Tian, Changhai; Wang, Yongxiang; Sun, Lijun; Ma, Kangmu; Zheng, Jialin C
2011-02-01
Direct reprogramming of a variety of somatic cells with the transcription factors Oct4 (also called Pou5f1), Sox2 with either Klf4 and Myc or Lin28 and Nanog generates the induced pluripotent stem cells (iPSCs) with marker similarity to embryonic stem cells. However, the difference between iPSCs derived from different origins is unclear. In this study, we hypothesized that reprogrammed cells retain a "memory" of their origins and possess additional potential of related tissue differentiation. We reprogrammed primary mouse astrocytes via ectopic retroviral expression of OCT3/4, Sox2, Klf4 and Myc and found the iPSCs from mouse astrocytes expressed stem cell markers and formed teratomas in SCID mice containing derivatives of all three germ layers similar to mouse embryonic stem cells besides semblable morphologies. To test our hypothesis, we compared embryonic bodies (EBs) formation and neuronal differentiation between iPSCs from mouse embryonic fibroblasts (MEFsiPSCs) and iPSCs from mouse astrocytes (mAsiPSCs). We found that mAsiPSCs grew slower and possessed more potential for neuronal differentiation compared to MEFsiPSCs. Our results suggest that mAsiPSCs retain a "memory" of the central nervous system, which confers additional potential upon neuronal differentiation.
NASA Astrophysics Data System (ADS)
Huang, Yongyang; Degenhardt, Karl R.; Astrof, Sophie; Zhou, Chao
2016-03-01
We have demonstrated the capability of spectral domain optical coherence tomography (SDOCT) system to image full development of mouse embryonic cardiovascular system. Monitoring morphological changes of mouse embryonic heart occurred in different embryonic stages helps identify structural or functional cardiac anomalies and understand how these anomalies lead to congenital heart diseases (CHD) present at birth. In this study, mouse embryo hearts ranging from E9.5 to E15.5 were prepared and imaged in vitro. A customized spectral domain OCT system was used for imaging, with a central wavelength of 1310nm, spectral bandwidth of ~100nm and imaging speed of 47kHz A-scans/s. Axial resolution of this system was 8.3µm in air, and transverse resolution was 6.2 µm with 5X objective. Key features of mouse embryonic cardiovascular development such as vasculature remodeling into circulatory system, separation of atria and ventricles and emergence of valves could be clearly seen in three-dimensional OCT images. Optical clearing was applied to overcome the penetration limit of OCT system. With high resolution, fast imaging speed, 3D imaging capability, OCT proves to be a promising biomedical imaging modality for developmental biology studies, rivaling histology and micro-CT.
Krznar, Petra; Hörl, Manuel; Ammar, Zeinab; Montessuit, Sylvie; Pierredon, Sandra; Zamboni, Nicola; Martinou, Jean-Claude
2016-01-01
Mitochondrial import of pyruvate by the mitochondrial pyruvate carrier (MPC) is a central step which links cytosolic and mitochondrial intermediary metabolism. To investigate the role of the MPC in mammalian physiology and development, we generated a mouse strain with complete loss of MPC1 expression. This resulted in embryonic lethality at around E13.5. Mouse embryonic fibroblasts (MEFs) derived from mutant mice displayed defective pyruvate-driven respiration as well as perturbed metabolic profiles, and both defects could be restored by reexpression of MPC1. Labeling experiments using 13C-labeled glucose and glutamine demonstrated that MPC deficiency causes increased glutaminolysis and reduced contribution of glucose-derived pyruvate to the TCA cycle. Morphological defects were observed in mutant embryonic brains, together with major alterations of their metabolome including lactic acidosis, diminished TCA cycle intermediates, energy deficit and a perturbed balance of neurotransmitters. Strikingly, these changes were reversed when the pregnant dams were fed a ketogenic diet, which provides acetyl-CoA directly to the TCA cycle and bypasses the need for a functional MPC. This allowed the normal gestation and development of MPC deficient pups, even though they all died within a few minutes post-delivery. This study establishes the MPC as a key player in regulating the metabolic state necessary for embryonic development, neurotransmitter balance and post-natal survival. PMID:27176894
Cell death and morphogenesis during early mouse development: Are they interconnected?
Bedzhov, Ivan; Zernicka-Goetz, Magdalena
2015-01-01
Shortly after implantation the embryonic lineage transforms from a coherent ball of cells into polarized cup shaped epithelium. Recently we elucidated a previously unknown apoptosis-independent morphogenic event that reorganizes the pluripotent lineage. Polarization cues from the surrounding basement membrane rearrange the epiblast into a polarized rosette-like structure, where subsequently a central lumen is established. Thus, we provided a new model revising the current concept of apoptosis-dependent epiblast morphogenesis. Cell death however has to be tightly regulated during embryogenesis to ensure developmental success. Here, we follow the stages of early mouse development and take a glimpse at the critical signaling and morphogenic events that determine cells destiny and reshape the embryonic lineage. PMID:25640415
Effects of different feeder layers on culture of bovine embryonic stem cell-like cells in vitro.
Cong, Shan; Cao, Guifang; Liu, Dongjun
2014-12-01
To find a suitable feeder layer is important for successful culture conditions of bovine embryonic stem cell-like cells. In this study, expression of pluripotency-related genes OCT4, SOX2 and NANOG in bovine embryonic stem cell-like cells on mouse embryonic fibroblast feeder layers at 1-5 passages were monitored in order to identify the possible reason that bovine embryonic stem cell-like cells could not continue growth and passage. Here, we developed two novel feeder layers, mixed embryonic fibroblast feeder layers of mouse and bovine embryonic fibroblast at different ratios and sources including mouse fibroblast cell lines. The bovine embryonic stem cell-like cells generated in our study displayed typical stem cell morphology and expressed specific markers such as OCT4, stage-specific embryonic antigen 1 and 4, alkaline phosphatase, SOX2, and NANOG mRNA levels. When feeder layers and cell growth factors were removed, the bovine embryonic stem cell-like cells formed embryoid bodies in a suspension culture. Furthermore, we compared the expression of the pluripotent markers during bovine embryonic stem cell-like cell in culture on mixed embryonic fibroblast feeder layers, including mouse fibroblast cell lines feeder layers and mouse embryonic fibroblast feeder layers by real-time quantitative polymerase chain reaction. Results suggested that mixed embryonic fibroblast and sources including mouse fibroblast cell lines feeder layers were more suitable for long-term culture and growth of bovine embryonic stem cell-like cells than mouse embryonic fibroblast feeder layers. The findings may provide useful experimental data for the establishment of an appropriate culture system for bovine embryonic stem cell lines.
[Low expression of activin A in mouse and human embryonic teratocarcinoma cells].
Gordeeva, O F
2014-01-01
TGFP3 family factors play an important role in regulating the balance of self-renewal and differentiation of mouse and human pluripotent stem and embryonic teratocarcinoma cells. The expression patterns of TGFbeta family signaling ligands and functional roles of these signaling pathways differ significantly in mouse and human embryonic stem cells, but the activity and functional role of these factors in mouse and human embryonic teratocarcinoma cells were not sufficiently investigated. Comparative quantitative real-time PCR analysis of the expression of TGF@[beta] family factors in mouse embryonic stem, embryonic germ, and embryonic teratocarcinoma cells showed that embryonic teratocarcinoma cells express lower ActivinA than pluripotent stem cells but similar levels of factors Nodal, Lefty 1, TGFbeta1, BMP4, and GDF3. In human nullipotent embryonic teratocarcinoma PA-1 cells, most factors of the TGFbeta family (ACTIVINA, NODAL, LEFTY 1, BMP4, and GDF3) are expressed at lower levels than in human embryonic stem cells: Thus, in mouse and human nullipotent teratocarcinoma cells, theexpression of ActivinA is significantly reduced com- pared ivith embryonic stem cells. Presumably, these differences may be associated with changes in the functional activity of the respective signaling pathways and deregulation of proliferative and antiproliferative mechanisms in embryonic teratocarcinoma cells.
Chen, Ying-Jiun J.; Vogt, Daniel; Wang, Yanling; Visel, Axel; Silberberg, Shanni N.; Nicholas, Cory R.; Danjo, Teruko; Pollack, Joshua L.; Pennacchio, Len A.; Anderson, Stewart; Sasai, Yoshiki; Baraban, Scott C.; Kriegstein, Arnold R.; Alvarez-Buylla, Arturo; Rubenstein, John L. R.
2013-01-01
The medial ganglionic eminence (MGE) is an embryonic forebrain structure that generates the majority of cortical interneurons. MGE transplantation into specific regions of the postnatal central nervous system modifies circuit function and improves deficits in mouse models of epilepsy, Parkinson's disease, pain, and phencyclidine-induced cognitive deficits. Herein, we describe approaches to generate MGE-like progenitor cells from mouse embryonic stem (ES) cells. Using a modified embryoid body method, we provided gene expression evidence that mouse ES-derived Lhx6+ cells closely resemble immature interneurons generated from authentic MGE-derived Lhx6+ cells. We hypothesized that enhancers that are active in the mouse MGE would be useful tools in detecting when ES cells differentiate into MGE cells. Here we demonstrate the utility of enhancer elements [422 (DlxI12b), Lhx6, 692, 1056, and 1538] as tools to mark MGE-like cells in ES cell differentiation experiments. We found that enhancers DlxI12b, 692, and 1538 are active in Lhx6-GFP+ cells, while enhancer 1056 is active in Olig2+ cells. These data demonstrate unique techniques to follow and purify MGE-like derivatives from ES cells, including GABAergic cortical interneurons and oligodendrocytes, for use in stem cell-based therapeutic assays and treatments. PMID:23658702
Cell death and morphogenesis during early mouse development: are they interconnected?
Bedzhov, Ivan; Zernicka-Goetz, Magdalena
2015-04-01
Shortly after implantation the embryonic lineage transforms from a coherent ball of cells into polarized cup shaped epithelium. Recently we elucidated a previously unknown apoptosis-independent morphogenic event that reorganizes the pluripotent lineage. Polarization cues from the surrounding basement membrane rearrange the epiblast into a polarized rosette-like structure, where subsequently a central lumen is established. Thus, we provided a new model revising the current concept of apoptosis-dependent epiblast morphogenesis. Cell death however has to be tightly regulated during embryogenesis to ensure developmental success. Here, we follow the stages of early mouse development and take a glimpse at the critical signaling and morphogenic events that determine cells destiny and reshape the embryonic lineage. © 2015 The Authors. Bioessays published by WILEY Periodicals, Inc.
Snyder, Jessica M.; Washington, Ida M.; Birkland, Timothy; Chang, Mary Y.; Frevert, Charles W.
2015-01-01
Versican, a chondroitin sulfate proteoglycan, is important in embryonic development, and disruption of the versican gene is embryonically lethal in the mouse. Although several studies show that versican is increased in various organs during development, a focused quantitative study on versican expression and distribution during lung and central nervous system development in the mouse has not previously been performed. We tracked changes in versican (Vcan) gene expression and in the accumulation and degradation of versican. Vcan expression and quantitative immunohistochemistry performed from embryonic day (E) 11.5 to E15.5 showed peak Vcan expression at E13.5 in the lungs and brain. Quantitative mRNA analysis and versican immunohistochemistry showed differences in the expression of the versican isoforms in the embryonic lung and head. The expression of Vcan mRNA and accumulation of versican in tissues was complementary. Immunohistochemistry demonstrated co-localization of versican accumulation and degradation, suggesting distinct roles of versican deposition and degradation in embryogenesis. Very little versican mRNA or protein was found in the lungs of 12- to 16-week-old mice but versican accumulation was significantly increased in mice with Pseudomonas aeruginosa lung infection. These data suggest that versican plays an important role in fundamental, overlapping cellular processes in lung development and infection. PMID:26385570
The roles of ERAS during cell lineage specification of mouse early embryonic development.
Zhao, Zhen-Ao; Yu, Yang; Ma, Huai-Xiao; Wang, Xiao-Xiao; Lu, Xukun; Zhai, Yanhua; Zhang, Xiaoxin; Wang, Haibin; Li, Lei
2015-08-01
Eras encodes a Ras-like GTPase protein that was originally identified as an embryonic stem cell-specific Ras. ERAS has been known to be required for the growth of embryonic stem cells and stimulates somatic cell reprogramming, suggesting its roles on mouse early embryonic development. We now report a dynamic expression pattern of Eras during mouse peri-implantation development: its expression increases at the blastocyst stage, and specifically decreases in E7.5 mesoderm. In accordance with its expression pattern, the increased expression of Eras promotes cell proliferation through controlling AKT activation and the commitment from ground to primed state through ERK activation in mouse embryonic stem cells; and the reduced expression of Eras facilitates primitive streak and mesoderm formation through AKT inhibition during gastrulation. The expression of Eras is finely regulated to match its roles in mouse early embryonic development during which Eras expression is negatively regulated by the β-catenin pathway. Thus, beyond its well-known role on cell proliferation, ERAS may also play important roles in cell lineage specification during mouse early embryonic development. © 2015 The Authors.
Using the mouse embryonic stem cell test (EST) to evaluate the embryotoxicity of haloacetic acids
The Embryonic Stem Cell Test (EST) is used to predict the embryotoxic potential of a test compound by combining the data from cytotoxicity assays in undifferentiated mouse embryonic stem (mES) cells and differentiated mouse cells with the data from a differentiation assay in mES ...
In utero mouse embryonic imaging with OCT for ophthalmologic research
NASA Astrophysics Data System (ADS)
Syed, Saba H.; Larina, Irina V.; Dickinson, Mary E.; Larin, Kirill V.
2011-03-01
Live imaging of an eye during embryonic development in mammalian model is important for understanding dynamic aspects of normal and abnormal eye morphogenesis. In this study, we used Swept Source Optical Coherence Tomography (SS-OCT) for live structural imaging of mouse embryonic eye through the uterine wall. The eye structure was reconstructed in mouse embryos at 13.5 to 17.5 days post coitus (dpc). Despite the limited imaging depth of OCT in turbid tissues, we were able to visualize the whole eye globe at these stages. These results suggest that live in utero OCT imaging is a useful tool to study embryonic eye development in the mouse model.
Spontaneous generation of germline characteristics in mouse fibrosarcoma cells
NASA Astrophysics Data System (ADS)
Ma, Zhan; Hu, Yao; Jiang, Guoying; Hou, Jun; Liu, Ruilai; Lu, Yuan; Liu, Chunfang
2012-10-01
Germline/embryonic-specific genes have been found to be activated in somatic tumors. In this study, we further showed that cells functioning as germline could be present in mouse fibrosarcoma cells (L929 cell line). Early germline-like cells spontaneously appeared in L929 cells and further differentiated into oocyte-like cells. These germline-like cells can, in turn, develop into blastocyst-like structures in vitro and cause teratocarcinomas in vivo, which is consistent with natural germ cells in function. Generation of germline-like cells from somatic tumors might provide a novel way to understand why somatic cancer cells have strong features of embryonic/germline development. It is thought that the germline traits of tumors are associated with the central characteristics of malignancy, such as immortalization, invasion, migration and immune evasion. Therefore, germline-like cells in tumors might provide potential targets to tumor biology, diagnosis and therapy.
Abbasi, Amir A; Minhas, Rashid; Schmidt, Ansgar; Koch, Sabine; Grzeschik, Karl-Heinz
2013-10-01
The zinc finger transcription factor Gli3 is an important mediator of Sonic hedgehog (Shh) signaling. During early embryonic development Gli3 participates in patterning and growth of the central nervous system, face, skeleton, limb, tooth and gut. Precise regulation of the temporal and spatial expression of Gli3 is crucial for the proper specification of these structures in mammals and other vertebrates. Previously we reported a set of human intronic cis-regulators controlling almost the entire known repertoire of endogenous Gli3 expression in mouse neural tube and limbs. However, the genetic underpinning of GLI3 expression in other embryonic domains such as craniofacial structures and internal organs remain elusive. Here we demonstrate in a transgenic mice assay the potential of a subset of human/fish conserved non-coding sequences (CNEs) residing within GLI3 intronic intervals to induce reporter gene expression at known regions of endogenous Gli3 transcription in embryonic domains other than central nervous system (CNS) and limbs. Highly specific reporter expression was observed in craniofacial structures, eye, gut, and genitourinary system. Moreover, the comparison of expression patterns directed by these intronic cis-acting regulatory elements in mouse and zebrafish embryos suggests that in accordance with sequence conservation, the target site specificity of a subset of these elements remains preserved among these two lineages. Taken together with our recent investigations, it is proposed here that during vertebrate evolution the Gli3 expression control acquired multiple, independently acting, intronic enhancers for spatiotemporal patterning of CNS, limbs, craniofacial structures and internal organs. © 2013 The Authors Development, Growth & Differentiation © 2013 Japanese Society of Developmental Biologists.
A potential inhibitory function of draxin in regulating mouse trunk neural crest migration.
Zhang, Sanbing; Su, Yuhong; Gao, Jinbao; Zhang, Chenbing; Tanaka, Hideaki
2017-01-01
Draxin is a repulsive axon guidance protein that plays important roles in the formation of three commissures in the central nervous system and dorsal interneuron 3 (dI3) in the chick spinal cord. In the present study, we report the expression pattern of mouse draxin in the embryonic mouse trunk spinal cord. In the presence of draxin, the longest net migration length of a migrating mouse trunk neural crest cell was significantly reduced. In addition, the relative number of apolar neural crest cells increased as the draxin treatment time increased. Draxin caused actin cytoskeleton rearrangement in the migrating trunk neural crest cells. Our data suggest that draxin may regulate mouse trunk neural crest cell migration by the rearrangement of cell actin cytoskeleton and by reducing the polarization activity of these cells subsequently.
In utero imaging of mouse embryonic development with optical coherence tomography
NASA Astrophysics Data System (ADS)
Syed, Saba H.; Dickinson, Mary E.; Larin, Kirill V.; Larina, Irina V.
2011-03-01
Studying progression of congenital diseases in animal models can greatly benefit from live embryonic imaging Mouse have long served as a model of mammalian embryonic developmental processes, however, due to intra-uterine nature of mammalian development live imaging is challenging. In this report we present results on live mouse embryonic imaging in utero with Optical Coherence Tomography. Embryos from 12.5 through 17.5 days post-coitus (dpc) were studied through the uterine wall. In longitudinal studies, same embryos were imaged at developmental stages 13.5, 15.5 and 17.5 dpc. This study suggests that OCT can serve as a powerful tool for live mouse embryo imaging. Potentially this technique can contribute to our understanding developmental abnormalities associated with mutations, toxic drugs.
Mouse Embryonic Stem Cell Adherent Cell Differentiation and Cytotoxicity (ACDC) assay
The Embryonic Stem Cell Test (EST) is an assay which evaluates xenobiotic-induced effects using three endpoints: mouse embryonic stem cell (mESC) differentiation, mESC viability, and 3T3-cell viability. Our research goal was to develop an improved high-throughput assay by establi...
Fluorescence lifetime imaging of induced pluripotent stem cells
NASA Astrophysics Data System (ADS)
Uchugonova, Aisada; Batista, Ana; König, Karsten
2014-02-01
The multiphoton FLIM tomograph MPTflex with its flexible scan head, articulated arm, and the tunable femtosecond laser source was employed to study cell monolayers and 3D cell clusters. FLIM was performed with 250 ps temporal resolution and submicron special resolution using time-correlated single photon counting. The autofluorescence based on NAD(P)H and flavins/flavoproteins has been measured in mouse embryonic fibroblasts, induced pluripotent stem cells (iPS cells) originated from mouse embryonic fibroblasts and non-proliferative mouse embryonic fibroblasts.
González, Sheyla; Ibáñez, Elena
2010-01-01
Purpose The aim of the present study is to compare three previously described mouse embryonic stem cell derivation methods to evaluate the influence of culture conditions, number of isolated blastomeres and embryonic stage in the derivation process. Methods Three embryonic stem cell derivation methods: standard, pre-adhesion and defined culture medium method, were compared in the derivation from isolated blastomeres and whole embryos at 4- and 8-cell stages. Results A total of 200 embryonic stem cell lines were obtained with an efficiency ranging from 1.9% to 72%. Conclusions Using either isolated blastomeres or whole embryos, the highest rates of mouse embryonic stem cell establishment were achieved with the defined culture medium method and efficiencies increased as development progressed. Using isolated blastomeres, efficiencies increased in parallel to the proportion of the embryo volume used to start the derivation process. PMID:20862536
Our goal has been to develop a high-throughput, in vitro technique for evaluating the effects of xenobiotics using mouse embryonic stem cells (mESCs). We began with the Embryonic Stem Cell Test (EST), which is used to predict the embryotoxic potential of a test compound by combin...
Intermolecular Interactions of Homologs of Germ Plasm Components in Mammalian Germ Cells
Fox, Mark S.; Clark, Amander T.; El Majdoubi, Mohammed; Vigne, Jean-Louis; Urano, Jun; Hostetler, Chris E.; Griswold, Michael D.; Weiner, Richard I.; Pera, Renee A. Reijo
2007-01-01
In some species such as flies, worms, frogs, and fish the key to forming and maintaining early germ cell populations is the assembly of germ plasm, microscopically-distinct egg cytoplasm that is rich in RNAs, RNA-binding proteins and ribosomes. Cells which inherit germ plasm are destined for the germ cell lineage. In contrast, in mammals, germ cells are formed and maintained later in development as a result of inductive signaling from one embryonic cell type to another. Research advances, using complementary approaches, including identification of key signaling factors that act during the initial stages of germ cell development, differentiation of germ cells in vitro from mouse and human embryonic stem cells and the demonstration, that homologs of germ plasm components are conserved in mammals, have shed light on key elements in the early development of mammalian germ cells. Here, we use FRET (Fluorescence Resonance Energy Transfer) to demonstrate that living mammalian germ cells possess specific RNA/protein complexes that contain germ plasm homologs, beginning in the earliest stages of development examined. Moreover, we demonstrate that although both human and mouse germ cells and embryonic stem cells express the same proteins, germ cell specific protein/protein interactions distinguish germ cells from precursor embryonic stem cells in vitro; interactions also determine sub-cellular localization of complex components. Finally, we suggest that assembly of similar protein complexes may be central to differentiation of diverse cell lineages and provide useful diagnostic tools for isolation of specific cell types from the assorted types differentiated from embryonic stem cells. PMID:16996493
Rotational imaging optical coherence tomography for full-body mouse embryonic imaging
Wu, Chen; Sudheendran, Narendran; Singh, Manmohan; Larina, Irina V.; Dickinson, Mary E.; Larin, Kirill V.
2016-01-01
Abstract. Optical coherence tomography (OCT) has been widely used to study mammalian embryonic development with the advantages of high spatial and temporal resolutions and without the need for any contrast enhancement probes. However, the limited imaging depth of traditional OCT might prohibit visualization of the full embryonic body. To overcome this limitation, we have developed a new methodology to enhance the imaging range of OCT in embryonic day (E) 9.5 and 10.5 mouse embryos using rotational imaging. Rotational imaging OCT (RI-OCT) enables full-body imaging of mouse embryos by performing multiangle imaging. A series of postprocessing procedures was performed on each cross-section image, resulting in the final composited image. The results demonstrate that RI-OCT is able to improve the visualization of internal mouse embryo structures as compared to conventional OCT. PMID:26848543
Herrlinger, Stephanie A; Shao, Qiang; Ma, Li; Brindley, Melinda; Chen, Jian-Fu
2018-04-26
The Zika virus (ZIKV) is a flavivirus currently endemic in North, Central, and South America. It is now established that the ZIKV can cause microcephaly and additional brain abnormalities. However, the mechanism underlying the pathogenesis of ZIKV in the developing brain remains unclear. Intracerebral surgical methods are frequently used in neuroscience research to address questions about both normal and abnormal brain development and brain function. This protocol utilizes classical surgical techniques and describes methods that allow one to model ZIKV-associated human neurological disease in the mouse nervous system. While direct brain inoculation does not model the normal mode of virus transmission, the method allows investigators to ask targeted questions concerning the consequence after ZIKV infection of the developing brain. This protocol describes embryonic, neonatal, and adult stages of intraventricular inoculation of ZIKV. Once mastered, this method can become a straightforward and reproducible technique that only takes a few hours to perform.
Novosadova, E V; Manuilova, E S; Arsen'eva, E L; Khaidarova, N V; Dolotov, O V; Inozemtseva, L S; Kozachenkov, K Yu; Tarantul, V Z; Grivennikov, I A
2005-07-01
The effects of pub gene on proliferation and initial stages of differentiation of embryonic mouse stem cells were studied in vitro. To this end we used enhanced expression of human pub gene (hpub) and suppression of expression of mouse endogenous pub gene with RNA-interference in embryonic stem cells. Proliferative activity of genetically modified polyclonal lines of the embryonic stem cells transfected with plasmids carrying expressing hpub gene or plasmids generating small interference RNA to this gene did not differ from that of the control cells. Inhibition of expression of endogenous pub gene in embryonic stem cells using small interference RNA 2-fold decreased the formation of embryoid bodies, at the same time additional expression of exogenous hpub gene almost 2-fold increased their number in comparison with the control. It was hypothesized that pub gene participates in early stages of differentiation of embryonic stem cells leading to the formation of embryoid bodies.
Cultured embryonic non-innervated mouse muzzle is capable of generating a whisker pattern.
Andrés, F L; Van Der Loos, H
1983-01-01
The whisker pattern on the muzzle of the mouse is mapped in the contralateral parietal neocortex, each whisker follicle projecting to its own multineuronal unit ('barrel'). To determine the role, if any, of the peripheral innervation in the establishment of the vibrissal array, we cultured non-innervated prospective whiskerpads from 9- and 10-day-old embryos, mostly on chorioallantoic membrane. The results show that skin, alone, is capable of generating the whisker pattern, thus adducing a strong argument for the hypothesis that the central brain maps have their origin in the periphery. Copyright © 1983. Published by Elsevier Ltd.
The Laboratory Animal Sciences Program manages the expansion, processing, and distribution of1,501 genetically engineered mouse embryonic stem cell (mESC) linesharboring conditional microRNA transgenes. The Laboratory Animal Sciences Prog
Qiu, Jia-jun; Ren, Zhao-rui; Yan, Jing-bin
2016-01-01
Epigenetics regulations have an important role in fertilization and proper embryonic development, and several human diseases are associated with epigenetic modification disorders, such as Rett syndrome, Beckwith-Wiedemann syndrome and Angelman syndrome. However, the dynamics and functions of long non-coding RNAs (lncRNAs), one type of epigenetic regulators, in human pre-implantation development have not yet been demonstrated. In this study, a comprehensive analysis of human and mouse early-stage embryonic lncRNAs was performed based on public single-cell RNA sequencing data. Expression profile analysis revealed that lncRNAs are expressed in a developmental stage–specific manner during human early-stage embryonic development, whereas a more temporal-specific expression pattern was identified in mouse embryos. Weighted gene co-expression network analysis suggested that lncRNAs involved in human early-stage embryonic development are associated with several important functions and processes, such as oocyte maturation, zygotic genome activation and mitochondrial functions. We also found that the network of lncRNAs involved in zygotic genome activation was highly preservative between human and mouse embryos, whereas in other stages no strong correlation between human and mouse embryo was observed. This study provides insight into the molecular mechanism underlying lncRNA involvement in human pre-implantation embryonic development. PMID:27542205
High-Frequency Ultrasound for the Study of Early Mouse Embryonic Cardiovascular System.
Greco, Adelaide; Coda, Anna Rita Daniela; Albanese, Sandra; Ragucci, Monica; Liuzzi, Raffaele; Auletta, Luigi; Gargiulo, Sara; Lamagna, Francesco; Salvatore, Marco; Mancini, Marcello
2015-12-01
An accurate diagnosis of congenital heart defects during fetal development is critical for interventional planning. Mice can be used to generate animal models with heart defects, and high-frequency ultrasound (HFUS) imaging enables in utero imaging of live mouse embryos. A wide range of physiological measurements is possible using Doppler-HFUS imaging; limitations of any single measurement warrant a multiparameter approach to characterize cardiovascular function. Doppler-HFUS was used to explore the embryonic (heart, aorta) and extraembryonic (umbilical blood flow) circulatory systems to create a database in normal mouse embryos between 9.5 and 16.5 days of gestation. Multivariate analyses were performed to explore correlations between gestational age and embryo echocardiographic parameters. Heart rate and peak velocity in the aorta were positively correlated with gestational time, whereas cardiac cycle length, isovolumetric relaxation time, myocardial performance index, and arterial deceleration time of the umbilical cord were negatively correlated with it. Doppler-HFUS facilitated detailed characterization of the embryonic mouse circulation and represents a useful tool for investigation of the early mouse embryonic cardiovascular system. © The Author(s) 2015.
NASA Astrophysics Data System (ADS)
Wang, Shang; Singh, Manmohan; Lopez, Andrew L.; Wu, Chen; Raghunathan, Raksha; Schill, Alexander; Li, Jiasong; Larin, Kirill V.; Larina, Irina V.
2016-03-01
Efficient phenotyping of cardiac dynamics in live mouse embryos has significant implications on understanding of early mammalian heart development and congenital cardiac defects. Recent studies established optical coherence tomography (OCT) as a powerful tool for live embryonic heart imaging in various animal models. However, current four-dimensional (4D) OCT imaging of the beating embryonic heart largely relies on gated data acquisition or postacquisition synchronization, which brings errors when cardiac cycles lack perfect periodicity and is time consuming and computationally expensive. Here, we report direct 4D OCT imaging of the structure and function of cardiac dynamics in live mouse embryos achieved by employing a Fourier domain mode-locking swept laser source that enables ~1.5 MHz A-line rate. Through utilizing both forward and backward scans of a resonant mirror, we obtained a ~6.4 kHz frame rate, which allows for a direct volumetric data acquisition speed of ~43 Hz, around 20 times of the early-stage mouse embryonic heart rate. Our experiments were performed on mouse embryos at embryonic day 9.5. Time-resolved 3D cardiodynamics clearly shows the heart structure in motion. We present analysis of cardiac wall movement and its velocity from the primitive atrium and ventricle. Our results suggest that the combination of ultrahigh-speed OCT imaging with live embryo culture could be a useful embryonic heart phenotyping approach for mouse mutants modeling human congenital heart diseases.
Establishment of mouse expanded potential stem cells
Gao, Xuefei; Antunes, Liliana; Yu, Yong; Zhu, Zhexin; Wang, Juexuan; Kolodziejczyk, Aleksandra A.; Campos, Lia S.; Wang, Cui; Yang, Fengtang; Zhong, Zhen; Fu, Beiyuan; Eckersley-Maslin, Melanie A.; Woods, Michael; Tanaka, Yosuke; Chen, Xi; Wilkinson, Adam C.; Bussell, James; White, Jacqui; Ramirez-Solis, Ramiro; Reik, Wolf; Göttgens, Berthold; Teichmann, Sarah A.; Tam, Patrick P. L.; Nakauchi, Hiromitsu; Zou, Xiangang; Lu, Liming; Liu, Pentao
2018-01-01
Mouse embryonic stem cells derived from the epiblast1 contribute to the somatic lineages and the germline but are excluded from the extra-embryonic tissues that are derived from the trophectoderm and the primitive endoderm2 upon reintroduction to the blastocyst. Here we report that cultures of expanded potential stem cells can be established from individual eight-cell blastomeres, and by direct conversion of mouse embryonic stem cells and induced pluripotent stem cells. Remarkably, a single expanded potential stem cell can contribute both to the embryo proper and to the trophectoderm lineages in a chimaera assay. Bona fide trophoblast stem cell lines and extra-embryonic endoderm stem cells can be directly derived from expanded potential stem cells in vitro. Molecular analyses of the epigenome and single-cell transcriptome reveal enrichment for blastomere-specific signature and a dynamic DNA methylome in expanded potential stem cells. The generation of mouse expanded potential stem cells highlights the feasibility of establishing expanded potential stem cells for other mammalian species. PMID:29019987
Liu, Te; Cheng, Weiwei; Liu, Tianjin; Guo, Lihe; Huang, Qin; Jiang, Lizhen; Du, Xiling; Xu, Fuhui; Liu, Zhixue; Lai, Dongmei
2010-02-01
Mouse embryonic stem cells (ESCs) are typically cultured on a feeder layer of mouse embryonic fibroblasts (MEFs), with leukemia inhibitory factor (LIF) added to maintain them in an undifferentiated state. We have previously shown that human amniotic epithelial cells (hAECs) can be used as feeder cells to maintain mouse ESC pluripotency, but the mechanism for this is unknown. In the present study, we found that CpG islands 5' of the c-Myc gene remain hypomethylated in mouse ESCs cultured on hAECs. In addition, levels of acetylation of histone H3 and trimethylation of histone H3K4 in the c-Myc gene promoter were higher in ES cells cultured on hAECs than those in ES cells cultured on MEFs. These data suggested that hAECs can alter mouse ESC gene expression via epigenetic modification of c-Myc, providing a possible mechanism for the hAEC-induced maintenance of ESCs in an undifferentiated state.
Kudo, Takashi; Kaneko, Mika; Iwasaki, Hiroko; Togayachi, Akira; Nishihara, Shoko; Abe, Kuniya; Narimatsu, Hisashi
2004-05-01
Stage-specific embryonic antigen 1 (SSEA-1), an antigenic epitope defined as a Lewis x carbohydrate structure, is expressed during the 8-cell to blastocyst stages in mouse embryos and in primordial germ cells, undifferentiated embryonic stem cells, and embryonic carcinoma cells. For many years, SSEA-1 has been implicated in the development of mouse embryos as a functional carbohydrate epitope in cell-to-cell interaction during morula compaction. In a previous study, alpha 1,3-fucosyltransferase IX (Fut9) exhibited very strong activity for the synthesis of Lewis x compared to other alpha 1,3-fucosyltransferases in an in vitro substrate specificity assay. Fut4 and Fut9 transcripts were expressed in mouse embryos. The Fut9 transcript was detected in embryonic-day-13.5 gonads containing primordial germ cells, but the Fut4 transcript was not. In order to identify the role of SSEA-1 and determine the key enzyme for SSEA-1 synthesis in vivo, we have generated Fut9-deficient (Fut9(-/-)) mice. Fut9(-/-) mice develop normally, with no gross phenotypic abnormalities, and are fertile. Immunohistochemical analysis revealed an absence of SSEA-1 expression in early embryos and primordial germ cells of Fut9(-/-) mice. Therefore, we conclude that expression of the SSEA-1 epitope in the developing mouse embryo is not essential for embryogenesis in vivo.
EMG1 is essential for mouse pre-implantation embryo development.
Wu, Xiaoli; Sandhu, Sumit; Patel, Nehal; Triggs-Raine, Barbara; Ding, Hao
2010-09-21
Essential for mitotic growth 1 (EMG1) is a highly conserved nucleolar protein identified in yeast to have a critical function in ribosome biogenesis. A mutation in the human EMG1 homolog causes Bowen-Conradi syndrome (BCS), a developmental disorder characterized by severe growth failure and psychomotor retardation leading to death in early childhood. To begin to understand the role of EMG1 in mammalian development, and how its deficiency could lead to Bowen-Conradi syndrome, we have used mouse as a model. The expression of Emg1 during mouse development was examined and mice carrying a null mutation for Emg1 were generated and characterized. Our studies indicated that Emg1 is broadly expressed during early mouse embryonic development. However, in late embryonic stages and during postnatal development, Emg1 exhibited specific expression patterns. To assess a developmental role for EMG1 in vivo, we exploited a mouse gene-targeting approach. Loss of EMG1 function in mice arrested embryonic development prior to the blastocyst stage. The arrested Emg1-/- embryos exhibited defects in early cell lineage-specification as well as in nucleologenesis. Further, loss of p53, which has been shown to rescue some phenotypes resulting from defects in ribosome biogenesis, failed to rescue the Emg1-/- pre-implantation lethality. Our data demonstrate that Emg1 is highly expressed during mouse embryonic development, and essential for mouse pre-implantation development. The absolute requirement for EMG1 in early embryonic development is consistent with its essential role in yeast. Further, our findings also lend support to the previous study that showed Bowen-Conradi syndrome results from a partial EMG1 deficiency. A complete deficiency would not be expected to be compatible with a live birth.
REDOX DISRUPTING POTENTIAL OF TOXCAST CHEMICALS RANKED BY ACTIVITY IN MOUSE EMBRYONIC STEM CELLS
To gain insight regarding the adverse outcome pathways leading to developmental toxicity following exposure to chemicals, we evaluated ToxCast™ Phase I chemicals in an adherent mouse embryonic stem cell (mESC) assay and identified a redox sensitive pathway that correlated with al...
Redox Disrupting Potential of ToxCast™Chemicals Ranked by Activity in Mouse Embryonic Stem Cells
Little is known regarding the adverse outcome pathways responsible for developmental toxicity following exposure to chemicals. An evaluation of Toxoast™ Phase I chemicals in an adherent mouse embryonic stem cell (mESC) assay revealed a redox sensitive pathway that correlated with...
Assessment of a 42 metal salts chemical library in mouse embryonic stem cells
The developmental effects of xenobiotics on differentiation can be profiled using mouse embryonic stem cells (mESCs). The adherent cell differentiation and cytotoxicity (ACDC) technique was used to evaluate a library of 42 metal and metaloid salts. Jl mESCs were allowed to prolif...
Developing predictions of in vivo developmental toxicity of ToxCast chemicals using mouse embryonic stem cells S. Hunter, M. Rosen, M. Hoopes, H. Nichols, S. Jeffay, K. Chandler1, Integrated Systems Toxicology Division, National Health and Environmental Effects Research Labor...
Slowik, Amber D; Bermingham-McDonogh, Olivia
2016-03-01
The inner ear contains six distinct sensory organs that each maintains some ability to regenerate hair cells into adulthood. In the postnatal cochlea, there appears to be a relationship between the developmental maturity of a region and its ability to regenerate as postnatal regeneration largely occurs in the apical turn, which is the last region to differentiate and mature during development. In the mature cristae there are also regional differences in regenerative ability, which led us to hypothesize that there may be a general relationship between the relative maturity of a region and the regenerative competence of that region in all of the inner ear sensory organs. By analyzing adult mouse cristae labeled embryonically with BrdU, we found that hair cell birth starts in the central region and progresses to the periphery with age. Since the peripheral region of the adult cristae also maintains active Notch signaling and some regenerative competence, these results are consistent with the hypothesis that the last regions to develop retain some of their regenerative ability into adulthood. Further, by analyzing embryonic day 14.5 inner ears we provide evidence for a wave of hair cell birth along the longitudinal axis of the cristae from the central regions to the outer edges. Together with the data from the adult inner ears labeled with BrdU as embryos, these results suggest that hair cell differentiation closely follows cell cycle exit in the cristae, unlike in the cochlea where they are uncoupled. Copyright © 2016 Elsevier Inc. All rights reserved.
Slowik, Amber D; Bermingham-McDonogh, Olivia
2016-01-01
The inner ear contains six distinct sensory organs that each maintains some ability to regenerate hair cells into adulthood. In the postnatal cochlea, there appears to be a relationship between the developmental maturity of a region and its ability to regenerate as postnatal regeneration largely occurs in the apical turn, which is the last region to differentiate and mature during development. In the mature cristae there are also regional differences in regenerative ability, which led us to hypothesize that there may be a general relationship between the relative maturity of a region and the regenerative competence of that region in all of the inner ear sensory organs. By analyzing adult mouse cristae labeled embryonically with BrdU, we found that hair cell birth starts in the central region and progresses to the periphery with age. Since the peripheral region of the adult cristae also maintains active Notch signaling and some regenerative competence, these results are consistent with the hypothesis that the last regions to develop retain some of their regenerative ability into adulthood. Further, by analyzing embryonic day 14.5 inner ears we provide evidence for a wave of hair cell birth along the longitudinal axis of the cristae from the central regions to the outer edges. Together with the data from the adult inner ears labeled with BrdU as embryos, these results suggest that hair cell differentiation closely follows cell cycle exit in the cristae, unlike in the cochlea where they are uncoupled. PMID:26826497
Tokumoto, Yasuhito; Ogawa, Shinichiro; Nagamune, Teruyuki; Miyake, Jun
2010-06-01
Oligodendrocytes are the myelinating cells of the central nervous system (CNS), and defects in these cells can result in the loss of CNS functions. Although oligodendrocyte progenitor cells transplantation therapy is an effective cure for such symptoms, there is no readily available source of these cells. Recent studies have described the generation of induced pluripotent stem cells (iPS cells) from somatic cells, leading to anticipation of this technique as a novel therapeutic tool in regenerative medicine. In this study, we evaluated the ability of iPS cells derived from mouse embryonic fibroblasts to differentiate into oligodendrocytes and compared this with the differential ability of mouse embryonic stem cells (ES cells). Experiments using an in vitro oligodendrocyte differentiation protocol that was optimized to ES cells demonstrated that 2.3% of iPS cells differentiated into O4(+) oligodendrocytes compared with 24.0% of ES cells. However, the rate of induction of A2B5(+) oligodendrocyte precursor cell (OPC) was similar for both iPS-derived cells and ES-derived cells (14.1% and 12.6%, respectively). These findings suggest that some intracellular factors in iPS cells inhibit the terminal differentiation of oligodendrocytes from the OPC stage. (c) 2009 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Embryonic Origins of the Mouse Superior Olivary Complex
Howell, David M.; Spirou, George A.; Mathers, Peter H.
2014-01-01
Many areas of the central nervous system are organized into clusters of cell groups, with component cell groups exhibiting diverse but related functions. One such cluster, the superior olivary complex (SOC), is located in the ventral auditory brainstem in mammals. The SOC is an obligatory contact point for most projection neurons of the ventral cochlear nucleus and plays central roles in many aspects of monaural and binaural information processing. Despite their important interrelated functions, little is known about the embryonic origins of SOC nuclei, due in part to a paucity of developmental markers to distinguish individual cell groups. In this report, we present a collection of novel markers for the developing SOC nuclei in mice, including the transcription factors FoxP1, MafB, and Sox2, and the lineage-marking transgenic line En1-Cre. We use these definitive markers to examine the rhombic lip and rhombomeric origins of SOC nuclei and demonstrate that they can serve to uniquely identify SOC nuclei and subnuclei in newborn pups. The markers are also useful in identifying distinct nuclear domains within the presumptive SOC as early as embryonic day (E) 14.5, well before morphological distinction of individual nuclei is evident. These findings indicate that the mediolateral and dorsoventral position of SOC nuclei characteristic of the adult brainstem is established during early neurogenesis. PMID:23303740
Investigation of a redox-sensitive predictive model of mouse embryonic stem cell differentiation via quantitative nuclease protection assays and glutathione redox status Chandler KJ,Hansen JM, Knudsen T,and Hunter ES 1. U.S. Environmental Protection Agency, Research Triangl...
CHANGES IN EXPRESSION OF PHOSPHORYLATED AND TOTAL ERK 1/2 IN TCDD-EXPOSED EMBRYONIC MOUSE PALATES
CHANGES IN EXPRESSION OF PHOSPHORYLATED AND TOTAL ERK1/2 IN TCDD-EXPOSED EMBRYONIC MOUSE PALATES.
C Wolf and B Abbott, USEPA, ORD, NHEERL, Reproductive Toxicology Division, Research Triangle Park, NC 27711
2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induces cleft palate...
An Adherent Cell Differentiation and Cytotoxicity (ACDC) in vitro assay with mouse embryonic stem cells was used to screen the ToxCast Phase I chemical library for effects on cellular differentiation and cell number. The U.S. Environmental Protection Agency (EPA) established the ...
In vitro developmental model of the gastrointestinal tract from mouse embryonic stem cells.
Torihashi, Shigeko; Kuwahara, Masaki; Kurahashi, Masaaki
2007-10-01
Mouse embryonic stem (ES) cells are pluripotent and retain their potential to form cells, tissues and organs originated from three embryonic germ layers. Recently, we developed in vitro organ--gut-like structures--from mouse ES cells. They had basically similar morphological features to a mouse gastrointestinal tract in vivo composed of three distinct layers (i.e., epithelium, connective tissue and musculature). Gut-like structures showed spontaneous contractions derived from pacemaker cells (interstitial cells of Cajal) in the musculature. We also examined their formation process and expression pattern of transcription factors crucial for gut organogenesis such as Id2, Sox17, HNF3beta/Foxa2 and GATA4. We found that they mimic the development of embryonic gut in vivo and showed a similar expression pattern of common transcription factors. They also maintain their developmental potential after transplantation to a renal capsule. Therefore, gut-like structures are suitable for in vitro models of gastrointestinal tracts and their development. In addition, we pointed out several unique features different from gut in vivo that provide useful and advantageous tools to investigate the developmental mechanism of the gastrointestinal tract.
Phosphoproteomics links glycogen synthase kinase-3 to RNA splicing.
Khoa, Le Tran Phuc; Dou, Yali
2017-11-03
Protein kinases play essential biological roles by phosphorylating a diverse range of signaling molecules, but deciphering their direct physiological targets remains a challenge. A new study by Shinde et al. uses phosphoproteomics to identify glycogen synthase kinase-3 (GSK-3) substrates in mouse embryonic stem cells (mESCs), providing a broad profile of GSK-3 activity and defining a new role for this central kinase in regulating RNA splicing. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
NASA Astrophysics Data System (ADS)
Lopez, Andrew L.; Wang, Shang; Garcia, Monica; Valladolid, Christian; Larin, Kirill V.; Larina, Irina V.
2015-03-01
Understanding mouse embryonic development is an invaluable resource for our interpretation of normal human embryology and congenital defects. Our research focuses on developing methods for live imaging and dynamic characterization of early embryonic development in mouse models of human diseases. Using multidisciplinary methods: optical coherence tomography (OCT), live mouse embryo manipulations and static embryo culture, molecular biology, advanced image processing and computational modeling we aim to understand developmental processes. We have developed an OCT based approach to image live early mouse embryos (E8.5 - E9.5) cultured on an imaging stage and visualize developmental events with a spatial resolution of a few micrometers (less than the size of an individual cell) and a frame rate of up to hundreds of frames per second and reconstruct cardiodynamics in 4D (3D+time). We are now using these methods to study how specific embryonic lethal mutations affect cardiac morphology and function during early development.
Kress, C; Vandormael-Pournin, S; Baldacci, P; Cohen-Tannoudji, M; Babinet, C
1998-12-01
The inbred mouse strain DDK carries a conditional early embryonic lethal mutation that is manifested when DDK females are crossed to males of other inbred strains but not in the corresponding reciprocal crosses. It has been shown that embryonic lethality could be assigned to a single genetic locus called Ovum mutant (Om), on Chromosome (Chr) 11 near Syca 1. In the course of our study of the molecular mechanisms underlying the embryonic lethality, we were interested in deriving an embryonic stem cell bearing the Om mutation in the homozygous state (Omd/Omd). However, it turned out that DDK is nonpermissive for ES cell establishment, with a standard protocol. Here we show that permissiveness could be obtained using Omd/Omd blastocysts with a 75% 129/Sv and 25% DDK genetic background. Several germline-competent Omd/Omd ES cell lines have been derived from blastocysts of this genotype. Such a scenario could be extended to the generation of ES cell lines bearing any mutation present in an otherwise nonpermissive mouse strain.
The potential for most environmental chemicals to produce developmental toxicity is unknown. Mouse embryonic stem cell (mESC) assays are an alternative in vitro model to assess chemicals. The chemical space evaluated using mESC and compared to in vivo is limited. We used an adher...
Defining the molecular pathologies in cloaca malformation: similarities between mouse and human
Runck, Laura A.; Method, Anna; Bischoff, Andrea; Levitt, Marc; Peña, Alberto; Collins, Margaret H.; Gupta, Anita; Shanmukhappa, Shiva; Wells, James M.; Guasch, Géraldine
2014-01-01
Anorectal malformations are congenital anomalies that form a spectrum of disorders, from the most benign type with excellent functional prognosis, to very complex, such as cloaca malformation in females in which the rectum, vagina and urethra fail to develop separately and instead drain via a single common channel into the perineum. The severity of this phenotype suggests that the defect occurs in the early stages of embryonic development of the organs derived from the cloaca. Owing to the inability to directly investigate human embryonic cloaca development, current research has relied on the use of mouse models of anorectal malformations. However, even studies of mouse embryos lack analysis of the earliest stages of cloaca patterning and morphogenesis. Here we compared human and mouse cloaca development and retrospectively identified that early mis-patterning of the embryonic cloaca might underlie the most severe forms of anorectal malformation in humans. In mouse, we identified that defective sonic hedgehog (Shh) signaling results in early dorsal-ventral epithelial abnormalities prior to the reported defects in septation. This is manifested by the absence of Sox2 and aberrant expression of keratins in the embryonic cloaca of Shh knockout mice. Shh knockout embryos additionally develop a hypervascular stroma, which is defective in BMP signaling. These epithelial and stromal defects persist later, creating an indeterminate epithelium with molecular alterations in the common channel. We then used these animals to perform a broad comparison with patients with mild-to-severe forms of anorectal malformations including cloaca malformation. We found striking parallels with the Shh mouse model, including nearly identical defective molecular identity of the epithelium and surrounding stroma. Our work strongly suggests that early embryonic cloacal epithelial differentiation defects might be the underlying cause of severe forms of anorectal malformations in humans. Moreover, deranged Shh and BMP signaling is correlated with severe anorectal malformations in both mouse and humans. PMID:24524909
Magnetic resonance imaging study of eye congenital birth defects in mouse model
Tucker, Zachary; Mongan, Maureen; Meng, Qinghang; Xia, Ying
2017-01-01
Purpose Embryonic eyelid closure is a well-documented morphogenetic episode in mammalian eye development. Detection of eyelid closure defect in humans is a major challenge because eyelid closure and reopen occur entirely in utero. As a consequence, congenital eye defects that are associated with failure of embryonic eyelid closure remain unknown. To fill the gap, we developed a mouse model of defective eyelid closure. This preliminary work demonstrates that the magnetic resonance imaging (MRI) approach can be used for the detection of extraocular muscle abnormalities in the mouse model. Methods Mice with either normal (Map3k1+/−) or defective (Map3k1−/−) embryonic eyelid closure were used in this study. Images of the extraocular muscles were obtained with a 9.4 T high resolution microimaging MRI system. The extraocular muscles were identified, segmented, and measured in each imaging slice using an in-house program. Results In agreement with histological findings, the imaging data show that mice with defective embryonic eyelid closure develop less extraocular muscle than normal mice. In addition, the size of the eyeballs was noticeably reduced in mice with defective embryonic eyelid closure. Conclusions We demonstrated that MRI can potentially be used for the study of extraocular muscle in the mouse model of the eye open-at-birth defect, despite the lack of specificity of muscle group provided by the current imaging resolution. PMID:28848319
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gong, Xi; Zhang, Kunshan; Wang, Yanlu
2013-10-04
Highlights: •We found that the 3′ UTR of the Fmr1 mRNA is a target of miR-130b. •MiR-130b suppresses the expression of Fmr1 in mouse embryonic stem cell. •MiR-130b alters the proliferation of mouse embryonic stem cell. •MiR-130b alters fate specification of mouse embryonic stem cell. -- Abstract: Fragile X syndrome, one of the most common forms of inherited mental retardation, is caused by expansion of the CGG repeat in the 5′-untranslated region of the X-linked Fmr1 gene, which results in transcriptional silencing and loss of expression of its encoded protein FMRP. The loss of FMRP increases proliferation and alters fatemore » specification in adult neural progenitor cells (aNPCs). However, little is known about Fmr1 mRNA regulation at the transcriptional and post-transcriptional levels. In the present study, we report that miR-130b regulated Fmr1 expression by directly targeting its 3′-untranslated region (3′ UTR). Up-regulation of miR-130b in mouse embryonic neural progenitor cells (eNPCs) decreased Fmr1 expression, markedly increased eNPC proliferation and altered the differentiation tendency of eNPCs, suggesting that antagonizing miR-130b may be a new therapeutic entry point for treating Fragile X syndrome.« less
Lamin A/C Haploinsufficiency Modulates the Differentiation Potential of Mouse Embryonic Stem Cells
Sehgal, Poonam; Chaturvedi, Pankaj; Kumaran, R. Ileng; Kumar, Satish; Parnaik, Veena K.
2013-01-01
Background Lamins are structural proteins that are the major determinants of nuclear architecture and play important roles in various nuclear functions including gene regulation and cell differentiation. Mutations in the human lamin A gene cause a spectrum of genetic diseases that affect specific tissues. Most available mouse models for laminopathies recapitulate disease symptoms for muscle diseases and progerias. However, loss of human lamin A/C also has highly deleterious effects on fetal development. Hence it is important to understand the impact of lamin A/C expression levels on embryonic differentiation pathways. Methodology and Principal Findings We have investigated the differentiation potential of mouse embryonic stem cells containing reduced levels of lamin A/C by detailed lineage analysis of embryoid bodies derived from these cells by in vitro culture. We initially carried out a targeted disruption of one allele of the mouse lamin A/C gene (Lmna). Undifferentiated wild-type and Lmna+/− embryonic stem cells showed similar expression of pluripotency markers and cell cycle profiles. Upon spontaneous differentiation into embryoid bodies, markers for visceral endoderm such as α-fetoprotein were highly upregulated in haploinsufficient cells. However, neuronal markers such as β-III tubulin and nestin were downregulated. Furthermore, we observed a reduction in the commitment of Lmna+/− cells into the myogenic lineage, but no discernible effects on cardiac, adipocyte or osteocyte lineages. In the next series of experiments, we derived embryonic stem cell clones expressing lamin A/C short hairpin RNA and examined their differentiation potential. These cells expressed pluripotency markers and, upon differentiation, the expression of lineage-specific markers was altered as observed with Lmna+/− embryonic stem cells. Conclusions We have observed significant effects on embryonic stem cell differentiation to visceral endoderm, neuronal and myogenic lineages upon depletion of lamin A/C. Hence our results implicate lamin A/C level as an important determinant of lineage-specific differentiation during embryonic development. PMID:23451281
Studies of teratomas in mice: possibilities for the future production of animal models.
Lehman, J. M.
1980-01-01
The murine teratoma-teratocarcinoma has become an interesting model for the study of neoplastic transformation, developmental biology, and possibly a useful system for genetic studies. These tumors arise spontaneously in 129 strain mice and can be induced in other strains by transplanting early embryos or portions of embryos into extrauterine sites. The majority of these tumors are benign, but some are capable of transplantation due to the presence of the stem cell, embryonal carcinoma, which is a multipotential cell able to proliferate and also differentiate into tissues and cell types representative of all the embryonic germ layers. It has been elegantly shown by transplantation of embryonal carcinoma cells into blastocysts which are then placed into a pseudopregnant mouse that a normal mouse is obtained composed of cells from the host blastocyst and also cells from the malignant embryonal carcinoma. Therefore, under this set of circumstances, embryonal carcinoma cells are induced to functionally differentiate into multiple cell and tissue types which are benign and able to contribute to the development of a mouse. The adaptation of the embryonal carcinoma cell to tissue culture has allowed the manipulation of these cells with subsequent selection of mutant cells which can be further transplanted into blastocysts to obtain a mouse which contains these mutant cells. If the mutant cells have populated the germ line, it may be possible to obtain a stock of mice with the lesion present in all cells. This system may be exploitable for studies in neoplasia, developmental biology, and with proper selection procedures, allow the development of new genetic strains of mice. PMID:7457573
Kashuba, Corinna M; Benson, James D; Critser, John K
2014-04-01
The post-thaw recovery of mouse embryonic stem cells (mESCs) is often assumed to be adequate with current methods. However as this publication will show, this recovery of viable cells actually varies significantly by genetic background. Therefore there is a need to improve the efficiency and reduce the variability of current mESC cryopreservation methods. To address this need, we employed the principles of fundamental cryobiology to improve the cryopreservation protocol of four mESC lines from different genetic backgrounds (BALB/c, CBA, FVB, and 129R1 mESCs) through a comparative study characterizing the membrane permeability characteristics and membrane integrity osmotic tolerance limits of each cell line. In the companion paper, these values were used to predict optimal cryoprotectants, cooling rates, warming rates, and plunge temperatures, and then these predicted optimal protocols were validated against standard freezing protocols. Copyright © 2014 Elsevier Inc. All rights reserved.
Wettstein, Rahel; Bodak, Maxime; Ciaudo, Constance
2016-01-01
CRISPR/Cas9, originally discovered as a bacterial immune system, has recently been engineered into the latest tool to successfully introduce site-specific mutations in a variety of different organisms. Composed only of the Cas9 protein as well as one engineered guide RNA for its functionality, this system is much less complex in its setup and easier to handle than other guided nucleases such as Zinc-finger nucleases or TALENs.Here, we describe the simultaneous transfection of two paired CRISPR sgRNAs-Cas9 plasmids, in mouse embryonic stem cells (mESCs), resulting in the knockout of the selected target gene. Together with a four primer-evaluation system, it poses an efficient way to generate new independent knockout mouse embryonic stem cell lines.
Turgeon, B; Saba-El-Leil, M K; Meloche, S
2000-02-15
MAP (mitogen-activated protein) kinases are a family of serine/threonine kinases that have a pivotal role in signal transduction. Here we report the cloning and characterization of a mouse homologue of extracellular-signal-regulated protein kinase (ERK)3. The mouse Erk3 cDNA encodes a predicted protein of 720 residues, which displays 94% identity with human ERK3. Transcription and translation of this cDNA in vitro generates a 100 kDa protein similar to the human gene product ERK3. Immunoblot analysis with an antibody raised against a unique sequence of ERK3 also recognizes a 100 kDa protein in mouse tissues. A single transcript of Erk3 was detected in every adult mouse tissue examined, with the highest expression being found in the brain. Interestingly, expression of Erk3 mRNA is acutely regulated during mouse development, with a peak of expression observed at embryonic day 11. The mouse Erk3 gene was mapped to a single locus on central mouse chromosome 9, adjacent to the dilute mutation locus and in a region syntenic to human chromosome 15q21. Finally, we provide several lines of evidence to support the existence of a unique Erk3 gene product of 100 kDa in mammalian cells.
GLUCOCORTICOID RECEPTOR EXPRESSION DURING THE DEVELOPMENT OF THE EMBRYONIC MOUSE SECONDARY PALATE
Glucocorticoids are important regulators of embryonic growth and development. hese effects are mediated through glucocorticoid receptors (GR) which bind to glucocorticoid response elements upstream of regulated genes. his study examines the expression of GR and GR mRNA in embryon...
Lin, Xiaolin; Zhao, Wentao; Jia, Junshuang; Lin, Taoyan; Xiao, Gaofang; Wang, Shengchun; Lin, Xia; Liu, Yu; Chen, Li; Qin, Yujuan; Li, Jing; Zhang, Tingting; Hao, Weichao; Chen, Bangzhu; Xie, Raoying; Cheng, Yushuang; Xu, Kang; Yao, Kaitai; Huang, Wenhua; Xiao, Dong; Sun, Yan
2016-01-01
Targeted disruption of Cripto-1 in mice caused embryonic lethality at E7.5, whereas we unexpectedly found that ectopic Cripto-1 expression in mouse embryos also led to embryonic lethality, which prompted us to characterize the causes and mechanisms underlying embryonic death due to ectopic Cripto-1 expression. RCLG/EIIa-Cre embryos displayed complex phenotypes between embryonic day 14.5 (E14.5) and E17.5, including fatal hemorrhages (E14.5-E15.5), embryo resorption (E14.5-E17.5), pale body surface (E14.5-E16.5) and no abnormal appearance (E14.5-E16.5). Macroscopic and histological examination revealed that ectopic expression of Cripto-1 transgene in RCLG/EIIa-Cre embryos resulted in lethal cardiac defects, as evidenced by cardiac malformations, myocardial thinning, failed assembly of striated myofibrils and lack of heartbeat. In addition, Cripto-1 transgene activation beginning after E8.5 also caused the aforementioned lethal cardiac defects in mouse embryos. Furthermore, ectopic Cripto-1 expression in embryonic hearts reduced the expression of cardiac transcription factors, which is at least partially responsible for the aforementioned lethal cardiac defects. Our results suggest that hemorrhages and cardiac abnormalities are two important lethal factors in Cripto-1 transgenic mice. Taken together, these findings are the first to demonstrate that sustained Cripto-1 transgene expression after E11.5 causes fatal hemorrhages and lethal cardiac defects, leading to embryonic death at E14.5-17.5. PMID:27687577
Intact calcium signaling in adrenergic-deficient embryonic mouse hearts.
Peoples, Jessica N; Taylor, David G; Katchman, Alexander N; Ebert, Steven N
2018-01-22
Mouse embryos that lack the ability to produce the adrenergic hormones, norepinephrine (NE) and epinephrine (EPI), due to disruption of the dopamine beta-hydroxylase (Dbh -/- ) gene inevitably perish from heart failure during mid-gestation. Since adrenergic stimulation is well-known to enhance calcium signaling in developing as well as adult myocardium, and impairments in calcium signaling are typically associated with heart failure, we hypothesized that adrenergic-deficient embryonic hearts would display deficiencies in cardiac calcium signaling relative to adrenergic-competent controls at a developmental stage immediately preceding the onset of heart failure, which first appears beginning or shortly after mouse embryonic day 10.5 (E10.5). To test this hypothesis, we used ratiometric fluorescent calcium imaging techniques to measure cytosolic calcium transients, [Ca 2+ ] i in isolated E10.5 mouse hearts. Our results show that spontaneous [Ca 2+ ] i oscillations were intact and robustly responded to a variety of stimuli including extracellular calcium (5 mM), caffeine (5 mM), and NE (100 nM) in a manner that was indistinguishable from controls. Further, we show similar patterns of distribution (via immunofluorescent histochemical staining) and activity (via patch-clamp recording techniques) for the major voltage-gated plasma membrane calcium channel responsible for the L-type calcium current, I Ca,L , in adrenergic-deficient and control embryonic cardiac cells. These results demonstrate that despite the absence of vital adrenergic hormones that consistently leads to embryonic lethality in vivo, intracellular and extracellular calcium signaling remain essentially intact and functional in embryonic mouse hearts through E10.5. These findings suggest that adrenergic stimulation is not required for the development of intracellular calcium oscillations or extracellular calcium signaling through I Ca,L and that aberrant calcium signaling does not likely contribute to the onset of heart failure in this model. Copyright © 2017. Published by Elsevier Inc.
Nup133 Is Required for Proper Nuclear Pore Basket Assembly and Dynamics in Embryonic Stem Cells.
Souquet, Benoit; Freed, Ellen; Berto, Alessandro; Andric, Vedrana; Audugé, Nicolas; Reina-San-Martin, Bernardo; Lacy, Elizabeth; Doye, Valérie
2018-05-22
Nup133 belongs to the Y-complex, a key component of the nuclear pore complex (NPC) scaffold. Studies on a null mutation in mice previously revealed that Nup133 is essential for embryonic development but not for mouse embryonic stem cell (mESC) proliferation. Using single-pore detection and average NE-fluorescence intensity, we find that Nup133 is dispensable for interphase and postmitotic NPC scaffold assembly in pluripotent mESCs. However, loss of Nup133 specifically perturbs the formation of the nuclear basket as manifested by the absence of Tpr in about half of the NPCs combined with altered dynamics of Nup153. We further demonstrate that its central domain mediates Nup133's role in assembling Tpr and Nup153 into a properly configured nuclear basket. Our findings thus revisit the role of the Y-complex in pore biogenesis and provide insights into the interplay between NPC scaffold architecture, nuclear basket assembly, and the generation of heterogeneity among NPCs. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Adams, David; Baldock, Richard; Bhattacharya, Shoumo; Copp, Andrew J; Dickinson, Mary; Greene, Nicholas D E; Henkelman, Mark; Justice, Monica; Mohun, Timothy; Murray, Stephen A; Pauws, Erwin; Raess, Michael; Rossant, Janet; Weaver, Tom; West, David
2013-05-01
Identifying genes that are important for embryo development is a crucial first step towards understanding their many functions in driving the ordered growth, differentiation and organogenesis of embryos. It can also shed light on the origins of developmental disease and congenital abnormalities. Current international efforts to examine gene function in the mouse provide a unique opportunity to pinpoint genes that are involved in embryogenesis, owing to the emergence of embryonic lethal knockout mutants. Through internationally coordinated efforts, the International Knockout Mouse Consortium (IKMC) has generated a public resource of mouse knockout strains and, in April 2012, the International Mouse Phenotyping Consortium (IMPC), supported by the EU InfraCoMP programme, convened a workshop to discuss developing a phenotyping pipeline for the investigation of embryonic lethal knockout lines. This workshop brought together over 100 scientists, from 13 countries, who are working in the academic and commercial research sectors, including experts and opinion leaders in the fields of embryology, animal imaging, data capture, quality control and annotation, high-throughput mouse production, phenotyping, and reporter gene analysis. This article summarises the outcome of the workshop, including (1) the vital scientific importance of phenotyping embryonic lethal mouse strains for basic and translational research; (2) a common framework to harmonise international efforts within this context; (3) the types of phenotyping that are likely to be most appropriate for systematic use, with a focus on 3D embryo imaging; (4) the importance of centralising data in a standardised form to facilitate data mining; and (5) the development of online tools to allow open access to and dissemination of the phenotyping data.
Chemically induced vascular toxicity during embryonic development can result in a wide range of adverse prenatal outcomes. We used information from genetic mouse models linked to phenotypic outcomes and a vascular toxicity knowledge base to construct an embryonic vascular disrupt...
Functional optical coherence tomography for live dynamic analysis of mouse embryonic cardiogenesis
NASA Astrophysics Data System (ADS)
Wang, Shang; Lopez, Andrew L.; Larina, Irina V.
2018-02-01
Blood flow, heart contraction, and tissue stiffness are important regulators of cardiac morphogenesis and function during embryonic development. Defining how these factors are integrated is critically important to advance prevention, diagnostics, and treatment of congenital heart defects. Mammalian embryonic development is taking place deep within the female body, which makes cardiodynamic imaging and analysis during early developmental stages in humans inaccessible. With thousands of mutant lines available and well-established genetic manipulation tools, mouse is a great model to understand how biomechanical factors are integrated with molecular pathways to regulate cardiac function and development. Dynamic imaging and quantitative analysis of the biomechanics of live mouse embryos have become increasingly important, which demands continuous advancements in imaging techniques and live assessment approaches. This has been one of the major drives to keep pushing the frontier of embryonic imaging for better resolution, higher speed, deeper penetration, and more diverse and effective contrasts. Optical coherence tomography (OCT) has played a significant role in addressing such demands, and its features in non-labeling imaging, 3D capability, a large working distance, and various functional derivatives allow OCT to cover a number of specific applications in embryonic imaging. Recently, our group has made several technical improvements in using OCT to probe the biomechanical aspects of live developing mouse embryos at early stages. These include the direct volumetric structural and functional imaging of the cardiodynamics, four-dimensional quantitative Doppler imaging and analysis of the cardiac blood flow, and fourdimensional blood flow separation from the cardiac wall tissue in the beating embryonic heart. Here, we present a short review of these studies together with brief descriptions of the previous work that demonstrate OCT as a valuable and useful imaging tool for the research in developmental cardiology.
The vast landscape of environmental chemicals has motivated the need for alternative methods to traditional whole-animal bioassays in toxicity testing. Embryonic stem (ES) cells provide an in vitro model of embryonic development and an alternative method for assessing development...
Chemically induced vascular toxicity during embryonic development can result in a wide range of adverse prenatal outcomes. We used information from genetic mouse models linked to phenotypic outcomes and a vascular toxicity knowledge base to construct an embryonic vascular disrupt...
Laboratory Aspects of Biological Warfare Agents
2016-01-01
Embryonated chicken egg yolk sacs have typically been the method of choice for culture. They are inoculated when the embryos are 5-7 days old. The... chicken or mouse embryo fibroblasts, J774.16 mouse macrophages, L929 murine fibroblasts, HEL (human embryonic lung) or vero cells are more commonly...the family, Poxviridae, is a legacy of the original grouping of viruses associated with diseases that produced poxes in the skin, however, if
Smolders, Sophie Marie-Thérèse; Swinnen, Nina; Kessels, Sofie; Arnauts, Kaline; Smolders, Silke; Le Bras, Barbara; Rigo, Jean-Michel; Legendre, Pascal; Brône, Bert
2017-07-01
Microglia, the immune cells of the central nervous system, take part in brain development and homeostasis. They derive from primitive myeloid progenitors that originate in the yolk sac and colonize the brain mainly through intensive migration. During development, microglial migration speed declines which suggests that their interaction with the microenvironment changes. However, the matrix-cell interactions allowing dispersion within the parenchyma are unknown. Therefore, we aimed to better characterize the migration behavior and to assess the role of matrix-integrin interactions during microglial migration in the embryonic brain ex vivo. We focused on microglia-fibronectin interactions mediated through the fibronectin receptor α5β1 integrin because in vitro work indirectly suggested a role for this ligand-receptor pair. Using 2-photon time-lapse microscopy on acute ex vivo embryonic brain slices, we found that migration occurs in a saltatory pattern and is developmentally regulated. Most importantly, there is an age-specific function of the α5β1 integrin during microglial cortex colonization. At embryonic day (E) 13.5, α5β1 facilitates migration while from E15.5, it inhibits migration. These results indicate a developmentally regulated function of α5β1 integrin in microglial migration during colonization of the embryonic brain. © 2017 Wiley Periodicals, Inc.
Formation of the Embryonic Head in the Mouse: Attributes of a Gene Regulatory Network.
Tam, Patrick P L; Fossat, Nicolas; Wilkie, Emilie; Loebel, David A F; Ip, Chi Kin; Ramialison, Mirana
2016-01-01
The embryonic head is the first major body part to be constructed during embryogenesis. The allocation and the assembly of the progenitor tissues, which start at gastrulation, are accompanied by the spatiotemporal activity of transcription factors and signaling pathways that drives lineage specification, germ layer formation, and cell/tissue movement. The morphogenesis, regionalization, and patterning of the brain and craniofacial structures rely on the function of LIM-domain, homeodomain, and basic helix-loop-helix transcription factors. These factors constitute the central nodes of a gene regulatory network (GRN) which encompasses and intersects with signaling pathways involved with head formation. It is predicted that the functional output of this "head GRN" impacts on cellular function and cell-cell interactions that are essential for lineage differentiation and tissue modeling, which are key processes underpinning the formation of the head. © 2016 Elsevier Inc. All rights reserved.
2018-05-02
Adult Central Nervous System Germ Cell Tumor; Adult Embryonal Tumor With Multilayered Rosettes, C19MC-Altered; Adult Medulloblastoma; Adult Pineoblastoma; Adult Supratentorial Embryonal Tumor, Not Otherwise Specified; Atypical Teratoid/Rhabdoid Tumor; Childhood Atypical Teratoid/Rhabdoid Tumor; Childhood Central Nervous System Germ Cell Tumor; Childhood Embryonal Tumor With Multilayered Rosettes, C19MC-Altered; Medulloepithelioma; Ototoxicity; Recurrent Adult Brain Neoplasm; Recurrent Childhood Central Nervous System Embryonal Neoplasm; Recurrent Childhood Malignant Germ Cell Tumor; Recurrent Childhood Medulloblastoma; Recurrent Childhood Pineoblastoma; Recurrent Childhood Supratentorial Embryonal Tumor, Not Otherwise Specified
Dynamic 3D culture promotes spontaneous embryonic stem cell differentiation in vitro.
Gerlach, Jörg C; Hout, Mariah; Edsbagge, Josefina; Björquist, Petter; Lübberstedt, Marc; Miki, Toshio; Stachelscheid, Harald; Schmelzer, Eva; Schatten, Gerald; Zeilinger, Katrin
2010-02-01
Spontaneous in vitro differentiation of mouse embryonic stem cells (mESC) is promoted by a dynamic, three-dimensional (3D), tissue-density perfusion technique with continuous medium perfusion and exchange in a novel four-compartment, interwoven capillary bioreactor. We compared ectodermal, endodermal, and mesodermal immunoreactive tissue structures formed by mESC at culture day 10 with mouse fetal tissue development at gestational day E9.5. The results show that the bioreactor cultures more closely resemble mouse fetal tissue development at gestational day E9.5 than control mESC cultured in Petri dishes.
NASA Astrophysics Data System (ADS)
Thobakgale, Lebogang; Manoto, Sello Lebohang; Lemboumba, Satuurnin Ombinda; Maaza, Malik; Mthunzi-Kufa, Patience
2017-02-01
Embryonic stem cells have great promise in regenerative medicine because of their ability to self-renew and differentiate into various cell types. Delivery of therapeutic genes into cells has already been achieved using of chemical agents and viral vectors with high transfection efficiencies. However, these methods have also been documented as toxic and in the latter case they can cause latent cell infections. In this study we use femtosecond laser pulses to optically deliver genetic material in mouse embryonic stem cells. Femtosecond laser pulses in contrast to the conventional approach, minimises the risk of unwanted side effects because photons are used to create transient pores on the membrane which allow free entry of molecules with no need for delivery agents. Using an Olympus microscope, fluorescence imaging of the samples post irradiation was performed and decreased expression of stage specific embryonic antigen one (SSEA-1) consistent with on-going cellular differentiation was observed. Our results also show that femtosecond laser pulses were effective in delivering SOX 17 plasmid DNA (pSOX17) which resulted in the differentiation of mouse embryonic stem cells into endoderm cells. We thus concluded that laser transfection of stem cells for the purpose of differentiation, holds potential for applications in tissue engineering as a method of generating new cell lines.
CCL11 promotes migration and proliferation of mouse neural progenitor cells.
Wang, Feifei; Baba, Nobuyasu; Shen, Yuan; Yamashita, Tatsuyuki; Tsuru, Emi; Tsuda, Masayuki; Maeda, Nagamasa; Sagara, Yusuke
2017-02-07
Neonatal hypoxia-ischemia induces massive brain damage during the perinatal period, resulting in long-term consequences to central nervous system structural and functional maturation. Although neural progenitor cells (NPCs) migrate through the parenchyma and home in to injury sites in the rodent brain, the molecular mechanisms are unknown. We examined the role of chemokines in mediating NPC migration after neonatal hypoxic-ischemic brain injury. Nine-day-old mice were exposed to a 120-minute hypoxia following unilateral carotid occlusion. Chemokine levels were quantified in mouse brain extract. Migration and proliferation assays were performed using embryonic and infant mouse NPCs. The neonatal hypoxic-ischemic brain injury resulted in an ipsilateral lesion, which was extended to the cortical and striatal areas. NPCs migrated toward an injured area, where a marked increase of CC chemokines was detected. In vitro studies showed that incubation of NPCs with recombinant mouse CCL11 promoted migration and proliferation. These effects were partly inhibited by a CCR3 antagonist, SB297006. Our data implicate an important effect of CCL11 for mouse NPCs. The effective activation of NPCs may offer a promising strategy for neuroregeneration in neonatal hypoxic-ischemic brain injury.
The miR-290-295 cluster as multi-faceted players in mouse embryonic stem cells.
Yuan, Kai; Ai, Wen-Bing; Wan, Lin-Yan; Tan, Xiao; Wu, Jiang-Feng
2017-01-01
Increasing evidence indicates that embryonic stem cell specific microRNAs (miRNAs) play an essential role in the early development of embryo. Among them, the miR-290-295 cluster is the most highly expressed in the mouse embryonic stem cells and involved in various biological processes. In this paper, we reviewed the research progress of the function of the miR-290-295 cluster in embryonic stem cells. The miR-290-295 cluster is involved in regulating embryonic stem cell pluripotency maintenance, self-renewal, and reprogramming somatic cells to an embryonic stem cell-like state. Moreover, the miR-290-295 cluster has a latent pro-survival function in embryonic stem cells and involved in tumourigenesis and senescence with a great significance. Elucidating the interaction between the miR-290-295 cluster and other modes of gene regulation will provide us new ideas on the biology of pluripotent stem cells. In the near future, the broad prospects of the miRNA cluster will be shown in the stem cell field, such as altering cell identities with high efficiency through the transient introduction of tissue-specific miRNA cluster.
ATRX Dysfunction Induces Replication Defects in Primary Mouse Cells
Clynes, David; Jelinska, Clare; Xella, Barbara; Ayyub, Helena; Taylor, Stephen; Mitson, Matthew; Bachrati, Csanád Z.; Higgs, Douglas R.; Gibbons, Richard J.
2014-01-01
The chromatin remodeling protein ATRX, which targets tandem repetitive DNA, has been shown to be required for expression of the alpha globin genes, for proliferation of a variety of cellular progenitors, for chromosome congression and for the maintenance of telomeres. Mutations in ATRX have recently been identified in tumours which maintain their telomeres by a telomerase independent pathway involving homologous recombination thought to be triggered by DNA damage. It is as yet unknown whether there is a central underlying mechanism associated with ATRX dysfunction which can explain the numerous cellular phenomena observed. There is, however, growing evidence for its role in the replication of various repetitive DNA templates which are thought to have a propensity to form secondary structures. Using a mouse knockout model we demonstrate that ATRX plays a direct role in facilitating DNA replication. Ablation of ATRX alone, although leading to a DNA damage response at telomeres, is not sufficient to trigger the alternative lengthening of telomere pathway in mouse embryonic stem cells. PMID:24651726
Turner, David A.; Hayward, Penelope C.; Baillie-Johnson, Peter; Rué, Pau; Broome, Rebecca; Faunes, Fernando; Martinez Arias, Alfonso
2014-01-01
The development of the central nervous system is known to result from two sequential events. First, an inductive event of the mesoderm on the overlying ectoderm that generates a neural plate that, after rolling into a neural tube, acts as the main source of neural progenitors. Second, the axial regionalization of the neural plate that will result in the specification of neurons with different anteroposterior identities. Although this description of the process applies with ease to amphibians and fish, it is more difficult to confirm in amniote embryos. Here, a specialized population of cells emerges at the end of gastrulation that, under the influence of Wnt and FGF signalling, expands and generates the spinal cord and the paraxial mesoderm. This population is known as the long-term neuromesodermal precursor (NMp). Here, we show that controlled increases of Wnt/β-catenin and FGF signalling during adherent culture differentiation of mouse embryonic stem cells (mESCs) generates a population with many of the properties of the NMp. A single-cell analysis of gene expression within this population reveals signatures that are characteristic of stem cell populations. Furthermore, when this activation is triggered in three-dimensional aggregates of mESCs, the population self-organizes macroscopically and undergoes growth and axial elongation that mimics some of the features of the embryonic spinal cord and paraxial mesoderm. We use both adherent and three-dimensional cultures of mESCs to probe the establishment and maintenance of NMps and their differentiation. PMID:25371361
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Xiugong, E-mail: xiugong.gao@fda.hhs.gov; Sprando, Robert L.; Yourick, Jeffrey J.
