Sample records for embryonic rat cortex

  1. Effect of allo- and xenotransplantation of embryonic nervous tissue and umbilical cord blood-derived stem cells on structural and functional state of cerebral cortex of albino rats in posttraumatic period.

    PubMed

    Ereniev, S I; Semchenko, V V; Sysheva, E V; Bogdashin, I V; Shapovalova, V V; Khizhnyak, A S; Gasanenko, L N

    2005-11-01

    Comparative study of the structural and functional state of cerebral cortex of adult albino rats after intracerebral allo- and xenotransplantation of embryonic nervous tissue and intravenous injection of umbilical cord blood-derived stem cells at different terms after diffuse-focal cerebral trauma revealed the best cerebroprotective effect on day 7 of posttraumatic period in animals receiving embryonic nervous tissue.

  2. Cerebral morphology and functional sparing after prenatal frontal cortex lesions in rats.

    PubMed

    Kolb, B; Cioe, J; Muirhead, D

    1998-03-01

    Rats were given suction lesions of the presumptive frontal cortex on embryonic day 18 (E18) and subsequently tested, as adults, on tests of spatial navigation (Morris water task, radial arm maze), motor tasks (Whishaw reaching task, beam walking), and locomotor activity. Frontal cortical lesions at E18 affected cerebral morphogenesis, producing unusual morphological structures including abnormal patches of neurons in the cortex and white matter as well as neuronal bridges between the hemispheres. A small sample of E18 operates also had hydrocephaly. The animals with E18 lesions without hydrocephalus were behaviorally indistinguishable from littermate controls. The results demonstrate that animals with focal lesions of the presumptive frontal cortex have gross abnormalities in cerebral morphology but the lesions leave the functions normally subserved by the frontal cortex in adult rats unaffected. The results are discussed in the context of a hypothesis regarding the optimal times for functional recovery from cortical injury.

  3. Preprotachykinin A mRNA expression in the rat brain during development.

    PubMed

    Brené, S; Lindefors, N; Friedman, W J; Persson, H

    1990-12-15

    Expression of preprotachykinin A (PPT-A) mRNA was analyzed by northern blots using mRNA prepared from rat brain at 12 different developmental stages ranging from embryonic day 15 (E15) to adult. A single PPT-A mRNA of 1.3 kb was detected throughout development. PPT-A mRNA was detected as early as E15 and an approximately 3-fold increase occurred at birth. This amount remained until 3 weeks of age when the level increased, reaching a peak at 5 weeks of age. Adult amounts were approximately 3-fold higher than the levels at birth. The distribution of PPT-A mRNA-expressing cells in rat brain was studied by in situ hybridization on sections from embryonic day 20, postnatal days 4 and 7 as well as adult. Cells expressing PPT-A mRNA were detected in the forebrain at all 4 ages analyzed. However, the hybridization pattern and the labeling intensity varied in different brain regions during development. In cingulate cortex, intense labeling was seen in numerous cells at embryonic day 20 and postnatal days 4 and 7, whereas in the adult cingulate cortex only a few scattered labeled cells were observed. In frontoparietal cortex labeled cells were found from postnatal day 4 to adult, with the highest density of labeled cells at P7. Developmental differences in both the distribution of PPT-A mRNA-expressing cells and the level of PPT-A mRNA expression were also found in caudate-putamen, lateral hypothalamus and amygdala. Thus, our results show several changes in PPT-A mRNA expression during ontogeny, indicating a region and time-specific regulation of PPT-A mRNA expression during brain maturation.

  4. Histogenesis of the epithelial component of rat thymus: an ultrastructural and immunohistological analysis.

    PubMed

    Vicente, A; Varas, A; Sacedón, R; Zapata, A G

    1996-04-01

    Despite the assumed importance of thymic cell microenvironments for governing T-cell maturation, little is known about the ontogeny of their cell components. A few studies have analyzed previously the ontogenetical development of rat thymic epithelium (Bogojevic et al. 1990. Period. Biol., 92:126; Kampinga and Aspinall 1990 Harwood Acad. Pub., London, pp. 149-186; Micic et al., 1991 Dev. Comp. Immunol., 15:443-450) and recently we have reported the development of both interdigitating/dendritic cells and macrophages (Vicente et al., 1994 Immunology, 82:75-81, 1995 Immunology, 85:99-105). In the present work we analyze in situ ultrastructural, immunohistochemical, and histoenzymatically the appearance and development of the thymic epithelial cell component in both embryonic and neonatal Wistar rats with special emphasis on the origin of the different epithelial cell types, the occurrence or absence of a common precursor for these, and the expression of MHC molecules. The thymic primordium of 13-day-old embryos is formed by a homogeneous population of primitive epithelial cells differentiating gradually into various epithelial cell subtypes of both the cortex and the medulla. In the cortex, subcapsular and stroma-supporting epithelial cells appear at days 14-15 as two structurally different cell entities. At the same time, stroma-supporting, keratinized, and vacuolated epithelial cells occur in the thymic medulla. These last two cell types differentiate subsequently into Hassall's bodies and hypertrophied cells. Lympho-epithelial cell complexes are identified in the deep cortex around birth, when the cortical parenchyma houses a transitional erythropoiesis. mAbs (His-39, RMC-20) which recognize medullary epithelial cells in the adult thymus stain positively cells of the thymic primordium as early as day 16 of embryonic life. Cortical epithelial cell markers (His-37, RMC-17) appear, however, slightly later and the subcapsulary region is not established until postnatal life. MHC class I and class II molecules can be identified on epithelial cells in the thymus of 15-day-old embryonic rats although they reach the highest expression around birth. Our results confirm the heterogeneity of the thymic epithelial component, the persistence of primitive, non-differentiated epithelial cells morphologically similar to those occurring in the early thymic primordium in adult thymus, and the mutual relevance of epithelial cells and thymocytes for an adequate development of rat thymus gland.

  5. Effects of Microwave Irradiation on Embryonic Brain Tissue.

    DTIC Science & Technology

    1979-03-01

    less than 1 hour) post partum in the experiment described in Section III, page 13. Table 2 The significance of the difference in weight of the irradiated...appeared normal. Two of the control and two of the exposed rats showed small depressions of the external surface of the hemisphere unilaterally with...some thinning of the underlying cortex. The depressions occurred, one just dorsal to the rhinal fissure and the other lateral to the longitudinal sulcus

  6. Development of neuropeptide Y (NPY) immunoreactive neurons in the rat occipital cortex: A combined immunohistochemical-autoradiographic study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cavanagh, M.E.; Parnavelas, J.G.

    1990-07-22

    The postnatal development of neuropeptide Y (NPY)-immunoreactive neurons, previously labeled with (3H)thymidine on embryonic days E14-E21, has been studied in the rat occipital cortex. Immunohistochemistry combined with autoradiography showed evidence of a modified inside-out pattern of maturation. NPY-neurons are generated between E14 and E20 and are found in layers II-VI of the cortex and the subcortical white matter. NPY neurons from all these birthdates are overproduced at first, although cells generated at E16 produce the greatest excess, followed by E15 and E17. Some of these transient neurons are found in the wrong layer for their birthdates, and their elimination producesmore » a more correct alignment at maturity. However, most of the NPY neurons that survive are generated at E17, and these cells are found throughout layers II-VI with a preponderance in layer VI. This evidence is strongly suggestive of cell death rather than merely cessation of production of NPY.« less

  7. Embryonic development of connections in turtle pallium.

    PubMed

    Cordery, P; Molnár, Z

    1999-10-11

    We are interested in similarities and conserved mechanisms in early development of the reptilian and mammalian thalamocortical connections. We set out to analyse connectivity in embryonic turtle brains (Pseudemys scripta elegans, between stages 17 and 25), by using carbocyanine dye tracing. From the earliest stages studied, labelling from dorsal and ventral thalamus revealed backlabelled cells among developing thalamic fibres within the lateral forebrain bundle and striatum, which had similar morphology to backlabelled internal capsule cells in embryonic rat (Molnár and Cordery, 1999). However, thalamic crystal placements did not label cells in the dorsal ventricular ridge (DVR) at any stage examined. Crystal placements into both dorsal and lateral cortex labelled cells in the DVR and, reciprocally, DVR crystal placements labelled cells in the dorsal and lateral cortices. Retrograde labelling revealed that thalamic fibres arrive in the DVR and dorsal cortex by stage 19. The DVR received projections from the nucleus rotundus and the dorsal cortex exclusively from the perirotundal complex (including lateral geniculate nucleus). Thalamic fibres show this remarkable degree of specificity from the earliest stage we could examine with selective retrograde labelling (stage 19). Our study demonstrates that axons of similar cells are among the first to reach dorsal and ventral thalamus in mammals and reptiles. Our connectional analysis in turtle suggests that some cells of the mammalian primitive internal capsule are homologous to a cell group within the reptilian lateral forebrain bundle and striatum and that diverse vertebrate brains might use a highly conserved pattern of early thalamocortical development. Copyright 1999 Wiley-Liss, Inc.

  8. The perinatal effects of maternal caffeine intake on fetal and neonatal brain levels of testosterone, estradiol, and dihydrotestosterone in rats.

    PubMed

    Karaismailoglu, S; Tuncer, M; Bayrak, S; Erdogan, G; Ergun, E L; Erdem, A

    2017-08-01

    Testosterone, estradiol, and dihydrotestosterone are the main sex steroid hormones responsible for the organization and sexual differentiation of brain structures during early development. The hypothalamo-pituitary-adrenocortical axis, adrenal cells, and gonads play a key role in the production of sex steroids and express adenosine receptors. Caffeine is a non-selective adenosine antagonist; therefore, it can modulate metabolic pathways in these tissues. Besides, the proportion of pregnant women that consume caffeine is ∼60%. That is why the relationship between maternal caffeine consumption and fetal development is important. Therefore, we aimed to investigate this modulatory effect of maternal caffeine consumption on sex steroids in the fetal and neonatal brain tissues. Pregnant rats were treated with a low (0.3 g/L) or high (0.8 g/L) dose of caffeine in their drinking water during pregnancy and lactation. The testosterone, estradiol, and dihydrotestosterone levels in the frontal cortex and hypothalamus were measured using radioimmunoassay at embryonic day 19 (E19), birth (PN0), and postnatal day 4 (PN4). The administration of low-dose caffeine increased the body weight in PN4 male and female rats and anogenital index in PN4 males. The administration of high-dose caffeine decreased the adrenal weight in E19 male rats and increased testosterone levels in the frontal cortex of E19 female rats and the hypothalamus of PN0 male rats. Maternal caffeine intake during pregnancy affects sex steroid levels in the frontal cortex and hypothalamus of the offspring. This concentration changes of the sex steroids in the brain may influence behavioral and neuroendocrine functions at some point in adult life.

  9. Expression and function of dopamine receptors in the developing medial frontal cortex and striatum of the rat

    PubMed Central

    Sillivan, Stephanie E.; Konradi, Christine

    2011-01-01

    The timeline of dopamine (DA) system maturation and the signaling properties of dopamine receptors (DRs) during rat brain development are not fully characterized. We used in situ hybridization and quantitative PCR to map DR mRNA transcripts in the medial frontal cortex (mFC) and striatum (STR) of the rat from embryonic day (E) 15 to E21. The developmental trajectory of DR mRNAs revealed distinct patterns of DA receptors 1 and 2 (DRD1, DRD2) in these brain regions. Whereas the mFC had a steeper increase in DRD1 mRNA, the STR had a steeper increase in DRD2 mRNA. Both DR mRNAs were expressed at a higher level in the STR compared to the mFC. To identify the functional properties of DRs during embryonic development, the phosphorylation states of cyclic AMP response element binding protein (CREB), extracellular signal-regulated kinase 1/2 (ERK1/2), and glycogen synthase kinase 3 beta (GSK3β) were examined after DR stimulation in primary neuronal cultures obtained from E15 and E18 embryos and cultured for 3 days to ensure a stable baseline level. DR-mediated signaling cascades were functional in E15 cultures in both brain regions. Because DA fibers do not reach the mFC by E15, and DA was not present in cultures, these data indicate that DRs can become functional in the absence of DA innervation. Since activation of DR signal transduction pathways can affect network organization of the developing brain, maternal exposure to drugs that affect DR activity may be liable to interfere with fetal brain development. PMID:22015925

  10. Expression of small cytoplasmic transcripts of the rat identifier element in vivo and in cultured cells.

    PubMed Central

    McKinnon, R D; Danielson, P; Brow, M A; Bloom, F E; Sutcliffe, J G

    1987-01-01

    We examined the level of expression of small RNA transcripts hybridizing to a rodent repetitive DNA element, the identifier (ID) sequence, in a variety of cell types in vivo and in cultured mammalian cells. A 160-nucleotide (160n) cytoplasmic poly(A)+ RNA (BC1) appeared in late embryonic and early postnatal rat brain development, was enriched in the cerebral cortex, and appeared to be restricted to neural tissue and the anterior pituitary gland. A 110n RNA (BC2) was specifically enriched in brain, especially the postnatal cortex, but was detectable at low levels in peripheral tissues. A third, related 75n poly(A)- RNA (T3) was found in rat brain and at lower levels in peripheral tissues but was very abundant in the testes. The BC RNAs were found in a variety of rat cell lines, and their level of expression was dependent upon cell culture conditions. A rat ID probe detected BC-like RNAs in mouse brain but not liver and detected a 200n RNA in monkey brain but not liver at lower hybridization stringencies. These RNAs were expressed by mouse and primate cell lines. Thus, tissue-specific expression of small ID-sequence-related transcripts is conserved among mammals, but the tight regulation found in vivo is lost by cells in culture. Images PMID:2439903

  11. Effect of 2,450 MHz microwave radiation on the development of the rat brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inouye, M.; Galvin, M.J.; McRee, D.I.

    1983-12-01

    Male Sprague-Dawley rats were exposed to 2,450 MHz microwave radiation at an incident power density of 10 mW/cm2 daily for 3 hours from day 4 of pregnancy (in utero exposure) through day 40 postpartum, except for 2 days at the perinatal period. The animals were killed, and the brains removed, weighed, measured, and histologically examined at 15, 20, 30, and 40 days of age. The histologic parameters examined included the cortical architecture of the cerebral cortex, the decline of the germinal layer along the lateral ventricles, the myelination of the corpus callosum, and the decline of the external germinal layermore » of the cerebellar cortex. In 40-day-old rats, quantitative measurements of neurons were also made. The spine density of the pyramidal cells in layer III of the somatosensory cortex, and the density of basal dendritic trees of the pyramidal cells in layer V were measured in Golgi-Cox impregnated specimens. In addition, the density of Purkinje cells and the extent of the Purkinje cell layer in each lobule were measured in midsagittal sections of the cerebellum stained with thionin. There were no remarkable differences between microwave-exposed and control (sham-irradiated) groups for any of the histologic or quantitative parameters examined; however, the findings provide important information on quantitative measurements of the brain. The data from this study failed to demonstrate that there is a significant effect on rat brain development due to microwave exposure (10 mW/cm2) during the embryonic, fetal, and postnatal periods.« less

  12. Effects of Tianeptine on Adult Rats Following Prenatal Stress

    PubMed Central

    Lee, Hwayoung; Kim, Hyung-Ki; Kwon, Jun-Tack; Kim, Young Ock; Seo, Jonghoon; Lee, Sanghyun; Cho, Ik-Hyun

    2018-01-01

    Objective Exposing a pregnant female to stress during the critical period of embryonic fetal brain development increases the risk of psychiatric disorders in the offspring. The objective of this study was to investigate the effect of antidepressant tianeptine on prenatally stressed (PNS) rats. Methods In this study, a repeated variable stress paradigm was applied to pregnant rats during the last week of gestation. To investigate the effects of antidepressant tianeptine on PNS rats, behavioral and protein expression analyses were performed. Forced swim test, open field test, and social interaction test were performed to determine changes in PNS rats compared to non-stressed offspring. Haloperidol was used as a positive control as an antipsychotic drug based on previous studies. Results Behavioral changes were restored after treatment with tianeptine or haloperidol. Western blot and immunohistochemical analyses of the prefrontal cortex revealed downregulation of several neurodevelopmental proteins in PNS rats. After treatment with tianeptine or haloperidol, their expression levels were increased. Conclusion Downregulation of several proteins in PNS rats might have caused subsequent behavioral changes in PNS rats. After tianeptine or haloperidol treatment, behavioral changes in PNS rats were restored. Therefore, tianeptine might decrease incidence of prenatal stress related-psychiatric disorders such as depression and schizophrenia. PMID:29739134

  13. Expression of APG-2 protein, a member of the heat shock protein 110 family, in developing rat brain.

    PubMed

    Okui, M; Ito, F; Ogita, K; Kuramoto, N; Kudoh, J; Shimizu, N; Ide, T

    2000-01-01

    APG-2 protein is a member of the heat shock protein 110 family, and it is thought to play an important role in the maintenance of neuronal functions under physiological and stress conditions. However, neither the tissue-distribution of APG-2 protein nor developmental change of its expression has been studied at the protein level. Therefore, we generated an antiserum against APG-2 protein and studied expression of this protein in rat brain and other tissues by use of the Western blot method. The results showed a high expression of APG-2 protein in various regions of the central nervous system (cerebral cortex, hippocampus, striatum, midbrain, hypothalamus, cerebellum, medulla pons, and spinal cord) throughout the entire postnatal stage. Similarly, a high level of APG-2 protein was detected in the whole brain of rat embryos and in adult rat tissues such as liver, lung, spleen, and kidney. In contrast, its expression in heart was high at postnatal days 1 and 3, but thereafter drastically decreased to a low level. Furthermore, APG-2 protein was detected in neuronal primary cultures prepared from rat cerebral cortex, and its level did not change notably during neuronal differentiation. These results show that APG-2 protein is constitutively expressed in various tissues and also in neuronal cells throughout the entire embryonic and postnatal period. suggesting that it might play an important role in these tissues under non-stress conditions.

  14. Role of development in reorganization of the SI forelimb-stump representation in fetally, neonatally, and adult amputated rats.

    PubMed

    Pluto, Charles P; Lane, Richard D; Chiaia, Nicolas L; Stojic, Andrey S; Rhoades, Robert W

    2003-09-01

    Rats that sustain forelimb removal on postnatal day (P) 0 exhibit numerous multi-unit recording sites in the forelimb-stump representation of primary somatosensory cortex (SI) that also respond to hindlimb stimulation when cortical GABAA+B receptors are blocked. Most of these hindlimb inputs originate in the medial SI hindlimb representation. Although many forelimb-stump sites in these animals respond to hindlimb stimulation, very few respond to stimulation of the face (vibrissae or lower jaw), which is represented in SI just lateral to the forelimb. The lateral to medial development of SI may influence the capacity of hindlimb (but not face) inputs to "invade" the forelimb-stump region in neonatal amputees. The SI forelimb-stump was mapped in adult (>60 days) rats that had sustained amputation on embryonic day (E) 16, on P0, or during adulthood. GABA receptors were blocked and subsequent mapping revealed increases in nonstump inputs in E16 and P0 amputees: fetal amputees exhibited forelimb-stump sites responsive to face (34%), hindlimb (10%), and both (22%); neonatal amputees exhibited 10% face, 39% hindlimb, and 5% both; adult amputees exhibited 10% face, 5% hindlimb, and 0% both, with approximately 80% stump-only sites. These results indicate age-dependent differences in receptive-field reorganization of the forelimb-stump representation, which may reflect the spatiotemporal development of SI. Results from cobalt chloride inactivation of the SI vibrissae region and electrolesioning of the dysgranular cortex suggest that normally suppressed vibrissae inputs to the SI forelimb-stump area originate in the SI vibrissae region and synapse in the dysgranular cortex.

  15. Expression of the mRNAs encoding the limbic system-associated membrane protein (LAMP): II. Fetal rat brain.

    PubMed

    Pimenta, A F; Reinoso, B S; Levitt, P

    1996-11-11

    The limbic system-associated membrane protein (LAMP) is a 64-68 kDa neuronal surface glycoprotein expressed in cortical and subcortical regions of the limbic system of the adult and developing rat central nervous system (CNS). LAMP is a member of the immunoglobulin superfamily of cell adhesion molecules with three Ig domains and is highly conserved between rat and human. In this study, the temporal and spatial pattern of lamp gene expression during fetal rat development was analyzed by using Northern blot analysis and in situ hybridization. In Northern blot analysis, two lamp mRNA transcripts, 1.6 kb and 8.0 kb, identical in size to those present in the adult rat nervous system, were detected in developing neural tissue. In situ hybridization analysis showed close correlation, though not identity, between the expression of lamp mRNAs and the distribution of LAMP in limbic regions of the developing rat CNS, indicative of a more complex regulation of gene expression than was previously thought to be the case. The expression of lamp mRNAs is first detected on about embryonic day (E) 13. The hybridization signal is not seen in the proliferative ventricular zone at any level of the neuraxis, indicating that lamp is expressed in postmitotic neurons. In the cerebral cortex, lamp mRNAs are expressed in limbic cortical regions, such as the perirhinal cortex, prefrontal cortex, and cingulate cortex. In the hippocampus, the hybridization signal is observed in Ammon's horn by E18. The neostriatum, amygdaloid complex, and most hypothalamic areas express lamp mRNAs from early stages (E13-E14) in a pattern consistent with the onset of neurogenesis. The emerging patterns of lamp expression at the outset are similar to those seen in adult hypothalamus and dorsal thalamus. Although the hybridization signal is observed in some nonlimbic areas, including midbrain and hindbrain structures, intense labeling is evident in more classic limbic regions. The high levels of expression of lamp in limbic regions, beginning in early developmental stages, combined with the results of previous functional in vitro and in vivo studies, support a role for LAMP as a recognition molecule involved in the formation of limbic connections.

  16. Comparison of frailty of primary neurons, embryonic, and aging mouse cortical layers.

    PubMed

    Fugistier, Patrick; Vallet, Philippe G; Leuba, Geneviève; Piotton, Françoise; Marin, Pascale; Bouras, Constantin; Savioz, Armand

    2014-02-01

    Superficial layers I to III of the human cerebral cortex are more vulnerable toward Aβ peptides than deep layers V to VI in aging. Three models of layers were used to investigate this pattern of frailty. First, primary neurons from E14 and E17 embryonic murine cortices, corresponding respectively to future deep and superficial layers, were treated either with Aβ(1-42), okadaic acid, or kainic acid. Second, whole E14 and E17 embryonic cortices, and third, in vitro separated deep and superficial layers of young and old C57BL/6J mice, were treated identically. We observed that E14 and E17 neurons in culture were prone to death after the Aβ and particularly the kainic acid treatment. This was also the case for the superficial layers of the aged cortex, but not for the embryonic, the young cortex, and the deep layers of the aged cortex. Thus, the aged superficial layers appeared to be preferentially vulnerable against Aβ and kainic acid. This pattern of vulnerability corresponds to enhanced accumulation of senile plaques in the superficial cortical layers with aging and Alzheimer's disease. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Regulation of embryonic neurotransmitter and tyrosine hydroxylase protein levels by ascorbic acid

    PubMed Central

    Meredith, M. Elizabeth; May, James M.

    2013-01-01

    Scope: Ascorbic acid (ascorbate) is required to recycle tetrahydrobiopterin, which is necessary for neurotransmitter synthesis by the rate-limiting enzymes tyrosine and tryptophan hydroxylases. We sought to determine whether ascorbate might regulate embryonic brain cortex monoamine synthesis utilizing transgenic mouse models with varying intracellular ascorbate levels. Methods and Results: In embryos lacking the sodium-dependent vitamin C transporter 2 (SVCT2), very low levels of brain ascorbate decreased cortex levels of norepinephrine and dopamine by approximately 33%, but had no effect on cortex serotonin or its metabolite, 5-hydroxyindole acetic acid. This decrease in ascorbate also led to a decrease in protein levels of tyrosine hydroxylase, but not of tryptophan hydroxylase. Increased cortex ascorbate in embryos carrying extra copies of the SVCT2 resulted in increased levels of dopamine and its metabolite, 3,4-dihydroxyphenylacetic acid (DOPAC), as well as serotonin and 5-hydroxyindole acetic acid. Conclusion: The dependence of embryonic brain cortex neurotransmitter synthesis and tyrosine hydroxylase expression on intracellular ascorbate emphasizes the importance of receiving adequate ascorbate during development. PMID:24095796

  18. Gene expression of fatty acid transport and binding proteins in the blood-brain barrier and the cerebral cortex of the rat: differences across development and with different DHA brain status.

    PubMed

    Pélerin, Hélène; Jouin, Mélanie; Lallemand, Marie-Sylvie; Alessandri, Jean-Marc; Cunnane, Stephen C; Langelier, Bénédicte; Guesnet, Philippe

    2014-11-01

    Specific mechanisms for maintaining docosahexaenoic acid (DHA) concentration in brain cells but also transporting DHA from the blood across the blood-brain barrier (BBB) are not agreed upon. Our main objective was therefore to evaluate the level of gene expression of fatty acid transport and fatty acid binding proteins in the cerebral cortex and at the BBB level during the perinatal period of active brain DHA accretion, at weaning, and until the adult age. We measured by real time RT-PCR the mRNA expression of different isoforms of fatty acid transport proteins (FATPs), long-chain acyl-CoA synthetases (ACSLs), fatty acid binding proteins (FABPs) and the fatty acid transporter (FAT)/CD36 in cerebral cortex and isolated microvessels at embryonic day 18 (E18) and postnatal days 14, 21 and 60 (P14, P21 and P60, respectively) in rats receiving different n-3 PUFA dietary supplies (control, totally deficient or DHA-supplemented). In control rats, all the genes were expressed at the BBB level (P14 to P60), the mRNA levels of FABP5 and ACSL3 having the highest values. Age-dependent differences included a systematic decrease in the mRNA expressions between P14-P21 and P60 (2 to 3-fold), with FABP7 mRNA abundance being the most affected (10-fold). In the cerebral cortex, mRNA levels varied differently since FATP4, ACSL3 and ACSL6 and the three FABPs genes were highly expressed. There were no significant differences in the expression of the 10 genes studied in n-3 deficient or DHA-supplemented rats despite significant differences in their brain DHA content, suggesting that brain DHA uptake from the blood does not necessarily require specific transporters within cerebral endothelial cells and could, under these experimental conditions, be a simple passive diffusion process. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Regulation of the neurotensin NT1 receptor in the developing rat brain following chronic treatment with the antagonist SR 48692

    PubMed Central

    Lépée-Lorgeoux, Isabelle; Betancur, Catalina; Souazé, Frédérique; Rostène, William; Bérod, Anne; Pélaprat, Didier

    2000-01-01

    The aim of the present study was to investigate the role of neurotensin in the regulation of NT1 receptors during postnatal development in the rat brain. Characterization of the ontogeny of neurotensin concentration and [125I]neurotensin binding to NT1 receptors in the brain at different embryonic and postnatal stages showed that neurotensin was highly expressed at birth, reaching peak levels at postnatal day 5 (P5), and decreasing thereafter. The transient rise in neurotensin levels preceded the maximal expression of NT1 receptors, observed at P10, suggesting that neurotensin may influence the developmental profile of NT1 receptors. Using primary cultures of cerebral cortex neurons from fetal rats, we showed that exposure to the neurotensin agonist JMV 449 (1 nM) decreased (−43%) the amount of NT1 receptor mRNA measured by reverse transcription-PCR, an effect that was abolished by the non-peptide NT1 receptor antagonist SR 48692 (1 μM). However, daily injection of SR 48692 to rat pups from birth for 5, 9 or 15 days, did not modify [125I]neurotensin binding in brain membrane homogenates. Moreover, postnatal blockade of neurotensin transmission did not alter the density and distribution of NT1 receptors assessed by quantitative autoradiography nor NT1 receptor mRNA expression measured by in situ hybridization in the cerebral cortex, caudate-putamen and midbrain. These results suggest that although NT1 receptor expression can be regulated in vitro by the agonist at an early developmental stage, neurotensin is not a major factor in the establishment of the ontogenetic pattern of these receptors in the rat brain. PMID:10797539

  20. Subretinally transplanted embryonic stem cells rescue photoreceptor cells from degeneration in the RCS rats.

    PubMed

    Schraermeyer, U; Thumann, G; Luther, T; Kociok, N; Armhold, S; Kruttwig, K; Andressen, C; Addicks, K; Bartz-Schmidt, K U

    2001-01-01

    The Royal College of Surgeons (RCS) rat is an animal model for retinal degeneration such as the age-related macular degeneration. The RCS rat undergoes a progressive retinal degeneration during the early postnatal period. A potential treatment to prevent this retinal degeneration is the transplantation into the subretinal space of cells that would replace functions of the degenerating retinal pigment epithelium (RPE) cells or may form neurotrophic factors. In this study we have investigated the potential of subretinally transplanted embryonic stem cells to prevent the genetically determined photoreceptor cell degeneration in the RCS rat. Embryonic stem cells from the inner cell mass of the mouse blastocyst were allowed to differentiate to neural precursor cells in vitro and were then transplanted into the subretinal space of 20-day-old RCS rats. Transplanted and sham-operated rats were sacrificed 2 months following cell transplantation. The eyes were enucleated and photoreceptor degeneration was quantified by analyzing and determining the thickness of the outer nuclear layer by light and electron microscopy. In the eyes transplanted with embryonic cells up to 8 rows of photoreceptor cell nuclei were observed, whereas in nontreated control eyes the outer nuclear layer had degenerated completely. Transplantation of embryonic stem cells appears to delay photoreceptor cell degeneration in RCS rats.

  1. In vivo transgenic expression of collybistin in neurons of the rat cerebral cortex.

    PubMed

    Fekete, Christopher D; Goz, Roman U; Dinallo, Sean; Miralles, Celia P; Chiou, Tzu-Ting; Bear, John; Fiondella, Christopher G; LoTurco, Joseph J; De Blas, Angel L

    2017-04-01

    Collybistin (CB) is a guanine nucleotide exchange factor selectively localized to γ-aminobutyric acid (GABA)ergic and glycinergic postsynapses. Active CB interacts with gephyrin, inducing the submembranous clustering and the postsynaptic accumulation of gephyrin, which is a scaffold protein that recruits GABA A receptors (GABA A Rs) at the postsynapse. CB is expressed with or without a src homology 3 (SH3) domain. We have previously reported the effects on GABAergic synapses of the acute overexpression of CB SH3- or CB SH3+ in cultured hippocampal (HP) neurons. In the present communication, we are studying the effects on GABAergic synapses after chronic in vivo transgenic expression of CB2 SH3- or CB2 SH3+ in neurons of the adult rat cerebral cortex. The embryonic precursors of these cortical neurons were in utero electroporated with CB SH3- or CB SH3+ DNAs, migrated to the appropriate cortical layer, and became integrated in cortical circuits. The results show that: 1) the strength of inhibitory synapses in vivo can be enhanced by increasing the expression of CB in neurons; and 2) there are significant differences in the results between in vivo and in culture studies. J. Comp. Neurol. 525:1291-1311, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  2. In vivo clonal overexpression of neuroligin 3 and neuroligin 2 in neurons of the rat cerebral cortex. Differential effects on GABAergic synapses and neuronal migration

    PubMed Central

    Fekete, Christopher D.; Chiou, Tzu-Ting; Miralles, Celia P.; Harris, Rachel S.; Fiondella, Christopher G.; LoTurco, Joseph J.; De Blas, Angel L.

    2015-01-01

    We have studied the effect of clonal overexpression of neuroligin 3 (NL3) or neuroligin 2 (NL2) in the adult rat cerebral cortex following in utero electroporation (IUEP) at embryonic stage E14. Overexpression of NL3 leads to a large increase in vGAT and GAD65 in the GABAergic contacts that the overexpressing neurons receive. Overexpression of NL2 produced a similar effect but to a lesser extent. In contrast, overexpression of NL3 or NL2 after IUEP, does not affect vGlut1 in the glutamatergic contacts that the NL3 or NL2 overexpressing neurons receive. The NL3 or NL2 overexpressing neurons do not show increased innervation by parvalbumin-containing GABAergic terminals or increased parvalbumin in the same terminals that show increased vGAT. These results indicate that the observed increase in vGAT and GAD65 is not due to increased GABAergic innervation but to increased expression of vGAT and GAD65 in the GABAergic contacts that NL3 or NL2 overexpressing neurons receive. The majority of bright vGAT puncta contacting the NL3 overexpressing neurons have no gephyrin juxtaposed to them indicating that many of these contacts are non-synaptic. This contrasts with the majority of the NL2 overexpressing neurons, which show plenty of synaptic gephyrin clusters juxtaposed to vGAT. Besides having an effect on GABAergic contacts, overexpression of NL3 interferes with the neuronal radial migration, in the cerebral cortex, of the neurons overexpressing NL3. PMID:25565602

  3. Embryonic kidney function in a chronic renal failure model in rodents.

    PubMed

    Fujimoto, Eisuke; Yamanaka, Shuichiro; Kurihara, Sho; Tajiri, Susumu; Izuhara, Luna; Katsuoka, Yuichi; Yokote, Shinya; Matsumoto, Kei; Kobayashi, Eiji; Okano, Hirotaka James; Chikaraishi, Tatsuya; Yokoo, Takashi

    2017-08-01

    Rapid advancements have been made in alternative treatments for renal diseases. Our goal for renal regeneration is to establish a kidney graft derived from human embryonic tissues. In this study, we investigated the effects of host renal failure on the structure and activity of transplanted embryonic kidney and bladder, and found that diuretics effectively induced urine production in the transplanted kidney. Uremic conditions were reproduced using a 5/6 renal infarction rat model. An embryonic kidney plus bladder (embryonic day 15) was isolated from a pregnant Lewis rat and transplanted into the para-aortic area of a 5/6 renal-infarcted Lewis rat. Following growth, the embryonic bladder was successfully anastomosed to the host ureter. We assessed graft function in terms of survival rates and found no differences between normal (n = 5) and renal failure (n = 8) groups (median survival: 70.5 vs 74.5 h; p = 0.331) in terms of survival, indicating that the grafts prolonged rat survival, even under renal failure conditions. Furosemide (n = 9) significantly increased urine volume compared with saline-treated controls (n = 7; p < 0.05), confirming that the grafts were functional. We also demonstrated the possibilities of an in vivo imaging system for determining the viability of transplanted embryonic kidney with bladder. The results of this study demonstrate that transplanted embryonic kidney and bladder can grow and function effectively, even under uremic conditions.

  4. Development of rat female genital cortex and control of female puberty by sexual touch

    PubMed Central

    Lenschow, Constanze; Sigl-Glöckner, Johanna

    2017-01-01

    Rat somatosensory cortex contains a large sexually monomorphic genital representation. Genital cortex undergoes an unusual 2-fold expansion during puberty. Here, we investigate genital cortex development and female rat sexual maturation. Ovariectomies and estradiol injections suggested sex hormones cause the pubertal genital cortex expansion but not its maintenance at adult size. Genital cortex expanded by thalamic afferents invading surrounding dysgranular cortex. Genital touch was a dominant factor driving female sexual maturation. Raising female rats in contact with adult males promoted genital cortex expansion, whereas contact to adult females or nontactile (audio-visual-olfactory) male cues did not. Genital touch imposed by human experimenters powerfully advanced female genital cortex development and sexual maturation. Long-term blocking of genital cortex by tetrodotoxin in pubescent females housed with males prevented genital cortex expansion and decelerated vaginal opening. Sex hormones, sexual experience, and neural activity shape genital cortex, which contributes to the puberty promoting effects of sexual touch. PMID:28934203

  5. Development of rat female genital cortex and control of female puberty by sexual touch.

    PubMed

    Lenschow, Constanze; Sigl-Glöckner, Johanna; Brecht, Michael

    2017-09-01

    Rat somatosensory cortex contains a large sexually monomorphic genital representation. Genital cortex undergoes an unusual 2-fold expansion during puberty. Here, we investigate genital cortex development and female rat sexual maturation. Ovariectomies and estradiol injections suggested sex hormones cause the pubertal genital cortex expansion but not its maintenance at adult size. Genital cortex expanded by thalamic afferents invading surrounding dysgranular cortex. Genital touch was a dominant factor driving female sexual maturation. Raising female rats in contact with adult males promoted genital cortex expansion, whereas contact to adult females or nontactile (audio-visual-olfactory) male cues did not. Genital touch imposed by human experimenters powerfully advanced female genital cortex development and sexual maturation. Long-term blocking of genital cortex by tetrodotoxin in pubescent females housed with males prevented genital cortex expansion and decelerated vaginal opening. Sex hormones, sexual experience, and neural activity shape genital cortex, which contributes to the puberty promoting effects of sexual touch.

  6. Engagement of the Rat Hindlimb Motor Cortex across Natural Locomotor Behaviors.

    PubMed

    DiGiovanna, Jack; Dominici, Nadia; Friedli, Lucia; Rigosa, Jacopo; Duis, Simone; Kreider, Julie; Beauparlant, Janine; van den Brand, Rubia; Schieppati, Marco; Micera, Silvestro; Courtine, Grégoire

    2016-10-05

    Contrary to cats and primates, cortical contribution to hindlimb locomotor movements is not critical in rats. However, the importance of the motor cortex to regain locomotion after neurological disorders in rats suggests that cortical engagement in hindlimb motor control may depend on the behavioral context. To investigate this possibility, we recorded whole-body kinematics, muscle synergies, and hindlimb motor cortex modulation in freely moving rats performing a range of natural locomotor procedures. We found that the activation of hindlimb motor cortex preceded gait initiation. During overground locomotion, the motor cortex exhibited consistent neuronal population responses that were synchronized with the spatiotemporal activation of hindlimb motoneurons. Behaviors requiring enhanced muscle activity or skilled paw placement correlated with substantial adjustment in neuronal population responses. In contrast, all rats exhibited a reduction of cortical activity during more automated behavior, such as stepping on a treadmill. Despite the facultative role of the motor cortex in the production of locomotion in rats, these results show that the encoding of hindlimb features in motor cortex dynamics is comparable in rats and cats. However, the extent of motor cortex modulations appears linked to the degree of volitional engagement and complexity of the task, reemphasizing the importance of goal-directed behaviors for motor control studies, rehabilitation, and neuroprosthetics. We mapped the neuronal population responses in the hindlimb motor cortex to hindlimb kinematics and hindlimb muscle synergies across a spectrum of natural locomotion behaviors. Robust task-specific neuronal population responses revealed that the rat motor cortex displays similar modulation as other mammals during locomotion. However, the reduced motor cortex activity during more automated behaviors suggests a relationship between the degree of engagement and task complexity. This relationship emphasizes the importance of the behavioral procedure to engage the motor cortex during motor control studies, gait rehabilitation, and locomotor neuroprosthetic developments in rats. Copyright © 2016 the authors 0270-6474/16/3610440-16$15.00/0.

  7. Neurogenic Radial Glia-like Cells in Meninges Migrate and Differentiate into Functionally Integrated Neurons in the Neonatal Cortex.

    PubMed

    Bifari, Francesco; Decimo, Ilaria; Pino, Annachiara; Llorens-Bobadilla, Enric; Zhao, Sheng; Lange, Christian; Panuccio, Gabriella; Boeckx, Bram; Thienpont, Bernard; Vinckier, Stefan; Wyns, Sabine; Bouché, Ann; Lambrechts, Diether; Giugliano, Michele; Dewerchin, Mieke; Martin-Villalba, Ana; Carmeliet, Peter

    2017-03-02

    Whether new neurons are added in the postnatal cerebral cortex is still debated. Here, we report that the meninges of perinatal mice contain a population of neurogenic progenitors formed during embryonic development that migrate to the caudal cortex and differentiate into Satb2 + neurons in cortical layers II-IV. The resulting neurons are electrically functional and integrated into local microcircuits. Single-cell RNA sequencing identified meningeal cells with distinct transcriptome signatures characteristic of (1) neurogenic radial glia-like cells (resembling neural stem cells in the SVZ), (2) neuronal cells, and (3) a cell type with an intermediate phenotype, possibly representing radial glia-like meningeal cells differentiating to neuronal cells. Thus, we have identified a pool of embryonically derived radial glia-like cells present in the meninges that migrate and differentiate into functional neurons in the neonatal cerebral cortex. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Prenatal lipopolysaccharide exposure increases anxiety-like behaviors and enhances stress-induced corticosterone responses in adult rats.

    PubMed

    Lin, Yu-Lung; Lin, Shu-Yi; Wang, Sabrina

    2012-03-01

    Maternal infection during pregnancy may affect fetal brain development and lead to neurological and mental disorders. Previously, we used lipopolysaccharide [LPS, 33 μg/kg, intraperitoneal injection] exposure on gestation day 10.5 to mimic maternal bacterial infection in rats and found reduced dopaminergic and serotoninergic neurons in the offspring. In the present study, we examined the anxiety and stress responses of the affected offspring and the neurophysiological changes in their brains. Our results show that LPS rats displayed more anxiety-like behaviors and heightened stress responses. Dopamine (DA) in the nucleus accumbens and serotonin (5-HT) in the medial prefrontal cortex and the hippocampus were significantly reduced in LPS rats. Their glucocorticoid receptors in the dorsal hippocampus and the 5-HT(1A) receptors in the dorsal and ventral hippocampus were also reduced. In addition, chronic but not acute fluoxetine treatment reversed the behavioral changes and increased hippocampal 5-HT(1A) receptor expression. This study demonstrates that LPS exposure during a critical time of embryonic development could produce long-term reduction of DA and 5-HT and other neurophysiological changes; such alterations may be associated with the increases in stress response and anxiety-like behaviors in the offspring. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Diazepam reduces excitability of amygdala and further influences auditory cortex following sodium salicylate treatment in rats.

    PubMed

    Song, Yu; Liu, Junxiu; Ma, Furong; Mao, Lanqun

    2016-12-01

    Diazepam can reduce the excitability of lateral amygdala and eventually suppress the excitability of the auditory cortex in rats following salicylate treatment, indicating the regulating effect of lateral amygdala to the auditory cortex in the tinnitus procedure. To study the spontaneous firing rates (SFR) of the auditory cortex and lateral amygdala regulated by diazepam in the tinnitus rat model induced by sodium salicylate. This study first created a tinnitus rat modal induced by sodium salicylate, and recorded SFR of both auditory cortex and lateral amygdala. Then diazepam was intraperitoneally injected and the SFR changes of lateral amygdala recorded. Finally, diazepam was microinjected on lateral amygdala and the SFR changes of the auditory cortex recorded. Both SFRs of the auditory cortex and lateral amygdala increased after salicylate treatment. SFR of lateral amygdala decreased after intraperitoneal injection of diazepam. Microinjecting diazepam to lateral amygdala decreased SFR of the auditory cortex ipsilaterally and contralaterally.

  10. Absence of bundle structure in the neocortex of the reeler mouse at the embryonic stage. Studies by scanning electron microscopic fractography.

    PubMed

    Mikoshiba, K; Nishimura, Y; Tsukada, Y

    The reeler mutant mouse is characterized by a derangement of the cerebral cortical structure due to abnormalities during the migration step at the embryonic stage. We have analyzed both the control and reeler cerebral cortex by means of scanning electron microscopic fractography. In the control cerebral cortex, the bundle formation was composed of fine fibers on which the migrating neuroblasts were attached perpendicular to the pial surface, whereas no bundle formation was observed in the reeler; instead, there was a fine meshwork of fibers surrounding the neuroblasts. The possible role of bundle formation in the normal cerebral cortex and the correlation between the inability of cells to migrate and the absence of bundle formation in the reeler is discussed.

  11. Exploration of human, rat, and rabbit embryonic cardiomyocytes suggests K-channel block as a common teratogenic mechanism.

    PubMed

    Danielsson, Christian; Brask, Johan; Sköld, Anna-Carin; Genead, Rami; Andersson, Agneta; Andersson, Ulf; Stockling, Kenneth; Pehrson, Rickard; Grinnemo, Karl-Henrik; Salari, Sajjad; Hellmold, Heike; Danielsson, Bengt; Sylvén, Christer; Elinder, Fredrik

    2013-01-01

    Several drugs blocking the rapidly activating potassium (K(r)) channel cause malformations (including cardiac defects) and embryonic death in animal teratology studies. In humans, these drugs have an established risk for acquired long-QT syndrome and arrhythmia. Recently, associations between cardiac defects and spontaneous abortions have been reported for drugs widely used in pregnancy (e.g. antidepressants), with long-QT syndrome risk. To investigate whether a common embryonic adverse-effect mechanism exists in the human, rat, and rabbit embryos, we made a comparative study of embryonic cardiomyocytes from all three species. Patch-clamp and quantitative-mRNA measurements of K(r) and slowly activating K (K(s)) channels were performed on human, rat, and rabbit primary cardiomyocytes and cardiac samples from different embryo-foetal stages. The K(r) channel was present when the heart started to beat in all species, but was, in contrast to human and rabbit, lost in rats in late organogenesis. The specific K(r)-channel blocker E-4031 prolonged the action potential in a species- and development-dependent fashion, consistent with the observed K(r)-channel expression pattern and reported sensitive periods of developmental toxicity. E-4031 also increased the QT interval and induced 2:1 atrio-ventricular block in multi-electrode array electrographic recordings of rat embryos. The K(s) channel was expressed in human and rat throughout the embryo-foetal period but not in rabbit. This first comparison of mRNA expression, potassium currents, and action-potential characteristics, with and without a specific K(r)-channel blocker in human, rat, and rabbit embryos provides evidence of K(r)-channel inhibition as a common mechanism for embryonic malformations and death.

  12. Ethanol intake and sup 3 H-serotonin uptake I: A study in Fawn-Hooded rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daoust, M.; Compagnon, P.; Legrand, E.

    1991-01-01

    Ethanol intake and synaptosomal {sup 3}H-serotonin uptake were studied in male Fawn-Hooded and Sprague-Dawley rats. Fawn-Hooded rats consumed more alcohol and more water than Sprague-Dawley rats. Plasma alcohol levels of Sprague-Dawley rats were not detectable but were about 5 mg/dl in Fawn-Hooded rats. Ethanol intake increased the Vmax of serotonin uptake in Fawn-Hooded rats in hippocampus and cortex, but not in thalamus. In Fawn-Hooded rats, serotonin uptake (Vmax) was higher than in Sprague-Dawley rats cortex. Ethanol intake reduced the Vmax of serotonin uptake in Fawn-Hooded rats in hippocampus and cortex. In cortex, the carrier affinity for serotonin was increased inmore » alcoholized Fawn-Hooded rats. These results indicate that synaptosomal {sup 3}H-serotonin uptake is affected by ethanol intake. In Fawn-Hooded rats, high ethanol consumption is associated with high serotonin uptake. In rats presenting high serotonin uptake, alcoholization reduces {sup 3}H-serotonin internalization in synaptosomes, indicating a specific sensitivity to alcohol intake of serotonin uptake system.« less

  13. Spatial transcriptomic survey of human embryonic cerebral cortex by single-cell RNA-seq analysis.

    PubMed

    Fan, Xiaoying; Dong, Ji; Zhong, Suijuan; Wei, Yuan; Wu, Qian; Yan, Liying; Yong, Jun; Sun, Le; Wang, Xiaoye; Zhao, Yangyu; Wang, Wei; Yan, Jie; Wang, Xiaoqun; Qiao, Jie; Tang, Fuchou

    2018-06-04

    The cellular complexity of human brain development has been intensively investigated, although a regional characterization of the entire human cerebral cortex based on single-cell transcriptome analysis has not been reported. Here, we performed RNA-seq on over 4,000 individual cells from 22 brain regions of human mid-gestation embryos. We identified 29 cell sub-clusters, which showed different proportions in each region and the pons showed especially high percentage of astrocytes. Embryonic neurons were not as diverse as adult neurons, although they possessed important features of their destinies in adults. Neuron development was unsynchronized in the cerebral cortex, as dorsal regions appeared to be more mature than ventral regions at this stage. Region-specific genes were comprehensively identified in each neuronal sub-cluster, and a large proportion of these genes were neural disease related. Our results present a systematic landscape of the regionalized gene expression and neuron maturation of the human cerebral cortex.

  14. Analysis on bilateral hindlimb mapping in motor cortex of the rat by an intracortical microstimulation method.

    PubMed

    Seong, Han Yu; Cho, Ji Young; Choi, Byeong Sam; Min, Joong Kee; Kim, Yong Hwan; Roh, Sung Woo; Kim, Jeong Hoon; Jeon, Sang Ryong

    2014-04-01

    Intracortical microstimulation (ICMS) is a technique that was developed to derive movement representation of the motor cortex. Although rats are now commonly used in motor mapping studies, the precise characteristics of rat motor map, including symmetry and consistency across animals, and the possibility of repeated stimulation have not yet been established. We performed bilateral hindlimb mapping of motor cortex in six Sprague-Dawley rats using ICMS. ICMS was applied to the left and the right cerebral hemisphere at 0.3 mm intervals vertically and horizontally from the bregma, and any movement of the hindlimbs was noted. The majority (80%± 11%) of responses were not restricted to a single joint, which occurred simultaneously at two or three hindlimb joints. The size and shape of hindlimb motor cortex was variable among rats, but existed on the convex side of the cerebral hemisphere in all rats. The results did not show symmetry according to specific joints in each rats. Conclusively, the hindlimb representation in the rat motor cortex was conveniently mapped using ICMS, but the characteristics and inter-individual variability suggest that precise individual mapping is needed to clarify motor distribution in rats.

  15. Perirhinal Cortex Lesions in Rats: Novelty Detection and Sensitivity to Interference

    PubMed Central

    2015-01-01

    Rats with perirhinal cortex lesions received multiple object recognition trials within a continuous session to examine whether they show false memories. Experiment 1 focused on exploration patterns during the first object recognition test postsurgery, in which each trial contained 1 novel and 1 familiar object. The perirhinal cortex lesions reduced time spent exploring novel objects, but did not affect overall time spent exploring the test objects (novel plus familiar). Replications with subsequent cohorts of rats (Experiments 2, 3, 4.1) repeated this pattern of results. When all recognition memory data were combined (Experiments 1–4), giving totals of 44 perirhinal lesion rats and 40 surgical sham controls, the perirhinal cortex lesions caused a marginal reduction in total exploration time. That decrease in time with novel objects was often compensated by increased exploration of familiar objects. Experiment 4 also assessed the impact of proactive interference on recognition memory. Evidence emerged that prior object experience could additionally impair recognition performance in rats with perirhinal cortex lesions. Experiment 5 examined exploration levels when rats were just given pairs of novel objects to explore. Despite their perirhinal cortex lesions, exploration levels were comparable with those of control rats. While the results of Experiment 4 support the notion that perirhinal lesions can increase sensitivity to proactive interference, the overall findings question whether rats lacking a perirhinal cortex typically behave as if novel objects are familiar, that is, show false recognition. Rather, the rats retain a signal of novelty but struggle to discriminate the identity of that signal. PMID:26030425

  16. Development of closed-loop neural interface technology in a rat model: combining motor cortex operant conditioning with visual cortex microstimulation.

    PubMed

    Marzullo, Timothy Charles; Lehmkuhle, Mark J; Gage, Gregory J; Kipke, Daryl R

    2010-04-01

    Closed-loop neural interface technology that combines neural ensemble decoding with simultaneous electrical microstimulation feedback is hypothesized to improve deep brain stimulation techniques, neuromotor prosthetic applications, and epilepsy treatment. Here we describe our iterative results in a rat model of a sensory and motor neurophysiological feedback control system. Three rats were chronically implanted with microelectrode arrays in both the motor and visual cortices. The rats were subsequently trained over a period of weeks to modulate their motor cortex ensemble unit activity upon delivery of intra-cortical microstimulation (ICMS) of the visual cortex in order to receive a food reward. Rats were given continuous feedback via visual cortex ICMS during the response periods that was representative of the motor cortex ensemble dynamics. Analysis revealed that the feedback provided the animals with indicators of the behavioral trials. At the hardware level, this preparation provides a tractable test model for improving the technology of closed-loop neural devices.

  17. Ageing introduces a complex pattern of changes in several rat brain transcription factors depending on gender and anatomical localization.

    PubMed

    Sanguino, Elena; Roglans, Núria; Rodríguez-Calvo, Ricardo; Alegret, Marta; Sánchez, Rosa M; Vázquez-Carrera, Manuel; Laguna, Juan C

    2006-04-01

    As ageing changes the activity of several transcription factors in the rat cortex, we were interested in determining whether similar changes also appear in the hippocampus of old rats. We determined by electrophoretic gel shift assays the binding activity of nuclear factor kappa B (NFkappaB), activator protein-1 (AP-1), peroxisome proliferator-activated receptor (PPAR), and liver X receptor (LXR) in cortex and hippocampus samples from young (3-month-old), and old (18-month-old) male and female Sprague-Dawley rats. NFkappaB activity increased in old male and female rats, though only in cortex samples, while AP-1 activity decreased only in the cortex and hippocampus of old female animals. LXR activity decreased in all conditions, except in old male cortexes; whereas PPAR activity only decreased in the hippocampus of old female rats. Decreases in AP-1 and PPAR activities restricted to old female rats did not result from an age-related decline in plasma 17beta-estradiol concentration, as their activities did not change in samples obtained from ovariectomized young female rats. Our results indicate that ageing induces a complex pattern of changes in the brain-binding activity of NFkappaB, AP-1, PPAR and LXR, depending on the anatomical origin of the samples (cortex or hippocampus), and the sex of the animals studied.

  18. Alterations in hippocampal and cortical densities of functionally different interneurons in rat models of absence epilepsy.

    PubMed

    Papp, Péter; Kovács, Zsolt; Szocsics, Péter; Juhász, Gábor; Maglóczky, Zsófia

    2018-05-31

    Recent data from absence epileptic patients and animal models provide evidence for significant impairments of attention, memory, and psychosocial functioning. Here, we outline aspects of the electrophysiological and structural background of these dysfunctions by investigating changes in hippocampal and cortical GABAergic inhibitory interneurons in two genetically absence epileptic rat strains: the Genetic Absence Epilepsy Rats from Strasbourg (GAERS) and the Wistar Albino Glaxo/Rijswijk (WAG/Rij) rats. Using simultaneously recorded field potentials from the primary somatosensory cortex (S1 cortex, seizure focus) and the hippocampal hilus, we demonstrated that typical frequencies of spike-wave discharges (SWDs; 7-8 Hz, GAERS; 7-9 Hz, WAG/Rij) and their harmonics appeared and their EEG spectral power markedly increased on recordings not only from the S1 cortex, but also from the hilus in both GAERS and WAG/Rij rats during SWDs. Moreover, we observed an increased synchronization between S1 cortex and hilus at 7-8 Hz (GAERS) and 7-9 Hz (WAG/Rij) and at their harmonics when SWDs occurred in the S1 cortex in both rat strains. In addition, using immunohistochemistry we demonstrated changes in the densities of perisomatic (parvalbumin-immunopositive, PV+) and interneuron-selective (calretinin-immunopositive, CR+) GABAergic inhibitory interneuron somata. Specifically, GAERS and WAG/Rij rats displayed lower densities of PV-immunopositivity in the hippocampal hilus compared to non-epileptic control (NEC) and normal Wistar rats. GAERS and WAG/Rij rats also show a marked reduction in the density of CR + interneurons in the same region in comparison with NEC rats. Data from the S1 cortex reveals bidirectional differences in PV + density, with GAERS displaying a significant increase, whereas WAG/Rij a reduction compared to control rat strains. Our results suggest an enhanced synchronization and functional connections between the hippocampus and S1 cortex as well as thalamocortical activities during SWDs and a functional alteration of inhibitory mechanisms in the hippocampus and S1 cortex of two genetic models of absence epilepsy, presumably in relation with increased neuronal activity and seizure-induced neuronal injury. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Soyasaponin I Improved Neuroprotection and Regeneration in Memory Deficient Model Rats

    PubMed Central

    Hong, Sung-Woon; Heo, Hwon; Yang, Jeong-hwa; Han, Maeum; Kim, Dong-Hyun; Kwon, Yunhee Kim

    2013-01-01

    Soy (Glycine Max Merr, family Leguminosae) has been reported to possess anti-cancer, anti-lipidemic, estrogen-like, and memory-enhancing effects. We investigated the memory-enhancing effects and the underlying mechanisms of soyasaponin I (soya-I), a major constituent of soy. Impaired learning and memory were induced by injecting ibotenic acid into the entorhinal cortex of adult rat brains. The effects of soya-I were evaluated by measuring behavioral tasks and neuronal regeneration of memory-deficient rats. Oral administration of soya-I exhibited significant memory-enhancing effects in the passive avoidance, Y-maze, and Morris water maze tests. Soya-Ι also increased BrdU incorporation into the dentate gyrus and the number of cell types (GAD67, ChAT, and VGluT1) in the hippocampal region of memory-deficient rats, whereas the number of reactive microglia (OX42) decreased. The mechanism underlying memory improvement was assessed by detecting the differentiation and proliferation of neural precursor cells (NPCs) prepared from the embryonic hippocampus (E16) of timed-pregnant Sprague-Dawley rats using immunocytochemical staining and immunoblotting analysis. Addition of soya-Ι in the cultured NPCs significantly elevated the markers for cell proliferation (Ki-67) and neuronal differentiation (NeuN, TUJ1, and MAP2). Finally, soya-I increased neurite lengthening and the number of neurites during the differentiation of NPCs. Soya-Ι may improve hippocampal learning and memory impairment by promoting proliferation and differentiation of NPCs in the hippocampus through facilitation of neuronal regeneration and minimization of neuro-inflammation. PMID:24324703

  20. Neuroprotective Effect of Melatonin Against PCBs Induced Behavioural, Molecular and Histological Changes in Cerebral Cortex of Adult Male Wistar Rats.

    PubMed

    Bavithra, S; Selvakumar, K; Sundareswaran, L; Arunakaran, J

    2017-02-01

    There is ample evidence stating Polychlorinated biphenyls (PCBs) as neurotoxins. In the current study, we have analyzed the behavioural impact of PCBs exposure in adult rats and assessed the simultaneous effect of antioxidant melatonin against the PCBs action. The rats were grouped into four and treated intraperitoneally with vehicle, PCBs, PCBs + melatonin and melatonin alone for 30 days, respectively. After the treatment period the rats were tested for locomotor activity and anxiety behaviour analysis. We confirmed the neuronal damage in the cerebral cortex by molecular and histological analysis. Our data indicates that there is impairment in locomotor activity and behaviour of PCBs treated rats compared to control. The simultaneous melatonin treated rat shows increased motor coordination and less anxiety like behaviour compared to PCBs treated rats. Molecular and histological analysis supports that, the impaired motor coordination in PCBs treated rats is due to neurodegeneration in motor cortex region. The results proved that melatonin treatment improved the motor co-ordination and reduced anxiety behaviour, prevented neurodegeneration in the cerebral cortex of PCBs-exposed adult male rats.

  1. α-lipoic acid inhibits oxidative stress in testis and attenuates testicular toxicity in rats exposed to carbimazole during embryonic period.

    PubMed

    Prathima, P; Venkaiah, K; Pavani, R; Daveedu, T; Munikumar, M; Gobinath, M; Valli, M; Sainath, S B

    2017-01-01

    The aim of this study was to evaluate the probable protective effect of α-lipoic acid against testicular toxicity in rats exposed to carbimazole during the embryonic period. Time-mated pregnant rats were exposed to carbimazole from the embryonic days 9-21. After completion of the gestation period, all the rats were allowed to deliver pups and weaned. At postnatal day 100, F1 male pups were assessed for the selected reproductive endpoints. Gestational exposure to carbimazole decreased the reproductive organ indices, testicular daily sperm count, epididymal sperm variables viz ., sperm count, viable sperm, motile sperm and HOS-tail coiled sperms. Significant decrease in the activity levels of 3β- and 17β-hydroxysteroid dehydrogenases and expression of StAR mRNA levels with a significant increase in the total cholesterol levels were observed in the testis of experimental rats over the controls. These events were also accompanied by a significant reduction in the serum testosterone levels in CBZ exposed rats, indicating reduced steroidogenesis. In addition, the deterioration of the testicular architecture and reduced fertility ability were noticed in the carbimazole exposed rats. Significant reduction in the activity levels of superoxide dismutase, catalase, glutathione reductase, glutathione peroxidase and reduced glutathione content with a significant increase in the levels of lipid peroxidation were observed in the testis of carbimazole exposed rats over the controls. Conversely, supplementation of α-lipoic acid (70 mg/Kg bodyweight) ameliorated the male reproductive health in rats exposed to carbimazole during the embryonic period as evidenced by enhanced reproductive organ weights, selected sperm variables, testicular steroidogenesis, and testicular enzymatic and non-enzymatic antioxidants. To conclude, diminished testicular antioxidant balance associated with reduced spermatogenesis and steroidogenesis might be responsible for the suppressed reproduction in rats exposed to the carbimazole transplacentally. On the other hand, α-lipoic acid through its antioxidant and steroidogenic properties mitigated testicular toxicity which eventually restored the male reproductive health of carbimazole-exposed rats.

