic anlage (primary thickening). These cells then disperse all across the embryonic anlage. A secondary thickening of cells then appears in the centre of the embryonic anlage, and this thickening expands and forms the segment addition zone. We also confirm that the major part of the opisthosoma initially develops as a tube shaped structure, and its segments are then sequentially folded down on the yolk during inversion. This special mode of opisthosoma formation has not been reported for entelegyne spiders, but a more comprehensive sampling of this diverse group is necessary to decide whether this peculiarity is indeed lacking in the entelegyne spiders.

  11. The Phosphatase PTP-PEST/PTPN12 Regulates Endothelial Cell Migration and Adhesion, but Not Permeability, and Controls Vascular Development and Embryonic Viability*

    PubMed Central

    Souza, Cleiton Martins; Davidson, Dominique; Rhee, Inmoo; Gratton, Jean-Philippe; Davis, Elaine C.; Veillette, André

    2012-01-01

    Protein-tyrosine phosphatase (PTP)-PEST (PTPN12) is ubiquitously expressed. It is essential for normal embryonic development and embryonic viability in mice. Herein we addressed the involvement of PTP-PEST in endothelial cell functions using a combination of genetic and biochemical approaches. By generating primary endothelial cells from an inducible PTP-PEST-deficient mouse, we found that PTP-PEST is not needed for endothelial cell differentiation and proliferation or for the control of endothelial cell permeability. Nevertheless, it is required for integrin-mediated adhesion and migration of endothelial cells. PTP-PEST-deficient endothelial cells displayed increased tyrosine phosphorylation of Cas, paxillin, and Pyk2, which were previously also implicated in integrin functions. By eliminating PTP-PEST in endothelial cells in vivo, we obtained evidence that expression of PTP-PEST in endothelial cells is required for normal vascular development and embryonic viability. Therefore, PTP-PEST is a key regulator of integrin-mediated functions in endothelial cells seemingly through its capacity to control Cas, paxillin, and Pyk2. This function explains at least in part the essential role of PTP-PEST in embryonic development and viability. PMID:23105101

  12. Generation of embryos directly from embryonic stem cells by tetraploid embryo complementation reveals a role for GATA factors in organogenesis.

    PubMed

    Duncan, S A

    2005-12-01

    Gene targeting in ES (embryonic stem) cells has been used extensively to study the role of proteins during embryonic development. In the traditional procedure, this requires the generation of chimaeric mice by introducing ES cells into blastocysts and allowing them to develop to term. Once chimaeric mice are produced, they are bred into a recipient mouse strain to establish germline transmission of the allele of interest. Although this approach has been used very successfully, the breeding cycles involved are time consuming. In addition, genes that are essential for organogenesis often have roles in the formation of extra-embryonic tissues that are essential for early stages of post-implantation development. For example, mice lacking the GATA transcription factors, GATA4 or GATA6, arrest during gastrulation due to an essential role for these factors in differentiation of extra-embryonic endoderm. This lethality has frustrated the study of these factors during the development of organs such as the liver and heart. Extraembryonic defects can, however, be circumvented by generating clonal mouse embryos directly from ES cells by tetraploid complementation. Here, we describe the usefulness and efficacy of this approach using GATA factors as an example.

  13. Serial block face-scanning electron microscopy: a tool for studying embryonic development at the cell-matrix interface.

    PubMed

    Starborg, Tobias; Kadler, Karl E

    2015-03-01

    Studies of gene regulation, signaling pathways, and stem cell biology are contributing greatly to our understanding of early embryonic vertebrate development. However, much less is known about the events during the latter half of embryonic development, when tissues comprising mostly extracellular matrix (ECM) are formed. The matrix extends far beyond the boundaries of individual cells and is refractory to study by conventional biochemical and molecular techniques; thus major gaps exist in our knowledge of the formation and three-dimensional (3D) organization of the dense tissues that form the bulk of adult vertebrates. Serial block face-scanning electron microscopy (SBF-SEM) has the ability to image volumes of tissue containing numerous cells at a resolution sufficient to study the organization of the ECM. Furthermore, whereas light microscopy was once relatively straightforward and electron microscopy was performed in specialist laboratories, the tables are turned; SBF-SEM is relatively straightforward and is becoming routine in high-end resolution studies of embryonic structures in vivo. In this review, we discuss the emergence of SBF-SEM as a tool for studying embryonic vertebrate development. © 2015 Wiley Periodicals, Inc.

  14. Observation of human embryonic behavior in vitro by high-resolution time-lapse cinematography.

    PubMed

    Iwata, Kyoko; Mio, Yasuyuki

    2016-07-01

    Assisted reproductive technology (ART) has yielded vast amounts of information and knowledge on human embryonic development in vitro; however, still images provide limited data on dynamic changes in the developing embryos. Using our high-resolution time-lapse cinematography (hR-TLC) system, we were able to describe normal human embryonic development continuously from the fertilization process to the hatched blastocyst stage in detail. Our hR-TLC observation also showed the embryonic abnormality of a third polar body (PB)-like substance likely containing a small pronucleus being extruded and resulting in single-pronucleus (1PN) formation, while our molecular biological investigations suggested the possibility that some 1PN embryos could be diploid, carrying both maternal and paternal genomes. Furthermore, in some embryos the extruded third PB-like substance was eventually re-absorbed into the ooplasm resulting in the formation of an uneven-sized, two-PN zygote. In addition, other hR-TLC observations showed that cytokinetic failure was correlated with equal-sized, multi-nucleated blastomeres that were also observed in the embryo showing early initiation of compaction. Assessment combining our hR-TLC with molecular biological techniques enables a better understanding of embryonic development and potential improvements in ART outcomes.

  15. Prolactin modulates luteal activity in the short-nosed fruit bat, Cynopterus sphinx during delayed embryonic development.

    PubMed

    Anuradha; Krishna, Amitabh

    2017-07-01

    The aim of this study was to evaluate the role of prolactin as a modulator of luteal steroidogenesis during the period of delayed embryonic development in Cynopterus sphinx. A marked decline in circulating prolactin levels was noted during the months of November through December coinciding with the period of decreased serum progesterone and delayed embryonic development. The seasonal changes in serum prolactin levels correlated positively with circulating progesterone (P) level, but inversely with circulating melatonin level during first pregnancy showing delayed development in Cynopterus sphinx. The results also showed decreased expression of prolactin receptor-short form (PRL-RS) both in the corpus luteum and in the utero-embryonic unit during the period of delayed embryonic development. Bats treated in vivo with prolactin during the period of delayed development showed significant increase in serum progesterone and estradiol levels together with significant increase in the expression of PRL-RS, luteinizing hormone receptor (LH-R), steroidogenic acute receptor protein (STAR) and 3β-hydroxysteroid dehydrogenase (3β-HSD) in the ovary. Prolactin stimulated ovarian angiogenesis (vascular endothelial growth factor) and cell survival (B-cell lymphoma 2) in vivo. Significant increases in ovarian progesterone production and the expression of prolactin-receptor, LH-R, STAR and 3β-HSD proteins were noted following the exposure of LH or prolactin in vitro during the delayed period. In conclusion, short-day associated increased melatonin level may be responsible for decreased prolactin release during November-December. The decline in prolactin level might play a role in suppressing P and estradiol-17β (E2) estradiol levels thereby causing delayed embryonic development in C. sphinx. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Novel Method To Differentiate Human Embryonic Stem Cells Into Dopaminergic Nerve Cells | NCI Technology Transfer Center | TTC

    Cancer.gov

    The National Institute on Drug Abuse's Development and Plasticity Section is seeking statements of capability or interest from parties interested in licensing opportunities to further develop, evaluate, or commercialize novel methods to differentiate human embryonic stem cells into dopaminergic nerve cells. The invention described here is a novel method of differentiating human embryonic stem cells (hESCs) into dopaminergic nerve cells, which is preferable to the currently available dopaminergic differentiation techniques.

  17. Monosaccharide uptake by erythrocytes of the embryonic and adult chicken.

    PubMed

    Ingermann, R L; Stock, M K; Metcalfe, J; Bissonnette, J M

    1985-01-01

    Rates of monosaccharide uptake by adult and 10-18 day old embryonic chicken erythrocytes were quantitated. The rate of carrier-mediated, stereospecific transport decreased 28% from day 10 to day 14 of incubation and was unchanged thereafter. At no time, however, did the rate of carrier-mediated transport by embryonic erythrocytes differ significantly from that of the adult cells. The rate of transfer by simple diffusion was 3-5 fold faster in embryonic than in adult erythrocytes. Uptake by simple diffusion decreased slightly as the embryo developed. Chronic hyperoxic incubation (70% O2) had little influence on total monosaccharide uptake by embryonic erythrocytes.

  18. Effects of heavy ion radiation on the brain vascular system and embryonic development

    NASA Technical Reports Server (NTRS)

    Yang, T. C.; Tobias, C. A.

    1984-01-01

    The present investigation is concerned with the effects of heavy-ion radiation on the vascular system and the embryonic development, taking into account the results of experiments with neonatal rats and mouse embryos. It is found that heavy ions can be highly effective in producing brain hemorrhages and in causing body deformities. Attention is given to aspects of methodology, the induction of brain hemorrhages by X-rays and heavy ions, and the effect of iron particles on embryonic development. Reported results suggest that high linear energy transfer (LET) heavy ions can be very effective in producing developmental abnormalities.

  19. Identification and functional analysis of long non-coding RNAs in human and mouse early embryos based on single-cell transcriptome data

    PubMed Central

    Qiu, Jia-jun; Ren, Zhao-rui; Yan, Jing-bin

    2016-01-01

    Epigenetics regulations have an important role in fertilization and proper embryonic development, and several human diseases are associated with epigenetic modification disorders, such as Rett syndrome, Beckwith-Wiedemann syndrome and Angelman syndrome. However, the dynamics and functions of long non-coding RNAs (lncRNAs), one type of epigenetic regulators, in human pre-implantation development have not yet been demonstrated. In this study, a comprehensive analysis of human and mouse early-stage embryonic lncRNAs was performed based on public single-cell RNA sequencing data. Expression profile analysis revealed that lncRNAs are expressed in a developmental stage–specific manner during human early-stage embryonic development, whereas a more temporal-specific expression pattern was identified in mouse embryos. Weighted gene co-expression network analysis suggested that lncRNAs involved in human early-stage embryonic development are associated with several important functions and processes, such as oocyte maturation, zygotic genome activation and mitochondrial functions. We also found that the network of lncRNAs involved in zygotic genome activation was highly preservative between human and mouse embryos, whereas in other stages no strong correlation between human and mouse embryo was observed. This study provides insight into the molecular mechanism underlying lncRNA involvement in human pre-implantation embryonic development. PMID:27542205

  20. Platelets regulate lymphatic vascular development through CLEC-2-SLP-76 signaling.

    PubMed

    Bertozzi, Cara C; Schmaier, Alec A; Mericko, Patricia; Hess, Paul R; Zou, Zhiying; Chen, Mei; Chen, Chiu-Yu; Xu, Bin; Lu, Min-min; Zhou, Diane; Sebzda, Eric; Santore, Matthew T; Merianos, Demetri J; Stadtfeld, Matthias; Flake, Alan W; Graf, Thomas; Skoda, Radek; Maltzman, Jonathan S; Koretzky, Gary A; Kahn, Mark L

    2010-07-29

    Although platelets appear by embryonic day 10.5 in the developing mouse, an embryonic role for these cells has not been identified. The SYK-SLP-76 signaling pathway is required in blood cells to regulate embryonic blood-lymphatic vascular separation, but the cell type and molecular mechanism underlying this regulatory pathway are not known. In the present study we demonstrate that platelets regulate lymphatic vascular development by directly interacting with lymphatic endothelial cells through C-type lectin-like receptor 2 (CLEC-2) receptors. PODOPLANIN (PDPN), a transmembrane protein expressed on the surface of lymphatic endothelial cells, is required in nonhematopoietic cells for blood-lymphatic separation. Genetic loss of the PDPN receptor CLEC-2 ablates PDPN binding by platelets and confers embryonic lymphatic vascular defects like those seen in animals lacking PDPN or SLP-76. Platelet factor 4-Cre-mediated deletion of Slp-76 is sufficient to confer lymphatic vascular defects, identifying platelets as the cell type in which SLP-76 signaling is required to regulate lymphatic vascular development. Consistent with these genetic findings, we observe SLP-76-dependent platelet aggregate formation on the surface of lymphatic endothelial cells in vivo and ex vivo. These studies identify a nonhemostatic pathway in which platelet CLEC-2 receptors bind lymphatic endothelial PDPN and activate SLP-76 signaling to regulate embryonic vascular development.

  1. Correlation of Versican Expression, Accumulation, and Degradation during Embryonic Development by Quantitative Immunohistochemistry

    PubMed Central

    Snyder, Jessica M.; Washington, Ida M.; Birkland, Timothy; Chang, Mary Y.; Frevert, Charles W.

    2015-01-01

    Versican, a chondroitin sulfate proteoglycan, is important in embryonic development, and disruption of the versican gene is embryonically lethal in the mouse. Although several studies show that versican is increased in various organs during development, a focused quantitative study on versican expression and distribution during lung and central nervous system development in the mouse has not previously been performed. We tracked changes in versican (Vcan) gene expression and in the accumulation and degradation of versican. Vcan expression and quantitative immunohistochemistry performed from embryonic day (E) 11.5 to E15.5 showed peak Vcan expression at E13.5 in the lungs and brain. Quantitative mRNA analysis and versican immunohistochemistry showed differences in the expression of the versican isoforms in the embryonic lung and head. The expression of Vcan mRNA and accumulation of versican in tissues was complementary. Immunohistochemistry demonstrated co-localization of versican accumulation and degradation, suggesting distinct roles of versican deposition and degradation in embryogenesis. Very little versican mRNA or protein was found in the lungs of 12- to 16-week-old mice but versican accumulation was significantly increased in mice with Pseudomonas aeruginosa lung infection. These data suggest that versican plays an important role in fundamental, overlapping cellular processes in lung development and infection. PMID:26385570

  2. Wnt ligands from the embryonic surface ectoderm regulate ‘bimetallic strip’ optic cup morphogenesis in mouse

    PubMed Central

    Carpenter, April C.; Smith, April N.; Wagner, Heidi; Cohen-Tayar, Yamit; Rao, Sujata; Wallace, Valerie; Ashery-Padan, Ruth; Lang, Richard A.

    2015-01-01

    The Wnt/β-catenin response pathway is central to many developmental processes. Here, we assessed the role of Wnt signaling in early eye development using the mouse as a model system. We showed that the surface ectoderm region that includes the lens placode expressed 12 out of 19 possible Wnt ligands. When these activities were suppressed by conditional deletion of wntless (Le-cre; Wlsfl/fl) there were dramatic consequences that included a saucer-shaped optic cup, ventral coloboma, and a deficiency of periocular mesenchyme. This phenotype shared features with that produced when the Wnt/β-catenin pathway co-receptor Lrp6 is mutated or when retinoic acid (RA) signaling in the eye is compromised. Consistent with this, microarray and cell fate marker analysis identified a series of expression changes in genes known to be regulated by RA or by the Wnt/β-catenin pathway. Using pathway reporters, we showed that Wnt ligands from the surface ectoderm directly or indirectly elicit a Wnt/β-catenin response in retinal pigment epithelium (RPE) progenitors near the optic cup rim. In Le-cre; Wlsfl/fl mice, the numbers of RPE cells are reduced and this can explain, using the principle of the bimetallic strip, the curvature of the optic cup. These data thus establish a novel hypothesis to explain how differential cell numbers in a bilayered epithelium can lead to shape change. PMID:25715397

  3. A regulatory toolbox of MiniPromoters to drive selective expression in the brain

    PubMed Central

    Portales-Casamar, Elodie; Swanson, Douglas J.; Liu, Li; de Leeuw, Charles N.; Banks, Kathleen G.; Ho Sui, Shannan J.; Fulton, Debra L.; Ali, Johar; Amirabbasi, Mahsa; Arenillas, David J.; Babyak, Nazar; Black, Sonia F.; Bonaguro, Russell J.; Brauer, Erich; Candido, Tara R.; Castellarin, Mauro; Chen, Jing; Chen, Ying; Cheng, Jason C. Y.; Chopra, Vik; Docking, T. Roderick; Dreolini, Lisa; D'Souza, Cletus A.; Flynn, Erin K.; Glenn, Randy; Hatakka, Kristi; Hearty, Taryn G.; Imanian, Behzad; Jiang, Steven; Khorasan-zadeh, Shadi; Komljenovic, Ivana; Laprise, Stéphanie; Liao, Nancy Y.; Lim, Jonathan S.; Lithwick, Stuart; Liu, Flora; Liu, Jun; Lu, Meifen; McConechy, Melissa; McLeod, Andrea J.; Milisavljevic, Marko; Mis, Jacek; O'Connor, Katie; Palma, Betty; Palmquist, Diana L.; Schmouth, Jean-François; Swanson, Magdalena I.; Tam, Bonny; Ticoll, Amy; Turner, Jenna L.; Varhol, Richard; Vermeulen, Jenny; Watkins, Russell F.; Wilson, Gary; Wong, Bibiana K. Y.; Wong, Siaw H.; Wong, Tony Y. T.; Yang, George S.; Ypsilanti, Athena R.; Jones, Steven J. M.; Holt, Robert A.; Goldowitz, Daniel; Wasserman, Wyeth W.; Simpson, Elizabeth M.

    2010-01-01

    The Pleiades Promoter Project integrates genomewide bioinformatics with large-scale knockin mouse production and histological examination of expression patterns to develop MiniPromoters and related tools designed to study and treat the brain by directed gene expression. Genes with brain expression patterns of interest are subjected to bioinformatic analysis to delineate candidate regulatory regions, which are then incorporated into a panel of compact human MiniPromoters to drive expression to brain regions and cell types of interest. Using single-copy, homologous-recombination “knockins” in embryonic stem cells, each MiniPromoter reporter is integrated immediately 5′ of the Hprt locus in the mouse genome. MiniPromoter expression profiles are characterized in differentiation assays of the transgenic cells or in mouse brains following transgenic mouse production. Histological examination of adult brains, eyes, and spinal cords for reporter gene activity is coupled to costaining with cell-type–specific markers to define expression. The publicly available Pleiades MiniPromoter Project is a key resource to facilitate research on brain development and therapies. PMID:20807748

  4. Islet-1 is required for ventral neuron survival in Xenopus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Yu; Zhao, Shuhua; Li, Jiejing

    Islet-1 is a LIM domain transcription factor involved in several processes of embryonic development. Xenopus Islet-1 (Xisl-1) has been shown to be crucial for proper heart development. Here we show that Xisl-1 and Xisl-2 are differentially expressed in the nervous system in Xenopus embryos. Knock-down of Xisl-1 by specific morpholino leads to severe developmental defects, including eye and heart failure. Staining with the neuronal markers N-tubulin and Xisl-1 itself reveals that the motor neurons and a group of ventral interneurons are lost in the Xisl-1 morphants. Terminal dUTP nick-end labeling (TUNEL) analysis shows that Xisl-1 morpholino injection induces extensive apoptosismore » in the ventral neural plate, which can be largely inhibited by the apoptosis inhibitor M50054. We also find that over-expression of Xisl-1 is able to promote cell proliferation and induce Xstat3 expression in the injected side, suggesting a potential role for Xisl-1 in the regulation of cell proliferation in co-operation with the Jak-Stat pathway.« less

  5. In utero imaging of mouse embryonic development with optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Syed, Saba H.; Dickinson, Mary E.; Larin, Kirill V.; Larina, Irina V.

    2011-03-01

    Studying progression of congenital diseases in animal models can greatly benefit from live embryonic imaging Mouse have long served as a model of mammalian embryonic developmental processes, however, due to intra-uterine nature of mammalian development live imaging is challenging. In this report we present results on live mouse embryonic imaging in utero with Optical Coherence Tomography. Embryos from 12.5 through 17.5 days post-coitus (dpc) were studied through the uterine wall. In longitudinal studies, same embryos were imaged at developmental stages 13.5, 15.5 and 17.5 dpc. This study suggests that OCT can serve as a powerful tool for live mouse embryo imaging. Potentially this technique can contribute to our understanding developmental abnormalities associated with mutations, toxic drugs.

  6. Nitric Oxide Synthase-3 Promotes Embryonic Development of Atrioventricular Valves

    PubMed Central

    Liu, Yin; Lu, Xiangru; Xiang, Fu-Li; Lu, Man; Feng, Qingping

    2013-01-01

    Nitric oxide synthase-3 (NOS3) has recently been shown to promote endothelial-to-mesenchymal transition (EndMT) in the developing atrioventricular (AV) canal. The present study was aimed to investigate the role of NOS3 in embryonic development of AV valves. We hypothesized that NOS3 promotes embryonic development of AV valves via EndMT. To test this hypothesis, morphological and functional analysis of AV valves were performed in wild-type (WT) and NOS3−/− mice at postnatal day 0. Our data show that the overall size and length of mitral and tricuspid valves were decreased in NOS3−/− compared with WT mice. Echocardiographic assessment showed significant regurgitation of mitral and tricuspid valves during systole in NOS3−/− mice. These phenotypes were all rescued by cardiac specific NOS3 overexpression. To assess EndMT, immunostaining of Snail1 was performed in the embryonic heart. Both total mesenchymal and Snail1+ cells in the AV cushion were decreased in NOS3−/− compared with WT mice at E10.5 and E12.5, which was completely restored by cardiac specific NOS3 overexpression. In cultured embryonic hearts, NOS3 promoted transforming growth factor (TGFβ), bone morphogenetic protein (BMP2) and Snail1expression through cGMP. Furthermore, mesenchymal cell formation and migration from cultured AV cushion explants were decreased in the NOS3−/− compared with WT mice. We conclude that NOS3 promotes AV valve formation during embryonic heart development and deficiency in NOS3 results in AV valve insufficiency. PMID:24204893

  7. Engineering human cell spheroids to model embryonic tissue fusion in vitro.

    EPA Science Inventory

    Epithelial-mesenchymal interactions drive embryonic fusion events during development and upon perturbation can result in birth defects. Cleft palate and neural tube defects can result from genetic defects or environmental exposures during development, yet very little is known abo...

  8. Single nucleotide polymorphisms in candidate genes associated with fertilizing ability of sperm and subsequent embryonic development in cattle

    USDA-ARS?s Scientific Manuscript database

    Fertilization and development of the preimplantation embryo is under genetic control. The goal of the current study was to test 434 single nucleotide polymorphisms (SNPs) for association with genetic variation in fertilization and early embryonic development. The approach was to produce embryos from...

  9. Maternal transfer of methimazole and effects on thyroid hormone availability in embryonic tissues.

    PubMed

    Van Herck, Stijn L J; Geysens, Stijn; Bald, Edward; Chwatko, Grazyna; Delezie, Evelyne; Dianati, Elham; Ahmed, R G; Darras, Veerle M

    2013-07-01

    Methimazole (MMI) is an anti-thyroid drug used in the treatment of chronic hyperthyroidism. There is, however, some debate about its use during pregnancy as MMI is known to cross the mammalian placenta and reach the developing foetus. A similar problem occurs in birds, where MMI is deposited in the egg and taken up by the developing embryo. To investigate whether maternally derived MMI can have detrimental effects on embryonic development, we treated laying hens with MMI (0.03% in drinking water) and measured total and reduced MMI contents in the tissues of hens and embryos at different stages of development. In hens, MMI was selectively increased in the thyroid gland, while its levels in the liver and especially brain remained relatively low. Long-term MMI treatment induced a pronounced goitre with a decrease in thyroxine (T₄) content but an increase in thyroidal 3,5,3'-triiodothyronine (T₃) content. This resulted in normal T₃ levels in tissues except in the brain. In chicken embryos, MMI levels were similar in the liver and brain. They gradually decreased during development but always remained above those in the corresponding maternal tissues. Contrary to the situation in hens, T₄ availability was only moderately affected in embryos. Peripheral T₃ levels were reduced in 14-day-old embryos but normal in 18-day-old embryos, while brain T₃ content was decreased at all embryonic stages tested. We conclude that all embryonic tissues are exposed to relatively high doses of MMI and its oxidised metabolites. The effect of maternal MMI treatment on embryonic thyroid hormone availability is most pronounced for brain T₃ content, which is reduced throughout the embryonic development period.

  10. Mutation of SALL2 causes recessive ocular coloboma in humans and mice

    PubMed Central

    Kelberman, Daniel; Islam, Lily; Lakowski, Jörn; Bacchelli, Chiara; Chanudet, Estelle; Lescai, Francesco; Patel, Aara; Stupka, Elia; Buck, Anja; Wolf, Stephan; Beales, Philip L.; Jacques, Thomas S.; Bitner-Glindzicz, Maria; Liasis, Alki; Lehmann, Ordan J.; Kohlhase, Jürgen; Nischal, Ken K.; Sowden, Jane C.

    2014-01-01

    Ocular coloboma is a congenital defect resulting from failure of normal closure of the optic fissure during embryonic eye development. This birth defect causes childhood blindness worldwide, yet the genetic etiology is poorly understood. Here, we identified a novel homozygous mutation in the SALL2 gene in members of a consanguineous family affected with non-syndromic ocular coloboma variably affecting the iris and retina. This mutation, c.85G>T, introduces a premature termination codon (p.Glu29*) predicted to truncate the SALL2 protein so that it lacks three clusters of zinc-finger motifs that are essential for DNA-binding activity. This discovery identifies SALL2 as the third member of the Drosophila homeotic Spalt-like family of developmental transcription factor genes implicated in human disease. SALL2 is expressed in the developing human retina at the time of, and subsequent to, optic fissure closure. Analysis of Sall2-deficient mouse embryos revealed delayed apposition of the optic fissure margins and the persistence of an anterior retinal coloboma phenotype after birth. Sall2-deficient embryos displayed correct posterior closure toward the optic nerve head, and upon contact of the fissure margins, dissolution of the basal lamina occurred and PAX2, known to be critical for this process, was expressed normally. Anterior closure was disrupted with the fissure margins failing to meet, or in some cases misaligning leading to a retinal lesion. These observations demonstrate, for the first time, a role for SALL2 in eye morphogenesis and that loss of function of the gene causes ocular coloboma in humans and mice. PMID:24412933

  11. Generation of Pax6-IRES-EGFP knock-in mouse via the cloning-free CRISPR/Cas9 system to reliably visualize neurodevelopmental dynamics.

    PubMed

    Inoue, Yukiko U; Morimoto, Yuki; Hoshino, Mikio; Inoue, Takayoshi

    2018-07-01

    Pax6 encodes a transcription factor that plays pivotal roles in eye development, early brain patterning, neocortical arealization, and so forth. Visualization of Pax6 expression dynamics in these events could offer numerous advantages to neurodevelopmental studies. While CRISPR/Cas9 system has dramatically accelerated one-step generation of knock-out mouse, establishment of gene-cassette knock-in mouse via zygote injection has been considered insufficient due to its low efficiency. Recently, an improved CRISPR/Cas9 system for effective gene-cassette knock-in has been reported, where the native form of guide RNAs (crRNA and tracrRNA) assembled with recombinant Cas9 protein are directly delivered into mouse fertilized eggs. Here we apply this strategy to insert IRES-EGFP-pA cassette into Pax6 locus and achieve efficient targeted insertions of the 1.8 kb reporter gene. In Pax6-IRES-EGFP mouse we have generated, EGFP-positive cells reside in the eyes and cerebellum as endogenous Pax6 expressing cells at postnatal day 2. At the early embryonic stages when the embryos are transparent, EGFP-positive regions can be easily identified without PCR-based genotyping, precisely recapitulating the endogenous Pax6 expression patterns. Remarkably, at E12.5, the graded expression patterns of Pax6 in the developing neocortex now become recognizable in our knock-in mice, serving a sufficiently sensitive and useful tool to precisely visualize neurodevelopmental processes. Copyright © 2018 Elsevier B.V. and Japan Neuroscience Society. All rights reserved.

  12. DNA methylation analysis of the gene CDKN2B in Gallus gallus (chicken).

    PubMed

    Gryzińska, Magdalena; Andraszek, Katarzyna; Jocek, Grzegorz

    2013-01-01

    Methylation is an epigenetic modification of DNA affecting gene expression without changing the structure of nucleotides. It plays a crucial role in the embryonic and post-embryonic development of living organisms. Methylation level is tissue and species-specific and changes with age. The study was aimed at identifying the methylation of the CDKN2B gene situated at locus bar in Polbar chickens on the 6th and 18th day of embryonic development using the MSP (methylation-specific PCR) method. Methylation was not detected in the promoter region of gene CDKN2B on the 6th and 18th day of embryonic development. As one of the five genes responsible for melanine activity in melanocytes and highly active, it can contribute to the production of this pigment. The present research broadens the current knowledge of the chicken epigenome and the mechanism of autosexing in birds.

  13. Subretinal Implantation of Retinal Pigment Epithelial Cells Derived From Human Embryonic Stem Cells: Improved Survival When Implanted as a Monolayer

    PubMed Central

    Diniz, Bruno; Thomas, Padmaja; Thomas, Biju; Ribeiro, Ramiro; Hu, Yuntao; Brant, Rodrigo; Ahuja, Ashish; Zhu, Danhong; Liu, Laura; Koss, Michael; Maia, Mauricio; Chader, Gerald; Hinton, David R.; Humayun, Mark S.

    2013-01-01

    Purpose. To evaluate cell survival and tumorigenicity of human embryonic stem cell–derived retinal pigment epithelium (hESC-RPE) transplantation in immunocompromised nude rats. Cells were transplanted as a cell suspension (CS) or as a polarized monolayer plated on a parylene membrane (PM). Methods. Sixty-nine rats (38 male, 31 female) were surgically implanted with CS (n = 33) or PM (n = 36). Cohort subsets were killed at 1, 6, and 12 months after surgery. Both ocular tissues and systemic organs (brain, liver, kidneys, spleen, heart, and lungs) were fixed in 4% paraformaldehyde, embedded in paraffin, and sectioned. Every fifth section was stained with hematoxylin and eosin and analyzed histologically. Adjacent sections were processed for immunohistochemical analysis (as needed) using the following antibodies: anti-RPE65 (RPE-specific marker), anti-TRA-1-85 (human cell marker), anti-Ki67 (proliferation marker), anti-CD68 (macrophage), and anti-cytokeratin (epithelial marker). Results. The implanted cells were immunopositive for the RPE65 and TRA-1-85. Cell survival (P = 0.006) and the presence of a monolayer (P < 0.001) of hESC-RPE were significantly higher in eyes that received the PM. Gross morphological and histological analysis of the eye and the systemic organs after the surgery revealed no evidence of tumor or ectopic tissue formation in either group. Conclusions. hESC-RPE can survive for at least 12 months in an immunocompromised animal model. Polarized monolayers of hESC-RPE show improved survival compared to cell suspensions. The lack of teratoma or any ectopic tissue formation in the implanted rats bodes well for similar results with respect to safety in human subjects. PMID:23833067

  14. Alterations to embryonic serotonin change aggression and fearfulness

    USDA-ARS?s Scientific Manuscript database

    Prenatal environment, including maternal hormones, affects the development of the serotonin (5-HT) system, with long-lasting effects on mood and behavioral exhibition in children and adults. The chicken provides a unique animal model to study the effects of embryonic development on childhood and ado...

  15. In silico Testing of Environmental Impact on Embryonic Vascular Development

    EPA Science Inventory

    Understanding risks to embryonic development from exposure to environmental chemicals is a significant challenge given the diverse chemical landscape and paucity of data for most of these compounds. EPA’s Virtual Embryo project is building in silico models of morphogenesis to tes...

  16. Developing an Experimental Model of Vascular Toxicity in Embryonic Zebrafish

    EPA Science Inventory

    Developing an Experimental Model of Vascular Toxicity in Embryonic Zebrafish Tamara Tal, Integrated Systems Toxicology Division, U.S. EPA Background: There are tens of thousands of chemicals that have yet to be fully evaluated for their toxicity by validated in vivo testing ...

  17. Impacts of maternal dietary protein intake on fetal survival, growth, and development.

    PubMed

    Herring, Cassandra M; Bazer, Fuller W; Johnson, Gregory A; Wu, Guoyao

    2018-03-01

    Maternal nutrition during gestation, especially dietary protein intake, is a key determinant in embryonic survival, growth, and development. Low maternal dietary protein intake can cause embryonic losses, intra-uterine growth restriction, and reduced postnatal growth due to a deficiency in specific amino acids that are important for cell metabolism and function. Of note, high maternal dietary protein intake can also result in intra-uterine growth restriction and embryonic death, due to amino acid excesses, as well as the toxicity of ammonia, homocysteine, and H 2 S that are generated from amino acid catabolism. Maternal protein nutrition has a pronounced impact on fetal programming and alters the expression of genes in the fetal genome. As a precursor to the synthesis of molecules (e.g. nitric oxide, polyamines, and creatine) with cell signaling and metabolic functions, L-arginine (Arg) is essential during pregnancy for growth and development of the conceptus. With inadequate maternal dietary protein intake, Arg and other important amino acids are deficient in mother and fetus. Dietary supplementation of Arg during gestation has been effective in improving embryonic survival and development of the conceptus in many species, including humans, pigs, sheep, mice, and rats. Both the balance among amino acids and their quantity are critical for healthy pregnancies and offspring. Impact statement This review aims at: highlighting adverse effects of elevated levels of ammonia in mother or fetus on embryonic/fetal survival, growth, and development; helping nutritionists and practitioners to understand the mechanisms whereby elevated levels of ammonia in mother or fetus results in embryonic/fetal death, growth restriction, and developmental abnormalities; and bringing, into the attention of nutritionists and practitioners, the problems of excess or inadequate dietary intake of protein or amino acids on pregnancy outcomes in animals and humans. The article provides new, effective means to improve embryonic/fetal survival and growth in mammals.

  18. Effects of temperature on embryonic and early larval growth and development in the rough-skinned newt (Taricha granulosa).

    PubMed

    Smith, Geoffrey D; Hopkins, Gareth R; Mohammadi, Shabnam; M Skinner, Heather; Hansen, Tyler; Brodie, Edmund D; French, Susannah S

    2015-07-01

    We investigated the effects of temperature on the growth and development of embryonic and early larval stages of a western North American amphibian, the rough-skinned newt (Taricha granulosa). We assigned newt eggs to different temperatures (7, 14, or 21°C); after hatching, we re-assigned the newt larvae into the three different temperatures. Over the course of three to four weeks, we measured total length and developmental stage of the larvae. Our results indicated a strong positive relationship over time between temperature and both length and developmental stage. Importantly, individuals assigned to cooler embryonic temperatures did not achieve the larval sizes of individuals from the warmer embryonic treatments, regardless of larval temperature. Our investigation of growth and development at different temperatures demonstrates carry-over effects and provides a more comprehensive understanding of how organisms respond to temperature changes during early development. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. De novo formation of nucleoli in developing mouse embryos originating from enucleolated zygotes.

    PubMed

    Kyogoku, Hirohisa; Fulka, Josef; Wakayama, Teruhiko; Miyano, Takashi

    2014-06-01

    The large, compact oocyte nucleoli, sometimes referred to as nucleolus precursor bodies (NPBs), are essential for embryonic development in mammals; in their absence, the oocytes complete maturation and can be fertilized, but no nucleoli are formed in the zygote or embryo, leading to developmental failure. It has been convincingly documented that zygotes inherit the oocyte nucleolar material and form NPBs again in pronuclei. It is commonly accepted that during early embryonic development, the original compact zygote NPBs gradually transform into reticulated nucleoli of somatic cells. Here, we show that zygote NPBs are not required for embryonic and full-term development in the mouse. When NPBs were removed from late-stage zygotes by micromanipulation, the enucleolated zygotes developed to the blastocyst stage and, after transfer to recipients, live pups were obtained. We also describe de novo formation of nucleoli in developing embryos. After removal of NPBs from zygotes, they formed new nucleoli after several divisions. These results indicate that the zygote NPBs are not used in embryonic development and that the nucleoli in developing embryos originate from de novo synthesized materials. © 2014. Published by The Company of Biologists Ltd.

  20. Impaired cardiac energy metabolism in embryos lacking adrenergic stimulation

    PubMed Central

    Baker, Candice N.; Gidus, Sarah A.; Price, George F.; Peoples, Jessica N. R.

    2014-01-01

    As development proceeds from the embryonic to fetal stages, cardiac energy demands increase substantially, and oxidative phosphorylation of ADP to ATP in mitochondria becomes vital. Relatively little, however, is known about the signaling mechanisms regulating the transition from anaerobic to aerobic metabolism that occurs during the embryonic period. The main objective of this study was to test the hypothesis that adrenergic hormones provide critical stimulation of energy metabolism during embryonic/fetal development. We examined ATP and ADP concentrations in mouse embryos lacking adrenergic hormones due to targeted disruption of the essential dopamine β-hydroxylase (Dbh) gene. Embryonic ATP concentrations decreased dramatically, whereas ADP concentrations rose such that the ATP/ADP ratio in the adrenergic-deficient group was nearly 50-fold less than that found in littermate controls by embryonic day 11.5. We also found that cardiac extracellular acidification and oxygen consumption rates were significantly decreased, and mitochondria were significantly larger and more branched in adrenergic-deficient hearts. Notably, however, the mitochondria were intact with well-formed cristae, and there was no significant difference observed in mitochondrial membrane potential. Maternal administration of the adrenergic receptor agonists isoproterenol or l-phenylephrine significantly ameliorated the decreases in ATP observed in Dbh−/− embryos, suggesting that α- and β-adrenergic receptors were effective modulators of ATP concentrations in mouse embryos in vivo. These data demonstrate that adrenergic hormones stimulate cardiac energy metabolism during a critical period of embryonic development. PMID:25516547

  1. Differentiation and Transplantation of Human Embryonic Stem Cell-Derived Hepatocytes

    PubMed Central

    Basma, Hesham; Soto-Gutiérrez, Alejandro; Yannam, Govardhana Rao; Liu, Liping; Ito, Ryotaro; Yamamoto, Toshiyuki; Ellis, Ewa; Carson, Steven D.; Sato, Shintaro; Chen, Yong; Muirhead, David; Navarro-Álvarez, Nalu; Wong, Ron; Roy-Chowdhury, Jayanta; Platt, Jeffrey L.; Mercer, David F.; Miller, John D.; Strom, Stephen C.; Kobayashi, Noaya; Fox, Ira J.

    2009-01-01

    Background & Aims The ability to obtain unlimited numbers of human hepatocytes would improve development of cell-based therapies for liver diseases, facilitate the study of liver biology and improve the early stages of drug discovery. Embryonic stem cells are pluripotent, can potentially differentiate into any cell type and could therefore be developed as a source of human hepatocytes. Methods To generate human hepatocytes, human embryonic stem cells were differentiated by sequential culture in fibroblast growth factor 2 and human Activin-A, hepatocyte growth factor, and dexamethasone. Functional hepatocytes were isolated by sorting for surface asialoglycoprotein receptor expression. Characterization was performed by real-time PCR, imunohistochemistry, immunoblot, functional assays and transplantation. Results Embryonic stem cell-derived hepatocytes expressed liver-specific genes but not genes representing other lineages, secreted functional human liver-specific proteins similar to those of primary human hepatocytes and demonstrated human hepatocyte cytochrome P450 metabolic activity. Serum from rodents given injections of embryonic stem cell-derived hepatocytes contained significant amounts of human albumin and alpha-1-antitrypsin. Colonies of cytokeratin-18 and human albumin-expressing cells were present in the livers of recipient animals. Conclusion Human embryonic stem cells can be differentiated into cells with many characteristics of primary human hepatocytes. Hepatocyte-like cells can be enriched and recovered based on asialoglycoprotein receptor expression and could potentially be used in drug discovery research and developed as therapeutics. PMID:19026649

  2. Clonal analysis of Notch1-expressing cells reveals the existence of unipotent stem cells that retain long-term plasticity in the embryonic mammary gland.