Developmental toxicity testing has traditionally relied on animal models which are costly, time consuming, and require the sacrifice of large numbers of animals. In addition, there are significant disparities between human beings and animals in their responses to chemicals. Thalidomide is a species-specific developmental toxicant that causes severe limb malformations in humans but not in mice. Here, we used microarrays to study transcriptomic changes induced by thalidomide in an in vitro model based on differentiation of mouse embryonic stem cells (mESCs). C57BL/6 mESCs were allowed to differentiate spontaneously and RNA was collected at 24, 48, and 72 h after exposuremore » to 0.25 mM thalidomide. Global gene expression analysis using microarrays revealed hundreds of differentially expressed genes upon thalidomide exposure that were enriched in gene ontology (GO) terms and canonical pathways associated with embryonic development and differentiation. In addition, many genes were found to be involved in small GTPases-mediated signal transduction, heart development, and inflammatory responses, which coincide with clinical evidences and may represent critical embryotoxicities of thalidomide. These results demonstrate that transcriptomics in combination with mouse embryonic stem cell differentiation is a promising alternative model for developmental toxicity assessment. - Highlights: • Studied genomic changes in mouse embryonic stem cells upon thalidomide exposure • Identified gene expression changes that may represent thalidomide embryotoxicity • The toxicogenomic changes coincide well with known thalidomide clinical outcomes. • The mouse embryonic stem cell model is suitable for developmental toxicity testing. • The model has the potential for high-throughput screening of a multitude of compounds.« less
Effect of micro-vibration culture system on embryo development.
Hur, Yong Soo; Park, Jeong Hyun; Ryu, Eun Kyung; Park, Sung Jin; Lee, Jun Ho; Lee, Soo Hee; Yoon, Jung; Yoon, San Hyun; Hur, Chang Young; Lee, Won Don; Lim, Jin Ho
2013-06-01
Micro-vibration culture system was examined to determine the effects on mouse and human embryo development and possible improvement of clinical outcomes in poor responders. The embryonic development rates and cell numbers of blastocysts were compared between a static culture group (n = 178) and a micro-vibration culture group (n = 181) in mice. The embryonic development rates and clinical results were compared between a static culture group (n = 159 cycles) and a micro-vibration culture group (n = 166 cycles) in poor responders. A micro-vibrator was set at a frequency of 42 Hz, 5 s/60 min duration for mouse and human embryo development. The embryonic development rate was significantly improved in the micro-vibration culture group in mice (p < 0.05). The cell numbers of mouse blastocysts were significantly higher in the micro-vibration group than in the static culture group (p < 0.05). In the poor responders, the rate of high grade embryos was not significantly improved in the micro-vibration culture group on day 3. However, the optimal embryonic development rate on day 5 was improved in the micro-vibration group, and the total pregnancy rate and implantation rate were significantly higher in the micro-vibration group than in the static culture group (p < 0.05). Micro-vibration culture methods have a beneficial effect on embryonic development in mouse embryos. In poor responders, the embryo development rate was improved to a limited extent under the micro-vibration culture conditions, but the clinical results were significantly improved.
Huang, Boxian; Ning, Song; Zhuang, Lili; Jiang, Chunyan; Cui, Yugui; Fan, Guoping; Qin, Lianju; Liu, Jiayin
2015-01-01
Conventionally, mouse embryonic fibroblasts (MEFs) inactivated by mitomycin C or irradiation were applied to support the self-renew and proliferation of human embryonic stem cells (hESCs). To avoid the disadvangtages of mitomycin C and irradiation, here MEFs were treated by ethanol (ET). Our data showed that 10% ET-inactivated MEFs (eiMEFs) could well maintain the self-renew and proliferation of hESCs. hESCs grown on eiMEFs expressed stem cell markers of NANOG, octamer-binding protein 4 (OCT4), stage-specific embryonic antigen-4 (SSEA4) and tumour related antigen-1-81 (TRA-1-81), meanwhile maintained normal karyotype after long time culture. Also, hESCs cocultured with eiMEFs were able to form embryoid body (EB) in vitro and develop teratoma in vivo. Moreover, eiMEFs could keep their nutrient functions after long time cryopreservation. Our results indicate that the application of eiMEF in hESCs culture is safe, economical and convenient, thus is a better choice.
Molecular cloning, structure, and chromosomal localization of the mouse LIM/homeobox gene Lhx5
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bertuzzi, S.; Sheng, Hui Z.; Westphal, H.
1996-09-01
Lhx5, the mouse ortholog of the Xenopus Xlim-5, is a LIM/homeobox gene expressed in the central nervous system during both embryonic development and adulthood. During development its domain of expression is mainly localized at the most anterior portion of the neural tube, and it precedes the morphological differentiation of the forebrain; for this reason we believe that Lhx5 could play an important role in forebrain patterning. Here we present the structural organization and the chromosomal localization of the Lhx5 gene. The gene is composed of five exons spanning more than 10 kb of genomic sequence. The first and second LIMmore » domains are encoded by the first and second exon, while the codons of the homeobox are split between the third and the fourth exons. The structure of Lhx5 is similar to that of other LIM/homeodomain proteins, Lxh1/lim1 and Lhx3/lim3, but differs from that of other LIM genes, such as mec3 and LMO1/Rbtn1, in which the codons for the LIM domains are interrupted by introns. We have mapped Lhx5 to the central region of mouse chromosome 5. 38 refs., 4 figs.« less
Li, Zhuan; Vink, Chris S; Mariani, Samanta A; Dzierzak, Elaine
2016-08-01
Hematopoietic cell generation in the midgestation mouse embryo occurs through the natural transdifferentiation of temporally and spatially restricted set of hemogenic endothelial cells. These cells take on hematopoietic fate in the aorta, vitelline and umbilical arteries and appear as hematopoietic cell clusters that emerge from the vascular wall. Genetic and live imaging data have supported this. Recently, the embryonic head has been shown to contain fully functional hematopoietic stem cells (HSC). By lineage tracing, cerebrovascular specific endothelial cells were shown to contribute to the postnatal mouse hematopoietic system. Since Ly6aGFP is a marker of all HSCs, some hematopoietic cluster cells and hemogenic endothelial cells in the midgestation mouse aorta, we examine here whether embryonic head HSCs and vascular endothelial cells are positive for this marker. Whereas some head vasculature, single hematopoietic cells and all HSCs are Ly6aGFP expressing, we do not find clusters of hematopoietic cells emerging from the cerebrovasculature that are characteristic of endothelial-to-hematopoietic transition. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Adult mouse brain gene expression patterns bear an embryologic imprint
Zapala, Matthew A.; Hovatta, Iiris; Ellison, Julie A.; Wodicka, Lisa; Del Rio, Jo A.; Tennant, Richard; Tynan, Wendy; Broide, Ron S.; Helton, Rob; Stoveken, Barbara S.; Winrow, Christopher; Lockhart, Daniel J.; Reilly, John F.; Young, Warren G.; Bloom, Floyd E.; Lockhart, David J.; Barlow, Carrolee
2005-01-01
The current model to explain the organization of the mammalian nervous system is based on studies of anatomy, embryology, and evolution. To further investigate the molecular organization of the adult mammalian brain, we have built a gene expression-based brain map. We measured gene expression patterns for 24 neural tissues covering the mouse central nervous system and found, surprisingly, that the adult brain bears a transcriptional “imprint” consistent with both embryological origins and classic evolutionary relationships. Embryonic cellular position along the anterior–posterior axis of the neural tube was shown to be closely associated with, and possibly a determinant of, the gene expression patterns in adult structures. We also observed a significant number of embryonic patterning and homeobox genes with region-specific expression in the adult nervous system. The relationships between global expression patterns for different anatomical regions and the nature of the observed region-specific genes suggest that the adult brain retains a degree of overall gene expression established during embryogenesis that is important for regional specificity and the functional relationships between regions in the adult. The complete collection of extensively annotated gene expression data along with data mining and visualization tools have been made available on a publicly accessible web site (www.barlow-lockhart-brainmapnimhgrant.org). PMID:16002470
De Cegli, Rossella; Iacobacci, Simona; Flore, Gemma; Gambardella, Gennaro; Mao, Lei; Cutillo, Luisa; Lauria, Mario; Klose, Joachim; Illingworth, Elizabeth; Banfi, Sandro; di Bernardo, Diego
2013-01-01
Gene expression profiles can be used to infer previously unknown transcriptional regulatory interaction among thousands of genes, via systems biology 'reverse engineering' approaches. We 'reverse engineered' an embryonic stem (ES)-specific transcriptional network from 171 gene expression profiles, measured in ES cells, to identify master regulators of gene expression ('hubs'). We discovered that E130012A19Rik (E13), highly expressed in mouse ES cells as compared with differentiated cells, was a central 'hub' of the network. We demonstrated that E13 is a protein-coding gene implicated in regulating the commitment towards the different neuronal subtypes and glia cells. The overexpression and knock-down of E13 in ES cell lines, undergoing differentiation into neurons and glia cells, caused a strong up-regulation of the glutamatergic neurons marker Vglut2 and a strong down-regulation of the GABAergic neurons marker GAD65 and of the radial glia marker Blbp. We confirmed E13 expression in the cerebral cortex of adult mice and during development. By immuno-based affinity purification, we characterized protein partners of E13, involved in the Polycomb complex. Our results suggest a role of E13 in regulating the division between glutamatergic projection neurons and GABAergic interneurons and glia cells possibly by epigenetic-mediated transcriptional regulation.
Temporal distribution of endogenous retinoids in the embryonic mouse mandible.
Beeman, C S; Kronmiller, J E
1994-09-01
Retinoids play an important part in embryonic pattern formation. They are necessary for normal differentiation of odontogenic tissues and, in excess, disrupt the pattern of tooth formation. Excess retinoids produce supernumerary buds of the dental lamina in the diastema region of the mouse embryonic mandible where teeth do not normally form. This effect is coincident with an increase in epithelial proliferation and an alteration in epidermal growth factor mRNA expression (a gene product necessary for tooth formation). It was found by high-performance liquid chromatography that endogenous retinoids are present in the developing murine mandible and that concentrations of some retinoids reach a peak at the time of the initiation of odontogenesis (dental lamina formation).
Postdoctoral Fellow | Center for Cancer Research
A new Postdoctoral Fellow position is immediately available in the laboratory of Dr. Terry Yamaguchi at the National Cancer Institute. Dr.Yamaguchi's lab investigates how secreted growth factors regulate the gene regulatory networks that control the fate of embryonic and adult stem cells. Current projects focus on understanding how Wnts and Fgfs regulate the formation and differentiation of the neuromesodermal progenitor (NMP), a multipotent embryonic cell that generates the spinal cord neurons and musculoskeletal system of the body. Using a combination of mouse genetics, mouse and human embryonic stem cell in vitro differentiation, and genomic, proteomic and biochemical approaches, Dr. Yamaguchi’s lab is investigating the molecular mechanisms underlying the activity of key transcriptional determinants of NMP development.
NASA Astrophysics Data System (ADS)
Wu, Chen; Ran, Shihao; Le, Henry; Singh, Manmohan; Larina, Irina V.; Mayerich, David; Dickinson, Mary E.; Larin, Kirill V.
2017-02-01
Both optical coherence tomography (OCT) and selective plane illumination microscopy (SPIM) are frequently used in mouse embryonic research for high-resolution three-dimensional imaging. However, each of these imaging methods provide a unique and independent advantage: SPIM provides morpho-functional information through immunofluorescence and OCT provides a method for whole-embryo 3D imaging. In this study, we have combined rotational imaging OCT and SPIM into a single, dual-modality device to image E9.5 mouse embryos. The results demonstrate that the dual-modality setup is able to provide both anatomical and functional information simultaneously for more comprehensive tissue characterization.
Chang, Mei-Hui; Chang, Shao-Chung; Chan, Wen-Hsiung
2012-01-01
Emodin (1,3,8-trihydroxy-6-methylanthraquinone), a major constituent of rhubarb, has a wide range of therapeutic applications. Previous studies have established that emodin induces apoptosis in the inner cell mass and trophectoderm of mouse blastocysts and leads to decreased embryonic development and viability, indicating a role as an injury risk factor for normal embryonic development. However, the mechanisms underlying its hazardous effects have yet to be characterized. In the current study, we further investigated the effects of emodin on oocyte maturation and subsequent pre- and post-implantation development, both in vitro and in vivo. Notably, emodin induced a significant reduction in the rates of oocyte maturation, fertilization, and in vitro embryonic development. Treatment of oocytes with emodin during in vitro maturation (IVM) led to increased resorption of postimplantation embryos and decreased fetal weight. Experiments using an in vivo mouse model disclosed that consumption of drinking water containing 20–40 μM emodin led to decreased oocyte maturation and in vitro fertilization, as well as early embryonic developmental injury. Notably, pretreatment with a caspase-3-specific inhibitor effectively prevented emodin-triggered injury effects, suggesting that impairment of embryo development occurs via a caspase-dependent apoptotic process. PMID:23203041
Bijelić, Nikola; Belovari, Tatjana; Tolušić Levak, Maja; Baus Lončar, Mirela
2017-08-20
Trefoil factor family (TFF) peptides are involved in the maintenance of epithelial integrity and epithelial restitution. Mature epithelial tissues originate from different embryonic germ layers. The objective of this research was to explore the presence and localization of TFF3 peptide in mouse embryonic epithelia and to examine if the occurrence of TFF3 peptide is germ layer-dependent. Mouse embryos (14-18 days old) were fixed in 4% paraformaldehyde and embedded in paraffin. Immunohistochemistry was performed with affinity purified rabbit anti-TFF3 antibody, goat anti-rabbit biotinylated secondary antibody and streptavidin-horseradish peroxidase, followed by 3,3'-diaminobenzidine. TFF3 peptide was present in the gastric and intestinal mucosa, respiratory mucosa in the upper and lower airways, pancreas, kidney tubules, epidermis, and oral cavity. The presence and localization of TFF3 peptide was associated with the embryonic stage and tissue differentiation. TFF3 peptide distribution specific to the germ layers was not observed. The role of TFF3 peptide in cell migration and differentiation, immune response, and apoptosis might be associated with specific embryonic epithelial cells. TFF3 peptide may also be considered as a marker for mucosal maturation.
Chang, Mei-Hui; Chang, Shao-Chung; Chan, Wen-Hsiung
2012-10-29
Emodin (1,3,8-trihydroxy-6-methylanthraquinone), a major constituent of rhubarb, has a wide range of therapeutic applications. Previous studies have established that emodin induces apoptosis in the inner cell mass and trophectoderm of mouse blastocysts and leads to decreased embryonic development and viability, indicating a role as an injury risk factor for normal embryonic development. However, the mechanisms underlying its hazardous effects have yet to be characterized. In the current study, we further investigated the effects of emodin on oocyte maturation and subsequent pre- and post-implantation development, both in vitro and in vivo. Notably, emodin induced a significant reduction in the rates of oocyte maturation, fertilization, and in vitro embryonic development. Treatment of oocytes with emodin during in vitro maturation (IVM) led to increased resorption of postimplantation embryos and decreased fetal weight. Experiments using an in vivo mouse model disclosed that consumption of drinking water containing 20-40 μM emodin led to decreased oocyte maturation and in vitro fertilization, as well as early embryonic developmental injury. Notably, pretreatment with a caspase-3-specific inhibitor effectively prevented emodin-triggered injury effects, suggesting that impairment of embryo development occurs via a caspase-dependent apoptotic process.
MiRNA-mediated regulation of cell signaling and homeostasis in the early mouse embryo.
Pernaute, Barbara; Spruce, Thomas; Rodriguez, Tristan A; Manzanares, Miguel
2011-02-15
At the time of implantation the mouse embryo is composed of three tissues the epiblast, trophectoderm and primitive endoderm. As development progresses the epiblast goes on to form the foetus whilst the trophectoderm and primitive endoderm give rise to extra-embryonic structures with important roles in embryo patterning and nutrition. Dramatic changes in gene expression occur during early embryo development and these require regulation at different levels. miRNAs are small non coding RNAs that have emerged over the last decade as important post-transcriptional repressors of gene expression. The roles played by miRNAs during early mammalian development are only starting to be elucidated. In order to gain insight into the function of miRNAs in the different lineages of the early mouse embryo we have analysed in depth the phenotype of embryos and extra-embryonic stem cells mutant for the miRNA maturation protein Dicer. This study revealed that miRNAs are involved in regulating cell signaling and homeostasis in the early embryo. Specifically, we identified a role for miRNAs in regulating the Erk signaling pathway in the extra-embryonic endoderm, cell cycle progression in extra-embryonic tissues and apoptosis in the epiblast.
Nuclei pulposi formation from the embryonic notochord occurs normally in GDF-5-deficient mice.
Maier, Jennifer A; Harfe, Brian D
2011-11-15
The transition of the mouse embryonic notochord into nuclei pulposi was determined ("fate mapped") in vivo in growth and differentiating factor-5 (GDF-5)-null mice using the Shhcre and R26R alleles. To determine whether abnormal nuclei pulposi formation from the embryonic notochord was responsible for defects present in adult nuclei pulposi of Gdf-5-null mice. The development, maintenance, and degeneration of the intervertebral disc are not understood. Previously, we demonstrated that all cells in the adult nucleus pulposus of normal mice are derived from the embryonic notochord. Gdf-5-null mice have been reported to contain intervertebral discs in which the nucleus pulposus is abnormal. It is currently unclear if disc defects in Gdf-5-null mice arise during the formation of nuclei pulposi from the notochord during embryogenesis or result from progressive postnatal degeneration of nuclei pulposi. Gdf-5 messenger RNA expression was examined in the discs of wild-type embryos by RNA in situ hybridization to determine when and where this gene was expressed. To examine nucleus pulposus formation in Gdf-5-null mice, intervertebral discs in which embryonic notochord cells were marked were analyzed in newborn and 24-week-old mice. Our Gdf-5 messenger RNA in situ experiments determined that this gene is localized to the annulus fibrosus and not the nucleus pulposus in mouse embryos. Notochord fate-mapping experiments revealed that notochord cells in Gdf-5-null mice correctly form nuclei pulposi. Our data suggest that the defects reported in the nucleus pulposus of adult Gdf-5-null mice do not result from abnormal patterning of the embryonic notochord. The use of mouse alleles to mark cells that produce all cell types that reside in the adult nucleus pulposus will allow for a detailed examination of disc formation in other mouse mutants that have been reported to contain disc defects.
Dinopoulou, Vasiliki; Drakakis, Peter; Kefala, Stella; Kiapekou, Erasmia; Bletsa, Ritsa; Anagnostou, Elli; Kallianidis, Konstantinos; Loutradis, Dimitrios
2016-06-01
During in vitro maturation (IVM), intrinsic and extrinsic factors must co-operate properly in order to ensure cytoplasmic and nuclear maturation. We examined the possible effect of LH/hCG in the process of oocyte maturation in mice with the addition of recombinant LH (r-LH) and hCG in our IVM cultures of mouse germinal vesicle (GV)-stage oocytes. Moreover, the effects of these hormones on fertilization, early embryonic development and the expression of LH/hCG receptor were examined. Nuclear maturation of GV-stage oocytes was evaluated after culture in the presence of r-LH or hCG. Fertilization rates and embryonic development were assessed after 24h. Total RNA was isolated from oocytes of different stages of maturation and from zygotes and embryos of different stages of development in order to examine the expression of LH/hCG receptor, using RT-PCR. The in vitro nuclear maturation rate of GV-stage oocytes that received hCG was significantly higher compared to the control group. Early embryonic development was increased in the hCG and LH cultures of GV oocytes when LH was further added. The LH/hCG receptor was expressed in all stages of in vitro matured mouse oocytes and in every stage of early embryonic development. Addition of hCG in IVM cultures of mouse GV oocytes increased maturation rates significantly. LH, however, was more beneficial to early embryonic development than hCG. This suggests a promising new technique in basic science research or in clinical reproductive medicine. Copyright © 2016 Society for Biology of Reproduction & the Institute of Animal Reproduction and Food Research of Polish Academy of Sciences in Olsztyn. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.
Nuclei pulposi formation from the embryonic notochord occurs normally in GDF5-deficient mice
Maier, Jennifer A.; Harfe, Brian D.
2011-01-01
Study Design The transition of the mouse embryonic notochord into nuclei pulposi was determined (“fate mapped”) in vivo in GDF-5 null mice using the Shhcre and R26R alleles. Objective To determine if abnormal nuclei pulposi formation from the embryonic notochord was responsible for defects present in adult nuclei pulposi of Gdf-5 null mice. Summary of Background Data The development, maintenance, and degeneration of the intervertebral disc are not understood. Previously, we demonstrated that all cells in the adult nucleus pulposus of normal mice are derived from the embryonic notochord. Gdf-5 null mice have been reported to contain intervertebral discs in which the nucleus pulposus is abnormal. It is currently unclear if disc defects in Gdf-5 null mice arise during the formation of nuclei pulposi from the notochord during embryogenesis or resulted from progressive postnatal degeneration of nuclei pulposi. Methods Gdf-5 mRNA expression was examined in the discs of wild-type embryos by RNA in situ hybridization to determine when and where this gene was expressed. To examine nucleus pulposus formation in Gdf-5 null mice, intervertebral discs in which embryonic notochord cells were marked were analyzed in newborn and 24 week old mice. Results Our Gdf-5 mRNA in situ experiments determined that this gene is localized to the annulus fibrosus and not the nucleus pulposus in mouse embryos. Notochord fate mapping experiments revealed that notochord cells in Gdf-5 null mice correctly form nuclei pulposi. Conclusion Our data suggest that the defects reported in the nucleus pulposus of adult Gdf-5 null mice do not result from abnormal patterning of the embryonic notochord. The use of mouse alleles to mark cells that produce all cell types that reside in the adult nucleus pulposus will allow for a detailed examination of disc formation in other mouse mutants that have been reported to contain disc defects. PMID:21278629
4D atlas of the mouse embryo for precise morphological staging.
Wong, Michael D; van Eede, Matthijs C; Spring, Shoshana; Jevtic, Stefan; Boughner, Julia C; Lerch, Jason P; Henkelman, R Mark
2015-10-15
After more than a century of research, the mouse remains the gold-standard model system, for it recapitulates human development and disease and is quickly and highly tractable to genetic manipulations. Fundamental to the power and success of using a mouse model is the ability to stage embryonic mouse development accurately. Past staging systems were limited by the technologies of the day, such that only surface features, visible with a light microscope, could be recognized and used to define stages. With the advent of high-throughput 3D imaging tools that capture embryo morphology in microscopic detail, we now present the first 4D atlas staging system for mouse embryonic development using optical projection tomography and image registration methods. By tracking 3D trajectories of every anatomical point in the mouse embryo from E11.5 to E14.0, we established the first 4D atlas compiled from ex vivo 3D mouse embryo reference images. The resulting 4D atlas comprises 51 interpolated 3D images in this gestational range, resulting in a temporal resolution of 72 min. From this 4D atlas, any mouse embryo image can be subsequently compared and staged at the global, voxel and/or structural level. Assigning an embryonic stage to each point in anatomy allows for unprecedented quantitative analysis of developmental asynchrony among different anatomical structures in the same mouse embryo. This comprehensive developmental data set offers developmental biologists a new, powerful staging system that can identify and compare differences in developmental timing in wild-type embryos and shows promise for localizing deviations in mutant development. © 2015. Published by The Company of Biologists Ltd.
Formation of Stomach Tissue by Organoid Culture Using Mouse Embryonic Stem Cells.
Noguchi, Taka-Aki K; Kurisaki, Akira
2017-01-01
In this chapter, we describe a method for the induction of stomach organoids from mouse embryonic stem (ES) cells. We used an embryoid body-based differentiation method to induce gastric primordial epithelium covered with mesenchyme and further differentiate it in Matrigel by 3D culture. The differentiated organoid contains both corpus- and antrum-specific mature gastric tissue cells. This protocol may be useful for a variety of studies in developmental biology and disease modeling of the stomach.
Embryonic Stem Cells Contribute to Mouse Chimeras in the Absence of Detectable Cell Fusion
Kidder, Benjamin L.; Oseth, Leann; Miller, Shanna; Hirsch, Betsy; Verfaillie, Catherine
2008-01-01
Abstract Embryonic stem (ES) cells are capable of differentiating into all embryonic and adult cell types following mouse chimera production. Although injection of diploid ES cells into tetraploid blastocysts suggests that tetraploid cells have a selective disadvantage in the developing embryo, tetraploid hybrid cells, formed by cell fusion between ES cells and somatic cells, have been reported to contribute to mouse chimeras. In addition, other examples of apparent stem cell plasticity have recently been shown to be the result of cell fusion. Here we investigate whether ES cells contribute to mouse chimeras through a cell fusion mechanism. Fluorescence in situ hybridization (FISH) analysis for X and Y chromosomes was performed on dissociated tissues from embryonic, neonatal, and adult wild-type, and chimeric mice to follow the ploidy distributions of cells from various tissues. FISH analysis showed that the ploidy distributions in dissociated tissues, notably the tetraploid cell number, did not differ between chimeric and wild-type tissues. To address the possibility that early cell fusion events are hidden by subsequent reductive divisions or other changes in cell ploidy, we injected Z/EG (lacZ/EGFP) ES cells into ACTB-cre blastocysts. Recombination can only occur as the result of cell fusion, and the recombined allele should persist through any subsequent changes in cell ploidy. We did not detect evidence of fusion in embryonic chimeras either by direct fluorescence microscopy for GFP or by PCR amplification of the recombined Z/EG locus on genomic DNA from ACTB-cre::Z/EG chimeric embryos. Our results argue strongly against cell fusion as a mechanism by which ES cells contribute to chimeras. PMID:18338954
Vicario, Alba; Abellán, Antonio; Desfilis, Ester; Medina, Loreta
2014-01-01
In mammals, the central extended amygdala shows a highly complex organization, and is essential for animal survival due to its implication in fear responses. However, many aspects of its evolution are still unknown, and this structure is especially poorly understood in birds. The aim of this study was to define the central extended amygdala in chicken, by means of a battery of region-specific transcription factors (Pax6, Islet1, Nkx2.1) and phenotypic markers that characterize these different subdivisions in mammals. Our results allowed the identification of at least six distinct subdivisions in the lateral part of the avian central extended amygdala: (1) capsular central subdivision; (2) a group of intercalated-like cell patches; (3) oval central nucleus; (4) peri-intrapeduncular (peri-INP) island field; (5) perioval zone; and (6) a rostral part of the subpallial extended amygdala. In addition, we identified three subdivisions of the laterodorsal bed nucleus of the stria terminalis (BSTLd) belonging to the medial region of the chicken central extended amygdala complex. Based on their genetic profile, cellular composition and apparent embryonic origin of the cells, we discuss the similarity of these different subdivisions of chicken with different parts of the mouse central amygdala and surrounding cell masses, including the intercalated amygdalar masses and the sublenticular part of the central extended amygdala. Most of the subdivisions include various subpopulations of cells that apparently originate in the dorsal striatal, ventral striatal, pallidal, and preoptic embryonic domains, reaching their final location by either radial or tangential migrations. Similarly to mammals, the central amygdala and BSTLd of chicken project to the hypothalamus, and include different neurons expressing proenkephalin, corticotropin-releasing factor, somatostatin or tyrosine hydroxylase, which may be involved in the control of different aspects of fear/anxiety-related behavior. PMID:25309337
Postdoctoral Fellow | Center for Cancer Research
The Genetics of Cancer Susceptibility Section in the Mouse Cancer Genetics Program at NCI is seeking a highly motivated postdoctoral researcher to identify novel genetic interactors of BRCA2 using CRISPR-based genetic screen in mouse embryonic stem cells and perform functional studies in mouse models.
Tang, Wei; Tian, Jingjing; Zheng, Qiang; Yan, Lin; Wang, Jiangxue; Li, Zhou; Wang, Zhong Lin
2015-08-25
Bone remodeling or orthodontic treatment is usually a long-term process. It is highly desirable to speed up the process for effective medical treatment. In this work, a self-powered low-level laser cure system for osteogenesis is developed using the power generated by the triboelectric nanogenerator. It is found that the system significantly accelerated the mouse embryonic osteoblasts' proliferation and differentiation, which is essential for bone and tooth healing. The system is further demonstrated to be driven by a living creature's motions, such as human walking or a mouse's breathing, suggesting its practical use as a portable or implantable clinical cure for bone remodeling or orthodontic treatment.
Rosen, Chava; Shezen, Elias; Aronovich, Anna; Klionsky, Yael Zlotnikov; Yaakov, Yasmin; Assayag, Miri; Biton, Inbal Eti; Tal, Orna; Shakhar, Guy; Ben-Hur, Herzel; Shneider, David; Vaknin, Zvi; Sadan, Oscar; Evron, Shmuel; Freud, Enrique; Shoseyov, David; Wilschanski, Michael; Berkman, Neville; Fibbe, Willem E; Hagin, David; Hillel-Karniel, Carmit; Krentsis, Irit Milman; Bachar-Lustig, Esther; Reisner, Yair
2015-08-01
Repair of injured lungs represents a longstanding therapeutic challenge. We show that human and mouse embryonic lung tissue from the canalicular stage of development (20-22 weeks of gestation for humans, and embryonic day 15-16 (E15-E16) for mouse) are enriched with progenitors residing in distinct niches. On the basis of the marked analogy to progenitor niches in bone marrow (BM), we attempted strategies similar to BM transplantation, employing sublethal radiation to vacate lung progenitor niches and to reduce stem cell competition. Intravenous infusion of a single cell suspension of canalicular lung tissue from GFP-marked mice or human fetal donors into naphthalene-injured and irradiated syngeneic or SCID mice, respectively, induced marked long-term lung chimerism. Donor type structures or 'patches' contained epithelial, mesenchymal and endothelial cells. Transplantation of differentially labeled E16 mouse lung cells indicated that these patches were probably of clonal origin from the donor. Recipients of the single cell suspension transplant exhibited marked improvement in lung compliance and tissue damping reflecting the energy dissipation in the lung tissues. Our study provides proof of concept for lung reconstitution by canalicular-stage human lung cells after preconditioning of the pulmonary niche.
Fujino, Ko; Igarashi, Hitomi; Imaimatsu, Kenya; Tsunekawa, Naoki; Hirate, Yoshikazu; Kurohmaru, Masamichi; Saijoh, Yukio; Kanai-Azuma, Masami
2017-01-01
The gallbladder excretes cytotoxic bile acids into the duodenum through the cystic duct and common bile duct system. Sox17 haploinsufficiency causes biliary atresia-like phenotypes and hepatitis in late organogenesis mouse embryos, but the molecular and cellular mechanisms underlying this remain unclear. In this study, transcriptomic analyses revealed the early onset of cholecystitis in Sox17+/− embryos, together with the appearance of ectopic cystic duct-like epithelia in their gallbladders. The embryonic hepatitis showed positive correlations with the severity of cholecystitis in individual Sox17+/− embryos. Embryonic hepatitis could be induced by conditional deletion of Sox17 in the primordial gallbladder epithelia but not in fetal liver hepatoblasts. The Sox17+/− gallbladder also showed a drastic reduction in sonic hedgehog expression, leading to aberrant smooth muscle formation and defective contraction of the fetal gallbladder. The defective gallbladder contraction positively correlated with the severity of embryonic hepatitis in Sox17+/− embryos, suggesting a potential contribution of embryonic cholecystitis and fetal gallbladder contraction in the early pathogenesis of congenital biliary atresia. PMID:28432216
Ex vivo culture of mouse embryonic skin and live-imaging of melanoblast migration.
Mort, Richard L; Keighren, Margaret; Hay, Leonard; Jackson, Ian J
2014-05-19
Melanoblasts are the neural crest derived precursors of melanocytes; the cells responsible for producing the pigment in skin and hair. Melanoblasts migrate through the epidermis of the embryo where they subsequently colonize the developing hair follicles(1,2). Neural crest cell migration is extensively studied in vitro but in vivo methods are still not well developed, especially in mammalian systems. One alternative is to use ex vivo organotypic culture(3-6). Culture of mouse embryonic skin requires the maintenance of an air-liquid interface (ALI) across the surface of the tissue(3,6). High resolution live-imaging of mouse embryonic skin has been hampered by the lack of a good method that not only maintains this ALI but also allows the culture to be inverted and therefore compatible with short working distance objective lenses and most confocal microscopes. This article describes recent improvements to a method that uses a gas permeable membrane to overcome these problems and allow high-resolution confocal imaging of embryonic skin in ex vivo culture(6). By using a melanoblast specific Cre-recombinase expressing mouse line combined with the R26YFPR reporter line we are able to fluorescently label the melanoblast population within these skin cultures. The technique allows live-imaging of melanoblasts and observation of their behavior and interactions with the tissue in which they develop. Representative results are included to demonstrate the capability to live-image 6 cultures in parallel.
Sunitinib in Treating Young Patients With Refractory Solid Tumors
2014-01-27
Central Nervous System Metastases; Childhood Central Nervous System Choriocarcinoma; Childhood Central Nervous System Embryonal Tumor; Childhood Central Nervous System Germ Cell Tumor; Childhood Central Nervous System Germinoma; Childhood Central Nervous System Mixed Germ Cell Tumor; Childhood Central Nervous System Teratoma; Childhood Central Nervous System Yolk Sac Tumor; Recurrent Childhood Central Nervous System Embryonal Tumor; Unspecified Childhood Solid Tumor, Protocol Specific
Embryonic mammary signature subsets are activated in Brca1-/- and basal-like breast cancers
2013-01-01
Introduction Cancer is often suggested to result from development gone awry. Links between normal embryonic development and cancer biology have been postulated, but no defined genetic basis has been established. We recently published the first transcriptomic analysis of embryonic mammary cell populations. Embryonic mammary epithelial cells are an immature progenitor cell population, lacking differentiation markers, which is reflected in their very distinct genetic profiles when compared with those of their postnatal descendents. Methods We defined an embryonic mammary epithelial signature that incorporates the most highly expressed genes from embryonic mammary epithelium when compared with the postnatal mammary epithelial cells. We looked for activation of the embryonic mammary epithelial signature in mouse mammary tumors that formed in mice in which Brca1 had been conditionally deleted from the mammary epithelium and in human breast cancers to determine whether any genetic links exist between embryonic mammary cells and breast cancers. Results Small subsets of the embryonic mammary epithelial signature were consistently activated in mouse Brca1-/- tumors and human basal-like breast cancers, which encoded predominantly transcriptional regulators, cell-cycle, and actin cytoskeleton components. Other embryonic gene subsets were found activated in non-basal-like tumor subtypes and repressed in basal-like tumors, including regulators of neuronal differentiation, transcription, and cell biosynthesis. Several embryonic genes showed significant upregulation in estrogen receptor (ER)-negative, progesterone receptor (PR)-negative, and/or grade 3 breast cancers. Among them, the transcription factor, SOX11, a progenitor cell and lineage regulator of nonmammary cell types, is found highly expressed in some Brca1-/- mammary tumors. By using RNA interference to silence SOX11 expression in breast cancer cells, we found evidence that SOX11 regulates breast cancer cell proliferation and cell survival. Conclusions Specific subsets of embryonic mammary genes, rather than the entire embryonic development transcriptomic program, are activated in tumorigenesis. Genes involved in embryonic mammary development are consistently upregulated in some breast cancers and warrant further investigation, potentially in drug-discovery research endeavors. PMID:23506684
Chumarina, Margarita; Azevedo, Carla; Bigarreau, Julie; Vignon, Clémentine; Kim, Kwang-Soo; Li, Jia-Yi; Roybon, Laurent
2017-03-01
Mouse embryonic stem cell (mESC) lines were derived by crossing heterozygous transgenic (tg) mice expressing green fluorescent protein (GFP) under the control of the rat tyrosine hydroxylase (TH) promoter, with homozygous alpha-synuclein (aSYN) mice expressing human mutant SNCA A53T under the control of the mouse Prion promoter (MoPrP), or wildtype (WT) mice. The expression of GFP and human aSYN was validated by immunocytochemistry in midbrain neuron cultures upon differentiation of mESC lines using stromal cell-derived inducing activity. These mESC lines can help to study the impact of human aSYN expression in neurons and oligodendrocytes, and also trace GFP-expressing midbrain neurons. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
EMBRYONIC PALATAL RESPONSES TO TERATOGENS IN SERUM-FREE ORGAN CULTURE
This study examines development of rat, mouse and human embryonic palates in submerged, serum-free organ culture. he concentration-response profiles for retinoic acid (RA), triamcinolone (TRI), hydrocortisone (HC), dexamethasone (DEX), and 2,3,7,11- tetrachlorodibenzo-p-dioxin (T...
Combination Chemotherapy in Treating Young Patients With Advanced Solid Tumors
2013-05-01
Childhood Central Nervous System Choriocarcinoma; Childhood Central Nervous System Embryonal Tumor; Childhood Central Nervous System Germ Cell Tumor; Childhood Central Nervous System Germinoma; Childhood Central Nervous System Mixed Germ Cell Tumor; Childhood Central Nervous System Teratoma; Childhood Central Nervous System Yolk Sac Tumor; Recurrent Childhood Brain Stem Glioma; Recurrent Childhood Central Nervous System Embryonal Tumor; Unspecified Childhood Solid Tumor, Protocol Specific
Israely, Edo; Ginsberg, Michael; Nolan, Daniel; Ding, Bi-Sen; James, Daylon; Elemento, Olivier; Rafii, Shahin; Rabbany, Sina Y
2016-01-01
The ability to generate and maintain stable in vitro cultures of mouse endothelial cells (EC) has great potential for genetic dissection of the numerous pathologies involving vascular dysfunction as well as therapeutic applications. However, previous efforts at achieving sustained cultures of primary stable murine vascular cells have fallen short, and the cellular requirements for EC maintenance in vitro remain undefined. In this study, we have generated vascular ECs from mouse embryonic stem (ES) cells, and show that active Akt is essential to their survival and propagation as homogeneous monolayers in vitro. These cells harbor the phenotypical, biochemical, and functional characteristics of ECs, and expand throughout long-term cultures, while maintaining their angiogenic capacity. Moreover, Akt-transduced embryonic ECs form functional perfused vessels in vivo that anastomose with host blood vessels. We provide evidence for a novel function of Akt in stabilizing EC identity, whereby the activated form of the protein protects mouse ES cell-derived ECs from TGFβ-mediated transdifferentiation by downregulating SMAD3. These findings identify a role for Akt in regulating the developmental potential of ES cell-derived ECs, and demonstrate that active Akt maintains endothelial identity in embryonic ECs by interfering with active TGFβ-mediated processes that would ordinarily usher these cells to alternate fates. PMID:23963623
Mouse cloning and somatic cell reprogramming using electrofused blastomeres.
Riaz, Amjad; Zhao, Xiaoyang; Dai, Xiangpeng; Li, Wei; Liu, Lei; Wan, Haifeng; Yu, Yang; Wang, Liu; Zhou, Qi
2011-05-01
Mouse cloning from fertilized eggs can assist development of approaches for the production of "genetically tailored" human embryonic stem (ES) cell lines that are not constrained by the limitations of oocyte availability. However, to date only zygotes have been successfully used as recipients of nuclei from terminally differentiated somatic cell donors leading to ES cell lines. In fertility clinics, embryos of advanced embryonic stages are usually stored for future use, but their ability to support the derivation of ES cell lines via somatic nuclear transfer has not yet been proved. Here, we report that two-cell stage electrofused mouse embryos, arrested in mitosis, can support developmental reprogramming of nuclei from donor cells ranging from blastomeres to somatic cells. Live, full-term cloned pups from embryonic donors, as well as pluripotent ES cell lines from embryonic or somatic donors, were successfully generated from these reconstructed embryos. Advanced stage pre-implantation embryos were unable to develop normally to term after electrofusion and transfer of a somatic cell nucleus, indicating that discarded pre-implantation human embryos could be an important resource for research that minimizes the ethical concerns for human therapeutic cloning. Our approach provides an attractive and practical alternative to therapeutic cloning using donated oocytes for the generation of patient-specific human ES cell lines.
Israely, Edo; Ginsberg, Michael; Nolan, Daniel; Ding, Bi-Sen; James, Daylon; Elemento, Olivier; Rafii, Shahin; Rabbany, Sina Y
2014-01-01
The ability to generate and maintain stable in vitro cultures of mouse endothelial cells (ECs) has great potential for genetic dissection of the numerous pathologies involving vascular dysfunction as well as therapeutic applications. However, previous efforts at achieving sustained cultures of primary stable murine vascular cells have fallen short, and the cellular requirements for EC maintenance in vitro remain undefined. In this study, we have generated vascular ECs from mouse embryonic stem (ES) cells and show that active Akt is essential to their survival and propagation as homogeneous monolayers in vitro. These cells harbor the phenotypical, biochemical, and functional characteristics of ECs and expand throughout long-term cultures, while maintaining their angiogenic capacity. Moreover, Akt-transduced embryonic ECs form functional perfused vessels in vivo that anastomose with host blood vessels. We provide evidence for a novel function of Akt in stabilizing EC identity, whereby the activated form of the protein protects mouse ES cell-derived ECs from TGFβ-mediated transdifferentiation by downregulating SMAD3. These findings identify a role for Akt in regulating the developmental potential of ES cell-derived ECs and demonstrate that active Akt maintains endothelial identity in embryonic ECs by interfering with active TGFβ-mediated processes that would ordinarily usher these cells to alternate fates. © AlphaMed Press.
A novel toxicogenomics-based approach to categorize (non-)genotoxic carcinogens.
Schaap, Mirjam M; Wackers, Paul F K; Zwart, Edwin P; Huijskens, Ilse; Jonker, Martijs J; Hendriks, Giel; Breit, Timo M; van Steeg, Harry; van de Water, Bob; Luijten, Mirjam
2015-12-01
Alternative methods to detect non-genotoxic carcinogens are urgently needed, as this class of carcinogens goes undetected in the current testing strategy for carcinogenicity under REACH. A complicating factor is that non-genotoxic carcinogens act through several distinctive modes of action, which makes prediction of their carcinogenic property difficult. We have recently demonstrated that gene expression profiling in primary mouse hepatocytes is a useful approach to categorize non-genotoxic carcinogens according to their modes of action. In the current study, we improved the methods used for analysis and added mouse embryonic stem cells as a second in vitro test system, because of their features complementary to hepatocytes. Our approach involved an unsupervised analysis based on the 30 most significantly up- and down-regulated genes per chemical. Mouse embryonic stem cells and primary mouse hepatocytes were exposed to a selected set of chemicals and subsequently subjected to gene expression profiling. We focused on non-genotoxic carcinogens, but also included genotoxic carcinogens and non-carcinogens to test the robustness of this approach. Application of the optimized comparison approach resulted in improved categorization of non-genotoxic carcinogens. Mouse embryonic stem cells were a useful addition, especially for genotoxic substances, but also for detection of non-genotoxic carcinogens that went undetected by primary hepatocytes. The approach presented here is an important step forward to categorize chemicals, especially those that are carcinogenic.
Vitamin K2 biosynthetic enzyme, UBIAD1 is essential for embryonic development of mice.
Nakagawa, Kimie; Sawada, Natsumi; Hirota, Yoshihisa; Uchino, Yuri; Suhara, Yoshitomo; Hasegawa, Tomoka; Amizuka, Norio; Okamoto, Tadashi; Tsugawa, Naoko; Kamao, Maya; Funahashi, Nobuaki; Okano, Toshio
2014-01-01
UbiA prenyltransferase domain containing 1 (UBIAD1) is a novel vitamin K2 biosynthetic enzyme screened and identified from the human genome database. UBIAD1 has recently been shown to catalyse the biosynthesis of Coenzyme Q10 (CoQ10) in zebrafish and human cells. To investigate the function of UBIAD1 in vivo, we attempted to generate mice lacking Ubiad1, a homolog of human UBIAD1, by gene targeting. Ubiad1-deficient (Ubiad1(-/-)) mouse embryos failed to survive beyond embryonic day 7.5, exhibiting small-sized body and gastrulation arrest. Ubiad1(-/-) embryonic stem (ES) cells failed to synthesize vitamin K2 but were able to synthesize CoQ9, similar to wild-type ES cells. Ubiad1(+/-) mice developed normally, exhibiting normal growth and fertility. Vitamin K2 tissue levels and synthesis activity were approximately half of those in the wild-type, whereas CoQ9 tissue levels and synthesis activity were similar to those in the wild-type. Similarly, UBIAD1 expression and vitamin K2 synthesis activity of mouse embryonic fibroblasts prepared from Ubiad1(+/-) E15.5 embryos were approximately half of those in the wild-type, whereas CoQ9 levels and synthesis activity were similar to those in the wild-type. Ubiad1(-/-) mouse embryos failed to be rescued, but their embryonic lifespans were extended to term by oral administration of MK-4 or CoQ10 to pregnant Ubiad1(+/-) mice. These results suggest that UBIAD1 is responsible for vitamin K2 synthesis but may not be responsible for CoQ9 synthesis in mice. We propose that UBIAD1 plays a pivotal role in embryonic development by synthesizing vitamin K2, but may have additional functions beyond the biosynthesis of vitamin K2.
Embryonic Mutant Huntingtin Aggregate Formation in Mouse Models of Huntington's Disease.
Osmand, Alexander P; Bichell, Terry Jo; Bowman, Aaron B; Bates, Gillian P
2016-12-15
The role of aggregate formation in the pathophysiology of Huntington's disease (HD) remains uncertain. However, the temporal appearance of aggregates tends to correlate with the onset of symptoms and the numbers of neuropil aggregates correlate with the progression of clinical disease. Using highly sensitive immunohistochemical methods we have detected the appearance of diffuse aggregates during embryonic development in the R6/2 and YAC128 mouse models of HD. These are initially seen in developing axonal tracts and appear to spread throughout the cerebrum in the early neonate.
Ultrasound biomicroscopy in mouse cardiovascular development
NASA Astrophysics Data System (ADS)
Turnbull, Daniel H.
2004-05-01
The mouse is the preferred animal model for studying mammalian cardiovascular development and many human congenital heart diseases. Ultrasound biomicroscopy (UBM), utilizing high-frequency (40-50-MHz) ultrasound, is uniquely capable of providing in vivo, real-time microimaging and Doppler blood velocity measurements in mouse embryos and neonates. UBM analyses of normal and abnormal mouse cardiovascular function will be described to illustrate the power of this microimaging approach. In particular, real-time UBM images have been used to analyze dimensional changes in the mouse heart from embryonic to neonatal stages. UBM-Doppler has been used recently to examine the precise timing of onset of a functional circulation in early-stage mouse embryos, from the first detectable cardiac contractions. In other experiments, blood velocity waveforms have been analyzed to characterize the functional phenotype of mutant mouse embryos having defects in cardiac valve formation. Finally, UBM has been developed for real-time, in utero image-guided injection of mouse embryos, enabling cell transplantation and genetic gain-of-function experiments with transfected cells and retroviruses. In summary, UBM provides a unique and powerful approach for in vivo analysis and image-guided manipulation in normal and genetically engineered mice, over a wide range of embryonic to neonatal developmental stages.
Ermakova, Olga; Orsini, Tiziana; Gambadoro, Alessia; Chiani, Francesco; Tocchini-Valentini, Glauco P
2018-04-01
In this work, we applied three-dimensional microCT imaging to study murine embryogenesis in the range from immediate post-implantation period (embryonic day 5.5) to mid-gestation (embryonic day 12.5) with the resolution up to 1.4 µm/voxel. Also, we introduce an imaging procedure for non-invasive volumetric estimation of an entire litter of embryos within the maternal uterine structures. This method allows for an accurate, detailed and systematic morphometric analysis of both embryonic and extra-embryonic components during embryogenesis. Three-dimensional imaging of unperturbed embryos was performed to visualize the egg cylinder, primitive streak, gastrulation and early organogenesis stages of murine development in the C57Bl6/N mouse reference strain. Further, we applied our microCT imaging protocol to determine the earliest point when embryonic development is arrested in a mouse line with knockout for tRNA splicing endonuclease subunit Tsen54 gene. Our analysis determined that the embryonic development in Tsen54 null embryos does not proceed beyond implantation. We demonstrated that application of microCT imaging to entire litter of non-perturbed embryos greatly facilitate studies to unravel gene function during early embryogenesis and to determine the precise point at which embryonic development is arrested in mutant animals. The described method is inexpensive, does not require lengthy embryos dissection and can be applicable for detailed analysis of mutant mice at laboratory scale as well as for high-throughput projects.
Bjornsson, Hans T.; Benjamin, Joel S.; Zhang, Li; Weissman, Jacqueline; Gerber, Elizabeth E.; Chen, Yi-Chun; Vaurio, Rebecca G.; Potter, Michelle C.; Hansen, Kasper D.; Dietz, Harry C.
2015-01-01
Kabuki syndrome is caused by haploinsufficiency for either of two genes that promote the opening of chromatin. If an imbalance between open and closed chromatin is central to the pathogenesis of Kabuki syndrome, agents that promote chromatin opening might have therapeutic potential. We have characterized a mouse model of Kabuki syndrome with a heterozygous deletion in the gene encoding the lysine-specific methyltransferase 2D (Kmt2d), leading to impairment of methyltransferase function. In vitro reporter alleles demonstrated a reduction in histone 4 acetylation and histone 3 lysine 4 trimethylation (H3K4me3) activity in mouse embryonic fibroblasts from Kmt2d+/βGeo mice. These activities were normalized in response to AR-42, a histone deacetylase inhibitor. In vivo, deficiency of H3K4me3 in the dentate gyrus granule cell layer of Kmt2d+/βGeo mice correlated with reduced neurogenesis and hippocampal memory defects. These abnormalities improved upon postnatal treatment with AR-42. Our work suggests that a reversible deficiency in postnatal neurogenesis underlies intellectual disability in Kabuki syndrome. PMID:25273096
Lee, Jihyun; Yang, Goowon; Kim, Young-Joo; Tran, Quynh Hoa; Choe, Wonchae; Kang, Insug; Kim, Sung Soo; Ha, Joohun
2017-09-23
Persistent oxidative stress is recognized as a major cause of many pathological conditions as well as ageing. However, most clinical trials of dietary antioxidants have failed to produce successful outcomes in treating oxidative stress-induced diseases. Molecular hydrogen (H 2 ) has recently received considerable attention as a therapeutic agent owing to its novel antioxidant properties, a selective scavenger of hydroxyl and peroxynitrite radicals. Beyond this, numerous reports support that H 2 can modulate the activity of various cellular signal pathways. However, its effect on AMP-activated protein kinase (AMPK) signal pathway, a central regulator of energy hemostasis, has remained almost elusive. Here, we report that hydrogen-rich medium activated LKB1-AMPK signal pathway without ATP depletion, which in turn induced FoxO1-dependent transcription of manganese superoxide dismutase and catalase in mouse embryonic fibroblasts. Moreover, hydrogen-rich media effectively reduced the level of reactive oxygen species in cells treated with hydrogen peroxide and protected these cells from apoptosis in an AMPK-dependent manner. These results suggest that the LKB1-AMPK-FoxO1 signaling pathway is a critical mediator of the antioxidant properties of H 2 , further supporting the idea that H 2 acts as a signaling molecule to serve various physiological functions. Copyright © 2017 Elsevier Inc. All rights reserved.
Wang, Liqing; Yu, Chao; Wang, Jun; Zhao, Hui; Chan, Sun-On
2017-08-10
Chondroitin sulfate (CS) proteoglycans (PGs) are a family of complex molecules in the extracellular matrix and cell surface that regulate axon growth and guidance during development of the central nervous system. In this study, the expression of CSPGs was investigated in the mouse spinal cord at late embryonic and neonatal stages using CS-56 antibody. CS immunoreactivity was observed abundantly in ventral regions of spinal cord of embryonic day (E) 15 embryos. At E16 to E18, CS expression spread dorsally, but never reached the superficial layers of the dorsal horn. This pattern was maintained until postnatal day 4, the latest stage examined. Antibodies against calcitonin gene related peptide (CGRP) and parvalbumin (PV) were employed to label primary afferents from nociceptors and proprioceptors, respectively. CGRP-immunoreactive fibers terminated in the superficial regions of the dorsal horn where CSPGs were weakly expressed, whereas PV-immunoreactive fibers were found in CSPG-rich regions in the ventral horn. Therefore, we conclude that CS expression is spatiotemporally regulated in the spinal cord, which correlates to the termination of sensory afferents. This pattern suggests a role of CSPGs on patterning afferents in the spinal cord, probably through a differential response of axons to these growth inhibitory molecules. Copyright © 2017 Elsevier B.V. All rights reserved.
De Cegli, Rossella; Iacobacci, Simona; Flore, Gemma; Gambardella, Gennaro; Mao, Lei; Cutillo, Luisa; Lauria, Mario; Klose, Joachim; Illingworth, Elizabeth; Banfi, Sandro; di Bernardo, Diego
2013-01-01
Gene expression profiles can be used to infer previously unknown transcriptional regulatory interaction among thousands of genes, via systems biology ‘reverse engineering’ approaches. We ‘reverse engineered’ an embryonic stem (ES)-specific transcriptional network from 171 gene expression profiles, measured in ES cells, to identify master regulators of gene expression (‘hubs’). We discovered that E130012A19Rik (E13), highly expressed in mouse ES cells as compared with differentiated cells, was a central ‘hub’ of the network. We demonstrated that E13 is a protein-coding gene implicated in regulating the commitment towards the different neuronal subtypes and glia cells. The overexpression and knock-down of E13 in ES cell lines, undergoing differentiation into neurons and glia cells, caused a strong up-regulation of the glutamatergic neurons marker Vglut2 and a strong down-regulation of the GABAergic neurons marker GAD65 and of the radial glia marker Blbp. We confirmed E13 expression in the cerebral cortex of adult mice and during development. By immuno-based affinity purification, we characterized protein partners of E13, involved in the Polycomb complex. Our results suggest a role of E13 in regulating the division between glutamatergic projection neurons and GABAergic interneurons and glia cells possibly by epigenetic-mediated transcriptional regulation. PMID:23180766
Sogorb, Miguel A; Fuster, Encarnación; Del Río, Eva; Estévez, Jorge; Vilanova, Eugenio
2016-11-25
Chlorpyrifos (CPS) is an organophosphorus compound (OP) capable of causing well-known cholinergic and delayed syndromes through the inhibition of acetylcholinesterase and Neuropathy Target Esterase (NTE), respectively. CPS is also able to induce neurodevelopmental toxicity in animals. NTE is codified by the Pnpla6 gene and plays a central role in differentiation and neurodifferentiation. We tested, in D3 mouse embryonic stem cells under differentiation, the effects of the NTE inhibition by the OPs mipafox, CPS and its main active metabolite chlorpyrifos-oxon (CPO) on the expression of genes Vegfa, Bcl2, Amot, Nes and Jun, previously reported to be under- or overexpressed after Pnpla6 silencing in this same cellular model. Mipafox did not significantly alter the expression of such genes at concentrations that significantly inhibited NTE. However, CPS and CPO at concentrations that caused NTE inhibition at similar levels to mipafox statistically and significantly altered the expression of most of these genes. Paraoxon (another OP with capability to inhibit esterases but not NTE) caused similar effects to CPS and CPO. These findings suggest that the molecular mechanism for the neurodevelopmental toxicity induced by CPS is not based on NTE inhibition, and that other unknown esterases might be potential targets of neurodevelopmental toxicity. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Quétier, Ivan; Marshall, Jacqueline J.T.; Spencer-Dene, Bradley; Lachmann, Sylvie; Casamassima, Adele; Franco, Claudio; Escuin, Sarah; Worrall, Joseph T.; Baskaran, Priththivika; Rajeeve, Vinothini; Howell, Michael; Copp, Andrew J.; Stamp, Gordon; Rosewell, Ian; Cutillas, Pedro; Gerhardt, Holger; Parker, Peter J.; Cameron, Angus J.M.
2016-01-01
Summary In animals, the protein kinase C (PKC) family has expanded into diversely regulated subgroups, including the Rho family-responsive PKN kinases. Here, we describe knockouts of all three mouse PKN isoforms and reveal that PKN2 loss results in lethality at embryonic day 10 (E10), with associated cardiovascular and morphogenetic defects. The cardiovascular phenotype was not recapitulated by conditional deletion of PKN2 in endothelial cells or the developing heart. In contrast, inducible systemic deletion of PKN2 after E7 provoked collapse of the embryonic mesoderm. Furthermore, mouse embryonic fibroblasts, which arise from the embryonic mesoderm, depend on PKN2 for proliferation and motility. These cellular defects are reflected in vivo as dependence on PKN2 for mesoderm proliferation and neural crest migration. We conclude that failure of the mesoderm to expand in the absence of PKN2 compromises cardiovascular integrity and development, resulting in lethality. PMID:26774483
Quétier, Ivan; Marshall, Jacqueline J T; Spencer-Dene, Bradley; Lachmann, Sylvie; Casamassima, Adele; Franco, Claudio; Escuin, Sarah; Worrall, Joseph T; Baskaran, Priththivika; Rajeeve, Vinothini; Howell, Michael; Copp, Andrew J; Stamp, Gordon; Rosewell, Ian; Cutillas, Pedro; Gerhardt, Holger; Parker, Peter J; Cameron, Angus J M
2016-01-26
In animals, the protein kinase C (PKC) family has expanded into diversely regulated subgroups, including the Rho family-responsive PKN kinases. Here, we describe knockouts of all three mouse PKN isoforms and reveal that PKN2 loss results in lethality at embryonic day 10 (E10), with associated cardiovascular and morphogenetic defects. The cardiovascular phenotype was not recapitulated by conditional deletion of PKN2 in endothelial cells or the developing heart. In contrast, inducible systemic deletion of PKN2 after E7 provoked collapse of the embryonic mesoderm. Furthermore, mouse embryonic fibroblasts, which arise from the embryonic mesoderm, depend on PKN2 for proliferation and motility. These cellular defects are reflected in vivo as dependence on PKN2 for mesoderm proliferation and neural crest migration. We conclude that failure of the mesoderm to expand in the absence of PKN2 compromises cardiovascular integrity and development, resulting in lethality. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Ishigaki, Mika; Hashimoto, Kosuke; Sato, Hidetoshi; Ozaki, Yukihiro
2017-03-01
Current research focuses on embryonic development and quality not only by considering fundamental biology, but also by aiming to improve assisted reproduction technologies, such as in vitro fertilization. In this study, we explored the development of mouse embryo and its quality based on molecular information, obtained nondestructively using Raman spectroscopy. The detailed analysis of Raman spectra measured in situ during embryonic development revealed a temporary increase in protein content after fertilization. Proteins with a β-sheet structure—present in the early stages of embryonic development—are derived from maternal oocytes, while α-helical proteins are additionally generated by switching on a gene after fertilization. The transition from maternal to embryonic control during development can be non-destructively profiled, thus facilitating the in situ assessment of structural changes and component variation in proteins generated by metabolic activity. Furthermore, it was indicated that embryos with low-grade morphology had high concentrations of lipids and hydroxyapatite. This technique could be used for embryo quality testing in the future.
In vitro organogenesis of gut-like structures from mouse embryonic stem cells.
Kuwahara, M; Ogaeri, T; Matsuura, R; Kogo, H; Fujimoto, T; Torihashi, S
2004-04-01
Embryonic stem (ES) cells have pluripotency and give rise to many cell types and tissues, including representatives of all three germ layers in the embryo. We have reported previously that mouse ES cells formed contracting gut-like organs from embryoid bodies (EBs). These gut-like structures contracted spontaneously, and had large lumens surrounded by three layers, i.e. epithelium, lamina propria and muscularis. Ganglia were scattered along the periphery, and interstitial cells of Cajal (ICC) were distributed among the smooth muscle cells. In the present study, to determine whether they can be a model of gut organogenesis, we investigated the formation process of the gut-like structures in comparison with embryonic gut development. As a result, we found that the fundamental process of formation in vitro was similar to embryonic gut development in vivo. The result indicates that the gut-like structure is a useful tool not only for developmental study to determine the factors that induce gut organogenesis, but also for studies of enteric neurone and ICC development.
Ma, Jie; Wang, Yu; Yang, Jianhua; Yang, Min; Chang, Keun-A; Zhang, Linhua; Jiang, Feng; Li, Yi; Zhang, Zhonggong; Heo, Chaejeong; Suh, Yoo-Hun
2007-07-01
A 7-day-old hypoxic-ischemic encephalopathy (HIE) mouse model was used to study the effect of transplantation of embryonic stem (ES) cell-derived cells on the HIE. After the inducement in vitro, the ES cell-derived cells expressed Nestin and MAP-2, rather than GFAP mRNA. After transplantation, ES cell-derived cells can survive, migrate into the injury site, and specifically differentiate into neurons, showing improvement of the learning ability and memory of the HIE mouse at 8 months post-transplantation. The non-grafted HIE mouse brain showed typical pathological changes in the hippocampus and cerebral cortex, where the number of neurons was reduced, while in the cell graft group, number of the neurons increased in the same regions. Although further study is necessary to elucidate the precise mechanisms responsible for this functional recovery, we believe that ES cells have advantages for use as a donor source in HIE.
Generation of an immortalized mouse embryonic palatal mesenchyme cell line
Soriano, Philippe
2017-01-01
Palatogenesis is a complex morphogenetic process, disruptions in which result in highly prevalent birth defects in humans. In recent decades, the use of model systems such as genetically-modified mice, mouse palatal organ cultures and primary mouse embryonic palatal mesenchyme (MEPM) cultures has provided significant insight into the molecular and cellular defects underlying cleft palate. However, drawbacks in each of these systems have prevented high-throughput, large-scale studies of palatogenesis in vitro. Here, we report the generation of an immortalized MEPM cell line that maintains the morphology, migration ability, transcript expression and responsiveness to exogenous growth factors of primary MEPM cells, with increased proliferative potential over primary cultures. The immortalization method described in this study will facilitate the generation of palatal mesenchyme cells with an unlimited capacity for expansion from a single genetically-modified mouse embryo and enable mechanistic studies of palatogenesis that have not been possible using primary culture. PMID:28582446
Regulation of lung branching morphogenesis by bombesin-like peptides and neutral endopeptidase.
Aguayo, S M; Schuyler, W E; Murtagh, J J; Roman, J
1994-06-01
The expression of bombesin-like peptides (BLPs) by pulmonary neuroendocrine cells is transiently upregulated during lung development. A functional role for BLPs is supported by their ability to stimulate lung growth and maturation both in vitro and in vivo during the late stages of lung development. In addition, the cell membrane-associated enzyme CD10/neutral endopeptidase 24.11 (CD10/NEP), which inactivates BLPs and other regulatory peptides, is also expressed by developing lungs and modulates the stimulatory effects of BLPs on lung growth and maturation. We hypothesized that, in addition to expressing BLPs and CD10/NEP, embryonic lungs must express BLP receptors, and that BLPs may also regulate processes that occur during early lung development such as branching morphogenesis. Using reverse transcriptase-polymerase chain reaction and oligonucleotide primers designed for amplifying a BLP receptor originally isolated from Swiss 3T3 mouse fibroblasts, we found that embryonic mouse lungs express a similar BLP receptor mRNA during the pseudoglandular stage of lung development when branching morphogenesis take place. Subsequently, we evaluated the effects of ligands for this BLP receptor using embryonic mouse lungs in an in vitro model of lung branching morphogenesis. We found that, in comparison with control lungs, treatment with bombesin (1 to 100 nM) resulted in a modest increase in clefts or branching points. In contrast, embryonic mouse lungs treated with the BLP analog [Leu13-psi(CH2NH)Leu14]bombesin (1 microM), which also binds to this BLP receptor but has predominantly antagonistic effects, demonstrated fewer branching points.(ABSTRACT TRUNCATED AT 250 WORDS)
Ou, Xuan; Chae, Hee-Don; Wang, Rui-Hong; Shelley, William C.; Cooper, Scott; Taylor, Tammi; Kim, Young-June; Deng, Chu-Xia; Yoder, Mervin C.
2011-01-01
SIRT1 is a founding member of a sirtuin family of 7 proteins and histone deacetylases. It is involved in cellular resistance to stress, metabolism, differentiation, aging, and tumor suppression. SIRT1−/− mice demonstrate embryonic and postnatal development defects. We examined hematopoietic and endothelial cell differentiation of SIRT1−/− mouse embryonic stem cells (ESCs) in vitro, and hematopoietic progenitors in SIRT1+/++/−, and −/− mice. SIRT1−/− ESCs formed fewer mature blast cell colonies. Replated SIRT1−/− blast colony-forming cells demonstrated defective hematopoietic potential. Endothelial cell production was unaltered, but there were defects in formation of a primitive vascular network from SIRT1−/−-derived embryoid bodies. Development of primitive and definitive progenitors derived from SIRT1−/− ESCs were also delayed and/or defective. Differentiation delay/defects were associated with delayed capacity to switch off Oct4, Nanog and Fgf5 expression, decreased β-H1 globin, β-major globin, and Scl gene expression, and reduced activation of Erk1/2. Ectopic expression of SIRT1 rescued SIRT1−/− ESC differentiation deficiencies. SIRT1−/− yolk sacs manifested fewer primitive erythroid precursors. SIRT1−/− and SIRT1+/− adult marrow had decreased numbers and cycling of hematopoietic progenitors, effects more apparent at 5%, than at 20%, oxygen tension, and these progenitors survived less well in vitro under conditions of delayed growth factor addition. This suggests a role for SIRT1 in ESC differentiation and mouse hematopoiesis. PMID:20966168
Ma, Haixia; Lin, Yu; Zhao, Zhen-Ao; Lu, Xukun; Yu, Yang; Zhang, Xiaoxin; Wang, Qiang; Li, Lei
2016-06-03
Specification of the three germ layers is a fundamental process and is essential for the establishment of organ rudiments. Multiple genetic and epigenetic factors regulate this dynamic process; however, the function of specific microRNAs in germ layer differentiation remains unknown. In this study, we established that microRNA-127 (miR-127) is related to germ layer specification via microRNA array analysis of isolated three germ layers of E7.5 mouse embryos and was verified through differentiation of mouse embryonic stem cells. miR-127 is highly expressed in endoderm and primitive streak. Overexpression of miR-127 increases and inhibition of miR-127 decreases the expression of mesendoderm markers. We further show that miR-127 promotes mesendoderm differentiation through the nodal pathway, a determinative signaling pathway in early embryogenesis. Using luciferase reporter assay, left-right determination factor 2 (Lefty2), an antagonist of nodal, is identified to be a novel target of miR-127. Furthermore, the role of miR-127 in mesendoderm differentiation is attenuated by Lefty2 overexpression. Altogether, our results indicate that miR-127 accelerates mesendoderm differentiation of mouse embryonic stem cells through nodal signaling by targeting Lefty2. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Neudert, Franziska; Nuernberger, Krishna-K Monique; Redies, Christoph
2008-12-20
The cerebellum shows remarkable variations in the relative size of its divisions among vertebrate species. In the present study, we compare the cerebella of two mammals (ferret and mouse) by mapping the expression of three cadherins (cadherin-8, protocadherin-7, and protocadherin-10) at similar postnatal stages. The three cadherins are expressed differentially in parasagittal stripes in the cerebellar cortex, in the portions of the deep cerebellar nuclei, in the divisions of the inferior olivary nucleus, and in the lateral vestibular nucleus. The expression profiles suggest that the cadherin-positive structures are interconnected. The expression patterns resemble each other in ferret and mouse, although some differences can be observed. The general resemblance indicates that cerebellar organization is based on a common set of embryonic divisions in the two species. Consequently, the large differences in cerebellar morphology between the two species are more likely caused by differential growth of these embryonic divisions than by differences in early embryonic patterning. Based on the cadherin expression patterns, a model of corticonuclear projection territories in ferret and mouse is proposed. In summary, our results indicate that the cerebellar systems of rodents and carnivores display a relatively large degree of similarity in their molecular and functional organization.
Chen, Chia-Chi; Chan, Wen-Hsiung
2012-01-01
Curcumin, a common dietary pigment and spice, is a hydrophobic polyphenol derived from the rhizome of the herb Curcuma longa. Previously, we reported a cytotoxic effect of curcumin on mouse embryonic stem cells and blastocysts and its association with defects in subsequent development. In the present study, we further investigated the effects of curcumin on oocyte maturation and subsequent pre- and post-implantation development, both in vitro and in vivo. Notably, curcumin induced a significant reduction in the rate of oocyte maturation, fertilization, and in vitro embryonic development. Treatment of oocytes with curcumin during in vitro maturation (IVM) led to increased resorption of postimplantation embryos and decreased fetal weight. Experiments with an in vivo mouse model disclosed that consumption of drinking water containing 40 μM curcumin led to decreased oocyte maturation and in vitro fertilization as well as early embryonic developmental injury. Finally, pretreatment with a caspase-3-specific inhibitor effectively prevented curcumin-triggered injury effects, suggesting that embryo impairment by curcumin occurs mainly via a caspase-dependent apoptotic process.
Cloning and expression of sheep DNA methyltransferase 1 and its development-specific isoform.
Taylor, Jane; Moore, Hannah; Beaujean, Nathalie; Gardner, John; Wilmut, Ian; Meehan, Richard; Young, Lorraine
2009-05-01
Unlike the mouse embryo, where loss of DNA methylation in the embryonic nucleus leaves cleavage stage embryos globally hypomethylated, sheep preimplantation embryos retain high levels of methylation until the blastocyst stage. We have cloned and sequenced sheep Dnmt1 and found it to be highly conserved with both the human and mouse homologues. Furthermore, we observed that the transcript normally expressed in adult somatic tissues is highly abundant in sheep oocytes. Throughout sheep preimplantation development the protein is retained in the cytoplasm whereas Dnmt1 transcript production declines after the embryonic genome activation at the 8-16 cell stage. Attempts to clone oocyte-specific 5' regions of Dnmt1, known to be present in the mouse and human gene, were unsuccessful. However, a novel ovine Dnmt1 exon, theoretically encoding 13 amino acids, was found to be expressed in sheep oocytes, preimplantation embryos and early fetal lineages, but not in the adult tissue. RNAi-mediated knockdown of this novel transcript resulted in embryonic developmental arrest at the late morula stage, suggesting an essential role for this isoform in sheep blastocyst formation. (c) 2008 Wiley-Liss, Inc.
Rao, Yang; Cui, Jihong; Yin, Lu; Liu, Wei; Liu, Wenguang; Sun, Mei; Yan, Xingrong; Wang, Ling; Chen, Fulin
2016-10-22
Embryonic stem cell (ESC) derivatives hold great promise for the construction of tissue-engineered skin equivalents (TESE). However, harvesting of ESCs destroys viable embryos and may lead to political and ethical concerns over their application. In the current study, we directed mouse parthenogenetic embryonic stem cells (pESCs) to differentiate into fibroblasts, constructed TESE, and evaluated its function in vivo. The stemness marker expression and the pluripotent differentiation ability of pESCs were tested. After embryoid body (EB) formation and adherence culture, mesenchymal stem cells (MSCs) were enriched and directed to differentiate into fibroblastic lineage. Characteristics of derived fibroblasts were assessed by quantitative real-time PCR and ELISA. Functional ability of the constructed TESE was tested by a mouse skin defects repair model. Mouse pESCs expressed stemness marker and could form teratoma containing three germ layers. MSCs could be enriched from outgrowths of EBs and directed to differentiate into fibroblastic lineage. These cells express a high level of growth factors including FGF, EGF, VEGF, TGF, PDGF, and IGF1, similar to those of ESC-derived fibroblasts and mouse fibroblasts. Seeded into collagen gels, the fibroblasts derived from pESCs could form TESE. Mouse skin defects could be successfully repaired 15 days after transplantation of TESE constructed by fibroblasts derived from pESCs. pESCs could be induced to differentiate into fibroblastic lineage, which could be applied to the construction of TESE and skin defect repair. Particularly, pESC derivatives avoid the limitations of political and ethical concerns, and provide a promising source for regenerative medicine.
Hayashi, Yohei; Caboni, Laura; Das, Debanu; ...
2015-03-30
NANOG (from Irish mythology Tír na nÓg) transcription factor plays a central role in maintaining pluripotency, cooperating with OCT4 (also known as POU5F1 or OCT3/4), SOX2, and other pluripotency factors. Although the physiological roles of the NANOG protein have been extensively explored, biochemical and biophysical properties in relation to its structural analysis are poorly understood. Here we determined the crystal structure of the human NANOG homeodomain (hNANOG HD) bound to an OCT4 promoter DNA, which revealed amino acid residues involved in DNA recognition that are likely to be functionally important. We generated a series of hNANOG HD alanine substitution mutantsmore » based on the protein–DNA interaction and evolutionary conservation and determined their biological activities. Some mutant proteins were less stable, resulting in loss or decreased affinity for DNA binding. Overexpression of the orthologous mouse NANOG (mNANOG) mutants failed to maintain self-renewal of mouse embryonic stem cells without leukemia inhibitory factor. These results suggest that these residues are critical for NANOG transcriptional activity. Interestingly, one mutant, hNANOG L122A, conversely enhanced protein stability and DNA-binding affinity. The mNANOG L122A, when overexpressed in mouse embryonic stem cells, maintained their expression of self-renewal markers even when retinoic acid was added to forcibly drive differentiation. When overexpressed in epiblast stem cells or human induced pluripotent stem cells, the L122A mutants enhanced reprogramming into ground-state pluripotency. These findings indicate that structural and biophysical information on key transcriptional factors provides insights into the manipulation of stem cell behaviors and a framework for rational protein engineering.« less
Hayashi, Yohei; Caboni, Laura; Das, Debanu; Yumoto, Fumiaki; Clayton, Thomas; Deller, Marc C.; Nguyen, Phuong; Farr, Carol L.; Chiu, Hsiu-Ju; Miller, Mitchell D.; Elsliger, Marc-André; Deacon, Ashley M.; Godzik, Adam; Lesley, Scott A.; Tomoda, Kiichiro; Conklin, Bruce R.; Wilson, Ian A.; Yamanaka, Shinya; Fletterick, Robert J.
2015-01-01
NANOG (from Irish mythology Tír na nÓg) transcription factor plays a central role in maintaining pluripotency, cooperating with OCT4 (also known as POU5F1 or OCT3/4), SOX2, and other pluripotency factors. Although the physiological roles of the NANOG protein have been extensively explored, biochemical and biophysical properties in relation to its structural analysis are poorly understood. Here we determined the crystal structure of the human NANOG homeodomain (hNANOG HD) bound to an OCT4 promoter DNA, which revealed amino acid residues involved in DNA recognition that are likely to be functionally important. We generated a series of hNANOG HD alanine substitution mutants based on the protein–DNA interaction and evolutionary conservation and determined their biological activities. Some mutant proteins were less stable, resulting in loss or decreased affinity for DNA binding. Overexpression of the orthologous mouse NANOG (mNANOG) mutants failed to maintain self-renewal of mouse embryonic stem cells without leukemia inhibitory factor. These results suggest that these residues are critical for NANOG transcriptional activity. Interestingly, one mutant, hNANOG L122A, conversely enhanced protein stability and DNA-binding affinity. The mNANOG L122A, when overexpressed in mouse embryonic stem cells, maintained their expression of self-renewal markers even when retinoic acid was added to forcibly drive differentiation. When overexpressed in epiblast stem cells or human induced pluripotent stem cells, the L122A mutants enhanced reprogramming into ground-state pluripotency. These findings demonstrate that structural and biophysical information on key transcriptional factors provides insights into the manipulation of stem cell behaviors and a framework for rational protein engineering. PMID:25825768
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayashi, Yohei; Caboni, Laura; Das, Debanu
NANOG (from Irish mythology Tír na nÓg) transcription factor plays a central role in maintaining pluripotency, cooperating with OCT4 (also known as POU5F1 or OCT3/4), SOX2, and other pluripotency factors. Although the physiological roles of the NANOG protein have been extensively explored, biochemical and biophysical properties in relation to its structural analysis are poorly understood. Here we determined the crystal structure of the human NANOG homeodomain (hNANOG HD) bound to an OCT4 promoter DNA, which revealed amino acid residues involved in DNA recognition that are likely to be functionally important. We generated a series of hNANOG HD alanine substitution mutantsmore » based on the protein–DNA interaction and evolutionary conservation and determined their biological activities. Some mutant proteins were less stable, resulting in loss or decreased affinity for DNA binding. Overexpression of the orthologous mouse NANOG (mNANOG) mutants failed to maintain self-renewal of mouse embryonic stem cells without leukemia inhibitory factor. These results suggest that these residues are critical for NANOG transcriptional activity. Interestingly, one mutant, hNANOG L122A, conversely enhanced protein stability and DNA-binding affinity. The mNANOG L122A, when overexpressed in mouse embryonic stem cells, maintained their expression of self-renewal markers even when retinoic acid was added to forcibly drive differentiation. When overexpressed in epiblast stem cells or human induced pluripotent stem cells, the L122A mutants enhanced reprogramming into ground-state pluripotency. These findings indicate that structural and biophysical information on key transcriptional factors provides insights into the manipulation of stem cell behaviors and a framework for rational protein engineering.« less
Oh, Ji Young; Suh, Han Na; Choi, Gee Euhn; Lee, Hyun Jik; Jung, Young Hyun; Ko, So Hee; Kim, Jun Sung; Chae, Chang Woo; Lee, Chang-Kyu; Han, Ho Jae
2018-06-22
Sonic hedgehog pathway (Shh) plays a central role in maintaining stem cell function and behavior in various processes related to self-renewal and tissue regeneration. However, the therapeutic effect of Shh on mouse embryonic stem cells (mESCs) has not yet been clearly described. Thus, we investigated the effect of Shh on the regulation of mESC behaviors as well as the effect of Shh-pretreated mESCs in skin wound healing. The present study investigated the underlying mechanisms of Shh signaling pathway in growth and motility of mESCs using western blot analysis, cell proliferation assay, and cell migration assay. In addition, the effect of Shh-pretreated mESCs in skin wound healing was determined using mouse excisional wound splinting model. Shh induced adherens junction disruption through proteolysis by activating matrix metallopeptidases. In addition, the release of β-catenin from adherens junctions mediated by Shh led to cell cycle-dependent mESC proliferation. Shh-mediated Gli1 expression led to integrin β1 upregulation, followed by FAK and Src phosphorylation. Furthermore, among the Rho-GTPases, Rac1 and Cdc42 were activated in a Shh-dependent manner while F-actin expression was suppressed by Rac1 and Cdc42 siRNA transfection. Consistent with the in vitro results, skin wound healing assay revealed that Shh-treated mESCs induced angiogenesis and skin wound repair compared to that in Shh-treated mESCs transfected with integrin β1 siRNA in vivo. Our results imply that Shh induces adherens junction disruption and integrin β1-dependent F-actin formation involving FAK/Src and Rac1/Cdc42 signaling pathways in mESCs. This article is protected by copyright. All rights reserved.
Fenina, Myriam; Simon-Chazottes, Dominique; Vandormael-Pournin, Sandrine; Soueid, Jihane; Langa, Francina; Cohen-Tannoudji, Michel; Bernard, Bruno A; Panthier, Jean-Jacques
2012-01-01
Targeted induction of double-strand breaks (DSBs) at natural endogenous loci was shown to increase the rate of gene replacement by homologous recombination in mouse embryonic stem cells. The gene encoding dopachrome tautomerase (Dct) is specifically expressed in melanocytes and their precursors. To construct a genetic tool allowing the replacement of Dct gene by any gene of interest, we generated an embryonic stem cell line carrying the recognition site for the yeast I-SceI meganuclease embedded in the Dct genomic segment. The embryonic stem cell line was electroporated with an I-SceI expression plasmid, and a template for the DSB-repair process that carried sequence homologies to the Dct target. The I-SceI meganuclease was indeed able to introduce a DSB at the Dct locus in live embryonic stem cells. However, the level of gene targeting was not improved by the DSB induction, indicating a limited capacity of I-SceI to mediate homologous recombination at the Dct locus. These data suggest that homologous recombination by meganuclease-induced DSB may be locus dependent in mammalian cells.