  2. Pro- and Anti-Mitogenic Actions of PACAP in Developing Cerebral Cortex: Potential Mediation by Developmental Switch of PAC1 Receptor mRNA Isoforms

    PubMed Central

    Yan, Yan; Zhou, Xiaofeng; Pan, Zui; Ma, Jianjie; Waschek, James; DiCicco-Bloom, Emanuel

    2013-01-01

    During corticogenesis, pituitary adenylate cyclase-activating polypeptide (PACAP; ADCYAP1) may contribute to proliferation control by activating PAC1 receptors of neural precursors in the embryonic ventricular zone. PAC1 receptors, specifically the hop and short isoforms, couple differentially to and activate distinct pathways that produce pro- or anti-mitogenic actions. Previously we found that PACAP was an anti-mitogenic signal from embryonic day 13.5 (E13.5) onwards both in culture and in vivo, and activated cAMP signaling through the short isoform. However, we now find that mice deficient in PACAP exhibited a decrease in the BrdU labeling index in E9.5 cortex, suggesting PACAP normally promotes proliferation at this stage. To further define mechanisms, we established a novel culture model in which the viability of very early cortical precursors (E9.5 mouse and E10.5 rat) could be maintained. At this stage, we found that PACAP evoked intracellular calcium fluxes and increased phospho-PKC levels, as well as stimulated G1 cyclin mRNAs and proteins, S-phase entry and proliferation without affecting cell survival. Significantly, expression of hop receptor isoform was 24-fold greater than the short isoform at E10.5, a ratio that was reversed at E14.5 when short expression was 15-fold greater and PACAP inhibited mitogenesis. Enhanced hop isoform expression, elicited by in vitro treatment of E10.5 precursors with retinoic acid, correlated with sustained pro-mitogenic action of PACAP beyond the developmental switch. Conversely, depletion of hop receptor using shRNA abolished PACAP mitogenic stimulation at E10.5. These observations suggest PACAP elicits temporally specific effects on cortical proliferation via developmentally-regulated expression of specific receptor isoforms. PMID:23447598

  3. ACTIONS OF THE ENDOCRINE DISRUPTOR METHOXYCHLOR AND ITS ESTROGENIC METABOLITE ON IN VITRO EMBRYONIC RAT SEMINIFEROUS CORD FORMATION AND PERINATAL TESTIS GROWTH. (R827405)

    EPA Science Inventory

    Abstract

    The current study examines the actions of methoxychlor and its estrogenic metabolite, 2, 2-bis-(p-hydroxyphenyl)-1, 1, 1-trichloroethane (HPTE), on seminiferous cord formation and growth of the developing rat testis. The developing testis in the embryonic and ...

  4. Fluoride and Arsenic Exposure Impairs Learning and Memory and Decreases mGluR5 Expression in the Hippocampus and Cortex in Rats

    PubMed Central

    Jiang, Shoufang; Su, Jing; Yao, Sanqiao; Zhang, Yanshu; Cao, Fuyuan; Wang, Fei; Wang, Huihui; Li, Jun; Xi, Shuhua

    2014-01-01

    Fluoride and arsenic are two common inorganic contaminants in drinking water that are associated with impairment in child development and retarded intelligence. The present study was conducted to explore the effects on spatial learning, memory, glutamate levels, and group I metabotropic glutamate receptors (mGluRs) expression in the hippocampus and cortex after subchronic exposure to fluoride, arsenic, and a fluoride and arsenic combination in rats. Weaned male Sprague-Dawley rats were assigned to four groups. The control rats drank tap water. Rats in the three exposure groups drank water with sodium fluoride (120 mg/L), sodium arsenite (70 mg/L), and a sodium fluoride (120 mg/L) and sodium arsenite (70 mg/L) combination for 3 months. Spatial learning and memory was measured in Morris water maze. mGluR1 and mGluR5 mRNA and protein expression in the hippocampus and cortex was detected using RT-PCR and Western blot, respectively. Compared with controls, learning and memory ability declined in rats that were exposed to fluoride and arsenic both alone and combined. Combined fluoride and arsenic exposure did not have a more pronounced effect on spatial learning and memory compared with arsenic and fluoride exposure alone. Compared with controls, glutamate levels decreased in the hippocampus and cortex of rats exposed to fluoride and combined fluoride and arsenic, and in cortex of arsenic-exposed rats. mGluR5 mRNA and protein expressions in the hippocampus and mGluR5 protein expression in the cortex decreased in rats exposed to arsenic alone. Interestingly, compared with fluoride and arsenic exposure alone, fluoride and arsenic combination decreased mGluR5 mRNA expression in the cortex and protein expression in the hippocampus, suggesting a synergistic effect of fluoride and arsenic. These data indicate that fluoride and arsenic, either alone or combined, can decrease learning and memory ability in rats. The mechanism may be associated with changes of glutamate level and mGluR5 expression in cortex and hippocampus. PMID:24759735

  5. Altered behavior in experimental cortical dysplasia.

    PubMed

    Zhou, Fu-Wen; Rani, Asha; Martinez-Diaz, Hildabelis; Foster, Thomas C; Roper, Steven N

    2011-12-01

    Developmental delay and cognitive impairment are common comorbidities in people with epilepsy associated with malformations of cortical development (MCDs). We studied cognition and behavior in an animal model of diffuse cortical dysplasia (CD), in utero irradiation, using a battery of behavioral tests for neuromuscular and cognitive function. Fetal rats were exposed to 2.25 Gy external radiation on embryonic day 17 (E17). At 1 month of age they were tested using an open field task, a grip strength task, a grid walk task, inhibitory avoidance, an object recognition task, and the Morris water maze task. Rats with CD showed reduced nonlocomotor activity in the open field task and impaired motor coordination for grid walking but normal grip strength. They showed a reduced tendency to recognize novel objects and reduced retention in an inhibitory avoidance task. Water maze testing showed that learning and memory were impaired in irradiated rats for both cue discrimination and spatially oriented tasks. These results demonstrate significant deficits in cortex- and hippocampus-dependent cognitive functions associated with the diffuse abnormalities of cortical and hippocampal development that have been documented in this model. This study documents multimodal cognitive deficits associated with CD and can serve as the foundation for future investigations into the mechanisms of and possible therapeutic interventions for this problem. Wiley Periodicals, Inc. © 2011 International League Against Epilepsy.

  6. Electrical stimulation of motor cortex in the uninjured hemisphere after chronic unilateral injury promotes recovery of skilled locomotion through ipsilateral control.

    PubMed

    Carmel, Jason B; Kimura, Hiroki; Martin, John H

    2014-01-08

    Partial injury to the corticospinal tract (CST) causes sprouting of intact axons at their targets, and this sprouting correlates with functional improvement. Electrical stimulation of motor cortex augments sprouting of intact CST axons and promotes functional recovery when applied soon after injury. We hypothesized that electrical stimulation of motor cortex in the intact hemisphere after chronic lesion of the CST in the other hemisphere would restore function through ipsilateral control. To test motor skill, rats were trained and tested to walk on a horizontal ladder with irregularly spaced rungs. Eight weeks after injury, produced by pyramidal tract transection, half of the rats received forelimb motor cortex stimulation of the intact hemisphere. Rats with injury and stimulation had significantly improved forelimb control compared with rats with injury alone and achieved a level of proficiency similar to uninjured rats. To test whether recovery of forelimb function was attributable to ipsilateral control, we selectively inactivated the stimulated motor cortex using the GABA agonist muscimol. The dose of muscimol we used produces strong contralateral but no ipsilateral impairments in naive rats. In rats with injury and stimulation, but not those with injury alone, inactivation caused worsening of forelimb function; the initial deficit was reinstated. These results demonstrate that electrical stimulation can promote recovery of motor function when applied late after injury and that motor control can be exerted from the ipsilateral motor cortex. These results suggest that the uninjured motor cortex could be targeted for brain stimulation in people with large unilateral CST lesions.

  7. Increased glutamate-stimulated norepinephrine release from prefrontal cortex slices of spontaneously hypertensive rats.

    PubMed

    Russell, V A; Wiggins, T M

    2000-12-01

    Spontaneously hypertensive rats (SHR) have behavioral characteristics (hyperactivity, impulsiveness, poorly sustained attention) similar to the behavioral disturbances of children with attention-deficit hyperactivity disorder (ADHD). We have previously shown that dopaminergic and noradrenergic systems are disturbed in the prefrontal cortex of SHR compared to their normotensive Wistar-Kyoto (WKY) control rats. It was of interest to determine whether the underlying neural circuits that use glutamate as a neurotransmitter function normally in the prefrontal cortex of SHR. An in vitro superfusion technique was used to demonstrate that glutamate caused a concentration-dependent stimulation of [3H]norepinephrine release from rat prefrontal cortex slices. Glutamate (100 microM and 1 mM) caused significantly greater release of norepinephrine from prefrontal cortex slices of SHR than from control slices. The effect of glutamate was not mediated by NMDA receptors, since NMDA (10 and 100 microM) did not exert any effect on norepinephrine release and MK-801 (10 microM) did not antagonize the effect of 100 microM glutamate. These results demonstrate that glutamate stimulates norepinephrine release from rat prefrontal cortex slices and that this increase is enhanced in SHR. The results are consistent with the suggestion that the noradrenergic system is overactive in prefrontal cortex of SHR, the animal model for ADHD.

  8. Peripheral Nerve Injury in Developing Rats Reorganizes Representation Pattern in Motor Cortex

    NASA Astrophysics Data System (ADS)

    Donoghue, John P.; Sanes, Jerome N.

    1987-02-01

    We investigated the effect of neonatal nerve lesions on cerebral motor cortex organization by comparing the cortical motor representation of normal adult rats with adult rats that had one forelimb removed on the day of birth. Mapping of cerebral neocortex with electrical stimulation revealed an altered relationship between the motor cortex and the remaining muscles. Whereas distal forelimb movements are normally elicited at the lowest threshold in the motor cortex forelimb area, the same stimuli activated shoulder and trunk muscles in experimental animals. In addition, an expanded cortical representation of intact body parts was present and there was an absence of a distinct portion of motor cortex. These data demonstrate that representation patterns in motor cortex can be altered by peripheral nerve injury during development.

  9. Tuning differentiation signals for efficient propagation and in vitro validation of rat embryonic stem cell cultures.

    PubMed

    Meek, Stephen; Sutherland, Linda; Burdon, Tom

    2015-01-01

    The rat is one of the most commonly used laboratory animals in biomedical research and the recent isolation of genuine pluripotent rat embryonic stem (ES) cell lines has provided new opportunities for applying contemporary genetic engineering techniques to the rat and enhancing the use of this rodent in scientific research. Technical refinements that improve the stability of the rat ES cell cultures will undoubtedly further strengthen and broaden the use of these stem cells in biomedical research. Here, we describe a relatively simple and robust protocol that supports the propagation of germ line competent rat ES cells, and outline how tuning stem cell signaling using small molecule inhibitors can be used to both stabilize self-renewal of rat ES cell cultures and aid evaluation of their differentiation potential in vitro.

  10. Common medial frontal mechanisms of adaptive control in humans and rodents

    PubMed Central

    Frank, Michael J.; Laubach, Mark

    2013-01-01

    In this report, we describe how common brain networks within the medial frontal cortex facilitate adaptive behavioral control in rodents and humans. We demonstrate that low frequency oscillations below 12 Hz are dramatically modulated after errors in humans over mid-frontal cortex and in rats within prelimbic and anterior cingulate regions of medial frontal cortex. These oscillations were phase-locked between medial frontal cortex and motor areas in both rats and humans. In rats, single neurons that encoded prior behavioral outcomes were phase-coherent with low-frequency field oscillations particularly after errors. Inactivating medial frontal regions in rats led to impaired behavioral adjustments after errors, eliminated the differential expression of low frequency oscillations after errors, and increased low-frequency spike-field coupling within motor cortex. Our results describe a novel mechanism for behavioral adaptation via low-frequency oscillations and elucidate how medial frontal networks synchronize brain activity to guide performance. PMID:24141310

  11. NGFI-B and nor1 mRNAs are upregulated in brain reward pathways by drugs of abuse: different effects in Fischer and Lewis rats.

    PubMed

    Werme, M; Olson, L; Brené, S

    2000-03-10

    The two inbred Fischer and Lewis rat strains display differences in acquisition of drug self-administration, suggesting genetic factors controlling the vulnerability to drugs of abuse. In this study, we analyzed the effects of acute and chronic cocaine and morphine on mRNAs encoding the NGFI-B/Nur77 family of nuclear orphan receptors in reward pathways in Fischer and Lewis rats. After a single injection of cocaine, a similar upregulation of NGFI-B mRNA in striatal subregions and cortex cinguli was seen in both Fischer and Lewis rats. In contrast, Nor1 mRNA was only significantly upregulated by cocaine in the Fischer rats. Morphine increased NGFI-B mRNA in medial caudate putamen and cortex cinguli in Lewis rats and Nor1 mRNA in medial caudate putamen in Fischer rats. Chronic cocaine upregulated NGFI-B mRNA in nucleus accumbens core, lateral caudate putamen and cingulate cortex in Fischer rats, whereas no effect was seen in Lewis rats. In contrast, Nor1 mRNA levels were upregulated in Lewis rats in medial caudate putamen and cingulate cortex after chronic cocaine and in cingulate cortex after chronic morphine. No effect on Nor1 mRNA levels was seen in Fischer rats after chronic treatments. Our results demonstrate different responses in addiction-prone Lewis rats as compared to the less addiction-prone Fischer rats with respect to NGFI-B and Nor1 mRNA regulation after acute and repeated administration of cocaine and morphine. Thus, we suggest that the transcription factors NGFI-B and Nor1 might be involved in the control of behaviors such as sensitized locomotor response, craving and aversion that appears after repeated administration of abused drugs.

  12. Generating gene knockout rats by homologous recombination in embryonic stem cells

    PubMed Central

    Tong, Chang; Huang, Guanyi; Ashton, Charles; Li, Ping; Ying, Qi-Long

    2013-01-01

    We describe here a detailed protocol for generating gene knockout rats by homologous recombination in embryonic stem (ES) cells. This protocol comprises the following procedures: derivation and expansion of rat ES cells, construction of gene-targeting vectors, generation of gene-targeted rat ES cells and, finally, production of gene-targeted rats. The major differences between this protocol and the classical mouse gene-targeting protocol include ES cell culture methods, drug selection scheme, colony picking and screening strategies. This ES cell–based gene-targeting technique allows sophisticated genetic modifications to be performed in the rat, as many laboratories have been doing in the mouse for the past two decades. Recently we used this protocol to generate Tp53 (also known as p53) gene knockout rats. The entire process requires ~1 year to complete, from derivation of ES cells to generation of knockout rats. PMID:21637202

  13. The ‘Ventral Organs’ of Pycnogonida (Arthropoda) Are Neurogenic Niches of Late Embryonic and Post-Embryonic Nervous System Development

    PubMed Central

    Brenneis, Georg; Scholtz, Gerhard

    2014-01-01

    Early neurogenesis in arthropods has been in the focus of numerous studies, its cellular basis, spatio-temporal dynamics and underlying genetic network being by now comparably well characterized for representatives of chelicerates, myriapods, hexapods and crustaceans. By contrast, neurogenesis during late embryonic and/or post-embryonic development has received less attention, especially in myriapods and chelicerates. Here, we apply (i) immunolabeling, (ii) histology and (iii) scanning electron microscopy to study post-embryonic ventral nerve cord development in Pseudopallene sp., a representative of the sea spiders (Pycnogonida), the presumable sister group of the remaining chelicerates. During early post-embryonic development, large neural stem cells give rise to additional ganglion cell material in segmentally paired invaginations in the ventral ectoderm. These ectodermal cell regions – traditionally designated as ‘ventral organs’ – detach from the surface into the interior and persist as apical cell clusters on the ventral ganglion side. Each cluster is a post-embryonic neurogenic niche that features a tiny central cavity and initially still houses larger neural stem cells. The cluster stays connected to the underlying ganglionic somata cortex via an anterior and a posterior cell stream. Cell proliferation remains restricted to the cluster and streams, and migration of newly produced cells along the streams seems to account for increasing ganglion cell numbers in the cortex. The pycnogonid cluster-stream-systems show striking similarities to the life-long neurogenic system of decapod crustaceans, and due to their close vicinity to glomerulus-like neuropils, we consider their possible involvement in post-embryonic (perhaps even adult) replenishment of olfactory neurons – as in decapods. An instance of a potentially similar post-embryonic/adult neurogenic system in the arthropod outgroup Onychophora is discussed. Additionally, we document two transient posterior ganglia in the ventral nerve cord of Pseudopallene sp. and evaluate this finding in light of the often discussed reduction of a segmented ‘opisthosoma’ during pycnogonid evolution. PMID:24736377

  14. Comparative effects of sodium channel blockers in short term rat whole embryo culture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nilsson, Mats F, E-mail: Mats.Nilsson@farmbio.uu.se; Sköld, Anna-Carin; Ericson, Ann-Christin

    2013-10-15

    This study was undertaken to examine the effect on the rat embryonic heart of two experimental drugs (AZA and AZB) which are known to block the sodium channel Nav1.5, the hERG potassium channel and the L-type calcium channel. The sodium channel blockers bupivacaine, lidocaine, and the L-type calcium channel blocker nifedipine were used as reference substances. The experimental model was the gestational day (GD) 13 rat embryo cultured in vitro. In this model the embryonic heart activity can be directly observed, recorded and analyzed using computer assisted image analysis as it responds to the addition of test drugs. The effectmore » on the heart was studied for a range of concentrations and for a duration up to 3 h. The results showed that AZA and AZB caused a concentration-dependent bradycardia of the embryonic heart and at high concentrations heart block. These effects were reversible on washout. In terms of potency to cause bradycardia the compounds were ranked AZB > bupivacaine > AZA > lidocaine > nifedipine. Comparison with results from previous studies with more specific ion channel blockers suggests that the primary effect of AZA and AZB was sodium channel blockage. The study shows that the short-term rat whole embryo culture (WEC) is a suitable system to detect substances hazardous to the embryonic heart. - Highlights: • Study of the effect of sodium channel blocking drugs on embryonic heart function • We used a modified method rat whole embryo culture with image analysis. • The drugs tested caused a concentration dependent bradycardia and heart block. • The effect of drugs acting on multiple ion channels is difficult to predict. • This method may be used to detect cardiotoxicity in prenatal development.« less

  15. Decreased GABA receptor in the cerebral cortex of epileptic rats: effect of Bacopa monnieri and Bacoside-A.

    PubMed

    Mathew, Jobin; Balakrishnan, Savitha; Antony, Sherin; Abraham, Pretty Mary; Paulose, C S

    2012-02-24

    Gamma amino butyric acid (GABA), the principal inhibitory neurotransmitter in the cerebral cortex, maintains the inhibitory tones that counter balances neuronal excitation. When this balance is perturbed, seizures may ensue. In the present study, alterations of the general GABA, GABAA and GABAB receptors in the cerebral cortex of the epileptic rat and the therapeutic application of Bacopa monnieri were investigated. Scatchard analysis of [3H]GABA, [3H]bicuculline and [3H]baclofen in the cerebral cortex of the epileptic rat showed significant decrease in Bmax (P < 0.001) compared to control. Real Time PCR amplification of GABA receptor subunits such as GABAAά1, GABAAγ, GABAAδ, GABAB and GAD where down regulated (P < 0.001) in epileptic rats. GABAAά5 subunit and Cyclic AMP responsible element binding protein were up regulated. Confocal imaging study confirmed the decreased GABA receptors in epileptic rats. Epileptic rats have deficit in radial arm and Y maze performance. Bacopa monnieri and Bacoside-A treatment reverses epilepsy associated changes to near control suggesting that decreased GABA receptors in the cerebral cortex have an important role in epileptic occurrence; Bacopa monnieri and Bacoside-A have therapeutic application in epilepsy management.

  16. Secreted Metalloproteinase ADAMTS-3 Inactivates Reelin.

    PubMed

    Ogino, Himari; Hisanaga, Arisa; Kohno, Takao; Kondo, Yuta; Okumura, Kyoko; Kamei, Takana; Sato, Tempei; Asahara, Hiroshi; Tsuiji, Hitomi; Fukata, Masaki; Hattori, Mitsuharu

    2017-03-22

    The secreted glycoprotein Reelin regulates embryonic brain development and adult brain functions. It has been suggested that reduced Reelin activity contributes to the pathogenesis of several neuropsychiatric and neurodegenerative disorders, such as schizophrenia and Alzheimer's disease; however, noninvasive methods that can upregulate Reelin activity in vivo have yet to be developed. We previously found that the proteolytic cleavage of Reelin within Reelin repeat 3 (N-t site) abolishes Reelin activity in vitro , but it remains controversial as to whether this effect occurs in vivo Here we partially purified the enzyme that mediates the N-t cleavage of Reelin from the culture supernatant of cerebral cortical neurons. This enzyme was identified as a disintegrin and metalloproteinase with thrombospondin motifs-3 (ADAMTS-3). Recombinant ADAMTS-3 cleaved Reelin at the N-t site. ADAMTS-3 was expressed in excitatory neurons in the cerebral cortex and hippocampus. N-t cleavage of Reelin was markedly decreased in the embryonic cerebral cortex of ADAMTS-3 knock-out (KO) mice. Importantly, the amount of Dab1 and the phosphorylation level of Tau, which inversely correlate with Reelin activity, were significantly decreased in the cerebral cortex of ADAMTS-3 KO mice. Conditional KO mice, in which ADAMTS-3 was deficient only in the excitatory neurons of the forebrain, showed increased dendritic branching and elongation in the postnatal cerebral cortex. Our study shows that ADAMTS-3 is the major enzyme that cleaves and inactivates Reelin in the cerebral cortex and hippocampus. Therefore, inhibition of ADAMTS-3 may be an effective treatment for neuropsychiatric and neurodegenerative disorders. SIGNIFICANCE STATEMENT ADAMTS-3 was identified as the protease that cleaves and inactivates Reelin in the cerebral cortex and hippocampus. ADAMTS-3 was expressed in the excitatory neurons of the embryonic and postnatal cerebral cortex and hippocampus. Cleavage by ADAMTS-3 is the major contributor of Reelin inactivation in vivo Tau phosphorylation was decreased and dendritic branching and elongation was increased in ADAMTS-3-deficient mice. Therefore, inhibition of ADAMTS-3 upregulates Reelin activity and may be a potential therapeutic strategy for the prevention or treatment of neuropsychiatric and neurodegenerative disorders, such as schizophrenia and Alzheimer's disease. Copyright © 2017 the authors 0270-6474/17/373181-11$15.00/0.

  17. Role for Cystathionine γ Lyase (CSE) in an Ethanol (E)-Induced Lesion in Fetal Brain GSH Homeostasis

    PubMed Central

    Patel, Dhyanesh; Rathinam, Marylatha; Jarvis, Courtney; Mahimainathan, Lenin; Henderson, George; Narasimhan, Madhusudhanan

    2018-01-01

    Earlier, we reported that gestational ethanol (E) can dysregulate neuron glutathione (GSH) homeostasis partially via impairing the EAAC1-mediated inward transport of Cysteine (Cys) and this can affect fetal brain development. In this study, we investigated if there is a role for the transulfuration pathway (TSP), a critical bio-synthetic point to supply Cys in E-induced dysregulation of GSH homeostasis. These studies utilized an in utero E binge model where the pregnant Sprague–Dawley (SD) rat dams received five doses of E at 3.5 g/kg by gastric intubation beginning embryonic day (ED) 17 until ED19 separated by 12 h. The postnatal day 7 (PN7) alcohol model employed an oral dosing of 4 g/kg body weight split into 2 feedings at 2 h interval and an iso-caloric and iso-volumic equivalent maltose-dextrin milk solution served as controls. The in vitro model consisted of cerebral cortical neuron cultures from embryonic day (ED) 16–17 fetus from SD rats and differentiated neurons from ED18 rat cerebral cortical neuroblasts. E concentrations were 4 mg/mL. E induced an accumulation of cystathionine in primary cortical neurons (PCNs), 2nd trimester equivalent in utero binge, and 3rd trimester equivalent PN7 model suggesting that breakdown of cystathionine, a required process for Cys supply is impaired. This was associated with a significant reduction in cystathionine γ-lyase (CSE) protein expression in PCN (p < 0.05) and in fetal cerebral cortex in utero (53%, p < 0.05) without a change in the expression of cystathionine β-synthase (CBS). Concomitantly, E decreased Cse mRNA expression in PCNs (by 32% within 6 h of exposure, p < 0.05) and in fetal brain (33%, p < 0.05). In parallel, knock down of CSE in differentiated rat cortical neuroblasts exaggerated the E-induced ROS, GSH loss with a pronounced caspase-3 activation and cell death. These studies illustrate the importance of TSP in CSE-related maintenance of GSH and the downstream events via Cys synthesis in neurons and fetal brain. PMID:29786653

  18. Output Properties of the Cortical Hindlimb Motor Area in Spinal Cord-Injured Rats.

    PubMed

    Frost, Shawn B; Dunham, Caleb L; Barbay, Scott; Krizsan-Agbas, Dora; Winter, Michelle K; Guggenmos, David J; Nudo, Randolph J

    2015-11-01

    The purpose of this study was to examine neuronal activity levels in the hindlimb area of motor cortex following spinal cord injury (SCI) in rats and compare the results with measurements in normal rats. Fifteen male Fischer-344 rats received a 200 Kdyn contusion injury in the thoracic cord at level T9-T10. After a minimum of 4 weeks following SCI, intracortical microstimulation (ICMS) and single-unit recording techniques were used in both the forelimb and hindlimb motor areas (FLA, HLA) under ketamine anesthesia. Although movements could be evoked using ICMS in the forelimb area with relatively low current levels, no movements or electromyographical responses could be evoked from ICMS in the HLA in any of the injured rats. During the same procedure, electrophysiological recordings were obtained with a single-shank, 16-channel Michigan probe (Neuronexus) to monitor activity. Neural spikes were discriminated using principle component analysis. Neural activity (action potentials) was collected and digitized for a duration of 5 min. Despite the inability to evoke movement from stimulation of cortex, robust single-unit activity could be recorded reliably from hindlimb motor cortex in SCI rats. Activity in the motor cortex of SCI rats was significantly higher compared with uninjured rats, and increased in hindlimb and forelimb motor cortex by similar amounts. These results demonstrate that in a rat model of thoracic SCI, an increase in single-unit cortical activity can be reliably recorded for several weeks post-injury.

  19. Output Properties of the Cortical Hindlimb Motor Area in Spinal Cord-Injured Rats

    PubMed Central

    Dunham, Caleb L.; Barbay, Scott; Krizsan-Agbas, Dora; Winter, Michelle K.; Guggenmos, David J.; Nudo, Randolph J.

    2015-01-01

    Abstract The purpose of this study was to examine neuronal activity levels in the hindlimb area of motor cortex following spinal cord injury (SCI) in rats and compare the results with measurements in normal rats. Fifteen male Fischer-344 rats received a 200 Kdyn contusion injury in the thoracic cord at level T9–T10. After a minimum of 4 weeks following SCI, intracortical microstimulation (ICMS) and single-unit recording techniques were used in both the forelimb and hindlimb motor areas (FLA, HLA) under ketamine anesthesia. Although movements could be evoked using ICMS in the forelimb area with relatively low current levels, no movements or electromyographical responses could be evoked from ICMS in the HLA in any of the injured rats. During the same procedure, electrophysiological recordings were obtained with a single-shank, 16-channel Michigan probe (Neuronexus) to monitor activity. Neural spikes were discriminated using principle component analysis. Neural activity (action potentials) was collected and digitized for a duration of 5 min. Despite the inability to evoke movement from stimulation of cortex, robust single-unit activity could be recorded reliably from hindlimb motor cortex in SCI rats. Activity in the motor cortex of SCI rats was significantly higher compared with uninjured rats, and increased in hindlimb and forelimb motor cortex by similar amounts. These results demonstrate that in a rat model of thoracic SCI, an increase in single-unit cortical activity can be reliably recorded for several weeks post-injury. PMID:26406381

  20. Plasticity in One Hemisphere, Control From Two: Adaptation in Descending Motor Pathways After Unilateral Corticospinal Injury in Neonatal Rats

    PubMed Central

    Wen, Tong-Chun; Lall, Sophia; Pagnotta, Corey; Markward, James; Gupta, Disha; Ratnadurai-Giridharan, Shivakeshavan; Bucci, Jacqueline; Greenwald, Lucy; Klugman, Madelyne; Hill, N. Jeremy; Carmel, Jason B.

    2018-01-01

    After injury to the corticospinal tract (CST) in early development there is large-scale adaptation of descending motor pathways. Some studies suggest the uninjured hemisphere controls the impaired forelimb, while others suggest that the injured hemisphere does; these pathways have never been compared directly. We tested the contribution of each motor cortex to the recovery forelimb function after neonatal injury of the CST. We cut the left pyramid (pyramidotomy) of postnatal day 7 rats, which caused a measurable impairment of the right forelimb. We used pharmacological inactivation of each motor cortex to test its contribution to a skilled reach and supination task. Rats with neonatal pyramidotomy were further impaired by inactivation of motor cortex in both the injured and the uninjured hemispheres, while the forelimb of uninjured rats was impaired only from the contralateral motor cortex. Thus, inactivation demonstrated motor control from each motor cortex. In contrast, physiological and anatomical interrogation of these pathways support adaptations only in the uninjured hemisphere. Intracortical microstimulation of motor cortex in the uninjured hemisphere of rats with neonatal pyramidotomy produced responses from both forelimbs, while stimulation of the injured hemisphere did not elicit responses from either forelimb. Both anterograde and retrograde tracers were used to label corticofugal pathways. There was no increased plasticity from the injured hemisphere, either from cortex to the red nucleus or the red nucleus to the spinal cord. In contrast, there were very strong CST connections to both halves of the spinal cord from the uninjured motor cortex. Retrograde tracing produced maps of each forelimb within the uninjured hemisphere, and these were partly segregated. This suggests that the uninjured hemisphere may encode separate control of the unimpaired and the impaired forelimbs of rats with neonatal pyramidotomy. PMID:29706871

  1. Plasticity in One Hemisphere, Control From Two: Adaptation in Descending Motor Pathways After Unilateral Corticospinal Injury in Neonatal Rats.

    PubMed

    Wen, Tong-Chun; Lall, Sophia; Pagnotta, Corey; Markward, James; Gupta, Disha; Ratnadurai-Giridharan, Shivakeshavan; Bucci, Jacqueline; Greenwald, Lucy; Klugman, Madelyne; Hill, N Jeremy; Carmel, Jason B

    2018-01-01

    After injury to the corticospinal tract (CST) in early development there is large-scale adaptation of descending motor pathways. Some studies suggest the uninjured hemisphere controls the impaired forelimb, while others suggest that the injured hemisphere does; these pathways have never been compared directly. We tested the contribution of each motor cortex to the recovery forelimb function after neonatal injury of the CST. We cut the left pyramid (pyramidotomy) of postnatal day 7 rats, which caused a measurable impairment of the right forelimb. We used pharmacological inactivation of each motor cortex to test its contribution to a skilled reach and supination task. Rats with neonatal pyramidotomy were further impaired by inactivation of motor cortex in both the injured and the uninjured hemispheres, while the forelimb of uninjured rats was impaired only from the contralateral motor cortex. Thus, inactivation demonstrated motor control from each motor cortex. In contrast, physiological and anatomical interrogation of these pathways support adaptations only in the uninjured hemisphere. Intracortical microstimulation of motor cortex in the uninjured hemisphere of rats with neonatal pyramidotomy produced responses from both forelimbs, while stimulation of the injured hemisphere did not elicit responses from either forelimb. Both anterograde and retrograde tracers were used to label corticofugal pathways. There was no increased plasticity from the injured hemisphere, either from cortex to the red nucleus or the red nucleus to the spinal cord. In contrast, there were very strong CST connections to both halves of the spinal cord from the uninjured motor cortex. Retrograde tracing produced maps of each forelimb within the uninjured hemisphere, and these were partly segregated. This suggests that the uninjured hemisphere may encode separate control of the unimpaired and the impaired forelimbs of rats with neonatal pyramidotomy.

  2. Increasing CNS norepinephrine levels by the precursor L-DOPS facilitates beam-walking recovery after sensorimotor cortex ablation in rats.

    PubMed

    Kikuchi, K; Nishino, K; Ohyu, H

    2000-03-31

    The present investigation was conducted to document a role of L-threo-3,4-dihydroxyphenylserine (L-DOPS), precursor of L-norepinephrine (NE), in the functional recovery from beam-walking performance deficits in rats after unilateral sensorimotor cortex ablation. L-DOPS was administered simultaneously with benserazide (BSZ; a peripheral aromatic amino acid decarboxylase inhibitor), and the regional contents of NE in the cerebral cortex, hippocampus, and cerebellum were assayed. Behavioral recovery was demonstrated by the rats treated with L-DOPS and BSZ, and the rate of recovery was significantly different from that of either BSZ-treated or vehicle-treated control rats. The NE tissue levels in the three discrete regions of the rat brain were significantly elevated in the experimental rats receiving both L-DOPS and BSZ. The present studies indicate that increasing NE levels by the precursor L-DOPS may be responsible for facilitating behavioral recovery from beam-walking performance deficits in rats, and further suggest that L-DOPS may become one of the candidate compounds for further clinical human trials promoting functional recovery after injuries to the cerebral cortex.

  3. Rat embryonic palatal shelves respond to TCDD in organ culture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abbott, B.D.; Birnbaum, L.S.

    1990-05-01

    TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin), a highly toxic environmental contaminant, is teratogenic in mice, inducing cleft palate (CP) and hydronephrosis at doses which are not overtly maternally or embryo toxic. Palatal shelves of embryonic mice respond to TCDD, both in vivo and in organ culture, with altered differentiation of medial epithelial cells. By contrast, in the rat TCDD produces substantial maternal, embryonic, and fetal toxicity, including fetal lethality, with few malformations. In this study the possible effects of maternal toxicity on induction of cleft palate were eliminated by exposure of embryonic rat palatal shelves in organ culture. The shelves were examined for specificmore » TCDD-induced alterations in differentiation of the medial cells. On Gestation Day (GD) 14 or 15 palatal shelves from embryonic F344 rats were placed in organ culture for 2 to 3 days (IMEM:F12 medium, 5% FBS, 0.1% DMSO) containing 0, 1 x 10(-8), 1 x 10(-9), 1 x 10(-10), or 5 x 10(-11) M TCDD. The medial epithelial peridermal cells degenerated on shelves exposed to control media or 5 x 10(-11) M TCDD. Exposure to 10(-10), 10(-9), and 10(-8) M TCDD inhibited this degeneration in 20, 36, and 60% of the shelves, respectively, and was statistically significant at the two highest doses. A normally occurring decrease in (3H)TdR incorporation was inhibited in some GD 15 shelves cultured with 10(-10) and 10(-9) M TCDD. The medial cells of TCDD-exposed shelves continued to express high levels of immunohistochemically detected EGF receptors. The altered differentiation of rat medial epithelium is similar to that reported for TCDD-exposed mouse medial cells in vivo and in vitro. However, in order to obtain these responses, the cultured rat shelves require much higher concentrations of TCDD than the mouse shelves.« less

  4. Complete reorganization of the motor cortex of adult rats following long-term spinal cord injuries.

    PubMed

    Tandon, Shashank; Kambi, Niranjan; Mohammed, Hisham; Jain, Neeraj

    2013-07-01

    Understanding brain reorganization following long-term spinal cord injuries is important for optimizing recoveries based on residual function as well as developing brain-controlled assistive devices. Although it has been shown that the motor cortex undergoes partial reorganization within a few weeks after peripheral and spinal cord injuries, it is not known if the motor cortex of rats is capable of large-scale reorganization after longer recovery periods. Here we determined the organization of the rat (Rattus norvegicus) motor cortex at 5 or more months after chronic lesions of the spinal cord at cervical levels using intracortical microstimulation. The results show that, in the rats with the lesions, stimulation of neurons in the de-efferented forelimb motor cortex no longer evokes movements of the forelimb. Instead, movements of the body parts in the adjacent representations, namely the whiskers and neck were evoked. In addition, at many sites, movements of the ipsilateral forelimb were observed at threshold currents. The extent of representations of the eye, jaw and tongue movements was unaltered by the lesion. Thus, large-scale reorganization of the motor cortex leads to complete filling-in of the de-efferented cortex by neighboring representations following long-term partial spinal cord injuries at cervical levels in adult rats. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  5. Mesenchymal stem cells restore orientation and exploratory behavior of rats after brain injury.

    PubMed

    Sokolova, I B; Fedotova, O R; Tsikunov, S G; Polyntsev, D G

    2011-05-01

    We studied the effects of intravenous and intracerebral transplantation of MSC on restoration of orientation and exploratory behavior of Wistar-Kyoto rats after removal of the left motor cortex. Removal of the motor cortex led to a significant reduction of the number of behavioral acts in the open field test. Two weeks after removal of the motor cortex and intravenous transplantation, the animals were as inhibited as the controls, but during the next 10 weeks, the behavioral status of these rats remained unchanged, while controls exhibited further behavioral degradation. After injection of MSC into the brain, the behavior of rats with trauma did not change in comparison with intact rats over 10 weeks.

  6. Oxidative Stress Status and Placental Implications in Diabetic Rats Undergoing Swimming Exercise After Embryonic Implantation

    PubMed Central

    Damasceno, Débora Cristina; Sinzato, Yuri Karen; Ribeiro, Viviane Maria; Rudge, Marilza Vieira Cunha; Calderon, Iracema Mattos Paranhos

    2015-01-01

    The potential benefits and risks of physical exercise on fetal development during pregnancy remain unclear. The aim was to analyze maternal oxidative stress status and the placental morphometry to relate to intrauterine growth restriction (IUGR) from diabetic female rats submitted to swimming program after embryonic implantation. Pregnant Wistar rats were distributed into 4 groups (11 animals/group): control—nondiabetic sedentary rats, control exercised—nondiabetic exercised rats, diabetic—diabetic sedentary rats, and diabetic exercised—diabetic exercised rats. A swimming program was used as an exercise model. At the end of pregnancy, the maternal oxidative stress status, placental morphology, and fetal weight were analyzed. The swimming program was not efficient to reduce the hyperglycemia-induced oxidative stress. This fact impaired placental development, resulting in altered blood flow and energy reserves, which contributed to a deficient exchange of nutrients and oxygen for the fetal development, leading to IUGR. PMID:25361551

  7. Dysgranular Retrosplenial Cortex Lesions in Rats Disrupt Cross-Modal Object Recognition

    ERIC Educational Resources Information Center

    Hindley, Emma L.; Nelson, Andrew J. D.; Aggleton, John P.; Vann, Seralynne D.

    2014-01-01

    The retrosplenial cortex supports navigation, with one role thought to be the integration of different spatial cue types. This hypothesis was extended by examining the integration of nonspatial cues. Rats with lesions in either the dysgranular subregion of retrosplenial cortex (area 30) or lesions in both the granular and dysgranular subregions…

  8. Hippocampus, Perirhinal Cortex, and Complex Visual Discriminations in Rats and Humans

    ERIC Educational Resources Information Center

    Hales, Jena B.; Broadbent, Nicola J.; Velu, Priya D.; Squire, Larry R.; Clark, Robert E.

    2015-01-01

    Structures in the medial temporal lobe, including the hippocampus and perirhinal cortex, are known to be essential for the formation of long-term memory. Recent animal and human studies have investigated whether perirhinal cortex might also be important for visual perception. In our study, using a simultaneous oddity discrimination task, rats with…

  9. Effect of hindlimb unloading on stereological parameters of the motor cortex and hippocampus in male rats.

    PubMed

    Salehi, Mohammad Saied; Mirzaii-Dizgah, Iraj; Vasaghi-Gharamaleki, Behnoosh; Zamiri, Mohammad Javad

    2016-11-09

    Hindlimb unloading (HU) can cause motion and cognition dysfunction, although its cellular and molecular mechanisms are not well understood. The aim of the present study was to determine the stereological parameters of the brain areas involved in motion (motor cortex) and spatial learning - memory (hippocampus) under an HU condition. Sixteen adult male rats, kept under a 12 : 12 h light-dark cycle, were divided into two groups of freely moving (n=8) and HU (n=8) rats. The volume of motor cortex and hippocampus, the numerical cell density of neurons in layers I, II-III, V, and VI of the motor cortex, the entire motor cortex as well as the primary motor cortex, and the numerical density of the CA1, CA3, and dentate gyrus subregions of the hippocampus were estimated. No significant differences were observed in the evaluated parameters. Our results thus indicated that motor cortical and hippocampal atrophy and cell loss may not necessarily be involved in the motion and spatial learning memory impairment in the rat.

  10. Development of a method to evaluate glutamate receptor function in rat barrel cortex slices.

    PubMed

    Lehohla, M; Russell, V; Kellaway, L; Govender, A

    2000-12-01

    The rat is a nocturnal animal and uses its vibrissae extensively to navigate its environment. The vibrissae are linked to a highly organized part of the sensory cortex, called the barrel cortex which contains spiny neurons that receive whisker specific thalamic input and distribute their output mainly within the cortical column. The aim of the present study was to develop a method to evaluate glutamate receptor function in the rat barrel cortex. Long Evans rats (90-160 g) were killed by cervical dislocation and decapitated. The brain was rapidly removed, cooled in a continuously oxygenated, ice-cold Hepes buffer (pH 7.4) and sliced using a vibratome to produce 0.35 mm slices. The barrel cortex was dissected from slices corresponding to 8.6 to 4.8 mm anterior to the interaural line and divided into rostral, middle and caudal regions. Depolarization-induced uptake of 45Ca2+ was achieved by incubating test slices in a high K+ (62.5 mM) buffer for 2 minutes at 35 degrees C. Potassium-stimulated uptake of 45Ca2+ into the rostral region was significantly lower than into middle and caudal regions of the barrel cortex. Glutamate had no effect. NMDA significantly increased uptake of 45Ca2+ into all regions of the barrel cortex. The technique is useful in determining NMDA receptor function and will be applied to study differences between spontaneously hypertensive rats (SHR) that are used as a model for attention deficit disorder and their normotensive control rats.

  11. Time course of hyperosmolar opening of the blood-brain and blood-CSF barriers in spontaneously hypertensive rats.

    PubMed

    Al-Sarraf, Hameed; Ghaaedi, Firuz; Redzic, Zoran

    2007-01-01

    The time course of blood-brain barrier (BBB) and blood-CSF barrier (BCSFB) responses to hyperosmolar mannitol infusion (HMI; 1.6 M) during chronic hypertension was investigated using (14)C-sucrose as a marker of barrier integrity. (14)C-sucrose entry into CSF of both spontaneously hypertensive rats (SHR) and normotensive Wistar Kyoto (WKY) rats 2 min after HMI increased approximately 7-fold compared to their respective control. The volume of distribution (V(d)) of (14)C-sucrose into brain cortex of SHR increased 13-fold 2 min after HMI while that in WKY rats increased only 4-fold. After HMI V(d) of (14)C-sucrose into the cortex of WKY, and CSF of both SHR and WKY remained steadily greater than their corresponding control for up to 30 min (p < 0.01), whereas in the cortex of SHR the V(d) of (14)C-sucrose reached control values 20 min after HMI (p > 0.05), indicating that after HMI the increase in paracellular diffusion of (14)C-sucrose into SHR cortex was not persistent, in contrast to WKY rats and CSF of both SHR and WKY rats. Electron microscopy of the brain cortex after HMI showed capillary endothelial cell shrinkage and perivascular swellings in the brain cortex, and in the choroid plexus opening of tight junctions were observed. Our results indicate disruption of both the BBB and the BCSFB after HMI in both SHR and WKY rats. The disruption remained persistent up to 25 min after HMI at the BBB of WKY rats and BCSFB in both animal groups, while in SHR the protective function of the BBB returned to control values 20 min after HMI. Copyright 2007 S. Karger AG, Basel.

  12. Bilateral lesions of the medial frontal cortex disrupt recognition of social hierarchy during antiphonal communication in naked mole-rats (Heterocephalus glaber).

    PubMed

    Yosida, Shigeto; Okanoya, Kazuo

    2012-02-01

    Generation of the motor patterns of emotional sounds in mammals occurs in the periaqueductal gray matter of the midbrain and is not directly controlled by the cortex. The medial frontal cortex indirectly controls vocalizations, based on the recognition of social context. We examined whether the medial frontal cortex was responsible for antiphonal vocalization, or turn-taking, in naked mole-rats. In normal turn-taking, naked mole-rats vocalize more frequently to dominant individuals than to subordinate ones. Bilateral lesions of the medial frontal cortex disrupted differentiation of call rates to the stimulus animals, which had varied social relationships to the subject. However, medial frontal cortex lesions did not affect either the acoustic properties of the vocalizations or the timing of the vocal exchanges. This suggests that the medial frontal cortex may be involved in social cognition or decision making during turn-taking, while other regions of the brain regulate when animals vocalize and the vocalizations themselves.

  13. Impairment of male reproduction in adult rats exposed to hydroxyprogesterone caproate in utero

    NASA Astrophysics Data System (ADS)

    Pushpalatha, T.; Ramachandra Reddy, P.; Sreenivasula Reddy, P.

    Hydroxyprogesterone caproate is one of the most effective and widely used drugs for the treatment of uterine bleeding and threatened miscarriage in women. Hydroxyprogesterone caproate was administered to pregnant rats in order to assess the effect of intraperitoneal exposure to supranormal levels of hydroxyprogesterone caproate on the male reproductive potential in the first generation. The cauda epididymal sperm count and motility decreased significantly in rats exposed to hydroxyprogesterone caproate during embryonic development, when compared with control rats. The levels of serum testosterone decreased with an increase in follicle stimulating hormone and luteinizing hormone in adult rats exposed to hydroxyprogesterone caproate during the embryonic stage. It was suggested that the impairment of male reproductive performance could be mediated through the inhibition of testosterone production.

  14. Perinatal asphyxia results in changes in presynaptic bouton number in striatum and cerebral cortex-a stereological and behavioral analysis.

    PubMed

    Van de Berg, W D; Blokland, A; Cuello, A C; Schmitz, C; Vreuls, W; Steinbusch, H W; Blanco, C E

    2000-10-01

    Deficits in cognitive function have been related to quantitative changes in synaptic population, particularly in the cerebral cortex. Here, we used an established model of perinatal asphyxia that induces morphological changes, i.e. neuron loss in the cerebral cortex and striatum, as well as behavioural deficits. We hypothesized that perinatal asphyxia may lead to a neurodegenerative process resulting in cognitive impairment and altered presynaptic bouton numbers in adult rats. We studied cognitive performance at 18 months and presynaptic bouton numbers at 22 months following perinatal asphyxia. Data of the spatial Morris water escape task did not reveal clear memory or learning deficits in aged asphyctic rats compared to aged control rats. However, a memory impairment in aged rats versus young rats was observed, which was more pronounced in asphyctic rats. We found an increase in presynaptic bouton density in the parietal cortex, whereas no changes were found in striatum and frontal cortex in asphyctic rats. An increase of striatal volume was observed in asphyctic rats, leading to an increase in presynaptic bouton numbers in this area. These findings stress the issue that volume measurements have to be taken into account when determining presynaptic bouton density. Furthermore, perinatal asphyxia led to region-specific changes in presynaptic bouton numbers and it worsened the age-related cognitive impairment. These results suggest that perinatal asphyxia induced neuronal loss, which is compensated for by an increase in presynaptic bouton numbers.

  15. Behavioral and neurophysiological correlates of regret in rat decision-making on a neuroeconomic task

    PubMed Central

    Steiner, Adam P.; Redish, A. David

    2014-01-01

    Summary Disappointment entails the recognition that one did not get the value one expected. In contrast, regret entails the recognition that an alternate (counterfactual) action would have produced a more valued outcome. Thus, the key to identifying regret is the representation of that counterfactual option in situations in which a mistake has been made. In humans, the orbitofrontal cortex is active during expressions of regret, and humans with damage to the orbitofrontal cortex do not express regret. In rats and non-human primates, both the orbitofrontal cortex and the ventral striatum have been implicated in decision-making, particularly in representations of expectations of reward. In order to examine representations of regretful situations, we recorded neural ensembles from orbitofrontal cortex and ventral striatum in rats encountering a spatial sequence of wait/skip choices for delayed delivery of different food flavors. We were able to measure preferences using an economic framework. Rats occasionally skipped low-cost choices and then encountered a high-cost choice. This sequence economically defines a potential regret-inducing instance. In these situations, rats looked backwards towards the lost option, the cells within the orbitofrontal cortex and ventral striatum represented that missed action, rats were more likely to wait for the long delay, and rats rushed through eating the food after that delay. That these situations drove rats to modify their behavior suggests that regret-like processes modify decision-making in non-human mammals. PMID:24908102

  16. Decreased GABA receptor in the cerebral cortex of epileptic rats: effect of Bacopa monnieri and Bacoside-A

    PubMed Central

    2012-01-01

    Abstact Background Gamma amino butyric acid (GABA), the principal inhibitory neurotransmitter in the cerebral cortex, maintains the inhibitory tones that counter balances neuronal excitation. When this balance is perturbed, seizures may ensue. Methods In the present study, alterations of the general GABA, GABAA and GABAB receptors in the cerebral cortex of the epileptic rat and the therapeutic application of Bacopa monnieri were investigated. Results Scatchard analysis of [3H]GABA, [3H]bicuculline and [3H]baclofen in the cerebral cortex of the epileptic rat showed significant decrease in Bmax (P < 0.001) compared to control. Real Time PCR amplification of GABA receptor subunits such as GABAAά1, GABAAγ, GABAAδ, GABAB and GAD where down regulated (P < 0.001) in epileptic rats. GABAAά5 subunit and Cyclic AMP responsible element binding protein were up regulated. Confocal imaging study confirmed the decreased GABA receptors in epileptic rats. Epileptic rats have deficit in radial arm and Y maze performance. Conclusions Bacopa monnieri and Bacoside-A treatment reverses epilepsy associated changes to near control suggesting that decreased GABA receptors in the cerebral cortex have an important role in epileptic occurrence; Bacopa monnieri and Bacoside-A have therapeutic application in epilepsy management. PMID:22364254

  17. A Novel Role for the Rat Retrosplenial Cortex in Cognitive Control

    ERIC Educational Resources Information Center

    Nelson, Andrew J. D.; Hindley, Emma L.; Haddon, Josephine E.; Vann, Seralynne D.; Aggleton, John P.

    2014-01-01

    By virtue of its frontal and hippocampal connections, the retrosplenial cortex is uniquely placed to support cognition. Here, we tested whether the retrosplenial cortex is required for frontal tasks analogous to the Stroop Test, i.e., for the ability to select between conflicting responses and inhibit responding to task-irrelevant cues. Rats first…

  18. The toxic influence of dibromoacetic acid on the hippocampus and pre-frontal cortex of rat: involvement of neuroinflammation response and oxidative stress.

    PubMed

    Jiang, Wenbo; Li, Bai; Chen, Yingying; Gao, Shuying

    2017-12-01

    Dibromoacetic acid (DBA) exsits in drinking water as a by-product of disinfection as a result of chlorination or ozonation processes. Hippocampus and pre-frontal cortex are the key structures in memory formation and weanling babies are more sensitive to environmental toxicant than adults, so this study was conducted to evaluate the potential neurotoxicity effects of DBA exposure when administered intragastrically for 4 weeks to weanling Sprague-Dawley rats, at concentration of 0, 20, 50, 125 mg/kg via the neurobehavioral and neurochemical effects. Results indicated that animals weight gain and food consumption were not significantly affected by DBA. However, morris water maze test showed varying degrees of changes between control and high-dose group. Additionally, the level of malondialdehyde (MDA) and generation of reactive oxygen species (ROS) in the hippocampus and pre-frontal cortex of rats increased significantly. The activities of total superoxide dismutase (SOD) and the glutathione (GSH) content in the hippocampus and pre-frontal cortex of rats decreased significantly after treatment with DBA. Treatment with DBA increased the protein and mRNA expression of Iba-1, NF-κB, TNF-α, IL-6, IL-1β and HO-1 in the hippocampus and pre-frontal cortex of rats. These data suggested that DBA had a toxic influence on the hippocampus and pre-frontal cortex of rats, and that the mechanism of toxicity might be associated with the neuroinflammation response and oxidative stress.

  19. Encoding changes in orbitofrontal cortex in reversal-impaired aged rats.

    PubMed

    Schoenbaum, Geoffrey; Setlow, Barry; Saddoris, Michael P; Gallagher, Michela

    2006-03-01

    Previous work in rats and primates has shown that normal aging can be associated with a decline in cognitive flexibility mediated by prefrontal circuits. For example, aged rats are impaired in rapid reversal learning, which in young rats depends critically on the orbitofrontal cortex. To assess whether aging-related reversal impairments reflect orbitofrontal dysfunction, we identified aged rats with reversal learning deficits and then recorded single units as these rats, along with unimpaired aged cohorts and young control rats, learned and reversed a series of odor discrimination problems. We found that the flexibility of neural correlates in orbitofrontal cortex was markedly diminished in aged rats characterized as reversal-impaired in initial training. In particular, although many cue-selective neurons in young and aged-unimpaired rats reversed odor preference when the odor-outcome associations were reversed, cue-selective neurons in reversal-impaired aged rats did not. In addition, outcome-expectant neurons in aged-impaired rats failed to become active during cue sampling after learning. These altered features of neural encoding could provide a basis for cognitive inflexibility associated with normal aging.

  20. Hyperthyroidism modifies ecto-nucleotidase activities in synaptosomes from hippocampus and cerebral cortex of rats in different phases of development.

    PubMed

    Bruno, Alessandra Nejar; Da Silva, Rosane Souza; Bonan, Carla Denise; Battastini, Ana Maria Oliveira; Barreto-chaves, Maria Luiza M; Sarkis, João José Freitas

    2003-11-01

    Here we investigate the possible effects of the hyperthyroidism on the hydrolysis of the ATP to adenosine in the synaptosomes of hippocampus, cerebral cortex and blood serum of rats in different developmental phases. Manifestations of hyperthyroidism include anxiety, nervousness, tachycardia, physical hyperactivity and weight loss amongst others. The thyroid hormones modulate a number of physiological functions in central nervous system, including development, function, expression of adenosine A(1) receptors and transport of neuromodulator adenosine. Thus, hyperthyroidism was induced in male Wistar rats (5-, 60-, 150- and 330-day old) by daily injections of L-thyroxine (T4) for 14 days. Nucleotide hydrolysis was decreased by about 14-52% in both hippocampus and cerebral cortex in 5 to 60-day-old rats. These changes were also observed in rat blood serum. In addition, in 11-month-old rats, inhibition of ADP and AMP hydrolysis persisted in the hippocampus, whereas, in cerebral cortex, an increase in AMP hydrolysis was detected. Thus, hyperthyroidism affects the extracellular nucleotides balance and adenosine production, interfering in neurotransmitter release, development and others physiological processes in different systems.

  1. Radial glia in the proliferative ventricular zone of the embryonic and adult turtle, Trachemys scripta elegans.

    PubMed

    Clinton, Brian K; Cunningham, Christopher L; Kriegstein, Arnold R; Noctor, Stephen C; Martínez-Cerdeño, Verónica

    2014-01-01

    To better understand the role of radial glial (RG) cells in the evolution of the mammalian cerebral cortex, we investigated the role of RG cells in the dorsal cortex and dorsal ventricular ridge of the turtle, Trachemys scripta elegans. Unlike mammals, the glial architecture of adult reptile consists mainly of ependymoradial glia, which share features with mammalian RG cells, and which may contribute to neurogenesis that continues throughout the lifespan of the turtle. To evaluate the morphology and proliferative capacity of ependymoradial glia (here referred to as RG cells) in the dorsal cortex of embryonic and adult turtle, we adapted the cortical electroporation technique, commonly used in rodents, to the turtle telencephalon. Here, we demonstrate the morphological and functional characteristics of RG cells in the developing turtle dorsal cortex. We show that cell division occurs both at the ventricle and away from the ventricle, that RG cells undergo division at the ventricle during neurogenic stages of development, and that mitotic Tbr2+ precursor cells, a hallmark of the mammalian SVZ, are present in the turtle cortex. In the adult turtle, we show that RG cells encompass a morphologically heterogeneous population, particularly in the subpallium where proliferation is most prevalent. One RG subtype is similar to RG cells in the developing mammalian cortex, while 2 other RG subtypes appear to be distinct from those seen in mammal. We propose that the different subtypes of RG cells in the adult turtle perform distinct functions.

  2. Radial glia in the proliferative ventricular zone of the embryonic and adult turtle, Trachemys scripta elegans

    PubMed Central

    Clinton, Brian K; Cunningham, Christopher L; Kriegstein, Arnold R; Noctor, Stephen C; Martínez-Cerdeño, Verónica

    2014-01-01

    To better understand the role of radial glial (RG) cells in the evolution of the mammalian cerebral cortex, we investigated the role of RG cells in the dorsal cortex and dorsal ventricular ridge of the turtle, Trachemys scripta elegans. Unlike mammals, the glial architecture of adult reptile consists mainly of ependymoradial glia, which share features with mammalian RG cells, and which may contribute to neurogenesis that continues throughout the lifespan of the turtle. To evaluate the morphology and proliferative capacity of ependymoradial glia (here referred to as RG cells) in the dorsal cortex of embryonic and adult turtle, we adapted the cortical electroporation technique, commonly used in rodents, to the turtle telencephalon. Here, we demonstrate the morphological and functional characteristics of RG cells in the developing turtle dorsal cortex. We show that cell division occurs both at the ventricle and away from the ventricle, that RG cells undergo division at the ventricle during neurogenic stages of development, and that mitotic Tbr2+ precursor cells, a hallmark of the mammalian SVZ, are present in the turtle cortex. In the adult turtle, we show that RG cells encompass a morphologically heterogeneous population, particularly in the subpallium where proliferation is most prevalent. One RG subtype is similar to RG cells in the developing mammalian cortex, while 2 other RG subtypes appear to be distinct from those seen in mammal. We propose that the different subtypes of RG cells in the adult turtle perform distinct functions. PMID:27504470

  3. Age-specific function of α5β1 integrin in microglial migration during early colonization of the developing mouse cortex.

    PubMed

    Smolders, Sophie Marie-Thérèse; Swinnen, Nina; Kessels, Sofie; Arnauts, Kaline; Smolders, Silke; Le Bras, Barbara; Rigo, Jean-Michel; Legendre, Pascal; Brône, Bert

    2017-07-01

    Microglia, the immune cells of the central nervous system, take part in brain development and homeostasis. They derive from primitive myeloid progenitors that originate in the yolk sac and colonize the brain mainly through intensive migration. During development, microglial migration speed declines which suggests that their interaction with the microenvironment changes. However, the matrix-cell interactions allowing dispersion within the parenchyma are unknown. Therefore, we aimed to better characterize the migration behavior and to assess the role of matrix-integrin interactions during microglial migration in the embryonic brain ex vivo. We focused on microglia-fibronectin interactions mediated through the fibronectin receptor α5β1 integrin because in vitro work indirectly suggested a role for this ligand-receptor pair. Using 2-photon time-lapse microscopy on acute ex vivo embryonic brain slices, we found that migration occurs in a saltatory pattern and is developmentally regulated. Most importantly, there is an age-specific function of the α5β1 integrin during microglial cortex colonization. At embryonic day (E) 13.5, α5β1 facilitates migration while from E15.5, it inhibits migration. These results indicate a developmentally regulated function of α5β1 integrin in microglial migration during colonization of the embryonic brain. © 2017 Wiley Periodicals, Inc.