    PubMed

    Lilja, Anna M; Rodilla, Veronica; Huyghe, Mathilde; Hannezo, Edouard; Landragin, Camille; Renaud, Olivier; Leroy, Olivier; Rulands, Steffen; Simons, Benjamin D; Fre, Silvia

    2018-06-01

    Recent lineage tracing studies have revealed that mammary gland homeostasis relies on unipotent stem cells. However, whether and when lineage restriction occurs during embryonic mammary development, and which signals orchestrate cell fate specification, remain unknown. Using a combination of in vivo clonal analysis with whole mount immunofluorescence and mathematical modelling of clonal dynamics, we found that embryonic multipotent mammary cells become lineage-restricted surprisingly early in development, with evidence for unipotency as early as E12.5 and no statistically discernable bipotency after E15.5. To gain insights into the mechanisms governing the switch from multipotency to unipotency, we used gain-of-function Notch1 mice and demonstrated that Notch activation cell autonomously dictates luminal cell fate specification to both embryonic and basally committed mammary cells. These functional studies have important implications for understanding the signals underlying cell plasticity and serve to clarify how reactivation of embryonic programs in adult cells can lead to cancer.

  3. Transcriptional Profiling of Ectoderm Specification to Keratinocyte Fate in Human Embryonic Stem Cells

    PubMed Central

    Tadeu, Ana Mafalda Baptista; Lin, Samantha; Hou, Lin; Chung, Lisa; Zhong, Mei; Zhao, Hongyu; Horsley, Valerie

    2015-01-01

    In recent years, several studies have shed light into the processes that regulate epidermal specification and homeostasis. We previously showed that a broad-spectrum γ–secretase inhibitor DAPT promoted early keratinocyte specification in human embryonic stem cells triggered to undergo ectoderm specification. Here, we show that DAPT accelerates human embryonic stem cell differentiation and induces expression of the ectoderm protein AP2. Furthermore, we utilize RNA sequencing to identify several candidate regulators of ectoderm specification including those involved in epithelial and epidermal development in human embryonic stem cells. Genes associated with transcriptional regulation and growth factor activity are significantly enriched upon DAPT treatment during specification of human embryonic stem cells to the ectoderm lineage. The human ectoderm cell signature identified in this study contains several genes expressed in ectodermal and epithelial tissues. Importantly, these genes are also associated with skin disorders and ectodermal defects, providing a platform for understanding the biology of human epidermal keratinocyte development under diseased and homeostatic conditions. PMID:25849374

  4. [Acceleration of Embryonic Development of Pinus sibirica Trees with a One-Year Reproductive Cycle].

    PubMed

    Tret'yakova, I N; Lukina, N V

    2016-01-01

    The study of the formation of embryonic structures in Pinus sibirica forms with a one-year reproductive cycle showed that the acceleration of the embryonic process manifested itself as a reduction of the coenocytic stage of the female gametophyte development (1.5 months instead of 1 year). The egg was not fertilized because of the asynchronous maturation of male and female gametophytes. Seeds without embryos were formed. We assumed that the acceleration of the reproductive process in Pinus sibirica was caused by a mutation in the female generative organs.

  5. Molecular cloning, developmental expression, and cellular localization of the 70-kDa RPA-1 subunit of Drosophila melanogaster.

    PubMed

    Perdigão, J; Logarinho, E; Avides, M C; Sunkel, C E

    1999-12-01

    Replication protein A (RPA) is a highly conserved multifunctional heterotrimeric complex, involved in DNA replication, repair, recombination, and possibly transcription. Here, we report the cloning of the gene that codes for the largest subunit of the Drosophila melanogaster RPA homolog, dmRPA70. In situ hybridization showed that dmRPA70 RNA is present in developing embryos during the first 16 cycles. After this point, dm-RPA70 expression is downregulated in cells that enter a G1 phase and exit the mitotic cycle, becoming restricted to brief bursts of accumulation from late G1 to S phase. This pattern of regulated expression is also observed in the developing eye imaginal disc. In addition, we have shown that the presence of cyclin E is necessary and sufficient to drive the expression of dmRPA70 in embryonic cells arrested in G1 but is not required in tissues undergoing endoreduplication. Immunolocalization showed that in early developing embryos, the dmRPA70 protein associates with chromatin from the end of mitosis until the beginning of the next prophase in a dynamic speckled pattern that is strongly suggestive of its association with replication foci.

  6. Comparative ovicidal activity of Moringa oleifera leaf extracts on Fasciola gigantica eggs

    PubMed Central

    Hegazi, Ahmed G.; Megeed, Kadria N. Abdel; Hassan, Soad E.; Abdelaziz, M. M.; Toaleb, Nagwa I.; Shanawany, Eman E. El; Aboelsoued, Dina

    2018-01-01

    Background: Fasciolosis is an important zoonotic disease affecting the productive performance of farm animals in Egypt. Aim: The aim of the present study was comparing the ovicidal effect of different extracts as an alcoholic (Methanolic and Ethanolic) and aqueous Moringa oleifera leaf extracts on Fasciola gigantica non-embryonated and developed eggs. Materials and Methods: Tested concentrations of extracts ranged from 12.5 to 800 mg/ml. Nitroxynil was used as reference drug with a dose of 100 mg/ml. Results: M. oleifera alcoholic and aqueous extracts showed a concentration-dependent ovicidal effect on F. gigantica non-embryonated and developed eggs. Based on LC50 values, water extract showed the highest ovicidal activity since it registered the lowest values of 2.6 mg/ml on non-embryonated eggs. Non-embryonated eggs were more susceptible to aqueous extract than developed eggs. On the other hand, the developed eggs were more susceptible to ethanolic extract than non-embryonated eggs even the lowest LC50 (12.38 mg/ml). Conclusion: M. oleifera leaf extracts especially aqueous extract could be a promising step in the field of controlling fascioliasis. Further, in vivo studies are needed to enlighten the therapeutic potential of M. oleifera extracts in treating F. gigantica infection. PMID:29657406

  7. Effect of micro-vibration culture system on embryo development.

    PubMed

    Hur, Yong Soo; Park, Jeong Hyun; Ryu, Eun Kyung; Park, Sung Jin; Lee, Jun Ho; Lee, Soo Hee; Yoon, Jung; Yoon, San Hyun; Hur, Chang Young; Lee, Won Don; Lim, Jin Ho

    2013-06-01

    Micro-vibration culture system was examined to determine the effects on mouse and human embryo development and possible improvement of clinical outcomes in poor responders. The embryonic development rates and cell numbers of blastocysts were compared between a static culture group (n = 178) and a micro-vibration culture group (n = 181) in mice. The embryonic development rates and clinical results were compared between a static culture group (n = 159 cycles) and a micro-vibration culture group (n = 166 cycles) in poor responders. A micro-vibrator was set at a frequency of 42 Hz, 5 s/60 min duration for mouse and human embryo development. The embryonic development rate was significantly improved in the micro-vibration culture group in mice (p < 0.05). The cell numbers of mouse blastocysts were significantly higher in the micro-vibration group than in the static culture group (p < 0.05). In the poor responders, the rate of high grade embryos was not significantly improved in the micro-vibration culture group on day 3. However, the optimal embryonic development rate on day 5 was improved in the micro-vibration group, and the total pregnancy rate and implantation rate were significantly higher in the micro-vibration group than in the static culture group (p < 0.05). Micro-vibration culture methods have a beneficial effect on embryonic development in mouse embryos. In poor responders, the embryo development rate was improved to a limited extent under the micro-vibration culture conditions, but the clinical results were significantly improved.

  8. The laboratory curse: variation in temperature stimulates embryonic development and shortens diapause

    USDA-ARS?s Scientific Manuscript database

    An ongoing biological debate is the difference in trait expression in continuous versus cycling temperature regimes, but are even daily cycling temperatures sufficient to generate natural expression of traits? We compared embryonic development and the duration of diapause for Mormon cricket eggs in...

  9. Selenium Preferentially Accumulates in the Eye Lens Following Embryonic Exposure: A Confocal X-ray Fluorescence Imaging Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choudhury, Sanjukta; Thomas, Jith; Sylvain, Nicole J.

    Maternal transfer of elevated selenium (Se) to offspring is an important route of Se exposure for fish in the natural environment. However, there is a lack of information on the tissue specific spatial distribution and speciation of Se in the early developmental stages of fish, which provide important information about Se toxicokinetics. The effect of maternal transfer of Se was studied by feeding adult zebrafish a Se-elevated or a control diet followed by collection of larvae from both groups. Novel confocal synchrotron-based techniques were used to investigate Se within intact preserved larvae. Confocal X-ray fluorescence imaging was used to comparemore » Se distributions within specific planes of an intact larva from each of the two groups. The elevated Se treatment showed substantially higher Se levels than the control; Se preferentially accumulated to highest levels in the eye lens, with lower levels in the retina, yolk and other tissues. Confocal X-ray absorption spectroscopy was used to determine that the speciation of Se within the eye lens of the intact larva was a selenomethionine-like species. Preferential accumulation of Se in the eye lens may suggest a direct cause-and-effect relationship between exposure to elevated Se and Se-induced ocular impairments reported previously. This study illustrates the effectiveness of confocal X-ray fluorescence methods for investigating trace element distribution and speciation in intact biological specimens« less

  10. [Embryonic stem cells and therapeutic cloning].

    PubMed

    Sunde, A; Eftedal, I

    2001-08-30

    Increased interest in the therapeutic use of human stem cells has emerged following significant progress in ongoing research. The cloning of a sheep, the isolation of human embryonic stem cells, and the discovery that adult stem cells may be reprogrammed taken together give substance to hopes that novel principles of treatment may be developed for a variety of serious conditions. Embryonic stem cells are derived from pre-embryos at the blastocyst stage and may give rise to all bodily tissues and cells. Animal models have demonstrated that embryonic stem cells when transplanted into adult hosts may differentiate and develop into cells and tissues applicable for treatment of a variety of conditions, including Parkinson's disease, multiple sclerosis, spinal injuries, cardiac stroke and cancer. Transplanted embryonic stem cells are exposed to immune reactions similar to those acting on organ transplants, hence immunosuppression of the recipient is generally required. It is, however, possible to obtain embryonic stem cells that are genetically identical to the patient's own cells by means of therapeutic cloning techniques. The nucleus from a somatic cell is transferred into an egg after removal of the egg's own genetic material. Under specific condition the egg will use genetic information from the somatic cell in organising the formation of a blastocyst which in turn generates embryonic stem cells. These cells have a genetic composition identical to that of the patient and are suitable for stem cell therapy.

  11. The effects of incubation temperature and experimental design on heart rates of lizard embryos.

    PubMed

    Hulbert, Austin C; Mitchell, Timothy S; Hall, Joshua M; Guiffre, Cassia M; Douglas, Danielle C; Warner, Daniel A

    2017-08-01

    Many studies of phenotypic plasticity alter environmental conditions during embryonic development, yet only measure phenotypes at the neonatal stage (after embryonic development). However, measuring aspects of embryo physiology enhances our understanding of how environmental factors immediately affect embryos, which aids our understanding of developmental plasticity. While current research on reptile developmental plasticity has demonstrated that fluctuating incubation temperatures affect development differently than constant temperatures, most research on embryo physiology is still performed with constant temperature experiments. In this study, we noninvasively measured embryonic heart rates of the brown anole (Anolis sagrei), across ecologically relevant fluctuating temperatures. We incubated eggs under temperatures measured from potential nests in the field and examined how heart rates change through a diel cycle and throughout embryonic development. We also evaluated how experimental design (e.g., repeated vs. single measures designs, constant vs. fluctuating temperatures) and different protocols (e.g., removing eggs from incubators) might influence heart rate. We found that heart rates were correlated with daily temperature and increased through development. Our findings suggest that experimenters have reasonable flexibility in choosing an experimental design to address their questions; however, some aspects of design and protocol can potentially influence estimations of heart rates. Overall, we present the first ecologically relevant measures of anole embryonic heart rates and provide recommendations for experimental designs for future experiments. © 2017 Wiley Periodicals, Inc.

  12. Importance of the pluripotency factor LIN28 in the mammalian nucleolus during early embryonic development.

    PubMed

    Vogt, Edgar J; Meglicki, Maciej; Hartung, Kristina Ilka; Borsuk, Ewa; Behr, Rüdiger

    2012-12-01

    The maternal nucleolus is required for proper activation of the embryonic genome (EGA) and early embryonic development. Nucleologenesis is characterized by the transformation of a nucleolar precursor body (NPB) to a mature nucleolus during preimplantation development. However, the function of NPBs and the involved molecular factors are unknown. We uncover a novel role for the pluripotency factor LIN28, the biological significance of which was previously demonstrated in the reprogramming of human somatic cells to induced pluripotent stem (iPS) cells. Here, we show that LIN28 accumulates at the NPB and the mature nucleolus in mouse preimplantation embryos and embryonic stem cells (ESCs), where it colocalizes with the nucleolar marker B23 (nucleophosmin 1). LIN28 has nucleolar localization in non-human primate (NHP) preimplantation embryos, but is cytoplasmic in NHP ESCs. Lin28 transcripts show a striking decline before mouse EGA, whereas LIN28 protein localizes to NPBs at the time of EGA. Following knockdown with a Lin28 morpholino, the majority of embryos arrest between the 2- and 4-cell stages and never develop to morula or blastocyst. Lin28 morpholino-injected embryos arrested at the 2-cell stage were not enriched with nucleophosmin at presumptive NPB sites, indicating that functional NPBs were not assembled. Based on these results, we propose that LIN28 is an essential factor of nucleologenesis during early embryonic development.

  13. Redundant functions of I-BAR family members, IRSp53 and IRTKS, are essential for embryonic development

    PubMed Central

    Chou, Ai Mei; Sem, Kai Ping; Lam, Wei Jun; Ahmed, Sohail; Lim, Chin Yan

    2017-01-01

    The insulin receptor substrate of 53 kDa, IRSp53, is an adaptor protein that works with activated GTPases, Cdc42 and Rac, to modulate actin dynamics and generate membrane protrusions in response to cell signaling. Adult mice that lack IRSp53 fail to regulate synaptic plasticity and exhibit hippocampus-associated learning deficiencies. Here, we show that 60% of IRSp53 null embryos die at mid to late gestation, indicating a vital IRSp53 function in embryonic development. We find that IRSp53 KO embryos displayed pleiotropic phenotypes such as developmental delay, oligodactyly and subcutaneous edema, and died of severely impaired cardiac and placental development. We further show that double knockout of IRSp53 and its closest family member, IRTKS, resulted in exacerbated placental abnormalities, particularly in spongiotrophoblast differentiation and development, giving rise to complete embryonic lethality. Hence, our findings demonstrate a hitherto under-appreciated IRSp53 function in embryonic development, and further establish an essential genetic interaction between IRSp53 and IRTKS in placental formation. PMID:28067313

  14. Maternal thyroid hormones are essential for neural development in zebrafish.

    PubMed

    Campinho, Marco A; Saraiva, João; Florindo, Claudia; Power, Deborah M

    2014-07-01

    Teleost eggs contain an abundant store of maternal thyroid hormones (THs), and early in zebrafish embryonic development, all the genes necessary for TH signaling are expressed. Nonetheless the function of THs in embryonic development remains elusive. To test the hypothesis that THs are fundamental for zebrafish embryonic development, an monocarboxilic transporter 8 (Mct8) knockdown strategy was deployed to prevent maternal TH uptake. Absence of maternal THs did not affect early specification of the neural epithelia but profoundly modified later dorsal specification of the brain and spinal cord as well as specific neuron differentiation. Maternal THs acted upstream of pax2a, pax7, and pax8 genes but downstream of shha and fgf8a signaling. The lack of inhibitory spinal cord interneurons and increased motoneurons in the mct8 morphants is consistent with their stiff axial body and impaired mobility. The mct8 mutations are associated with X-linked mental retardation in humans, and the cellular and molecular consequences of MCT8 knockdown during embryonic development in zebrafish provides new insight into the potential role of THs in this condition.

  15. Maternal Thyroid Hormones Are Essential for Neural Development in Zebrafish

    PubMed Central

    Saraiva, João; Florindo, Claudia; Power, Deborah M.

    2014-01-01

    Teleost eggs contain an abundant store of maternal thyroid hormones (THs), and early in zebrafish embryonic development, all the genes necessary for TH signaling are expressed. Nonetheless the function of THs in embryonic development remains elusive. To test the hypothesis that THs are fundamental for zebrafish embryonic development, an monocarboxilic transporter 8 (Mct8) knockdown strategy was deployed to prevent maternal TH uptake. Absence of maternal THs did not affect early specification of the neural epithelia but profoundly modified later dorsal specification of the brain and spinal cord as well as specific neuron differentiation. Maternal THs acted upstream of pax2a, pax7, and pax8 genes but downstream of shha and fgf8a signaling. The lack of inhibitory spinal cord interneurons and increased motoneurons in the mct8 morphants is consistent with their stiff axial body and impaired mobility. The mct8 mutations are associated with X-linked mental retardation in humans, and the cellular and molecular consequences of MCT8 knockdown during embryonic development in zebrafish provides new insight into the potential role of THs in this condition. PMID:24877564

  16. The role of platelets during reproduction.

    PubMed

    Isermann, Berend; Nawroth, Peter P

    2006-01-01

    The availability of mice with defined defects within the hemostatic system enabled researchers to identify a role the coagulation system for embryonic and placental development. However, the role of platelets during development has only recently been experimentally addressed, giving some insight into potential functions of platelets during development. Thus, a quantitative embryonic platelet defect (severe thrombopenia secondary to NF-E2 deficiency) is associated with an embryonic growth retardation and reduced vascularisation of the placenta. Maternal platelet deficiency is associated with placental hemorrhage, which, however, does not impair embryonic or maternal survival. In vitro studies established that platelets or platelet conditioned medium regulate the invasive properties of human extravillous trophoblast cells and induce a phenotypical switch of trophoblast cells. These data imply that platelets are of relevance during placentation. Conversely, platelets and the formation of platelet-fibrin aggregates are dispensable for the development of the embryo proper, establishing that the lethal phenotypes observed in some embryo slacking coagulation regulators does not result from an inability to form platelet-fibrin aggregates, but likely reflects altered protease dependent signaling during vascular development.

  17. The essential role of endogenous ghrelin in growth hormone expression during zebrafish adenohypophysis development.

    PubMed

    Li, Xi; He, Jiangyan; Hu, Wei; Yin, Zhan

    2009-06-01

    Ghrelin, a multifunctional hormone, including potent GH stimulation activity, has been suggested to be important during embryonic development. Expression of ghrelin has been confirmed in the zebrafish pancreas during embryonic stages. Interfering with ghrelin function using two specific antisense morpholino oligonucleotides causes defects during zebrafish embryonic development. In ghrelin morphants the expression of GH was abolished in zebrafish somatotropes, whereas the expression patterns of the other key molecules involved in hypothalamic-pituitary development and distinct pituitary hormones genes remain largely intact at the appropriate time during zebrafish adenohypophysis development. Effective rescue of the ghrelin morphants with exogenous ghrelin mRNA showed that the correct gene had been targeted. Moreover, by analyzing the efficiencies of the ghrelin morphants rescue experiments with various forms of exogenous mutant ghrelin mRNAs, we also demonstrated the essentiality of the form acyl-ghrelin on GH stimulation during zebrafish adenohypophysis development. Our in vivo experiments, for the first time, also provided evidence of the existence of functional obestatin in the C-terminal part of zebrafish proghrelin peptides. Our research here has demonstrated that zebrafish is a unique model for functional studies of endogenous ghrelin, especially during embryonic development.

  18. Imaging of murine embryonic cardiovascular development using optical coherence tomography (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Huang, Yongyang; Degenhardt, Karl R.; Astrof, Sophie; Zhou, Chao

    2016-03-01

    We have demonstrated the capability of spectral domain optical coherence tomography (SDOCT) system to image full development of mouse embryonic cardiovascular system. Monitoring morphological changes of mouse embryonic heart occurred in different embryonic stages helps identify structural or functional cardiac anomalies and understand how these anomalies lead to congenital heart diseases (CHD) present at birth. In this study, mouse embryo hearts ranging from E9.5 to E15.5 were prepared and imaged in vitro. A customized spectral domain OCT system was used for imaging, with a central wavelength of 1310nm, spectral bandwidth of ~100nm and imaging speed of 47kHz A-scans/s. Axial resolution of this system was 8.3µm in air, and transverse resolution was 6.2 µm with 5X objective. Key features of mouse embryonic cardiovascular development such as vasculature remodeling into circulatory system, separation of atria and ventricles and emergence of valves could be clearly seen in three-dimensional OCT images. Optical clearing was applied to overcome the penetration limit of OCT system. With high resolution, fast imaging speed, 3D imaging capability, OCT proves to be a promising biomedical imaging modality for developmental biology studies, rivaling histology and micro-CT.

  19. Dihydroartemisinin promotes angiogenesis during the early embryonic development of zebrafish

    PubMed Central

    Ba, Qian; Duan, Juan; Tian, Jia-qiang; Wang, Zi-liang; Chen, Tao; Li, Xiao-guang; Chen, Pei-zhan; Wu, Song-jie; Xiang, Li; Li, Jing-quan; Chu, Rui-ai; Wang, Hui

    2013-01-01

    Aim: To investigate the embryotoxicity of dihydroartemisinin (DHA), the main active metabolite of artemisinin, in zebrafish, and explore the corresponding mechanisms. Methods: The embryos of wild type and TG (flk1:GFP) transgenic zebrafish were exposed to DHA. Developmental phenotypes of the embryos were observed. Development of blood vessels was directly observed in living embryos of TG (flk1:GFP) transgenic zebrafish under fluorescence microscope. The expression of angiogenesis marker genes vegfa, flk1, and flt1 in the embryos was detected using real-time PCR and RNA in situ hybridization assays. Results: Exposure to DHA (1–10 mg/L) dose-dependently caused abnormal zebrafish embryonic phenotypes in the early developmental stage. Furthermore, exposure to DHA (10 mg/L) resulted in more pronounced embryonic angiogenesis in TG (flk1:GFP) zebrafish line. Exposure to DHA (10 mg/L) significantly increased the mRNA expression of vegfa, flk1, and flt1 in the embryos. Knockdown of the flk1 protein partially blocked the effects of DHA on embryogenesis. Conclusion: DHA causes abnormal embryonic phenotypes and promotes angiogenesis in zebrafish early embryonic development, demonstrating the potential embryotoxicity of DHA. PMID:23708556

  20. The African coelacanth genome provides insights into tetrapod evolution.

    PubMed

    Amemiya, Chris T; Alföldi, Jessica; Lee, Alison P; Fan, Shaohua; Philippe, Hervé; Maccallum, Iain; Braasch, Ingo; Manousaki, Tereza; Schneider, Igor; Rohner, Nicolas; Organ, Chris; Chalopin, Domitille; Smith, Jeramiah J; Robinson, Mark; Dorrington, Rosemary A; Gerdol, Marco; Aken, Bronwen; Biscotti, Maria Assunta; Barucca, Marco; Baurain, Denis; Berlin, Aaron M; Blatch, Gregory L; Buonocore, Francesco; Burmester, Thorsten; Campbell, Michael S; Canapa, Adriana; Cannon, John P; Christoffels, Alan; De Moro, Gianluca; Edkins, Adrienne L; Fan, Lin; Fausto, Anna Maria; Feiner, Nathalie; Forconi, Mariko; Gamieldien, Junaid; Gnerre, Sante; Gnirke, Andreas; Goldstone, Jared V; Haerty, Wilfried; Hahn, Mark E; Hesse, Uljana; Hoffmann, Steve; Johnson, Jeremy; Karchner, Sibel I; Kuraku, Shigehiro; Lara, Marcia; Levin, Joshua Z; Litman, Gary W; Mauceli, Evan; Miyake, Tsutomu; Mueller, M Gail; Nelson, David R; Nitsche, Anne; Olmo, Ettore; Ota, Tatsuya; Pallavicini, Alberto; Panji, Sumir; Picone, Barbara; Ponting, Chris P; Prohaska, Sonja J; Przybylski, Dariusz; Saha, Nil Ratan; Ravi, Vydianathan; Ribeiro, Filipe J; Sauka-Spengler, Tatjana; Scapigliati, Giuseppe; Searle, Stephen M J; Sharpe, Ted; Simakov, Oleg; Stadler, Peter F; Stegeman, John J; Sumiyama, Kenta; Tabbaa, Diana; Tafer, Hakim; Turner-Maier, Jason; van Heusden, Peter; White, Simon; Williams, Louise; Yandell, Mark; Brinkmann, Henner; Volff, Jean-Nicolas; Tabin, Clifford J; Shubin, Neil; Schartl, Manfred; Jaffe, David B; Postlethwait, John H; Venkatesh, Byrappa; Di Palma, Federica; Lander, Eric S; Meyer, Axel; Lindblad-Toh, Kerstin

    2013-04-18

    The discovery of a living coelacanth specimen in 1938 was remarkable, as this lineage of lobe-finned fish was thought to have become extinct 70 million years ago. The modern coelacanth looks remarkably similar to many of its ancient relatives, and its evolutionary proximity to our own fish ancestors provides a glimpse of the fish that first walked on land. Here we report the genome sequence of the African coelacanth, Latimeria chalumnae. Through a phylogenomic analysis, we conclude that the lungfish, and not the coelacanth, is the closest living relative of tetrapods. Coelacanth protein-coding genes are significantly more slowly evolving than those of tetrapods, unlike other genomic features. Analyses of changes in genes and regulatory elements during the vertebrate adaptation to land highlight genes involved in immunity, nitrogen excretion and the development of fins, tail, ear, eye, brain and olfaction. Functional assays of enhancers involved in the fin-to-limb transition and in the emergence of extra-embryonic tissues show the importance of the coelacanth genome as a blueprint for understanding tetrapod evolution.

  1. In silico evolution of biochemical networks

    NASA Astrophysics Data System (ADS)

    Francois, Paul

    2010-03-01

    We use computational evolution to select models of genetic networks that can be built from a predefined set of parts to achieve a certain behavior. Selection is made with the help of a fitness defining biological functions in a quantitative way. This fitness has to be specific to a process, but general enough to find processes common to many species. Computational evolution favors models that can be built by incremental improvements in fitness rather than via multiple neutral steps or transitions through less fit intermediates. With the help of these simulations, we propose a kinetic view of evolution, where networks are rapidly selected along a fitness gradient. This mathematics recapitulates Darwin's original insight that small changes in fitness can rapidly lead to the evolution of complex structures such as the eye, and explain the phenomenon of convergent/parallel evolution of similar structures in independent lineages. We will illustrate these ideas with networks implicated in embryonic development and patterning of vertebrates and primitive insects.

  2. [Characteristics of morphogenesis of the Japanese quail embryos during microgravity

    NASA Technical Reports Server (NTRS)

    Dadasheva, O. A.; Gur'eva, T. S.; Sychev, V. N.; Jehns, G.; Jahns, G. (Principal Investigator)

    1998-01-01

    Experiments performed in the period of 1995-1996 cooperatively with US investigators within the MIR/SHUTTLE and MIR/NASA space science projects continued exploration of avian embryogenesis in microgravity. Evaluation of Japanese quail embryos incubated in spaceflight microgravity showed that for the most part they were normally developed and compliant with duration of incubation. One of the major morphometric characteristics of embryo are its mass and size. Comparative analysis of body mass values in the space and laboratory and synchronous control groups pointed to a slight retardation. Body length of space embryos mimicked their mass curve. Data on the dynamics of mass and length of Japanese quail embryos support the well-known theory according to which growth and formation are distinguished by equifinality. No differences were revealed by the investigations of individual parts of embryonic bodies in the space and control groups. However, this finding was true only with regard to the embryos that had no developmental abnormalities. A part of embryos had defective eyes (microphtalmia), limbs (twisted fingers), and beaks.

  3. Teratogenic effects of external egg applications of methyl mercury in the mallard, Anas platyrhynchos

    USGS Publications Warehouse

    Hoffman, D.J.; Moore, Johnnie N.

    1979-01-01

    The embryotoxic potential of external applications of methyl mercury on mallard eggs was investigated to assess the possible impact of mercury transferred from the plumage of effluent-contaminated aquatic birds to their eggs. Eggs were treated on day 3 of development with microliter applications of methyl mercury that was dissolved with ethyl acetate into an aliphatic hydrocarbon vehicle. Mercury analysis by atomic absorption indicated that almost half of the mercury applied entered the eggs past the shell membranes within several days of treatment. Most mortality occurred within this period at doses of 9 microgram of mercury per egg or higher. Decreased embryonic growth resulted with similar doses. A significant incidence of malformations occurred at a dose of 1 microgram per egg. These malformations were mainly minor skeletal aberrations and incomplete ossification. With higher doses of mercury, defects included gross external ones such as micromella, gastroschisis, and eye and brain defects. Application of the aliphatic hydrocarbon vehicle did not result in any of these defects.

  4. Modeling Rett Syndrome Using TALEN-Edited MECP2 Mutant Cynomolgus Monkeys.

    PubMed

    Chen, Yongchang; Yu, Juehua; Niu, Yuyu; Qin, Dongdong; Liu, Hailiang; Li, Gang; Hu, Yingzhou; Wang, Jiaojian; Lu, Yi; Kang, Yu; Jiang, Yong; Wu, Kunhua; Li, Siguang; Wei, Jingkuan; He, Jing; Wang, Junbang; Liu, Xiaojing; Luo, Yuping; Si, Chenyang; Bai, Raoxian; Zhang, Kunshan; Liu, Jie; Huang, Shaoyong; Chen, Zhenzhen; Wang, Shuang; Chen, Xiaoying; Bao, Xinhua; Zhang, Qingping; Li, Fuxing; Geng, Rui; Liang, Aibin; Shen, Dinggang; Jiang, Tianzi; Hu, Xintian; Ma, Yuanye; Ji, Weizhi; Sun, Yi Eve

    2017-05-18

    Gene-editing technologies have made it feasible to create nonhuman primate models for human genetic disorders. Here, we report detailed genotypes and phenotypes of TALEN-edited MECP2 mutant cynomolgus monkeys serving as a model for a neurodevelopmental disorder, Rett syndrome (RTT), which is caused by loss-of-function mutations in the human MECP2 gene. Male mutant monkeys were embryonic lethal, reiterating that RTT is a disease of females. Through a battery of behavioral analyses, including primate-unique eye-tracking tests, in combination with brain imaging via MRI, we found a series of physiological, behavioral, and structural abnormalities resembling clinical manifestations of RTT. Moreover, blood transcriptome profiling revealed that mutant monkeys resembled RTT patients in immune gene dysregulation. Taken together, the stark similarity in phenotype and/or endophenotype between monkeys and patients suggested that gene-edited RTT founder monkeys would be of value for disease mechanistic studies as well as development of potential therapeutic interventions for RTT. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. The effects of increased constant incubation temperature and cumulative acute heat shock exposures on morphology and survival of Lake Whitefish (Coregonus clupeaformis) embryos.

    PubMed

    Lee, Abigail H; Eme, John; Mueller, Casey A; Manzon, Richard G; Somers, Christopher M; Boreham, Douglas R; Wilson, Joanna Y

    2016-04-01

    Increasing incubation temperatures, caused by global climate change or thermal effluent from industrial processes, may influence embryonic development of fish. This study investigates the cumulative effects of increased incubation temperature and repeated heat shocks on developing Lake Whitefish (Coregonus clupeaformis) embryos. We studied the effects of three constant incubation temperatures (2°C, 5°C or 8°C water) and weekly, 1-h heat shocks (+3°C) on hatching time, survival and morphology of embryos, as these endpoints may be particularly susceptible to temperature changes. The constant temperatures represent the predicted magnitude of elevated water temperatures from climate change and industrial thermal plumes. Time to the pre-hatch stage decreased as constant incubation temperature increased (148d at 2°C, 92d at 5°C, 50d at 8°C), but weekly heat shocks did not affect time to hatch. Mean survival rates and embryo morphometrics were compared at specific developmental time-points (blastopore, eyed, fin flutter and pre-hatch) across all treatments. Constant incubation temperatures or +3°C heat-shock exposures did not significantly alter cumulative survival percentage (~50% cumulative survival to pre-hatch stage). Constant warm incubation temperatures did result in differences in morphology in pre-hatch stage embryos. 8°C and 5°C embryos were significantly smaller and had larger yolks than 2°C embryos, but heat-shocked embryos did not differ from their respective constant temperature treatment groups. Elevated incubation temperatures may adversely alter Lake Whitefish embryo size at hatch, but weekly 1-h heat shocks did not affect size or survival at hatch. These results suggest that intermittent bouts of warm water effluent (e.g., variable industrial emissions) are less likely to negatively affect Lake Whitefish embryonic development than warmer constant incubation temperatures that may occur due to climate change. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Flotation of Toxocara canis Eggs in Commercial Bleach and Effects of Bleach Treatment Times on Larval Development in These Eggs.

    PubMed

    von Dohlen, Alexa Rosypal; Houk-Miles, Alice E; Zajac, Anne M; Lindsay, David S

    2017-04-01

    Toxocara canis is a common intestinal nematode of young dogs. Puppies contaminate the environment with large numbers of eggs that can embryonate and become infective in less than a month. Embryonated eggs are infectious for humans and other paratenic hosts. Most T. canis infections in humans are asymptomatic; however, migration of T. canis larvae in the eye and in the central nervous system can result in vision loss, blindness, and even death. The eggs of T. canis are highly resistant to harsh environmental conditions and routinely used chemical disinfectants. The objective of this study was to evaluate the effects of full-strength commercial bleach (5.25% sodium hypochlorite solution) treatment on development of T. canis eggs and to report our serendipitous finding that T. canis eggs in dog feces can float in passive fecal flotation tests using bleach. We also demonstrated that T. canis eggs could be identified using the McMaster's fecal eggs counting test using 100% bleach. Toxocara canis eggs collected from the feces of naturally infected 4-8 wk old puppies were treated with full-strength bleach (5.25% sodium hypochlorite solution) for 15 min, 30 min, 60 min, and 120 min; washed free of bleach smell by centrifugation; and resuspended in 0.1 N sulfuric acid solution to undergo larval development at room temperature for 18 days after exposure to bleach. Motile larvae were observed in T. canis eggs in all groups treated for 15-120 min and eggs continuously exposed to bleach for 18 days. Our results indicate that bleach may not be an appropriate disinfectant for dog kennels, cages, or laboratory utensils and work surfaces. Toxocara canis eggs are resistant to bleach treatment and continue to pose a risk for canine and human infections. Further study is needed to find the most appropriate methods for disinfection and removal of eggs to reduce the risk of transmission of this parasite.

  7. Interaction between organophosphate compounds and cholinergic functions during development.

    PubMed

    Aluigi, M G; Angelini, C; Falugi, C; Fossa, R; Genever, P; Gallus, L; Layer, P G; Prestipino, G; Rakonczay, Z; Sgro, M; Thielecke, H; Trombino, S

    2005-12-15

    Organophosphate (OP) compounds exert inhibition on cholinesterase (ChE) activity by irreversibly binding to the catalytic site of the enzymes. For this reason, they are employed as insecticides for agricultural, gardening and indoor pest control. The biological function of the ChE enzymes is well known and has been studied since the beginning of the XXth century; in particular, acetylcholinesterase (AChE, E.C. 3.1.1.7) is an enzyme playing a key role in the modulation of neuromuscular impulse transmission. However, in the past decades, there has been increasing interest concerning its role in regulating non-neuromuscular cell-to-cell interactions mediated by electrical events, such as intracellular ion concentration changes, as the ones occurring during gamete interaction and embryonic development. An understanding of the mechanisms of the cholinergic regulation of these events can help us foresee the possible impact on environmental and human health, including gamete efficiency and possible teratogenic effects on different models, and help elucidate the extent to which OP exposure may affect human health. The chosen organophosphates were the ones mainly used in Europe: diazinon, chlorpyriphos, malathion, and phentoate, all of them belonging to the thionophosphate chemical class. This research has focused on the comparison between the effects of exposure on the developing embryos at different stages, identifying biomarkers and determining potential risk factors for sensitive subpopulations. The effects of OP oxonisation were not taken into account at this level, because embryonic responses were directly correlated to the changes of AChE activity, as determined by histochemical localisation and biochemical measurements. The identified biomarkers of effect for in vitro experiments were: cell proliferation/apoptosis as well as cell differentiation. For in vivo experiments, the endpoints were: developmental speed, size and shape of pre-gastrula embryos; developmental anomalies on neural tube, head, eye, heart. In all these events, we had evidence that the effects are mediated by ion channel activation, through the activation/inactivation of acetylcholine receptors (AChRs).

  8. The Fanconi anemia/BRCA gene network in zebrafish: embryonic expression and comparative genomics.

    PubMed

    Titus, Tom A; Yan, Yi-Lin; Wilson, Catherine; Starks, Amber M; Frohnmayer, Jonathan D; Bremiller, Ruth A; Cañestro, Cristian; Rodriguez-Mari, Adriana; He, Xinjun; Postlethwait, John H

    2009-07-31

    Fanconi anemia (FA) is a genetic disease resulting in bone marrow failure, high cancer risks, and infertility, and developmental anomalies including microphthalmia, microcephaly, hypoplastic radius and thumb. Here we present cDNA sequences, genetic mapping, and genomic analyses for the four previously undescribed zebrafish FA genes (fanci, fancj, fancm, and fancn), and show that they reverted to single copy after the teleost genome duplication. We tested the hypothesis that FA genes are expressed during embryonic development in tissues that are disrupted in human patients by investigating fanc gene expression patterns. We found fanc gene maternal message, which can provide Fanc proteins to repair DNA damage encountered in rapid cleavage divisions. Zygotic expression was broad but especially strong in eyes, central nervous system and hematopoietic tissues. In the pectoral fin bud at hatching, fanc genes were expressed specifically in the apical ectodermal ridge, a signaling center for fin/limb development that may be relevant to the radius/thumb anomaly of FA patients. Hatching embryos expressed fanc genes strongly in the oral epithelium, a site of squamous cell carcinomas in FA patients. Larval and adult zebrafish expressed fanc genes in proliferative regions of the brain, which may be related to microcephaly in FA. Mature ovaries and testes expressed fanc genes in specific stages of oocyte and spermatocyte development, which may be related to DNA repair during homologous recombination in meiosis and to infertility in human patients. The intestine strongly expressed some fanc genes specifically in proliferative zones. Our results show that zebrafish has a complete complement of fanc genes in single copy and that these genes are expressed in zebrafish embryos and adults in proliferative tissues that are often affected in FA patients. These results support the notion that zebrafish offers an attractive experimental system to help unravel mechanisms relevant not only to FA, but also to breast cancer, given the involvement of fancj (brip1), fancn (palb2) and fancd1 (brca2) in both conditions.

  9. The Fanconi anemia/BRCA gene network in zebrafish: Embryonic expression and comparative genomics

    PubMed Central

    Titus, Tom A.; Yan, Yi-Lin; Wilson, Catherine; Starks, Amber M.; Frohnmayer, Jonathan D.; Canestro, Cristian; Rodriguez-Mari, Adriana; He, Xinjun; Postlethwait, John H.