Duncan, S A
2005-12-01
Gene targeting in ES (embryonic stem) cells has been used extensively to study the role of proteins during embryonic development. In the traditional procedure, this requires the generation of chimaeric mice by introducing ES cells into blastocysts and allowing them to develop to term. Once chimaeric mice are produced, they are bred into a recipient mouse strain to establish germline transmission of the allele of interest. Although this approach has been used very successfully, the breeding cycles involved are time consuming. In addition, genes that are essential for organogenesis often have roles in the formation of extra-embryonic tissues that are essential for early stages of post-implantation development. For example, mice lacking the GATA transcription factors, GATA4 or GATA6, arrest during gastrulation due to an essential role for these factors in differentiation of extra-embryonic endoderm. This lethality has frustrated the study of these factors during the development of organs such as the liver and heart. Extraembryonic defects can, however, be circumvented by generating clonal mouse embryos directly from ES cells by tetraploid complementation. Here, we describe the usefulness and efficacy of this approach using GATA factors as an example.
Bio-engineering inslulin-secreting cells from embryonic stem cells: a review of progress.
Roche, E; Sepulcre, M P; Enseñat-Waser, R; Maestre, I; Reig, J A; Soria, B
2003-07-01
According to the Edmonton protocol, human islet transplantation can result in insulin independency for periods longer than 3 years. However, this therapy for type 1 diabetes is limited by the scarcity of cadaveric donors. Owing to the ability of embryonic stem cells to expand in vitro and differentiate into a variety of cell types, research has focused on ways to manipulate these cells to overcome this problem. It has been demonstrated that mouse embryonic stem cells can differentiate into insulin-containing cells, restoring normoglycaemia in diabetic mice. To this end, mouse embryonic stem cells were transfected with a DNA construct that provides resistance to neomycin under the control of the regulatory regions of the human insulin gene. However, this protocol has a very low efficiency, needing improvements for this technology to be transferred to human stem cells. Optimum protocols will be instrumental in the production of an unlimited source of cells that synthesise, store and release insulin in a physiological manner. The review focuses on the alternative source of tissue offered by embryonic stem cells for regenerative medicine in diabetes and some key points that should be considered in order for a definitive protocol for in vitro differentiation to be established.
Zhang, Chunxiao; Hoang, Nam; Leng, Feng; Saxena, Lovely; Lee, Logan; Alejo, Salvador; Qi, Dandan; Khal, Anthony; Sun, Hong; Lu, Fei; Zhang, Hui
2018-03-09
The pluripotency-controlling stem-cell protein SRY-box 2 (SOX2) plays a pivotal role in maintaining the self-renewal and pluripotency of embryonic stem cells and also of teratocarcinoma or embryonic carcinoma cells. SOX2 is monomethylated at lysine 119 (Lys-119) in mouse embryonic stem cells by the SET7 methyltransferase, and this methylation triggers ubiquitin-dependent SOX2 proteolysis. However, the molecular regulators and mechanisms controlling SET7-induced SOX2 proteolysis are unknown. Here, we report that in human ovarian teratocarcinoma PA-1 cells, methylation-dependent SOX2 proteolysis is dynamically regulated by the LSD1 lysine demethylase and a methyl-binding protein, PHD finger protein 20-like 1 (PHF20L1). We found that LSD1 not only removes the methyl group from monomethylated Lys-117 (equivalent to Lys-119 in mouse SOX2), but it also demethylates monomethylated Lys-42 in SOX2, a reaction that SET7 also regulated and that also triggered SOX2 proteolysis. Our studies further revealed that PHF20L1 binds both monomethylated Lys-42 and Lys-117 in SOX2 and thereby prevents SOX2 proteolysis. Down-regulation of either LSD1 or PHF20L1 promoted SOX2 proteolysis, which was prevented by SET7 inactivation in both PA-1 and mouse embryonic stem cells. Our studies also disclosed that LSD1 and PHF20L1 normally regulate the growth of pluripotent mouse embryonic stem cells and PA-1 cells by preventing methylation-dependent SOX2 proteolysis. In conclusion, our findings reveal an important mechanism by which the stability of the pluripotency-controlling stem-cell protein SOX2 is dynamically regulated by the activities of SET7, LSD1, and PHF20L1 in pluripotent stem cells. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.
Huang, Chien-Hsun; Chan, Wen-Hsiung
2017-09-20
Rhein, a glucoside chemical compound found in a traditional Chinese medicine derived from the roots of rhubarb, induces cell apoptosis and is considered to have high potential as an antitumor drug. Several previous studies showed that rhein can inhibit cell proliferation and trigger mitochondria-related or endoplasmic reticulum (ER) stress-dependent apoptotic processes. However, the side effects of rhein on pre- and post-implantation embryonic development remain unclear. Here, we show that rhein has cytotoxic effects on blastocyst-stage mouse embryos and induces oxidative stress and immunotoxicity in mouse fetuses. Blastocysts incubated with 5-20 μM rhein showed significant cell apoptosis, as well as decreases in their inner cell mass cell numbers and total cell numbers. An in vitro development assay showed that rhein affected the developmental potentials of both pre- and post-implantation embryos. Incubation of blastocysts with 5-20 μM rhein was associated with increased resorption of post-implantation embryos and decreased fetal weight in an embryo transfer assay. Importantly, in an in vivo model, intravenous injection of dams with rhein (1, 3, and 5 mg/kg body weight/day) for four days resulted in apoptosis of blastocyst-stage embryos, early embryonic developmental injury, and decreased fetal weight. Intravenous injection of dams with 5 mg/kg body weight/day rhein significantly increased the total reactive oxygen species (ROS) content of fetuses and the transcription levels of antioxidant proteins in fetal livers. Additional work showed that rhein induced apoptosis through ROS generation, and that prevention of apoptotic processes effectively rescued the rhein-induced injury effects on embryonic development. Finally, the transcription levels of the innate-immunity related genes, CXCL1 , IL-1 β and IL-8 , were down-regulated in the fetuses of dams that received intravenous injections of rhein. These results collectively show that rhein has the potential to induce embryonic cytotoxicity and induce oxidative stress and immunotoxicity during the development of mouse embryos.
Derivation, propagation and differentiation of human embryonic stem cells.
Conley, Brock J; Young, Julia C; Trounson, Alan O; Mollard, Richard
2004-04-01
Embryonic stem (ES) cells are in vitro cultivated pluripotent cells derived from the inner cell mass (ICM) of the embryonic blastocyst. Attesting to their pluripotency, ES cells can be differentiated into representative derivatives of all three embryonic germ layers (endoderm, ectoderm and mesoderm) both in vitro and in vivo. Although mouse ES cells have been studied for many years, human ES cells have only more recently been derived and successfully propagated. Many biochemical differences and culture requirements between mouse and human ES cells have been described, yet despite these differences the study of murine ES cells has provided important insights into methodologies aimed at generating a greater and more in depth understanding of human ES cell biology. One common feature of both mouse and human ES cells is their capacity to undergo controlled differentiation into spheroid structures termed embryoid bodies (EBs). EBs recapitulate several aspects of early development, displaying regional-specific differentiation programs into derivatives of all three embryonic germ layers. For this reason, EB formation has been utilised as an initial step in a wide range of studies aimed at differentiating both mouse and human ES cells into a specific and desired cell type. Recent reports utilising specific growth factor combinations and cell-cell induction systems have provided alternative strategies for the directed differentiation of cells into a desired lineage. According to each one of these strategies, however, a relatively high cell lineage heterogeneity remains, necessitating subsequent purification steps including mechanical dissection, selective media or fluorescent or magnetic activated cell sorting (FACS and MACS, respectively). In the future, the ability to specifically direct differentiation of human ES cells at 100% efficiency into a desired lineage will allow us to fully explore the potential of these cells in the analysis of early human development, drug discovery, drug testing and repair of damaged or diseased tissues via transplantation.
Tichy, Elisia D; Pillai, Resmi; Deng, Li; Liang, Li; Tischfield, Jay; Schwemberger, Sandy J; Babcock, George F; Stambrook, Peter J
2010-11-01
Embryonic stem (ES) cells give rise to all cell types of an organism. Since mutations at this embryonic stage would affect all cells and be detrimental to the overall health of an organism, robust mechanisms must exist to ensure that genomic integrity is maintained. To test this proposition, we compared the capacity of murine ES cells to repair DNA double-strand breaks with that of differentiated cells. Of the 2 major pathways that repair double-strand breaks, error-prone nonhomologous end joining (NHEJ) predominated in mouse embryonic fibroblasts, whereas the high fidelity homologous recombinational repair (HRR) predominated in ES cells. Microhomology-mediated end joining, an emerging repair pathway, persisted at low levels in all cell types examined. The levels of proteins involved in HRR and microhomology-mediated end joining were highly elevated in ES cells compared with mouse embryonic fibroblasts, whereas those for NHEJ were quite variable, with DNA Ligase IV expression low in ES cells. The half-life of DNA Ligase IV protein was also low in ES cells. Attempts to increase the abundance of DNA Ligase IV protein by overexpression or inhibition of its degradation, and thereby elevate NHEJ in ES cells, were unsuccessful. When ES cells were induced to differentiate, however, the level of DNA Ligase IV protein increased, as did the capacity to repair by NHEJ. The data suggest that preferential use of HRR rather than NHEJ may lend ES cells an additional layer of genomic protection and that the limited levels of DNA Ligase IV may account for the low level of NHEJ activity.
Localization of Brachyury (T) in embryonic and extraembryonic tissues during mouse gastrulation.
Inman, Kimberly E; Downs, Karen M
2006-10-01
T-box gene family members have important roles during murine embryogenesis, gastrulation, and organogenesis. Although relatively little is known about how T-box genes are regulated, published gene expression studies have revealed dynamic and specific patterns in both embryonic and extraembryonic tissues of the mouse conceptus. Mutant alleles of the T-box gene Brachyury (T) have identified roles in formation of mesoderm and its derivatives, such as somites and the allantois. However, given the cell autonomous nature of T gene activity and conflicting results of gene expression studies, it has been difficult to attribute a primary function to T in normal allantoic development. We report localization of T protein by sectional immunohistochemistry in both embryonic and extraembryonic tissues during mouse gastrulation, emphasizing T localization within the allantois. T was detected in all previously reported sites within the conceptus, including the primitive streak and its derivatives, nascent embryonic mesoderm, the node and notochord, as well as notochord-associated endoderm and posterior neurectoderm. In addition, we have clarified T within the allantois, where it was first detected in the proximal midline of the late allantoic bud (approximately 7.5 days postcoitum, dpc) and persisted within an expanded midline domain until 6-somite pairs (s; approximately 8.5 dpc). Lastly, we have discovered several novel T sites, including the developing heart, visceral endoderm, extraembryonic ectoderm, and its derivative, chorionic ectoderm. Together, these data provide a unified picture of T in the mammalian conceptus, and demonstrate T's presence in unrelated cell types and tissues in highly dynamic spatiotemporal patterns in both embryonic and extraembryonic tissues.
Endothelin-1 signalling controls early embryonic heart rate in vitro and in vivo.
Karppinen, S; Rapila, R; Mäkikallio, K; Hänninen, S L; Rysä, J; Vuolteenaho, O; Tavi, P
2014-02-01
Spontaneous activity of embryonic cardiomyocytes originates from sarcoplasmic reticulum (SR) Ca(2+) release during early cardiogenesis. However, the regulation of heart rate during embryonic development is still not clear. The aim of this study was to determine how endothelin-1 (ET-1) affects the heart rate of embryonic mice, as well as the pathway through which it exerts its effects. The effects of ET-1 and ET-1 receptor inhibition on cardiac contraction were studied using confocal Ca(2+) imaging of isolated mouse embryonic ventricular cardiomyocytes and ultrasonographic examination of embryonic cardiac contractions in utero. In addition, the amount of ET-1 peptide and ET receptor a (ETa) and b (ETb) mRNA levels were measured during different stages of development of the cardiac muscle. High ET-1 concentration and expression of both ETa and ETb receptors was observed in early cardiac tissue. ET-1 was found to increase the frequency of spontaneous Ca(2+) oscillations in E10.5 embryonic cardiomyocytes in vitro. Non-specific inhibition of ET receptors with tezosentan caused arrhythmia and bradycardia in isolated embryonic cardiomyocytes and in whole embryonic hearts both in vitro (E10.5) and in utero (E12.5). ET-1-mediated stimulation of early heart rate was found to occur via ETb receptors and subsequent inositol trisphosphate receptor activation and increased SR Ca(2+) leak. Endothelin-1 is required to maintain a sufficient heart rate, as well as to prevent arrhythmia during early development of the mouse heart. This is achieved through ETb receptor, which stimulates Ca(2+) leak through IP3 receptors. © 2013 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.
He, Hongjuan; Xiu, Youcheng; Guo, Jing; Liu, Hui; Liu, Qi; Zeng, Tiebo; Chen, Yan; Zhang, Yan; Wu, Qiong
2013-01-01
Long non-coding RNAs (lncRNAs) as a key group of non-coding RNAs have gained widely attention. Though lncRNAs have been functionally annotated and systematic explored in higher mammals, few are under systematical identification and annotation. Owing to the expression specificity, known lncRNAs expressed in embryonic brain tissues remain still limited. Considering a large number of lncRNAs are only transcribed in brain tissues, studies of lncRNAs in developmental brain are therefore of special interest. Here, publicly available RNA-sequencing (RNA-seq) data in embryonic brain are integrated to identify thousands of embryonic brain lncRNAs by a customized pipeline. A significant proportion of novel transcripts have not been annotated by available genomic resources. The putative embryonic brain lncRNAs are shorter in length, less spliced and show less conservation than known genes. The expression of putative lncRNAs is in one tenth on average of known coding genes, while comparable with known lncRNAs. From chromatin data, putative embryonic brain lncRNAs are associated with active chromatin marks, comparable with known lncRNAs. Embryonic brain expressed lncRNAs are also indicated to have expression though not evident in adult brain. Gene Ontology analysis of putative embryonic brain lncRNAs suggests that they are associated with brain development. The putative lncRNAs are shown to be related to possible cis-regulatory roles in imprinting even themselves are deemed to be imprinted lncRNAs. Re-analysis of one knockdown data suggests that four regulators are associated with lncRNAs. Taken together, the identification and systematic analysis of putative lncRNAs would provide novel insights into uncharacterized mouse non-coding regions and the relationships with mammalian embryonic brain development. PMID:23967161
Reprogramming primordial germ cells (PGC) to embryonic germ (EG) cells.
Durcova-Hills, Gabriela; Surani, Azim
2008-04-01
In this unit we describe the derivation of pluripotent embryonic germ (EG) cells from mouse primordial germ cells (PGCs) isolated from both 8.5- and 11.5-days post-coitum (dpc) embryos. Once EG cells are derived we explain how to propagate and characterize the cell lines. We introduce readers to PGCs and explain differences between PGCs and their in vitro derivatives EG cells. Finally, we also compare mouse EG cells with ES cells. This unit will be of great interest to anyone interested in PGCs or studying the behavior of cultured PGCs or the derivation of new EG cell lines.
Data on the potential impact of food supplements on the growth of mouse embryonic stem cells.
Correia, Marcelo; Sousa, Maria I; Rodrigues, Ana S; Perestrelo, Tânia; Pereira, Sandro L; Ribeiro, Marcelo F; Ramalho-Santos, João
2016-06-01
The use of new compounds as dietary supplements is increasing, but little is known in terms of possible consequences of their use. Pluripotent stem cells are a promising research tool for citotoxicological research for evaluation of proliferation, cell death, pluripotency and differentiation. Using the mouse embryonic stem cell (mESC) model, we present data on three different compounds that have been proposed as new potential supplements for co-adjuvant disease treatments: kaempferol, berberine and Tauroursodeoxycholic acid (TUDCA). Cell number and viability were monitored following treatment with increased concentrations of each drug in pluripotent culture conditions.
Fathe, Kristin; Person, Maria D.; Finnell, Richard H.
2014-01-01
Elevated homocysteine levels have long been associated with various disease states, including cardiovascular disease and birth defects, including neural tube defects (NTDs). One hypothesis regarding the strong correlation between these various disorders and high levels of homocysteine is that a reactive form of this small molecule can attach to mammalian proteins in a phenomenon known as homocysteinylation. These posttranslational modifications may become antigenic, or may even directly disrupt certain protein function. It remains to be determined whether dietary influences that can cause globally increased levels of circulating homocysteine confer negative effects maternally, or may otherwise negatively and materially impact the metabolic balance in developing embryos. Herein we present the application of a chemical method of determination of N-homocysteinylation to a set of neural tube closure stage mouse embryos and their mothers. We explore the uses of this newly-described technique to investigate levels of maternal and embryonic N-homocysteinylation using dietary manipulations of onecarbon metabolism with two known folate responsive neural tube defect mouse models. The data presented reveals that although diet appeared to have significant effects on the maternal metabolic status, those effects did not directly correlate to the embryonic folate or N-homocysteinylation status. Our studies indicate that maternal diet and embryonic genotype most significantly affected the embryonic developmental outcome. PMID:25620692
Yamamizu, Kohei; Sharov, Alexei A; Piao, Yulan; Amano, Misa; Yu, Hong; Nishiyama, Akira; Dudekula, Dawood B; Schlessinger, David; Ko, Minoru S H
2016-05-06
Mouse embryonic stem cells (ESCs) can differentiate into a wide range - and possibly all cell types in vitro, and thus provide an ideal platform to study systematically the action of transcription factors (TFs) in cell differentiation. Previously, we have generated and analyzed 137 TF-inducible mouse ESC lines. As an extension of this "NIA Mouse ESC Bank," we generated and characterized 48 additional mouse ESC lines, in which single TFs in each line could be induced in a doxycycline-controllable manner. Together, with the previous ESC lines, the bank now comprises 185 TF-manipulable ESC lines (>10% of all mouse TFs). Global gene expression (transcriptome) profiling revealed that the induction of individual TFs in mouse ESCs for 48 hours shifts their transcriptomes toward specific differentiation fates (e.g., neural lineages by Myt1 Isl1, and St18; mesodermal lineages by Pitx1, Pitx2, Barhl2, and Lmx1a; white blood cells by Myb, Etv2, and Tbx6, and ovary by Pitx1, Pitx2, and Dmrtc2). These data also provide and lists of inferred target genes of each TF and possible functions of these TFs. The results demonstrate the utility of mouse ESC lines and their transcriptome data for understanding the mechanism of cell differentiation and the function of TFs.
Pang, Christopher J.; Lemsaddek, Wafaa; Alhashem, Yousef N.; Bondzi, Cornelius; Redmond, Latasha C.; Ah-Son, Nicolas; Dumur, Catherine I.; Archer, Kellie J.; Haar, Jack L.
2012-01-01
The Krüppel-like factor 1 (KLF1) and KLF2 positively regulate embryonic β-globin expression and have additional overlapping roles in embryonic (primitive) erythropoiesis. KLF1−/− KLF2−/− double knockout mice are anemic at embryonic day 10.5 (E10.5) and die by E11.5, in contrast to single knockouts. To investigate the combined roles of KLF1 and KLF2 in primitive erythropoiesis, expression profiling of E9.5 erythroid cells was performed. A limited number of genes had a significantly decreasing trend of expression in wild-type, KLF1−/−, and KLF1−/− KLF2−/− mice. Among these, the gene for Myc (c-Myc) emerged as a central node in the most significant gene network. The expression of the Myc gene is synergistically regulated by KLF1 and KLF2, and both factors bind the Myc promoters. To characterize the role of Myc in primitive erythropoiesis, ablation was performed specifically in mouse embryonic proerythroblast cells. After E9.5, these embryos exhibit an arrest in the normal expansion of circulating red cells and develop anemia, analogous to KLF1−/− KLF2−/− embryos. In the absence of Myc, circulating erythroid cells do not show the normal increase in α- and β-like globin gene expression but, interestingly, have accelerated erythroid cell maturation between E9.5 and E11.5. This study reveals a novel regulatory network by which KLF1 and KLF2 regulate Myc to control the primitive erythropoietic program. PMID:22566683
Impaired cardiac energy metabolism in embryos lacking adrenergic stimulation
Baker, Candice N.; Gidus, Sarah A.; Price, George F.; Peoples, Jessica N. R.
2014-01-01
As development proceeds from the embryonic to fetal stages, cardiac energy demands increase substantially, and oxidative phosphorylation of ADP to ATP in mitochondria becomes vital. Relatively little, however, is known about the signaling mechanisms regulating the transition from anaerobic to aerobic metabolism that occurs during the embryonic period. The main objective of this study was to test the hypothesis that adrenergic hormones provide critical stimulation of energy metabolism during embryonic/fetal development. We examined ATP and ADP concentrations in mouse embryos lacking adrenergic hormones due to targeted disruption of the essential dopamine β-hydroxylase (Dbh) gene. Embryonic ATP concentrations decreased dramatically, whereas ADP concentrations rose such that the ATP/ADP ratio in the adrenergic-deficient group was nearly 50-fold less than that found in littermate controls by embryonic day 11.5. We also found that cardiac extracellular acidification and oxygen consumption rates were significantly decreased, and mitochondria were significantly larger and more branched in adrenergic-deficient hearts. Notably, however, the mitochondria were intact with well-formed cristae, and there was no significant difference observed in mitochondrial membrane potential. Maternal administration of the adrenergic receptor agonists isoproterenol or l-phenylephrine significantly ameliorated the decreases in ATP observed in Dbh−/− embryos, suggesting that α- and β-adrenergic receptors were effective modulators of ATP concentrations in mouse embryos in vivo. These data demonstrate that adrenergic hormones stimulate cardiac energy metabolism during a critical period of embryonic development. PMID:25516547
Sertad1 encodes a novel transcriptional co-activator of SMAD1 in mouse embryonic hearts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng, Yin; Zhao, Shaomin; School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069
2013-11-29
Highlights: •SERTAD1 interacts with SMAD1. •Sertad1 is expressed in mouse embryonic hearts. •SERTAD1 is localized in both cytoplasm and nucleus of cardiomyocytes. •SERTAD1 enhances expression of BMP target cardiogenic genes as a SMAD1 co-activator. -- Abstract: Despite considerable advances in surgical repairing procedures, congenital heart diseases (CHDs) remain the leading noninfectious cause of infant morbidity and mortality. Understanding the molecular/genetic mechanisms underlying normal cardiogenesis will provide essential information for the development of novel diagnostic and therapeutic strategies against CHDs. BMP signaling plays complex roles in multiple cardiogenic processes in mammals. SMAD1 is a canonical nuclear mediator of BMP signaling, themore » activity of which is critically regulated through its interaction partners. We screened a mouse embryonic heart yeast two-hybrid library using Smad1 as bait and identified SERTAD1 as a novel interaction partner of SMAD1. SERTAD1 contains multiple potential functional domains, including two partially overlapping transactivation domains at the C terminus. The SERTAD1-SMAD1 interaction in vitro and in mammalian cells was further confirmed through biochemical assays. The expression of Sertad1 in developing hearts was demonstrated using RT-PCR, western blotting and in situ hybridization analyses. We also showed that SERTAD1 was localized in both the cytoplasm and nucleus of immortalized cardiomyocytes and primary embryonic cardiomyocyte cultures. The overexpression of SERTAD1 in cardiomyocytes not only enhanced the activity of two BMP reporters in a dose-dependent manner but also increased the expression of several known BMP/SMAD regulatory targets. Therefore, these data suggest that SERTAD1 acts as a SMAD1 transcriptional co-activator to promote the expression of BMP target genes during mouse cardiogenesis.« less
Mouse oocytes nucleoli rescue embryonic development of porcine enucleolated oocytes.
Morovic, Martin; Strejcek, Frantisek; Nakagawa, Shoma; Deshmukh, Rahul S; Murin, Matej; Benc, Michal; Fulka, Helena; Kyogoku, Hirohisa; Pendovski, Lazo; Fulka, Josef; Laurincik, Jozef
2017-12-01
It is well known that nucleoli of fully grown mammalian oocytes are indispensable for embryonic development. Therefore, the embryos originated from previously enucleolated (ENL) oocytes undergo only one or two cleavages and then their development ceases. In our study the interspecies (mouse/pig) nucleolus transferred embryos (NuTE) were produced and their embryonic development was analyzed by autoradiography, transmission electron microscopy (TEM) and immunofluorescence (C23 and upstream binding factor (UBF)). Our results show that the re-injection of isolated oocyte nucleoli, either from the pig (P + P) or mouse (P + M), into previously enucleolated and subsequently matured porcine oocytes rescues their development after parthenogenetic activation and some of these develop up to the blastocyst stage (P + P, 11.8%; P + M, 13.5%). In nucleolus re-injected 8-cell and blastocyst stage embryos the number of nucleoli labeled with C23 in P + P and P + M groups was lower than in control (non-manipulated) group. UBF was localized in small foci within the nucleoli of blastocysts in control and P + P embryos, however, in P + M embryos the labeling was evenly distributed in the nucleoplasm. The TEM and autoradiographic evaluations showed the formation of functional nucleoli and de novo rRNA synthesis at the 8-cell stage in both, control and P + P group. In the P + M group the formation of comparable nucleoli was delayed. In conclusion, our results indicate that the mouse nucleolus can rescue embryonic development of enucleolated porcine oocytes, but the localization of selected nucleolar proteins, the timing of transcription activation and the formation of the functional nucleoli in NuTE compared with control group show evident aberrations.
Dual effects of fluoxetine on mouse early embryonic development.
Kim, Chang-Woon; Choe, Changyong; Kim, Eun-Jin; Lee, Jae-Ik; Yoon, Sook-Young; Cho, Young-Woo; Han, Sunkyu; Tak, Hyun-Min; Han, Jaehee; Kang, Dawon
2012-11-15
Fluoxetine, a selective serotonin reuptake inhibitor, regulates a variety of physiological processes, such as cell proliferation and apoptosis, in mammalian cells. Little is known about the role of fluoxetine in early embryonic development. This study was undertaken to investigate the effect of fluoxetine during mouse early embryonic development. Late two-cell stage embryos (2-cells) were cultured in the presence of various concentrations of fluoxetine (1 to 50μM) for different durations. When late 2-cells were incubated with 5μM fluoxetine for 6h, the percentage that developed into blastocysts increased compared to the control value. However, late 2-cells exposed to fluoxetine (5μM) over 24h showed a reduction in blastocyst formation. The addition of fluoxetine (5μM) together with KN93 or KN62 (calcium/calmodulin-dependent protein kinase II (CaMKII) inhibitors) failed to increase blastocyst formation. Fluoxetine treatment inhibited TREK-1 and TREK-2, members of the two-pore domain K(+) channel family expressed in mouse embryos, activities, indicating that fluoxetine-induced membrane depolarization in late 2-cells might have resulted from TREK inhibition. In addition, long-term exposure to fluoxetine altered the TREK mRNA expression levels. Furthermore, injection of siRNA targeting TREKs significantly decreased blastocyst formation by ~30% compared to injection of scrambled siRNA. Long-term exposure of fluoxetine had no effect on blastocyst formation of TREK deficient embryos. These results indicate that low-dose and short-term exposures of late 2-cells to fluoxetine probably increase blastocyst formation through activation of CaMKII-dependent signal transduction pathways, whereas long-term exposure decreases mouse early embryonic development through inhibition of TREK channel gating. Copyright © 2012 Elsevier Inc. All rights reserved.
Dual effects of fluoxetine on mouse early embryonic development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Chang-Woon; Department of Obstetrics and Gynecology, Samsung Changwon Hospital, Sungkyunkwan University, Changwon 630-723; Choe, Changyong
2012-11-15
Fluoxetine, a selective serotonin reuptake inhibitor, regulates a variety of physiological processes, such as cell proliferation and apoptosis, in mammalian cells. Little is known about the role of fluoxetine in early embryonic development. This study was undertaken to investigate the effect of fluoxetine during mouse early embryonic development. Late two-cell stage embryos (2-cells) were cultured in the presence of various concentrations of fluoxetine (1 to 50 μM) for different durations. When late 2-cells were incubated with 5 μM fluoxetine for 6 h, the percentage that developed into blastocysts increased compared to the control value. However, late 2-cells exposed to fluoxetinemore » (5 μM) over 24 h showed a reduction in blastocyst formation. The addition of fluoxetine (5 μM) together with KN93 or KN62 (calcium/calmodulin-dependent protein kinase II (CaMKII) inhibitors) failed to increase blastocyst formation. Fluoxetine treatment inhibited TREK-1 and TREK-2, members of the two-pore domain K{sup +} channel family expressed in mouse embryos, activities, indicating that fluoxetine-induced membrane depolarization in late 2-cells might have resulted from TREK inhibition. In addition, long-term exposure to fluoxetine altered the TREK mRNA expression levels. Furthermore, injection of siRNA targeting TREKs significantly decreased blastocyst formation by ∼ 30% compared to injection of scrambled siRNA. Long-term exposure of fluoxetine had no effect on blastocyst formation of TREK deficient embryos. These results indicate that low-dose and short-term exposures of late 2-cells to fluoxetine probably increase blastocyst formation through activation of CaMKII-dependent signal transduction pathways, whereas long-term exposure decreases mouse early embryonic development through inhibition of TREK channel gating. Highlights: ► Short-term exposure of 2-cells to fluoxetine enhances mouse blastocyst formation. ► The enhancive effect of fluoxetine is resulted from CaMKII activation. ► Long-term exposure of 2-cells to fluoxetine decreases mouse blastocyst formation. ► The inhibitory effect of fluoxetine is mediated through TREK channel gating.« less
The Embryonic Stem Cell Test (EST) has been used to evaluate the effects of xenobiotics using three endpoints, stem cell differentiation, stem cell viability and 3T3-cell viability. Our research goal is to establish amodel system that would evaluate chemical effects using a singl...
Knöspel, Fanny; Schindler, Rudolf K; Lübberstedt, Marc; Petzolt, Stephanie; Gerlach, Jörg C; Zeilinger, Katrin
2010-12-01
The in vitro culture behaviour of embryonic stem cells (ESC) is strongly influenced by the culture conditions. Current culture media for expansion of ESC contain some undefined substances. Considering potential clinical translation work with such cells, the use of defined media is desirable. We have used Design of Experiments (DoE) methods to investigate the composition of a serum-free chemically defined culture medium for expansion of mouse embryonic stem cells (mESC). Factor screening analysis according to Plackett-Burman revealed that insulin and leukaemia inhibitory factor (LIF) had a significant positive influence on the proliferation activity of the cells, while zinc and L: -cysteine reduced the cell growth. Further analysis using minimum run resolution IV (MinRes IV) design indicates that following factor adjustment LIF becomes the main factor for the survival and proliferation of mESC. In conclusion, DoE screening assays are applicable to develop and to refine culture media for stem cells and could also be employed to optimize culture media for human embryonic stem cells (hESC).
Fluorescence-based visualization of autophagic activity predicts mouse embryo viability
NASA Astrophysics Data System (ADS)
Tsukamoto, Satoshi; Hara, Taichi; Yamamoto, Atsushi; Kito, Seiji; Minami, Naojiro; Kubota, Toshiro; Sato, Ken; Kokubo, Toshiaki
2014-03-01
Embryo quality is a critical parameter in assisted reproductive technologies. Although embryo quality can be evaluated morphologically, embryo morphology does not correlate perfectly with embryo viability. To improve this, it is important to understand which molecular mechanisms are involved in embryo quality control. Autophagy is an evolutionarily conserved catabolic process in which cytoplasmic materials sequestered by autophagosomes are degraded in lysosomes. We previously demonstrated that autophagy is highly activated after fertilization and is essential for further embryonic development. Here, we developed a simple fluorescence-based method for visualizing autophagic activity in live mouse embryos. Our method is based on imaging of the fluorescence intensity of GFP-LC3, a versatile marker for autophagy, which is microinjected into the embryos. Using this method, we show that embryonic autophagic activity declines with advancing maternal age, probably due to a decline in the activity of lysosomal hydrolases. We also demonstrate that embryonic autophagic activity is associated with the developmental viability of the embryo. Our results suggest that embryonic autophagic activity can be utilized as a novel indicator of embryo quality.
Nikolić, Marko Z; Caritg, Oriol; Jeng, Quitz; Johnson, Jo-Anne; Sun, Dawei; Howell, Kate J; Brady, Jane L; Laresgoiti, Usua; Allen, George; Butler, Richard; Zilbauer, Matthias; Giangreco, Adam; Rawlins, Emma L
2017-01-01
The embryonic mouse lung is a widely used substitute for human lung development. For example, attempts to differentiate human pluripotent stem cells to lung epithelium rely on passing through progenitor states that have only been described in mouse. The tip epithelium of the branching mouse lung is a multipotent progenitor pool that self-renews and produces differentiating descendants. We hypothesized that the human distal tip epithelium is an analogous progenitor population and tested this by examining morphology, gene expression and in vitro self-renewal and differentiation capacity of human tips. These experiments confirm that human and mouse tips are analogous and identify signalling pathways that are sufficient for long-term self-renewal of human tips as differentiation-competent organoids. Moreover, we identify mouse-human differences, including markers that define progenitor states and signalling requirements for long-term self-renewal. Our organoid system provides a genetically-tractable tool that will allow these human-specific features of lung development to be investigated. DOI: http://dx.doi.org/10.7554/eLife.26575.001 PMID:28665271
Cellular origin of fibronectin in interspecies hybrid kidneys
1984-01-01
The cellular origin of fibronectin in the kidney was studied in three experimental models. Immunohistochemical techniques that use cross- reacting or species-specific antibodies against mouse or chicken fibronectin were employed. In the first model studied, initially avascular mouse kidneys cultured on avian chorioallantoic membranes differentiate into epithelial kidney tubules and become vascularized by chorioallantoic vessels. Subsequently, hybrid glomeruli composed of mouse podocytes and avian endothelial-mesangial cells form. In immunohistochemical studies, cross-reacting antibodies to fibronectin stained vascular walls, tubular basement membranes, interstitium, and glomeruli of mouse kidney grafts. The species-specific antibodies reacting only with mouse fibronectin stained interstitial areas and tubular basement membranes, but showed no reaction with hybrid glomeruli and avian vascular walls. In contrast, species-specific antibodies against chicken fibronectin stained both the interstitial areas and the vascular walls as well as the endothelial-mesangial areas of the hybrid glomeruli, but did not stain the mouse-derived epithelial structures of the kidneys. In the second model, embryonic kidneys cultured under avascular conditions in vitro develop glomerular tufts, which are devoid of endothelial cells. These explants showed fluorescence staining for fibronectin only in tubular basement membranes and in interstitium. The avascular, purely epithelial glomerular bodies remained unstained. Finally, in outgrowths of separated embryonic glomeruli, the cross-reacting fibronectin antibodies revealed two populations of cells: one devoid of fibronectin and another expressing fibronectin in strong fibrillar and granular patterns. These results favor the idea that the main endogenous cellular sources for fibronectin in the embryonic kidney are the interstitial and vascular cells. All experiments presented here suggest that fibronectin is not synthesized by glomerular epithelial cells in vivo. PMID:6389571
Syed, Saba H; Coughlin, Andrew J; Garcia, Monica D; Wang, Shang; West, Jennifer L; Larin, Kirill V; Larina, Irina V
2015-05-01
The ability to conduct highly localized delivery of contrast agents, viral vectors, therapeutic or pharmacological agents, and signaling molecules or dyes to live mammalian embryos is greatly desired to enable a variety of studies in the field of developmental biology, such as investigating the molecular regulation of cardiovascular morphogenesis. To meet such a demand, we introduce, for the first time, the concept of employing optical coherence tomography (OCT)-guide microinjections in live mouse embryos, which provides precisely targeted manipulation with spatial resolution at the micrometer scale. The feasibility demonstration is performed with experimental studies on cultured live mouse embryos at E8.5 and E9.5. Additionally, we investigate the OCT-guided microinjection of gold–silica nanoshells to the yolk sac vasculature of live cultured mouse embryos at the stage when the heart just starts to beat, as a potential approach for dynamic assessment of cardiovascular form and function before the onset of blood cell circulation. Also, the capability of OCT to quantitatively monitor and measure injection volume is presented. Our results indicate that OCT-guided microinjection could be a useful tool for mouse embryonic research.
Syed, Saba H.; Coughlin, Andrew J.; Garcia, Monica D.; Wang, Shang; West, Jennifer L.; Larin, Kirill V.; Larina, Irina V.
2015-01-01
Abstract. The ability to conduct highly localized delivery of contrast agents, viral vectors, therapeutic or pharmacological agents, and signaling molecules or dyes to live mammalian embryos is greatly desired to enable a variety of studies in the field of developmental biology, such as investigating the molecular regulation of cardiovascular morphogenesis. To meet such a demand, we introduce, for the first time, the concept of employing optical coherence tomography (OCT)-guide microinjections in live mouse embryos, which provides precisely targeted manipulation with spatial resolution at the micrometer scale. The feasibility demonstration is performed with experimental studies on cultured live mouse embryos at E8.5 and E9.5. Additionally, we investigate the OCT-guided microinjection of gold–silica nanoshells to the yolk sac vasculature of live cultured mouse embryos at the stage when the heart just starts to beat, as a potential approach for dynamic assessment of cardiovascular form and function before the onset of blood cell circulation. Also, the capability of OCT to quantitatively monitor and measure injection volume is presented. Our results indicate that OCT-guided microinjection could be a useful tool for mouse embryonic research. PMID:25581495
Lack of centrioles and primary cilia in STIL−/− mouse embryos
David, Ahuvit; Liu, Fengying; Tibelius, Alexandra; Vulprecht, Julia; Wald, Diana; Rothermel, Ulrike; Ohana, Reut; Seitel, Alexander; Metzger, Jasmin; Ashery-Padan, Ruth; Meinzer, Hans-Peter; Gröne, Hermann-Josef; Izraeli, Shai; Krämer, Alwin
2014-01-01
Although most animal cells contain centrosomes, consisting of a pair of centrioles, their precise contribution to cell division and embryonic development is unclear. Genetic ablation of STIL, an essential component of the centriole replication machinery in mammalian cells, causes embryonic lethality in mice around mid gestation associated with defective Hedgehog signaling. Here, we describe, by focused ion beam scanning electron microscopy, that STIL−/− mouse embryos do not contain centrioles or primary cilia, suggesting that these organelles are not essential for mammalian development until mid gestation. We further show that the lack of primary cilia explains the absence of Hedgehog signaling in STIL−/− cells. Exogenous re-expression of STIL or STIL microcephaly mutants compatible with human survival, induced non-templated, de novo generation of centrioles in STIL−/− cells. Thus, while the abscence of centrioles is compatible with mammalian gastrulation, lack of centrioles and primary cilia impairs Hedgehog signaling and further embryonic development. PMID:25486474
Lack of centrioles and primary cilia in STIL(-/-) mouse embryos.
David, Ahuvit; Liu, Fengying; Tibelius, Alexandra; Vulprecht, Julia; Wald, Diana; Rothermel, Ulrike; Ohana, Reut; Seitel, Alexander; Metzger, Jasmin; Ashery-Padan, Ruth; Meinzer, Hans-Peter; Gröne, Hermann-Josef; Izraeli, Shai; Krämer, Alwin
2014-01-01
Although most animal cells contain centrosomes, consisting of a pair of centrioles, their precise contribution to cell division and embryonic development is unclear. Genetic ablation of STIL, an essential component of the centriole replication machinery in mammalian cells, causes embryonic lethality in mice around mid gestation associated with defective Hedgehog signaling. Here, we describe, by focused ion beam scanning electron microscopy, that STIL(-/-) mouse embryos do not contain centrioles or primary cilia, suggesting that these organelles are not essential for mammalian development until mid gestation. We further show that the lack of primary cilia explains the absence of Hedgehog signaling in STIL(-/-) cells. Exogenous re-expression of STIL or STIL microcephaly mutants compatible with human survival, induced non-templated, de novo generation of centrioles in STIL(-/-) cells. Thus, while the abscence of centrioles is compatible with mammalian gastrulation, lack of centrioles and primary cilia impairs Hedgehog signaling and further embryonic development.
Formation of gut-like structures in vitro from mouse embryonic stem cells.
Torihashi, Shigeko
2006-01-01
Embryonic stem (ES) cells have the potential to differentiate into all cell types originating from the three germ layers; however, there are still few reports about the formation of functional organs from embryonic stem cells. Recently, we reported that by hanging drops of mouse ES cells, embryoid bodies (EBs) formed gut-like structures in vitro composed of three layers corresponding to the epithelium, lamina propria, and musculature. The morphological features and the process of formation are similar to gut and its organogenesis in vivo. Thus, this is a good model for development of the gut and a useful tool for analysis of the factors required for gut organogenesis. The protocol basically involves a method of hanging drops to make EBs, which are then plated on coated dishes for outgrowth. EBs develop to form gut-like structures when induced to spontaneously enter a program of differentiation in vitro without addition of any extrinsic factors.
PI3K/Akt-dependent functions of TFII-I transcription factors in mouse embryonic stem cells.
Chimge, Nyam-Osor; Makeyev, Aleksandr V; Waigel, Sabine J; Enkhmandakh, Badam; Bayarsaihan, Dashzeveg
2012-04-01
Activation of PI3K/Akt signaling is sufficient to maintain the pluripotency of mouse embryonic stem cells (mESC) and results in down-regulation of Gtf2i and Gtf2ird1 encoding TFII-I family transcription factors. To investigate how these genes might be involved in the process of embryonic stem cell differentiation, we performed expression microarray profiling of mESC upon inhibition of PI3K by LY294002. This analysis revealed significant alterations in expression of genes for specific subsets of chromatin-modifying enzymes. Surprisingly, genome-wide promoter ChIP-chip mapping indicated that the majority of differently expressed genes could be direct targets of TFII-I regulation. The data support the hypothesis that upregulation of TFII-I factors leads to activation of a specific group of developmental genes during mESC differentiation. © 2011 Wiley Periodicals, Inc.
Stem cell potency and the ability to contribute to chimeric organisms.
Polejaeva, Irina; Mitalipov, Shoukhrat
2013-03-01
Mouse embryonic chimeras are a well-established tool for studying cell lineage commitment and pluripotency. Experimental chimeras were successfully produced by combining two or more preimplantation embryos or by introducing into host embryo cultured pluripotent embryonic stem cells (ESCs). Chimera production using genetically modified ESCs became the method of choice for the generation of knockout or knockin mice. Although the derivation of ESCs or ESC-like cells has been reported for other species, only mouse and rat pluripotent stem cells have been shown to contribute to germline-competent chimeras, which is the defining feature of ESCs. Herein, we describe different approaches employed for the generation of embryonic chimeras, define chimera-competent cell types, and describe cases of spontaneous chimerism in humans. We also review the current state of derivation of pluripotent stem cells in several species and discuss outcomes of various chimera studies when such cells are used.
2013-09-27
Childhood Central Nervous System Choriocarcinoma; Childhood Central Nervous System Embryonal Tumor; Childhood Central Nervous System Germ Cell Tumor; Childhood Central Nervous System Germinoma; Childhood Central Nervous System Mixed Germ Cell Tumor; Childhood Central Nervous System Teratoma; Childhood Central Nervous System Yolk Sac Tumor; Metastatic Childhood Soft Tissue Sarcoma; Recurrent Childhood Brain Stem Glioma; Recurrent Childhood Central Nervous System Embryonal Tumor; Recurrent Childhood Soft Tissue Sarcoma; Recurrent Childhood Visual Pathway Glioma; Unspecified Childhood Solid Tumor, Protocol Specific
Bakker, Elvira R M; Raghoebir, Lalini; Franken, Patrick F; Helvensteijn, Werner; van Gurp, Léon; Meijlink, Frits; van der Valk, Martin A; Rottier, Robbert J; Kuipers, Ernst J; van Veelen, Wendy; Smits, Ron
2012-09-01
Wnt5a is essential during embryonic development, as indicated by mouse Wnt5a knockout embryos displaying outgrowth defects of multiple structures including the gut. The dynamics of Wnt5a involvement in these processes is unclear, and perinatal lethality of Wnt5a knockout embryos has hampered investigation of Wnt5a during postnatal stages in vivo. Although in vitro studies have suggested a relevant role for Wnt5a postnatally, solid evidence for a significant impact of Wnt5a within the complexity of an adult organism is lacking. We generated a tightly-regulated inducible Wnt5a transgenic mouse model and investigated the effects of Wnt5a induction during different time-frames of embryonic development and in adult mice, focusing on the gastrointestinal tract. When induced in embryos from 10.5 dpc onwards, Wnt5a expression led to severe outgrowth defects affecting the gastrointestinal tracts, limbs, facial structures and tails, closely resembling the defects observed in Wnt5a knockout mice. However, Wnt5a induction from 13.5 dpc onwards did not cause this phenotype, indicating that the most critical period for Wnt5a in embryonic development is prior to 13.5 dpc. In adult mice, induced Wnt5a expression did not reveal abnormalities, providing the first in vivo evidence that Wnt5a has no major impact on mouse intestinal homeostasis postnatally. Protein expression of Wnt5a receptor Ror2 was strongly reduced in adult intestine compared to embryonic stages. Moreover, we uncovered a regulatory process where induction of Wnt5a causes downregulation of its receptor Ror2. Taken together, our results indicate a role for Wnt5a during a restricted time-frame of embryonic development, but suggest no impact during homeostatic postnatal stages. Copyright © 2012 Elsevier Inc. All rights reserved.
Krivokharchenko, Alexander; Karmenyan, Artashes; Sarkisov, Oleg; Bader, Michael; Chiou, Arthur; Shakhbazyan, Avetik
2012-01-01
Manipulation with early mammalian embryos is the one of the most important approach to study preimplantation development. Artificial cell fusion is a research tool for various biotechnological experiments. However, the existing methods have various disadvantages, first of them impossibility to fuse selected cells within multicellular structures like mammalian preimplantation embryos. In our experiments we have successfully used high repetition rate picosecond near infrared laser beam for fusion of pairs of oocytes and oocytes with blastomeres. Fused cells looked morphologically normal and keep their ability for further divisions in vitro. We also fused two or three blastomeres inside four-cell mouse embryos. The presence of one, two or three nuclei in different blastomeres of the same early preimplantation mouse embryo was confirmed under UV-light after staining of DNA with the vital dye Hoechst-33342. The most of established embryos demonstrated high viability and developed in vitro to the blastocyst stage. We demonstrated for the first time the use of laser beam for the fusion of various embryonic cells of different size and of two or three blastomeres inside of four-cell mouse embryos without affecting the embryo’s integrity and viability. These embryos with blastomeres of various ploidy maybe unique model for numerous purposes. Thus, we propose laser optical manipulation as a new tool for investigation of fundamental mechanisms of mammalian development. PMID:23227157
Krivokharchenko, Alexander; Karmenyan, Artashes; Sarkisov, Oleg; Bader, Michael; Chiou, Arthur; Shakhbazyan, Avetik
2012-01-01
Manipulation with early mammalian embryos is the one of the most important approach to study preimplantation development. Artificial cell fusion is a research tool for various biotechnological experiments. However, the existing methods have various disadvantages, first of them impossibility to fuse selected cells within multicellular structures like mammalian preimplantation embryos. In our experiments we have successfully used high repetition rate picosecond near infrared laser beam for fusion of pairs of oocytes and oocytes with blastomeres. Fused cells looked morphologically normal and keep their ability for further divisions in vitro. We also fused two or three blastomeres inside four-cell mouse embryos. The presence of one, two or three nuclei in different blastomeres of the same early preimplantation mouse embryo was confirmed under UV-light after staining of DNA with the vital dye Hoechst-33342. The most of established embryos demonstrated high viability and developed in vitro to the blastocyst stage. We demonstrated for the first time the use of laser beam for the fusion of various embryonic cells of different size and of two or three blastomeres inside of four-cell mouse embryos without affecting the embryo's integrity and viability. These embryos with blastomeres of various ploidy maybe unique model for numerous purposes. Thus, we propose laser optical manipulation as a new tool for investigation of fundamental mechanisms of mammalian development.
Madej, Monika J.; Taggart, Mary; Gautier, Philippe; Garcia-Perez, Jose Luis; Meehan, Richard R.; Adams, Ian R.
2012-01-01
Retrotransposons are highly prevalent in mammalian genomes due to their ability to amplify in pluripotent cells or developing germ cells. Host mechanisms that silence retrotransposons in germ cells and pluripotent cells are important for limiting the accumulation of the repetitive elements in the genome during evolution. However, although silencing of selected individual retrotransposons can be relatively well-studied, many mammalian retrotransposons are seldom analysed and their silencing in germ cells, pluripotent cells or somatic cells remains poorly understood. Here we show, and experimentally verify, that cryptic repetitive element probes present in Illumina and Affymetrix gene expression microarray platforms can accurately and sensitively monitor repetitive element expression data. This computational approach to genome-wide retrotransposon expression has allowed us to identify the histone deacetylase Hdac1 as a component of the retrotransposon silencing machinery in mouse embryonic stem cells, and to determine the retrotransposon targets of Hdac1 in these cells. We also identify retrotransposons that are targets of other retrotransposon silencing mechanisms such as DNA methylation, Eset-mediated histone modification, and Ring1B/Eed-containing polycomb repressive complexes in mouse embryonic stem cells. Furthermore, our computational analysis of retrotransposon silencing suggests that multiple silencing mechanisms are independently targeted to retrotransposons in embryonic stem cells, that different genomic copies of the same retrotransposon can be differentially sensitive to these silencing mechanisms, and helps define retrotransposon sequence elements that are targeted by silencing machineries. Thus repeat annotation of gene expression microarray data suggests that a complex interplay between silencing mechanisms represses retrotransposon loci in germ cells and embryonic stem cells. PMID:22570599
Embryonic mouse pre-metatarsal development in organ culture
NASA Technical Reports Server (NTRS)
Klement, B. J.; Spooner, B. S.
1993-01-01
Embryonic mouse pre-metatarsals were removed from embryos at 13 days of gestation and cultured in a defined, serum-free medium for up to 15 days. By histological analysis, we observe that the cultured pre-metatarsal tissue undergoes a similar developmental profile as pre-metatarsals growing normally in vivo. The initial mesenchyme condensation regions undergo differentiation and morphogenesis to form distinct rods made up of cartilage tissue. A marker of this differentiation step is the synthesis of type II collagen. Metabolic labelling, pepsin digestion, SDS-PAGE, and autoradiography were used to demonstrate this protein when cartilage tissue is present in the cultures. After additional culture time, terminal chondrocyte differentiation and morphogenesis take place in specific regions of the cartilage rods to form bands of hypertrophied chondrocytes. One marker of this differentiation step is the synthesis of the enzyme alkaline phosphatase. We have measured the activity of this enzyme throughout the culture period and see a substantial increase at the time of terminal chondrocyte differentiation. Another feature of hypertrophied chondrocytes is that the matrix around the cells becomes calcified. Calcified matrix in our cultured pre-metatarsals was visualized by staining with alizarin red. By supplementing the defined culture medium with ITS, we observed that terminal chondrocyte differentiation took place in a shorter culture time. Supplementation of the medium with serum results in a similar acceleration of terminal differentiation, and, with additional culture time, an osteoid-like matrix forms around the central region of the rods.
Morphology of isolated mouse inner cell masses developing in vitro
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiley, L.M.; Spindle, A.I.; Pedersen, R.A.
1978-01-01
The purpose of this study was to examine the developmental capacity of the mouse inner cell mass (ICM) in the absence of the trophoblast. ICMs were isolated from blastocysts by immunosurgery and cultured under conditions that support egg cylinder formation by intact blastocysts. After 2 or 3 days of culture, the ICMs consisted of an outer layer of endoderm and an inner layer of ectoderm that had cavitated centrally. By 4 or 5 days of culture, 25 to 60% of these ICMs had developed into paired cysts, apparently by secondary cavity formation. The inner cell layer surrounding this secondary cavitymore » resembled the extraembryonic ectoderm of cultured egg cylinders. By 6 days of culture, 60% of the ICMs had expanded into yolk sac-like structures that subsequently produced capillaries containing blood cells. The ICMs appeared to develop mesoderm in two distinct ways. A few of them developed mesoderm as a third layer of cells in the cleft separating endoderm and ectoderm, presumably by migrating from the inner, ectodermal layer, through the primitive streak, as in the intact egg cylinder. In the rest of the ICMs the embryonic ectoderm gradually differentiated into mesoderm while still in the inner layer, without primitive streak formation. We suggest, therefore, that the continuous presence of the trophoblast or of its derivatives is not required for the cytodifferentiation of mesoderm although it may be important in establishing embryonic polarity or in providinginductive signals necessary for the morphogenetic aspects of mesoderm differentiation, specifically primitive streak formation.« less
Investigation for the differentiation process of mouse ES cells by Raman spectroscopy
NASA Astrophysics Data System (ADS)
Yamaguchi, Yoshinori; El-Hagrasy, Maha A.; Shimizu, Eiichi; Saito, Masato; Tamiya, Eiichi
2012-03-01
The arrangement of differentiated pluripotent embryonic stem cells into three-dimensional aggregates, which are known as embryonic bodies, is a main step for progressing the embryonic stem cells differentiation. In this work, embryonic stem cells that were directly produced from the hanging drop step as a three-dimensional structure with no further twodimensional differentiation were diagnosed with Raman spectroscopy as a non-invasive and label-free technique. Raman spectroscopy was employed to discriminate between mouse embryonic bodies of different degrees of maturation. EBs were prepared applying the hanging drop method. The Raman scattering measurements were obtained in vitro with a Nanophoton RAMAN-11 micro-spectrometer (Japan: URL: www.nanophoton.jp equipped with an Olympus XLUM Plan FLN 20X/NA= 1.0 objective lens. Spectral data were smoothed, baseline corrected and normalized to the a welldefined intense 1003 cm-1 band (phenylalanine) which is insensitive to changes in conformation or environment. The differentiation process of embryonic stem cells is initiated by the removal of LIF from culture medium. 1, 7 and 17-dayold embryonic stem cells were collected and investigated by Raman spectroscopy. The main differences involve bands which decreased with maturation such as: 784 cm-1 (U, T, C ring br DNA/RNA, O-P-O str); 1177 cm-1 (cytosine, guanine) and 1578 cm-1 (G, A). It was found that with the progress of differentiation the protein content was amplified. The increase of protein to nucleic acid ratio was also previously observed with the progress of the differentiation process. Raman spectroscopy has the potential to distinguish between the Raman signatures of live embryonic stem cells with different degrees of maturation.
Inoue, Kimiko; Ogura, Atsuo
2013-01-01
The great majority of embryos generated by somatic cell nuclear transfer (SCNT) display defined abnormal phenotypes after implantation, such as an increased likelihood of death and abnormal placentation. To gain better insight into the underlying mechanisms, we analyzed genome-wide gene expression profiles of day 6.5 postimplantation mouse embryos cloned from three different cell types (cumulus cells, neonatal Sertoli cells and fibroblasts). The embryos retrieved from the uteri were separated into embryonic (epiblast) and extraembryonic (extraembryonic ectoderm and ectoplacental cone) tissues and were subjected to gene microarray analysis. Genotype- and sex-matched embryos produced by in vitro fertilization were used as controls. Principal component analysis revealed that whereas the gene expression patterns in the embryonic tissues varied according to the donor cell type, those in extraembryonic tissues were relatively consistent across all groups. Within each group, the embryonic tissues had more differentially expressed genes (DEGs) (>2-fold vs. controls) than did the extraembryonic tissues (P<1.0×10–26). In the embryonic tissues, one of the common abnormalities was upregulation of Dlk1, a paternally imprinted gene. This might be a potential cause of the occasional placenta-only conceptuses seen in SCNT-generated mouse embryos (1–5% per embryos transferred in our laboratory), because dysregulation of the same gene is known to cause developmental failure of embryos derived from induced pluripotent stem cells. There were also some DEGs in the extraembryonic tissues, which might explain the poor development of SCNT-derived placentas at early stages. These findings suggest that SCNT affects the embryonic and extraembryonic development differentially and might cause further deterioration in the embryonic lineage in a donor cell-specific manner. This could explain donor cell-dependent variations in cloning efficiency using SCNT. PMID:24146866
BROMOCHLORO-HALOACETIC ACIDS: EFFECTS ON MOUSE EMBRYOS IN VITRO AND QSAR CONSIDERATIONS
The haloacetic acids (HAA) are a family of chemicals that are drinking water disinfection byproducts. We previously reported that bromo- and chloro-acetic acids altered embryonic development when mouse conceptuses were directly exposed to these xenobiotics in whole embryo culture...
Mouse embryonic head as a site for hematopoietic stem cell development.
Li, Zhuan; Lan, Yu; He, Wenyan; Chen, Dongbo; Wang, Jun; Zhou, Fan; Wang, Yu; Sun, Huayan; Chen, Xianda; Xu, Chunhong; Li, Sha; Pang, Yakun; Zhang, Guangzhou; Yang, Liping; Zhu, Lingling; Fan, Ming; Shang, Aijia; Ju, Zhenyu; Luo, Lingfei; Ding, Yuqiang; Guo, Wei; Yuan, Weiping; Yang, Xiao; Liu, Bing
2012-11-02
In the mouse embryo, the aorta-gonad-mesonephros (AGM) region is considered to be the sole location for intraembryonic emergence of hematopoietic stem cells (HSCs). Here we report that, in parallel to the AGM region, the E10.5-E11.5 mouse head harbors bona fide HSCs, as defined by long-term, high-level, multilineage reconstitution and self-renewal capacity in adult recipients, before HSCs enter the circulation. The presence of hemogenesis in the midgestation head is indicated by the appearance of intravascular cluster cells and the blood-forming capacity of a sorted endothelial cell population. In addition, lineage tracing via an inducible VE-cadherin-Cre transgene demonstrates the hemogenic capacity of head endothelium. Most importantly, a spatially restricted lineage labeling system reveals the physiological contribution of cerebrovascular endothelium to postnatal HSCs and multilineage hematopoiesis. We conclude that the mouse embryonic head is a previously unappreciated site for HSC emergence within the developing embryo. Copyright © 2012 Elsevier Inc. All rights reserved.
Macrophage migration inhibitory factor acts as a neurotrophin in the developing inner ear.
Bank, Lisa M; Bianchi, Lynne M; Ebisu, Fumi; Lerman-Sinkoff, Dov; Smiley, Elizabeth C; Shen, Yu-chi; Ramamurthy, Poornapriya; Thompson, Deborah L; Roth, Therese M; Beck, Christine R; Flynn, Matthew; Teller, Ryan S; Feng, Luming; Llewellyn, G Nicholas; Holmes, Brandon; Sharples, Cyrrene; Coutinho-Budd, Jaeda; Linn, Stephanie A; Chervenak, Andrew P; Dolan, David F; Benson, Jennifer; Kanicki, Ariane; Martin, Catherine A; Altschuler, Richard; Koch, Alisa E; Koch, Alicia E; Jewett, Ethan M; Germiller, John A; Barald, Kate F
2012-12-01
This study is the first to demonstrate that macrophage migration inhibitory factor (MIF), an immune system 'inflammatory' cytokine that is released by the developing otocyst, plays a role in regulating early innervation of the mouse and chick inner ear. We demonstrate that MIF is a major bioactive component of the previously uncharacterized otocyst-derived factor, which directs initial neurite outgrowth from the statoacoustic ganglion (SAG) to the developing inner ear. Recombinant MIF acts as a neurotrophin in promoting both SAG directional neurite outgrowth and neuronal survival and is expressed in both the developing and mature inner ear of chick and mouse. A MIF receptor, CD74, is found on both embryonic SAG neurons and adult mouse spiral ganglion neurons. Mif knockout mice are hearing impaired and demonstrate altered innervation to the organ of Corti, as well as fewer sensory hair cells. Furthermore, mouse embryonic stem cells become neuron-like when exposed to picomolar levels of MIF, suggesting the general importance of this cytokine in neural development.
Establishment of left–right asymmetry in vertebrate development: the node in mouse embryos
Komatsu, Yoshihiro
2014-01-01
Establishment of vertebrate left–right asymmetry is a critical process for normal embryonic development. After the discovery of genes expressed asymmetrically along the left–right axis in chick embryos in the mid 1990s, the molecular mechanisms responsible for left–right patterning in vertebrate embryos have been studied extensively. In this review article, we discuss the mechanisms by which the initial symmetry along the left–right axis is broken in the mouse embryo. We focus on the role of primary cilia and molecular mechanisms of ciliogenesis at the node when symmetry is broken and left–right asymmetry is established. The node is considered a signaling center for early mouse embryonic development, and the results we review here have led to a better understanding of how the node functions and establishes left–right asymmetry. PMID:23771646
Establishment of left-right asymmetry in vertebrate development: the node in mouse embryos.
Komatsu, Yoshihiro; Mishina, Yuji
2013-12-01
Establishment of vertebrate left-right asymmetry is a critical process for normal embryonic development. After the discovery of genes expressed asymmetrically along the left-right axis in chick embryos in the mid 1990s, the molecular mechanisms responsible for left-right patterning in vertebrate embryos have been studied extensively. In this review article, we discuss the mechanisms by which the initial symmetry along the left-right axis is broken in the mouse embryo. We focus on the role of primary cilia and molecular mechanisms of ciliogenesis at the node when symmetry is broken and left-right asymmetry is established. The node is considered a signaling center for early mouse embryonic development, and the results we review here have led to a better understanding of how the node functions and establishes left-right asymmetry.
EDA-containing fibronectin increases proliferation of embryonic stem cells.
Losino, Noelia; Waisman, Ariel; Solari, Claudia; Luzzani, Carlos; Espinosa, Darío Fernández; Sassone, Alina; Muro, Andrés F; Miriuka, Santiago; Sevlever, Gustavo; Barañao, Lino; Guberman, Alejandra
2013-01-01
Embryonic stem cells (ESC) need a set of specific factors to be propagated. They can also grow in conditioned medium (CM) derived from a bovine granulosa cell line BGC (BGC-CM), a medium that not only preserves their main features but also increases ESC´s proliferation rate. The mitogenic properties of this medium were previously reported, ascribing this effect to an alternative spliced generated fibronectin isoform that contains the extra domain A (FN EDA(+)). Here, we investigated if the FN EDA(+) isoform increased proliferation of mouse and human ES cells. We analyzed cell proliferation using conditioned media produced by different mouse embryonic fibroblast (MEF) lines genetically engineered to express FN constitutively including or excluding the EDA domain (FN EDA(-)), and in media supplemented with recombinant peptides containing or not the EDA. We found that the presence of EDA in the medium increased mouse and human ESC's proliferation rate. Here we showed for the first time that this FN isoform enhances ESC's proliferation. These findings suggest a possible conserved behavior for regulation of ES cells proliferation by this FN isoform and could contribute to improve their culturing conditions both for research and cell therapy.
EDA-Containing Fibronectin Increases Proliferation of Embryonic Stem Cells
Losino, Noelia; Waisman, Ariel; Solari, Claudia; Luzzani, Carlos; Espinosa, Darío Fernández; Sassone, Alina; Muro, Andrés F.; Miriuka, Santiago; Sevlever, Gustavo; Barañao, Lino; Guberman, Alejandra
2013-01-01
Embryonic stem cells (ESC) need a set of specific factors to be propagated. They can also grow in conditioned medium (CM) derived from a bovine granulosa cell line BGC (BGC-CM), a medium that not only preserves their main features but also increases ESC´s proliferation rate. The mitogenic properties of this medium were previously reported, ascribing this effect to an alternative spliced generated fibronectin isoform that contains the extra domain A (FN EDA+). Here, we investigated if the FN EDA+ isoform increased proliferation of mouse and human ES cells. We analyzed cell proliferation using conditioned media produced by different mouse embryonic fibroblast (MEF) lines genetically engineered to express FN constitutively including or excluding the EDA domain (FN EDA-), and in media supplemented with recombinant peptides containing or not the EDA. We found that the presence of EDA in the medium increased mouse and human ESC’s proliferation rate. Here we showed for the first time that this FN isoform enhances ESC’s proliferation. These findings suggest a possible conserved behavior for regulation of ES cells proliferation by this FN isoform and could contribute to improve their culturing conditions both for research and cell therapy. PMID:24244705
Meis2 is essential for cranial and cardiac neural crest development.
Machon, Ondrej; Masek, Jan; Machonova, Olga; Krauss, Stefan; Kozmik, Zbynek
2015-11-06
TALE-class homeodomain transcription factors Meis and Pbx play important roles in formation of the embryonic brain, eye, heart, cartilage or hematopoiesis. Loss-of-function studies of Pbx1, 2 and 3 and Meis1 documented specific functions in embryogenesis, however, functional studies of Meis2 in mouse are still missing. We have generated a conditional allele of Meis2 in mice and shown that systemic inactivation of the Meis2 gene results in lethality by the embryonic day 14 that is accompanied with hemorrhaging. We show that neural crest cells express Meis2 and Meis2-defficient embryos display defects in tissues that are derived from the neural crest, such as an abnormal heart outflow tract with the persistent truncus arteriosus and abnormal cranial nerves. The importance of Meis2 for neural crest cells is further confirmed by means of conditional inactivation of Meis2 using crest-specific AP2α-IRES-Cre mouse. Conditional mutants display perturbed development of the craniofacial skeleton with severe anomalies in cranial bones and cartilages, heart and cranial nerve abnormalities. Meis2-null mice are embryonic lethal. Our results reveal a critical role of Meis2 during cranial and cardiac neural crest cells development in mouse.
Early-onset lymphoma and extensive embryonic apoptosis in two domain-specific Fen1 mice mutants.
Larsen, Elisabeth; Kleppa, Liv; Meza, Trine J; Meza-Zepeda, Leonardo A; Rada, Christina; Castellanos, Cesilie G; Lien, Guro F; Nesse, Gaute J; Neuberger, Michael S; Laerdahl, Jon K; William Doughty, Richard; Klungland, Arne
2008-06-15
Flap endonuclease 1 (FEN1) processes Okazaki fragments in lagging strand DNA synthesis, and FEN1 is involved in several DNA repair pathways. The interaction of FEN1 with the proliferating cell nuclear antigen (PCNA) processivity factor is central to the function of FEN1 in both DNA replication and repair. Here we present two gene-targeted mice with mutations in FEN1. The first mutant mouse carries a single amino acid point mutation in the active site of the nuclease domain of FEN1 (Fen1(E160D/E160D)), and the second mutant mouse contains two amino acid substitutions in the highly conserved PCNA interaction domain of FEN1 (Fen1(DeltaPCNA/DeltaPCNA)). Fen1(E160D/E160D) mice develop a considerably elevated incidence of B-cell lymphomas beginning at 6 months of age, particularly in females. By 16 months of age, more than 90% of the Fen1(E160D/E160D) females have tumors, primarily lymphomas. By contrast, Fen1(DeltaPCNA/DeltaPCNA) mouse embryos show extensive apoptosis in the forebrain and vertebrae area and die around stage E9.5 to E11.5.
NASA Astrophysics Data System (ADS)
Shinde, Vaibhav; Brungs, Sonja; Hescheler, Jürgen; Hemmersbach, Ruth; Sachinidis, Agapios
2016-06-01
The in vitro differentiation of pluripotent stem cells partially recapitulates early in vivo embryonic development. More recently, embryonic development under the influence of microgravity has become a primary focus of space life sciences. In order to integrate the technique of pluripotent stem cell differentiation with simulated microgravity approaches, the 2-D clinostat compatible pipette-based method was experimentally investigated and adapted for investigating stem cell differentiation processes under simulated microgravity conditions. In order to keep residual accelerations as low as possible during clinorotation, while also guaranteeing enough material for further analysis, stem cells were exposed in 1-mL pipettes with a diameter of 3.5 mm. The differentiation of mouse and human pluripotent stem cells inside the pipettes resulted in the formation of embryoid bodies at normal gravity (1 g) after 24 h and 3 days. Differentiation of the mouse pluripotent stem cells on a 2-D pipette-clinostat for 3 days also resulted in the formation of embryoid bodies. Interestingly, the expression of myosin heavy chain was downregulated when cultivation was continued for an additional 7 days at normal gravity. This paper describes the techniques for culturing and differentiation of pluripotent stem cells and exposure to simulated microgravity during culturing or differentiation on a 2-D pipette clinostat. The implementation of these methodologies along with -omics technologies will contribute to understand the mechanisms regulating how microgravity influences early embryonic development.
Speckle variance optical coherence tomography of blood flow in the beating mouse embryonic heart.
Grishina, Olga A; Wang, Shang; Larina, Irina V
2017-05-01
Efficient separation of blood and cardiac wall in the beating embryonic heart is essential and critical for experiment-based computational modelling and analysis of early-stage cardiac biomechanics. Although speckle variance optical coherence tomography (SV-OCT) relying on calculation of intensity variance over consecutively acquired frames is a powerful approach for segmentation of fluid flow from static tissue, application of this method in the beating embryonic heart remains challenging because moving structures generate SV signal indistinguishable from the blood. Here, we demonstrate a modified four-dimensional SV-OCT approach that effectively separates the blood flow from the dynamic heart wall in the beating mouse embryonic heart. The method takes advantage of the periodic motion of the cardiac wall and is based on calculation of the SV signal over the frames corresponding to the same phase of the heartbeat cycle. Through comparison with Doppler OCT imaging, we validate this speckle-based approach and show advantages in its insensitiveness to the flow direction and velocity as well as reduced influence from the heart wall movement. This approach has a potential in variety of applications relying on visualization and segmentation of blood flow in periodically moving structures, such as mechanical simulation studies and finite element modelling. Picture: Four-dimensional speckle variance OCT imaging shows the blood flow inside the beating heart of an E8.5 mouse embryo. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Huang, Chien-Hsun; Huang, Zi-Wei; Ho, Feng-Ming; Chan, Wen-Hsiung
2018-03-01
Berberine, an isoquinoline alkaloid isolated from several traditional Chinese herbal medicines, has been shown to suppress growth and induce apoptosis in some tumor cell lines. However, berberine has also been reported to attenuate H 2 O 2 -induced oxidative injury and apoptosis. The basis for these ambiguous effects of berberine-triggering or preventing apoptosis-has not been well characterized to date. In the current investigation, we examined whether berberine exerts cytotoxic effects on mouse embryos at the blastocyst stage and affects subsequent embryonic development in vitro and in vivo. Treatment of blastocysts with berberine (2.5-10 μM) induced a significant increase in apoptosis and a corresponding decrease in trophectoderm cell number. Moreover, the implantation success rate of blastocysts pretreated with berberine was lower than that of their control counterparts. Pretreatment with berberine was also associated with increased resorption of postimplantation embryos and decreased fetal weight. In an animal model, intravenous injection of berberine (2, 4, or 6 mg/kg body weight/d) for 4 days resulted in apoptosis of blastocyst cells and early embryonic developmental injury. Berberine-induced injury of mouse blastocysts appeared to be attributable to oxidative stress-triggered intrinsic apoptotic signaling processes that impaired preimplantation and postimplantation embryonic development. Taken together, our results clearly demonstrate that berberine induces apoptosis and retards early preimplantation and postimplantation development of mouse embryos, both in vitro and in vivo. © 2017 Wiley Periodicals, Inc.
Hyperforin inhibits cell proliferation and differentiation in mouse embryonic stem cells.
Nakamura, K; Aizawa, K; Yamauchi, J; Tanoue, A
2013-10-01
Hyperforin, a phloroglucinol derivative of St. John's Wort, has been identified as the major molecule responsible for this plant's products anti-depressant effects. It can be expected that exposure to St. John's Wort during pregnancy occurs with some frequency although embryotoxic or teratogenic effects of St. John's Wort and hyperforin have not yet been experimentally examined in detail. In this study, to determine any embryotoxic effects of hyperforin, we have attempted to determine whether hyperforin affects growth and survival processes of employing mouse embryonic stem (mES) cells (representing embryonic tissue) and fibroblasts (representing adult tissues). We used a modified embryonic stem cell test, which has been validated as an in vitro developmental toxicity protocol, mES cells, to assess embryotoxic potential of chemicals under investigation. We have identified that high concentrations of hyperforin inhibited mouse ES cell population growth and induced apoptosis in fibroblasts. Under our cell culture conditions, ES cells mainly differentiated into cardiomyocytes, although various other cell types were also produced. In this condition, hyperforin affected ES cell differentiation into cardiomyocytes in a dose-dependent manner. Analysis of tissue-specific marker expression also revealed that hyperforin at high concentrations partially inhibited ES cell differentiation into mesodermal and endodermal lineages. Hyperforin is currently used in the clinic as a safe and effective antidepressant. Our data indicate that at typical dosages it has only a low risk of embryotoxicity; ingestion of large amounts of hyperforin by pregnant women, however, may pose embryotoxic and teratogenic risks. © 2013 John Wiley & Sons Ltd.
The adherent cell differentiation and cytotoxicity (ACDC) assay was used to profile the effects of the ECVAM EST validation chemical library (19 compounds) on J1 mouse embryonic stem cells (mESC). PCR-based TaqMan Low Density Arrays (TLDA) provided a high-content assessment of al...
The observation of transcriptional changes following embryonic ethanol exposure may provide significant insights into the biological response to ethanol exposure. In this study, we used microarray analysis to examine the transcriptional response of the developing limb to a dose ...
Role of Abcg2 During Mouse Embroyonic Stem Cell Diffferentiation
Role of Abcg2 During Mouse Embryonic Stem Cell Differentiation. Abcg2 is a multidrug resistance ATP-binding cassette (ABC) transporter whose activity may be considered a hallmark of stem cell plasticity. The role of Abcg2 during early embryogenesis, however, is unclear. Studies...
Childhood Central Nervous System Embryonal Tumors Treatment (PDQ®)—Patient Version
Childhood central nervous system embryonal tumors and pineal tumors are treated with surgery, radiation therapy, chemotherapy, high-dose chemotherapy with stem cell rescue and targeted therapy. Learn more in this expert-reviewed summary.
Impaired cardiac energy metabolism in embryos lacking adrenergic stimulation.
Baker, Candice N; Gidus, Sarah A; Price, George F; Peoples, Jessica N R; Ebert, Steven N
2015-03-01
As development proceeds from the embryonic to fetal stages, cardiac energy demands increase substantially, and oxidative phosphorylation of ADP to ATP in mitochondria becomes vital. Relatively little, however, is known about the signaling mechanisms regulating the transition from anaerobic to aerobic metabolism that occurs during the embryonic period. The main objective of this study was to test the hypothesis that adrenergic hormones provide critical stimulation of energy metabolism during embryonic/fetal development. We examined ATP and ADP concentrations in mouse embryos lacking adrenergic hormones due to targeted disruption of the essential dopamine β-hydroxylase (Dbh) gene. Embryonic ATP concentrations decreased dramatically, whereas ADP concentrations rose such that the ATP/ADP ratio in the adrenergic-deficient group was nearly 50-fold less than that found in littermate controls by embryonic day 11.5. We also found that cardiac extracellular acidification and oxygen consumption rates were significantly decreased, and mitochondria were significantly larger and more branched in adrenergic-deficient hearts. Notably, however, the mitochondria were intact with well-formed cristae, and there was no significant difference observed in mitochondrial membrane potential. Maternal administration of the adrenergic receptor agonists isoproterenol or l-phenylephrine significantly ameliorated the decreases in ATP observed in Dbh-/- embryos, suggesting that α- and β-adrenergic receptors were effective modulators of ATP concentrations in mouse embryos in vivo. These data demonstrate that adrenergic hormones stimulate cardiac energy metabolism during a critical period of embryonic development. Copyright © 2015 the American Physiological Society.
Microfluidic-based patterning of embryonic stem cells for in vitro development studies.
Suri, Shalu; Singh, Ankur; Nguyen, Anh H; Bratt-Leal, Andres M; McDevitt, Todd C; Lu, Hang
2013-12-07
In vitro recapitulation of mammalian embryogenesis and examination of the emerging behaviours of embryonic structures require both the means to engineer complexity and accurately assess phenotypes of multicellular aggregates. Current approaches to study multicellular populations in 3D configurations are limited by the inability to create complex (i.e. spatially heterogeneous) environments in a reproducible manner with high fidelity thus impeding the ability to engineer microenvironments and combinations of cells with similar complexity to that found during morphogenic processes such as development, remodelling and wound healing. Here, we develop a multicellular embryoid body (EB) fusion technique as a higher-throughput in vitro tool, compared to a manual assembly, to generate developmentally relevant embryonic patterns. We describe the physical principles of the EB fusion microfluidic device design; we demonstrate that >60 conjoined EBs can be generated overnight and emulate a development process analogous to mouse gastrulation during early embryogenesis. Using temporal delivery of bone morphogenic protein 4 (BMP4) to embryoid bodies, we recapitulate embryonic day 6.5 (E6.5) during mouse embryo development with induced mesoderm differentiation in murine embryonic stem cells leading to expression of Brachyury-T-green fluorescent protein (T-GFP), an indicator of primitive streak development and mesoderm differentiation during gastrulation. The proposed microfluidic approach could be used to manipulate hundreds or more of individual embryonic cell aggregates in a rapid fashion, thereby allowing controlled differentiation patterns in fused multicellular assemblies to generate complex yet spatially controlled microenvironments.
Microfluidic-based patterning of embryonic stem cells for in vitro development studies
Suri, Shalu; Singh, Ankur; Nguyen, Anh H.; Bratt-Leal, Andres M.; McDevitt, Todd C.
2013-01-01
In vitro recapitulation of mammalian embryogenesis and examination of the emerging behaviours of embryonic structures require both the means to engineer complexity and accurately assess phenotypes of multicellular aggregates. Current approaches to study multicellular populations in 3D configurations are limited by the inability to create complex (i.e. spatially heterogeneous) environments in a reproducible manner with high fidelity thus impeding the ability to engineer microenvironments and combinations of cells with similar complexity to that found during morphogenic processes such as development, remodelling and wound healing. Here, we develop a multicellular embryoid body (EB) fusion technique as a higher-throughput in vitro tool, compared to a manual assembly, to generate developmentally relevant embryonic patterns. We describe the physical principles of the EB fusion microfluidic device design; we demonstrate that >60 conjoined EBs can be generated overnight and emulate a development process analogous to mouse gastrulation during early embryogenesis. Using temporal delivery of bone morphogenic protein 4 (BMP4) to embryoid bodies, we recapitulate embryonic day 6.5 (E6.5) during mouse embryo development with induced mesoderm differentiation in murine embryonic stem cells leading to expression of Brachyury-T-green fluorescent protein (T-GFP), an indicator of primitive streak development and mesoderm differentiation during gastrulation. The proposed microfluidic approach could be used to manipulate hundreds or more of individual embryonic cell aggregates in a rapid fashion, thereby allowing controlled differentiation patterns in fused multicellular assemblies to generate complex yet spatially controlled microenvironments. PMID:24113509
Conte, Daniele; Garaffo, Giulia; Lo Iacono, Nadia; Mantero, Stefano; Piccolo, Stefano; Cordenonsi, Michelangelo; Perez-Morga, David; Orecchia, Valeria; Poli, Valeria; Merlo, Giorgio R.