  4. Establishment of rat embryonic stem-like cells from the morula using a combination of feeder layers.

    PubMed

    Sano, Chiaki; Matsumoto, Asako; Sato, Eimei; Fukui, Emiko; Yoshizawa, Midori; Matsumoto, Hiromichi

    2009-08-01

    Embryonic stem (ES) cells are characterized by pluripotency, in particular the ability to form a germline on injection into blastocysts. Despite numerous attempts, ES cell lines derived from rat embryos have not yet been established. The reason for this is unclear, although certain intrinsic biological differences among species and/or strains have been reported. Herein, using Wistar-Imamichi rats, specific characteristics of preimplantation embryos are described. At the blastocyst stage, Oct4 (also called Pou5f1) was expressed in both the inner cell mass (ICM) and the trophectoderm (TE), whereas expression of Cdx2 was localized to the TE. In contrast, at an earlier stage, expression of Oct4 was detected in all the nuclei in the morula. These stages were examined using a combination of feeder layers (rat embryonic fibroblast [REF] for primary outgrowth and SIM mouse embryo-derived thioguanine- and ouabain-resistant [STO] cells for passaging) to establish rat ES-like cell lines. The rat ES-like cell lines obtained from the morula maintained expression of Oct4 over long-term culture, whereas cell lines derived from blastocysts lost pluripotency during early passage. The morula-derived ES-like cell lines showed Oct4 expression in a long-term culture, even after cryogenic preservation, thawing and EGFP transfection. These results indicate that rat ES-like cell lines with long-term Oct4 expression can be established from the morula of Wistar-Imamichi rats using a combination of feeder layers.

  5. Dissociable effects of cingulate and medial frontal cortex lesions on stimulus-reward learning using a novel Pavlovian autoshaping procedure for the rat: implications for the neurobiology of emotion.

    PubMed

    Bussey, T J; Everitt, B J; Robbins, T W

    1997-10-01

    The effects of quinolinic acid-induced lesions of the anterior cingulate, posterior cingulate, and medial frontal cortices on stimulus-reward learning were investigated with a novel Pavlovian autoshaping procedure in an apparatus allowing the automated presentation of computer-graphic stimuli to rats (T. J. Bussey, J. L. Muir, & T. W. Robbins, 1994). White vertical rectangles were presented on the left or the right of a computer screen. One of these conditioned stimuli (the CS+) was always followed by the presentation of a sucrose pellet; the other, the CS-, was never followed by reward. With training, rats came to approach the CS+ more often than the CS-. Anterior cingulate cortex-lesioned rats failed to demonstrate normal discriminated approach, making significantly more approaches to the CS- than did sham-operated controls. Medial frontal cortex-lesioned rats acquired the task normally but had longer overall approach latencies. Posterior cingulate cortex lesions did not affect acquisition.

  6. Dopamine depletion increases the power and coherence of high-voltage spindles in the globus pallidus and motor cortex of freely moving rats.

    PubMed

    Ge, Shunnan; Yang, Chen; Li, Min; Li, Jiang; Chang, Xiaozan; Fu, Jian; Chen, Lei; Chang, Chongwang; Wang, Xuelian; Zhu, Junling; Gao, Guodong

    2012-07-17

    Studies on patients with Parkinson's disease and in animal models have observed enhanced synchronization of oscillations in several frequency bands within and between the cortical-basal ganglia (BG) structures. Recent research has also shown that synchronization of high-voltage spindles (HVSs) in the cortex, striatum and substantia nigra pars reticulate is increased by dopamine depletion. However, more evidence is needed to determine whether HVS activity in the whole cortex-BG network represents homologous alteration following dopamine depletion. As the globus pallidus (GP) is in a central position to propagate and synchronize oscillations in the cortical-BG circuits, we employed local-field potentials and electrocorticogram to simultaneously record oscillations in the GP and primary (M1) and secondary (M2) motor cortices on freely moving 6-hydroxydopamine (6-OHDA) lesioned and control rats. Results showed that HVS episodes recorded from GP, and M2 and M1 cortex areas were more numerous and longer in 6-OHDA lesioned rats compared to controls. Relative power associated with HVS activity in the GP, and M2 and M1 cortices of 6-OHDA lesioned rats was significantly greater than that for control rats. Coherence values for HVS activity between the GP, and M2 and M1 cortex areas were significantly increased by dopamine depletion. Time lag between the M1 cortex HVS and GP HVS was significantly shorter for dopamine depleted than normal rats. Findings indicate a crucial rule for dopamine in the regulation of HVS activity in the whole cortical-BG circuit, and suggest a close relationship between abnormally synchronized HVS oscillations in the cortex-BG network and Parkinson's disease. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Evaluation of Krebs cycle enzymes in the brain of rats after chronic administration of antidepressants.

    PubMed

    Scaini, Giselli; Santos, Patricia M; Benedet, Joana; Rochi, Natália; Gomes, Lara M; Borges, Lislaine S; Rezin, Gislaine T; Pezente, Daiana P; Quevedo, João; Streck, Emilio L

    2010-05-31

    Several works report brain impairment of metabolism as a mechanism underlying depression. Citrate synthase and succinate dehydrogenase are enzymes localized within cells in the mitochondrial matrix and are important steps of Krebs cycle. In addition, citrate synthase has been used as a quantitative enzyme marker for the presence of intact mitochondria. Thus, we investigated citrate synthase and succinate dehydrogenase activities from rat brain after chronic administration of paroxetine, nortriptiline and venlafaxine. Adult male Wistar rats received daily injections of paroxetine (10mg/kg), nortriptiline (15mg/kg), venlafaxine (10mg/kg) or saline in 1.0mL/kg volume for 15 days. Twelve hours after the last administration, the rats were killed by decapitation, the hippocampus, striatum and prefrontal cortex were immediately removed, and activities of citrate synthase and succinate dehydrogenase were measured. We verified that chronic administration of paroxetine increased citrate synthase activity in the prefrontal cortex, hippocampus, striatum and cerebral cortex of adult rats; cerebellum was not affected. Chronic administration of nortriptiline and venlafaxine did not affect the enzyme activity in these brain areas. Succinate dehydrogenase activity was increased by chronic administration of paroxetine and nortriptiline in the prefrontal cortex, hippocampus, striatum and cerebral cortex of adult rats; cerebellum was not affected either. Chronic administration of venlafaxine increased succinate dehydrogenase activity in prefrontal cortex, but did not affect the enzyme activity in cerebellum, hippocampus, striatum and cerebral cortex. Considering that metabolism impairment is probably involved in the pathophysiology of depressive disorders, an increase in these enzymes by antidepressants may be an important mechanism of action of these drugs. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  8. Hindlimb spasticity after unilateral motor cortex lesion in rats is reduced by contralateral nerve root transfer.

    PubMed

    Zong, Haiyang; Ma, Fenfen; Zhang, Laiyin; Lu, Huiping; Gong, Jingru; Cai, Min; Lin, Haodong; Zhu, Yizhun; Hou, Chunlin

    2016-12-01

    Lower extremity spasticity is a common sequela among patients with acquired brain injury. The optimum treatment remains controversial. The aim of our study was to test the feasibility and effectiveness of contralateral nerve root transfer in reducing post stroke spasticity of the affected hindlimb muscles in rats. In our study, we for the first time created a novel animal hindlimb spastic hemiplegia model in rats with photothrombotic lesion of unilateral motor cortex and we established a novel surgical procedure in reducing motor cortex lesion-induced hindlimb spastic hemiplegia in rats. Thirty six rats were randomized into three groups. In group A, rats received sham operation. In group B, rats underwent unilateral hindlimb motor cortex lesion. In group C, rats underwent unilateral hindlimb cortex lesion followed by contralateral L4 ventral root transfer to L5 ventral root of the affected side. Footprint analysis, Hoffmann reflex (H-reflex), cholera toxin subunit B (CTB) retrograde tracing of gastrocnemius muscle (GM) motoneurons and immunofluorescent staining of vesicle glutamate transporter 1 (VGLUT1) on CTB-labelled motoneurons were used to assess spasticity of the affected hindlimb. Sixteen weeks postoperatively, toe spread and stride length recovered significantly in group C compared with group B (P<0.001). H max (H-wave maximum amplitude)/M max (M-wave maximum amplitude) ratio of gastrocnemius and plantaris muscles (PMs) significantly reduced in group C (P<0.01). Average VGLUT1 positive boutons per CTB-labelled motoneurons significantly reduced in group C (P<0.001). We demonstrated for the first time that contralateral L4 ventral root transfer to L5 ventral root of the affected side was effective in relieving unilateral motor cortex lesion-induced hindlimb spasticity in rats. Our data indicated that this could be an alternative treatment for unilateral lower extremity spasticity after brain injury. Therefore, contralateral neurotization may exert a potential therapeutic candidate to improve the function of lower extremity in patients with spastic hemiplegia. © 2016 The Author(s).

  9. alpha2-chimaerin, a Cdc42/Rac1 regulator, is selectively expressed in the rat embryonic nervous system and is involved in neuritogenesis in N1E-115 neuroblastoma cells.

    PubMed

    Hall, C; Michael, G J; Cann, N; Ferrari, G; Teo, M; Jacobs, T; Monfries, C; Lim, L

    2001-07-15

    Neuronal differentiation involves Rac and Cdc42 GTPases. alpha-Chimaerin, a Rac/Cdc42 regulator, occurs as alpha1- and alternatively spliced Src homology 2 (SH2) domain-containing alpha2-isoforms. alpha2-chimaerin mRNA was highly expressed in the rat embryonic nervous system, especially in early postmitotic neurons. alpha1-chimaerin mRNA was undetectable before embryonic day 16.5. Adult alpha2-chimaerin mRNA was restricted to neurons within specific brain regions, with highest expression in the entorhinal cortex. alpha2-chimaerin protein localized to neuronal perikarya, dendrites, and axons. The overall pattern of alpha2-chimaerin mRNA expression resembles that of cyclin-dependent kinase regulator p35 (CDK5/p35) which participates in neuronal differentiation and with which chimaerin interacts. To determine whether alpha2-chimaerin may have a role in neuronal differentiation and the relevance of the SH2 domain, the morphological effects of both chimaerin isoforms were investigated in N1E-115 neuroblastoma cells. When plated on poly-lysine, transient alpha2-chimaerin but not alpha1-chimaerin transfectants formed neurites. Permanent alpha2-chimaerin transfectants generated neurites whether or not they were stimulated by serum starvation, and many cells were enlarged. Permanent alpha1-chimaerin transfectants displayed numerous microspikes and contained F-actin clusters, a Cdc42-phenotype, but generated few neurites. In neuroblastoma cells, alpha2-chimaerin was predominantly soluble with some being membrane-associated, whereas alpha1-chimaerin was absent from the cytosol, being membrane- and cytoskeleton-associated, paralleling their subcellular distribution in brain. Transient transfection with alpha2-chimaerin mutated in the SH2 domain (N94H) generated an alpha1-chimaerin-like phenotype, protein partitioned in the particulate fraction, and in NGF-stimulated pheochromocytoma cell line 12 (PC12) cells, neurite formation was inhibited. These results indicate a role for alpha2-chimaerin in morphological differentiation for which its SH2 domain is vital.

  10. Loss of quinone reductase 2 function selectively facilitates learning behaviors.

    PubMed

    Benoit, Charles-Etienne; Bastianetto, Stephane; Brouillette, Jonathan; Tse, YiuChung; Boutin, Jean A; Delagrange, Philippe; Wong, TakPan; Sarret, Philippe; Quirion, Rémi

    2010-09-22

    High levels of reactive oxygen species (ROS) are associated with deficits in learning and memory with age as well as in Alzheimer's disease. Using DNA microarray, we demonstrated the overexpression of quinone reductase 2 (QR2) in the hippocampus in two models of learning deficits, namely the aged memory impaired rats and the scopolamine-induced amnesia model. QR2 is a cytosolic flavoprotein that catalyzes the reduction of its substrate and enhances the production of damaging activated quinone and ROS. QR2-like immunostaining is enriched in cerebral structures associated with learning behaviors, such as the hippocampal formation and the temporofrontal cortex of rat, mouse, and human brains. In cultured rat embryonic hippocampal neurons, selective inhibitors of QR2, namely S26695 and S29434, protected against menadione-induced cell death by reversing its proapoptotic action. S26695 (8 mg/kg) also significantly inhibited scopolamine-induced amnesia. Interestingly, adult QR2 knock-out mice demonstrated enhanced learning abilities in various tasks, including Morris water maze, object recognition, and rotarod performance test. Other behaviors related to anxiety (elevated plus maze), depression (forced swim), and schizophrenia (prepulse inhibition) were not affected in QR2-deficient mice. Together, these data suggest a role for QR2 in cognitive behaviors with QR2 inhibitors possibly representing a novel therapeutic strategy toward the treatment of learning deficits especially observed in the aged brain.

  11. Is the ipsilateral cortex surrounding the lesion or the non-injured contralateral cortex important for motor recovery in rats with photochemically induced cortical lesions?

    PubMed

    Takata, Kotaro; Yamauchi, Hideki; Tatsuno, Hisashi; Hashimoto, Keiji; Abo, Masahiro

    2006-01-01

    To determine whether the ipsilateral cortex surrounding the lesion or the non-injured contralateral cortex is important for motor recovery after brain damage in the photochemically initiated thrombosis (PIT) model. We induced PIT in the sensorimotor cortex in rats and examined the recovery of motor function using the beam-walking test. In 24 rats, the right sensorimotor cortex was lesioned after 2 days of training for the beam-walking test (group 1). After 10 days, PIT was induced in the left sensorimotor cortex. Eight additional rats (group 2) received 2 days training in beam walking, then underwent the beam-walking test to evaluate function. After 10 days of testing, the left sensorimotor cortex was lesioned and recovery was monitored by the beam-walking test for 8 days. In group 1 animals, left hindlimb function caused by a right sensorimotor cortex lesion recovered within 10 days after the operation. Right hindlimb function caused by the left-side lesion recovered within 6 days. In group 2, right hindlimb function caused by induction of the left-side lesion after a total of 12 days of beam-walking training and testing recovered within 6 days as with the double PIT model. The training effect may be relevant to reorganization and neuromodulation. Motor recovery patterns did not indicate whether motor recovery was dependent on the ipsilateral cortex surrounding the lesion or the cortex of the contralateral side. The results emphasize the need for selection of appropriate programs tailored to the area of cortical damage in order to enhance motor functional recovery in this model. Copyright 2006 S. Karger AG, Basel.

  12. Cleveland Clinic Rehabilitation Research Program

    DTIC Science & Technology

    2015-12-01

    Study 1: The penicillin-induced seizure animal model has been generated by acute focal intracortical injection of penicillin in the motor cortex of rats ... motor cortex of rats . The effects of transcranial magnetic stimulation (TMS) on penicillin-induced seizure have been investigated using behavioral...electroencephalographic (EEG) recording. Study 2: The motor cortex (M1) and the corticospinal tracts (CST) will be directly modulated using brain stimulation

  13. Contralateral disconnection of the rat prelimbic cortex and dorsomedial striatum impairs cue-guided behavioral switching

    PubMed Central

    Baker, Phillip M.

    2014-01-01

    Switches in reward outcomes or reward-predictive cues are two fundamental ways in which information is used to flexibly shift response patterns. The rat prelimbic cortex and dorsomedial striatum support behavioral flexibility based on a change in outcomes. The present experiments investigated whether these two brain regions are necessary for conditional discrimination performance in which a switch in reward-predictive cues occurs every three to six trials. The GABA agonists baclofen and muscimol infused into the prelimbic cortex significantly impaired performance leading rats to adopt an inappropriate turn strategy. The NMDA receptor antagonist D-AP5 infused into the dorsomedial striatum or prelimbic cortex and dorsomedial striatum contralateral disconnection impaired performance due to a rat failing to switch a response choice for an entire trial block in about two out of 13 test blocks. In an additional study, contralateral disconnection did not affect nonswitch discrimination performance. The results suggest that the prelimbic cortex and dorsomedial striatum are necessary to support cue-guided behavioral switching. The prelimbic cortex may be critical for generating alternative response patterns while the dorsomedial striatum supports the selection of an appropriate response when cue information must be used to flexibly switch response patterns. PMID:25028395

  14. Methylphenidate increases glucose uptake in the brain of young and adult rats.

    PubMed

    Réus, Gislaine Z; Scaini, Giselli; Titus, Stephanie E; Furlanetto, Camila B; Wessler, Leticia B; Ferreira, Gabriela K; Gonçalves, Cinara L; Jeremias, Gabriela C; Quevedo, João; Streck, Emilio L

    2015-10-01

    Methylphenidate (MPH) is the drug of choice for pharmacological treatment of attention deficit hyperactivity disorder. Studies have pointed to the role of glucose and lactate as well as in the action mechanisms of drugs used to treat these neuropsychiatric diseases. Thus, this study aims to evaluate the effects of MPH administration on lactate release and glucose uptake in the brains of young and adult rats. MPH (1.0, 2.0 and 10.0mg/kg) or saline was injected in young and adult Wistar male rats either acutely (once) or chronically (once daily for 28 days). Then, the levels of lactate release and glucose uptake were assessed in the prefrontal cortex, hippocampus, striatum, cerebellum and cerebral cortex. Chronic MPH treatment increased glucose uptake at the dose of 10.0mg/kg in the prefrontal cortex and striatum, and at the dose of 2.0mg/kg in the cerebral cortex of young rats. In adult rats, an increase in glucose uptake was observed after acute administration of MPH at the dose of 10.0mg/kg in the prefrontal cortex. After chronic treatment, there was an increase in glucose uptake with MPH doses of 2.0 and 10.0mg/kg in the prefrontal cortex, and at an MPH dose of 2.0mg/kg in the striatum of adult rats. The lactate release did not change with either acute or chronic treatments in young or adult rats. These findings indicate that MPH increases glucose consumption in the brain, and that these changes are dependent on age and posology. Copyright © 2015 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  15. 3D Reconstruction and Standardization of the Rat Vibrissal Cortex for Precise Registration of Single Neuron Morphology

    PubMed Central

    Egger, Robert; Narayanan, Rajeevan T.; Helmstaedter, Moritz; de Kock, Christiaan P. J.; Oberlaender, Marcel

    2012-01-01

    The three-dimensional (3D) structure of neural circuits is commonly studied by reconstructing individual or small groups of neurons in separate preparations. Investigation of structural organization principles or quantification of dendritic and axonal innervation thus requires integration of many reconstructed morphologies into a common reference frame. Here we present a standardized 3D model of the rat vibrissal cortex and introduce an automated registration tool that allows for precise placement of single neuron reconstructions. We (1) developed an automated image processing pipeline to reconstruct 3D anatomical landmarks, i.e., the barrels in Layer 4, the pia and white matter surfaces and the blood vessel pattern from high-resolution images, (2) quantified these landmarks in 12 different rats, (3) generated an average 3D model of the vibrissal cortex and (4) used rigid transformations and stepwise linear scaling to register 94 neuron morphologies, reconstructed from in vivo stainings, to the standardized cortex model. We find that anatomical landmarks vary substantially across the vibrissal cortex within an individual rat. In contrast, the 3D layout of the entire vibrissal cortex remains remarkably preserved across animals. This allows for precise registration of individual neuron reconstructions with approximately 30 µm accuracy. Our approach could be used to reconstruct and standardize other anatomically defined brain areas and may ultimately lead to a precise digital reference atlas of the rat brain. PMID:23284282

  16. Minocycline restores cognitive-relative altered proteins in young bile duct-ligated rat prefrontal cortex.

    PubMed

    Li, Shih-Wen; Chen, Yu-Chieh; Sheen, Jiunn-Ming; Hsu, Mei-Hsin; Tain, You-Lin; Chang, Kow-Aung; Huang, Li-Tung

    2017-07-01

    Bile duct ligation (BDL) model is used to study hepatic encephalopathy accompanied by cognitive impairment. We employed the proteomic analysis approach to evaluate cognition-related proteins in the prefrontal cortex of young BDL rats and analyzed the effect of minocycline on these proteins and spatial memory. BDL was induced in young rats at postnatal day 17. Minocycline as a slow-release pellet was implanted into the peritoneum. Morris water maze test and two-dimensional liquid chromatography-tandem mass spectrometry were used to evaluate spatial memory and prefrontal cortex protein expression, respectively. We used 2D/LC-MS/MS to analyze for affected proteins in the prefrontal cortex of young BDL rats. Results were verified with Western blotting, immunohistochemistry, and quantitative real-time PCR. The effect of minocycline in BDL rats was assessed. BDL induced spatial deficits, while minocycline rescued it. Collapsin response mediator protein 2 (CRMP2) and manganese-dependent superoxide dismutase (MnSOD) were upregulated and nucleoside diphosphate kinase B (NME2) was downregulated in young BDL rats. BDL rats exhibited decreased levels of brain-derived neurotrophic factor (BDNF) mRNA as compared with those by the control. However, minocycline treatment restored CRMP2 and NME2 protein expression, BDNF mRNA level, and MnSOD activity to control levels. We demonstrated that BDL altered the expression of CRMP2, NME2, MnSOD, and BDNF in the prefrontal cortex of young BDL rats. However, minocycline treatment restored the expression of the affected mediators that are implicated in cognition. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. The locus of origin of augmenting and reducing of visual evoked potentials in rat brain.

    PubMed

    Siegel, J; Gayle, D; Sharma, A; Driscoll, P

    1996-07-01

    Humans who are high sensation seekers and cats who demonstrate comparable behavioral traits show increasing amplitudes of the early components of the cortical visual evoked potential (VEP) to increasing intensities of light flash; low sensation seekers show VEP reducing. Roman high-avoidance (RHA) and Roman low-avoidance (RLA) rats have behavioral traits comparable to human and cat high and low sensation seekers, respectively. Previously, we showed that RHA and RLA rats are cortical VEP augmenters and reducers, respectively. The goal of this study was to determine if augmenting-reducing is in fact a property of the visual cortex or if it originates at the lateral geniculate nucleus and is merely reflected in recordings from the cortex. EPs to five flash intensities were recorded from the visual cortex and dorsal lateral geniculate of RHA and RLA rats. As in the previous study, the slope of the first cortical component as a function of flash intensity was greater in the RHA than in the RLA rats. The amplitude of the geniculate component that has a latency shorter than the first cortical component was no different in the two lines of rats. The finding from the cortex confirms the earlier finding of augmenting and reducing in RHA and RLA rats, respectively. The major new finding is that the augmenting-reducing difference recorded at the cortex does not occur at the thalamus, indicating that it is truly a cortical phenomenon.

  18. Silymarin ameliorates experimentally induced depressive like behavior in rats: Involvement of hippocampal BDNF signaling, inflammatory cytokines and oxidative stress response.

    PubMed

    Thakare, Vishnu N; Aswar, Manoj K; Kulkarni, Yogesh P; Patil, Rajesh R; Patel, Bhoomika M

    2017-10-01

    Silymarin is a polyphenolic flavonoid of Silybum marianum, exhibited neuroprotection and antidepressant like activity in acute restraint stressed mice. The main objective of the present study is to investigate possible antidepressant like activity of silymarin in experimentally induced depressive behavior in rats. The depressive behaviors were induced in rats by olfactory bulbectomized (OBX) technique. Wistar rats were administered with silymarin at a dose of 100mg/kg and 200mg/kg, by per oral in OBX and sham operated rats. Behavioral (ambulatory and rearing activity and immobility time), neurochemical [serotonin (5-HT), dopamine (DA), norepinephrine (NE) and brain derived neurotrophic factor (BDNF) level], biochemical (MDA formation, IL-6, TNF-α and antioxidants) changes in hippocampus and cerebral cortex along with serum corticosterone were investigated. Rats subjected to OBX elicited significant increase in immobility time, ambulatory and rearing behaviors, reduced BDNF level, 5-HT, DA, NE and antioxidant parameters along with increased serum corticosterone, MDA formation, IL-6, and TNF-α in hippocampus and cerebral cortex compared to sham operated rats. Administration of with silymarin significantly attenuated immobility time, ambulatory and rearing behaviors, serum corticosterone and improved BDNF expression, 5-HT, DA, NE and antioxidant paradigms in cerebral cortex as well as hippocampus. In addition, silymarin attenuated IL-6, and TNF-α significantly in hippocampus and cerebral cortex in OBX rats. Thus, silymarin exhibits anti-depressant-like activity in OBX rats due to alterations in several neurotransmitters, endocrine and immunologic systems, including BDNF, 5-HT, DA, NE, MDA formation, IL-6, and TNF-α in hippocampus and cerebral cortex as well as serum corticosterone. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Delayed rectifier and A-type potassium channels associated with Kv 2.1 and Kv 4.3 expression in embryonic rat neural progenitor cells.

    PubMed

    Smith, Dean O; Rosenheimer, Julie L; Kalil, Ronald E

    2008-02-13

    Because of the importance of voltage-activated K(+) channels during embryonic development and in cell proliferation, we present here the first description of these channels in E15 rat embryonic neural progenitor cells derived from the subventricular zone (SVZ). Activation, inactivation, and single-channel conductance properties of recorded progenitor cells were compared with those obtained by others when these Kv gene products were expressed in oocytes. Neural progenitor cells derived from the subventricular zone of E15 embryonic rats were cultured under conditions that did not promote differentiation. Immunocytochemical and Western blot assays for nestin expression indicated that almost all of the cells available for recording expressed this intermediate filament protein, which is generally accepted as a marker for uncommitted embryonic neural progenitor cells. However, a very small numbers of the cells expressed GFAP, a marker for astrocytes, O4, a marker for immature oligodendrocytes, and betaIII-tubulin, a marker for neurons. Using immunocytochemistry and Western blots, we detected consistently the expression of Kv2.1, and 4.3. In whole-cell mode, we recorded two outward currents, a delayed rectifier and an A-type current. We conclude that Kv2.1, and 4.3 are expressed in E15 SVZ neural progenitor cells, and we propose that they may be associated with the delayed-rectifier and the A-type currents, respectively, that we recorded. These results demonstrate the early expression of delayed rectifier and A-type K(+) currents and channels in embryonic neural progenitor cells prior to the differentiation of these cells.

  20. Interhemispheric EEG differences in olfactory bulbectomized rats with different cognitive abilities and brain beta-amyloid levels.

    PubMed

    Bobkova, Natalia; Vorobyov, Vasily; Medvinskaya, Natalia; Aleksandrova, Irina; Nesterova, Inna

    2008-09-26

    Alterations in electroencephalogram (EEG) asymmetry and deficits in interhemispheric integration of information have been shown in patients with Alzheimer's disease (AD). However, no direct evidence of an association between EEG asymmetry, morphological markers in the brain, and cognition was found either in AD patients or in AD models. In this study we used rats with bilateral olfactory bulbectomy (OBX) as one of the AD models and measured their learning/memory abilities, brain beta-amyloid levels and EEG spectra in symmetrical frontal and occipital cortices. One year after OBX or sham-surgery, the rats were tested with the Morris water paradigm and assigned to three groups: sham-operated rats, SO, and OBX rats with virtually normal, OBX(+), or abnormal, OBX(-), learning (memory) abilities. In OBX vs. SO, the theta EEG activity was enhanced to a higher extent in the right frontal cortex and in the left occipital cortex. This produced significant interhemispheric differences in the frontal cortex of the OBX(-) rats and in the occipital cortex of both OBX groups. The beta1 EEG asymmetry in SO was attenuated in OBX(+) and completely eliminated in OBX(-). OBX produced highly significant beta2 EEG decline in the right frontal cortex, with OBX(-)>OBX(+) rank order of strength. The beta-amyloid level, examined by post-mortem immunological DOT-analysis in the cortex-hippocampus samples, was about six-fold higher in OBX(-) than in SO, but significantly less (enhanced by 82% vs. SO) in OBX(+) than in OBX(-). The involvement of the brain mediatory systems in the observed EEG asymmetry differences is discussed.

  1. Right vs. left sensorimotor cortex suction-ablation in the rat: no difference in beam-walking recovery.

    PubMed

    Goldstein, L B

    1995-03-13

    The ability of rats to traverse a narrow elevated beam has been used to quantitate recovery of hindlimb motor function after unilateral injury to the sensorimotor cortex. We tested the hypothesis that the rate of spontaneous beam-walking recovery varies with the side of the cortex lesion. Groups of rats that were trained at the beam-walking task underwent suction-ablation of either the right or left hindlimb sensorimotor cortex. There was no difference in hindlimb motor function between the groups on the first post-operative beam-waking trial carried out the day after cortex ablation and no difference between the groups in overall recovery rates over the next two weeks. Subsequent analyses of lesion surface parameters showed no differences in lesion size or extent. Regardless of the side of the lesion, there were also no differences between the right and left hemispheres in norepinephrine content of the lesioned or contralateral cortex. We conclude that the side of sensorimotor cortex ablation injury does not differentially affect the rate of spontaneous motor recovery as measured with the beam-walking task.

  2. Laminar-specific distribution of zinc: evidence for presence of layer IV in forelimb motor cortex in the rat.

    PubMed

    Alaverdashvili, Mariam; Hackett, Mark J; Pickering, Ingrid J; Paterson, Phyllis G

    2014-12-01

    The rat is the most widely studied pre-clinical model system of various neurological and neurodegenerative disorders affecting hand function. Although brain injury to the forelimb region of the motor cortex in rats mostly induces behavioral abnormalities in motor control of hand movements, behavioral deficits in the sensory-motor domain are also observed. This questions the prevailing view that cortical layer IV, a recipient of sensory information from the thalamus, is absent in rat motor cortex. Because zinc-containing neurons are generally not found in pathways that run from the thalamus, an absence of zinc (Zn) in a cortical layer would be suggestive of sensory input from the thalamus. To test this hypothesis, we used synchrotron micro X-ray fluorescence imaging to measure Zn distribution across cortical layers. Zn maps revealed a heterogeneous layered Zn distribution in primary and secondary motor cortices of the forelimb region in the adult rat. Two wider bands with elevated Zn content were separated by a narrow band having reduced Zn content, and this was evident in two rat strains. The Zn distribution pattern was comparable to that in sensorimotor cortex, which is known to contain a well demarcated layer IV. Juxtaposition of Zn maps and the images of brain stained for Nissl bodies revealed a "Zn valley" in primary motor cortex, apparently starting at the ventral border of pyramidal layer III and ending at the close vicinity of layer V. This finding indicates the presence of a conspicuous cortical layer between layers III and V, i.e. layer IV, the presence of which previously has been disputed. The results have implications for the use of rat models to investigate human brain function and neuropathology, such as after stroke. The presence of layer IV in the forelimb region of the motor cortex suggests that therapeutic interventions used in rat models of motor cortex injury should target functional abnormalities in both motor and sensory domains. The finding is also critical for future investigation of the biochemical mechanisms through which therapeutic interventions can enhance neural plasticity, particularly through Zn dependent pathways. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Laminar-specific distribution of zinc: Evidence for presence of layer IV in forelimb motor cortex in the rat

    PubMed Central

    Alaverdashvili, Mariam; Hackett, Mark J.; Pickering, Ingrid J.; Paterson, Phyllis G.

    2015-01-01

    The rat is the most widely studied pre-clinical model system of various neurological and neurodegenerative disorders affecting hand function. Although brain injury to the forelimb region of the motor cortex in rats mostly induces behavioral abnormalities in motor control of hand movements, behavioral deficits in the sensory-motor domain are also observed. This questions the prevailing view that cortical layer IV, a recipient of sensory information from the thalamus, is absent in rat motor cortex. Because zinc-containing neurons are generally not found in pathways that run from the thalamus, an absence of zinc (Zn) in a cortical layer would be suggestive of sensory input from the thalamus. To test this hypothesis, we used synchrotron micro X-ray fluorescence imaging to measure Zn distribution across cortical layers. Zn maps revealed a heterogeneous layered Zn distribution in primary and secondary motor cortices of the forelimb region in the adult rat. Two wider bands with elevated Zn content were separated by a narrow band having reduced Zn content, and this was evident in two rat strains. The Zn distribution pattern was comparable to that in sensorimotor cortex, which is known to contain a well demarcated layer IV. Juxtaposition of Zn maps and the images of brain stained for Nissl bodies revealed a “Zn valley” in primary motor cortex, apparently starting at the ventral border of pyramidal layer III and ending at the close vicinity of layer V. This finding indicates the presence of a conspicuous cortical layer between layers III and V, i.e. layer IV, the presence of which previously has been disputed. The results have implications for the use of rat models to investigate human brain function and neuropathology, such as after stroke. The presence of layer IV in the forelimb region of the motor cortex suggests that therapeutic interventions used in rat models of motor cortex injury should target functional abnormalities in both motor and sensory domains. The finding is also critical for future investigation of the biochemical mechanisms through which therapeutic interventions can enhance neural plasticity, particularly through Zn dependent pathways. PMID:25192655

  4. SU-E-I-34: Intermittent Low- and High-Dose Ethanol Exposure Alters Neurochemical Responses in Adult Rat Brain: An Ex Vivo 1H NMR Spectroscopy at 11.7 T

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Do-Wan; Kim, Sang-Young; Song, Kyu-Ho

    Purpose: The first goal of this study was to determine the influence of the dose-dependent effects of intermittent ethanol intoxication on cerebral neurochemical responses among sham controls and low- and high-dose-ethanol-exposed rats with ex vivo high-resolution spectra. The second goal of this study was to determine the correlations between the metabolite-metabolite levels (pairs-of-metabolite levels) from all of the individual data from the frontal cortex of the intermittent ethanol-intoxicated rats. Methods: Eight-week-old male Wistar rats were divided into 3 groups. Twenty rats in the LDE (n = 10) and the HDE (n = 10) groups received ethanol doses of 1.5 g/kgmore » and 2.5 g/kg, respectively, through oral gavage every 8-h for 4 days. At the end of the 4-day intermittent ethanol exposure, one-dimensional ex vivo 500-MHz proton nuclear magnetic resonance spectra were acquired from 30 samples of the frontal cortex region (from the 3 groups). Results: Normalized total-N-acetylaspartate (tNAA: NAA + NAAG [N-acetylaspartyl-glutamate]), gamma-aminobutyric acid (GABA), and glutathione (GSH) levels were significantly lower in the frontal cortex of the HDE-exposed rats than that of the LDE-exposed rats. Moreover, compared to the CNTL group, the LDE rats exhibited significantly higher normalized GABA levels. The 6 pairs of normalized metabolite levels were positively (+) or negatively (−) correlated in the rat frontal cortex as follows: tNAA and GABA (+), tNAA and Aspartate (Asp) (−), myo-Inositol (mIns) and Asp (−), mIns and Alanine (+), mIns and Taurine (+), and mIns and tNAA (−). Conclusion: Our results suggested that repeated intermittent ethanol intoxication might result in neuronal degeneration and dysfunction, changes in the rate of GABA synthesis, and oxidative stress in the rat frontal cortex. Our ex vivo 1H high-resolution-magic angle spinning nuclear magnetic resonance spectroscopy results suggested some novel metabolic markers for the dose-dependent influence of repeated intermittent ethanol intoxication in the frontal cortex.« less

  5. Problems in radiation embryology. Sixteenth year progress report, July 1, 1972-June 30, 1973

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1973-01-01

    Progress is reported in the following areas: (1) the effect of embryonic irradiation on adult life expectancy, adult pathology and leukemia induction; (2) the effect of embryonic irradiation on biochemical and physiological processes in the adult organism; (3) attempts specifically to irradiate the developing rat yolk sac; (4) the effect of x-irradiating the rat embryo on the first day of gestation; and (5) determination of the threshold exposure for malformation induction in irradiated embryos. (ACR)

  6. Cortex-dependent recovery of unassisted hindlimb locomotion after complete spinal cord injury in adult rats

    PubMed Central

    Manohar, Anitha; Foffani, Guglielmo; Ganzer, Patrick D; Bethea, John R; Moxon, Karen A

    2017-01-01

    After paralyzing spinal cord injury the adult nervous system has little ability to ‘heal’ spinal connections, and it is assumed to be unable to develop extra-spinal recovery strategies to bypass the lesion. We challenge this assumption, showing that completely spinalized adult rats can recover unassisted hindlimb weight support and locomotion without explicit spinal transmission of motor commands through the lesion. This is achieved with combinations of pharmacological and physical therapies that maximize cortical reorganization, inducing an expansion of trunk motor cortex and forepaw sensory cortex into the deafferented hindlimb cortex, associated with sprouting of corticospinal axons. Lesioning the reorganized cortex reverses the recovery. Adult rats can thus develop a novel cortical sensorimotor circuit that bypasses the lesion, probably through biomechanical coupling, to partly recover unassisted hindlimb locomotion after complete spinal cord injury. DOI: http://dx.doi.org/10.7554/eLife.23532.001 PMID:28661400

  7. Sound Sequence Discrimination Learning Motivated by Reward Requires Dopaminergic D2 Receptor Activation in the Rat Auditory Cortex

    ERIC Educational Resources Information Center

    Kudoh, Masaharu; Shibuki, Katsuei

    2006-01-01

    We have previously reported that sound sequence discrimination learning requires cholinergic inputs to the auditory cortex (AC) in rats. In that study, reward was used for motivating discrimination behavior in rats. Therefore, dopaminergic inputs mediating reward signals may have an important role in the learning. We tested the possibility in the…

  8. Relationship between individual neuron and network spontaneous activity in developing mouse cortex.

    PubMed

    Barnett, Heather M; Gjorgjieva, Julijana; Weir, Keiko; Comfort, Cara; Fairhall, Adrienne L; Moody, William J

    2014-12-15

    Spontaneous synchronous activity (SSA) that propagates as electrical waves is found in numerous central nervous system structures and is critical for normal development, but the mechanisms of generation of such activity are not clear. In previous work, we showed that the ventrolateral piriform cortex is uniquely able to initiate SSA in contrast to the dorsal neocortex, which participates in, but does not initiate, SSA (Lischalk JW, Easton CR, Moody WJ. Dev Neurobiol 69: 407-414, 2009). In this study, we used Ca(2+) imaging of cultured embryonic day 18 to postnatal day 2 coronal slices (embryonic day 17 + 1-4 days in culture) of the mouse cortex to investigate the different activity patterns of individual neurons in these regions. In the piriform cortex where SSA is initiated, a higher proportion of neurons was active asynchronously between waves, and a larger number of groups of coactive cells was present compared with the dorsal cortex. When we applied GABA and glutamate synaptic antagonists, asynchronous activity and cellular clusters remained, while synchronous activity was eliminated, indicating that asynchronous activity is a result of cell-intrinsic properties that differ between these regions. To test the hypothesis that higher levels of cell-autonomous activity in the piriform cortex underlie its ability to initiate waves, we constructed a conductance-based network model in which three layers differed only in the proportion of neurons able to intrinsically generate bursting behavior. Simulations using this model demonstrated that a gradient of intrinsic excitability was sufficient to produce directionally propagating waves that replicated key experimental features, indicating that the higher level of cell-intrinsic activity in the piriform cortex may provide a substrate for SSA generation. Copyright © 2014 the American Physiological Society.

  9. Impairment of learning and memory after photothrombosis of the prefrontal cortex in rat brain: effects of Noopept.

    PubMed

    Romanova, G A; Shakova, F M; Gudasheva, T A; Ostrovskaya, R U

    2002-12-01

    Experiments were performed on rats trained conditioned passive avoidance response. Acquisition and retention of memory traces were impaired after photothrombosis of the prefrontal cortex. The acyl-prolyl-containing dipeptide Noopept facilitated retention and retrieval of a conditioned passive avoidance response, normalized learning capacity in animals with ischemic damage to the cerebral cortex, and promoted finish training in rats with hereditary learning deficit. These results show that Noopept improves all three stages of memory. It should be emphasized that the effect of Noopept was most pronounced in animals with impaired mnesic function.

  10. The preferential accumulation of heavy metals in different tissues following frequent respiratory exposure to PM2.5 in rats

    PubMed Central

    Li, Qingzhao; Liu, Huibin; Alattar, Mohamed; Jiang, Shoufang; Han, Jing; Ma, Yujiao; Jiang, Chunyang

    2015-01-01

    This study aimed to explore the pattern of accumulation of some of main heavy metals in blood and various organs of rats after exposed to the atmospheric fine particulate matter (PM2.5). Rats were randomly divided into control and three treatment groups (tracheal perfusion with 10 mg/kg, 20 mg/kg and 40 mg/kg of PM2.5 suspension liquid, respectively). Whole blood and the lung, liver, kidney, and cerebral cortex were harvested after rats were treated and sacrificed. The used heavy metals were detected using inductively coupled plasma-mass spectrometry (ICP-MS) instrument. As results, Lead was increased in the liver, lung and cerebral cortex and the level of manganese was significantly elevated in the liver and cerebral cortex in PM2.5 treated rats. Besides, arsenic was prominently enriched both in cerebral cortex and in blood, and so did the aluminum in the cerebral cortex and the copper in the liver. However, cadmium, chromium and nickel have shown no difference between the control group and the three PM2.5 treated groups. Following the exposure of PM2.5, different heavy metals are preferentially accumulated in different body tissues. PMID:26582271

  11. [Relationship between the Expression of α-syn and Neuronal Apoptosis in Brain Cortex of Acute Alcoholism Rats].

    PubMed

    Li, F; Zhang, Y; Ma, S L

    2016-12-01

    To observe the changes of expression of α-synuclein (α-syn) and neuronal apoptosis in brain cortex of acute alcoholism rats and to explore the mechanism of the damage caused by ethanol to the neurons. The model of acute alcoholism rat was established by 50% alcohol gavage. The α-syn and caspase-3 were detected by immunohistochemical staining and imaging analysis at 1 h, 3 h, 6 h and 12 h after acute alcoholism. The number of positive cell and mean of optical density were detected and the trend change was analyzed. The variance analysis and t -test were also performed. The number of α-syn positive cell and average optical density in brain cortex of acute alcoholism rat increased significantly and peaked at 6 hour with a following slight decrease at 12 h, but still higher than the groups at 1 h and 3 h. Within 12 hours after poisoning, the number of caspase-3 positive cell and average optical density in brain cortex of rats gradually increased. The abnormal aggregation of α-syn caused by brain edema and hypoxia may participate the early stage of neuronal apoptosis in brain cortex after acute alcoholism. Copyright© by the Editorial Department of Journal of Forensic Medicine

  12. Investigation of Implantable Multi-Channel Electrode Array in Rat Cerebral Cortex Used for Recording

    NASA Astrophysics Data System (ADS)

    Taniguchi, Noriyuki; Fukayama, Osamu; Suzuki, Takafumi; Mabuchi, Kunihiko

    There have recently been many studies concerning the control of robot movements using neural signals recorded from the brain (usually called the Brain-Machine interface (BMI)). We fabricated implantable multi-electrode arrays to obtain neural signals from the rat cerebral cortex. As any multi-electrode array should have electrode alignment that minimizes invasion, it is necessary to customize the recording site. We designed three types of 22-channel multi-electrode arrays, i.e., 1) wide, 2) three-layered, and 3) separate. The first extensively covers the cerebral cortex. The second has a length of 2 mm, which can cover the area of the primary motor cortex. The third array has a separate structure, which corresponds to the position of the forelimb and hindlimb areas of the primary motor cortex. These arrays were implanted into the cerebral cortex of a rat. We estimated the walking speed from neural signals using our fabricated three-layered array to investigate its feasibility for BMI research. The neural signal of the rat and its walking speed were simultaneously recorded. The results revealed that evaluation using either the anterior electrode group or posterior group provided accurate estimates. However, two electrode groups around the center yielded poor estimates although it was possible to record neural signals.

  13. Different neural circuitry is involved in physiological and psychological stress-induced PTSD-like “nightmares” in rats

    PubMed Central

    Yu, Bin; Cui, Su-Ying; Zhang, Xue-Qiong; Cui, Xiang-Yu; Li, Sheng-Jie; Sheng, Zhao-Fu; Cao, Qing; Huang, Yuan-Li; Xu, Ya-Ping; Lin, Zhi-Ge; Yang, Guang; Song, Jin-Zhi; Ding, Hui; Zhang, Yong-He

    2015-01-01

    Posttraumatic nightmares are a core component of posttraumatic stress disorder (PTSD) and mechanistically linked to the development and maintenance of this disorder, but little is known about their mechanism. We utilized a communication box to establish an animal model of physiological stress (foot-shock [FS]) and psychological stress (PS) to mimic the direct suffering and witnessing of traumatic events. Twenty-one days after traumatic stress, some of the experimental animals presented startled awakening (i.e., were startled awake by a supposed “nightmare”) with different electroencephalographic spectra features. Our neuroanatomical results showed that the secondary somatosensory cortex and primary auditory cortex may play an important role in remote traumatic memory retrieval in FS “nightmare” (FSN) rats, whereas the temporal association cortex may play an important role in PS “nightmare” (PSN) rats. The FSN and PSN groups possessed common emotion evocation circuits, including activation of the amygdala and inactivation of the infralimbic prefrontal cortex and ventral anterior cingulate cortex. The decreased activity of the granular and dysgranular insular cortex was only observed in PSN rats. The present results imply that different types of stress may cause PTSD-like “nightmares” in rodents and identified the possible neurocircuitry of memory retrieval and emotion evocation. PMID:26530305

  14. Effects of chronic stress in adolescence on learned fear, anxiety, and synaptic transmission in the rat prelimbic cortex.

    PubMed

    Negrón-Oyarzo, Ignacio; Pérez, Miguel Ángel; Terreros, Gonzalo; Muñoz, Pablo; Dagnino-Subiabre, Alexies

    2014-02-01

    The prelimbic cortex and amygdala regulate the extinction of conditioned fear and anxiety, respectively. In adult rats, chronic stress affects the dendritic morphology of these brain areas, slowing extinction of learned fear and enhancing anxiety. The aim of this study was to determine whether rats subjected to chronic stress in adolescence show changes in learned fear, anxiety, and synaptic transmission in the prelimbic cortex during adulthood. Male Sprague Dawley rats were subjected to seven days of restraint stress on postnatal day forty-two (PND 42, adolescence). Afterward, the fear-conditioning paradigm was used to study conditioned fear extinction. Anxiety-like behavior was measured one day (PND 50) and twenty-one days (PND 70, adulthood) after stress using the elevated-plus maze and dark-light box tests, respectively. With another set of rats, excitatory synaptic transmission was analyzed with slices of the prelimbic cortex. Rats that had been stressed during adolescence and adulthood had higher anxiety-like behavior levels than did controls, while stress-induced slowing of learned fear extinction in adolescence was reversed during adulthood. As well, the field excitatory postsynaptic potentials of stressed adolescent rats had significantly lower amplitudes than those of controls, although the amplitudes were higher in adulthood. Our results demonstrate that short-term stress in adolescence induces strong effects on excitatory synaptic transmission in the prelimbic cortex and extinction of learned fear, where the effect of stress on anxiety is more persistent than on the extinction of learned fear. These data contribute to the understanding of stress neurobiology. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Taurine restores the exploratory behavior following alcohol withdrawal and decreases BDNF mRNA expression in the frontal cortex of chronic alcohol-treated rats.

    PubMed

    Hansen, Alana Witt; Almeida, Felipe Borges; Bandiera, Solange; Pulcinelli, Rianne Remus; Fragoso, Ana Luiza Rodrigues; Schneider, Ricardo; Barros, Helena Maria Tannhauser; Gomez, Rosane

    2017-10-01

    Alcohol use disorder is an alarming health problem, and the withdrawal symptoms increase the risk of relapse. We have hypothesized that taurine, a multitarget substance acting as a gamma-aminobutyric acid A receptor (GABA A R) positive modulator and a partial inhibitor of N-methyl-d-aspartate (NMDA) glutamate receptors, may reduce the withdrawal symptoms or modify behaviors when combined with alcohol. Therefore, we investigated the effects of taurine on behavior in the open field test (OFT), the GABA A R α 2 subunit and BDNF mRNA expression in the frontal cortex of rats after chronic alcohol treatment or upon withdrawal. Rats received alcohol 2g/kg (alcohol and withdrawal groups) or water (control group) twice daily by oral gavage for 28days. On day 29, the withdrawal rats received water instead of alcohol, and all groups were reallocated to receive 100mg/kg taurine or vehicle intraperitoneally, once a day for 5days. On day 33, the rats were exposed to OFT; 18h later, they were euthanized, and the frontal cortex was dissected for GABA A R α 2 subunit detection and BDNF mRNA expression determination by real-time quantitative PCR. Taurine administration restored rearing behavior to the control levels in the withdrawal rats. Taurine also showed anxiolytic-like effects in control rats and did not change the behaviors in the chronic alcohol group. Chronic alcohol treatment or withdrawal did not change the GABA A R α 2 subunit or BDNF mRNA expression in the frontal cortex, but taurine decreased the α 2 subunit level in control rats and to the BDNF levels in the alcohol rat group. We conclude that taurine restored exploratory behavior after alcohol withdrawal but that this effect was not related to the GABA A R α 2 subunit or BDNF mRNA expression in the frontal cortex of the rats. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. 78 FR 57280 - Chlorantraniliprole; Pesticide Tolerances

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-18

    ... toxicity studies in rats, minimally increased microvesiculation of adrenal cortex was observed in males... cortex effects observed in rat studies were not considered adverse. Chlorantraniliprole does not exhibit.... 601 et seq.), do not apply. This final rule directly regulates growers, food processors, food handlers...

  17. EMBRYONIC PALATAL RESPONSES TO TERATOGENS IN SERUM-FREE ORGAN CULTURE

    EPA Science Inventory

    This study examines development of rat, mouse and human embryonic palates in submerged, serum-free organ culture. he concentration-response profiles for retinoic acid (RA), triamcinolone (TRI), hydrocortisone (HC), dexamethasone (DEX), and 2,3,7,11- tetrachlorodibenzo-p-dioxin (T...

  18. Lithium ameliorates lipopolysaccharide-induced neurotoxicity in the cortex and hippocampus of the adult rat brain.

    PubMed

    Khan, Muhammad Sohail; Ali, Tahir; Abid, Muhammad Noman; Jo, Myeung Hoon; Khan, Amjad; Kim, Min Woo; Yoon, Gwang Ho; Cheon, Eun Woo; Rehman, Shafiq Ur; Kim, Myeong Ok

    2017-09-01

    Lithium an effective mood stabilizer, primary used in the treatment of bipolar disorders, has been reported as a protective agent in various neurological disorders. In this study, we examined the neuroprotective role of lithium chloride (LiCl) against lipopolysaccharide (LPS) in the cortex and hippocampus of the adult rat brain. We determined that LiCl -attenuated LPS-induced activated toll-like receptor 4 (TLR4) signalling and significantly reduced the nuclear factor- k B (NF- K B) translation factor and various other inflammatory mediators such as interleukin-1 beta (IL-1β) and tumour necrosis factor alpha (TNF-α). We also analyzed that LiCl significantly abrogated activated gliosis via attenuation of specific markers for activated microglia, ionized calcium-binding adaptor molecule (Iba-1) and astrocytes, glial fibrillary acidic protein (GFAP) in both the cortex and hippocampus of the adult rat brain. Furthermore, we also observed that LiCl treatment significantly ameliorated the increase expression level of apoptotic neurodegeneration protein markers Bax/Bcl2, activated caspase-3 and poly (ADP-ribose) polymerase-1 (PARP-1) in the cortex and hippocampus regions of the LPS-treated adult rat brain. In addition, the morphological results of the fluoro-jade B (FJB) and Nissl staining showed that LiCl attenuated the neuronal degeneration in the cortex and hippocampus regions of the LPS-treated adult rat brain. Taken together, our Western blot and morphological results indicated that LiCl significantly prevents the LPS-induced neurotoxicity via attenuation of neuroinflammation and apoptotic neurodegeneration in the cortex and hippocampus of the adult rat brain. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Exposure to GSM 900 MHz electromagnetic fields affects cerebral cytochrome c oxidase activity.

    PubMed

    Ammari, Mohamed; Lecomte, Anthony; Sakly, Mohsen; Abdelmelek, Hafedh; de-Seze, René

    2008-08-19

    The world-wide and rapidly growing use of mobile phones has raised serious concerns about the biological and health-related effects of radio frequency (RF) radiation, particularly concerns about the effects of RFs upon the nervous system. The goal of this study was conducted to measure cytochrome oxidase (CO) levels using histochemical methods in order to evaluate regional brain metabolic activity in rat brain after exposure to a GSM 900 MHz signal for 45 min/day at a brain-averaged specific absorption rate (SAR) of 1.5 W/Kg or for 15 min/day at a SAR of 6 W/Kg over seven days. Compared to the sham and control cage groups, rats exposed to a GSM signal at 6 W/Kg showed decreased CO activity in some areas of the prefrontal and frontal cortex (infralimbic cortex, prelimbic cortex, primary motor cortex, secondary motor cortex, anterior cingulate cortex areas 1 and 2 (Cg1 and Cg2)), the septum (dorsal and ventral parts of the lateral septal nucleus), the hippocampus (dorsal field CA1, CA2 and CA3 of the hippocampus and dental gyrus) and the posterior cortex (retrosplenial agranular cortex, primary and secondary visual cortex, perirhinal cortex and lateral entorhinal cortex). However, the exposure to GSM at 1.5 W/Kg did not affect brain activity. Our results indicate that 6 W/Kg GSM 900 MHz microwaves may affect brain metabolism and neuronal activity in rats.

  20. Prenatal caffeine intake differently affects synaptic proteins during fetal brain development.

    PubMed

    Mioranzza, Sabrina; Nunes, Fernanda; Marques, Daniela M; Fioreze, Gabriela T; Rocha, Andréia S; Botton, Paulo Henrique S; Costa, Marcelo S; Porciúncula, Lisiane O

    2014-08-01

    Caffeine is the psychostimulant most consumed worldwide. However, little is known about its effects during fetal brain development. In this study, adult female Wistar rats received caffeine in drinking water (0.1, 0.3 and 1.0 g/L) during the active cycle in weekdays, two weeks before mating and throughout pregnancy. Cerebral cortex and hippocampus from embryonic stages 18 or 20 (E18 or E20, respectively) were collected for immunodetection of the following synaptic proteins: brain-derived neurotrophic factor (BDNF), TrkB receptor, Sonic Hedgehog (Shh), Growth Associated Protein 43 (GAP-43) and Synaptosomal-associated Protein 25 (SNAP-25). Besides, the estimation of NeuN-stained nuclei (mature neurons) and non-neuronal nuclei was verified in both brain regions and embryonic periods. Caffeine (1.0 g/L) decreased the body weight of embryos at E20. Cortical BDNF at E18 was decreased by caffeine (1.0 g/L), while it increased at E20, with no major effects on TrkB receptors. In the hippocampus, caffeine decreased TrkB receptor only at E18, with no effects on BDNF. Moderate and high doses of caffeine promoted an increase in Shh in both brain regions at E18, and in the hippocampus at E20. Caffeine (0.3g/L) decreased GAP-43 only in the hippocampus at E18. The NeuN-stained nuclei increased in the cortex at E20 by lower dose and in the hippocampus at E18 by moderate dose. Our data revealed that caffeine transitorily affect synaptic proteins during fetal brain development. The increased number of NeuN-stained nuclei by prenatal caffeine suggests a possible acceleration of the telencephalon maturation. Although some modifications in the synaptic proteins were transient, our data suggest that caffeine even in lower doses may alter the fetal brain development. Copyright © 2014 ISDN. Published by Elsevier Ltd. All rights reserved.

  1. Effect of leukemia inhibitory factor and forskolin on establishment of rat embryonic stem cell lines.

    PubMed

    Hirabayashi, Masumi; Goto, Teppei; Tamura, Chihiro; Sanbo, Makoto; Hara, Hiromasa; Hochi, Shinichi

    2014-03-07

    This study was designed to investigate whether supplementation of 2i medium with leukemia inhibitory factor (LIF) and/or forskolin would support establishment of germline-competent rat embryonic stem (ES) cell lines. Due to the higher likelihood of outgrowth rates, supplementation of forskolin with or without LIF contributed to the higher establishment efficiency of ES cell lines in the WDB strain. Germline transmission competency of the chimeric rats was not influenced by the profile of ES cell lines until their establishment. When the LIF/forskolin-supplemented 2i medium was used, the rat strain used as the blastocyst donor, such as the WI strain, was a possible factor negatively influencing the establishment efficiency of ES cell lines. Once ES cell lines were established, all lines were found to be germline-competent by a progeny test in chimeric rats. In conclusion, both LIF and forskolin are not essential but can play a beneficial role in the establishment of "genuine" rat ES cell lines.

  2. FoxP2 expression in the cerebellum and inferior olive: development of the transverse stripe-shaped expression pattern in the mouse cerebellar cortex.

    PubMed

    Fujita, Hirofumi; Sugihara, Izumi

    2012-02-15

    Many molecules are expressed heterogeneously in subpopulations of cerebellar Purkinje cells (PCs) and inferior olive (IO) neurons during development or in adulthood. These expression patterns are often organized in longitudinal stripes in the cerebellar cortex, which may be related to functional compartmentalization. FoxP2, a transcription factor, is expressed in PCs and IO neurons, but the details of its expression pattern remain unclear. Here we examined FoxP2 expression patterns systematically by immunostaining serial sections of the hindbrain from embryonic day 14.5 to adulthood in mice. FoxP2 was highly expressed in virtually all PCs at and before postnatal day 6 (P6), except for those in the flocculus and small parts of the nodulus (vermal lobule X), where FoxP2 expression was moderate or absent. After P6, FoxP2 expression gradually diminished in PCs in some areas. In adults, FoxP2 was expressed, less intensely than in earlier stages, in subsets of PCs that were mostly arranged transversely along the folial apices. In contrast, FoxP2 was expressed intensely in most IO neurons during development and in adulthood. FoxP2 was also expressed in a small population of neurons in the cerebellar nuclei. FoxP2 expression in adult rats and chicks was generally comparable to that in adult mice, suggesting evolutionary conservation of the expression pattern. Thus, the FoxP2 expression pattern reflects new transverse compartmentalization in the adult cerebellar cortex, although its functional significance remains unclear. Copyright © 2011 Wiley-Liss, Inc.

  3. Inactivation of the prelimbic or infralimbic cortex impairs decision-making in the rat gambling task.

    PubMed

    Zeeb, Fiona D; Baarendse, P J J; Vanderschuren, L J M J; Winstanley, Catharine A

    2015-12-01

    Studies employing the Iowa Gambling Task (IGT) demonstrated that areas of the frontal cortex, including the ventromedial prefrontal cortex, orbitofrontal cortex (OFC), dorsolateral prefrontal cortex, and anterior cingulate cortex (ACC), are involved in the decision-making process. However, the precise role of these regions in maintaining optimal choice is not clear. We used the rat gambling task (rGT), a rodent analogue of the IGT, to determine whether inactivation of or altered dopamine signalling within discrete cortical sub-regions disrupts decision-making. Following training on the rGT, animals were implanted with guide cannulae aimed at the prelimbic (PrL) or infralimbic (IL) cortices, the OFC, or the ACC. Prior to testing, rats received an infusion of saline or a combination of baclofen and muscimol (0.125 μg of each/side) to inactivate the region and an infusion of a dopamine D2 receptor antagonist (0, 0.1, 0.3, and 1.0 μg/side). Rats tended to increase their choice of a disadvantageous option and decrease their choice of the optimal option following inactivation of either the IL or PrL cortex. In contrast, OFC or ACC inactivation did not affect decision-making. Infusion of a dopamine D2 receptor antagonist into any sub-region did not alter choice preference. Online activity of the IL or PrL cortex is important for maintaining an optimal decision-making strategy, but optimal performance on the rGT does not require frontal cortex dopamine D2 receptor activation. Additionally, these results demonstrate that the roles of different cortical regions in cost-benefit decision-making may be dissociated using the rGT.

  4. Delayed Rectifier and A-Type Potassium Channels Associated with Kv 2.1 and Kv 4.3 Expression in Embryonic Rat Neural Progenitor Cells

    PubMed Central

    Smith, Dean O.; Rosenheimer, Julie L.; Kalil, Ronald E.

    2008-01-01

    Background Because of the importance of voltage-activated K+ channels during embryonic development and in cell proliferation, we present here the first description of these channels in E15 rat embryonic neural progenitor cells derived from the subventricular zone (SVZ). Activation, inactivation, and single-channel conductance properties of recorded progenitor cells were compared with those obtained by others when these Kv gene products were expressed in oocytes. Methodology/Principal Findings Neural progenitor cells derived from the subventricular zone of E15 embryonic rats were cultured under conditions that did not promote differentiation. Immunocytochemical and Western blot assays for nestin expression indicated that almost all of the cells available for recording expressed this intermediate filament protein, which is generally accepted as a marker for uncommitted embryonic neural progenitor cells. However, a very small numbers of the cells expressed GFAP, a marker for astrocytes, O4, a marker for immature oligodendrocytes, and βIII-tubulin, a marker for neurons. Using immunocytochemistry and Western blots, we detected consistently the expression of Kv2.1, and 4.3. In whole-cell mode, we recorded two outward currents, a delayed rectifier and an A-type current. Conclusions/Significance We conclude that Kv2.1, and 4.3 are expressed in E15 SVZ neural progenitor cells, and we propose that they may be associated with the delayed-rectifier and the A-type currents, respectively, that we recorded. These results demonstrate the early expression of delayed rectifier and A-type K+ currents and channels in embryonic neural progenitor cells prior to the differentiation of these cells. PMID:18270591

  5. Effects of bilateral and unilateral locus coeruleus lesions on beam-walking recovery after subsequent unilateral sensorimotor cortex suction-ablation in the rat.