    2008-01-01

    Fanconi anemia (FA) is a genic disease resulting in bone marrow failure, high cancer risks, and infertility, and developmental anomalies including microphthalmia, microcephaly, hypoplastic radius and thumb. Here we present cDNA sequences, genetic mapping, and genomic analyses for the four previously undescribed zebrafish FA genes (fanci, fancj, fancm, and fancn, and show that they reverted to single copy after the teleost genome duplication. We tested the hypothesis that FA genes are expressed during embryonic development in tissues that are disrupted in human patients by investigating fanc gene expression patterns. We found fanc gene maternal message, which can provide Fanc proteins to repair DNA damage encountered in rapid cleavage divisions. Zygotic expression was broad but especially strong in eyes, central nervous system and hematopoietic tissues. In the pectoral fin bud at hatching, fanc genes were expressed specifically in the apical ectodermal ridge, a signaling center for fin/limb development that may be relevant to the radius/thumb anomaly of FA patients. Hatching embryos expressed fanc genes strongly in the oral epithelium, a site of squamous cell carcinomas in FA patients. Larval and adult zebrafish expressed fanc genes in proliferative regions of the brain, which may be related to microcephaly in FA. Mature ovaries and testes expressed fanc genes in specific stages of oocyte and spermatocyte development, which may be related to DNA repair during homologous recombination in meiosis and to infertility in human patients. The intestine strongly expressed some fanc genes specifically in proliferative zones. Our results show that zebrafish has a complete complement of fanc genes in single copy and that these genes are expressed in zebrafish embryos and adults in proliferative tissues that are often affected in FA patients. These results support the notion that zebrafish offers an attractive experimental system to help unravel mechanisms relevant not only to FA, but also to breast cancer, given the involvement of fancj (brip1), fancn (palb2) and fancd1 (brca2) in both conditions. PMID:19101574

  10. BDNF improves the efficacy ERG amplitude maintenance by transplantation of retinal stem cells in RCS rats.

    PubMed

    Tian, Chunyu; Weng, Chuan Chuang; Yin, Zheng Qin

    2010-01-01

    The aim of this study was to evaluate the efficacy of subretinal transplantation of rat retinal stem cell when combined with Brain-derived neurotrophic factor (BDNF) in a rat model of retinal degeneration - Royal College of Surgeons (RCS) rats. Retinal stem cells were derived from embryonic day 17 Long-Evans rats and pre-labeled with fluorescence pigment-DiI prior to transplant procedures. RCS rats received injections of retinal stem cells, stem cells+BDNF, phosphate buffered saline or BNDF alone (n = 3 eyes for each procedure). At 1, 2 and 3 months after transplantation, the electroretinogram (ERG) was assessed and the outer nuclear layer thickness measured. The eyes receiving retinal stem cell and stem cell+BDNF transplants showed better photoreceptor maintenance than the other groups (P < 0.01) at all time points. One month after retina transplantation, the amplitudes of rod-ERG and Max-ERG b waves were significantly higher the eyes with stem cells+BDNF (P < 0.01), however, this difference was not seen at two and three months post transplantation. BDNF treatment alone group (without transplanted cells) had no effect when compared to buffer injections. The present results indicate that BDNF can enhance the short-term efficacy of the retinal stem cell transplantation in treating retinal degenerative disease.

  11. Development of a 3D co-culture model using human stem cells for studying embryonic palatal fusion.

    EPA Science Inventory

    Morphogenetic tissue fusion is a critical and complex event in embryonic development and failure of this event leads to birth defects, such as cleft palate. Palatal fusion requires adhesion and subsequent dissolution of the medial epithelial layer of the mesenchymal palatal shelv...

  12. Developing predictions of in vivo developmental toxicity of ToxCast chemicals using mouse embryonic stem cells.

    EPA Science Inventory

    Developing predictions of in vivo developmental toxicity of ToxCast chemicals using mouse embryonic stem cells S. Hunter, M. Rosen, M. Hoopes, H. Nichols, S. Jeffay, K. Chandler1, Integrated Systems Toxicology Division, National Health and Environmental Effects Research Labor...

  13. Periconceptional maternal one-carbon biomarkers are associated with embryonic development according to the Carnegie stages.

    PubMed

    Parisi, F; Rousian, M; Koning, A H J; Willemsen, S P; Cetin, I; Steegers-Theunissen, R P M

    2017-03-01

    Is periconceptional maternal one-carbon (I-C) metabolism associated with embryonic morphological development in non-malformed ongoing pregnancies? Serum vitamin B12, red blood cell (RBC) folate and plasma total homocysteine (tHcy) are associated with embryonic development according to the Carnegie stages. Derangements in maternal I-C metabolism affect reproductive and pregnancy outcomes, as well as future health of the offspring. Between 2010 and 2014, women with singleton ongoing pregnancies were enrolled in a prospective periconceptional cohort study. A total of 234 pregnancies, including 138 spontaneous or IUI pregnancies with strict pregnancy dating and 96 pregnancies derived from IVF, ICSI or cryopreserved embryo transfer (IVF/ICSI pregnancies), underwent longitudinal transvaginal three-dimensional ultrasound (3D US) scans from 6+0 up to 10+2 weeks of gestation. Carnegie stages were defined using internal and external morphologic criteria in a virtual reality system. Maternal venous blood samples were collected at enrollment for serum vitamin B12, RBC folate and plasma tHcy assessment. Associations between biomarker concentrations and longitudinal Carnegie stages were investigated using linear mixed models. We performed a median of three 3D US scans per pregnancy (range 1-5) resulting in 600 good quality data sets for the Carnegie stage annotation (80.5%). Vitamin B12 was positively associated with embryonic development in the total study population (β = 0.001 (95% CI: 0.000; 0.002), P < 0.05) and in the subgroup of strictly dated spontaneous pregnancies (β = 0.002 (95% CI: 0.001; 0.003), P < 0.05). Low vitamin B12 concentrations (-2SD, 73.4 pmol/l) were associated with delayed embryonic development by 1.4 days (95% CI: 1.3-1.4) compared with high concentrations (+2SD, 563.1 pmol/l). RBC folate was positively associated with Carnegie stages only in IVF/ICSI pregnancies (β = 0.001 (95% CI: 0.0005; 0.0015), P < 0.05). In this group, low RBC folate concentrations (-2SD, 875.4 nmol/l) were associated with a 1.8-day delay (95% CI: 1.7-1.8) in development compared with high concentrations (+2SD, 2119.9 nmol/l). tHcy was negatively associated with embryonic development in the total study population (β = -0.08 (95% CI: -0.14; -0.02), P < 0.01), as well as in the IVF/ICSI subgroup (β = -0.08 (95% CI: -0.15; -0.01), P < 0.05). High tHcy concentrations (+2SD, 10.4 µmol/l) were associated with a delay of 1.6 days (95% CI: 1.5-1.7) in embryonic development compared with low concentrations (-2SD, 3.0 µmol/l). The study was performed in a tertiary care center, resulting in high rates of folic acid supplement use and comorbidity that may reduce the external validity of our findings. In periconceptional care, maternal I-C biomarkers should be taken into account as predictors of embryonic morphological development. Combining embryonic size measurements with morphological assessment could better define normal embryonic development. The work was funded by the Department of Obstetrics and Gynaecology, Erasmus MC, University Medical Centre, Rotterdam, The Netherlands. RPMST is CSO of the startup company Slimmere Zorg and CEO of eHealth Care Solutions. The authors declare no conflicts of interest. Not applicable. © The Author 2017. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  14. Viviparity in high-altitude Phrynocephalus lizards is adaptive because embryos cannot fully develop without maternal thermoregulation.

    PubMed

    Wang, Zheng; Lu, Hong-Liang; Ma, Li; Ji, Xiang

    2014-03-01

    Viviparous Phrynocephalus lizards (Agamidae) are mainly restricted to the Qinghai-Tibet Plateau of China. In this study, we used Phrynocephalus vlangalii females kept under seven thermal regimes for the whole gestation period to test the hypothesis that viviparity in high-altitude Phrynocephalus lizards is adaptive because embryos cannot fully develop without maternal thermoregulation. All females at 24 °C and 93% of the females at 28 °C failed to give birth or produced stillborns, and proportionally fewer females gave birth at 29 or 35 °C than at 32 °C. Though the daily temperatures encountered were unsuitable for embryonic development, 95% of the females in nature and 89% of the females thermoregulating in the laboratory gave birth. There was no shift in the thermal preferences of females when they were pregnant. Although thermal conditions inside natural burrows were unsuitable for embryonic development, mass and sprint speed were both greater in neonates produced in nature. Our data show that (1) long-term exposure of P. vlangalii embryos to temperatures outside the range of 29-35 °C may result in the failure of development, but daily or short-term exposure may not necessarily increase embryonic mortality; (2) low gestation temperatures slow but do not arrest embryonic development, and females produce high-quality offspring in the shortest possible time by maintaining gestation temperatures close to the upper thermal limit for embryonic development; and (3) viviparity is currently adaptive at high elevations because embryos in nature cannot fully develop without relying on maternal thermoregulation. Our data validate the hypothesis tested.

  15. Diverging functions of Scr between embryonic and post-embryonic development in a hemimetabolous insect, Oncopeltus fasciatus.

    PubMed

    Chesebro, John; Hrycaj, Steven; Mahfooz, Najmus; Popadić, Aleksandar

    2009-05-01

    Hemimetabolous insects undergo an ancestral mode of development in which embryos hatch into first nymphs that resemble miniature adults. While recent studies have shown that homeotic (hox) genes establish segmental identity of first nymphs during embryogenesis, no information exists on the function of these genes during post-embryogenesis. To determine whether and to what degree hox genes influence the formation of adult morphologies, we performed a functional analysis of Sex combs reduced (Scr) during post-embryonic development in Oncopeltus fasciatus. The main effect was observed in prothorax of Scr-RNAi adults, and ranged from significant alterations in its size and shape to a near complete transformation of its posterior half toward a T2-like identity. Furthermore, while the consecutive application of Scr-RNAi at both of the final two post-embryonic stages (fourth and fifth) did result in formation of ectopic wings on T1, the individual applications at each of these stages did not. These experiments provide two new insights into evolution of wings. First, the role of Scr in wing repression appears to be conserved in both holo- and hemimetabolous insects. Second, the prolonged Scr-depletion (spanning at least two nymphal stages) is both necessary and sufficient to restart wing program. At the same time, other structures that were previously established during embryogenesis are either unaffected (T1 legs) or display only minor changes (labium) in adults. These observations reveal a temporal and spatial divergence of Scr roles during embryonic (main effect in labium) and post-embryonic (main effect in prothorax) development.

  16. Stage specific requirement of platelet-derived growth factor receptor-α in embryonic development.

    PubMed

    Qian, Chen; Wong, Carol Wing Yan; Wu, Zhongluan; He, Qiuming; Xia, Huimin; Tam, Paul Kwong Hang; Wong, Kenneth Kak Yuen; Lui, Vincent Chi Hang

    2017-01-01

    Platelet-derived growth factor receptor alpha (PDGFRα) is a cell-surface receptor tyrosine kinase for platelet-derived growth factors. Correct timing and level of Pdgfra expression is crucial for embryo development, and deletion of Pdgfra caused developmental defects of multiple endoderm and mesoderm derived structures, resulting in a complex phenotypes including orofacial cleft, spina bifida, rib deformities, and omphalocele in mice. However, it is not clear if deletion of Pdgfra at different embryonic stages differentially affects these structures. To address the temporal requirement of Pdgfra in embryonic development. We have deleted the Pdgfra in Pdgfra-expressing tissues at different embryonic stages in mice, examined and quantified the developmental anomalies. Current study showed that (i) conditional deletion of Pdgfra at different embryonic days (between E7.5 and E10.5) resulted in orofacial cleft, spina bifida, rib cage deformities, and omphalocele, and (ii) the day of Pdgfra deletion influenced the combinations, incidence and severities of these anomalies. Deletion of Pdgfra caused apoptosis of Pdgfra-expressing tissues, and developmental defects of their derivatives. Orofacial cleft, spina bifida and omphalocele are among the commonest skeletal and abdominal wall defects of newborns, but their genetic etiologies are largely unknown. The remarkable resemblance of our conditional Pdgfra knockout embryos to theses human congenital anomalies, suggesting that dysregulated PDGFRA expression could cause these anomalies in human. Future work should aim at defining (a) the regulatory elements for the expression of the human PDGFRA during embryonic development, and (b) if mutations / sequence variations of these regulatory elements cause these anomalies.

  17. Diverging functions of Scr between embryonic and post-embryonic development in a hemimetabolous insect, Oncopeltus fasciatus

    PubMed Central

    Chesebro, John; Hrycaj, Steven; Mahfooz, Najmus; Popadić, Aleksandar

    2009-01-01

    Hemimetabolous insects undergo an ancestral mode of development in which embryos hatch into first nymphs that resemble miniature adults. While recent studies have shown that homeotic (hox) genes establish segmental identity of first nymphs during embryogenesis, no information exists on the function of these genes during post-embryogenesis. To determine whether and to what degree hox genes influence the formation of adult morphologies, we performed a functional analysis of Sex combs reduced (Scr) during post-embryonic development in Oncopeltus fasciatus. The main effect was observed in prothorax of Scr-RNAi adults, and ranged from significant alterations in its size and shape to a near complete transformation of its posterior half toward a T2-like identity. Furthermore, while the consecutive application of Scr-RNAi at both of the final two post-embryonic stages (fourth and fifth) did result in formation of ectopic wings on T1, the individual applications at each of these stages did not. These experiments provide two new insights into evolution of wings. First, the role of Scr in wing repression appears to be conserved in both holo- and hemimetabolous insects. Second, the prolonged Scr-depletion (spanning at least two nymphal stages) is both necessary and sufficient to restart wing program. At the same time, other structures that were previously established during embryogenesis are either unaffected (T1 legs) or display only minor changes (labium) in adults. These observations reveal a temporal and spatial divergence of Scr roles during embryonic (main effect in labium) and post-embryonic (main effect in prothorax) development. PMID:19382295

  18. A Standard System to Study Vertebrate Embryos

    PubMed Central

    Werneburg, Ingmar

    2009-01-01

    Staged embryonic series are important as reference for different kinds of biological studies. I summarise problems that occur when using ‘staging tables’ of ‘model organisms’. Investigations of developmental processes in a broad scope of taxa are becoming commonplace. Beginning in the 1990s, methods were developed to quantify and analyse developmental events in a phylogenetic framework. The algorithms associated with these methods are still under development, mainly due to difficulties of using non-independent characters. Nevertheless, the principle of comparing clearly defined newly occurring morphological features in development (events) in quantifying analyses was a key innovation for comparative embryonic research. Up to date no standard was set for how to define such events in a comparative approach. As a case study I compared the external development of 23 land vertebrate species with a focus on turtles, mainly based on reference staging tables. I excluded all the characters that are only identical for a particular species or general features that were only analysed in a few species. Based on these comparisons I defined 104 developmental characters that are common either for all vertebrates (61 characters), gnathostomes (26), tetrapods (3), amniotes (7), or only for sauropsids (7). Characters concern the neural tube, somite, ear, eye, limb, maxillary and mandibular process, pharyngeal arch, eyelid or carapace development. I present an illustrated guide listing all the defined events. This guide can be used for describing developmental series of any vertebrate species or for documenting specimen variability of a particular species. The guide incorporates drawings and photographs as well as consideration of species identifying developmental features such as colouration. The simple character-code of the guide is extendable to further characters pertaining to external and internal morphological, physiological, genetic or molecular development, and also for other vertebrate groups not examined here, such as Chondrichthyes or Actinopterygii. An online database to type in developmental events for different stages and species could be a basis for further studies in comparative embryology. By documenting developmental events with the standard code, sequence heterochrony studies (i.e. Parsimov) and studies on variability can use this broad comparative data set. PMID:19521537

  19. Establishment of mouse embryonic stem cells from isolated blastomeres and whole embryos using three derivation methods

    PubMed Central

    González, Sheyla; Ibáñez, Elena

    2010-01-01

    Purpose The aim of the present study is to compare three previously described mouse embryonic stem cell derivation methods to evaluate the influence of culture conditions, number of isolated blastomeres and embryonic stage in the derivation process. Methods Three embryonic stem cell derivation methods: standard, pre-adhesion and defined culture medium method, were compared in the derivation from isolated blastomeres and whole embryos at 4- and 8-cell stages. Results A total of 200 embryonic stem cell lines were obtained with an efficiency ranging from 1.9% to 72%. Conclusions Using either isolated blastomeres or whole embryos, the highest rates of mouse embryonic stem cell establishment were achieved with the defined culture medium method and efficiencies increased as development progressed. Using isolated blastomeres, efficiencies increased in parallel to the proportion of the embryo volume used to start the derivation process. PMID:20862536

  20. The primary role of zebrafish nanog is in extra-embryonic tissue.

    PubMed

    Gagnon, James A; Obbad, Kamal; Schier, Alexander F

    2018-01-09

    The role of the zebrafish transcription factor Nanog has been controversial. It has been suggested that Nanog is primarily required for the proper formation of the extra-embryonic yolk syncytial layer (YSL) and only indirectly regulates gene expression in embryonic cells. In an alternative scenario, Nanog has been proposed to directly regulate transcription in embryonic cells during zygotic genome activation. To clarify the roles of Nanog, we performed a detailed analysis of zebrafish nanog mutants. Whereas zygotic nanog mutants survive to adulthood, maternal-zygotic (MZ nanog ) and maternal mutants exhibit developmental arrest at the blastula stage. In the absence of Nanog, YSL formation and epiboly are abnormal, embryonic tissue detaches from the yolk, and the expression of dozens of YSL and embryonic genes is reduced. Epiboly defects can be rescued by generating chimeric embryos of MZ nanog embryonic tissue with wild-type vegetal tissue that includes the YSL and yolk cell. Notably, cells lacking Nanog readily respond to Nodal signals and when transplanted into wild-type hosts proliferate and contribute to embryonic tissues and adult organs from all germ layers. These results indicate that zebrafish Nanog is necessary for proper YSL development but is not directly required for embryonic cell differentiation. © 2018. Published by The Company of Biologists Ltd.

  1. Conserved developmental alternative splicing of muscleblind-like (MBNL) transcripts regulates MBNL localization and activity.

    PubMed

    Terenzi, Fulvia; Ladd, Andrea N

    2010-01-01

    Muscleblind-like (MBNL) proteins have been shown to regulate pre-mRNA alternative splicing, and MBNL1 has been implicated in regulating fetal-to-adult transitions in alternative splicing in the heart. MBNL1 is highly conserved, exhibiting more than 95% identity at the amino acid level between birds and mammals. To investigate MBNL1 expression during embryonic heart development, we examined MBNL1 transcript and protein expression in the embryonic chicken heart from the formation of the primitive heart tube through cardiac morphogenesis (embryonic days 1.5 through 8). MBNL1 transcript levels remained steady throughout these stages, whereas MBNL1 protein levels increased and exhibited a shift in isoforms. MBNL1 has several alternatively spliced exons. Using RT-PCR, we determined that the inclusion of one of these, exon 5, decreases dramatically during cardiac morphogenesis. This developmental transition is conserved in mice. Functional analyses of MBNL1 isoforms containing or lacking exon 5-encoded sequences revealed that exon 5 is important for the regulation of the subcellular localization, RNA binding affinity, and alternative splicing activity of MBNL1 proteins. A second MBNL protein, MBNL2, is also expressed in the embryonic heart. We found that MBNL2 exon 5, which is paralogous to MBNL1 exon 5, is similarly regulated during embryonic heart development. Analysis of MBNL1 and MBNL2 transcripts in several embryonic tissues in chicken and mouse indicate that exon 5 alternative splicing is highly conserved and tissue-specific. Thus, we propose that conserved developmental stage- and tissue-specific alternative splicing of MBNL transcripts is an important mechanism by which MBNL activity is regulated during embryonic development.

  2. Impaired Embryonic Development in Mice Overexpressing the RNA-Binding Protein TIAR

    PubMed Central

    Kharraz, Yacine; Salmand, Pierre-Adrien; Camus, Anne; Auriol, Jacques; Gueydan, Cyril; Kruys, Véronique; Morello, Dominique

    2010-01-01

    Background TIA-1-related (TIAR) protein is a shuttling RNA-binding protein involved in several steps of RNA metabolism. While in the nucleus TIAR participates to alternative splicing events, in the cytoplasm TIAR acts as a translational repressor on specific transcripts such as those containing AU-Rich Elements (AREs). Due to its ability to assemble abortive pre-initiation complexes coalescing into cytoplasmic granules called stress granules, TIAR is also involved in the general translational arrest observed in cells exposed to environmental stress. However, the in vivo role of this protein has not been studied so far mainly due to severe embryonic lethality upon tiar invalidation. Methodology/Principal Findings To examine potential TIAR tissue-specificity in various cellular contexts, either embryonic or adult, we constructed a TIAR transgenic allele (loxPGFPloxPTIAR) allowing the conditional expression of TIAR protein upon Cre recombinase activity. Here, we report the role of TIAR during mouse embryogenesis. We observed that early TIAR overexpression led to low transgene transmission associated with embryonic lethality starting at early post-implantation stages. Interestingly, while pre-implantation steps evolved correctly in utero, in vitro cultured embryos were very sensitive to culture medium. Control and transgenic embryos developed equally well in the G2 medium, whereas culture in M16 medium led to the phosphorylation of eIF2α that accumulated in cytoplasmic granules precluding transgenic blastocyst hatching. Our results thus reveal a differential TIAR-mediated embryonic response following artificial or natural growth environment. Conclusions/Significance This study reports the importance of the tightly balanced expression of the RNA-binding protein TIAR for normal embryonic development, thereby emphasizing the role of post-transcriptional regulations in early embryonic programming. PMID:20596534

  3. Effect of recombinant-LH and hCG in the absence of FSH on in vitro maturation (IVM) fertilization and early embryonic development of mouse germinal vesicle (GV)-stage oocytes.

    PubMed

    Dinopoulou, Vasiliki; Drakakis, Peter; Kefala, Stella; Kiapekou, Erasmia; Bletsa, Ritsa; Anagnostou, Elli; Kallianidis, Konstantinos; Loutradis, Dimitrios

    2016-06-01

    During in vitro maturation (IVM), intrinsic and extrinsic factors must co-operate properly in order to ensure cytoplasmic and nuclear maturation. We examined the possible effect of LH/hCG in the process of oocyte maturation in mice with the addition of recombinant LH (r-LH) and hCG in our IVM cultures of mouse germinal vesicle (GV)-stage oocytes. Moreover, the effects of these hormones on fertilization, early embryonic development and the expression of LH/hCG receptor were examined. Nuclear maturation of GV-stage oocytes was evaluated after culture in the presence of r-LH or hCG. Fertilization rates and embryonic development were assessed after 24h. Total RNA was isolated from oocytes of different stages of maturation and from zygotes and embryos of different stages of development in order to examine the expression of LH/hCG receptor, using RT-PCR. The in vitro nuclear maturation rate of GV-stage oocytes that received hCG was significantly higher compared to the control group. Early embryonic development was increased in the hCG and LH cultures of GV oocytes when LH was further added. The LH/hCG receptor was expressed in all stages of in vitro matured mouse oocytes and in every stage of early embryonic development. Addition of hCG in IVM cultures of mouse GV oocytes increased maturation rates significantly. LH, however, was more beneficial to early embryonic development than hCG. This suggests a promising new technique in basic science research or in clinical reproductive medicine. Copyright © 2016 Society for Biology of Reproduction & the Institute of Animal Reproduction and Food Research of Polish Academy of Sciences in Olsztyn. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  4. The energy cost of embryonic development in fishes and amphibians, with emphasis on new data from the Australian lungfish, Neoceratodus forsteri.

    PubMed

    Mueller, Casey A; Joss, Jean M P; Seymour, Roger S

    2011-01-01

    The rate of oxygen consumption throughout embryonic development is used to indirectly determine the 'cost' of development, which includes both differentiation and growth. This cost is affected by temperature and the duration of incubation in anamniote fish and amphibian embryos. The influences of temperature on embryonic development rate, respiration rate and energetics were investigated in the Australian lungfish, Neoceratodus forsteri, and compared with published data. Developmental stage and oxygen consumption rate were measured until hatching, upon which wet and dry gut-free masses were determined. A measure of the cost of development, the total oxygen required to produce 1 mg of embryonic dry tissue, increased as temperature decreased. The relationship between the oxygen cost of development (C, ml mg(-1)) and dry hatchling mass (M, mg) in fishes and amphibians is described by C = 0.30 M(0.22 0.13 (95% CI)), r (2) = 0.52. The scaling exponent indicates that the cost of embryonic development increases disproportionally with increasing hatchling mass. At 15 and 20°C, N. forsteri cost of development is significantly lower than the regression mean for all species, and at 25°C is lower than the allometrically scaled data set. Unexpectedly, incubation of N. forsteri is long, despite natural development under relatively warm conditions, and may be related to a large genome size. The low cost of development may be associated with construction of a rather sluggish fish with a low capacity for aerobic metabolism. The metabolic rate is lower in N. forsteri hatchlings than in any other fishes or amphibians at the same temperature, which matches the extremely low aerobic metabolic scope of the juveniles.

  5. New vascular classification of port-wine stains: improving prediction of Sturge-Weber risk.

    PubMed

    Waelchli, R; Aylett, S E; Robinson, K; Chong, W K; Martinez, A E; Kinsler, V A

    2014-10-01

    Facial port-wine stains (PWSs) are usually isolated findings; however, when associated with cerebral and ocular vascular malformations they form part of the classical triad of Sturge-Weber syndrome (SWS). To evaluate the associations between the phenotype of facial PWS and the diagnosis of SWS in a cohort with a high rate of SWS. Records were reviewed of all 192 children with a facial PWS seen in 2011-13. Adverse outcome measures were clinical (seizures, abnormal neurodevelopment, glaucoma) and radiological [abnormal magnetic resonance imaging (MRI)], modelled by multivariate logistic regression. The best predictor of adverse outcomes was a PWS involving any part of the forehead, delineated at its inferior border by a line joining the outer canthus of the eye to the top of the ear, and including the upper eyelid. This involves all three divisions of the trigeminal nerve, but corresponds well to the embryonic vascular development of the face. Bilateral distribution was not an independently significant phenotypic feature. Abnormal MRI was a better predictor of all clinical adverse outcome measures than PWS distribution; however, for practical reasons guidelines based on clinical phenotype are proposed. Facial PWS distribution appears to follow the embryonic vasculature of the face, rather than the trigeminal nerve. We propose that children with a PWS on any part of the 'forehead' should have an urgent ophthalmology review and a brain MRI. A prospective study has been established to test the validity of these guidelines. © The Authors. British Journal of Dermatology published by John Wiley & Sons Ltd on behalf of British Association of Dermatologists.

  6. Medical Student Retention of Embryonic Development: Impact of the Dimensions Added by Multimedia Tutorials

    ERIC Educational Resources Information Center

    Marsh, Karen R.; Giffin, Bruce F.; Lowrie, Donald J., Jr.

    2008-01-01

    The purpose of this project was to develop Web-based learning modules that combine (1) animated 3D graphics; (2) 3D models that a student can manipulate independently; (3) passage of time in embryonic development; and (4) animated 2D graphics, including 2D cross-sections that represent different "slices" of the embryo, and animate in…

  7. Injurious Effects of Emodin on Maturation of Mouse Oocytes, Fertilization and Fetal Development via Apoptosis

    PubMed Central

    Chang, Mei-Hui; Chang, Shao-Chung; Chan, Wen-Hsiung

    2012-01-01

    Emodin (1,3,8-trihydroxy-6-methylanthraquinone), a major constituent of rhubarb, has a wide range of therapeutic applications. Previous studies have established that emodin induces apoptosis in the inner cell mass and trophectoderm of mouse blastocysts and leads to decreased embryonic development and viability, indicating a role as an injury risk factor for normal embryonic development. However, the mechanisms underlying its hazardous effects have yet to be characterized. In the current study, we further investigated the effects of emodin on oocyte maturation and subsequent pre- and post-implantation development, both in vitro and in vivo. Notably, emodin induced a significant reduction in the rates of oocyte maturation, fertilization, and in vitro embryonic development. Treatment of oocytes with emodin during in vitro maturation (IVM) led to increased resorption of postimplantation embryos and decreased fetal weight. Experiments using an in vivo mouse model disclosed that consumption of drinking water containing 20–40 μM emodin led to decreased oocyte maturation and in vitro fertilization, as well as early embryonic developmental injury. Notably, pretreatment with a caspase-3-specific inhibitor effectively prevented emodin-triggered injury effects, suggesting that impairment of embryo development occurs via a caspase-dependent apoptotic process. PMID:23203041

  8. Injurious effects of emodin on maturation of mouse oocytes, fertilization and fetal development via apoptosis.

    PubMed

    Chang, Mei-Hui; Chang, Shao-Chung; Chan, Wen-Hsiung

    2012-10-29

    Emodin (1,3,8-trihydroxy-6-methylanthraquinone), a major constituent of rhubarb, has a wide range of therapeutic applications. Previous studies have established that emodin induces apoptosis in the inner cell mass and trophectoderm of mouse blastocysts and leads to decreased embryonic development and viability, indicating a role as an injury risk factor for normal embryonic development. However, the mechanisms underlying its hazardous effects have yet to be characterized. In the current study, we further investigated the effects of emodin on oocyte maturation and subsequent pre- and post-implantation development, both in vitro and in vivo. Notably, emodin induced a significant reduction in the rates of oocyte maturation, fertilization, and in vitro embryonic development. Treatment of oocytes with emodin during in vitro maturation (IVM) led to increased resorption of postimplantation embryos and decreased fetal weight. Experiments using an in vivo mouse model disclosed that consumption of drinking water containing 20-40 μM emodin led to decreased oocyte maturation and in vitro fertilization, as well as early embryonic developmental injury. Notably, pretreatment with a caspase-3-specific inhibitor effectively prevented emodin-triggered injury effects, suggesting that impairment of embryo development occurs via a caspase-dependent apoptotic process.

  9. Does gravity influence the early stages of the development of the nervous system in an amphibian?

    PubMed

    Duprat, A M; Husson, D; Gualandris-Parisot, L

    1998-11-01

    As a result of previous studies using hypergravity (centrifuge) or virtual microgravity (clinostat), it was proposed that gravity was involved in embryonic development, i.e., in the establishment of the embryonic polarities and the body plan pattern which subsequently direct morphogenesis and organogenesis of the central nervous system and of sensory organs. Recent experiments were performed in space using sounding rockets and orbiting space-modules to ascertain whether gravity is indeed required for embryogenesis in Invertebrates and Vertebrates. Eggs fertilised in vivo or in vitro in microgravity showed some abnormalities during embryonic development but were able to regulate and produce nearly normal larvae. Copyright 1998 Elsevier Science B.V.

  10. Kisspeptin regulates ovarian steroidogenesis during delayed embryonic development in the fruit bat, Cynopterus sphinx.

    PubMed

    Anuradha; Krishna, Amitabh

    2017-11-01

    Cynopterus sphinx, a fruit bat, undergoes delayed embryonic development during the winter months, a period that corresponds to low levels of progesterone and estradiol synthesis by the ovary. Kisspeptins (KPs) are a group of neuropeptide hormones that act via G-protein coupled receptor 54 (GPR54) to stimulate hypothalamic secretion of Gonadotropin-releasing hormone, thereby regulating ovarian steroidogenesis, folliculogenesis, and ovulation. GPR54 is also expressed in the ovary, suggesting a direct role for KPs in ovarian steroidogenesis. The aim of present study was to determine if a low serum level of KP is responsible for reduced progesterone and estradiol levels during the period of delayed embryonic development in C. sphinx. Indeed, low serum KP abundance corresponded to reduced expression of GPR54 in ovarian luteal cells during the period of delayed development compared to normal development. In vitro and in vivo treatment with KP increased GPR54 abundance, via Extracellular signal regulated kinase and its downstream mediators, leading to increased progesterone synthesis in the ovary during delayed embryonic development. KP treatment also increased cholesterol uptake and elevated expression of Luteinizing hormone receptor and Steroid acute regulatory protein in the ovary, suggesting that elevation in circulating KP during delayed embryonic development may reactivate luteal activity. KPs may also enhance cell survival (BCL-2, reduced Caspase 3 activity) and angiogenesis (Vascular endothelium growth factor) during this period. The findings of this study thus demonstrate a regulatory role for KPs in the maintenance of luteal steroidogenesis during pregnancy in C. sphinx. © 2017 Wiley Periodicals, Inc.

  11. An integrated miRNA functional screening and target validation method for organ morphogenesis.

    PubMed

    Rebustini, Ivan T; Vlahos, Maryann; Packer, Trevor; Kukuruzinska, Maria A; Maas, Richard L

    2016-03-16

    The relative ease of identifying microRNAs and their increasing recognition as important regulators of organogenesis motivate the development of methods to efficiently assess microRNA function during organ morphogenesis. In this context, embryonic organ explants provide a reliable and reproducible system that recapitulates some of the important early morphogenetic processes during organ development. Here we present a method to target microRNA function in explanted mouse embryonic organs. Our method combines the use of peptide-based nanoparticles to transfect specific microRNA inhibitors or activators into embryonic organ explants, with a microRNA pulldown assay that allows direct identification of microRNA targets. This method provides effective assessment of microRNA function during organ morphogenesis, allows prioritization of multiple microRNAs in parallel for subsequent genetic approaches, and can be applied to a variety of embryonic organs.

  12. Rotational imaging optical coherence tomography for full-body mouse embryonic imaging

    PubMed Central

    Wu, Chen; Sudheendran, Narendran; Singh, Manmohan; Larina, Irina V.; Dickinson, Mary E.; Larin, Kirill V.

    2016-01-01

    Abstract. Optical coherence tomography (OCT) has been widely used to study mammalian embryonic development with the advantages of high spatial and temporal resolutions and without the need for any contrast enhancement probes. However, the limited imaging depth of traditional OCT might prohibit visualization of the full embryonic body. To overcome this limitation, we have developed a new methodology to enhance the imaging range of OCT in embryonic day (E) 9.5 and 10.5 mouse embryos using rotational imaging. Rotational imaging OCT (RI-OCT) enables full-body imaging of mouse embryos by performing multiangle imaging. A series of postprocessing procedures was performed on each cross-section image, resulting in the final composited image. The results demonstrate that RI-OCT is able to improve the visualization of internal mouse embryo structures as compared to conventional OCT. PMID:26848543

  13. Impaired cardiac energy metabolism in embryos lacking adrenergic stimulation.

    PubMed

    Baker, Candice N; Gidus, Sarah A; Price, George F; Peoples, Jessica N R; Ebert, Steven N

    2015-03-01

    As development proceeds from the embryonic to fetal stages, cardiac energy demands increase substantially, and oxidative phosphorylation of ADP to ATP in mitochondria becomes vital. Relatively little, however, is known about the signaling mechanisms regulating the transition from anaerobic to aerobic metabolism that occurs during the embryonic period. The main objective of this study was to test the hypothesis that adrenergic hormones provide critical stimulation of energy metabolism during embryonic/fetal development. We examined ATP and ADP concentrations in mouse embryos lacking adrenergic hormones due to targeted disruption of the essential dopamine β-hydroxylase (Dbh) gene. Embryonic ATP concentrations decreased dramatically, whereas ADP concentrations rose such that the ATP/ADP ratio in the adrenergic-deficient group was nearly 50-fold less than that found in littermate controls by embryonic day 11.5. We also found that cardiac extracellular acidification and oxygen consumption rates were significantly decreased, and mitochondria were significantly larger and more branched in adrenergic-deficient hearts. Notably, however, the mitochondria were intact with well-formed cristae, and there was no significant difference observed in mitochondrial membrane potential. Maternal administration of the adrenergic receptor agonists isoproterenol or l-phenylephrine significantly ameliorated the decreases in ATP observed in Dbh-/- embryos, suggesting that α- and β-adrenergic receptors were effective modulators of ATP concentrations in mouse embryos in vivo. These data demonstrate that adrenergic hormones stimulate cardiac energy metabolism during a critical period of embryonic development. Copyright © 2015 the American Physiological Society.

  14. UTX regulates mesoderm differentiation of embryonic stem cells independent of H3K27 demethylase activity.

    PubMed

    Wang, Chaochen; Lee, Ji-Eun; Cho, Young-Wook; Xiao, Ying; Jin, Qihuang; Liu, Chengyu; Ge, Kai

    2012-09-18

    To investigate the role of histone H3K27 demethylase UTX in embryonic stem (ES) cell differentiation, we have generated UTX knockout (KO) and enzyme-dead knock-in male ES cells. Deletion of the X-chromosome-encoded UTX gene in male ES cells markedly decreases expression of the paralogous UTY gene encoded by Y chromosome, but has no effect on global H3K27me3 level, Hox gene expression, or ES cell self-renewal. However, UTX KO cells show severe defects in mesoderm differentiation and induction of Brachyury, a transcription factor essential for mesoderm development. Surprisingly, UTX regulates mesoderm differentiation and Brachyury expression independent of its enzymatic activity. UTY, which lacks detectable demethylase activity, compensates for the loss of UTX in regulating Brachyury expression. UTX and UTY bind directly to Brachyury promoter and are required for Wnt/β-catenin signaling-induced Brachyury expression in ES cells. Interestingly, male UTX KO embryos express normal levels of UTY and survive until birth. In contrast, female UTX KO mice, which lack the UTY gene, show embryonic lethality before embryonic day 11.5. Female UTX KO embryos show severe defects in both Brachyury expression and embryonic development of mesoderm-derived posterior notochord, cardiac, and hematopoietic tissues. These results indicate that UTX controls mesoderm differentiation and Brachyury expression independent of H3K27 demethylase activity, and suggest that UTX and UTY are functionally redundant in ES cell differentiation and early embryonic development.

  15. Stability of citrate-capped silver nanoparticles in exposure media and their effects on the development of embryonic zebrafish (Danio rerio)

    PubMed Central

    Park, Kwangsik; Tuttle, George; Sinche, Federico; Harper, Stace L.

    2014-01-01

    The stability of citrate-capped silver nanoparticles (AgNPs) and the embryonic developmental toxicity were evaluated in the fish test water. Serious aggregation of AgNPs was observed in undiluted fish water (DM-100) in which high concentration of ionic salts exist. However, AgNPs were found to be stable for 7 days in DM-10, prepared by diluting the original fish water (DM-100) with deionized water to 10%. The normal physiology of zebrafish embryos were evaluated in DM-10 to see if DM-10 can be used as a control vehicle for the embryonic fish toxicity test. As results, DM-10 without AgNPs did not induce any significant adverse effects on embryonic development of zebrafish determined by mortality, hatching, malformations and heart rate. When embryonic toxicity of AgNPs was tested in both DM-10 and in DM-100, AgNPs showed higher toxicity in DM-10 than in DM-100. This means that the big-sized aggregates of AgNPs were low toxic compared to the nano-sized AgNPs. AgNPs induced delayed hatching, decreased heart rate, pericardial edema, and embryo death. Accumulation of AgNPs in the embryo bodies was also observed. Based on this study, citrate-capped AgNPs are not aggregated in DM-10 and it can be used as a control vehicle in the toxicity test of fish embryonic development. PMID:23325492

  16. EMG1 is essential for mouse pre-implantation embryo development.

    PubMed

    Wu, Xiaoli; Sandhu, Sumit; Patel, Nehal; Triggs-Raine, Barbara; Ding, Hao

    2010-09-21

    Essential for mitotic growth 1 (EMG1) is a highly conserved nucleolar protein identified in yeast to have a critical function in ribosome biogenesis. A mutation in the human EMG1 homolog causes Bowen-Conradi syndrome (BCS), a developmental disorder characterized by severe growth failure and psychomotor retardation leading to death in early childhood. To begin to understand the role of EMG1 in mammalian development, and how its deficiency could lead to Bowen-Conradi syndrome, we have used mouse as a model. The expression of Emg1 during mouse development was examined and mice carrying a null mutation for Emg1 were generated and characterized. Our studies indicated that Emg1 is broadly expressed during early mouse embryonic development. However, in late embryonic stages and during postnatal development, Emg1 exhibited specific expression patterns. To assess a developmental role for EMG1 in vivo, we exploited a mouse gene-targeting approach. Loss of EMG1 function in mice arrested embryonic development prior to the blastocyst stage. The arrested Emg1-/- embryos exhibited defects in early cell lineage-specification as well as in nucleologenesis. Further, loss of p53, which has been shown to rescue some phenotypes resulting from defects in ribosome biogenesis, failed to rescue the Emg1-/- pre-implantation lethality. Our data demonstrate that Emg1 is highly expressed during mouse embryonic development, and essential for mouse pre-implantation development. The absolute requirement for EMG1 in early embryonic development is consistent with its essential role in yeast. Further, our findings also lend support to the previous study that showed Bowen-Conradi syndrome results from a partial EMG1 deficiency. A complete deficiency would not be expected to be compatible with a live birth.