2016-01-01
The congenital malformation split hand/foot (SHFM) is characterized by missing central fingers and dysmorphology or fusion of the remaining ones. Type-1 SHFM is linked to deletions/rearrangements of the DLX5–DLX6 locus and point mutations in the DLX5 gene. The ectrodactyly phenotype is reproduced in mice by the double knockout (DKO) of Dlx5 and Dlx6. During limb development, the apical ectodermal ridge (AER) is a key-signaling center responsible for early proximal–distal growth and patterning. In Dlx5;6 DKO hindlimbs, the central wedge of the AER loses multilayered organization and shows down-regulation of FGF8 and Dlx2. In search for the mechanism, we examined the non-canonical Wnt signaling, considering that Dwnt-5 is a target of distalless in Drosophila and the knockout of Wnt5, Ryk, Ror2 and Vangl2 in the mouse causes severe limb malformations. We found that in Dlx5;6 DKO limbs, the AER expresses lower levels of Wnt5a, shows scattered β-catenin responsive cells and altered basolateral and planar cell polarity (PCP). The addition of Wnt5a to cultured embryonic limbs restored the expression of AER markers and its stratification. Conversely, the inhibition of the PCP molecule c-jun N-terminal kinase caused a loss of AER marker expression. In vitro, the addition of Wnt5a on mixed primary cultures of embryonic ectoderm and mesenchyme was able to confer re-polarization. We conclude that the Dlx-related ectrodactyly defect is associated with the loss of basoapical and PCP, due to reduced Wnt5a expression and that the restoration of the Wnt5a level is sufficient to partially reverts AER misorganization and dysmorphology. PMID:26685160
Chaverra, Marta; George, Lynn; Thorne, Julian; Grindeland, Andrea; Ueki, Yumi; Eiger, Steven; Cusick, Cassie; Babcock, A. Michael; Carlson, George A.
2017-01-01
ABSTRACT Hereditary sensory and autonomic neuropathies (HSANs) are a genetically and clinically diverse group of disorders defined by peripheral nervous system (PNS) dysfunction. HSAN type III, known as familial dysautonomia (FD), results from a single base mutation in the gene IKBKAP that encodes a scaffolding unit (ELP1) for a multi-subunit complex known as Elongator. Since mutations in other Elongator subunits (ELP2 to ELP4) are associated with central nervous system (CNS) disorders, the goal of this study was to investigate a potential requirement for Ikbkap in the CNS of mice. The sensory and autonomic pathophysiology of FD is fatal, with the majority of patients dying by age 40. While signs and pathology of FD have been noted in the CNS, the clinical and research focus has been on the sensory and autonomic dysfunction, and no genetic model studies have investigated the requirement for Ikbkap in the CNS. Here, we report, using a novel mouse line in which Ikbkap is deleted solely in the nervous system, that not only is Ikbkap widely expressed in the embryonic and adult CNS, but its deletion perturbs both the development of cortical neurons and their survival in adulthood. Primary cilia in embryonic cortical apical progenitors and motile cilia in adult ependymal cells are reduced in number and disorganized. Furthermore, we report that, in the adult CNS, both autonomic and non-autonomic neuronal populations require Ikbkap for survival, including spinal motor and cortical neurons. In addition, the mice developed kyphoscoliosis, an FD hallmark, indicating its neuropathic etiology. Ultimately, these perturbations manifest in a developmental and progressive neurodegenerative condition that includes impairments in learning and memory. Collectively, these data reveal an essential function for Ikbkap that extends beyond the peripheral nervous system to CNS development and function. With the identification of discrete CNS cell types and structures that depend on Ikbkap, novel strategies to thwart the progressive demise of CNS neurons in FD can be developed. PMID:28167615
Cochleovestibular nerve development is integrated with migratory neural crest cells
Sandell, Lisa L.; Butler Tjaden, Naomi E.; Barlow, Amanda J.; Trainor, Paul A.
2015-01-01
The cochleovestibular (CV) nerve, which connects the inner ear to the brain, is the nerve that enables the senses of hearing and balance. The aim of this study was to document the morphological development of the mouse CV nerve with respect to the two embryonic cells types that produce it, specifically, the otic vesicle-derived progenitors that give rise to neurons, and the neural crest cell (NCC) progenitors that give rise to glia. Otic tissues of mouse embryos carrying NCC lineage reporter transgenes were whole mount immunostained to identify neurons and NCC. Serial optical sections were collected by confocal microscopy and were compiled to render the three dimensional (3D) structure of the developing CV nerve. Spatial organization of the NCC and developing neurons suggest that neuronal and glial populations of the CV nerve develop in tandem from early stages of nerve formation. NCC form a sheath surrounding the CV ganglia and central axons. NCC are also closely associated with neurites projecting peripherally during formation of the vestibular and cochlear nerves. Physical ablation of NCC in chick embryos demonstrates that survival or regeneration of even a few individual NCC from ectopic positions in the hindbrain results in central projection of axons precisely following ectopic pathways made by regenerating NCC. PMID:24252775
Deng, Tao; Postnikov, Yuri; Zhang, Shaofei; Garrett, Lillian; Becker, Lore; Rácz, Ildikó; Hölter, Sabine M; Wurst, Wolfgang; Fuchs, Helmut; Gailus-Durner, Valerie; de Angelis, Martin Hrabe; Bustin, Michael
2017-04-07
An interplay between the nucleosome binding proteins H1 and HMGN is known to affect chromatin dynamics, but the biological significance of this interplay is still not clear. We find that during embryonic stem cell differentiation loss of HMGNs leads to down regulation of genes involved in neural differentiation, and that the transcription factor OLIG2 is a central node in the affected pathway. Loss of HMGNs affects the expression of OLIG2 as well as that of OLIG1, two transcription factors that are crucial for oligodendrocyte lineage specification and nerve myelination. Loss of HMGNs increases the chromatin binding of histone H1, thereby recruiting the histone methyltransferase EZH2 and elevating H3K27me3 levels, thus conferring a repressive epigenetic signature at Olig1&2 sites. Embryonic stem cells lacking HMGNs show reduced ability to differentiate towards the oligodendrocyte lineage, and mice lacking HMGNs show reduced oligodendrocyte count and decreased spinal cord myelination, and display related neurological phenotypes. Thus, the presence of HMGN proteins is required for proper expression of neural differentiation genes during embryonic stem cell differentiation. Specifically, we demonstrate that the dynamic interplay between HMGNs and H1 in chromatin epigenetically regulates the expression of OLIG1&2, thereby affecting oligodendrocyte development and myelination, and mouse behavior. Published by Oxford University Press on behalf of Nucleic Acids Research 2016.
Deng, Tao; Postnikov, Yuri; Zhang, Shaofei; Garrett, Lillian; Becker, Lore; Rácz, Ildikó; Hölter, Sabine M.; Wurst, Wolfgang; Fuchs, Helmut; Gailus-Durner, Valerie; de Angelis, Martin Hrabe
2017-01-01
Abstract An interplay between the nucleosome binding proteins H1 and HMGN is known to affect chromatin dynamics, but the biological significance of this interplay is still not clear. We find that during embryonic stem cell differentiation loss of HMGNs leads to down regulation of genes involved in neural differentiation, and that the transcription factor OLIG2 is a central node in the affected pathway. Loss of HMGNs affects the expression of OLIG2 as well as that of OLIG1, two transcription factors that are crucial for oligodendrocyte lineage specification and nerve myelination. Loss of HMGNs increases the chromatin binding of histone H1, thereby recruiting the histone methyltransferase EZH2 and elevating H3K27me3 levels, thus conferring a repressive epigenetic signature at Olig1&2 sites. Embryonic stem cells lacking HMGNs show reduced ability to differentiate towards the oligodendrocyte lineage, and mice lacking HMGNs show reduced oligodendrocyte count and decreased spinal cord myelination, and display related neurological phenotypes. Thus, the presence of HMGN proteins is required for proper expression of neural differentiation genes during embryonic stem cell differentiation. Specifically, we demonstrate that the dynamic interplay between HMGNs and H1 in chromatin epigenetically regulates the expression of OLIG1&2, thereby affecting oligodendrocyte development and myelination, and mouse behavior. PMID:27923998
Vu, Thiennu H.; Alemayehu, Yemisrach; Werb, Zena
2009-01-01
The study of distal lung morphogenesis and vascular development would be greatly facilitated by an in vitro or ex vivo experimental model. In this study we show that the growth of mouse embryonic day 12.5 lung rudiments implanted underneath the kidney capsules of syngeneic or immunodeficient hosts follows closely lung development in utero. The epithelium develops extensively with both proximal and distal differentiation to the saccular stage. The vasculature also develops extensively. Large blood vessels accompany large airways and capillaries develop within the saccular walls. Interestingly, vessels in the lung grafts develop from endothelial progenitor cells endogenous to the explants and host vessels do not vascularize the grafts independently. This suggests that embryonic lungs possess mechanisms to prevent the inappropriate ingrowth of surrounding vessels. However, vessels in the lung grafts do connect to host vessels, showing that embryonic lungs have the ability to stimulate host angiogenesis and recruit host vessel connections. These data support the hypothesis that the lung vasculature develops by both vasculogenic and angiogenic processes: a vascular network develops in situ in lung mesenchyme, which is then connected to angiogenic processes from central vessels. The lung renal capsule allograft is thus an excellent model to study the development of the pulmonary vasculature and of late fetal lung development that requires a functional blood supply. PMID:12591600
Izquierdo-Lahuerta, Adriana; de Luis, Oscar; Gómez-Esquer, Francisco; Cruces, Jesús; Coloma, Antonio
2016-09-23
Alpha-dystroglycanopathies are a heterogenic group of human rare diseases that have in common defects of α-dystroglycan O-glycosylation. These congenital disorders share common features as muscular dystrophy, malformations on central nervous system and more rarely altered ocular development, as well as mutations on a set of candidate genes involved on those syndromes. Severity of the syndromes is variable, appearing Walker-Warburg as the most severe where mutations at protein O-mannosyl transferases POMT1 and POMT2 genes are frequently described. When studying the lack of MmPomt1 in mouse embryonic development, as a murine model of Walker-Warburg syndrome, MmPomt1 null phenotype was lethal because Reitchert's membrane fails during embryonic development. Here, we report gene expression from Gallus gallus orthologous genes to human candidates on alpha-dystroglycanopathies POMT1, POMT2, POMGnT1, FKTN, FKRP and LARGE, making special emphasis in expression and localization of GgPomt1. Results obtained by quantitative RT-PCR, western-blot and immunochemistry revealed close gene expression patterns among human and chicken at key tissues affected during development when suffering an alpha-dystroglycanopathy, leading us to stand chicken as a useful animal model for molecular characterization of glycosyltransferases involved in the O-glycosylation of α-Dystroglycan and its role in embryonic development. Copyright © 2016 Elsevier Inc. All rights reserved.
The haloacetic acids (HAA) are a family of chemicals that are drinking water disinfection byproducts. We previously reported that bromo- and chloro-acetic acids alter embryonic development when mouse conceptuses are directly exposed to these xenobiotics in whole embryo culture. C...
Pellett, Sabine; Du, Zhong-wei; Pier, Christina L; Tepp, William H; Zhang, Su-chun; Johnson, Eric A
2011-01-07
Botulinum neurotoxins (BoNTs), the most poisonous protein toxins known, represent a serious bioterrorism threat but are also used as a unique and important bio-pharmaceutical to treat an increasing myriad of neurological disorders. The only currently accepted detection method by the United States Food and Drug Administration for biological activity of BoNTs and for potency determination of pharmaceutical preparations is the mouse bioassay (MBA). Recent advances have indicated that cell-based assays using primary neuronal cells can provide an equally sensitive and robust detection platform as the MBA to reliably and quantitatively detect biologically active BoNTs. This study reports for the first time a BoNT detection assay using mouse embryonic stem cells to produce a neuronal cell culture. The data presented indicate that this assay can reliably detect BoNT/A with a similar sensitivity as the MBA. Published by Elsevier Inc.
Ye, Shoudong; Zhang, Dongming; Cheng, Fei; Wilson, Daniel; Mackay, Jeffrey; He, Kan; Ban, Qian; Lv, Feng; Huang, Saifei; Liu, Dahai; Ying, Qi-Long
2016-01-15
Activation of leukemia inhibitor factor (LIF)-Stat3 or Wnt/β-catenin signaling promotes mouse embryonic stem cell (mESC) self-renewal. A myriad of downstream targets have been identified in the individual signal pathways, but their common targets remain largely elusive. In this study, we found that the LIF-Stat3 and Wnt/β-catenin signaling pathways converge on Sp5 to promote mESC self-renewal. Forced Sp5 expression can reproduce partial effects of Wnt/β-catenin signaling but mimics most features of LIF-Stat3 signaling to maintain undifferentiated mESCs. Moreover, Sp5 is able to convert mouse epiblast stem cells into a naïve pluripotent state. Thus, Sp5 is an important component of the regulatory network governing mESC naïve pluripotency. © 2016. Published by The Company of Biologists Ltd.
Derivation of Human Skin Fibroblast Lines for Feeder Cells of Human Embryonic Stem Cells.
Unger, Christian; Felldin, Ulrika; Rodin, Sergey; Nordenskjöld, Agneta; Dilber, Sirac; Hovatta, Outi
2016-02-03
After the first derivations of human embryonic stem cell (hESC) lines on fetal mouse feeder cell layers, the idea of using human cells instead of mouse cells as feeder cells soon arose. Mouse cells bear a risk of microbial contamination, and nonhuman immunogenic proteins are absorbed from the feeders to hESCs. Human skin fibroblasts can be effectively used as feeder cells for hESCs. The same primary cell line, which can be safely used for up to 15 passages after stock preparations, can be expanded and used for large numbers of hESC derivations and cultures. These cells are relatively easy to handle and maintain. No animal facilities or animal work is needed. Here, we describe the derivation, culture, and cryopreservation procedures for research-grade human skin fibroblast lines. We also describe how to make feeder layers for hESCs using these fibroblasts. Copyright © 2016 John Wiley & Sons, Inc.
Hunter, Nina L; Hikasa, Hiroki; Dymecki, Susan M; Sokol, Sergei Y
2006-01-01
Frodo has been identified as a protein interacting with Dishevelled, an essential mediator of the Wnt signaling pathway, critical for the determination of cell fate and polarity in embryonic development. In this study, we use specific gene probes to characterize stage- and tissue-specific expression patterns of the mouse Frodo homologue and compare them with Frodo expression patterns in Xenopus embryos. In situ hybridization analysis of mouse Frodo transcripts demonstrates that, similar to Xenopus Frodo, mouse Frodo is expressed in primitive streak mesoderm, neuroectoderm, neural crest, presomitic mesoderm, and somites. In many cases, Frodo expression is confined to tissues undergoing extensive morphogenesis, suggesting that Frodo may be involved in the regulation of cell shape and motility. Highly conserved dynamic expression patterns of Frodo homologues indicate a similar function for these proteins in different vertebrates. 2005 Wiley-Liss, Inc.
The cell cycle of early mammalian embryos: lessons from genetic mouse models.
Artus, Jérôme; Babinet, Charles; Cohen-Tannoudji, Michel
2006-03-01
Genes coding for cell cycle components predicted to be essential for its regulation have been shown to be dispensable in mice, at the whole organism level. Such studies have highlighted the extraordinary plasticity of the embryonic cell cycle and suggest that many aspects of in vivo cell cycle regulation remain to be discovered. Here, we discuss the particularities of the mouse early embryonic cell cycle and review the mutations that result in cell cycle defects during mouse early embryogenesis, including deficiencies for genes of the cyclin family (cyclin A2 and B1), genes involved in cell cycle checkpoints (Mad2, Bub3, Chk1, Atr), genes involved in ubiquitin and ubiquitin-like pathways (Uba3, Ubc9, Cul1, Cul3, Apc2, Apc10, Csn2) as well as genes the function of which had not been previously ascribed to cell cycle regulation (Cdc2P1, E4F and Omcg1).
Two Pore Channel 2 Differentially Modulates Neural Differentiation of Mouse Embryonic Stem Cells
Zhang, Zhe-Hao; Lu, Ying-Ying; Yue, Jianbo
2013-01-01
Nicotinic acid adenine dinucleotide phosphate (NAADP) is an endogenous Ca2+ mobilizing nucleotide presented in various species. NAADP mobilizes Ca2+ from acidic organelles through two pore channel 2 (TPC2) in many cell types and it has been previously shown that NAADP can potently induce neuronal differentiation in PC12 cells. Here we examined the role of TPC2 signaling in the neural differentiation of mouse embryonic stem (ES) cells. We found that the expression of TPC2 was markedly decreased during the initial ES cell entry into neural progenitors, and the levels of TPC2 gradually rebounded during the late stages of neurogenesis. Correspondingly, TPC2 knockdown accelerated mouse ES cell differentiation into neural progenitors but inhibited these neural progenitors from committing to neurons. Overexpression of TPC2, on the other hand, inhibited mouse ES cell from entering the early neural lineage. Interestingly, TPC2 knockdown had no effect on the differentiation of astrocytes and oligodendrocytes of mouse ES cells. Taken together, our data indicate that TPC2 signaling plays a temporal and differential role in modulating the neural lineage entry of mouse ES cells, in that TPC2 signaling inhibits ES cell entry to early neural progenitors, but is required for late neuronal differentiation. PMID:23776607
De novo formation of nucleoli in developing mouse embryos originating from enucleolated zygotes.
Kyogoku, Hirohisa; Fulka, Josef; Wakayama, Teruhiko; Miyano, Takashi
2014-06-01
The large, compact oocyte nucleoli, sometimes referred to as nucleolus precursor bodies (NPBs), are essential for embryonic development in mammals; in their absence, the oocytes complete maturation and can be fertilized, but no nucleoli are formed in the zygote or embryo, leading to developmental failure. It has been convincingly documented that zygotes inherit the oocyte nucleolar material and form NPBs again in pronuclei. It is commonly accepted that during early embryonic development, the original compact zygote NPBs gradually transform into reticulated nucleoli of somatic cells. Here, we show that zygote NPBs are not required for embryonic and full-term development in the mouse. When NPBs were removed from late-stage zygotes by micromanipulation, the enucleolated zygotes developed to the blastocyst stage and, after transfer to recipients, live pups were obtained. We also describe de novo formation of nucleoli in developing embryos. After removal of NPBs from zygotes, they formed new nucleoli after several divisions. These results indicate that the zygote NPBs are not used in embryonic development and that the nucleoli in developing embryos originate from de novo synthesized materials. © 2014. Published by The Company of Biologists Ltd.
Xu, Huilei; Baroukh, Caroline; Dannenfelser, Ruth; Chen, Edward Y; Tan, Christopher M; Kou, Yan; Kim, Yujin E; Lemischka, Ihor R; Ma'ayan, Avi
2013-01-01
High content studies that profile mouse and human embryonic stem cells (m/hESCs) using various genome-wide technologies such as transcriptomics and proteomics are constantly being published. However, efforts to integrate such data to obtain a global view of the molecular circuitry in m/hESCs are lagging behind. Here, we present an m/hESC-centered database called Embryonic Stem Cell Atlas from Pluripotency Evidence integrating data from many recent diverse high-throughput studies including chromatin immunoprecipitation followed by deep sequencing, genome-wide inhibitory RNA screens, gene expression microarrays or RNA-seq after knockdown (KD) or overexpression of critical factors, immunoprecipitation followed by mass spectrometry proteomics and phosphoproteomics. The database provides web-based interactive search and visualization tools that can be used to build subnetworks and to identify known and novel regulatory interactions across various regulatory layers. The web-interface also includes tools to predict the effects of combinatorial KDs by additive effects controlled by sliders, or through simulation software implemented in MATLAB. Overall, the Embryonic Stem Cell Atlas from Pluripotency Evidence database is a comprehensive resource for the stem cell systems biology community. Database URL: http://www.maayanlab.net/ESCAPE
Francisco, Adam B.; Singh, Rajni; Li, Shuai; Vani, Anish K.; Yang, Liu; Munroe, Robert J.; Diaferia, Giuseppe; Cardano, Marina; Biunno, Ida; Qi, Ling; Schimenti, John C.; Long, Qiaoming
2010-01-01
Stress in the endoplasmic reticulum (ER) plays an important causal role in the pathogenesis of several chronic diseases such as Alzheimer, Parkinson, and diabetes mellitus. Insight into the genetic determinants responsible for ER homeostasis will greatly facilitate the development of therapeutic strategies for the treatment of these debilitating diseases. Suppressor enhancer Lin12 1 like (SEL1L) is an ER membrane protein and was thought to be involved in the quality control of secreted proteins. Here we show that the mice homozygous mutant for SEL1L were embryonic lethal. Electron microscopy studies revealed a severely dilated ER in the fetal liver of mutant embryos, indicative of alteration in ER homeostasis. Consistent with this, several ER stress responsive genes were significantly up-regulated in the mutant embryos. Mouse embryonic fibroblast cells deficient in SEL1L exhibited activated unfolded protein response at the basal state, impaired ER-associated protein degradation, and reduced protein secretion. Furthermore, markedly increased apoptosis was observed in the forebrain and dorsal root ganglions of mutant embryos. Taken together, our results demonstrate an essential role for SEL1L in protein quality control during mouse embryonic development. PMID:20197277
Francisco, Adam B; Singh, Rajni; Li, Shuai; Vani, Anish K; Yang, Liu; Munroe, Robert J; Diaferia, Giuseppe; Cardano, Marina; Biunno, Ida; Qi, Ling; Schimenti, John C; Long, Qiaoming
2010-04-30
Stress in the endoplasmic reticulum (ER) plays an important causal role in the pathogenesis of several chronic diseases such as Alzheimer, Parkinson, and diabetes mellitus. Insight into the genetic determinants responsible for ER homeostasis will greatly facilitate the development of therapeutic strategies for the treatment of these debilitating diseases. Suppressor enhancer Lin12 1 like (SEL1L) is an ER membrane protein and was thought to be involved in the quality control of secreted proteins. Here we show that the mice homozygous mutant for SEL1L were embryonic lethal. Electron microscopy studies revealed a severely dilated ER in the fetal liver of mutant embryos, indicative of alteration in ER homeostasis. Consistent with this, several ER stress responsive genes were significantly up-regulated in the mutant embryos. Mouse embryonic fibroblast cells deficient in SEL1L exhibited activated unfolded protein response at the basal state, impaired ER-associated protein degradation, and reduced protein secretion. Furthermore, markedly increased apoptosis was observed in the forebrain and dorsal root ganglions of mutant embryos. Taken together, our results demonstrate an essential role for SEL1L in protein quality control during mouse embryonic development.
Chan, W Y; Ng, T B; Lam, Joyce S Y; Wong, Jack H; Chu, K T; Ngai, P H K; Lam, S K; Wang, H X
2010-01-01
Earlier investigations disclose that some plant ribosome-inactivating proteins (RIPs) adversely affect mouse embryonic development. In the present study, a mushroom RIP, namely lyophyllin from Lyophyllum shimeji, was isolated, partially sequenced, and its translation inhibitory activity determined. Its teratogenicity was studied by using a technique entailing microinjection and postimplantation whole-embryo culture. It was found that embryonic abnormalities during the period of organogenesis from E8.5 to E9.5 were induced by lyophyllin at a concentration as low as 50 microg/ml, and when the lyophyllin concentration was raised, the number of abnormal embryos increased, the final somite number decreased, and the abnormalities increased in severity. The affected embryonic structures included the cranial neural tube, forelimb buds, branchial arches, and body axis, while optic and otic placodes were more resistant. Lyophyllin at a concentration higher than 500 microg/ml also induced forebrain blisters within the cranial mesenchyme. When the abnormal embryos were examined histologically, an increase of cell death was found to be associated with abnormal structures, indicating that cell death may be one of the underlying causes of teratogenicity of the mushroom RIP. This constitutes the first report on the teratogenicity of a mushroom RIP.
Embryonic Stem Cells: Isolation, Characterization and Culture
NASA Astrophysics Data System (ADS)
Amit, Michal; Itskovitz-Eldor, Joseph
Embryonic stem cells are pluripotent cells isolated from the mammalian blastocyst. Traditionally, these cells have been derived and cultured with mouse embryonic fibroblast (MEF) supportive layers, which allow their continuous growth in an undifferentiated state. However, for any future industrial or clinical application hESCs should be cultured in reproducible, defined, and xeno-free culture system, where exposure to animal pathogens is prevented. From their derivation in 1998 the methods for culturing hESCs were significantly improved. This chapter wills discuss hESC characterization and the basic methods for their derivation and maintenance.
Preimplantation death of xenomitochondrial mouse embryo harbouring bovine mitochondria
Kawahara, Manabu; Koyama, Shiori; Iimura, Satomi; Yamazaki, Wataru; Tanaka, Aiko; Kohri, Nanami; Sasaki, Keisuke; Takahashi, Masashi
2015-01-01
Mitochondria, cellular organelles playing essential roles in eukaryotic cell metabolism, are thought to have evolved from bacteria. The organization of mtDNA is remarkably uniform across species, reflecting its vital and conserved role in oxidative phosphorylation (OXPHOS). Our objectives were to evaluate the compatibility of xenogeneic mitochondria in the development of preimplantation embryos in mammals. Mouse embryos harbouring bovine mitochondria (mtB-M embryos) were prepared by the cell-fusion technique employing the haemagglutinating virus of Japan (HVJ). The mtB-M embryos showed developmental delay at embryonic days (E) 3.5 after insemination. Furthermore, none of the mtB-M embryos could implant into the maternal uterus after embryo transfer, whereas control mouse embryos into which mitochondria from another mouse had been transferred developed as well as did non-manipulated embryos. When we performed quantitative PCR (qPCR) of mouse and bovine ND5, we found that the mtB-M embryos contained 8.3% of bovine mitochondria at the blastocyst stage. Thus, contamination with mitochondria from another species induces embryonic lethality prior to implantation into the maternal uterus. The heteroplasmic state of these xenogeneic mitochondria could have detrimental effects on preimplantation development, leading to preservation of species-specific mitochondrial integrity in mammals. PMID:26416548
Simerly, Calvin; McFarland, Dave; Castro, Carlos; Lin, Chih-Cheng; Redinger, Carrie; Jacoby, Ethan; Mich-Basso, Jocelyn; Orwig, Kyle; Mills, Parker; Ahrens, Eric; Navara, Chris; Schatten, Gerald
2016-01-01
Unequivocal evidence for pluripotency in which embryonic stem cells contribute to chimeric offspring has yet to be demonstrated in human or nonhuman primates (NHPs). Here, rhesus and baboons ESCs were investigated in interspecific mouse chimera generated by aggregation or blastocyst injection. Aggregation chimera produced mouse blastocysts with GFP-nhpESCs at the inner cell mass (ICM), and embryo transfers (ETs) generated dimly-fluorescencing abnormal fetuses. Direct injection of GFP-nhpESCs into blastocysts produced normal non-GFP-fluorescencing fetuses. Injected chimera showed >70% loss of GFP-nhpESCs after 21 h culture. Outgrowths of all chimeric blastocysts established distinct but separate mouse- and NHP-ESC colonies. Extensive endogenous autofluorescence compromised anti-GFP detection and PCR analysis did not detect nhpESCs in fetuses. NhpESCs localize to the ICM in chimera and generate pregnancies. Because primate ESCs do not engraft post-implantation, and also because endogenous autofluorescence results in misleading positive signals, interspecific chimera assays for pluripotency with primate stem cells is unreliable with the currently available ESCs. Testing primate ESCs reprogrammed into even more naïve states in these inter-specific chimera assays will be an important future endeavor. PMID:21543277
Fuegemann, Christopher J; Samraj, Ajoy K; Walsh, Stuart; Fleischmann, Bernd K; Jovinge, Stefan; Breitbach, Martin
2010-12-01
Herein, we describe two protocols for the in vitro differentiation of mouse embryonic stem cells (mESCs) into cardiomyocytes. mESCs are pluripotent and can be differentiated into cells of all three germ layers, including cardiomyocytes. The methods described here facilitate the differentiation of mESCs into the different cardiac subtypes (atrial-, ventricular-, nodal-like cells). The duration of cell culture determines whether preferentially early- or late-developmental stage cardiomyocytes can be obtained preferentially. This approach allows the investigation of cardiomyocyte development and differentiation in vitro, and also allows for the enrichment and isolation of physiologically intact cardiomyocytes for transplantation purposes. © 2010 by John Wiley & Sons, Inc.
[Programmed mouse genome modifications].
Babinet, C
1998-02-01
The availability, in the mouse, of embryonic stem cells (ES cells) which have the ability to colonize the germ line of a developing embryo, has opened entirely new avenues to the genetic approach of embryonic development, physiology and pathology of this animal. Indeed, it is now possible, using homologous recombination in ES cells, to introduce mutations in any gene as long as it has been cloned. Thus, null as well as more subtle mutations can be created. Furthermore, scenarios are currently being derived which will allow one to generate conditional mutations. Taken together, these methods offer a tremendous tool to study gene function in vivo; they also open the way to creating murine models of human genetic diseases.
Rantakari, Pia; Strauss, Leena; Kiviranta, Riku; Lagerbohm, Heidi; Paviala, Jenni; Holopainen, Irma; Vainio, Seppo; Pakarinen, Pirjo; Poutanen, Matti
2008-01-01
Hydroxysteroid (17-β) dehydrogenase 2 (HSD17B2) is a member of aldo-keto reductase superfamily, known to catalyze the inactivation of 17β-hydroxysteroids to less active 17-keto forms and catalyze the conversion of 20α-hydroxyprogesterone to progesterone in vitro. To examine the role of HSD17B2 in vivo, we generated mice deficient in Hsd17b2 [HSD17B2 knockout (KO)] by a targeted gene disruption in embryonic stem cells. From the homozygous mice carrying the disrupted Hsd17b2, 70% showed embryonic lethality appearing at the age of embryonic d 11.5 onward. The embryonic lethality was associated with reduced placental size measured at embryonic d 17.5. The HSD17B2KO mice placentas presented with structural abnormalities in all three major layers: the decidua, spongiotrophoblast, and labyrinth. Most notable was the disruption of the spongiotrophoblast and labyrinthine layers, together with liquid-filled cysts in the junctional region and the basal layer. Treatments with an antiestrogen or progesterone did not rescue the embryonic lethality or the placenta defect in the homozygous mice. In hybrid background used, 24% of HSD17B2KO mice survived through the fetal period but were born growth retarded and displayed a phenotype in the brain with enlargement of ventricles, abnormal laminar organization, and increased cellular density in the cortex. Furthermore, the HSD17B2KO mice had unilateral renal degeneration, the affected kidney frequently appearing as a fluid-filled sac. Our results provide evidence for a role for HSD17B2 enzyme in the cellular organization of the mouse placenta. PMID:18048640
Vogt, Edgar J; Meglicki, Maciej; Hartung, Kristina Ilka; Borsuk, Ewa; Behr, Rüdiger
2012-12-01
The maternal nucleolus is required for proper activation of the embryonic genome (EGA) and early embryonic development. Nucleologenesis is characterized by the transformation of a nucleolar precursor body (NPB) to a mature nucleolus during preimplantation development. However, the function of NPBs and the involved molecular factors are unknown. We uncover a novel role for the pluripotency factor LIN28, the biological significance of which was previously demonstrated in the reprogramming of human somatic cells to induced pluripotent stem (iPS) cells. Here, we show that LIN28 accumulates at the NPB and the mature nucleolus in mouse preimplantation embryos and embryonic stem cells (ESCs), where it colocalizes with the nucleolar marker B23 (nucleophosmin 1). LIN28 has nucleolar localization in non-human primate (NHP) preimplantation embryos, but is cytoplasmic in NHP ESCs. Lin28 transcripts show a striking decline before mouse EGA, whereas LIN28 protein localizes to NPBs at the time of EGA. Following knockdown with a Lin28 morpholino, the majority of embryos arrest between the 2- and 4-cell stages and never develop to morula or blastocyst. Lin28 morpholino-injected embryos arrested at the 2-cell stage were not enriched with nucleophosmin at presumptive NPB sites, indicating that functional NPBs were not assembled. Based on these results, we propose that LIN28 is an essential factor of nucleologenesis during early embryonic development.
Irie, Naoki; Sehara-Fujisawa, Atsuko
2007-01-12
Embryos of taxonomically different vertebrates are thought to pass through a stage in which they resemble one another morphologically. This "vertebrate phylotypic stage" may represent the basic vertebrate body plan that was established in the common ancestor of vertebrates. However, much controversy remains about when the phylotypic stage appears, and whether it even exists. To overcome the limitations of studies based on morphological comparison, we explored a comprehensive quantitative method for defining the constrained stage using expressed sequence tag (EST) data, gene ontologies (GO), and available genomes of various animals. If strong developmental constraints occur during the phylotypic stage of vertebrate embryos, then genes conserved among vertebrates would be highly expressed at this stage. We established a novel method for evaluating the ancestral nature of mouse embryonic stages that does not depend on comparative morphology. The numerical "ancestor index" revealed that the mouse indeed has a highly conserved embryonic period at embryonic day 8.0-8.5, the time of appearance of the pharyngeal arch and somites. During this period, the mouse prominently expresses GO-determined developmental genes shared among vertebrates. Similar analyses revealed the existence of a bilaterian-related period, during which GO-determined developmental genes shared among bilaterians are markedly expressed at the cleavage-to-gastrulation period. The genes associated with the phylotypic stage identified by our method are essential in embryogenesis. Our results demonstrate that the mid-embryonic stage of the mouse is indeed highly constrained, supporting the existence of the phylotypic stage. Furthermore, this candidate stage is preceded by a putative bilaterian ancestor-related period. These results not only support the developmental hourglass model, but also highlight the hierarchical aspect of embryogenesis proposed by von Baer. Identification of conserved stages and tissues by this method in various animals would be a powerful tool to examine the phylotypic stage hypothesis, and to understand which kinds of developmental events and gene sets are evolutionarily constrained and how they limit the possible variations of animal basic body plans.
Storm, Michael P; Kumpfmueller, Benjamin; Bone, Heather K; Buchholz, Michael; Sanchez Ripoll, Yolanda; Chaudhuri, Julian B; Niwa, Hitoshi; Tosh, David; Welham, Melanie J
2014-01-01
The Zscan4 family of genes, encoding SCAN-domain and zinc finger-containing proteins, has been implicated in the control of early mammalian embryogenesis as well as the regulation of pluripotency and maintenance of genome integrity in mouse embryonic stem cells. However, many features of this enigmatic family of genes are poorly understood. Here we show that undifferentiated mouse embryonic stem cell (ESC) lines simultaneously express multiple members of the Zscan4 gene family, with Zscan4c, Zscan4f and Zscan4-ps2 consistently being the most abundant. Despite this, between only 0.1 and 0.7% of undifferentiated mouse pluripotent stem cells express Zscan4 protein at a given time, consistent with a very restricted pattern of Zscan4 transcripts reported previously. Herein we demonstrate that Zscan4 expression is regulated by the p110α catalytic isoform of phosphoinositide 3-kinases and is induced following exposure to a sub-class of DNA-damage-inducing agents, including Zeocin and Cisplatin. Furthermore, we observe that Zscan4 protein expression peaks during the G2 phase of the cell cycle, suggesting that it may play a critical role at this checkpoint. Studies with GAL4-fusion proteins suggest a role for Zscan4 in transcriptional regulation, further supported by the fact that protein interaction analyses demonstrate that Zscan4 interacts with both LSD1 and CtBP2 in ESC nuclei. This study advances and extends our understanding of Zscan4 expression, regulation and mechanism of action. Based on our data we propose that Zscan4 may regulate gene transcription in mouse ES cells through interaction with LSD1 and CtBP2.
Bone, Heather K.; Buchholz, Michael; Sanchez Ripoll, Yolanda; Chaudhuri, Julian B.; Niwa, Hitoshi; Tosh, David; Welham, Melanie J.
2014-01-01
The Zscan4 family of genes, encoding SCAN-domain and zinc finger-containing proteins, has been implicated in the control of early mammalian embryogenesis as well as the regulation of pluripotency and maintenance of genome integrity in mouse embryonic stem cells. However, many features of this enigmatic family of genes are poorly understood. Here we show that undifferentiated mouse embryonic stem cell (ESC) lines simultaneously express multiple members of the Zscan4 gene family, with Zscan4c, Zscan4f and Zscan4-ps2 consistently being the most abundant. Despite this, between only 0.1 and 0.7% of undifferentiated mouse pluripotent stem cells express Zscan4 protein at a given time, consistent with a very restricted pattern of Zscan4 transcripts reported previously. Herein we demonstrate that Zscan4 expression is regulated by the p110α catalytic isoform of phosphoinositide 3-kinases and is induced following exposure to a sub-class of DNA-damage-inducing agents, including Zeocin and Cisplatin. Furthermore, we observe that Zscan4 protein expression peaks during the G2 phase of the cell cycle, suggesting that it may play a critical role at this checkpoint. Studies with GAL4-fusion proteins suggest a role for Zscan4 in transcriptional regulation, further supported by the fact that protein interaction analyses demonstrate that Zscan4 interacts with both LSD1 and CtBP2 in ESC nuclei. This study advances and extends our understanding of Zscan4 expression, regulation and mechanism of action. Based on our data we propose that Zscan4 may regulate gene transcription in mouse ES cells through interaction with LSD1 and CtBP2. PMID:24594919
Babinet, C; Cohen-Tannoudji, M
2001-09-01
The ability to introduce genetic modifications in the germ line of complex organisms has been a long-standing goal of those who study developmental biology. In this regard, the mouse, a favorite model for the study of the mammals, is unique: indeed not only is it possible since the late seventies, to add genes to the mouse genome like in several other complex organisms but also to perform gene replacement and modification. This has been made possible via two technological breakthroughs: 1) the isolation and culture of embryonic stem cells (ES), which have the unique ability to colonize all the tissues of an host embryo including its germ line; 2) the development of methods allowing homologous recombination between an incoming DNA and its cognate chromosomal sequence (gene "targeting"). As a result, it has become possible to create mice bearing null mutations in any cloned gene (knock-out mice). Such a possibility has revolutionized the genetic approach of almost all aspects of the biology of the mouse. In recent years, the scope of gene targeting has been widened even more, due to the refinement of the knock-out technology: other types of genetic modifications may now be created, including subtle mutations (point mutations, micro deletions or insertions, etc.) and chromosomal rearrangements such as large deletions, duplications and translocations. Finally, methods have been devised which permit the creation of conditional mutations, allowing the study of gene function throughout the life of an animal, when gene inactivation entails embryonic lethality. In this paper, we present an overview of the methods and scenarios used for the programmed modification of mouse genome, and we underline their enormous interest for the study of mammalian biology.
Wei, Yuan; Zhou, Xin; Fang, Cheng; Li, Lei; Kluetzman, Kerri; Yang, Weizhu; Zhang, Qing-Yu; Ding, Xinxin
2010-07-01
A mouse model termed Cpr-low (CL) was recently generated, in which the expression of the cytochrome P450 reductase (Cpr) gene was globally down-regulated. The decreased CPR expression was accompanied by phenotypical changes, including reduced embryonic survival, decreases in circulating cholesterol, increases in hepatic P450 expression, and female infertility (accompanied by elevated serum testosterone and progesterone levels). In the present study, a complementary mouse model [named reversible-CL (r-CL)] was generated, in which the reduced CPR expression can be reversed in an organ-specific fashion. The neo cassette, which was inserted into the last Cpr intron in r-CL mice, can be deleted by Cre recombinase, thus returning the structure of the Cpr gene (and hence CPR expression) to normal in Cre-expressing cells. All previously identified phenotypes of the CL mice were preserved in the r-CL mice. As a first application of the r-CL model, we have generated an extrahepatic-CL (xh-CL) mouse for testing of the functions of CPR-dependent enzymes in all extrahepatic tissues. The xh-CL mice, generated by mating of r-CL mice with albumin-Cre mice, had normal CPR expression in hepatocytes but down-regulated CPR expression elsewhere. They were indistinguishable from wild-type mice in body and liver weights, circulating cholesterol levels, and hepatic microsomal P450 expression and activities; however, they still showed elevated serum testosterone and progesterone levels and sterility in females. Embryonic lethality was prevented in males, but apparently not in females, indicating a critical role for fetal hepatic CPR-dependent enzymes in embryonic development, at least in males.
Spatial distribution of endogenous retinoids in the murine embryonic mandible.
Kronmiller, J E; Beeman, C S
1994-12-01
Retinoids play an important part in pattern formation during embryonic development. Exogenous retinoids alter the pattern of skeletal, neural and odontogenic tissues. Endogenous retinoids have been demonstrated previously in the murine embryonic mandible, reaching a concentration peak during the initiation of odontogenesis. It was now found that endogenous retinoids are present in a concentration gradient in the embryonic mouse mandible at the time of the initiation of the dental lamina. All-trans-retinoic acid was more concentrated in the incisor region and retinol in the molar region. These results, and the fact that exogenous retinoids produce supernumerary incisors and missing molars, suggest that all-trans-retinoic acid may instruct incisor morphology.
Metastable primordial germ cell-like state induced from mouse embryonic stem cells by Akt activation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamano, Noriko; Kimura, Tohru, E-mail: tkimura@patho.med.osaka-u.ac.jp; Watanabe-Kushima, Shoko
Specification to primordial germ cells (PGCs) is mediated by mesoderm-induction signals during gastrulation. We found that Akt activation during in vitro mesodermal differentiation of embryonic stem cells (ESCs) generated self-renewing spheres with differentiation states between those of ESCs and PGCs. Essential regulators for PGC specification and their downstream germ cell-specific genes were expressed in the spheres, indicating that the sphere cells had commenced differentiation to the germ lineage. However, the spheres did not proceed to spermatogenesis after transplantation into testes. Sphere cell transfer to the original feeder-free ESC cultures resulted in chaotic differentiation. In contrast, when the spheres were culturedmore » on mouse embryonic fibroblasts or in the presence of ERK-cascade and GSK3 inhibitors, reversion to the ESC-like state was observed. These results indicate that Akt signaling promotes a novel metastable and pluripotent state that is intermediate to those of ESCs and PGCs.« less
Mouse embryonic stem cell culture for generation of three-dimensional retinal and cortical tissues.
Eiraku, Mototsugu; Sasai, Yoshiki
2011-12-15
Generation of compound tissues with complex structures is a major challenge in cell biology. In this article, we describe a protocol for mouse embryonic stem cell (ESC) culture for in vitro generation of three-dimensional retinal tissue, comparing it with the culture protocol for cortical tissue generation. Dissociated ESCs are reaggregated in a 96-well plate with reduced cell-plate adhesion and cultured as floating aggregates. Retinal epithelium is efficiently generated when ESC aggregates are cultured in serum-free medium containing extracellular matrix proteins, spontaneously forming hemispherical vesicles and then progressively transforming into a shape reminiscent of the embryonic optic cup in 9-10 d. In long-term culture, the ESC-derived optic cup generates a fully stratified retinal tissue consisting of all major neural retinal components. In contrast, the cortical differentiation culture can be started without exogenous extracellular matrix proteins, and it generates stratified cortical epithelia consisting of four distinct layers in 13 d.
A simple in vitro culture system for tracheal cartilage development.
Park, Jinhyung; Zhang, Jennifer J R; Choi, Ruth; Trinh, Irene; Kim, Peter C W
2010-02-01
Semi-circular tracheal cartilage is a critical determinant of maintaining architectural integrity of the respiratory airway. The current effort to understand the morphogenesis of tracheal cartilage is challenged by the lack of appropriate model systems. Here we report an in vitro tracheal cartilage system using embryonic tracheal–lung explants to recapitulate in vivo tracheal cartilage developmental processes. With modifications of a current lung culture protocol, we report a consistent in vitro technique of culturing tracheal cartilage from primitive mouse embryonic foregut for the first time. This tracheal culture system not only induces the formation of tracheal cartilage from the mouse embryonic foregut but also allows for the proper patterning of the developed tracheal cartilage. Furthermore, we show that this culture technique can be applied to culturing other types of cartilage in vertebrae, limbs, and ribs. We believe that this novel application of our in vitro culture system will facilitate the manipulation of cartilage development under various conditions and thus enabling us to advance our current limited knowledge on cartilage biology and development.
CBX7 gene expression plays a negative role in adipocyte cell growth and differentiation
Forzati, Floriana; Federico, Antonella; Pallante, Pierlorenzo; Colamaio, Marianna; Esposito, Francesco; Sepe, Romina; Gargiulo, Sara; Luciano, Antonio; Arra, Claudio; Palma, Giuseppe; Bon, Giulia; Bucher, Stefania; Falcioni, Rita; Brunetti, Arturo; Battista, Sabrina; Fedele, Monica; Fusco, Alfredo
2014-01-01
ABSTRACT We have recently generated knockout mice for the Cbx7 gene, coding for a polycomb group protein that is downregulated in human malignant neoplasias. These mice develop liver and lung adenomas and carcinomas, which confirms a tumour suppressor role for CBX7. The CBX7 ability to downregulate CCNE1 expression likely accounts for the phenotype of the Cbx7-null mice. Unexpectedly, Cbx7-knockout mice had a higher fat tissue mass than wild-type, suggesting a role of CBX7 in adipogenesis. Consistently, we demonstrate that Cbx7-null mouse embryonic fibroblasts go towards adipocyte differentiation more efficiently than their wild-type counterparts, and this effect is Cbx7 dose-dependent. Similar results were obtained when Cbx7-null embryonic stem cells were induced to differentiate into adipocytes. Conversely, mouse embryonic fibroblasts and human adipose-derived stem cells overexpressing CBX7 show an opposite behaviour. These findings support a negative role of CBX7 in the control of adipocyte cell growth and differentiation. PMID:25190058
Derivation of Pluripotent Stem Cells with In Vivo Embryonic and Extraembryonic Potency.
Yang, Yang; Liu, Bei; Xu, Jun; Wang, Jinlin; Wu, Jun; Shi, Cheng; Xu, Yaxing; Dong, Jiebin; Wang, Chengyan; Lai, Weifeng; Zhu, Jialiang; Xiong, Liang; Zhu, Dicong; Li, Xiang; Yang, Weifeng; Yamauchi, Takayoshi; Sugawara, Atsushi; Li, Zhongwei; Sun, Fangyuan; Li, Xiangyun; Li, Chen; He, Aibin; Du, Yaqin; Wang, Ting; Zhao, Chaoran; Li, Haibo; Chi, Xiaochun; Zhang, Hongquan; Liu, Yifang; Li, Cheng; Duo, Shuguang; Yin, Ming; Shen, Huan; Belmonte, Juan Carlos Izpisua; Deng, Hongkui
2017-04-06
Of all known cultured stem cell types, pluripotent stem cells (PSCs) sit atop the landscape of developmental potency and are characterized by their ability to generate all cell types of an adult organism. However, PSCs show limited contribution to the extraembryonic placental tissues in vivo. Here, we show that a chemical cocktail enables the derivation of stem cells with unique functional and molecular features from mice and humans, designated as extended pluripotent stem (EPS) cells, which are capable of chimerizing both embryonic and extraembryonic tissues. Notably, a single mouse EPS cell shows widespread chimeric contribution to both embryonic and extraembryonic lineages in vivo and permits generating single-EPS-cell-derived mice by tetraploid complementation. Furthermore, human EPS cells exhibit interspecies chimeric competency in mouse conceptuses. Our findings constitute a first step toward capturing pluripotent stem cells with extraembryonic developmental potentials in culture and open new avenues for basic and translational research. VIDEO ABSTRACT. Copyright © 2017 Elsevier Inc. All rights reserved.
Wnt inhibition promotes vascular specification of embryonic cardiac progenitors
Reichman, David E.; Park, Laura; Man, Limor; Redmond, David; Chao, Kenny; Harvey, Richard P.; Taketo, Makoto M.; Rosenwaks, Zev
2018-01-01
ABSTRACT Several studies have demonstrated a multiphasic role for Wnt signaling during embryonic cardiogenesis and developed protocols that enrich for cardiac derivatives during in vitro differentiation of human pluripotent stem cells (hPSCs). However, few studies have investigated the role of Wnt signaling in the specification of cardiac progenitor cells (CPCs) toward downstream fates. Using transgenic mice and hPSCs, we tracked endothelial cells (ECs) that originated from CPCs expressing NKX2.5. Analysis of EC-fated CPCs at discrete phenotypic milestones during hPSC differentiation identified reduced Wnt activity as a hallmark of EC specification, and the enforced activation or inhibition of Wnt reduced or increased, respectively, the degree of vascular commitment within the CPC population during both hPSC differentiation and mouse embryogenesis. Wnt5a, which has been shown to exert an inhibitory influence on Wnt signaling during cardiac development, was dynamically expressed during vascular commitment of hPSC-derived CPCs, and ectopic Wnt5a promoted vascular specification of hPSC-derived and mouse embryonic CPCs. PMID:29217753
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yue, Xiao-shan; Department of Biomolecular Engineering, Graduate School of Bioscience and Technology, Tokyo Institute of Technology, Nagatsuta-cho, Midori-ku, Yokohama-shi, Kanagawa 226-8501; Fujishiro, Masako
In this research, hemagglutinating virus of Japan envelope (HVJ-E) was used to reprogram somatic cells by fusion with mouse embryonic stem (ES) cells. Neomycin-resistant mouse embryonic fibroblasts (MEFs) were used as somatic cells. Nanog-overexpressing puromycin-resistant EB3 cells were used as mouse ES cells. These two cells were fused by exposing to HVJ-E and the generated fusion cells were selected by puromycin and G418 to get the stable fusion cell line. The fusion cells form colonies in feeder-free culture system. Microsatellite analysis of the fusion cells showed that they possessed genes from both ES cells and fibroblasts. The fusion cells weremore » tetraploid, had alkali phosphatase activity, and expressed stem cell marker genes such as Pou5f1, Nanog, and Sox2, but not the fibroblast cell marker genes such as Col1a1 and Col1a2. The pluripotency of fusion cells was confirmed by their expression of marker genes for all the three germ layers after differentiation induction, and by their ability to form teratoma which contained all the three primary layers. Our results show that HVJ-E can be used as a fusion reagent for reprogramming of somatic cells.« less
Sambi, Manpreet; Chow, Theresa; Whiteley, Jennifer; Li, Mira; Chua, Shawn; Raileanu, Vanessa; Rogers, Ian M
2017-08-01
The development of strategies for tissue regeneration and bio-artificial organ development is based on our understanding of embryogenesis. Differentiation protocols attempt to recapitulate the signaling modalities of gastrulation and organogenesis, coupled with cell selection regimens to isolate the cells of choice. This strategy is impeded by the lack of optimal in vitro culture systems since traditional culture systems do not allow for the three-dimensional interaction between cells and the extracellular matrix. While artificial three-dimensional scaffolds are available, using the natural extracellular matrix scaffold is advantageous because it has a distinct architecture that is difficult to replicate. The adult extracellular matrix is predicted to mediate signaling related to tissue repair not embryogenesis but existing similarities between the two argues that the extracellular matrix will influence the differentiation of stem and progenitor cells. Previous studies using undifferentiated embryonic stem cells grown directly on acellular kidney ECM demonstrated that the acellular kidney supported cell growth but limited differentiation occurred. Using mouse kidney extracellular matrix and mouse embryonic stem cells we report that the extracellular matrix can support the development of kidney structures if the stem cells are first differentiated to kidney progenitor cells before being applied to the acellular organ.
Teramura, Takeshi; Onodera, Yuta; Murakami, Hideki; Ito, Syunsuke; Mihara, Toshihiro; Takehara, Toshiyuki; Kato, Hiromi; Mitani, Tasuku; Anzai, Masayuki; Matsumoto, Kazuya; Saeki, Kazuhiro; Fukuda, Kanji; Sagawa, Norimasa; Osoi, Yoshihiko
2009-06-01
The embryos of some rodents and primates can precede early development without the process of fertilization; however, they cease to develop after implantation because of restricted expressions of imprinting genes. Asexually developed embryos are classified into parthenote/gynogenote and androgenote by their genomic origins. Embryonic stem cells (ESCs) derived from asexual origins have also been reported. To date, ESCs derived from parthenogenetic embryos (PgESCs) have been established in some species, including humans, and the possibility to be alternative sources for autologous cell transplantation in regenerative medicine has been proposed. However, some developmental characteristics, which might be important for therapeutic applications, such as multiple differentiation capacity and transplantability of the ESCs of androgenetic origin (AgESCs) are uncertain. Here, we induced differentiation of mouse AgESCs and observed derivation of neural cells, cardiomyocytes and hepatocytes in vitro. Following differentiated embryoid body (EB) transplantation in various mouse strains including the strain of origin, we found that the EBs could engraft in theoretically MHC-matched strains. Our results indicate that AgESCs possess at least two important characteristics, multiple differentiation properties in vitro and transplantability after differentiation, and suggest that they can also serve as a source of histocompatible tissues for transplantation.
Léguillier, Teddy; Vandormael-Pournin, Sandrine; Artus, Jérôme; Houlard, Martin; Picard, Christel; Bernex, Florence; Robine, Sylvie; Cohen-Tannoudji, Michel
2012-07-15
Recent studies have shown that factors involved in transcription-coupled mRNA processing are important for the maintenance of genome integrity. How these processes are linked and regulated in vivo remains largely unknown. In this study, we addressed in the mouse model the function of Omcg1, which has been shown to participate in co-transcriptional processes, including splicing and transcription-coupled repair. Using inducible mouse models, we found that Omcg1 is most critically required in intestinal progenitors. In absence of OMCG1, proliferating intestinal epithelial cells underwent abnormal mitosis followed by apoptotic cell death. As a consequence, the crypt proliferative compartment of the small intestine was quickly and totally abrogated leading to the rapid death of the mice. Lack of OMCG1 in embryonic stem cells led to a similar cellular phenotype, with multiple mitotic defects and rapid cell death. We showed that mutant intestinal progenitors and embryonic stem cells exhibited a reduced cell cycle arrest following irradiation, suggesting that mitotic defects may be consecutive to M phase entry with unrepaired DNA damages. These findings unravel a crucial role for pre-mRNA processing in the homeostasis of the small intestine and point to a major role of OMCG1 in the maintenance of genome integrity.
Sema4D/CD100 deficiency leads to superior performance in mouse motor behavior.
Yukawa, Kazunori; Tanaka, Tetsuji; Takeuchi, Noriko; Iso, Hiroyuki; Li, Li; Kohsaka, Akira; Waki, Hidefumi; Miyajima, Masayasu; Maeda, Masanobu; Kikutani, Hitoshi; Kumanogoh, Atsushi
2009-05-01
Sema4D/CD100 is a type of class 4 semaphorin, exhibiting crucial roles in growth cone guidance in developing neurons. Sema4D is widely expressed throughout the central nervous system in embryonic mouse brain, and is selectively localized to oligodendrocytes and myelin in the postnatal brain. However, direct evidence of the actual involvement of Sema4D in the neuronal network development crucial for neurobehavioral performance is still lacking. The present study therefore examined whether Sema4D deficiency leads to abnormal behavioral development. Both wild-type and Sema4D-deficient mice were subjected to behavioral analyses including open-field, adhesive tape removal, rotarod tests and a water maze task. Open-field tests revealed increased locomotor activity in Sema4D-deficient mice with less percentage of time spent in the center of the field. In both the adhesive tape removal and rotarod tests, which examine motor coordination and balance, Sema4D-deficient mice showed significantly superior performance, suggesting facilitated motor behavior. Both Sema4D-deficient and wild-type mice successfully learnt the water maze task, locating a hidden escape platform, and also showed precise memory for the platform position in probe tests. However, the swimming speed of Sema4D-deficient mice was significantly faster than that of wild-type mice, providing further evidence of their accelerated motor behavior. Our mouse behavioral analyses revealed enhanced motor activity in Sema4D-deficient mice, suggesting the crucial involvement of Sema4D in the neurodevelopmental processes of the central structures mediating motor behavior in mice.
Wang, Yao; Okitsu, Osamu; Zhao, Xiao-Ming; Sun, Yun; Di, Wen; Chian, Ri-Cheng
2014-01-01
Vitrification techniques employ a relatively high concentration of cryoprotectant in vitrification solutions. Exposure of oocytes to high concentrations of cryoprotectant is known to damage the oocytes via both cytotoxic and osmotic effects. Therefore, the key to successful vitrification of oocytes is to strike a balance between the usage of minimal concentration of cryoprotectant without compromising their cryoprotective actions. The minimal concentration of ethylene glycol (EG) on mouse oocyte survival and subsequent embryonic development was evaluated following vitrification-warming and parthenogenetic activation. Polyvinylpyrrolidone (PVP) combined with EG on mouse oocyte survival and subsequent embryonic development as well as morphology of the spindle and chromosome alignment were also evaluated. Vitrification system was adapted with JY Straw and the cooling rate was approximately 442-500 °C/min. In contrast, the warming rate was approximately 2,210-2,652 °C/min. Survival rate of oocytes increased significantly when 15 % EG was combined with 2 % PVP in vitrification solution (VS). The effect of combination of EG and PVP was not significant when the concentration of EG was 20 % and higher. Although there were no significant differences in embryonic development, the percentage of abnormal spindle and chromosome alignment was significantly higher in the oocytes without 2 % PVP in VS. Our data provide a proof of principle for oocyte vitrification that may not require a high concentration of cryoprotectant. There are synergic effects of EG combined with PVP for oocyte vitrification, which may provide important information to the field in developing less cytotoxic VS.
Experimental embryology of mammals at the Jastrzebiec Institute of Genetics and Animal Breeding.
Karasiewicz, Jolanta; Andrzej-Modlinski, Jacek
2008-01-01
Our Department of Experimental Embryology originated from The Laboratory of Embryo Biotechnology, which was organized and directed by Dr. Maria Czlonkowska until her premature death in 1991. Proving successful international transfer of frozen equine embryos and generation of an embryonic sheep-goat chimaera surviving ten years were outstanding achievements of her term. In the 1990s, we produced advanced fetuses of mice after reconstructing enucleated oocytes with embryonic stem (ES) cells, as well as mice originating entirely from ES cells by substitution of the inner cell mass with ES cells. Attempts at obtaining ES cells in sheep resulted in the establishment of embryo-derived epithelioid cell lines from Polish Heatherhead and Polish Merino breeds, producing overt chimaeras upon blastocyst injection. Successful re-cloning was achieved from 8-cell rabbit embryos, and healthy animals were born from the third generation of cloned embryos. Recently mice were born after transfer of 8-cell embryonic nuclei into selectively enucleated zygotes, and mouse blastocysts were produced from selectively enucleated germinal vesicle oocytes surrounded by follicular cells, upon their reconstruction with 2-cell nuclei and subsequent activation. Embryonic-somatic chimaeras were born after transfer of foetal fibroblasts into 8-cell embryos (mouse) and into morulae and blastocysts (sheep). We also regularly perform the following applications: in vitro production of bovine embryos from slaughterhouse oocytes or those recovered by ovum pick up; cryopreservation of oocytes and embryos (freezing: mouse, rabbit, sheep, goat; vitrification: rabbit, cow); and banking of somatic cells from endangered wild mammalian species (mainly Cervidae).
Chan, Wen-Hsiung
2007-01-01
The mycotoxin CTN (citrinin), a natural contaminant in foodstuffs and animal feeds, has cytotoxic and genotoxic effects on various mammalian cells. CTN is known to cause cell injury, including apoptosis, but the precise regulatory mechanisms of CTN action, particularly in stem cells and embryos, are currently unclear. In the present paper, I report that CTN has cytotoxic effects on mouse embryonic stem cells and blastocysts, and is associated with defects in their subsequent development, both in vitro and in vivo. Experiments in embryonic stem cells (ESC-B5) showed that CTN induces apoptosis via ROS (reactive oxygen species) generation, increased Bax/Bcl-2 ratio, loss of MMP (mitochondrial membrane potential), induction of cytochrome c release, and activation of caspase 3. In this model, CTN triggers cell death via inactivation of the HSP90 [a 90 kDa isoform of the HSP (heat-shock protein) family proteins]/multichaperone complex and subsequent degradation of Ras and Raf-1, further inhibiting anti-apoptotic processes, such as the Ras→ERK (extracellular-signal-regulated kinase) signal transduction pathway. In addition, CTN causes early developmental injury in mouse ESCs and blastocysts in vitro. Lastly, using an in vivo mouse model, I show that consumption of drinking water containing 10 μM CTN results in blastocyst apoptosis and early embryonic developmental injury. Collectively, these findings show for the first time that CTN induces ROS and mitochondria-dependent apoptotic processes, inhibits Ras→ERK survival signalling via inactivation of the HSP90/multichaperone complex, and causes developmental injury in vivo. PMID:17331071
Blastocyst-like structures generated solely from stem cells.
Rivron, Nicolas C; Frias-Aldeguer, Javier; Vrij, Erik J; Boisset, Jean-Charles; Korving, Jeroen; Vivié, Judith; Truckenmüller, Roman K; van Oudenaarden, Alexander; van Blitterswijk, Clemens A; Geijsen, Niels
2018-05-01
The blastocyst (the early mammalian embryo) forms all embryonic and extra-embryonic tissues, including the placenta. It consists of a spherical thin-walled layer, known as the trophectoderm, that surrounds a fluid-filled cavity sheltering the embryonic cells 1 . From mouse blastocysts, it is possible to derive both trophoblast 2 and embryonic stem-cell lines 3 , which are in vitro analogues of the trophectoderm and embryonic compartments, respectively. Here we report that trophoblast and embryonic stem cells cooperate in vitro to form structures that morphologically and transcriptionally resemble embryonic day 3.5 blastocysts, termed blastoids. Like blastocysts, blastoids form from inductive signals that originate from the inner embryonic cells and drive the development of the outer trophectoderm. The nature and function of these signals have been largely unexplored. Genetically and physically uncoupling the embryonic and trophectoderm compartments, along with single-cell transcriptomics, reveals the extensive inventory of embryonic inductions. We specifically show that the embryonic cells maintain trophoblast proliferation and self-renewal, while fine-tuning trophoblast epithelial morphogenesis in part via a BMP4/Nodal-KLF6 axis. Although blastoids do not support the development of bona fide embryos, we demonstrate that embryonic inductions are crucial to form a trophectoderm state that robustly implants and triggers decidualization in utero. Thus, at this stage, the nascent embryo fuels trophectoderm development and implantation.
Msx-2 expression and glucocorticoid-induced overexpression in embryonic mouse submandibular glands.
Jaskoll, T; Luo, W; Snead, M L
1998-01-01
It is well known that the process of branching morphogenesis requires epithelial-mesenchymal interactions. One outstanding model for the study of tissue interactions during branching morphogenesis is the embryonic mouse submandibular gland (SMG). Although it has been clearly demonstrated that the branching pattern is dependent on interactions between the epithelium and the surrounding mesenchyme, little is known about the molecular mechanism underlying the branching process. One group of transcription factors that likely participates in the control of epithelial-mesenchymal inductive interactions are the Msx-class of homeodomain-containing proteins. In this paper, we focus on Msx-2 because its developmental expression is correlated with inductive interactions, suggesting that Msx-2 may play a functional role during cell-cell interactions. We demonstrate the expression of Msx-2 mRNA and protein to be primarily in the branching epithelia with progressive embryonic (E13 to E15) SMG development and, to a lesser extent, in the mesenchyme. We also show that Msx-2 is expressed by embryonic SMG primordia cultured under defined conditions. In addition, to begin to delineate a functional role for Msx-2, we employed an experimental strategy by using exogenous glucocorticoid (CORT) treatment of embryonic SMGs in vitro and in vivo to significantly enhance branching morphogenesis and evaluate the effect of CORT treatment on embryonic SMG Msx-2 expression. A marked increase in Msx-2 transcripts and protein is detected with in vitro and in vivo CORT treatment. Our studies indicate that one mechanism of CORT regulation of salivary gland morphogenesis is likely through the modulation of Msx-2 gene expression.
TRAF4 and Castration Resistant Prostate Cancer
2016-10-01
Generation of TRAF4 mouse This minigene was then inserted into the Rosa 26 locus in the mouse embryonic stem cells. After embryo injection, we...were delayed in the Major Task 3 subtask 2 and 3. The problem was we did not get germline transmission after embryo injection. The embryo injection...was performed in the Genetically Engineered Mouse Core at Baylor College of Medicine. Similar problem was also reported with other PIs’ embryo
Childhood Central Nervous System Embryonal Tumors (PDQ®)—Health Professional Version
Pediatric CNS embryonal tumors are a collection of heterogeneous lesions (medulloblastoma, and nonmedulloblastoma). Molecular genetic studies are used to classify embryonal tumors, stratify risk, and plan treatment. Get detailed information about tumor biology, diagnosis, prognosis, and treatment of untreated and recurrent CNS embryonal tumors in this summary for clinicians.
Ferri, Anna; Favaro, Rebecca; Beccari, Leonardo; Bertolini, Jessica; Mercurio, Sara; Nieto-Lopez, Francisco; Verzeroli, Cristina; La Regina, Federico; De Pietri Tonelli, Davide; Ottolenghi, Sergio; Bovolenta, Paola; Nicolis, Silvia K
2013-03-01
The Sox2 transcription factor is active in stem/progenitor cells throughout the developing vertebrate central nervous system. However, its conditional deletion at E12.5 in mouse causes few brain developmental problems, with the exception of the postnatal loss of the hippocampal radial glia stem cells and the dentate gyrus. We deleted Sox2 at E9.5 in the telencephalon, using a Bf1-Cre transgene. We observed embryonic brain defects that were particularly severe in the ventral, as opposed to the dorsal, telencephalon. Important tissue loss, including the medial ganglionic eminence (MGE), was detected at E12.5, causing the subsequent impairment of MGE-derived neurons. The defect was preceded by loss of expression of the essential ventral determinants Nkx2.1 and Shh, and accompanied by ventral spread of dorsal markers. This phenotype is reminiscent of that of mice mutant for the transcription factor Nkx2.1 or for the Shh receptor Smo. Nkx2.1 is known to mediate the initial activation of ventral telencephalic Shh expression. A partial rescue of the normal phenotype at E14.5 was obtained by administration of a Shh agonist. Experiments in Medaka fish indicate that expression of Nkx2.1 is regulated by Sox2 in this species also. We propose that Sox2 contributes to Nkx2.1 expression in early mouse development, thus participating in the region-specific activation of Shh, thereby mediating ventral telencephalic patterning induction.
Expression of the LIM-Homeodomain Protein Isl1 in the Developing and Mature Mouse Retina
Elshatory, Yasser; Deng, Min; Xie, Xiaoling; Gan, Lin
2010-01-01
The mammalian retina is comprised of six major neuronal cell types and is subdivided into more morphological and physiological subtypes. The transcriptional machinery underlying these subtype fate choices is largely unknown. The LIM-homeodomain protein, Isl1, plays an essential role in central nervous system (CNS) differentiation but its relationship to retinal neurogenesis remains unknown. We report here its dynamic spatiotemporal expression in the mouse retina. Among bipolar interneurons, Isl1 expression commences at postnatal day (P)5 and is later restricted to ON-bipolar cells. The intensity of Isl1 expression is found to segregate the pool of ON-bipolar cells into rod and ON-cone bipolar cells with higher expression in rod bipolar cells. As bipolar cell development proceeds from P5–10 the colocalization of Isl1 and the pan-bipolar cell marker Chx10 reveals the organization of ON-center bipolar cell nuclei to the upper portion of the inner nuclear layer. Further, whereas Isl1 is predominantly a ganglion cell marker prior to embryonic day (E)15.5, at E15.5 and later its expression in nonganglion cells expands. We demonstrate that these Isl1-positive, nonganglion cells acquire the expression of amacrine cell markers embryonically, likely representing nascent cholinergic amacrine cells. Taken together, Isl1 is expressed during the maturation of and is later maintained in retinal ganglion cells and subtypes of amacrine and bipolar cells where it may function in the maintenance of these cells into adulthood. J. Comp. Neurol. 503: 182–197, 2007. PMID:17480014
Kolesová, Hana; Čapek, Martin; Radochová, Barbora; Janáček, Jiří; Sedmera, David
2016-08-01
Our goal was to find an optimal tissue clearing protocol for whole-mount imaging of embryonic and adult hearts and whole embryos of transgenic mice that would preserve green fluorescent protein GFP fluorescence and permit comparison of different currently available 3D imaging modalities. We tested various published organic solvent- or water-based clearing protocols intended to preserve GFP fluorescence in central nervous system: tetrahydrofuran dehydration and dibenzylether protocol (DBE), SCALE, CLARITY, and CUBIC and evaluated their ability to render hearts and whole embryos transparent. DBE clearing protocol did not preserve GFP fluorescence; in addition, DBE caused considerable tissue-shrinking artifacts compared to the gold standard BABB protocol. The CLARITY method considerably improved tissue transparency at later stages, but also decreased GFP fluorescence intensity. The SCALE clearing resulted in sufficient tissue transparency up to ED12.5; at later stages the useful depth of imaging was limited by tissue light scattering. The best method for the cardiac specimens proved to be the CUBIC protocol, which preserved GFP fluorescence well, and cleared the specimens sufficiently even at the adult stages. In addition, CUBIC decolorized the blood and myocardium by removing tissue iron. Good 3D renderings of whole fetal hearts and embryos were obtained with optical projection tomography and selective plane illumination microscopy, although at resolutions lower than with a confocal microscope. Comparison of five tissue clearing protocols and three imaging methods for study of GFP mouse embryos and hearts shows that the optimal method depends on stage and level of detail required.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller-Pinsler, Lutfiya; Wells, Peter G., E-mail: pg.wells@utoronto.ca; Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, Ontario
Reactive oxygen species (ROS) have been implicated in the mechanism of ethanol (EtOH) teratogenicity, but the protective role of the embryonic antioxidative enzyme catalase is unclear, as embryonic activity is only about 5% of maternal levels. We addressed this question in a whole embryo culture model. C57BL/6 mouse embryos expressing human catalase (hCat) or their wild-type (C57BL/6 WT) controls, and C3Ga.Cg-Cat{sup b}/J catalase-deficient, acatalasemic (aCat) mouse embryos or their wild-type C3HeB/FeJ (C3H WT) controls, were explanted on gestational day (GD) 9 (plug = GD 1), exposed for 24 h to 2 or 4 mg/mL EtOH or vehicle, and evaluated formore » functional and morphological changes. hCat and C57BL/6 WT vehicle-exposed embryos developed normally, while EtOH was embryopathic in C57BL/6 WT embryos, evidenced by decreases in anterior neuropore closure, somites developed, turning and head length, whereas hCat embryos were protected (p < 0.001). Maternal pretreatment of C57BL/6 WT dams with 50 kU/kg PEG-catalase (PEG-cat) 8 h prior to embryo culture, which increases embryonic catalase activity, blocked all EtOH embryopathies (p < 0.001). Vehicle-exposed aCat mouse embryos had lower yolk sac diameters compared to WT controls, suggesting that endogenous ROS are embryopathic. EtOH was more embryopathic in aCat embryos than WT controls, evidenced by reduced head length and somite development (p < 0.01), and trends for reduced anterior neuropore closure, turning and crown–rump length. Maternal pretreatment of aCat dams with PEG-Cat blocked all EtOH embryopathies (p < 0.05). These data suggest that embryonic catalase is a determinant of risk for EtOH embryopathies. - Highlights: • Ethanol (EtOH) exposure causes structural embryopathies in embryo culture. • Genetically enhanced catalase (hCat) protects against EtOH embryopathies. • Genetically deficient catalase (aCat) exacerbates EtOH embryopathies. • Embryonic catalase is developmentally important. • EtOH developmental toxicity involves reactive oxygen species formation.« less
Miller-Pinsler, Lutfiya; Wells, Peter G
2015-09-15
Reactive oxygen species (ROS) have been implicated in the mechanism of ethanol (EtOH) teratogenicity, but the protective role of the embryonic antioxidative enzyme catalase is unclear, as embryonic activity is only about 5% of maternal levels. We addressed this question in a whole embryo culture model. C57BL/6 mouse embryos expressing human catalase (hCat) or their wild-type (C57BL/6 WT) controls, and C3Ga.Cg-Cat(b)/J catalase-deficient, acatalasemic (aCat) mouse embryos or their wild-type C3HeB/FeJ (C3H WT) controls, were explanted on gestational day (GD) 9 (plug=GD 1), exposed for 24h to 2 or 4mg/mL EtOH or vehicle, and evaluated for functional and morphological changes. hCat and C57BL/6 WT vehicle-exposed embryos developed normally, while EtOH was embryopathic in C57BL/6 WT embryos, evidenced by decreases in anterior neuropore closure, somites developed, turning and head length, whereas hCat embryos were protected (p<0.001). Maternal pretreatment of C57BL/6 WT dams with 50kU/kg PEG-catalase (PEG-cat) 8h prior to embryo culture, which increases embryonic catalase activity, blocked all EtOH embryopathies (p<0.001). Vehicle-exposed aCat mouse embryos had lower yolk sac diameters compared to WT controls, suggesting that endogenous ROS are embryopathic. EtOH was more embryopathic in aCat embryos than WT controls, evidenced by reduced head length and somite development (p<0.01), and trends for reduced anterior neuropore closure, turning and crown-rump length. Maternal pretreatment of aCat dams with PEG-Cat blocked all EtOH embryopathies (p<0.05). These data suggest that embryonic catalase is a determinant of risk for EtOH embryopathies. Copyright © 2015 Elsevier Inc. All rights reserved.
Guedes, Ana M V; Henrique, Domingos; Abranches, Elsa
2016-01-01
Mouse Embryonic Stem cells (mESCs) show heterogeneous and dynamic expression of important pluripotency regulatory factors. Single-cell analysis has revealed the existence of cell-to-cell variability in the expression of individual genes in mESCs. Understanding how these heterogeneities are regulated and what their functional consequences are is crucial to obtain a more comprehensive view of the pluripotent state.In this chapter we describe how to analyze transcriptional heterogeneity by monitoring gene expression of Nanog, Oct4, and Sox2, using single-molecule RNA FISH in single mESCs grown in different cell culture medium. We describe in detail all the steps involved in the protocol, from RNA detection to image acquisition and processing, as well as exploratory data analysis.
Effects of heavy ion radiation on the brain vascular system and embryonic development
NASA Technical Reports Server (NTRS)
Yang, T. C.; Tobias, C. A.
1984-01-01
The present investigation is concerned with the effects of heavy-ion radiation on the vascular system and the embryonic development, taking into account the results of experiments with neonatal rats and mouse embryos. It is found that heavy ions can be highly effective in producing brain hemorrhages and in causing body deformities. Attention is given to aspects of methodology, the induction of brain hemorrhages by X-rays and heavy ions, and the effect of iron particles on embryonic development. Reported results suggest that high linear energy transfer (LET) heavy ions can be very effective in producing developmental abnormalities.
Epigenetic modulation by TFII-I during embryonic stem cell differentiation.
Bayarsaihan, Dashzeveg; Makeyev, Aleksandr V; Enkhmandakh, Badam
2012-10-01
TFII-I transcription factors play an essential role during early vertebrate embryogenesis. Genome-wide mapping studies by ChIP-seq and ChIP-chip revealed that TFII-I primes multiple genomic loci in mouse embryonic stem cells and embryonic tissues. Moreover, many TFII-I-bound regions co-localize with H3K4me3/K27me3 bivalent chromatin within the promoters of lineage-specific genes. This minireview provides a summary of current knowledge regarding the function of TFII-I in epigenetic control of stem cell differentiation. Copyright © 2012 Wiley Periodicals, Inc.
Zika virus-induced hyper excitation precedes death of mouse primary neuron.
Gaburro, Julie; Bhatti, Asim; Sundaramoorthy, Vinod; Dearnley, Megan; Green, Diane; Nahavandi, Saeid; Paradkar, Prasad N; Duchemin, Jean-Bernard
2018-04-27
Zika virus infection in new born is linked to congenital syndromes, especially microcephaly. Studies have shown that these neuropathies are the result of significant death of neuronal progenitor cells in the central nervous system of the embryo, targeted by the virus. Although cell death via apoptosis is well acknowledged, little is known about possible pathogenic cellular mechanisms triggering cell death in neurons. We used in vitro embryonic mouse primary neuron cultures to study possible upstream cellular mechanisms of cell death. Neuronal networks were grown on microelectrode array and electrical activity was recorded at different times post Zika virus infection. In addition to this method, we used confocal microscopy and Q-PCR techniques to observe morphological and molecular changes after infection. Zika virus infection of mouse primary neurons triggers an early spiking excitation of neuron cultures, followed by dramatic loss of this activity. Using NMDA receptor antagonist, we show that this excitotoxicity mechanism, likely via glutamate, could also contribute to the observed nervous system defects in human embryos and could open new perspective regarding the causes of adult neuropathies. This model of excitotoxicity, in the context of neurotropic virus infection, highlights the significance of neuronal activity recording with microelectrode array and possibility of more than one lethal mechanism after Zika virus infection in the nervous system.
USDA-ARS?s Scientific Manuscript database
Feeder-cells of irradiated mouse fibroblasts are commonly used for, and are generally necessary for, the in vitro maintenance and growth of many fastidious cell types, particularly embryonic stem cells or induced pluripotent stem cells. Quantitative and semi-quantitative immunoassays were performed...
2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), produces hydronephrosis by altering the differentiation and proliferation of ureteric epithelial cells in the embryonic C57BL/6N mouse urinary tract. This study examines the effects of TCDD on late gestation fetal urinary tract cells u...
Generation of Knock-in Mouse by Genome Editing.
Fujii, Wataru
2017-01-01
Knock-in mice are useful for evaluating endogenous gene expressions and functions in vivo. Instead of the conventional gene-targeting method using embryonic stem cells, an exogenous DNA sequence can be inserted into the target locus in the zygote using genome editing technology. In this chapter, I describe the generation of epitope-tagged mice using engineered endonuclease and single-stranded oligodeoxynucleotide through the mouse zygote as an example of how to generate a knock-in mouse by genome editing.
Bonnet-Garnier, Amélie; Kiêu, Kiên; Aguirre-Lavin, Tiphaine; Tar, Krisztina; Flores, Pierre; Liu, Zichuan; Peynot, Nathalie; Chebrout, Martine; Dinnyés, András; Duranthon, Véronique; Beaujean, Nathalie
2018-04-18
Changes to the spatial organization of specific chromatin domains such as constitutive heterochromatin have been studied extensively in somatic cells. During early embryonic development, drastic epigenetic reprogramming of both the maternal and paternal genomes, followed by chromatin remodeling at the time of embryonic genome activation (EGA), have been observed in the mouse. Very few studies have been performed in other mammalian species (human, bovine, or rabbit) and the data are far from complete. During this work, we studied the three-dimensional organization of pericentromeric regions during the preimplantation period in the rabbit using specific techniques (3D-FISH) and tools (semi-automated image analysis). We observed that the pericentromeric regions (identified with specific probes for Rsat I and Rsat II genomic sequences) changed their shapes (from pearl necklaces to clusters), their nuclear localizations (from central to peripheral), as from the 4-cell stage. This reorganization goes along with histone modification changes and reduced amount of interactions with nucleolar precursor body surface. Altogether, our results suggest that the 4-cell stage may be a crucial window for events necessary before major EGA, which occurs during the 8-cell stage in the rabbit.