    PubMed

    Goldstein, L B

    1997-01-01

    The recovery of beam-walking ability following a unilateral sensorimotor cortex lesion in the rat is hypothesized to be noradrenergically-mediated. We carried out two experiments to further test this hypothesis. In the first experiment, bilateral 6-hydroxydopamine locus coeruleus (LC) lesions or sham LC lesions were made 2 weeks prior to a right sensorimotor cortex suction-ablation lesion or sham cortex lesion. In the second experiment, unilateral left or right LC lesions or sham LC lesions were made 2 weeks prior to a right sensorimotor cortex lesion or sham cortex lesion. Beam-walking recovery was measured over the 12 days following cortex lesioning in each experiment. Bilateral, unilateral left, and unilateral right LC lesions resulted in impaired recovery. These data provide additional support for the hypothesis that beam-walking recovery after sensorimotor cortex injury is, at least in part, noradrenergically mediated.

  6. Neural discriminability in rat lateral extrastriate cortex and deep but not superficial primary visual cortex correlates with shape discriminability.

    PubMed

    Vermaercke, Ben; Van den Bergh, Gert; Gerich, Florian; Op de Beeck, Hans

    2015-01-01

    Recent studies have revealed a surprising degree of functional specialization in rodent visual cortex. It is unknown to what degree this functional organization is related to the well-known hierarchical organization of the visual system in primates. We designed a study in rats that targets one of the hallmarks of the hierarchical object vision pathway in primates: selectivity for behaviorally relevant dimensions. We compared behavioral performance in a visual water maze with neural discriminability in five visual cortical areas. We tested behavioral discrimination in two independent batches of six rats using six pairs of shapes used previously to probe shape selectivity in monkey cortex (Lehky and Sereno, 2007). The relative difficulty (error rate) of shape pairs was strongly correlated between the two batches, indicating that some shape pairs were more difficult to discriminate than others. Then, we recorded in naive rats from five visual areas from primary visual cortex (V1) over areas LM, LI, LL, up to lateral occipito-temporal cortex (TO). Shape selectivity in the upper layers of V1, where the information enters cortex, correlated mostly with physical stimulus dissimilarity and not with behavioral performance. In contrast, neural discriminability in lower layers of all areas was strongly correlated with behavioral performance. These findings, in combination with the results from Vermaercke et al. (2014b), suggest that the functional specialization in rodent lateral visual cortex reflects a processing hierarchy resulting in the emergence of complex selectivity that is related to behaviorally relevant stimulus differences.

  7. Hippocampus, perirhinal cortex, and complex visual discriminations in rats and humans

    PubMed Central

    Hales, Jena B.; Broadbent, Nicola J.; Velu, Priya D.

    2015-01-01

    Structures in the medial temporal lobe, including the hippocampus and perirhinal cortex, are known to be essential for the formation of long-term memory. Recent animal and human studies have investigated whether perirhinal cortex might also be important for visual perception. In our study, using a simultaneous oddity discrimination task, rats with perirhinal lesions were impaired and did not exhibit the normal preference for exploring the odd object. Notably, rats with hippocampal lesions exhibited the same impairment. Thus, the deficit is unlikely to illuminate functions attributed specifically to perirhinal cortex. Both lesion groups were able to acquire visual discriminations involving the same objects used in the oddity task. Patients with hippocampal damage or larger medial temporal lobe lesions were intact in a similar oddity task that allowed participants to explore objects quickly using eye movements. We suggest that humans were able to rely on an intact working memory capacity to perform this task, whereas rats (who moved slowly among the objects) needed to rely on long-term memory. PMID:25593294

  8. Local and downstream effects of excitotoxic lesions in the rat medial prefrontal cortex on In vivo 1H-MRS signals.

    PubMed

    Roffman, J L; Lipska, B K; Bertolino, A; Van Gelderen, P; Olson, A W; Khaing, Z Z; Weinberger, D R

    2000-04-01

    The rat medial prefrontal cortex (mPFC) regulates subcortical dopamine transmission via projections to the striatum and ventral tegmental area. We used in vivo proton magnetic resonance spectroscopy (1H-MRS) at 4.7 T to determine whether excitotoxic lesions of the mPFC result in alterations of N-acetylaspartate (NAA), a marker of neuronal integrity, both locally and downstream in the striatum. Lesioned rats exhibited persistent reductions of NAA and other metabolites within the prefrontal cortex; selective reductions of NAA were seen in the striatum, but not in the parietal cortex. Consistent with earlier reports, lesioned rats exhibited a transient enhancement in amphetamine-induced hyperlocomotion. Prefrontal NAA losses correlated with lesion extent. In the striatum, while there was no change in tissue volume, expression of striatal glutamic acid decarboxylase-67 mRNA was significantly reduced. In vivo NAA levels thus appear sensitive to both local and downstream alterations in neuronal integrity, and may signal meaningful effects at cellular and behavioral levels.

  9. The effect of electroacupuncture on proteomic changes in the motor cortex of 6-OHDA Parkinsonian rats.

    PubMed

    Li, Min; Li, Lijuan; Wang, Ke; Su, Wenting; Jia, Jun; Wang, Xiaomin

    2017-10-15

    Electroacupuncture (EA) has been reported to alleviate motor deficits in Parkinson's disease (PD) patients, and PD animal models. However, the mechanisms by which EA improves motor function have not been investigated. We have employed a 6-hydroxydopamine (6-OHDA) unilateral injection induced PD model to investigate whether EA alters protein expression in the motor cortex. We found that 4weeks of EA treatment significantly improved spontaneous floor plane locomotion and rotarod performance. High-throughput proteomic analysis in the motor cortex was employed. The expression of 54 proteins were altered in the unlesioned motor cortex, and 102 protein expressions were altered in the lesioned motor cortex of 6-OHDA rats compared to sham rats. Compared to non-treatment PD control, EA treatment reversed 6 proteins in unlesioned and 19 proteins in lesioned motor cortex. The present study demonstrated that PD induces proteomic changes in the motor cortex, some of which are rescued by EA treatment. These targeted proteins were mainly involved in increasing autophagy, mRNA processing and ATP binding and maintaining the balance of neurotransmitters. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Comparison of functional and morphological deficits in the rat after gestational exposure to ionizing radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Norton, S.; Kimler, B.F.

    1988-07-01

    Ionizing radiation is a precise tool for altering formation of the developing cerebral cortex of the fetal rat. Whole body exposure of the pregnant rat on gestational day 13, 15 or 17 to 1.0 Gy of gamma radiation resulted in maximum thinning of the cortex on days 15 and 17. In the preweaning period, functional tests (negative geotaxis, reflex suspension, continuous corridor and gait) were most affected by irradiation gestational day 15, as was body weight. When a lower dose of radiation (0.75 Gy) was used on gestational day 15, the damage to the cortex was much less but behavioralmore » changes were still present. Frontal, parietal and occipital areas of the cortex were approximately equally affected. Using stepwise multiple regression analysis, the linkage of functional tests and cortical thickness was examined. Functional variables which were most commonly included as predictors of frontal and parietal cortex were negative geotaxis and continuous corridor. Occipital cortical layers were not predicted by behavioral variables. In predicting function using cortical variables, frontal cortex was better than parietal and occipital cortex was the poorest predictor.« less

  11. Speech sound discrimination training improves auditory cortex responses in a rat model of autism

    PubMed Central

    Engineer, Crystal T.; Centanni, Tracy M.; Im, Kwok W.; Kilgard, Michael P.

    2014-01-01

    Children with autism often have language impairments and degraded cortical responses to speech. Extensive behavioral interventions can improve language outcomes and cortical responses. Prenatal exposure to the antiepileptic drug valproic acid (VPA) increases the risk for autism and language impairment. Prenatal exposure to VPA also causes weaker and delayed auditory cortex responses in rats. In this study, we document speech sound discrimination ability in VPA exposed rats and document the effect of extensive speech training on auditory cortex responses. VPA exposed rats were significantly impaired at consonant, but not vowel, discrimination. Extensive speech training resulted in both stronger and faster anterior auditory field (AAF) responses compared to untrained VPA exposed rats, and restored responses to control levels. This neural response improvement generalized to non-trained sounds. The rodent VPA model of autism may be used to improve the understanding of speech processing in autism and contribute to improving language outcomes. PMID:25140133

  12. Ion transport and oxygen consumption in kidney cortex slices from young and old rats.

    PubMed

    Proverbio, F; Proverbio, T; Marín, R

    1985-01-01

    The effects of aging on active Na+ extrusion and oxygen consumption associated with it were studied in rat kidney cortex cells. It was found that (a) the active extrusion of Na+ undergoing Na/K exchange and the active extrusion of Na+ with Cl- and water were diminished in old rats (24 months) as compared with young rats (3 months); (b) the oxygen consumption associated with each of the two active mechanisms of Na+ extrusion was also diminished in the old rats; (c) the calculated turnover rate of the Na/K pump was significantly lower for the old rats.

  13. Congenic rats with higher arylamine N-acetyltransferase 2 activity exhibit greater carcinogen-induced mammary tumor susceptibility independent of carcinogen metabolism.

    PubMed

    Stepp, Marcus W; Doll, Mark A; Samuelson, David J; Sanders, Mary Ann G; States, J Christopher; Hein, David W

    2017-03-31

    Recent investigations suggest role(s) of human arylamine N-acetyltransferase 1 (NAT1) in breast cancer. Rat NAT2 is orthologous to human NAT1 and the gene products are functional homologs. We conducted in vivo studies using F344.WKY-Nat2 rapid/slow rats, congenic at rat Nat2 for high (rapid) and low (slow) arylamine N-acetyltransferase activity, to assess a possible role for rat NAT2 in mammary tumor susceptibility. Mammary carcinogens, methylnitrosourea (MNU) and 7,12-dimethylbenzanthracene (DMBA) neither of which is metabolized by N-acetyltransferase, were administered to assess mammary tumors. MNU was administered at 3 or 8 weeks of age. DMBA was administered at 8 weeks of age. NAT2 enzymatic activity and endogenous acetyl-coenzyme A (AcCoA) levels were measured in tissue samples and embryonic fibroblasts isolated from the congenic rats. Tumor latency was shorter in rapid NAT2 rats compared to slow NAT2 rats, with statistical significance for MNU administered at 3 and 8 weeks of age (p = 0.009 and 0.050, respectively). Tumor multiplicity and incidence were higher in rapid NAT2 rats compared to slow NAT2 rats administered MNU or DMBA at 8 weeks of age (MNU, p = 0.050 and 0.035; DMBA, p = 0.004 and 0.027, respectively). Recombinant rat rapid-NAT2, as well as tissue samples and embryonic fibroblasts derived from rapid NAT2 rats, catalyzed p-aminobenzoic acid N-acetyl transfer and folate-dependent acetyl-coenzyme A (AcCoA) hydrolysis at higher rates than those derived from rat slow-NAT2. Embryonic fibroblasts isolated from rapid NAT2 rats displayed lower levels of cellular AcCoA than slow NAT2 rats (p < 0.01). A novel role for rat NAT2 in mammary cancer was discovered unrelated to carcinogen metabolism, suggesting a role for human NAT1 in breast cancer.

  14. Effect of oral administration of Pheretima aspergillum (earthworm) in rats with cerebral infarction induced by middle-cerebral artery occlusion.

    PubMed

    Liu, Chung-Hsiang; Lin, Yi-Wen; Tang, Nou-Ying; Liu, Hsu-Jan; Huang, Chih-Yang; Hsieh, Ching-Liang

    2012-01-01

    We investigated the curative effect of Pheretima aspergillum (earthworm, PA) on rats with middle cerebral artery occlusion (MCAo). The MCAo-induced cerebral infarction was established and its underlying mechanisms by counting the infarction areas and evaluating the rats' neurological status. Immunostaining was used to test the expression of NeuN, and glial fibrillary acidic (GFAP), S100B, and brain-derived neurotrophic factor (BDNF) proteins. Our results showed that oral administration of PA for two weeks to rats with MCAo successfully reduced cerebral infarction areas in the cortex and striatum, and also reduced scores of neurological deficit. The PA-treated MCAo rats showed greatly decreased neuronal death, glial proliferation, and S100B proteins in the penumbra area of the cortex and in the ischemic core area of the cortex, but BDNF did not changed. These results demonstrated novel and detailed cellular mechanisms underlying the neuroprotective effects of PA in MCAo rats.

  15. Exercise training reinstates cortico-cortical sensorimotor functional connectivity following striatal lesioning: Development and application of a subregional-level analytic toolbox for perfusion autoradiographs of the rat brain

    NASA Astrophysics Data System (ADS)

    Peng, Yu-Hao; Heintz, Ryan; Wang, Zhuo; Guo, Yumei; Myers, Kalisa; Scremin, Oscar; Maarek, Jean-Michel; Holschneider, Daniel

    2014-12-01

    Current rodent connectome projects are revealing brain structural connectivity with unprecedented resolution and completeness. How subregional structural connectivity relates to subregional functional interactions is an emerging research topic. We describe a method for standardized, mesoscopic-level data sampling from autoradiographic coronal sections of the rat brain, and for correlation-based analysis and intuitive display of cortico-cortical functional connectivity (FC) on a flattened cortical map. A graphic user interface “Cx-2D” allows for the display of significant correlations of individual regions-of-interest, as well as graph theoretical metrics across the cortex. Cx-2D was tested on an autoradiographic data set of cerebral blood flow (CBF) of rats that had undergone bilateral striatal lesions, followed by 4 weeks of aerobic exercise training or no exercise. Effects of lesioning and exercise on cortico-cortical FC were examined during a locomotor challenge in this rat model of Parkinsonism. Subregional FC analysis revealed a rich functional reorganization of the brain in response to lesioning and exercise that was not apparent in a standard analysis focused on CBF of isolated brain regions. Lesioned rats showed diminished degree centrality of lateral primary motor cortex, as well as neighboring somatosensory cortex--changes that were substantially reversed in lesioned rats following exercise training. Seed analysis revealed that exercise increased positive correlations in motor and somatosensory cortex, with little effect in non-sensorimotor regions such as visual, auditory, and piriform cortex. The current analysis revealed that exercise partially reinstated sensorimotor FC lost following dopaminergic deafferentation. Cx-2D allows for standardized data sampling from images of brain slices, as well as analysis and display of cortico-cortical FC in the rat cerebral cortex with potential applications in a variety of autoradiographic and histologic studies.

  16. [Effects of intermittent hypoxia on the responses of genioglossus motor cortex to transcranial magnetic stimulation in rats].

    PubMed

    Li, Ting; Wang, Wei; Kong, De-lei; Su, Jiao; Kang, Jian

    2012-04-01

    To explore the influence of intermittent hypoxia on the responses of genioglossus motor cortex to transcranial magnetic stimulation. Male Sprague-Dawley rats were randomly divided into a control group and a chronic intermittent hypoxia group. Transcranial magnetic stimulation was applied in genioglossus motor cortex of the 2 groups. The responses of transcranial magnetic stimulation were recorded and analyzed by single factor analysis of variance. The anterolateral area provided an optimal motor evoked potential response to transcranial magnetic stimulation in the genioglossus motor cortex of the rats. Genioglossus motor evoked potential latency and amplitude were significantly modified by intermittent hypoxic exposure, with a significant decrease in latency (F = 3.294, P < 0.01) at the 1st day [(4.90 ± 0.54) ms] and the 14th day [(4.64 ± 1.71) ms], and an increase in amplitude (F = 1.905, P < 0.05) at the 1st day [(2.28 ± 0.57) mV] and the 7th day [(1.89 ± 0.20) mV]. Intermittent hypoxia could increase the transcranial magnetic stimulation response of genioglossus motor cortex in rats.

  17. Dimethadione embryotoxicity in the rat is neither correlated with maternal systemic drug concentrations nor embryonic tissue levels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ozolinš, Terence R.S., E-mail: ozolinst@queensu.ca; Weston, Andrea D.; Perretta, Anthony

    Pregnant rats treated with dimethadione (DMO), the N-demethylated metabolite of the anticonvulsant trimethadione, produce offspring having a 74% incidence of congenital heart defects (CHD); however, the incidence of CHD has high inter-litter variability (40–100%) that presents a challenge when studying the initiating events prior to the presentation of an abnormal phenotype. We hypothesized that the variability in CHD incidence was the result of differences in maternal systemic concentrations or embryonic tissue concentrations of DMO. To test this hypothesis, dams were administered 300 mg/kg DMO every 12 h from the evening of gestational day (GD) 8 until the morning of GDmore » 11 (six total doses). Maternal serum levels of DMO were assessed on GD 11, 12, 13, 14, 15, 18 and 21. Embryonic tissue concentrations of DMO were assessed on GD 11, 12, 13 and 14. In a separate cohort of GD 12 embryos, DMO concentrations and parameters of growth and development were assessed to determine if tissue levels of DMO were correlated with these endpoints. Embryos were exposed directly to different concentrations of DMO with whole embryo culture (WEC) and their growth and development assessed. Key findings were that neither maternal systemic concentrations nor tissue concentrations of DMO identified embryos that were sensitive or resistant to DMO in vivo. Direct exposure of embryos to DMO via WEC also failed to show correlations between embryonic concentrations of DMO with developmental outcomes in vitro. We conclude that neither maternal serum nor embryonic tissue concentrations of DMO predict embryonic outcome. - Highlights: • Dimethadione (DMO) induces septation defects (VSD) in rat offspring. • Despite high rate of VSD defects inter-litter variability is 40–100%. • Maternal and embryonic concentrations of DMO were assessed. • Neither serum nor tissue levels of DMO were correlated with embryotoxicity.« less

  18. Neural Representations of Natural and Scrambled Movies Progressively Change from Rat Striate to Temporal Cortex

    PubMed Central

    Vinken, Kasper; Van den Bergh, Gert; Vermaercke, Ben; Op de Beeck, Hans P.

    2016-01-01

    In recent years, the rodent has come forward as a candidate model for investigating higher level visual abilities such as object vision. This view has been backed up substantially by evidence from behavioral studies that show rats can be trained to express visual object recognition and categorization capabilities. However, almost no studies have investigated the functional properties of rodent extrastriate visual cortex using stimuli that target object vision, leaving a gap compared with the primate literature. Therefore, we recorded single-neuron responses along a proposed ventral pathway in rat visual cortex to investigate hallmarks of primate neural object representations such as preference for intact versus scrambled stimuli and category-selectivity. We presented natural movies containing a rat or no rat as well as their phase-scrambled versions. Population analyses showed increased dissociation in representations of natural versus scrambled stimuli along the targeted stream, but without a clear preference for natural stimuli. Along the measured cortical hierarchy the neural response seemed to be driven increasingly by features that are not V1-like and destroyed by phase-scrambling. However, there was no evidence for category selectivity for the rat versus nonrat distinction. Together, these findings provide insights about differences and commonalities between rodent and primate visual cortex. PMID:27146315

  19. The efficacy of an antioxidant cocktail on lipid peroxide level and superoxide dismutase activity in aged rat brain and DNA damage in iron-induced epileptogenic foci.

    PubMed

    Komatsu, M; Hiramatsu, M

    2000-08-07

    Mixed natural antioxidants can be combined in a prophylactic food against age related disease involving reactive oxygen species. beta-Catechin is an antioxidant drink, having free radical scavenging activities. It contains green tea extract as a main component as well as ascorbic acid, sunflower seed extract, dunaliella carotene and natural vitamin E. In the present study, we examined the effect of beta-catechin on lipid peroxide formation and superoxide dismutase (SOD) activity in aged rat brain and the effect on 8-hydroxy-2'-deoxyguanosine (8-OHdG) in ipsilateral cortex, 30 min after ferric chloride solution was injected into the left cortex of rats. beta-Catechin solution was orally administered to aged rats and normal rats for 1 month. One-month administration of beta-catechin solution increased SOD activity in the mitochondria fraction of striatum and midbrain and decreased thiobarbiturate reactive substance formation in the cortex and cerebellum of aged rats. It also inhibited 8-OHdG formation in the ipsilateral cortex 30 min after injection of ferric chloride solution. These results suggest that beta-catechin is a suitable prophylactic beverage against age-related neurological diseases associated with reactive oxygen species.

  20. Co-regulation of the atrial natriuretic factor and cardiac myosin light chain-2 genes during alpha-adrenergic stimulation of neonatal rat ventricular cells. Identification of cis sequences within an embryonic and a constitutive contractile protein gene which mediate inducible expression.

    PubMed

    Knowlton, K U; Baracchini, E; Ross, R S; Harris, A N; Henderson, S A; Evans, S M; Glembotski, C C; Chien, K R

    1991-04-25

    To study the mechanisms which mediate the transcriptional activation of cardiac genes during alpha adrenergic stimulation, the present study examined the regulated expression of three cardiac genes, a ventricular embryonic gene (atrial natriuretic factor, ANF), a constitutively expressed contractile protein gene (cardiac MLC-2), and a cardiac sodium channel gene. alpha 1-Adrenergic stimulation activates the expression and release of ANF from neonatal ventricular cells. As assessed by RNase protection analyses, treatment with alpha-adrenergic agonists increases the steady-state levels of ANF mRNA by greater than 15-fold. However, a rat cardiac sodium channel gene mRNA is not induced, indicating that alpha-adrenergic stimulation does not lead to an increase in the expression of all cardiac genes. Studies employing a series of rat ANF luciferase and rat MLC-2 luciferase fusion genes identify 315- and 92-base pair cis regulatory sequences within an embryonic gene (ANF) and a constitutively expressed contractile protein gene (MLC-2), respectively, which mediate alpha-adrenergic-inducible gene expression. Transfection of various ANF luciferase reporters into neonatal rat ventricular cells demonstrated that upstream sequences which mediate tissue-specific expression (-3003 to -638) can be segregated from those responsible for inducibility. The lack of inducibility of a cardiac Na+ channel gene, and the segregation of ANF gene sequences which mediate cardiac specific from those which mediate inducible expression, provides further insight into the relationship between muscle-specific and inducible expression during cardiac myocyte hypertrophy. Based on these results, a testable model is proposed for the induction of embryonic cardiac genes and constitutively expressed contractile protein genes and the noninducibility of a subset of cardiac genes during alpha-adrenergic stimulation of neonatal rat ventricular cells.

  1. A comparison of neurodegeneration linked with neuroinflammation in different brain areas of rats after intracerebroventricular colchicine injection.

    PubMed

    Sil, Susmita; Ghosh, Rupsa; Sanyal, Moumita; Guha, Debjani; Ghosh, Tusharkanti

    2016-01-01

    Colchicine induces neurodegeneration, but the extent of neurodegeneration in different areas of the brain in relation to neuroinflammation remains unclear. Such information may be useful to allow for the development of a model to compare colchicine-induced neurodegeneration with other neurodegenerative diseases such as Alzheimer's Disease (AD). The present study was designed to investigate the extent of neurodegeneration along with neuroinflammation in different areas of the brain, e.g. frontal cortex, parietal cortex, occipital cortex, corpus striatum, amygdala and hippocampus, in rats along with memory impairment 21 days after a single intracerebroventricular (icv) injection of colchicine. Memory parameters were measured before and after icv colchicine injection in all test groups of rats (control, sham-operated, colchicine-injected [ICIR] rats). On Day 21 post-injection, rats from all groups were anesthesized and tissues from the various brain areas were collected for assessment of biomarkers of neuroinflammation (i.e. levels of ROS, nitrite and proinflammatory cytokines TNFα and IL-1β) and neurodegeneration (assessed histologically). The single injection of colchicine resulted in impaired memory and neurodegeneration (significant presence of plaques, Nissl granule chromatolysis) in various brain areas (frontal cortex, amygdala, parietal cortex, corpus striatum), with maximum severity in the hippocampus. While IL-1β, TNFα, ROS and nitrite levels were altered in different brain areas in the ICIR rats, these parameters had their greatest change in the hippocampus. This study showed that icv injection of colchicine caused strong neurodegeneration and neuroinflammation in the hippocampus of rats and the increases in neurodegeneration were corroborated with those of neuroinflammation at the site. The present study also showed that the extent of neurodegeneration and neuroinflammation in different brain areas of the colchicine-injected rats were AD-like and supported the fact that such rats might have the ability to serve as a sporadic model of AD.

  2. Tuberin haploinsufficiency is associated with the loss of OGG1 in rat kidney tumors

    PubMed Central

    Habib, Samy L; Simone, Simona; Barnes, Jeff J; Abboud, Hanna E

    2008-01-01

    Background Tuberous sclerosis complex (TSC) is caused by defects in one of two tumor suppressor genes, TSC-1 or TSC-2. TSC-2 gene encodes tuberin, a protein involved in the pathogenesis of kidney tumors. Loss of heterozygosity (LOH) at the TSC2 locus has been detected in TSC-associated renal cell carcinoma (RCC) and in RCC in the Eker rat. Tuberin downregulates the DNA repair enzyme 8-oxoguanine DNA-glycosylase (OGG1) with important functional consequences, compromising the ability of cells to repair damaged DNA resulting in the accumulation of the mutagenic oxidized DNA, 8-oxo-dG. Loss of function mutations of OGG1 also occurs in human kidney clear cell carcinoma and may contribute to tumorgenesis. We investigated the distribution of protein expression and the activity of OGG1 and 8-oxo-dG and correlated it with the expression of tuberin in kidneys of wild type and Eker rats and tumor from Eker rat. Results Tuberin expression, OGG1 protein expression and activity were higher in kidney cortex than in medulla or papilla in both wild type and Eker rats. On the other hand, 8-oxo-dG levels were highest in the medulla, which expressed the lowest levels of OGG1. The basal levels of 8-oxo-dG were also higher in both cortex and medulla of Eker rats compared to wild type rats. In kidney tumors from Eker rats, the loss of the second TSC2 allele is associated with loss of OGG1 expression. Immunostaining of kidney tissue shows localization of tuberin and OGG1 mainly in the cortex. Conclusion These results demonstrate that OGG1 localizes with tuberin preferentially in kidney cortex. Loss of tuberin is accompanied by the loss of OGG1 contributing to tumorgenesis. In addition, the predominant expression of OGG1 in the cortex and its decreased expression and activity in the Eker rat may account for the predominant cortical localization of renal cell carcinoma. PMID:18218111

  3. Extensive cytotoxic lesions of the rat retrosplenial cortex reveal consistent deficits on tasks that tax allocentric spatial memory.

    PubMed

    Vann, Seralynne D; Aggleton, John P

    2002-02-01

    Despite the connections of the retrosplenial cortex strongly suggesting a role in spatial memory, the lesion data to date have been equivocal. Whether subjects are impaired after retrosplenial lesions seems to depend on whether the lesions were aspirative or excitotoxic, with the latter failing to produce an impairment. A shortcoming of previous excitotoxic lesion studies is that they spared the most caudal part of the retrosplenial cortex. The present study thus used rats with extensive neurotoxic lesions of the retrosplenial cortex that encompassed the entire rostrocaudal extent of this region. These rats were consistently impaired on several tests that tax allocentric memory. In contrast, they were unimpaired on an egocentric discrimination task. Although the lesions did not appear to affect object recognition, clear deficits were found for an object-in-place discrimination. The present study not only demonstrates a role for the retrosplenial cortex in allocentric spatial memory, but also explains why previous excitotoxic lesions have failed to detect any deficits.

  4. [Wavelet packet extraction and entropy analysis of telemetry EEG from the prelimbic cortex of medial prefrontal cortex in morphine-induced CPP rats].

    PubMed

    Bai, Yu; Bai, Jia-Ming; Li, Jing; Li, Min; Yu, Ran; Pan, Qun-Wan

    2014-12-25

    The purpose of the present study is to analyze the relationship between the telemetry electroencephalogram (EEG) changes of the prelimbic (PL) cortex and the drug-seeking behavior of morphine-induced conditioned place preference (CPP) rats by using the wavelet packet extraction and entropy measurement. The recording electrode was stereotactically implanted into the PL cortex of rats. The animals were then divided randomly into operation-only control and morphine-induced CPP groups, respectively. A CPP video system in combination with an EEG wireless telemetry device was used for recording EEG of PL cortex when the rats shuttled between black-white or white-black chambers. The telemetry recorded EEGs were analyzed by wavelet packet extraction, Welch power spectrum estimate, normalized amplitude and Shannon entropy algorithm. The results showed that, compared with operation-only control group, the left PL cortex's EEG of morphine-induced CPP group during black-white chamber shuttling exhibited the following changes: (1) the amplitude of average EEG for each frequency bands extracted by wavelet packet was reduced; (2) the Welch power intensity was increased significantly in 10-50 Hz EEG band (P < 0.01 or P < 0.05); (3) Shannon entropy was increased in β, γ₁, and γ₂waves of the EEG (P < 0.01 or P < 0.05); and (4) the average information entropy was reduced (P < 0.01). The results suggest that above mentioned EEG changes in morphine-induced CPP group rat may be related to animals' drug-seeking motivation and behavior launching.

  5. Mapping parahippocampal systems for recognition and recency memory in the absence of the rat hippocampus

    PubMed Central

    Kinnavane, L; Amin, E; Horne, M; Aggleton, J P

    2014-01-01

    The present study examined immediate-early gene expression in the perirhinal cortex of rats with hippocampal lesions. The goal was to test those models of recognition memory which assume that the perirhinal cortex can function independently of the hippocampus. The c-fos gene was targeted, as its expression in the perirhinal cortex is strongly associated with recognition memory. Four groups of rats were examined. Rats with hippocampal lesions and their surgical controls were given either a recognition memory task (novel vs. familiar objects) or a relative recency task (objects with differing degrees of familiarity). Perirhinal Fos expression in the hippocampal-lesioned groups correlated with both recognition and recency performance. The hippocampal lesions, however, had no apparent effect on overall levels of perirhinal or entorhinal cortex c-fos expression in response to novel objects, with only restricted effects being seen in the recency condition. Network analyses showed that whereas the patterns of parahippocampal interactions were differentially affected by novel or familiar objects, these correlated networks were not altered by hippocampal lesions. Additional analyses in control rats revealed two modes of correlated medial temporal activation. Novel stimuli recruited the pathway from the lateral entorhinal cortex (cortical layer II or III) to hippocampal field CA3, and thence to CA1. Familiar stimuli recruited the direct pathway from the lateral entorhinal cortex (principally layer III) to CA1. The present findings not only reveal the independence from the hippocampus of some perirhinal systems associated with recognition memory, but also show how novel stimuli engage hippocampal subfields in qualitatively different ways from familiar stimuli. PMID:25264133

  6. Evidence that primary visual cortex is required for image, orientation, and motion discrimination by rats.

    PubMed

    Petruno, Sarah K; Clark, Robert E; Reinagel, Pamela

    2013-01-01

    The pigmented Long-Evans rat has proven to be an excellent subject for studying visually guided behavior including quantitative visual psychophysics. This observation, together with its experimental accessibility and its close homology to the mouse, has made it an attractive model system in which to dissect the thalamic and cortical circuits underlying visual perception. Given that visually guided behavior in the absence of primary visual cortex has been described in the literature, however, it is an empirical question whether specific visual behaviors will depend on primary visual cortex in the rat. Here we tested the effects of cortical lesions on performance of two-alternative forced-choice visual discriminations by Long-Evans rats. We present data from one highly informative subject that learned several visual tasks and then received a bilateral lesion ablating >90% of primary visual cortex. After the lesion, this subject had a profound and persistent deficit in complex image discrimination, orientation discrimination, and full-field optic flow motion discrimination, compared with both pre-lesion performance and sham-lesion controls. Performance was intact, however, on another visual two-alternative forced-choice task that required approaching a salient visual target. A second highly informative subject learned several visual tasks prior to receiving a lesion ablating >90% of medial extrastriate cortex. This subject showed no impairment on any of the four task categories. Taken together, our data provide evidence that these image, orientation, and motion discrimination tasks require primary visual cortex in the Long-Evans rat, whereas approaching a salient visual target does not.

  7. Cannabis exacerbates depressive symptoms in rat model induced by reserpine.

    PubMed

    Khadrawy, Yasser A; Sawie, Hussein G; Abdel-Salam, Omar M E; Hosny, Eman N

    2017-05-01

    Cannabis sativa is one of the most widely recreational drugs and its use is more prevalent among depressed patients. Some studies reported that Cannabis has antidepressant effects while others showed increased depressive symptoms in Cannabis users. Therefore, the present study aims to investigate the effect of Cannabis extract on the depressive-like rats. Twenty four rats were divided into: control, rat model of depression induced by reserpine and depressive-like rats treated with Cannabis sativa extract (10mg/kg expressed as Δ9-tetrahydrocannabinol). The depressive-like rats showed a severe decrease in motor activity as assessed by open field test (OFT). This was accompanied by a decrease in monoamine levels and a significant increase in acetylcholinesterase activity in the cortex and hippocampus. Na + ,K + -ATPase activity increased in the cortex and decreased in the hippocampus of rat model. In addition, a state of oxidative stress was evident in the two brain regions. This was indicated from the significant increase in the levels of lipid peroxidation and nitric oxide. No signs of improvement were observed in the behavioral and neurochemical analyses in the depressive-like rats treated with Cannabis extract. Furthermore, Cannabis extract exacerbated the lipid peroxidation in the cortex and hippocampus. According to the present findings, it could be concluded that Cannabis sativa aggravates the motor deficits and neurochemical changes induced in the cortex and hippocampus of rat model of depression. Therefore, the obtained results could explain the reported increase in the depressive symptoms and memory impairment among Cannabis users. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Expression of Kv3.1b potassium channel is widespread in macaque motor cortex pyramidal cells: A histological comparison between rat and macaque

    PubMed Central

    Soares, David; Goldrick, Isabelle; Lemon, Roger N.; Kraskov, Alexander; Greensmith, Linda

    2017-01-01

    Abstract There are substantial differences across species in the organization and function of the motor pathways. These differences extend to basic electrophysiological properties. Thus, in rat motor cortex, pyramidal cells have long duration action potentials, while in the macaque, some pyramidal neurons exhibit short duration “thin” spikes. These differences may be related to the expression of the fast potassium channel Kv3.1b, which in rat interneurons is associated with generation of thin spikes. Rat pyramidal cells typically lack these channels, while there are reports that they are present in macaque pyramids. Here we made a systematic, quantitative comparison of the Kv3.1b expression in sections from macaque and rat motor cortex, using two different antibodies (NeuroMab, Millipore). As our standard reference, we examined, in the same sections, Kv3.1b staining in parvalbumin‐positive interneurons, which show strong Kv3.1b immunoreactivity. In macaque motor cortex, a large sample of pyramidal neurons were nearly all found to express Kv3.1b in their soma membranes. These labeled neurons were identified as pyramidal based either by expression of SMI32 (a pyramidal marker), or by their shape and size, and lack of expression of parvalbumin (a marker for some classes of interneuron). Large (Betz cells), medium, and small pyramidal neurons all expressed Kv3.1b. In rat motor cortex, SMI32‐postive pyramidal neurons expressing Kv3.1b were very rare and weakly stained. Thus, there is a marked species difference in the immunoreactivity of Kv3.1b in pyramidal neurons, and this may be one of the factors explaining the pronounced electrophysiological differences between rat and macaque pyramidal neurons. PMID:28213922

  9. [Effects of Betel shisanwei ingredients pill on AC-cAMP-PKA signal transduction pathways in hippocampus and prefrontal cortex of depressive rats].

    PubMed

    Tong, Hai-Ying; Wu, Jisiguleng; Bai, Liang-Feng; Bao, Wu-Ye; Hu, Rilebagen; Li, Jing; Zhang, Yue

    2014-05-01

    To observe the effects of Mongolian pharmaceutical Betel shisanwei ingredients pill on AC-cAMP-PKA signal transduction pathways in hippocampus and prefrontal cortex of depressive rats. Sixty male Wistar rats were randomly divided into six groups according to the sugar consumption test (10 rats in each group), normal control group,model group,fluoxetine group (3.3 mg x kg(-1)) and low dose, medium dose and high dose group (0.25, 0.5, 1 g x kg(-1)) of Betel shisanwei ingredients pill. Except the normal control,the other groups were treated with the chronic unpredictable mild stress stimulation combined with lonely raising for 28 days. 10 mL x kg(-1) of drugs were given to each rat once daily,continuously for 28 days. The AC activity of the hippocampus and prefrontal cortex were determined by radiation immunity analysis (RIA), while cAMP and PKA quantity were determinated by Enzyme-linked immunosorbent (ELISA). The AC activity, cAMP and PKA quantity of hippocampus and prefrontal of mouse model of Chronic stress depression decreased significantly than those of control group (P < 0.05 or P < 0.01). However, the AC activity, cAMP and PKA quantity of rat hippocampus and prefrontal cortex in the fluoxetine group and the Mongolian pharmaceutical Betel shisanwei ingredients pill group indecreased significantly than those of model group (P < 0.01 or P < 0.05). Especially for the high dose group of Mongolian pharmaceutical Betel shisanwei ingredients pill. The AC-cAMP-PKA signal transduction pathways in hippocampus and prefrontal cortex of depression model of rats is down-regulated, whereas Mongolian pharmaceutical Betel shisanwei ingredients pill could up-regulated it to resist depression.

  10. Decoding bipedal locomotion from the rat sensorimotor cortex.

    PubMed

    Rigosa, J; Panarese, A; Dominici, N; Friedli, L; van den Brand, R; Carpaneto, J; DiGiovanna, J; Courtine, G; Micera, S

    2015-10-01

    Decoding forelimb movements from the firing activity of cortical neurons has been interfaced with robotic and prosthetic systems to replace lost upper limb functions in humans. Despite the potential of this approach to improve locomotion and facilitate gait rehabilitation, decoding lower limb movement from the motor cortex has received comparatively little attention. Here, we performed experiments to identify the type and amount of information that can be decoded from neuronal ensemble activity in the hindlimb area of the rat motor cortex during bipedal locomotor tasks. Rats were trained to stand, step on a treadmill, walk overground and climb staircases in a bipedal posture. To impose this gait, the rats were secured in a robotic interface that provided support against the direction of gravity and in the mediolateral direction, but behaved transparently in the forward direction. After completion of training, rats were chronically implanted with a micro-wire array spanning the left hindlimb motor cortex to record single and multi-unit activity, and bipolar electrodes into 10 muscles of the right hindlimb to monitor electromyographic signals. Whole-body kinematics, muscle activity, and neural signals were simultaneously recorded during execution of the trained tasks over multiple days of testing. Hindlimb kinematics, muscle activity, gait phases, and locomotor tasks were decoded using offline classification algorithms. We found that the stance and swing phases of gait and the locomotor tasks were detected with accuracies as robust as 90% in all rats. Decoded hindlimb kinematics and muscle activity exhibited a larger variability across rats and tasks. Our study shows that the rodent motor cortex contains useful information for lower limb neuroprosthetic development. However, brain-machine interfaces estimating gait phases or locomotor behaviors, instead of continuous variables such as limb joint positions or speeds, are likely to provide more robust control strategies for the design of such neuroprostheses.

  11. Role of medio-dorsal frontal and posterior parietal neurons during auditory detection performance in rats.

    PubMed

    Bohon, Kaitlin S; Wiest, Michael C

    2014-01-01

    To further characterize the role of frontal and parietal cortices in rat cognition, we recorded action potentials simultaneously from multiple sites in the medio-dorsal frontal cortex and posterior parietal cortex of rats while they performed a two-choice auditory detection task. We quantified neural correlates of task performance, including response movements, perception of a target tone, and the differentiation between stimuli with distinct features (different pitches or durations). A minority of units--15% in frontal cortex, 23% in parietal cortex--significantly distinguished hit trials (successful detections, response movement to the right) from correct rejection trials (correct leftward response to the absence of the target tone). Estimating the contribution of movement-related activity to these responses suggested that more than half of these units were likely signaling correct perception of the auditory target, rather than merely movement direction. In addition, we found a smaller and mostly not overlapping population of units that differentiated stimuli based on task-irrelevant details. The detection-related spiking responses we observed suggest that correlates of perception in the rat are sparsely represented among neurons in the rat's frontal-parietal network, without being concentrated preferentially in frontal or parietal areas.

  12. BDNF mRNA expression in rat hippocampus and prefrontal cortex: effects of neonatal ventral hippocampal damage and antipsychotic drugs.

    PubMed

    Lipska, B K; Khaing, Z Z; Weickert, C S; Weinberger, D R

    2001-07-01

    Brain-derived neurotrophic factor (BDNF) plays an important role in development, synapse remodelling and responses to stress and injury. Its abnormal expression has been implicated in schizophrenia, a neuropsychiatric disorder in which abnormal neural development of the hippocampus and prefrontal cortex has been postulated. To clarify the effects of antipsychotic drugs used in the therapy of schizophrenia on BDNF mRNA, we studied its expression in rats treated with clozapine and haloperidol and in rats with neonatal lesions of the ventral hippocampus, used as an animal model of schizophrenia. Both antipsychotic drugs reduced BDNF expression in the hippocampus of control rats, but did not significantly lower its expression in the prefrontal cortex. The neonatal hippocampal lesion itself suppressed BDNF mRNA expression in the dentate gyrus and tended to reduce its expression in the prefrontal cortex. These results indicate that, unlike antidepressants, antipsychotics down-regulate BDNF mRNA, and suggest that their therapeutic properties are not mediated by stimulation of this neurotrophin. To the extent that the lesioned rat models some pathophysiological aspects of schizophrenia, our data suggest that a neurodevelopmental insult might suppress expression of the neurotrophin in certain brain regions.

  13. FGF-2 induces behavioral recovery after early adolescent injury to the motor cortex of rats.

    PubMed

    Nemati, Farshad; Kolb, Bryan

    2011-11-20

    Motor cortex injuries in adulthood lead to poor performance in behavioral tasks sensitive to limb movements in the rat. We have shown previously that motor cortex injury on day 10 or day 55 allow significant spontaneous recovery but not injury in early adolescence (postnatal day 35 "P35"). Previous studies have indicated that injection of basic fibroblast growth factor (FGF-2) enhances behavioral recovery after neonatal cortical injury but such effect has not been studied following motor cortex lesions in early adolescence. The present study undertook to investigate the possibility of such behavioral recovery. Rats with unilateral motor cortex lesions were assigned to two groups in which they received FGF-2 or bovine serum albumin (BSA) and were tested in a number of behavioral tests (postural asymmetry, skilled reaching, sunflower seed manipulation, forepaw inhibition in swimming). Golgi-Cox analysis was used to examine the dendritic structure of pyramidal cells in the animals' parietal (layer III) and forelimb (layer V) area of the cortex. The results indicated that rats injected with FGF-2 (but not BSA) showed significant behavioral recovery that was associated with increased dendritic length and spine density. The present study suggests a role for FGF-2 in the recovery of function following injury during early adolescence. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Reduced Synapse and Axon Numbers in the Prefrontal Cortex of Rats Subjected to a Chronic Stress Model for Depression

    PubMed Central

    Csabai, Dávid; Wiborg, Ove; Czéh, Boldizsár

    2018-01-01

    Stressful experiences can induce structural changes in neurons of the limbic system. These cellular changes contribute to the development of stress-induced psychopathologies like depressive disorders. In the prefrontal cortex of chronically stressed animals, reduced dendritic length and spine loss have been reported. This loss of dendritic material should consequently result in synapse loss as well, because of the reduced dendritic surface. But so far, no one studied synapse numbers in the prefrontal cortex of chronically stressed animals. Here, we examined synaptic contacts in rats subjected to an animal model for depression, where animals are exposed to a chronic stress protocol. Our hypothesis was that long term stress should reduce the number of axo-spinous synapses in the medial prefrontal cortex. Adult male rats were exposed to daily stress for 9 weeks and afterward we did a post mortem quantitative electron microscopic analysis to quantify the number and morphology of synapses in the infralimbic cortex. We analyzed asymmetric (Type I) and symmetric (Type II) synapses in all cortical layers in control and stressed rats. We also quantified axon numbers and measured the volume of the infralimbic cortex. In our systematic unbiased analysis, we examined 21,000 axon terminals in total. We found the following numbers in the infralimbic cortex of control rats: 1.15 × 109 asymmetric synapses, 1.06 × 108 symmetric synapses and 1.00 × 108 myelinated axons. The density of asymmetric synapses was 5.5/μm3 and the density of symmetric synapses was 0.5/μm3. Average synapse membrane length was 207 nm and the average axon terminal membrane length was 489 nm. Stress reduced the number of synapses and myelinated axons in the deeper cortical layers, while synapse membrane lengths were increased. These stress-induced ultrastructural changes indicate that neurons of the infralimbic cortex have reduced cortical network connectivity. Such reduced network connectivity is likely to form the anatomical basis for the impaired functioning of this brain area. Indeed, impaired functioning of the prefrontal cortex, such as cognitive deficits are common in stressed individuals as well as in depressed patients. PMID:29440995

  15. Expression pattern of cadherins in the naked mole rat (Heterocephalus glaber) suggests innate cortical diversification of the cerebrum.

    PubMed

    Matsunaga, Eiji; Nambu, Sanae; Iriki, Atsushi; Okanoya, Kazuo

    2011-06-15

    The cerebral cortex is an indispensable region for higher cognitive function that is remarkably diverse among mammalian species. Although previous research has shown that the cortical area map in the mammalian cerebral cortex is formed by innate and activity-dependent mechanisms, it remains unknown how these mechanisms contribute to the evolution and diversification of the functional cortical areas in various species. The naked mole rat (Heterocephalus glaber) is a subterranean, eusocial rodent. Physiological and anatomical studies have revealed that the visual system is regressed and the somatosensory system is enlarged. To examine whether species differences in cortical area development are caused by intrinsic factors or environmental factors, we performed comparative gene expression analysis of neonatal naked mole rat and mouse brains. The expression domain of cadherin-6, a somatosensory marker, was expanded caudally and shifted dorsally in the cortex, whereas the expression domain of cadherin-8, a visual marker, was reduced caudally in the neonatal naked mole rat cortex. The expression domain of cadherin-8 was also reduced in other visual areas, such as the lateral geniculate nucleus and superior colliculus. Immunohistochemical analysis of thalamocortical fibers further suggested that somatosensory input did not affect cortical gene expression in the neonatal naked mole rat brain. These results suggest that the development of the somatosensory system and the regression of the visual system in the naked mole rat cortex are due to intrinsic genetic mechanisms as well as sensory input-dependent mechanisms. Intrinsic genetic mechanisms thus appear to contribute to species diversity in cortical area formation. Copyright © 2011 Wiley-Liss, Inc.

  16. Live imaging of rat embryos with Doppler swept-source optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Larina, Irina V.; Furushima, Kenryo; Dickinson, Mary E.; Behringer, Richard R.; Larin, Kirill V.

    2009-09-01

    The rat has long been considered an excellent system to study mammalian embryonic cardiovascular physiology, but has lacked the extensive genetic tools available in the mouse to be able to create single gene mutations. However, the recent establishment of rat embryonic stem cell lines facilitates the generation of new models in the rat embryo to link changes in physiology with altered gene function to define the underlying mechanisms behind congenital cardiovascular birth defects. Along with the ability to create new rat genotypes there is a strong need for tools to analyze phenotypes with high spatial and temporal resolution. Doppler OCT has been previously used for 3-D structural analysis and blood flow imaging in other model species. We use Doppler swept-source OCT for live imaging of early postimplantation rat embryos. Structural imaging is used for 3-D reconstruction of embryo morphology and dynamic imaging of the beating heart and vessels, while Doppler-mode imaging is used to visualize blood flow. We demonstrate that Doppler swept-source OCT can provide essential information about the dynamics of early rat embryos and serve as a basis for a wide range of studies on functional evaluation of rat embryo physiology.

  17. Live imaging of rat embryos with Doppler swept-source optical coherence tomography

    PubMed Central

    Larina, Irina V.; Furushima, Kenryo; Dickinson, Mary E.; Behringer, Richard R.; Larin, Kirill V.

    2009-01-01

    The rat has long been considered an excellent system to study mammalian embryonic cardiovascular physiology, but has lacked the extensive genetic tools available in the mouse to be able to create single gene mutations. However, the recent establishment of rat embryonic stem cell lines facilitates the generation of new models in the rat embryo to link changes in physiology with altered gene function to define the underlying mechanisms behind congenital cardiovascular birth defects. Along with the ability to create new rat genotypes there is a strong need for tools to analyze phenotypes with high spatial and temporal resolution. Doppler OCT has been previously used for 3-D structural analysis and blood flow imaging in other model species. We use Doppler swept-source OCT for live imaging of early postimplantation rat embryos. Structural imaging is used for 3-D reconstruction of embryo morphology and dynamic imaging of the beating heart and vessels, while Doppler-mode imaging is used to visualize blood flow. We demonstrate that Doppler swept-source OCT can provide essential information about the dynamics of early rat embryos and serve as a basis for a wide range of studies on functional evaluation of rat embryo physiology. PMID:19895102

  18. Glutamate promotes neural stem cell proliferation by increasing the expression of vascular endothelial growth factor of astrocytes in vitro.

    PubMed

    Liu, C X; Xu, X; Chen, X L; Yang, P B; Zhang, J S; Liu, Y

    2015-09-20

    The high levels of glutamate might involve in neurogenesis after brain injuries. However, the mechanisms are not fully understood. In this study, we investigated the effect of glutamate on the proliferation of rat embryonic neural stem/progenitor cells (NSCs) through regulating the vascular endothelial growth factor (VEGF) expression of astrocytes (ASTs) in vitro, and the cyclin D1 expression of NSCs. The results showed that glutamate promoted the expression and secretion of VEGF of rat astrocytes by activating group I mGluRs. Astrocyte conditioned medium-containing Glu [ACM (30%)] promoted the proliferation of embryonic NSCs compared with normal astrocyte conditioned medium+Glu [N-ACM (30%)+Glu (30 μM)] by increasing cell activity, diameter of neurospheres, bromodeoxyuridine (BrdU) incorporation and cell division; while ACM+VEGF neutralizing antibody [ACM (30%)+VEGF NAb (15 μg/ml)] significantly inhibited the proliferation of embryonic NSCs compared with ACM (30%). ACM (30%) increased the expressions of cyclin D1 and decreased cell death compared with N-ACM (30%)+Glu (30 μM). ACM (30%)+VEGF NAb (15 μg/ml) decreased the expressions of cyclin D1 and increased cell death compared with ACM (30%). These results demonstrated that glutamate could also indirectly promote the proliferation of rat embryonic NSCs through inducing the VEGF expression of ASTs in vitro, and VEGF may increase the expression of cyclin D1. These finding suggest that glutamate may be a major molecule for regulating embryonic NSC proliferation and facilitate neural repair in the process of NSC transplants after brain injuries.

  19. A plastic stabilizer dibutyltin dilaurate induces subchronic neurotoxicity in rats☆

    PubMed Central

    Jin, Minghua; Song, Peilin; Li, Na; Li, Xuejun; Chen, Jiajun

    2012-01-01

    Dibutyltin dilaurate functions as a stabilizer for polyvinyl chloride. In this study, experimental rats were intragastrically administered 5, 10, or 20 mg/kg dibutyltin dilaurate to model sub-chronic poisoning. After exposure, our results showed the activities of superoxide dismutase and glutathione peroxidase decreased in rat brain tissue, while the malondialdehyde and nitric oxide content, as well as nitric oxide synthase activity in rat brain tissue increased. The cell cycle in the right parietal cortex was disordered and the rate of apoptosis increased. DNA damage was aggravated in the cerebral cortex, and the ultrastructure of the right parietal cortex tissues was altered. The above changes became more apparent with exposure to increasing doses of dibutyltin dilaurate. Our experimental findings confirmed the neurotoxicity of dibutyltin dilaurate in rat brain tissues, and demonstrated that the poisoning was dose-dependent. PMID:25538742

  20. The Embryonic Septum and Ventral Pallium, New Sources of Olfactory Cortex Cells

    PubMed Central

    de Carlos, Juan A.

    2012-01-01

    The mammalian olfactory cortex is a complex structure located along the rostro-caudal extension of the ventrolateral prosencephalon, which is divided into several anatomically and functionally distinct areas: the anterior olfactory nucleus, piriform cortex, olfactory tubercle, amygdaloid olfactory nuclei, and the more caudal entorhinal cortex. Multiple forebrain progenitor domains contribute to the cellular diversity of the olfactory cortex, which is invaded simultaneously by cells originating in distinct germinal areas in the dorsal and ventral forebrain. Using a combination of dye labeling techniques, we identified two novel areas that contribute cells to the developing olfactory cortices, the septum and the ventral pallium, from which cells migrate along a radial and then a tangential path. We characterized these cell populations by comparing their expression of calretinin, calbindin, reelin and Tbr1 with that of other olfactory cell populations. PMID:22984546

  1. Effects of maternal blood loss on embryonic and placental development in the rat.

    PubMed

    Bruce, N W; Cabral, D A

    1975-11-01

    The effects of acute loss of maternal blood on embryonic and placental development was examined in 50 rats on Days 8 or 9 of gestation. Blood was withdrawn from conscious, cannulated rats over a 1-min period at 1-0 or 2-0 ml/100 g body weight. These degrees of blood loss were expected to produce a mild (about 50%) and severe (about 80%) reduction in uterine blood flow, respectively, for at least 15 min. There was no evidence that loss of blood affected either fetal survival and malformation rates or fetal weights and sex ratios. The anaemia resulting from haemorrhage lasted no longer than 6 days. Placental weights were 11% higher in rats losing 2-0 ml blood/100 g than in controls (P less than 0-05). It appears that the 8- or 9- day rat embryo is highly resistant to the partial reduction in uterine blood flow, maternal anaemia and other possible challenges induced by maternal loss of blood at levels sufficient to affect the mothers.

  2. Immunological cross-reactivity of cultured rat hippocampal neurons with goldfish brain proteins synthesized during memory consolidation.

    PubMed

    Schmidt, R; Löffler, F; Müller, H W; Seifert, W

    1986-10-29

    Ependymins are goldfish brain glycoproteins exhibiting a specifically enhanced rate of synthesis when the animals adopt a new pattern of swimming behavior. With specific antisera against ependymins it has become possible to look for ependymin-like immunoreactivity in other animal species, both qualitatively by immunofluorescence staining and quantitatively by radioimmunoassay. Ependymin-like immunoreactivity was detected not only in other fish but also in rat brain. In the rat radioimmunoassay measurements were highest for the hippocampal formation and for cultured neurons derived from the embryonic hippocampus. Immunofluorescence staining was performed on various cell culture systems derived from rat brain, in order to establish which cell type contains the antigen. Only neuronal cell populations reacted with the anti-ependymin antisera. Cells derived from embryonic rat brain hippocampus which resembled pyramidal neurons stained particularly bright for ependymin-like immunoreactivity. The antigenic material was distributed throughout the cytoplasm including the neuronal extensions. Various neuron-specific antisera have been used to counterstain the cells containing ependymin-like immunoreactivity.

  3. Altered neuronal activities in the motor cortex with impaired motor performance in adult rats observed after infusion of cerebrospinal fluid from amyotrophic lateral sclerosis patients.

    PubMed

    Sankaranarayani, R; Nalini, A; Rao Laxmi, T; Raju, T R

    2010-01-05

    Although definite evidences are available to state that, neuronal activity is a prime determinant of animal behavior, the specific relationship between local field potentials of the motor cortex after intervention with CSF from human patients and animal behavior have remained opaque. The present study has investigated whether cerebrospinal fluid from sporadic amyotrophic lateral sclerosis (sALS) patients could disrupt neuronal activity of the motor cortex, which could be associated with disturbances in the motor performance of adult rats. CSF from ALS patients (ALS-CSF) was infused into the lateral ventricle of Wistar rats. After 24h, the impact of ALS-CSF on the local field potentials (LFPs) of the motor cortex and on the motor behavior of animals were examined. The results indicate that ALS-CSF produced a bivariate distribution on the relative power values of the LFPs of the motor cortex 24h following infusion. However, the behavioral results did not show bimodality, instead showed consistent decrease in motor performance: on rotarod and grip strength meter. The neuronal activity of the motor cortex negatively correlated with the duration of ALS symptoms at the time of lumbar puncture. Although the effect of ALS-CSF was more pronounced at 24h following infusion, the changes observed in LFPs and motor performance appeared to revert to baseline values at later time points of testing. In the current study, we have shown that, ALS-CSF has the potential to perturb neuronal activity of the rat motor cortex which was associated with poor performance on motor function tests.

  4. Effects of electroacupuncture on metabolic changes in motor cortex and striatum of 6-hydroxydopamine-induced Parkinsonian rats.

    PubMed

    Li, Min; Wang, Ke; Su, Wen-Ting; Jia, Jun; Wang, Xiao-Min

    2017-10-06

    To explore the possible underlying mechanism by investigating the effect of electroacupuncture (EA) treatment on the primary motor cortex and striatum in a unilateral 6-hydroxydopamine (6-OHDA) induced rat Parkinson's disease (PD) model. Male Sprague-Dawley rats were randomly divided into sham group (n=16), model group (n=14), and EA group (n=14). EA stimulation at Dazhui (GV 14) and Baihui (GV20) was applied to PD rats in the EA group for 4 weeks. Behavioral tests were conducted to evaluate the effectiveness of EA treatment. Metabolites were detected by 7.0 T proton nuclear magnetic resonance. Following 4 weeks of EA treatment in PD model rats, the abnormal behavioral impairment induced by 6-OHDA was alleviated. In monitoring changes in metabolic activity, ratios of myoinositol/creatine (Cr) and N-acetyl aspartate (NAA)/Cr in the primary motor cortex were significantly lower at the injected side than the non-injected side in PD rats (P=0.024 and 0.020). The ratios of glutamate + glutamine (Glx)/Cr and NAA/Cr in the striatum were higher and lower, respectively, at the injected side than the non-injected side (P=0.046 and 0.008). EA treatment restored the balance of metabolic activity in the primary motor cortex and striatum. In addition, the taurine/Cr ratio and Glx/Cr ratio were elevated in the striatum of PD model rats compared to sham-lesioned rats (P=0.026 and 0.000). EA treatment alleviated the excessive glutamatergic transmission by down-regulating the striatal Glx/Cr ratio (P=0.001). The Glx/Cr ratio was negatively correlated with floor plane spontaneous locomotion in PD rats (P=0.027 and P=0.0007). EA treatment is able to normalize the metabolic balance in the primary motor cortex and striatum of PD rats, which may contribute to its therapeutic effect on motor deficits. The striatal Glx/Cr ratio may serve as a potential indicator of PD and a therapeutic target of EA treatment.

  5. Brain Aging and AD-Like Pathology in Streptozotocin-Induced Diabetic Rats

    PubMed Central

    Wang, Jian-Qin; Yin, Jie; Song, Yan-Feng; Zhang, Lang; Ren, Ying-Xiang; Wang, De-Gui; Gao, Li-Ping; Jing, Yu-Hong

    2014-01-01

    Objective. Numerous epidemiological studies have linked diabetes mellitus (DM) with an increased risk of developing Alzheimer's disease (AD). However, whether or not diabetic encephalopathy shows AD-like pathology remains unclear. Research Design and Methods. Forebrain and hippocampal volumes were measured using stereology in serial coronal sections of the brain in streptozotocin- (STZ-) induced rats. Neurodegeneration in the frontal cortex, hypothalamus, and hippocampus was evaluated using Fluoro-Jade C (FJC). Aβ aggregation in the frontal cortex and hippocampus was tested using immunohistochemistry and ELISA. Dendritic spine density in the frontal cortex and hippocampus was measured using Golgi staining, and western blot was conducted to detect the levels of synaptophysin. Cognitive ability was evaluated through the Morris water maze and inhibitory avoidant box. Results. Rats are characterized by insulin deficiency accompanied with polydipsia, polyphagia, polyuria, and weight loss after STZ injection. The number of FJC-positive cells significantly increased in discrete brain regions of the diabetic rats compared with the age-matched control rats. Hippocampal atrophy, Aβ aggregation, and synapse loss were observed in the diabetic rats compared with the control rats. The learning and memory of the diabetic rats decreased compared with those of the age-matched control rats. Conclusions. Our results suggested that aberrant metabolism induced brain aging as characterized by AD-like pathologies. PMID:25197672

  6. Differential mesocorticolimbic responses to palatable food in binge eating prone and binge eating resistant female rats.