  17. ELF (Extremely Low Frequency) Communications System Ecological Monitoring Program: Summary of 1987 Progress

    DTIC Science & Technology

    1989-04-01

    Development . Prenatal developmental stages are especially sensitive to environmental perturbations. At present, there is conflicting evidence of direct EM...effects on embryonic or fetal development . In addition, possible effects of the ELF system on parental behavior could also have an indirect effect on... development . The purpose of this element is to determine the incidence of abnormalities in embryonic development in tree swallows at treatment and control

  18. In vitro organogenesis of gut-like structures from mouse embryonic stem cells.

    PubMed

    Kuwahara, M; Ogaeri, T; Matsuura, R; Kogo, H; Fujimoto, T; Torihashi, S

    2004-04-01

    Embryonic stem (ES) cells have pluripotency and give rise to many cell types and tissues, including representatives of all three germ layers in the embryo. We have reported previously that mouse ES cells formed contracting gut-like organs from embryoid bodies (EBs). These gut-like structures contracted spontaneously, and had large lumens surrounded by three layers, i.e. epithelium, lamina propria and muscularis. Ganglia were scattered along the periphery, and interstitial cells of Cajal (ICC) were distributed among the smooth muscle cells. In the present study, to determine whether they can be a model of gut organogenesis, we investigated the formation process of the gut-like structures in comparison with embryonic gut development. As a result, we found that the fundamental process of formation in vitro was similar to embryonic gut development in vivo. The result indicates that the gut-like structure is a useful tool not only for developmental study to determine the factors that induce gut organogenesis, but also for studies of enteric neurone and ICC development.

  19. Effects of catechins and low temperature on embryonic development and hatching in Heterodera glycines and Meloidogyne incognita

    USDA-ARS?s Scientific Manuscript database

    Mimics of two natural influences, a chemical similar to one present in cyst nematodes and low temperature exposure of nematode eggs, were evaluated for their effects on quantitative and qualitative features of embryonic development and hatching. The polyphenol epigallocatechin gallate (EGCG), an ana...

  20. Intrauterine air impairs embryonic postimplantation development in mice.

    PubMed

    Liu, Ruonan; Li, Yimeng; Miao, Yanping; Wei, Yanhui; Guan, Mo; Zhou, Rongyan; Li, Xiangyun

    2017-12-01

    Although most embryologists load air bubbles into the catheter along with embryos during embryo transfer, the effects of these air bubbles on embryo transfer success rate are not clear. Air bubbles were nonsurgically injected into unilateral uterine horns of mice to demonstrate the negative effects of intrauterine air bubbles on embryonic development. Our data showed that when air bubbles are nonsurgically injected into unilateral uterine horns of pregnant 4days mice the litter size is significantly decreased. Four days after the introduction of air, abnormal decidua and dead conceptuses were detected in the uterine horns receiving the air bubbles. In addition, intrauterine air also significantly impaired murine embryo transfer success rates, and induced an increase in endometrial capillary permeability and decidualization in mice on day 4 of pseudopregnancy. These results strongly indicated that the air bubbles loaded into embryo transfer catheters to bracket the embryo-containing medium may have negative effect on embryonic implantation and development. Intrauterine air impaired murine embryonic postimplantation development, and this provided some clues for improving embryo transfer techniques in human. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Tension (re)builds: Biophysical mechanisms of embryonic wound repair.

    PubMed

    Zulueta-Coarasa, Teresa; Fernandez-Gonzalez, Rodrigo

    2017-04-01

    Embryonic tissues display an outstanding ability to rapidly repair wounds. Epithelia, in particular, serve as protective layers that line internal organs and form the skin. Thus, maintenance of epithelial integrity is of utmost importance for animal survival, particularly at embryonic stages, when an immune system has not yet fully developed. Rapid embryonic repair of epithelial tissues is conserved across species, and involves the collective migration of the cells around the wound. The migratory cell behaviours associated with wound repair require the generation and transmission of mechanical forces, not only for the cells to move, but also to coordinate their movements. Here, we review the forces involved in embryonic wound repair. We discuss how different force-generating structures are assembled at the molecular level, and the mechanisms that maintain the balance between force-generating structures as wounds close. Finally, we describe the mechanisms that cells use to coordinate the generation of mechanical forces around the wound. Collective cell movements and their misregulation have been associated with defective tissue repair, developmental abnormalities and cancer metastasis. Thus, we propose that understanding the role of mechanical forces during embryonic wound closure will be crucial to develop therapeutic interventions that promote or prevent collective cell movements under pathological conditions. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Maternal dietary zinc supplementation enhances the epigenetic-activated antioxidant ability of chick embryos from maternal normal and high temperatures.

    PubMed

    Zhu, Yongwen; Liao, Xiudong; Lu, Lin; Li, Wenxiang; Zhang, Liyang; Ji, Cheng; Lin, Xi; Liu, Hsiao-Ching; Odle, Jack; Luo, Xugang

    2017-03-21

    The role of maternal dietary zinc supplementation in protecting the embryos from maternal hyperthermia-induced negative effects via epigenetic mechanisms was examined using an avian model (Gallus gallus). Broiler breeder hens were exposed to two maternal temperatures (21°C and 32°C) × three maternal dietary zinc treatments (zinc-unsupplemented control diet, the control diet + 110 mg zinc/kg inorganic or organic zinc) for 8 weeks. Maternal hyperthermia increased the embryonic mortality and induced oxidative damage evidenced by the elevated mRNA expressions of heat shock protein genes. Maternal dietary zinc deficiency damaged the embryonic development associated with the global DNA hypomethylation and histone 3 lysine 9 hyperacetylation in the embryonic liver. Supplementation of zinc in maternal diets effectively eliminated the embryonic mortality induced by maternal hyperthermia and enhanced antioxidant ability with the increased mRNA and protein expressions of metallothionein IV in the embryonic liver. The increased metallothionein IV mRNA expression was due to the reduced DNA methylation and increased histone 3 lysine 9 acetylation of the metallothionein IV promoter regardless of zinc source. These data demonstrate that maternal dietary zinc addition as an epigenetic modifier could protect the offspring embryonic development against maternal heat stress via enhancing the epigenetic-activated antioxidant ability.

  3. Early zebrafish development: It’s in the maternal genes

    PubMed Central

    Abrams, Elliott W.; Mullins, Mary C.

    2009-01-01

    Summary The earliest stages of embryonic development in all animals examined rely on maternal gene products that are generated during oogenesis and supplied to the egg. The period of maternal control of embryonic development varies among animals according to the onset of zygotic transcription and the persistence of maternal gene products. This maternal regulation has been little studied in vertebrates, due to the difficulty in manipulating maternal gene function and lack of basic molecular information. However, recent maternal-effect screens in the zebrafish have generated more than 40 unique mutants that are providing new molecular entry points to the maternal control of early vertebrate development. Here we discuss recent studies of 12 zebrafish mutant genes that illuminate the maternal molecular controls on embryonic development, including advances in the regulation of animal-vegetal polarity, egg activation, cleavage development, body plan formation, tissue morphogenesis, microRNA function and germ cell development. PMID:19608405

  4. Adult mortality probability and nest predation rates explain parental effort in warming eggs with consequences for embryonic development time

    USGS Publications Warehouse

    Martin, Thomas E.; Oteyza, Juan C.; Boyce, Andy J.; Lloyd, Penn; Ton, Riccardo

    2015-01-01

    Parental behavior and effort vary extensively among species. Life-history theory suggests that age-specific mortality could cause this interspecific variation, but past tests have focused on fecundity as the measure of parental effort. Fecundity can cause costs of reproduction that confuse whether mortality is the cause or the consequence of parental effort. We focus on a trait, parental allocation of time and effort in warming embryos, that varies widely among species of diverse taxa and is not tied to fecundity. We conducted studies on songbirds of four continents and show that time spent warming eggs varies widely among species and latitudes and is not correlated with clutch size. Adult and offspring (nest) mortality explained most of the interspecific variation in time and effort that parents spend warming eggs, measured by average egg temperatures. Parental effort in warming eggs is important because embryonic temperature can influence embryonic development period and hence exposure time to predation risk. We show through correlative evidence and experimental swapping of embryos between species that parentally induced egg temperatures cause interspecific variation in embryonic development period. The strong association of age-specific mortality with parental effort in warming eggs and the subsequent effects on embryonic development time are unique results that can advance understanding of broad geographic patterns of life-history variation.

  5. EXTRA-EMBRYONIC-SPECIFIC IMPRINTED EXPRESSION IS RESTRICTED TO DEFINED LINEAGES IN THE POST-IMPLANTATION EMBRYO

    PubMed Central

    Hudson, Quanah J.; Seidl, Christine I.M.; Kulinski, Tomasz M.; Huang, Ru; Warczok, Katarzyna E.; Bittner, Romana; Bartolomei, Marisa S.; Barlow, Denise P.

    2011-01-01

    A subset of imprinted genes in the mouse have been reported to show imprinted expression that is restricted to the placenta, a short-lived extra-embryonic organ. Notably these so-called 'placental-specific' imprinted genes are expressed from both parental alleles in embryo and adult tissues. The placenta is an embryonic-derived organ that is closely associated with maternal tissue and as a consequence, maternal contamination can be mistaken for maternal-specific imprinted expression. The complexity of the placenta, which arises from multiple embryonic lineages, poses additional problems in accurately assessing allele-specific repressive epigenetic modifications in genes that also show lineage-specific silencing in this organ. These problems require that extra evidence be obtained to support the imprinted status of genes whose imprinted expression is restricted to the placenta. We show here that the extra-embryonic visceral yolk sac (VYS), a nutritive membrane surrounding the developing embryo, shows a similar 'extra-embryonic-lineage-specific' pattern of imprinted expression. We present an improved enzymatic technique for separating the bilaminar VYS and show that this pattern of imprinted expression is restricted to the endoderm layer. Finally, we show that VYS 'extra-embryonic-lineage-specific' imprinted expression is regulated by DNA methylation in a similar manner as shown for genes showing multi-lineage imprinted expression in extra-embryonic, embryonic and adult tissues. These results show that the VYS is an improved model for studying the epigenetic mechanisms regulating extra-embryonic-lineage-specific imprinted expression. PMID:21354127

  6. Expression and regulation of glucocorticoid-induced leucine zipper in the developing anterior pituitary gland.

    PubMed

    Ellestad, Laura E; Malkiewicz, Stefanie A; Guthrie, H David; Welch, Glenn R; Porter, Tom E

    2009-02-01

    The expression profile of glucocorticoid-induced leucine zipper (GILZ) in the anterior pituitary during the second half of embryonic development in the chick is consistent with in vivo regulation by circulating corticosteroids. However, nothing else has been reported about the presence of GILZ in the neuroendocrine system. We sought to characterize expression and regulation of GILZ in the chicken embryonic pituitary gland and determine the effect of GILZ overexpression on anterior pituitary hormone levels. Pituitary GILZ mRNA levels increased during embryogenesis to a maximum on the day of hatch, and decreased through the first week after hatch. GILZ expression was rapidly upregulated by corticosterone in embryonic pituitary cells. To determine whether GILZ regulates hormone gene expression in the developing anterior pituitary, we overexpressed GILZ in embryonic pituitary cells and measured mRNA for the major pituitary hormones. Exogenous GILZ increased prolactin mRNA above basal levels, but not as high as that in corticosterone-treated cells, indicating that GILZ may play a small role in lactotroph differentiation. The largest effect we observed was a twofold increase in FSH beta subunit in cells transfected with GILZ but not treated with corticosterone, suggesting that GILZ may positively regulate gonadotroph development in a manner not involving glucocorticoids. In conclusion, this is the first report to characterize avian GILZ and examine its regulation in the developing neuroendocrine system. We have shown that GILZ is upregulated by glucocorticoids in the embryonic pituitary gland and may regulate expression of several pituitary hormones.

  7. 4D Subject-Specific Inverse Modeling of the Chick Embryonic Heart Outflow Tract Hemodynamics

    PubMed Central

    Goenezen, Sevan; Chivukula, Venkat Keshav; Midgett, Madeline; Phan, Ly; Rugonyi, Sandra

    2015-01-01

    Blood flow plays a critical role in regulating embryonic cardiac growth and development, with altered flow leading to congenital heart disease. Progress in the field, however, is hindered by a lack of quantification of hemodynamic conditions in the developing heart. In this study, we present a methodology to quantify blood flow dynamics in the embryonic heart using subject-specific computational fluid dynamics (CFD) models. While the methodology is general, we focused on a model of the chick embryonic heart outflow tract (OFT), which distally connects the heart to the arterial system, and is the region of origin of many congenital cardiac defects. Using structural and Doppler velocity data collected from optical coherence tomography (OCT), we generated 4D (3D + time) embryo-specific CFD models of the heart OFT. To replicate the blood flow dynamics over time during the cardiac cycle, we developed an iterative inverse-method optimization algorithm, which determines the CFD model boundary conditions such that differences between computed velocities and measured velocities at one point within the OFT lumen are minimized. Results from our developed CFD model agree with previously measured hemodynamics in the OFT. Further, computed velocities and measured velocities differ by less than 15% at locations that were not used in the optimization, validating the model. The presented methodology can be used in quantifications of embryonic cardiac hemodynamics under normal and altered blood flow conditions, enabling an in depth quantitative study of how blood flow influences cardiac development. PMID:26361767

  8. CD146(+) cells are essential for kidney vasculature development.

    PubMed

    Halt, Kimmo J; Pärssinen, Heikki E; Junttila, Sanna M; Saarela, Ulla; Sims-Lucas, Sunder; Koivunen, Peppi; Myllyharju, Johanna; Quaggin, Susan; Skovorodkin, Ilya N; Vainio, Seppo J

    2016-08-01

    The kidney vasculature is critical for renal function, but its developmental assembly mechanisms remain poorly understood and models for studying its assembly dynamics are limited. Here, we tested whether the embryonic kidney contains endothelial cells (ECs) that are heterogeneous with respect to VEGFR2/Flk1/KDR, CD31/PECAM, and CD146/MCAM markers. Tie1Cre;R26R(YFP)-based fate mapping with a time-lapse in embryonic kidney organ culture successfully depicted the dynamics of kidney vasculature development and the correlation of the process with the CD31(+) EC network. Depletion of Tie1(+) or CD31(+) ECs from embryonic kidneys, with either Tie1Cre-induced diphtheria toxin susceptibility or cell surface marker-based sorting in a novel dissociation and reaggregation technology, illustrated substantial EC network regeneration. Depletion of the CD146(+) cells abolished this EC regeneration. Fate mapping of green fluorescent protein (GFP)-marked CD146(+)/CD31(-) cells indicated that they became CD31(+) cells, which took part in EC structures with CD31(+) wild-type ECs. EC network development depends on VEGF signaling, and VEGF and erythropoietin are expressed in the embryonic kidney even in the absence of any external hypoxic stimulus. Thus, the ex vivo embryonic kidney culture models adopted here provided novel ways for targeting renal EC development and demonstrated that CD146(+) cells are critical for kidney vasculature development. Copyright © 2016 International Society of Nephrology. All rights reserved.

  9. Gas exchange in avian embryos and hatchlings.

    PubMed

    Mortola, Jacopo P

    2009-08-01

    The avian egg has been proven to be an excellent model for the study of the physical principles and the physiological characteristics of embryonic gas exchange. In recent years, it has become a model for the studies of the prenatal development of pulmonary ventilation, its chemical control and its interaction with extra-pulmonary gas exchange. Differently from mammals, in birds the initiation of pulmonary ventilation and the transition from diffusive to convective gas exchange are gradual and slow-occurring events amenable to detailed investigations. The absence of the placenta and of the mother permits the study of the mechanisms of embryonic adaptation to prenatal perturbations in a way that would be impossible with mammalian preparations. First, this review summarises the general aspects of the natural history of the avian egg that are pertinent to embryonic metabolism, growth and gas exchange and the characteristics of the structures participating in gas exchange. Then, the review focuses on the embryonic development of pulmonary ventilation, its regulation in relation to the embryo's environment and metabolic state, the effects that acute or sustained changes in embryonic temperature or oxygenation can have on growth, metabolism and ventilatory control.

  10. Expression of the adhesion G protein-coupled receptor A2 (adgra2) during Xenopus laevis development.

    PubMed

    Seigfried, Franziska A; Dietmann, Petra; Kühl, Michael; Kühl, Susanne J

    2018-06-01

    The adhesion G protein-coupled receptor A2 (Adgra2) is a seven transmembrane receptor that has been described to be a regulator for angiogenesis in mice. Furthermore, the zebrafish ouchless mutant is unable to develop dorsal root ganglia through a disrupted trafficking of Adgra2. Besides RNA sequencing data, nothing is reported about Adgra2 in the south African crawled frog Xenopus laevis. In this study, we investigated for the first time the spatio-temporal expression of adgra2 during early Xenopus embryogenesis in detail. In silico approaches showed that the genomic adgra2 region as well as the Adgra2 protein sequence is highly conserved among different species including Xenopus. RT-PCR experiments confirmed that embryonic adgra2 expression is primarily detected at the beginning of neurulation and is then present throughout the whole Xenopus embryogenesis until stage 42. Whole mount in situ hybridization approaches visualized adgra2 expression in many tissues during Xenopus embryogenesis such as the cardiovascular system including the heart, the migrating neural crest cells and the developing eye including the periocular mesenchyme. Our results indicate a role of Adgra2 for embryogenesis and are a good starting point for further functional studies during early vertebrate development. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Somatic Donor Cell Type Correlates with Embryonic, but Not Extra-Embryonic, Gene Expression in Postimplantation Cloned Embryos

    PubMed Central

    Inoue, Kimiko; Ogura, Atsuo

    2013-01-01

    The great majority of embryos generated by somatic cell nuclear transfer (SCNT) display defined abnormal phenotypes after implantation, such as an increased likelihood of death and abnormal placentation. To gain better insight into the underlying mechanisms, we analyzed genome-wide gene expression profiles of day 6.5 postimplantation mouse embryos cloned from three different cell types (cumulus cells, neonatal Sertoli cells and fibroblasts). The embryos retrieved from the uteri were separated into embryonic (epiblast) and extraembryonic (extraembryonic ectoderm and ectoplacental cone) tissues and were subjected to gene microarray analysis. Genotype- and sex-matched embryos produced by in vitro fertilization were used as controls. Principal component analysis revealed that whereas the gene expression patterns in the embryonic tissues varied according to the donor cell type, those in extraembryonic tissues were relatively consistent across all groups. Within each group, the embryonic tissues had more differentially expressed genes (DEGs) (>2-fold vs. controls) than did the extraembryonic tissues (P<1.0×10–26). In the embryonic tissues, one of the common abnormalities was upregulation of Dlk1, a paternally imprinted gene. This might be a potential cause of the occasional placenta-only conceptuses seen in SCNT-generated mouse embryos (1–5% per embryos transferred in our laboratory), because dysregulation of the same gene is known to cause developmental failure of embryos derived from induced pluripotent stem cells. There were also some DEGs in the extraembryonic tissues, which might explain the poor development of SCNT-derived placentas at early stages. These findings suggest that SCNT affects the embryonic and extraembryonic development differentially and might cause further deterioration in the embryonic lineage in a donor cell-specific manner. This could explain donor cell-dependent variations in cloning efficiency using SCNT. PMID:24146866

  12. Epidermal differentiation in embryos of the tuatara Sphenodon punctatus (Reptilia, Sphenodontidae) in comparison with the epidermis of other reptiles.

    PubMed

    Alibardi, L; Gill, B J

    2007-07-01

    Studying the epidermis in primitive reptiles can provide clues regarding evolution of the epidermis during land adaptation in vertebrates. With this aim, the development of the skin of the relatively primitive reptile Sphenodon punctatus in representative embryonic stages was studied by light and electron microscopy and compared with that of other reptiles previously studied. The dermis organizes into a superficial and deep portion when the epidermis starts to form the first layers. At embryonic stages comparable with those of lizards, only one layer of the inner periderm is formed beneath the outer periderm. This also occurs in lizards and snakes so far studied. The outer and inner periderm form the embryonic epidermis and accumulate thick, coarse filaments (25-30 nm thick) and sparse alpha-keratin filaments as in other reptiles. Beneath the embryonic epidermis an oberhautchen and beta-cells form small horny tips that represent overlapping borders along the margin of beta-cells that overlap other beta-cells (in a tile-like arrangement). The tips resemble those of agamine lizards but at a small scale, forming a lamellate-spinulated pattern as previously described in adult epidermis. The embryonic epidermis matures by the dispersion of coarse filaments among keratin at the end of embryonic development and is shed around hatching. The presence of these matrix organelles in the embryonic epidermis of this primitive reptile further indicates that amniote epidermis acquired interkeratin matrix proteins early for land adaptation. Unlike the condition in lizards and snakes, a shedding complex is not formed in the epidermis of embryonic S. punctatus that is like that of the adult. Therefore, as in chelonians and crocodilians, the epidermis of S. punctatus also represents an initial stage that preceded the evolution of the shedding complex for moulting.

  13. Epidermal differentiation in embryos of the tuatara Sphenodon punctatus (Reptilia, Sphenodontidae) in comparison with the epidermis of other reptiles

    PubMed Central

    Alibardi, L; Gill, B J

    2007-01-01

    Studying the epidermis in primitive reptiles can provide clues regarding evolution of the epidermis during land adaptation in vertebrates. With this aim, the development of the skin of the relatively primitive reptile Sphenodon punctatus in representative embryonic stages was studied by light and electron microscopy and compared with that of other reptiles previously studied. The dermis organizes into a superficial and deep portion when the epidermis starts to form the first layers. At embryonic stages comparable with those of lizards, only one layer of the inner periderm is formed beneath the outer periderm. This also occurs in lizards and snakes so far studied. The outer and inner periderm form the embryonic epidermis and accumulate thick, coarse filaments (25–30 nm thick) and sparse alpha-keratin filaments as in other reptiles. Beneath the embryonic epidermis an oberhautchen and beta-cells form small horny tips that represent overlapping borders along the margin of beta-cells that overlap other beta-cells (in a tile-like arrangement). The tips resemble those of agamine lizards but at a small scale, forming a lamellate-spinulated pattern as previously described in adult epidermis. The embryonic epidermis matures by the dispersion of coarse filaments among keratin at the end of embryonic development and is shed around hatching. The presence of these matrix organelles in the embryonic epidermis of this primitive reptile further indicates that amniote epidermis acquired interkeratin matrix proteins early for land adaptation. Unlike the condition in lizards and snakes, a shedding complex is not formed in the epidermis of embryonic S. punctatus that is like that of the adult. Therefore, as in chelonians and crocodilians, the epidermis of S. punctatus also represents an initial stage that preceded the evolution of the shedding complex for moulting. PMID:17532799

  14. Mechanisms of Microwave Induced Damage in Biologic Materials

    DTIC Science & Technology

    1992-10-01

    that low level electromagnetic fields can cause developmental abnormalities in early stages of chick embryo development . In studies of the effects of...early embryonic development has led to a great deal of speculation about the safety of environmental exposure to such fields. Power lines, household...capable of covalent binding to embryonic or fetal macromolecules and nucleic acids, disrupting normal development . Individuals with low levels of

  15. Hypoxia delays hematopoiesis: retention of embryonic hemoglobin and erythrocytes in larval rainbow trout, Oncorhynchus mykiss, during chronic hypoxia exposure.

    PubMed

    Bianchini, Kristin; Wright, Patricia A

    2013-12-01

    In rainbow trout development, a switch occurs from high-affinity embryonic hemoglobin (Hb) and round, embryonic erythrocytes to lower-affinity adult Hb and oval, adult erythrocytes. Our study investigated the early ontogeny of rainbow trout blood properties and the hypoxia response. We hypothesized that hypoxia exposure would delay the ontogenetic turnover of Hb and erythrocytes because retention of high-affinity embryonic Hb would facilitate oxygen loading. To test this hypothesis we developed a method of efficiently extracting blood from individual embryos and larvae and optimized several techniques for measuring hematological parameters on microliter (0.5-2.0 μl) blood samples. In chronic hypoxia (30% of oxygen saturation), stage-matched embryos and larvae possessed half the Hb concentration, erythrocyte counts and hematocrit observed in normoxia. Hypoxia-reared larvae also had threefold to sixfold higher mRNA expression of the embryonic Hb α-1, β-1 and β-2 subunits relative to stage-matched normoxia-reared larvae. Furthermore, in hypoxia, the round embryonic erythrocytic shape persisted into later developmental stages. Despite these differences, Hb-oxygen affinity (P50), cooperativity and the Root effect were unaltered in hypoxia-reared O. mykiss. The data support our hypothesis that chronic hypoxia delays the ontogenetic turnover of Hb and erythrocytes, but without the predicted functional consequences (i.e. higher than expected P50). These results also suggest that the Hb-oxygen affinity is protected during development in chronic hypoxia to favor oxygen unloading at the tissues. We conclude that in early trout development, the blood-oxygen transport system responds very differently to chronic hypoxia relative to adults, possibly because respiration depends relatively more on oxygen diffusion than convection.

  16. Functional optical coherence tomography for live dynamic analysis of mouse embryonic cardiogenesis

    NASA Astrophysics Data System (ADS)

    Wang, Shang; Lopez, Andrew L.; Larina, Irina V.

    2018-02-01

    Blood flow, heart contraction, and tissue stiffness are important regulators of cardiac morphogenesis and function during embryonic development. Defining how these factors are integrated is critically important to advance prevention, diagnostics, and treatment of congenital heart defects. Mammalian embryonic development is taking place deep within the female body, which makes cardiodynamic imaging and analysis during early developmental stages in humans inaccessible. With thousands of mutant lines available and well-established genetic manipulation tools, mouse is a great model to understand how biomechanical factors are integrated with molecular pathways to regulate cardiac function and development. Dynamic imaging and quantitative analysis of the biomechanics of live mouse embryos have become increasingly important, which demands continuous advancements in imaging techniques and live assessment approaches. This has been one of the major drives to keep pushing the frontier of embryonic imaging for better resolution, higher speed, deeper penetration, and more diverse and effective contrasts. Optical coherence tomography (OCT) has played a significant role in addressing such demands, and its features in non-labeling imaging, 3D capability, a large working distance, and various functional derivatives allow OCT to cover a number of specific applications in embryonic imaging. Recently, our group has made several technical improvements in using OCT to probe the biomechanical aspects of live developing mouse embryos at early stages. These include the direct volumetric structural and functional imaging of the cardiodynamics, four-dimensional quantitative Doppler imaging and analysis of the cardiac blood flow, and fourdimensional blood flow separation from the cardiac wall tissue in the beating embryonic heart. Here, we present a short review of these studies together with brief descriptions of the previous work that demonstrate OCT as a valuable and useful imaging tool for the research in developmental cardiology.

  17. Histology Atlas of the Developing Mouse Hepatobiliary System with Emphasis on Embryonic Days 9.5-18.5

    PubMed Central

    Crawford, Laura Wilding; Foley, Julie F.; Elmore, Susan A.

    2012-01-01

    Animal model phenotyping, in utero exposure toxiciy studies, and investigation into causes of embryonic, fetal, or perinatal deaths have required pathologists to recognize and diagnose developmental disorders in spontaneous and engineered mouse models of disease. In mammals, the liver is the main site of hematopoiesis during fetal development, has endocrine and exocrine functions important for maintaining homeostasis in fetal and adult life; and performs other functions including waste detoxification, production and removal of glucose, glycogen storage, triglyceride and fatty acid processing, and serum protein production. Due to its role in many critical functions, alterations in the size, morphology, or function(s) of the liver often lead to embryonic lethality. Many publications and websites describe individual aspects of hepatobiliary development at defined stages. However, no single resource provides a detailed histological evaluation of H&E-stained sections of the developing murine liver and biliary systems using high-magnification and high-resolution color images. The work herein provides a histology atlas of hepatobiliary development between embryonic days 9.5-18.5. Although the focus of this work is normal hepatobiliary development, common defects in liver development are also described as a reference for pathologists who may be asked to phenotype mice with congenital, inherited, or treatment-related hepatobiliary defects. PMID:20805319

  18. Stage-dependent and locus-specific role of histone demethylase Jumonji D3 (JMJD3) in the embryonic stages of lung development.

    PubMed

    Li, Qingtian; Wang, Helen Y; Chepelev, Iouri; Zhu, Qingyuan; Wei, Gang; Zhao, Keji; Wang, Rong-Fu

    2014-07-01

    Histone demethylases have emerged as important players in developmental processes. Jumonji domain containing-3 (Jmjd3) has been identified as a key histone demethylase that plays a critical role in the regulation of gene expression; however, the in vivo function of Jmjd3 in embryonic development remains largely unknown. To this end, we generated Jmjd3 global and conditional knockout mice. Global deletion of Jmjd3 induces perinatal lethality associated with defective lung development. Tissue and stage-specific deletion revealed that Jmjd3 is dispensable in the later stage of embryonic lung development. Jmjd3 ablation downregulates the expression of genes critical for lung development and function, including AQP-5 and SP-B. Jmjd3-mediated alterations in gene expression are associated with locus-specific changes in the methylation status of H3K27 and H3K4. Furthermore, Jmjd3 is recruited to the SP-B promoter through interactions with the transcription factor Nkx2.1 and the epigenetic protein Brg1. Taken together, these findings demonstrate that Jmjd3 plays a stage-dependent and locus-specific role in the mouse lung development. Our study provides molecular insights into the mechanisms by which Jmjd3 regulates target gene expression in the embryonic stages of lung development.

  19. Enzymatic Metabolism of Vitamin A in Developing Vertebrate Embryos

    PubMed Central

    Metzler, Melissa A.; Sandell, Lisa L.

    2016-01-01

    Embryonic development is orchestrated by a small number of signaling pathways, one of which is the retinoic acid (RA) signaling pathway. Vitamin A is essential for vertebrate embryonic development because it is the molecular precursor of the essential signaling molecule RA. The level and distribution of RA signaling within a developing embryo must be tightly regulated; too much, or too little, or abnormal distribution, all disrupt embryonic development. Precise regulation of RA signaling during embryogenesis is achieved by proteins involved in vitamin A metabolism, retinoid transport, nuclear signaling, and RA catabolism. The reversible first step in conversion of the precursor vitamin A to the active retinoid RA is mediated by retinol dehydrogenase 10 (RDH10) and dehydrogenase/reductase (SDR family) member 3 (DHRS3), two related membrane-bound proteins that functionally activate each other to mediate the interconversion of retinol and retinal. Alcohol dehydrogenase (ADH) enzymes do not contribute to RA production under normal conditions during embryogenesis. Genes involved in vitamin A metabolism and RA catabolism are expressed in tissue-specific patterns and are subject to feedback regulation. Mutations in genes encoding these proteins disrupt morphogenesis of many systems in a developing embryo. Together these observations demonstrate the importance of vitamin A metabolism in regulating RA signaling during embryonic development in vertebrates. PMID:27983671

  20. Effect of temperature during embryonic development and first feeding of Trichogaster leeri larvae.

    PubMed

    Pereira, Samuel Louzada; de Andrade, Dalcio Ricardo; Radael, Marcella Costa; Fosse Filho, João Carlos; de Azevedo, Rafael Vieira; Mattos, Douglas da Cruz; Vidal Junior, Manuel Vazquez

    2016-10-01

    Temperature is an environmental factor that influences the development of fish, and when changed abruptly can lead to high mortality. Some species of fish are influenced by this factor, exhibiting a longer time for embryonic development and time to first feeding. This study aims to evaluate the effect of water temperature on embryonic and larval development up to first feeding, to describe the time in hours post fertilization (hpf) of the emergence of different structures and to determine the best hatching rate and survival of animals under different treatments. Five different egg incubation temperatures were used (24, 26, 28, 30 or 32°C, respectively). The eggs were observed at regular intervals of 30 min up to 24 h, every 2 h until 48 h and every 4 h until the display of first feeding in all treatments. Embryonic development was longer for eggs incubated at 24°C and the best results for hatching rate and survival of spawning efficiency were at 28°C. We recommend that incubation of Trichogaster leeri eggs is carried out at 28°C up to the first feeding of larvae.

  1. How the embryonic chick brain twists.

    PubMed

    Chen, Zi; Guo, Qiaohang; Dai, Eric; Forsch, Nickolas; Taber, Larry A

    2016-11-01

    During early development, the tubular embryonic chick brain undergoes a combination of progressive ventral bending and rightward torsion, one of the earliest organ-level left-right asymmetry events in development. Existing evidence suggests that bending is caused by differential growth, but the mechanism for the predominantly rightward torsion of the embryonic brain tube remains poorly understood. Here, we show through a combination of in vitro experiments, a physical model of the embryonic morphology and mechanics analysis that the vitelline membrane (VM) exerts an external load on the brain that drives torsion. Our theoretical analysis showed that the force is of the order of 10 micronewtons. We also designed an experiment to use fluid surface tension to replace the mechanical role of the VM, and the estimated magnitude of the force owing to surface tension was shown to be consistent with the above theoretical analysis. We further discovered that the asymmetry of the looping heart determines the chirality of the twisted brain via physical mechanisms, demonstrating the mechanical transfer of left-right asymmetry between organs. Our experiments also implied that brain flexure is a necessary condition for torsion. Our work clarifies the mechanical origin of torsion and the development of left-right asymmetry in the early embryonic brain. © 2016 The Author(s).

  2. Ca2+ signalling and early embryonic patterning during zebrafish development.

    PubMed

    Webb, Sarah E; Miller, Andrew L

    2007-09-01

    1. It has been proposed that Ca2+ signalling, in the form of pulses, waves and steady gradients, may play a crucial role in key pattern-forming events during early vertebrate development. 2. With reference to the embryo of the zebrafish (Danio rerio), herein we review the Ca2+ transients reported from the cleavage to segmentation periods. This time-window includes most of the major pattern-forming events of early development, which transform a single-cell zygote into a complex multicellular embryo with established primary germ layers and body axes. 3. Data are presented to support our proposal that intracellular Ca2+ waves are an essential feature of embryonic cytokinesis and that propagating intercellular Ca2+ waves (both long and short range) may play a crucial role in: (i) the establishment of the embryonic periderm and the coordination of cell movements during epiboly, convergence and extension; (ii) the establishment of the basic embryonic axes and germ layers; and (iii) definition of the morphological boundaries of specific tissue domains and embryonic structures, including future organ anlagen. 4. The potential downstream targets of these Ca2+ transients are also discussed, as well as how they may integrate with other pattern-forming signalling pathways known to modulate early developmental events.

  3. The Evolutionary Economics of Embryonic-Sac Fluids in Squamate Reptiles.

    PubMed

    Bonnet, Xavier; Naulleau, Guy; Shine, Richard

    2017-03-01

    The parchment-shelled eggs of squamate reptiles take up substantial water from the nest environment, enabling the conversion of yolk into neonatal tissue and buffering the embryo against the possibility of subsequent dry weather. During development, increasing amounts of water are stored in the embryonic sacs (i.e., membranes around the embryo: amnion, allantois, and chorion). The evolution of viviparity (prolonged uterine retention of developing embryos) means that embryonic-sac fluid storage now imposes a cost (increased maternal burdening), confers less benefit (because the mother buffers fetal water balance), and introduces a potential conflict among uterine siblings (for access to finite water supplies). Our data on nine species of squamate reptiles and published information on three species show that the embryonic-sac fluids comprise around 33% of neonatal mass in viviparous species versus 94% in full-term eggs of oviparous squamates. Data on parturition in 149 vipers (Vipera aspis, a viviparous species) show that larger offspring store more fluids in their fetal sacs and that an increase in litter size is associated with a decrease in fluid-sac mass per offspring. Overall, the evolutionary transition from oviparity to viviparity may have substantially altered selective forces on offspring packaging and created competition among offspring for access to water reserves during embryonic development.

  4. MENA is a transcriptional target of the Wnt/beta-catenin pathway.

    PubMed

    Najafov, Ayaz; Seker, Tuncay; Even, Ipek; Hoxhaj, Gerta; Selvi, Osman; Ozel, Duygu Esen; Koman, Ahmet; Birgül-İyison, Necla

    2012-01-01

    Wnt/β-catenin signalling pathway plays important roles in embryonic development and carcinogenesis. Overactivation of the pathway is one of the most common driving forces in major cancers such as colorectal and breast cancers. The downstream effectors of the pathway and its regulation of carcinogenesis and metastasis are still not very well understood. In this study, which was based on two genome-wide transcriptomics screens, we identify MENA (ENAH, Mammalian enabled homologue) as a novel transcriptional target of the Wnt/β-catenin signalling pathway. We show that the expression of MENA is upregulated upon overexpression of degradation-resistant β-catenin. Promoters of all mammalian MENA homologues contain putative binding sites for Tcf4 transcription factor--the primary effector of the Wnt/β-catenin pathway and we demonstrate functionality of these Tcf4-binding sites using luciferase reporter assays and overexpression of β-catenin, Tcf4 and dominant-negative Tcf4. In addition, lithium chloride-mediated inhibition of GSK3β also resulted in increase in MENA mRNA levels. Chromatin immunoprecipitation showed direct interaction between β-catenin and MENA promoter in Huh7 and HEK293 cells and also in mouse brain and liver tissues. Moreover, overexpression of Wnt1 and Wnt3a ligands increased MENA mRNA levels. Additionally, knock-down of MENA ortholog in D. melanogaster eyeful and sensitized eye cancer fly models resulted in increased tumor and metastasis formations. In summary, our study identifies MENA as novel nexus for the Wnt/β-catenin and the Notch signalling cascades.

  5. A structure-based extracellular matrix expansion mechanism of fibrous tissue growth.

    PubMed

    Kalson, Nicholas S; Lu, Yinhui; Taylor, Susan H; Starborg, Tobias; Holmes, David F; Kadler, Karl E

    2015-05-20

    Embryonic growth occurs predominately by an increase in cell number; little is known about growth mechanisms later in development when fibrous tissues account for the bulk of adult vertebrate mass. We present a model for fibrous tissue growth based on 3D-electron microscopy of mouse tendon. We show that the number of collagen fibrils increases during embryonic development and then remains constant during postnatal growth. Embryonic growth was explained predominately by increases in fibril number and length. Postnatal growth arose predominately from increases in fibril length and diameter. A helical crimp structure was established in embryogenesis, and persisted postnatally. The data support a model where the shape and size of tendon is determined by the number and position of embryonic fibroblasts. The collagen fibrils that these cells synthesise provide a template for postnatal growth by structure-based matrix expansion. The model has important implications for growth of other fibrous tissues and fibrosis.