Real-time PCR quantification of gene expression in embryonic mouse tissue.
Villalon, Eric; Schulz, David J; Waters, Samuel T
2014-01-01
The Gbx family of transcription factors consists of two closely related proteins GBX1 and GBX2. A defining feature of the GBX family is a highly conserved 60 amino acid DNA-binding domain, which differs by just two amino acids. Gbx1 and Gbx2 are co-expressed in several areas of the developing central nervous system including the forebrain, anterior hindbrain, and spinal cord, suggesting the potential for genetic redundancy. However, there is a spatiotemporal difference in expression of Gbx1 and Gbx2 in the forebrain and spinal cord. Gbx2 has been shown to play a critical role in positioning the midbrain/hindbrain boundary and developing anterior hindbrain, whereas gene-targeting experiments in mice have revealed an essential function for Gbx1 in the spinal cord for normal locomotion. To determine if Gbx2 could potentially compensate for a loss of Gbx1 in the developing spinal cord, we performed real-time PCR to examine levels of Gbx2 expression in Gbx1(-/-) spinal cord at embryonic day (E) 13.5, a developmental stage when Gbx2 is rapidly downregulated. We demonstrate that Gbx2 expression is elevated in the spinal cord of Gbx1(-/-) embryos.
Embryonic stem cells (ESCs) must maintain the integrity of their genomes or risk passing potentially deleterious mutations on to numerous tissues. Thus, ESCs have a unique genome surveillance system and easily undergo apoptosis or differentiation when DNA damage is detected. The protein p53 is known to promote differentiation in mouse ESCs (mESCs), but its role in DNA
Crawford, Laura Wilding; Foley, Julie F.; Elmore, Susan A.
2012-01-01
Animal model phenotyping, in utero exposure toxiciy studies, and investigation into causes of embryonic, fetal, or perinatal deaths have required pathologists to recognize and diagnose developmental disorders in spontaneous and engineered mouse models of disease. In mammals, the liver is the main site of hematopoiesis during fetal development, has endocrine and exocrine functions important for maintaining homeostasis in fetal and adult life; and performs other functions including waste detoxification, production and removal of glucose, glycogen storage, triglyceride and fatty acid processing, and serum protein production. Due to its role in many critical functions, alterations in the size, morphology, or function(s) of the liver often lead to embryonic lethality. Many publications and websites describe individual aspects of hepatobiliary development at defined stages. However, no single resource provides a detailed histological evaluation of H&E-stained sections of the developing murine liver and biliary systems using high-magnification and high-resolution color images. The work herein provides a histology atlas of hepatobiliary development between embryonic days 9.5-18.5. Although the focus of this work is normal hepatobiliary development, common defects in liver development are also described as a reference for pathologists who may be asked to phenotype mice with congenital, inherited, or treatment-related hepatobiliary defects. PMID:20805319
Simerly, Calvin; McFarland, Dave; Castro, Carlos; Lin, Chih-Cheng; Redinger, Carrie; Jacoby, Ethan; Mich-Basso, Jocelyn; Orwig, Kyle; Mills, Parker; Ahrens, Eric; Navara, Chris; Schatten, Gerald
2011-07-01
Unequivocal evidence for pluripotency in which embryonic stem cells contribute to chimeric offspring has yet to be demonstrated in human or nonhuman primates (NHPs). Here, rhesus and baboons ESCs were investigated in interspecific mouse chimera generated by aggregation or blastocyst injection. Aggregation chimera produced mouse blastocysts with GFP-nhpESCs at the inner cell mass (ICM), and embryo transfers (ETs) generated dimly-fluorescencing abnormal fetuses. Direct injection of GFP-nhpESCs into blastocysts produced normal non-GFP-fluorescencing fetuses. Injected chimera showed >70% loss of GFP-nhpESCs after 21 h culture. Outgrowths of all chimeric blastocysts established distinct but separate mouse- and NHP-ESC colonies. Extensive endogenous autofluorescence compromised anti-GFP detection and PCR analysis did not detect nhpESCs in fetuses. NhpESCs localize to the ICM in chimera and generate pregnancies. Because primate ESCs do not engraft post-implantation, and also because endogenous autofluorescence results in misleading positive signals, interspecific chimera assays for pluripotency with primate stem cells is unreliable with the currently available ESCs. Testing primate ESCs reprogrammed into even more naïve states in these inter-specific chimera assays will be an important future endeavor. Copyright © 2011 Elsevier B.V. All rights reserved.
Knockdown of p53 suppresses Nanog expression in embryonic stem cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdelalim, Essam Mohamed, E-mail: emohamed@qf.org.qa; Molecular Neuroscience Research Center, Shiga University of Medical Science, Setatsukinowa-cho, Otsu, Shiga 520-2192; Department of Cytology and Histology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia
2014-01-10
Highlights: •We investigate the role of p53 in ESCs in the absence of DNA damage. •p53 knockdown suppresses ESC proliferation. •p53 knockdown downregulates Nanog expression. •p53 is essential for mouse ESC self-renewal. -- Abstract: Mouse embryonic stem cells (ESCs) express high levels of cytoplasmic p53. Exposure of mouse ESCs to DNA damage leads to activation of p53, inducing Nanog suppression. In contrast to earlier studies, we recently reported that chemical inhibition of p53 suppresses ESC proliferation. Here, we confirm that p53 signaling is involved in the maintenance of mouse ESC self-renewal. RNA interference-mediated knockdown of p53 induced downregulation of p21more » and defects in ESC proliferation. Furthermore, p53 knockdown resulted in a significant downregulation in Nanog expression at 24 and 48 h post-transfection. p53 knockdown also caused a reduction in Oct4 expression at 48 h post-transfection. Conversely, exposure of ESCs to DNA damage caused a higher reduction of Nanog expression in control siRNA-treated cells than in p53 siRNA-treated cells. These data show that in the absence of DNA damage, p53 is required for the maintenance of mouse ESC self-renewal by regulating Nanog expression.« less
A novel method of mouse ex utero transplantation of hepatic progenitor cells into the fetal liver
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shikanai, Mima; Asahina, Kinji; Iseki, Sachiko
2009-04-03
Avoiding the limitations of the adult liver niche, transplantation of hepatic stem/progenitor cells into fetal liver is desirable to analyze immature cells in a hepatic developmental environment. Here, we established a new monitor tool for cell fate of hepatic progenitor cells transplanted into the mouse fetal liver by using ex utero surgery. When embryonic day (ED) 14.5 hepatoblasts were injected into the ED14.5 fetal liver, the transplanted cells expressed albumin abundantly or {alpha}-fetoprotein weakly, and contained glycogen in the neonatal liver, indicating that transplanted hepatoblasts can proliferate and differentiate in concord with surrounding recipient parenchymal cells. The transplanted cells becamemore » mature in the liver of 6-week-old mice. Furthermore, this method was applicable to transplantation of hepatoblast-like cells derived from mouse embryonic stem cells. These data indicate that this unique technique will provide a new in vivo experimental system for studying cell fate of hepatic stem/progenitor cells and liver organogenesis.« less
In vivo photoacoustic imaging of mouse embryos
NASA Astrophysics Data System (ADS)
Laufer, Jan; Norris, Francesca; Cleary, Jon; Zhang, Edward; Treeby, Bradley; Cox, Ben; Johnson, Peter; Scambler, Pete; Lythgoe, Mark; Beard, Paul
2012-06-01
The ability to noninvasively image embryonic vascular anatomy in mouse models is an important requirement for characterizing the development of the normal cardiovascular system and malformations in the heart and vascular supply. Photoacoustic imaging, which can provide high resolution non invasive images of the vasculature based upon optical absorption by endogenous hemoglobin, is well suited to this application. In this study, photoacoustic images of mouse embryos were obtained ex vivo and in vivo. The images show intricate details of the embryonic vascular system to depths of up to 10 mm, which allowed whole embryos to be imaged in situ. To achieve this, an all-optical photoacoustic scanner and a novel time reversal image reconstruction algorithm, which provide deep tissue imaging capability while maintaining high spatial resolution and contrast were employed. This technology may find application as an imaging tool for preclinical embryo studies in developmental biology as well as more generally in preclinical and clinical medicine for studying pathologies characterized by changes in the vasculature.
Inhibition of Cell Division and DNA Replication Impair Mouse-Naïve Pluripotency Exit.
Waisman, Ariel; Vazquez Echegaray, Camila; Solari, Claudia; Cosentino, María Soledad; Martyn, Iain; Deglincerti, Alessia; Ozair, Mohammad Zeeshan; Ruzo, Albert; Barañao, Lino; Miriuka, Santiago; Brivanlou, Ali; Guberman, Alejandra
2017-09-01
The cell cycle has gained attention as a key determinant for cell fate decisions, but the contribution of DNA replication and mitosis in stem cell differentiation has not been extensively studied. To understand if these processes act as "windows of opportunity" for changes in cell identity, we established synchronized cultures of mouse embryonic stem cells as they exit the ground state of pluripotency. We show that initial transcriptional changes in this transition do not require passage through mitosis and that conversion to primed pluripotency is linked to lineage priming in the G1 phase. Importantly, we demonstrate that impairment of DNA replication severely blocks transcriptional switch to primed pluripotency, even in the absence of p53 activity induced by the DNA damage response. Our data suggest an important role for DNA replication during mouse embryonic stem cell differentiation, which could shed light on why pluripotent cells are only receptive to differentiation signals during G1, that is, before the S phase. Copyright © 2017 Elsevier Ltd. All rights reserved.
Dahlhoff, Maik; Schäfer, Matthias; Wolf, Eckhard; Schneider, Marlon R
2013-02-15
The epidermal growth factor receptor (EGFR) is a tyrosine kinase receptor with manifold functions during development, tissue homeostasis and disease. EGFR activation, the formation of homodimers or heterodimers (with the related ERBB2-4 receptors) and downstream signaling is initiated by the binding of a family of structurally related growth factors, the EGFR ligands. Genetic deletion experiments clarified the biological function of all family members except for the last characterized ligand, epigen. We employed gene targeting in mouse embryonic stem cells to generate mice lacking epigen expression. Loss of epigen did not affect mouse development, fertility, or organ physiology. Quantitative RT-PCR analysis revealed increased expression of betacellulin and EGF in a few organs of epigen-deficient mice, suggesting a functional compensation by these ligands. In conclusion, we completed the genetic analysis of EGFR ligands and show that epigen has non-essential functions or functions that can be compensated by other EGFR ligands during growth and tissue homeostasis. Copyright © 2012 Elsevier Inc. All rights reserved.
Muthusamy, Thangaselvam; Mukherjee, Odity; Menon, Radhika; Megha, P.B.; Panicker, Mitradas M.
2014-01-01
Summary We describe the use of a characteristic blue fluorescence to identify and isolate pluripotent human embryonic stem cells and human-induced pluripotent stem cells. The blue fluorescence emission (450–500 nm) is readily observed by fluorescence microscopy and correlates with the expression of pluripotency markers (OCT4, SOX2, and NANOG). It allows easy identification and isolation of undifferentiated human pluripotent stem cells, high-throughput fluorescence sorting and subsequent propagation. The fluorescence appears early during somatic reprogramming. We show that the blue fluorescence arises from the sequestration of retinyl esters in cytoplasmic lipid bodies. The retinoid-sequestering lipid bodies are specific to human and mouse pluripotent stem cells of the primed or epiblast-like state and absent in naive mouse embryonic stem cells. Retinol, present in widely used stem cell culture media, is sequestered as retinyl ester specifically by primed pluripotent cells and also can induce the formation of these lipid bodies. PMID:25068130
Mok, Hoyan
1995-01-01
Mouse embryonic stem (ES) cells in culture can differentiate into late stages of many lineage-committed precursor cells. Under appropriate organ-culture conditions, ES cels differentiate into lymphoidlike cells at a stage equivalent to lymphoid cells found in fetal liver. These hematopoietic precursors are located in cup-shaped structures found in some embryoid bodies; we called such embryoid bodies “ES fetuses.” In this study, we have followed the maturation of hematopoietic cells after implantation of ES fetuses into nude mice for 3 weeks. ES-cell-derived lymphoid cells-pre-B cells, mature B cells, and mature T cells were found in all lymphoid organs. Interestingly, there was also an increase of T cells of host origin. Because native nude mouse lack thymus, these T cells might be educated by thymuslike epithelium generated from ES fetuses. Practical applications of this combined in vitro and in vivo system are discussed. PMID:9700357
A new subtype of progenitor cell in the mouse embryonic neocortex
Wang, Xiaoqun; Tsai, Jin-Wu; LaMonica, Bridget; Kriegstein, Arnold R.
2011-01-01
A hallmark of mammalian brain evolution is cortical expansion, which reflects an increase in the number of cortical neurons established by the progenitor cell subtypes present and the number of their neurogenic divisions. Recent studies have revealed a new class of radial glia-like (oRG) progenitor cells in the human brain, which reside in the outer subventricular zone. Expansion of the subventricular zone and appearance of oRG cells may have been essential evolutionary steps leading from lissencephalic to gyrencephalic neocortex. Here we show that oRG-like progenitor cells are present in the mouse embryonic neocortex. They arise from asymmetric divisions of radial glia and undergo self-renewing asymmetric divisions to generate neurons. Moreover, mouse oRG cells undergo mitotic somal translocation whereby centrosome movement into the basal process during interphase preceeds nuclear translocation. Our finding of oRG cells in the developing rodent brain fills a gap in our understanding of neocortical expansion. PMID:21478886
Fantin, Alessandro; Vieira, Joaquim M; Plein, Alice; Maden, Charlotte H; Ruhrberg, Christiana
2013-02-01
The mouse embryo hindbrain is a robust and adaptable model for studying sprouting angiogenesis. It permits the spatiotemporal analysis of organ vascularization in normal mice and in mouse strains with genetic mutations that result in late embryonic or perinatal lethality. Unlike postnatal models such as retinal angiogenesis or Matrigel implants, there is no requirement for the breeding of conditional knockout mice. The unique architecture of the hindbrain vasculature allows whole-mount immunolabeling of blood vessels and high-resolution imaging, as well as easy quantification of angiogenic sprouting, network density and vessel caliber. The hindbrain model also permits the visualization of ligand binding to blood vessels in situ and the analysis of blood vessel growth within a natural multicellular microenvironment in which endothelial cells (ECs) interact with non-ECs to refine the 3D organ architecture. The entire procedure, from embryo isolation to imaging and through to results analysis, takes approximately 4 d.
Rubinstein, M; Japón, M A; Low, M J
1993-06-11
The introduction of small mutations instead of null alleles into the mouse genome has broad applications to the study of protein structure-function relationships and the creation of animal models of human genetic diseases. To test a simple mutational strategy we designed a targeting vector for the mouse proopiomelanocortin (POMC) gene containing a single nucleotide insertion that converts the initial tyrosine codon of beta-endorphin 1-31 to a premature translational termination codon and introduces a unique Hpal endonuclease restriction site. The targeting vector also contains a neo cassette immediately 3' to the last POMC exon and a herpes simplex virus thymidine kinase cassette to allow positive and negative selection. Homologous recombination occurred at a frequency of 1/30 clones of electroporated embryonic stem cells selected in G418 and gancyclovir. 10/11 clones identified initially by a polymerase chain reaction (PCR) strategy had the predicted structure without evidence of concatemer formation by Southern blot analysis. We used a combination of Hpa I digestion of PCR amplified fragments and direct nucleotide sequencing to further confirm that the point mutation was retained in 9/10 clones. The POMC gene was transcriptionally silent in embryonic stem cells and the targeted allele was not activated by the downstream phosphoglycerate kinase-1 promoter that transcribed the neo gene. Under the electroporation conditions used, we have demonstrated that a point mutation can be introduced with high efficiency and precision into the POMC gene using a replacement type vector containing a retained selectable marker without affecting expression of the allele in the embryonic stem cells. A similar strategy may be useful for a wide range of genes.
Rubinstein, M; Japón, M A; Low, M J
1993-01-01
The introduction of small mutations instead of null alleles into the mouse genome has broad applications to the study of protein structure-function relationships and the creation of animal models of human genetic diseases. To test a simple mutational strategy we designed a targeting vector for the mouse proopiomelanocortin (POMC) gene containing a single nucleotide insertion that converts the initial tyrosine codon of beta-endorphin 1-31 to a premature translational termination codon and introduces a unique Hpal endonuclease restriction site. The targeting vector also contains a neo cassette immediately 3' to the last POMC exon and a herpes simplex virus thymidine kinase cassette to allow positive and negative selection. Homologous recombination occurred at a frequency of 1/30 clones of electroporated embryonic stem cells selected in G418 and gancyclovir. 10/11 clones identified initially by a polymerase chain reaction (PCR) strategy had the predicted structure without evidence of concatemer formation by Southern blot analysis. We used a combination of Hpa I digestion of PCR amplified fragments and direct nucleotide sequencing to further confirm that the point mutation was retained in 9/10 clones. The POMC gene was transcriptionally silent in embryonic stem cells and the targeted allele was not activated by the downstream phosphoglycerate kinase-1 promoter that transcribed the neo gene. Under the electroporation conditions used, we have demonstrated that a point mutation can be introduced with high efficiency and precision into the POMC gene using a replacement type vector containing a retained selectable marker without affecting expression of the allele in the embryonic stem cells. A similar strategy may be useful for a wide range of genes. Images PMID:8392702
Sanz, Carmen; Blázquez, Enrique
2011-09-01
In humans, glucagon-like peptide (GLP-1) functions during adult life as an incretin hormone with anorexigenic and antidiabetogenic properties. Also, the therapeutic potential of GLP-1 in preventing the adipocyte hyperplasia associated with obesity and in bolstering the maintenance of human mesenchymal stem cell (hMSC) stores by promoting the proliferation and cytoprotection of hMSC seems to be relevant. Since these observations suggest a role for GLP-1 during developmental processes, the aim of the present work was to characterize GLP-1 in early development as well as its gene targets in mouse embryonic stem (mES) cells. Mouse embryos E6, E8, and E10.5 and pluripotent mES were used for the inmunodetection of GLP-1 and GLP-1 receptor. Quantitative real-time PCR was used to determine the expression levels of GLP-1R in several tissues from E12.5 mouse embryos. Additionally, GLP-1 gene targets were studied in mES by multiple gene expression analyses. GLP-1 and its receptors were identified in mES and during embryonic development. In pluripotent mES, GLP-1 modified the expression of endodermal, ectodermal, and mesodermal gene markers as well as sonic hedgehog, noggin, members of the fibroblast and hepatic growth factor families, and others involved in pancreatic development. Additionally, GLP-1 promoted the expression of the antiapoptotic gene bcl2 and at the same time reduced proapoptotic caspase genes. Our results indicate that apart from the effects and therapeutic benefits of GLP-1 in adulthood, it may have additional gene targets in mES cells during embryonic life. Furthermore, the pathophysiological implications of GLP-1 imbalance in adulthood may have a counterpart during development.
Togashi, Kazue; Kumagai, Jin; Sato, Emiko; Shirasawa, Hiromitsu; Shimoda, Yuki; Makino, Kenichi; Sato, Wataru; Kumazawa, Yukiyo; Omori, Yasufumi; Terada, Yukihiro
2015-06-01
We investigated the role of gap junctions (GJs) in embryological differentiation, and observed the morphological behavior of the inner cell mass (ICM) by time-lapse movie observation (TLM) with gap junction inhibitors (GJis). ICR mouse embryos were exposed to two types of GJis in CZB medium: oleamide (0 to 50 μM) and 1-heptanol (0 to 10 mM). We compared the rate of blastocyst formation at embryonic day 4.5 (E4.5) with E5.5. We also observed and evaluated the times from the second cleavage to each embryonic developing stage by TLM. We investigated embryonic distribution of DNA, Nanog protein, and Connexin 43 protein with immunofluorescent staining. In the comparison of E4.5 with E5.5, inhibition of gap junction intercellular communication (GJIC) delayed embryonic blastocyst formation. The times from the second cleavage to blastocyst formation were significantly extended in the GJi-treated embryos (control vs with oleamide, 2224 ± 179 min vs 2354 ± 278 min, p = 0.013). Morphological differences were traced in control versus GJi-treated embryos until the hatching stage. Oleamide induced frequent severe collapses of expanded blastocysts (77.4 % versus 26.3 %, p = 0.0001) and aberrant ICM divisions connected to sticky strands (74.3 % versus 5.3 %, p = 0.0001). Immunofluorescent staining indicated Nanog-positive cells were distributed in each divided ICM. GJIC plays an important role in blastocyst formation, collapses of expanded blastocysts, and the ICM construction in mouse embryos.
Redundant role of protein kinase C delta and epsilon during mouse embryonic development.
Carracedo, Sergio; Sacher, Frank; Brandes, Gudrun; Braun, Ursula; Leitges, Michael
2014-01-01
Protein Kinase C delta and epsilon are mediators of important cellular events, such as cell proliferation, migration or apoptosis. The formation of blood vessels, i.e., vasculo- and angiogenesis, is a process where these isoforms have also been shown to participate. However, mice deficient in either Protein Kinase C delta or epsilon are viable and therefore their individual contribution to the formation of the vasculature appeared so far dispensable. In this study, we show that double null mutation of Protein Kinase C delta and epsilon causes embryonic lethality at approximately E9.5. At this stage, whole mount staining of the endothelial marker CD31 in double null embryos revealed defective blood vessel formation. Moreover, culture of double deficient mouse allantois showed impaired endothelial cell organization, and analyses of double deficient embryo sections showed dilated vessels, decreased endothelial-specific adherent junctions, and decreased contact of endothelial cells with mural cells. Protein kinase C delta and epsilon also appeared essential for vascular smooth muscle cell differentiation, since α-smooth muscle actin, a classical marker for vascular smooth muscle cells, was almost undetectable in double deficient embryonic aorta at E9.5. Subsequent qPCR analyses showed decreased VE-cadherin, Vegfr2, Cd31, Cdh2, Ets1, and Fli-1, among other angiogenesis related transcripts in double deficient embryos. Taken together, these data suggest for the first time an in vivo redundant role between members of the novel Protein Kinase C subfamily that allows for mutual compensation during mouse embryonic development, with vasculogenesis/angiogenesis as an obvious common function of these two Protein Kinase Cs. Protein Kinase C delta and epsilon might therefore be useful targets for inhibiting vasculo- and/or angiogenesis.
Shuda, Masahiro; Guastafierro, Anna; Geng, Xuehui; Shuda, Yoko; Ostrowski, Stephen M; Lukianov, Stefan; Jenkins, Frank J; Honda, Kord; Maricich, Stephen M; Moore, Patrick S; Chang, Yuan
2015-01-01
Merkel cell polyomavirus (MCV) causes the majority of human Merkel cell carcinomas (MCC) and encodes a small T (sT) antigen that transforms immortalized rodent fibroblasts in vitro. To develop a mouse model for MCV sT-induced carcinogenesis, we generated transgenic mice with a flox-stop-flox MCV sT sequence homologously recombined at the ROSA locus (ROSAsT), allowing Cre-mediated, conditional MCV sT expression. Standard tamoxifen (TMX) administration to adult UbcCreERT2; ROSAsT mice, in which Cre is ubiquitously expressed, resulted in MCV sT expression in multiple organs that was uniformly lethal within 5 days. Conversely, most adult UbcCreERT2; ROSAsT mice survived low-dose tamoxifen administration but developed ear lobe dermal hyperkeratosis and hypergranulosis. Simultaneous MCV sT expression and conditional homozygous p53 deletion generated multi-focal, poorly-differentiated, highly anaplastic tumors in the spleens and livers of mice after 60 days of TMX treatment. Mouse embryonic fibroblasts from these mice induced to express MCV sT exhibited anchorage-independent cell growth. To examine Merkel cell pathology, MCV sT expression was also induced during mid-embryogenesis in Merkel cells of Atoh1CreERT2/+; ROSAsT mice, which lead to significantly increased Merkel cell numbers in touch domes at late embryonic ages that normalized postnatally. Tamoxifen administration to adult Atoh1CreERT2/+; ROSAsT and Atoh1CreERT2/+; ROSAsT; p53flox/flox mice had no effects on Merkel cell numbers and did not induce tumor formation. Taken together, these results show that MCV sT stimulates progenitor Merkel cell proliferation in embryonic mice and is a bona fide viral oncoprotein that induces full cancer cell transformation in the p53-null setting.
Lee, Jong-Seon; Kim, Ju-Hwan; Seo, Young-Seok; Yang, Jung-Bo; Kim, Yong-Il; Kim, Hye-Jin; Lee, Ki-Hwan
2013-09-01
This study was conducted to examine the influences of supplementation of the serum substituents and available period of serum-free Vero cell conditioned media (SF-VCM) manufactured from Dulbecco's modified Eagle medium cultured with Vero cells for in vitro development of mouse preimplantation embryos. A total of 1,099 two-cell embryos collected from imprinting control region mice were cultured in SF-VCM with 10% and 20% human follicular fluid (hFF), serum substitute supplement (SSS), and serum protein substitute (SPS). Development of embryos was observed every 24 hours. Results between different groups were analyzed by chi-square test, and considered statistically significant when P-value was less than 0.05. The rates of embryonic development cultured in SF-VCM supplemented with serum substituents were significantly higher compare with serum-free group (P < 0.05). The rates of embryonic development after 48 hours (morula≤) and 96 hours (blastocyst≤) were significantly higher in 20% SSS and 10% SPS than in 20% hFF supplementation (P < 0.05). And the rates of embryonic development after 96 hours (hatching blastocyst≤) were significantly higher in 10% SPS (94.5%) than in 20% SSS (82.6%) and 20% hFF supplementation (68.5%). The rates of embryonic development according to storage period of the SF-VCM supplemented with 10% SPS showed no significant difference between control, 2 weeks and 4 weeks group. However developmental rate in 6 weeks storage group was significantly lower than other groups. The rate of embryonic development after 96 hours (hatching blastocyst≤) was significantly higher in SF-VCM supplemented with 10% SPS. And storage period of media up to 4 weeks did not affect on embryonic development.
A step-wise approach for analysis of the mouse embryonic heart using 17.6 Tesla MRI
Gabbay-Benziv, Rinat; Reece, E. Albert; Wang, Fang; Bar-Shir, Amnon; Harman, Chris; Turan, Ozhan M.; Yang, Peixin; Turan, Sifa
2018-01-01
Background The mouse embryo is ideal for studying human cardiac development. However, laboratory discoveries do not easily translate into clinical findings partially because of histological diagnostic techniques that induce artifacts and lack standardization. Aim To present a step-wise approach using 17.6 T MRI, for evaluation of mice embryonic heart and accurate identification of congenital heart defects. Subjects 17.5-embryonic days embryos from low-risk (non-diabetic) and high-risk (diabetic) model dams. Study design Embryos were imaged using 17.6 Tesla MRI. Three-dimensional volumes were analyzed using ImageJ software. Outcome measures Embryonic hearts were evaluated utilizing anatomic landmarks to locate the four-chamber view, the left- and right-outflow tracts, and the arrangement of the great arteries. Inter- and intra-observer agreement were calculated using kappa scores by comparing two researchers’ evaluations independently analyzing all hearts, blinded to the model, on three different, timed occasions. Each evaluated 16 imaging volumes of 16 embryos: 4 embryos from normal dams, and 12 embryos from diabetic dams. Results Inter-observer agreement and reproducibility were 0.779 (95% CI 0.653–0.905) and 0.763 (95% CI 0.605–0.921), respectively. Embryonic hearts were structurally normal in 4/4 and 7/12 embryos from normal and diabetic dams, respectively. Five embryos from diabetic dams had defects: ventricular septal defects (n = 2), transposition of great arteries (n = 2) and Tetralogy of Fallot (n = 1). Both researchers identified all cardiac lesions. Conclusion A step-wise approach for analysis of MRI-derived 3D imaging provides reproducible detailed cardiac evaluation of normal and abnormal mice embryonic hearts. This approach can accurately reveal cardiac structure and, thus, increases the yield of animal model in congenital heart defect research. PMID:27569369
Pfaltzgraff, Elise R.; Shelton, Elaine L.; Galindo, Cristi L.; Nelms, Brian L.; Hooper, Christopher W.; Poole, Stanley D.; Labosky, Patricia A.; Bader, David M.; Reese, Jeff
2014-01-01
Vascular smooth muscle cells (VSMCs) are derived from distinct embryonic origins. Vessels originating from differing smooth muscle cell populations have distinct vascular and pathological properties involving calcification, atherosclerosis, and structural defects such as aneurysm and coarctation. We hypothesized that domains within a single vessel, such as the aorta, vary in phenotype based on embryonic origin. Gene profiling and myographic analyses demonstrated that embryonic ascending and descending aortic domains exhibited distinct phenotypes. In vitro analyses demonstrated that VSMCs from each region were dissimilar in terms of cytoskeletal and migratory properties, and retention of different gene expression patterns. Using the same analysis, we found that these same two domains are indistinguishable in the adult vessel. Our data demonstrate that VSMCs from different embryonic origins are functionally distinct in the embryonic mouse, but converge to assume a common phenotype in the aorta of healthy adults. These findings have fundamental implications for aortic development, function and disease progression. PMID:24508561
Alonso, Maria I; Lamus, Francisco; Carnicero, Estela; Moro, Jose A; de la Mano, Anibal; Fernández, Jose M F; Desmond, Mary E; Gato, Angel
2017-01-01
Neurogenesis is a very intensive process during early embryonic brain development, becoming dramatically restricted in the adult brain in terms of extension and intensity. We have previously demonstrated the key role of embryonic cerebrospinal fluid (CSF) in developing brain neurogenic activity. We also showed that cultured adult brain neural stem cells (NSCs) remain competent when responding to the neurogenic influence of embryonic CSF. However, adult CSF loses its neurogenic inductive properties. Here, by means of an organotypic culture of adult mouse brain sections, we show that local administration of embryonic CSF in the subventricular zone (SVZ) niche is able to trigger a neurogenic program in NSCs. This leads to a significant increase in the number of non-differentiated NSCs, and also in the number of new neurons which show normal migration, differentiation and maturation. These new data reveal that embryonic CSF activates adult brain NSCs, supporting the previous idea that it contains key instructive components which could be useful in adult brain neuroregenerative strategies.
Alonso, Maria I.; Lamus, Francisco; Carnicero, Estela; Moro, Jose A.; de la Mano, Anibal; Fernández, Jose M. F.; Desmond, Mary E.; Gato, Angel
2017-01-01
Neurogenesis is a very intensive process during early embryonic brain development, becoming dramatically restricted in the adult brain in terms of extension and intensity. We have previously demonstrated the key role of embryonic cerebrospinal fluid (CSF) in developing brain neurogenic activity. We also showed that cultured adult brain neural stem cells (NSCs) remain competent when responding to the neurogenic influence of embryonic CSF. However, adult CSF loses its neurogenic inductive properties. Here, by means of an organotypic culture of adult mouse brain sections, we show that local administration of embryonic CSF in the subventricular zone (SVZ) niche is able to trigger a neurogenic program in NSCs. This leads to a significant increase in the number of non-differentiated NSCs, and also in the number of new neurons which show normal migration, differentiation and maturation. These new data reveal that embryonic CSF activates adult brain NSCs, supporting the previous idea that it contains key instructive components which could be useful in adult brain neuroregenerative strategies. PMID:29311854
Persistence of the nervus terminalis in adult bats: a morphological and phylogenetical approach.
Oelschläger, H A
1988-01-01
The presence of the terminalis system in adult bats is demonstrated by light microscopical investigation of several species of Microchiroptera. In late embryonic and fetal stages of the mouse-eared bat (Myotis myotis) the compact central terminalis ganglion gradually differentiates into a three-dimensional network of cord-like ganglia and fiber bundles. Rostrally the terminalis system is in immediate contact with the medial-most fila olfactoria; caudally terminalis rootlets attach near the border between the olfactory bulb and the septum of the brain. With respect to the findings presented here it seems likely that all mammals develop a terminalis system in early ontogenesis and retain it until the adult stage. However, considerable differences concerning the number of persisting neurons may be found among some mammalian orders.
Initiating head development in mouse embryos: integrating signalling and transcriptional activity.
Arkell, Ruth M; Tam, Patrick P L
2012-03-01
The generation of an embryonic body plan is the outcome of inductive interactions between the progenitor tissues that underpin their specification, regionalization and morphogenesis. The intercellular signalling activity driving these processes is deployed in a time- and site-specific manner, and the signal strength must be precisely controlled. Receptor and ligand functions are modulated by secreted antagonists to impose a dynamic pattern of globally controlled and locally graded signals onto the tissues of early post-implantation mouse embryo. In response to the WNT, Nodal and Bone Morphogenetic Protein (BMP) signalling cascades, the embryo acquires its body plan, which manifests as differences in the developmental fate of cells located at different positions in the anterior-posterior body axis. The initial formation of the anterior (head) structures in the mouse embryo is critically dependent on the morphogenetic activity emanating from two signalling centres that are juxtaposed with the progenitor tissues of the head. A common property of these centres is that they are the source of antagonistic factors and the hub of transcriptional activities that negatively modulate the function of WNT, Nodal and BMP signalling cascades. These events generate the scaffold of the embryonic head by the early-somite stage of development. Beyond this, additional tissue interactions continue to support the growth, regionalization, differentiation and morphogenesis required for the elaboration of the structure recognizable as the embryonic head.
Liu, Ming; Zhao, Shuangyun; Lin, Qingjie; Wang, Xiu-Ping
2015-04-01
Yes-associated protein (YAP) is a Hippo signaling transcriptional coactivator that plays pivotal roles in stem cell proliferation, organ size control, and tumor development. The downstream targets of YAP have been shown to be highly context dependent. In this study, we used the embryonic mouse tooth germ as a tool to search for the downstream targets of YAP in ectoderm-derived tissues. Yap deficiency in the dental epithelium resulted in a small tooth germ with reduced epithelial cell proliferation. We compared the gene expression profiles of embryonic day 14.5 (E14.5) Yap conditional knockout and YAP transgenic mouse tooth germs using transcriptome sequencing (RNA-Seq) and further confirmed the differentially expressed genes using real-time PCR and in situ hybridization. We found that YAP regulates the expression of Hoxa1 and Hoxc13 in oral and dental epithelial tissues as well as in the epidermis of skin during embryonic and adult stages. Sphere formation assay suggested that Hoxa1 and Hoxc13 are functionally involved in YAP-regulated epithelial progenitor cell proliferation, and chromatin immunoprecipitation (ChIP) assay implies that YAP may regulate Hoxa1 and Hoxc13 expression through TEAD transcription factors. These results provide mechanistic insights into abnormal YAP activities in mice and humans. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Alexiou, George A; Stefanaki, Kalliopi; Vartholomatos, George; Sfakianos, George; Prodromou, Neofytos; Moschovi, Maria
2013-12-01
Embryonal tumor with abundant neuropil and true rosettes has been recently defined as a distinct central nervous system embryonal neoplasm, although it was initially regarded as a subtype of central nervous system primitive neuroectodermal tumor. To date 70 cases have been reported. We have performed a literature review and we present 2 new cases. Analysis of the reported data revealed that radiotherapy, tumor excision and high-dose adjuvant chemotherapy with sequential autologous hematopoietic stem cell rescue have a prognostic significance.
Pandolfini, Luca; Luzi, Ettore; Bressan, Dario; Ucciferri, Nadia; Bertacchi, Michele; Brandi, Rossella; Rocchiccioli, Silvia; D'Onofrio, Mara; Cremisi, Federico
2016-05-06
Embryonic stem cells are intrinsically unstable and differentiate spontaneously if they are not shielded from external stimuli. Although the nature of such instability is still controversial, growing evidence suggests that protein translation control may play a crucial role. We performed an integrated analysis of RNA and proteins at the transition between naïve embryonic stem cells and cells primed to differentiate. During this transition, mRNAs coding for chromatin regulators are specifically released from translational inhibition mediated by RNA-induced silencing complex (RISC). This suggests that, prior to differentiation, the propensity of embryonic stem cells to change their epigenetic status is hampered by RNA interference. The expression of these chromatin regulators is reinstated following acute inactivation of RISC and it correlates with loss of stemness markers and activation of early cell differentiation markers in treated embryonic stem cells. We propose that RISC-mediated inhibition of specific sets of chromatin regulators is a primary mechanism for preserving embryonic stem cell pluripotency while inhibiting the onset of embryonic developmental programs.
Genome Editing in Mice Using TALE Nucleases.
Wefers, Benedikt; Brandl, Christina; Ortiz, Oskar; Wurst, Wolfgang; Kühn, Ralf
2016-01-01
Gene engineering for generating targeted mouse mutants is a key technology for biomedical research. Using TALENs as sequence-specific nucleases to induce targeted double-strand breaks, the mouse genome can be directly modified in zygotes in a single step without the need for embryonic stem cells. By embryo microinjection of TALEN mRNAs and targeting vectors, knockout and knock-in alleles can be generated fast and efficiently. In this chapter we provide protocols for the application of TALENs in mouse zygotes.
Synuclein impairs trafficking and signaling of BDNF in a mouse model of Parkinson's disease.
Fang, Fang; Yang, Wanlin; Florio, Jazmin B; Rockenstein, Edward; Spencer, Brian; Orain, Xavier M; Dong, Stephanie X; Li, Huayan; Chen, Xuqiao; Sung, Kijung; Rissman, Robert A; Masliah, Eliezer; Ding, Jianqing; Wu, Chengbiao
2017-06-20
Recent studies have demonstrated that hyperphosphorylation of tau protein plays a role in neuronal toxicities of α-synuclein (ASYN) in neurodegenerative disease such as familial Alzheimer's disease (AD), dementia with Lewy bodies (DLB) and Parkinson's disease. Using a transgenic mouse model of Parkinson's disease (PD) that expresses GFP-ASYN driven by the PDGF-β promoter, we investigated how accumulation of ASYN impacted axonal function. We found that retrograde axonal trafficking of brain-derived neurotrophic factor (BDNF) in DIV7 cultures of E18 cortical neurons was markedly impaired at the embryonic stage, even though hyperphosphorylation of tau was not detectable in these neurons at this stage. Interestingly, we found that overexpressed ASYN interacted with dynein and induced a significant increase in the activated levels of small Rab GTPases such as Rab5 and Rab7, both key regulators of endocytic processes. Furthermore, expression of ASYN resulted in neuronal atrophy in DIV7 cortical cultures of either from E18 transgenic mouse model or from rat E18 embryos that were transiently transfected with ASYN-GFP for 72 hrs. Our studies suggest that excessive ASYN likely alters endocytic pathways leading to axonal dysfunction in embryonic cortical neurons in PD mouse models.
Chromatin Immunoprecipitation in Early Mouse Embryos.
García-González, Estela G; Roque-Ramirez, Bladimir; Palma-Flores, Carlos; Hernández-Hernández, J Manuel
2018-01-01
Epigenetic regulation is achieved at many levels by different factors such as tissue-specific transcription factors, members of the basal transcriptional apparatus, chromatin-binding proteins, and noncoding RNAs. Importantly, chromatin structure dictates the availability of a specific genomic locus for transcriptional activation as well as the efficiency with which transcription can occur. Chromatin immunoprecipitation (ChIP) is a method that allows elucidating gene regulation at the molecular level by assessing if chromatin modifications or proteins are present at a specific locus. Initially, the majority of ChIP experiments were performed on cultured cell lines and more recently this technique has been adapted to a variety of tissues in different model organisms. Using ChIP on mouse embryos, it is possible to document the presence or absence of specific proteins and chromatin modifications at genomic loci in vivo during mammalian development and to get biological meaning from observations made on tissue culture analyses. We describe here a ChIP protocol on freshly isolated mouse embryonic somites for in vivo analysis of muscle specific transcription factor binding on chromatin. This protocol has been easily adapted to other mouse embryonic tissues and has also been successfully scaled up to perform ChIP-Seq.
A microinjection technique for targeting regions of embryonic and neonatal mouse brain in vivo
Davidson, Steve; Truong, Hai; Nakagawa, Yasushi; Giesler, Glenn J
2009-01-01
A simple pressure injection technique was developed to deliver substances into specific regions of the embryonic and neonatal mouse brain in vivo. The retrograde tracers Fluorogold and cholera toxin B subunit were used to test the validity of the technique. Injected animals survived the duration of transport (24–48 hrs) and then were sacrificed and perfused with fixative. Small injections (≤ 50 nL) were contained within targeted structures of the perinatal brain and labeled distant cells of origin in several model neural pathways. Traced neural pathways in the perinatal mouse were further examined with immunohistochemical methods to test the feasibility of double labeling experiments during development. Several experimental situations in which this technique would be useful are discussed, for example, to label projection neurons in slice or culture preparations of mouse embryos and neonates. The administration of pharmacological or genetic vectors directly into specific neural targets during development should also be feasible. An examination of the form of neural pathways during early stages of life may lead to insights regarding the functional changes that occur during critical periods of development and provide an anatomic basis for some neurodevelopmental disorders. PMID:19840780
Engert, Silvia; Burtscher, Ingo; Kalali, Behnam; Gerhard, Markus; Lickert, Heiko
2013-11-01
The HMG-box transcription factor Sox17 is essential for endoderm formation, vascular development, and definitive hematopoiesis. To investigate the fate of distinct Sox17-expressing progenitor cells in a spatiotemporal manner, we generated a hormone-inducible CreERT2 knock-in mouse line. By homologous recombination we fused a codon improved, ligand-dependent estrogen receptor Cre recombinase by an intervening viral T2A sequence for co-translational cleavage to the 3' coding region of Sox17. Induction of Cre activity by administration of tamoxifen at defined time points of early mouse development and subsequent genetic lineage tracing confirmed the inducibility and tissue specificity of Cre recombination. Furthermore, Cre activity could be selectively induced in extra-embryonic and embryonic endoderm lineages, the primitive gut tube, and in endothelial cells of the vascular system as well as in the hemogenic endothelium of the dorsal aorta. The Sox17CreERT2 mouse line therefore represents a new tool for genetic lineage tracing in a tissue-specific manner and in addition enables lineage-restricted functional analysis. Copyright © 2013 Wiley Periodicals, Inc.
RBP-Jκ-Dependent Notch Signaling Is Dispensable for Mouse Early Embryonic Development
Souilhol, Céline; Cormier, Sarah; Tanigaki, Kenji; Babinet, Charles; Cohen-Tannoudji, Michel
2006-01-01
The Notch signaling pathway is an evolutionarily conserved signaling system which has been shown to be essential in cell fate specification and in numerous aspects of embryonic development in all metazoans thus far studied. We recently demonstrated that several components of the Notch signaling pathway, including the four Notch receptors and their five ligands known in mammals, are expressed in mouse oocytes, in mouse preimplantation embryos, or both. This suggested a possible implication of the Notch pathway in the first cell fate specification of the dividing mouse embryo, which results in the formation of the blastocyst. To address this issue directly, we generated zygotes in which both the maternal and the zygotic expression of Rbpsuh, a key element of the core Notch signaling pathway, were abrogated. We find that such zygotes give rise to blastocysts which implant and develop normally. Nevertheless, after gastrulation, these embryos die around midgestation, similarly to Rbpsuh-null mutants. This demonstrates that the RBP-Jκ-dependent pathway, otherwise called the canonical Notch pathway, is dispensable for blastocyst morphogenesis and the establishment of the three germ layers, ectoderm, endoderm, and mesoderm. These results are discussed in the light of recent observations which have challenged this conclusion. PMID:16782866
RBP-Jkappa-dependent notch signaling is dispensable for mouse early embryonic development.
Souilhol, Céline; Cormier, Sarah; Tanigaki, Kenji; Babinet, Charles; Cohen-Tannoudji, Michel
2006-07-01
The Notch signaling pathway is an evolutionarily conserved signaling system which has been shown to be essential in cell fate specification and in numerous aspects of embryonic development in all metazoans thus far studied. We recently demonstrated that several components of the Notch signaling pathway, including the four Notch receptors and their five ligands known in mammals, are expressed in mouse oocytes, in mouse preimplantation embryos, or both. This suggested a possible implication of the Notch pathway in the first cell fate specification of the dividing mouse embryo, which results in the formation of the blastocyst. To address this issue directly, we generated zygotes in which both the maternal and the zygotic expression of Rbpsuh, a key element of the core Notch signaling pathway, were abrogated. We find that such zygotes give rise to blastocysts which implant and develop normally. Nevertheless, after gastrulation, these embryos die around midgestation, similarly to Rbpsuh-null mutants. This demonstrates that the RBP-Jkappa-dependent pathway, otherwise called the canonical Notch pathway, is dispensable for blastocyst morphogenesis and the establishment of the three germ layers, ectoderm, endoderm, and mesoderm. These results are discussed in the light of recent observations which have challenged this conclusion.
Remeseiro, Silvia; Cuadrado, Ana; Carretero, María; Martínez, Paula; Drosopoulos, William C; Cañamero, Marta; Schildkraut, Carl L; Blasco, María A; Losada, Ana
2012-01-01
Cohesin is a protein complex originally identified for its role in sister chromatid cohesion, although increasing evidence portrays it also as a major organizer of interphase chromatin. Vertebrate cohesin consists of Smc1, Smc3, Rad21/Scc1 and either stromal antigen 1 (SA1) or SA2. To explore the functional specificity of these two versions of cohesin and their relevance for embryonic development and cancer, we generated a mouse model deficient for SA1. Complete ablation of SA1 results in embryonic lethality, while heterozygous animals have shorter lifespan and earlier onset of tumourigenesis. SA1-null mouse embryonic fibroblasts show decreased proliferation and increased aneuploidy as a result of chromosome segregation defects. These defects are not caused by impaired centromeric cohesion, which depends on cohesin-SA2. Instead, they arise from defective telomere replication, which requires cohesion mediated specifically by cohesin-SA1. We propose a novel mechanism for aneuploidy generation that involves impaired telomere replication upon loss of cohesin-SA1, with clear implications in tumourigenesis. PMID:22415365
DNA context represents transcription regulation of the gene in mouse embryonic stem cells
NASA Astrophysics Data System (ADS)
Ha, Misook; Hong, Soondo
2016-04-01
Understanding gene regulatory information in DNA remains a significant challenge in biomedical research. This study presents a computational approach to infer gene regulatory programs from primary DNA sequences. Using DNA around transcription start sites as attributes, our model predicts gene regulation in the gene. We find that H3K27ac around TSS is an informative descriptor of the transcription program in mouse embryonic stem cells. We build a computational model inferring the cell-type-specific H3K27ac signatures in the DNA around TSS. A comparison of embryonic stem cell and liver cell-specific H3K27ac signatures in DNA shows that the H3K27ac signatures in DNA around TSS efficiently distinguish the cell-type specific H3K27ac peaks and the gene regulation. The arrangement of the H3K27ac signatures inferred from the DNA represents the transcription regulation of the gene in mESC. We show that the DNA around transcription start sites is associated with the gene regulatory program by specific interaction with H3K27ac.
Robert-Moreno, Àlex; Guiu, Jordi; Ruiz-Herguido, Cristina; López, M Eugenia; Inglés-Esteve, Julia; Riera, Lluis; Tipping, Alex; Enver, Tariq; Dzierzak, Elaine; Gridley, Thomas; Espinosa, Lluis; Bigas, Anna
2008-01-01
Specific deletion of Notch1 and RBPjκ in the mouse results in abrogation of definitive haematopoiesis concomitant with the loss of arterial identity at embryonic stage. As prior arterial determination is likely to be required for the generation of embryonic haematopoiesis, it is difficult to establish the specific haematopoietic role of Notch in these mutants. By analysing different Notch-ligand-null embryos, we now show that Jagged1 is not required for the establishment of the arterial fate but it is required for the correct execution of the definitive haematopoietic programme, including expression of GATA2 in the dorsal aorta. Moreover, successful haematopoietic rescue of the Jagged1-null AGM cells was obtained by culturing them with Jagged1-expressing stromal cells or by lentiviral-mediated transduction of the GATA2 gene. Taken together, our results indicate that Jagged1-mediated activation of Notch1 is responsible for regulating GATA2 expression in the AGM, which in turn is essential for definitive haematopoiesis in the mouse. PMID:18528438
Mechanical control of notochord morphogenesis by extra-embryonic tissues in mouse embryos.
Imuta, Yu; Koyama, Hiroshi; Shi, Dongbo; Eiraku, Mototsugu; Fujimori, Toshihiko; Sasaki, Hiroshi
2014-05-01
Mammalian embryos develop in coordination with extraembryonic tissues, which support embryonic development by implanting embryos into the uterus, supplying nutrition, providing a confined niche, and also providing patterning signals to embryos. Here, we show that in mouse embryos, the expansion of the amniotic cavity (AC), which is formed between embryonic and extraembryonic tissues, provides the mechanical forces required for a type of morphogenetic movement of the notochord known as convergent extension (CE) in which the cells converge to the midline and the tissue elongates along the antero-posterior (AP) axis. The notochord is stretched along the AP axis, and the expansion of the AC is required for CE. Both mathematical modeling and physical simulation showed that a rectangular morphology of the early notochord caused the application of anisotropic force along the AP axis to the notochord through the isotropic expansion of the AC. AC expansion acts upstream of planar cell polarity (PCP) signaling, which regulates CE movement. Our results highlight the importance of extraembryonic tissues as a source of the forces that control the morphogenesis of embryos. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Hardman, P.; Klement, B. J.; Spooner, B. S.
1993-01-01
Embryonic mouse salivary glands, pancreata, and kidneys were isolated from embryos of appropriate gestational age by microdissection, and were cultured on Biopore membrane either non-coated or coated with type I collagen or Matrigel. As expected, use of Biopore membrane allowed high quality photomicroscopy of the living organs. In all organs extensive mesenchymal spreading was observed in the presence of type I collagen or Matrigel. However, differences were noted in the effects of extracellular matrix (ECM) coatings on epithelial growth and morphogenesis: salivary glands were minimally affected, pancreas morphogenesis was adversely affected, and kidney growth and branching apparently was enhanced. It is suggested that these differences in behaviour reflect differences in the strength of interactions between the mesenchymal cells and their surrounding endogenous matrix, compared to the exogenous ECM macromolecules. This method will be useful for culture of these and other embryonic organs. In particular, culture of kidney rudiments on ECM-coated Biopore offers a great improvement over previously used methods which do not allow morphogenesis to be followed in vitro.
DNA context represents transcription regulation of the gene in mouse embryonic stem cells.
Ha, Misook; Hong, Soondo
2016-04-14
Understanding gene regulatory information in DNA remains a significant challenge in biomedical research. This study presents a computational approach to infer gene regulatory programs from primary DNA sequences. Using DNA around transcription start sites as attributes, our model predicts gene regulation in the gene. We find that H3K27ac around TSS is an informative descriptor of the transcription program in mouse embryonic stem cells. We build a computational model inferring the cell-type-specific H3K27ac signatures in the DNA around TSS. A comparison of embryonic stem cell and liver cell-specific H3K27ac signatures in DNA shows that the H3K27ac signatures in DNA around TSS efficiently distinguish the cell-type specific H3K27ac peaks and the gene regulation. The arrangement of the H3K27ac signatures inferred from the DNA represents the transcription regulation of the gene in mESC. We show that the DNA around transcription start sites is associated with the gene regulatory program by specific interaction with H3K27ac.
Masaki, Hideki; Kato-Itoh, Megumi; Takahashi, Yusuke; Umino, Ayumi; Sato, Hideyuki; Ito, Keiichi; Yanagida, Ayaka; Nishimura, Toshinobu; Yamaguchi, Tomoyuki; Hirabayashi, Masumi; Era, Takumi; Loh, Kyle M; Wu, Sean M; Weissman, Irving L; Nakauchi, Hiromitsu
2016-11-03
Cell types more advanced in development than embryonic stem cells, such as EpiSCs, fail to contribute to chimeras when injected into pre-implantation-stage blastocysts, apparently because the injected cells undergo apoptosis. Here we show that transient promotion of cell survival through expression of the anti-apoptotic gene BCL2 enables EpiSCs and Sox17 + endoderm progenitors to integrate into blastocysts and contribute to chimeric embryos. Upon injection into blastocyst, BCL2-expressing EpiSCs contributed to all bodily tissues in chimeric animals while Sox17 + endoderm progenitors specifically contributed in a region-specific fashion to endodermal tissues. In addition, BCL2 expression enabled rat EpiSCs to contribute to mouse embryonic chimeras, thereby forming interspecies chimeras that could survive to adulthood. Our system therefore provides a method to overcome cellular compatibility issues that typically restrict chimera formation. Application of this type of approach could broaden the use of embryonic chimeras, including region-specific chimeras, for basic developmental biology research and regenerative medicine. Copyright © 2016 Elsevier Inc. All rights reserved.
Chevalier, Marc; Toporikova, Natalia; Simmers, John; Thoby-Brisson, Muriel
2016-01-01
Breathing is a vital rhythmic behavior generated by hindbrain neuronal circuitry, including the preBötzinger complex network (preBötC) that controls inspiration. The emergence of preBötC network activity during prenatal development has been described, but little is known regarding inspiratory neurons expressing pacemaker properties at embryonic stages. Here, we combined calcium imaging and electrophysiological recordings in mouse embryo brainstem slices together with computational modeling to reveal the existence of heterogeneous pacemaker oscillatory properties relying on distinct combinations of burst-generating INaP and ICAN conductances. The respective proportion of the different inspiratory pacemaker subtypes changes during prenatal development. Concomitantly, network rhythmogenesis switches from a purely INaP/ICAN-dependent mechanism at E16.5 to a combined pacemaker/network-driven process at E18.5. Our results provide the first description of pacemaker bursting properties in embryonic preBötC neurons and indicate that network rhythmogenesis undergoes important changes during prenatal development through alterations in both circuit properties and the biophysical characteristics of pacemaker neurons. DOI: http://dx.doi.org/10.7554/eLife.16125.001 PMID:27434668
Dax1 and Nanog act in parallel to stabilize mouse embryonic stem cells and induced pluripotency
Zhang, Junlei; Liu, Gaoke; Ruan, Yan; Wang, Jiali; Zhao, Ke; Wan, Ying; Liu, Bing; Zheng, Hongting; Peng, Tao; Wu, Wei; He, Ping; Hu, Fu-Quan; Jian, Rui
2014-01-01
Nanog expression is heterogeneous and dynamic in embryonic stem cells (ESCs). However, the mechanism for stabilizing pluripotency during the transitions between Nanoghigh and Nanoglow states is not well understood. Here we report that Dax1 acts in parallel with Nanog to regulate mouse ESC (mESCs) identity. Dax1 stable knockdown mESCs are predisposed towards differentiation but do not lose pluripotency, whereas Dax1 overexpression supports LIF-independent self-renewal. Although partially complementary, Dax1 and Nanog function independently and cannot replace one another. They are both required for full reprogramming to induce pluripotency. Importantly, Dax1 is indispensable for self-renewal of Nanoglow mESCs. Moreover, we report that Dax1 prevents extra-embryonic endoderm (ExEn) commitment by directly repressing Gata6 transcription. Dax1 may also mediate inhibition of trophectoderm differentiation independent or as a downstream effector of Oct4. These findings establish a basal role of Dax1 in maintaining pluripotency during the state transition of mESCs and somatic cell reprogramming. PMID:25284313
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ouji, Yukiteru; Yoshikawa, Masahide; Shiroi, Akira
2006-06-30
We previously showed that Wnt-10b promoted the differentiation of primary skin epithelial cells (MPSEC) toward hair shaft and inner root sheath of the hair follicle (IRS) cells in vitro. In the present study, we found that Wnt-10b promotes the development of hair follicles using a culture of mouse embryonic skin tissue and trichogenesis using a reconstitution experiment with nude mice. Hair follicle development was observed in skin taken from mouse embryos on embryonic day 10.5 following a 2-day culture with recombinant Wnt-10b (rWnt-10b), however, not without rWnt-10b. Brown hair growth was observed at the site of reconstituted skin in Balb/cmore » nude mice where dermal fibroblasts and keratinocytes, derived from C3H/HeN new born mice, were transplanted with Wnt-10b-producing COS cells (Wnt-COS). Without the co-transplantation of Wnt-COS, no hair growth was observed. Our results suggest an important role of Wnt-10b in the initiation of hair follicle development and following trichogenesis.« less
Mikoshiba, K; Nishimura, Y; Tsukada, Y
The reeler mutant mouse is characterized by a derangement of the cerebral cortical structure due to abnormalities during the migration step at the embryonic stage. We have analyzed both the control and reeler cerebral cortex by means of scanning electron microscopic fractography. In the control cerebral cortex, the bundle formation was composed of fine fibers on which the migrating neuroblasts were attached perpendicular to the pial surface, whereas no bundle formation was observed in the reeler; instead, there was a fine meshwork of fibers surrounding the neuroblasts. The possible role of bundle formation in the normal cerebral cortex and the correlation between the inability of cells to migrate and the absence of bundle formation in the reeler is discussed.
Expression of the mouse Macf2 gene during inner ear development.
Leonova, Elena V; Lomax, Margaret I
2002-09-30
Plakins, a family of linker proteins that connect cytoskeletal elements to cellular junctions and the extracellular matrix, are primarily responsible for the mechanical properties of cells and tissues. They include desmoplakin, envoplakin, plectin, dystonin/BPAG1, and Kakapo. Mutations in plakins cause several skin, muscular and neurological disorders. Macrophins are a recently discovered subfamily of plakins with binding domains for actin, intermediate filaments and microtubules. Characteristic features of macrophins include variable actin binding domains, a central rod domain containing both plectin and spectrin repeats, and a C-terminus containing EF hands and GAS2/GAR22 domain. We have examined expression of mouse Macf2, encoding macrophin-2, in adult tissues and in the developing, neonatal, and mature inner ear by in situ hybridization. Northern blot analysis identified three large tissue-specific Macf2 transcripts: a 16-kb mRNA in skeletal muscle and heart, a 15-kb mRNA in brain, and a 9-kb mRNA in RNA from ovary plus uterus. In situ hybridization of the developing mouse inner ear indicated that Macf2 is expressed in the otocyst at day 12.5, in the sensory epithelium by embryonic day 16.5, and in both inner and outer hair cells by day 16.5. Macf2 is expressed in the bodies of both sensory and motor neurons in the central and peripheral nervous system, including the auditory pathway. The Macf2 protein could be involved in the regulation of cytoskeletal connections to cellular junctions and play an important structural role in organs, such as the inner ear, that are subjected to strong mechanical forces. Copyright 2002 Elsevier Science B.V.
Zhang, Yancong; Li, Yongliang; Shi, Ruirui; Zhang, Siqi; Liu, Hao; Zheng, Yunfei; Li, Yan; Cai, Jinglei; Pei, Duanqing; Wei, Shicheng
2017-06-08
A number of studies have shown that tooth-like structures can be regenerated using induced pluripotent stem cells and mouse embryonic stem (mES) cells. However, few studies have reported the regeneration of tooth-periodontium complex structures, which are more suitable for clinical tooth transplantation. We established an optimized approach to induce high-odontogenic potential dental epithelium derived from mES cells by temporally controlling bone morphogenic protein 4 (BMP4) function and regenerated tooth-periodontium complex structures in vivo. First, immunofluorescence and quantitative reverse transcription-polymerase chain reaction were used to identify the watershed of skin and the oral ectoderm. LDN193189 was then used to inhibit the BMP4 receptor around the watershed, followed by the addition of exogenous BMP4 to promote BMP4 function. The generated dental epithelium was confirmed by western blot analysis and immunofluorescence. The generated epithelium was ultimately combined with embryonic day 14.5 mouse mesenchyme and transplanted into the renal capsules of nude mice. After 4 weeks, the tooth-periodontium complex structure was examined by micro-computed tomography (CT) and hematoxylin and eosin (H&E) staining. Our study found that the turning point of oral ectoderm differentiation occurred around day 3 after the embryoid body was transferred to a common culture plate. Ameloblastin-positive dental epithelial cells were detected following the temporal regulation of BMP4. Tooth-periodontium complex structures, which included teeth, a periodontal membrane, and alveolar bone, were formed when this epithelium was combined with mouse dental mesenchyme and transplanted into the renal capsules of nude mice. Micro-CT and H&E staining revealed that the generated tooth-periodontium complex structures shared a similar histological structure with normal mouse teeth. An optimized induction method was established to promote the differentiation of mES cells into dental epithelium by temporally controlling the function of BMP4. A novel tooth-periodontium complex structure was generated using the epithelium.
Cheng, Shih-Lin; Lai, Yi-Ling; Lee, Ming-Che; Shen, Perng-Chih; Liu, Shyh-Shyan; Liu, Bing-Tsan
2014-07-03
The deer velvet or its extracts has been widely used in clinic. It has been used in promoting reproductive performances and treating of oxidation and aging process. The aim of this study is to investigate the effects of velvet extract from Formosan sika deer (Formosan sika deer; Cervus nippon taiouanus, FSD) velvet on mouse embryonic development and anti-oxidant ability in vitro. Mouse 4-cells embryos were divided into 16 groups for 72 h in vitro incubation. The embryonic development stages and morphology were evaluated every 12h in experimental period. The quantitative real time PCR was used to measure the CuZn-SOD, GPx and CAT mRNA expression of the blastocysts. The 4-cells embryos of hydrogen peroxide (HP) groups did not continue developing after oxidant stress challenged. The blastocyst developmental rate (90.0-90.4%, P>0.05) and normal morphological rate (84.4-85.1%, P>0.05) of the 1% and 2% DV extract groups were similar to those in the control group (90.7% and 88.8%, respectively). The embryos challenged by HP (5, 10 and 25 μM) and subsequently incubated in mHTF medium with 1% and 2% of deer velvet (DV) extracts were able to continue development; the blastocyst developmental rate of these groups were similar to that in the control group. The relative mRNA expression of the focused anti-oxidative enzymes in the mouse embryos did not significantly differ among the designed DV treatment groups (P>0.05). The FSD velvet extract in adequate concentration could promote anti-oxidative enzymes mRNA expression followed the challenge of hydrogen peroxide, relieve the mouse embryo under oxidative stress, and maintain the blastocyst developmental ability in vitro. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
McCann, Matthew R; Tamplin, Owen J; Rossant, Janet; Séguin, Cheryle A
2012-01-01
Back pain related to intervertebral disc degeneration is the most common musculoskeletal problem, with a lifetime prevalence of 82%. The lack of effective treatment for this widespread problem is directly related to our limited understanding of disc development, maintenance and degeneration. The aim of this study was to determine the developmental origins of nucleus pulposus cells within the intervertebral disc using a novel notochord-specific Cre mouse. To trace the fate of notochordal cells within the intervertebral disc, we derived a notochord-specific Cre mouse line by targeting the homeobox gene Noto. Expression of this gene is restricted to the node and the posterior notochord during gastrulation [embryonic day 7.5 (E7.5)-E12.5]. The Noto-cre mice were crossed with a conditional lacZ reporter for visualization of notochord fate in whole-mount embryos. We performed lineage-tracing experiments to examine the contribution of the notochord to spinal development from E12.5 through to skeletally mature mice (9 months). Fate mapping studies demonstrated that, following elongation and formation of the primitive axial skeleton, the notochord gives rise to the nucleus pulposus in fully formed intervertebral discs. Cellular localization of β-galactosidase (encoded by lacZ) and cytokeratin-8 demonstrated that both notochordal cells and chondrocyte-like nucleus pulposus cells are derived from the embryonic notochord. These studies establish conclusively that notochordal cells act as embryonic precursors to all cells found within the nucleus pulposus of the mature intervertebral disc. This suggests that notochordal cells might serve as tissue-specific progenitor cells within the disc and establishes the Noto-cre mouse as a unique tool to interrogate the contribution of notochordal cells to both intervertebral disc development and disc degeneration.
McCann, Matthew R.; Tamplin, Owen J.; Rossant, Janet; Séguin, Cheryle A.
2012-01-01
SUMMARY Back pain related to intervertebral disc degeneration is the most common musculoskeletal problem, with a lifetime prevalence of 82%. The lack of effective treatment for this widespread problem is directly related to our limited understanding of disc development, maintenance and degeneration. The aim of this study was to determine the developmental origins of nucleus pulposus cells within the intervertebral disc using a novel notochord-specific Cre mouse. To trace the fate of notochordal cells within the intervertebral disc, we derived a notochord-specific Cre mouse line by targeting the homeobox gene Noto. Expression of this gene is restricted to the node and the posterior notochord during gastrulation [embryonic day 7.5 (E7.5)-E12.5]. The Noto-cre mice were crossed with a conditional lacZ reporter for visualization of notochord fate in whole-mount embryos. We performed lineage-tracing experiments to examine the contribution of the notochord to spinal development from E12.5 through to skeletally mature mice (9 months). Fate mapping studies demonstrated that, following elongation and formation of the primitive axial skeleton, the notochord gives rise to the nucleus pulposus in fully formed intervertebral discs. Cellular localization of β-galactosidase (encoded by lacZ) and cytokeratin-8 demonstrated that both notochordal cells and chondrocyte-like nucleus pulposus cells are derived from the embryonic notochord. These studies establish conclusively that notochordal cells act as embryonic precursors to all cells found within the nucleus pulposus of the mature intervertebral disc. This suggests that notochordal cells might serve as tissue-specific progenitor cells within the disc and establishes the Noto-cre mouse as a unique tool to interrogate the contribution of notochordal cells to both intervertebral disc development and disc degeneration. PMID:22028328
Superina, Simone; Borovina, Antonia; Ciruna, Brian
2014-03-15
Growth factors and morphogens regulate embryonic patterning, cell fate specification, cell migration, and morphogenesis. The activity and behavior of these signaling molecules are regulated in the extracellular space through interactions with proteoglycans (Bernfield et al., 1999; Perrimon and Bernfield 2000; Lander and Selleck 2000; Selleck 2000). Proteoglycans are high molecular-weight proteins consisting of a core protein with covalently linked glycosaminoglycan (GAG) side chains, which are thought to mediate ligand interaction. Drosophila mutant embryos deficient for UDP-glucose dehydrogenase activity (Ugdh, required for GAG synthesis) exhibit abnormal Fgf, Wnt and TGFß signaling and die during gastrulation, indicating a broad and critical role for proteoglycans during early embryonic development (Lin et al., 1999; Lin and Perrimon 2000) (Hacker et al., 1997). Mouse Ugdh mutants also die at gastrulation, however, only Fgf signaling appears disrupted (Garcia-Garcia and Anderson, 2003). These findings suggested a possible divergence in the requirement for proteoglycans during Drosophila and mouse embryogenesis, and that mammals may have evolved alternative means of regulating Wnt and TGFß activity. To further examine the function of proteoglycans in vertebrate development, we have characterized zebrafish mutants devoid of both maternal and zygotic Ugdh/Jekyll activity (MZjekyll). We demonstrate that MZjekyll mutant embryos display abnormal Fgf, Shh, and Wnt signaling activities, with concomitant defects in central nervous system patterning, cardiac ventricular fate specification and axial morphogenesis. Furthermore, we uncover a novel role for proteoglycans in left-right pattern formation. Our findings resolve longstanding questions into the evolutionary conservation of Ugdh function and provide new mechanistic insights into the initiation of left-right asymmetry. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Schuster-Gossler, K; Bilinski, P; Sado, T; Ferguson-Smith, A; Gossler, A
1998-06-01
We have isolated a novel mouse gene (Gtl2) from the site of a gene trap integration (Gtl2lacZ) that gave rise to developmentally regulated lacZ expression, and a dominant parental-origin-dependent phenotype. Heterozygous Gtl2lacZ mice that inherited the transgene from the father showed a proportionate dwarfism phenotype, whereas the penetrance and expressivity of the phenotype was strongly reduced in Gtl2lacZ mice that inherited the transgene from the mother. Gtl2 expression is highly similar to the beta-galactosidase staining pattern, and is down-regulated but not abolished in mice carrying the Gtl2lacZ insertion. In early postimplantation embryos, Gtl2 is expressed in the visceral yolk sac and embryonic ectoderm. During subsequent development and organogenesis, Gtl2 transcripts are abundant in the paraxial mesoderm closely correlated with myogenic differentiation, in parts of the central nervous system, and in the epithelial ducts of developing excretory organs. The Gtl2 gene gives rise to various differentially spliced transcripts, which contain multiple small open reading frames (ORF). However, none of the ATG codons of these ORFs is in the context of a strong Kozak consensus sequence for initiation of translation, suggesting that Gtl2 might function as an RNA. Nuclear Gtl2 RNA was detected in a temporally and spatially regulated manner, and partially processed Gtl2 transcripts were readily detected in Northern blot hybridizations of polyadenylated RNA, suggesting that primary Gtl2 transcripts are differently processed in various cell types during development. Gtl2 transcript levels are present in parthenogenic embryos but may be reduced, consistent with the pattern of inheritance of the Gtl2lacZ phenotype.
Martínez, Constanza; Cornejo, Víctor Hugo; Lois, Pablo; Ellis, Tammy; Solis, Natalia P; Wainwright, Brandon J; Palma, Verónica
2013-01-01
The Sonic Hedgehog (Shh) pathway is responsible for critical patterning events early in development and for regulating the delicate balance between proliferation and differentiation in the developing and adult vertebrate brain. Currently, our knowledge of the potential role of Shh in regulating neural stem cells (NSC) is largely derived from analyses of the mammalian forebrain, but for dorsal midbrain development it is mostly unknown. For a detailed understanding of the role of Shh pathway for midbrain development in vivo, we took advantage of mouse embryos with cell autonomously activated Hedgehog (Hh) signaling in a conditional Patched 1 (Ptc1) mutant mouse model. This animal model shows an extensive embryonic tectal hypertrophy as a result of Hh pathway activation. In order to reveal the cellular and molecular origin of this in vivo phenotype, we established a novel culture system to evaluate neurospheres (nsps) viability, proliferation and differentiation. By recreating the three-dimensional (3-D) microenvironment we highlight the pivotal role of endogenous Shh in maintaining the stem cell potential of tectal radial glial cells (RGC) and progenitors by modulating their Ptc1 expression. We demonstrate that during late embryogenesis Shh enhances proliferation of NSC, whereas blockage of endogenous Shh signaling using cyclopamine, a potent Hh pathway inhibitor, produces the opposite effect. We propose that canonical Shh signaling plays a central role in the control of NSC behavior in the developing dorsal midbrain by acting as a niche factor by partially mediating the response of NSC to epidermal growth factor (EGF) and fibroblast growth factor (FGF) signaling. We conclude that endogenous Shh signaling is a critical mechanism regulating the proliferation of stem cell lineages in the embryonic dorsal tissue.
Yuan, Guohua; Zhang, Li; Yang, Guobin; Yang, Jingwen; Wan, Chunyan; Zhang, Lu; Song, Guangtai; Chen, Shuo; Chen, Zhi
2014-04-01
Vascularization is essential for organ and tissue development. Teeth develop through interactions between epithelium and mesenchyme. The developing capillaries in the enamel organ, the dental epithelial structure, occur simultaneously by mechanisms of vasculogenesis and angiogenesis at the onset of dentinogenesis. The vascular neoformation in the dental mesenchyme has been reported to start from the cap stage. However, the mechanisms of vascularization in the dental mesenchyme remain unknown. In the hope of understanding the mechanisms of the formation of dental mesenchymal vasculature, mouse lower molar germs from embryonic day (E) 13.5 to E16.5 were processed for immunostaining of CD31 and CD34, terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL) and transmission electron microscopy (TEM). In addition, the role of apoptosis for the vascularization in dental mesenchyme was examined by in vitro culture of E14.0 lower molars in the presence of the apoptosis inhibitor (z-VAD-fmk) and a subsequent subrenal culture. Our results showed that CD31- and CD34-positive cells progressively entered the central part of the dental papilla from the peridental mesenchyme. For TEM, angioblasts, young capillaries with thick endothelium and endothelial cells containing vacuoles were observed in peripheral dental mesenchyme, suggesting vasculogenesis was taking place. The presence of lateral sprouting, cytoplasmic filopodia and transluminal bridges in the dental papilla suggested angiogenesis was also occurring. Inhibition of apoptosis delayed the angiogenic vascularization of the dental papilla. Therefore, these data demonstrated that molar mesenchyme is progressively vascularized by mechanisms of both vasculogenesis and angiogenesis and apoptosis partially contributes to the vascularization of the dental papilla.
Gomes, P; Chevalier, J; Boesmans, W; Roosen, L; van den Abbeel, V; Neunlist, M; Tack, J; Vanden Berghe, P
2009-08-01
The importance of dynamic interactions between glia and neurons is increasingly recognized, both in the central and enteric nervous system. However, apart from their protective role, little is known about enteric neuro-glia interaction. The aim was to investigate neuro-glia intercellular communication in a mouse culture model using optical techniques. Complete embryonic (E13) guts were enzymatically dissociated, seeded on coverslips and studied with immunohistochemistry and Ca(2+)-imaging. Putative progenitor-like cells (expressing both PGP9.5 and S-100) differentiated over approximately 5 days into glia or neurons expressing typical cell-specific markers. The glia-neuron ratio could be manipulated by specific supplements (N2, G5). Neurons and glia were functionally identified both by their Ca(2+)-response to either depolarization (high K(+)) or lysophosphatidic acid and by the expression of typical markers. Neurons responded to ACh, DMPP, 5-HT, ATP and electrical stimulation, while glia responded to ATP and ADPbetas. Inhibition of glial responses by MRS2179 suggests involvement of P2Y1 receptors. Neuronal stimulation also caused delayed glial responses, which were reduced by suramin and by exogenous apyrases that catalyse nucleotide breakdown. Conversely, glial responses were enhanced by ARL-67156, an ecto-ATPase inhibitor. In this mouse enteric co-culture, functional glia and neurons can be easily monitored using optical techniques. Glial cells can be activated directly by ATP or ADPbetas. Activation of neuronal cells (DMPP, K(+)) causes secondary responses in glial cells, which can be modulated by tuning ATP and ADP breakdown. This strongly supports the involvement of paracrine purinergic communication between enteric neurons and glia.
Cui, Lin; Jiang, Jun; Wei, Ling; Zhou, Xin; Fraser, Jamie L; Snider, B Joy; Yu, Shan Ping
2008-05-01
Extensive research has focused on transplantation of pluripotent stem cells for the treatment of central nervous system disorders, the therapeutic potential of stem cell therapy for injured peripheral nerves is largely unknown. We used a rat sciatic nerve transection model to test the ability of implanted embryonic stem (ES) cell-derived neural progenitor cells (ES-NPCs) in promoting repair of a severely injured peripheral nerve. Mouse ES cells were neurally induced in vitro; enhanced expression and/or secretion of growth factors were detected in differentiating ES cells. One hour after removal of a 1-cm segment of the left sciatic nerve, ES-NPCs were implanted into the gap between the nerve stumps with the surrounding epineurium as a natural conduit. The transplantation resulted in substantial axonal regrowth and nerve repair, which were not seen in culture medium controls. One to 3 months after axotomy, co-immunostaining with the mouse neural cell membrane specific antibody M2/M6 and the Schwann cell marker S100 suggested that transplanted ES-NPCs had survived and differentiated into myelinating cells. Regenerated axons were myelinated and showed a uniform connection between proximal and distal stumps. Nerve stumps had near normal diameter with longitudinally oriented, densely packed Schwann cell-like phenotype. Fluoro-Gold retrogradely labeled neurons were found in the spinal cord (T12-13) and DRG (L4-L6), suggesting reconnection of axons across the transection. Electrophysiological recordings showed functional activity recovered across the injury gap. These data suggest that transplanted neurally induced ES cells differentiate into myelin-forming cells and provide a potential therapy for severely injured peripheral nerves.
Relationship between individual neuron and network spontaneous activity in developing mouse cortex.
Barnett, Heather M; Gjorgjieva, Julijana; Weir, Keiko; Comfort, Cara; Fairhall, Adrienne L; Moody, William J
2014-12-15
Spontaneous synchronous activity (SSA) that propagates as electrical waves is found in numerous central nervous system structures and is critical for normal development, but the mechanisms of generation of such activity are not clear. In previous work, we showed that the ventrolateral piriform cortex is uniquely able to initiate SSA in contrast to the dorsal neocortex, which participates in, but does not initiate, SSA (Lischalk JW, Easton CR, Moody WJ. Dev Neurobiol 69: 407-414, 2009). In this study, we used Ca(2+) imaging of cultured embryonic day 18 to postnatal day 2 coronal slices (embryonic day 17 + 1-4 days in culture) of the mouse cortex to investigate the different activity patterns of individual neurons in these regions. In the piriform cortex where SSA is initiated, a higher proportion of neurons was active asynchronously between waves, and a larger number of groups of coactive cells was present compared with the dorsal cortex. When we applied GABA and glutamate synaptic antagonists, asynchronous activity and cellular clusters remained, while synchronous activity was eliminated, indicating that asynchronous activity is a result of cell-intrinsic properties that differ between these regions. To test the hypothesis that higher levels of cell-autonomous activity in the piriform cortex underlie its ability to initiate waves, we constructed a conductance-based network model in which three layers differed only in the proportion of neurons able to intrinsically generate bursting behavior. Simulations using this model demonstrated that a gradient of intrinsic excitability was sufficient to produce directionally propagating waves that replicated key experimental features, indicating that the higher level of cell-intrinsic activity in the piriform cortex may provide a substrate for SSA generation. Copyright © 2014 the American Physiological Society.
Thuemmel, A E; Gwazdauskas, F C; Canseco, R S; Pearson, R E; Jochle, W
1991-06-01
Bovine morulae (d 6) were used to evaluate embryonic development in a deproteinized hemodialysate, agar embedding, and in the uterus of the immature mouse. Agar-embedded embryos were cultured in Ham's F-10 and 10% steer serum either (treatment 1) immediately after collection or (treatment 2) 24 h after storage in the uterus of the immature mouse. Unembedded embryos were cultured in Ham's F-10 containing (treatment 3) 10% steer serum, (treatment 4) 1% deproteinized hemodialysate CLB1107, or (treatment 5) 1% de-proteinized hemodialysate CLB1107 and 10% steer serum. A greater percentage of the embryos reached the hatched blastocyst stage after culture in treatments 1, 3, 4, and 5 (38.1, 34.6, 28.6, and 21.1%) than in treatment 2 (9.5%) in which embryos were stored in the immature mouse uterus for 24 h prior to in vitro culture. Final development scores for unembedded and agar-embedded embryos cultured in Ham's F-10 (5.5 +/- .3) and 10% steer serum (4.9 +/- .4) were similar and higher than those of embryos cultured in deproteinized hemodialysate CLB1107 (4.2 +/- .4), deproteinized hemodialysate CLB1107 and steer serum (4.2 +/- .4), or immature mouse uteri (3.4 +/- .4). It is concluded that deproteinized hemodialysate supplementation at 1% (vol/vol) failed to enhance embryonic development in vitro. Moreover, bovine morulae were unaffected by agar embedding and were able to develop to a limited extent following short-term storage in the uterus of the immature mouse.