    PubMed

    Sinclair, Elaine B; Culbert, Kristen M; Gradl, Dana R; Richardson, Kimberlei A; Klump, Kelly L; Sisk, Cheryl L

    2015-12-01

    Binge eating is a key symptom of many eating disorders (e.g. binge eating disorder, bulimia nervosa, anorexia nervosa binge/purge type), yet the neurobiological underpinnings of binge eating are poorly understood. The mesocorticolimbic reward circuit, including the nucleus accumbens and the medial prefrontal cortex, is likely involved because this circuit mediates the hedonic value and incentive salience of palatable foods (PF). Here we tested the hypothesis that higher propensity for binge eating is associated with a heightened response (i.e., Fos induction) of the nucleus accumbens and medial prefrontal cortex to PF, using an animal model that identifies binge eating prone (BEP) and binge eating resistant (BER) rats. Forty adult female Sprague-Dawley rats were given intermittent access to PF (high fat pellets) 3×/week for 3 weeks. Based on a pattern of either consistently high or consistently low PF consumption across these feeding tests, 8 rats met criteria for categorization as BEP, and 11 rats met criteria for categorization as BER. One week after the final feeding test, BEP and BER rats were either exposed to PF in their home cages or were given no PF in their home cages for 1h prior to perfusion, leading to three experimental groups for the Fos analysis: BEPs given PF, BERs given PF, and a No PF control group. The total number of Fos-immunoreactive (Fos-ir) cells in the nucleus accumbens core and shell, and the cingulate, prelimbic, and infralimbic regions of the medial prefrontal cortex was estimated by stereological analysis. PF induced higher Fos expression in the nucleus accumbens shell and core and in the prelimbic and infralimbic cortex of BEP rats compared to No PF controls. Throughout the nucleus accumbens and medial prefrontal cortex, PF induced higher Fos expression in BEP than in BER rats, even after adjusting for differences in PF intake. Differences in the neural activation pattern between BEP and BER rats were more robust in prefrontal cortex than in nucleus accumbens. These data confirm that PF activates brain regions responsible for encoding the incentive salience and hedonic properties of PF, and suggest that binge eating proneness is associated with enhanced responses to PF in brain regions that exert executive control over food reward. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Differential mesocorticolimbic responses to palatable food in binge eating prone and binge eating resistant female rats

    PubMed Central

    Sinclair, Elaine B.; Culbert, Kristen M.; Gradl, Dana R.; Richardson, Kimberlei A.; Klump, Kelly L.; Sisk, Cheryl L.

    2017-01-01

    Binge eating is a key symptom of many eating disorders (e.g. binge eating disorder, bulimia nervosa, anorexia nervosa binge/purge type), yet the neurobiological underpinnings of binge eating are poorly understood. The mesocorticolimbic reward circuit, including the nucleus accumbens and the medial prefrontal cortex, is likely involved because this circuit mediates the hedonic value and incentive salience of palatable foods (PF). Here we tested the hypothesis that higher propensity for binge eating is associated with a heightened response (i.e., Fos induction) of the nucleus accumbens and medial prefrontal cortex to PF, using an animal model that identifies binge eating prone (BEP) and binge eating resistant (BER) rats. Forty adult female Sprague–Dawley rats were given intermittent access to PF (high fat pellets) 3×/week for 3 weeks. Based on a pattern of either consistently high or consistently low PF consumption across these feeding tests, 8 rats met criteria for categorization as BEP, and 11 rats met criteria for categorization as BER. One week after the final feeding test, BEP and BER rats were either exposed to PF in their home cages or were given no PF in their home cages for 1 h prior to perfusion, leading to three experimental groups for the Fos analysis: BEPs given PF, BERs given PF, and a No PF control group. The total number of Fos-immunoreactive (Fos-ir) cells in the nucleus accumbens core and shell, and the cingulate, prelimbic, and infralimbic regions of the medial prefrontal cortex was estimated by stereological analysis. PF induced higher Fos expression in the nucleus accumbens shell and core and in the prelimbic and infralimbic cortex of BEP rats compared to No PF controls. Throughout the nucleus accumbens and medial pre-frontal cortex, PF induced higher Fos expression in BEP than in BER rats, even after adjusting for differences in PF intake. Differences in the neural activation pattern between BEP and BER rats were more robust in prefrontal cortex than in nucleus accumbens. These data confirm that PF activates brain regions responsible for encoding the incentive salience and hedonic properties of PF, and suggest that binge eating proneness is associated with enhanced responses to PF in brain regions that exert executive control over food reward. PMID:26459117

  8. Non-shivering thermogenesis during prostaglandin E1 fever in rats: role of the cerebral cortex.

    PubMed

    Monda, M; Amaro, S; De Luca, B

    1994-07-18

    We have tested the hypothesis that there is a role for the cerebral cortex in the control of non-shivering thermogenesis during fever induced by prostaglandin E1 (PGE1). While under urethan anesthesia, the firing rate of nerves innervating interscapular brown adipose tissue (IBAT), IBAT and colonic temperatures (TIBAT and Tc) and oxygen (O2) consumption were monitored during the fever from PGE1 injection (400 and 800 ng) in a lateral cerebral ventricle in controls and in functionally decorticated Sprague-Dawley rats. Rats were functionally decorticated by applying 3.3 M KCl solution on the frontal cortex which causes cortical spreading depression (CSD). Pyrogen injections caused dose-related increases in firing rate, TIBAT, Tc and O2 consumption and CSD reduced these enhancements. Our findings indicate that the cerebral cortex could be involved in the control of non-shivering thermogenesis during PGE1-induced febrile response.

  9. Effects of maternal separation, early handling, and gonadal sex on regional metabolic capacity of the preweanling rat brain

    PubMed Central

    Spivey, Jaclyn M.; Padilla, Eimeira; Shumake, Jason D.; Gonzalez-Lima, F.

    2010-01-01

    This is the first study to assess the effects of mother-infant separation on regional metabolic capacity in the preweanling rat brain. Mother-infant separation is generally known to be stressful for rat pups. Holtzman adolescent rats show a depressive-like behavioral phenotype after maternal separation during the preweanling period. However, information is lacking on the effects of maternal separation on the brains of rat pups. We addressed this issue by mapping the brains of preweanling Holtzman rat pups using cytochrome oxidase histochemistry, which reflects long-term changes in brain metabolic capacity, following two weeks of repeated, prolonged maternal separation, and compared this to both early handled and non-handled pups. Quantitative image analysis revealed that maternal separation reduced cytochrome oxidase activity in the medial prefrontal cortex and nucleus accumbens shell. Maternal separation reduced prefrontal cytochrome oxidase to a greater degree in female pups than in males. Early handling reduced cytochrome oxidase activity in the posterior parietal cortex, ventral tegmental area, and subiculum, but increased cytochrome oxidase activity in the lateral frontal cortex. The sex-dependent effects of early handling on cytochrome oxidase activity were limited to the medial prefrontal cortex. Regardless of separation group, females had greater cytochrome oxidase activity in the habenula and ventral tegmental area compared to males. These findings suggest that early life mother-infant separation results in dysfunction of prefrontal and mesolimbic regions in the preweanling rat brain that may contribute to behavioral changes later in life. PMID:20969837

  10. Antiamnesic effect of acyl-prolyl-containing dipeptide (GVS-111) in compression-induced damage to frontal cortex.

    PubMed

    Romanova, G A; Mirzoev, T K; Barskov, I V; Victorov, I V; Gudasheva, T A; Ostrovskaya, R U

    2000-09-01

    Antiamnestic effect of acyl-prolyl-containing dipeptide GVS-111 was demonstrated in rats with bilateral compression-induced damage to the frontal cortex. Both intraperitoneal and oral administration of the dipeptide improved retrieval of passive avoidance responses in rats with compression-induced cerebral ischemia compared to untreated controls.

  11. Differential Effects of Intrauterine Growth Restriction on the Regional Neurochemical Profile of the Developing Rat Brain.

    PubMed

    Maliszewski-Hall, Anne M; Alexander, Michelle; Tkáč, Ivan; Öz, Gülin; Rao, Raghavendra

    2017-01-01

    Intrauterine growth restricted (IUGR) infants are at increased risk for neurodevelopmental deficits that suggest the hippocampus and cerebral cortex may be particularly vulnerable. Evaluate regional neurochemical profiles in IUGR and normally grown (NG) 7-day old rat pups using in vivo 1 H magnetic resonance (MR) spectroscopy at 9.4 T. IUGR was induced via bilateral uterine artery ligation at gestational day 19 in pregnant Sprague-Dawley dams. MR spectra were obtained from the cerebral cortex, hippocampus and striatum at P7 in IUGR (N = 12) and NG (N = 13) rats. In the cortex, IUGR resulted in lower concentrations of phosphocreatine, glutathione, taurine, total choline, total creatine (P < 0.01) and [glutamate]/[glutamine] ratio (P < 0.05). Lower taurine concentrations were observed in the hippocampus (P < 0.01) and striatum (P < 0.05). IUGR differentially affects the neurochemical profile of the P7 rat brain regions. Persistent neurochemical changes may lead to cortex-based long-term neurodevelopmental deficits in human IUGR infants.

  12. Degraded Auditory Processing in a Rat Model of Autism Limits the Speech Representation in Non-primary Auditory Cortex

    PubMed Central

    Engineer, C.T.; Centanni, T.M.; Im, K.W.; Borland, M.S.; Moreno, N.A.; Carraway, R.S.; Wilson, L.G.; Kilgard, M.P.

    2014-01-01

    Although individuals with autism are known to have significant communication problems, the cellular mechanisms responsible for impaired communication are poorly understood. Valproic acid (VPA) is an anticonvulsant that is a known risk factor for autism in prenatally exposed children. Prenatal VPA exposure in rats causes numerous neural and behavioral abnormalities that mimic autism. We predicted that VPA exposure may lead to auditory processing impairments which may contribute to the deficits in communication observed in individuals with autism. In this study, we document auditory cortex responses in rats prenatally exposed to VPA. We recorded local field potentials and multiunit responses to speech sounds in primary auditory cortex, anterior auditory field, ventral auditory field. and posterior auditory field in VPA exposed and control rats. Prenatal VPA exposure severely degrades the precise spatiotemporal patterns evoked by speech sounds in secondary, but not primary auditory cortex. This result parallels findings in humans and suggests that secondary auditory fields may be more sensitive to environmental disturbances and may provide insight into possible mechanisms related to auditory deficits in individuals with autism. PMID:24639033

  13. Progesterone receptor isoforms expression pattern in the rat brain during the estrous cycle.

    PubMed

    Guerra-Araiza, C; Cerbón, M A; Morimoto, S; Camacho-Arroyo, I

    2000-03-24

    Progesterone receptor (PR) isoforms expression was determined in the hypothalamus, the preoptic area, the hippocampus and the frontal cerebral cortex of the rat at 12:00 h on each day of the estrous cycle by using reverse transcription coupled to polymerase chain reaction. Rats under a 14:10 h light-dark cycle, with lights on at 06:00 h were used. We found that PR-B isoform was predominant in the hypothalamus, the preoptic area and the frontal cerebral cortex. Both PR isoforms were similarly expressed in the hippocampus. The highest PR-B expression was found on proestrus day in the hypothalamus; on metestrus in the preoptic area; and on diestrus in the frontal cortex. We observed no changes in PR isoforms expression in the hippocampus during the estrous cycle. These results indicate that PR isoforms expression is differentially regulated during the estrous cycle in distinct brain regions and that PR-B may be involved in progesterone actions upon the hypothalamus, the preoptic area and the frontal cortex of the rat.

  14. Lesions of the entorhinal cortex or fornix disrupt the context-dependence of fear extinction in rats.

    PubMed

    Ji, Jinzhao; Maren, Stephen

    2008-12-12

    Recent studies have shown that the hippocampus is critical for the context-dependent expression of extinguished fear memories. Here we used Pavlovian fear conditioning in rats to explore whether the entorhinal cortex and fornix, which are the major cortical and subcortical interfaces of the hippocampus, are also involved in the context-dependence of extinction. After pairing an auditory conditional stimulus (CS) with an aversive footshock (unconditional stimulus or US) in one context, rats received an extinction session in which the CS was presented without the US in another context. Conditional fear to the CS was then tested in either the extinction context or a third familiar context; freezing behavior served as the index of fear. Sham-operated rats exhibited little conditional freezing to the CS in the extinction context, but showed a robust renewal of fear when tested outside of the extinction context. In contrast, rats with neurotoxic lesions in the entorhinal cortex or electrolytic lesions in the fornix did not exhibit a renewal of fear when tested outside the extinction context. Impairments in freezing behavior to the auditory CS were not able to account for the observed results, insofar as rats with either entorhinal cortex or fornix lesions exhibited normal freezing behavior during the conditioning session. Thus, contextual memory retrieval requires not only the hippocampus proper, but also its cortical and subcortical interfaces.

  15. Single electrode micro-stimulation of rat auditory cortex: an evaluation of behavioral performance.

    PubMed

    Rousche, Patrick J; Otto, Kevin J; Reilly, Mark P; Kipke, Daryl R

    2003-05-01

    A combination of electrophysiological mapping, behavioral analysis and cortical micro-stimulation was used to explore the interrelation between the auditory cortex and behavior in the adult rat. Auditory discriminations were evaluated in eight rats trained to discriminate the presence or absence of a 75 dB pure tone stimulus. A probe trial technique was used to obtain intensity generalization gradients that described response probabilities to mid-level tones between 0 and 75 dB. The same rats were then chronically implanted in the auditory cortex with a 16 or 32 channel tungsten microwire electrode array. Implanted animals were then trained to discriminate the presence of single electrode micro-stimulation of magnitude 90 microA (22.5 nC/phase). Intensity generalization gradients were created to obtain the response probabilities to mid-level current magnitudes ranging from 0 to 90 microA on 36 different electrodes in six of the eight rats. The 50% point (the current level resulting in 50% detections) varied from 16.7 to 69.2 microA, with an overall mean of 42.4 (+/-8.1) microA across all single electrodes. Cortical micro-stimulation induced sensory-evoked behavior with similar characteristics as normal auditory stimuli. The results highlight the importance of the auditory cortex in a discrimination task and suggest that micro-stimulation of the auditory cortex might be an effective means for a graded information transfer of auditory information directly to the brain as part of a cortical auditory prosthesis.

  16. Monosialotetrahexosylganglioside Inhibits the Expression of p-CREB and NR2B in the Auditory Cortex in Rats with Salicylate-Induced Tinnitus.

    PubMed

    Song, Rui-Biao; Lou, Wei-Hua

    2015-01-01

    This study investigated the effects of monosialotetrahexosylganglioside (GM1) on the expression of N-methyl-D-aspartate receptor subunit 2B (NR2B) and phosphorylated (p)-cyclic AMP response element-binding protein (CREB) in the auditory cortex of rats with tinnitus. Tinnitus-like behavior in rats was tested with the gap prepulse inhibition of acoustic startle paradigm. We then investigated the NR2B mRNA and protein and p-CREB protein levels in the auditory cortex of tinnitus rats compared with normal rats. Rats treated for 4 days with salicylate exhibited tinnitus. NR2B mRNA and protein and p-CREB protein levels were upregulated in these animals, with expression returning to normal levels 14 days after cessation of treatment; baseline levels of NR2B and p-CREB were also restored by GM1 administration. These data suggest that chronic salicylate administration induces tinnitus via upregulation of p-CREB and NR2B expression, and that GM1 can potentially be used to treat tinnitus.

  17. Effect of prenatal protein malnutrition on long-term potentiation and BDNF protein expression in the rat entorhinal cortex after neocortical and hippocampal tetanization.

    PubMed

    Hernández, Alejandro; Burgos, Héctor; Mondaca, Mauricio; Barra, Rafael; Núñez, Héctor; Pérez, Hernán; Soto-Moyano, Rubén; Sierralta, Walter; Fernández, Victor; Olivares, Ricardo; Valladares, Luis

    2008-01-01

    Reduction of the protein content from 25 to 8% casein in the diet of pregnant rats results in impaired neocortical long-term potentiation (LTP) of the offspring together with lower visuospatial memory performance. The present study was aimed to investigate whether this type of maternal malnutrition could result in modification of plastic capabilities of the entorhinal cortex (EC) in the adult progeny. Unlike normal eutrophic controls, 55-60-day-old prenatally malnourished rats were unable to develop LTP in the medial EC to tetanizing stimulation delivered to either the ipsilateral occipital cortex or the CA1 hippocampal region. Tetanizing stimulation of CA1 also failed to increase the concentration of brain-derived neurotrophic factor (BDNF) in the EC of malnourished rats. Impaired capacity of the EC of prenatally malnourished rats to develop LTP and to increase BDNF levels during adulthood may be an important factor contributing to deficits in learning performance having adult prenatally malnourished animals.

  18. Effect of Prenatal Protein Malnutrition on Long-Term Potentiation and BDNF Protein Expression in the Rat Entorhinal Cortex after Neocortical and Hippocampal Tetanization

    PubMed Central

    Hernández, Alejandro; Burgos, Héctor; Mondaca, Mauricio; Barra, Rafael; Núñez, Héctor; Pérez, Hernán; Soto-Moyano, Rubén; Sierralta, Walter; Fernández, Victor; Olivares, Ricardo; Valladares, Luis

    2008-01-01

    Reduction of the protein content from 25 to 8% casein in the diet of pregnant rats results in impaired neocortical long-term potentiation (LTP) of the offspring together with lower visuospatial memory performance. The present study was aimed to investigate whether this type of maternal malnutrition could result in modification of plastic capabilities of the entorhinal cortex (EC) in the adult progeny. Unlike normal eutrophic controls, 55–60-day-old prenatally malnourished rats were unable to develop LTP in the medial EC to tetanizing stimulation delivered to either the ipsilateral occipital cortex or the CA1 hippocampal region. Tetanizing stimulation of CA1 also failed to increase the concentration of brain-derived neurotrophic factor (BDNF) in the EC of malnourished rats. Impaired capacity of the EC of prenatally malnourished rats to develop LTP and to increase BDNF levels during adulthood may be an important factor contributing to deficits in learning performance having adult prenatally malnourished animals. PMID:18604298

  19. Comparison of In Vitro- and Chorioallantoic Membrane (CAM)-Culture Systems for Cryopreserved Medulla-Contained Human Ovarian Tissue

    PubMed Central

    Isachenko, Vladimir; Mallmann, Peter; Petrunkina, Anna M.; Rahimi, Gohar; Nawroth, Frank; Hancke, Katharina; Felberbaum, Ricardo; Genze, Felicitas; Damjanoski, Ilija; Isachenko, Evgenia

    2012-01-01

    At present, there are three ways to determine effectively the quality of the cryopreservation procedure using ovarian tissue before the re-implantation treatment: evaluation of follicles after post-thawing xenotransplantation to SCID mouse, in-vitro culture in a large volume of culture medium under constant agitation and culture on embryonic chorio-allantoic membrane within a hen's eggs. The aim of this study was to compare the two methods, culture in vitro and culture on embryonic chorioallantoic membrane (CAM) of cryopreserved human ovarian medulla-contained and medulla-free cortex. Ovarian fragments were divided into small pieces (1.5–2.0×1.0–1.2×0.8–1.5) of two types, cortex with medulla and medulla-free cortex, frozen, thawed and randomly divided into the following four groups. Group 1: medulla-free cortex cultured in vitro for 8 days in large volume of medium with mechanical agitation, Group 2: medulla-containing cortex cultured in vitro, Group 3: medulla-free cortex cultured in CAM-system for 5 days, Group 4: medulla-containing cortex cultured in CAM-system. The efficacy of the tissue culture was evaluated by the development of follicles and by intensiveness of angiogenesis in the tissue (von Willebrand factor and Desmin). For Group 1, 2, 3 and 4, respectively 85%, 85%, 87% and 84% of the follicles were morphologically normal (P>0.1). The immunohistochemical analysis showed that angiogenesis detected by von Willebrand factor was lower in groups 1 and 3 (medulla-free cortex). Neo-vascularisation (by Desmin) was observed only in ovarian tissue of Group 4 (medulla-contained cortex after CAM-culture). It appears that the presence of medulla in ovarian pieces is beneficial for post-thaw development of cryopreserved human ovarian tissue. For medical practice it is recommended for evaluation of post-warming ovarian tissue to use the CAM-system as a valuable alternative to xenotransplantation and for cryopreservation of these tissues to prepare ovarian medulla-contained strips. PMID:22479331

  20. Comparative Analysis of the Subventricular Zone in Rat, Ferret and Macaque: Evidence for an Outer Subventricular Zone in Rodents

    PubMed Central

    Camacho, Jasmin; Antczak, Jared L.; Prakash, Anish N.; Cziep, Matthew E.; Walker, Anita I.; Noctor, Stephen C.

    2012-01-01

    The mammalian cerebral cortex arises from precursor cells that reside in a proliferative region surrounding the lateral ventricles of the developing brain. Recent work has shown that precursor cells in the subventricular zone (SVZ) provide a major contribution to prenatal cortical neurogenesis, and that the SVZ is significantly thicker in gyrencephalic mammals such as primates than it is in lissencephalic mammals including rodents. Identifying characteristics that are shared by or that distinguish cortical precursor cells across mammalian species will shed light on factors that regulate cortical neurogenesis and may point toward mechanisms that underlie the evolutionary expansion of the neocortex in gyrencephalic mammals. We immunostained sections of the developing cerebral cortex from lissencephalic rats, and from gyrencephalic ferrets and macaques to compare the distribution of precursor cell types in each species. We also performed time-lapse imaging of precursor cells in the developing rat neocortex. We show that the distribution of Pax6+ and Tbr2+ precursor cells is similar in lissencephalic rat and gyrencephalic ferret, and different in the gyrencephalic cortex of macaque. We show that mitotic Pax6+ translocating radial glial cells (tRG) are present in the cerebral cortex of each species during and after neurogenesis, demonstrating that the function of Pax6+ tRG cells is not restricted to neurogenesis. Furthermore, we show that Olig2 expression distinguishes two distinct subtypes of Pax6+ tRG cells. Finally we present a novel method for discriminating the inner and outer SVZ across mammalian species and show that the key cytoarchitectural features and cell types that define the outer SVZ in developing primates are present in the developing rat neocortex. Our data demonstrate that the developing rat cerebral cortex possesses an outer subventricular zone during late stages of cortical neurogenesis and that the developing rodent cortex shares important features with that of primates. PMID:22272298

  1. Comparative analysis of the subventricular zone in rat, ferret and macaque: evidence for an outer subventricular zone in rodents.

    PubMed

    Martínez-Cerdeño, Verónica; Cunningham, Christopher L; Camacho, Jasmin; Antczak, Jared L; Prakash, Anish N; Cziep, Matthew E; Walker, Anita I; Noctor, Stephen C

    2012-01-01

    The mammalian cerebral cortex arises from precursor cells that reside in a proliferative region surrounding the lateral ventricles of the developing brain. Recent work has shown that precursor cells in the subventricular zone (SVZ) provide a major contribution to prenatal cortical neurogenesis, and that the SVZ is significantly thicker in gyrencephalic mammals such as primates than it is in lissencephalic mammals including rodents. Identifying characteristics that are shared by or that distinguish cortical precursor cells across mammalian species will shed light on factors that regulate cortical neurogenesis and may point toward mechanisms that underlie the evolutionary expansion of the neocortex in gyrencephalic mammals. We immunostained sections of the developing cerebral cortex from lissencephalic rats, and from gyrencephalic ferrets and macaques to compare the distribution of precursor cell types in each species. We also performed time-lapse imaging of precursor cells in the developing rat neocortex. We show that the distribution of Pax6+ and Tbr2+ precursor cells is similar in lissencephalic rat and gyrencephalic ferret, and different in the gyrencephalic cortex of macaque. We show that mitotic Pax6+ translocating radial glial cells (tRG) are present in the cerebral cortex of each species during and after neurogenesis, demonstrating that the function of Pax6+ tRG cells is not restricted to neurogenesis. Furthermore, we show that Olig2 expression distinguishes two distinct subtypes of Pax6+ tRG cells. Finally we present a novel method for discriminating the inner and outer SVZ across mammalian species and show that the key cytoarchitectural features and cell types that define the outer SVZ in developing primates are present in the developing rat neocortex. Our data demonstrate that the developing rat cerebral cortex possesses an outer subventricular zone during late stages of cortical neurogenesis and that the developing rodent cortex shares important features with that of primates.

  2. Plasticity and alterations of trunk motor cortex following spinal cord injury and non-stepping robot and treadmill training.

    PubMed

    Oza, Chintan S; Giszter, Simon F

    2014-06-01

    Spinal cord injury (SCI) induces significant reorganization in the sensorimotor cortex. Trunk motor control is crucial for postural stability and propulsion after low thoracic SCI and several rehabilitative strategies are aimed at trunk stability and control. However little is known about the effect of SCI and rehabilitation training on trunk motor representations and their plasticity in the cortex. Here, we used intracortical microstimulation to examine the motor cortex representations of the trunk in relation to other representations in three groups of chronic adult complete low thoracic SCI rats: chronic untrained, treadmill trained (but 'non-stepping') and robot assisted treadmill trained (but 'non-stepping') and compared with a group of normal rats. Our results demonstrate extensive and significant reorganization of the trunk motor cortex after chronic adult SCI which includes (1) expansion and rostral displacement of trunk motor representations in the cortex, with the greatest significant increase observed for rostral (to injury) trunk, and slight but significant increase of motor representation for caudal (to injury) trunk at low thoracic levels in all spinalized rats; (2) significant changes in coactivation and the synergy representation (or map overlap) between different trunk muscles and between trunk and forelimb. No significant differences were observed between the groups of transected rats for the majority of the comparisons. However, (3) the treadmill and robot-treadmill trained groups of rats showed a further small but significant rostral migration of the trunk representations, beyond the shift caused by transection alone. We conclude that SCI induces a significant reorganization of the trunk motor cortex, which is not qualitatively altered by non-stepping treadmill training or non-stepping robot assisted treadmill training, but is shifted further from normal topography by the training. This shift may potentially make subsequent rehabilitation with stepping longer or less successful. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. High-order motor cortex in rats receives somatosensory inputs from the primary motor cortex via cortico-cortical pathways.

    PubMed

    Kunori, Nobuo; Takashima, Ichiro

    2016-12-01

    The motor cortex of rats contains two forelimb motor areas; the caudal forelimb area (CFA) and the rostral forelimb area (RFA). Although the RFA is thought to correspond to the premotor and/or supplementary motor cortices of primates, which are higher-order motor areas that receive somatosensory inputs, it is unknown whether the RFA of rats receives somatosensory inputs in the same manner. To investigate this issue, voltage-sensitive dye (VSD) imaging was used to assess the motor cortex in rats following a brief electrical stimulation of the forelimb. This procedure was followed by intracortical microstimulation (ICMS) mapping to identify the motor representations in the imaged cortex. The combined use of VSD imaging and ICMS revealed that both the CFA and RFA received excitatory synaptic inputs after forelimb stimulation. Further evaluation of the sensory input pathway to the RFA revealed that the forelimb-evoked RFA response was abolished either by the pharmacological inactivation of the CFA or a cortical transection between the CFA and RFA. These results suggest that forelimb-related sensory inputs would be transmitted to the RFA from the CFA via the cortico-cortical pathway. Thus, the present findings imply that sensory information processed in the RFA may be used for the generation of coordinated forelimb movements, which would be similar to the function of the higher-order motor cortex in primates. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  4. Neuropathological changes in brain cortex and hippocampus in a rat model of Alzheimer's disease.

    PubMed

    Nobakht, Maliheh; Hoseini, Seyed Mohammad; Mortazavi, Pejman; Sohrabi, Iraj; Esmailzade, Banafshe; Rahbar Rooshandel, Nahid; Omidzahir, Shila

    2011-01-01

    Alzheimer's disease (AD) is a neurodegenerative disorder with progressive loss of cognitive abilities and memory loss. The aim of this study was to compare neuropathological changes in hippocampus and brain cortex in a rat model of AD. Adult male Albino Wistar rats (weighing 250-300 g) were used for behavioral and histopathological studies. The rats were randomly assigned to three groups: control, sham and Beta amyloid (ABeta) injection. For behavioral analysis, Y-maze and shuttle box were used, respectively at 14 and 16 days post-lesion. For histological studies, Nissl, modified Bielschowsky and modified Congo red staining were performed. The lesion was induced by injection of 4 muL of ABeta (1-40) into the hippocampal fissure. In the present study, ABeta (1-40) injection into hippocampus could decrease the behavioral indexes and the number of CA1 neurons in hippocampus. ABeta injection CA1 caused ABeta deposition in the hippocampus and less than in cortex. We observed the loss of neurons in the hippocampus and cerebral cortex and certain subcortical regions. Y-maze test and single-trial passive avoidance test showed reduced memory retention in AD group. We found a significant decreased acquisition of passive avoidance and alternation behavior responses in AD group compared to control and sham group (P<0.0001). Compacted amyloid cores were present in the cerebral cortex, hippocampus and white matter, whereas, scattered amyloid cores were seen in cortex and hippocampus of AD group. Also, reduced neuronal density was indicated in AD group.

  5. The painful muse: migrainous artistic archetypes from visual cortex.

    PubMed

    Aguggia, Marco; Grassi, Enrico

    2014-05-01

    Neurological diseases which constituted traditionally obstacles to artistic creation can, in the case of migraine, be transformed by the artists into a source of inspiration and artistic production. These phenomena represent a chapter of a broader embryonic neurobiology of painting.

  6. Possible involvements of glutamate and adrenergic receptors on acute toxicity of methylphenidate in isolated hippocampus and cerebral cortex of adult rats.

    PubMed

    Motaghinejad, Majid; Motevalian, Manijeh; Shabab, Behnaz

    2017-04-01

    Neurodegeneration induced by methylphenidate (MPH), as a central stimulant with unknown long-term consequences, in adult rats' brain and the possible mechanisms involved were studied. Rats were acutely treated with MPH in the presence and absence of some receptor antagonists such as ketamine, topiramate, yohimbine, and haloperidol. Motor activity and anxiety level in rats were monitored. Antioxidant and inflammatory parameters were also measured in isolated hippocampus and cerebral cortex. MPH-treated groups (10 and 20 mg/kg) demonstrated anxiety-like behavior and increased motor activity. MPH significantly increased lipid peroxidation, GSSG content, IL-1β and TNF-α levels in isolated tissues, and also significantly reduced GSH content, superoxide dismutase (SOD), glutathione peroxidase (GPx), and glutathione reductase (GR) activities in hippocampus and cerebral cortex. Pretreatment of animals by receptor antagonists caused inhibition of MPH-induced motor activity disturbances and anxiety-like behavior. Pretreatment of animals by ketamine, topiramate, and yohimbine inhibited the MPH-induced oxidative stress and inflammation; it significantly decreased lipid peroxidation, GSSG level, IL-1β and TNF-α levels and increased GSH content, SOD, GPx, and GR activities in hippocampus and cerebral cortex of acutely MPH-treated rats. Pretreatment with haloperidol did not cause any change in MPH-induced oxidative stress and inflammation. In conclusion, acute administration of high doses of MPH can cause oxidative and inflammatory changes in brain cells and induce neurodegeneration in hippocampus and cerebral cortex of adult rats and these changes might probably be mediated by glutamate (NMDA or AMPA) and/or α 2 -adrenergic receptors. © 2016 Société Française de Pharmacologie et de Thérapeutique.

  7. [Effects of electromagnetic pulse on blood-brain barrier permeability and tight junction proteins in rats].

    PubMed

    Qiu, Lian-bo; Ding, Gui-rong; Zhang, Ya-mei; Zhou, Yan; Wang, Xiao-wu; Li, Kang-chu; Xu, Sheng-long; Tan, Juan; Zhou, Jia-xing; Guo, Guo-zhen

    2009-09-01

    To study the effect of electromagnetic pulse (EMP) on the permeability of blood-brain barrier, tight junction (TJ)-associated protein expression and localization in rats. 66 male SD rats, weighing (200 approximately 250) g, were sham or whole-body exposed to EMP at 200 kV/m for 200 pulses. The repetition rate was 1 Hz. The permeability of the blood-brain barrier in rats was assessed by albumin immunohistochemistry. The expression of typical tight junction protein ZO-1 and occludin in both cerebral cortex homogenate and cerebral cortex microvessel homogenate was analyzed by the Western blotting and the distribution of ZO-1 and occludin was examined by immunofluorescence microscopy. In the sham exposure rats, no brain capillaries showed albumin leakage, at 0.5 h after 200 kV/m EMP exposure for 200 pulses; a few brain capillaries with extravasated serum albumin was found, with the time extended, the number of brain capillaries with extravasated serum albumin increased, and reached the peak at 3 h, then began to recover at 6 h. In addition, no change in the distribution of the occludin was found after EMP exposure. Total occludin expression had no significant change compared with the control. However, the expression level of ZO-1 significantly decreased at 1 h and 3 h after EMP exposure in both cerebral cortex homogenate and cerebral cortex microvessel homogenate. Furthermore, immunofluorescence studies also showed alterations in ZO-1 protein localization in cerebral cortex microvessel. The EMP exposure (200 kV/m, 200 pulses) could increase blood-brain barrier permeability in rat, and this change is associated with specific alterations in tight junction protein ZO-1.

  8. The Cytoarchitecture of the Inferior Colliculus Revisited

    PubMed Central

    Loftus, William C.; Malmierca, Manuel S.; Bishop, Deborah C.; Oliver, Douglas L.

    2008-01-01

    The inferior colliculus (IC) is the major component of the auditory midbrain and contains three major subdivisions: a central nucleus, a dorsal cortex, and a lateral cortex (LC). Discrepancies in the nomenclature and parcellation of the LC in the rat and cat seem to imply different, species-specific functions for this region. To establish a comparable parcellation of the LC for both rat and cat, we investigated the histochemistry and inputs of the LC. In both species, the deep lateral cortex is marked by a transition between the NADPH-d rich superficial cortex and a cytochrome oxidase rich central nucleus. In both species, focal injections of anterograde tracers in the cochlear nucleus at sites of known best frequency produced bands of labeled inputs in two different subdivisions of the IC. A medial band of axons terminated in the central nucleus, while shorter bands were located laterally and oriented nearly perpendicularly to the medial bands. In the rat, these lateral bands were located in the third, deepest layer of the lateral (external) cortex. In the cat, the bands were located in a region that was previously ascribed to the central nucleus, but now considered to belong to the third, deepest layer of the LC, the ventrolateral nucleus. In both species, the LC inputs had a tonotopic organization. In view of this parallel organization, we propose a common parcellation of the IC for rat and cat with a new nomenclature. The deep layer of the LC, previously referred to as layer 3 in the rat, is designated as the ‘ventrolateral nucleus’ of the LC, making it clear that this region is thought to be homologous with the ventrolateral nucleus in the cat. The similar organization of the LC implies that this subdivision of the IC has similar functions in cats and rats. PMID:18313229

  9. Changes in acetylcholinesterase, Na+,K+-ATPase, and Mg2+-ATPase activities in the frontal cortex and the hippocampus of hyper- and hypothyroid adult rats.

    PubMed

    Carageorgiou, Haris; Pantos, Constantinos; Zarros, Apostolos; Stolakis, Vasileios; Mourouzis, Iordanis; Cokkinos, Dennis; Tsakiris, Stylianos

    2007-08-01

    The thyroid hormones (THs) are crucial determinants of normal development and metabolism, especially in the central nervous system. The metabolic rate is known to increase in hyperthyroidism and decrease in hypothyroidism. The aim of this work was to investigate how changes in metabolism induced by THs could affect the activities of acetylcholinesterase (AChE), (Na+,K+)- and Mg2+-adenosinetriphosphatase (ATPase) in the frontal cortex and the hippocampus of adult rats. Hyperthyroidism was induced by subcutaneous administration of thyroxine (25 microg/100 g body weight) once daily for 14 days, and hypothyroidism was induced by oral administration of propylthiouracil (0.05%) for 21 days. All enzyme activities were evaluated spectrophotometrically in the homogenated brain regions of 10 three-animal pools. A region-specific behavior was observed concerning the examined enzyme activities in hyper- and hypothyroidism. In hyperthyroidism, AChE activity was significantly increased only in the hippocampus (+22%), whereas Na+,K+-ATPase activity was significantly decreased in the hyperthyroid rat hippocampus (-47%) and remained unchanged in the frontal cortex. In hypothyroidism, AChE activity was significantly decreased in the frontal cortex (-23%) and increased in the hippocampus (+21%). Na+,K+-ATPase activity was significantly decreased in both the frontal cortex (-35%) and the hippocampus (-43%) of hypothyroid rats. Mg2+-ATPase remained unchanged in the regions of both hyper- and hypothyroid rat brains. Our data revealed that THs affect the examined adult rat brain parameters in a region- and state-specific way. The TH-reduced Na+,K+-ATPase activity may increase the synaptic acetylcholine release and, thus, modulate AChE activity. Moreover, the above TH-induced changes may affect the monoamine neurotransmitter systems in the examined brain regions.

  10. Production rates and turnover of triiodothyronine in rat-developing cerebral cortex and cerebellum. Responses to hypothyroidism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silva, J.E.; Matthews, P.S.

    1984-09-01

    Local 5'-deiodination of serum thyroxine (T4) is the main source of triiodothyronine (T3) for the brain. Since we noted in previous studies that the cerebral cortex of neonatal rats tolerated marked reductions in serum T4 without biochemical hypothyroidism, we examined the in vivo T4 and T3 metabolism in that tissue and in the cerebellum of euthyroid and hypothyroid 2-wk-old rats. We also assessed the contribution of enhanced tissue T4 to T3 conversion and decreased T3 removal from the tissues to the T3 homeostasis in hypothyroid brain. Congenital and neonatal hypothyroidism was induced by adding methimazole to the drinking water. Serum,more » cerebral cortex (Cx), cerebellum (Cm), liver (L) and kidney (R) concentrations of 125I-T4, 125I-T3(T4), and 131I-T3 were measured at various times after injecting 125I-T4 and 131I-T3. The rate of T3 removal from the tissues was measured after injecting an excess of anti-T3-antibody to rats previously injected with tracer T3. In hypothyroidism, the fractional removal rates and clearances were reduced in all tissues, in cortex and cerebellum by 70%, and in liver and kidney ranging from 30 to 50%. While greater than 80% of the 125I-T3(T4) in the brain tissues of euthyroid rats was locally produced, in hypothyroid cerebral cortex and cerebellum the integrated concentrations of 125I-T3(T4) were 2.7- and 1.5-fold greater than in euthyroid rats.« less

  11. After-effects of anodal transcranial direct current stimulation on the excitability of the motor cortex in rats.

    PubMed

    Koo, Ho; Kim, Min Sun; Han, Sang Who; Paulus, Walter; Nitche, Michael A; Kim, Yun-Hee; Kim, Hyoung-Ihl; Ko, Sung-Hwa; Shin, Yong-Il

    2016-09-21

    Transcranial direct current stimulation (tDCS) is increasingly seen as a useful tool for noninvasive cortical neuromodulation. A number of studies in humans have shown that when tDCS is applied to the motor cortex it can modulate cortical excitability. It is especially interesting to note that when applied with sufficient duration and intensity, tDCS can enable long-lasting neuroplastic effects. However, the mechanism by which tDCS exerts its effects on the cortex is not fully understood. We investigated the effects of anodal tDCS under urethane anesthesia on field potentials in in vivo rats. These were measured on the skull over the right motor cortex of rats immediately after stimulating the left corpus callosum. Evoked field potentials in the motor cortex were gradually increased for more than one hour after anodal tDCS. To induce these long-lasting effects, a sufficient duration of stimulation (20 minutes or more) was found to may be required rather than high stimulation intensity. We propose that anodal tDCS with a sufficient duration of stimulation may modulate transcallosal plasticity.

  12. Late emergence of the vibrissa direction selectivity map in the rat barrel cortex.

    PubMed

    Kremer, Yves; Léger, Jean-François; Goodman, Dan; Brette, Romain; Bourdieu, Laurent

    2011-07-20

    In the neocortex, neuronal selectivities for multiple sensorimotor modalities are often distributed in topographical maps thought to emerge during a restricted period in early postnatal development. Rodent barrel cortex contains a somatotopic map for vibrissa identity, but the existence of maps representing other tactile features has not been clearly demonstrated. We addressed the issue of the existence in the rat cortex of an intrabarrel map for vibrissa movement direction using in vivo two-photon imaging. We discovered that the emergence of a direction map in rat barrel cortex occurs long after all known critical periods in the somatosensory system. This map is remarkably specific, taking a pinwheel-like form centered near the barrel center and aligned to the barrel cortex somatotopy. We suggest that this map may arise from intracortical mechanisms and demonstrate by simulation that the combination of spike-timing-dependent plasticity at synapses between layer 4 and layer 2/3 and realistic pad stimulation is sufficient to produce such a map. Its late emergence long after other classical maps suggests that experience-dependent map formation and refinement continue throughout adult life.

  13. Effects of Ethanol on the Expression Level of Various BDNF mRNA Isoforms and Their Encoded Protein in the Hippocampus of Adult and Embryonic Rats

    PubMed Central

    Shojaei, Shahla; Ghavami, Saeid; Panjehshahin, Mohammad Reza; Owji, Ali Akbar

    2015-01-01

    We aimed to compare the effects of oral ethanol (Eth) alone or combined with the phytoestrogen resveratrol (Rsv) on the expression of various brain-derived neurotrophic factor (BDNF) transcripts and the encoded protein pro-BDNF in the hippocampus of pregnant and embryonic rats. A low (0.25 g/kg body weight (BW)/day) dose of Eth produced an increase in the expression of BDNF exons I, III and IV and a decrease in that of the exon IX in embryos, but failed to affect BDNF transcript and pro-BDNF protein expression in adults. However, co-administration of Eth 0.25 g/kg·BW/day and Rsv led to increased expression of BDNF exons I, III and IV and to a small but significant increase in the level of pro-BDNF protein in maternal rats. A high (2.5 g/kg·BW/day) dose of Eth increased the expression of BDNF exons III and IV in embryos, but it decreased the expression of exon IX containing BDNF mRNAs in the maternal rats. While the high dose of Eth alone reduced the level of pro-BDNF in adults, it failed to change the levels of pro-BDNF in embryos. Eth differentially affects the expression pattern of BDNF transcripts and levels of pro-BDNF in the hippocampus of both adult and embryonic rats. PMID:26703578

  14. Density gradient electrophoresis of cultured human embryonic kidney cells

    NASA Technical Reports Server (NTRS)

    Plank, L. D.; Kunze, M. E.; Giranda, V.; Todd, P. W.

    1985-01-01

    Ground based confirmation of the electrophoretic heterogeneity of human embryonic kidney cell cultures, the general characterization of their electrophoretic migration, and observations on the general properties of cultures derived from electrophoretic subpopulations were studied. Cell migration in a density gradient electrophoresis column and cell electrophoretic mobility was determined. The mobility and heterogeneity of cultured human embryonic kidney cells with those of fixed rat erythrocytes as model test particle was compared. Electrophoretically separated cell subpopulations with respect to size, viability, and culture characteristics were examined.

  15. Prefrontal Cortex Lesions and Sex Differences in Fear Extinction and Perseveration

    ERIC Educational Resources Information Center

    Baran, Sarah E.; Armstrong, Charles E.; Niren, Danielle C.; Conrad, Cheryl D.

    2010-01-01

    Electrolytic lesions of the medial prefrontal cortex (PFCX) were examined using fear conditioning to assess the recall of fear extinction and performance in the Y-maze, open field, and object location/recognition in male and female Sprague-Dawley rats. Rats were conditioned to seven tone/footshocks, followed by extinction after 1-h and 24-h…

  16. Contralateral Disconnection of the Rat Prelimbic Cortex and Dorsomedial Striatum Impairs Cue-Guided Behavioral Switching

    ERIC Educational Resources Information Center

    Baker, Phillip M.; Ragozzino, Michael E.

    2014-01-01

    Switches in reward outcomes or reward-predictive cues are two fundamental ways in which information is used to flexibly shift response patterns. The rat prelimbic cortex and dorsomedial striatum support behavioral flexibility based on a change in outcomes. The present experiments investigated whether these two brain regions are necessary for…

  17. Molecular Correlates of Cortical Network Modulation by Long-Term Sensory Experience in the Adult Rat Barrel Cortex

    ERIC Educational Resources Information Center

    Vallès, Astrid; Granic, Ivica; De Weerd, Peter; Martens, Gerard J. M.

    2014-01-01

    Modulation of cortical network connectivity is crucial for an adaptive response to experience. In the rat barrel cortex, long-term sensory stimulation induces cortical network modifications and neuronal response changes of which the molecular basis is unknown. Here, we show that long-term somatosensory stimulation by enriched environment…

  18. Environmental Enrichment Alters Neurotrophin Levels After Fetal Alcohol Exposure in Rats

    PubMed Central

    Parks, Elizabeth A.; McMechan, Andrew P.; Hannigan, John H.; Berman, Robert F.

    2014-01-01

    Background Prenatal alcohol exposure causes abnormal brain development, leading to behavioral deficits, some of which can be ameliorated by environmental enrichment. As both environmental enrichment and prenatal alcohol exposure can individually alter neurotrophin expression, we studied the interaction of prenatal alcohol and postweaning environmental enrichment on brain neurotrophin levels in rats. Methods Pregnant rats received alcohol by gavage, 0, 4, or 6 g / kg / d (Zero, Low, or High groups), or no treatment (Naïve group), on gestational days 8 to 20. After weaning on postnatal day 21, offspring were housed for 6 weeks in Isolated, Social, or Enriched conditions. Levels of nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and neurotrophin-3 (NT-3) were then measured in frontal cortex, occipital cortex, hippocampus, and cerebellar vermis. Results Prenatal alcohol exposure increased NGF levels in frontal cortex (High-dose group) and cerebellar vermis (High- and Low-dose groups); increased BDNF in frontal cortex, occipital cortex and hippocampus (Low-dose groups), and increased NT-3 in hippocampus and cerebellar vermis (High-dose). Environmental enrichment resulted in lower NGF, BDNF, and NT-3 levels in occipital cortex and lower NGF in frontal cortex. The only significant interaction between prenatal alcohol treatment and environment was in cerebellar vermis where NT-3 levels were higher for enriched animals after prenatal alcohol exposure, but not for animals housed under Isolated or Social conditions. Conclusions Both prenatal alcohol exposure and postweaning housing conditions alter brain neurotrophin levels, but the effects appear to be largely independent. Although environmental enrichment can improve functional outcomes, these results do not provide strong support for the hypothesis that rearing in a complex environment ameliorates prenatal alcohol effects on brain neurotrophin levels in rats. PMID:18652597

  19. Resting-state Functional Magnetic Resonance Imaging Analysis of Brain Functional Activity in Rats with Ischemic Stroke Treated by Electro-acupuncture.

    PubMed

    Liang, Shengxiang; Lin, Yunjiao; Lin, Bingbing; Li, Jianhong; Liu, Weilin; Chen, Lidian; Zhao, Shujun; Tao, Jing

    2017-09-01

    To evaluate whether electro-acupuncture (EA) treatment at acupoints of Zusanli (ST 36) and Quchi (LI 11) could reduce motor impairments and enhance brain functional recovery in rats with ischemic stroke. A rat model of middle cerebral artery occlusion (MCAO) was established. EA at ST 36 and LI 11was started at 24 hours (MCAO + EA group) after ischemic stroke. The nontreatment (MCAO) and sham-operated control (SC) groups were included as controls. The neurologic deficits of all groups were assessed by Zea Longa scores and the modified neurologic severity scores on 24 hours and 8 days after MCAO. To further investigate the effect of EA on infract volume and brain function, magnetic resonance imaging was used to estimate the brain lesion and brain neural activities of each group at 8 days after ischemic stroke. Within 1 week after EA treatment, the neurologic deficits were significantly alleviated, and the cerebral infarctions were improved, including visual cortex, motor cortex, striatum, dorsal thalamus, and hippocampus. Furthermore, whole brain neural activities of auditory cortex, lateral nucleus group of dorsal thalamus, hippocampus, motor cortex, orbital cortex, sensory cortex, and striatum were decreased in MCAO group, whereas that of brain neural activities were increased after EA treatment, suggesting these brain regions are in accordance with the brain structure analysis. EA at ST 36 and LI 11 could enhance the neural activity of motor function-related brain regions, including motor cortex, dorsal thalamus, and striatum in rats, which is a potential treatment for ischemia stroke. Copyright © 2017 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  20. Influence of demineralized bone matrix's embryonic origin on bone formation: an experimental study in rats.

    PubMed

    Stavropoulos, Andreas; Kostopoulos, Lambros; Mardas, Nicolaos; Karring, Thorkild

    2003-01-01

    There are results suggesting that differences regarding bone-inducing potential, in terms of amount and/or rate of bone formation, exist between demineralized bone matrices (DBMs) of different embryonic origins. The aim of the present study was to examine whether the embryonic origin of DBM affects bone formation when used as an adjunct to guided tissue regeneration (GTR). Endomembranous (EM) and endochondral (ECH) DBMs were produced from calvarial and long bones of rats, respectively. Prior to the study the osteoinductive properties of the DBMs were confirmed in six rats following intramuscular implantation. Following surgical exposure of the mandibular ramus, a rigid hemispheric Teflon capsule loosely packed with a standardized quantity of DBM was placed with its open part facing the lateral surface of the ramus in both sides of the jaw in 30 rats. In one side of the jaw, chosen at random, the capsule was filled with EM-DBM, whereas in the other side ECH-DBM was used. Groups of 10 animals were sacrificed after healing periods of 1, 2, and 4 months, and undecalcified sections of the capsules were produced and subjected to histologic analysis and computer-assisted planimetric measurements. During the experiment increasing amounts of newly formed bone were observed inside the capsules in both sides of the animals' jaws. Limited bone formation was observed in the 1- and 2-month specimens, but after 4 months of healing, the newly formed bone in the ECH-DBM grafted sides occupied 59.1% (range 45.6-74.7%) of the area created by the capsule versus 46.9% (range 23.0-64.0%) in the EM-DBM grafted sides (p =.01). It is concluded that the embryonic origin of DBM influences bone formation by GTR and that ECH-DBM is superior to EM-DBM.

  1. Recurrent Moderate Hypoglycemia Suppresses Brain-Derived Neurotrophic Factor Expression in the Prefrontal Cortex and Impairs Sensorimotor Gating in the Post-Hypoglycemia Period in Young Rats

    PubMed Central

    Rao, Raghavendra; Ennis, Kathleen; Mitchell, Eugena P.; Tran, Phu V.; Gewirtz, Jonathan C.

    2016-01-01

    Recurrent hypoglycemia is common in infants and children. In developing rat models, recurrent moderate hypoglycemia leads to neuronal injury in the medial prefrontal cortex. To understand the effects beyond neuronal injury, three-week-old male rats were subjected to five episodes of moderate hypoglycemia (blood glucose concentration, approximately 30 mg/dl for 90 min) once daily from postnatal day 24 to 28. Neuronal injury was determined using Fluoro-jade B histochemistry on postnatal day 29. The effects on brain-derived neurotrophic factor (BDNF) and its cognate receptor, tyrosine kinase B (TrkB) expression, which is critical for prefrontal cortex development, were determined on postnatal day 29 and at adulthood. The effects on prefrontal cortex-mediated function were determined by assessing prepulse inhibition of the acoustic startle reflex on postnatal day 29 and two weeks later, and by testing for fear-potentiated startle at adulthood. Recurrent hypoglycemia led to neuronal injury confined primarily to the medial prefrontal cortex. BDNF and TrkB expression in the prefrontal cortex was suppressed on postnatal day 29 and was accompanied by lower prepulse inhibition, suggesting impaired sensorimotor gating. Following the cessation of recurrent hypoglycemia, prepulse inhibition had recovered at two weeks. BDNF/TrkB expression in the prefrontal cortex had normalized and fear-potentiated startle was intact at adulthood. Recurrent moderate hypoglycemia during development has significant adverse effects on the prefrontal cortex in the post-hypoglycemia period. PMID:26820887

  2. Rats, cats, and elephants, but still no unicorn: induced pluripotent stem cells from new species.

    PubMed

    Trounson, Alan

    2009-01-09

    Two independent studies in this issue of Cell Stem Cell (Liao et al., 2009; Li et al., 2009) derive rat induced pluripotent stem cells (iPSCs). In one report, the method used results in rat and human iPSCs that exhibit phenotypic traits similar to mouse embryonic stem cells.

  3. Dysfunction in Fatty Acid Amide Hydrolase Is Associated with Depressive-Like Behavior in Wistar Kyoto Rats

    PubMed Central

    Vinod, K. Yaragudri; Xie, Shan; Psychoyos, Delphine; Hungund, Basalingappa L.; Cooper, Thomas B.; Tejani-Butt, Shanaz M.

    2012-01-01

    Background While the etiology of depression is not clearly understood at the present time, this mental disorder is thought be a complex and multifactorial trait with important genetic and environmental contributing factors. Methodology/Principal Findings The role of the endocannabinoid (eCB) system in depressive behavior was examined in Wistar Kyoto (WKY) rat strain, a genetic model of depression. Our findings revealed selective abnormalities in the eCB system in the brains of WKY rats compared to Wistar (WIS) rats. Immunoblot analysis indicated significantly higher levels of fatty acid amide hydrolase (FAAH) in frontal cortex and hippocampus of WKY rats with no alteration in the level of N-arachidonyl phosphatidyl ethanolamine specific phospholipase-D (NAPE-PLD). Significantly higher levels of CB1 receptor-mediated G-protein coupling and lower levels of anandamide (AEA) were found in frontal cortex and hippocampus of WKY rats. While the levels of brain derived neurotropic factor (BDNF) were significantly lower in frontal cortex and hippocampus of WKY rats compared to WIS rats, pharmacological inhibition of FAAH elevated BDNF levels in WKY rats. Inhibition of FAAH enzyme also significantly increased sucrose consumption and decreased immobility in the forced swim test in WKY rats. Conclusions/Significance These findings suggest a critical role for the eCB system and BDNF in the genetic predisposition to depressive-like behavior in WKY rats and point to the potential therapeutic utility of eCB enhancing agents in depressive disorder. PMID:22606285

  4. Dysfunction in fatty acid amide hydrolase is associated with depressive-like behavior in Wistar Kyoto rats.

    PubMed

    Vinod, K Yaragudri; Xie, Shan; Psychoyos, Delphine; Hungund, Basalingappa L; Cooper, Thomas B; Tejani-Butt, Shanaz M

    2012-01-01

    While the etiology of depression is not clearly understood at the present time, this mental disorder is thought be a complex and multifactorial trait with important genetic and environmental contributing factors. The role of the endocannabinoid (eCB) system in depressive behavior was examined in Wistar Kyoto (WKY) rat strain, a genetic model of depression. Our findings revealed selective abnormalities in the eCB system in the brains of WKY rats compared to Wistar (WIS) rats. Immunoblot analysis indicated significantly higher levels of fatty acid amide hydrolase (FAAH) in frontal cortex and hippocampus of WKY rats with no alteration in the level of N-arachidonyl phosphatidyl ethanolamine specific phospholipase-D (NAPE-PLD). Significantly higher levels of CB1 receptor-mediated G-protein coupling and lower levels of anandamide (AEA) were found in frontal cortex and hippocampus of WKY rats. While the levels of brain derived neurotropic factor (BDNF) were significantly lower in frontal cortex and hippocampus of WKY rats compared to WIS rats, pharmacological inhibition of FAAH elevated BDNF levels in WKY rats. Inhibition of FAAH enzyme also significantly increased sucrose consumption and decreased immobility in the forced swim test in WKY rats. These findings suggest a critical role for the eCB system and BDNF in the genetic predisposition to depressive-like behavior in WKY rats and point to the potential therapeutic utility of eCB enhancing agents in depressive disorder.

  5. Trunk Robot Rehabilitation Training with Active Stepping Reorganizes and Enriches Trunk Motor Cortex Representations in Spinal Transected Rats

    PubMed Central

    Oza, Chintan S.

    2015-01-01

    Trunk motor control is crucial for postural stability and propulsion after low thoracic spinal cord injury (SCI) in animals and humans. Robotic rehabilitation aimed at trunk shows promise in SCI animal models and patients. However, little is known about the effect of SCI and robot rehabilitation of trunk on cortical motor representations. We previously showed reorganization of trunk motor cortex after adult SCI. Non-stepping training also exacerbated some SCI-driven plastic changes. Here we examine effects of robot rehabilitation that promotes recovery of hindlimb weight support functions on trunk motor cortex representations. Adult rats spinal transected as neonates (NTX rats) at the T9/10 level significantly improve function with our robot rehabilitation paradigm, whereas treadmill-only trained do not. We used intracortical microstimulation to map motor cortex in two NTX groups: (1) treadmill trained (control group); and (2) robot-assisted treadmill trained (improved function group). We found significant robot rehabilitation-driven changes in motor cortex: (1) caudal trunk motor areas expanded; (2) trunk coactivation at cortex sites increased; (3) richness of trunk cortex motor representations, as examined by cumulative entropy and mutual information for different trunk representations, increased; (4) trunk motor representations in the cortex moved toward more normal topography; and (5) trunk and forelimb motor representations that SCI-driven plasticity and compensations had caused to overlap were segregated. We conclude that effective robot rehabilitation training induces significant reorganization of trunk motor cortex and partially reverses some plastic changes that may be adaptive in non-stepping paraplegia after SCI. PMID:25948267

  6. A radial map of multi-whisker correlation selectivity in the rat barrel cortex

    PubMed Central

    Estebanez, Luc; Bertherat, Julien; Shulz, Daniel E.; Bourdieu, Laurent; Léger, Jean- François

    2016-01-01

    In the barrel cortex, several features of single-whisker stimuli are organized in functional maps. The barrel cortex also encodes spatio-temporal correlation patterns of multi-whisker inputs, but so far the cortical mapping of neurons tuned to such input statistics is unknown. Here we report that layer 2/3 of the rat barrel cortex contains an additional functional map based on neuronal tuning to correlated versus uncorrelated multi-whisker stimuli: neuron responses to uncorrelated multi-whisker stimulation are strongest above barrel centres, whereas neuron responses to correlated and anti-correlated multi-whisker stimulation peak above the barrel–septal borders, forming rings of multi-whisker synchrony-preferring cells. PMID:27869114

  7. A radial map of multi-whisker correlation selectivity in the rat barrel cortex.

    PubMed

    Estebanez, Luc; Bertherat, Julien; Shulz, Daniel E; Bourdieu, Laurent; Léger, Jean-François

    2016-11-21

    In the barrel cortex, several features of single-whisker stimuli are organized in functional maps. The barrel cortex also encodes spatio-temporal correlation patterns of multi-whisker inputs, but so far the cortical mapping of neurons tuned to such input statistics is unknown. Here we report that layer 2/3 of the rat barrel cortex contains an additional functional map based on neuronal tuning to correlated versus uncorrelated multi-whisker stimuli: neuron responses to uncorrelated multi-whisker stimulation are strongest above barrel centres, whereas neuron responses to correlated and anti-correlated multi-whisker stimulation peak above the barrel-septal borders, forming rings of multi-whisker synchrony-preferring cells.

  8. Adrenal hormones interact with sympathetic innervation to modulate growth of embryonic heart in oculo.

    PubMed

    Tucker, D C; Torres, A

    1992-02-01

    To allow experimental manipulation of adrenal hormone and autonomic influences on developing myocardium without alteration of hemodynamic load, embryonic rat heart was cultured in the anterior eye chamber of an adult rat. Sympathetic innervation of embryonic day 12 heart grafts was manipulated by surgical sympathectomy of one eye chamber in each host rat. Adrenal hormone exposure was manipulated by host adrenal medullectomy (MEDX) in experiment 1 and by host adrenalectomy (ADX) in experiment 2. In experiment 1, whole heart grafts were larger in MEDX than in sham-operated hosts by 8 wk in oculo (6.14 +/- 0.71 vs. 5.09 +/- 0.69 mm2 with innervation intact and 7.97 +/- 2.07 vs. 3.09 +/- 0.63 mm2 with sympathetic innervation prevented). In experiment 2, host ADX increased growth of embryonic day 12 ventricles grafted into sympathectomized eye chambers (0.69 +/- 0.10 vs. 0.44 +/- 0.04 mm2) but did not affect growth of grafts in intact eye chambers (0.85 +/- 0.09 vs. 1.05 +/- 0.15 mm2). Corticosterone replacement (4 mg/day) entirely reversed the effect of host ADX on graft growth (superior cervical ganglionectomy, 0.47 +/- 0.03 mm2; intact eye chambers, 0.90 +/- 0.91 mm2). Beating rate of grafts was not affected by adrenal hormone manipulations. These experiments indicate that the compromised growth of embryonic heart grafts placed in sympathectomized eye chambers requires exposure to adult levels of glucocorticoids during the early days after grafting. These results suggest that interactions between neural and hormonal stimulation influence cardiac growth in the in oculo culture system and during normal development.

  9. Bone matrix calcification during embryonic and postembryonic rat calvarial development assessed by SEM-EDX spectroscopy, XRD, and FTIR spectroscopy.