  6. Expression of the ephrin receptor B2 in the embryonic chicken bursa of Fabricius

    USDA-ARS?s Scientific Manuscript database

    Chicken B-cells develop in a specific organ, the bursa of Fabricius. To understand the bursal microenvironment guiding B-cell development, previous studies identified ephrin (Eph) receptor B2 (EphB2) gene transcripts in the embryonic bursa. We hypothesize that the EphB2 receptors and their ligands r...

  7. Embryonic domains of the aorta derived from diverse origins exhibit distinct properties that converge into a common phenotype in the adult

    PubMed Central

    Pfaltzgraff, Elise R.; Shelton, Elaine L.; Galindo, Cristi L.; Nelms, Brian L.; Hooper, Christopher W.; Poole, Stanley D.; Labosky, Patricia A.; Bader, David M.; Reese, Jeff

    2014-01-01

    Vascular smooth muscle cells (VSMCs) are derived from distinct embryonic origins. Vessels originating from differing smooth muscle cell populations have distinct vascular and pathological properties involving calcification, atherosclerosis, and structural defects such as aneurysm and coarctation. We hypothesized that domains within a single vessel, such as the aorta, vary in phenotype based on embryonic origin. Gene profiling and myographic analyses demonstrated that embryonic ascending and descending aortic domains exhibited distinct phenotypes. In vitro analyses demonstrated that VSMCs from each region were dissimilar in terms of cytoskeletal and migratory properties, and retention of different gene expression patterns. Using the same analysis, we found that these same two domains are indistinguishable in the adult vessel. Our data demonstrate that VSMCs from different embryonic origins are functionally distinct in the embryonic mouse, but converge to assume a common phenotype in the aorta of healthy adults. These findings have fundamental implications for aortic development, function and disease progression. PMID:24508561

  8. Extra-embryonic tissue spreading directs early embryo morphogenesis in killifish

    PubMed Central

    Reig, Germán; Cerda, Mauricio; Sepúlveda, Néstor; Flores, Daniela; Castañeda, Victor; Tada, Masazumi; Härtel, Steffen; Concha, Miguel L.

    2017-01-01

    The spreading of mesenchymal-like cell layers is critical for embryo morphogenesis and tissue repair, yet we know little of this process in vivo. Here we take advantage of unique developmental features of the non-conventional annual killifish embryo to study the principles underlying tissue spreading in a simple cellular environment, devoid of patterning signals and major morphogenetic cell movements. Using in vivo experimentation and physical modelling we reveal that the extra-embryonic epithelial enveloping cell layer, thought mainly to provide protection to the embryo, directs cell migration and the spreading of embryonic tissue during early development. This function relies on the ability of embryonic cells to couple their autonomous random motility to non-autonomous signals arising from the expansion of the extra-embryonic epithelium, mediated by cell membrane adhesion and tension. Thus, we present a mechanism of extra-embryonic control of embryo morphogenesis that couples the mechanical properties of adjacent tissues in the early killifish embryo. PMID:28580937

  9. Eye and heart morphogenesis are dependent on melatonin signaling in chick embryos.

    PubMed

    Nogueira, Renato C; Sampaio, Lucia de Fatima S

    2017-10-15

    Calmodulin is vital for chick embryos morphogenesis in the incubation time 48-66 h when the rudimentary C-shaped heart attains an S-shaped pattern and the optic vesicles develop into optic cups. Melatonin is in the extraembryonic yolk sac of the avian egg; melatonin binds calmodulin. The aim of this study was to investigate the function of melatonin in the formation of the chick embryo optic cups and S-shaped heart, by pharmacological methods and immunoassays. Mel1a melatonin receptor immunofluorescence was distributed in the optic cups and rudimentary hearts. We separated embryonated chicken eggs at 48 h of incubation into basal, control and drug-treated groups, with treatment applied in the egg air sac. At 66 h of incubation, embryos were excised from the eggs and analyzed. Embryos from the basal, control (distilled water), melatonin and 6-chloromelatonin (melatonin receptor agonist) groups had regular optic cups and an S-shaped heart, while those from the calmidazolium (calmodulin inhibitor) group did not. Embryos from the luzindole (melatonin receptor antagonist) and prazosin (Mel1c melatonin receptor antagonist) groups did not have regular optic cups. Embryos from the 4-P-PDOT (Mel1b melatonin receptor antagonist) group did not have an S-shaped heart. Previous application of the melatonin, 6-chloromelatonin or forskolin (adenylate cyclase enhancer) prevented the abnormal appearance of chick embryos from the calmidazolium, luzindole, prazosin and 4-P-PDOT groups. However, 6-chloromelatonin and forskolin only partially prevented the development of defective eye cups in embryos from the calmidazolium group. The results suggested that melatonin modulates chick embryo morphogenesis via calmodulin and membrane receptors. © 2017. Published by The Company of Biologists Ltd.

  10. Effects of Microgravity on Quail Eye Development

    NASA Technical Reports Server (NTRS)

    Conrad, Gary W.

    1996-01-01

    During embryonic development, the most exposed tissue of the eye, the cornea, becomes differentially bulged outward because of constant intraocular pressure (IOP). The component cells of the cornea secrete a unique, paracrystalline extracellular matrix (the stroma) composed of orthogonal plies of collagen fibrils and proteoglycans. The cornea remains avascular, becomes transparent, and becomes more densely innervated than any other region on the surface of the body. Corneas from chicken embryos that flew on STS-47 contain many more cellular processes in the outermost region of the stroma (Bowman's Layer) than any corresponding region of control corneas. These processes appear to be cross-sections of cytoplasmic extensions of cells and are found in that region of Bowman's Layer immediately beneath the basal lamina of the corneal epithelium. Here, we propose to compare corneas of quail that flew in space on Mir-1 with those of ground controls to determine if the same unusual cellular processes are seen as in the space-flown chicken corneas. In the central regions of such space-flown corneas, the processes appear to be either portions of basal epithelial cells whose pseudopodial extensions have migrated down through their own basal lamina into the stroma, or corneal nerves that have innervated the corneal stroma in an unusual manner. Eyeballs of embryos fixed on Mir-1, control embryos fixed at KSC and clinostated embryos fixed at KSU, will provide corneas for this study. Electron microscopy will be used to assess the distribution of the cellular processes in Bowman's Layer in the central region of each cornea. Attempts also will be made to determine the relative glycosaminoglycan distributions in the corneal stromas by indirect immunofluorscence and to record whole-mount staining patterns of the corneal nerves.

  11. Female parthenogenetic apomixis and androsporogenetic parthenogenesis in embryonal cells of Araucaria angustifolia: interpolation of progenesis and asexual heterospory in an artificial sporangium.

    PubMed

    Durzan, Don J

    2012-09-01

    Cell fate, development timing and occurrence of reproductive versus apomictic development in gymnosperms are shown to be influenced by culture conditions in vitro. In this study, female parthenogenetic apomixis (fPA), androsporogenetic parthenogenesis (mAP) and progenesis were demonstrated using embryonal initials of Araucaria angustifolia in scaled-up cell suspensions passing through a single-cell bottleneck in darkness and in an artificial sporangium (AS). Expression was based on defined nutrition, hormones and feedforward-adaptive feedback process controls at 23-25 °C and in darkness. In fPA, the nucleus of an embryonal initial undergoes endomitosis and amitosis, forming a diploid egg-equivalent and an apoptotic ventral canal nucleus in a transdifferentiated archegonial tube. Discharge of egg-equivalent cells as parthenospores and their dispersal into the aqueous culture medium were followed by free-nuclear conifer-type proembryogenesis. This replaced the plesiomorphic and central features of proembryogenesis in Araucariaceae. Protoplasmic fusions of embryonal initials were used to reconstruct heterokaryotic expressions of fPA in multiwell plates. In mAP, restitutional meiosis (automixis) was responsible for androsporogenesis and the discharge of monads, dyads, tetrads and polyads. In a display of progenesis, reproductive development was brought to an earlier ontogenetic stage and expressed by embryonal initials. Colchicine increased polyploidy, but androspore formation became aberrant and fragmented. Aberrant automixis led to the formation of chromosomal bouquets, which contributed to genomic silencing in embryonal initials, cytomixis and the formation of pycnotic micronucleated cells. Dispersal of female and male parthenospores displayed heteromorphic asexual heterospory in an aqueous environment.

  12. Impaired embryonic development in glucose-6-phosphate dehydrogenase-deficient Caenorhabditis elegans due to abnormal redox homeostasis induced activation of calcium-independent phospholipase and alteration of glycerophospholipid metabolism.

    PubMed

    Chen, Tzu-Ling; Yang, Hung-Chi; Hung, Cheng-Yu; Ou, Meng-Hsin; Pan, Yi-Yun; Cheng, Mei-Ling; Stern, Arnold; Lo, Szecheng J; Chiu, Daniel Tsun-Yee

    2017-01-12

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a commonly pervasive inherited disease in many parts of the world. The complete lack of G6PD activity in a mouse model causes embryonic lethality. The G6PD-deficient Caenorhabditis elegans model also shows embryonic death as indicated by a severe hatching defect. Although increased oxidative stress has been implicated in both cases as the underlying cause, the exact mechanism has not been clearly delineated. In this study with C. elegans, membrane-associated defects, including enhanced permeability, defective polarity and cytokinesis, were found in G6PD-deficient embryos. The membrane-associated abnormalities were accompanied by impaired eggshell structure as evidenced by a transmission electron microscopic study. Such loss of membrane structural integrity was associated with abnormal lipid composition as lipidomic analysis revealed that lysoglycerophospholipids were significantly increased in G6PD-deficient embryos. Abnormal glycerophospholipid metabolism leading to defective embryonic development could be attributed to the increased activity of calcium-independent phospholipase A 2 (iPLA) in G6PD-deficient embryos. This notion is further supported by the fact that the suppression of multiple iPLAs by genetic manipulation partially rescued the embryonic defects in G6PD-deficient embryos. In addition, G6PD deficiency induced disruption of redox balance as manifested by diminished NADPH and elevated lipid peroxidation in embryos. Taken together, disrupted lipid metabolism due to abnormal redox homeostasis is a major factor contributing to abnormal embryonic development in G6PD-deficient C. elegans.

  13. Effects of dieldrin treatment on physiological and biochemical aspects of the toad embryonic development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gauna, L.; Caballero de Castro, A.; Chifflet de Llamas, M.

    1991-04-01

    Dieldrin is a cylclodiene insecticide highly persistent in nature due to its chemical stability. The exposure of toad embryos to Dieldrin induces hyperactivity in the swimming larvae and inhibition of cholinesterases. However, the inhibition of these enzymes during early development is not life threatening. The present report provides a physiological and biochemical study of the noxious effect of Dieldrin on the toad embryonic development.

  14. Heart Development, Diseases, and Regeneration - New Approaches From Innervation, Fibroblasts, and Reprogramming.

    PubMed

    Ieda, Masaki

    2016-09-23

    It is well known that cardiac function is tightly controlled by neural activity; however, the molecular mechanism of cardiac innervation during development and the relationship with heart disease remain undetermined. My work has revealed the molecular networks that govern cardiac innervation and its critical roles in heart diseases such as silent myocardial ischemia and arrhythmias. Cardiomyocytes proliferate during embryonic development, but lose their proliferative capacity after birth. Cardiac fibroblasts are a major source of cells during fibrosis and induce cardiac hypertrophy after myocardial injury in the adult heart. Despite the importance of fibroblasts in the adult heart, the role of fibroblasts in embryonic heart development was previously not determined. I demonstrated that cardiac fibroblasts play important roles in myocardial growth and cardiomyocyte proliferation during embryonic development, and I identified key paracrine factors and signaling pathways. In contrast to embryonic cardiomyocytes, adult cardiomyocytes have little regenerative capacity, leading to heart failure and high mortality rates after myocardial infarction. Leveraging the knowledge of developmental biology, I identified cardiac reprogramming factors that can directly convert resident cardiac fibroblasts into cardiomyocytes for heart regeneration. These findings greatly improved our understanding of heart development and diseases, and provide a new strategy for heart regenerative therapy. (Circ J 2016; 80: 2081-2088).

  15. First trimester size charts of embryonic brain structures.

    PubMed

    Gijtenbeek, M; Bogers, H; Groenenberg, I A L; Exalto, N; Willemsen, S P; Steegers, E A P; Eilers, P H C; Steegers-Theunissen, R P M

    2014-02-01

    Can reliable size charts of human embryonic brain structures be created from three-dimensional ultrasound (3D-US) visualizations? Reliable size charts of human embryonic brain structures can be created from high-quality images. Previous studies on the visualization of both the cavities and the walls of the brain compartments were performed using 2D-US, 3D-US or invasive intrauterine sonography. However, the walls of the diencephalon, mesencephalon and telencephalon have not been measured non-invasively before. Last-decade improvements in transvaginal ultrasound techniques allow a better visualization and offer the tools to measure these human embryonic brain structures with precision. This study is embedded in a prospective periconceptional cohort study. A total of 141 pregnancies were included before the sixth week of gestation and were monitored until delivery to assess complications and adverse outcomes. For the analysis of embryonic growth, 596 3D-US scans encompassing the entire embryo were obtained from 106 singleton non-malformed live birth pregnancies between 7(+0) and 12(+6) weeks' gestational age (GA). Using 4D View (3D software) the measured embryonic brain structures comprised thickness of the diencephalon, mesencephalon and telencephalon, and the total diameter of the diencephalon and mesencephalon. Of 596 3D scans, 161 (27%) high-quality scans of 79 pregnancies were eligible for analysis. The reliability of all embryonic brain structure measurements, based on the intra-class correlation coefficients (ICCs) (all above 0.98), was excellent. Bland-Altman plots showed moderate agreement for measurements of the telencephalon, but for all other measurements the agreement was good. Size charts were constructed according to crown-rump length (CRL). The percentage of high-quality scans suitable for analysis of these brain structures was low (27%).  The size charts of human embryonic brain structures can be used to study normal and abnormal development of brain development in future. Also, the effects of periconceptional maternal exposures, such as folic acid supplement use and smoking, on human embryonic brain development can be a topic of future research. This study was supported by the Department of Obstetrics and Gynaecology of the Erasmus University Medical Center. M.G. was supported by an additional grant from the Sophia Foundation for Medical Research (SSWO grant number 644). No competing interests are declared.

  16. Effect of the anti-androgenic endocrine disruptor vinclozolin on embryonic testis cord formation and postnatal testis development and function.

    PubMed

    Uzumcu, Mehmet; Suzuki, Hiroetsu; Skinner, Michael K

    2004-01-01

    Vinclozolin is a systemic dicarboximide fungicide that is used on fruits, vegetables, ornamental plants, and turf grass. Vinclozolin and its metabolites are known to be endocrine disruptors and act as androgen receptor antagonists. The hypothesis tested in the current study is that transient embryonic exposure to an anti-androgenic endocrine disruptor at the time of testis determination alters testis development and subsequently influences adult spermatogenic capacity and male reproduction. The effects of vinclozolin on embryonic testicular cord formation in vitro were examined, as well as the effects of transient in utero vinclozolin exposure on postnatal testis development and function. Embryonic day 13 (E13, sperm-positive vaginal smear day = E0) gonads were cultured in the absence or presence of vinclozolin (50-500microM). Vinclozolin treated gonads had significantly fewer cords (P < 0.05) and the histology of the cords that formed were abnormal as compared to vehicle-treated organs. Pregnant rats were exposed to vinclozolin (100 mg/kg/day) between embryonic days 8 and 14 (E8-E14) of development. Testis morphology and function were analyzed from postnatal day (P) 0, pubertal P20, and adult P60. No significant effect of vinclozolin on testis histology or germ cell viability was observed in P0 testis. The pubertal P20 testis from vinclozolin exposed animals had significantly higher numbers of apoptotic germ cells (P < 0.01), but testis weight was not affected. The adult P60 sperm motility was significantly lower in vinclozolin exposed males (P < 0.01). In addition, apoptotic germ cell number in testis of vinclozolin exposed animals was higher in adult P60 animals. Observations demonstrate that vinclozolin can effect embryonic testicular cord formation in vitro and that transient in utero exposure to vinclozolin increases apoptotic germ cell numbers in the testis of pubertal and adult animals. This correlated to reduced sperm motility in the adult. In conclusion, transient exposure to vinclozolin during the time of testis differentiation (i.e. cord formation) alters testis development and function. Observations indicate that transient exposure to an anti-androgenic endocrine disruptor during embryonic development causes delayed effects later in adult life on spermatogenic capacity.

  17. Reactivation of the Nkx2.5 cardiac enhancer after myocardial infarction does not presage myogenesis.

    PubMed

    Deutsch, Marcus-André; Doppler, Stefanie A; Li, Xinghai; Lahm, Harald; Santamaria, Gianluca; Cuda, Giovanni; Eichhorn, Stefan; Ratschiller, Thomas; Dzilic, Elda; Dreßen, Martina; Eckart, Annekathrin; Stark, Konstantin; Massberg, Steffen; Bartels, Anna; Rischpler, Christoph; Gilsbach, Ralf; Hein, Lutz; Fleischmann, Bernd K; Wu, Sean M; Lange, Rüdiger; Krane, Markus

    2018-03-20

    The contribution of resident stem or progenitor cells to cardiomyocyte renewal after injury in adult mammalian hearts remains a matter of considerable debate. We evaluated a cell population in the adult mouse heart induced by myocardial infarction (MI) and characterized by an activated Nkx2.5 enhancer element that is specific for multipotent cardiac progenitor cells during embryonic development. We hypothesized that these MI induced cells (MICs) harbor cardiomyogenic properties similar to their embryonic counterparts. MICs reside in the heart and mainly localize to the infarction area and border zone. Interestingly, gene expression profiling of purified MICs one week after infarction revealed increased expression of stem cell markers and embryonic cardiac transcription factors in these cells as compared to the non-mycoyte cell fraction of adult hearts. A subsequent global transcriptome comparison with embryonic cardiac progenitor cells and fibroblasts and in vitro culture of MICs unveiled that (myo-) fibroblastic features predominated and that cardiac transcription factors were only expressed at background levels. Adult injury induced reactivation of a cardiac-specific Nkx2.5 enhancer element known to specifically mark myocardial progenitor cells during embryonic development does not reflect hypothesized embryonic cardiomyogenic properties. Our data suggest a decreasing plasticity of cardiac progenitor (-like) cell populations with increasing age. A re-expression of embryonic, stem or progenitor cell features in the adult heart must be interpreted very carefully with respect to the definition of cardiac resident progenitor cells. Albeit, the abundance of scar formation after cardiac injury suggests a potential to target predestinated activated profibrotic cells to push them towards cardiomyogenic differentiation to improve regeneration.

  18. Identification of microRNAs controlling hepatic mRNA levels for metabolic genes during the metabolic transition from embryonic to posthatch development in the chicken.

    PubMed

    Hicks, Julie A; Porter, Tom E; Liu, Hsiao-Ching

    2017-09-05

    The transition from embryonic to posthatch development in the chicken represents a massive metabolic switch from primarily lipolytic to primarily lipogenic metabolism. This metabolic switch is essential for the chick to successfully transition from the metabolism of stored egg yolk to the utilization of carbohydrate-based feed. However, regulation of this metabolic switch is not well understood. We hypothesized that microRNAs (miRNAs) play an important role in the metabolic switch that is essential to efficient growth of chickens. We used high-throughput RNA sequencing to characterize expression profiles of mRNA and miRNA in liver during late embryonic and early posthatch development of the chicken. This extensive data set was used to define the contributions of microRNAs to the metabolic switch during development that is critical to growth and nutrient utilization in chickens. We found that expression of over 800 mRNAs and 30 miRNAs was altered in the embryonic liver between embryonic day 18 and posthatch day 3, and many of these differentially expressed mRNAs and miRNAs are associated with metabolic processes. We confirmed the regulation of some of these mRNAs by miRNAs expressed in a reciprocal pattern using luciferase reporter assays. Finally, through the use of yeast one-hybrid screens, we identified several proteins that likely regulate expression of one of these important miRNAs. Integration of the upstream regulatory mechanisms governing miRNA expression along with monitoring the downstream effects of this expression will ultimately allow for the construction of complete miRNA regulatory networks associated with the hepatic metabolic switch in chickens. Our findings support a key role for miRNAs in controlling the metabolic switch that occurs between embryonic and posthatch development in the chicken.

  19. Mice deficient for the secreted glycoprotein SPARC/osteonectin/BM40 develop normally but show severe age-onset cataract formation and disruption of the lens.

    PubMed Central

    Gilmour, D T; Lyon, G J; Carlton, M B; Sanes, J R; Cunningham, J M; Anderson, J R; Hogan, B L; Evans, M J; Colledge, W H

    1998-01-01

    SPARC (secreted protein acidic and rich in cysteine, also known as osteonectin/BM40) is a secreted Ca2+-binding glycoprotein that interacts with a range of extracellular matrix molecules, including collagen IV. It is widely expressed during embryogenesis, and in vitro studies have suggested roles in the regulation of cell adhesion and proliferation, and in the modulation of cytokine activity. In order to analyse the function of this protein in vivo, the endogenous Sparc locus was disrupted by homologous recombination in murine embryonic stem cells. SPARC-deficient mice (Sparctm1Cam) appear normal and fertile until around 6 months of age, when they develop severe eye pathology characterized by cataract formation and rupture of the lens capsule. The first sign of lens pathology occurs in the equatorial bow region where vacuoles gradually form within differentiating epithelial cells and fibre cells. The lens capsule, however, shows no qualitative changes in the major basal lamina proteins laminin, collagen IV, perlecan or entactin. These mice are an excellent resource for further studies on how SPARC affects cell behaviour in vivo. PMID:9524110

  20. The Unfolded Protein Response in Retinal Vascular Diseases: Implications and Therapeutic Potential Beyond Protein Folding

    PubMed Central

    Zhang, Sarah X.; Ma, Jacey H.; Bhatta, Maulasri; Fliesler, Steven J.; Wang, Joshua J.

    2015-01-01

    Angiogenesis is a complex, step-wise process of new vessel formation that is involved in both normal embryonic development as well as postnatal pathological processes, such as cancer, cardiovascular disease, and diabetes. Aberrant blood vessel growth, also known as neovascularization, in the retina and the choroid is a major cause of vision loss in severe eye diseases, such as diabetic retinopathy, age-related macular degeneration, retinopathy of prematurity, and central and branch retinal vein occlusion. Yet, retinal neovascularization is causally and dynamically associated with vasodegeneration, ischemia, and vascular remodeling in retinal tissues. Understanding the mechanisms of retinal neovascularization is an urgent unmet need for developing new treatments for these devastating diseases. Accumulating evidence suggests a vital role for the unfolded protein response (UPR) in regulation of angiogenesis, in part through coordinating the secretion of pro-angiogenic growth factors, such as VEGF, and modulating endothelial cell survival and activity. Herein, we summarize current research in the context of endoplasmic reticulum (ER) stress and UPR signaling in retinal angiogenesis and vascular remodeling, highlighting potential implications of targeting these stress response pathways in the prevention and treatment of retinal vascular diseases that result in visual deficits and blindness. PMID:25529848

  1. FOXC1 is required for normal cerebellar development and is a major contributor to chromosome 6p25.3 Dandy-Walker malformation

    PubMed Central

    Aldinger, Kimberly A; Lehmann, Ordan J; Hudgins, Louanne; Chizhikov, Victor V; Bassuk, Alexander G; Ades, Lesley C; Krantz, Ian D; Dobyns, William B; Millen, Kathleen J

    2010-01-01

    Dandy-Walker malformation (DWM), the most common human cerebellar malformation, has only one characterized associated locus1,2. Here we characterize a second DWM-linked locus on 6p25.3, showing that deletions or duplications encompassing FOXC1 are associated with cerebellar and posterior fossa malformations including cerebellar vermis hypoplasia (CVH), mega-cisterna magna (MCM) and DWM. Foxc1-null mice have embryonic abnormalities of the rhombic lip due to loss of mesenchyme-secreted signaling molecules with subsequent loss of Atoh1 expression in vermis. Foxc1 homozygous hypomorphs have CVH with medial fusion and foliation defects. Human FOXC1 heterozygous mutations are known to affect eye development, causing a spectrum of glaucoma-associated anomalies (Axenfeld-Rieger syndrome, ARS; MIM no. 601631). We report the first brain imaging data from humans with FOXC1 mutations and show that these individuals also have CVH. We conclude that alteration of FOXC1 function alone causes CVH and contributes to MCM and DWM. Our results highlight a previously unrecognized role for mesenchyme-neuroepithelium interactions in the mid-hindbrain during early embryogenesis. PMID:19668217

  2. Embryonic development during chronic acceleration

    NASA Technical Reports Server (NTRS)

    Smith, A. H.; Abbott, U. K.

    1982-01-01

    Experiments carried out on chicken eggs indicate that the embryo is affected during very early development, especially over the first four days, and during hatching. In the first four days, the brain develops as well as the anlage for all other organs. In addition, the heart commences to function and the extraembryonic membranes that compartmentalize the egg contents form. The latter require an appreciable extension and folding of tissue which may be disrupted by the mechanical load. Observations of embryonic abnormalities that occur during chronic acceleration suggest an inhibition of development of the axial skeleton, which is rarely seen otherwise, a general retardation of embryonic growth, and circulatory problems. The final stages of development (after 18 days) involve the uptake of fluids, the transition to aerial respiration, and the reorientation of the embryo into a normal hatching position. At 4 G mortality is very high during this period, with a majority of embryos failing to reorient into the normal hatching position.

  3. Gravity and embryonic development

    NASA Technical Reports Server (NTRS)

    Young, R. S.

    1976-01-01

    The relationship between the developing embryo (both plant and animal) and a gravitational field has long been contemplated. The difficulty in designing critical experiments on the surface of the earth because of its background of 1 g, has been an obstacle to a resolution of the problem. Biological responses to gravity (particularly in plants) are obvious in many cases; however, the influence of gravity as an environmental input to the developing embryo is not as obvious and has proven to be extremely difficult to define. In spite of this, over the years numerous attempts have been made using a variety of embryonic materials to come to grips with the role of gravity in development. Three research tools are available: the centrifuge, the clinostat, and the orbiting spacecraft. Experimental results are now available from all three sources. Some tenuous conclusions are drawn, and an attempt at a unifying theory of gravitational influence on embryonic development is made.

  4. Sperm and Spermatids Contain Different Proteins and Bind Distinct Egg Factors

    PubMed Central

    Teperek, Marta; Miyamoto, Kei; Simeone, Angela; Feret, Renata; Deery, Michael J.; Gurdon, John B.; Jullien, Jerome

    2014-01-01

    Spermatozoa are more efficient at supporting normal embryonic development than spermatids, their immature, immediate precursors. This suggests that the sperm acquires the ability to support embryonic development during spermiogenesis (spermatid to sperm maturation). Here, using Xenopus laevis as a model organism, we performed 2-D Fluorescence Difference Gel Electrophoresis (2D-DIGE) and mass spectrometry analysis of differentially expressed proteins between sperm and spermatids in order to identify factors that could be responsible for the efficiency of the sperm to support embryonic development. Furthermore, benefiting from the availability of egg extracts in Xenopus, we also tested whether the chromatin of sperm could attract different egg factors compared to the chromatin of spermatids. Our analysis identified: (1) several proteins which were present exclusively in sperm; but not in spermatid nuclei and (2) numerous egg proteins binding to the sperm (but not to the spermatid chromatin) after incubation in egg extracts. Amongst these factors we identified many chromatin-associated proteins and transcriptional repressors. Presence of transcriptional repressors binding specifically to sperm chromatin could suggest its preparation for the early embryonic cell cycles, during which no transcription is observed and suggests that sperm chromatin has a unique protein composition, which facilitates the recruitment of egg chromatin remodelling factors. It is therefore likely that the acquisition of these sperm-specific factors during spermiogenesis makes the sperm chromatin suitable to interact with the maternal factors and, as a consequence, to support efficient embryonic development. PMID:25244019

  5. Deep RNA sequencing of pectoralis muscle transcriptomes during late-term embryonic to neonatal development in indigenous Chinese duck breeds

    PubMed Central

    Tao, Zhiyun; Liu, Hongxiang; Xu, Wenjuan; Zhang, Shuangjie; Li, Huifang

    2017-01-01

    Pectoral muscle (PM) comprises an important component of overall meat mass in ducks. However, PM has shown arrested or even reduced growth during late embryonic development, and the molecular mechanisms underlying PM growth during the late embryonic to neonatal period in ducks have not been addressed. In this study, we characterized potential candidate genes and signaling pathways related to PM development using RNA sequencing of PM samples selected at embryonic days (E) 21 and 27 and 5 days post-hatch (dph) in two duck breeds (Gaoyou and Jinding ducks). A total of 393 differentially expressed genes (DEGs) were identified, which showed higher or lower expression levels at E27 compared with E21 and 5 dph, reflecting the pattern of PM growth rates. Among these, 43 DEGs were common to all three time points in both duck breeds. These DEGs may thus be involved in regulating this developmental process. Specifically, KEGG pathway analysis of the 393 DEGs showed that genes involved with different metabolism pathways were highly expressed, while genes involved with cell cycle pathways showed lower expression levels at E27. These DEGs may thus be involved in the mechanisms responsible for the phenomenon of static or decreased breast muscle growth in duck breeds during the late embryonic period. These results increase the available genetic information for ducks and provide valuable resources for analyzing the mechanisms underlying the process of PM development. PMID:28771592

  6. Deep RNA sequencing of pectoralis muscle transcriptomes during late-term embryonic to neonatal development in indigenous Chinese duck breeds.

    PubMed

    Zhu, Chunhong; Song, Weitao; Tao, Zhiyun; Liu, Hongxiang; Xu, Wenjuan; Zhang, Shuangjie; Li, Huifang

    2017-01-01

    Pectoral muscle (PM) comprises an important component of overall meat mass in ducks. However, PM has shown arrested or even reduced growth during late embryonic development, and the molecular mechanisms underlying PM growth during the late embryonic to neonatal period in ducks have not been addressed. In this study, we characterized potential candidate genes and signaling pathways related to PM development using RNA sequencing of PM samples selected at embryonic days (E) 21 and 27 and 5 days post-hatch (dph) in two duck breeds (Gaoyou and Jinding ducks). A total of 393 differentially expressed genes (DEGs) were identified, which showed higher or lower expression levels at E27 compared with E21 and 5 dph, reflecting the pattern of PM growth rates. Among these, 43 DEGs were common to all three time points in both duck breeds. These DEGs may thus be involved in regulating this developmental process. Specifically, KEGG pathway analysis of the 393 DEGs showed that genes involved with different metabolism pathways were highly expressed, while genes involved with cell cycle pathways showed lower expression levels at E27. These DEGs may thus be involved in the mechanisms responsible for the phenomenon of static or decreased breast muscle growth in duck breeds during the late embryonic period. These results increase the available genetic information for ducks and provide valuable resources for analyzing the mechanisms underlying the process of PM development.

  7. Early events in xenograft development from the human embryonic stem cell line HS181--resemblance with an initial multiple epiblast formation.

    PubMed

    Gertow, Karin; Cedervall, Jessica; Jamil, Seema; Ali, Rouknuddin; Imreh, Marta P; Gulyas, Miklos; Sandstedt, Bengt; Ahrlund-Richter, Lars

    2011-01-01

    Xenografting is widely used for assessing in vivo pluripotency of human stem cell populations. Here, we report on early to late events in the development of mature experimental teratoma from a well-characterized human embryonic stem cell (HESC) line, HS181. The results show an embryonic process, increasingly chaotic. Active proliferation of the stem cell derived cellular progeny was detected already at day 5, and characterized by the appearance of multiple sites of engraftment, with structures of single or pseudostratified columnar epithelium surrounding small cavities. The striking histological resemblance to developing embryonic ectoderm, and the formation of epiblast-like structures was supported by the expression of the markers OCT4, NANOG, SSEA-4 and KLF4, but a lack of REX1. The early neural marker NESTIN was uniformly expressed, while markers linked to gastrulation, such as BMP-4, NODAL or BRACHYURY were not detected. Thus, observations on day 5 indicated differentiation comparable to the most early transient cell populations in human post implantation development. Confirming and expanding on previous findings from HS181 xenografts, these early events were followed by an increasingly chaotic development, incorporated in the formation of a benign teratoma with complex embryonic components. In the mature HS181 teratomas not all types of organs/tissues were detected, indicating a restricted differentiation, and a lack of adequate spatial developmental cues during the further teratoma formation. Uniquely, a kinetic alignment of rare complex structures was made to human embryos at diagnosed gestation stages, showing minor kinetic deviations between HS181 teratoma and the human counterpart.

  8. The embryonic mir-35 family of microRNAs promotes multiple aspects of fecundity in Caenorhabditis elegans.

    PubMed

    McJunkin, Katherine; Ambros, Victor

    2014-07-21

    MicroRNAs guide many aspects of development in all metazoan species. Frequently, microRNAs are expressed during a specific developmental stage to perform a temporally defined function. The C. elegans mir-35-42 microRNAs are expressed abundantly in oocytes and early embryos and are essential for embryonic development. Here, we show that these embryonic microRNAs surprisingly also function to control the number of progeny produced by adult hermaphrodites. Using a temperature-sensitive mir-35-42 family mutant (a deletion of the mir-35-41 cluster), we demonstrate three distinct defects in hermaphrodite fecundity. At permissive temperatures, a mild sperm defect partially reduces hermaphrodite fecundity. At restrictive temperatures, somatic gonad dysfunction combined with a severe sperm defect sharply reduces fecundity. Multiple lines of evidence, including a late embryonic temperature-sensitive period, support a role for mir-35-41 early during development to promote subsequent sperm production in later larval stages. We further show that the predicted mir-35 family target sup-26 (suppressor-26) acts downstream of mir-35-41 in this process, suggesting that sup-26 de-repression in mir-35-41 deletion mutants may contribute to temperature-sensitive loss of fecundity. In addition, these microRNAs play a role in male fertility, promoting proper morphogenesis of male-specific mating structures. Overall, our results demonstrate that robust activity of the mir-35-42 family microRNAs not only is essential for embryonic development across a range of temperatures but also enables the worm to subsequently develop full reproductive capacity. Copyright © 2014 McJunkin and Ambros.

  9. Neural Organization of the Optic Lobe Changes Steadily from Late Embryonic Stage to Adulthood in Cuttlefish Sepia pharaonis

    PubMed Central

    Liu, Yung-Chieh; Liu, Tsung-Han; Su, Chia-Hao; Chiao, Chuan-Chin

    2017-01-01

    The optic lobe is the largest structure in the cuttlefish brain. While the general morphology of the optic lobe in adult cuttlefish has been well described, the 3D structure and ontogenetic development of its neural organization have not been characterized. To correlate observed behavioral changes within the brain structure along the development of this animal, optic lobes from the late embryonic stage to adulthood were examined systematically in the present study. The MRI scan revealed that the so called “cell islands” in the medulla of the cephalopod's optic lobe (Young, 1962, 1974) are in fact a contiguous tree-like structure. Quantification of the neural organizational development of optic lobes showed that structural features of the cortex and radial column zone were established earlier than those of the tangential zone during embryonic and post-hatching stages. Within the cell islands, the density of nuclei was decreased while the size of nuclei was increased during the development. Furthermore, the visual processing area in the optic lobe showed a significant variation in lateralization during embryonic and juvenile stages. Our observation of a continuous increase in neural fibers and nucleus size in the tangential zone of the optic lobe from late embryonic stage to adulthood indicates that the neural organization of the optic lobe is modified along the development of cuttlefish. These findings thus support that the ontogenetic change of the optic lobe is responsible for their continuously increased complexity in body patterning and visuomotor behaviors. PMID:28798695

  10. The miR-290-295 cluster as multi-faceted players in mouse embryonic stem cells.

    PubMed

    Yuan, Kai; Ai, Wen-Bing; Wan, Lin-Yan; Tan, Xiao; Wu, Jiang-Feng

    2017-01-01

    Increasing evidence indicates that embryonic stem cell specific microRNAs (miRNAs) play an essential role in the early development of embryo. Among them, the miR-290-295 cluster is the most highly expressed in the mouse embryonic stem cells and involved in various biological processes. In this paper, we reviewed the research progress of the function of the miR-290-295 cluster in embryonic stem cells. The miR-290-295 cluster is involved in regulating embryonic stem cell pluripotency maintenance, self-renewal, and reprogramming somatic cells to an embryonic stem cell-like state. Moreover, the miR-290-295 cluster has a latent pro-survival function in embryonic stem cells and involved in tumourigenesis and senescence with a great significance. Elucidating the interaction between the miR-290-295 cluster and other modes of gene regulation will provide us new ideas on the biology of pluripotent stem cells. In the near future, the broad prospects of the miRNA cluster will be shown in the stem cell field, such as altering cell identities with high efficiency through the transient introduction of tissue-specific miRNA cluster.

  11. Isolation and characterization of the trophectoderm from the Arabian camel (Camelus dromedarius).

    PubMed

    Saadeldin, Islam M; Swelum, Ayman Abdel-Aziz; Elsafadi, Mona; Moumen, Abdullah F; Alzahrani, Faisal A; Mahmood, Amer; Alfayez, Musaad; Alowaimer, Abdullah N

    2017-09-01

    We isolated and characterized trophoblast from in vivo-derived camel embryos and compared with embryonic stem-like cells. Camel embryos were flushed on day 8 post-insemination and used to derive trophectoderm and embryonic stem-like cells under feeder-free culture conditions using a basement membrane matrix. Embryos were evaluated for the expression of POU5F1, MYC, KLF4, SOX2, CDX2, and KRT8 mRNA transcripts by relative quantitative polymerase chain reaction. Camel embryos grew and expanded to ∼4.5 mm and maintained their vesicular shape in vitro for 21 days post-insemination. Trophoblast and embryonic stem-like cell lines grew under feeder-free culture conditions and showed distinct morphological criteria and normal chromosomal counts. Embryonic stem-like cells showed positive staining in the alkaline phosphatase reaction. Trophoblast cells showed a significant increase in CDX2, KRT8, KLF4, and SOX2 expression compared with embryonic stem-like cells and whole embryos. Embryonic stem-like cells showed a significant decrease in CDX2 expression and increase in SOX2 and KRT8 expression compared to embryonic expression. POU5F1 and MYC expression showed no difference between embryos and both cell lines. We characterized embryo survival in vitro, particularly the derivation of trophectoderm and embryonic stem-like cells, providing a foundation for further analysis of early embryonic development and placentation in camels. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. ACTIONS OF THE ENDOCRINE DISRUPTOR METHOXYCHLOR AND ITS ESTROGENIC METABOLITE ON IN VITRO EMBRYONIC RAT SEMINIFEROUS CORD FORMATION AND PERINATAL TESTIS GROWTH. (R827405)

    EPA Science Inventory

    Abstract

    The current study examines the actions of methoxychlor and its estrogenic metabolite, 2, 2-bis-(p-hydroxyphenyl)-1, 1, 1-trichloroethane (HPTE), on seminiferous cord formation and growth of the developing rat testis. The developing testis in the embryonic and ...