Zhang, Peng; Wu, Xinglong; Hu, Chunchao; Wang, Pengbo; Li, Xiangyun
2012-01-01
Although it has been 30 yr since the development of derivation methods for mouse embryonic stem (ES) cells, the biology of derivation of ES cells is poorly understood and the efficiency varies dramatically between cell lines. Recently, the Rho kinase inhibitor Y-27632 and the cell dissociation reagent Accutase were reported to significantly inhibit apoptosis of human ES cells during passaging. Therefore, in the current study, C57BL/6×129/Sv mouse blastocysts were used to evaluate the effect of the combination of the two reagents instead of using the conventional 129 line in mouse ES cell derivation. The data presented in this study suggests that the combination of Y-27632 and Accutase significantly increases the efficiency of mouse ES cell derivation; furthermore, no negative side effects were observed with Y-27632 and Accutase treatment. The newly established ES cell lines retain stable karyotype, surface markers expression, formed teratomas, and contributed to viable chimeras and germline transmission by tetraploid complementation assay. In addition, Y-27632 improved embryoid body formation of ES cells. During ES cell microinjection, Y-27632 prevented the formation of dissociation-induced cell blebs and facilitates the selection and the capture of intact cells. The methods presented in this study clearly demonstrate that inhibition of Rho kinase with Y-27632 and Accutase dissociation improve the derivation efficiently and reproducibility of mouse ES cell generation which is essential for reducing variability in the results obtained from different cell lines.
HUPO BPP pilot study: a proteomics analysis of the mouse brain of different developmental stages.
Wang, Jing; Gu, Yong; Wang, Lihong; Hang, Xingyi; Gao, Yan; Wang, Hangyan; Zhang, Chenggang
2007-11-01
This study is a part of the HUPO Brain Proteome Project (BPP) pilot study, which aims at obtaining a reliable database of mouse brain proteome, at the comparison of techniques, laboratories, and approaches as well as at preparing subsequent proteome studies of neurologic diseases. The C57/Bl6 mouse brains of three developmental stages at embryonic day 16 (E16), postnatal day 7 (P7), and 8 wk (P56) (n = 5 in each group) were provided by the HUPO BPP executive committee. The whole brain proteins of each animal were individually prepared using 2-DE coupled with PDQuest software analysis. The protein spots representing developmentally related or stably expressed proteins were then prepared with in-gel digestion followed with MALDI-TOF/TOF MS/MS and analyzed using the MASCOT search engines to search the Swiss-Prot or NCBInr database. The 2-DE gel maps of the mouse brains of all of the developmental stages were obtained and submitted to the Data Collection Centre (DCC). The proteins alpha-enolase, stathmin, actin, C14orf166 homolog, 28,000 kDa heat- and acid-stable phosphoprotein, 3-mercaptopyruvate sulfurtransferase and 40 S ribosomal protein S3a were successfully identified. A further Western blotting analysis demonstrated that enolase is a protein up-regulated in the mouse brain from embryonic stage to adult stage. These data are helpful for understanding the proteome changes in the development of the mouse brain.
Targeted Lipidomic Analysis of Oxysterols in the Embryonic Central Nervous System
Wang, Yuqin; Sousa, Kyle M.; Bodin, Karl; Theofilopoulos, Spyridon; Sacchetti, Paola; Hornshaw, Martin; Woffendin, Gary; Karu, Kersti; Sjövall, Jan; Arenas, Ernest; Griffiths, William J.
2009-01-01
Summary In this study two regions of embryonic (E11) mouse central nervous system (CNS) have been profiled for their unesterified sterol content. Using high-performance liquid chromatography (HPLC) – mass spectrometry (MS) and tandem mass spectrometry (MSn) low levels of oxysterols (estimated 2 – 165 ng/g wet weight) were identified in cortex (Ctx) and spinal cord (Sc). The identified oxysterols include 7α-, 7β-, 22R-, 24S-, 25- and 27-hydroxycholesterol; 24,25- and 24,27-dihydroxycholesterol; and 24S,25-epoxycholesterol. Of these, 24S-hydroxycholesterol is biosynthesised exclusively in brain. In comparison to adult mouse where the 24S-hydroxycholesterol level is about 40 μg/g in brain the level of 24S-hydroxycholesterol reported here (estimated 26 ng/g in Ctx and 13 ng/g in Sc) is extremely low. Interestingly, the level of 24S,25-epoxycholesterol in both CNS regions (estimated 165 ng/g in Ctx and 91 ng/g in Sc) is somewhat higher than the levels of the hydroxycholesterols. This oxysterol is formed in parallel to cholesterol via a shunt of the mevalonate pathway and its comparatively high abundance may be a reflection of a high rate of cholesterol synthesis at this stage of development. Levels of cholesterol (estimated 1.25 mg/g in Ctx and 1.15 mg/g in Sc) and its precursors were determined by gas chromatography – mass spectrometry (GC-MS). In both CNS regions cholesterol levels were found to be lower than those reported in the adult, but in relation to cholesterol the levels of cholesterol precursors were higher than found in adult indicating a high rate of cholesterol synthesis. In summary, our data provide evidence for the presence of endogenous oxysterols in two brain regions of the developing CNS. Moreover, while most of the enzymes involved in hydroxysterol synthesis are minimally active at E11, our results suggest that the mevalonate pathway is significantly active, opening up the possibility for a function of 24S,25-epoxycholesterol during brain development. PMID:19381367
Jmjd5 functions as a regulator of p53 signaling during mouse embryogenesis.
Ishimura, Akihiko; Terashima, Minoru; Tange, Shoichiro; Suzuki, Takeshi
2016-03-01
Genetic studies have shown that aberrant activation of p53 signaling leads to embryonic lethality. Maintenance of a fine balance of the p53 protein level is critical for normal development. Previously, we have reported that Jmjd5, a member of the Jumonji C (JmjC) family, regulates embryonic cell proliferation through the control of Cdkn1a expression. Since Cdkn1a is the representative p53-regulated gene, we have examined whether the expression of other p53 target genes is coincidentally upregulated with Cdkn1a in Jmjd5-deficient embryos. The expression of a subset of p53-regulated genes was increased in both Jmjd5 hypomorphic mouse embryonic fibroblasts (MEFs) and Jmjd5-deficient embryos at embryonic day 8.25 without the induced expression of Trp53. Intercrossing of Jmjd5-deficient mice with Trp53 knockout mice showed that the growth defect of Jmjd5 mutant cells was significantly recovered under a Trp53 null genetic background. Chromatin immunoprecipitation analysis in Jmjd5 hypomorphic MEFs indicated the increased recruitment of p53 at several p53 target gene loci, such as Cdkn1a, Pmaip1, and Mdm2. These results suggest that Jmjd5 is involved in the transcriptional regulation of a subset of p53-regulated genes, possibly through the control of p53 recruitment at the gene loci. In Jmjd5-deficient embryos, the enhanced recruitment of p53 might result in the abnormal activation of p53 signaling leading to embryonic lethality.
MRG15 Regulates Embryonic Development and Cell Proliferation
Tominaga, Kaoru; Kirtane, Bhakti; Jackson, James G.; Ikeno, Yuji; Ikeda, Takayoshi; Hawks, Christina; Smith, James R.; Matzuk, Martin M.; Pereira-Smith, Olivia M.
2005-01-01
MRG15 is a highly conserved protein, and orthologs exist in organisms from yeast to humans. MRG15 associates with at least two nucleoprotein complexes that include histone acetyltransferases and/or histone deacetylases, suggesting it is involved in chromatin remodeling. To study the role of MRG15 in vivo, we generated knockout mice and determined that the phenotype is embryonic lethal, with embryos and the few stillborn pups exhibiting developmental delay. Immunohistochemical analysis indicates that apoptosis in Mrg15−/− embryos is not increased compared with wild-type littermates. However, the number of proliferating cells is significantly reduced in various tissues of the smaller null embryos compared with control littermates. Cell proliferation defects are also observed in Mrg15−/− mouse embryonic fibroblasts. The hearts of the Mrg15−/− embryos exhibit some features of hypertrophic cardiomyopathy. The increase in size of the cardiomyocytes is most likely a response to decreased growth of the cells. Mrg15−/− embryos appeared pale, and microarray analysis revealed that α-globin gene expression was decreased in null versus wild-type embryos. We determined by chromatin immunoprecipitation that MRG15 was recruited to the α-globin promoter during dimethyl sulfoxide-induced mouse erythroleukemia cell differentiation. These findings demonstrate that MRG15 has an essential role in embryonic development via chromatin remodeling and transcriptional regulation. PMID:15798182
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kiukkonen, Anu; Sahlberg, Carin; Lukinmaa, Pirjo-Liisa
2006-11-01
Previous studies show that the most toxic dioxin congener, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), interferes with mineralization of the dental matrices in developing mouse and rat teeth. Culture of mouse embryonic molar teeth with TCDD leads to the failure of enamel to be deposited and dentin to undergo mineralization. Lactationally exposed rats show defectively matured enamel and retardation of dentin mineralization. To see if the impaired mineralization is associated with changes in the expression of dentin sialophosphoprotein (Dspp), Bono1 and/or matrix metalloproteinase-20 (MMP-20), thought to be involved in mineralization of the dental hard tissues, we cultured mouse (NMRI) E18 mandibular molars for 3,more » 5 or 7 days and exposed them to 1 {mu}M TCDD after 2 days of culture. As detected by in situ hybridization of tissue sections, localization and intensity of Bono1 and MMP-20 expression showed no definite difference between the control and exposed tooth explants, suggesting that TCDD does not affect their expression. On the contrary, TCDD reduced or prevented the expression of Dspp in secretory odontoblasts and decreased it in presecretory ameloblasts. The results suggest that the retardation of dentin mineralization by TCDD in mouse molar teeth involves specific interference with Dspp expression.« less
Sun, Chengsan; Dayal, Arjun
2015-01-01
Brain-derived neurotrophic factor (BDNF) is expressed in gustatory epithelia and is required for gustatory neurons to locate and innervate their correct target during development. When BDNF is overexpressed throughout the lingual epithelium, beginning embryonically, chorda tympani fibers are misdirected and innervate inappropriate targets, leading to a loss of taste buds. The remaining taste buds are hyperinnervated, demonstrating a disruption of nerve/target matching in the tongue. We tested the hypothesis here that overexpression of BDNF peripherally leads to a disrupted terminal field organization of nerves that carry taste information to the brainstem. The chorda tympani, greater superficial petrosal, and glossopharyngeal nerves were labeled in adult wild-type (WT) mice and in adult mice in which BDNF was overexpressed (OE) to examine the volume and density of their central projections in the nucleus of the solitary tract. We found that the terminal fields of the chorda tympani and greater superficial petrosal nerves and overlapping fields that included these nerves in OE mice were at least 80% greater than the respective field volumes in WT mice. The shapes of terminal fields were similar between the two groups; however, the density and spread of labels were greater in OE mice. Unexpectedly, there were also group-related differences in chorda tympani nerve function, with OE mice showing a greater relative taste response to a concentration series of sucrose. Overall, our results show that disruption in peripheral innervation patterns of sensory neurons have significant effects on peripheral nerve function and central organization of their terminal fields. PMID:25568132
An integrated miRNA functional screening and target validation method for organ morphogenesis.
Rebustini, Ivan T; Vlahos, Maryann; Packer, Trevor; Kukuruzinska, Maria A; Maas, Richard L
2016-03-16
The relative ease of identifying microRNAs and their increasing recognition as important regulators of organogenesis motivate the development of methods to efficiently assess microRNA function during organ morphogenesis. In this context, embryonic organ explants provide a reliable and reproducible system that recapitulates some of the important early morphogenetic processes during organ development. Here we present a method to target microRNA function in explanted mouse embryonic organs. Our method combines the use of peptide-based nanoparticles to transfect specific microRNA inhibitors or activators into embryonic organ explants, with a microRNA pulldown assay that allows direct identification of microRNA targets. This method provides effective assessment of microRNA function during organ morphogenesis, allows prioritization of multiple microRNAs in parallel for subsequent genetic approaches, and can be applied to a variety of embryonic organs.
Saito, Yukihiro; Nakamura, Kazufumi; Yoshida, Masashi; Sugiyama, Hiroki; Takano, Makoto; Nagase, Satoshi; Morita, Hiroshi; Kusano, Kengo F; Ito, Hiroshi
2018-05-30
A biological pacemaker is expected to solve the persisting problems of an artificial cardiac pacemaker including short battery life, lead breaks, infection, and electromagnetic interference. We previously reported HCN4 overexpression enhances pacemaking ability of mouse embryonic stem cell-derived cardiomyocytes (mESC-CMs) in vitro. However, the effect of these cells on bradycardia in vivo has remained unclear. Therefore, we transplanted HCN4-overexpressing mESC-CMs into bradycardia model animals and investigated whether they could function as a biological pacemaker. The rabbit Hcn4 gene was transfected into mouse embryonic stem cells and induced HCN4-overexpressing mESC-CMs. Non-cardiomyocytes were removed under serum/glucose-free and lactate-supplemented conditions. Cardiac balls containing 5 × 10 3 mESC-CMs were made by using the hanging drop method. One hundred cardiac balls were injected into the left ventricular free wall of complete atrioventricular block (CAVB) model rats. Heart beats were evaluated using an implantable telemetry system 7 to 30 days after cell transplantation. The result showed that ectopic ventricular beats that were faster than the intrinsic escape rhythm were often observed in CAVB model rats transplanted with HCN4-overexpressing mESC-CMs. On the other hand, the rats transplanted with non-overexpressing mESC-CMs showed sporadic single premature ventricular contraction but not sustained ectopic ventricular rhythms. These results indicated that HCN4-overexpressing mESC-CMs produce rapid ectopic ventricular rhythms as a biological pacemaker.
Aziz, Nadine M; Guedj, Faycal; Pennings, Jeroen L A; Olmos-Serrano, Jose Luis; Siegel, Ashley; Haydar, Tarik F; Bianchi, Diana W
2018-06-12
Down syndrome (DS) results from triplication of human chromosome 21. Neuropathological hallmarks of DS include atypical central nervous system development that manifests prenatally and extends throughout life. As a result, individuals with DS exhibit cognitive and motor deficits, and have delays in achieving developmental milestones. To determine whether different mouse models of DS recapitulate the human prenatal and postnatal phenotypes, here, we directly compared brain histogenesis, gene expression and behavior over the lifespan of three cytogenetically distinct mouse models of DS: Ts1Cje, Ts65Dn and Dp(16)1/Yey. Histological data indicated that Ts65Dn mice were the most consistently affected with respect to somatic growth, neurogenesis and brain morphogenesis. Embryonic and adult gene expression results showed that Ts1Cje and Ts65Dn brains had considerably more differentially expressed (DEX) genes compared with Dp(16)1/Yey mice, despite the larger number of triplicated genes in the latter model. In addition, DEX genes showed little overlap in identity and chromosomal distribution in the three models, leading to dissimilarities in affected functional pathways. Perinatal and adult behavioral testing also highlighted differences among the models in their abilities to achieve various developmental milestones and perform hippocampal- and motor-based tasks. Interestingly, Dp(16)1/Yey mice showed no abnormalities in prenatal brain phenotypes, yet they manifested behavioral deficits starting at postnatal day 15 that continued through adulthood. In contrast, Ts1Cje mice showed mildly abnormal embryonic brain phenotypes, but only select behavioral deficits as neonates and adults. Altogether, our data showed widespread and unexpected fundamental differences in behavioral, gene expression and brain development phenotypes between these three mouse models. Our findings illustrate unique limitations of each model when studying aspects of brain development and function in DS. This work helps to inform model selection in future studies investigating how observed neurodevelopmental abnormalities arise, how they contribute to cognitive impairment, and when testing therapeutic molecules to ameliorate the intellectual disability associated with DS.This article has an associated First Person interview with the first author of the paper. © 2018. Published by The Company of Biologists Ltd.
Kuzmanov, Uros; Guo, Hongbo; Buchsbaum, Diana; Cosme, Jake; Abbasi, Cynthia; Isserlin, Ruth; Sharma, Parveen; Gramolini, Anthony O.; Emili, Andrew
2016-01-01
Phospholamban (PLN) plays a central role in Ca2+ homeostasis in cardiac myocytes through regulation of the sarco(endo)plasmic reticulum Ca2+-ATPase 2A (SERCA2A) Ca2+ pump. An inherited mutation converting arginine residue 9 in PLN to cysteine (R9C) results in dilated cardiomyopathy (DCM) in humans and transgenic mice, but the downstream signaling defects leading to decompensation and heart failure are poorly understood. Here we used precision mass spectrometry to study the global phosphorylation dynamics of 1,887 cardiac phosphoproteins in early affected heart tissue in a transgenic R9C mouse model of DCM compared with wild-type littermates. Dysregulated phosphorylation sites were quantified after affinity capture and identification of 3,908 phosphopeptides from fractionated whole-heart homogenates. Global statistical enrichment analysis of the differential phosphoprotein patterns revealed selective perturbation of signaling pathways regulating cardiovascular activity in early stages of DCM. Strikingly, dysregulated signaling through the Notch-1 receptor, recently linked to cardiomyogenesis and embryonic cardiac stem cell development and differentiation but never directly implicated in DCM before, was a prominently perturbed pathway. We verified alterations in Notch-1 downstream components in early symptomatic R9C transgenic mouse cardiomyocytes compared with wild type by immunoblot analysis and confocal immunofluorescence microscopy. These data reveal unexpected connections between stress-regulated cell signaling networks, specific protein kinases, and downstream effectors essential for proper cardiac function. PMID:27742792
BMP signaling in the development of the mouse esophagus and forestomach
Rodriguez, Pavel; Da Silva, Susana; Oxburgh, Leif; Wang, Fan; Hogan, Brigid L. M.; Que, Jianwen
2010-01-01
The stratification and differentiation of the epidermis are known to involve the precise control of multiple signaling pathways. By contrast, little is known about the development of the mouse esophagus and forestomach, which are composed of a stratified squamous epithelium. Based on prior work in the skin, we hypothesized that bone morphogenetic protein (BMP) signaling is a central player. To test this hypothesis, we first used a BMP reporter mouse line harboring a BRE-lacZ allele, along with in situ hybridization to localize transcripts for BMP signaling components, including various antagonists. We then exploited a Shh-Cre allele that drives recombination in the embryonic foregut epithelium to generate gain- or loss-of-function models for the Bmpr1a (Alk3) receptor. In gain-of-function (Shh-Cre;Rosa26CAG-loxpstoploxp-caBmprIa) embryos, high levels of ectopic BMP signaling stall the transition from simple columnar to multilayered undifferentiated epithelium in the esophagus and forestomach. In loss-of-function experiments, conditional deletion of the BMP receptor in Shh-Cre;Bmpr1aflox/flox embryos allows the formation of a multilayered squamous epithelium but this fails to differentiate, as shown by the absence of expression of the suprabasal markers loricrin and involucrin. Together, these findings suggest multiple roles for BMP signaling in the developing esophagus and forestomach. PMID:21068065
Kondo, Yasushi; Toyoda, Taro; Ito, Ryo; Funato, Michinori; Hosokawa, Yoshiya; Matsui, Satoshi; Sudo, Tomomi; Nakamura, Masahiro; Okada, Chihiro; Zhuang, Xiaotong; Watanabe, Akira; Ohta, Akira; Inagaki, Nobuya; Osafune, Kenji
2017-08-01
Pancreatic beta-like cells generated from human induced pluripotent stem cells (hiPSCs) or human embryonic stem cells (hESCs) offer an appealing donor tissue source. However, differentiation protocols that mainly use growth factors are costly. Therefore, in this study, we aimed to establish efficient differentiation protocols to change hiPSCs/hESCs to insulin (INS) + cells using novel small-molecule inducers. We screened small molecules that increased the induction rate of INS + cells from hESC-derived pancreatic and duodenal homeobox 1 (PDX1) + pancreatic progenitor cells. The differentiation protocol to generate INS + cells from hiPSCs/hESCs was optimised using hit compounds, and INS + cells induced with the compounds were characterised for their in vitro and in vivo functions. The inducing activity of the hit compounds was also examined using mouse embryonic pancreatic tissues in an explant culture system. Finally, RNA sequencing analyses were performed on the INS + cells to elucidate the mechanisms of action by which the hit compounds induced pancreatic endocrine differentiation. One hit compound, sodium cromoglicate (SCG), was identified out of approximately 1250 small molecules screened. When SCG was combined with a previously described protocol, the induction rate of INS + cells increased from a mean ± SD of 5.9 ± 1.5% (n = 3) to 16.5 ± 2.1% (n = 3). SCG induced neurogenin 3-positive cells at a mean ± SD of 32.6 ± 4.6% (n = 3) compared with 14.2 ± 3.6% (n = 3) for control treatment without SCG, resulting in an increased generation of endocrine cells including insulin-producing cells. Similar induction by SCG was confirmed using mouse embryonic pancreatic explants. We also confirmed that the mechanisms of action by which SCG induced pancreatic endocrine differentiation included the inhibition of bone morphogenetic protein 4 signalling. SCG improves the generation of pancreatic endocrine cells from multiple hiPSC/hESC lines and mouse embryonic pancreatic explants by facilitating the differentiation of endocrine precursors. This discovery will contribute to elucidating the mechanisms of pancreatic endocrine development and facilitate cost-effective generation of INS + cells from hiPSCs/hESCs. The RNA sequencing data generated during the current study are available in the Gene Expression Omnibus ( www.ncbi.nlm.nih.gov/geo ) with series accession number GSE89973.
Park, Jeong-A; Kim, Young-Eun; Seok, Hyun-Jeong; Park, Woo-Youn; Kwon, Hyung-Joo; Lee, Younghee
2011-03-01
Inhibiting histone deacetylase (HDAC) activity modulates the epigenetic status of cells, resulting in an alteration of gene expression and cellular function. Here, we investigated the effects of HDAC inhibitors on mouse embryonic stem (ES) cells. The HDAC inhibitors trichostatin A, suberoylanilide hydroxamic acid, sodium butyrate, and valproic acid induced early differentiation of mouse ES cells and triggered induction of heatshock protein (HSP)70. In contrast, class III HDAC inhibitors failed to induce differentiation or HSP70 expression. Transcriptional upregulation of HSP70 was confirmed by mRNA expression analysis, an inhibitor study, and chromatin immunoprecipitation. HSP70 induction was dependent on the SAPK/ JNK, p38, and PI3K/Akt pathways. Differentiation and induction of HSP70 by a subset of HDAC inhibitors was also examined in human ES cells, which suggests that the phenomenon generally occurs in ES cells. A better understanding of the effects of HDAC inhibitors may give more insight into their application in stem cell biology.
The RNA-Editing Enzyme ADAR1 Controls Innate Immune Responses to RNA
Mannion, Niamh M.; Greenwood, Sam M.; Young, Robert; Cox, Sarah; Brindle, James; Read, David; Nellåker, Christoffer; Vesely, Cornelia; Ponting, Chris P.; McLaughlin, Paul J.; Jantsch, Michael F.; Dorin, Julia; Adams, Ian R.; Scadden, A.D.J.; Öhman, Marie; Keegan, Liam P.; O’Connell, Mary A.
2014-01-01
Summary The ADAR RNA-editing enzymes deaminate adenosine bases to inosines in cellular RNAs. Aberrant interferon expression occurs in patients in whom ADAR1 mutations cause Aicardi-Goutières syndrome (AGS) or dystonia arising from striatal neurodegeneration. Adar1 mutant mouse embryos show aberrant interferon induction and die by embryonic day E12.5. We demonstrate that Adar1 embryonic lethality is rescued to live birth in Adar1; Mavs double mutants in which the antiviral interferon induction response to cytoplasmic double-stranded RNA (dsRNA) is prevented. Aberrant immune responses in Adar1 mutant mouse embryo fibroblasts are dramatically reduced by restoring the expression of editing-active cytoplasmic ADARs. We propose that inosine in cellular RNA inhibits antiviral inflammatory and interferon responses by altering RLR interactions. Transfecting dsRNA oligonucleotides containing inosine-uracil base pairs into Adar1 mutant mouse embryo fibroblasts reduces the aberrant innate immune response. ADAR1 mutations causing AGS affect the activity of the interferon-inducible cytoplasmic isoform more severely than the nuclear isoform. PMID:25456137
Ciaudo, Constance; Jay, Florence; Okamoto, Ikuhiro; Chen, Chong-Jian; Sarazin, Alexis; Servant, Nicolas; Barillot, Emmanuel; Heard, Edith; Voinnet, Olivier
2013-01-01
In most mouse tissues, long-interspersed elements-1 (L1s) are silenced via methylation of their 5′-untranslated regions (5′-UTR). A gradual loss-of-methylation in pre-implantation embryos coincides with L1 retrotransposition in blastocysts, generating potentially harmful mutations. Here, we show that Dicer- and Ago2-dependent RNAi restricts L1 accumulation and retrotransposition in undifferentiated mouse embryonic stem cells (mESCs), derived from blastocysts. RNAi correlates with production of Dicer-dependent 22-nt small RNAs mapping to overlapping sense/antisense transcripts produced from the L1 5′-UTR. However, RNA-surveillance pathways simultaneously degrade these transcripts and, consequently, confound the anti-L1 RNAi response. In Dicer−/− mESC complementation experiments involving ectopic Dicer expression, L1 silencing was rescued in cells in which microRNAs remained strongly depleted. Furthermore, these cells proliferated and differentiated normally, unlike their non-complemented counterparts. These results shed new light on L1 biology, uncover defensive, in addition to regulatory roles for RNAi, and raise questions on the differentiation defects of Dicer−/− mESCs. PMID:24244175
Liu, Lipei; Chen, Weiting; Li, Lefeng; Xu, Fangfang; Jiang, Beizhan
2017-12-01
Chondroitin sulfate proteoglycan (CSPG) is an important component of extracellular matrix (ECM), it is composed of a core protein and one or more chondroitin sulfate glycosaminoglycan side chains (CS-GAGs). To investigate the roles of its CS-GAGs in dentinogenesis, the mouse mandibular first molar tooth germs at early bell stage were cultivated with or without β-xyloside. As expected, the CS-GAGs were inhibited on their incorporation to CSPGs by β-xyloside, accompanied by the change of morphology of the cultured tooth germs. The histological results and the transmission electron microscopy (TEM) investigation indicated that β-xyloside exhibited obvious inhibiting effects on odontoblasts differentiation compared with the control group. Meanwhile the results of immunohistochemistry, in situ hybridization and quantitative RT-PCR for type I collagen, dentin matrix acidic phosphoprotein 1 and dentin sialophosphoprotein, the products of differentiated odontoblasts, further proved that odontoblasts differentiation was inhibited. Collagen fibers detected in TEM decreased and arranged in disorder as well. Thus we conclude that the inhibition of CS-GAGs incorporation to CSPGs can affect odontoblast differentiation in cultured embryonic mouse molars.
Mouse mutants from chemically mutagenized embryonic stem cells
Munroe, Robert J.; Bergstrom, Rebecca A.; Zheng, Qing Yin; Libby, Brian; Smith, Richard; John, Simon W.M.; Schimenti, Kerry J.; Browning, Victoria L.; Schimenti, John C.
2010-01-01
The drive to characterize functions of human genes on a global scale has stimulated interest in large-scale generation of mouse mutants. Conventional germ-cell mutagenesis with N-ethyl-N-nitrosourea (ENU) is compromised by an inability to monitor mutation efficiency, strain1 and interlocus2 variation in mutation induction, and extensive husbandry requirements. To overcome these obstacles and develop new methods for generating mouse mutants, we devised protocols to generate germline chi-maeric mice from embryonic stem (ES) cells heavily mutagenized with ethylmethanesulphonate (EMS). Germline chimaeras were derived from cultures that underwent a mutation rate of up to 1 in 1,200 at the Hprt locus (encoding hypoxanthine guanine phosphoribosyl transferase). The spectrum of mutations induced by EMS and the frameshift mutagen ICR191 was consistent with that observed in other mammalian cells. Chimaeras derived from ES cells treated with EMS transmitted mutations affecting several processes, including limb development, hair growth, hearing and gametogenesis. This technology affords several advantages over traditional mutagenesis, including the ability to conduct shortened breeding schemes and to screen for mutant phenotypes directly in ES cells or their differentiated derivatives. PMID:10700192
Walker, Emily; Chang, Wing Y.; Hunkapiller, Julie; Cagney, Gerard; Garcha, Kamal; Torchia, Joseph; Krogan, Nevan J.; Reiter, Jeremy F.; Stanford, William L.
2010-01-01
Summary Polycomb group (PcG) proteins are conserved epigenetic transcriptional repressors that control numerous developmental gene expression programs and have recently been implicated in modulating embryonic stem cell (ESC) fate. We identified the PcG protein PCL2 (polycomb-like 2) in a genome-wide screen for regulators of self-renewal and pluripotency and predicted that it would play an important role in mouse ESC fate determination. Using multiple biochemical strategies, we provide evidence that PCL2 is a Polycomb Repressive Complex 2 (PRC2)-associated protein in mouse ESCs. Knockdown of Pcl2 in ESCs resulted in heightened self-renewal characteristics, defects in differentiation and altered patterns of histone methylation. Integration of global gene expression and promoter occupancy analyses allowed us to identify PCL2 and PRC2 transcriptional targets and draft regulatory networks. We describe the role of PCL2 in both modulating transcription of ESC self-renewal genes in undifferentiated ESCs as well as developmental regulators during early commitment and differentiation. PMID:20144788
The RNA-editing enzyme ADAR1 controls innate immune responses to RNA.
Mannion, Niamh M; Greenwood, Sam M; Young, Robert; Cox, Sarah; Brindle, James; Read, David; Nellåker, Christoffer; Vesely, Cornelia; Ponting, Chris P; McLaughlin, Paul J; Jantsch, Michael F; Dorin, Julia; Adams, Ian R; Scadden, A D J; Ohman, Marie; Keegan, Liam P; O'Connell, Mary A
2014-11-20
The ADAR RNA-editing enzymes deaminate adenosine bases to inosines in cellular RNAs. Aberrant interferon expression occurs in patients in whom ADAR1 mutations cause Aicardi-Goutières syndrome (AGS) or dystonia arising from striatal neurodegeneration. Adar1 mutant mouse embryos show aberrant interferon induction and die by embryonic day E12.5. We demonstrate that Adar1 embryonic lethality is rescued to live birth in Adar1; Mavs double mutants in which the antiviral interferon induction response to cytoplasmic double-stranded RNA (dsRNA) is prevented. Aberrant immune responses in Adar1 mutant mouse embryo fibroblasts are dramatically reduced by restoring the expression of editing-active cytoplasmic ADARs. We propose that inosine in cellular RNA inhibits antiviral inflammatory and interferon responses by altering RLR interactions. Transfecting dsRNA oligonucleotides containing inosine-uracil base pairs into Adar1 mutant mouse embryo fibroblasts reduces the aberrant innate immune response. ADAR1 mutations causing AGS affect the activity of the interferon-inducible cytoplasmic isoform more severely than the nuclear isoform. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Weber, Marlen; Apostolova, Galina; Widera, Darius; Mittelbronn, Michel; Dechant, Georg; Kaltschmidt, Barbara; Rohrer, Hermann
2015-02-01
Neural crest-derived stem cells (NCSCs) from the embryonic peripheral nervous system (PNS) can be reprogrammed in neurosphere (NS) culture to rNCSCs that produce central nervous system (CNS) progeny, including myelinating oligodendrocytes. Using global gene expression analysis we now demonstrate that rNCSCs completely lose their previous PNS characteristics and acquire the identity of neural stem cells derived from embryonic spinal cord. Reprogramming proceeds rapidly and results in a homogenous population of Olig2-, Sox3-, and Lex-positive CNS stem cells. Low-level expression of pluripotency inducing genes Oct4, Nanog, and Klf4 argues against a transient pluripotent state during reprogramming. The acquisition of CNS properties is prevented in the presence of BMP4 (BMP NCSCs) as shown by marker gene expression and the potential to produce PNS neurons and glia. In addition, genes characteristic for mesenchymal and perivascular progenitors are expressed, which suggests that BMP NCSCs are directed toward a pericyte progenitor/mesenchymal stem cell (MSC) fate. Adult NCSCs from mouse palate, an easily accessible source of adult NCSCs, display strikingly similar properties. They do not generate cells with CNS characteristics but lose the neural crest markers Sox10 and p75 and produce MSC-like cells. These findings show that embryonic NCSCs acquire a full CNS identity in NS culture. In contrast, MSC-like cells are generated from BMP NCSCs and pNCSCs, which reveals that postmigratory NCSCs are a source for MSC-like cells up to the adult stage. © 2014 AlphaMed Press.
Behr, Rüdiger; Heneweer, Carola; Viebahn, Christoph; Denker, Hans-Werner; Thie, Michael
2005-01-01
Rhesus monkey embryonic stem (rhES) cells were grown on mouse embryonic fibroblast (MEF) feeder layers for up to 10 days to form multilayered colonies. Within this period, stem cell colonies differentiated transiently into complex structures with a disc-like morphology. These complex colonies were characterized by morphology, immunohistochemistry, and marker mRNA expression to identify processes of epithelialization as well as epithelial-mesenchymal transition (EMT) and pattern formation. Typically, differentiated colonies were comprised of an upper and a lower ES cell layer, the former growing on top of the layer of MEF cells whereas the lower ES cell layer spread out underneath the MEF cells. Interestingly, in the central part of the colonies, a roundish pit developed. Here the feeder layer disappeared, and upper layer cells seemed to ingress and migrate through the pit downward to form the lower layer while undergoing a transition from the epithelial to the mesenchymal phenotype, which was indicated by the loss of the marker proteins E-cadherin and ZO-1 in the lower layer. In support of this, we found a concomitant 10-fold upregulation of the gene Snail2, which is a key regulator of the EMT process. Conversion of epiblast to mesoderm was also indicated by the regulated expression of the mesoderm marker Brachyury. An EMT is a characteristic process of vertebrate gastrulation. Thus, these rhES cell colonies may be an interesting model for studies on some basic processes involved in early primate embryogenesis and may open new ways to study the regulation of EMT in vitro.
2018-05-16
Medulloblastoma; Pineoblastoma; Supratentorial Embryonal Tumor, Not Otherwise Specified; Untreated Childhood Medulloblastoma; Untreated Childhood Pineoblastoma; Untreated Childhood Supratentorial Primitive Neuroectodermal Tumor
Adult Human Gingival Epithelial Cells as a Source for Whole-tooth Bioengineering
Angelova Volponi, A.; Kawasaki, M.; Sharpe, P.T.
2013-01-01
Teeth develop from interactions between embryonic oral epithelium and neural-crest-derived mesenchyme. These cells can be separated into single-cell populations and recombined to form normal teeth, providing a basis for bioengineering new teeth if suitable, non-embryonic cell sources can be identified. We show here that cells can be isolated from adult human gingival tissue that can be expanded in vitro and, when combined with mouse embryonic tooth mesenchyme cells, form teeth. Teeth with developing roots can be produced from this cell combination following transplantation into renal capsules. These bioengineered teeth contain dentin and enamel with ameloblast-like cells and rests of Malassez of human origin. PMID:23458883
Xing, Baoheng; Wang, Lili; Li, Qin; Cao, Yalei; Dong, Xiujuan; Liang, Jun; Wu, Xiaohua
2015-07-01
Gestational diabetes mellitus is a condition commonly encountered during mid to late pregnancy with pathologic manifestations including hyperglycemia, hyperinsulinemia, insulin resistance, and fetal maldevelopment. The cause of gestational diabetes mellitus can be attributed to both genetic and environmental factors, hence complicating its diagnosis and treatment. Pancreatic progenitors derived from human embryonic stem cells were shown to be able to effectively treat diabetes in mice. In this study, we have developed a system of treating diabetes using human embryonic stem cell-derived pancreatic endoderm in a mouse model of gestational diabetes mellitus. Human embryonic stem cells were differentiated in vitro into pancreatic endoderm, which were then transplanted into db/+ mice suffering from gestational diabetes mellitus. The transplant greatly improved glucose metabolism and reproductive outcome of the females compared with the control groups. Our findings support the feasibility of using differentiated human embryonic stem cells for treating gestational diabetes mellitus patients. Copyright © 2015 Elsevier Inc. All rights reserved.
Cho, Lily Ting-yin; Andrews, Robert; Carroll, Thomas; Iyer, Vivek; Tate, Peri; Rosen, Barry; Stunnenberg, Hendrik G.; Fisher, Amanda G.; Skarnes, William C.
2017-01-01
Abstract Mouse embryonic stem (ES) cells are a popular model system to study biological processes, though uncovering recessive phenotypes requires inactivating both alleles. Building upon resources from the International Knockout Mouse Consortium (IKMC), we developed a targeting vector for second allele inactivation in conditional-ready IKMC ‘knockout-first’ ES cell lines. We applied our technology to several epigenetic regulators, recovering bi-allelic targeted clones with a high efficiency of 60% and used Flp recombinase to restore expression in two null cell lines to demonstrate how our system confirms causality through mutant phenotype reversion. We designed our strategy to select against re-targeting the ‘knockout-first’ allele and identify essential genes in ES cells, including the histone methyltransferase Setdb1. For confirmation, we exploited the flexibility of our system, enabling tamoxifen inducible conditional gene ablation while controlling for genetic background and tamoxifen effects. Setdb1 ablated ES cells exhibit severe growth inhibition, which is not rescued by exogenous Nanog expression or culturing in naive pluripotency ‘2i’ media, suggesting that the self-renewal defect is mediated through pluripotency network independent pathways. Our strategy to generate null mutant mouse ES cells is applicable to thousands of genes and repurposes existing IKMC Intermediate Vectors. PMID:28981838
Reprogramming fibroblasts into induced pluripotent stem cells with Bmi1
Moon, Jai-Hee; Heo, June Seok; Kim, Jun Sung; Jun, Eun Kyoung; Lee, Jung Han; Kim, Aeree; Kim, Jonggun; Whang, Kwang Youn; Kang, Yong-Kook; Yeo, Seungeun; Lim, Hee-Joung; Han, Dong Wook; Kim, Dong-Wook; Oh, Sejong; Yoon, Byung Sun; Schöler, Hans R; You, Seungkwon
2011-01-01
Somatic cells can be reprogrammed into induced pluripotent stem (iPS) cells by the transcription factors Oct4, Sox2, and Klf4 in combination with c-Myc. Recently, Sox2 plus Oct4 was shown to reprogram fibroblasts and Oct4 alone was able to reprogram mouse and human neural stem cells (NSCs) into iPS cells. Here, we report that Bmi1 leads to the transdifferentiation of mouse fibroblasts into NSC-like cells, and, in combination with Oct4, can replace Sox2, Klf4 and c-Myc during the reprogramming of fibroblasts into iPS cells. Furthermore, activation of sonic hedgehog signaling (by Shh, purmorphamine, or oxysterol) compensates for the effects of Bmi1, and, in combination with Oct4, reprograms mouse embryonic and adult fibroblasts into iPS cells. One- and two-factor iPS cells are similar to mouse embryonic stem cells in their global gene expression profile, epigenetic status, and in vitro and in vivo differentiation into all three germ layers, as well as teratoma formation and germline transmission in vivo. These data support that converting fibroblasts with Bmi1 or activation of the sonic hedgehog pathway to an intermediate cell type that expresses Sox2, Klf4, and N-Myc allows iPS generation via the addition of Oct4. PMID:21709693
The RNA-binding protein Musashi-1 is produced in the developing and adult mouse eye.
Raji, B; Dansault, A; Leemput, J; de la Houssaye, G; Vieira, V; Kobetz, A; Arbogast, L; Masson, C; Menasche, M; Abitbol, M
2007-08-10
Musashi-1 (Msi1) is an RNA-binding protein produced in various types of stem cells including neural stem/progenitor cells and astroglial progenitor cells in the vertebrate central nervous system. Other RNA-binding proteins such as Pumilio-1, Pumilio-2, Staufen-1, and Staufen-2 have been characterized as potential markers of several types of stem or progenitor cells. We investigated the involvement of Msi1 in mouse eye development and adult mouse eye functions by analyzing the profile of Msi1 production in all ocular structures during development and adulthood. We studied Msi1 production by in situ hybridization and immunohistochemistry of ocular tissue sections and by semi-quantitative RT-PCR and western blot analysis from the embryonic stage of 12.5 days post coitum (E12.5 dpc) when the first retinal ganglion cells (RGCs) begin to appear to the adult stage when all retinal cell types are present. Msi1 mRNA was present at all studied stages of eye development. Msi1 protein was detected in the primitive neuroblastic layer (NbL), the ganglion cell layer (GCL), and in all major differentiated neurons of postnatal developing and adult retinae. During postnatal developing stages, faint diffuse Msi1 protein staining is converted to a more specific distribution once mouse retina is fully differentiated. The most striking result of our study concerns the large amounts of Msi1 protein and mRNA in several unexpected sites of adult mouse eyes including the corneal epithelium and endothelium, stromal keratocytes, progenitor cells of the limbus, equatorial lens stem cells, differentiated lens epithelial cells, and differentiating lens fibers. Msi1 was also found in the pigmented and nonpigmented cells of the ciliary processes, the melanocytes of the ciliary body, the retinal pigment epithelium, differentiated retinal neurons, and most probably in the retinal glial cells such as Müller glial cells, astrocytes, and the oligodendocytes surrounding the axons of the optic nerve. Msi1 expression was detected in the outer plexiform layer, the inner plexiform layer, and the nerve fiber layer of fully differentiated adult retina. We provide here the first demonstration that the RNA-binding protein, Msi1, is produced in mouse eyes from embryonic stages until adulthood. The relationship between the presence of Msi1 in developing ocular compartments and the possible stem/progenitor cell characteristics of these compartments remains unclear. Finally, the expression of Msi1 in several different cell types in the adult eye is extremely intriguing and should lead to further attempts to unravel the role of Msi1 in cellular and subcellular RNA metabolism and in the control of translational processes in adult eye cells particularly in adult neuronal dendrites, axons, and synapses.
Iizuka, Kazuhide; Yokomizo, Tomomasa; Watanabe, Naoki; Tanaka, Yosuke; Osato, Motomi; Takaku, Tomoiku; Komatsu, Norio
2016-01-01
During mouse ontogeny, hematopoietic cells arise from specialized endothelial cells, i.e., the hemogenic endothelium, and form clusters in the lumen of arterial vessels. Hemogenic endothelial cells have been observed in several embryonic tissues, such as the dorsal aorta, the placenta and the yolk sac. Recent work suggests that the mouse embryonic head also produces hematopoietic stem cells (HSCs)/progenitors. However, a histological basis for HSC generation in the head has not yet been determined because the hematopoietic clusters and hemogenic endothelium in the head region have not been well characterized. In this study, we used whole-mount immunostaining and 3D confocal reconstruction techniques to analyze both c-Kit+ hematopoietic clusters and Runx1+ hemogenic endothelium in the whole-head vasculature. The number of c-Kit+ hematopoietic cells was 20-fold less in the head arteries than in the dorsal aorta. In addition, apparent nascent hematopoietic cells, which are characterized by a "budding" structure and a Runx1+ hemogenic endothelium, were not observed in the head. These results suggest that head HSCs may not be or are rarely generated from the endothelium in the same manner as aortic HSCs.
Iizuka, Kazuhide; Yokomizo, Tomomasa; Watanabe, Naoki; Tanaka, Yosuke; Osato, Motomi; Takaku, Tomoiku; Komatsu, Norio
2016-01-01
During mouse ontogeny, hematopoietic cells arise from specialized endothelial cells, i.e., the hemogenic endothelium, and form clusters in the lumen of arterial vessels. Hemogenic endothelial cells have been observed in several embryonic tissues, such as the dorsal aorta, the placenta and the yolk sac. Recent work suggests that the mouse embryonic head also produces hematopoietic stem cells (HSCs)/progenitors. However, a histological basis for HSC generation in the head has not yet been determined because the hematopoietic clusters and hemogenic endothelium in the head region have not been well characterized. In this study, we used whole-mount immunostaining and 3D confocal reconstruction techniques to analyze both c-Kit+ hematopoietic clusters and Runx1+ hemogenic endothelium in the whole-head vasculature. The number of c-Kit+ hematopoietic cells was 20-fold less in the head arteries than in the dorsal aorta. In addition, apparent nascent hematopoietic cells, which are characterized by a “budding” structure and a Runx1+ hemogenic endothelium, were not observed in the head. These results suggest that head HSCs may not be or are rarely generated from the endothelium in the same manner as aortic HSCs. PMID:27227884
Generation of eggs from mouse embryonic stem cells and induced pluripotent stem cells.
Hayashi, Katsuhiko; Saitou, Mitinori
2013-08-01
Oogenesis is an integrated process through which an egg acquires the potential for totipotency, a fundamental condition for creating new individuals. Reconstitution of oogenesis in a culture that generates eggs with proper function from pluripotent stem cells (PSCs) is therefore one of the key goals in basic biology as well as in reproductive medicine. Here we describe a stepwise protocol for the generation of eggs from mouse PSCs, such as embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). ESCs and iPSCs are first induced into primordial germ cell-like cells (PGCLCs) that are in turn aggregated with somatic cells of female embryonic gonads, the precursors for adult ovaries. Induction of PGCLCs followed by aggregation with the somatic cells takes up to 8 d. The aggregations are then transplanted under the ovarian bursa, in which PGCLCs grow into germinal vesicle (GV) oocytes in ∼1 month. The PGCLC-derived GV oocytes can be matured into eggs in 1 d by in vitro maturation (IVM), and they can be fertilized with spermatozoa by in vitro fertilization (IVF) to obtain healthy and fertile offspring. This method provides an initial step toward reconstitution of the entire process of oogenesis in vitro.
Heterogeneity in Oct4 and Sox2 Targets Biases Cell Fate in 4-Cell Mouse Embryos.
Goolam, Mubeen; Scialdone, Antonio; Graham, Sarah J L; Macaulay, Iain C; Jedrusik, Agnieszka; Hupalowska, Anna; Voet, Thierry; Marioni, John C; Zernicka-Goetz, Magdalena
2016-03-24
The major and essential objective of pre-implantation development is to establish embryonic and extra-embryonic cell fates. To address when and how this fundamental process is initiated in mammals, we characterize transcriptomes of all individual cells throughout mouse pre-implantation development. This identifies targets of master pluripotency regulators Oct4 and Sox2 as being highly heterogeneously expressed between blastomeres of the 4-cell embryo, with Sox21 showing one of the most heterogeneous expression profiles. Live-cell tracking demonstrates that cells with decreased Sox21 yield more extra-embryonic than pluripotent progeny. Consistently, decreasing Sox21 results in premature upregulation of the differentiation regulator Cdx2, suggesting that Sox21 helps safeguard pluripotency. Furthermore, Sox21 is elevated following increased expression of the histone H3R26-methylase CARM1 and is lowered following CARM1 inhibition, indicating the importance of epigenetic regulation. Therefore, our results indicate that heterogeneous gene expression, as early as the 4-cell stage, initiates cell-fate decisions by modulating the balance of pluripotency and differentiation. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Copine1 regulates neural stem cell functions during brain development.
Kim, Tae Hwan; Sung, Soo-Eun; Cheal Yoo, Jae; Park, Jae-Yong; Yi, Gwan-Su; Heo, Jun Young; Lee, Jae-Ran; Kim, Nam-Soon; Lee, Da Yong
2018-01-01
Copine 1 (CPNE1) is a well-known phospholipid binding protein in plasma membrane of various cell types. In brain cells, CPNE1 is closely associated with AKT signaling pathway, which is important for neural stem cell (NSC) functions during brain development. Here, we investigated the role of CPNE1 in the regulation of brain NSC functions during brain development and determined its underlying mechanism. In this study, abundant expression of CPNE1 was observed in neural lineage cells including NSCs and immature neurons in human. With mouse brain tissues in various developmental stages, we found that CPNE1 expression was higher at early embryonic stages compared to postnatal and adult stages. To model developing brain in vitro, we used primary NSCs derived from mouse embryonic hippocampus. Our in vitro study shows decreased proliferation and multi-lineage differentiation potential in CPNE1 deficient NSCs. Finally, we found that the deficiency of CPNE1 downregulated mTOR signaling in embryonic NSCs. These data demonstrate that CPNE1 plays a key role in the regulation of NSC functions through the activation of AKT-mTOR signaling pathway during brain development. Copyright © 2017 Elsevier Inc. All rights reserved.
Determination of the reactivity of cytotoxic immune cells with preimplantation mouse embryos
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ewoldsen, M.A.
1987-01-01
Cytotoxic immune cells were used in an assay, MELIA (mixed embryo leukocyte interaction assay) to test the ability of the cells to kill blastocyst stage embryos. The cytotoxic immune cells generated for use in this study, cytotoxic T lymphocytes (CTLs), natural killer (NK) cells, and lymphokine activated killer (LAK) cells were shown to have phenotypic and cytolytic characteristics similar to those reported by other investigators. The lysis of the blastocysts in the MELIA was determined by measuring the inhibition of blastocoel retention and/or by the inhibition of incorporation of tritiated thymidine (/sup 3/H-TdR) into embryonic DNA. Blastocysts which possess ormore » lack their zonae pellucidae were tested to determine whether the zona pellucida plays an immunoprotective role in preimplantation development. The results indicated that CTLs only lysed embryonic cells when the zona pellucida was absent, but NK and LAK cells lysed embryonic cells whether the zona pellucida was present or absent. The results suggest that the zona pellucida may protect the preimplantation mouse embryo from lysis by CTLs but what protects the embryo from lysis by NK and LAK cells is unclear.« less
RTEL1 contributes to DNA replication and repair and telomere maintenance.
Uringa, Evert-Jan; Lisaingo, Kathleen; Pickett, Hilda A; Brind'Amour, Julie; Rohde, Jan-Hendrik; Zelensky, Alex; Essers, Jeroen; Lansdorp, Peter M
2012-07-01
Telomere maintenance and DNA repair are important processes that protect the genome against instability. mRtel1, an essential helicase, is a dominant factor setting telomere length in mice. In addition, mRtel1 is involved in DNA double-strand break repair. The role of mRtel1 in telomere maintenance and genome stability is poorly understood. Therefore we used mRtel1-deficient mouse embryonic stem cells to examine the function of mRtel1 in replication, DNA repair, recombination, and telomere maintenance. mRtel1-deficient mouse embryonic stem cells showed sensitivity to a range of DNA-damaging agents, highlighting its role in replication and genome maintenance. Deletion of mRtel1 increased the frequency of sister chromatid exchange events and suppressed gene replacement, demonstrating the involvement of the protein in homologous recombination. mRtel1 localized transiently at telomeres and is needed for efficient telomere replication. Of interest, in the absence of mRtel1, telomeres in embryonic stem cells appeared relatively stable in length, suggesting that mRtel1 is required to allow extension by telomerase. We propose that mRtel1 is a key protein for DNA replication, recombination, and repair and efficient elongation of telomeres by telomerase.
Bishop, Kathleen A; Harrington, Anne; Kouranova, Evguenia; Weinstein, Edward J; Rosen, Clifford J; Cui, Xiaoxia; Liaw, Lucy
2016-07-07
Targeted gene mutation in the mouse is a primary strategy to understand gene function and relation to phenotype. The Knockout Mouse Project (KOMP) had an initial goal to develop a public resource of mouse embryonic stem (ES) cell clones that carry null mutations in all genes. Indeed, many useful novel mouse models have been generated from publically accessible targeted mouse ES cell lines. However, there are limitations, including incorrect targeting or cassette structure, and difficulties with germline transmission of the allele from chimeric mice. In our experience, using a small sample of targeted ES cell clones, we were successful ∼50% of the time in generating germline transmission of a correctly targeted allele. With the advent of CRISPR/Cas9 as a mouse genome modification tool, we assessed the efficiency of creating a conditional targeted allele in one gene, dedicator of cytokinesis 7 (Dock7), for which we were unsuccessful in generating a null allele using a KOMP targeted ES cell clone. The strategy was to insert loxP sites to flank either exons 3 and 4, or exons 3 through 7. By coinjecting Cas9 mRNA, validated sgRNAs, and oligonucleotide donors into fertilized eggs from C57BL/6J mice, we obtained a variety of alleles, including mice homozygous for the null alleles mediated by nonhomologous end joining, alleles with one of the two desired loxP sites, and correctly targeted alleles with both loxP sites. We also found frequent mutations in the inserted loxP sequence, which is partly attributable to the heterogeneity in the original oligonucleotide preparation. Copyright © 2016 Bishop et al.
Ye, Xin; Wang, Yanshu; Cahill, Hugh; Yu, Minzhong; Badea, Tudor C; Smallwood, Philip M; Peachey, Neal S; Nathans, Jeremy
2009-10-16
Disorders of vascular structure and function play a central role in a wide variety of CNS diseases. Mutations in the Frizzled-4 (Fz4) receptor, Lrp5 coreceptor, or Norrin ligand cause retinal hypovascularization, but the mechanisms by which Norrin/Fz4/Lrp signaling controls vascular development have not been defined. Using mouse genetic and cell culture models, we show that loss of Fz4 signaling in endothelial cells causes defective vascular growth, which leads to chronic but reversible silencing of retinal neurons. Loss of Fz4 in all endothelial cells disrupts the blood brain barrier in the cerebellum, whereas excessive Fz4 signaling disrupts embryonic angiogenesis. Sox17, a transcription factor that is upregulated by Norrin/Fz4/Lrp signaling, plays a central role in inducing the angiogenic program controlled by Norrin/Fz4/Lrp. These experiments establish a cellular basis for retinal hypovascularization diseases due to insufficient Frizzled signaling, and they suggest a broader role for Frizzled signaling in vascular growth, remodeling, maintenance, and disease.
Regulation of Microglia Identity from an Epigenetic and Transcriptomic Point of View.
Eggen, Bart J L; Boddeke, Erik W G M; Kooistra, Susanne M
2017-12-14
Microglia have long been recognized as the endogenous innate immune elements in the central nervous system (CNS) parenchyma. Besides fulfilling local immune-related functions, they provide cross-talk between the CNS and the immune system at large. In the adult CNS, microglia are involved in maintaining brain homeostasis, modulating synaptic transmission and clearance of apoptotic cells. During embryonic development, microglia are responsible for the removal of supernumerary synapses and neurons, and neuronal network formation. The full scale of their potential abilities has been highlighted by improvements in microglia isolation methods, the development of genetically tagged mouse models, advanced imaging technologies and the application of next-generation sequencing in recent years. Genome-wide expression analysis of relatively pure microglia populations from both mouse and human CNS tissues has thereby greatly contributed to our knowledge of their biology; what defines them under homeostatic conditions and how microglia respond to processes like aging and CNS disease? How and to what degree beneficial functions of microglia can be restored in the aged or diseased brain will be the key issue to be addressed in future research. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.
Rachidi, Mohammed; Lopes, Carmela; Charron, Giselle; Delezoide, Anne-Lise; Paly, Evelyne; Bloch, Bernard; Delabar, Jean-Maurice
2005-08-01
Human SIM2 is the ortholog of Drosophila single-minded (sim), a master regulator of neurogenesis and transcriptional factor controlling midline cell fate determination. We previously localized SIM2 in a chromosome 21 critical region for Down syndrome (DS). Here, we studied SIM2 gene using a new approach to provide insights in understanding of its potential role in human development. For the first time, we showed SIM2 spatial and temporal expression pattern during human central nervous system (CNS) development, from embryonic to fetal stages. Additional investigations were performed using a new optic microscopy technology to compare signal intensity and cell density [M. Rachidi, C. Lopes, S. Gassanova, P.M. Sinet, M. Vekemans, T. Attie, A.L. Delezoide, J.M. Delabar, Regional and cellular specificity of the expression of TPRD, the tetratricopeptide Down syndrome gene, during human embryonic development, Mech. Dev. 93 (2000) 189--193]. In embryonic stages, SIM2 was identified predominantly in restricted regions of CNS, in ventral part of D1/D2 diencephalic neuroepithelium, along the neural tube and in a few cell subsets of dorsal root ganglia. In fetal stages, SIM2 showed differential expression in pyramidal and granular cell layers of hippocampal formation, in cortical cells and in cerebellar external granular and Purkinje cell layers. SIM2 expression in embryonic and fetal brain could suggest a potential role in human CNS development, in agreement with Drosophila and mouse Sim mutant phenotypes and with the conservation of the Sim function in CNS development from Drosophila to Human. SIM2 expression in human fetal brain regions, which correspond to key structures for cognitive processes, correlates well with the behavioral phenotypes of Drosophila Sim mutants and transgenic mice overexpressing Sim2. In addition, SIM2-expressing brain regions correspond to the altered structures in DS patients. All together, these findings suggest a potential role of SIM2 in CNS development and indicate that SIM2 overexpression could participate to the pathogenesis of mental retardation in Down syndrome patients.
Schmouth, Jean-François; Castellarin, Mauro; Laprise, Stéphanie; Banks, Kathleen G; Bonaguro, Russell J; McInerny, Simone C; Borretta, Lisa; Amirabbasi, Mahsa; Korecki, Andrea J; Portales-Casamar, Elodie; Wilson, Gary; Dreolini, Lisa; Jones, Steven J M; Wasserman, Wyeth W; Goldowitz, Daniel; Holt, Robert A; Simpson, Elizabeth M
2013-10-14
The next big challenge in human genetics is understanding the 98% of the genome that comprises non-coding DNA. Hidden in this DNA are sequences critical for gene regulation, and new experimental strategies are needed to understand the functional role of gene-regulation sequences in health and disease. In this study, we build upon our HuGX ('high-throughput human genes on the X chromosome') strategy to expand our understanding of human gene regulation in vivo. In all, ten human genes known to express in therapeutically important brain regions were chosen for study. For eight of these genes, human bacterial artificial chromosome clones were identified, retrofitted with a reporter, knocked single-copy into the Hprt locus in mouse embryonic stem cells, and mouse strains derived. Five of these human genes expressed in mouse, and all expressed in the adult brain region for which they were chosen. This defined the boundaries of the genomic DNA sufficient for brain expression, and refined our knowledge regarding the complexity of gene regulation. We also characterized for the first time the expression of human MAOA and NR2F2, two genes for which the mouse homologs have been extensively studied in the central nervous system (CNS), and AMOTL1 and NOV, for which roles in CNS have been unclear. We have demonstrated the use of the HuGX strategy to functionally delineate non-coding-regulatory regions of therapeutically important human brain genes. Our results also show that a careful investigation, using publicly available resources and bioinformatics, can lead to accurate predictions of gene expression.
Angiotensin II increases Pax-2 expression in fetal kidney cells via the AT2 receptor.
Zhang, Shao-Ling; Moini, Babak; Ingelfinger, Julie R
2004-06-01
Although both the renin angiotensin system (RAS) and the paired homeobox 2 gene (Pax-2) seem critically important in renal organogenesis, whether and how they might interact has not been addressed. The present study asked whether a link between the RAS and Pax-2 exists in fetal renal cells, speculating that such an interaction, if present, might influence renal development. Embryonic kidney explants and embryonic renal cells (mouse late embryonic mesenchymal epithelial cells [MK4] and mouse early embryonic mesenchymal fibroblasts [MK3]) were used. Pax-2 protein and Pax-2 mRNA were detected by immunofluorescence, Western blot, reverse transcription-PCR, and real-time PCR. Angiotensin II (AngII) upregulated Pax-2 protein and Pax-2 mRNA expression via the AngII type 2 (AT(2)) receptor in MK4 but not in MK3 cells. The stimulatory effect of AngII on Pax-2 gene expression could be blocked by PD123319 (AT(2) inhibitor), AG 490 (a specific Janus kinase 2 inhibitor), and genistein (a tyrosine kinase inhibitor) but not by losartan (AT(1) inhibitor), SB203580 (specific p38 mitogen-activated protein kinase inhibitor), PD98059 (specific MEK inhibitor), SP600125 (JNK inhibitor), and diphenyleneiodonium chloride (an NADPH oxidase inhibitor). Moreover, embryonic kidney explants in culture confirmed that AngII upregulates Pax-2 gene expression via the AT(2) receptor. These studies demonstrate that the stimulatory effect of AngII on Pax-2 gene expression is mediated, at least in part, via the Janus kinase 2/signal transducers and activators of transcription signaling transduction pathway, suggesting that RAS and Pax-2 interactions may be important in renal development.
Chen, Xiaojiao; Xu, Bo; Han, Xiumei; Mao, Zhilei; Chen, Minjian; Du, Guizhen; Talbot, Prue; Wang, Xinru; Xia, Yankai
2015-04-01
Triclosan (TCS) poses potential risks to reproduction and development due to its endocrine-disrupting properties. However, the mechanism of TCS's effects on early embryonic development is little known. Embryonic stem cells (ESC) and zebrafish embryos provide valuable models for testing the toxic effects of environmental chemicals on early embryogenesis. In this study, mouse embryonic stem cells (mESC) were acutely exposed to TCS for 24 h, and general cytotoxicity and the effect of TCS on pluripotency were then evaluated. In addition, zebrafish embryos were exposed to TCS from 2- to 24-h post-fertilization (hpf), and their morphology was evaluated. In mESC, alkaline phosphatase staining was significantly decreased after treatment with the highest concentration of TCS (50 μM). Although the expression levels of Sox2 mRNA were not changed, the mRNA levels of Oct4 and Nanog in TCS-treated groups were significantly decreased compared to controls. In addition, the protein levels of Oct4, Sox2 and Nanog were significantly reduced in response to TCS treatment. MicroRNA (miR)-134, an expression inhibitor of pluripotency markers, was significantly increased in TCS-treated mESC. In zebrafish experiments, after 24 hpf of treatment, the controls had developed to the late stage of somitogenesis, while embryos exposed to 300 μg/L of TCS were still at the early stage of somitogenesis, and three genes (Oct4, Sox2 and Nanog) were upregulated in treated groups when compared with the controls. The two models demonstrated that TCS may affect early embryonic development by disturbing the expression of the pluripotency markers (Oct4, Sox2 and Nanog).
Pontén, Annica; Walsh, Stuart; Malan, Daniela; Xian, Xiaojie; Schéele, Susanne; Tarnawski, Laura; Fleischmann, Bernd K; Jovinge, Stefan
2013-01-01
Purification of cardiomyocytes from the embryonic mouse heart, embryonic stem (ES) or induced pluripotent stem cells (iPS) is a challenging task and will require specific isolation procedures. Lately the significance of surface markers for the isolation of cardiac cell populations with fluorescence activated cell sorting (FACS) has been acknowledged, and the hunt for cardiac specific markers has intensified. As cardiomyocytes have traditionally been characterized by their expression of specific transcription factors and structural proteins, and not by specific surface markers, this constitutes a significant bottleneck. Lately, Flk-1, c-kit and the cellular prion protein have been reported to specify cardiac progenitors, however, no surface markers have so far been reported to specify a committed cardiomyocyte. Herein show for the first time, that embryonic cardiomyocytes can be isolated with 98% purity, based on their expression of vascular cell adhesion molecule-1 (VCAM-1). The FACS-isolated cells express phenotypic markers for embryonic committed cardiomyocytes but not cardiac progenitors. An important aspect of FACS is to provide viable cells with retention of functionality. We show that VCAM-1 positive cardiomyocytes can be isolated with 95% viability suitable for in vitro culture, functional assays or expression analysis. In patch-clamp experiments we provide evidence of functionally intact cardiomyocytes of both atrial and ventricular subtypes. This work establishes that cardiomyocytes can be isolated with a high degree of purity and viability through FACS, based on specific surface marker expression as has been done in the hematopoietic field for decades. Our FACS protocol represents a significant advance in which purified populations of cardiomyocytes may be isolated and utilized for downstream applications, such as purification of ES-cell derived cardiomyocytes.
Pontén, Annica; Walsh, Stuart; Malan, Daniela; Xian, Xiaojie; Schéele, Susanne; Tarnawski, Laura; Fleischmann, Bernd K.; Jovinge, Stefan
2013-01-01
Purification of cardiomyocytes from the embryonic mouse heart, embryonic stem (ES) or induced pluripotent stem cells (iPS) is a challenging task and will require specific isolation procedures. Lately the significance of surface markers for the isolation of cardiac cell populations with fluorescence activated cell sorting (FACS) has been acknowledged, and the hunt for cardiac specific markers has intensified. As cardiomyocytes have traditionally been characterized by their expression of specific transcription factors and structural proteins, and not by specific surface markers, this constitutes a significant bottleneck. Lately, Flk-1, c-kit and the cellular prion protein have been reported to specify cardiac progenitors, however, no surface markers have so far been reported to specify a committed cardiomyocyte. Herein show for the first time, that embryonic cardiomyocytes can be isolated with 98% purity, based on their expression of vascular cell adhesion molecule-1 (VCAM-1). The FACS-isolated cells express phenotypic markers for embryonic committed cardiomyocytes but not cardiac progenitors. An important aspect of FACS is to provide viable cells with retention of functionality. We show that VCAM-1 positive cardiomyocytes can be isolated with 95% viability suitable for in vitro culture, functional assays or expression analysis. In patch-clamp experiments we provide evidence of functionally intact cardiomyocytes of both atrial and ventricular subtypes. This work establishes that cardiomyocytes can be isolated with a high degree of purity and viability through FACS, based on specific surface marker expression as has been done in the hematopoietic field for decades. Our FACS protocol represents a significant advance in which purified populations of cardiomyocytes may be isolated and utilized for downstream applications, such as purification of ES-cell derived cardiomyocytes. PMID:24386094
Hudson, Quanah J.; Seidl, Christine I.M.; Kulinski, Tomasz M.; Huang, Ru; Warczok, Katarzyna E.; Bittner, Romana; Bartolomei, Marisa S.; Barlow, Denise P.
2011-01-01
A subset of imprinted genes in the mouse have been reported to show imprinted expression that is restricted to the placenta, a short-lived extra-embryonic organ. Notably these so-called 'placental-specific' imprinted genes are expressed from both parental alleles in embryo and adult tissues. The placenta is an embryonic-derived organ that is closely associated with maternal tissue and as a consequence, maternal contamination can be mistaken for maternal-specific imprinted expression. The complexity of the placenta, which arises from multiple embryonic lineages, poses additional problems in accurately assessing allele-specific repressive epigenetic modifications in genes that also show lineage-specific silencing in this organ. These problems require that extra evidence be obtained to support the imprinted status of genes whose imprinted expression is restricted to the placenta. We show here that the extra-embryonic visceral yolk sac (VYS), a nutritive membrane surrounding the developing embryo, shows a similar 'extra-embryonic-lineage-specific' pattern of imprinted expression. We present an improved enzymatic technique for separating the bilaminar VYS and show that this pattern of imprinted expression is restricted to the endoderm layer. Finally, we show that VYS 'extra-embryonic-lineage-specific' imprinted expression is regulated by DNA methylation in a similar manner as shown for genes showing multi-lineage imprinted expression in extra-embryonic, embryonic and adult tissues. These results show that the VYS is an improved model for studying the epigenetic mechanisms regulating extra-embryonic-lineage-specific imprinted expression. PMID:21354127
Hartman, Matthew E.; Librande, Jason R.; Medvedev, Ivan O.; Ahmad, Rabiah N.; Moussavi-Harami, Farid; Gupta, Pritha P.; Chien, Wei-Ming; Chin, Michael T.
2014-01-01
Generating cardiomyocytes from embryonic stem cells is an important technique for understanding cardiovascular development, the origins of cardiovascular diseases and also for providing potential reagents for cardiac repair. Numerous methods have been published but often are technically challenging, complex, and are not easily adapted to assessment of specific gene contributions to cardiac myocyte differentiation. Here we report the development of an optimized protocol to induce the differentiation of mouse embryonic stem cells to cardiac myocytes that is simplified and easily adapted for genetic studies. Specifically, we made four critical findings that distinguish our protocol: 1) mouse embryonic stem cells cultured in media containing CHIR99021 and PD0325901 to maintain pluripotency will efficiently form embryoid bodies containing precardiac mesoderm when cultured in these factors at a reduced dosage, 2) low serum conditions promote cardiomyocyte differentiation and can be used in place of commercially prepared StemPro nutrient supplement, 3) the Wnt inhibitor Dkk-1 is dispensable for efficient cardiac differentiation and 4) tracking differentiation efficiency may be done with surface expression of PDGFRα alone. In addition, cardiac mesodermal precursors generated by this system can undergo lentiviral infection to manipulate the expression of specific target molecules to assess effects on cardiac myocyte differentiation and maturation. Using this approach, we assessed the effects of CHF1/Hey2 on cardiac myocyte differentiation, using both gain and loss of function. Overexpression of CHF1/Hey2 at the cardiac mesoderm stage had no apparent effect on cardiac differentiation, while knockdown of CHF1/Hey2 resulted in increased expression of atrial natriuretic factor and connexin 43, suggesting an alteration in the phenotype of the cardiomyocytes. In summary we have generated a detailed and simplified protocol for generating cardiomyocytes from mES cells that is optimized for investigating factors that affect cardiac differentiation. PMID:24667642
Clemente, Cristina; Montalvo, María Gregoria; Seiki, Motoharu; Arroyo, Alicia G.
2017-01-01
Matrix metalloproteinases (MMPs) constitute a large group of endoproteases that play important functions during embryonic development, tumor metastasis and angiogenesis by degrading components of the extracellular matrix. Within this family, we focused our study on Mt4-mmp (also called Mmp17) that belongs to a distinct subset that is anchored to the cell surface via a glycosylphosphatidylinositol (GPI) moiety and with the catalytic site exposed to the extracellular space. Information about its function and substrates is very limited to date, and little has been reported on its role in the developing embryo. Here, we report a detailed expression analysis of Mt4-mmp during mouse embryonic development by using a LacZ reporter transgenic mouse line. We showed that Mt4-mmp is detected from early stages of development to postnatal stages following a dynamic and restricted pattern of expression. Mt4-mmp was first detected at E8.5 limited to the intersomitic vascularization, the endocardial endothelium and the dorsal aorta. Mt4-mmpLacZ/+ cells were also observed in the neural crest cells, somites, floor plate and notochord at early stages. From E10.5, expression localized in the limb buds and persists during limb development. A strong expression in the brain begins at E12.5 and continues to postnatal stages. Specifically, staining was observed in the olfactory bulb, cerebral cortex, hippocampus, striatum, septum, dorsal thalamus and the spinal cord. In addition, LacZ-positive cells were also detected during eye development, initially at the hyaloid artery and later on located in the lens and the neural retina. Mt4-mmp expression was confirmed by quantitative RT-PCR and western blot analysis in some embryonic tissues. Our data point to distinct functions for this metalloproteinase during embryonic development, particularly during brain formation, angiogenesis and limb development. PMID:28926609
Assembly of embryonic and extraembryonic stem cells to mimic embryogenesis in vitro.
Harrison, Sarah Ellys; Sozen, Berna; Christodoulou, Neophytos; Kyprianou, Christos; Zernicka-Goetz, Magdalena
2017-04-14
Mammalian embryogenesis requires intricate interactions between embryonic and extraembryonic tissues to orchestrate and coordinate morphogenesis with changes in developmental potential. Here, we combined mouse embryonic stem cells (ESCs) and extraembryonic trophoblast stem cells (TSCs) in a three-dimensional scaffold to generate structures whose morphogenesis is markedly similar to that of natural embryos. By using genetically modified stem cells and specific inhibitors, we show that embryogenesis of ESC- and TSC-derived embryos-ETS-embryos-depends on cross-talk involving Nodal signaling. When ETS-embryos develop, they spontaneously initiate expression of mesoderm and primordial germ cell markers asymmetrically on the embryonic and extraembryonic border, in response to Wnt and BMP signaling. Our study demonstrates the ability of distinct stem cell types to self-assemble in vitro to generate embryos whose morphogenesis, architecture, and constituent cell types resemble those of natural embryos. Copyright © 2017, American Association for the Advancement of Science.
Embryonic stem cells improve skeletal muscle recovery after extreme atrophy in mice.
Artioli, Guilherme Giannini; De Oliveira Silvestre, João Guilherme; Guilherme, João Paulo Limongi França; Baptista, Igor Luchini; Ramos, Gracielle Vieira; Da Silva, Willian José; Miyabara, Elen Haruka; Moriscot, Anselmo Sigari
2015-03-01
We injected embryonic stem cells into mouse tibialis anterior muscles subjected to botulinum toxin injections as a model for reversible neurogenic atrophy. Muscles were exposed to botulinum toxin for 4 weeks and allowed to recover for up to 6 weeks. At the onset of recovery, a single muscle injection of embryonic stem cells was administered. The myofiber cross-sectional area, single twitch force, peak tetanic force, time-to-peak force, and half-relaxation time were determined. Although the stem cell injection did not affect the myofiber cross-sectional area gain in recovering muscles, most functional parameters improved significantly compared with those of recovering muscles that did not receive the stem cell injection. Muscle function recovery was accelerated by embryonic stem cell delivery in this durable neurogenic atrophy model. We conclude that stem cells should be considered a potential therapeutic tool for recovery after extreme skeletal muscle atrophy. © 2014 Wiley Periodicals, Inc.
A structure-based extracellular matrix expansion mechanism of fibrous tissue growth.
Kalson, Nicholas S; Lu, Yinhui; Taylor, Susan H; Starborg, Tobias; Holmes, David F; Kadler, Karl E
2015-05-20
Embryonic growth occurs predominately by an increase in cell number; little is known about growth mechanisms later in development when fibrous tissues account for the bulk of adult vertebrate mass. We present a model for fibrous tissue growth based on 3D-electron microscopy of mouse tendon. We show that the number of collagen fibrils increases during embryonic development and then remains constant during postnatal growth. Embryonic growth was explained predominately by increases in fibril number and length. Postnatal growth arose predominately from increases in fibril length and diameter. A helical crimp structure was established in embryogenesis, and persisted postnatally. The data support a model where the shape and size of tendon is determined by the number and position of embryonic fibroblasts. The collagen fibrils that these cells synthesise provide a template for postnatal growth by structure-based matrix expansion. The model has important implications for growth of other fibrous tissues and fibrosis.
Shows, Kathryn H; Shiang, Rita
2008-11-01
Treacher Collins syndrome is an autosomal-dominant mandibulofacial dysostosis caused by haploinsufficiency of the TCOF1 gene product treacle. Mouse Tcof1 protein is approximately 61% identical and 71% similar to treacle, and heterozygous knockout of Tcof1 causes craniofacial malformation. Tcof1 expression is high in developing neural crest, but much lower in other tissues. To investigate this dual regulation, highly conserved regions upstream of TCOF1 homologs were tested through deletion and mutation reporter assays, and conserved predicted transcription factor binding sites were assessed through chromatin binding studies. Assays were performed in mouse P19 embryonic carcinoma cells and in HEK293 cells to determine differential activation in cell types at different stages of differentiation. Binding of Cebpb, Zfp161, and Sp1 transcription factors was specific to the Tcof1 regulatory region in P19 cells. The Zfp161 binding site demonstrated P19 cell-specific repression, while the Sp1/Sp3 candidate site demonstrated HEK293 cell-specific activation. Moreover, presence of c-myb and Zfp161 transcripts was specific to P19 cells. A minimal promoter fragment from -253 to +43 bp directs constitutive expression in both cell types, and dual regulation of Tcof1 appears to be through differential repression of this minimal promoter. The CpG island at the transcription start site remains unmethylated in P19 cells, 11.5 dpc mouse embryonic tissue, and adult mouse ear, which supports constitutive activation of the Tcof1 promoter.
Yin, Haifeng; Nichols, Teresa D; Horowitz, Jonathan M
2010-07-01
The Sp-family of transcription factors is comprised by nine members, Sp1-9, that share a highly conserved DNA-binding domain. Sp2 is a poorly characterized member of this transcription factor family that is widely expressed in murine and human cell lines yet exhibits little DNA-binding or trans-activation activity in these settings. As a prelude to the generation of a "knock-out" mouse strain, we isolated a mouse Sp2 cDNA and performed a detailed analysis of Sp2 transcription in embryonic and adult mouse tissues. We report that (1) the 5' untranslated region of Sp2 is subject to alternative splicing, (2) Sp2 transcription is regulated by at least two promoters that differ in their cell-type specificity, (3) one Sp2 promoter is highly active in nine mammalian cell lines and strains and is regulated by at least five discrete stimulatory and inhibitory elements, (4) a variety of sub-genomic messages are synthesized from the Sp2 locus in a tissue- and cell-type-specific fashion and these transcripts have the capacity to encode a novel partial-Sp2 protein, and (5) RNA in situ hybridization assays indicate that Sp2 is widely expressed during mouse embryogenesis, particularly in the embryonic brain, and robust Sp2 expression occurs in neurogenic regions of the post-natal and adult brain. Copyright (c) 2010 Elsevier B.V. All rights reserved.
Contrast imaging in mouse embryos using high-frequency ultrasound.
Denbeigh, Janet M; Nixon, Brian A; Puri, Mira C; Foster, F Stuart
2015-03-04
Ultrasound contrast-enhanced imaging can convey essential quantitative information regarding tissue vascularity and perfusion and, in targeted applications, facilitate the detection and measure of vascular biomarkers at the molecular level. Within the mouse embryo, this noninvasive technique may be used to uncover basic mechanisms underlying vascular development in the early mouse circulatory system and in genetic models of cardiovascular disease. The mouse embryo also presents as an excellent model for studying the adhesion of microbubbles to angiogenic targets (including vascular endothelial growth factor receptor 2 (VEGFR2) or αvβ3) and for assessing the quantitative nature of molecular ultrasound. We therefore developed a method to introduce ultrasound contrast agents into the vasculature of living, isolated embryos. This allows freedom in terms of injection control and positioning, reproducibility of the imaging plane without obstruction and motion, and simplified image analysis and quantification. Late gestational stage (embryonic day (E)16.6 and E17.5) murine embryos were isolated from the uterus, gently exteriorized from the yolk sac and microbubble contrast agents were injected into veins accessible on the chorionic surface of the placental disc. Nonlinear contrast ultrasound imaging was then employed to collect a number of basic perfusion parameters (peak enhancement, wash-in rate and time to peak) and quantify targeted microbubble binding in an endoglin mouse model. We show the successful circulation of microbubbles within living embryos and the utility of this approach in characterizing embryonic vasculature and microbubble behavior.
Hydrocortisone-induced embryotoxicity and embryonic drug disposition in H-2 congenic mice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roberts, L.S.G.