    PubMed

    Henmi, Akiko; Okata, Hiroshi; Anada, Takahisa; Yoshinari, Mariko; Mikami, Yasuto; Suzuki, Osamu; Sasano, Yasuyuki

    2016-01-01

    Bone mineral is constituted of biological hydroxyapatite crystals. In developing bone, the mineral crystal matures and the Ca/P ratio increases. However, how an increase in the Ca/P ratio is involved in maturation of the crystal is not known. The relationships among organic components and mineral changes are also unclear. The study was designed to investigate the process of calcification during rat calvarial bone development. Calcification was evaluated by analyzing the atomic distribution and concentration of Ca, P, and C with scanning electron microscopy (SEM)-energy-dispersive X-ray (EDX) spectroscopy and changes in the crystal structure with X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. Histological analysis showed that rat calvarial bone formation started around embryonic day 16. The areas of Ca and P expanded, matching the region of the developing bone matrix, whereas the area of C became localized around bone. X-ray diffraction and FTIR analysis showed that the amorphous-like structure of the minerals at embryonic day 16 gradually transformed into poorly crystalline hydroxyapatite, whereas the proportion of mineral to protein increased until postnatal week 6. FTIR analysis also showed that crystallization of hydroxyapatite started around embryonic day 20, by which time SEM-EDX spectroscopy showed that the Ca/P ratio had increased and the C/Ca and C/P ratios had decreased significantly. The study suggests that the Ca/P molar ratio increases and the proportion of organic components such as proteins of the bone matrix decreases during the early stage of calcification, whereas crystal maturation continues throughout embryonic and postembryonic bone development.

  10. Effect of three different intensities of infrared laser energy on the levels of amino acid neurotransmitters in the cortex and hippocampus of rat brain.

    PubMed

    Ahmed, Nawal Abd El Hay; Radwan, Nasr Mahmoud; Ibrahim, Khayria Mansour; Khedr, Mona Emam; El Aziz, Mona A; Khadrawy, Yasser Ashry

    2008-10-01

    The aim of this study is to investigate the effects of three different intensities of infrared diode laser radiation on amino acid neurotransmitters in the cortex and hippocampus of rat brain. Lasers are known to induce different neurological effects such as pain relief, anesthesia, and neurosuppressive effects; however, the precise mechanisms of these effects are not clearly elucidated. Amino acid neurotransmitters (glutamate, aspartate, glutamine, gamma-aminobutyric acid [GABA], glycine, and taurine) play vital roles in the central nervous system (CNS). The shaved scalp of each rat was exposed to different intensities of infrared laser energy (500, 190, and 90 mW) and then the rats were sacrificed after 1 h, 7 d, and 14 d of daily laser irradiation. The control groups were exposed to the same conditions but without exposure to laser. The concentrations of amino acid neurotransmitters were measured by high-performance liquid chromatography (HPLC). The rats subjected to 500 mW of laser irradiation had a significant decrease in glutamate, aspartate, and taurine in the cortex, and a significant decrease in hippocampal GABA. In the cortices of rats exposed to 190 mW of laser irradiation, an increase in aspartate accompanied by a decrease in glutamine were observed. In the hippocampus, other changes were seen. The rats irradiated with 90 mW showed a decrease in cortical glutamate, aspartate, and glutamine, and an increase in glycine, while in the hippocampus an increase in glutamate, aspartate, and GABA were recorded. We conclude that daily laser irradiation at 90 mW produced the most pronounced inhibitory effect in the cortex after 7 d. This finding may explain the reported neurosuppressive effect of infrared laser energy on axonal conduction of hippocampal and cortical tissues of rat brain.

  11. Activation of adenosine A(1) receptors alters behavioral and biochemical parameters in hyperthyroid rats.

    PubMed

    Bruno, Alessandra Nejar; Fontella, Fernanda Urruth; Bonan, Carla Denise; Barreto-Chaves, Maria Luiza M; Dalmaz, Carla; Sarkis, João José Freitas

    2006-02-28

    Adenosine acting on A(1) receptors has been related with neuroprotective and neuromodulatory actions, protection against oxidative stress and decrease of anxiety and nociceptive signaling. Previous studies demonstrated an inhibition of the enzymes that hydrolyze ATP to adenosine in the rat central nervous system after hyperthyroidism induction. Manifestations of hyperthyroidism include increased anxiety, nervousness, high O(2) consumption and physical hyperactivity. Here, we investigated the effects of administration of a specific agonist of adenosine A(1) receptor (N(6)-cyclopentyladenosine; CPA) on nociception, anxiety, exploratory response, locomotion and brain oxidative stress of hyperthyroid rats. Hyperthyroidism was induced by daily intraperitoneal injections of l-thyroxine (T4) for 14 days. Nociception was assessed with a tail-flick apparatus and exploratory behavior, locomotion and anxiety were analyzed by open-field and plus-maze tests. We verified the total antioxidant reactivity (TAR), lipid peroxide levels by the thiobarbituric acid reactive species (TBARS) reaction and the free radicals content by the DCF test. Our results demonstrated that CPA reverted the hyperalgesia induced by hyperthyroidism and decreased the exploratory behavior, locomotion and anxiety in hyperthyroid rats. Furthermore, CPA decreased lipid peroxidation in hippocampus and cerebral cortex of control rats and in cerebral cortex of hyperthyroid rats. CPA also increased the total antioxidant reactivity in hippocampus and cerebral cortex of control and hyperthyroid rats, but the production of free radicals verified by the DCF test was changed only in cerebral cortex. These results suggest that some of the hyperthyroidism effects are subjected to regulation by adenosine A(1) receptor, demonstrating the involvement of the adenosinergic system in this pathology.

  12. Decoding bipedal locomotion from the rat sensorimotor cortex

    NASA Astrophysics Data System (ADS)

    Rigosa, J.; Panarese, A.; Dominici, N.; Friedli, L.; van den Brand, R.; Carpaneto, J.; DiGiovanna, J.; Courtine, G.; Micera, S.

    2015-10-01

    Objective. Decoding forelimb movements from the firing activity of cortical neurons has been interfaced with robotic and prosthetic systems to replace lost upper limb functions in humans. Despite the potential of this approach to improve locomotion and facilitate gait rehabilitation, decoding lower limb movement from the motor cortex has received comparatively little attention. Here, we performed experiments to identify the type and amount of information that can be decoded from neuronal ensemble activity in the hindlimb area of the rat motor cortex during bipedal locomotor tasks. Approach. Rats were trained to stand, step on a treadmill, walk overground and climb staircases in a bipedal posture. To impose this gait, the rats were secured in a robotic interface that provided support against the direction of gravity and in the mediolateral direction, but behaved transparently in the forward direction. After completion of training, rats were chronically implanted with a micro-wire array spanning the left hindlimb motor cortex to record single and multi-unit activity, and bipolar electrodes into 10 muscles of the right hindlimb to monitor electromyographic signals. Whole-body kinematics, muscle activity, and neural signals were simultaneously recorded during execution of the trained tasks over multiple days of testing. Hindlimb kinematics, muscle activity, gait phases, and locomotor tasks were decoded using offline classification algorithms. Main results. We found that the stance and swing phases of gait and the locomotor tasks were detected with accuracies as robust as 90% in all rats. Decoded hindlimb kinematics and muscle activity exhibited a larger variability across rats and tasks. Significance. Our study shows that the rodent motor cortex contains useful information for lower limb neuroprosthetic development. However, brain-machine interfaces estimating gait phases or locomotor behaviors, instead of continuous variables such as limb joint positions or speeds, are likely to provide more robust control strategies for the design of such neuroprostheses.

  13. Expression of Kv3.1b potassium channel is widespread in macaque motor cortex pyramidal cells: A histological comparison between rat and macaque.

    PubMed

    Soares, David; Goldrick, Isabelle; Lemon, Roger N; Kraskov, Alexander; Greensmith, Linda; Kalmar, Bernadett

    2017-06-15

    There are substantial differences across species in the organization and function of the motor pathways. These differences extend to basic electrophysiological properties. Thus, in rat motor cortex, pyramidal cells have long duration action potentials, while in the macaque, some pyramidal neurons exhibit short duration "thin" spikes. These differences may be related to the expression of the fast potassium channel Kv3.1b, which in rat interneurons is associated with generation of thin spikes. Rat pyramidal cells typically lack these channels, while there are reports that they are present in macaque pyramids. Here we made a systematic, quantitative comparison of the Kv3.1b expression in sections from macaque and rat motor cortex, using two different antibodies (NeuroMab, Millipore). As our standard reference, we examined, in the same sections, Kv3.1b staining in parvalbumin-positive interneurons, which show strong Kv3.1b immunoreactivity. In macaque motor cortex, a large sample of pyramidal neurons were nearly all found to express Kv3.1b in their soma membranes. These labeled neurons were identified as pyramidal based either by expression of SMI32 (a pyramidal marker), or by their shape and size, and lack of expression of parvalbumin (a marker for some classes of interneuron). Large (Betz cells), medium, and small pyramidal neurons all expressed Kv3.1b. In rat motor cortex, SMI32-postive pyramidal neurons expressing Kv3.1b were very rare and weakly stained. Thus, there is a marked species difference in the immunoreactivity of Kv3.1b in pyramidal neurons, and this may be one of the factors explaining the pronounced electrophysiological differences between rat and macaque pyramidal neurons. © 2017 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc.

  14. Arterial spin labeling blood flow magnetic resonance imaging for evaluation of renal injury.

    PubMed

    Liu, Yupin P; Song, Rui; Liang, Chang hong; Chen, Xin; Liu, Bo

    2012-08-15

    A multitude of evidence suggests that iodinated contrast material causes nephrotoxicity; however, there have been no previous studies that use arterial spin labeling (ASL) blood flow functional magnetic resonance imaging (fMRI) to investigate the alterations in effective renal plasma flow between normointensive and hypertensive rats following injection of contrast media. We hypothesized that FAIR-SSFSE arterial spin labeling MRI may enable noninvasive and quantitative assessment of regional renal blood flow abnormalities and correlate with disease severity as assessed by histological methods. Renal blood flow (RBF) values of the cortex and medulla of rat kidneys were obtained from ASL images postprocessed at ADW4.3 workstation 0.3, 24, 48, and 72 h before and after injection of iodinated contrast media (6 ml/kg). The H&E method for morphometric measurements was used to confirm the MRI findings. The RBF values of the outer medulla were lower than those of the cortex and the inner medulla as reported previously. Iodinated contrast media treatment resulted in decreases in RBF in the outer medulla and cortex in spontaneously hypertensive rats (SHR), but only in the outer medulla in normotensive rats. The iodinated contrast agent significantly decreased the RBF value in the outer medulla and the cortex in SHR compared with normotensive rats after injection of the iodinated contrast media. Histological observations of kidney morphology were also consistent with ASL perfusion changes. These results demonstrate that the RBF value can reflect changes of renal perfusion in the cortex and medulla. ASL-MRI is a feasible and accurate method for evaluating nephrotoxic drugs-induced kidney damage.

  15. Exogenous agmatine has neuroprotective effects against restraint-induced structural changes in the rat brain

    PubMed Central

    Zhu, Meng-Yang; Wang, Wei-Ping; Cai, Zheng-Wei; Regunathan, Soundar; Ordway, Gregory

    2009-01-01

    Agmatine is an endogenous amine derived from decarboxylation of arginine catalysed by arginine decarboxylase. Agmatine is considered a novel neuromodulator and possesses neuroprotective properties in the central nervous system. The present study examined whether agmatine has neuroprotective effects against repeated restraint stress-induced morphological changes in rat medial prefrontal cortex and hippocampus. Sprague-Dawley rats were subjected to 6 h of restraint stress daily for 21 days. Immunohistochemical staining with β-tubulin III showed that repeated restraint stress caused marked morphological alterations in the medial prefrontal cortex and hippocampus. Stress-induced alterations were prevented by simultaneous treatment with agmatine (50 mg/kg/day, i.p.). Interestingly, endogenous agmatine levels, as measured by high-performance liquid chromatography, in the prefrontal cortex and hippocampus as well as in the striatum and hypothalamus of repeated restraint rats were significantly reduced as compared with the controls. Reduced endogenous agmatine levels in repeated restraint animals were accompanied by a significant increase of arginine decarboxylase protein levels in the same regions. Moreover, administration of exogenous agmatine to restrained rats abolished increases of arginine decarboxylase protein levels. Taken together, these results demonstrate that exogenously administered agmatine has neuroprotective effects against repeated restraint-induced structural changes in the medial prefrontal cortex and hippocampus. These findings indicate that stress-induced reductions in endogenous agmatine levels in the rat brain may play a permissive role in neuronal pathology induced by repeated restraint stress. PMID:18364017

  16. Chronic ethanol exposure during adolescence in rats induces motor impairments and cerebral cortex damage associated with oxidative stress.

    PubMed

    Teixeira, Francisco Bruno; Santana, Luana Nazaré da Silva; Bezerra, Fernando Romualdo; De Carvalho, Sabrina; Fontes-Júnior, Enéas Andrade; Prediger, Rui Daniel; Crespo-López, Maria Elena; Maia, Cristiane Socorro Ferraz; Lima, Rafael Rodrigues

    2014-01-01

    Binge drinking is common among adolescents, and this type of ethanol exposure may lead to long-term nervous system damage. In the current study, we evaluated motor performance and tissue alterations in the cerebral cortex of rats subjected to intermittent intoxication with ethanol from adolescence to adulthood. Adolescent male Wistar rats (35 days old) were treated with distilled water or ethanol (6.5 g/kg/day, 22.5% w/v) during 55 days by gavage to complete 90 days of age. The open field, inclined plane and the rotarod tests were used to assess the spontaneous locomotor activity and motor coordination performance in adult animals. Following completion of behavioral tests, half of animals were submitted to immunohistochemical evaluation of NeuN (marker of neuronal bodies), GFAP (a marker of astrocytes) and Iba1 (microglia marker) in the cerebral cortex while the other half of the animals were subjected to analysis of oxidative stress markers by biochemical assays. Chronic ethanol intoxication in rats from adolescence to adulthood induced significant motor deficits including impaired spontaneous locomotion, coordination and muscle strength. These behavioral impairments were accompanied by marked changes in all cellular populations evaluated as well as increased levels of nitrite and lipid peroxidation in the cerebral cortex. These findings indicate that continuous ethanol intoxication from adolescence to adulthood is able to provide neurobehavioral and neurodegenerative damage to cerebral cortex.

  17. Inactivation of the infralimbic prefrontal cortex in rats reduces the influence of inappropriate habitual responding in a response-conflict task.

    PubMed

    Haddon, J E; Killcross, S

    2011-12-29

    Previous research suggests the infralimbic cortex is important in situations when there is competition between goal-directed and habitual responding. Here we used a response conflict procedure to further explore the involvement of the infralimbic cortex in this relationship. Rats received training on two instrumental biconditional discriminations, one auditory and one visual, in two distinct contexts. One discrimination was "over-trained" relative to the other, "under-trained," discrimination in the ratio 3:1. At test, animals were presented with incongruent audiovisual stimulus compounds of the training stimuli in the under-trained context. The stimulus elements of these test compounds have previously dictated different lever press responses during training. Rats receiving control infusions into the infralimbic cortex showed a significant interference effect, producing more responses to the over-trained (habitual), but context-inappropriate, stimulus element of the incongruent compound. This interference effect was abolished by inactivation of the infralimbic cortex; animals showed a reduced tendency to produce the habitual but inappropriate response compared with animals receiving control infusions. This finding provides evidence that the infralimbic cortex is involved in attenuating the influence of goal-directed behavior, for example context-appropriate responding. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  18. Neural Coding of Reward Magnitude in the Orbitofrontal Cortex of the Rat during a Five-Odor Olfactory Discrimination Task

    ERIC Educational Resources Information Center

    van Duuren, Esther; Nieto Escamez, Francisco A.; Joosten, Ruud N. J. M. A.; Visser, Rein; Mulder, Antonius B.; Pennartz, Cyriel M. A.

    2007-01-01

    The orbitofrontal cortex (OBFc) has been suggested to code the motivational value of environmental stimuli and to use this information for the flexible guidance of goal-directed behavior. To examine whether information regarding reward prediction is quantitatively represented in the rat OBFc, neural activity was recorded during an olfactory…

  19. Reduced Spiking in Entorhinal Cortex during the Delay Period of a Cued Spatial Response Task

    ERIC Educational Resources Information Center

    Gupta, Kishan; Keller, Lauren A.; Hasselmo, Michael E.

    2012-01-01

    Intrinsic persistent spiking mechanisms in medial entorhinal cortex (mEC) neurons may play a role in active maintenance of working memory. However, electrophysiological studies of rat mEC units have primarily focused on spatial modulation. We sought evidence of differential spike rates in the mEC in rats trained on a T-maze, cued spatial delayed…

  20. Truncated tyrosine kinase B brain-derived neurotrophic factor receptor directs cortical neural stem cells to a glial cell fate by a novel signaling mechanism.

    PubMed

    Cheng, Aiwu; Coksaygan, Turhan; Tang, Hongyan; Khatri, Rina; Balice-Gordon, Rita J; Rao, Mahendra S; Mattson, Mark P

    2007-03-01

    During development of the mammalian cerebral cortex neural stem cells (NSC) first generate neurons and subsequently produce glial cells. The mechanism(s) responsible for this developmental shift from neurogenesis to gliogenesis is unknown. Brain-derived neurotrophic factor (BDNF) is believed to play important roles in the development of the mammalian cerebral cortex; it enhances neurogenesis and promotes the differentiation and survival of newly generated neurons. Here, we provide evidence that a truncated form of the BDNF receptor tyrosine kinase B (trkB-t) plays a pivotal role in directing embryonic mouse cortical NSC to a glial cell fate. Expression of trkB-t promotes differentiation of NSC toward astrocytes while inhibiting neurogenesis both in cell culture and in vivo. The mechanism by which trkB-t induces astrocyte genesis is not simply the result of inhibition of full-length receptor with intrinsic tyrosine kinase activity signaling. Instead, binding of BDNF to trkB-t activates a signaling pathway (involving a G-protein and protein kinase C) that induced NSC to become glial progenitors and astrocytes. Thus, the increased expression of trkB-t in the embryonic cerebral cortex that occurs coincident with astrocyte production plays a pivotal role in the developmental transition from neurogenesis to gliogenesis. Our findings suggest a mechanism by which a single factor (BDNF) regulates the production of the two major cell types in the mammalian cerebral cortex.

  1. Conditional self-discrimination enhances dendritic spine number and dendritic length at prefrontal cortex and hippocampal neurons of rats.

    PubMed

    Penagos-Corzo, Julio C; Bonilla, Andrea; Rodríguez-Moreno, Antonio; Flores, Gonzalo; Negrete-Díaz, José V

    2015-11-01

    We studied conditional self-discrimination (CSD) in rats and compared the neuronal cytoarchitecture of untrained animals and rats that were trained in self-discrimination. For this purpose, we used thirty 10-week-old male rats were randomized into three groups: one control group and two conditioning groups: a comparison group (associative learning) and an experimental group (self-discrimination). At the end of the conditioning process, the experimental group managed to discriminate their own state of thirst. After the conditioning process, dendritic morphological changes in the pyramidal neurons of the prefrontal cortex and CA1 region of the dorsal hippocampus were evaluated using Golgi-Cox stain method and then analyzed by the Sholl method. Differences were found in total dendritic length and spine density. Animals trained in self-discrimination showed an increase in the dendritic length and the number of dendritic spines of neurons of the prefrontal cortex and CA1 region of the dorsal hippocampus. Our data suggest that conditional self-discrimination improves the connectivity of the prefrontal cortex and dorsal CA1, which has implications for memory and learning processes. © 2015 Wiley Periodicals, Inc.

  2. The effect of electromagnetic radiation on the rat brain: an experimental study.

    PubMed

    Eser, Olcay; Songur, Ahmet; Aktas, Cevat; Karavelioglu, Ergun; Caglar, Veli; Aylak, Firdevs; Ozguner, Fehmi; Kanter, Mehmet

    2013-01-01

    The aim of this study is to determine the structural changes of electromagnetic waves in the frontal cortex, brain stem and cerebellum. 24 Wistar Albino adult male rats were randomly divided into four groups: group I consisted of control rats, and groups II-IV comprised electromagnetically irradiated (EMR) with 900, 1800 and 2450 MHz. The heads of the rats were exposed to 900, 1800 and 2450 MHz microwaves irradiation for 1h per day for 2 months. While the histopathological changes in the frontal cortex and brain stem were normal in the control group, there were severe degenerative changes, shrunken cytoplasm and extensively dark pyknotic nuclei in the EMR groups. Biochemical analysis demonstrated that the Total Antioxidative Capacity level was significantly decreased in the EMR groups and also Total Oxidative Capacity and Oxidative Stress Index levels were significantly increased in the frontal cortex, brain stem and cerebellum. IL-1β level was significantly increased in the EMR groups in the brain stem. EMR causes to structural changes in the frontal cortex, brain stem and cerebellum and impair the oxidative stress and inflammatory cytokine system. This deterioration can cause to disease including loss of these areas function and cancer development.

  3. The effect of aniracetam on cerebral glucose metabolism in rats after lesioning of the basal forebrain measured by PET.

    PubMed

    Ouchi, Y; Kakiuchi, T; Okada, H; Nishiyama, S; Tsukada, H

    1999-03-15

    To evaluate the effect of aniracetam, a potent modulator of the glutamatergic and cholinergic systems, on the altered cerebral glucose metabolism after lesioning of the basal forebrain, we measured the cerebral metabolic rate of glucose (CMRGlc) with positron emission tomography and the choline acetyltransferase (ChAT) activity in the frontal cortex of the lesioned rats after treating them with aniracetam. Continuous administration of aniracetam for 7 days after the surgery prevented CMRGlc reduction in the frontal cortex ipsilateral to the lesion while the lesioned rats without aniracetam showed significant CMRGlc reduction in the frontal cortex. The level of CMRGlc in the lesion-side basal forebrain was lower in all rats regardless of the aniracetam treatment. Biochemical studies showed that aniracetam did not alter the reduction in the frontal ChAT activity. These results showed that aniracetam prevents glucose metabolic reduction in the cholinergically denervated frontal cortex with little effect on the cortical cholinergic system. The present study suggested that a neurotransmitter system other than the cholinergic system, e.g. the glutamatergic system, plays a central role in the cortical metabolic recovery after lesioning of the basal forebrain.

  4. Development of tolerance to the effects of vigabatrin (gamma-vinyl-GABA) on GABA release from rat cerebral cortex, spinal cord and retina.

    PubMed Central

    Neal, M. J.; Shah, M. A.

    1990-01-01

    1. The effects of acute and chronic vigabatrin (gamma-vinyl-GABA) (GVG) administration on gamma-aminobutyric acid (GABA) levels and release in rat cortical slices, spinal cord slices and retinas were studied. 2. GVG (250 mgkg-1 i.p.) administered to rats 18 h before death (acute administration) produced an almost 3 fold increase in GABA levels of the cortex and spinal cord and a 6 fold increase in retinal GABA. The levels of glutamate, aspartate, glycine and taurine were unaffected. 3. When GVG (250 mgkg-1 i.p.) was administered daily for 17 days (chronic administration) a similar (almost 3 fold) increase in cortical GABA occurred but the increases in spinal and retinal GABA were reduced by approximately 40%. 4. Acute administration of GVG strikingly increased the potassium-evoked release (KCl 50 mM) of GABA from all three tissues. This enhanced evoked release was reduced by about 50% in tissues taken from rats that had been chronically treated with GVG. 5. Acute administration of GVG reduced GABA-transaminase (GABA-T) activity by approximately 80% in cortex and cord and by 98% in the retina. Following the chronic administration of GVG, there was a trend for GABA-T activities to recover (significant only in cortex). Acute administration of GVG had no effect on glutamic acid decarboxylase (GAD) activity in cortex or spinal cord. However, chronic treatment resulted in significant decreases in GAD activity in both the cortex and cord (35% and 50% reduction respectively).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2379037

  5. Neuropathological Changes in Brain Cortex and Hippocampus in a Rat Model of Alzheimer’s Disease

    PubMed Central

    Nobakht, Maliheh; Hoseini, Seyed Mohammad; Mortazavi, Pejman; Sohrabi, Iraj; Esmailzade, Banafshe; Roosh, Nahid Rahbar; Omidzahir, Shila

    2011-01-01

    Background: Alzheimer’s disease (AD) is a neurodegenerative disorder with progressive loss of cognitive abilities and memory loss. The aim of this study was to compare neuropathological changes in hippocampus and brain cortex in a rat model of AD. Methods: Adult male Albino Wistar rats (weighing 250-300 g) were used for behavioral and histopathological studies. The rats were randomly assigned to three groups: control, sham and β-amyloid (Aβ) injection. For behavioral analysis, Y-maze and shuttle box were used, respectively at 14 and 16 days post-lesion. For histological studies, Nissl, modified Bielschowsky and modified Congo red staining were performed. The lesion was induced by injection of 4 µL of Aβ (1-40) into the hippocampal fissure. Results: In the present study, Aβ (1-40) injection into hippocampus could decrease the behavioral indexes and the number of CA1 neurons in hippocampus. Aβ injection CA1 caused Aβ deposition in the hippocampus and less than in cortex. We observed the loss of neurons in the hippocampus and cerebral cortex and certain subcortical regions. Y-maze test and single-trial passive avoidance test showed reduced memory retention in AD group. Conclusion: We found a significant decreased acquisition of passive avoidance and alternation behavior responses in AD group compared to control and sham group (P<0.0001). Compacted amyloid cores were present in the cerebral cortex, hippocampus and white matter, whereas, scattered amyloid cores were seen in cortex and hippocampus of AD group. Also, reduced neuronal density was indicated in AD group. PMID:21725500

  6. Insm1 promotes the transition of olfactory progenitors from apical and proliferative to basal, terminally dividing and neuronogenic.

    PubMed

    Rosenbaum, Jason N; Duggan, Anne; García-Añoveros, Jaime

    2011-02-01

    Insm1 is a zinc-finger transcription factor transiently expressed throughout the developing nervous system in late progenitors and nascent neurons. Insm1 is also highly expressed in medulloblastomas and other neuroendocrine tumors. We generated mice lacking the Insm1 gene and used them to elucidate its role in neurogenic proliferation of the embryonic olfactory epithelium. We found that deletion of Insm1 results in more apical cells and fewer nascent and mature neurons. In the embryonic olfactory epithelium of Insm1 mutants we detect fewer basal progenitors, which produce neurons, and more apical progenitors, which at this stage produce additional progenitors. Furthermore, in the mutants we detect fewer progenitors expressing NEUROD1, a marker of terminally dividing, neuronogenic (neuron-producing) progenitors (immediate neuronal precursors), and more progenitors expressing ASCL1, a marker of the transit amplifying progenitors that migrate from the apical to the basal edges of the epithelium while dividing to generate the terminal, neuronogenic progenitors. Finally, with timed administration of nucleoside analogs we demonstrate that the Insm1 mutants contain fewer terminally dividing progenitors at embryonic day 12.5. Altogether, these results suggest a role for Insm1 in promoting the transition of progenitors from apical and proliferative to basal, terminal and neuronogenic. This role appears partially conserved with that of its nematode ortholog, egl-46. The similar effects of Insm1 deletion on progenitors of embryonic olfactory epithelium and cortex point to striking parallels in the development of these neuroepithelia, and particularly between the basal progenitors of olfactory epithelium and the subventricular zone progenitors of cortex.

  7. Dissociating movement from movement timing in the rat primary motor cortex.

    PubMed

    Knudsen, Eric B; Powers, Marissa E; Moxon, Karen A

    2014-11-19

    Neural encoding of the passage of time to produce temporally precise movements remains an open question. Neurons in several brain regions across different experimental contexts encode estimates of temporal intervals by scaling their activity in proportion to the interval duration. In motor cortex the degree to which this scaled activity relies upon afferent feedback and is guided by motor output remains unclear. Using a neural reward paradigm to dissociate neural activity from motor output before and after complete spinal transection, we show that temporally scaled activity occurs in the rat hindlimb motor cortex in the absence of motor output and after transection. Context-dependent changes in the encoding are plastic, reversible, and re-established following injury. Therefore, in the absence of motor output and despite a loss of afferent feedback, thought necessary for timed movements, the rat motor cortex displays scaled activity during a broad range of temporally demanding tasks similar to that identified in other brain regions. Copyright © 2014 the authors 0270-6474/14/3415576-11$15.00/0.

  8. The use of antioxidants to prevent glutamate-induced derangement of calcium ion metabolism in rat cerebral cortex synaptosomes.

    PubMed

    Avrova, N F; Shestak, K I; Zakharova, I O; Sokolova, T V; Tyurina, Y Y; Tyurin, V A

    2000-01-01

    Glutamate is shown to induce increases in intracellular Ca2+ concentrations ([Ca2+]i), increases in 45Ca2+ influx, decreases in the activity of Na+,K+-ATPase activity, and activation of the Na+/Ca2+ exchanger in rat cerebral cortex synaptosomes. NMDA receptor antagonists virtually prevented these effects. Preincubation of synaptosomes with alpha-tocopherol, superoxide dismutase, and ganglioside GM1 normalized [Ca2+]i, 45Ca2+ influx, and Na+,K+-ATPase activity in rat cerebral cortex synaptosomes exposed to glutamate. Glutamate and GM1 activated the Na+/K+ exchanger, and their effects were additive. Calcium ions entering cerebral cortex nerve cells via NMDA receptors during exposure to high glutamate concentrations appeared to be only the trigger for the processes activating free-radical reactions. Activation of these reactions led to increases in Ca2+ influx into cells, decreases in Na+,K+-ATPase activity, and significant increases in [Ca2+]i, though this could be prevented by antioxidants and gangliosides.

  9. Apigenin attenuates diabetes-associated cognitive decline in rats via suppressing oxidative stress and nitric oxide synthase pathway

    PubMed Central

    Mao, Xiao-Yuan; Yu, Jing; Liu, Zhao-Qian; Zhou, Hong-Hao

    2015-01-01

    Our present investigation aimed to determine the neuroprotection of apigenin (API) against diabetes-associated cognitive decline (DACD) a diabetic rat model and exploring its potential mechanism. Diabetic rat model was induced by intraperitoneal injection of streptozotocin. All experiment animals treated with vehicle or API by doses of 10, 20 and 40 mg/kg for seven weeks. Firstly, the body weight and blood glucose levels were detected. We used Morris water maze test to evaluate learning and memory function. The oxidative indicators (malondialdehyde (MDA), superoxide dismutase (SOD) and glutathione (GSH)), cNOS, iNOS, caspase-3 and caspase-9 were measured in cerebral cortex and hippocampus using corresponding commercial kits. API can increase body weight, reduce the blood glucose levels, and improve the cognitive function in rats induced by diabetes. API decrease the MDA content, and increase SOD activity and GSH level of diabetic animals in the cerebral cortex and hippocampus of diabetic rats. Meanwhile, constitutive nitric oxide synthase (cNOS), inducible nitric oxide synthase (iNOS), caspase-3/9 were markedly exhibited in the cerebral cortex and hippocampus of diabetic rats. In summary, our current work discloses that API attenuates DACD in rats via suppressing oxidative stress, nitric oxide and apoptotic cascades synthase pathway. PMID:26629041

  10. Cortex shatters the glass ceiling.

    PubMed

    Au, Edmund; Fishell, Gord

    2008-11-06

    Recreating developmental structures in vitro has been a primary challenge for stem cell biologists. Recent studies in Cell Stem Cell (Eiraku et al., 2008) and Nature (Gaspard et al., 2008) demonstrate that embryonic stem cells can recapitulate early cortical development, enabling them to generate specific cortical subtypes.

  11. Behavioral tolerance to lysergic acid diethylamide is associated with reduced serotonin-2A receptor signaling in rat cortex.

    PubMed

    Gresch, Paul J; Smith, Randy L; Barrett, Robert J; Sanders-Bush, Elaine

    2005-09-01

    Tolerance is defined as a decrease in responsiveness to a drug after repeated administration. Tolerance to the behavioral effects of hallucinogens occurs in humans and animals. In this study, we used drug discrimination to establish a behavioral model of lysergic acid diethylamide (LSD) tolerance and examined whether tolerance to the stimulus properties of LSD is related to altered serotonin receptor signaling. Rats were trained to discriminate 60 microg/kg LSD from saline in a two-lever drug discrimination paradigm. Two groups of animals were assigned to either chronic saline treatment or chronic LSD treatment. For chronic treatment, rats from each group were injected once per day with either 130 microg/kg LSD or saline for 5 days. Rats were tested for their ability to discriminate either saline or 60 microg/kg LSD, 24 h after the last chronic injection. Rats receiving chronic LSD showed a 44% reduction in LSD lever selection, while rats receiving chronic vehicle showed no change in percent choice on the LSD lever. In another group of rats receiving the identical chronic LSD treatment, LSD-stimulated [35S]GTPgammaS binding, an index of G-protein coupling, was measured in the rat brain by autoradiography. After chronic LSD, a significant reduction in LSD-stimulated [35S]GTPgammaS binding was observed in the medial prefrontal cortex and anterior cingulate cortex. Furthermore, chronic LSD produced a significant reduction in 2,5-dimethoxy-4-iodoamphetamine-stimulated [35S]GTPgammaS binding in medial prefrontal cortex and anterior cingulate cortex, which was blocked by MDL 100907, a selective 5-HT2A receptor antagonist, but not SB206553, a 5-HT2C receptor antagonist, indicating a reduction in 5-HT2A receptor signaling. 125I-LSD binding to 5-HT2A receptors was reduced in cortical regions, demonstrating a reduction in 5-HT2A receptor density. Taken together, these results indicate that adaptive changes in LSD-stimulated serotonin receptor signaling may mediate tolerance to the discriminative stimulus effects of LSD.

  12. Juvenile social experience and differential age-related changes in the dendritic morphologies of subareas of the prefrontal cortex in rats.

    PubMed

    Himmler, Brett T; Mychasiuk, Richelle; Nakahashi, Ayuno; Himmler, Stephanie M; Pellis, Sergio M; Kolb, Bryan

    2018-04-01

    Juvenile social interactions have been shown to influence the dendritic complexity of neurons in the prefrontal cortex (PFC). In particular, social play induces pruning of the cells in the medial prefrontal cortex (mPFC), whereas interacting with multiple partners, whether those interactions involve play or not, increases the complexity of cells in the orbital frontal cortex (OFC). Previous studies suggest that these changes differ in their stability during adulthood. In the present study, rats were reared in groups of either four (quads) or two (pairs) and the brains of the rats from each rearing condition were then harvested at 60 days (i.e., shortly after sexual maturity) and 100 days (i.e., fully adult). The rats housed with multiple partners had more complex neurons of the OFC at 60 days and this complexity declined to a comparable level to that of pair housed rats by 100 days. In contrast, the play-induced changes of the mPFC remained similar at both ages. These findings suggest that the changes in the PFC induced by different social experiences in the juvenile period differ in how long they are maintained in adulthood. Differences in the functions regulated by the OFC and the mPFC are considered with regard to these differences in the stability of juvenile-induced neural changes. © 2017 Wiley Periodicals, Inc.

  13. Minocycline prevents Abeta(25-35)-induced reduction of somatostatin and neprilysin content in rat temporal cortex.

    PubMed

    Burgos-Ramos, E; Puebla-Jiménez, L; Arilla-Ferreiro, E

    2009-02-13

    Tetracyclines have been demonstrated to inhibit formation of beta-amyloid (Abeta) aggregates and to disassemble preformed fibrils. Minocycline, a semi-synthetic second-generation tetracycline, can reverse Abeta-induced impairment of cognitive functions. Since somatostatin is involved in cognition and we recently showed that Abeta(25-35) lowers somatostatin expression in the rat temporal cortex, our aim here was to analyze the effects of minocycline on somatostatin immunoreactivity and mRNA levels in the temporal cortex of Abeta(25-35)-infused and healthy rats. Moreover, since brain levels of neprilysin, an Abeta-degrading enzyme, decrease with age, favoring the appearance of senile neuritic plaques, we tested whether minocyline could affect neprilysin expression. Wistar rats were thus injected with minocycline twice on the first day of treatment. On the following day, and during 14 days, Abeta(25-35) or vehicle were administered. Minocycline was injected once again on days 13 and 14. All animals were sacrificed 24 h after the last drug injection. Minocycline abrogated the Abeta(25-35)-induced decrease of somatostatin-like immunoreactive content, somatostatin mRNA levels, phosphorylated-CREB content and neprilysin levels. Minocycline alone enhanced these targets. Our findings indicate that minocycline prevents the deleterious effects of Abeta(25-35) on SRIF and neprilysin expression in the rat temporal cortex and that it has protective effects per se on these parameters.

  14. Oxidative stress and cell death in the cerebral cortex as a long-term consequence of neonatal hypoglycemia.

    PubMed

    Anju, T R; Akhilraj, P R; Paulose, C S

    2016-09-01

    Neonatal hypoglycemia limits glucose supply to cells leading to long-term consequences in brain function. The present study evaluated antioxidant and cell death factors' alterations in cerebral cortex of 1-month-old rats exposed to neonatal hypoglycemia. Gene expression studies by real-time PCR were carried out using gene-specific TaqMan probes. Fluorescent dyes were used for immunohistochemistry and nuclear staining and imaged by confocal microscope. Total antioxidant level and expression of antioxidant enzymes - superoxide dismutase (SOD) and gluthathione peroxide (GPx) - mRNA was significantly reduced along with high peroxide level in the cerebral cortex of 1-month-old rats exposed to neonatal hypoglycemia. Real-time PCR analysis showed an upregulation of Bax, caspase 3, and caspase 8 gene expression. Confocal imaging with TOPRO-3 staining and immunohistochemistry with caspase 3 antibody indicated cell death activation. The reduced free radical scavenging capability coupled with the expression of key factors involved in cell death pathway points to the possibility of oxidative stress in the cortex of 1-month-old rats exposed to neonatal hypoglycemia. The observed results indicate the effects of neonatal hypoglycemia in determining the antioxidant capability of cerebral cortex in a later stage of life.

  15. Trunk robot rehabilitation training with active stepping reorganizes and enriches trunk motor cortex representations in spinal transected rats.

    PubMed

    Oza, Chintan S; Giszter, Simon F

    2015-05-06

    Trunk motor control is crucial for postural stability and propulsion after low thoracic spinal cord injury (SCI) in animals and humans. Robotic rehabilitation aimed at trunk shows promise in SCI animal models and patients. However, little is known about the effect of SCI and robot rehabilitation of trunk on cortical motor representations. We previously showed reorganization of trunk motor cortex after adult SCI. Non-stepping training also exacerbated some SCI-driven plastic changes. Here we examine effects of robot rehabilitation that promotes recovery of hindlimb weight support functions on trunk motor cortex representations. Adult rats spinal transected as neonates (NTX rats) at the T9/10 level significantly improve function with our robot rehabilitation paradigm, whereas treadmill-only trained do not. We used intracortical microstimulation to map motor cortex in two NTX groups: (1) treadmill trained (control group); and (2) robot-assisted treadmill trained (improved function group). We found significant robot rehabilitation-driven changes in motor cortex: (1) caudal trunk motor areas expanded; (2) trunk coactivation at cortex sites increased; (3) richness of trunk cortex motor representations, as examined by cumulative entropy and mutual information for different trunk representations, increased; (4) trunk motor representations in the cortex moved toward more normal topography; and (5) trunk and forelimb motor representations that SCI-driven plasticity and compensations had caused to overlap were segregated. We conclude that effective robot rehabilitation training induces significant reorganization of trunk motor cortex and partially reverses some plastic changes that may be adaptive in non-stepping paraplegia after SCI. Copyright © 2015 the authors 0270-6474/15/357174-16$15.00/0.

  16. Reproductive experience modified dendritic spines on cortical pyramidal neurons to enhance sensory perception and spatial learning in rats.

    PubMed

    Chen, Jeng-Rung; Lim, Seh Hong; Chung, Sin-Cun; Lee, Yee-Fun; Wang, Yueh-Jan; Tseng, Guo-Fang; Wang, Tsyr-Jiuan

    2017-01-27

    Behavioral adaptations during motherhood are aimed at increasing reproductive success. Alterations of hormones during motherhood could trigger brain morphological changes to underlie behavioral alterations. Here we investigated whether motherhood changes a rat's sensory perception and spatial memory in conjunction with cortical neuronal structural changes. Female rats of different statuses, including virgin, pregnant, lactating, and primiparous rats were studied. Behavioral test showed that the lactating rats were most sensitive to heat, while rats with motherhood and reproduction experience outperformed virgin rats in a water maze task. By intracellular dye injection and computer-assisted 3-dimensional reconstruction, the dendritic arbors and spines of the layer III and V pyramidal neurons of the somatosensory cortex and CA1 hippocampal pyramidal neurons were revealed for closer analysis. The results showed that motherhood and reproductive experience increased dendritic spines but not arbors or the lengths of the layer III and V pyramidal neurons of the somatosensory cortex and CA1 hippocampal pyramidal neurons. In addition, lactating rats had a higher incidence of spines than pregnant or primiparous rats. The increase of dendritic spines was coupled with increased expression of the glutamatergic postsynaptic marker protein (PSD-95), especially in lactating rats. On the basis of the present results, it is concluded that motherhood enhanced rat sensory perception and spatial memory and was accompanied by increases in dendritic spines on output neurons of the somatosensory cortex and CA1 hippocampus. The effect was sustained for at least 6 weeks after the weaning of the pups.

  17. Pixe analysis of trace elements in tissues of rats treated with anticonvulsants

    NASA Astrophysics Data System (ADS)

    Hurd, R. W.; Van Rinsvelt, H. A.; Kinyua, A. M.; O'Neill, M. P.; Wilder, B. J.; Houdayer, A.; Hinrichsen, P. F.

    1987-04-01

    Several lines of evidence implicate metals in epilepsy. Anticonvulsant drugs are noted to alter levels of metals in humans and animals. PIXE analysis was used to investigate effects of three anticonvulsant drugs on tissue and brain cortex trace elements. The content of zinc and copper was increased in liver and spleen of rats treated with anticonvulsants while selenium was decreased in cortex.

  18. The effects of abnormalities of glucose homeostasis on the expression and binding of muscarinic receptors in cerebral cortex of rats.

    PubMed

    Sherin, Antony; Peeyush, Kumar T; Naijil, George; Nandhu, Mohan Sobhana; Jayanarayanan, Sadanandan; Jes, Paul; Paulose, Cheramadathikudiyil Skaria

    2011-01-25

    Glucose homeostasis in humans is an important factor for the functioning of nervous system. Both hypo and hyperglycemia contributes to neuronal functional deficit. In the present study, effect of insulin induced hypoglycemia and streptozotocin induced diabetes on muscarinic receptor binding, cholinergic enzymes; AChE, ChAT expression and GLUT3 in the cerebral cortex of experimental rats were analysed. Total muscarinic, muscarinic M(1) receptor showed a significant decrease and muscarinic M(3) receptor subtype showed a significant increased binding in the cerebral cortex of hypoglycemic rats compared to diabetic and control. Real-Time PCR analysis of muscarinic M(1), M(3) receptor subtypes confirmed the receptor binding studies. Immunohistochemistry of muscarinic M(1), M(3) receptors using specific antibodies were also carried out. AChE and GLUT3 expression up regulated and ChAT expression down regulated in hypoglycemic rats compared to diabetic and control rats. Our results showed that hypo/hyperglycemia caused impaired glucose transport in neuronal cells as shown by altered expression of GLUT3. Increased AChE and decreased ChAT expression is suggested to alter cortical acetylcholine metabolism in experimental rats along with altered muscarinic receptor binding in hypo/hyperglycemic rats, impair cholinergic transmission, which subsequently lead to cholinergic dysfunction thereby causing learning and memory deficits. We observed a prominent cholinergic functional disturbance in hypoglycemic condition than in hyperglycemia. Hypoglycemia exacerbated the neurochemical changes in cerebral cortex induced by hyperglycemia. These findings have implications for both therapy and identification of causes contributing to neuronal dysfunction in diabetes. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. Neuroprotective efficacy of curcumin in arsenic induced cholinergic dysfunctions in rats.

    PubMed

    Yadav, Rajesh S; Chandravanshi, Lalit P; Shukla, Rajendra K; Sankhwar, Madhu L; Ansari, Reyaz W; Shukla, Pradeep K; Pant, Aditya B; Khanna, Vinay K

    2011-12-01

    Our recent studies have shown that curcumin protects arsenic induced neurotoxicity by modulating oxidative stress, neurotransmitter levels and dopaminergic system in rats. As chronic exposure to arsenic has been associated with cognitive deficits in humans, the present study has been carried out to implore the neuroprotective potential of curcumin in arsenic induced cholinergic dysfunctions in rats. Rats treated with arsenic (sodium arsenite, 20mg/kg body weight, p.o., 28 days) exhibited a significant decrease in the learning activity, assessed by passive avoidance response associated with decreased binding of (3)H-QNB, known to label muscarinic-cholinergic receptors in hippocampus (54%) and frontal cortex (27%) as compared to controls. Decrease in the activity of acetylcholinesterase in hippocampus (46%) and frontal cortex (33%), staining of Nissl body, immunoreactivity of choline acetyltransferase (ChAT) and expression of ChAT protein in hippocampal region was also observed in arsenic treated rats as compared to controls. Simultaneous treatment with arsenic and curcumin (100mg/kg body weight, p.o., 28 days) increased learning and memory performance associated with increased binding of (3)H-QNB in hippocampus (54%), frontal cortex (25%) and activity of acetylcholinesterase in hippocampus (41%) and frontal cortex (29%) as compared to arsenic treated rats. Increase in the expression of ChAT protein, immunoreactivity of ChAT and staining of Nissl body in hippocampal region was also observed in rats simultaneously treated with arsenic and curcumin as compared to those treated with arsenic alone. The results of the present study suggest that curcumin significantly modulates arsenic induced cholinergic dysfunctions in brain and also exhibits neuroprotective efficacy of curcumin. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Comparative pharmacokinetic study of the main components of cortex fraxini after oral administration in normal and hyperuricemic rats.

    PubMed

    Wang, Yinan; Zhao, Min; Ye, Hao; Shao, Yizhen; Yu, Yongbo; Wang, Miao; Zhao, Chunjie

    2017-08-01

    Cortex Fraxini is an important traditional Chinese herbal medicine used for the treatment of gout and hyperuricemia. An efficient and rapid ultra-performance liquid chromatography mass spectrometry method was developed and validated for simultaneous quantitation of six coumarins (aesculin, fraxin, aesculetin, fraxetin, sopoletin and 7-hydroxycoumarin) in normal and hyperuricemic rats plasma after oral administration of Cortex Fraxini. The method could successfully be applied for pharmacokinetics studies. The pharmacokinetic behavior of six coumarins in normal and hyperuricemia rats plasma was determined. Results showed that, for some of analytes, the pharmacokinetic parameters (AUC 0-t , AUC 0-∞ , C max , T max and CL) were significantly different between normal and hyperuricemic rats. The different pharmacokinetic parameters might result from renal impairment or a change of metabolic enzymes in the pathological state. The pharmacokinetic study in pathological state could provide more useful information to guide the clinical use of traditional Chinese herbal medicine. Copyright © 2017 John Wiley & Sons, Ltd.

  1. Bacopa monnieri (Brahmi) Enhanced Cognitive Function and Prevented Cognitive Impairment by Increasing VGLUT2 Immunodensity in Prefrontal Cortex of Sub-Chronic Phencyclidine Rat Model of Schizophrenia.

    PubMed

    Piyabhan, Pritsana; Wetchateng, Thanitsara

    2015-04-01

    Glutamatergic hypofunction is affected in schizophrenia. The decrement ofpresynaptic glutamatergic marker remarkably vesicular glutamate transporter type 1 (VGLUT1) indicates the deficit ofglutamatergic and cognitive function in schizophrenic brain. However there have been afew studies in VGLUT2. Brahmi, a traditional herbal medicine, might be a new frontier of cognitive deficit treatment and prevention in schizophrenia by changing cerebral VGLUT2 density. To study cognitive enhancement- and neuroprotective-effects of Brahmi on novel object recognition task and cerebral VGLUT2 immunodensity in sub-chronic phencyclidine (PCP) rat model of schizophrenia. Cognitive enhancement effect study; rats were assigned to three groups; Group-1: Control, Group-2: PCP administration and Group-3: PCP + Brahmi. Neuroprotective effect study; rats were assigned to three groups; Group-1: Control, Group-2: PCP administration and Group-3: Brahmi + PCP Discrimination ratio (DR) representing cognitive ability was obtained from novel object recognition task. VGLUT2 immunodensity was measured in prefrontal cortex, striatum, cornu ammonis fields 1 (CA1) and 2/3 (CA2/3) of hippocampus using immunohistochemistry. DR was significantly reduced in PCP group compared with control. This occurred alongside VGLUT2 reduction in prefrontal cortex, but not in striatum, CA1 or CA2/3. Both PCP + Brahmi and Brahmi + PCP groups showed an increased DR score up to normal, which occurred alongside a significantly increased VGLUT2 immunodensity in the prefrontal cortex, compared with PCP group. The decrement of VGLUT2 density in prefrontal cortex resulted in cognitive deficit in rats receiving PCP. Interestingly, receiving Brahmi after PCP administration can restore this cognitive deficit by increasing VGLUT2 density in prefrontal cortex. This investigation is defined as Brahmi's cognitive enhancement effect. Additionally, receiving Brahmi before PCP administration can also prevent cognitive impairment by elevating VGLUT2 density in prefrontal cortex. This observation indicates neuroprotective effect of Brahmi. Therefore, Brahmi could be a new frontier of restoration and prevention of cognitive deficit in schizophrenia.

  2. [Effects of nano-lead exposure on learning and memory as well as iron homeostasis in brain of offspring rats].

    PubMed

    Gao, Jing; Su, Hong; Yin, Jingwen; Cao, Fuyuan; Feng, Peipei; Liu, Nan; Xue, Ling; Zheng, Guoying; Li, Qingzhao; Zhang, Yanshu

    2015-06-01

    To investigate the effects of nano-lead exposure on learning and memory and iron homeostasis in the brain of the offspring rats on postnatal day 21 (PND21) and postnatal day 42 (PND42). Twenty adult pregnant female Sprague-Dawley rats were randomly divided into control group and nano-lead group. Rats in the nano-lead group were orally administrated 10 mg/kg nano-lead, while rats in the control group were administrated an equal volume of normal saline until PND21. On PND21, the offspring rats were weaned and given the same treatment as the pregnant rats until 42 days after birth. The learning and memory ability of offspring rats on PND21 and PND42 was evaluated by Morris water maze test. The hippocampus and cortex s amples of offspring rats on PND21 and PND42 were collected to determine iron and lead levels in the hippocampus and cortex by inductively coupled plasma-mass spectrometry. The distributions of iron in the hippocampus and cortex were observed by Perl's iron staining. The expression levels of ferritin, ferroportin 1 (FPN1), hephaestin (HP), and ceruloplasmin (CP) were measured by enzyme-linked immunosorbent assay. After nano-lead exposure, the iron content in the cortex of offspring rats on PND21 and PND42 in the nano-lead group was significantly higher than those in the control group (32.63 ± 6.03 µg/g vs 27.04 ± 5.82 µg/g, P<0.05; 46.20 ±10.60 µg/g vs 36.61 ± 10.2µg/g, P<0.05). The iron content in the hippocampus of offspring rats on PND42 in the nano-lead group was significantly higher than that in the control group (56.9 ± 4.37µg/g vs 37.71 ± 6.92µg/g, P<0.05). The Perl's staining showed massive iron deposition in the cortex and hippocampus in the nano-lead group. FPNl level in the cotfex of offspring rats on PND21 in the nano-lead group was significantly lower than that in the control group (3.64 ± 0.23 ng/g vs 4.99 ± 0.95 ng/g, P<0.05). FPN1 level in the hippocampus of offspring rats on PND42 in the nano-lead group was significantly lower than that in the control group (2.28 ± 0.51 ng/g vs 3.69 ± 0.69 ng/g, P<0.05). The escape latencies of offspring rats on PND21 and PND42 in the nano-lead group were longer than those in the control group (15.54 ± 2.89 s vs 9.01 ± 4.66 s; 6.16 ± 1.42 s vs 4.26 ± 1.51 s). The numbers of platform crossings of offspring rats on PND21 and PND42 in the nano- lead group were significantly lower than those in the control group (7.77 ± 2.16 times vs 11.2 ± 1.61 times, P<0.05; 8.12 ± 1.51 times vs 13.0 ± 2.21 times, P<0.05). n Nano-lead exposure can result in iron homeostasis disorders in the hippocampus and cortex of offspring rats and affect their learning and memory ability.

  3. Motor cortex is required for learning but not for executing a motor skill.

    PubMed

    Kawai, Risa; Markman, Timothy; Poddar, Rajesh; Ko, Raymond; Fantana, Antoniu L; Dhawale, Ashesh K; Kampff, Adam R; Ölveczky, Bence P

    2015-05-06

    Motor cortex is widely believed to underlie the acquisition and execution of motor skills, but its contributions to these processes are not fully understood. One reason is that studies on motor skills often conflate motor cortex's established role in dexterous control with roles in learning and producing task-specific motor sequences. To dissociate these aspects, we developed a motor task for rats that trains spatiotemporally precise movement patterns without requirements for dexterity. Remarkably, motor cortex lesions had no discernible effect on the acquired skills, which were expressed in their distinct pre-lesion forms on the very first day of post-lesion training. Motor cortex lesions prior to training, however, rendered rats unable to acquire the stereotyped motor sequences required for the task. These results suggest a remarkable capacity of subcortical motor circuits to execute learned skills and a previously unappreciated role for motor cortex in "tutoring" these circuits during learning. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Oxidative stress in a model of toxic demyelination in rat brain: the effect of piracetam and vinpocetine.

    PubMed

    Abdel-Salam, Omar M E; Khadrawy, Yasser A; Salem, Neveen A; Sleem, Amany A

    2011-06-01

    We studied the role of oxidative stress and the effect of vinpocetine (1.5, 3 or 6 mg/kg) and piracetam (150 or 300 mg/kg) in acute demyelination of the rat brain following intracerebral injection of ethidium bromide (10 μl of 0.1%). ethidium bromide caused (1) increased malondialdehyde (MDA) in cortex, hippocampus and striatum; (2) decreased total antioxidant capacity (TAC) in cortex, hippocampus and striatum; (3) decreased reduced glutathione (GSH) in cortex and hippocampus (4); increased serum nitric oxide and (5) increased striatal (but not cortical or hippocampal) acetylcholinesterase (AChE) activity. MDA decreased in striatum and cortex by the lower doses of vinpocetine or piracetam but increased in cortex and hippocampus and in cortex, hypothalamus and striatum by the higher dose of vinpocetine or piracetam, respectively along with decreased TAC. GSH increased by the higher dose of piracetam and by vinpocetine which also decreased serum nitric oxide. Vinpocetine and piracetam displayed variable effects on regional AChE activity.

  5. Morphological and electrophysiological changes in intratelencephalic-type pyramidal neurons in the motor cortex of a rat model of levodopa-induced dyskinesia.

    PubMed

    Ueno, Tatsuya; Yamada, Junko; Nishijima, Haruo; Arai, Akira; Migita, Keisuke; Baba, Masayuki; Ueno, Shinya; Tomiyama, Masahiko

    2014-04-01

    Levodopa-induced dyskinesia (LID) is a major complication of long-term dopamine replacement therapy for Parkinson's disease, and becomes increasingly problematic in the advanced stage of the disease. Although the cause of LID still remains unclear, there is accumulating evidence from animal experiments that it results from maladaptive plasticity, resulting in supersensitive excitatory transmission at corticostriatal synapses. Recent work using transcranial magnetic stimulation suggests that the motor cortex displays the same supersensitivity in Parkinson's disease patients with LID. To date, the cellular mechanisms underlying the abnormal cortical plasticity have not been examined. The morphology of the dendritic spines has a strong relationship to synaptic plasticity. Therefore, we explored the spine morphology of pyramidal neurons in the motor cortex in a rat model of LID. We used control rats, 6-hydroxydopamine-lesioned rats (a model of Parkinson's disease), 6-hydroxydopamine-lesioned rats chronically treated with levodopa (a model of LID), and control rats chronically treated with levodopa. Because the direct pathway of the basal ganglia plays a central role in the development of LID, we quantified the density and size of dendritic spines in intratelencephalic (IT)-type pyramidal neurons in M1 cortex that project to the striatal medium spiny neurons in the direct pathway. The spine density was not different among the four groups. In contrast, spine size became enlarged in the Parkinson's disease and LID rat models. The enlargement was significantly greater in the LID model than in the Parkinson's disease model. This enlargement of the spines suggests that IT-type pyramidal neurons acquire supersensitivity to excitatory stimuli. To confirm this possibility, we monitored miniature excitatory postsynaptic currents (mEPSCs) in the IT-type pyramidal neurons in M1 cortex using whole-cell patch clamp. The amplitude of the mEPSCs was significantly increased in the LID model compared with the control. This indicates that the IT-type pyramidal neurons become hyperexcited in the LID model, paralleling the enlargement of spines. Thus, spine enlargement and the resultant hyperexcitability of IT-type pyramidal neurons in M1 cortex might contribute to the abnormal cortical neuronal plasticity in LID. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Fluoride and arsenic exposure affects spatial memory and activates the ERK/CREB signaling pathway in offspring rats.