  13. Generation of the Dimensional Embryology Application (App) for Visualization of Early Chick and Frog Embryonic Development

    ERIC Educational Resources Information Center

    Webb, Rebecca L.; Bilitski, James; Zerbee, Alyssa; Symans, Alexandra; Chop, Alexandra; Seitz, Brianne; Tran, Cindy

    2015-01-01

    The study of embryonic development of multiple organisms, including model organisms such as frogs and chicks, is included in many undergraduate biology programs, as well as in a variety of graduate programs. As our knowledge of biological systems increases and the amount of material to be taught expands, the time spent instructing students about…

  14. Developmental origin of limb size variation in lizards.

    PubMed

    Andrews, Robin M; Skewes, Sable A

    2017-05-01

    In many respects, reptile hatchlings are fully functional, albeit miniature, adults. This means that the adult morphology must emerge during embryonic development. This insight emphasizes the connection between the mechanisms that generate phenotypic variation during embryonic development and the action of selection on post-hatching individuals. To determine when species-specific differences in limb and tail lengths emerge during embryonic development, we compared allometric patterns of early limb growth of four distantly related species of lizards. The major questions addressed were whether early embryonic limb and tail growth is characterized by the gradual (continuous allometry) or by the abrupt emergence (transpositional allometry) of size differences among species. Our observations supported transpositional allometry of both limbs and tails. Species-specific differences in limb and tail length were exhibited when limb and tail buds first protruded from the body wall. Genes known to be associated with early limb development of tetrapods are obvious targets for studies on the genetic mechanisms that determine interspecific differences in relative limb length. Broadly comparative studies of gene regulation would facilitate understanding of the mechanisms underlying adaptive variation in limb size, including limb reduction and loss, of squamate reptiles. © 2017 Wiley Periodicals, Inc.

  15. Evidence of increased endometrial vascular permeability at the time of implantation in the short-nosed fruit bat, Cyanopterus sphinx.

    PubMed

    Pakrasi, Pranab Lal; Tiwari, Anjana

    2007-09-01

    Early embryonic development and implantation were studied in tropical short-nosed fruit bat Cyanopterus sphinx. We report preimplantation development and embryo implantation. Different stages of cleavage were observed in embryo by direct microscopic examination of fresh embryos after retrieving them either from the oviduct or the uterus at different days, up to the day of implantation. Generally, the embryos enter the uterus at the 8-cell stage. Embryonic development continued without any delay and blastocyst were formed showing attachment to the uterine epithelium at the mesometrial side of the uterus. A distinct blue band was formed in the uterus. The site of blastocyst attachment was visualized as a blue band following intravenous injection of pontamine blue. Implantation occurred 9+/-0.7 days after mating. This study reports that bat embryonic development can be studied like other laboratory animals and that this bat shows blue dye reaction, indicating the site and exact time of implantation. This blue dye reaction can be used to accurately find post-implantational delay. We prove conclusively that this species of tropical bat does not have any type of embryonic diapause.

  16. TORC2 signaling antagonizes SKN-1 to induce C. elegans mesendodermal embryonic development

    PubMed Central

    Ruf, Vanessa; Holzem, Christina; Peyman, Tobias; Walz, Gerd; Blackwell, T. Keith; Neumann-Haefelin, Elke

    2013-01-01

    The evolutionarily conserved target of rapamycin (TOR) kinase controls fundamental metabolic processes to support cell and tissue growth. TOR functions within the context of two distinct complexes, TORC1 and TORC2. TORC2, with its specific component Rictor, has been recently implicated in aging and regulation of growth and metabolism. Here, we identify rict-1/Rictor as a regulator of embryonic development in C. elegans. The transcription factor skn-1 establishes development of the mesendoderm in embryos, and is required for cellular homeostasis and longevity in adults. Loss of maternal skn-1 function leads to misspecification of the mesendodermal precursor and failure to form intestine and pharynx. We found that genetic inactivation of rict-1 suppressed skn-1-associated lethality by restoring mesendodermal specification in skn-1 deficient embryos. Inactivation of other TORC2 but not TORC1 components also partially rescued skn-1 embryonic lethality. The SGK-1 kinase mediated these functions downstream of rict-1/TORC2, as a sgk-1 gain-of-function mutant suppressed the rict-1 mutant phenotype. These data indicate that TORC2 and SGK-1 antagonize SKN-1 during embryonic development. PMID:23973804

  17. NG2 glia are required for vessel network formation during embryonic development

    PubMed Central

    Minocha, Shilpi; Valloton, Delphine; Brunet, Isabelle; Eichmann, Anne

    2015-01-01

    The NG2+ glia, also known as polydendrocytes or oligodendrocyte precursor cells, represent a new entity among glial cell populations in the central nervous system. However, the complete repertoire of their roles is not yet identified. The embryonic NG2+ glia originate from the Nkx2.1+ progenitors of the ventral telencephalon. Our analysis unravels that, beginning from E12.5 until E16.5, the NG2+ glia populate the entire dorsal telencephalon. Interestingly, their appearance temporally coincides with the establishment of blood vessel network in the embryonic brain. NG2+ glia are closely apposed to developing cerebral vessels by being either positioned at the sprouting tip cells or tethered along the vessel walls. Absence of NG2+ glia drastically affects the vascular development leading to severe reduction of ramifications and connections by E18.5. By revealing a novel and fundamental role for NG2+ glia, our study brings new perspectives to mechanisms underlying proper vessels network formation in embryonic brains. DOI: http://dx.doi.org/10.7554/eLife.09102.001 PMID:26651999

  18. Oocyte exposure to ZnO nanoparticles inhibits early embryonic development through the γ-H2AX and NF-κB signaling pathways.

    PubMed

    Liu, Jing; Zhao, Yong; Ge, Wei; Zhang, Pengfei; Liu, Xinqi; Zhang, Weidong; Hao, Yanan; Yu, Shuai; Li, Lan; Chu, Meiqiang; Min, Lingjiang; Zhang, Hongfu; Shen, Wei

    2017-06-27

    The impacts of zinc oxide nanoparticles on embryonic development following oocyte stage exposure are unknown and the underlying mechanisms are sparsely understood. In the current investigation, intact nanoparticles were detected in ovarian tissue in vivo and cultured cells in vitro under zinc oxide nanoparticles treatment. Zinc oxide nanoparticles exposure during the oocyte stage inhibited embryonic development. Notably, in vitro culture data closely matched in vivo embryonic data, in that the impairments caused by Zinc oxide nanoparticles treatment passed through cell generations; and both gamma-H2AX and NF-kappaB pathways were involved in zinc oxide nanoparticles caused embryo-toxicity. Copper oxide and silicon dioxide nanoparticles have been used to confirm that particles are important for the toxicity of zinc oxide nanoparticles. The toxic effects of zinc oxide nanoparticles emanate from both intact nanoparticles and Zn2+. Our investigation along with others suggests that zinc oxide nanoparticles are toxic to the female reproductive system [ovaries (oocytes)] and subsequently embryo-toxic and that precaution should be taken regarding human exposure to their everyday use.

  19. In vitro developmental model of the gastrointestinal tract from mouse embryonic stem cells.

    PubMed

    Torihashi, Shigeko; Kuwahara, Masaki; Kurahashi, Masaaki

    2007-10-01

    Mouse embryonic stem (ES) cells are pluripotent and retain their potential to form cells, tissues and organs originated from three embryonic germ layers. Recently, we developed in vitro organ--gut-like structures--from mouse ES cells. They had basically similar morphological features to a mouse gastrointestinal tract in vivo composed of three distinct layers (i.e., epithelium, connective tissue and musculature). Gut-like structures showed spontaneous contractions derived from pacemaker cells (interstitial cells of Cajal) in the musculature. We also examined their formation process and expression pattern of transcription factors crucial for gut organogenesis such as Id2, Sox17, HNF3beta/Foxa2 and GATA4. We found that they mimic the development of embryonic gut in vivo and showed a similar expression pattern of common transcription factors. They also maintain their developmental potential after transplantation to a renal capsule. Therefore, gut-like structures are suitable for in vitro models of gastrointestinal tracts and their development. In addition, we pointed out several unique features different from gut in vivo that provide useful and advantageous tools to investigate the developmental mechanism of the gastrointestinal tract.

  20. Hematopoietic cell differentiation from embryonic and induced pluripotent stem cells

    PubMed Central

    2013-01-01

    Pluripotent stem cells, both embryonic stem cells and induced pluripotent stem cells, are undifferentiated cells that can self-renew and potentially differentiate into all hematopoietic lineages, such as hematopoietic stem cells (HSCs), hematopoietic progenitor cells and mature hematopoietic cells in the presence of a suitable culture system. Establishment of pluripotent stem cells provides a comprehensive model to study early hematopoietic development and has emerged as a powerful research tool to explore regenerative medicine. Nowadays, HSC transplantation and hematopoietic cell transfusion have successfully cured some patients, especially in malignant hematological diseases. Owing to a shortage of donors and a limited number of the cells, hematopoietic cell induction from pluripotent stem cells has been regarded as an alternative source of HSCs and mature hematopoietic cells for intended therapeutic purposes. Pluripotent stem cells are therefore extensively utilized to facilitate better understanding in hematopoietic development by recapitulating embryonic development in vivo, in which efficient strategies can be easily designed and deployed for the generation of hematopoietic lineages in vitro. We hereby review the current progress of hematopoietic cell induction from embryonic stem/induced pluripotent stem cells. PMID:23796405

  1. Oocyte exposure to ZnO nanoparticles inhibits early embryonic development through the γ-H2AX and NF-κB signaling pathways

    PubMed Central

    Liu, Jing; Zhao, Yong; Ge, Wei; Zhang, Pengfei; Liu, Xinqi; Zhang, Weidong; Hao, Yanan; Yu, Shuai; Li, Lan; Chu, Meiqiang; Min, Lingjiang; Zhang, Hongfu; Shen, Wei

    2017-01-01

    The impacts of zinc oxide nanoparticles on embryonic development following oocyte stage exposure are unknown and the underlying mechanisms are sparsely understood. In the current investigation, intact nanoparticles were detected in ovarian tissue in vivo and cultured cells in vitro under zinc oxide nanoparticles treatment. Zinc oxide nanoparticles exposure during the oocyte stage inhibited embryonic development. Notably, in vitro culture data closely matched in vivo embryonic data, in that the impairments caused by Zinc oxide nanoparticles treatment passed through cell generations; and both gamma-H2AX and NF-kappaB pathways were involved in zinc oxide nanoparticles caused embryo-toxicity. Copper oxide and silicon dioxide nanoparticles have been used to confirm that particles are important for the toxicity of zinc oxide nanoparticles. The toxic effects of zinc oxide nanoparticles emanate from both intact nanoparticles and Zn2+. Our investigation along with others suggests that zinc oxide nanoparticles are toxic to the female reproductive system [ovaries (oocytes)] and subsequently embryo-toxic and that precaution should be taken regarding human exposure to their everyday use. PMID:28487501

  2. Measurement of wall shear stress in chick embryonic heart using optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Ma, Zhenhe; Dou, Shidan; Zhao, Yuqian; Wang, Yi; Suo, Yanyan; Wang, Fengwen

    2015-03-01

    The cardiac development is a complicated process affected by genetic and environmental factors. Wall shear stress (WSS) is one of the components which have been proved to influence the morphogenesis during early stages of cardiac development. To study the mechanism, WSS measurement is a step with significant importance. WSS is caused by blood flow imposed on the inner surface of the heart wall and it can be determined by calculating velocity gradients of blood flow in a direction perpendicular to the wall. However, the WSS of the early stage embryonic heart is difficult to measure since the embryonic heart is tiny and beating fast. Optical coherence tomography (OCT) is a non-invasive imaging modality with high spatial and temporal resolution, which is uniquely suitable for the study of early stage embryonic heart development. In this paper, we introduce a method to measure the WSS of early stage chick embryonic heart based on high speed spectral domain optical coherence tomography (SDOCT). 4D (x,y,z,t) scan was performed on the outflow tract (OFT) of HH18 (~3 days of incubation) chick embryonic heart. After phase synchronization, OFT boundary segmentation, and OFT center line calculation, Doppler angle of the blood flow in the OFT can be achieved (This method has been described in previous publications). Combining with the Doppler OCT results, we calculate absolute blood flow velocity distribution in the OFT. The boundary of the OFT was segmented at each cross-sectional structural image, then geometrical center of the OFT can be calculated. Thus, the gradients of blood flow in radial direction can be calculated. This velocity gradient near the wall is termed wall shear rate and the WSS value is proportional to the wall shear rate. Based on this method, the WSS at different heart beating phase are compare. The result demonstrates that OCT is capable of early stage chicken embryonic heart WSS study.

  3. [Computer tomography in the diagnosis of persistent hyperplastic primary vitreous body].

    PubMed

    Prokes, B; Rehůrek, J

    1989-10-01

    The authors described and evaluated clinical and CT pictures of five children with persistence of hyperplastic primary vitreous body originating due to regression of embryonal hyaloid vascular system. It becomes clinically manifest especially in leucocoria, reduced globe of the eye, prolonged ciliary processi and the formation of fibrovascular changes behind the lens. CT picture is characterized by a) increased density of vitreous body, b) dense stripes going in retrolental direction and in the course of the Cloquet canal, c) microphthalmus, d) absence of calcifications and e) facultative changes on the lens and anterior chamber. These signs represent an important criterium for differentiating persistence of hyperplastic primary vitreous body from retinoblastoma.

  4. Metabolic circadian rhythms in embryonic turtles.

    PubMed

    Loudon, Fiona Kay; Spencer, Ricky-John; Strassmeyer, Alana; Harland, Karen

    2013-07-01

    Oviparous species are model organisms for investigating embryonic development of endogenous physiological circadian rhythms without the influence of maternal biorhythms. Recent studies have demonstrated that heart rates and metabolic rates of embryonic turtles are not constant or always maximal and can be altered in response to the presence of embryos at a more advanced stage of development within the nest. A first step in understanding the physiological mechanisms underpinning these responses in embryonic ectothermic organisms is to develop metabolic profiles (e.g., heart rate) at different temperatures throughout incubation. Heart beat and rhythmic patterns or changes in development may represent important signals or cues within a nest and may be vital to coordinate synchronous hatching well in advance of the final stages of incubation. We developed baseline embryonic heart-rate profiles of embryos of the short-necked Murray River turtle (Emydura macquarii) to determine the stage of embryogenesis that metabolic circadian rhythms become established, if at all. Eggs were incubated at constant temperatures (26°C and 30°C) and heart rates were monitored at 6-h intervals over 24 h every 7-11 days until hatching. Circadian heart rate rhythms were detected at the mid-gestation period and were maintained until hatching. Heart rates throughout the day varied by up to 20% over 24 h and were not related to time of day. This study demonstrated that endogenous metabolic circadian rhythms in developing embryos in turtle eggs establish earlier in embryogenesis than those documented in other vertebrate taxa during embryogenesis. Early establishment of circadian rhythms in heart rates may be critical for communication among embryos and synchrony in hatching and emergence from the nest.

  5. Qualitative research of alternatively splice variants of fibronectin in different development stage of mice heart.

    PubMed

    Lu, Feng; Ma, Fang-Fang; Zhang, Wei; Li, Ying; Wei, Fei-Yu; Zhou, Lei

    2015-12-01

    Fibronectin (FN) plays vital roles in cell adhesion, differentiation, proliferation and migration. It is involved in the process of embryonic development and is highly conserved during evolution. The EIIIA and EIIIB of FN show a very high degree of homology among vertebrates. Embryos deleting both EIIIA and EIIIB displayed multiple embryonic cardiovascular defects, implying their crucial role during embryogenesis. The correlation of spliced EIIIB, EIIIA, and IIICS of FN to heart development was studied by observing their chronological expression in mice heart. C57 mice embryos at E11.5, E12.5, E13.5, E14.5, E15.5, E16.5, E17.5, E18.5, E19.5 days, postnatal day 1 (P1d), and adult male mice (3 months) were used. For each alternatively spliced FN1 domain (EIIIB, EIIIA and IIICS), primer pairs were designed for specific amplification. Total RNA was extracted from the heart tissue, reverse transcripted to cDNA, followed by RT-PCR with specific primers. The PCR amplification was verified by agarose gel electrophoresis, showing specific fragments of the expected sizes. In adult mice heart, only alternatively splice variants of EIIIA-, EIIIB-, IIICS+ were expressed. While in embryonic mice, spliced variant of EIIIA+/-, EIIIB+/-, IIICS+ were observed. The expression of EIIIA and EIIIB changed during heart development. FN is crucial for the normal development of the embryonic heart by modulating cardiac neural crest (CNC) proliferation and survival, and maintenance of CNC cells. FN1 gene seems to play a significant role by expression of highly conserved EIIIA and EIIIB in embryonic heart development.

  6. Longitudinal Effects of Embryonic Exposure to Cocaine on Morphology, Cardiovascular Physiology, and Behavior in Zebrafish.

    PubMed

    Mersereau, Eric J; Boyle, Cody A; Poitra, Shelby; Espinoza, Ana; Seiler, Joclyn; Longie, Robert; Delvo, Lisa; Szarkowski, Megan; Maliske, Joshua; Chalmers, Sarah; Darland, Diane C; Darland, Tristan

    2016-05-31

    A sizeable portion of the societal drain from cocaine abuse results from the complications of in utero drug exposure. Because of challenges in using humans and mammalian model organisms as test subjects, much debate remains about the impact of in utero cocaine exposure. Zebrafish offer a number of advantages as a model in longitudinal toxicology studies and are quite sensitive physiologically and behaviorally to cocaine. In this study, we have used zebrafish to model the effects of embryonic pre-exposure to cocaine on development and on subsequent cardiovascular physiology and cocaine-induced conditioned place preference (CPP) in longitudinal adults. Larval fish showed a progressive decrease in telencephalic size with increased doses of cocaine. These treated larvae also showed a dose dependent response in heart rate that persisted 24 h after drug cessation. Embryonic cocaine exposure had little effect on overall health of longitudinal adults, but subtle changes in cardiovascular physiology were seen including decreased sensitivity to isoproterenol and increased sensitivity to cocaine. These longitudinal adult fish also showed an embryonic dose-dependent change in CPP behavior, suggesting an increased sensitivity. These studies clearly show that pre-exposure during embryonic development affects subsequent cocaine sensitivity in longitudinal adults.

  7. Evidence of local adaptation in westslope cutthroat trout

    USGS Publications Warehouse

    Drinan, Daniel P.; Zale, Alexander V.; Webb, Molly A.H.; Taper, Mark L.; Shepard, Bradley B.; Kalinowski, Steven T.

    2012-01-01

    An understanding of the process of local adaptation would allow managers to better protect and conserve species. Many salmonids are in need of such efforts, and because they often persist in differing, isolated environments, they are useful organisms for studying local adaptation. In addition, the temperature sensitivity of salmonids provides a likely target for natural selection. We studied thermal adaptation in four wild populations and one hatchery stock of westslope cutthroat trout Oncorhynchus clarkii lewisi . The mean summer temperatures of source streams ranged from 6.7°C to 11.2°C. Embryos were collected from the wild, and embryonic development, embryonic survival, and juvenile growth were determined. A significant relationship between median embryonic survival and source stream temperature was detected. Based on a rank test, populations from colder streams had a greater decline in median embryonic survival at warm temperatures than populations from warmer streams. Embryonic development and juvenile growth did not appear to be influenced by source. These findings suggest that populations are thermally adapted to their source streams and this should be considered by managers. However, further study is necessary to sort out the potential confounding factors, whether genetic or epigenetic.

  8. [Regulation of in vitro and in vivo differentiation of mouse embryonic stem cells, embryonic germ cells, and teratocarcinoma cells by TGFb family signaling factors].

    PubMed

    Gordeeva, O F; Nikonova, T M; Lifantseva, N V

    2009-01-01

    The activity of specific signaling and transcription factors determines the cell fate in normal development and in tumor transformation. The transcriptional profiles of gene-components of different branches of TGFbeta family signaling pathways were studied in experimental models of initial stages of three-dimensional in vitro differentiation of embryonic stem cells, embryonic germ cells and teratocarcinoma cells and in teratomas and teratocarcinomas developed after their transplantation into immunodeficient Nude mice. Gene profile analysis of studied cell systems have revealed that expression patterns of ActivinA, Nodal, Lefty1, Lefty2, TGF TGFbeta1, BMP4, and GDF were identical in pluripotent stem cells whereas the mRNAs of all examined genes with the exception of Inhibin betaA/ActivinA were detected in the teratocarcinoma cells. These results indicate that differential activity of signaling pathways of the TGFbeta family factors regulates pluripotent state maintenance and pluripotent stem cell differentiation into the progenitors of three germ layers and extraembryonic structures and that normal expression pattern of TGFbeta family factors is rearranged in embryonic teratocarcinoma cells during tumor growth in vitro and in vivo.

  9. Spatial distribution of endogenous retinoids in the murine embryonic mandible.

    PubMed

    Kronmiller, J E; Beeman, C S

    1994-12-01

    Retinoids play an important part in pattern formation during embryonic development. Exogenous retinoids alter the pattern of skeletal, neural and odontogenic tissues. Endogenous retinoids have been demonstrated previously in the murine embryonic mandible, reaching a concentration peak during the initiation of odontogenesis. It was now found that endogenous retinoids are present in a concentration gradient in the embryonic mouse mandible at the time of the initiation of the dental lamina. All-trans-retinoic acid was more concentrated in the incisor region and retinol in the molar region. These results, and the fact that exogenous retinoids produce supernumerary incisors and missing molars, suggest that all-trans-retinoic acid may instruct incisor morphology.

  10. Embryonic Lethality of Mitochondrial Pyruvate Carrier 1 Deficient Mouse Can Be Rescued by a Ketogenic Diet

    PubMed Central

    Krznar, Petra; Hörl, Manuel; Ammar, Zeinab; Montessuit, Sylvie; Pierredon, Sandra; Zamboni, Nicola; Martinou, Jean-Claude

    2016-01-01

    Mitochondrial import of pyruvate by the mitochondrial pyruvate carrier (MPC) is a central step which links cytosolic and mitochondrial intermediary metabolism. To investigate the role of the MPC in mammalian physiology and development, we generated a mouse strain with complete loss of MPC1 expression. This resulted in embryonic lethality at around E13.5. Mouse embryonic fibroblasts (MEFs) derived from mutant mice displayed defective pyruvate-driven respiration as well as perturbed metabolic profiles, and both defects could be restored by reexpression of MPC1. Labeling experiments using 13C-labeled glucose and glutamine demonstrated that MPC deficiency causes increased glutaminolysis and reduced contribution of glucose-derived pyruvate to the TCA cycle. Morphological defects were observed in mutant embryonic brains, together with major alterations of their metabolome including lactic acidosis, diminished TCA cycle intermediates, energy deficit and a perturbed balance of neurotransmitters. Strikingly, these changes were reversed when the pregnant dams were fed a ketogenic diet, which provides acetyl-CoA directly to the TCA cycle and bypasses the need for a functional MPC. This allowed the normal gestation and development of MPC deficient pups, even though they all died within a few minutes post-delivery. This study establishes the MPC as a key player in regulating the metabolic state necessary for embryonic development, neurotransmitter balance and post-natal survival. PMID:27176894

  11. Effect of tidal overwash on the embryonic development of leatherback turtles in French Guiana.

    PubMed

    Caut, Stéphane; Guirlet, Elodie; Girondot, Marc

    2010-05-01

    In marine turtles, the physical conditions experienced by eggs during incubation affect embryonic development. In the leatherback, hatching success is known to be low in relation to other marine turtles as a result of high embryonic mortality. Moreover, the hatching success on Yalimapo in French Guiana, one major nesting beach for this species, is lower compared to other nesting sites. We assessed the rate of leatherback turtle embryonic mortality in order to investigate the tolerance of leatherback turtle clutches laid on Yalimapo beach to tidal overwash, and we highlight causes of poor hatching success. Of the 89 nests studied, 27 were overlapped by tide at least once during the incubation period (of which five nests were lost by erosion). The hatching success was on average significantly lower in overwashed nests than in non-overwashed, highlighting the existence of embryonic developmental arrest linked to tidal inundation. The stages of developmental arrest and their proportion are linked with time, frequency and level of overwash events. In the context of global warming and associated sea-level rise, understanding the detrimental effect of tidal inundation on the development of marine turtle nests is of interest in nesting sites where turtles are likely to be forced to nest closer to the tide line, thus exposing their nests to greater risk of nest overlap with sea and tidal inundation. Copyright 2009 Elsevier Ltd. All rights reserved.

  12. Expression profiles of the Gα subunits during Xenopus tropicalis embryonic development.

    PubMed

    Fuentealba, Jaime; Toro-Tapia, Gabriela; Rodriguez, Marion; Arriagada, Cecilia; Maureira, Alejandro; Beyer, Andrea; Villaseca, Soraya; Leal, Juan I; Hinrichs, Maria V; Olate, Juan; Caprile, Teresa; Torrejón, Marcela

    2016-09-01

    Heterotrimeric G protein signaling plays major roles during different cellular events. However, there is a limited understanding of the molecular mechanisms underlying G protein control during embryogenesis. G proteins are highly conserved and can be grouped into four subfamilies according to sequence homology and function. To further studies on G protein function during embryogenesis, the present analysis identified four Gα subunits representative of the different subfamilies and determined their spatiotemporal expression patterns during Xenopus tropicalis embryogenesis. Each of the Gα subunit transcripts was maternally and zygotically expressed, and, as development progressed, dynamic expression patterns were observed. In the early developmental stages, the Gα subunits were expressed in the animal hemisphere and dorsal marginal zone. While expression was observed at the somite boundaries, in vascular structures, in the eye, and in the otic vesicle during the later stages, expression was mainly found in neural tissues, such as the neural tube and, especially, in the cephalic vesicles, neural crest region, and neural crest-derived structures. Together, these results support the pleiotropism and complexity of G protein subfamily functions in different cellular events. The present study constitutes the most comprehensive description to date of the spatiotemporal expression patterns of Gα subunits during vertebrate development. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Drosophila nemo is an essential gene involved in the regulation of programmed cell death.

    PubMed

    Mirkovic, Ivana; Charish, Kristi; Gorski, Sharon M; McKnight, Kristen; Verheyen, Esther M

    2002-11-01

    Nemo-like kinases define a novel family of serine/threonine kinases that are involved in integrating multiple signaling pathways. They are conserved regulators of Wnt/Wingless pathways, which may coordinate Wnt with TGFbeta-mediated signaling. Drosophila nemo was identified through its involvement in epithelial planar polarity, a process regulated by a non-canonical Wnt pathway. We have previously found that ectopic expression of Nemo using the Gal4-UAS system resulted in embryonic lethality associated with defects in patterning and head development. In this study we present our analyses of the phenotypes of germline clone-derived embryos. We observe lethality associated with head defects and reduction of programmed cell death and conclude that nmo is an essential gene. We also present data showing that nmo is involved in regulating apoptosis during eye development, based on both loss of function phenotypes and on genetic interactions with the pro-apoptotic gene reaper. Finally, we present genetic data from the adult wing that suggest the activity of ectopically expressed Nemo can be modulated by Jun N-terminal kinase (JNK) signaling. Such an observation supports the model that there is cross-talk between Wnt, TGFbeta and JNK signaling at multiple stages of development. Copyright 2002 Elsevier Science Ireland Ltd.

  14. Adult Human Gingival Epithelial Cells as a Source for Whole-tooth Bioengineering

    PubMed Central

    Angelova Volponi, A.; Kawasaki, M.; Sharpe, P.T.

    2013-01-01

    Teeth develop from interactions between embryonic oral epithelium and neural-crest-derived mesenchyme. These cells can be separated into single-cell populations and recombined to form normal teeth, providing a basis for bioengineering new teeth if suitable, non-embryonic cell sources can be identified. We show here that cells can be isolated from adult human gingival tissue that can be expanded in vitro and, when combined with mouse embryonic tooth mesenchyme cells, form teeth. Teeth with developing roots can be produced from this cell combination following transplantation into renal capsules. These bioengineered teeth contain dentin and enamel with ameloblast-like cells and rests of Malassez of human origin. PMID:23458883

  15. Embryonic Heart Progenitors and Cardiogenesis

    PubMed Central

    Brade, Thomas; Pane, Luna S.; Moretti, Alessandra; Chien, Kenneth R.; Laugwitz, Karl-Ludwig

    2013-01-01

    The mammalian heart is a highly specialized organ, comprised of many different cell types arising from distinct embryonic progenitor populations during cardiogenesis. Three precursor populations have been identified to contribute to different myocytic and nonmyocytic cell lineages of the heart: cardiogenic mesoderm cells (CMC), the proepicardium (PE), and cardiac neural crest cells (CNCCs). This review will focus on molecular cues necessary for proper induction, expansion, and lineage-specific differentiation of these progenitor populations during cardiac development in vivo. Moreover, we will briefly discuss how the knowledge gained on embryonic heart progenitor biology can be used to develop novel therapeutic strategies for the management of congenital heart disease as well as for improvement of cardiac function in ischemic heart disease. PMID:24086063

  16. EMBRYONIC VASCULAR DISRUPTION ADVERSE OUTCOMES: LINKING HIGH THROUGHPUT SIGNALING SIGNATURES WITH FUNCTIONAL CONSEQUENCES

    EPA Science Inventory

    Embryonic vascular disruption is an important adverse outcome pathway (AOP) given the knowledge that chemical disruption of early cardiovascular system development leads to broad prenatal defects. High throughput screening (HTS) assays provide potential building blocks for AOP d...

  17. EMBRYONIC PALATAL RESPONSES TO TERATOGENS IN SERUM-FREE ORGAN CULTURE

    EPA Science Inventory

    This study examines development of rat, mouse and human embryonic palates in submerged, serum-free organ culture. he concentration-response profiles for retinoic acid (RA), triamcinolone (TRI), hydrocortisone (HC), dexamethasone (DEX), and 2,3,7,11- tetrachlorodibenzo-p-dioxin (T...

  18. Impact of ocean acidification on the early development and escape behavior of marine medaka (Oryzias melastigma).

    PubMed

    Wang, Xiaojie; Song, Lulu; Chen, Yi; Ran, Haoyu; Song, Jiakun

    2017-10-01

    Ocean acidification is predicted to affect a wide diversity of marine organisms. However, no studies have reported the effects of ocean acidification on Indian Ocean fish. We have used the Indian Ocean medaka (Oryzias melastigma) as a model species for a marine fish that lives in coastal waters. We investigated the impact of ocean acidification on the embryonic development and the stereotyped escape behavior (mediated by the Mauthner cell) in newly hatched larvae. Newly fertilized eggs of medaka were reared in seawater at three different partial pressures of carbon dioxide (pCO 2 ): control at 450 μatm, moderate at 1160 μatm, and high at 1783 μatm. Hatch rates, embryonic duration, and larval malformation rates were compared and were not significantly different between the treatments and the control. In the high pCO 2 group, however, the yolks of larvae were significantly smaller than in the control group, and the newly hatched larvae were significantly longer than the larvae in the control. In the moderate pCO 2 group, the eye distance decreased significantly. No significantly negative growth effects were observed in the larvae when exposed to pCO 2 levels that are predicted as a result of ocean acidification in the next 100-200 years. Larvae reared under control conditions readily produced C-start escape behavior to mechanosensory stimuli; however, in the moderate and high pCO 2 experimental groups, the probabilities of C-start were significantly lower than those of the control group. Therefore, the sensory integration needed for the C-start escape behavior appears to be vulnerable to ocean acidification. Altered behavior in marine larval fish, particularly behaviors involved in escape from predation, could have potentially negative implications to fish populations, and, further, to the marine ecosystems at the levels of CO 2 projected for the future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Steady advance of stem cell therapies: report from the 2011 World Stem Cell Summit, Pasadena, California, October 3-5.

    PubMed

    Swan, Melanie

    2011-12-01

    Stem cell research and related therapies (including regenerative medicine and cellular therapies) could have a significant near-term impact on worldwide public health and aging. One reason is the industry's strong linkage between policy, science, industry, and patient advocacy, as was clear in the attendance and programming at the 7(th) annual World Stem Cell Summit held in Pasadena, California, October 3-5, 2011. A special conference session sponsored by the SENS Foundation discussed how stem cell therapies are being used to extend healthy life span. Stem cells are useful not only in cell-replacement therapies, but also in disease modeling, drug discovery, and drug toxicity screening. Stem cell therapies are currently being applied to over 50 diseases, including heart, lung, neurodegenerative, and eye disease, cancer, and human immunodeficiency virus (HIV)/acquired immunodeficiency syndrome (AIDS). Dozens of companies are developing therapeutic solutions that are in different stages of clinical use and clinical trials. Some high-profile therapies include Dendreon's Provenge for prostate cancer, Geron's first-ever embryonic stem cell trials for spinal cord injury, Fibrocell's laViv cellular therapy for wrinkles, and well-established commercial skin substitutes (Organogenesis' Apligraf and Advanced BioHealing's Dermagraft). Stem cell policy issues under consideration include medical tourism, standards for large-scale stem cell manufacturing, and lingering ethical debates over the use of embryonic stem cells. Contemporary stem cell science advances include a focus on techniques for the direct reprogramming of cells from one lineage to another without returning to pluripotency as an intermediary step, improved means of generating and characterizing induced pluripotent cells, and progress in approaches to neurodegenerative disease.

  20. Differentiation State-Specific Mitochondrial Dynamic Regulatory Networks Are Revealed by Global Transcriptional Analysis of the Developing Chicken Lens

    PubMed Central

    Chauss, Daniel; Basu, Subhasree; Rajakaruna, Suren; Ma, Zhiwei; Gau, Victoria; Anastas, Sara; Brennan, Lisa A.; Hejtmancik, J. Fielding; Menko, A. Sue; Kantorow, Marc

    2014-01-01

    The mature eye lens contains a surface layer of epithelial cells called the lens epithelium that requires a functional mitochondrial population to maintain the homeostasis and transparency of the entire lens. The lens epithelium overlies a core of terminally differentiated fiber cells that must degrade their mitochondria to achieve lens transparency. These distinct mitochondrial populations make the lens a useful model system to identify those genes that regulate the balance between mitochondrial homeostasis and elimination. Here we used an RNA sequencing and bioinformatics approach to identify the transcript levels of all genes expressed by distinct regions of the lens epithelium and maturing fiber cells of the embryonic Gallus gallus (chicken) lens. Our analysis detected more than 15,000 unique transcripts expressed by the embryonic chicken lens. Of these, more than 3000 transcripts exhibited significant differences in expression between lens epithelial cells and fiber cells. Multiple transcripts coding for separate mitochondrial homeostatic and degradation mechanisms were identified to exhibit preferred patterns of expression in lens epithelial cells that require mitochondria relative to lens fiber cells that require mitochondrial elimination. These included differences in the expression levels of metabolic (DUT, PDK1, SNPH), autophagy (ATG3, ATG4B, BECN1, FYCO1, WIPI1), and mitophagy (BNIP3L/NIX, BNIP3, PARK2, p62/SQSTM1) transcripts between lens epithelial cells and lens fiber cells. These data provide a comprehensive window into all genes transcribed by the lens and those mitochondrial regulatory and degradation pathways that function to maintain mitochondrial populations in the lens epithelium and to eliminate mitochondria in maturing lens fiber cells. PMID:24928582

  1. Vitamin K2 biosynthetic enzyme, UBIAD1 is essential for embryonic development of mice.

    PubMed

    Nakagawa, Kimie; Sawada, Natsumi; Hirota, Yoshihisa; Uchino, Yuri; Suhara, Yoshitomo; Hasegawa, Tomoka; Amizuka, Norio; Okamoto, Tadashi; Tsugawa, Naoko; Kamao, Maya; Funahashi, Nobuaki; Okano, Toshio

    2014-01-01

    UbiA prenyltransferase domain containing 1 (UBIAD1) is a novel vitamin K2 biosynthetic enzyme screened and identified from the human genome database. UBIAD1 has recently been shown to catalyse the biosynthesis of Coenzyme Q10 (CoQ10) in zebrafish and human cells. To investigate the function of UBIAD1 in vivo, we attempted to generate mice lacking Ubiad1, a homolog of human UBIAD1, by gene targeting. Ubiad1-deficient (Ubiad1(-/-)) mouse embryos failed to survive beyond embryonic day 7.5, exhibiting small-sized body and gastrulation arrest. Ubiad1(-/-) embryonic stem (ES) cells failed to synthesize vitamin K2 but were able to synthesize CoQ9, similar to wild-type ES cells. Ubiad1(+/-) mice developed normally, exhibiting normal growth and fertility. Vitamin K2 tissue levels and synthesis activity were approximately half of those in the wild-type, whereas CoQ9 tissue levels and synthesis activity were similar to those in the wild-type. Similarly, UBIAD1 expression and vitamin K2 synthesis activity of mouse embryonic fibroblasts prepared from Ubiad1(+/-) E15.5 embryos were approximately half of those in the wild-type, whereas CoQ9 levels and synthesis activity were similar to those in the wild-type. Ubiad1(-/-) mouse embryos failed to be rescued, but their embryonic lifespans were extended to term by oral administration of MK-4 or CoQ10 to pregnant Ubiad1(+/-) mice. These results suggest that UBIAD1 is responsible for vitamin K2 synthesis but may not be responsible for CoQ9 synthesis in mice. We propose that UBIAD1 plays a pivotal role in embryonic development by synthesizing vitamin K2, but may have additional functions beyond the biosynthesis of vitamin K2.

  2. CITED1 Expression in Liver Development and Hepatoblastoma12

    PubMed Central

    Murphy, Andrew J; de Caestecker, Christian; Pierce, Janene; Boyle, Scott C; Ayers, Gregory D; Zhao, Zhiguo; Libes, Jaime M; Correa, Hernan; Walter, Teagan; Huppert, Stacey S; Perantoni, Alan O; de Caestecker, Mark P; Lovvorn, Harold N

    2012-01-01

    Hepatoblastoma, the most common pediatric liver cancer, consists of epithelial mixed embryonal/fetal (EMEF) and pure fetal histologic subtypes, with the latter exhibiting a more favorable prognosis. Few embryonal histology markers that yield insight into the biologic basis for this prognostic discrepancy exist. CBP/P-300 interacting transactivator 1 (CITED1), a transcriptional co-activator, is expressed in the self-renewing nephron progenitor population of the developing kidney and broadly in its malignant analog, Wilms tumor (WT). In this current study, CITED1 expression is detected in mouse embryonic liver initially on post-coitum day 10.5 (e10.5), begins to taper by e14.5, and is undetectable in e18.5 and adult livers. CITED1 expression is detected in regenerating murine hepatocytes following liver injury by partial hepatectomy and 3,5-diethoxycarbonyl-1,4-dihydrocollidine. Importantly, while CITED1 is undetectable in normal human adult livers, 36 of 41 (87.8%) hepatoblastoma specimens express CITED1, where it is enriched in EMEF specimens compared to specimens of pure fetal histology. CITED1 overexpression in Hep293TT human hepatoblastoma cells induces cellular proliferation and upregulates the Wnt inhibitors Kringle containing transmembrane protein 1 (KREMEN1) and CXXC finger protein 4 (CXXC4). CITED1 mRNA expression correlates with expression of CXXC4 and KREMEN1 in clinical hepatoblastoma specimens. These data show that CITED1 is expressed during a defined time course of liver development and is no longer expressed in the adult liver but is upregulated in regenerating hepatocytes following liver injury. Moreover, as in WT, this embryonic marker is reexpressed in hepatoblastoma and correlates with embryonal histology. These findings identify CITED1 as a novel marker of hepatic progenitor cells that is re-expressed following liver injury and in embryonic liver tumors. PMID:23308048

  3. Cell differentiation: therapeutical challenges in diabetes.

    PubMed

    Roche, Enrique; Vicente-Salar, Nestor; Arribas, Maribel; Paredes, Beatriz

    2012-01-01

    Stem cells, derived from either embryonic or adult tissues, are considered to be potential sources of insulin-secreting cells to be transplanted into type 1 and advanced stages of type 2 diabetic patients. Many laboratories have considered this possibility, resulting in a large amount of published protocols, with a wide degree of complexity among them. Our group was the first to report that it was possible to obtain insulin-secreting cells from mouse embryonic stem cells, proving the feasibility of this new challenge. The same observation was immediately reported using human embryonic stem cells. However, the resulting cell product was not properly characterised, affecting the reproducibility of the protocol by other groups. A more elaborated protocol was developed by Lumelsky and co-workers, demonstrating that neuroectodermal cells could be an alternative source for insulin-producing cells. However, the resulting cells of this protocol produced low amounts of the hormone. This aimed other groups to perform key changes in order to improve the insulin content of the resulting cells. Recently, Baetge's group has published a new protocol based on the knowledge accumulated in pancreatic development. In this protocol, human embryonic stem cells were differentiated into islet-like structures through a five step protocol, emulating the key steps during embryonic development of the endocrine pancreas. The final cell product, however, seemed to be in an immature state, thus further improvement is required. Despite this drawback, the protocol represents the culmination of work performed by different groups and offers new research challenges for the investigators in this exciting field. Concerning adult stem cells, the possibility of identifying pancreatic precursors or of reprogramming extrapancreatic derived cells are key possibilities that may circumvent the problems that appear when using embryonic stem cells, such as immune rejection and tumour formation.