Congenic mouse strains C57BL/10Sn (B10) and B10.A/SgSn(B10A), genetically different only at the H-2 complex, were compared for sensitivity to glucocorticoid-induced embryotoxicity and embryonic drug disposition. B10A mice dosed intramuscularly with 0, 100, 150 and 200 mg hydrocortisone/kg body weight on gestational day twelve, and B10 mice injected with 0, 200, 400, 600, and 800 mg/kg, were evaluated at dissection on gestational day eighteen for signs of toxicity. In both strains, probit analysis of cleft palate production demonstrated a linear dose response. The ED50 for cleft palate production demonstrates a linear dose response. The ED50 for cleft palate production in B10Amore » mice was 143.6 mg/kg and 512.0 mg/kg for the B10 strain. Embryonic exposure was evaluated by administration of /sup 3/H-hydrocortisone (5 uCi/mouse) to pregnant mice on day twelve of gestation, at the ED50 for cleft palate production in B10A strain. The purposes of the experiment were to quantify the difference in susceptibility to steroid-induced cleft palate, determine if a milder manifestation of embryotoxicity, fetal growth retardation, occurred at sub-clefting dosages, and determine if the difference in sensitivity to hydrocortisone-induced embryotoxicity was the result of an underlying difference in embryonic exposure to the teratogen.« less
2011-01-01
Background Genetic alterations in human topoisomerase II alpha (TOP2A) are linked to cancer susceptibility. TOP2A decatenates chromosomes and thus is necessary for multiple aspects of cell division including DNA replication, chromosome condensation and segregation. Topoisomerase II alpha is also required for embryonic development in mammals, as mouse Top2a knockouts result in embryonic lethality as early as the 4-8 cell stage. The purpose of this study was to determine whether the extended developmental capability of zebrafish top2a mutants arises from maternal expression of top2a or compensation from its top2b paralogue. Results Here, we describe bloody minded (blm), a novel mutant of zebrafish top2a. In contrast to mouse Top2a nulls, zebrafish top2a mutants survive to larval stages (4-5 day post fertilization). Developmental analyses demonstrate abundant expression of maternal top2a but not top2b. Inhibition or poisoning of maternal topoisomerase II delays embryonic development by extending the cell cycle M-phase. Zygotic top2a and top2b are co-expressed in the zebrafish CNS, but endogenous or ectopic top2b RNA appear unable to prevent the blm phenotype. Conclusions We conclude that maternal top2a enables zebrafish development before the mid-zygotic transition (MZT) and that zebrafish top2a and top2b are not functionally redundant during development after activation of the zygotic genome. PMID:22111588
Developmental bias in cleavage-stage mouse blastomeres
Tabansky, Inna; Lenarcic, Alan; Draft, Ryan W.; Loulier, Karine; Keskin, Derin B; Rosains, Jacqueline; Rivera-Feliciano, José; Lichtman, Jeff W.; Livet, Jean; Stern, Joel NH; Sanes, Joshua R.; Eggan, Kevin
2012-01-01
Summary Introduction The cleavage stage mouse embryo is composed of superficially equivalent blastomeres that will generate both the embryonic inner cell mass (ICM) and the supportive trophectoderm (TE). However, it remains unsettled whether the contribution of each blastomere to these two lineages can be accounted for by chance. Addressing the question of blastomere cell fate may be of practical importance, as preimplantation genetic diagnosis (PGD) requires removal of blastomeres from the early human embryo. To determine if blastomere allocation to the two earliest lineages is random, we developed and utilized a recombination-mediated, non-invasive combinatorial fluorescent labeling method for embryonic lineage tracing. Results When we induced recombination at cleavage stages, we observed a statistically significant bias in the contribution of the resulting labeled clones to the trophectoderm or the inner cell mass in a subset of embryos. Surprisingly, we did not find a correlation between localization of clones in the embryonic and abembryonic hemispheres of the late blastocyst and their allocation to the TE and ICM, suggesting that TE-ICM bias arises separately from embryonic-abembryonic bias. Rainbow lineage tracing also allowed us to demonstrate that the bias observed in the blastocyst persists into post-implantation stages, and therefore has relevance for subsequent development. Discussion The Rainbow transgenic mice that we describe here have allowed us to detect lineage-dependent bias in early development. They should also enable assessment of the developmental equivalence of mammalian progenitor cells in a variety of tissues. PMID:23177476
NASA Technical Reports Server (NTRS)
Hardman, P.; Spooner, B. S.
1992-01-01
We examined the biosynthetic patterns of interstitial collagens in mouse embryonic submandibular and sublingual glands cultured in vitro. Rudiments explanted on day 13 of gestation and cultured for 24, 48, and 72 h all synthesized collagen types I, III, and V. However, while the total incorporation of label into collagenous proteins did not change over the three-day culture period, the rate of accumulation of newly synthesized types I and III did change. At 24 h, the ratio of newly synthesized collagen types I:III was approximately 2, whereas at 72 h, the ratio was approximately 5. These data suggest that collagen types I and III may be important in initiation of branching in this organ, but that type I may become dominant in the later stages of development and in maintenance of the adult organ.
Generating gene knockout rats by homologous recombination in embryonic stem cells
Tong, Chang; Huang, Guanyi; Ashton, Charles; Li, Ping; Ying, Qi-Long
2013-01-01
We describe here a detailed protocol for generating gene knockout rats by homologous recombination in embryonic stem (ES) cells. This protocol comprises the following procedures: derivation and expansion of rat ES cells, construction of gene-targeting vectors, generation of gene-targeted rat ES cells and, finally, production of gene-targeted rats. The major differences between this protocol and the classical mouse gene-targeting protocol include ES cell culture methods, drug selection scheme, colony picking and screening strategies. This ES cell–based gene-targeting technique allows sophisticated genetic modifications to be performed in the rat, as many laboratories have been doing in the mouse for the past two decades. Recently we used this protocol to generate Tp53 (also known as p53) gene knockout rats. The entire process requires ~1 year to complete, from derivation of ES cells to generation of knockout rats. PMID:21637202
Zscan4 restores the developmental potency of embryonic stem cells
Amano, Tomokazu; Hirata, Tetsuya; Falco, Geppino; Monti, Manuela; Sharova, Lioudmila V.; Amano, Misa; Sheer, Sarah; Hoang, Hien G.; Piao, Yulan; Stagg, Carole A.; Yamamizu, Kohei; Akiyama, Tomohiko; Ko, Minoru S.H.
2013-01-01
The developmental potency of mouse embryonic stem (ES) cells, which is the ability to contribute to a whole embryo is known to deteriorate during long-term cell culture. Previously we have shown that ES cells oscillate between Zscan4- and Zscan4+ states, and the transient activation of Zscan4 is required for the maintenance of telomeres and genome stability of ES cells. Here we show that increasing the frequency of Zscan4 activation in mouse ES cells restores and maintains their developmental potency in long-term cell culture. Injection of a single ES cell with such increased potency into a tetraploid blastocyst gives rise to an entire embryo with a higher success rate. These results not only provide a means to rejuvenate ES cells by manipulating Zscan4 expression, but also indicate the active roles of Zscan4 in the long-term maintenance of ES cell potency. PMID:23739662
Isolation and characterization of node/notochord-like cells from mouse embryonic stem cells.
Winzi, Maria K; Hyttel, Poul; Dale, Jacqueline Kim; Serup, Palle
2011-11-01
The homeobox gene Noto is expressed in the node and its derivative the notochord. Here we use a targeted Noto-GFP reporter to isolate and characterize node/notochord-like cells derived from mouse embryonic stem cells. We find very few Noto-expressing cells after spontaneous differentiation. However, the number of Noto-expressing cells was increased when using Activin A to induce a Foxa2- and Brachyury-expressing progenitor population, whose further differentiation into Noto-expressing cells was improved by simultaneous inhibition of BMP, Wnt, and retinoic acid signaling. Noto-GFP(+) cells expressed the node/notochord markers Noto, Foxa2, Shh, Noggin, Chordin, Foxj1, and Brachyury; showed a vacuolarization characteristic of notochord cells; and can integrate into midline structures when grafted into Hensen's node of gastrulating chicken embryos. The ability to generate node/notochord-like cells in vitro will aid the biochemical characterization of these developmentally important structures.
Cencioni, Chiara; Spallotta, Francesco; Savoia, Matteo; Kuenne, Carsten; Guenther, Stefan; Re, Agnese; Wingert, Susanne; Rehage, Maike; Sürün, Duran; Siragusa, Mauro; Smith, Jacob G; Schnütgen, Frank; von Melchner, Harald; Rieger, Michael A; Martelli, Fabio; Riccio, Antonella; Fleming, Ingrid; Braun, Thomas; Zeiher, Andreas M; Farsetti, Antonella; Gaetano, Carlo
2018-03-29
Nitric oxide (NO) synthesis is a late event during differentiation of mouse embryonic stem cells (mESC) and occurs after release from serum and leukemia inhibitory factor (LIF). Here we show that after release from pluripotency, a subpopulation of mESC, kept in the naive state by 2i/LIF, expresses endothelial nitric oxide synthase (eNOS) and endogenously synthesizes NO. This eNOS/NO-positive subpopulation (ESNO+) expresses mesendodermal markers and is more efficient in the generation of cardiovascular precursors than eNOS/NO-negative cells. Mechanistically, production of endogenous NO triggers rapid Hdac2 S-nitrosylation, which reduces association of Hdac2 with the transcriptional repression factor Zeb1, allowing mesendodermal gene expression. In conclusion, our results suggest that the interaction between Zeb1, Hdac2, and eNOS is required for early mesendodermal differentiation of naive mESC.
NASA Astrophysics Data System (ADS)
Izumikawa, Tomomi; Sato, Ban; Kitagawa, Hiroshi
2014-01-01
Chondroitin sulfate (CS) proteoglycans are present on the surfaces of virtually all cells and in the extracellular matrix and are required for cytokinesis at early developmental stages. Studies have shown that heparan sulfate (HS) is essential for maintaining mouse embryonic stem cells (ESCs) that are primed for differentiation, whereas the function of CS has not yet been elucidated. To clarify the role of CS, we generated glucuronyltransferase-I-knockout ESCs lacking CS. We found that CS was required to maintain the pluripotency of ESCs and promoted initial ESC commitment to differentiation compared with HS. In addition, CS-A and CS-E polysaccharides, but not CS-C polysaccharides, bound to E-cadherin and enhanced ESC differentiation. Multiple-lineage differentiation was inhibited in chondroitinase ABC-digested wild-type ESCs. Collectively, these results suggest that CS is a novel determinant in controlling the functional integrity of ESCs via binding to E-cadherin.
Bazou, Despina; Kearney, Roisin; Mansergh, Fiona; Bourdon, Celine; Farrar, Jane; Wride, Michael
2011-01-01
In the present paper, gene expression analysis of mouse embryonic stem (ES) cells levitated in a novel ultrasound standing wave trap (USWT) (Bazou et al. 2005a) at variable acoustic pressures (0.08–0.85 MPa) and times (5–60 min) was performed. Our results showed that levitation of ES cells at the highest employed acoustic pressure for 60 min does not modify gene expression and cells maintain their pluripotency. Embryoid bodies (EBs) also expressed the early and late neural differentiation markers, which were also unaffected by the acoustic field. Our results suggest that the ultrasound trap microenvironment is minimally invasive as the biologic consequences of ES cell replication and EB differentiation proceed without significantly affecting gene expression. The technique holds great promise in safe cell manipulation techniques for a variety of applications including tissue engineering and regenerative medicine. (E-mail: Bazoud@tcd.ie) PMID:21208732
ChIP-seq Identification of Weakly Conserved Heart Enhancers
Blow, Matthew J.; McCulley, David J.; Li, Zirong; Zhang, Tao; Akiyama, Jennifer A.; Holt, Amy; Plajzer-Frick, Ingrid; Shoukry, Malak; Wright, Crystal; Chen, Feng; Afzal, Veena; Bristow, James; Ren, Bing; Black, Brian L.; Rubin, Edward M.; Visel, Axel; Pennacchio, Len A.
2011-01-01
Accurate control of tissue-specific gene expression plays a pivotal role in heart development, but few cardiac transcriptional enhancers have thus far been identified. Extreme non-coding sequence conservation successfully predicts enhancers active in many tissues, but fails to identify substantial numbers of heart enhancers. Here we used ChIP-seq with the enhancer-associated protein p300 from mouse embryonic day 11.5 heart tissue to identify over three thousand candidate heart enhancers genome-wide. Compared to other tissues studied at this time-point, most candidate heart enhancers are less deeply conserved in vertebrate evolution. Nevertheless, the testing of 130 candidate regions in a transgenic mouse assay revealed that most of them reproducibly function as enhancers active in the heart, irrespective of their degree of evolutionary constraint. These results provide evidence for a large population of poorly conserved heart enhancers and suggest that the evolutionary constraint of embryonic enhancers can vary depending on tissue type. PMID:20729851
Isolation and Characterization of Node/Notochord-Like Cells from Mouse Embryonic Stem Cells
Winzi, Maria K.; Hyttel, Poul; Dale, Jacqueline Kim; Serup, Palle
2014-01-01
The homeobox gene Noto is expressed in the node and its derivative the notochord. Here we use a targeted Noto-GFP reporter to isolate and characterize node/notochord-like cells derived from mouse embryonic stem cells. We find very few Noto-expressing cells after spontaneous differentiation. However, the number of Noto-expressing cells was increased when using Activin A to induce a Foxa2- and Brachyury-expressing progenitor population, whose further differentiation into Noto-expressing cells was improved by simultaneous inhibition of BMP, Wnt, and retinoic acid signaling. Noto-GFP+ cells expressed the node/notochord markers Noto, Foxa2, Shh, Noggin, Chordin, Foxj1, and Brachyury; showed a vacuolarization characteristic of notochord cells; and can integrate into midline structures when grafted into Hensen’s node of gastrulating chicken embryos. The ability to generate node/notochord-like cells in vitro will aid the biochemical characterization of these developmentally important structures. PMID:21351873
Sasaki, Toshiya; Oh, Ki-Bong; Matsuoka, Hideaki; Saito, Mikako
2008-03-01
Bioactive compounds that may control the specific differentiation from mouse embryonic stem (ES) cells into cardiac-like cells have been screened from herbal medicines. Among seven preparations, Panax ginseng was found to promote the differentiation into beating cells and to sustain their beating for longer than the control. Active compounds were found in its water-soluble fraction. Although they were not isolated, their candidates were surveyed in 42 compounds selected from the database of P. ginseng. Finally we found that vitamin B12 (VB12) and methionine were active. VB12 accelerated the differentiation into beating cells and made the beating rate constantly 100%. Moreover, VB12 was effective in the recovery of beating that was inhibited by spermine action. The mechanism of action of VB12 is discussed in termo of the relevance of intercellular electrical signal transduction.
Differentiated NSC-34 cells as an in vitro Cell Model for VX
2014-09-11
potential candidate drugs/antidotes. The development of an in vitro cellular model to aid in discovering new NA therapeutics would be highly beneficial...principally as potent cholinesterase inhibitors. The toxicity of these compounds and their mode of action are attributed to the inhibition of the enzyme ...of motor neuron- enriched, embryonic mouse spinal cord cells with mouse neuroblastoma as a potential neuronal model (Durham et al., 1993). This cell
Cantera, Rafael; Lüer, Karin; Rusten, Tor Erik; Barrio, Rosa; Kafatos, Fotis C; Technau, Gerhard M
2002-12-01
The gene spalt is expressed in the embryonic central nervous system of Drosophila melanogaster but its function in this tissue is still unknown. To investigate this question, we used a combination of techniques to analyse spalt mutant embryos. Electron microscopy showed that in the absence of spalt, the central nervous system cells are separated by enlarged extracellular spaces populated by membranous material at 60% of embryonic development. Surprisingly, the central nervous system from slightly older embryos (80% of development) exhibited almost wild-type morphology. An extensive survey by laser confocal microscopy revealed that the spalt mutant central nervous system has abnormal levels of particular cell adhesion and cytoskeletal proteins. Time-lapse analysis of neuronal differentiation in vitro, lineage analysis and transplantation experiments confirmed that the mutation causes cytoskeletal and adhesion defects. The data indicate that in the central nervous system, spalt operates within a regulatory pathway which influences the expression of the beta-catenin Armadillo, its ligand N-Cadherin, Notch, and the cell adhesion molecules Neuroglian, Fasciclin 2 and Fasciclin 3. Effects on the expression of these genes are persistent but many morphological aspects of the phenotype are transient, leading to the concept of sequential redundancy for stable organisation of the central nervous system.
Functional characterization of human pluripotent stem cell-derived arterial endothelial cells.
Zhang, Jue; Chu, Li-Fang; Hou, Zhonggang; Schwartz, Michael P; Hacker, Timothy; Vickerman, Vernella; Swanson, Scott; Leng, Ning; Nguyen, Bao Kim; Elwell, Angela; Bolin, Jennifer; Brown, Matthew E; Stewart, Ron; Burlingham, William J; Murphy, William L; Thomson, James A
2017-07-25
Here, we report the derivation of arterial endothelial cells from human pluripotent stem cells that exhibit arterial-specific functions in vitro and in vivo. We combine single-cell RNA sequencing of embryonic mouse endothelial cells with an EFNB2-tdTomato/EPHB4-EGFP dual reporter human embryonic stem cell line to identify factors that regulate arterial endothelial cell specification. The resulting xeno-free protocol produces cells with gene expression profiles, oxygen consumption rates, nitric oxide production levels, shear stress responses, and TNFα-induced leukocyte adhesion rates characteristic of arterial endothelial cells. Arterial endothelial cells were robustly generated from multiple human embryonic and induced pluripotent stem cell lines and have potential applications for both disease modeling and regenerative medicine.
Ávila-González, Daniela; Vega-Hernández, Eva; Regalado-Hernández, Juan Carlos; De la Jara-Díaz, Julio Francisco; García-Castro, Irma Lydia; Molina-Hernández, Anayansi; Moreno-Verduzco, Elsa Romelia; Razo-Aguilera, Guadalupe; Flores-Herrera, Héctor; Portillo, Wendy; Díaz-Martínez, Néstor Emmanuel; García-López, Guadalupe; Díaz, Néstor Fabián
2015-09-01
Data from the literature suggest that human embryonic stem cell (hESC) lines used in research do not genetically represent all human populations. The derivation of hESC through conventional methods involve the destruction of viable human embryos, as well the use of mouse embryonic fibroblasts as a feeder layer, which has several drawbacks. We obtained the hESC line (Amicqui-1) from poor-quality (PQ) embryos derived and maintained on human amniotic epithelial cells (hAEC). This line displays a battery of markers of pluripotency and we demonstrated the capacity of these cells to produce derivates of the three germ layers. Copyright © 2015. Published by Elsevier B.V.
Tosetti, Valentina; Sassone, Jenny; Ferri, Anna L. M.; Taiana, Michela; Bedini, Gloria; Nava, Sara; Brenna, Greta; Di Resta, Chiara; Pareyson, Davide; Di Giulio, Anna Maria; Carelli, Stephana
2017-01-01
The complex architecture of adult brain derives from tightly regulated migration and differentiation of precursor cells generated during embryonic neurogenesis. Changes at transcriptional level of genes that regulate migration and differentiation may lead to neurodevelopmental disorders. Androgen receptor (AR) is a transcription factor that is already expressed during early embryonic days. However, AR role in the regulation of gene expression at early embryonic stage is yet to be determinate. Long non-coding RNA (lncRNA) Sox2 overlapping transcript (Sox2OT) plays a crucial role in gene expression control during development but its transcriptional regulation is still to be clearly defined. Here, using Bicalutamide in order to pharmacologically inactivated AR, we investigated whether AR participates in the regulation of the transcription of the lncRNASox2OTat early embryonic stage. We identified a new DNA binding region upstream of Sox2 locus containing three androgen response elements (ARE), and found that AR binds such a sequence in embryonic neural stem cells and in mouse embryonic brain. Our data suggest that through this binding, AR can promote the RNA polymerase II dependent transcription of Sox2OT. Our findings also suggest that AR participates in embryonic neurogenesis through transcriptional control of the long non-coding RNA Sox2OT. PMID:28704421
Tosetti, Valentina; Sassone, Jenny; Ferri, Anna L M; Taiana, Michela; Bedini, Gloria; Nava, Sara; Brenna, Greta; Di Resta, Chiara; Pareyson, Davide; Di Giulio, Anna Maria; Carelli, Stephana; Parati, Eugenio A; Gorio, Alfredo
2017-01-01
The complex architecture of adult brain derives from tightly regulated migration and differentiation of precursor cells generated during embryonic neurogenesis. Changes at transcriptional level of genes that regulate migration and differentiation may lead to neurodevelopmental disorders. Androgen receptor (AR) is a transcription factor that is already expressed during early embryonic days. However, AR role in the regulation of gene expression at early embryonic stage is yet to be determinate. Long non-coding RNA (lncRNA) Sox2 overlapping transcript (Sox2OT) plays a crucial role in gene expression control during development but its transcriptional regulation is still to be clearly defined. Here, using Bicalutamide in order to pharmacologically inactivated AR, we investigated whether AR participates in the regulation of the transcription of the lncRNASox2OTat early embryonic stage. We identified a new DNA binding region upstream of Sox2 locus containing three androgen response elements (ARE), and found that AR binds such a sequence in embryonic neural stem cells and in mouse embryonic brain. Our data suggest that through this binding, AR can promote the RNA polymerase II dependent transcription of Sox2OT. Our findings also suggest that AR participates in embryonic neurogenesis through transcriptional control of the long non-coding RNA Sox2OT.
Toh, Yi-Chin; Voldman, Joel
2011-01-01
Shear stress is a ubiquitous environmental cue experienced by stem cells when they are being differentiated or expanded in perfusion cultures. However, its role in modulating self-renewing stem cell phenotypes is unclear, since shear is usually only studied in the context of cardiovascular differentiation. We used a multiplex microfluidic array, which overcomes the limitations of macroperfusion systems in shear application throughput and precision, to initiate a comprehensive, quantitative study of shear effects on self-renewing mouse embryonic stem cells (mESCs), where shear stresses varying by >1000 times (0.016–16 dyn/cm2) are applied simultaneously. When compared with static controls in the presence or absence of a saturated soluble environment (i.e., mESC-conditioned medium), we ascertained that flow-induced shear stress specifically up-regulates the epiblast marker Fgf5. Epiblast-state transition in mESCs involves heparan sulfate proteoglycans (HSPGs), which have also been shown to transduce shear stress in endothelial cells. By disrupting (with sulfation inhibitors and heparinase) and partially reconstituting (with heparin) HSPG function, we show that mESCs also mechanically sense shear stress via HSPGs to modulate Fgf5 expression. This study demonstrates that self-renewing mESCs possess the molecular machinery to sense shear stress and provides quantitative shear application benchmarks for future scalable stem cell culture systems.—Toh, Y.-C., Voldman, J. Fluid shear stress primes mouse embryonic stem cells for differentiation in a self-renewing environment via heparan sulfate proteoglycans transduction. PMID:21183594
Hirobe, Tomohisa; Eguchi-Kasai, Kiyomi; Sugaya, Kimihiko; Murakami, Masahiro
2011-06-01
The effects of low-dose γ-rays on the embryonic development of animal cells are not well studied. The mouse melanocyte is a good model to study the effects of low-dose γ-rays on the development of animal cells, as it possesses visible pigment (melanin) as a differentiation marker. The aim of this study is to investigate in detail the effects of low-dose γ-rays on embryonic development of mouse melanoblasts and melanocytes in the epidermis and hair bulbs at cellular level. Pregnant females of C57BL/10J mice at nine days of gestation were whole-body irradiated with a single acute dose of γrays (0.1, 0.25, 0.5, and 0.75 Gy), and the effects of γ-rays were studied by scoring changes in the development of epidermal melanoblasts and melanocytes, hair follicles, and hair bulb melanocytes at 18 days in gestation. The number of epidermal melanoblasts and melanocytes, hair follicles, and hair bulb melanocytes in the dorsal and ventral skins was markedly decreased even at 0.1 Gy-treated embryos (P < 0.001), and gradually decreased as dose increased. The effects on the ventral skin were greater than those on the dorsal skin. The dramatic reduction in the number of melanocytes compared to melanoblasts was observed in the ventral skin, but not in the dorsal skin. These results suggest that low-dose γ-rays provoke the death of melanoblasts and melanocytes, or inhibit the proliferation and differentiation of melanoblasts and melanocytes, even at the low dose.
Kim, Il-Man; Ramakrishna, Sneha; Gusarova, Galina A; Yoder, Helena M; Costa, Robert H; Kalinichenko, Vladimir V
2005-06-10
Transgenic and gene knock-out studies demonstrated that the mouse Forkhead Box m1 (Foxm1 or Foxm1b) transcription factor (previously called HFH-11B, Trident, Win, or MPP2) is essential for hepatocyte entry into mitosis during liver development, regeneration, and liver cancer. Targeted deletion of Foxm1 gene in mice produces an embryonic lethal phenotype due to severe abnormalities in the development of liver and heart. In this study, we show for the first time that Foxm1(-/-) lungs exhibit severe hypertrophy of arteriolar smooth muscle cells and defects in the formation of peripheral pulmonary capillaries as evidenced by significant reduction in platelet endothelial cell adhesion molecule 1 staining of the distal lung. Consistent with these findings, significant reduction in proliferation of the embryonic Foxm1(-/-) lung mesenchyme was found, yet proliferation levels were normal in the Foxm1-deficient epithelial cells. Severe abnormalities of the lung vasculature in Foxm1(-/-) embryos were associated with diminished expression of the transforming growth factor beta receptor II, a disintegrin and metalloprotease domain 17 (ADAM-17), vascular endothelial growth factor receptors, Polo-like kinase 1, Aurora B kinase, laminin alpha4 (Lama4), and the Forkhead Box f1 transcription factor. Cotransfection studies demonstrated that Foxm1 stimulates transcription of the Lama4 promoter, and this stimulation requires the Foxm1 binding sites located between -1174 and -1145 bp of the mouse Lama4 promoter. In summary, development of mouse lungs depends on the Foxm1 transcription factor, which regulates expression of genes essential for mesenchyme proliferation, extracellular matrix remodeling, and vasculogenesis.
Ingrisch, Sigfrid
1986-11-01
The effect of temperature on embryonic development, voltinism, and hatching was studied in the laboratory in eggs of 21 Central and Southeastern European Tettigoniidae species. In most species, the embryo has to arrive at a postkatatrepsis stage prior to the onset of cold to be able to hatch in the following spring. The rate of embryonic development differs: quickly developing species need 4 weeks at 24°C (prior to cold) and almost all eggs hatch after the first cold treatment, slowly developing species would need 8-12 weeks to do the same. In Central Europe, warmth is not enough for the slowly developing species to have an univoltine life cycle, but they could have it in southern Europe. Most species make use of a dormancy sequence to pass successive winters as follows: an initial embryonic dormancy (either quiscence or diapause in embryonic stage 4) and a final diapause in embryonic stage 23/24. Additionally, 3 forms of aestivation or summer dormancy were observed facultatively: an initial diapause in embryonic stage 4 (induced and terminated at 30°C), a median dormancy shortly before or after katatrepsis (at 30°C), and a penultimate diapause in embryonic stage 20 (at 24°C).The life cycles of the European Tettigoniidae species can follow one of 3 types: 1. annual life cycle (no initial embryonic dormancy); 2. annual or biennial depending on whether laid early or late; 3. biennial or many year life cycle (up to 8 years due to a prolonged initial diapause).
High-throughput identification of small molecules that affect human embryonic vascular development
Vazão, Helena; Rosa, Susana; Barata, Tânia; Costa, Ricardo; Pitrez, Patrícia R.; Honório, Inês; de Vries, Margreet R.; Papatsenko, Dimitri; Benedito, Rui; Saris, Daniel; Khademhosseini, Ali; Quax, Paul H. A.; Pereira, Carlos F.; Mercader, Nadia; Ferreira, Lino
2017-01-01
Birth defects, which are in part caused by exposure to environmental chemicals and pharmaceutical drugs, affect 1 in every 33 babies born in the United States each year. The current standard to screen drugs that affect embryonic development is based on prenatal animal testing; however, this approach yields low-throughput and limited mechanistic information regarding the biological pathways and potential adverse consequences in humans. To develop a screening platform for molecules that affect human embryonic development based on endothelial cells (ECs) derived from human pluripotent stem cells, we differentiated human pluripotent stem cells into embryonic ECs and induced their maturation under arterial flow conditions. These cells were then used to screen compounds that specifically affect embryonic vasculature. Using this platform, we have identified two compounds that have higher inhibitory effect in embryonic than postnatal ECs. One of them was fluphenazine (an antipsychotic), which inhibits calmodulin kinase II. The other compound was pyrrolopyrimidine (an antiinflammatory agent), which inhibits vascular endothelial growth factor receptor 2 (VEGFR2), decreases EC viability, induces an inflammatory response, and disrupts preformed vascular networks. The vascular effect of the pyrrolopyrimidine was further validated in prenatal vs. adult mouse ECs and in embryonic and adult zebrafish. We developed a platform based on human pluripotent stem cell-derived ECs for drug screening, which may open new avenues of research for the study and modulation of embryonic vasculature. PMID:28348206
High-throughput identification of small molecules that affect human embryonic vascular development.
Vazão, Helena; Rosa, Susana; Barata, Tânia; Costa, Ricardo; Pitrez, Patrícia R; Honório, Inês; de Vries, Margreet R; Papatsenko, Dimitri; Benedito, Rui; Saris, Daniel; Khademhosseini, Ali; Quax, Paul H A; Pereira, Carlos F; Mercader, Nadia; Fernandes, Hugo; Ferreira, Lino
2017-04-11
Birth defects, which are in part caused by exposure to environmental chemicals and pharmaceutical drugs, affect 1 in every 33 babies born in the United States each year. The current standard to screen drugs that affect embryonic development is based on prenatal animal testing; however, this approach yields low-throughput and limited mechanistic information regarding the biological pathways and potential adverse consequences in humans. To develop a screening platform for molecules that affect human embryonic development based on endothelial cells (ECs) derived from human pluripotent stem cells, we differentiated human pluripotent stem cells into embryonic ECs and induced their maturation under arterial flow conditions. These cells were then used to screen compounds that specifically affect embryonic vasculature. Using this platform, we have identified two compounds that have higher inhibitory effect in embryonic than postnatal ECs. One of them was fluphenazine (an antipsychotic), which inhibits calmodulin kinase II. The other compound was pyrrolopyrimidine (an antiinflammatory agent), which inhibits vascular endothelial growth factor receptor 2 (VEGFR2), decreases EC viability, induces an inflammatory response, and disrupts preformed vascular networks. The vascular effect of the pyrrolopyrimidine was further validated in prenatal vs. adult mouse ECs and in embryonic and adult zebrafish. We developed a platform based on human pluripotent stem cell-derived ECs for drug screening, which may open new avenues of research for the study and modulation of embryonic vasculature.
Flt1/VEGFR1 heterozygosity causes transient embryonic edema.
Otowa, Yasunori; Moriwaki, Kazumasa; Sano, Keigo; Shirakabe, Masanori; Yonemura, Shigenobu; Shibuya, Masabumi; Rossant, Janet; Suda, Toshio; Kakeji, Yoshihiro; Hirashima, Masanori
2016-06-02
Vascular endothelial growth factor-A is a major player in vascular development and a potent vascular permeability factor under physiological and pathological conditions by binding to a decoy receptor Flt1 and its primary receptor Flk1. In this study, we show that Flt1 heterozygous (Flt1(+/-)) mouse embryos grow up to adult without life-threatening abnormalities but exhibit a transient embryonic edema around the nuchal and back regions, which is reminiscent of increased nuchal translucency in human fetuses. Vascular permeability is enhanced and an intricate infolding of the plasma membrane and huge vesicle-like structures are seen in Flt1(+/-) capillary endothelial cells. Flk1 tyrosine phosphorylation is elevated in Flt1(+/-) embryos, but Flk1 heterozygosity does not suppress embryonic edema caused by Flt1 heterozygosity. When Flt1 mutants are crossed with Aspp1(-/-) mice which exhibit a transient embryonic edema with delayed formation and dysfunction of lymphatic vessels, only 5.7% of Flt1(+/-); Aspp1(-/-) mice survive, compared to expected ratio (25%). Our results demonstrate that Flt1 heterozygosity causes a transient embryonic edema and can be a risk factor for embryonic lethality in combination with other mutations causing non-lethal vascular phenotype.
Locust bean gum as an alternative polymeric coating for embryonic stem cell culture.
Perestrelo, Ana Rubina; Grenha, Ana; Rosa da Costa, Ana M; Belo, José António
2014-07-01
Pluripotent embryonic stem cells (ESCs) have self-renewal capacity and the potential to differentiate into any cellular type depending on specific cues (pluripotency) and, therefore, have become a vibrant research area in the biomedical field. ESCs are usually cultured in gelatin or on top of a monolayer of feeder cells such as mitotically inactivated mouse embryonic fibroblasts (MEFsi). The latter is the gold standard support to maintain the ESCs in the pluripotent state. Examples of versatile, non-animal derived and inexpensive materials that are able to support pluripotent ESCs are limited. Therefore, our aim was to find a biomaterial able to support ESC growth in a pluripotent state avoiding laborious and time consuming parallel culture of MEFsi and as simple to handle as gelatin. Many of the new biomaterials used to develop stem cell microenvironments are using natural polymers adsorbed or covalently attached to the surface to improve the biocompatibility of synthetic polymers. Locust beam gum (LBG) is a natural, edible polymer, which has a wide range of potential applications in different fields, such as food and pharmaceutical industry, due to its biocompatibility, adhesiveness and thickening properties. The present work brings a natural system based on the use of LBG as a coating for ESC culture. Undifferentiated mouse ESCs were cultured on commercially available LBG to evaluate its potential in maintaining pluripotent ESCs. In terms of morphology, ESC colonies in LBG presented the regular dome shape with bright borders, similar to the colonies obtained in co-cultures with MEFsi and characteristic of pluripotent ESC colonies. In short-term cultures, ESC proliferation in LBG coating was similar to ESC cultured in gelatin and the cells maintained their viability. The activity of alkaline phosphatase and Nanog, Sox2 and Oct4 expression of mouse ESCs cultured in LBG were comparable or in some cases higher than in ESCs cultured in gelatin. An in vitro differentiation assay revealed that mouse ESCs cultured in LBG preserve their tri-lineage differentiation capacity. In conclusion, our data indicate that LBG coating promotes mouse ESC growth in an undifferentiated state demonstrating to be a viable, non-animal derived alternative to gelatin to support pluripotent mouse ESCs in culture. Copyright © 2014 Elsevier B.V. All rights reserved.
Gordeeva, O F; Nikonova, T M
2013-01-01
Pluripotent stem cells represent an attractive cell source for regenerative medicine. However, the risk of teratoma formation after transplantation restricts their clinical application. Therefore, to adequately evaluate the potential risk of tumorigenicity after cell transplantation into human tissues, effective animal transplantation assays need to be developed. We performed a multiparameter (cell number, transplantation site, cell type, host) comparative analysis of the efficiency of tumor development after transplantation of mouse and human embryonic stem (ES) cells and their malignant counterparts, teratocarcinoma (EC) cells, into animal recipients and revealed several key correlations. We found that the efficiency of tumor growth was higher after intraperitoneal than after subcutaneous transplantations of all cell lines studied. The minimal cell numbers sufficient for tumor growth in immunodeficient nude mice were 100-fold lower for intraperitoneal than for subcutaneous transplantations of mouse and human ES cells (10(3) vs. 10(5) and 10(4) vs. 10(6), respectively). Moreover, mouse ES and EC cells formed tumors in immunodeficient and immunocompetent mice more effectively than human ES and EC cells. After intraperitoneal transplantation of 10(3), 10(4), and 10(5) mouse ES cells, teratomas developed in 83%, 100%, and 100% of nude mice, whereas after human ES cell transplantation, teratomas developed in 0%, 17%, and 60%, respectively. In addition, malignant mouse and human EC cells initiated tumor growth after intraperitoneal transplantation significantly faster and more effectively than ES cells. Mouse and human ES cells formed different types of teratomas containing derivatives of three germ layers but different numbers of undifferentiated cells. ES cell-like sublines with differentiation potential similar to the parental cell line were recloned only from mouse, but not from human, ES cell teratomas. These findings provide new information about the possibility and efficiency of tumor growth after transplantation of pluripotent stem cells. This information allows one to predict and possibly prevent the possible risks of tumorigenicity that could arise from stem cell therapeutics.
Zelensky, Alex N.; Sanchez, Humberto; Ristic, Dejan; Vidic, Iztok; van Rossum-Fikkert, Sari E.; Essers, Jeroen; Wyman, Claire; Kanaar, Roland
2013-01-01
Caffeine is a widely used inhibitor of the protein kinases that play a central role in the DNA damage response. We used chemical inhibitors and genetically deficient mouse embryonic stem cell lines to study the role of DNA damage response in stable integration of the transfected DNA and found that caffeine rapidly, efficiently and reversibly inhibited homologous integration of the transfected DNA as measured by several homologous recombination-mediated gene-targeting assays. Biochemical and structural biology experiments revealed that caffeine interfered with a pivotal step in homologous recombination, homologous joint molecule formation, through increasing interactions of the RAD51 nucleoprotein filament with non-homologous DNA. Our results suggest that recombination pathways dependent on extensive homology search are caffeine-sensitive and stress the importance of considering direct checkpoint-independent mechanisms in the interpretation of the effects of caffeine on DNA repair. PMID:23666627
Minimal Phenotype of Mice Homozygous for a Null Mutation in the Forkhead/Winged Helix Gene, Mf2
Kume, Tsutomu; Deng, Keyu; Hogan, Brigid L. M.
2000-01-01
Mf2 (mesoderm/mesenchyme forkhead 2) encodes a forkhead/winged helix transcription factor expressed in numerous tissues of the mouse embryo, including paraxial mesoderm, somites, branchial arches, vibrissae, developing central nervous system, and developing kidney. We have generated mice homozygous for a null mutation in the Mf2 gene (Mf2lacZ) to examine its role during embryonic development. The lacZ allele also allows monitoring of Mf2 gene expression. Homozygous null mutants are viable and fertile and have no major developmental defects. Some mutants show renal abnormalities, including kidney hypoplasia and hydroureter, but the penetrance of this phenotype is only 40% or lower, depending on the genetic background. These data suggest that Mf2 can play a unique role in kidney development, but there is functional redundancy in this organ and other tissues with other forkhead/winged helix genes. PMID:10648626
Minimal phenotype of mice homozygous for a null mutation in the forkhead/winged helix gene, Mf2.
Kume, T; Deng, K; Hogan, B L
2000-02-01
Mf2 (mesoderm/mesenchyme forkhead 2) encodes a forkhead/winged helix transcription factor expressed in numerous tissues of the mouse embryo, including paraxial mesoderm, somites, branchial arches, vibrissae, developing central nervous system, and developing kidney. We have generated mice homozygous for a null mutation in the Mf2 gene (Mf2(lacZ)) to examine its role during embryonic development. The lacZ allele also allows monitoring of Mf2 gene expression. Homozygous null mutants are viable and fertile and have no major developmental defects. Some mutants show renal abnormalities, including kidney hypoplasia and hydroureter, but the penetrance of this phenotype is only 40% or lower, depending on the genetic background. These data suggest that Mf2 can play a unique role in kidney development, but there is functional redundancy in this organ and other tissues with other forkhead/winged helix genes.
Torihashi, Shigeko; Hattori, Takako; Hasegawa, Hirotaka; Kurahashi, Masaaki; Ogaeri, Takunori; Fujimoto, Toyoshi
2009-03-01
Bone morphogenetic protein (BMP) signaling is essential for normal development of the gastrointestinal (GI) tract. BMPs also play multiple roles in vascular smooth muscle cells; however, the BMP signaling in the development of the GI musculature remains to be clarified. We investigated the expression of BMPs and their receptors in mouse embryonic GI tracts by immunohistochemistry and in situ hybridization. We demonstrated that BMP2, BMP receptor Ib and BMP receptor II were expressed in the smooth muscle progenitors from E12 to E13 for the first time. BMP signaling on smooth muscle differentiation was examined by implantation of agarose beads soaked with BMPs in the in vitro developmental model that is gut-like structures from mouse embryonic stem (ES) cells. BMP2 rather than BMP4 beads enhanced smooth muscle differentiation, and increased gut-like structures showing spontaneous contractions and expressing intensive alpha-smooth muscle actin immunoreactivity. This increase was confirmed by up-regulation of SM22 mRNA shown by real-time PCR. By addition of noggin beads or noggin to the medium at BMP2 bead implantation, the ratio of contractive gut-like structures decreased. Implantation of BMP2 beads at EB7 (EB--embryoid bodies) (corresponding to E12 or E13 of mouse embryo) showed the highest effects and up-regulation of transcription factors msx-1 after 24h. This increase was blocked by noggin, and msx-1 decreased to almost the control level after 60 h. BMP2 beads at EB7 increased platelet-derived growth factor-A (PDGF-A) in the differentiating smooth muscle cells. We have recently reported that PDGF-A is expressed in the developing inner circular smooth muscle and is crucial for the longitudinal smooth muscle differentiation. Taken together, BMP signaling was expressed for a short window in the smooth muscle progenitors and the signal, especially BMP2, plays an essential role in smooth muscle differentiation in cooperation with PDGF signaling.
Boisset, Jean-Charles; Clapes, Thomas; Van Der Linden, Reinier; Dzierzak, Elaine; Robin, Catherine
2013-01-01
Summary Integrins are transmembrane receptors that play important roles as modulators of cell behaviour through their adhesion properties and the initiation of signaling cascades. The αIIb integrin subunit (CD41) is one of the first cell surface markers indicative of hematopoietic commitment. αIIb pairs exclusively with β3 to form the αIIbβ3 integrin. β3 (CD61) also pairs with αv (CD51) to form the αvβ3 integrin. The expression and putative role of these integrins during mouse hematopoietic development is as yet unknown. We show here that hematopoietic stem cells (HSCs) differentially express αIIbβ3 and αvβ3 integrins throughout development. Whereas the first HSCs generated in the aorta at mid-gestation express both integrins, HSCs from the placenta only express αvβ3, and most fetal liver HSCs do not express either integrin. By using αIIb deficient embryos, we show that αIIb is not only a reliable HSC marker but it also plays an important and specific function in maintaining the HSC activity in the mouse embryonic aorta. PMID:23789102
Lee, Peter C. W.; Dodart, Jean-Cosme; Aron, Liviu; Finley, Lydia W.; Bronson, Roderick T.; Haigis, Marcia C.; Yankner, Bruce A.; Harper, J. Wade
2013-01-01
The Uba6 (E1)-Use1 (E2) ubiquitin transfer cascade is a poorly understood alternative arm of the ubiquitin proteasome system (UPS) required for mouse embryonic development, independent of the canonical Uba1-E2-E3 pathway. Loss of neuronal Uba6 during embryonic development results in altered patterning of neurons in the hippocampus and the amygdala, decreased dendritic spine density, and numerous behavioral disorders. The levels of the E3 ubiquitin ligase Ube3a (E6-AP) and Shank3, both linked with dendritic spine function, are elevated in the amygdala of Uba6-deficient mice, while levels of the Ube3a substrate Arc are reduced. Uba6 and Use1 promote proteasomal turnover of Ube3a in mouse embryo fibroblasts (MEFs) and catalyze Ube3a ubiquitylation in vitro. These activities occur in parallel with an independent pathway involving Uba1-UbcH7, but in a spatially distinct manner in MEFs. These data reveal an unanticipated role for Uba6 in neuronal development, spine architecture, mouse behavior, and turnover of Ube3a. PMID:23499007
In situ electrochemical detection of embryonic stem cell differentiation.
Yea, Cheol-Heon; An, Jeung Hee; Kim, Jungho; Choi, Jeong-Woo
2013-06-20
Stem cell sensors have emerged as a promising technique to electrochemically monitor the functional status and viability of stem cells. However, efficient electrochemical analysis techniques are required for the development of effective electrochemical stem cell sensors. In the current study, we report a newly developed electrochemical cyclic voltammetry (CV) system to determine the status of mouse embryonic stem (ES) cells. 1-Naphthly phosphate (1-NP), which was dephosphorylated by alkaline phosphatase into a 1-naphthol on an undifferentiated mouse ES cell, was used as a substrate to electrochemically monitor the differentiation status of mouse ES cells. The peak current in the cyclic voltammetry of 1-NP increased linearly with the concentration of pure 1-NP (R(2)=0.9623). On the other hand, the peak current in the electrochemical responses of 1-NP decreased as the number of undifferentiated ES cells increased. The increased dephosphorylation of 1-NP to 1-naphthol made a decreased electrochemical signal. Non-toxicity of 1-NP was confirmed. In conclusion, the proposed electrochemical analysis system can be applied to an electrical stem cell chip for diagnosis, drug detection and on-site monitoring. Copyright © 2013 Elsevier B.V. All rights reserved.
Nakano, Yu; Iwanaga, Shinya; Mizumoto, Hiroshi; Kajiwara, Toshihisa
2018-03-03
Hematopoietic stem cells (HSCs) have the ability to differentiate into all types of blood cells and can be transplanted to treat blood disorders. However, it is difficult to obtain HSCs in large quantities because of the shortage of donors. Recent efforts have focused on acquiring HSCs by differentiation of pluripotent stem cells. As a conventional differentiation method of pluripotent stem cells, the formation of embryoid bodies (EBs) is often employed. However, the size of EBs is limited by depletion of oxygen and nutrients, which prevents them from being efficient for the production of HSCs. In this study, we developed a large-scale hematopoietic differentiation approach for mouse embryonic stem (ES) cells by applying a hollow fiber (HF)/organoid culture method. Cylindrical organoids, which had the potential for further spontaneous differentiation, were established inside of hollow fibers. Using this method, we improved the proliferation rate of mouse ES cells to produce an increased HSC population and achieved around a 40-fold higher production volume of HSCs in HF culture than in conventional EB culture. Therefore, the HF/organoid culture method may be a new mass culture method to acquire pluripotent stem cell-derived HSCs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suzuki, Kazuo; Yasunami, Michio; Matsuda, Yoichi
1996-09-01
Embryonic TEA domain-containing factor (ETF) belongs to the family of proteins structurally related to transcriptional enhancer factor-1 (TEF-1) and is implicated in neural development. Isolation and characterization of the cosmid clones encoding the mouse ETF gene (Etdf) revealed that Etdf spans approximately 17.9 kb and consists of 12 exons. The exon-intron structure of Etdf closely resembles that of the Drosophila scalloped gene, indicating that these genes may have evolved from a common ancestor. Then multiple transcription initiation sites revealed by S1 protection and primer extension analyses are consistent with the absence of the canonical TATA and CAAT boxes in themore » 5{prime}-flanking region, which contains many potential regulatory sequences, such as the E-box, N-box, Sp1 element, GATA-1 element, TAATGARAT element, and B2 short interspersed element (SINE) as well as several direct and inverted repeat sequences. The Etdf locus was assigned to the proximal region of mouse chromosome 7 using fluorescence in situ hybridization and linkage mapping analyses. These results provide the molecular basis for studying the regulation, in vivo function, and evolution of Etdf. 29 refs., 5 figs., 1 tab.« less
Suzuki, K; Yasunami, M; Matsuda, Y; Maeda, T; Kobayashi, H; Terasaki, H; Ohkubo, H
1996-09-01
Embryonic TEA domain-containing factor (ETF) belongs to the family of proteins structurally related to transcriptional enhancer factor-1 (TEF-1) and is implicated in neural development. Isolation and characterization of the cosmid clones encoding the mouse ETF gene (Etdf) revealed that Etdf spans approximately 17.9 kb and consists of 12 exons. The exon-intron structure of Etdf closely resembles that of the Drosophila scalloped gene, indicating that these genes may have evolved from a common ancestor. The multiple transcription initiation sites revealed by S1 protection and primer extension analyses are consistent with the absence of the canonical TATA and CAAT boxes in the 5'-flanking region, which contains many potential regulatory sequences, such as the E-box, N-box, Sp1 element, GATA-1 element, TAATGARAT element, and B2 short interspersed element (SINE) as well as several direct and inverted repeat sequences. The Etdf locus was assigned to the proximal region of mouse chromosome 7 using fluorescence in situ hybridization and linkage mapping analyses. These results provide the molecular basis for studying the regulation, in vivo function, and evolution of Etdf.
4-N-pyridin-2-yl-benzamide nanotubes compatible with mouse stem cell and oral delivery in Drosophila
NASA Astrophysics Data System (ADS)
Yadav, Jhillu S.; Lavanya, Madugula P.; Das, Pragna P.; Bag, Indira; Krishnan, Anita; Jagannadh, Bulusu; Mohapatra, Debendra K.; Pal Bhadra, Manika; Bhadra, Utpal
2010-04-01
p-aminobenzoic acid (PABA), a structural moiety of many commercial drugs, is self-assembled with linker alkyl side chains to form tubular nanostructures. The tubes exhibited fluorescence either intrinsic or from fluorescent molecules embedded in the wall during self-assembly. Uptake and inter-cellular delivery of the conjugated nanotubes in human cancer cells and in mouse embryonic stem cells were demonstrated by fluorescence imaging and flow cytometry. Biocompatibility, cytotoxicity and clearance were monitored both ex vivo in mouse multipotent embryonic stem cells and in vivo in adult Drosophila. Accumulation of nanotubes had no adverse effects and abnormalities on stem cell morphology and proliferation rate. A distinct distribution of two separate nanotubes in various internal organs of Drosophila interprets that accumulation of nanomaterials might be interdependent on the side chain modifications and physiological settings of cell or tissue types. Unlike carbon nanomaterials, exposure of PABA nanotubes does not produce any hazards including locomotion defects and mortality of adult flies. Despite differential uptake and clearance from multiple live tissues, the use of self-assembled nanotubes can add new dimensions and scope to the development of dual-purpose oral carriers for the fulfilment of many biological promises.
The maintenance of pluripotency following laser direct-write of mouse embryonic stem cells.
Raof, Nurazhani Abdul; Schiele, Nathan R; Xie, Yubing; Chrisey, Douglas B; Corr, David T
2011-03-01
The ability to precisely pattern embryonic stem (ES) cells in vitro into predefined arrays/geometries may allow for the recreation of a stem cell niche for better understanding of how cellular microenvironmental factors govern stem cell maintenance and differentiation. In this study, a new gelatin-based laser direct-write (LDW) technique was utilized to deposit mouse ES cells into defined arrays of spots, while maintaining stem cell pluripotency. Results obtained from these studies showed that ES cells were successfully printed into specific patterns and remained viable. Furthermore, ES cells retained the expression of Oct4 in nuclei after LDW, indicating that the laser energy did not affect their maintenance of an undifferentiated state. The differentiation potential of mouse ES cells after LDW was confirmed by their ability to form embryoid bodies (EBs) and to spontaneously become cell lineages representing all three germ layers, revealed by the expression of marker proteins of nestin (ectoderm), Myf-5 (mesoderm) and PDX-1 (endoderm), after 7 days of cultivation. Gelatin-based LDW provides a new avenue for stem cell patterning, with precision and control of the cellular microenvironment. Copyright © 2010 Elsevier Ltd. All rights reserved.
RIC8A is essential for the organisation of actin cytoskeleton and cell-matrix interaction.
Ruisu, Katrin; Meier, Riho; Kask, Keiu; Tõnissoo, Tambet; Velling, Teet; Pooga, Margus
2017-08-15
RIC8A functions as a chaperone and guanine nucleotide exchange factor for a subset of G protein α subunits. Multiple G protein subunits mediate various signalling events that regulate cell adhesion and migration and the involvement of RIC8A in some of these processes has been demonstrated. We have previously shown that the deficiency of RIC8A causes a failure in mouse gastrulation and neurogenesis - major events in embryogenesis that rely on proper association of cells with the extracellular matrix (ECM) and involve active cell migration. To elaborate on these findings, we used Ric8a -/- mouse embryonic stem cells and Ric8a-deficient mouse embryonic fibroblasts, and found that RIC8A plays an important role in the organisation and remodelling of actin cytoskeleton and cell-ECM association. Ric8a-deficient cells were able to attach to different ECM components, but were unable to spread correctly, and did not form stress fibres or focal adhesion complexes. We also found that the presence of RIC8A is necessary for the activation of β1 integrins and integrin-mediated cell migration. Copyright © 2017 Elsevier Inc. All rights reserved.
Production of medakafish chimeras from a stable embryonic stem cell line.
Hong, Y; Winkler, C; Schartl, M
1998-03-31
Embryonic stem (ES) cell lines provide a unique tool for introducing targeted or random genetic alterations through gene replacement, insertional mutagenesis, and gene addition because they offer the possibility for in vitro selection for the desired, but extremely rare, recombinant genotypes. So far only mouse blastocyst embryos are known to have the competence to give rise to such ES cell lines. We recently have established a stable cell line (Mes1) from blastulae of the medakafish (Oryzias latipes) that shows all characteristics of mouse ES cells in vitro. Here, we demonstrate that Mes1 cells also have the competence for chimera formation; 90% of host blastulae transplanted with Mes1 cells developed into chimeric fry. This high frequency was not compromised by cryostorage or DNA transfection of the donor cells. The Mes1 cells contributed to numerous organs derived from all three germ layers and differentiated into various types of functional cells, most readily observable in pigmented chimeras. These features suggest the possibility that Mes1 cells may be a fish equivalent of mouse ES cells and that medaka can be used as another system for the application of the ES cell technology.
Production of medakafish chimeras from a stable embryonic stem cell line
Hong, Yunhan; Winkler, Christoph; Schartl, Manfred
1998-01-01
Embryonic stem (ES) cell lines provide a unique tool for introducing targeted or random genetic alterations through gene replacement, insertional mutagenesis, and gene addition because they offer the possibility for in vitro selection for the desired, but extremely rare, recombinant genotypes. So far only mouse blastocyst embryos are known to have the competence to give rise to such ES cell lines. We recently have established a stable cell line (Mes1) from blastulae of the medakafish (Oryzias latipes) that shows all characteristics of mouse ES cells in vitro. Here, we demonstrate that Mes1 cells also have the competence for chimera formation; 90% of host blastulae transplanted with Mes1 cells developed into chimeric fry. This high frequency was not compromised by cryostorage or DNA transfection of the donor cells. The Mes1 cells contributed to numerous organs derived from all three germ layers and differentiated into various types of functional cells, most readily observable in pigmented chimeras. These features suggest the possibility that Mes1 cells may be a fish equivalent of mouse ES cells and that medaka can be used as another system for the application of the ES cell technology. PMID:9520425
Rap1 GTPase is required for mouse lens epithelial maintenance and morphogenesis
Maddala, Rupalatha; Nagendran, Tharkika; Lang, Richard A.; Morozov, Alexei; Rao, Ponugoti V.
2015-01-01
Rap1, a Ras-like small GTPase, plays a crucial role in cell-matrix adhesive interactions, cell-cell junction formation, cell polarity and migration. The role of Rap1 in vertebrate organ development and tissue architecture, however, remains elusive. We addressed this question in a mouse lens model system using a conditional gene targeting approach. While individual germline deficiency of either Rap1a or Rap1b did not cause overt defects in mouse lens, conditional double deficiency (Rap1 cKO) prior to lens placode formation led to an ocular phenotype including microphthalmia and lens opacification in embryonic mice. The embryonic Rap1 cKO mouse lens exhibited striking defects including loss of E-cadherin- and ZO-1-based cell-cell junctions, disruption of paxillin and β1-integrin-based cell adhesive interactions along with abnormalities in cell shape and apical-basal polarity of epithelium. These epithelial changes were accompanied by increased levels of α-smooth muscle actin, vimentin and N-cadherin, and expression of transcriptional suppressors of E-cadherin (Snai1, Slug and Zeb2), and a mesenchymal metabolic protein (Dihydropyrimidine dehydrogenase). Additionally, while lens differentiation was not overtly affected, increased apoptosis and dysregulated cell cycle progression were noted in epithelium and fibers in Rap1 cKO mice. Collectively these observations uncover a requirement for Rap1 in maintenance of lens epithelial phenotype and morphogenesis. PMID:26212757
van den Brink, Susanne C.; Baillie-Johnson, Peter; Balayo, Tina; Hadjantonakis, Anna-Katerina; Nowotschin, Sonja; Turner, David A.; Martinez Arias, Alfonso
2014-01-01
Mouse embryonic stem cells (mESCs) are clonal populations derived from preimplantation mouse embryos that can be propagated in vitro and, when placed into blastocysts, contribute to all tissues of the embryo and integrate into the normal morphogenetic processes, i.e. they are pluripotent. However, although they can be steered to differentiate in vitro into all cell types of the organism, they cannot organise themselves into structures that resemble embryos. When aggregated into embryoid bodies they develop disorganised masses of different cell types with little spatial coherence. An exception to this rule is the emergence of retinas and anterior cortex-like structures under minimal culture conditions. These structures emerge from the cultures without any axial organisation. Here, we report that small aggregates of mESCs, of about 300 cells, self-organise into polarised structures that exhibit collective behaviours reminiscent of those that cells exhibit in early mouse embryos, including symmetry breaking, axial organisation, germ layer specification and cell behaviour, as well as axis elongation. The responses are signal specific and uncouple processes that in the embryo are tightly associated, such as specification of the anteroposterior axis and anterior neural development, or endoderm specification and axial elongation. We discuss the meaning and implications of these observations and the potential uses of these structures which, because of their behaviour, we suggest to call ‘gastruloids’. PMID:25371360
Nishikawa, Keizo; Iwamoto, Yoriko; Ishii, Masaru
2014-05-01
The development of methods for differentiation of embryonic stem cells (ESCs) and induced pluripotent stem cell (iPSCs) into functional cells have helped to analyze the mechanism regulating cellular processes and to explore cell-based assays for drug discovery. Although several reports have demonstrated methods for differentiation of mouse ESCs into osteoclast-like cells, it remains unclear whether these methods are applicable for differentiation of iPSCs to osteoclasts. In this study, we developed a simple method for stepwise differentiation of mouse ESCs and iPSCs into bone-resorbing osteoclasts based upon a monoculture approach consisting of three steps. First, based on conventional hanging-drop methods, embryoid bodies (EBs) were produced from mouse ESCs or iPSCs. Second, EBs were cultured in medium supplemented with macrophage colony-stimulating factor (M-CSF), and differentiated to osteoclast precursors, which expressed CD11b. Finally, ESC- or iPSC-derived osteoclast precursors stimulated with receptor activator of nuclear factor-B ligand (RANKL) and M-CSF formed large multinucleated osteoclast-like cells that expressed tartrate-resistant acid phosphatase and were capable of bone resorption. Molecular analysis showed that the expression of osteoclast marker genes such as Nfatc1, Ctsk, and Acp5 are increased in a RANKL-dependent manner. Thus, our procedure is simple and easy and would be helpful for stem cell-based bone research.
Fisher, Cynthia L; Marks, Hendrik; Cho, Lily Ting-Yin; Andrews, Robert; Wormald, Sam; Carroll, Thomas; Iyer, Vivek; Tate, Peri; Rosen, Barry; Stunnenberg, Hendrik G; Fisher, Amanda G; Skarnes, William C
2017-12-01
Mouse embryonic stem (ES) cells are a popular model system to study biological processes, though uncovering recessive phenotypes requires inactivating both alleles. Building upon resources from the International Knockout Mouse Consortium (IKMC), we developed a targeting vector for second allele inactivation in conditional-ready IKMC 'knockout-first' ES cell lines. We applied our technology to several epigenetic regulators, recovering bi-allelic targeted clones with a high efficiency of 60% and used Flp recombinase to restore expression in two null cell lines to demonstrate how our system confirms causality through mutant phenotype reversion. We designed our strategy to select against re-targeting the 'knockout-first' allele and identify essential genes in ES cells, including the histone methyltransferase Setdb1. For confirmation, we exploited the flexibility of our system, enabling tamoxifen inducible conditional gene ablation while controlling for genetic background and tamoxifen effects. Setdb1 ablated ES cells exhibit severe growth inhibition, which is not rescued by exogenous Nanog expression or culturing in naive pluripotency '2i' media, suggesting that the self-renewal defect is mediated through pluripotency network independent pathways. Our strategy to generate null mutant mouse ES cells is applicable to thousands of genes and repurposes existing IKMC Intermediate Vectors. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
van den Brink, Susanne C; Baillie-Johnson, Peter; Balayo, Tina; Hadjantonakis, Anna-Katerina; Nowotschin, Sonja; Turner, David A; Martinez Arias, Alfonso
2014-11-01
Mouse embryonic stem cells (mESCs) are clonal populations derived from preimplantation mouse embryos that can be propagated in vitro and, when placed into blastocysts, contribute to all tissues of the embryo and integrate into the normal morphogenetic processes, i.e. they are pluripotent. However, although they can be steered to differentiate in vitro into all cell types of the organism, they cannot organise themselves into structures that resemble embryos. When aggregated into embryoid bodies they develop disorganised masses of different cell types with little spatial coherence. An exception to this rule is the emergence of retinas and anterior cortex-like structures under minimal culture conditions. These structures emerge from the cultures without any axial organisation. Here, we report that small aggregates of mESCs, of about 300 cells, self-organise into polarised structures that exhibit collective behaviours reminiscent of those that cells exhibit in early mouse embryos, including symmetry breaking, axial organisation, germ layer specification and cell behaviour, as well as axis elongation. The responses are signal specific and uncouple processes that in the embryo are tightly associated, such as specification of the anteroposterior axis and anterior neural development, or endoderm specification and axial elongation. We discuss the meaning and implications of these observations and the potential uses of these structures which, because of their behaviour, we suggest to call 'gastruloids'. © 2014. Published by The Company of Biologists Ltd.
An essential role for UTX in resolution and activation of bivalent promoters
Dhar, Shilpa S.; Lee, Sung-Hun; Chen, Kaifu; Zhu, Guangjing; Oh, WonKyung; Allton, Kendra; Gafni, Ohad; Kim, Young Zoon; Tomoiga, Alin S.; Barton, Michelle Craig; Hanna, Jacob H.; Wang, Zhibin; Li, Wei; Lee, Min Gyu
2016-01-01
Trimethylated histone H3 lysine 27 (H3K27me3) is linked to gene silencing, whereas H3K4me3 is associated with gene activation. These two marks frequently co-occupy gene promoters, forming bivalent domains. Bivalency signifies repressed but activatable states of gene expression and can be resolved to active, H3K4me3-prevalent states during multiple cellular processes, including differentiation, development and epithelial mesenchymal transition. However, the molecular mechanism underlying bivalency resolution remains largely unknown. Here, we show that the H3K27 demethylase UTX (also called KDM6A) is required for the resolution and activation of numerous retinoic acid (RA)-inducible bivalent genes during the RA-driven differentiation of mouse embryonic stem cells (ESCs). Notably, UTX loss in mouse ESCs inhibited the RA-driven bivalency resolution and activation of most developmentally critical homeobox (Hox) a–d genes. The UTX-mediated resolution and activation of many bivalent Hox genes during mouse ESC differentiation were recapitulated during RA-driven differentiation of human NT2/D1 embryonal carcinoma cells. In support of the importance of UTX in bivalency resolution, Utx-null mouse ESCs and UTX-depleted NT2/D1 cells displayed defects in RA-driven cellular differentiation. Our results define UTX as a bivalency-resolving histone modifier necessary for stem cell differentiation. PMID:26762983
Cammarata, P R; Zhou, C; Chen, G; Singh, I; Reeves, R E; Kuszak, J R; Robinson, M L
1999-07-01
Intracellular osmotic stress is believed to be linked to the advancement of diabetic cataract. Although the accumulation of organic osmolytes (myo-inositol, sorbitol, taurine) is thought to protect the lens by maintaining osmotic homeostasis, the physiologic implication of osmotic imbalance (i.e., hyperosmotic stress caused by intracellular over-accumulation of organic osmolytes) on diabetic cataract formation is not clearly understood. Studies from this laboratory have identified several osmotic compensatory mechanisms thought to afford the lens epithelium, but not the lens fibers, protection from water stress during intervals of osmotic crisis. This model is founded on the supposition that the fibers of the lens are comparatively more susceptible to damage by osmotic insult than is the lens epithelium. To test this premise, several transgenic mouse lines were developed that over-express the bovine sodium/myo-inositol cotransporter (bSMIT) gene in lens fiber cells. Of the several transgenic mouse lines generated, two, MLR14 and MLR21, were analyzed in detail. Transgenic mRNA expression was analyzed in adult and embryonic transgenic mice by a coupled reverse transcriptase-polymerase chain reaction (RT-PCR) and in situ hybridization on embryonic tissue sections, respectively. Intralenticular myo-inositol content from individual mouse lenses was quantified by anion exchange chromatography and pulsed electrochemical detection. Ocular histology of embryonic day 15.5 (E15.5) embryos from both transgenic (TG) families was analyzed and compared to their respective nontransgenic (NTG) littermates. Both RT-PCR and in situ hybridization determined that transgene expression was higher in line MLR21 than in line MLR14. Consistent with this, intralenticular myo-inositol from MLR21 TG mice was markedly higher compared with NTG littermates or MLR14 TG mice. Histologic analysis of E15.5 MLR21 TG embryos disclosed a marked swelling in the differentiating fibers of the bow region and subcapsular fibers of the central zone, whereas the lens epithelium appeared morphologically normal. The lenticular changes, initiated early during lens development in TG MLR21 embryos, result in severe bilateral nuclear cataracts readily observable in neonates under normal rearing and dietary conditions. In contrast, TG MLR14 pups reared under standard conditions produced no lens opacity. Lens fiber swelling and related cataractous outgrowth positively correlated to the degree of lens bSMIT gene expression and intralenticular myo-inositol content. The affected (i.e., swollen) lens fibers appeared to be unable to cope with the water stress generated by the transgene-induced over-accumulation of myo-inositol and, as a result of this inability to osmoregulate, suffered osmotic damage due to water influx.
Signaling hierarchy regulating human endothelial cell development
USDA-ARS?s Scientific Manuscript database
Our present knowledge of the regulation of mammalian endothelial cell differentiation has been largely derived from studies of mouse embryonic development. However, unique mechanisms and hierarchy of signals that govern human endothelial cell development are unknown and, thus, explored in these stud...
Wiencierz, Anne Maria; Kernbach, Manuel; Ecklebe, Josephine; Monnerat, Gustavo; Tomiuk, Stefan; Raulf, Alexandra; Christalla, Peter; Malan, Daniela; Hesse, Michael; Bosio, Andreas; Fleischmann, Bernd K; Eckardt, Dominik
2015-01-01
Central questions such as cardiomyocyte subtype emergence during cardiogenesis or the availability of cardiomyocyte subtypes for cell replacement therapy require selective identification and purification of atrial and ventricular cardiomyocytes. However, current methodologies do not allow for a transgene-free selective isolation of atrial or ventricular cardiomyocytes due to the lack of subtype specific cell surface markers. In order to develop cell surface marker-based isolation procedures for cardiomyocyte subtypes, we performed an antibody-based screening on embryonic mouse hearts. Our data indicate that atrial and ventricular cardiomyocytes are characterized by differential expression of integrin α6 (ITGA6) throughout development and in the adult heart. We discovered that the expression level of this surface marker correlates with the intracellular subtype-specific expression of MLC-2a and MLC-2v on the single cell level and thereby enables the discrimination of cardiomyocyte subtypes by flow cytometry. Based on the differential expression of ITGA6 in atria and ventricles during cardiogenesis, we developed purification protocols for atrial and ventricular cardiomyocytes from mouse hearts. Atrial and ventricular identities of sorted cells were confirmed by expression profiling and patch clamp analysis. Here, we introduce a non-genetic, antibody-based approach to specifically isolate highly pure and viable atrial and ventricular cardiomyocytes from mouse hearts of various developmental stages. This will facilitate in-depth characterization of the individual cellular subsets and support translational research applications.
Wiencierz, Anne Maria; Kernbach, Manuel; Ecklebe, Josephine; Monnerat, Gustavo; Tomiuk, Stefan; Raulf, Alexandra; Christalla, Peter; Malan, Daniela; Hesse, Michael; Bosio, Andreas; Fleischmann, Bernd K.; Eckardt, Dominik
2015-01-01
Rationale Central questions such as cardiomyocyte subtype emergence during cardiogenesis or the availability of cardiomyocyte subtypes for cell replacement therapy require selective identification and purification of atrial and ventricular cardiomyocytes. However, current methodologies do not allow for a transgene-free selective isolation of atrial or ventricular cardiomyocytes due to the lack of subtype specific cell surface markers. Methods and Results In order to develop cell surface marker-based isolation procedures for cardiomyocyte subtypes, we performed an antibody-based screening on embryonic mouse hearts. Our data indicate that atrial and ventricular cardiomyocytes are characterized by differential expression of integrin α6 (ITGA6) throughout development and in the adult heart. We discovered that the expression level of this surface marker correlates with the intracellular subtype-specific expression of MLC-2a and MLC-2v on the single cell level and thereby enables the discrimination of cardiomyocyte subtypes by flow cytometry. Based on the differential expression of ITGA6 in atria and ventricles during cardiogenesis, we developed purification protocols for atrial and ventricular cardiomyocytes from mouse hearts. Atrial and ventricular identities of sorted cells were confirmed by expression profiling and patch clamp analysis. Conclusion Here, we introduce a non-genetic, antibody-based approach to specifically isolate highly pure and viable atrial and ventricular cardiomyocytes from mouse hearts of various developmental stages. This will facilitate in-depth characterization of the individual cellular subsets and support translational research applications. PMID:26618511
Dynamic gene expression of Lin-28 during embryonic development in mouse and chicken.
Yokoyama, Shigetoshi; Hashimoto, Megumi; Shimizu, Hirohito; Ueno-Kudoh, Hiroe; Uchibe, Kenta; Kimura, Ichiro; Asahara, Hiroshi
2008-02-01
The Caenorhabditis elegans heterochronic gene lin-28 regulates developmental timing in the nematode trunk. We report the dynamic expression patterns of Lin-28 homologues in mouse and chick embryos. Whole mount in situ hybridization revealed specific and intriguing expression patterns of Lin-28 in the developing mouse and chick limb bud. Mouse Lin-28 expression was detected in both the forelimb and hindlimb at E9.5, but disappeared from the forelimb at E10.5, and finally from the forelimb and hindlimb at E11.5. Chicken Lin-28, which was first detected in the limb primordium at stage 15/16, was also downregulated as the stage proceeded. The amino acid sequences of mouse and chicken Lin-28 genes are highly conserved and the similar expression patterns of Lin-28 during limb development in mouse and chicken suggest that this heterochronic gene is also conserved during vertebrate limb development.
Highly variable penetrance of abnormal phenotypes in embryonic lethal knockout mice
Wilson, Robert; Geyer, Stefan H.; Reissig, Lukas; Rose, Julia; Szumska, Dorota; Hardman, Emily; Prin, Fabrice; McGuire, Christina; Ramirez-Solis, Ramiro; White, Jacqui; Galli, Antonella; Tudor, Catherine; Tuck, Elizabeth; Mazzeo, Cecilia Icoresi; Smith, James C.; Robertson, Elizabeth; Adams, David J.; Mohun, Timothy; Weninger, Wolfgang J.
2017-01-01
Background: Identifying genes that are essential for mouse embryonic development and survival through term is a powerful and unbiased way to discover possible genetic determinants of human developmental disorders. Characterising the changes in mouse embryos that result from ablation of lethal genes is a necessary first step towards uncovering their role in normal embryonic development and establishing any correlates amongst human congenital abnormalities. Methods: Here we present results gathered to date in the Deciphering the Mechanisms of Developmental Disorders (DMDD) programme, cataloguing the morphological defects identified from comprehensive imaging of 220 homozygous mutant and 114 wild type embryos from 42 lethal and subviable lines, analysed at E14.5. Results: Virtually all mutant embryos show multiple abnormal phenotypes and amongst the 42 lines these affect most organ systems. Within each mutant line, the phenotypes of individual embryos form distinct but overlapping sets. Subcutaneous edema, malformations of the heart or great vessels, abnormalities in forebrain morphology and the musculature of the eyes are all prevalent phenotypes, as is loss or abnormal size of the hypoglossal nerve. Conclusions: Overall, the most striking finding is that no matter how profound the malformation, each phenotype shows highly variable penetrance within a mutant line. These findings have challenging implications for efforts to identify human disease correlates. PMID:27996060
Zhou, Jin; Zhang, Ye; Lin, Qiuxia; Liu, Zhiqiang; Wang, Haibin; Duan, Cuimi; Wang, Yanmeng; Hao, Tong; Wu, Kuiwu; Wang, Changyong
2010-07-01
Embryonic stem (ES) cells have the potential to develop into any type of tissue and are considered as a promising source of seeding cells for tissue engineering and transplantation therapy. The main catalyst for ES cells differentiation is the growth into embryoid bodies (EBs), which are utilized widely as the trigger of in vitro differentiation. In this study, a novel method for generating EBs from mouse ES cells through culture in collagen/Matrigel scaffolds was successfully established. When single ES cells were seeded in three dimensional collagen/Matrigel scaffolds, they grew into aggregates gradually and formed simple EBs with circular structures. After 7 days' culture, they formed into cystic EBs that would eventually differentiate into the three embryonic germ layers. Evaluation of the EBs in terms of morphology and potential to differentiate indicated that they were typical in structure and could generate various cell types; they were also able to form into tissue-like structures. Moreover, with introduction of ascorbic acid, ES cells differentiated into cardiomyocytes efficiently and started contracting synchronously at day 19. The results demonstrated that collagen/Matrigel scaffolds supported EBs formation and their subsequent differentiation in a single three dimensional environment. Copyright 2010 Institute of Genetics and Developmental Biology and the Genetics Society of China. Published by Elsevier Ltd. All rights reserved.
Valletta, Elisa; Kučera, Lukáš; Prokeš, Lubomír; Amato, Filippo; Pivetta, Tiziana; Hampl, Aleš; Havel, Josef; Vaňhara, Petr
2016-01-01
Cross-contamination of eukaryotic cell lines used in biomedical research represents a highly relevant problem. Analysis of repetitive DNA sequences, such as Short Tandem Repeats (STR), or Simple Sequence Repeats (SSR), is a widely accepted, simple, and commercially available technique to authenticate cell lines. However, it provides only qualitative information that depends on the extent of reference databases for interpretation. In this work, we developed and validated a rapid and routinely applicable method for evaluation of cell culture cross-contamination levels based on mass spectrometric fingerprints of intact mammalian cells coupled with artificial neural networks (ANNs). We used human embryonic stem cells (hESCs) contaminated by either mouse embryonic stem cells (mESCs) or mouse embryonic fibroblasts (MEFs) as a model. We determined the contamination level using a mass spectra database of known calibration mixtures that served as training input for an ANN. The ANN was then capable of correct quantification of the level of contamination of hESCs by mESCs or MEFs. We demonstrate that MS analysis, when linked to proper mathematical instruments, is a tangible tool for unraveling and quantifying heterogeneity in cell cultures. The analysis is applicable in routine scenarios for cell authentication and/or cell phenotyping in general.
Prokeš, Lubomír; Amato, Filippo; Pivetta, Tiziana; Hampl, Aleš; Havel, Josef; Vaňhara, Petr
2016-01-01
Cross-contamination of eukaryotic cell lines used in biomedical research represents a highly relevant problem. Analysis of repetitive DNA sequences, such as Short Tandem Repeats (STR), or Simple Sequence Repeats (SSR), is a widely accepted, simple, and commercially available technique to authenticate cell lines. However, it provides only qualitative information that depends on the extent of reference databases for interpretation. In this work, we developed and validated a rapid and routinely applicable method for evaluation of cell culture cross-contamination levels based on mass spectrometric fingerprints of intact mammalian cells coupled with artificial neural networks (ANNs). We used human embryonic stem cells (hESCs) contaminated by either mouse embryonic stem cells (mESCs) or mouse embryonic fibroblasts (MEFs) as a model. We determined the contamination level using a mass spectra database of known calibration mixtures that served as training input for an ANN. The ANN was then capable of correct quantification of the level of contamination of hESCs by mESCs or MEFs. We demonstrate that MS analysis, when linked to proper mathematical instruments, is a tangible tool for unraveling and quantifying heterogeneity in cell cultures. The analysis is applicable in routine scenarios for cell authentication and/or cell phenotyping in general. PMID:26821236
Advances in understanding paternally transmitted Chromosomal Abnormalities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marchetti, F; Sloter, E; Wyrobek, A J
2001-03-01
Multicolor FISH has been adapted for detecting the major types of chromosomal abnormalities in human sperm including aneuploidies for clinically-relevant chromosomes, chromosomal aberrations including breaks and rearrangements, and other numerical abnormalities. The various sperm FISH assays have been used to evaluate healthy men, men of advanced age, and men who have received mutagenic cancer therapy. The mouse has also been used as a model to investigate the mechanism of paternally transmitted genetic damage. Sperm FISH for the mouse has been used to detect chromosomally abnormal mouse sperm, while the PAINT/DAPI analysis of mouse zygotes has been used to evaluate themore » types of chromosomal defects that can be paternally transmitted to the embryo and their effects on embryonic development.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Labosky, P.A.; Sakaki, Hiroshi; Hogan, B.L.M.
1996-06-01
Members of the winged helix family of transcription factors are required for the normal embryonic development of the mouse. Using the interspecific backcross panel from The Jackson Laboratory, we have determined the chromosomal locations of four genes that encode winged helix containing proteins. Mf1 was assigned to mouse Chromosome 8, Mf2 to Chromosome 4, Mf3 to Chromosome 9, and Mf4 to Chromosome 13. Since Mf3 is located in a region of Chromosome 9 containing many well-characterized mouse mutations such as short ear (se), ashen (ash), and dilute (d), we have analyzed deletion mutants to determine the location of Mf3 moremore » precisely. 14 refs., 3 figs.« less
Targeted Disruption of Mouse Yin Yang 1 Transcription Factor Results in Peri-Implantation Lethality
Donohoe, Mary E.; Zhang, Xiaolin; McGinnis, Lynda; Biggers, John; Li, En; Shi, Yang
1999-01-01
Yin Yang 1 (YY1) is a zinc finger-containing transcription factor and a target of viral oncoproteins. To determine the biological role of YY1 in mammalian development, we generated mice deficient for YY1 by gene targeting. Homozygosity for the mutated YY1 allele results in embryonic lethality in the mouse. YY1 mutants undergo implantation and induce uterine decidualization but rapidly degenerate around the time of implantation. A subset of YY1 heterozygote embryos are developmentally retarded and exhibit neurulation defects, suggesting that YY1 may have additional roles during later stages of mouse embryogenesis. Our studies demonstrate an essential function for YY1 in the development of the mouse embryo. PMID:10490658
Griffin, Síle M.; Pickard, Mark R.; Orme, Rowan P.; Hawkins, Clive P.; Williams, Adrian C.