    PubMed

    Zhu, Yu-Peng; Xi, Shu-Hua; Li, Ming-Yan; Ding, Ting-Ting; Liu, Nan; Cao, Fu-Yuan; Zeng, Yang; Liu, Xiao-Jing; Tong, Jun-Wang; Jiang, Shou-Fang

    2017-03-01

    Fluoride and arsenic are inorganic contaminants that occur in the natural environment. Chronic fluoride and/or arsenic exposure can induce developmental neurotoxicity and negatively influence intelligence in children, although the underlying molecular mechanisms are poorly understood. This study explored the effects of fluoride and arsenic exposure in drinking water on spatial learning, memory and key protein expression in the ERK/CREB signaling pathway in hippocampal and cerebral cortex tissue in rat offspring. Pregnant rats were divided into four groups. Control rats drank tap water, while rats in the three exposure groups drank water with sodium fluoride (100mg/L), sodium arsenite (75mg/L), and a sodium fluoride (100mg/L) and sodium arsenite (75mg/L) combination during gestation and lactation. After weaning, rat pups drank the same solution as their mothers. Spatial learning and memory ability of pups at postnatal day 21 (PND21) and postnatal day 42 (PND42) were measured using a Morris water maze. ERK, phospho-ERK (p-ERK), CREB and phospho-CREB (p-CREB) protein expression in the hippocampus and cerebral cortex was detected using Western blot. Compared with the control pups, escape latencies increased in PND42 pups exposed to arsenic and co-exposed to fluoride and arsenic, and the short-term and long-term spatial memory ability declined in pups exposed to fluoride and arsenic, both alone and in combination. Compared with controls, ERK and p-ERK levels decreased in the hippocampus and cerebral cortex in pups exposed to combined fluoride and arsenic. CREB protein expression in the cerebral cortex decreased in pups exposed to fluoride, arsenic, and the fluoride and arsenic combination. p-CREB protein expression in both the hippocampus and cerebral cortex was decreased in pups exposed to fluoride and arsenic in combination compared to the control group. There were negative correlation between the proteins expression and escape latency periods in pups. These data indicate that exposure to fluoride and arsenic in early life stage changes ERK, p-ERK, CREB and p-CREB protein expression in the hippocampus and cerebral cortex of rat offspring at PND21 and PND 42, which may contribute to impaired neurodevelopment following exposure. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Glutamatergic Neurons in Rodent Models Respond to Nanoscale Particulate Urban Air Pollutants in Vivo and in Vitro

    PubMed Central

    Morgan, Todd E.; Davis, David A.; Iwata, Nahoko; Tanner, Jeremy A.; Snyder, David; Ning, Zhi; Kam, Winnie; Hsu, Yu-Tien; Winkler, Jeremy W.; Chen, Jiu-Chiuan; Petasis, Nicos A.; Baudry, Michel; Sioutas, Constantinos

    2011-01-01

    Background: Inhalation of airborne particulate matter (PM) derived from urban traffic is associated with pathology in the arteries, heart, and lung; effects on brain are also indicated but are less documented. Objective: We evaluated rodent brain responses to urban nanoscale (< 200 nm) PM (nPM). Methods: Ambient nPM collected near an urban freeway was transferred to aqueous suspension and reaerosolized for 10-week inhalation exposure of mice or directly applied to rat brain cell cultures. Results: Free radicals were detected by electron paramagnetic resonance in the nPM 30 days after initial collection. Chronic inhalation of reaerosolized nPM altered selected neuronal and glial activities in mice. The neuronal glutamate receptor subunit (GluA1) was decreased in hippocampus, whereas glia were activated and inflammatory cytokines were induced [interleukin-1α (IL-1α), tumor necrosis factor-α (TNFα)] in cerebral cortex. Two in vitro models showed effects of nPM suspensions within 24–48 hr of exposure that involved glutamatergic functions. In hippocampal slice cultures, nPM increased the neurotoxicity of NMDA (N-methyl-d-aspartic acid), a glutamatergic agonist, which was in turn blocked by the NMDA antagonist AP5 [(2R)-amino-5-phosphonopentanoate]. In embryonic neuron cultures, nPM impaired neurite outgrowth, also blocked by AP5. Induction of IL-1α and TNFα in mixed glia cultures required higher nPM concentrations than did neuronal effects. Because conditioned media from nPM-exposed glia also impaired outgrowth of embryonic neurites, nPM can act indirectly, as well as directly, on neurons in vitro. Conclusions: nPM can affect embryonic and adult neurons through glutamatergic mechanisms. The interactions of nPM with glutamatergic neuronal functions suggest that cerebral ischemia, which involves glutamatergic excitotoxicity, could be exacerbated by nPM. PMID:21724521

  8. Effects of hypothermia and cerebral ischemia on cold-inducible RNA-binding protein mRNA expression in rat brain.

    PubMed

    Liu, Aijun; Zhang, Zhiwen; Li, Anmin; Xue, Jinghui

    2010-08-06

    CIRP (cold-inducible RNA-binding protein) mRNA is highly expressed in hypothermic conditions in mammalian cells, and the relationship between CIRP and neuroprotection for cerebral ischemia under hypothermia has been focused upon. At present, however, the expression characteristics of CIRP under hypothermia and cerebral ischemia in vivo are not clearly elucidated. In this study, CIRP mRNA expression in various regions of rat brain was examined by reverse transcriptase polymerase chain reaction (RT-PCR). CIRP expression levels were found to be similar in the hippocampus and cortex. Real-time quantitative PCR analysis revealed increasing CIRP mRNA expression in the cortex during the 24-h observation period following treatment with hypothermia or cerebral ischemia, with a greater increase in the hypothermia group. When cerebral ischemia was induced following hypothermia, CIRP mRNA expression in the cortex again showed a significant increasing tendency, but ischemia delayed the appearance of this increase. To reveal the relationship between CIRP and energy metabolism in the rat brain, lactate and pyruvate concentrations in the cortex of the rats treated with hypothermia, ischemia and ischemia after hypothermia were determined by spectrophotometric assay, and levels of phosphofructokinas-1 (PFK-1), the major regulatory enzyme of the glycolytic pathway, in the rat cortex in the three groups was also analyzed by Western blot. Using linear correlation, lactate and pyruvate concentrations, and PFK-1 levels, were each analyzed in the three groups in association with CIRP mRNA expression levels. The analysis did not reveal any correlation between the three metabolic parameters and CIRP mRNA expression induced by hypothermia, suggesting that while playing a role in neuroprotection under hypothermia, CIRP does not affect cerebral energy metabolism. Copyright 2010. Published by Elsevier B.V.

  9. Citalopram Ameliorates Synaptic Plasticity Deficits in Different Cognition-Associated Brain Regions Induced by Social Isolation in Middle-Aged Rats.

    PubMed

    Gong, Wei-Gang; Wang, Yan-Juan; Zhou, Hong; Li, Xiao-Li; Bai, Feng; Ren, Qing-Guo; Zhang, Zhi-Jun

    2017-04-01

    Our previous experiments demonstrated that social isolation (SI) caused AD-like tau hyperphosphorylation and spatial memory deficits in middle-aged rats. However, the underlying mechanisms of SI-induced spatial memory deficits remain elusive. Middle-aged rats (10 months) were group or isolation reared for 8 weeks. Following the initial 4-week period of rearing, citalopram (10 mg/kg i.p.) was administered for 28 days. Then, pathophysiological changes were assessed by performing behavioral, biochemical, and pathological analyses. We found that SI could cause cognitive dysfunction and decrease synaptic protein (synaptophysin or PSD93) expression in different brain regions associated with cognition, such as the prefrontal cortex, dorsal hippocampus, ventral hippocampus, amygdala, and caudal putamen, but not in the entorhinal cortex or posterior cingulate. Citalopram could significantly improve learning and memory and partially restore synaptophysin or PSD93 expression in the prefrontal cortex, hippocampus, and amygdala in SI rats. Moreover, SI decreased the number of dendritic spines in the prefrontal cortex, dorsal hippocampus, and ventral hippocampus, which could be reversed by citalopram. Furthermore, SI reduced the levels of BDNF, serine-473-phosphorylated Akt (active form), and serine-9-phosphorylated GSK-3β (inactive form) with no significant changes in the levels of total GSK-3β and Akt in the dorsal hippocampus, but not in the posterior cingulate. Our results suggest that decreased synaptic plasticity in cognition-associated regions might contribute to SI-induced cognitive deficits, and citalopram could ameliorate these deficits by promoting synaptic plasticity mainly in the prefrontal cortex, dorsal hippocampus, and ventral hippocampus. The BDNF/Akt/GSK-3β pathway plays an important role in regulating synaptic plasticity in SI rats.

  10. Motor cortex is required for learning but not executing a motor skill

    PubMed Central

    Kawai, Risa; Markman, Timothy; Poddar, Rajesh; Ko, Raymond; Fantana, Antoniu; Dhawale, Ashesh; Kampff, Adam R.; Ölveczky, Bence P.

    2018-01-01

    Motor cortex is widely believed to underlie the acquisition and execution of motor skills, yet its contributions to these processes are not fully understood. One reason is that studies on motor skills often conflate motor cortex’s established role in dexterous control with roles in learning and producing task-specific motor sequences. To dissociate these aspects, we developed a motor task for rats that trains spatiotemporally precise movement patterns without requirements for dexterity. Remarkably, motor cortex lesions had no discernible effect on the acquired skills, which were expressed in their distinct pre-lesion forms on the very first day of post-lesion training. Motor cortex lesions prior to training, however, rendered rats unable to acquire the stereotyped motor sequences required for the task. These results suggest a remarkable capacity of subcortical motor circuits to execute learned skills and a previously unappreciated role for motor cortex in ‘tutoring’ these circuits during learning. PMID:25892304

  11. Progestin Concentrations Are Increased following Paced Mating in Midbrain, Hippocampus, Diencephalon, and Cortex of Rats in Behavioral Estrus, but Only in Midbrain of Diestrous Rats

    PubMed Central

    Frye, Cheryl A.; Rhodes, Madeline E.

    2013-01-01

    Background The progesterone (P4 ) metabolite, 5α-pregnan-3α-ol-20-one (3α,5α-THP), acts in the midbrain ventral tegmental area (VTA) to modulate the intensity and duration of lordosis. 3α,5α-THP can also have anti-anxiety and anti-stress effects in part through actions in the hippocampus. Separate reports indicate that manipulating 3α,5α-THP levels in the VTA or hippocampus respectively can influence lordosis and affective behavior. 3α,5α-THP levels can also be altered by behavioral experiences, such as mating or swim stress. Whether endogenous levels of 3α,5α-THP modulate and/or are increased in response to affective and/or reproductively-relevant behaviors was investigated. Methods In Experiment 1, rats in behavioral estrus or diestrus were individually tested sequentially in the open field, elevated plus maze, partner preference, social interaction, and paced mating tasks and levels of 17 β-estradiol (E2), P4, dihydroprogesterone (DHP), and 3α,5α-THP in serum, midbrain, hippocampus, diencephalon, and cortex were examined. In Experiments 2 and 3, rats in behavioral estrus or diestrus, were individually tested in the battery indicated above, with, or without, paced mating and tissues were collected immediately after testing for later assessment of endocrine measures. Results In Experiment 1, behavioral estrous, compared to diestrous, rats demonstrated more exploratory, anti-anxiety, social, and reproductive behaviors, and had higher levels of E2 and progestins in serum, midbrain, hippocampus, diencephalon, and cortex. In Experiment 2, in midbrain and hippocampus, levels of 3α,5α-THP and its precursor DHP were increased among rats in behavioral estrus that were mated. In diencephalon, and cortex, DHP levels were increased by mating. In Experiment 3, in midbrain, levels of 3α,5α-THP and its precursor DHP were increased among diestrous rats that were tested in the behavioral battery with mating as compared to those tested in the behavioral battery without mating. Conclusions Increased levels of 3α,5α-THP in behavioral estrus versus diestrous rats are associated with enhanced exploratory, anti-anxiety, social, and reproductive behaviors. Rats in behavioral estrus that are mated have further increases in 3α,5α-THP and/or DHP levels in midbrain, hippocampus, diencephalon, and cortex than do non-mated rats in behavioral estrus, whereas diestrous rats only show 3α,5α-THP increases in midbrain in response to behavioral testing that included mating. PMID:17028418

  12. Systemic blockade of dopamine D2-like receptors increases high-voltage spindles in the globus pallidus and motor cortex of freely moving rats.

    PubMed

    Yang, Chen; Ge, Shun-Nan; Zhang, Jia-Rui; Chen, Lei; Yan, Zhi-Qiang; Heng, Li-Jun; Zhao, Tian-Zhi; Li, Wei-Xin; Jia, Dong; Zhu, Jun-Ling; Gao, Guo-Dong

    2013-01-01

    High-voltage spindles (HVSs) have been reported to appear spontaneously and widely in the cortical-basal ganglia networks of rats. Our previous study showed that dopamine depletion can significantly increase the power and coherence of HVSs in the globus pallidus (GP) and motor cortex of freely moving rats. However, it is unclear whether dopamine regulates HVS activity by acting on dopamine D₁-like receptors or D₂-like receptors. We employed local-field potential and electrocorticogram methods to simultaneously record the oscillatory activities in the GP and primary motor cortex (M1) in freely moving rats following systemic administration of dopamine receptor antagonists or saline. The results showed that the dopamine D₂-like receptor antagonists, raclopride and haloperidol, significantly increased the number and duration of HVSs, and the relative power associated with HVS activity in the GP and M1 cortex. Coherence values for HVS activity between the GP and M1 cortex area were also significantly increased by dopamine D₂-like receptor antagonists. On the contrary, the selective dopamine D₁-like receptor antagonist, SCH23390, had no significant effect on the number, duration, or relative power of HVSs, or HVS-related coherence between M1 and GP. In conclusion, dopamine D₂-like receptors, but not D₁-like receptors, were involved in HVS regulation. This supports the important role of dopamine D₂-like receptors in the regulation of HVSs. An siRNA knock-down experiment on the striatum confirmed our conclusion.

  13. Antinociception induced by epidural motor cortex stimulation in naive conscious rats is mediated by the opioid system.

    PubMed

    Fonoff, Erich Talamoni; Dale, Camila Squarzoni; Pagano, Rosana Lima; Paccola, Carina Cicconi; Ballester, Gerson; Teixeira, Manoel Jacobsen; Giorgi, Renata

    2009-01-03

    Epidural motor cortex stimulation (MCS) has been used for treating patients with neuropathic pain resistant to other therapeutic approaches. Experimental evidence suggests that the motor cortex is also involved in the modulation of normal nociceptive response, but the underlying mechanisms of pain control have not been clarified yet. The aim of this study was to investigate the effects of epidural electrical MCS on the nociceptive threshold of naive rats. Electrodes were placed on epidural motor cortex, over the hind paw area, according to the functional mapping accomplished in this study. Nociceptive threshold and general activity were evaluated under 15-min electrical stimulating sessions. When rats were evaluated by the paw pressure test, MCS induced selective antinociception in the paw contralateral to the stimulated cortex, but no changes were noticed in the ipsilateral paw. When the nociceptive test was repeated 15 min after cessation of electrical stimulation, the nociceptive threshold returned to basal levels. On the other hand, no changes in the nociceptive threshold were observed in rats evaluated by the tail-flick test. Additionally, no behavioral or motor impairment were noticed in the course of stimulation session at the open-field test. Stimulation of posterior parietal or somatosensory cortices did not elicit any changes in the general activity or nociceptive response. Opioid receptors blockade by naloxone abolished the increase in nociceptive threshold induced by MCS. Data shown herein demonstrate that epidural electrical MCS elicits a substantial and selective antinociceptive effect, which is mediated by opioids.

  14. Disorganization of Oligodendrocyte Development in the Layer II/III of the Sensorimotor Cortex Causes Motor Coordination Dysfunction in a Model of White Matter Injury in Neonatal Rats.

    PubMed

    Ueda, Yoshitomo; Misumi, Sachiyo; Suzuki, Mina; Ogawa, Shino; Nishigaki, Ruriko; Ishida, Akimasa; Jung, Cha-Gyun; Hida, Hideki

    2018-01-01

    We previously established neonatal white matter injury (WMI) model rat that is made by right common carotid artery dissection at postnatal day 3, followed by 6% hypoxia for 60 min. This model has fewer oligodendrocyte progenitor cells and reduced myelin basic protein (MBP) positive areas in the sensorimotor cortex, but shows no apparent neuronal loss. However, how motor deficits are induced in this model is unclear. To elucidate the relationship between myelination disturbance and concomitant motor deficits, we first performed motor function tests (gait analysis, grip test, horizontal ladder test) and then analyzed myelination patterns in the sensorimotor cortex using transmission electron microscopy (TEM) and Contactin associated protein 1 (Caspr) staining in the neonatal WMI rats in adulthood. Behavioral tests revealed imbalanced motor coordination in this model. Motor deficit scores were higher in the neonatal WMI model, while hindlimb ladder stepping scores and forelimb grasping force were comparable to controls. Prolonged forelimb swing times and decreased hindlimb paw angles on the injured side were revealed by gait analysis. TEM revealed no change in myelinated axon number and the area g-ratio in the layer II/III of the cortex. Electromyographical durations and latencies in the gluteus maximus in response to electrical stimulation of the brain area were unchanged in the model. Caspr staining revealed fewer positive dots in layers II/III of the WMI cortex, indicating fewer and/or longer myelin sheath. These data suggest that disorganization of oligodendrocyte development in layers II/III of the sensorimotor cortex relates to imbalanced motor coordination in the neonatal WMI model rat.

  15. Intact intracortical microstimulation (ICMS) representations of rostral and caudal forelimb areas in rats with quinolinic acid lesions of the medial or lateral caudate-putamen in an animal model of Huntington's disease.

    PubMed

    Karl, Jenni M; Sacrey, Lori-Ann R; McDonald, Robert J; Whishaw, Ian Q

    2008-09-05

    Neurotoxic, cell-specific lesions of the rat caudate-putamen (CPu) have been proposed as a model of human Huntington's disease and as such impair performance on many motor tasks, including skilled forelimbs tasks such as reaching for food. Because the CPu and motor cortex share reciprocal connections, it has been proposed that the motor deficits are due in part to a secondary disruption of motor cortex. The purpose of the present study was to examine the functionality of the motor cortex using intracortical microstimulation (ICMS) following neurotoxic lesions of the CPu. ICMS maps have been shown to be sensitive indicators of motor skill, cortical injury, learning, and experience. Long-evans hooded rats received a sham, a medial, or a lateral CPu lesion using the neurotoxin, quinolinic acid (2,3-pyridinedicarboxylic acid). Two weeks later the motor cortex was stimulated under light ketamine anesthesia. Neither lateral nor medial lesions of the CPu altered the stimulation threshold for eliciting forelimb movements, the type of movements elicited, or the size of the rostral forelimb (RFA) and caudal forelimb areas (CFA) from which movements were elicited. The preservation of ICMS forelimb movement representations (the forelimb map) in rats with cell-specific CPu lesions suggests motor impairments following lesions of the lateral striatum are not due to the disruption of the motor map. Therefore, the impairments that follow striatal cell loss are due either to alterations in circuitry that is independent of motor cortex or to alterations in circuitry afferent to the motor cortex projections.

  16. Lycopene ameliorates atrazine-induced oxidative damage in adrenal cortex of male rats by activation of the Nrf2/HO-1 pathway.

    PubMed

    Abass, Marwa Ahmed; Elkhateeb, Shereen Ahmed; Abd El-Baset, Samia Adel; Kattaia, Asmaa Alhosiny; Mohamed, Eman Mosallam; Atteia, Hebatallah Husseini

    2016-08-01

    Atrazine (ATZ) is one of the most commonly used herbicides contaminating plants, soil and water resources. Several strategies have been used to counteract ATZ toxicity. Here, we tested the hypothesis that lycopene could ameliorate ATZ-induced toxicity in the adrenal cortex. For this purpose, 35 adult male albino rats were randomized into five equal groups: untreated control, vehicle control (received 0.5 mL corn oil/day), lycopene (treated with lycopene dissolved in 0.5 mL corn oil, 10 mg/kg b.w./day), ATZ (received ATZ dissolved in 0.5 mL corn oil 300 mg/kg b.w./day), and ATZ + lycopene (treated with ATZ and lycopene at the same previously mentioned doses). All treatments were given by oral gavage for 4 weeks. We found that ATZ exposure significantly increased relative adrenal weight, plasma ACTH levels, and adrenal oxidative stress as manifested by elevated malondialdehyde levels, decreased reduced glutathione content and depressed antioxidant enzyme activities in adrenal cortex tissues with respect to control groups. Furthermore, the transcription of adrenal cortex nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), nuclear factor kappa B, and caspase-3 genes was increased significantly compared with the control groups. This was accompanied with DNA fragmentation and structural and ultrastructural changes in zona glomerulosa and zona fasiculata of the adrenal cortex. Notably, all these changes were partially ameliorated in rats treated concomitantly with ATZ and lycopene. Our results showed that lycopene exerts protective effects against ATZ-induced toxicity in rat adrenal cortex. These effects may be attributed to the antioxidative property of lycopene and its ability to activate the Nrf2/HO-1 pathway.

  17. Dopamine D2 receptors in the cerebral cortex: distribution and pharmacological characterization with [3H]raclopride.

    PubMed Central

    Lidow, M S; Goldman-Rakic, P S; Rakic, P; Innis, R B

    1989-01-01

    An apparent involvement of dopamine in the regulation of cognitive functions and the recognition of a widespread dopaminergic innervation of the cortex have focused attention on the identity of cortical dopamine receptors. However, only the presence and distribution of dopamine D1 receptors in the cortex have been well documented. Comparable information on cortical D2 sites is lacking. We report here the results of binding studies in the cortex and neostriatum of rat and monkey using the D2 selective antagonist [3H]raclopride. In both structures [3H]raclopride bound in a sodium-dependent and saturable manner to a single population of sites with pharmacological profiles of dopamine D2 receptors. D2 sites were present in all regions of the cortex, although their density was much lower than in the neostriatum. The density of these sites in both monkey and, to a lesser extent, rat cortex displayed a rostral-caudal gradient with highest concentrations in the prefrontal and lowest concentrations in the occipital cortex, corresponding to dopamine levels in these areas. Thus, the present study establishes the presence and widespread distribution of dopamine D2 receptors in the cortex. PMID:2548214

  18. Postnatal fate of the ultimobranchial remnants in the rat thyroid gland.

    PubMed

    Vázquez-Román, Victoria; Utrilla, José C; Fernández-Santos, José M; Conde, Esperanza; Bernabé, Reyes; Sampedro, Consuelo; Martín-Lacave, Inés

    2013-07-01

    The ultimobranchial follicles (UBFs) are considered embryonic remnants from the ultimobranchial body (UBB). They are follicular structures that vary in size and appearance depending on the age of the rat. The main objective of this article was to study the progressive changes in shape, size, and frequency of the UBFs in the postnatal rat, from birth to old-age. To accomplish that objective, a systematic morphometric and incidental study of the UBF has been carried out in 110 Wistar rats of different ages and both sexes, divided into three groups: 1) young rats (5-90-day-old); 2) adult rats (6-15-month-old), and 3) old rats (18-24-month-old). The glands were serially sectioned and immunostained for calcitonin at five equidistant levels. According to our results, UBFs were observed in all thyroid glands but a more exhaustive sampling was occasionally necessary in male rats. In young rats, immature UBFs predominantly appeared whereas in adult rats, mature UBFs with cystic appearance and variable luminal content prevailed. We frequently found spontaneous anomalous UBFs in old rats, which we have termed as "ultimobranchial cystadenomata." Additionally, in young rats, UBF areas significantly increased with age and they were larger when compared to that of normal thyroid follicles. Likewise, in adult rats, UBFs were significantly larger than normal thyroid follicles but only in female rats. In general, UBFs in females were also significantly larger than those found in male rats. Finally, all these differences related to UBFs together with a higher incidence in females of UB cystadenomata suggest a sexual dimorphism in regard to the destiny of these embryonic remnants during postnatal thyroid development. Copyright © 2013 Wiley Periodicals, Inc.

  19. Relationship between changes in rat behavior and integral biochemical indexes determined by laser correlation spectroscopy after photothrombosis of the prefrontal cortex.

    PubMed

    Romanova, G A; Shakova, F M; Kovaleva, O I; Pivovarov, V V; Khlebnikova, N N; Karganov, M Yu

    2004-02-01

    Experiments on rats showed that Noopept improved retention and retrieval of conditioned passive avoidance response after phototrombosis of the prefrontal cortex (a procedure impairing retention of memory traces). The impairment of mnesic functions was accompanied by changes in integral biochemical indexes of the plasma determined by laser correlation spectroscopy. Treatment of behavioral disorders with Noopepet normalized biochemical indexes.

  20. Motor cortex stimulation does not lead to functional recovery after experimental cortical injury in rats.

    PubMed

    Schönfeld, Lisa-Maria; Jahanshahi, Ali; Lemmens, Evi; Bauwens, Matthias; Hescham, Sarah-Anna; Schipper, Sandra; Lagiere, Melanie; Hendrix, Sven; Temel, Yasin

    2017-01-01

    Motor impairments are among the major complications that develop after cortical damage caused by either stroke or traumatic brain injury. Motor cortex stimulation (MCS) can improve motor functions in animal models of stroke by inducing neuroplasticity. In the current study, the therapeutic effect of chronic MCS was assessed in a rat model of severe cortical damage. A controlled cortical impact (CCI) was applied to the forelimb area of the motor cortex followed by implantation of a flat electrode covering the lesioned area. Forelimb function was assessed using the Montoya staircase test and the cylinder test before and after a period of chronic MCS. Furthermore, the effect of MCS on tissue metabolism and lesion size was measured using [18F]-fluorodesoxyglucose (FDG) μPET scanning. CCI caused a considerable lesion at the level of the motor cortex and dorsal striatum together with a long-lasting behavioral phenotype of forelimb impairment. However, MCS applied to the CCI lesion did not lead to any improvement in limb functioning when compared to non-stimulated control rats. Also, MCS neither changed lesion size nor distribution of FDG. The use of MCS as a standalone treatment did not improve motor impairments in a rat model of severe cortical damage using our specific treatment modalities.

  1. Role of insular cortex in visceral hypersensitivity model in rats subjected to chronic stress.

    PubMed

    Yi, LiSha; Sun, HuiHui; Ge, Chao; Chen, Ying; Peng, HaiXia; Jiang, YuanXi; Wu, Ping; Tang, YinHan; Meng, QingWei; Xu, ShuChang

    2014-12-30

    Abnormal processing of visceral sensation at the level of the central nervous system has been proven to be important in the pathophysiologic mechanisms of stress related functional gastrointestinal disorders. However, the specific mechanism is still not clear. The insular cortex (IC) was considered as one important visceral sensory area. Moreover, the IC has been shown to be involved in various neuropsychiatric diseases such as panic disorders and post-traumatic stress disorder. However, whether the IC is important in psychological stress related visceral hypersensitivity has not been studied yet. In our study, through destruction of the bilateral IC, we explored whether the IC played a critical role in the formation of visceral hypersensitivity induced by chronic stress on rats. Chronic partial restraint stress was used to establish viscerally hypersensitive rat model. Bilateral IC lesions were generated by N-methyl-D-day (door) aspartate. After a recovery period of 7 days, 14-day consecutive restraint stress was performed. The visceromotor response to colorectal distension was monitored by recording electromyogram to measure rats׳ visceral sensitivity. We found that bilateral insular cortex lesion could markedly inhibit the formation of visceral hypersensitivity induced by chronic stress. The insular cortex plays a critical role in the pathophysiology of stress-related visceral hypersensitivity.

  2. Paired-housing selectively facilitates within-session extinction of avoidance behavior, and increases c-Fos expression in the medial prefrontal cortex, in anxiety vulnerable Wistar-Kyoto rats.

    PubMed

    Smith, Ian M; Pang, Kevin C H; Servatius, Richard J; Jiao, Xilu; Beck, Kevin D

    2016-10-01

    The perseveration of avoidance behavior, even in the absence of once threatening stimuli, is a key feature of anxiety and related psychiatric conditions. This phenomenon can be observed in the Wistar-Kyoto (WKY) rat which, in comparison to outbred controls, demonstrates impaired extinction of avoidance behavior. Also characteristic of the WKY rat is abnormalities of the neurocircuitry and neuroplasticity of the medial prefrontal cortex (mPFC). One means of reducing physiological responses to anxiety, and conditioned fear, in social species is the presence of a conspecific animal. The current study investigates whether or not pair-housed WKY rats would show facilitated extinction of avoidance in comparison to individual-housed WKY rats, and whether or not pair-housing influences mPFC activation during lever-press avoidance. Male WKY rats were assigned to individual-housed and pair-housed conditions. Rats were trained in lever-press avoidance. Each session of lever-press avoidance consisted of 20 trials, where pressing a lever in response to a warning tone prevented foot-shocks. Rats received 12 acquisition sessions over 4weeks; followed by 6 extinction sessions over 2weeks, where foot-shocks ceased to be delivered. Brains were harvested 90min after trials 1 and 10 of extinction sessions 1 and 6, and mPFC sections underwent c-Fos staining as a measure of activation. Pair-housed rats showed facilitated lever-press avoidance extinction rates, but the main cause for this overall difference was a selective facilitation of within-session extinction. Similar to individual-housed rats, pair-housed rats continued to avoid during trial 1 of extinction even when the avoidance responding had been significantly reduced by the end of the previous session. Pair-housed rats sacrificed on trial 1 showed greater c-Fos expression in the anterior cingulate cortex and prelimbic cortex subregions of the mPFC compared individual-housed rats sacrificed on trial 1. This data shows pair-housing to facilitate the extinction of avoidance, and to influence activity of the mPFC, in WKY rats. Despite this environmental manipulation, the pair-housed WKY rats continued to show avoidance responding on trial 1 of extinction sessions. This demonstrates that within-session extinction can be dissociated from between-session extinction-resistance in WKY rats. Furthermore, it suggests the individual-housing of WKY rats selectively slows within-session extinction, possibly by reducing neuronal activity of the mPFC during the testing situation. Published by Elsevier Inc.

  3. 2D Raman study of the healthy and epileptic rat cerebellar cortex tissue

    NASA Astrophysics Data System (ADS)

    Sacharz, Julia; Wesełucha-Birczyńska, Aleksandra; Zięba-Palus, Janina; Lewandowski, Marian H.; Palus-Chramiec, Katarzyna; Chrobok, Łukasz; Moskal, Paulina; Birczyńska, Malwina; Sozańska, Agnieszka

    2018-07-01

    The aim of this study was to determine what changes in the Cerebellar cortex (Cc) of the rat's brain tissue can be observed by Raman spectroscopy comparing epileptic (WAG/Rij) and control (Wistar) rats. Experiments were performed on the brain slices obtained from male rats (2-3 weeks old). WAG/Rij rats, used in this study, represent the well-established model of epilepsy. The Raman spectra of the fresh, not additionally preserved brain scraps, kept in artificial cerebrospinal fluid, were collected using a 442 nm, 514.5 nm, 785 nm and 1064 nm laser lines as an excitation source. 2D correlation analysis was used to create two-dimensional (2D) spectra and wavelength of the excitation laser was regarded as an external stimulus. Differences in the 2D spectra of two investigated groups of rats were observed. Analysis of the intensity ratios of the respective marker Raman bands indicated close packing between the lipid chains in a healthy Cerebellar cortex tissue. In asynchronous maps of healthy tissue the cross-peaks of Trp and Tyr vibration, that are neurotransmitters' precursors, are recognized. In the epileptic tissue, the amino acids glutamate (Glu) and aspartate (Asp), excitatory neurotransmitters, initiate changes observed in the asynchronous map.

  4. Neuroprotective effects of kolaviron against psycho-emotional stress induced oxidative brain injury in rats: The whisker removal model.

    PubMed

    Ibironke, G F; Fasanmade, A A

    2016-09-01

    The study investigated the neuroprotective potentials of kolaviron (a biflavonoid complex of Garcinia kola) against psycho-emotional stress induced oxidative brain injury in Wistar rats. Twenty-four adult Wistar rats (180-220g) randomly divided into four groups (1-1V,n=6) were used for the study . Group 1 served as control (non stressed), group 11 consisted of stressed rats induced by complete removal' of the whiskers around the mouth and the nose without anaesthesia. The rats in group 111 were pre- treated with 200mg/kg kolaviron per oral (p.o), daily for seven days before being subjected to the stress procedure' while group 1V rats also had 200mg/kg oral kolaviron alone without being stressed. The animals were later euthanized by cervical dislocation, cerebellum and frontal cortex removed and then subjected to biochemical and histopathological analysis. Whisker removal significantly(p<0.05) increased lipid peroxidation (U/mg protein) in the cerebellum (3.82±0.22 vs 6.50±0.41) and the cerebral cortex (14.57±2.50 vs 30.11± 4.70) compared with their controls, it also produced significant reductions 'in catalase activities (U/min/mg protein) in cerebellum (169.65±11.02 vs 87.72, p <0.001) and the cerebral cortex (264.5 ± 40.57 vs 122.71 ± 15.70,p< 0.001). Glutathione levels (U/mg protein) were similarly significantly (P<0.001) reduced in both cerebellum (132.40 ± 4.81 vs 37.60 ± 1.50) and the cerebral cortex (370.42 ±20.51 vs 120.51± 25.35) compared with their corresponding controls. There were also histological abnormalities like cellular degeneration and necrosis in both the frontal cortex and the cerebellum of the stressed rats. Pre- treatment with kolaviron not only reversed these biochemical alterations but also significantly attenuated these observed histopathological changes. The present study demonstrated the neuroprotective potential of kolaviron against psycho-emotional stress-induced oxidative brain injury through the inhibition of oxidative stress.

  5. HCN4-Overexpressing Mouse Embryonic Stem Cell-Derived Cardiomyocytes Generate a New Rapid Rhythm in Rats with Bradycardia.

    PubMed

    Saito, Yukihiro; Nakamura, Kazufumi; Yoshida, Masashi; Sugiyama, Hiroki; Takano, Makoto; Nagase, Satoshi; Morita, Hiroshi; Kusano, Kengo F; Ito, Hiroshi

    2018-05-30

    A biological pacemaker is expected to solve the persisting problems of an artificial cardiac pacemaker including short battery life, lead breaks, infection, and electromagnetic interference. We previously reported HCN4 overexpression enhances pacemaking ability of mouse embryonic stem cell-derived cardiomyocytes (mESC-CMs) in vitro. However, the effect of these cells on bradycardia in vivo has remained unclear. Therefore, we transplanted HCN4-overexpressing mESC-CMs into bradycardia model animals and investigated whether they could function as a biological pacemaker. The rabbit Hcn4 gene was transfected into mouse embryonic stem cells and induced HCN4-overexpressing mESC-CMs. Non-cardiomyocytes were removed under serum/glucose-free and lactate-supplemented conditions. Cardiac balls containing 5 × 10 3 mESC-CMs were made by using the hanging drop method. One hundred cardiac balls were injected into the left ventricular free wall of complete atrioventricular block (CAVB) model rats. Heart beats were evaluated using an implantable telemetry system 7 to 30 days after cell transplantation. The result showed that ectopic ventricular beats that were faster than the intrinsic escape rhythm were often observed in CAVB model rats transplanted with HCN4-overexpressing mESC-CMs. On the other hand, the rats transplanted with non-overexpressing mESC-CMs showed sporadic single premature ventricular contraction but not sustained ectopic ventricular rhythms. These results indicated that HCN4-overexpressing mESC-CMs produce rapid ectopic ventricular rhythms as a biological pacemaker.

  6. Computational Image Analysis Reveals Intrinsic Multigenerational Differences between Anterior and Posterior Cerebral Cortex Neural Progenitor Cells

    PubMed Central

    Winter, Mark R.; Liu, Mo; Monteleone, David; Melunis, Justin; Hershberg, Uri; Goderie, Susan K.; Temple, Sally; Cohen, Andrew R.

    2015-01-01

    Summary Time-lapse microscopy can capture patterns of development through multiple divisions for an entire clone of proliferating cells. Images are taken every few minutes over many days, generating data too vast to process completely by hand. Computational analysis of this data can benefit from occasional human guidance. Here we combine improved automated algorithms with minimized human validation to produce fully corrected segmentation, tracking, and lineaging results with dramatic reduction in effort. A web-based viewer provides access to data and results. The improved approach allows efficient analysis of large numbers of clones. Using this method, we studied populations of progenitor cells derived from the anterior and posterior embryonic mouse cerebral cortex, each growing in a standardized culture environment. Progenitors from the anterior cortex were smaller, less motile, and produced smaller clones compared to those from the posterior cortex, demonstrating cell-intrinsic differences that may contribute to the areal organization of the cerebral cortex. PMID:26344906

  7. Brain nicotinic acetylcholine receptors are involved in stress-induced potentiation of nicotine reward in rats.

    PubMed

    Javadi, Parastoo; Rezayof, Ameneh; Sardari, Maryam; Ghasemzadeh, Zahra

    2017-07-01

    The aim of the present study was to examine the possible role of nicotinic acetylcholine receptors of the dorsal hippocampus (CA1 regions), the medial prefrontal cortex or the basolateral amygdala in the effect of acute or sub-chronic stress on nicotine-induced conditioned place preference. Our results indicated that subcutaneous administration of nicotine (0.2 mg/kg) induced significant conditioned place preference. Exposure to acute or sub-chronic elevated platform stress potentiated the response of an ineffective dose of nicotine. Pre-conditioning intra-CA1 (0.5-4 µg/rat) or intra-medial prefrontal cortex (0.2-0.3 µg/rat) microinjection of mecamylamine (a non-selective nicotinic acetylcholine receptor antagonist) reversed acute stress-induced potentiation of nicotine reward as measured in the conditioned place preference paradigm. By contrast, pre-conditioning intra-basolateral amygdala microinjection of mecamylamine (4 µg/rat) potentiated the effects of acute stress on nicotine reward. Our findings also showed that intra-CA1 or intra-medial prefrontal cortex, but not intra-basolateral amygdala, microinjection of mecamylamine (4 µg/rat) prevented the effect of sub-chronic stress on nicotine reward. These findings suggest that exposure to elevated platform stress potentiates the rewarding effect of nicotine which may be associated with the involvement of nicotinic acetylcholine receptors. It seems that there is a different contribution of the basolateral amygdala, the medial prefrontal cortex or the CA1 nicotinic acetylcholine receptors in stress-induced potentiation of nicotine-induced conditioned place preference.

  8. Focal expression of mutated tau in entorhinal cortex neurons of rats impairs spatial working memory.

    PubMed

    Ramirez, Julio J; Poulton, Winona E; Knelson, Erik; Barton, Cole; King, Michael A; Klein, Ronald L

    2011-01-01

    Entorhinal cortex neuropathology begins very early in Alzheimer's disease (AD), a disorder characterized by severe memory disruption. Indeed, loss of entorhinal volume is predictive of AD and two of the hallmark neuroanatomical markers of AD, amyloid plaques and neurofibrillary tangles (NFTs), are particularly prevalent in the entorhinal area of AD-afflicted brains. Gene transfer techniques were used to create a model neurofibrillary tauopathy by injecting a recombinant adeno-associated viral vector with a mutated human tau gene (P301L) into the entorhinal cortex of adult rats. The objective of the present investigation was to determine whether adult onset, spatially restricted tauopathy could be sufficient to reproduce progressive deficits in mnemonic function. Spatial memory on a Y-maze was tested for approximately 3 months post-surgery. Upon completion of behavioral testing the brains were assessed for expression of human tau and evidence of tauopathy. Rats injected with the tau vector became persistently impaired on the task after about 6 weeks of postoperative testing, whereas the control rats injected with a green fluorescent protein vector performed at criterion levels during that period. Histological analysis confirmed the presence of hyperphosphorylated tau and NFTs in the entorhinal cortex and neighboring retrohippocampal areas as well as limited synaptic degeneration of the perforant path. Thus, highly restricted vector-induced tauopathy in retrohippocampal areas is sufficient for producing progressive impairment in mnemonic ability in rats, successfully mimicking a key aspect of tauopathies such as AD. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. Neurochemical changes in the rat prefrontal cortex following acute phencyclidine treatment: an in vivo localized (1)H MRS study.

    PubMed

    Iltis, Isabelle; Koski, Dee M; Eberly, Lynn E; Nelson, Christopher D; Deelchand, Dinesh K; Valette, Julien; Ugurbil, Kamil; Lim, Kelvin O; Henry, Pierre-Gilles

    2009-08-01

    Acute phencyclidine (PCP) administration mimics some aspects of schizophrenia in rats, such as behavioral alterations, increased dopaminergic activity and prefrontal cortex dysfunction. In this study, we used single-voxel (1)H-MRS to investigate neurochemical changes in rat prefrontal cortex in vivo before and after an acute injection of PCP. A short-echo time sequence (STEAM) was used to acquire spectra in a 32-microL voxel positioned in the prefrontal cortex area of 12 rats anesthetized with isoflurane. Data were acquired for 30 min before and for 140 min after a bolus of PCP (10 mg/kg, n = 6) or saline (n = 6). Metabolites were quantified with the LCModel. Time courses for 14 metabolites were obtained with a temporal resolution of 10 min. The glutamine/glutamate ratio was significantly increased after PCP injection (p < 0.0001, pre- vs. post-injection), while the total concentration of these two metabolites remained constant. Glucose was transiently increased (+70%) while lactate decreased after the injection (both p < 0.0001). Lactate, but not glucose and glutamine, returned to baseline levels after 140 min. These results show that an acute injection of PCP leads to changes in glutamate and glutamine concentrations, similar to what has been observed in schizophrenic patients, and after ketamine administration in humans. MRS studies of this pharmacological rat model may be useful for assessing the effects of potential anti-psychotic drugs in vivo. 2009 John Wiley & Sons, Ltd.

  10. The acute effect of ethanol on adrenal cortex in female rats--possible role of nitric oxide.

    PubMed

    Dikić, Dragoslava; Budeč, Mirela; Vranješ-Durić, Sanja; Koko, Vesna; Vignjević, Sanja; Mitrović, Olivera

    2011-01-01

    The present study was designed to investigate a possible role of endogenous nitric oxide (NO) in the adrenal response to an acute alcohol administration in female rats. To this end, N(ω)-nitro-L-arginine-methyl ester (L-NAME), a competitive inhibitor of all isoforms of NO synthase, was used. Adult female Wistar rats showing diestrus Day 1 were treated with: (a) ethanol (2 or 4 g/kg, intraperitoneally); (b) L-NAME (30 or 50 mg/kg, subcutaneously) followed by either ethanol or saline 3 h later. Untreated and saline-injected rats were used as controls. The animals were killed 30 min after last injection. Adrenal cortex was analyzed morphometrically, and plasma levels of adrenocorticotropic hormone (ACTH) and serum concentrations of corticosterone were determined. Acute ethanol treatment enhanced the levels of ACTH and corticosterone in a dose-dependent manner. Stereological analysis revealed that acute alcohol administration induced a significant increase in absolute volume of the cortex and the zona fasciculata (ZF). In addition, ethanol at a dose of 4 g/kg increased volume density and length of the capillaries in the ZF. However, other stereological parameters were unaffected by alcohol exposure. Pretreatment with both doses of L-NAME had no effect on ethanol-induced changes. Obtained findings indicate that acute ethanol treatment stimulates the activity of the adrenal cortex and that this effect is not mediated by endogenous NO in female rats under these experimental conditions.

  11. Auditory cortex interneuron development requires cadherins operating hair-cell mechanoelectrical transduction.

    PubMed

    Libé-Philippot, Baptiste; Michel, Vincent; Boutet de Monvel, Jacques; Le Gal, Sébastien; Dupont, Typhaine; Avan, Paul; Métin, Christine; Michalski, Nicolas; Petit, Christine

    2017-07-25

    Many genetic forms of congenital deafness affect the sound reception antenna of cochlear sensory cells, the hair bundle. The resulting sensory deprivation jeopardizes auditory cortex (AC) maturation. Early prosthetic intervention should revive this process. Nevertheless, this view assumes that no intrinsic AC deficits coexist with the cochlear ones, a possibility as yet unexplored. We show here that many GABAergic interneurons, from their generation in the medial ganglionic eminence up to their settlement in the AC, express two cadherin-related (cdhr) proteins, cdhr23 and cdhr15, that form the hair bundle tip links gating the mechanoelectrical transduction channels. Mutant mice lacking either protein showed a major decrease in the number of parvalbumin interneurons specifically in the AC, and displayed audiogenic reflex seizures. Cdhr15 - and Cdhr23 -expressing interneuron precursors in Cdhr23 -/- and Cdhr15 -/- mouse embryos, respectively, failed to enter the embryonic cortex and were scattered throughout the subpallium, consistent with the cell polarity abnormalities we observed in vitro. In the absence of adhesion G protein-coupled receptor V1 (adgrv1), another hair bundle link protein, the entry of Cdhr23 - and Cdhr15 -expressing interneuron precursors into the embryonic cortex was also impaired. Our results demonstrate that a population of newborn interneurons is endowed with specific cdhr proteins necessary for these cells to reach the developing AC. We suggest that an "early adhesion code" targets populations of interneuron precursors to restricted neocortical regions belonging to the same functional area. These findings open up new perspectives for auditory rehabilitation and cortical therapies in patients.

  12. Long-term neuroplasticity of the face primary motor cortex and adjacent somatosensory cortex induced by tooth loss can be reversed following dental implant replacement in rats.

    PubMed

    Avivi-Arber, Limor; Lee, Jye-Chang; Sood, Mandeep; Lakschevitz, Flavia; Fung, Michelle; Barashi-Gozal, Maayan; Glogauer, Michael; Sessle, Barry J

    2015-11-01

    Tooth loss is common, and exploring the neuroplastic capacity of the face primary motor cortex (face-M1) and adjacent primary somatosensory cortex (face-S1) is crucial for understanding how subjects adapt to tooth loss and their prosthetic replacement. The aim was to test if functional reorganization of jaw and tongue motor representations in the rat face-M1 and face-S1 occurs following tooth extraction, and if subsequent dental implant placement can reverse this neuroplasticity. Rats (n = 22) had the right maxillary molar teeth extracted under local and general anesthesia. One month later, seven rats had dental implant placement into healed extraction sites. Naive rats (n = 8) received no surgical treatment. Intracortical microstimulation (ICMS) and recording of evoked jaw and tongue electromyographic responses were used to define jaw and tongue motor representations at 1 month (n = 8) or 2 months (n = 7) postextraction, 1 month postimplant placement, and at 1-2 months in naive rats. There were no significant differences across study groups in the onset latencies of the ICMS-evoked responses (P > 0.05), but in comparison with naive rats, tooth extraction caused a significant (P < 0.05) and sustained (1-2 months) decreased number of ICMS-defined jaw and tongue sites within face-M1 and -S1, and increased thresholds of ICMS-evoked responses in these sites. Furthermore, dental implant placement reversed the extraction-induced changes in face-S1, and in face-M1 the number of jaw sites even increased as compared to naive rats. These novel findings suggest that face-M1 and adjacent face-S1 may play a role in adaptive mechanisms related to tooth loss and their replacement with dental implants. © 2015 Wiley Periodicals, Inc.

  13. Despite similar reduction of blood pressure and renal ANG II and ET-1 levels aliskiren but not losartan normalizes albuminuria in hypertensive Ren-2 rats.

    PubMed

    Vanourková, Z; Kramer, H J; Husková, Z; Cervenka, L; Vanecková, I

    2010-01-01

    The relationship between angiotensin II (ANG II) and endothelin-1 (ET-1) is known to be complex; both peptides can initiate and potentiate the gene expression of each other. This pilot study investigated the effects of the AT(1) receptor blocker losartan or the direct renin inhibitor aliskiren on mean arterial pressure (MAP) and albuminuria and the renal ANG II and ET-1 levels. 3-month-old male Ren-2 transgenic rats (TGR) were treated either with losartan (5 mg kg(-1) day(-1)) or aliskiren (10 mg kg(-1) day(-1)) for 10 weeks. At the end of the experiment, rats were decapitated and cortical and papillary parts of kidneys were separated. Plasma and tissue ANG II levels were measured by RIA and tissue ET-1 concentrations by ELISA. In all four groups of animals ET-1 levels were lowest in renal cortex and more than 100-fold higher in the papilla. Cortical and papillary ET-1 concentrations in untreated TGR significantly exceeded those of control HanSD rats and were significantly depressed by both drugs. In both strains, papillary ANG II concentrations were moderately but significantly higher than cortical ANG II, TGR exhibited higher ANG II levels both in cortex and papilla as compared to control HanSD rats. Aliskiren and losartan at the doses used depressed similarly the levels of ANG II in cortex and papilla and reduced ET-1 significantly in the renal cortex and papilla below control levels in HanSD rats. Albuminuria, which was more than twice as high in TGR as in HanSD rats, was normalized with aliskiren and reduced by 28% with losartan, although MAP was reduced to a similar degree by both drugs. Despite similar reductions of MAP and renal ET-1 and ANG II levels aliskiren appears to be more effective than losartan, at the doses used, in reducing albuminuria in heterozygous hypertensive Ren-2 rats.

  14. A Study on Neuroprotective Effects of Curcumin on the Diabetic Rat Brain.

    PubMed

    Zhang, L; Kong, X-J; Wang, Z-Q; Xu, F-S; Zhu, Y-T

    2016-01-01

    The present study was aimed to study the neuroprotective therapeutic effect of curcumin on the male albino rat brain. Subarachnoid hemorrhage leads to severe mortality rate and morbidity, and oxidative stress is a crucial factor in subarachnoid hemorrhage. Therefore, we investigated the effect of curcumin on oxidative stress and glutamate and glutamate transporter-1 on a subarachnoid hemorrhage-induced male albino rats. The curcumin commonly used for the treatment and saline used for the control. Curcumin (10 mg/kg bwt) dissolved in saline and administered orally to the rats for one week. Glutamate, glutamate transporter-1, malondialdehyde (MDA), superoxide dismutase (SOD), catalase, glutathione reductase and lactate dehydrogenase (LDH) activities were determined. Glutamate level was lower in the curcumin-treated rats compared to their respective controls. Glutamate transporter-1 did not alter in the curcumin-treated rats compared to their controls. Glutamate transporter-1 protein expression is significantly reduced in the curcumin-treated rats. MDA levels decreased 18 and 29 % in the hippocampus and the cortex region respectively. SOD (17% and 32%), and catalase (19% and 24%) activities were increased in the curcumin-treated hippocampus and the cortex region respectively. Glutathione reductase (13% and 19%) and LDH (21% and 30%) activities were increased in the treated hippocampus and the cortex region respectively. The mRNA expression of NK-kB and TLR4 was significantly reduced following curcumin treatment. Taking all these data together, the curcumin found to be effective against oxidative stress and glutamate neurotoxicity in the male albino rats.

  15. High dietary folate in pregnant mice leads to pseudo-MTHFR deficiency and altered methyl metabolism, with embryonic growth delay and short-term memory impairment in offspring.

    PubMed

    Bahous, Renata H; Jadavji, Nafisa M; Deng, Liyuan; Cosín-Tomás, Marta; Lu, Jessica; Malysheva, Olga; Leung, Kit-Yi; Ho, Ming-Kai; Pallàs, Mercè; Kaliman, Perla; Greene, Nicholas D E; Bedell, Barry J; Caudill, Marie A; Rozen, Rima

    2017-03-01

    Methylenetetrahydrofolate reductase (MTHFR) generates methyltetrahydrofolate for methylation reactions. Severe MTHFR deficiency results in homocystinuria and neurologic impairment. Mild MTHFR deficiency (677C > T polymorphism) increases risk for complex traits, including neuropsychiatric disorders. Although low dietary folate impacts brain development, recent concerns have focused on high folate intake following food fortification and increased vitamin use. Our goal was to determine whether high dietary folate during pregnancy affects brain development in murine offspring. Female mice were placed on control diet (CD) or folic acid-supplemented diet (FASD) throughout mating, pregnancy and lactation. Three-week-old male pups were evaluated for motor and cognitive function. Tissues from E17.5 embryos, pups and dams were collected for choline/methyl metabolite measurements, immunoblotting or gene expression of relevant enzymes. Brains were examined for morphology of hippocampus and cortex. Pups of FASD mothers displayed short-term memory impairment, decreased hippocampal size and decreased thickness of the dentate gyrus. MTHFR protein levels were reduced in FASD pup livers, with lower concentrations of phosphocholine and glycerophosphocholine in liver and hippocampus, respectively. FASD pup brains showed evidence of altered acetylcholine availability and Dnmt3a mRNA was reduced in cortex and hippocampus. E17.5 embryos and placentas from FASD dams were smaller. MTHFR protein and mRNA were reduced in embryonic liver, with lower concentrations of choline, betaine and phosphocholine. Embryonic brain displayed altered development of cortical layers. In summary, high folate intake during pregnancy leads to pseudo-MTHFR deficiency, disturbed choline/methyl metabolism, embryonic growth delay and memory impairment in offspring. These findings highlight the unintended negative consequences of supplemental folic acid. © The Author 2017. Published by Oxford University Press.

  16. Parkinson's disease: in vivo metabolic changes in the frontal and parietal cortices in 6-OHDA treated rats during different periods.

    PubMed

    Hou, Zhongyu; Zhang, Zhonghe; Meng, Haiwei; Lin, Xiangtao; Sun, Bo; Lei, Hao; Fang, Ke; Fang, Fang; Liu, Maili; Liu, Shuwei

    2014-02-01

    This study aims to investigate metabolic changes in frontal and parietal cortices in the 6-OHDA induced Parkinson's rats. Ratios of N-acetyl-aspartic acid/creatine (NAA/Cr), choline/creatine (Cho/Cr), and glumatic acid and glutamine glutaminic acid/creatine (Glx/Cr) of regions of interests (ROIs) in the frontal and parietal cortices, and the substantia nigra were analyzed. NAA/Cr, Cho/Cr and Glx/Cr in the frontal and parietal cortices in the lesion side did not show any significant differences two weeks after operation compared with the contralateral side (p > 0.05). NAA/Cr in the frontal cortex in the lesion side was significantly lower in the five weeks after operation; Cho/Cr remained normal; Glx/Cr increased (p < 0.05), and all ratios of parietal cortex were normal. In the eight weeks after operation, NAA/Cr in the frontal cortex in the lesion side was lower than that of the five weeks (p < 0.01), Cho/Cr still remained normal while Glx/Cr was higher than before (p < 0.01). Regarding the parietal cortex, NAA/Cr increased significantly, while Cho/Cr and Glx/Cr remained normal. In the 12 weeks after operation, NAA/Cr, Cho/Cr and Glx/Cr in frontal cortex were consistent with that of the eight weeks, while they remained at the normal level in parietal cortex. The NAA/Cr in the substantia nigra decreased and Cho/Cr increased significantly during 2-8 weeks, and remained at the same level during 8-12 weeks. There are metabolic disturbances in PD rats. The transient hyperfunction in the parietal cortex can be considered as a compensation for the dysfunction of the frontal cortex and substantia nigra.

  17. [CHANGES IN THE NUMBER OF NEURONS IN THE MOTOR CORTEX OF RATS AND THEIR LOCOMOTOR ACTIVITY IN THE AGE ASPECT].

    PubMed

    Piavchenko, G A; Shmarkova, L I; Nozdrin, V I

    2015-01-01

    Using Laboras hardware-software complex, which is a system of automatic registration of behavioral reactions, the locomotor activity 1-, 8- and 16-month-old male rats (12 animals in each group) was recorded followed by counting the number of neuron cell bodies of in the layer V of the motor cortex in Nissl stained slides. It was found that the number of neurons in the motor cortex varied in different age groups. Maximal number of neurons was observed in 8-month-old animals. Motor activity was found to correlate with the number of neurons.

  18. Prior cocaine exposure disrupts extinction of fear conditioning

    PubMed Central

    Burke, Kathryn A.; Franz, Theresa M.; Gugsa, Nishan; Schoenbaum, Geoffrey

    2008-01-01

    Psychostimulant exposure has been shown to cause molecular and cellular changes in prefrontal cortex. It has been hypothesized that these drug-induced changes might affect the operation of prefrontal-limbic circuits, disrupting their normal role in controlling behavior and thereby leading to compulsive drug-seeking. To test this hypothesis, we tested cocaine-treated rats in a fear conditioning, inflation, and extinction task, known to depend on medial prefrontal cortex and amygdala. Cocaine-treated rats conditioned and inflated similar to saline controls but displayed slower extinction learning. These results support the hypothesis that control processes in the medial prefrontal cortex are impaired by cocaine exposure. PMID:16847305

  19. Prior cocaine exposure disrupts extinction of fear conditioning.

    PubMed

    Burke, Kathryn A; Franz, Theresa M; Gugsa, Nishan; Schoenbaum, Geoffrey

    2006-01-01

    Psychostimulant exposure has been shown to cause molecular and cellular changes in prefrontal cortex. It has been hypothesized that these drug-induced changes might affect the operation of prefrontal-limbic circuits, disrupting their normal role in controlling behavior and thereby leading to compulsive drug-seeking. To test this hypothesis, we tested cocaine-treated rats in a fear conditioning, inflation, and extinction task, known to depend on medial prefrontal cortex and amygdala. Cocaine-treated rats conditioned and inflated similar to saline controls but displayed slower extinction learning. These results support the hypothesis that control processes in the medial prefrontal cortex are impaired by cocaine exposure.

  20. Increased noradrenergic activity in prefrontal cortex slices of an animal model for attention-deficit hyperactivity disorder--the spontaneously hypertensive rat.

    PubMed

    Russell, V; Allie, S; Wiggins, T

    2000-12-20

    Spontaneously hypertensive rats (SHR) are used as a model for attention-deficit/hyperactivity disorder (ADHD) since SHR are hyperactive and they show defective sustained attention in behavioral tasks. Using an in vitro superfusion technique we showed that norepinephrine (NE) release from prefrontal cortex slices of SHR was not different from that of their Wistar-Kyoto (WKY) control rats when stimulated either electrically or by exposure to buffer containing 25 mM K(+). The monoamine vesicle transporter is, therefore, unlikely to be responsible for the deficiency in DA observed in SHR, since, in contrast to DA, vesicle stores of NE do not appear to be depleted in SHR. In addition, alpha(2)-adrenoceptor mediated inhibition of NE release was reduced in SHR, suggesting that autoreceptor function was deficient in prefrontal cortex of SHR. So, while DA neurotransmission appears to be down-regulated in SHR, the NE system appears to be under less inhibitory control than in WKY suggesting hypodopaminergic and hypernoradrenergic activity in prefrontal cortex of SHR. These findings are consistent with the hypothesis that the behavioral disturbances of ADHD are the result of an imbalance between NE and DA systems in the prefrontal cortex, with inhibitory DA activity being decreased and NE activity increased relative to controls.

  1. Effects of heavy ion radiation on the brain vascular system and embryonic development

    NASA Technical Reports Server (NTRS)

    Yang, T. C.; Tobias, C. A.

    1984-01-01

    The present investigation is concerned with the effects of heavy-ion radiation on the vascular system and the embryonic development, taking into account the results of experiments with neonatal rats and mouse embryos. It is found that heavy ions can be highly effective in producing brain hemorrhages and in causing body deformities. Attention is given to aspects of methodology, the induction of brain hemorrhages by X-rays and heavy ions, and the effect of iron particles on embryonic development. Reported results suggest that high linear energy transfer (LET) heavy ions can be very effective in producing developmental abnormalities.

  2. Acute seizure activity promotes lipid peroxidation, increased nitrite levels and adaptive pathways against oxidative stress in the frontal cortex and striatum

    PubMed Central

    Júnior, Hélio Vitoriano Nobre; de França Fonteles, Marta Maria

    2009-01-01

    Previous experiments have shown that the generation of free radicals in rat brain homogenates is increased following pilocarpine-induced seizures and status epilepticus (SE). This study was aimed at investigating the changes in neurochemical mechanisms such as lipid peroxidation levels, nitrite content, glutathione reduced (GSH) concentration, superoxide dismutase and catalase activities in the frontal cortex and the striatum of Wistar adult rats after seizures and SE induced by pilocarpine. The control group was treated with 0.9% saline and another group of rats received pilocarpine (400 mg/kg, i.p.). Both groups were sacrificed 24 h after the treatments. Lipid peroxidation level, nitrite content, GSH concentration and enzymatic activities were measured by using spectrophotometric methods. Our findings showed that pilocarpine administration and its resulting seizures and SE produced a significant increase of lipid peroxidation level in the striatum (47%) and frontal cortex (59%). Nitrite contents increased 49% and 73% in striatum and frontal cortex in pilocarpine group, respectively. In GSH concentrations were decreases of 54% and 58% in the striatum and frontal cortex in pilocarpine group, respectively. The catalase activity increased 39% and 49% in the striatum and frontal cortex, respectively. The superoxide dismutase activity was not altered in the striatum, but it was present at a 24% increase in frontal cortex. These results suggest that there is a direct relationship between the lipid peroxidation and nitrite contents during epileptic activity that can be responsible for the superoxide dismutase and catalase enzymatic activity changes observed during the establishment of seizures and SE induced by pilocarpine. PMID:20592767

  3. Gene expression in the rat cerebral cortex: comparison of recovery sleep and hypnotic-induced sleep.

    PubMed

    Wisor, J P; Morairty, S R; Huynh, N T; Steininger, T L; Kilduff, T S

    2006-08-11

    Most hypnotic medications currently on the market target some aspect of GABAergic neurotransmission. Although all such compounds increase sleep, these drugs differentially affect the activity of the cerebral cortex as measured by the electroencephalogram. Whereas benzodiazepine medications such as triazolam tend to suppress slow wave activity in the cortex, the GABA(B) ligand gamma-hydroxybutyrate greatly enhances slow wave activity and the non-benzodiazepine, zolpidem, which binds to the omega1 site on the GABA(A) receptor/Cl(-) ionophore complex, is intermediate in this regard. Our previous studies have demonstrated that a small number of genes exhibit increased expression in the cerebral cortex of the mouse and rat during recovery sleep after sleep deprivation: egr-3, fra-2, grp78, grp94, ngfi-b, and nr4a3. Using these genes as a panel of biomarkers associated with sleep, we asked whether hypnotic medications induce similar molecular changes in the rat cerebral cortex to those observed when both sleep continuity and slow wave activity are enhanced during recovery sleep. We find that, although each drug increases the expression of a subset of genes in the panel of biomarkers, no drug fully replicates the molecular changes in the cortex associated with recovery sleep. Furthermore, high levels of slow wave activity in the cortex are correlated with increased expression of fra-2 whereas the expression of grp94 is correlated with body temperature. These results demonstrate that sleep-related changes in gene expression may be affected by physiological covariates of sleep and wakefulness rather than by vigilance state per se.

  4. The transcriptome of nitrofen-induced pulmonary hypoplasia in the rat model of congenital diaphragmatic hernia.

    PubMed

    Mahood, Thomas H; Johar, Dina R; Iwasiow, Barbara M; Xu, Wayne; Keijzer, Richard

    2016-05-01

    We currently do not know how the herbicide nitrofen induces lung hypoplasia and congenital diaphragmatic hernia in rats. Our aim was to compare the differentially expressed transcriptome of nitrofen-induced hypoplastic lungs to control lungs in embryonic day 13 rat embryos before the development of embryonic diaphragmatic defects. Using next-generation sequencing technology, we identified the expression profile of microRNA (miRNA) and mRNA genes. Once the dataset was validated by both RT-qPCR and digital-PCR, we conducted gene ontology, miRNA target analysis, and orthologous miRNA sequence matching for the deregulated miRNAs in silico. Our study identified 186 known mRNA and 100 miRNAs which were differentially expressed in nitrofen-induced hypoplastic lungs. Sixty-four rat miRNAs homologous to known human miRNAs were identified. A subset of these genes may promote lung hypoplasia in rat and/or human, and we discuss their associations. Potential miRNA pathways relevant to nitrofen-induced lung hypoplasia include PI3K, TGF-β, and cell cycle kinases. Nitrofen-induced hypoplastic lungs have an abnormal transcriptome that may lead to impaired development.