  4. Lamin A/C Haploinsufficiency Modulates the Differentiation Potential of Mouse Embryonic Stem Cells

    PubMed Central

    Sehgal, Poonam; Chaturvedi, Pankaj; Kumaran, R. Ileng; Kumar, Satish; Parnaik, Veena K.

    2013-01-01

    Background Lamins are structural proteins that are the major determinants of nuclear architecture and play important roles in various nuclear functions including gene regulation and cell differentiation. Mutations in the human lamin A gene cause a spectrum of genetic diseases that affect specific tissues. Most available mouse models for laminopathies recapitulate disease symptoms for muscle diseases and progerias. However, loss of human lamin A/C also has highly deleterious effects on fetal development. Hence it is important to understand the impact of lamin A/C expression levels on embryonic differentiation pathways. Methodology and Principal Findings We have investigated the differentiation potential of mouse embryonic stem cells containing reduced levels of lamin A/C by detailed lineage analysis of embryoid bodies derived from these cells by in vitro culture. We initially carried out a targeted disruption of one allele of the mouse lamin A/C gene (Lmna). Undifferentiated wild-type and Lmna+/− embryonic stem cells showed similar expression of pluripotency markers and cell cycle profiles. Upon spontaneous differentiation into embryoid bodies, markers for visceral endoderm such as α-fetoprotein were highly upregulated in haploinsufficient cells. However, neuronal markers such as β-III tubulin and nestin were downregulated. Furthermore, we observed a reduction in the commitment of Lmna+/− cells into the myogenic lineage, but no discernible effects on cardiac, adipocyte or osteocyte lineages. In the next series of experiments, we derived embryonic stem cell clones expressing lamin A/C short hairpin RNA and examined their differentiation potential. These cells expressed pluripotency markers and, upon differentiation, the expression of lineage-specific markers was altered as observed with Lmna+/− embryonic stem cells. Conclusions We have observed significant effects on embryonic stem cell differentiation to visceral endoderm, neuronal and myogenic lineages upon depletion of lamin A/C. Hence our results implicate lamin A/C level as an important determinant of lineage-specific differentiation during embryonic development. PMID:23451281

  5. Diversity and Complexity in Chromatin Recognition by TFII-I Transcription Factors in Pluripotent Embryonic Stem Cells and Embryonic Tissues

    PubMed Central

    Makeyev, Aleksandr V.; Enkhmandakh, Badam; Hong, Seung-Hyun; Joshi, Pujan; Shin, Dong-Guk; Bayarsaihan, Dashzeveg

    2012-01-01

    GTF2I and GTF2IRD1 encode a family of closely related transcription factors TFII-I and BEN critical in embryonic development. Both genes are deleted in Williams-Beuren syndrome, a complex genetic disorder associated with neurocognitive, craniofacial, dental and skeletal abnormalities. Although genome-wide promoter analysis has revealed the existence of multiple TFII-I binding sites in embryonic stem cells (ESCs), there was no correlation between TFII-I occupancy and gene expression. Surprisingly, TFII-I recognizes the promoter sequences enriched for H3K4me3/K27me3 bivalent domain, an epigenetic signature of developmentally important genes. Moreover, we discovered significant differences in the association between TFII-I and BEN with the cis-regulatory elements in ESCs and embryonic craniofacial tissues. Our data indicate that in embryonic tissues BEN, but not the highly homologous TFII-I, is primarily recruited to target gene promoters. We propose a “feed-forward model” of gene regulation to explain the specificity of promoter recognition by TFII-I factors in eukaryotic cells. PMID:22970219

  6. Diversity and complexity in chromatin recognition by TFII-I transcription factors in pluripotent embryonic stem cells and embryonic tissues.

    PubMed

    Makeyev, Aleksandr V; Enkhmandakh, Badam; Hong, Seung-Hyun; Joshi, Pujan; Shin, Dong-Guk; Bayarsaihan, Dashzeveg

    2012-01-01

    GTF2I and GTF2IRD1 encode a family of closely related transcription factors TFII-I and BEN critical in embryonic development. Both genes are deleted in Williams-Beuren syndrome, a complex genetic disorder associated with neurocognitive, craniofacial, dental and skeletal abnormalities. Although genome-wide promoter analysis has revealed the existence of multiple TFII-I binding sites in embryonic stem cells (ESCs), there was no correlation between TFII-I occupancy and gene expression. Surprisingly, TFII-I recognizes the promoter sequences enriched for H3K4me3/K27me3 bivalent domain, an epigenetic signature of developmentally important genes. Moreover, we discovered significant differences in the association between TFII-I and BEN with the cis-regulatory elements in ESCs and embryonic craniofacial tissues. Our data indicate that in embryonic tissues BEN, but not the highly homologous TFII-I, is primarily recruited to target gene promoters. We propose a "feed-forward model" of gene regulation to explain the specificity of promoter recognition by TFII-I factors in eukaryotic cells.

  7. Alterations in the developing testis transcriptome following embryonic vinclozolin exposure.

    PubMed

    Clement, Tracy M; Savenkova, Marina I; Settles, Matthew; Anway, Matthew D; Skinner, Michael K

    2010-11-01

    The current study investigates the direct effects of in utero vinclozolin exposure on the developing F1 generation rat testis transcriptome. Previous studies have demonstrated that exposure to vinclozolin during embryonic gonadal sex determination induces epigenetic modifications of the germ line and transgenerational adult onset disease states. Microarray analyses were performed to compare control and vinclozolin treated testis transcriptomes at embryonic days 13, 14 and 16. A total of 576 differentially expressed genes were identified and the major cellular functions and pathways associated with these altered transcripts were examined. The sets of regulated genes at the different development periods were found to be transiently altered and distinct. Categorization by major known functions of altered genes was performed. Specific cellular process and pathway analyses suggest the involvement of Wnt and calcium signaling, vascular development and epigenetic mechanisms as potential mediators of the direct F1 generation actions of vinclozolin. Copyright © 2010 Elsevier Inc. All rights reserved.

  8. ALTERATIONS IN THE DEVELOPING TESTIS TRANSCRIPTOME FOLLOWING EMBRYONIC VINCLOZOLIN EXPOSURE

    PubMed Central

    Clement, Tracy M.; Savenkova, Marina I.; Settles, Matthew; Anway, Matthew D.; Skinner, Michael K.

    2010-01-01

    The current study investigates the direct effects of in utero vinclozolin exposure on the developing F1 generation rat testis transcriptome. Previous studies have demonstrated that exposure to vinclozolin during embryonic gonadal sex determination induces epigenetic modifications of the germ line and transgenerational adult onset disease states. Microarray analyses were performed to compare control and vinclozolin treated testis transcriptomes at embryonic day 13, 14 and 16. A total of 576 differentially expressed genes were identified and the major cellular functions and pathways associated with these altered transcripts were examined. The sets of regulated genes at the different development periods were found to be transiently altered and distinct. Categorization by major known functions of altered genes was performed. Specific cellular process and pathway analyses suggest the involvement of Wnt and calcium signaling, vascular development and epigenetic mechanisms as potential mediators of the direct F1 generation actions of vinclozolin. PMID:20566332

  9. Characterizing the distribution of steroid sulfatase during embryonic development: when and where might metabolites of maternal steroids be reactivated?

    PubMed

    Paitz, Ryan T; Duffield, Kristin R; Bowden, Rachel M

    2017-12-15

    All vertebrate embryos are exposed to maternally derived steroids during development. In placental vertebrates, metabolism of maternal steroids by the placenta modulates embryonic exposure, but how exposure is regulated in oviparous vertebrates is less clear. Recent work in oviparous vertebrates has demonstrated that steroids are not static molecules, as they can be converted to more polar steroid sulfates by sulfotransferase enzymes. Importantly, these steroid sulfates can be converted back to the parent compound by the enzyme steroid sulfatase (STS). We investigated when and where STS was present during embryonic development in the red-eared slider turtle, Trachemys scripta We report that STS is present during all stages of development and in all tissues we examined. We conclude that STS activity may be particularly important for regulating maternal steroid exposure in oviparous vertebrates. © 2017. Published by The Company of Biologists Ltd.

  10. Mirror-image duplication of the primary axis and heart in Xenopus embryos by the overexpression of Msx-1 gene.

    PubMed

    Chen, Y; Solursh, M

    1995-10-01

    The Msx-1 gene (formerly known as Hox-7) is a member of a discrete subclass of homeobox-containing genes. Examination of the expression pattern of Msx-1 in murine and avian embryos suggests that this gene may be involved in the regionalization of the medio-lateral axis during earlier development. We have examined the possible functions of Xenopus Msx-1 during early Xenopus embryonic development by overexpression of the Msx-1 gene. Overexpression of Msx-1 causes a left-right mirror-image duplication of primary axial structures, including notochord, neural tube, somites, suckers, and foregut. The embryonic developing heart is also mirror-image duplicated, including looping directions and polarity. These results indicate that Msx-1 may be involved in the mesoderm formation as well as left-right patterning in the early Xenopus embryonic development.

  11. Watch-ing out for chick limb development.

    PubMed

    Pascoal, Susana; Palmeirim, Isabel

    2007-09-01

    Time control is a crucial issue during embryonic development. Nevertheless, little is known about how embryonic cells measure time. Until recently, the only molecular clock known to operate during vertebrate embryonic development was the somitogenesis clock, exclusively functioning in coordinating the precise timing of each new pair of somites formed from the presomitic mesoderm. We have recently evidenced that a similar molecular clock also underlies the timing at which autopod chondrogenic precursors are laid down to form a skeletal limb element. In addition, we herein suggest that the molecular clock is not the only parallelism that can be established between somitogenesis and limb-bud development. In an evolutionary perspective, we support the previously proposed idea that the molecular mechanisms involved in the segmentation of the body axis may have been partially reused in the mesoderm of the lateral plate, thereby allowing the emergence of paired appendages.

  12. The effects of 1α, 25-dihydroxyvitamin D3 and transforming growth factor-β3 on bone development in an ex vivo organotypic culture system of embryonic chick femora.

    PubMed

    Smith, Emma L; Rashidi, Hassan; Kanczler, Janos M; Shakesheff, Kevin M; Oreffo, Richard O C

    2015-01-01

    Transforming growth factor-beta3 (TGF-β3) and 1α,25-dihydroxyvitamin D3 (1α,25 (OH) 2D3) are essential factors in chondrogenesis and osteogenesis respectively. These factors also play a fundamental role in the developmental processes and the maintenance of skeletal integrity, but their respective direct effects on these processes are not fully understood. Using an organotypic bone rudiment culture system the current study has examined the direct roles the osteotropic factors 1α,25 (OH)2D3 and TGF-β3 exert on the development and modulation of the three dimensional structure of the embryonic femur. Isolated embryonic chick femurs (E11) were organotypically cultured for 10 days in basal media, or basal media supplemented with either 1α,25 (OH) 2D3 (25 nM) or TGF-β3 (5 ng/mL & 15 ng/mL). Analyses of the femurs were undertaken using micro-computed tomography (μCT), histology and immunohistochemistry. 1α,25 (OH)2D3 supplemented cultures enhanced osteogenesis directly in the developing femurs with elevated levels of osteogenic markers such as type 1 collagen. In marked contrast organotypic femur cultures supplemented with TGF-β3 (5 ng/mL & 15 ng/mL) demonstrated enhanced chondrogenesis with a reduction in osteogenesis. These studies demonstrate the efficacy of the ex vivo organotypic embryonic femur culture employed to elucidate the direct roles of these molecules, 1α,25 (OH) 2D3 and TGF-β3 on the structural development of embryonic bone within a three dimensional framework. We conclude that 1α,25(OH)2D and TGF-β3 modify directly the various cell populations in bone rudiment organotypic cultures effecting tissue metabolism resulting in significant changes in embryonic bone growth and modulation. Understanding the roles of osteotropic agents in the process of skeletal development is integral to developing new strategies for the recapitulation of bone tissue in later life.

  13. Nucleoli from two-cell embryos support the development of enucleolated germinal vesicle oocytes in the pig.

    PubMed

    Kyogoku, Hirohisa; Ogushi, Sugako; Miyano, Takashi

    2012-11-01

    Recent research has shown that nucleoli of oocytes at the germinal vesicle (GV) stage (GV nucleoli) are not necessary for oocyte maturation but are essential for early embryonic development. Nucleoli of 2-cell embryos (2-cell nucleoli) have morphology similar to that of nucleoli in oocytes at the GV stage. In this study, we examined the ability of 2-cell nucleoli to substitute for GV nucleoli in terms of supporting early embryonic development by nucleolus aspiration (enucleolation) and transfer into metaphase II (MII) oocytes or 2-cell embryos that were derived from enucleolated oocytes at the GV stage in the pig. When 2-cell embryos were centrifuged to move the lipid droplets to one side of the blastomere, multiple nucleoli in the nucleus fused into a single nucleolus. The nucleoli were then aspirated from the 2-cell embryos by micromanipulation. The injection of 2-cell nucleoli to GV enucleolated oocytes at the MII stage rescued the embryos from the early embryonic arrest, and the resulting oocytes developed to blastocysts. However, the injection of 2-cell and GV nucleoli to 2-cell embryos derived from GV enucleolated oocytes rarely restored the development to blastocysts. These results indicate that 2-cell nucleoli support early embryonic development as GV nucleoli and that the presence of nucleoli is essential for pig embryos before the 2-cell stage.

  14. Knockout of the PKN Family of Rho Effector Kinases Reveals a Non-redundant Role for PKN2 in Developmental Mesoderm Expansion

    PubMed Central

    Quétier, Ivan; Marshall, Jacqueline J.T.; Spencer-Dene, Bradley; Lachmann, Sylvie; Casamassima, Adele; Franco, Claudio; Escuin, Sarah; Worrall, Joseph T.; Baskaran, Priththivika; Rajeeve, Vinothini; Howell, Michael; Copp, Andrew J.; Stamp, Gordon; Rosewell, Ian; Cutillas, Pedro; Gerhardt, Holger; Parker, Peter J.; Cameron, Angus J.M.

    2016-01-01

    Summary In animals, the protein kinase C (PKC) family has expanded into diversely regulated subgroups, including the Rho family-responsive PKN kinases. Here, we describe knockouts of all three mouse PKN isoforms and reveal that PKN2 loss results in lethality at embryonic day 10 (E10), with associated cardiovascular and morphogenetic defects. The cardiovascular phenotype was not recapitulated by conditional deletion of PKN2 in endothelial cells or the developing heart. In contrast, inducible systemic deletion of PKN2 after E7 provoked collapse of the embryonic mesoderm. Furthermore, mouse embryonic fibroblasts, which arise from the embryonic mesoderm, depend on PKN2 for proliferation and motility. These cellular defects are reflected in vivo as dependence on PKN2 for mesoderm proliferation and neural crest migration. We conclude that failure of the mesoderm to expand in the absence of PKN2 compromises cardiovascular integrity and development, resulting in lethality. PMID:26774483

  15. Knockout of the PKN Family of Rho Effector Kinases Reveals a Non-redundant Role for PKN2 in Developmental Mesoderm Expansion.

    PubMed

    Quétier, Ivan; Marshall, Jacqueline J T; Spencer-Dene, Bradley; Lachmann, Sylvie; Casamassima, Adele; Franco, Claudio; Escuin, Sarah; Worrall, Joseph T; Baskaran, Priththivika; Rajeeve, Vinothini; Howell, Michael; Copp, Andrew J; Stamp, Gordon; Rosewell, Ian; Cutillas, Pedro; Gerhardt, Holger; Parker, Peter J; Cameron, Angus J M

    2016-01-26

    In animals, the protein kinase C (PKC) family has expanded into diversely regulated subgroups, including the Rho family-responsive PKN kinases. Here, we describe knockouts of all three mouse PKN isoforms and reveal that PKN2 loss results in lethality at embryonic day 10 (E10), with associated cardiovascular and morphogenetic defects. The cardiovascular phenotype was not recapitulated by conditional deletion of PKN2 in endothelial cells or the developing heart. In contrast, inducible systemic deletion of PKN2 after E7 provoked collapse of the embryonic mesoderm. Furthermore, mouse embryonic fibroblasts, which arise from the embryonic mesoderm, depend on PKN2 for proliferation and motility. These cellular defects are reflected in vivo as dependence on PKN2 for mesoderm proliferation and neural crest migration. We conclude that failure of the mesoderm to expand in the absence of PKN2 compromises cardiovascular integrity and development, resulting in lethality. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Characteristics and incidence of large eggs in Trichuris muris.

    PubMed

    Koyama, Koichi

    2013-05-01

    The production of small numbers of large eggs among the standard-sized eggs of Trichuris trichiura is well known. Large eggs have also been observed in Trichuris muris, but they have not been studied previously. This paper compares the characteristics of the large eggs (LEs, ≥74.5 μm long) and standard-sized eggs (SEs, <74.5 μm long) in cultures of T. muris. Among 112,554 cultured eggs, LEs occurred at very low frequency (0.03 %, i.e., about three large eggs per 10(4) cultured eggs). Embryonated eggs represented 93.72 % of SEs, but only 25.00 % of LEs were embryonated. Embryonated LEs and SEs contained fully matured larvae. An atypical category of unembryonated egg, which contained an incompletely developed larva, an abnormal larva, or granular components, was common among the LEs. However, similar atypical unembryonated SEs were rarely observed. These observations suggest that the LEs that occur very infrequently in T. muris result from an abnormality of embryonation (larval development).

  17. Toxicological effects of mainstream whole smoke solutions on embryonic movements of the developing embryo.

    PubMed

    Ejaz, Sohail; Seok, Kim Bum; Woong, Lim Chae

    2005-01-01

    Cigarette smoking is unrivaled among developmental toxicants in terms of total adverse impact on the human population. Maternal tobacco use during pregnancy adversely affects prenatal and postnatal growth and increases the risk of behavioral and developmental defects in children and adolescents. In the current study, the effects of different preparations of nicotine and mainstream whole smoke solutions (MSWSS) on embryonic movements during neonatal development were examined in vivo, using the chicken embryo model, recorded in real-time by a video camera. It was observed that low doses of nicotine induced hyperactivity and higher doses induced hypoactivity. Accordingly, a significant (p < 0.01) decrease in movements was observed by application of 10 microg of nicotine and different preparations of MSWSS. A dose-dependent decrease in embryonic movements was observed, which did not recover by the end of experiment. It was concluded that nicotine could alter embryonic movements, which are important during embryogenesis for differentiation and maturation of the body systems.

  18. A structure-based extracellular matrix expansion mechanism of fibrous tissue growth

    PubMed Central

    Kalson, Nicholas S; Lu, Yinhui; Taylor, Susan H; Starborg, Tobias; Holmes, David F; Kadler, Karl E

    2015-01-01

    Embryonic growth occurs predominately by an increase in cell number; little is known about growth mechanisms later in development when fibrous tissues account for the bulk of adult vertebrate mass. We present a model for fibrous tissue growth based on 3D-electron microscopy of mouse tendon. We show that the number of collagen fibrils increases during embryonic development and then remains constant during postnatal growth. Embryonic growth was explained predominately by increases in fibril number and length. Postnatal growth arose predominately from increases in fibril length and diameter. A helical crimp structure was established in embryogenesis, and persisted postnatally. The data support a model where the shape and size of tendon is determined by the number and position of embryonic fibroblasts. The collagen fibrils that these cells synthesise provide a template for postnatal growth by structure-based matrix expansion. The model has important implications for growth of other fibrous tissues and fibrosis. DOI: http://dx.doi.org/10.7554/eLife.05958.001 PMID:25992598

  19. RIPK3 Mediates Necroptosis during Embryonic Development and Postnatal Inflammation in Fadd-Deficient Mice.

    PubMed

    Zhao, Qun; Yu, XianJun; Zhang, HaiWei; Liu, YongBo; Zhang, XiXi; Wu, XiaoXia; Xie, Qun; Li, Ming; Ying, Hao; Zhang, Haibing

    2017-04-25

    RIPK3 mediates cell death and regulates inflammatory responses. Although genetic studies have suggested that RIPK3-MLKL-mediated necroptosis leads to embryonic lethality in Fadd or Caspase-8-deficient mice, the exact mechanisms are not fully understood. Here, we generated Ripk3 mutant mice by altering the RIPK3 kinase domain (Ripk3 Δ/Δ mice), thus abolishing its kinase activity. Ripk3 Δ/Δ cells were resistant to necroptosis stimulation in vitro, and Ripk3 Δ/Δ mice were protected from necroptotic diseases. Although the Ripk3 Δ/Δ mutation rescued embryonic lethality in Fadd -/- embryos, Fadd -/- Ripk3 Δ/Δ mice died within 1 day after birth due to massive inflammation. These results indicate that Ripk3 ablation rescues embryonic lethality in Fadd-deficient mice by suppressing two RIPK3-mediating processes: necroptosis during embryogenesis and inflammation during postnatal development in Fadd -/- mice. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  20. [Recent contributions to the establishment of the axes of the mammalian embryo].

    PubMed

    Catala, M

    2002-06-01

    The study of the establishment of embryonic axes during early development has shown that this process is a very early event (occurRing either during ovogenesis or during fertilization) for invertebrates and for lower vertebrates. In mammals, it was considered that this establishment appears late during development because of the great plasticity of blastomeres. Recent data in the mouse embryon show that the mammalian ovocyte is a polarized cell, the polar body corresponding to the animal pole of this cell. The blastomeres that are generated by the zygote divide asynchronously. The first that divides is the one which inherits the plasma cell membrane where fertilization takes place. This blastomere will preferentially give rise to the cells of the embryonic pole of the blastocyst whereas the other yields the cells of the abembryonic pole. The mammalian ovocyte is thus a polarized cell with an already established animal-vegetal axis. The point of sperm entry will determine the embryonic-abembryonic axis.

  1. Induced Wnt5a expression perturbs embryonic outgrowth and intestinal elongation, but is well-tolerated in adult mice.

    PubMed

    Bakker, Elvira R M; Raghoebir, Lalini; Franken, Patrick F; Helvensteijn, Werner; van Gurp, Léon; Meijlink, Frits; van der Valk, Martin A; Rottier, Robbert J; Kuipers, Ernst J; van Veelen, Wendy; Smits, Ron

    2012-09-01

    Wnt5a is essential during embryonic development, as indicated by mouse Wnt5a knockout embryos displaying outgrowth defects of multiple structures including the gut. The dynamics of Wnt5a involvement in these processes is unclear, and perinatal lethality of Wnt5a knockout embryos has hampered investigation of Wnt5a during postnatal stages in vivo. Although in vitro studies have suggested a relevant role for Wnt5a postnatally, solid evidence for a significant impact of Wnt5a within the complexity of an adult organism is lacking. We generated a tightly-regulated inducible Wnt5a transgenic mouse model and investigated the effects of Wnt5a induction during different time-frames of embryonic development and in adult mice, focusing on the gastrointestinal tract. When induced in embryos from 10.5 dpc onwards, Wnt5a expression led to severe outgrowth defects affecting the gastrointestinal tracts, limbs, facial structures and tails, closely resembling the defects observed in Wnt5a knockout mice. However, Wnt5a induction from 13.5 dpc onwards did not cause this phenotype, indicating that the most critical period for Wnt5a in embryonic development is prior to 13.5 dpc. In adult mice, induced Wnt5a expression did not reveal abnormalities, providing the first in vivo evidence that Wnt5a has no major impact on mouse intestinal homeostasis postnatally. Protein expression of Wnt5a receptor Ror2 was strongly reduced in adult intestine compared to embryonic stages. Moreover, we uncovered a regulatory process where induction of Wnt5a causes downregulation of its receptor Ror2. Taken together, our results indicate a role for Wnt5a during a restricted time-frame of embryonic development, but suggest no impact during homeostatic postnatal stages. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Forkhead box transcription factors in embryonic heart development and congenital heart disease.

    PubMed

    Zhu, Hong

    2016-01-01

    Embryonic heart development is a very complicated process regulated precisely by a network composed of many genes and signaling pathways in time and space. Forkhead box (Fox, FOX) proteins are a family of transcription factors characterized by the presence of an evolutionary conserved "forkhead"or "winged-helix" DNA-binding domain and able to organize temporal and spatial gene expression during development. They are involved in a wide variety of cellular processes, such as cell cycle progression, proliferation, differentiation, migration, metabolism and DNA damage response. An abundance of studies in model organisms and systems has established that Foxa2, Foxc1/c2, Foxh1 and Foxm1, Foxos and Foxps are important components of the signaling pathways that instruct cardiogenesis and embryonic heart development, playing paramount roles in heart development. The previous studies also have demonstrated that mutations in some of the forkhead box genes and the aberrant expression of forkhead box gene are heavily implicated in the congenital heart disease (CHD) of humans. This review primarily focuses on the current understanding of heart development regulated by forkhead box transcription factors and molecular genetic mechanisms by which forkhead box factors modulate heart development during embryogenesis and organogenesis. This review also summarizes human CHD related mutations in forkhead box genes as well as the abnormal expression of forkhead box gene, and discusses additional possible regulatory mechanisms of the forkhead box genes during embryonic heart development that warrant further investigation. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. The effects of triclosan on pluripotency factors and development of mouse embryonic stem cells and zebrafish.

    PubMed

    Chen, Xiaojiao; Xu, Bo; Han, Xiumei; Mao, Zhilei; Chen, Minjian; Du, Guizhen; Talbot, Prue; Wang, Xinru; Xia, Yankai

    2015-04-01

    Triclosan (TCS) poses potential risks to reproduction and development due to its endocrine-disrupting properties. However, the mechanism of TCS's effects on early embryonic development is little known. Embryonic stem cells (ESC) and zebrafish embryos provide valuable models for testing the toxic effects of environmental chemicals on early embryogenesis. In this study, mouse embryonic stem cells (mESC) were acutely exposed to TCS for 24 h, and general cytotoxicity and the effect of TCS on pluripotency were then evaluated. In addition, zebrafish embryos were exposed to TCS from 2- to 24-h post-fertilization (hpf), and their morphology was evaluated. In mESC, alkaline phosphatase staining was significantly decreased after treatment with the highest concentration of TCS (50 μM). Although the expression levels of Sox2 mRNA were not changed, the mRNA levels of Oct4 and Nanog in TCS-treated groups were significantly decreased compared to controls. In addition, the protein levels of Oct4, Sox2 and Nanog were significantly reduced in response to TCS treatment. MicroRNA (miR)-134, an expression inhibitor of pluripotency markers, was significantly increased in TCS-treated mESC. In zebrafish experiments, after 24 hpf of treatment, the controls had developed to the late stage of somitogenesis, while embryos exposed to 300 μg/L of TCS were still at the early stage of somitogenesis, and three genes (Oct4, Sox2 and Nanog) were upregulated in treated groups when compared with the controls. The two models demonstrated that TCS may affect early embryonic development by disturbing the expression of the pluripotency markers (Oct4, Sox2 and Nanog).

  4. Bone matrix calcification during embryonic and postembryonic rat calvarial development assessed by SEM-EDX spectroscopy, XRD, and FTIR spectroscopy.

    PubMed

    Henmi, Akiko; Okata, Hiroshi; Anada, Takahisa; Yoshinari, Mariko; Mikami, Yasuto; Suzuki, Osamu; Sasano, Yasuyuki

    2016-01-01

    Bone mineral is constituted of biological hydroxyapatite crystals. In developing bone, the mineral crystal matures and the Ca/P ratio increases. However, how an increase in the Ca/P ratio is involved in maturation of the crystal is not known. The relationships among organic components and mineral changes are also unclear. The study was designed to investigate the process of calcification during rat calvarial bone development. Calcification was evaluated by analyzing the atomic distribution and concentration of Ca, P, and C with scanning electron microscopy (SEM)-energy-dispersive X-ray (EDX) spectroscopy and changes in the crystal structure with X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. Histological analysis showed that rat calvarial bone formation started around embryonic day 16. The areas of Ca and P expanded, matching the region of the developing bone matrix, whereas the area of C became localized around bone. X-ray diffraction and FTIR analysis showed that the amorphous-like structure of the minerals at embryonic day 16 gradually transformed into poorly crystalline hydroxyapatite, whereas the proportion of mineral to protein increased until postnatal week 6. FTIR analysis also showed that crystallization of hydroxyapatite started around embryonic day 20, by which time SEM-EDX spectroscopy showed that the Ca/P ratio had increased and the C/Ca and C/P ratios had decreased significantly. The study suggests that the Ca/P molar ratio increases and the proportion of organic components such as proteins of the bone matrix decreases during the early stage of calcification, whereas crystal maturation continues throughout embryonic and postembryonic bone development.

  5. Comparative analysis of miRNA expression during the development of insects of different metamorphosis modes and germ-band types.

    PubMed

    Ylla, Guillem; Piulachs, Maria-Dolors; Belles, Xavier

    2017-10-11

    Do miRNAs contribute to specify the germ-band type and the body structure in the insect embryo? Our goal was to address that issue by studying the changes in miRNA expression along the ontogeny of the German cockroach Blattella germanica, which is a short germ-band and hemimetabolan species. We sequenced small RNA libraries representing 11 developmental stages of B. germanica ontogeny (with especial emphasis on embryogenesis) and the changes in miRNA expression were examined. Data were compared with equivalent data for two long germ-band holometabolan species Drosophila melanogaster and Drosophila virilis, and the short germ-band holometabolan species Tribolium castaneum. The identification of B. germanica embryo small RNA sequences unveiled miRNAs not detected in previous studies, such as those of the MIR-309 family and 54 novel miRNAs. Four main waves of miRNA expression were recognized (with most miRNA changes occurring during the embryonic stages): the first from day 0 to day 1 of embryogenesis, the second during mid-embryogenesis (days 0-6), the third (with an acute expression peak) on day 2 of embryonic development, and the fourth during post-embryonic development. The second wave defined the boundaries of maternal-to-zygotic transition, with maternal mRNAs being cleared, presumably by Mir-309 and associated scavenger miRNAs. miRNAs follow well-defined patterns of expression over hemimetabolan ontogeny, patterns that are more diverse during embryonic development than during the nymphal stages. The results suggest that miRNAs play important roles in the developmental transitions between the embryonic stages of development (starting with maternal loading), during which they might influence the germ-band type and metamorphosis mode.

  6. Distributional shift of urea production site from the extraembryonic yolk sac membrane to the embryonic liver during the development of cloudy catshark (Scyliorhinus torazame).

    PubMed

    Takagi, Wataru; Kajimura, Makiko; Tanaka, Hironori; Hasegawa, Kumi; Ogawa, Shuntaro; Hyodo, Susumu

    2017-09-01

    Urea is an essential osmolyte for marine cartilaginous fishes. Adult elasmobranchs and holocephalans are known to actively produce urea in the liver, muscle and other extrahepatic organs; however, osmoregulatory mechanisms in the developing cartilaginous fish embryo with an undeveloped urea-producing organ are poorly understood. We recently described the contribution of extraembryonic yolk sac membranes (YSM) to embryonic urea synthesis during the early developmental period of the oviparous holocephalan elephant fish (Callorhinchus milii). In the present study, to test whether urea production in the YSM is a general phenomenon among oviparous Chondrichthyes, we investigated gene expression and activities of ornithine urea cycle (OUC) enzymes together with urea concentrations in embryos of the elasmobranch cloudy catshark (Scyliorhinus torazame). The intracapsular fluid, in which the catshark embryo develops, had a similar osmolality to seawater, and embryos maintained a high concentration of urea at levels similar to that of adult plasma throughout development. Relative mRNA expressions and activities of catshark OUC enzymes were significantly higher in YSM than in embryos until stage 32. Concomitant with the development of the embryonic liver, the expression levels and activities of OUC enzymes were markedly increased in the embryo from stage 33, while those of the YSM decreased from stage 32. The present study provides further evidence that the YSM contributes to embryonic urea homeostasis until the liver and other extrahepatic organs become fully functional, and that urea-producing tissue shifts from the YSM to the embryonic liver in the late developmental period of oviparous marine cartilaginous fishes. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Geographic variation in avian incubation periods and parental influences on embryonic temperature

    USGS Publications Warehouse

    Martin, T.E.; Auer, S.K.; Bassar, R.D.; Niklison, Alina M.; Lloyd, P.

    2007-01-01

    Theory predicts shorter embryonic periods in species with greater embryo mortality risk and smaller body size. Field studies of 80 passerine species on three continents yielded data that largely conflicted with theory; incubation (embryonic) periods were longer rather than shorter in smaller species, and egg (embryo) mortality risk explained some variation within regions, but did not explain larger differences in incubation periods among geographic regions. Incubation behavior of parents seems to explain these discrepancies. Bird embryos are effectively ectothermic and depend on warmth provided by parents sitting on the eggs to attain proper temperatures for development. Parents of smaller species, plus tropical and southern hemisphere species, commonly exhibited lower nest attentiveness (percent of time spent on the nest incubating) than larger and northern hemisphere species. Lower nest attentiveness produced cooler minimum and average embryonic temperatures that were correlated with longer incubation periods independent of nest predation risk or body size. We experimentally tested this correlation by swapping eggs of species with cool incubation temperatures with eggs of species with warm incubation temperatures and similar egg mass. Incubation periods changed (shortened or lengthened) as expected and verified the importance of egg temperature on development rate. Slower development resulting from cooler temperatures may simply be a cost imposed on embryos by parents and may not enhance offspring quality. At the same time, incubation periods of transferred eggs did not match host species and reflect intrinsic differences among species that may result from nest predation and other selection pressures. Thus, geographic variation in embryonic development may reflect more complex interactions than previously recognized. ?? 2007 The Author(s).

  8. Redeployment of germ layers related TFs shows regionalized expression during two non-embryonic developments.

    PubMed

    Ricci, Lorenzo; Cabrera, Fabien; Lotito, Sonia; Tiozzo, Stefano

    2016-08-01

    In all non-vertebrate metazoan phyla, species that evolved non-embryonic developmental pathways as means of propagation or regeneration can be found. In this context, new bodies arise through asexual reproduction processes (such as budding) or whole body regeneration, that lack the familiar temporal and spatial cues classically associated with embryogenesis, like maternal determinants, or gastrulation. The molecular mechanisms underlying those non-embryonic developments (i.e., regeneration and asexual reproduction), and their relationship to those deployed during embryogenesis are poorly understood. We have addressed this question in the colonial ascidian Botryllus schlosseri, which undergoes an asexual reproductive process via palleal budding (PB), as well as a whole body regeneration by vascular budding (VB). We identified early regenerative structures during VB and then followed the fate of differentiating tissues during both non-embryonic developments (PB and VB) by monitoring the expression of genes known to play key functions in germ layer specification with well conserved expression patterns in solitary ascidian embryogenesis. The expression patterns of FoxA1, GATAa, GATAb, Otx, Bra, Gsc and Tbx2/3 were analysed during both PB and VB. We found that the majority of these transcription factors were expressed during both non-embryonic developmental processes, revealing a regionalization of the palleal and vascular buds. Knockdown of GATAa by siRNA in palleal buds confirmed that preventing the correct development of one of these regions blocks further tissue specification. Our results indicate that during both normal and injury-induced budding, a similar alternative developmental program operates via early commitment of epithelial regions. Copyright © 2016. Published by Elsevier Inc.

  9. Embryonic exposure to model naphthenic acids delays growth and hatching in the pond snail Lymnaea stagnalis.

    PubMed

    Johnston, Christina U; Clothier, Lindsay N; Quesnel, Dean M; Gieg, Lisa M; Chua, Gordon; Hermann, Petra M; Wildering, Willem C

    2017-02-01

    Naphthenic acids (NAs), a class of structurally diverse carboxylic acids with often complex ring structures and large aliphatic tail groups, are important by-products of many petrochemical processes including the oil sands mining activity of Northern Alberta. While it is evident that NAs have both acute and chronic harmful effects on many organisms, many aspects of their toxicity remain to be clarified. Particularly, while substantive data sets have been collected on NA toxicity in aquatic prokaryote and vertebrate model systems, to date, nothing is known about the toxic effects of these compounds on the embryonic development of aquatic invertebrate taxa, including freshwater mollusks. This study examines under laboratory conditions the toxicity of NAs extracted from oil sands process water (OSPW) and the low-molecular weight model NAs cyclohexylsuccinic acid (CHSA), cyclohexanebutyric acid (CHBA), and 4-tert-butylcyclohexane carboxylic acid (4-TBCA) on embryonic development of the snail Lymnaea stagnalis, a common freshwater gastropod with a broad Palearctic distribution. Evidence is provided for concentration-dependent teratogenic effects of both OSPW-derived and model NAs with remarkably similar nominal threshold concentrations between 15 and 20 mg/L and 28d EC 50 of 31 mg/L. In addition, the data provide evidence for substantial toxicokinetic differences between CHSA, CHBA and 4-TBCA. Together, our study introduces Lymnaea stagnalis embryonic development as an effective model to assay NA-toxicity and identifies molecular architecture as a potentially important toxicokinetic parameter in the toxicity of low-molecular weight NA in embryonic development of aquatic gastropods. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Engineering human cell spheroids to model embryonic tissue fusion in vitro

    PubMed Central

    Wolf, Cynthia J.; Wood, Carmen; Ren, Hongzu; Grindstaff, Rachel; Padgett, William; Swank, Adam; MacMillan, Denise; Fisher, Anna; Winnik, Witold; Abbott, Barbara D.