2017-01-01
Introduction Vitamin B3 has been shown to play an important role during embryogenesis. Specifically, there is growing evidence that nicotinamide, the biologically active form of vitamin B3, plays a critical role as a morphogen in the differentiation of stem cells to mature cell phenotypes, including those of the central nervous system (CNS). Detailed knowledge of the action of small molecules during neuronal differentiation is not only critical for uncovering mechanisms underlying lineage-specification, but also to establish more effective differentiation protocols to obtain clinically relevant cells for regenerative therapies for neurodegenerative conditions such as Huntington’s disease (HD). Thus, this study aimed to investigate the potential of nicotinamide to promote the conversion of stem cells to mature CNS neurons. Methods Nicotinamide was applied to differentiating mouse embryonic stem cells (mESC; Sox1GFP knock-in 46C cell line) during their conversion towards a neural fate. Cells were assessed for changes in their proliferation, differentiation and maturation; using immunocytochemistry and morphometric analysis methods. Results Results presented indicate that 10 mM nicotinamide, when added at the initial stages of differentiation, promoted accelerated progression of ESCs to a neural lineage in adherent monolayer cultures. By 14 days in vitro (DIV), early exposure to nicotinamide was shown to increase the numbers of differentiated βIII-tubulin-positive neurons. Nicotinamide decreased the proportion of pluripotent stem cells, concomitantly increasing numbers of neural progenitors at 4 DIV. These progenitors then underwent rapid conversion to neurons, observed by a reduction in Sox 1 expression and decreased numbers of neural progenitors in the cultures at 14 DIV. Furthermore, GABAergic neurons generated in the presence of nicotinamide showed increased maturity and complexity of neurites at 14 DIV. Therefore, addition of nicotinamide alone caused an accelerated passage of pluripotent cells through lineage specification and further to non-dividing mature neurons. Conclusions Our results show that, within an optimal dose range, nicotinamide is able to singly and selectively direct the conversion of embryonic stem cells to mature neurons, and therefore may be a critical factor for normal brain development, thus supporting previous evidence of the fundamental role of vitamins and their metabolites during early CNS development. In addition, nicotinamide may offer a simple effective supplement to enhance the conversion of stem cells to clinically relevant neurons. PMID:28817722
Directed differentiation of embryonic stem cells using a bead-based combinatorial screening method.
Tarunina, Marina; Hernandez, Diana; Johnson, Christopher J; Rybtsov, Stanislav; Ramathas, Vidya; Jeyakumar, Mylvaganam; Watson, Thomas; Hook, Lilian; Medvinsky, Alexander; Mason, Chris; Choo, Yen
2014-01-01
We have developed a rapid, bead-based combinatorial screening method to determine optimal combinations of variables that direct stem cell differentiation to produce known or novel cell types having pre-determined characteristics. Here we describe three experiments comprising stepwise exposure of mouse or human embryonic cells to 10,000 combinations of serum-free differentiation media, through which we discovered multiple novel, efficient and robust protocols to generate a number of specific hematopoietic and neural lineages. We further demonstrate that the technology can be used to optimize existing protocols in order to substitute costly growth factors with bioactive small molecules and/or increase cell yield, and to identify in vitro conditions for the production of rare developmental intermediates such as an embryonic lymphoid progenitor cell that has not previously been reported.
Embryonic stem cells (ESCs) must maintain the integrity of their genomes or risk passing potentially deleterious mutations on to numerous tissues. Thus, ESCs have a unique genome surveillance system and easily undergo apoptosis or differentiation when DNA damage is detected. The protein p53 is known to promote differentiation in mouse ESCs (mESCs), but its role in DNA damage-induced apoptosis (DIA) is unclear. p53 may have a pro-apoptotic function since it can regulate apoptotic genes in embryonal cells. Given that ESCs have a distinct transcriptional program, Jing Huang, Ph.D., of CCR’s Laboratory of Cancer Biology and Genetics, and his colleagues wondered whether p53 might regulate DIA in ESCs by utilizing the ESC-specific expression program.
Tielens, S; Declercq, H; Gorski, T; Lippens, E; Schacht, E; Cornelissen, M
2007-03-01
Mouse embryonic stem cells were cultured on commercially available biodegradable macroporous microcarriers. A culture period of 1-2 weeks was needed to colonize the microcarriers. Embryonic stem cells retained their pluripotency for up to 14 days when cultured in medium supplemented with leukemia inhibitory factor. Replacing this medium by differentiation medium for 2 weeks initiated osteogenic differentiation. Encapsulation of the cell-loaded microcarriers in photopolymerizable polymers (methacrylate-endcapped poly-D,L-lactide-co-caprolactone), triacetin/hydroxyethylmethacrylate (HEMA) as solvent and with/without gelatin as porogen, resulted in a homogeneous distribution of the microcarriers in the polymer. As observed by transmission electron microscopy, viability of the cells was optimal when gelatin was omitted and when using triacetin instead of HEMA.
Ishiwata, Isamu; Tamagawa, Tomoharu; Tokieda, Yuko; Iguchi, Megumi; Sato, Kahei; Ishikawa, Hiroshi
2003-03-01
Regenerative medical treatment with embryonic stem cells (an ES cell) is a goal for organ transplantation. Structures that are tubular in nature (i.e. blood capillaries) were induced from early embryonic stem (EES) cells in vitro using embryotrophic factor (ETFs). In addition, cardiac muscle cells could be identified as well. However, differentiation of EES cells into a complete cardiovascular system was difficult because 3 germ layer primordial organs are directed embryologically in various ways and it is not possible to guide only cardiovascular organs. Thus, we introduced ETFs after the formation of an embryoid body and were successful in cloning cell clusters that beat, thus deriving only cardiovascular organs. The application of this to the treatment of various cardiovascular diseases is promising.
Shiang, Rita
2008-01-01
Treacher Collins syndrome is an autosomal-dominant mandibulofacial dysostosis caused by haploinsufficiency of the TCOF1 gene product treacle. Mouse Tcof1 protein is approximately 61% identical and 71% similar to treacle, and heterozygous knockout of Tcof1 causes craniofacial malformation. Tcof1 expression is high in developing neural crest, but much lower in other tissues. To investigate this dual regulation, highly conserved regions upstream of TCOF1 homologs were tested through deletion and mutation reporter assays, and conserved predicted transcription factor binding sites were assessed through chromatin binding studies. Assays were performed in mouse P19 embryonic carcinoma cells and in HEK293 cells to determine differential activation in cell types at different stages of differentiation. Binding of Cebpb, Zfp161, and Sp1 transcription factors was specific to the Tcof1 regulatory region in P19 cells. The Zfp161 binding site demonstrated P19 cell–specific repression, while the Sp1/Sp3 candidate site demonstrated HEK293 cell–specific activation. Moreover, presence of c-myb and Zfp161 transcripts was specific to P19 cells. A minimal promoter fragment from −253 to +43 bp directs constitutive expression in both cell types, and dual regulation of Tcof1 appears to be through differential repression of this minimal promoter. The CpG island at the transcription start site remains unmethylated in P19 cells, 11.5 dpc mouse embryonic tissue, and adult mouse ear, which supports constitutive activation of the Tcof1 promoter. PMID:18771418
Jeon, Hyojung; Waku, Tsuyoshi; Azami, Takuya; Khoa, Le Tran Phuc; Yanagisawa, Jun; Takahashi, Satoru; Ema, Masatsugu
2016-01-01
Pluripotency is maintained in mouse embryonic stem (ES) cells and is induced from somatic cells by the activation of appropriate transcriptional regulatory networks. Krüppel-like factor gene family members, such as Klf2, Klf4 and Klf5, have important roles in maintaining the undifferentiated state of mouse ES cells as well as in cellular reprogramming, yet it is not known whether other Klf family members exert self-renewal and reprogramming functions when overexpressed. In this study, we examined whether overexpression of any representative Klf family member, such as Klf1-Klf10, would be sufficient for the self-renewal of mouse ES cells. We found that only Klf2, Klf4, and Klf5 produced leukemia inhibitory factor (LIF)-independent self-renewal, although most KLF proteins, if not all, have the ability to occupy the regulatory regions of Nanog, a critical Klf target gene. We also examined whether overexpression of any of Klf1-Klf10 would be sufficient to convert epiblast stem cells into a naïve pluripotent state and found that Klf5 had such reprogramming ability, in addition to Klf2 and Klf4. We also delineated the functional domains of the Klf2 protein for LIF-independent self-renewal and reprogramming. Interestingly, we found that both the N-terminal transcriptional activation and C-terminal zinc finger domains were indispensable for this activity. Taken together, our comprehensive analysis provides new insight into the contribution of Klf family members to mouse ES self-renewal and cellular reprogramming.
Zhu, Jie; Wang, Hong; Yang, Shuo; Guo, Liqiao; Li, Zhen; Wang, Wei; Wang, Suhan; Huang, Wenting; Wang, Liping; Yang, Tan; Ma, Qiang; Bi, Yongyi
2013-01-01
Benzene is an occupational toxicant and an environmental pollutant that potentially causes hematotoxicity and leukemia in exposed populations. Epidemiological studies suggest an association between an increased incidence of childhood leukemia and benzene exposure during the early stages of pregnancy. However, experimental evidence supporting the association is lacking at the present time. It is believed that benzene and its metabolites target hematopoietic stem cells (HSCs) to cause toxicity and cancer in the hematopoietic system. In the current study, we compared the effects of hydroquinone (HQ), a major metabolite of benzene in humans and animals, on mouse embryonic yolk sac hematopoietic stem cells (YS-HSCs) and adult bone marrow hematopoietic stem cells (BM-HSCs). YS-HSCs and BM-HSCs were isolated and enriched, and were exposed to HQ at increasing concentrations. HQ reduced the proliferation and the differentiation and colony formation, but increased the apoptosis of both YS-HSCs and BM-HSCs. However, the cytotoxic and apoptotic effects of HQ were more apparent and reduction of colony formation by HQ was more severe in YS-HSCs than in BM-HSCs. Differences in gene expression profiles were observed in HQ-treated YS-HSCs and BM-HSCs. Cyp4f18 was induced by HQ both in YS-HSCs and BM-HSCs, whereas DNA-PKcs was induced in BM-HSCs only. The results revealed differential effects of benzene metabolites on embryonic and adult HSCs. The study established an experimental system for comparison of the hematopoietic toxicity and leukemogenicity of benzene and metabolites during mouse embryonic development and adulthood. PMID:23940708
Cases, Olivier; Perea-Gomez, Aitana; Aguiar, Diego P; Nykjaer, Anders; Amsellem, Sabine; Chandellier, Jacqueline; Umbhauer, Muriel; Cereghini, Silvia; Madsen, Mette; Collignon, Jérôme; Verroust, Pierre; Riou, Jean-François; Creuzet, Sophie E; Kozyraki, Renata
2013-06-07
Cubilin (Cubn) is a multiligand endocytic receptor critical for the intestinal absorption of vitamin B12 and renal protein reabsorption. During mouse development, Cubn is expressed in both embryonic and extra-embryonic tissues, and Cubn gene inactivation results in early embryo lethality most likely due to the impairment of the function of extra-embryonic Cubn. Here, we focus on the developmental role of Cubn expressed in the embryonic head. We report that Cubn is a novel, interspecies-conserved Fgf receptor. Epiblast-specific inactivation of Cubn in the mouse embryo as well as Cubn silencing in the anterior head of frog or the cephalic neural crest of chick embryos show that Cubn is required during early somite stages to convey survival signals in the developing vertebrate head. Surface plasmon resonance analysis reveals that fibroblast growth factor 8 (Fgf8), a key mediator of cell survival, migration, proliferation, and patterning in the developing head, is a high affinity ligand for Cubn. Cell uptake studies show that binding to Cubn is necessary for the phosphorylation of the Fgf signaling mediators MAPK and Smad1. Although Cubn may not form stable ternary complexes with Fgf receptors (FgfRs), it acts together with and/or is necessary for optimal FgfR activity. We propose that plasma membrane binding of Fgf8, and most likely of the Fgf8 family members Fgf17 and Fgf18, to Cubn improves Fgf ligand endocytosis and availability to FgfRs, thus modulating Fgf signaling activity.
2008-04-01
genes such as c -myc and Klf-4, frequently upregulated in tumors also have been shown to establish and preserve the ES cell phenotype and the rapid...proliferation of ES cells in culture. More importantly, the introduction of these four factors (Oct3/4, Sox-2, c -myc and Klf-4) into mouse embryonic or...GTA-3’; mouse nanog: sense 5’-AAG TAC CTC AGC CTC CAG CA-3’, antisense 5’-CGT AAG GCT GCA GAA AGT GC-3’; mouse c -myc: sense 5’-CAC CAT GCC CCT CAA CGT
Halliday, Gail C; Junckerstorff, Reimar C; Bentel, Jacqueline M; Miles, Andrew; Jones, David T W; Hovestadt, Volker; Capper, David; Endersby, Raelene; Cole, Catherine H; van Hagen, Tom; Gottardo, Nicholas G
2018-01-01
Central nervous system primitive neuro-ectodermal tumors (CNS-PNETs), have recently been re-classified in the most recent 2016 WHO Classification into a standby catch all category, "CNS Embryonal Tumor, not otherwise specified" (CNS embryonal tumor, NOS) based on epigenetic, biologic and histopathologic criteria. CNS embryonal tumors (NOS) are a rare, histologically and molecularly heterogeneous group of tumors that predominantly affect children, and occasionally adults. Diagnosis of this entity continues to be challenging and the ramifications of misdiagnosis of this aggressive class of brain tumors are significant. We report the case of a 45-year-old woman who was diagnosed with a central nervous system embryonal tumor (NOS) based on immunohistochemical analysis of the patient's tumor at diagnosis. However, later genome-wide methylation profiling of the diagnostic tumor undertaken to guide treatment, revealed characteristics most consistent with IDH-mutant astrocytoma. DNA sequencing and immunohistochemistry confirmed the presence of IDH1 and ATRX mutations resulting in a revised diagnosis of high-grade small cell astrocytoma, and the implementation of a less aggressive treatment regime tailored more appropriately to the patient's tumor type. This case highlights the inadequacy of histology alone for the diagnosis of brain tumours and the utility of methylation profiling and integrated genomic analysis for the diagnostic verification of adults with suspected CNS embryonal tumor (NOS), and is consistent with the increasing realization in the field that a combined diagnostic approach based on clinical, histopathological and molecular data is required to more accurately distinguish brain tumor subtypes and inform more effective therapy. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Mouse Embryonic Stem Cell Adherent Cell Differentiation and Cytotoxicity (ACDC) Assay: Book Chapter
There are thousands of environmental chemicals for which there is limited toxicological information, motivating the development and application of in vitro systems to profile the biological effects of xenobiotic exposure and predict their potential developmental hazard. An adher...
Mouse Embryonic Stem Cell Adherent Cell Differentiation and Cytotoxicity (ACDC) assay-Book Chapter*
There are thousands of environmental chemicals for which there is limited toxicological information, motivating the development and application of in vitro systems to profile the biological effects of xenobiotic exposure and predict their potential developmental hazard. An adhere...
2016-10-01
progress in subaim 1a, substantially improving the design of our proposed transgenic animal, the “deletion reporter mouse”, and are finalizing cloning...of necessary components. We expect to submit embryonic stem cells to the transgenic facility within the next few months. Furthermore, subaim 1b is...different mammary epithelial subpopulations. We will breed the reporter mouse created in aim 1 (or the CAG/UBC-GFP mouse) with BRCA1+/- and ATM+/- mutant
Growth and differentiation of embryonic stem cells that lack an intact c-fos gene.
Field, S J; Johnson, R S; Mortensen, R M; Papaioannou, V E; Spiegelman, B M; Greenberg, M E
1992-01-01
The c-fos protooncogene encodes a transcription factor that is thought to play a critical role in proliferation and differentiation as well as in the physiological response of mature cells to their environment. To test directly the role of c-fos in growth and differentiation, we generated mouse embryonic stem cell lines in which both copies of the c-fos gene were specifically disrupted by homologous recombination. Remarkably, the disruption of both copies of c-fos in these cells has no detectable effect on embryonic stem cell viability, growth rate, or differentiation potential. Embryonic stem cells lacking c-fos can differentiate into a wide range of cell types in tissue culture and also in chimeric mice. We conclude that despite a large body of literature suggesting an important role for c-fos in cell growth and differentiation, in at least some cell types this gene is not essential for these processes. Images PMID:1329091
A structure-based extracellular matrix expansion mechanism of fibrous tissue growth
Kalson, Nicholas S; Lu, Yinhui; Taylor, Susan H; Starborg, Tobias; Holmes, David F; Kadler, Karl E
2015-01-01
Embryonic growth occurs predominately by an increase in cell number; little is known about growth mechanisms later in development when fibrous tissues account for the bulk of adult vertebrate mass. We present a model for fibrous tissue growth based on 3D-electron microscopy of mouse tendon. We show that the number of collagen fibrils increases during embryonic development and then remains constant during postnatal growth. Embryonic growth was explained predominately by increases in fibril number and length. Postnatal growth arose predominately from increases in fibril length and diameter. A helical crimp structure was established in embryogenesis, and persisted postnatally. The data support a model where the shape and size of tendon is determined by the number and position of embryonic fibroblasts. The collagen fibrils that these cells synthesise provide a template for postnatal growth by structure-based matrix expansion. The model has important implications for growth of other fibrous tissues and fibrosis. DOI: http://dx.doi.org/10.7554/eLife.05958.001 PMID:25992598
[Recent contributions to the establishment of the axes of the mammalian embryo].
Catala, M
2002-06-01
The study of the establishment of embryonic axes during early development has shown that this process is a very early event (occurRing either during ovogenesis or during fertilization) for invertebrates and for lower vertebrates. In mammals, it was considered that this establishment appears late during development because of the great plasticity of blastomeres. Recent data in the mouse embryon show that the mammalian ovocyte is a polarized cell, the polar body corresponding to the animal pole of this cell. The blastomeres that are generated by the zygote divide asynchronously. The first that divides is the one which inherits the plasma cell membrane where fertilization takes place. This blastomere will preferentially give rise to the cells of the embryonic pole of the blastocyst whereas the other yields the cells of the abembryonic pole. The mammalian ovocyte is thus a polarized cell with an already established animal-vegetal axis. The point of sperm entry will determine the embryonic-abembryonic axis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bornstein, P.; Shingu, T.; LaMarca, M.E.
1994-09-01
We have identified a new murine gene, termed gene X, that spans the 6 kb interval separating GC from TSP3. Mutations in GC result in Gaucher disease, the most common lysosomal storage disorder. Gene X and GC are transcribed convergently; their major polyadenylation sites are separated by only 431 bp. On the other hand, gene X and TSP3 are transcribed divergently and share a bidirectional promoter. The cDNA for gene X encodes a 317 amino acid protein, without either a signal sequence or N-linked glycosylation. Gene X is expressed ubiquitously in tissues of the young adult mouse, but no closemore » homologues have been found in the DNA or protein data bases. A targeted point mutation was introduced into the GC gene (Asn to Ser in exon 9) by homologous recombination in embryonic stem cells to establish a mouse model for a mild form of Gaucher disease. In the process, a PGK-neomycin gene cassette was inserted in the 3{prime} flanking region of GC as a selectable marker, in a sequence that was subsequently identified as exon 8 of gene X. Mice homozygous for the combined mutation die early in gestation. Since the amino acid mutation in humans is associated with milder type 1 Gaucher disease, we conclude that gene X is essential for embryonic development in mice. The locations of human and murine GC, gene X and TSP3 are similar, but the human genome includes a duplication that has produced GC and gene X pseudogenes. We are currently studying the possible functional interactions of GC, gene X and TSP3 in both mice and humans.« less
Drabsch, Yvette; He, Shuning; Zhang, Long; Snaar-Jagalska, B Ewa; ten Dijke, Peter
2013-11-07
The transforming growth factor beta (TGF-β) signalling pathway is known to control human breast cancer invasion and metastasis. We demonstrate that the zebrafish xenograft assay is a robust and dependable animal model for examining the role of pharmacological modulators and genetic perturbation of TGF-β signalling in human breast tumour cells. We injected cancer cells into the embryonic circulation (duct of cuvier) and examined their invasion and metastasis into the avascular collagenous tail. Various aspects of the TGF-β signalling pathway were blocked by chemical inhibition, small interfering RNA (siRNA), or small hairpin RNA (shRNA). Analysis was conducted using fluorescent microscopy. Breast cancer cells with different levels of malignancy, according to in vitro and in vivo mouse studies, demonstrated invasive and metastatic properties within the embryonic zebrafish model that nicely correlated with their differential tumourigenicity in mouse models. Interestingly, MCF10A M2 and M4 cells invaded into the caudal hematopoietic tissue and were visible as a cluster of cells, whereas MDA MB 231 cells invaded into the tail fin and were visible as individual cells. Pharmacological inhibition with TGF-β receptor kinase inhibitors or tumour specific Smad4 knockdown disturbed invasion and metastasis in the zebrafish xenograft model and closely mimicked the results we obtained with these cells in a mouse metastasis model. Inhibition of matrix metallo proteinases, which are induced by TGF-β in breast cancer cells, blocked invasion and metastasis of breast cancer cells. The zebrafish-embryonic breast cancer xenograft model is applicable for the mechanistic understanding, screening and development of anti-TGF-β drugs for the treatment of metastatic breast cancer in a timely and cost-effective manner.
Jiang, Guangming; Wan, Xiaoju; Wang, Ming; Zhou, Jianhua; Pan, Jian; Wang, Baolong
2016-08-01
Mouse embryonic fibroblasts (MEFs) are widely used to prepare feeder layers for culturing embryonic stem cells (ESCs) or induced pluripotent stem cells (iPSCs) in vitro. Transportation lesions and exorbitant prices make the commercially obtained MEFs unsuitable for long term research. The aim of present study is to establish a method, which enables researchers to gain MEFs from mice and establish feeder layers by themselves in ordinary laboratories. MEFs were isolated from ICR mouse embryos at 12.5-17.5 day post-coitum (DPC) and cultured in vitro. At P2-P7, the cells were inactivated with mitomycin C or by X-ray irradiation. Then they were used to prepare feeder layers. The key factors of the whole protocol were analyzed to determine the optimal conditions for the method. The results revealed MEFs isolated at 12.5-13.5 DPC, and cultured to P3 were the best choice for feeder preparation, those P2 and P4-P5 MEFs were also suitable for the purpose. The P3-P5 MEFs treated with 10 μg/ml of mitomycin C for 3 h, or irradiated with X-ray at 1.5 Gy/min for 25 Gy were the most suitable feeder cells. Treating MEFs with 10 μg/ml of mitomycin C for 2.5 h, 15 μg/ml for 2.0 h, or irradiating the cells with 20 Gy of X-ray at 2.0 Gy/min could all serve as alternative methods for P3-P4 cells. Our study provides a reliable and economical way to obtain large amount of qualified MEFs for long term research of ESCs or iPSCs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horiuchi, Rie; Akimoto, Takayuki, E-mail: akimoto@m.u-tokyo.ac.jp; Institute for Biomedical Engineering, Consolidated Research Institute for Advanced Science and Medical Care, Waseda University, 513 Waseda-tsurumaki, Shinjuku, Tokyo 162-0041
2012-08-15
Mechanical strain has been reported to affect the proliferation/differentiation of many cell types; however, the effects of mechanotransduction on self-renewal as well as pluripotency of embryonic stem (ES) cells remains unknown. To investigate the effects of mechanical strain on mouse ES cell fate, we examined the expression of Nanog, which is an essential regulator of self-renewal and pluripotency as well as Nanog-associated intracellular signaling during uniaxial cyclic mechanical strain. The mouse ES cell line, CCE was plated onto elastic membranes, and we applied 10% strain at 0.17 Hz. The expression of Nanog was reduced during ES cell differentiation in responsemore » to the withdrawal of leukemia inhibitory factor (LIF); however, two days of cyclic mechanical strain attenuated this reduction of Nanog expression. On the other hand, the cyclic mechanical strain promoted PI3K-Akt signaling, which is reported as an upstream of Nanog transcription. The cyclic mechanical strain-induced Akt phosphorylation was blunted by the PI3K inhibitor wortmannin. Furthermore, cytochalasin D, an inhibitor of actin polymerization, also inhibited the mechanical strain-induced increase in phospho-Akt. These findings imply that mechanical force plays a role in regulating Nanog expression in ES cells through the actin cytoskeleton-PI3K-Akt signaling. -- Highlights: Black-Right-Pointing-Pointer The expression of Nanog, which is an essential regulator of 'stemness' was reduced during embryonic stem (ES) cell differentiation. Black-Right-Pointing-Pointer Cyclic mechanical strain attenuated the reduction of Nanog expression. Black-Right-Pointing-Pointer Cyclic mechanical strain promoted PI3K-Akt signaling and mechanical strain-induced Akt phosphorylation was blunted by the PI3K inhibitor and an inhibitor of actin polymerization.« less
Ultrasound-guided microinjection into the mouse forebrain in utero at E9.5.
Pierfelice, Tarran J; Gaiano, Nicholas
2010-11-13
In utero survival surgery in mice permits the molecular manipulation of gene expression during development. However, because the uterine wall is opaque during early embryogenesis, the ability to target specific parts of the embryo for microinjection is greatly limited. Fortunately, high-frequency ultrasound imaging permits the generation of images that can be used in real time to guide a microinjection needle into the embryonic region of interest. Here we describe the use of such imaging to guide the injection of retroviral vectors into the ventricular system of the mouse forebrain at embryonic day (E) 9.5. This method uses a laparotomy to permit access to the uterine horns, and a specially designed plate that permits host embryos to be bathed in saline while they are imaged and injected. Successful surgeries often result in most or all of the injected embryos surviving to any subsequent time point of interest (embryonically or postnatally). The principles described here can be used with slight modifications to perform injections into the amnionic fluid of E8.5 embryos (thereby permitting infection along the anterior posterior extent of the neural tube, which has not yet closed), or into the ventricular system of the brain at E10.5/11.5. Furthermore, at mid-neurogenic ages (~E13.5), ultrasound imaging can be used direct injection into specific brain regions for viral infection or cell transplantation. The use of ultrasound imaging to guide in utero injections in mice is a very powerful technique that permits the molecular and cellular manipulation of mouse embryos in ways that would otherwise be exceptionally difficult if not impossible.
Leitch, Harry G.; Blair, Kate; Mansfield, William; Ayetey, Harold; Humphreys, Peter; Nichols, Jennifer; Surani, M. Azim; Smith, Austin
2010-01-01
Mouse and rat embryonic stem cells can be sustained in defined medium by dual inhibition (2i) of the mitogen-activated protein kinase (Erk1/2) cascade and of glycogen synthase kinase 3. The inhibitors suppress differentiation and enable self-renewal of pluripotent cells that are ex vivo counterparts of naïve epiblast cells in the mature blastocyst. Pluripotent stem cell lines can also be derived from unipotent primordial germ cells via a poorly understood process of epigenetic reprogramming. These are termed embryonic germ (EG) cells to denote their distinct origin. Here we investigate whether EG cell self-renewal and derivation are supported by 2i. We report that mouse EG cells can be established with high efficiency using 2i in combination with the cytokine leukaemia inhibitory factor (LIF). Furthermore, addition of fibroblast growth factor or stem cell factor is unnecessary using 2i-LIF. The derived EG cells contribute extensively to healthy chimaeric mice, including to the germline. Using the same conditions, we describe the first derivations of EG cells from the rat. Rat EG cells express a similar marker profile to rat and mouse ES cells. They have a diploid karyotype, can be clonally expanded and genetically manipulated, and are competent for multilineage colonisation of chimaeras. These findings lend support to the postulate of a conserved molecular ground state in pluripotent rodent cells. Future research will determine the extent to which this is maintained in other mammals and whether, in some species, primordial germ cells might be a more tractable source than epiblast for the capture of naïve pluripotent stem cells. PMID:20519324
Loss of Mitofusin 2 Promotes Endoplasmic Reticulum Stress*
Ngoh, Gladys A.; Papanicolaou, Kyriakos N.; Walsh, Kenneth
2012-01-01
The outer mitochondrial membrane GTPase mitofusin 2 (Mfn2) is known to regulate endoplasmic reticulum (ER) shape in addition to its mitochondrial fusion effects. However, its role in ER stress is unknown. We report here that induction of ER stress with either thapsigargin or tunicamycin in mouse embryonic fibroblasts leads to up-regulation of Mfn2 mRNA and protein levels with no change in the expression of the mitochondrial shaping factors Mfn1, Opa1, Drp1, and Fis1. Genetic deletion of Mfn2 but not Mfn1 in mouse embryonic fibroblasts or cardiac myocytes in mice led to an increase in the expression of the ER chaperone proteins. Genetic ablation of Mfn2 in mouse embryonic fibroblasts amplified ER stress and exacerbated ER stress-induced apoptosis. Deletion of Mfn2 delayed translational recovery through prolonged eIF2α phosphorylation associated with decreased GADD34 and p58IPK expression and elevated C/EBP homologous protein induction at late time points. These changes in the unfolded protein response were coupled to increased cell death reflected by augmented caspase 3/7 activity, lactate dehydrogenase release from cells, and an increase in propidium iodide-positive nuclei in response to thapsigargin or tunicamycin treatment. In contrast, genetic deletion of Mfn1 did not affect ER stress-mediated increase in ER chaperone synthesis or eIF2α phosphorylation. Additionally, ER stress-induced C/EBP homologous protein, GADD34, and p58IPK induction and cell death were not affected by loss of Mfn1. We conclude that Mfn2 but not Mfn1 is an ER stress-inducible protein that is required for the proper temporal sequence of the ER stress response. PMID:22511781
Dai, Bo; Huang, Wei; Xu, Meifeng; Millard, Ronald W.; Gao, Mei Hua; Hammond, H. Kirk; Menick, Donald R.; Ashraf, Muhammad; Wang, Yigang
2012-01-01
Objectives The purpose of this study was to assess the effect of scar tissue composition on engraftment of progenitor cells into infarcted myocardium. Background Scar tissue formation after myocardial infarction creates a barrier that severely compromises tissue regeneration, limiting potential functional recovery. Methods In vitro: A tricell patch (Tri-P) was created from peritoneum seeded and cultured with induced pluripotent stem cell–derived cardiomyocytes, endothelial cells, and mouse embryonic fibroblasts. The expression of fibrosis-related molecules from mouse embryonic fibroblasts and infarcted heart was measured by Western blot and quantitative reverse transcriptase polymerase chain reaction. In vivo: A Tri-P was affixed over the entire infarcted area 7 days after myocardial infarction in mice overexpressing adenylyl cyclase 6 (AC6). Engraftment efficiency of progenitor cells in hearts of AC6 mice was compared with that of control wild-type (WT) mice using a combination of in vivo bioluminescence imaging, post-mortem ex vivo tissue analysis, and the number of green fluorescent protein–positive cells. Echocardiography of left ventricular (LV) function was performed weekly. Hearts were harvested for analysis 4 weeks after Tri-P application. Mouse embryonic fibroblasts were stimulated with forskolin before an anoxia/reoxygenation protocol. Fibrosis-related molecules were analyzed. Results In AC6 mice, infarcted hearts treated with Tri-P showed significantly higher bioluminescence imaging intensity and numbers of green fluorescent protein–positive cells than in WT mice. LV function improved progressively in AC6 mice from weeks 2 to 4 and was associated with reduced LV fibrosis. Conclusions Application of a Tri-P in AC6 mice resulted in significantly higher induced pluripotent stem cell engraftment accompanied by angiomyogenesis in the infarcted area and improvement in LV function. PMID:22051336
Sun, Z Y; Geng, D Y; Chen, C F; Wang, P P; Song, T
2017-06-20
Objective: To investigate the influence of extremely low-frequency magnetic field on periodical expression of cryptochrome ( Cry ) gene in mouse embryonic fibroblast NIH3T3 cells. Methods: The NIH3T3 cells were divided into magnetic field group and sham-exposure group. The NIH3T3 cells in the magnetic field group were stimulated by horse serum and then exposed to an extremely low-frequency magnetic field (50 Hz and 0.3 mT) for 48 hours, and those in the sham-exposure group were also stimulated by horse serum and then exposed to a coil for 48 hours. The NIH3T3 cells were collected, total RNA was extracted, and cDNA was obtained via reverse transcription. Real-time fluorescent quantitative RT-PCR was used to measure the changes in transcription cycles of Cry and Period genes in both groups. Results: There was no significant difference in the proliferation rate at 0, 12, 24, and 48 hours of exposure between the two groups ( P >0.05) . Both sham-exposure group and magnetic field group showed a rhythmic change in the expression of Cry gene, and compared with the sham-exposure group, the magnetic field group had a significantly shortened circadian rhythm of Cry gene in NIH3T3 cells ( t =2.57, P <0.05) . Both groups had rhythmic and periodical expression of Period gene and there was no significant difference between the two groups ( t =0.70, P >0.05) . Conclusion: Extremely low-frequency magnetic field can significantly shorten the circadian rhythm of Cry gene in mouse embryonic fibroblasts, while there is no significant change in the circadian rhythm of Period gene.
The placenta of the salp (Tunicata: Thaliacea).
Bone, Q; Pulsford, A L; Amoroso, E C
1985-01-01
The morphology of the mature 'placenta' of the pelagic tunicate Salpa fusiformis is described, and it is shown that two syncytial layers, intimately connected by interdigitating microvilli, separate maternal and embryonic circulations. The central placental layer facing the maternal circulation is bordered by membrane infoldings; the cortical layer facing the embryonic circulation is bordered by extensively branching microvilli. Both layers are of maternal origin, although embryonic leucocytes pass into, and add to, the cortical layer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laig-Webster, M.; Lim, M.E.; Chehab, F.F.
1994-09-01
The molecular defect underlying an autosomal recessive form of genetic obesity in a classical mouse model C57 BL/6J-ob/ob has not yet been elucidated. Whereas metabolic and physiological disturbances such as diabetes and hypertension are associated with obesity, the site of expression and the nature of the primary lesion responsible for this cascade of events remains elusive. Our efforts aimed at the positional cloning of the ob gene by YAC contig mapping and gene identification have resulted in the cloning of a brain-specific gene cluster from the ob critical region. The expression of this gene cluster is remarkably complex owing tomore » the multitude of brain-specific mRNA transcripts detected on Northern blots. cDNA cloning of these transcripts suggests that they are expressed from different genes as well as by alternate splicing mechanisms. Furthermore, the genomic organization of the cluster appears to consist of at least two identical promoters displaying CpG islands characteristic of housekeeping genes, yet clearly involving tissue-specific expression. Sense and anti-sense synthetic RNA probes were derived from a common DNA sequence on 3 cDNA clones and hybridized to 8-16 days mouse embryonic stages and mouse adult brain sections. Expression in development was noticeable as of the 11th day of gestation and confined to the central nervous system mainly in the telencephalon and spinal cord. Coronal and sagittal sections of the adult mouse brain showed expression only in 3 different regions of the brain stem. In situ hybridization to mouse hypothalamus sections revealed the presence of a localized and specialized group of cells expressing high levels of mRNA, suggesting that this gene cluster may also be involved in the regulation of hypothalamic activities. The hypothalamus has long been hypothesized as a primary candidate tissue for the expression of the obesity gene mainly because of its well-established role in the regulation of energy metabolism and food intake.« less
Centralized mouse repositories.
Donahue, Leah Rae; Hrabe de Angelis, Martin; Hagn, Michael; Franklin, Craig; Lloyd, K C Kent; Magnuson, Terry; McKerlie, Colin; Nakagata, Naomi; Obata, Yuichi; Read, Stuart; Wurst, Wolfgang; Hörlein, Andreas; Davisson, Muriel T
2012-10-01
Because the mouse is used so widely for biomedical research and the number of mouse models being generated is increasing rapidly, centralized repositories are essential if the valuable mouse strains and models that have been developed are to be securely preserved and fully exploited. Ensuring the ongoing availability of these mouse strains preserves the investment made in creating and characterizing them and creates a global resource of enormous value. The establishment of centralized mouse repositories around the world for distributing and archiving these resources has provided critical access to and preservation of these strains. This article describes the common and specialized activities provided by major mouse repositories around the world.
Centralized Mouse Repositories
Donahue, Leah Rae; de Angelis, Martin Hrabe; Hagn, Michael; Franklin, Craig; Lloyd, K. C. Kent; Magnuson, Terry; McKerlie, Colin; Nakagata, Naomi; Obata, Yuichi; Read, Stuart; Wurst, Wolfgang; Hörlein, Andreas; Davisson, Muriel T.
2013-01-01
Because the mouse is used so widely for biomedical research and the number of mouse models being generated is increasing rapidly, centralized repositories are essential if the valuable mouse strains and models that have been developed are to be securely preserved and fully exploited. Ensuring the ongoing availability of these mouse strains preserves the investment made in creating and characterizing them and creates a global resource of enormous value. The establishment of centralized mouse repositories around the world for distributing and archiving these resources has provided critical access to and preservation of these strains. This article describes the common and specialized activities provided by major mouse repositories around the world. PMID:22945696
Chen, Tsai-Yu; Lee, Sung-Hun; Dhar, Shilpa S; Lee, Min Gyu
2018-03-16
The stemness maintenance of embryonic stem cells (ESCs) requires pluripotency transcription factors, including Oct4, Nanog, and Sox2. We have previously reported that protein arginine methyltransferase 7 (PRMT7), an epigenetic modifier, is an essential pluripotency factor that maintains the stemness of mouse ESCs, at least in part, by down-regulating the expression of the anti-stemness microRNA (miRNA) miR-24-2. To gain greater insight into the molecular basis underlying PRMT7-mediated maintenance of mouse ESC stemness, we searched for new PRMT7-down-regulated anti-stemness miRNAs. Here, we show that miR-221 gene-encoded miR-221-3p and miR-221-5p are anti-stemness miRNAs whose expression levels in mouse ESCs are directly repressed by PRMT7. Notably, both miR-221-3p and miR-221-5p targeted the 3' untranslated regions of mRNA transcripts of the major pluripotency factors Oct4, Nanog, and Sox2 to antagonize mouse ESC stemness. Moreover, miR-221-5p silenced also the expression of its own transcriptional repressor PRMT7. Transfection of miR-221-3p and miR-221-5p mimics induced spontaneous differentiation of mouse ESCs. CRISPR-mediated deletion of the miR-221 gene, as well as specific antisense inhibitors of miR-221-3p and miR-221-5p, inhibited the spontaneous differentiation of PRMT7-depleted mouse ESCs. Taken together, these findings reveal that the PRMT7-mediated repression of miR-221-3p and miR-221-5p expression plays a critical role in maintaining mouse ESC stemness. Our results also establish miR-221-3p and miR-221-5p as anti-stemness miRNAs that target Oct4 , Nanog , and Sox2 mRNAs in mouse ESCs. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.
Catalán, Elena; Jaime-Sánchez, Paula; Aguiló, Nacho; Simon, Markus M.; Froelich, Christopher J.; Pardo, Julián
2015-01-01
Cytotoxic T cells (Tc) use perforin and granzyme B (gzmB) to kill virus-infected cells and cancer cells. Recent evidence suggests that human gzmB primarily induces apoptosis via the intrinsic mitochondrial pathway by either cleaving Bid or activating Bim leading to the activation of Bak/Bax and subsequent generation of active caspase-3. In contrast, mouse gzmB is thought to predominantly induce apoptosis by directly processing pro-caspase-3. However, in certain mouse cell types gzmB-mediated apoptosis mainly occurs via the mitochondrial pathway. To investigate whether Bim is involved under the latter conditions, we have now employed ex vivo virus-immune mouse Tc that selectively kill by using perforin and gzmB (gzmB+Tc) as effector cells and wild type as well as Bim- or Bak/Bax-deficient spontaneously (3T9) or virus-(SV40) transformed mouse embryonic fibroblast cells as targets. We show that gzmB+Tc-mediated apoptosis (phosphatidylserine translocation, mitochondrial depolarization, cytochrome c release, and caspase-3 activation) was severely reduced in 3T9 cells lacking either Bim or both Bak and Bax. This outcome was related to the ability of Tc cells to induce the degradation of Mcl-1 and Bcl-XL, the anti-apoptotic counterparts of Bim. In contrast, gzmB+Tc-mediated apoptosis was not affected in SV40-transformed mouse embryonic fibroblast cells lacking Bak/Bax. The data provide evidence that Bim participates in mouse gzmB+Tc-mediated apoptosis of certain targets by activating the mitochondrial pathway and suggest that the mode of cell death depends on the target cell. Our results suggest that the various molecular events leading to transformation and/or immortalization of cells have an impact on their relative resistance to the multiple gzmB+Tc-induced death pathways. PMID:25605735
Hubbard, Kyle; Beske, Phillip; Lyman, Megan; McNutt, Patrick
2015-01-01
Therapeutic and mechanistic studies of the presynaptically targeted clostridial neurotoxins (CNTs) have been limited by the need for a scalable, cell-based model that produces functioning synapses and undergoes physiological responses to intoxication. Here we describe a simple and robust method to efficiently differentiate murine embryonic stem cells (ESCs) into defined lineages of synaptically active, networked neurons. Following an 8 day differentiation protocol, mouse embryonic stem cell-derived neurons (ESNs) rapidly express and compartmentalize neurotypic proteins, form neuronal morphologies and develop intrinsic electrical responses. By 18 days after differentiation (DIV 18), ESNs exhibit active glutamatergic and γ-aminobutyric acid (GABA)ergic synapses and emergent network behaviors characterized by an excitatory:inhibitory balance. To determine whether intoxication with CNTs functionally antagonizes synaptic neurotransmission, thereby replicating the in vivo pathophysiology that is responsible for clinical manifestations of botulism or tetanus, whole-cell patch clamp electrophysiology was used to quantify spontaneous miniature excitatory post-synaptic currents (mEPSCs) in ESNs exposed to tetanus neurotoxin (TeNT) or botulinum neurotoxin (BoNT) serotypes /A-/G. In all cases, ESNs exhibited near-complete loss of synaptic activity within 20 hr. Intoxicated neurons remained viable, as demonstrated by unchanged resting membrane potentials and intrinsic electrical responses. To further characterize the sensitivity of this approach, dose-dependent effects of intoxication on synaptic activity were measured 20 hr after addition of BoNT/A. Intoxication with 0.005 pM BoNT/A resulted in a significant decrement in mEPSCs, with a median inhibitory concentration (IC50) of 0.013 pM. Comparisons of median doses indicate that functional measurements of synaptic inhibition are faster, more specific and more sensitive than SNARE cleavage assays or the mouse lethality assay. These data validate the use of synaptically coupled, stem cell-derived neurons for the highly specific and sensitive detection of CNTs. PMID:25742030
Zhang, Peter G Y; Yeung, Joanna; Gupta, Ishita; Ramirez, Miguel; Ha, Thomas; Swanson, Douglas J; Nagao-Sato, Sayaka; Itoh, Masayoshi; Kawaji, Hideya; Lassmann, Timo; Daub, Carsten O; Arner, Erik; de Hoon, Michiel; Carninci, Piero; Forrest, Alistair R R; Hayashizaki, Yoshihide; Goldowitz, Dan
2018-06-01
Laser-capture microdissection was used to isolate external germinal layer tissue from three developmental periods of mouse cerebellar development: embryonic days 13, 15, and 18. The cerebellar granule cell-enriched mRNA library was generated with next-generation sequencing using the Helicos technology. Our objective was to discover transcriptional regulators that could be important for the development of cerebellar granule cells-the most numerous neuron in the central nervous system. Through differential expression analysis, we have identified 82 differentially expressed transcription factors (TFs) from a total of 1311 differentially expressed genes. In addition, with TF-binding sequence analysis, we have identified 46 TF candidates that could be key regulators responsible for the variation in the granule cell transcriptome between developmental stages. Altogether, we identified 125 potential TFs (82 from differential expression analysis, 46 from motif analysis with 3 overlaps in the two sets). From this gene set, 37 TFs are considered novel due to the lack of previous knowledge about their roles in cerebellar development. The results from transcriptome-wide analyses were validated with existing online databases, qRT-PCR, and in situ hybridization. This study provides an initial insight into the TFs of cerebellar granule cells that might be important for development and provide valuable information for further functional studies on these transcriptional regulators.
Sturrock, Marc; Hellander, Andreas; Matzavinos, Anastasios; Chaplain, Mark A J
2013-03-06
Individual mouse embryonic stem cells have been found to exhibit highly variable differentiation responses under the same environmental conditions. The noisy cyclic expression of Hes1 and its downstream genes are known to be responsible for this, but the mechanism underlying this variability in expression is not well understood. In this paper, we show that the observed experimental data and diverse differentiation responses can be explained by a spatial stochastic model of the Hes1 gene regulatory network. We also propose experiments to control the precise differentiation response using drug treatment.
Dynamic Imaging of Mouse Embryos and Cardiodynamics in Static Culture.
Lopez, Andrew L; Larina, Irina V
2018-01-01
The heart is a dynamic organ that quickly undergoes morphological and mechanical changes through early embryonic development. Characterizing these early moments is important for our understanding of proper embryonic development and the treatment of heart disease. Traditionally, tomographic imaging modalities and fluorescence-based microscopy are excellent approaches to visualize structural features and gene expression patterns, respectively, and connect aberrant gene programs to pathological phenotypes. However, these approaches usually require static samples or fluorescent markers, which can limit how much information we can derive from the dynamic and mechanical changes that regulate heart development. Optical coherence tomography (OCT) is unique in this circumstance because it allows for the acquisition of three-dimensional structural and four-dimensional (3D + time) functional images of living mouse embryos without fixation or contrast reagents. In this chapter, we focus on how OCT can visualize heart morphology at different stages of development and provide cardiodynamic information to reveal mechanical properties of the developing heart.
Mora-Castilla, Sergio; Tejedo, Juan R.; Díaz, Irene; Hitos, Ana B.; Cahuana, Gladys M.; Hmadcha, Abdelkrim; Martín, Franz; Soria, Bernat
2014-01-01
The function of pluripotency genes in differentiation is a matter of investigation. We report here that Nanog and Oct4 are reexpressed in two mouse embryonic stem cell (mESC) lines following exposure to the differentiating agent DETA/NO. Both cell lines express a battery of both endoderm and mesoderm markers following induction of differentiation with DETA/NO-based protocols. Confocal analysis of cells undergoing directed differentiation shows that the majority of cells expressing Nanog express also endoderm genes such as Gata4 and FoxA2 (75.4% and 96.2%, resp.). Simultaneously, mRNA of mesodermal markers Flk1 and Mef2c are also regulated by the treatment. Acetylated histone H3 occupancy at the promoter of Nanog is involved in the process of reexpression. Furthermore, Nanog binding to the promoter of Brachyury leads to repression of this gene, thus disrupting mesendoderm transition. PMID:25544848
Ishikura, Yukiko; Yabuta, Yukihiro; Ohta, Hiroshi; Hayashi, Katsuhiko; Nakamura, Tomonori; Okamoto, Ikuhiro; Yamamoto, Takuya; Kurimoto, Kazuki; Shirane, Kenjiro; Sasaki, Hiroyuki; Saitou, Mitinori
2016-12-06
The in vitro derivation and propagation of spermatogonial stem cells (SSCs) from pluripotent stem cells (PSCs) is a key goal in reproductive science. We show here that when aggregated with embryonic testicular somatic cells (reconstituted testes), primordial germ cell-like cells (PGCLCs) induced from mouse embryonic stem cells differentiate into spermatogonia-like cells in vitro and are expandable as cells that resemble germline stem cells (GSCs), a primary cell line with SSC activity. Remarkably, GSC-like cells (GSCLCs), but not PGCLCs, colonize adult testes and, albeit less effectively than GSCs, contribute to spermatogenesis and fertile offspring. Whole-genome analyses reveal that GSCLCs exhibit aberrant methylation at vulnerable regulatory elements, including those critical for spermatogenesis, which may restrain their spermatogenic potential. Our study establishes a strategy for the in vitro derivation of SSC activity from PSCs, which, we propose, relies on faithful epigenomic regulation. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.
Wilson, Robert; McGuire, Christina; Mohun, Timothy
2016-01-01
The Deciphering the Mechanisms of Developmental Disorders (DMDD) consortium is a research programme set up to identify genes in the mouse, which if mutated (or knocked-out) result in embryonic lethality when homozygous, and initiate the study of why disruption of their function has such profound effects on embryo development and survival. The project uses a combination of comprehensive high resolution 3D imaging and tissue histology to identify abnormalities in embryo and placental structures of embryonic lethal lines. The image data we have collected and the phenotypes scored are freely available through the project website (http://dmdd.org.uk). In this article we describe the web interface to the images that allows the embryo data to be viewed at full resolution in different planes, discuss how to search the database for a phenotype, and our approach to organising the data for an embryo and a mutant line so it is easy to comprehend and intuitive to navigate. PMID:26519470
The death-inducer obliterator 1 (Dido1) gene regulates embryonic stem cell self-renewal.
Liu, Yinyin; Kim, Hyeung; Liang, Jiancong; Lu, Weisi; Ouyang, Bin; Liu, Dan; Songyang, Zhou
2014-02-21
The regulatory network of factors that center on master transcription factors such as Oct4, Nanog, and Sox2 help maintain embryonic stem (ES) cells and ensure their pluripotency. The target genes of these master transcription factors define the ES cell transcriptional landscape. In this study, we report our findings that Dido1, a target of canonical transcription factors such as Oct4, Sox2, and Nanog, plays an important role in regulating ES cell maintenance. We found that depletion of Dido1 in mouse ES cells led to differentiation, and ectopic expression of Dido1 inhibited differentiation induced by leukemia inhibitory factor withdrawal. We further demonstrated that whereas Nanog and Oct4 could occupy the Dido1 locus and promote its transcription, Dido1 could also target to the loci of pluripotency factors such as Nanog and Oct4 and positively regulate their expression. Through this feedback and feedforward loop, Dido1 is able to regulate self-renewal of mouse ES cells.
Efficient differentiation of mouse embryonic stem cells into insulin-producing cells.
Liu, Szu-Hsiu; Lee, Lain-Tze
2012-01-01
Embryonic stem (ES) cells are a potential source of a variety of differentiated cells for cell therapy, drug discovery, and toxicology screening. Here, we present an efficacy strategy for the differentiation of mouse ES cells into insulin-producing cells (IPCs) by a two-step differentiation protocol comprising of (i) the formation of definitive endoderm in monolayer culture by activin A, and (ii) this monolayer endoderm being induced to differentiate into IPCs by nicotinamide, insulin, and laminin. Differentiated cells can be obtained within approximately 7 days. The differentiation IPCs combined application of RT-PCR, ELISA, and immunofluorescence to characterize phenotypic and functional properties. In our study, we demonstrated that IPCs produced pancreatic transcription factors, endocrine progenitor marker, definitive endoderm, pancreatic β-cell markers, and Langerhans α and δ cells. The IPCs released insulin in a manner that was dose dependent upon the amount of glucose added. These techniques may be able to be applied to human ES cells, which would have very important ramifications for treating human disease.
Boo, Kyungjin; Bhin, Jinhyuk; Jeon, Yoon; Kim, Joomyung; Shin, Hi-Jai R; Park, Jong-Eun; Kim, Kyeongkyu; Kim, Chang Rok; Jang, Hyonchol; Kim, In-Hoo; Kim, V Narry; Hwang, Daehee; Lee, Ho; Baek, Sung Hee
2015-04-10
The actions of transcription factors, chromatin modifiers and noncoding RNAs are crucial for the programming of cell states. Although the importance of various epigenetic machineries for controlling pluripotency of embryonic stem (ES) cells has been previously studied, how chromatin modifiers cooperate with specific transcription factors still remains largely elusive. Here, we find that Pontin chromatin remodelling factor plays an essential role as a coactivator for Oct4 for maintenance of pluripotency in mouse ES cells. Genome-wide analyses reveal that Pontin and Oct4 share a substantial set of target genes involved in ES cell maintenance. Intriguingly, we find that the Oct4-dependent coactivator function of Pontin extends to the transcription of large intergenic noncoding RNAs (lincRNAs) and in particular linc1253, a lineage programme repressing lincRNA, is a Pontin-dependent Oct4 target lincRNA. Together, our findings demonstrate that the Oct4-Pontin module plays critical roles in the regulation of genes involved in ES cell fate determination.
Pierpont, Timothy M; Lyndaker, Amy M; Anderson, Claire M; Jin, Qiming; Moore, Elizabeth S; Roden, Jamie L; Braxton, Alicia; Bagepalli, Lina; Kataria, Nandita; Hu, Hilary Zhaoxu; Garness, Jason; Cook, Matthew S; Capel, Blanche; Schlafer, Donald H; Southard, Teresa; Weiss, Robert S
2017-11-14
Testicular germ cell tumors (TGCTs) are among the most responsive solid cancers to conventional chemotherapy. To elucidate the underlying mechanisms, we developed a mouse TGCT model featuring germ cell-specific Kras activation and Pten inactivation. The resulting mice developed malignant, metastatic TGCTs composed of teratoma and embryonal carcinoma, the latter of which exhibited stem cell characteristics, including expression of the pluripotency factor OCT4. Consistent with epidemiological data linking human testicular cancer risk to in utero exposures, embryonic germ cells were susceptible to malignant transformation, whereas adult germ cells underwent apoptosis in response to the same oncogenic events. Treatment of tumor-bearing mice with genotoxic chemotherapy not only prolonged survival and reduced tumor size but also selectively eliminated the OCT4-positive cancer stem cells. We conclude that the chemosensitivity of TGCTs derives from the sensitivity of their cancer stem cells to DNA-damaging chemotherapy. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Bazou, Despina; Kearney, Roisin; Mansergh, Fiona; Bourdon, Celine; Farrar, Jane; Wride, Michael
2011-02-01
In the present paper, gene expression analysis of mouse embryonic stem (ES) cells levitated in a novel ultrasound standing wave trap (USWT) (Bazou et al. 2005a) at variable acoustic pressures (0.08-0.85 MPa) and times (5-60 min) was performed. Our results showed that levitation of ES cells at the highest employed acoustic pressure for 60 min does not modify gene expression and cells maintain their pluripotency. Embryoid bodies (EBs) also expressed the early and late neural differentiation markers, which were also unaffected by the acoustic field. Our results suggest that the ultrasound trap microenvironment is minimally invasive as the biologic consequences of ES cell replication and EB differentiation proceed without significantly affecting gene expression. The technique holds great promise in safe cell manipulation techniques for a variety of applications including tissue engineering and regenerative medicine. Copyright © 2011 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
GATA-1 directly regulates Nanog in mouse embryonic stem cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Wen-Zhong; Ai, Zhi-Ying; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling 712100
2015-09-25
Nanog safeguards pluripotency in mouse embryonic stem cells (mESCs). Insight into the regulation of Nanog is important for a better understanding of the molecular mechanisms that control pluripotency of mESCs. In a silico analysis, we identify four GATA-1 putative binding sites in Nanog proximal promoter. The Nanog promoter activity can be significantly repressed by ectopic expression of GATA-1 evidenced by a promoter reporter assay. Mutation studies reveal that one of the four putative binding sites counts for GATA-1 repressing Nanog promoter activity. Direct binding of GATA-1 on Nanog proximal promoter is confirmed by electrophoretic mobility shift assay and chromatin immunoprecipitation.more » Our data provide new insights into the expanded regulatory circuitry that coordinates Nanog expression. - Highlights: • The Nanog proximal promoter conceives functional element for GATA-1. • GATA-1 occupies the Nanog proximal promoter in vitro and in vivo. • GATA-1 transcriptionally suppresses Nanog.« less
Whittington, Niteace C; Wray, Susan
2017-10-23
Autofluorescence is a problem that interferes with immunofluorescent staining and complicates data analysis. Throughout the mouse embryo, red blood cells naturally fluoresce across multiple wavelengths, spanning the emission and excitation spectra of many commonly used fluorescent reporters, including antibodies, dyes, stains, probes, and transgenic proteins, making it difficult to distinguish assay fluorescence from endogenous fluorescence. Several tissue treatment methods have been developed to bypass this issue with varying degrees of success. Sudan Black B dye has been commonly used to quench autofluorescence, but can also introduce background fluorescence. Here we present a protocol for an alternative called TrueBlack Lipofuscin Autofluorescence Quencher. The protocol described in this unit demonstrates how TrueBlack efficiently quenches red blood cell autofluorescence across red and green wavelengths in fixed embryonic tissue without interfering with immunofluorescent signal intensity or introducing background staining. We also identify optimal incubation, concentration, and multiple usage conditions for routine immunofluorescence microscopy. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.
Ushakov, I B; Tsetlin, V V; Moisa, S S
2013-01-01
The authors review the findings of researches into the effects of low-dose ionizing irradiation on diverse biological objects (embryonic Japanese quails, Aspergillus niger, Spirostomum ambiguum Ehrbg., mesenchymal stem cells from mouse marrow, dry higher plants seeds, blood lymphocytes from pilots and cosmonauts). Model experiments with chronic exposure to ionizing radiation doses comparable with the measurements inside orbital vehicles and estimations for trips through the interplanetary space resulted in morphological disorders (embryonic Japanese quails, Aspergillus niger), radiation hormesis (Aspergillus niger, MSCs from mouse marrow), increase in the seed germination rate, inhibition of Spirostomum spontaneous activity, DNA damages, chromosomal aberrations, and increase of the blood lymphocytes reactivity to additional radiation loading. These facts give grounds to assume that the crucial factor in the radiation outcomes is changes in liquid medium. In other words, during extended orbiting within the magnetosphere region and interplanetary missions ionizing radiation affects primarily liquids of organism and, secondarily, its morphofunctional structures.
A chronological expression profile of gene activity during embryonic mouse brain development.
Goggolidou, P; Soneji, S; Powles-Glover, N; Williams, D; Sethi, S; Baban, D; Simon, M M; Ragoussis, I; Norris, D P
2013-12-01
The brain is a functionally complex organ, the patterning and development of which are key to adult health. To help elucidate the genetic networks underlying mammalian brain patterning, we conducted detailed transcriptional profiling during embryonic development of the mouse brain. A total of 2,400 genes were identified as showing differential expression between three developmental stages. Analysis of the data identified nine gene clusters to demonstrate analogous expression profiles. A significant group of novel genes of as yet undiscovered biological function were detected as being potentially relevant to brain development and function, in addition to genes that have previously identified roles in the brain. Furthermore, analysis for genes that display asymmetric expression between the left and right brain hemispheres during development revealed 35 genes as putatively asymmetric from a combined data set. Our data constitute a valuable new resource for neuroscience and neurodevelopment, exposing possible functional associations between genes, including novel loci, and encouraging their further investigation in human neurological and behavioural disorders.
Cytotoxic Effects of Dillapiole on Embryonic Development of Mouse Blastocysts in Vitro and in Vivo
Chan, Wen-Hsiung
2014-01-01
We examined the cytotoxic effects of dillapiole, a phenylpropanoid with antileishmanial, anti-inflammatory, antifungal, and acaricidal activities, on the blastocyst stage of mouse embryos, subsequent embryonic attachment and outgrowth in vitro, and in vivo implantation via embryo transfer. Blastocysts treated with 2.5–10 μM dillapiole exhibited a significant increase in apoptosis and corresponding decrease in total cell number. Notably, the implantation success rates of blastocysts pretreated with dillapiole were lower than those of their control counterparts. Moreover, in vitro treatment with 2.5–10 μM dillapiole was associated with increased resorption of post-implantation embryos and decreased fetal weight. Our results collectively indicate that dillapiole induces apoptosis and retards early post-implantation development, both in vitro and in vivo. However, the extent to which this organic compound exerts teratogenic effects on early human development is not known at present. Further studies are required to establish effective protection strategies against the cytotoxic effects of dillapiole. PMID:24933639
Kathirvel, Poonkodi; Ravi, Subban
2012-01-01
This study examines the chemical composition and in vitro anticancer activity of the essential oil from Ocimum basilicum Linn. (Lamiaceae), cultivated in the Western Ghats of South India. The chemical compositions of basil fresh leaves were identified by GC-MS: 11 components were identified. The major constituents were found to be methyl cinnamate (70.1%), linalool (17.5%), β-elemene (2.6%) and camphor (1.52%). The results revealed that this plant may belong to the methyl cinnamate and linalool chemotype. A methyl thiazol tetrazolium assay was used for in vitro cytotoxicity screening against the human cervical cancer cell line (HeLa), human laryngeal epithelial carcinoma cell line (HEp-2) and NIH 3T3 mouse embryonic fibroblasts. The IC(50) values obtained were 90.5 and 96.3 µg mL(-1), respectively, and the results revealed that basil oil has potent cytotoxicity.
Schulman, Betsy R. Maller; Liang, Xianping; Stahlhut, Carlos; DelConte, Casey; Stefani, Giovanni; Slack, Frank J.
2010-01-01
In the nematode Caenorhabditis elegans, the let-7 microRNA (miRNA) controls the timing of key developmental events and terminal differentiation in part by directly regulating lin-41. C. elegans lin-41 mutants display precocious cell cycle exit and terminal differentiation of epidermal skin cells. lin-41 orthologues are found in more complex organisms including both mice and humans, but their roles are not known. We generated Mlin41 mouse mutants to ascertain a functional role for Mlin41. Strong loss of function Mlin41 gene-trap mutants demonstrated a striking neural tube closure defect during development, and embryonic lethality. Like C. elegans lin-41, Mlin41 also appears to be regulated by the let-7 and mir-125 miRNAs. Since Mlin41 is required for neural tube closure and survival it points to human lin-41 (HLIN41/TRIM71) as a potential human development and disease gene. PMID:19098426
Valbuena, D; Martin, J; de Pablo, J L; Remohí, J; Pellicer, A; Simón, C
2001-11-01
To investigate whether the deleterious effect of E(2) on embryonic implantation is due to a direct effect on the endometrium, on the embryo, or both. Prospective, controlled in vitro study. Tertiary infertility center. Fertile patients in the luteal phase with histologically normal endometrium who were attending the infertility clinic as oocyte donors (n = 14). E(2) dose-response (0, 10(-8), 10(-7), 10(-6), 10(-5), and 10(-4) M) and time course (day 2 vs. day 5) experiments were performed in an in vitro embryo adhesion assay composed of human polarized endometrial epithelial cells obtained from fertile patients and mouse embryos. Blastocyst formation rate and embryo adhesion rate. Monolayers of polarized endometrial epithelial cells expressed ERalpha at the mRNA level. The E(2) dose response of blastocysts with polarized endometrial epithelial cells (n = 235) demonstrated a progressive reduction in embryonic adhesion that was statistically significant at 10(-6) M. When polarized endometrial epithelial cells were treated alone with increasing doses of E(2) for 3 days and E(2) was then removed and blastocysts added (n = 410), embryonic adhesion was not significantly reduced, except at 10(-4) M. When 2-day mouse embryos (n = 609) were treated with increasing E(2) concentrations until day 5, the rate of blastocyst formation significantly decreased at a concentration >or= 10(-6) M, and embryonic adhesion decreased when blastocysts (n = 400) were obtained at a concentration >or= 10(-7) M. Time course experiments of embryos cultured for 2 days with polarized endometrial epithelial cells (n = 426) showed that the adhesion rate was higher at E(2) levels of 10(-7), 10(-6) and 10(-5) M compared with embryos cultured for 5 days (n = 495). High E(2) levels are deleterious to embryo adhesion in vitro, mainly because they have a direct toxic effect on the embryo that may occur at the cleavage stage.
Rat embryonic palatal shelves respond to TCDD in organ culture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abbott, B.D.; Birnbaum, L.S.
1990-05-01
TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin), a highly toxic environmental contaminant, is teratogenic in mice, inducing cleft palate (CP) and hydronephrosis at doses which are not overtly maternally or embryo toxic. Palatal shelves of embryonic mice respond to TCDD, both in vivo and in organ culture, with altered differentiation of medial epithelial cells. By contrast, in the rat TCDD produces substantial maternal, embryonic, and fetal toxicity, including fetal lethality, with few malformations. In this study the possible effects of maternal toxicity on induction of cleft palate were eliminated by exposure of embryonic rat palatal shelves in organ culture. The shelves were examined for specificmore » TCDD-induced alterations in differentiation of the medial cells. On Gestation Day (GD) 14 or 15 palatal shelves from embryonic F344 rats were placed in organ culture for 2 to 3 days (IMEM:F12 medium, 5% FBS, 0.1% DMSO) containing 0, 1 x 10(-8), 1 x 10(-9), 1 x 10(-10), or 5 x 10(-11) M TCDD. The medial epithelial peridermal cells degenerated on shelves exposed to control media or 5 x 10(-11) M TCDD. Exposure to 10(-10), 10(-9), and 10(-8) M TCDD inhibited this degeneration in 20, 36, and 60% of the shelves, respectively, and was statistically significant at the two highest doses. A normally occurring decrease in (3H)TdR incorporation was inhibited in some GD 15 shelves cultured with 10(-10) and 10(-9) M TCDD. The medial cells of TCDD-exposed shelves continued to express high levels of immunohistochemically detected EGF receptors. The altered differentiation of rat medial epithelium is similar to that reported for TCDD-exposed mouse medial cells in vivo and in vitro. However, in order to obtain these responses, the cultured rat shelves require much higher concentrations of TCDD than the mouse shelves.« less
Yu, Feng; Qian, Xiaowei; Zeng, Zhanghui; Zhao, Xiaoli; Hou, Rong; Zhang, Zhihe; Bian, Hongwu; Han, Ning; Wang, Junhui; Zhu, Muyuan
2017-11-01
Antioxidant of bamboo leaves (AOB) was certified to be a natural antioxidant by the Chinese Ministry of Health in 2003. However, the effects of AOB on animal reproductive and developmental functions remain unclear. The present study aimed to investigate the effects of different concentrations of AOB on mouse embryonic fibroblast (MEF) cells, and to examine the underlying molecular mechanism through which AOB affects the proliferation and apoptosis of MEFs. MEFs prepared from individual embryos were treated with various dosages of AOB. Cell viability and apoptosis were detected by MTT and flow cytometry assays, respectively. Reverse transcription‑quantitative polymerase chain reaction and western blot analyses were used for the detection of mRNA and protein expression. Functional annotation of differentially‑expressed genes was performed according to the Gene Ontology database and Kyoto Encyclopedia of Genes and Genomes pathway analysis. Compared with the control group, ~50% of MEF cells were inhibited following treatment with a 400 µg/ml concentration of AOB. Treatment with 400 µg/ml AOB for 72 h significantly increased the apoptotic rate of MEF cells compared with the control group. Following treatment with AOB, dehydrogenase/reductase 9, phospholipase A2 group IVE and platelet derived growth factor B were downregulated, while 17 other genes were upregulated in MEF cells. Treatment with AOB markedly increased the expression of phosphorylated extracellular signal‑regulated kinase (ERK), β‑catenin, transcription factor SOX‑17, calcium‑binding tyrosine phosphorylation‑regulated protein, and cholesterol side chain cleavage enzyme mitochondrial (P<0.01). Additionally, the ERK pathway inhibitor U0126 and Wnt pathway inhibitor dickkopf‑related protein 1 markedly suppressed the expression of the above genes (P<0.01). AOB may impact the expression of proteins associated with embryonic fibroblast reproduction and embryonic development through activation of the ERK and Wnt signaling pathways, thus influencing cellular processes.
Bouron, Alexandre
2018-06-01
Live-cell imaging experiments were performed with the fluorescent Ca 2+ and Zn 2+ probes Fluo-4 and FluoZin-3 on cultured cortical neurons dissociated from embryonic mice to investigate the effects of the cannabinoids anandamide (AEA), cannabidiol (CBD), and N-arachidonoyl glycine (NAGly) on neuronal store-operated Ca 2+ entry (SOCE). When tested individually AEA, CBD or NAGly inhibited SOCE. CBD and NAGly also released Ca 2+ from the endoplasmic reticulum. Furthermore, NAGly mobilized Zn 2+ from a store distinct from the endoplasmic reticulum and mitochondria, and up-regulated the thapsigargin-evoked Ca 2+ release. All these effects developed in a cannabinoid receptor CB1/2 independent manner via an intracellular pathway sensitive to the GPR55 antagonist ML193. Evidence is presented that cannabinoids influence Ca 2+ and Zn 2+ signaling in central nervous system neurons. The lipid sensing receptor GPR55 seems to be a central actor governing these responses. In addition, the alteration of the cytosolic Zn 2+ levels produced by NAGly provides support for the existence of a connection between endocannabinoids and Zn 2+ signaling in the brain. Copyright © 2018 Elsevier Inc. All rights reserved.
Zhang, Yiwei; Zeng, Shelya X; Hao, Qian; Lu, Hua
2017-03-01
Although p53 is not essential for normal embryonic development, it plays a pivotal role in many biological and pathological processes, including cell fate determination-dependent and independent events and diseases. The expression and activity of p53 largely depend on its two biological inhibitors, MDM2 and MDMX, which have been shown to form a complex in order to tightly control p53 to an undetectable level during early stages of embryonic development. However, more delicate studies using conditional gene-modification mouse models show that MDM2 and MDMX may function separately or synergistically on p53 regulation during later stages of embryonic development and adulthood in a cell and tissue-specific manner. Here, we report the role of the MDM2/MDMX-p53 pathway in pancreatic islet morphogenesis and functional maintenance, using mouse lines with specific deletion of MDM2 or MDMX in pancreatic endocrine progenitor cells. Interestingly, deletion of MDM2 results in defects of embryonic endocrine pancreas development, followed by neonatal hyperglycemia and lethality, by inducing pancreatic progenitor cell apoptosis and inhibiting cell proliferation. However, unlike MDM2-knockout animals, mice lacking MDMX in endocrine progenitor cells develop normally. But, surprisingly, the survival rate of adult MDMX-knockout mice drastically declines compared to control mice, as blockage of neonatal development of endocrine pancreas by inhibition of cell proliferation and subsequent islet dysfunction and hyperglycemia eventually lead to type 1 diabetes-like disease with advanced diabetic nephropathy. As expected, both MDM2 and MDMX deletion-caused pancreatic defects are completely rescued by loss of p53, verifying the crucial role of the MDM2 and/or MDMX in regulating p53 in a spatio-temporal manner during the development, functional maintenance, and related disease progress of endocrine pancreas. Also, our study suggests a possible mouse model of advanced diabetic nephropathy, which is complementary to other established diabetic models and perhaps useful for the development of anti-diabetes therapies. Copyright © 2017 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Yuanfan; Wang, Chenchen; Peking University Stem Cell Research Center, China National Center for International Research, Peking University Health Science Center, Beijing 100191
2015-07-03
The mammalian BTG/Tob family is a group of proteins with anti-proliferative ability, and there are six members including BTG1, BTG2/PC3/Tis21, BTG3/ANA, BTG4/PC3B, Tob1/Tob and Tob2. Among them, Tob subfamily members, specifically Tob1/Tob and Tob2, have the most extensive C-terminal regions. As previously reported, overexpression of BTG/Tob proteins is associated with the inhibition of G1 to S-phase cell cycle progression and decreased cell proliferation in a variety of cell types. Tob subfamily proteins have similar anti-proliferative effects on cell cycle progression in cultured tumor cells. An important unresolved question is whether or not they have function in rapidly proliferating cells, suchmore » as embryonic stem cells (ESCs). Tob1 and Tob2 were expressed ubiquitously in mouse ESCs (mESCs), suggesting a possible role in early embryonic development and mESCs. To address the above question and explore the possible functions of the Tob subfamily in ESCs, we established ESCs from different genotypic knockout inner cell mass (ICM). We found that Tob1{sup −/−}, Tob2{sup −/−}, and Tob1/2 double knockout (DKO, Tob1{sup −/−} & Tob2{sup −/−}) ESCs grew faster than wild type (WT) ESCs without losing pluripotency, and we provide a possible mechanistic explanation for these observations: Tob1 and Tob2 inhibit the cell cycle via degradation of Id3 mRNA, which is a set of directly targeted genes of BMP4 signaling in mESCs that play critical roles in the maintenance of ESC properties. Together, our data suggest that BTG/Tob family protein Tob1 and Tob2 regulation cell proliferation does not compromise the basic properties of mESCs. - Highlights: • We established mouse Tob1/2 double knockout embryonic stem cells. • Tob1 and Tob2 inhibit the proliferation of ESCs without effect on pluripotency. • Tob1 and Tob2 involved in the degradation of Id3 in mESCs.« less
Transcriptomic profile analysis of mouse neural tube development by RNA-Seq.
Yu, Juan; Mu, Jianbing; Guo, Qian; Yang, Lihong; Zhang, Juan; Liu, Zhizhen; Yu, Baofeng; Zhang, Ting; Xie, Jun
2017-09-01
The neural tube is the primordium of the central nervous system (CNS) in which its development is not entirely clear. Understanding the cellular and molecular basis of neural tube development could, therefore, provide vital clues to the mechanism of neural tube defects (NTDs). Here, we investigated the gene expression profiles of three different time points (embryonic day (E) 8.5, 9.5 and 10.5) of mouse neural tube by using RNA-seq approach. About 391 differentially expressed genes (DEGs) were screened during mouse neural tube development, including 45 DEGs involved in CNS development, among which Bmp2, Ascl1, Olig2, Lhx1, Wnt7b and Eomes might play the important roles. Of 45 DEGs, Foxp2, Eomes, Hoxb3, Gpr56, Hap1, Nkx2-1, Sez6l2, Wnt7b, Tbx20, Nfib, Cntn1 and Dcx had different isoforms, and the opposite expression pattern of different isoforms was observed for Gpr56, Nkx2-1 and Sez6l2. In addition, alternative splicing, such as mutually exclusive exon, retained intron, skipped exon and alternative 3' splice site was identified in 10 neural related differentially splicing genes, including Ngrn, Ddr1, Dctn1, Dnmt3b, Ect2, Map2, Mbnl1, Meis2, Vcan and App. Moreover, seven neural splicing factors, such as Nova1/2, nSR100/Srrm4, Elavl3/4, Celf3 and Rbfox1 were differentially expressed during mouse neural tube development. Interestingly, nine DEGs identified above were dysregulated in retinoic acid-induced NTDs model, indicating the possible important role of these genes in NTDs. Taken together, our study provides more comprehensive information on mouse neural tube development, which might provide new insights on NTDs occurrence. © 2017 IUBMB Life, 69(9):706-719, 2017. © 2017 International Union of Biochemistry and Molecular Biology.
Cloning of ES cells and mice by nuclear transfer.
Wakayama, Sayaka; Kishigami, Satoshi; Wakayama, Teruhiko
2009-01-01
We have been able to develop a stable nuclear transfer (NT) method in the mouse, in which donor nuclei are directly injected into the oocyte using a piezo-actuated micromanipulator. Although the piezo unit is a complex tool, once mastered it is of great help not only in NT experiments, but also in almost all other forms of micromanipulation. Using this technique, embryonic stem (ntES) cell lines established from somatic cell nuclei can be generated relatively easily from a variety of mouse genotypes and cell types. Such ntES cells can be used not only for experimental models of human therapeutic cloning but also as a means of preserving mouse genomes instead of preserving germ cells. Here, we describe our most recent protocols for mouse cloning.
Takata, Nozomu; Sakakura, Eriko; Sakuma, Tetsushi; Yamamoto, Takashi
2017-01-01
Approaches to investigate gene functions in experimental biology are becoming more diverse and reliable. Furthermore, several kinds of tissues and organs that possess their original identities can be generated in petri dishes from stem cells including embryonic, adult and induced pluripotent stem cells. Researchers now have several choices of experimental methods and their combinations to analyze gene functions in various biological systems. Here, as an example we describe one of the better protocols, which combines three-dimensional embryonic stem cell culture with small regulatory RNA-mediated technologies, clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9), and inducible RNA interference (RNAi). This protocol allows investigation of genes of interest to better understand gene functions in target tissues (or organs) during in vitro development.
Wnt signaling in caudal dysgenesis and diabetic embryopathy
Pavlinkova, Gabriela; Salbaum, J. Michael; Kappen, Claudia
2010-01-01
Congenital defects are a major complication of diabetic pregnancy, and the leading cause of infant death in the first year of life. Caudal dysgenesis, occurring up to 200-fold more frequently in children born to diabetic mothers, is a hallmark of diabetic pregnancy. Given that there is also an at least 3-fold higher risk for heart defects and neural tube defects, it is important to identify the underlying molecular mechanisms for aberrant embryonic development. We have investigated gene expression in a transgenic mouse model of caudal dysgenesis, and in a pharmacological model using situ hybridization and quantitative real-time PCR. We identify altered expression of several molecules that control developmental processes and embryonic growth. The results from our models point towards major implication of altered Wnt signaling in the pathogenesis of developmental anomalies associated with embryonic exposure to maternal diabetes. PMID:18937363
Generation of Corneal Keratocytes from Human Embryonic Stem Cells.
Hertsenberg, Andrew J; Funderburgh, James L
2016-01-01
Human Embryonic Stem Cells (hESC) offer an important resource as a limitless supply of any differentiated cell type of the human body. Keratocytes, cells from the corneal stroma, may have the potential for restoration of vision in cell therapy and biomedical engineering applications, but these specialized cells are not readily expanded in vitro. Here we describe a two-part method to produce keratocytes from the H1 hESC cell line. The hESC cells, maintained and expanded in feeder-free culture medium are first differentiated to neural crest cells using the stromal-derived inducing activity (SDIA) of the PA6 mouse embryonic fibroblast cell line. The resulting neural crest cells are selected by their expression of cell-surface CD271 and subsequently cultured as 3D pellets in a defined differentiation medium to induce a keratocyte phenotype.
Matveeva, Natalia M; Kizilova, Elena A; Serov, Oleg L
2015-01-01
The in vitro long-term cultivation of embryonic stem (ES) cells derived from pre-implantation embryos offers the unique possibility of combining ES cells with pre-implantation embryos to generate chimeras, thus facilitating the creation of a bridge between in vitro and in vivo investigations. Genomic manipulation using ES cells and homologous recombination is one of the most outstanding scientific achievements, resulting in the generation of animals with desirable genome modifications. As such, the generation of ES cells with different ploidy via cell fusion also deserves much attention because this approach allows for the production of chimeras that contain somatic cells with various ploidy. Therefore, this is a powerful tool that can be used to study the role of polyploidy in the normal development of mammals.
Directed Differentiation of Embryonic Stem Cells Using a Bead-Based Combinatorial Screening Method
Tarunina, Marina; Hernandez, Diana; Johnson, Christopher J.; Rybtsov, Stanislav; Ramathas, Vidya; Jeyakumar, Mylvaganam; Watson, Thomas; Hook, Lilian; Medvinsky, Alexander; Mason, Chris; Choo, Yen
2014-01-01
We have developed a rapid, bead-based combinatorial screening method to determine optimal combinations of variables that direct stem cell differentiation to produce known or novel cell types having pre-determined characteristics. Here we describe three experiments comprising stepwise exposure of mouse or human embryonic cells to 10,000 combinations of serum-free differentiation media, through which we discovered multiple novel, efficient and robust protocols to generate a number of specific hematopoietic and neural lineages. We further demonstrate that the technology can be used to optimize existing protocols in order to substitute costly growth factors with bioactive small molecules and/or increase cell yield, and to identify in vitro conditions for the production of rare developmental intermediates such as an embryonic lymphoid progenitor cell that has not previously been reported. PMID:25251366
Negative regulation of early polyomavirus expression in mouse embryonal carcinoma cells.
Cremisi, C; Babinet, C
1986-01-01
Embryonal carcinoma cells are resistant to infection by polyomavirus (Py). We showed that this block was partially removed by inhibiting protein synthesis temporarily. The block was also partially removed when Py was coinfected with simian virus 40. Cycloheximide treatment of cells infected with Py mutants able to grow on PCC4 embryonal carcinoma cells led to 3- to 10-fold increases in the production of T-antigen-positive cells. At 31 degrees C, Py T-antigen expression was enhanced when the cells were treated with cycloheximide. We suggest that a negative labile regulatory protein(s) is synthesized in PCC4 cells, preventing the initiation of early Py transcription by binding to the noncoding sequence, especially the enhancer element B and perhaps also element A, and that the Py mutants retained a binding site(s). PMID:3016339