    2017-01-01

    Epithelial-mesenchymal interactions drive embryonic fusion events during development, and perturbations of these interactions can result in birth defects. Cleft palate and neural tube defects can result from genetic defects or environmental exposures during development, yet very little is known about the effect of chemical exposures on fusion events during human development because of a lack of relevant and robust human in vitro assays of developmental fusion behavior. Given the etiology and prevalence of cleft palate and the relatively simple architecture and composition of the embryonic palate, we sought to develop a three-dimensional culture system that mimics the embryonic palate and could be used to study fusion behavior in vitro using human cells. We engineered size-controlled human Wharton’s Jelly stromal cell (HWJSC) spheroids and established that 7 days of culture in osteogenesis differentiation medium was sufficient to promote an osteogenic phenotype consistent with embryonic palatal mesenchyme. HWJSC spheroids supported the attachment of human epidermal keratinocyte progenitor cells (HPEKp) on the outer spheroid surface likely through deposition of collagens I and IV, fibronectin, and laminin by mesenchymal spheroids. HWJSC spheroids coated in HPEKp cells exhibited fusion behavior in culture, as indicated by the removal of epithelial cells from the seams between spheroids, that was dependent on epidermal growth factor signaling and fibroblast growth factor signaling in agreement with palate fusion literature. The method described here may broadly apply to the generation of three-dimensional epithelial-mesenchymal co-cultures to study developmental fusion events in a format that is amenable to predictive toxicology applications. PMID:28898253

  11. Intermolecular Interactions of Homologs of Germ Plasm Components in Mammalian Germ Cells

    PubMed Central

    Fox, Mark S.; Clark, Amander T.; El Majdoubi, Mohammed; Vigne, Jean-Louis; Urano, Jun; Hostetler, Chris E.; Griswold, Michael D.; Weiner, Richard I.; Pera, Renee A. Reijo

    2007-01-01

    In some species such as flies, worms, frogs, and fish the key to forming and maintaining early germ cell populations is the assembly of germ plasm, microscopically-distinct egg cytoplasm that is rich in RNAs, RNA-binding proteins and ribosomes. Cells which inherit germ plasm are destined for the germ cell lineage. In contrast, in mammals, germ cells are formed and maintained later in development as a result of inductive signaling from one embryonic cell type to another. Research advances, using complementary approaches, including identification of key signaling factors that act during the initial stages of germ cell development, differentiation of germ cells in vitro from mouse and human embryonic stem cells and the demonstration, that homologs of germ plasm components are conserved in mammals, have shed light on key elements in the early development of mammalian germ cells. Here, we use FRET (Fluorescence Resonance Energy Transfer) to demonstrate that living mammalian germ cells possess specific RNA/protein complexes that contain germ plasm homologs, beginning in the earliest stages of development examined. Moreover, we demonstrate that although both human and mouse germ cells and embryonic stem cells express the same proteins, germ cell specific protein/protein interactions distinguish germ cells from precursor embryonic stem cells in vitro; interactions also determine sub-cellular localization of complex components. Finally, we suggest that assembly of similar protein complexes may be central to differentiation of diverse cell lineages and provide useful diagnostic tools for isolation of specific cell types from the assorted types differentiated from embryonic stem cells. PMID:16996493

  12. Transcriptional role of androgen receptor in the expression of long non-coding RNA Sox2OT in neurogenesis

    PubMed Central

    Tosetti, Valentina; Sassone, Jenny; Ferri, Anna L. M.; Taiana, Michela; Bedini, Gloria; Nava, Sara; Brenna, Greta; Di Resta, Chiara; Pareyson, Davide; Di Giulio, Anna Maria; Carelli, Stephana

    2017-01-01

    The complex architecture of adult brain derives from tightly regulated migration and differentiation of precursor cells generated during embryonic neurogenesis. Changes at transcriptional level of genes that regulate migration and differentiation may lead to neurodevelopmental disorders. Androgen receptor (AR) is a transcription factor that is already expressed during early embryonic days. However, AR role in the regulation of gene expression at early embryonic stage is yet to be determinate. Long non-coding RNA (lncRNA) Sox2 overlapping transcript (Sox2OT) plays a crucial role in gene expression control during development but its transcriptional regulation is still to be clearly defined. Here, using Bicalutamide in order to pharmacologically inactivated AR, we investigated whether AR participates in the regulation of the transcription of the lncRNASox2OTat early embryonic stage. We identified a new DNA binding region upstream of Sox2 locus containing three androgen response elements (ARE), and found that AR binds such a sequence in embryonic neural stem cells and in mouse embryonic brain. Our data suggest that through this binding, AR can promote the RNA polymerase II dependent transcription of Sox2OT. Our findings also suggest that AR participates in embryonic neurogenesis through transcriptional control of the long non-coding RNA Sox2OT. PMID:28704421

  13. Transcriptional role of androgen receptor in the expression of long non-coding RNA Sox2OT in neurogenesis.

    PubMed

    Tosetti, Valentina; Sassone, Jenny; Ferri, Anna L M; Taiana, Michela; Bedini, Gloria; Nava, Sara; Brenna, Greta; Di Resta, Chiara; Pareyson, Davide; Di Giulio, Anna Maria; Carelli, Stephana; Parati, Eugenio A; Gorio, Alfredo

    2017-01-01

    The complex architecture of adult brain derives from tightly regulated migration and differentiation of precursor cells generated during embryonic neurogenesis. Changes at transcriptional level of genes that regulate migration and differentiation may lead to neurodevelopmental disorders. Androgen receptor (AR) is a transcription factor that is already expressed during early embryonic days. However, AR role in the regulation of gene expression at early embryonic stage is yet to be determinate. Long non-coding RNA (lncRNA) Sox2 overlapping transcript (Sox2OT) plays a crucial role in gene expression control during development but its transcriptional regulation is still to be clearly defined. Here, using Bicalutamide in order to pharmacologically inactivated AR, we investigated whether AR participates in the regulation of the transcription of the lncRNASox2OTat early embryonic stage. We identified a new DNA binding region upstream of Sox2 locus containing three androgen response elements (ARE), and found that AR binds such a sequence in embryonic neural stem cells and in mouse embryonic brain. Our data suggest that through this binding, AR can promote the RNA polymerase II dependent transcription of Sox2OT. Our findings also suggest that AR participates in embryonic neurogenesis through transcriptional control of the long non-coding RNA Sox2OT.

  14. Scaffolding for Three-Dimensional Embryonic Vasculogenesis

    NASA Astrophysics Data System (ADS)

    Kraehenbuehl, Thomas P.; Aday, Sezin; Ferreira, Lino S.

    Biomaterial scaffolds have great potential to support efficient vascular differentiation of embryonic stem cells. Vascular cell fate-specific biochemical and biophysical cues have been identified and incorporated into three-dimensional (3D) biomaterials to efficiently direct embryonic vasculogenesis. The resulting vascular-like tissue can be used for regenerative medicine applications, further elucidation of biophysical and biochemical cues governing vasculogenesis, and drug discovery. In this chapter, we give an overview on the following: (1) developmental cues for directed differentiation of human embryonic stem cells (hESCs) into vascular cells, (2) 3D vascular differentiation in embryoid bodies (EBs), (3) preparation of 3D scaffolds for the vascular differentiation of hESCs, and (4) the most significant studies combining scaffolding and hESCs for development of vascular-like tissue.

  15. Adapting Preclinical Benchmarks for First-in-Human Trials of Human Embryonic Stem Cell-Based Therapies.

    PubMed

    Barazzetti, Gaia; Hurst, Samia A; Mauron, Alexandre

    2016-08-01

    : As research on human embryonic stem cell (hESC)-based therapies is moving from the laboratory to the clinic, there is an urgent need to assess when it can be ethically justified to make the step from preclinical studies to the first protocols involving human subjects. We examined existing regulatory frameworks stating preclinical requirements relevant to the move to first-in-human (FIH) trials and assessed how they may be applied in the context of hESC-based interventions to best protect research participants. Our findings show that some preclinical benchmarks require rethinking (i.e., identity, purity), while others need to be specified (i.e., potency, viability), owing to the distinctive dynamic heterogeneity of hESC-based products, which increases uncertainty and persistence of safety risks and allows for limited predictions of effects in vivo. Rethinking or adaptation of how to apply preclinical benchmarks in specific cases will be required repeatedly for different hESC-based products. This process would benefit from mutual learning if researchers included these components in the description of their methods in publications. To design translational research with an eye to protecting human participants in early trials, researchers and regulators need to start their efforts at the preclinical stage. Existing regulatory frameworks for preclinical research, however, are not really adapted to this in the case of stem cell translational medicine. This article reviews existing regulatory frameworks for preclinical requirements and assesses how their underlying principles may best be applied in the context of human embryonic stem cell-based interventions for the therapy of Parkinson's disease. This research will help to address the question of when it is ethically justified to start first-in-human trials in stem cell translational medicine. ©AlphaMed Press.

  16. Absence of PITX3 mutation in a Tunisian family with congenital cataract and mental retardation

    PubMed Central

    Chograni, Manèl; Chaabouni, Myriam; Chelly, Imen; Helayem, Mohamed Bechir

    2010-01-01

    Purpose The PITX3 (pituitary homeobox 3) gene encodes for a homeobox bicoid-like transcription factor. When one allele is mutated, it leads to dominant cataract and anterior segment mesenchymal dysgenesis in humans. When both copies are mutated, homozygous mutation contributes to microphtalmia with brain malformations. In the current study, a family with autosomal recessive congenital cataract (ARCC) associated with mental retardation (MR) was examined to identify PITX3 mutations. Methods Sequencing of the PITX3 gene was performed on two affected and three unaffected members of the studied Tunisian family. The results were analyzed with Sequencing Analysis 5.2 and SeqScape. Results No mutation in the four exons of PITX3 was revealed. Two substitution polymorphisms, c.439C>T and c.930C>A, were detected in exons 3 and 4, respectively. These alterations did not segregate with the disease. Conclusions Although PITX3 was shown to be essential to normal embryonic eye and brain development in vertebrates, we report the absence of PITX3 mutations in a family presenting congenital cataract and mental retardation. PMID:20376326

  17. Fgf Signaling is Required for Photoreceptor Maintenance in the Adult Zebrafish Retina

    PubMed Central

    Hochmann, Sarah; Kaslin, Jan; Hans, Stefan; Weber, Anke; Machate, Anja; Geffarth, Michaela; Funk, Richard H. W.; Brand, Michael

    2012-01-01

    Fibroblast growth factors (Fgf) are secreted signaling molecules that have mitogenic, patterning, neurotrophic and angiogenic properties. Their importance during embryonic development in patterning and morphogenesis of the vertebrate eye is well known, but less is known about the role of Fgfs in the adult vertebrate retina. To address Fgf function in adult retina, we determined the spatial distribution of components of the Fgf signaling pathway in the adult zebrafish retina. We detected differential expression of Fgf receptors, ligands and downstream Fgf targets within specific retinal layers. Furthermore, we blocked Fgf signaling in the retina, by expressing a dominant negative variant of Fgf receptor 1 conditionally in transgenic animals. After blocking Fgf signaling we observe a fast and progressive photoreceptor degeneration and disorganization of retinal tissue, coupled with cell death in the outer nuclear layer. Following the degeneration of photoreceptors, a profound regeneration response is triggered that starts with proliferation in the inner nuclear layer. Ultimately, rod and cone photoreceptors are regenerated completely. Our study reveals the requirement of Fgf signaling to maintain photoreceptors and for proliferation during regeneration in the adult zebrafish retina. PMID:22291943

  18. Human RPE Stem Cells Grown into Polarized RPE Monolayers on a Polyester Matrix Are Maintained after Grafting into Rabbit Subretinal Space

    PubMed Central

    Stanzel, Boris V.; Liu, Zengping; Somboonthanakij, Sudawadee; Wongsawad, Warapat; Brinken, Ralf; Eter, Nicole; Corneo, Barbara; Holz, Frank G.; Temple, Sally; Stern, Jeffrey H.; Blenkinsop, Timothy A.

    2014-01-01

    Summary Transplantation of the retinal pigment epithelium (RPE) is being developed as a cell-replacement therapy for age-related macular degeneration. Human embryonic stem cell (hESC) and induced pluripotent stem cell (iPSC)-derived RPE are currently translating toward clinic. We introduce the adult human RPE stem cell (hRPESC) as an alternative RPE source. Polarized monolayers of adult hRPESC-derived RPE grown on polyester (PET) membranes had near-native characteristics. Trephined pieces of RPE monolayers on PET were transplanted subretinally in the rabbit, a large-eyed animal model. After 4 days, retinal edema was observed above the implant, detected by spectral domain optical coherence tomography (SD-OCT) and fundoscopy. At 1 week, retinal atrophy overlying the fetal or adult transplant was observed, remaining stable thereafter. Histology obtained 4 weeks after implantation confirmed a continuous polarized human RPE monolayer on PET. Taken together, the xeno-RPE survived with retained characteristics in the subretinal space. These experiments support that adult hRPESC-derived RPE are a potential source for transplantation therapies. PMID:24511471

  19. Breeding bald eagles in captivity

    USGS Publications Warehouse

    Maestrelli, J.R.; Wiemeyer, Stanley N.

    1975-01-01

    A 7-year-old female Bald Eagle from Alabama was paired with a 4-year-old Alaskan male in a large flight pen during December 1969. Both birds were free of physical defects when originally placed in the pen but the female was blind in one eye prior to the 1973 breeding season.....Nesting first occurred during 1971 when at least two eggs were laid; all but one, which showed no sign of embryonic development after being incubated for 56 days, were broken by the adult birds. Two of three eggs laid in 1972 hatched. Both young died a few days after hatching following a period of inclement weather. Three eggs were laid and hatched during 1973. Antagonism between the nestlings was observed soon after hatching and may have been responsible for the unobserved death of one nestling, two days after the third young hatched. The two remaining young were raised by the adult birds and eventually left the nest 85 days after the first egg hatched. Incubation periods for the 1972-73 clutches averaged 35 days. No renesting attempts were made by the eagles during the 3.year period.

  20. Analysis of the African coelacanth genome sheds light on tetrapod evolution

    PubMed Central

    Amemiya, Chris T.; Alföldi, Jessica; Lee, Alison P.; Fan, Shaohua; Philippe, Hervé; MacCallum, Iain; Braasch, Ingo; Manousaki, Tereza; Schneider, Igor; Rohner, Nicolas; Organ, Chris; Chalopin, Domitille; Smith, Jeramiah J.; Robinson, Mark; Dorrington, Rosemary A.; Gerdol, Marco; Aken, Bronwen; Biscotti, Maria Assunta; Barucca, Marco; Baurain, Denis; Berlin, Aaron M.; Blatch, Gregory L.; Buonocore, Francesco; Burmester, Thorsten; Campbell, Michael S.; Canapa, Adriana; Cannon, John P.; Christoffels, Alan; De Moro, Gianluca; Edkins, Adrienne L.; Fan, Lin; Fausto, Anna Maria; Feiner, Nathalie; Forconi, Mariko; Gamieldien, Junaid; Gnerre, Sante; Gnirke, Andreas; Goldstone, Jared V.; Haerty, Wilfried; Hahn, Mark E.; Hesse, Uljana; Hoffmann, Steve; Johnson, Jeremy; Karchner, Sibel I.; Kuraku, Shigehiro; Lara, Marcia; Levin, Joshua Z.; Litman, Gary W.; Mauceli, Evan; Miyake, Tsutomu; Mueller, M. Gail; Nelson, David R.; Nitsche, Anne; Olmo, Ettore; Ota, Tatsuya; Pallavicini, Alberto; Panji, Sumir; Picone, Barbara; Ponting, Chris P.; Prohaska, Sonja J.; Przybylski, Dariusz; Saha, Nil Ratan; Ravi, Vydianathan; Ribeiro, Filipe J.; Sauka-Spengler, Tatjana; Scapigliati, Giuseppe; Searle, Stephen M. J.; Sharpe, Ted; Simakov, Oleg; Stadler, Peter F.; Stegeman, John J.; Sumiyama, Kenta; Tabbaa, Diana; Tafer, Hakim; Turner-Maier, Jason; van Heusden, Peter; White, Simon; Williams, Louise; Yandell, Mark; Brinkmann, Henner; Volff, Jean-Nicolas; Tabin, Clifford J.; Shubin, Neil; Schartl, Manfred; Jaffe, David; Postlethwait, John H.; Venkatesh, Byrappa; Di Palma, Federica; Lander, Eric S.; Meyer, Axel; Lindblad-Toh, Kerstin

    2013-01-01

    It was a zoological sensation when a living specimen of the coelacanth was first discovered in 1938, as this lineage of lobe-finned fish was thought to have gone extinct 70 million years ago. The modern coelacanth looks remarkably similar to many of its ancient relatives, and its evolutionary proximity to our own fish ancestors provides a glimpse of the fish that first walked on land. Here we report the genome sequence of the African coelacanth, Latimeria chalumnae. Through a phylogenomic analysis, we conclude that the lungfish, and not the coelacanth, is the closest living relative of tetrapods. Coelacanth protein-coding genes are significantly more slowly evolving than those of tetrapods, unlike other genomic features . Analyses of changes in genes and regulatory elements during the vertebrate adaptation to land highlight genes involved in immunity, nitrogen excretion and the development of fins, tail, ear, eye, brain, and olfaction. Functional assays of enhancers involved in the fin-to-limb transition and in the emergence of extra-embryonic tissues demonstrate the importance of the coelacanth genome as a blueprint for understanding tetrapod evolution. PMID:23598338

  1. Deficiencies in the uterine environment and failure to support embryo development

    USDA-ARS?s Scientific Manuscript database

    Pregnancy failure in livestock can result from failure to fertilize the oocyte or embryonic loss during gestation. Although fertilization failure occurs, embryonic mortality has a greater contribution to pregnancy failure. The focus of this review is on cattle and factors affecting, and mechanisms r...

  2. AN EMBRYONIC CHICK PANCREAS ORGAN CULTURE MODEL: CHARACTERIZATION AND NEURAL CONTROL OF EXOCRINE RELEASE

    EPA Science Inventory

    An embryonic chick (Gallus domesticus) whole-organ pancreas culture system was developed for use as an in vitro model to study cholinergic regulation of exocrine pancreatic function. The culture system was examined for characteristic exocrine function and viability by measuring e...

  3. Microscopic analysis of Spodoptera frugiperda (Lepidoptera: Noctuidae) embryonic development before and after treatment with azadirachtin, lufenuron, and deltamethrin.

    PubMed

    Correia, Alicely A; Wanderley-Teixeira, Valéria; Teixeira, Alvaro A C; Oliveira, José V; Gonçalves, Gabriel G A; Cavalcanti, MaríIia G S; Brayner, Fábio A; Alves, Luiz C

    2013-04-01

    The botanical insecticides, growth regulators, and pyrethroids have an effect on the biology of Spodoptera frugiperda (Smith). However, no emphasis has been given to the effect of these insecticides on embryonic development of insects, in histological level. Thus, this research aimed to examine by light and scanning electron microscopy S. frugiperda eggs and to describe the embryonic development, before and after immersion treatment, using commercial concentrations and lower concentrations than commercial ones, of the compounds lufenuron (Match), azadirachtin (AzaMax), and deltamethrin (Decis-positive control). For light microscopy semithin sections of eggs were used, and for scanning electron microscopy, images of the surface of eggs, treated and untreated with insecticides. The morphological characteristics of S. frugiperda eggs, in general, were similar to those described in the literature for most of the insects in the order Lepidoptera. Spherical eggs slightly flattened at the poles, with chorion, yolk, vitelline membrane, and embryo formation. In both microscopic analysis, we observed that insecticides acted immediately and independent of concentration, resulting absence, or incomplete embryo, presented yolk granules widely dispersed, without vitellophage formation, chorion disintegration, disorganized blastoderm, presenting vacuoles, yolk region with amorphous cells, and formation of completely uncharacterized appendages. Thus, we conclude that the compounds lufenuron and azadirachtin interfere on S. frugiperda embryonic development.

  4. Knockdown of Fanconi anemia genes in human embryonic stem cells reveals early developmental defects in the hematopoietic lineage.

    PubMed

    Tulpule, Asmin; Lensch, M William; Miller, Justine D; Austin, Karyn; D'Andrea, Alan; Schlaeger, Thorsten M; Shimamura, Akiko; Daley, George Q

    2010-04-29

    Fanconi anemia (FA) is a genetically heterogeneous, autosomal recessive disorder characterized by pediatric bone marrow failure and congenital anomalies. The effect of FA gene deficiency on hematopoietic development in utero remains poorly described as mouse models of FA do not develop hematopoietic failure and such studies cannot be performed on patients. We have created a human-specific in vitro system to study early hematopoietic development in FA using a lentiviral RNA interference (RNAi) strategy in human embryonic stem cells (hESCs). We show that knockdown of FANCA and FANCD2 in hESCs leads to a reduction in hematopoietic fates and progenitor numbers that can be rescued by FA gene complementation. Our data indicate that hematopoiesis is impaired in FA from the earliest stages of development, suggesting that deficiencies in embryonic hematopoiesis may underlie the progression to bone marrow failure in FA. This work illustrates how hESCs can provide unique insights into human development and further our understanding of genetic disease.

  5. Modulation of ovarian steroidogenesis by adiponectin during delayed embryonic development of Cynopterus sphinx.

    PubMed

    Anuradha; Krishna, Amitabh

    2014-09-01

    The aim of present study was to evaluate role of adiponectin in ovarian steroidogenesis during delayed embryonic development of Cynopterus sphinx. This study showed significantly low circulating adiponectin level and a decline in expression of adiponectin receptor 1 (AdipoR1) in the ovary during the period of delayed embryonic development as compared with the normal development. The adiponectin treatment in vivo during the period of delayed development caused significantly increased in circulating progesterone and estradiol levels together with increased expression of AdipoR1 in the ovary. The in vitro study confirmed the stimulatory effect of adiponectin on progesterone synthesis. Both in vivo and in vitro studies showed that the effects of adiponectin on ovarian steroidogenesis were mediated through increased expression of luteinizing hormone-receptor, steroidogenic acute regulatory protein and 3β-hydroxyl steroid dehydrogenase enzyme. The adiponectin treatment may also promote progesterone synthesis by modulating ovarian angiogenesis, cell survival and rate of apoptosis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Live dynamic imaging and analysis of developmental cardiac defects in mouse models with optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Lopez, Andrew L.; Wang, Shang; Garcia, Monica; Valladolid, Christian; Larin, Kirill V.; Larina, Irina V.

    2015-03-01

    Understanding mouse embryonic development is an invaluable resource for our interpretation of normal human embryology and congenital defects. Our research focuses on developing methods for live imaging and dynamic characterization of early embryonic development in mouse models of human diseases. Using multidisciplinary methods: optical coherence tomography (OCT), live mouse embryo manipulations and static embryo culture, molecular biology, advanced image processing and computational modeling we aim to understand developmental processes. We have developed an OCT based approach to image live early mouse embryos (E8.5 - E9.5) cultured on an imaging stage and visualize developmental events with a spatial resolution of a few micrometers (less than the size of an individual cell) and a frame rate of up to hundreds of frames per second and reconstruct cardiodynamics in 4D (3D+time). We are now using these methods to study how specific embryonic lethal mutations affect cardiac morphology and function during early development.

  7. A staging table for the embryonic development of the brownbanded bamboo shark (Chiloscyllium punctatum)

    PubMed Central

    Onimaru, Koh; Motone, Fumio; Kiyatake, Itsuki; Nishida, Kiyonori

    2018-01-01

    Background: Studying cartilaginous fishes (chondrichthyans) has helped us understand vertebrate evolution and diversity. However, resources such as genome sequences, embryos, and detailed staging tables are limited for species within this clade. To overcome these limitations, we have focused on a species, the brownbanded bamboo shark (Chiloscyllium punctatum), which is a relatively common aquarium species that lays eggs continuously throughout the year. In addition, because of its relatively small genome size, this species is promising for molecular studies. Results: To enhance biological studies of cartilaginous fishes, we establish a normal staging table for the embryonic development of the brownbanded bamboo shark. Bamboo shark embryos take around 118 days to reach the hatching period at 25°C, which is approximately 1.5 times as fast as the small‐spotted catshark (Scyliorhinus canicula) takes. Our staging table divides the embryonic period into 38 stages. Furthermore, we found culture conditions that allow early embryos to grow in partially opened egg cases. Conclusions: In addition to the embryonic staging table, we show that bamboo shark embryos exhibit relatively fast embryonic growth and are amenable to culture, key characteristics that enhance their experimental utility. Therefore, the present study is a foundation for cartilaginous fish research. Developmental Dynamics 247:712–723, 2018. © 2017 Wiley Periodicals, Inc. PMID:29396887

  8. The embryonic origin of the ampullate silk glands of the spider Cupiennius salei.

    PubMed

    Hilbrant, Maarten; Damen, Wim G M

    2015-05-01

    Silk production in spiders is considered a key innovation, and to have been vital for the diversification of the clade. The evolutionary origin of the organs involved in spider silk production, however, and in particular of the silk glands, is poorly understood. Homologies have been proposed between these and other glands found in arachnids, but lacking knowledge of the embryonic development of spider silk glands hampers an evaluation of hypotheses. This study focuses on the embryonic origin of the largest silk glands of the spider Cupiennius salei, the major and minor ampullate glands. We show how the ampullate glands originate from ectodermal invaginations on the embryonic spinneret limb buds, in relation to morphogenesis of these buds. Moreover, we visualize the subsequent growth of the ampullate glands in sections of the early postembryonic stages. The invaginations are shown to correlate with expression of the proneural gene CsASH2, which is remarkable since it has been proposed that spider silk glands and their nozzles originate from sensory bristles. Hence, by confirming the ectodermal origin of spider silk glands, and by describing the (post-)embryonic morphogenesis of the ampullate glands, this work provides a starting point for further investigating into the genetic program that underlies their development. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Autophagy in Human Embryonic Stem Cells

    PubMed Central

    Tra, Thien; Gong, Lan; Kao, Lin-Pin; Li, Xue-Lei; Grandela, Catarina; Devenish, Rodney J.; Wolvetang, Ernst; Prescott, Mark

    2011-01-01

    Autophagy (macroautophagy) is a degradative process that involves the sequestration of cytosolic material including organelles into double membrane vesicles termed autophagosomes for delivery to the lysosome. Autophagy is essential for preimplantation development of mouse embryos and cavitation of embryoid bodies. The precise roles of autophagy during early human embryonic development, remain however largely uncharacterized. Since human embryonic stem cells constitute a unique model system to study early human embryogenesis we investigated the occurrence of autophagy in human embryonic stem cells. We have, using lentiviral transduction, established multiple human embryonic stem cell lines that stably express GFP-LC3, a fluorescent marker for the autophagosome. Each cell line displays both a normal karyotype and pluripotency as indicated by the presence of cell types representative of the three germlayers in derived teratomas. GFP expression and labelling of autophagosomes is retained after differentiation. Baseline levels of autophagy detected in cultured undifferentiated hESC were increased or decreased in the presence of rapamycin and wortmannin, respectively. Interestingly, autophagy was upregulated in hESCs induced to undergo differentiation by treatment with type I TGF-beta receptor inhibitor SB431542 or removal of MEF secreted maintenance factors. In conclusion we have established hESCs capable of reporting macroautophagy and identify a novel link between autophagy and early differentiation events in hESC. PMID:22110659

  10. In Situ Histochemical Localisation of Alkaloids and Acetogenins in the Endosperm and Embryonic Axis of Annona Macroprophyllata Donn. Sm. Seeds During Germination

    PubMed Central

    Brechú-Franco, A.E.; Laguna-Hernández, G.; De la Cruz-Chacón, I.; González-Esquinca, A.R.

    2016-01-01

    Currently, the Annonaceae family is characterised by the production of acetogenins (ACGs), and also by the biosynthesis of alkaloids, primarily benzylisoquinolines derived from tyrosine. The objective of this study was to confirm the presence of alkaloids and acetogenins in the idioblasts of the endosperm and the embryonic axis of A. macroprophyllata seeds in germination. The Dragendorff, Dittmar, Ellram, and Lugol reagents were used to test for alkaloids, and Kedde’s reagent was used to determine the presence of acetogenins in fresh sections of the endosperm and embryonic axis of seeds after twelve days of germination. A positive reaction was observed for all the reagents, and the presence of alkaloids and acetogenins was confirmed in the idioblasts of the endosperm and those involved in the differentiation of the embryonic axis of the developing seedling. We concluded that the idioblasts store both metabolites, acetogenins and alkaloids. Beginning at differentiation, the idioblasts of the embryonic axis simultaneously biosynthesise acetogenins and alkaloids that are characteristic of the species during the development of the seedling. The method used here can be applied to histochemically confirm the presence of acetogenins and alkaloids in tissues and structures of the plant in different stages of its life cycle. PMID:26972713

  11. Quantitation of two endogenous lactose-inhibitable lectins in embryonic and adult chicken tissues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beyer, E.C.; Barondes, S.H.

    Two lactose-binding lectins from chicken tissues, chicken-lactose-lectin-I (CLL-I) and chicken-lactose-lectin-II (CLL-II) were quantified with a radioimmunoassay in extracts of a number of developing and adult chicken tissues. Both lectins could be measured in the same extract without separation, because they showed no significant immunological cross- reactivity. Many embryonic and adult tissues, including brain, heart, intestine, kidney, liver, lung, muscle, pancreas, and spleen, contained one or both lectins, although their concentrations differed markedly. For example, embryonic muscle, the richest source of CLL-I contained only traces of CLL-II whereas embryonic kidney, a very rich source of CLL-II contained substantial CLL-I. In bothmore » muscle and kidney, lectin levels in adulthood were much lower than in the embryonic state. In contrast, CLL-I in liver and CLL-II in intestine were 10-fold to 30-fold more concentrated in the adult than in the 15-d embryo. CLL-I and CLL-II from several tissues were purified by affinity chromatography and their identity in the various tissues was confirmed by polyacrylamide gel electrophoresis, isoelectric focusing, and peptide mapping. The results suggest that these lectins might have different functions in the many developing and adult tissues in which they are found.« less

  12. Melatonin Inhibits Embryonic Salivary Gland Branching Morphogenesis by Regulating Both Epithelial Cell Adhesion and Morphology

    PubMed Central

    Miura, Jiro; Sakai, Manabu; Uchida, Hitoshi; Nakamura, Wataru; Nohara, Kanji; Maruyama, Yusuke; Hattori, Atsuhiko; Sakai, Takayoshi

    2015-01-01

    Many organs, including salivary glands, lung, and kidney, are formed by epithelial branching during embryonic development. Branching morphogenesis occurs via either local outgrowths or the formation of clefts that subdivide epithelia into buds. This process is promoted by various factors, but the mechanism of branching morphogenesis is not fully understood. Here we have defined melatonin as a potential negative regulator or “brake” of branching morphogenesis, shown that the levels of it and its receptors decline when branching morphogenesis begins, and identified the process that it regulates. Melatonin has various physiological functions, including circadian rhythm regulation, free-radical scavenging, and gonadal development. Furthermore, melatonin is present in saliva and may have an important physiological role in the oral cavity. In this study, we found that the melatonin receptor is highly expressed on the acinar epithelium of the embryonic submandibular gland. We also found that exogenous melatonin reduces salivary gland size and inhibits branching morphogenesis. We suggest that this inhibition does not depend on changes in either proliferation or apoptosis, but rather relates to changes in epithelial cell adhesion and morphology. In summary, we have demonstrated a novel function of melatonin in organ formation during embryonic development. PMID:25876057

  13. MiRNA-mediated regulation of cell signaling and homeostasis in the early mouse embryo.

    PubMed

    Pernaute, Barbara; Spruce, Thomas; Rodriguez, Tristan A; Manzanares, Miguel

    2011-02-15

    At the time of implantation the mouse embryo is composed of three tissues the epiblast, trophectoderm and primitive endoderm. As development progresses the epiblast goes on to form the foetus whilst the trophectoderm and primitive endoderm give rise to extra-embryonic structures with important roles in embryo patterning and nutrition. Dramatic changes in gene expression occur during early embryo development and these require regulation at different levels. miRNAs are small non coding RNAs that have emerged over the last decade as important post-transcriptional repressors of gene expression. The roles played by miRNAs during early mammalian development are only starting to be elucidated. In order to gain insight into the function of miRNAs in the different lineages of the early mouse embryo we have analysed in depth the phenotype of embryos and extra-embryonic stem cells mutant for the miRNA maturation protein Dicer. This study revealed that miRNAs are involved in regulating cell signaling and homeostasis in the early embryo. Specifically, we identified a role for miRNAs in regulating the Erk signaling pathway in the extra-embryonic endoderm, cell cycle progression in extra-embryonic tissues and apoptosis in the epiblast.

  14. Based serum metabolomics analysis reveals simultaneous interconnecting changes during chicken embryonic development.

    PubMed

    Peng, M L; Li, S N; He, Q Q; Zhao, J L; Li, L L; Ma, H T

    2018-05-28

    Metabolic disorder is a major health problem and is associated with a number of metabolic diseases. Due to native hyperglycaemia and resistance to exogenous insulin, chickens as a model had used in the studies of adipose tissue biology, metabolism and obesity. But no detailed information is available about the comprehensive changes of serum metabolites at different stages of chicken embryonic development. This study employed LC/MS-QTOF to determine the changes of major functional metabolites at incubation day 14 (E14d), 19 (E19d) and hatching day 1 (H1d), and the associated pathways of differential metabolites during chicken embryonic development were analysed using Metabolite Set Enrichment Analysis method. Results showed that 39 metabolites were significantly changed from E14d to E19d and 68 metabolites were significantly altered from E19d to H1d in chicken embryos. Protein synthesis was promoted by increasing the concentrations of L-glutamine and threonine, and gonadal development was promoted through increasing oestrone content from E14d to E19d in chicken embryos, which indicated that serum glutamine, threonine and oestrone contents may be considered as the candidate indicators for assessment of early embryonic development. 2-oxoglutaric acid mainly contributed to enhancing the citric cycle, and it plays an important role in improving the growth of chicken embryos at the late development; the decreasing of L-glutamine, L-isoleucine and L-leucine contents from E19d to H1d in chicken embryonic development implied their possible functions as the feed additive during early posthatch period of broiler chickens to satisfy the growth. These results provided insights into understand the roles of serum metabolites at different developmental stages of chicken embryos, it also provides available information for chicken as a model to study metabolic disease or human obesity. © 2018 Blackwell Verlag GmbH.

  15. The spatiotemporal order of signaling events unveils the logic of development signaling.

    PubMed

    Zhu, Hao; Owen, Markus R; Mao, Yanlan

    2016-08-01

    Animals from worms and insects to birds and mammals show distinct body plans; however, the embryonic development of diverse body plans with tissues and organs within is controlled by a surprisingly few signaling pathways. It is well recognized that combinatorial use of and dynamic interactions among signaling pathways follow specific logic to control complex and accurate developmental signaling and patterning, but it remains elusive what such logic is, or even, what it looks like. We have developed a computational model for Drosophila eye development with innovated methods to reveal how interactions among multiple pathways control the dynamically generated hexagonal array of R8 cells. We obtained two novel findings. First, the coupling between the long-range inductive signals produced by the proneural Hh signaling and the short-range restrictive signals produced by the antineural Notch and EGFR signaling is essential for generating accurately spaced R8s. Second, the spatiotemporal orders of key signaling events reveal a robust pattern of lateral inhibition conducted by Ato-coordinated Notch and EGFR signaling to collectively determine R8 patterning. This pattern, stipulating the orders of signaling and comparable to the protocols of communication, may help decipher the well-appreciated but poorly defined logic of developmental signaling. The model is available upon request. hao.zhu@ymail.com Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  16. The spatiotemporal order of signaling events unveils the logic of development signaling

    PubMed Central

    Zhu, Hao; Owen, Markus R.; Mao, Yanlan

    2016-01-01

    Motivation: Animals from worms and insects to birds and mammals show distinct body plans; however, the embryonic development of diverse body plans with tissues and organs within is controlled by a surprisingly few signaling pathways. It is well recognized that combinatorial use of and dynamic interactions among signaling pathways follow specific logic to control complex and accurate developmental signaling and patterning, but it remains elusive what such logic is, or even, what it looks like. Results: We have developed a computational model for Drosophila eye development with innovated methods to reveal how interactions among multiple pathways control the dynamically generated hexagonal array of R8 cells. We obtained two novel findings. First, the coupling between the long-range inductive signals produced by the proneural Hh signaling and the short-range restrictive signals produced by the antineural Notch and EGFR signaling is essential for generating accurately spaced R8s. Second, the spatiotemporal orders of key signaling events reveal a robust pattern of lateral inhibition conducted by Ato-coordinated Notch and EGFR signaling to collectively determine R8 patterning. This pattern, stipulating the orders of signaling and comparable to the protocols of communication, may help decipher the well-appreciated but poorly defined logic of developmental signaling. Availability and implementation: The model is available upon request. Contact: hao.zhu@ymail.com Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27153573

  17. Developmental staging of male murine embryonic gonad by SAGE analysis

    PubMed Central

    Lee, Tin-Lap; Li, Yunmin; Alba, Diana; Vong, Queenie P.; Wu, Shao-Ming; Baxendale, Vanessa; Rennert, Owen M.; Lau, Yun-Fai Chris; Chan, Wai-Yee

    2012-01-01

    Despite the identification of key genes such as Sry integral to embryonic gonadal development, the genomic classification and identification of chromosomal activation of this process is still poorly understood. To better understand the genetic regulation of gonadal development, we performed Serial Analysis of Gene Expression (SAGE) to profile the genes and novel transcripts, and an average of 152,000 tags from male embryonic gonads at E10.5 (embryonic day 10.5), E11.5, E12.5, E13.5, E15.5 and E17.5 were analyzed. A total of 275,583 non-singleton tags that do not map to any annotated sequence were identified in the six gonad libraries, and 47,255 tags were mapped to 24,975 annotated sequences, among which 987 sequences were uncharacterized. Utilizing an unsupervised pattern identification technique, we established molecular staging of male gonadal development. Rather than providing a static descriptive analysis, we developed algorithms to cluster the SAGE data and assign SAGE tags to a corresponding chromosomal position; these data are displayed in chromosome graphic format. A prominent increase in global genomic activity from E10.5 to E17.5 was observed. Important chromosomal regions related to the developmental processes were identified and validated based on established mouse models with developmental disorders. These regions may represent markers for early diagnosis for disorders of male gonad development as well as potential treatment targets. PMID:19376482

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalousek, D.K.; Fitch, N.; Paradice, B.

    Topics covered in this book include a general review of normal embryonic and fetal development; abortion and the basic approach to the examination of aborted embryos and fetuses; and pathologic findings detected on examination of products of conception. The authors illustrate specific morphologic lesions and the variable expression of genetic syndromes in the embryonic and fetal periods.

  19. EFFECT OF TRANSIENT EMBRYONIC IN VIVO EXPOSURE TO THE ENDOCRINE DISRUPTOR METHOXYCHLOR ON EMBRYONIC AND POSTNATAL TESTIS DEVELOPMENT. (R827405)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  20. Transplantation of Human Embryonic Stem Cells in Patients with Multiple Sclerosis and Lyme Disease.

    PubMed

    Shroff, Geeta

    2016-12-13

    BACKGROUND Multiple sclerosis (MS) is an inflammatory and neurodegenerative disease in which the myelin sheath of nerve cells is damaged. It can cause delayed neurologic symptoms similar to those seen in Lyme disease (LD) patients. Thymus derived T-cells (myelin reactive) migrate to the blood brain barrier and stimulate an inflammatory cascade in the central nervous system. Cell based therapies play an important role in treating neurological diseases such as MS and LD. CASE REPORT Human embryonic stem cell (hESC) therapy was used to treat two patients with both MS and LD. The hESCs were administered via different routes including intramuscular, intravenous, and supplemental routes (e.g., deep spinal, caudal, intercostal through eye drops) to regenerate the injured cells. Both the patients showed remarkable improvement in their functional skills, overall stamina, cognitive abilities, and muscle strength. Furthermore, the improvement in the patients' conditions were assessed by magnetic resonance tractography and single photon emission computed tomography (SPECT). CONCLUSIONS Therapy with hESCs might emerge as an effective and safe treatment for patients with both MS and LD. Well-designed clinical trials and follow-up studies are needed to prove the long-term efficacy and safety of hESC therapy in the treatment of patients with MS and LD.

Top