  5. Effect of Gsk3 inhibitor CHIR99021 on aneuploidy levels in rat embryonic stem cells.

    PubMed

    Bock, Anagha S; Leigh, Nathan D; Bryda, Elizabeth C

    2014-06-01

    Germline competent embryonic stem (ES) cells can serve as a tool to create genetically engineered rat strains used to elucidate gene function or provide disease models. In optimum culture conditions, ES cells are able to retain their pluripotent state. The type of components present and their concentration in ES cell culture media greatly influences characteristics of ES cells including the ability to maintain the cells in a pluripotent state. We routinely use 2i media containing inhibitors CHIR99021 and PD0325901 to culture rat ES cells. CHIR99021 specifically inhibits the Gsk3β pathway. We have found that the vendor source of CHIR99021 has a measurable influence on the level of aneuploidy seen over time as rat ES cells are passaged. Karyotyping of three different rat ES cell lines passaged multiple times showed increased aneuploidy when CHIR99021 from source B was used. Mass spectrometry analysis of this inhibitor showed the presence of unexpected synthetic small molecules, which might directly or indirectly cause increases in chromosome instability. Identifying these molecules could further understanding of their influence on chromosome stability and indicate how to improve synthesis of this media component to prevent deleterious effects in culture.

  6. The Sox2 promoter-driven CD63-GFP transgenic rat model allows tracking of neural stem cell-derived extracellular vesicles.

    PubMed

    Yoshimura, Aya; Adachi, Naoki; Matsuno, Hitomi; Kawamata, Masaki; Yoshioka, Yusuke; Kikuchi, Hisae; Odaka, Haruki; Numakawa, Tadahiro; Kunugi, Hiroshi; Ochiya, Takahiro; Tamai, Yoshitaka

    2018-01-30

    Extracellular vesicles (EVs) can modulate microenvironments by transferring biomolecules, including RNAs and proteins derived from releasing cells, to target cells. To understand the molecular mechanisms maintaining the neural stem cell (NSC) niche through EVs, a new transgenic (Tg) rat strain that can release human CD63-GFP-expressing EVs from the NSCs was established. Human CD63-GFP expression was controlled under the rat Sox2 promoter (Sox2/human CD63-GFP), and it was expressed in undifferentiated fetal brains. GFP signals were specifically observed in in vitro cultured NSCs obtained from embryonic brains of the Tg rats. We also demonstrated that embryonic NSC (eNSC)-derived EVs were labelled by human CD63-GFP. Furthermore, when we examined the transfer of EVs, eNSC-derived EVs were found to be incorporated into astrocytes and eNSCs, thus implying an EV-mediated communication between different cell types around NSCs. This new Sox2/human CD63-GFP Tg rat strain should provide resources to analyse the cell-to-cell communication via EVs in NSC microenvironments. © 2018. Published by The Company of Biologists Ltd.

  7. Embryonic germ cells from mice and rats exhibit properties consistent with a generic pluripotent ground state

    PubMed Central

    Leitch, Harry G.; Blair, Kate; Mansfield, William; Ayetey, Harold; Humphreys, Peter; Nichols, Jennifer; Surani, M. Azim; Smith, Austin

    2010-01-01

    Mouse and rat embryonic stem cells can be sustained in defined medium by dual inhibition (2i) of the mitogen-activated protein kinase (Erk1/2) cascade and of glycogen synthase kinase 3. The inhibitors suppress differentiation and enable self-renewal of pluripotent cells that are ex vivo counterparts of naïve epiblast cells in the mature blastocyst. Pluripotent stem cell lines can also be derived from unipotent primordial germ cells via a poorly understood process of epigenetic reprogramming. These are termed embryonic germ (EG) cells to denote their distinct origin. Here we investigate whether EG cell self-renewal and derivation are supported by 2i. We report that mouse EG cells can be established with high efficiency using 2i in combination with the cytokine leukaemia inhibitory factor (LIF). Furthermore, addition of fibroblast growth factor or stem cell factor is unnecessary using 2i-LIF. The derived EG cells contribute extensively to healthy chimaeric mice, including to the germline. Using the same conditions, we describe the first derivations of EG cells from the rat. Rat EG cells express a similar marker profile to rat and mouse ES cells. They have a diploid karyotype, can be clonally expanded and genetically manipulated, and are competent for multilineage colonisation of chimaeras. These findings lend support to the postulate of a conserved molecular ground state in pluripotent rodent cells. Future research will determine the extent to which this is maintained in other mammals and whether, in some species, primordial germ cells might be a more tractable source than epiblast for the capture of naïve pluripotent stem cells. PMID:20519324

  8. Executive function in rats is impaired by low (20 cGy) doses of 1 GeV/u (56)Fe particles.

    PubMed

    Lonart, György; Parris, Brian; Johnson, Angela M; Miles, Scott; Sanford, Larry D; Singletary, Sylvia J; Britten, Richard A

    2012-10-01

    Exposure to galactic cosmic radiation is a potential health risk in long-term space travel and represents a significant risk to the central nervous system. The most harmful component of galactic cosmic radiation is the HZE [high mass, highly charged (Z), high energy] particles, e.g., (56)Fe particle. In previous ground-based experiments, exposure to doses of HZE-particle radiation that an astronaut will receive on a deep space mission (i.e., ∼20 cGy) resulted in pronounced deficits in hippocampus-dependent learning and memory in rodents. Neurocognitive tasks that are dependent upon other regions of the brain, such as the striatum, are also impaired after exposure to low HZE-particle doses. These data raise the possibility that neurocognitive tasks regulated by the prefrontal cortex could also be impaired after exposure to mission relevant HZE-particle doses, which may prevent astronauts from performing complex executive functions. To assess the effects of mission relevant (20 cGy) doses of 1 GeV/u (56)Fe particles on executive function, male Wistar rats received either sham treatment or were irradiated and tested 3 months later for their ability to perform attentional set shifting. Compared to the controls, rats that received 20 cGy of 1 GeV/u (56)Fe particles showed significant impairments in their ability to complete the attentional set-shifting test, with only 17% of irradiated rats completing all stages as opposed to 78% of the control rats. The majority of failures (60%) occurred at the first reversal stage, and half of the remaining animals failed at the extra-dimensional shift phase of the studies. The irradiated rats that managed to complete the tasks did so with approximately the same ease as did the control rats. These observations suggest that exposure to mission relevant doses of 1 GeV/u (56)Fe particles results in the loss of functionality in several regions of the cortex: medical prefrontal cortex, anterior cingulated cortex, posterior cingulated cortex and the basal forebrain. Our observation that 20 cGy of 1 GeV/u (56)Fe particles is sufficient to impair the ability of rats to conduct attentional set-shifting raises the possibility that astronauts on prolonged deep space exploratory missions could subsequently develop deficits in executive function.

  9. Beta-hydroxybutyrate increases reactive oxygen species in late but not in early postimplantation embryonic cells in vitro.

    PubMed

    Forsberg, H; Eriksson, U J; Melefors, O; Welsh, N

    1998-02-01

    Embryonic dysmorphogenesis has been blocked by antioxidant treatment in vivo and in vitro, suggesting that embryonic excess of reactive oxygen species (ROS) has a role in the teratogenic process of diabetic pregnancy. We report that the basal levels of ROS in dispersed rat embryonic cells in vitro, as determined by fluorescence of dichlorofluorescein (DCF), were not different in cells from control and diabetic pregnancy at day 10 or 12. Beta-hydroxybutyrate (beta-HB) and succinic acid monomethyl ester both augmented DCF fluorescence in cells from day 12 embryos of normal and diabetic rats but not from day 10 embryos. Cells of day 10 and day 12 embryos from normal and diabetic rats responded to increasing glucose concentrations with a dosage-dependent alleviation of DCF fluorescence. Day 10 embryonic cells exhibited high glucose utilization rates and high pentose phosphate shunt rates, but low mitochondrial oxidation rates. Moreover, in vitro culture of embryos between gestational days 9 and 10 in the presence of 20% oxygen induced an increased and glucose-sensitive oxidation of glucose compared with embryos not cultured in vitro. At gestation day 12, however, pentose phosphate shunt rates showed a decrease, whereas the mitochondrial beta-HB oxidation rates were increased compared with those at gestation day 10. This was paralleled by a lower expression of glucose 6-phosphate dehydrogenase- and phosphofructokinase-mRNA levels at day 12 than at day 10. On the other hand, H-ferritin mRNA expression at day 12 was high compared with day 10. None of the mRNA species investigated were affected by the diabetic state of the mother. It was concluded that beta-HB-induced stimulation of mitochondrial oxidative events may lead to the generation of ROS at gestational day 12, but probably not at day 10, when only a minute amount of mitochondrial activity occurs. Thus our results do not support the notion of diabetes-induced mitochondrial oxidative stress before the development of a placental supply of oxygen.

  10. Impaired glutamatergic projection from the motor cortex to the subthalamic nucleus in 6-hydroxydopamine-lesioned hemi-parkinsonian rats.

    PubMed

    Wang, Yan-Yan; Wang, Yong; Jiang, Hai-Fei; Liu, Jun-Hua; Jia, Jun; Wang, Ke; Zhao, Fei; Luo, Min-Hua; Luo, Min-Min; Wang, Xiao-Min

    2018-02-01

    The glutamatergic projection from the motor cortex to the subthalamic nucleus (STN) constitutes the cortico-basal ganglia circuit and plays a critical role in the control of movement. Emerging evidence shows that the cortico-STN pathway is susceptible to dopamine depletion. Specifically in Parkinson's disease (PD), abnormal electrophysiological activities were observed in the motor cortex and STN, while the STN serves as a key target of deep brain stimulation for PD therapy. However, direct morphological changes in the cortico-STN connectivity in response to PD progress are poorly understood at present. In the present study, we used a trans-synaptic anterograde tracing method with herpes simplex virus-green fluorescent protein (HSV-GFP) to monitor the cortico-STN connectivity in a rat model of PD. We found that the connectivity from the primary motor cortex (M1) to the STN was impaired in parkinsonian rats as manifested by a marked decrease in trans-synaptic infection of HSV-GFP from M1 neurons to STN neurons in unilateral 6-hydroxydopamine (6-OHDA)-lesioned rats. Ultrastructural analysis with electron microscopy revealed that excitatory synapses in the STN were also impaired in parkinsonian rats. Glutamatergic terminals identified by a specific marker (vesicular glutamate transporter 1) were reduced in the STN, while glutamatergic neurons showed an insignificant change in their total number in both the M1 and STN regions. These results indicate that the M1-STN glutamatergic connectivity is downregulated in parkinsonian rats. This downregulation is mediated probably via a mechanism involving the impairments of excitatory terminals and synapses in the STN. Copyright © 2017. Published by Elsevier Inc.

  11. Antioxidant treatment ameliorates experimental diabetes-induced depressive-like behaviour and reduces oxidative stress in brain and pancreas.

    PubMed

    Réus, Gislaine Z; Dos Santos, Maria Augusta B; Abelaira, Helena M; Titus, Stephanie E; Carlessi, Anelise S; Matias, Beatriz I; Bruchchen, Livia; Florentino, Drielly; Vieira, Andriele; Petronilho, Fabricia; Ceretta, Luciane B; Zugno, Alexandra I; Quevedo, João

    2016-03-01

    Studies have shown a relationship between diabetes mellitus (DM) and the development of major depressive disorder. Alterations in oxidative stress are associated with the pathophysiology of both diabetes mellitus and major depressive disorder. This study aimed to evaluate the effects of antioxidants N-acetylcysteine and deferoxamine on behaviour and oxidative stress parameters in diabetic rats. To this aim, after induction of diabetes by a single dose of alloxan, Wistar rats were treated with N-acetylcysteine or deferoxamine for 14 days, and then depressive-like behaviour was evaluated. Oxidative stress parameters were assessed in the prefrontal cortex, hippocampus, amygdala, nucleus accumbens and pancreas. Diabetic rats displayed depressive-like behaviour, and treatment with N-acetylcysteine reversed this alteration. Carbonyl protein levels were increased in the prefrontal cortex, hippocampus and pancreas of diabetic rats, and both N-acetylcysteine and deferoxamine reversed these alterations. Lipid damage was increased in the prefrontal cortex, hippocampus, amygdala and pancreas; however, treatment with N-acetylcysteine or deferoxamine reversed lipid damage only in the hippocampus and pancreas. Superoxide dismutase activity was decreased in the amygdala, nucleus accumbens and pancreas of diabetic rats. In diabetic rats, there was a decrease in catalase enzyme activity in the prefrontal cortex, amygdala, nucleus accumbens and pancreas, but an increase in the hippocampus. Treatment with antioxidants did not have an effect on the activity of antioxidant enzymes. In conclusion, animal model of diabetes produced depressive-like behaviour and oxidative stress in the brain and periphery. Treatment with antioxidants could be a viable alternative to treat behavioural and biochemical alterations induced by diabetes. Copyright © 2015 John Wiley & Sons, Ltd.

  12. The role of the dorsomedial part of the prefrontal cortex serotonergic innervation in rat responses to the aversively conditioned context: behavioral, biochemical and immunocytochemical studies.

    PubMed

    Lehner, Małgorzata; Taracha, Ewa; Turzyńska, Danuta; Sobolewska, Alicja; Hamed, Adam; Kołomańska, Paulina; Skórzewska, Anna; Maciejak, Piotr; Szyndler, Janusz; Bidziński, Andrzej; Płaźnik, Adam

    2008-10-10

    In this study we have explored differences in animal reactivity to conditioned aversive stimuli using the conditioned fear test (a contextual fear-freezing response), in rats subjected to the selective lesion of the prefrontal cortex serotonergic innervation, and differing in their response to the acute painful stimulation, a footshock (HS--high sensitivity rats, and LS--low sensitivity rats, selected arbitrarily according to their behavior in the 'flinch-jump' pre-test). Local administration of serotonergic neurotoxin (5,7-dihydroxytryptamine) to the dorsomedial part of the prefrontal cortex caused a very strong, structure and neurotransmitter selective depletion of serotonin concentration. In HS rats, the serotonergic lesion significantly disinhibited rat behavior controlled by fear, enhanced c-Fos expression in the dorsomedial prefrontal area, and increased the concentration of GABA in the basolateral amygdala, measured in vivo after the testing session of the conditioned fear test. The LS animals revealed an opposite pattern of behavioral and biochemical changes after serotonergic lesion: an increase in the duration of a freezing response, and expression of c-Fos in the basolateral and central nuclei of amygdala, and a lower GABA concentration in the basolateral amygdala. In control conditions, c-Fos expression did not differ in LS and HS, naïve, not conditioned and not exposed to the test cage animals. The present study adds more arguments for the controlling role of serotonergic innervation of the dorsomedial part of the prefrontal cortex in processing emotional input by other brain centers. Moreover, it provides experimental data, which may help to better explain the anatomical and biochemical basis of differences in individual reactivity to stressful stimulation, and, possibly, to anxiolytic drugs with serotonergic or GABAergic profiles of action.

  13. [Effect of Acaí (Euterpe oleracea) on biological expression characteristics of deficiency-heat and deficiency-cold rats].

    PubMed

    Wang, Lin-Yuan; Zhang, Jian-Jun; Wang, Chun; Zhu, Ying-Li; Wang, Zi-Chen; He, Cheng; Qu, Yan; Wang, Sha

    2016-10-01

    To study the effects of Acaí on biological expression characteristics in rats with deficiency-heat and deficiency-cold syndromes, SD rats were divided into blank group, deficiency-heat model group, deficiency-heat+Phellodendri Chinensis Cortex group, deficiency-heat+Acaí high dose and low dose groups, deficiency-cold model group, deficiency-cold+Cinnamomi Cortex group, deficiency-cold+Acaí high dose and low dose groups. The rats were treated with intramuscular injection of hydrocortisone (20 mg•kg⁻¹) or dexamethasone sodium phosphate (0.35 mg•kg⁻¹) for 21 days to set up deficiency-heat model and deficiency-cold models. The levels of cAMP, cGMP, T3, T4 and rT3 were detected by radioimmunoassay. The levels of TP, UA, TC, TG and ALB were detected by colorimetry. The level of cAMP, cAMP/cGMP in serum were reduced in Acaí high dose group (P<0.05, P<0.001). The levels of T3, T4 and rT3 were significantly reduced in the Acaí high dose group (P<0.01, P<0.001, P<0.05). The levels of TP, UA, TC, TG and ALB were significantly reduced in the Acaí high dose group (P<0.001, P<0.05, P<0.05, P<0.05, P<0.01). However, Acaí had no obvious effects on deficiency-cold models. Acaí showed the same effect with Phellodendri Chinensis Cortex in adjusting the levels of deficiency-heat rats; but unlike Cinnamomi Cortex, Acaí showed no obvious effects in adjusting the levels of deficiency-cold rats. Copyright© by the Chinese Pharmaceutical Association.

  14. Excessive endoplasmic reticulum stress and decreased neuroplasticity-associated proteins in prefrontal cortex of obese rats and the regulatory effects of aerobic exercise.

    PubMed

    Li, Feng; Liu, Bei Bei; Cai, Ming; Li, Jing Jing; Lou, Shu-Jie

    2018-04-06

    Studies have shown high fat diet induced obesity may cause cognition impairment and down-regulation of neuroplasticity-associated proteins, while aerobic exercise could improve that damage. Endoplasmic reticulum stress (ERS) has been reported to play a key role in regulating neuroplasticity-associated proteins expression, folding and post-translational modification in hippocampus of obese rodent models, however, the effects of ERS on neuroplasticity-associated proteins and possible underlying mechanisms in prefrontal cortex are not fully clear. In order to clarify changes of neuroplasticity-associated proteins and ERS in the prefrontal cortex of obese rats, male SD rats were fed on high fat diet for 8 weeks to establish the obese model. Then, 8 weeks of aerobic exercise treadmill intervention was arranged for the obese rats. Results showed that high fat diet induced obesity caused hyperlipidemia, and significantly promoted FATP1 expression in the prefrontal cortex, meanwhile, we found up-regulation of GRP78, p-PERK, p-eIF2α, caspase-12, CHOP, and Bax/Bcl-2, reflecting the activation of ERS and ERS-mediated apoptosis. Moreover, reduced BDNF and SYN was found in obese rats. However, FATP1, GRP78, p-PERK, p-eIF2α, caspase-12, CHOP, and Bax/Bcl-2 expressions were obviously reversed by aerobic exercise intervention. These results suggested that dietary obesity could induce Prefrontal ERS in SD rats and excessive ERS may play a critical role in decreasing the levels of neuroplasticity-associated proteins. Moreover, aerobic exercise could relieve ERS, thus promoted the expression of neuroplasticity-associated proteins. Copyright © 2018. Published by Elsevier Inc.

  15. [Changes of neurotransmitter, lipid peroxide and their metabolic related enzyme activities in the brain of rats exposed to noise and vitamin E].

    PubMed

    Sakuma, N

    1984-09-01

    Effects of noise on locomotor activities were analysed in rat. In addition, changes in lipid peroxide (LPX), their metabolic related enzyme activities, and neurotransmitter in the rat brain due to noise exposure and the effects of vitamin E on the rats were studied. The results obtained were as follows: After white noise exposure of 95 dB (A), the locomotor activities of rat increased. But 3 weeks after noise exposure, the activities began to decrease. LPX and glutathione peroxidase (GSH-Px) activities in hypothalamus and cortex increased at the 14th day after noise exposure or at the 21st day after noise exposure. Superoxide dismutase (SOD) activities increased in hippocampus at the 4th day after noise exposure, and decreased in midbrain and thalamus at the 14th day and the 21th day after noise exposure. Norepinephrine (NE) increased in hypothalamus at the 1st day, the 2nd day and the 7th day after noise exposure, and increased in striatum at the 7th day after noise exposure, in cortex at the 4th day and the 7th day after exposure. At the 14th day after noise exposure, NE decreased in cerebellum, in medulla and pons, in midbrain and thalamus, and in cortex. In cortex NE also decreased at the 21st day after noise exposure. Serotonin increased in hypothalamus and in midbrain and thalamus at the 1st and 4th day after noise exposure, and increased in striatum at the 7th day after noise exposure. Decrease in serotonin was observed in cerebellum at the 14th day after noise exposure. Vitamin E decreased LPX in rat brain and the liver.

  16. Mitochondrial dysfunction in brain cortex mitochondria of STZ-diabetic rats: effect of l-Arginine.

    PubMed

    Ortiz, M Del Carmen; Lores-Arnaiz, Silvia; Albertoni Borghese, M Florencia; Balonga, Sabrina; Lavagna, Agustina; Filipuzzi, Ana Laura; Cicerchia, Daniela; Majowicz, Monica; Bustamante, Juanita

    2013-12-01

    Mitochondrial dysfunction has been implicated in many diseases, including diabetes. It is well known that oxygen free radical species are produced endogenously by mitochondria, and also nitric oxide (NO) by nitric oxide synthases (NOS) associated to mitochondrial membranes, in consequence these organelles constitute main targets for oxidative damage. The aim of this study was to analyze mitochondrial physiology and NO production in brain cortex mitochondria of streptozotocin (STZ) diabetic rats in an early stage of diabetes and the potential effect of L-arginine administration. The diabetic condition was characterized by a clear hyperglycaemic state with loose of body weight after 4 days of STZ injection. This hyperglycaemic state was associated with mitochondrial dysfunction that was evident by an impairment of the respiratory activity, increased production of superoxide anion and a clear mitochondrial depolarization. In addition, the alteration in mitochondrial physiology was associated with a significant decrease in both NO production and nitric oxide synthase type I (NOS I) expression associated to the mitochondrial membranes. An increased level of thiobarbituric acid-reactive substances (TBARS) in brain cortex homogenates from STZ-diabetic rats indicated the presence of lipid peroxidation. L-arginine treatment to diabetic rats did not change blood glucose levels but significantly ameliorated the oxidative stress evidenced by lower TBARS and a lower level of superoxide anion. This effect was paralleled by improvement of mitochondrial respiratory function and a partial mitochondrial repolarization.In addition, the administration of L-arginine to diabetic rats prevented the decrease in NO production and NOSI expression. These results could indicate that exogenously administered L-arginine may have beneficial effects on mitochondrial function, oxidative stress and NO production in brain cortex mitochondria of STZ-diabetic rats.

  17. Hippocampal and prefrontal cortex contributions to learning and memory: analysis of lesion and aging effects on maze learning in rats.

    PubMed

    Winocur, G; Moscovitch, M

    1990-08-01

    Young adult rats with bilateral lesions to the hippocampus or prefrontal cortex, young operated controls, and normal old rats were tested on two complex mazes in the Hebb-Williams series. Approximately half the animals were previously trained on one of the mazes; the remainder received no previous training. The trained hippocampal rats showed sparing of memory for the general skill of maze learning but poor recall of the specific maze on which they had been previously trained. The opposite pattern was observed in trained prefrontal rats. In contrast, the aged rats' memory for maze-specific and maze-general information was impaired. The results confirmed the importance of the hippocampus for recalling highly specific information and pointed to a possible role for the frontal lobes in learning and remembering nonspecific skill-related information. The generalized deficit of the aged rats indicates that both types of memory were compromised and offers further evidence of frontal lobe and hippocampal dysfunction in normal aging.

  18. Effect of cephalosporins on organic ion transport in renal membrane vesicles from rat and rabbit kidney cortex.

    PubMed

    Williams, P D; Hitchcock, M J; Hottendorf, G H

    1985-03-01

    The effects of cephaloridine and cephalothin on prototypical organic anion (p-aminohippurate, PAH) and cation (N-methylnicotinamide, NMN) transport were observed in brush border and basolateral membrane vesicles prepared from rat and rabbit renal cortex. The cephalosporins interacted with both the cationic and anionic transport systems. Cephalothin inhibited PAH transport in basolateral and brush border membrane in both rats and rabbits. Cephaloridine on the other hand inhibited PAH and NMN transport across rabbit basolateral membranes while it showed a lack of interaction with transport systems in rat basolateral membranes. Conversely, cephaloridine inhibited brush border transport of PAH and NMN in the rat but not in the rabbit. These results provide indirect evidence that cephalothin may be secreted across the renal tubule cell in rats and rabbits while cephaloridine may not accumulate in the rat kidney and becomes trapped in rabbit renal tubule cells. The differences in transport effects observed may explain intra- and interspecies differences in susceptibility to cephalosporin nephrotoxicity.

  19. Striatal dysfunction increases basal ganglia output during motor cortex activation in parkinsonian rats.

    PubMed

    Belluscio, Mariano A; Riquelme, Luis A; Murer, M Gustavo

    2007-05-01

    During movement, inhibitory neurons in the basal ganglia output nuclei show complex modulations of firing, which are presumptively driven by corticostriatal and corticosubthalamic input. Reductions in discharge should facilitate movement by disinhibiting thalamic and brain stem nuclei while increases would do the opposite. A proposal that nigrostriatal dopamine pathway degeneration disrupts trans-striatal pathways' balance resulting in sustained overactivity of basal ganglia output nuclei neurons and Parkinson's disease clinical signs is not fully supported by experimental evidence, which instead shows abnormal synchronous oscillatory activity in animal models and patients. Yet, the possibility that variation in motor cortex activity drives transient overactivity in output nuclei neurons in parkinsonism has not been explored. In Sprague-Dawley rats with 6-hydroxydopamine (6-OHDA)-induced nigrostriatal lesions, approximately 50% substantia nigra pars reticulata (SNpr) units show abnormal cortically driven slow oscillations of discharge. Moreover, these units selectively show abnormal responses to motor cortex stimulation consisting in augmented excitations of an odd latency, which overlapped that of inhibitory responses presumptively mediated by the trans-striatal direct pathway in control rats. Delivering D1 or D2 dopamine agonists into the striatum of parkinsonian rats by reverse microdialysis reduced these abnormal excitations but had no effect on pathological oscillations. The present study establishes that dopamine-deficiency related changes of striatal function contribute to producing abnormally augmented excitatory responses to motor cortex stimulation in the SNpr. If a similar transient overactivity of basal ganglia output were driven by motor cortex input during movement, it could contribute to impeding movement initiation or execution in Parkinson's disease.

  20. Changes in the Brain Endocannabinoid System in Rat Models of Depression.

    PubMed

    Smaga, Irena; Jastrzębska, Joanna; Zaniewska, Magdalena; Bystrowska, Beata; Gawliński, Dawid; Faron-Górecka, Agata; Broniowska, Żaneta; Miszkiel, Joanna; Filip, Małgorzata

    2017-04-01

    A growing body of evidence implicates the endocannabinoid (eCB) system in the pathophysiology of depression. The aim of this study was to investigate the influence of changes in the eCB system, such as levels of neuromodulators, eCB synthesizing and degrading enzymes, and cannabinoid (CB) receptors, in different brain structures in animal models of depression using behavioral and biochemical analyses. Both models used, i.e., bulbectomized (OBX) and Wistar Kyoto (WKY) rats, were characterized at the behavioral level by increased immobility time. In the OBX rats, anandamide (AEA) levels were decreased in the prefrontal cortex, hippocampus, and striatum and increased in the nucleus accumbens, while 2-arachidonoylglycerol (2-AG) levels were increased in the prefrontal cortex and decreased in the nucleus accumbens with parallel changes in the expression of eCB metabolizing enzymes in several structures. It was also observed that CB 1 receptor expression decreased in the hippocampus, dorsal striatum, and nucleus accumbens, and CB 2 receptor expression decreased in the prefrontal cortex and hippocampus. In WKY rats, the levels of eCBs were reduced in the prefrontal cortex (2-AG) and dorsal striatum (AEA) and increased in the prefrontal cortex (AEA) with different changes in the expression of eCB metabolizing enzymes, while the CB 1 receptor density was increased in several brain regions. These findings suggest that dysregulation in the eCB system is implicated in the pathogenesis of depression, although neurochemical changes were linked to the particular brain structure and the factor inducing depression (surgical removal of the olfactory bulbs vs. genetic modulation).

  1. Effect of progesterone on the expression of GABA(A) receptor subunits in the prefrontal cortex of rats: implications of sex differences and brain hemisphere.

    PubMed

    Andrade, Susie; Arbo, Bruno D; Batista, Bruna A M; Neves, Alice M; Branchini, Gisele; Brum, Ilma S; Barros, Helena M T; Gomez, Rosane; Ribeiro, Maria Flavia M

    2012-12-01

    Progesterone is a neuroactive hormone with non-genomic effects on GABA(A) receptors (GABA(A)R). Changes in the expression of GABA(A)R subunits are related to depressive-like behaviors in rats. Moreover, sex differences and depressive behaviors have been associated with prefrontal brain asymmetry in rodents and humans. Thus, our objective was to investigate the effect of progesterone on the GABA(A)R α1 and γ2 subunits mRNA expression in the right and left prefrontal cortex of diestrus female and male rats exposed to the forced swimming test (FST). Male and female rats (n = 8/group) were randomly selected to receive a daily dose of progesterone (0·4 mg·kg⁻¹) or vehicle, during two complete female estrous cycles (8-10 days). On the experiment day, male rats or diestrus female rats were euthanized 30 min after the FST. Our results showed that progesterone significantly increased the α1 subunit mRNA in both hemispheres of male and female rats. Moreover, there was an inverse correlation between depressive-like behaviors and GABA(A)R α1 subunit mRNA expression in the right hemisphere in female rats. Progesterone decreased the GABA(A)R γ2 mRNA expression only in the left hemisphere of male rats. Therefore, we conclude that the GABA(A) system displays an asymmetric distribution according to sex and that progesterone, at lower doses, presents an antidepressant effect after increasing the GABA(A) R α1 subunit expression in the right prefrontal cortex of female rats. Copyright © 2012 John Wiley & Sons, Ltd.

  2. Endothelin mechanisms in altered thyroid states in the rat.

    PubMed

    Rebello, S; Thompson, E B; Gulati, A

    1993-06-11

    Endothelin (ET) and its receptor characteristics were studied in hyper- and hypo-thyroid states in the rats. Hyperthyroidism was induced by daily administration of thyroxine (0.1 mg/kg i.p.) for 8 weeks, while hypothyrodism was induced by daily administration of methimazole (10 mg/kg i.p.) for 8 weeks. The chronic administration of thyroxine to rats decreased their rate of gain of body weight, increased serum T3 and T4 concentration, blood pressure and heart rate. The chronic administration of methimazole decreased the rate of gain of body weight, serum T3 and T4 concentration, blood pressure and heart rate as compared to vehicle-treated control. Plasma ET-1 levels were found to be similar in control and methimazole-treated rats, while the levels were found to be significantly (P < 0.002) increased in thyroxine-treated rats as compared to control rats. Binding studies showed that [125I]ET-1 bound to a single, high affinity binding site in the cerebral cortex, hypothalamus and pituitary. The density (Bmax) and the affinity (Kd) of [125I]ET-1 binding in the cerebral cortex and hypothalamus were found to be similar in control, methimazole- and thyroxine-treated rats. The pituitary of thyroxine-treated rats showed a decrease in the binding (34.3% decrease in the density) of [125I]ET-1 as compared to control rats. No difference was observed in the binding of [125I]ET-1 to pituitary membranes from control and methimazole-treated rats. Competition studies showed that the IC50 and Ki values of ET-3 for [125]ET-1 binding were about 8 to 11 times higher than ET-1 in cerebral cortex, hypothalamus and pituitary.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. Omega-3 fatty acid deficiency selectively up-regulates delta6-desaturase expression and activity indices in rat liver: prevention by normalization of omega-3 fatty acid status.

    PubMed

    Hofacer, Rylon; Jandacek, Ronald; Rider, Therese; Tso, Patrick; Magrisso, I Jack; Benoit, Stephen C; McNamara, Robert K

    2011-09-01

    This study investigated the effects of perinatal dietary omega-3 (n-3) fatty acid depletion and subsequent repletion on the expression of genes that regulate long-chain (LC) polyunsaturated fatty acid biosynthesis in rat liver and brain. It was hypothesized that chronic n-3 fatty acid deficiency would increase liver Fads1 and Fads2 messenger RNA (mRNA) expression/activity and that n-3 fatty acid repletion would normalize this response. Adult rats fed the n-3-free diet during perinatal development exhibited significantly lower erythrocyte, liver, and frontal cortex LCn-3 fatty acid composition and reciprocal elevations in LC omega-6 (n-6) fatty acid composition compared with controls (CONs) and repleted rats. Liver Fads2, but not Fads1, Elovl2, or Elovl5, mRNA expression was significantly greater in n-3-deficient (DEF) rats compared with CONs and was partially normalized in repleted rats. The liver 18:3n-6/18:2n-6 ratio, an index of delta6-desturase activity, was significantly greater in DEF rats compared with CON and repleted rats and was positively correlated with Fads2 mRNA expression among all rats. The liver 18:3n-6/18:2n-6 ratio, but not Fads2 mRNA expression, was also positively correlated with erythrocyte and frontal cortex LCn-6 fatty acid compositions. Neither Fads1 or Fads2 mRNA expression was altered in brain cortex of DEF rats. These results confirm previous findings that liver, but not brain, delta6-desaturase expression and activity indices are negatively regulated by dietary n-3 fatty acids. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Rax : developmental and daily expression patterns in the rat pineal gland and retina.

    PubMed

    Rohde, Kristian; Klein, David C; Møller, Morten; Rath, Martin F

    2011-09-01

    Retina and anterior neural fold homeobox (Rax) gene encodes a transcription factor essential for vertebrate eye development. Recent microarray studies indicate that Rax is expressed in the adult rat pineal gland and retina. The present study reveals that Rax expression levels in the rat change significantly during retinal development with a peak occurring at embryonic day 18, whereas Rax expression in the pineal is relatively delayed and not detectable until embryonic day 20. In both tissues, Rax is expressed throughout postnatal development into adulthood. In the mature rat pineal gland, the abundance of Rax transcripts increases 2-fold during the light period with a peak occurring at dusk. These findings are consistent with the evidence that Rax is of functional importance in eye development and suggest a role of Rax in the developing pineal gland. In addition, it would appear possible that Rax contributes to phenotype maintenance in the mature retina and pineal gland and may facilitate 24-h changes in the pineal transcriptome. © 2011 The Authors. Journal of Neurochemistry © 2011 International Society for Neurochemistry.

  5. Cognitive control and the anterior cingulate cortex: how conflicting stimuli affect attentional control in the rat

    PubMed Central

    Newman, Lori A.; Creer, David J.; McGaughy, Jill A.

    2014-01-01

    Converging evidence supports the hypothesis that the prefrontal cortex is critical for cognitive control. One prefrontal subregion, the anterior cingulate cortex, is hypothesized to be necessary to resolve response conflicts, disregard salient distractors and alter behavior in response to the generation of an error. These situations all involve goal-oriented monitoring of performance in order to effectively adjust cognitive processes. Several neuropsychological disorders, e.g., schizophrenia, attention deficit hyperactivity and obsessive compulsive disorder, are accompanied by morphological changes in the anterior cingulate cortex. These changes are hypothesized to underlie the impairments on tasks that require cognitive control found in these subjects. A novel conflict monitoring task was used to assess the effects on cognitive control of excitotoxic lesions to anterior cingulate cortex in rats. Prior to surgery all subjects showed improved accuracy on the second of two consecutive, incongruent trials. Lesions to the anterior cingulate cortex abolished this. Lesioned animals had difficulty in adjusting cognitive control on a trial-by-trial basis regardless of whether cognitive changes were increased or decreased. These results support a role for the anterior cingulate cortex in adjustments in cognitive control. PMID:25051488

  6. GSK-3β inhibitors suppressed neuroinflammation in rat cortex by activating autophagy in ischemic brain injury.

    PubMed

    Zhou, Xiaogang; Zhou, Jian; Li, Xilei; Guo, Chang'an; Fang, Taolin; Chen, Zhengrong

    2011-07-29

    Previous studies have shown that GSK-3β inhibitor could reduce infarct volume after ischemia brain injury. However, the underlying mechanisms of GSK-3β inhibitor involving neuroprotection remain poorly understood. In the present study, we demonstrated that GSK-3β inhibitor suppressed insult-induced neuroinflammation in rat cortex by increasing autophagy activation in ischemic injury. Male rats were subjected to pMCAO (permanent middle cerebral artery occlusion) followed by treating with SB216763, a GSK-3β inhibitor. We found that insult-induced inflammatory response was significantly decreased by intraperitoneal infusion of SB216763 in rat cortex. A higher level of autophagy was also detected after SB216763 treatment. In the cultured primary microglia, SB216763 activated autophagy and suppressed inflammatory response. Importantly, inhibition of autophagy by Beclin1-siRNA increased inflammatory response in the SB216763-treated microglia. These data suggest that GSK-3β inhibitor suppressed neuroinflammation by activating autophagy after ischemic brain injury, thus offering a new target for prevention of ischemic brain injury. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Neuron activity in rat hippocampus and motor cortex during discrimination reversal.

    PubMed

    Disterhoft, J F; Segal, M

    1978-01-01

    Chronic unit activity and gross movement were recorded from rats during two discrimination reversals in a classical appetitive conditioning situation. The anticipatory movement decreased in response to the former CS+ tone and increased to the previous CS- tone after each reversal. Hippocampus and motor cortex were differently related to these two kinds of behavioral change. Response rates of hippocampal neurons were more closely related to the increased movement response to the former CS- which now signaled food. Motor cortex neuron responses were more closely correlated with the decrease in movement responses to the former CS+ which became neutral after the reversal. It appeared that hippocampal neurons could have been involved in one cognitive aspect of the situation, motor cortex neurons in another. The data were related to current functional concepts of these brain regions.

  8. Cholecystokinin from the entorhinal cortex enables neural plasticity in the auditory cortex

    PubMed Central

    Li, Xiao; Yu, Kai; Zhang, Zicong; Sun, Wenjian; Yang, Zhou; Feng, Jingyu; Chen, Xi; Liu, Chun-Hua; Wang, Haitao; Guo, Yi Ping; He, Jufang

    2014-01-01

    Patients with damage to the medial temporal lobe show deficits in forming new declarative memories but can still recall older memories, suggesting that the medial temporal lobe is necessary for encoding memories in the neocortex. Here, we found that cortical projection neurons in the perirhinal and entorhinal cortices were mostly immunopositive for cholecystokinin (CCK). Local infusion of CCK in the auditory cortex of anesthetized rats induced plastic changes that enabled cortical neurons to potentiate their responses or to start responding to an auditory stimulus that was paired with a tone that robustly triggered action potentials. CCK infusion also enabled auditory neurons to start responding to a light stimulus that was paired with a noise burst. In vivo intracellular recordings in the auditory cortex showed that synaptic strength was potentiated after two pairings of presynaptic and postsynaptic activity in the presence of CCK. Infusion of a CCKB antagonist in the auditory cortex prevented the formation of a visuo-auditory association in awake rats. Finally, activation of the entorhinal cortex potentiated neuronal responses in the auditory cortex, which was suppressed by infusion of a CCKB antagonist. Together, these findings suggest that the medial temporal lobe influences neocortical plasticity via CCK-positive cortical projection neurons in the entorhinal cortex. PMID:24343575

  9. Folic Acid supplementation stimulates notch signaling and cell proliferation in embryonic neural stem cells.

    PubMed

    Liu, Huan; Huang, Guo-Wei; Zhang, Xu-Mei; Ren, Da-Lin; X Wilson, John

    2010-09-01

    The present study investigated the effect of folic acid supplementation on the Notch signaling pathway and cell proliferation in rat embryonic neural stem cells (NSCs). The NSCs were isolated from E14-16 rat brain and grown as neurospheres in serum-free suspension culture. Individual cultures were assigned to one of 3 treatment groups that differed according to the concentration of folic acid in the medium: Control (baseline folic acid concentration of 4 mg/l), low folic acid supplementation (4 mg/l above baseline, Folate-L) and high folic acid supplementation (40 mg/l above baseline, Folate-H). NSCs were identified by their expression of immunoreactive nestin and proliferating cells by incorporation of 5'bromo-2'deoxyuridine. Cell proliferation was also assessed by methyl thiazolyl tetrazolium assay. Notch signaling was analyzed by real-time PCR and western blot analyses of the expression of Notch1 and hairy and enhancer of split 5 (Hes5). Supplementation of NSCs with folic acid increased the mRNA and protein expression levels of Notch1 and Hes5. Folic acid supplementation also stimulated NSC proliferation dose-dependently. Embryonic NSCs respond to folic acid supplementation with increased Notch signaling and cell proliferation. This mechanism may mediate the effects of folic acid supplementation on neurogenesis in the embryonic nervous system.

  10. Mitochondrial Superoxide Production Negatively Regulates Neural Progenitor Proliferation and Cerebral Cortical Development

    PubMed Central

    Hou, Yan; Ouyang, Xin; Wan, Ruiqian; Cheng, Heping; Mattson, Mark P.; Cheng, Aiwu

    2012-01-01

    Although high amounts of reactive oxygen species (ROS) can damage cells, ROS can also play roles as second messengers, regulating diverse cellular processes. Here we report that embryonic mouse cerebral cortical neural progenitor cells (NPCs) exhibit intermittent spontaneous bursts of mitochondrial superoxide (SO) generation (mitochondrial SO flashes) that require transient opening of membrane permeability transition pores (mPTP). This quantal SO production negatively regulates NPC self-renewal. Mitochondrial SO scavengers and mPTP inhibitors reduce SO flash frequency and enhance NPC proliferation, whereas prolonged mPTP opening and SO generation increase SO flash incidence and decrease NPC proliferation. The inhibition of NPC proliferation by mitochondrial SO involves suppression of extracellular signal-regulated kinases. Moreover, mice lacking SOD2 (SOD2−/− mice) exhibit significantly fewer proliferative NPCs and differentiated neurons in the embryonic cerebral cortex at mid-gestation compared with wild type littermates. Cultured SOD2−/− NPCs exhibit a significant increase in SO flash frequency and reduced NPC proliferation. Taken together, our findings suggest that mitochondrial SO flashes negatively regulate NPC self-renewal in the developing cerebral cortex. PMID:22949407

  11. Induction of superficial cortical layer neurons from mouse embryonic stem cells by valproic acid.

    PubMed

    Juliandi, Berry; Abematsu, Masahiko; Sanosaka, Tsukasa; Tsujimura, Keita; Smith, Austin; Nakashima, Kinichi

    2012-01-01

    Within the developing mammalian cortex, neural progenitors first generate deep-layer neurons and subsequently more superficial-layer neurons, in an inside-out manner. It has been reported recently that mouse embryonic stem cells (mESCs) can, to some extent, recapitulate cortical development in vitro, with the sequential appearance of neurogenesis markers resembling that in the developing cortex. However, mESCs can only recapitulate early corticogenesis; superficial-layer neurons, which are normally produced in later developmental periods in vivo, are under-represented. This failure of mESCs to reproduce later corticogenesis in vitro implies the existence of crucial factor(s) that are absent or uninduced in existing culture systems. Here we show that mESCs can give rise to superficial-layer neurons efficiently when treated with valproic acid (VPA), a histone deacetylase inhibitor. VPA treatment increased the production of Cux1-positive superficial-layer neurons, and decreased that of Ctip2-positive deep-layer neurons. These results shed new light on the mechanisms of later corticogenesis. Copyright © 2011 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  12. FoxP2 regulates neurogenesis during embryonic cortical development.

    PubMed

    Tsui, David; Vessey, John P; Tomita, Hideaki; Kaplan, David R; Miller, Freda D

    2013-01-02

    The transcription factor FoxP2 has been associated with the development of human speech but the underlying cellular function of FoxP2 is still unclear. Here we provide evidence that FoxP2 regulates genesis of some intermediate progenitors and neurons in the mammalian cortex, one of the key centers for human speech. Specifically, knockdown of FoxP2 in embryonic cortical precursors inhibits neurogenesis, at least in part by inhibiting the transition from radial glial precursors to neurogenic intermediate progenitors. Moreover, overexpression of human, but not mouse, FoxP2 enhances the genesis of intermediate progenitors and neurons. In contrast, expression of a human FoxP2 mutant that causes vocalization deficits decreases neurogenesis, suggesting that in the murine system human FoxP2 acts as a gain-of-function protein, while a human FoxP2 mutant acts as a dominant-inhibitory protein. These results support the idea that FoxP2 regulates the transition from neural precursors to transit-amplifying progenitors and ultimately neurons, and shed light upon the molecular changes that might contribute to evolution of the mammalian cortex.

  13. Effects of self-administered cocaine in adolescent and adult male rats on orbitofrontal cortex-related neurocognitive functioning

    PubMed Central

    Harvey, Roxann C.; Dembro, Kimberly A.; Rajagopalan, Kiran; Mutebi, Michael M.; Kantak, Kathleen M.

    2010-01-01

    Rationale Deficits in amygdala-related stimulus-reward learning are produced following 18 drug-free days of cocaine self-administration or its passive delivery in rats exposed during adulthood. No deficits in stimulus-reward learning are produced by cocaine exposure initiated during adolescence. Objectives To determine if age of initiating cocaine exposure differentially affects behavioral functioning of an additional memory system linked to cocaine addiction, the orbitofrontal cortex. Materials and methods A yoked-triad design (n=8) was used. One rat controlled cocaine delivery and the other two passively received cocaine or saline. Rats controlling drug delivery (1.0 mg/kg) self-administered cocaine from either P37–P59 or P77–P99, and then underwent 18 drug-free days (P60–P77 vs. P100–P117). Rats next were tested for acquisition of odor-delayed win-shift behavior conducted over 15 sessions (P78–P96 vs. P118–P136). Results Cocaine self-administration did not differ between adults and adolescents. During the test phase of the odor-delayed win-shift task (relatively difficult task demands), rats from both drug-onset ages showed learning deficits. Rats with cocaine self-administration experience committed more errors and had longer session latencies compared to rats passively receiving saline or cocaine. Rats with adolescent-onset cocaine self-administration experience showed an additional learning deficit by requiring more sessions to reach criterion levels for task acquisition compared to same-aged passive saline controls or rats with adult-onset cocaine self-administration experience. Rats passively receiving cocaine did not differ from the passive saline control from either age group. Conclusions Rats with adolescent-onset cocaine self-administration experience were more impaired in an orbitofrontal cortex-related learning task than rats with adult-onset cocaine self-administration experience. PMID:19513699

  14. Age-related decline of the cytochrome c oxidase subunit expression in the auditory cortex of the mimetic aging rat model associated with the common deletion.

    PubMed

    Zhong, Yi; Hu, Yujuan; Peng, Wei; Sun, Yu; Yang, Yang; Zhao, Xueyan; Huang, Xiang; Zhang, Honglian; Kong, Weijia

    2012-12-01

    The age-related deterioration in the central auditory system is well known to impair the abilities of sound localization and speech perception. However, the mechanisms involved in the age-related central auditory deficiency remain unclear. Previous studies have demonstrated that mitochondrial DNA (mtDNA) deletions accumulated with age in the auditory system. Also, a cytochrome c oxidase (CcO) deficiency has been proposed to be a causal factor in the age-related decline in mitochondrial respiratory activity. This study was designed to explore the changes of CcO activity and to investigate the possible relationship between the mtDNA common deletion (CD) and CcO activity as well as the mRNA expression of CcO subunits in the auditory cortex of D-galactose (D-gal)-induced mimetic aging rats at different ages. Moreover, we explored whether peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α), nuclear respiratory factor 1 (NRF-1) and mitochondrial transcription factor A (TFAM) were involved in the changes of nuclear- and mitochondrial-encoded CcO subunits in the auditory cortex during aging. Our data demonstrated that d-gal-induced mimetic aging rats exhibited an accelerated accumulation of the CD and a gradual decline in the CcO activity in the auditory cortex during the aging process. The reduction in the CcO activity was correlated with the level of CD load in the auditory cortex. The mRNA expression of CcO subunit III was reduced significantly with age in the d-gal-induced mimetic aging rats. In contrast, the decline in the mRNA expression of subunits I and IV was relatively minor. Additionally, significant increases in the mRNA and protein levels of PGC-1α, NRF-1 and TFAM were observed in the auditory cortex of D-gal-induced mimetic aging rats with aging. These findings suggested that the accelerated accumulation of the CD in the auditory cortex may induce a substantial decline in CcO subunit III and lead to a significant decline in the CcO activity progressively with age despite compensatory increases of PGC-1α, NRF-1 and TFAM. Therefore, CcO may be a specific intramitochondrial site of age-related deterioration in the auditory cortex, and CcO subunit III might be a target in the development of presbycusis. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Effects of Biotin Deficiency on Biotinylated Proteins and Biotin-Related Genes in the Rat Brain.

    PubMed

    Yuasa, Masahiro; Aoyama, Yuki; Shimada, Ryoko; Sawamura, Hiromi; Ebara, Shuhei; Negoro, Munetaka; Fukui, Toru; Watanabe, Toshiaki

    2016-01-01

    Biotin is a water-soluble vitamin that functions as a cofactor for biotin-dependent carboxylases. The biochemical and physiological roles of biotin in brain regions have not yet been investigated sufficiently in vivo. Thus, in order to clarify the function of biotin in the brain, we herein examined biotin contents, biotinylated protein expression (e.g. holocarboxylases), and biotin-related gene expression in the brain of biotin-deficient rats. Three-week-old male Wistar rats were divided into a control group, biotin-deficient group, and pair-fed group. Rats were fed experimental diets from 3 wk old for 8 wk, and the cortex, hippocampus, striatum, hypothalamus, and cerebellum were then collected. In the biotin-deficient group, the maintenance of total biotin and holocarboxylases, increases in the bound form of biotin and biotinidase activity, and the expression of an unknown biotinylated protein were observed in the cortex. In other regions, total and free biotin contents decreased, holocarboxylase expression was maintained, and bound biotin and biotinidase activity remained unchanged. Biotin-related gene (pyruvate carboxylase, sodium-dependent multivitamin transporter, holocarboxylase synthetase, and biotinidase) expression in the cortex and hippocampus also remained unchanged among the dietary groups. These results suggest that biotin may be related to cortex functions by binding protein, and the effects of a biotin deficiency and the importance of biotin differ among the different brain regions.

  16. Neuronal and astrocytic metabolism in a transgenic rat model of Alzheimer's disease.

    PubMed

    Nilsen, Linn Hege; Witter, Menno P; Sonnewald, Ursula

    2014-05-01

    Regional hypometabolism of glucose in the brain is a hallmark of Alzheimer's disease (AD). However, little is known about the specific alterations of neuronal and astrocytic metabolism involved in homeostasis of glutamate and GABA in AD. Here, we investigated the effects of amyloid β (Aβ) pathology on neuronal and astrocytic metabolism and glial-neuronal interactions in amino acid neurotransmitter homeostasis in the transgenic McGill-R-Thy1-APP rat model of AD compared with healthy controls at age 15 months. Rats were injected with [1-(13)C]glucose and [1,2-(13)C]acetate, and extracts of the hippocampal formation as well as several cortical regions were analyzed using (1)H- and (13)C nuclear magnetic resonance spectroscopy and high-performance liquid chromatography. Reduced tricarboxylic acid cycle turnover was evident for glutamatergic and GABAergic neurons in hippocampal formation and frontal cortex, and for astrocytes in frontal cortex. Pyruvate carboxylation, which is necessary for de novo synthesis of amino acids, was decreased and affected the level of glutamine in hippocampal formation and those of glutamate, glutamine, GABA, and aspartate in the retrosplenial/cingulate cortex. Metabolic alterations were also detected in the entorhinal cortex. Overall, perturbations in energy- and neurotransmitter homeostasis, mitochondrial astrocytic and neuronal metabolism, and aspects of the glutamate-glutamine cycle were found in McGill-R-Thy1-APP rats.

  17. Varieties of paw and digit movement during spontaneous food handling in rats: postures, bimanual coordination, preferences, and the effect of forelimb cortex lesions.

    PubMed

    Whishaw, I Q; Coles, B L

    1996-05-01

    This study describes how rats use their paws and digits when handling a wide range of foodstuffs, including food pellets, grapes, sunflower seeds, shelled and unshelled peanuts, and different sized pastas, etc. Analysis of videorecordings show that the rats display digit postures that include variations in the spacing of the digits, differences in the relative use of different digits, and interlimb differences in paw and digit posture. The rats also display limb preferences in that one paw is used in a supporting function while the other rotates, flips, or pushes the food as is required by the shape of the item. There is a significant correlation between the paw used for manipulation and food items of similar shape but no correlation between the limb used for manipulation and that used for skilled reaching. Small unilateral lesions to the forepaw area of somatic sensorimotor cortex produced impairments in use of the paw contralateral to the lesions. These results: (1) reveal a surprising complexity in the way in which rats use their paws and digits in manipulating food; (2) show that rats have limb preferences in spontaneous food handling; and (3) show that manipulatory dexterity is dependent upon the integrity of the forelimb area of motor cortex. The results are discussed in relation to the evolution of motor skill, the use of rats for investigating questions of motor system organization, neural plasticity, and recovery of function after brain damage.

  18. Vagus Nerve Stimulation Delivered During Motor Rehabilitation Improves Recovery in a Rat Model of Stroke

    PubMed Central

    Khodaparast, Navid; Hays, Seth A.; Sloan, Andrew M.; Fayyaz, Tabbassum; Hulsey, Daniel R.; Rennaker, Robert L.; Kilgard, Michael P.

    2014-01-01

    Neural plasticity is widely believed to support functional recovery following brain damage. Vagus nerve stimulation paired with different forelimb movements causes long-lasting map plasticity in rat primary motor cortex that is specific to the paired movement. We tested the hypothesis that repeatedly pairing vagus nerve stimulation with upper forelimb movements would improve recovery of motor function in a rat model of stroke. Rats were separated into three groups: vagus nerve stimulation during rehab, vagus nerve stimulation after rehab, and rehab alone. Animals underwent 4 training stages: shaping (motor skill learning), pre-lesion training, post-lesion training, and therapeutic training. Rats were given a unilateral ischemic lesion within motor cortex and implanted with a left vagus nerve cuff. Animals were allowed one week of recovery before post-lesion baseline training. During the therapeutic training stage, rats received vagus nerve stimulation paired with each successful trial. All seventeen trained rats demonstrated significant contralateral forelimb impairment when performing a bradykinesia assessment task. Forelimb function was recovered completely to pre-lesion levels when vagus nerve stimulation was delivered during rehab training. Alternatively, intensive rehab training alone (without stimulation) failed to restore function to pre-lesion levels. Delivering the same amount of stimulation after rehab training did not yield improvements compared to rehab alone. These results demonstrate that vagus nerve stimulation repeatedly paired with successful forelimb movements can improve recovery after motor cortex ischemia and may be a viable option for stroke rehabilitation. PMID:24553102

  19. Early Activation of Ventral Hippocampus and Subiculum during Spontaneous Seizures in a Rat Model of Temporal Lobe Epilepsy

    PubMed Central

    Toyoda, Izumi; Bower, Mark R.; Leyva, Fernando

    2013-01-01

    Temporal lobe epilepsy is the most common form of epilepsy in adults. The pilocarpine-treated rat model is used frequently to investigate temporal lobe epilepsy. The validity of the pilocarpine model has been challenged based largely on concerns that seizures might initiate in different brain regions in rats than in patients. The present study used 32 recording electrodes per rat to evaluate spontaneous seizures in various brain regions including the septum, dorsomedial thalamus, amygdala, olfactory cortex, dorsal and ventral hippocampus, substantia nigra, entorhinal cortex, and ventral subiculum. Compared with published results from patients, seizures in rats tended to be shorter, spread faster and more extensively, generate behavioral manifestations more quickly, and produce generalized convulsions more frequently. Similarities to patients included electrographic waveform patterns at seizure onset, variability in sites of earliest seizure activity within individuals, and variability in patterns of seizure spread. Like patients, the earliest seizure activity in rats was recorded most frequently within the hippocampal formation. The ventral hippocampus and ventral subiculum displayed the earliest seizure activity. Amygdala, olfactory cortex, and septum occasionally displayed early seizure latencies, but not above chance levels. Substantia nigra and dorsomedial thalamus demonstrated consistently late seizure onsets, suggesting their unlikely involvement in seizure initiation. The results of the present study reveal similarities in onset sites of spontaneous seizures in patients with temporal lobe epilepsy and pilocarpine-treated rats that support the model's validity. PMID:23825415

  20. The rat perirhinal cortex: A review of anatomy, physiology, plasticity, and function.

    PubMed

    Kealy, John; Commins, Sean

    2011-04-01

    The perirhinal cortex is located in a pivotal position to influence the flow of information into and out of the hippocampal formation. In this review, we examine the anatomical, physiological and functional properties of the rat perirhinal cortex. Firstly, we review the properties of the perirhinal cortex itself, we describe how it can be separated into two distinct subregions and consider how it differs from other neighbouring regions in terms of cell type, cellular organisation and its afferent and efferent projections. We review the forms of neurotransmission present in the perirhinal cortex and the morphological, electrophysiological and plastic properties of its neurons. Secondly, we review the perirhinal cortex in the context of its connections with other brain areas; focussing on the projections to cortical, subcortical and hippocampal/parahippocampal regions. Particular attention is paid the anatomical and electrophysiological properties of these projections. Thirdly, we review the main functions of the perirhinal cortex; its roles in perception, recognition memory, spatial and contextual memory and fear conditioning are explored. Finally, we discuss the idea of anatomical, electrophysiological and functional segregation within the perirhinal cortex itself and as part of a hippocampal-parahippocampal network and suggest that understanding this segregation is of critical importance in understanding the role and contributions made by the perirhinal cortex in general. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Changes in Male Rat Sexual Behavior and Brain Activity Revealed by Functional Magnetic Resonance Imaging in Response to Chronic Mild Stress.

    PubMed

    Chen, Guotao; Yang, Baibing; Chen, Jianhuai; Zhu, Leilei; Jiang, Hesong; Yu, Wen; Zang, Fengchao; Chen, Yun; Dai, Yutian

    2018-02-01

    Non-organic erectile dysfunction (noED) at functional imaging has been related to abnormal brain activity and requires animal models for further research on the associated molecular mechanisms. To develop a noED animal model based on chronic mild stress and investigate brain activity changes. We used 6 weeks of chronic mild stress to induce depression. The sucrose consumption test was used to assess the hedonic state. The apomorphine test and sexual behavior test were used to select male rats with ED. Rats with depression and ED were considered to have noED. Blood oxygen level-dependent-based resting-state functional magnetic resonance imaging (fMRI) studies were conducted on these rats, and the amplitude of low-frequency fluctuations and functional connectivity were analyzed to determine brain activity changes. The sexual behavior test and resting-state fMRI were used for outcome measures. The induction of depression was confirmed by the sucrose consumption test. A low intromission ratio and increased mount and intromission latencies were observed in male rats with depression. No erection was observed in male rats with depression during the apomorphine test. Male rats with depression and ED were considered to have noED. The possible central pathologic mechanism shown by fMRI involved the amygdaloid body, dorsal thalamus, hypothalamus, caudate-putamen, cingulate gyrus, insular cortex, visual cortex, sensory cortex, motor cortex, and cerebellum. Similar findings have been found in humans. The present study provided a novel noED rat model for further research on the central mechanism of noED. The present study developed a novel noED rat model and analyzed brain activity changes based at fMRI. The observed brain activity alterations might not extend to humans. The present study developed a novel noED rat model with brain activity alterations related to sexual arousal and erection, which will be helpful for further research involving the central mechanism of noED. Chen G, Yang B, Chen J, et al. Changes in Male Rat Sexual Behavior and Brain Activity Revealed by Functional Magnetic Resonance Imaging in Response to Chronic Mild Stress. J Sex Med 2018;15:136-147. Copyright © 2017 International Society for Sexual Medicine. Published by Elsevier Inc. All rights reserved.

  2. Characterization of sustained BOLD activation in the rat barrel cortex and neurochemical consequences.

    PubMed

    Just, Nathalie; Xin, Lijing; Frenkel, Hanne; Gruetter, Rolf

    2013-07-01

    To date, only a couple of functional MR spectroscopy (fMRS) studies were conducted in rats. Due to the low temporal resolution of (1)H MRS techniques, prolonged stimulation paradigms are necessary for investigating the metabolic outcome in the rat brain during functional challenge. However, sustained activation of cortical areas is usually difficult to obtain due to neural adaptation. Anesthesia, habituation, high variability of the basal state metabolite concentrations as well as low concentrations of the metabolites of interest such as lactate (Lac), glucose (Glc) or γ-aminobutyric acid (GABA) and small expected changes of metabolite concentrations need to be addressed. In the present study, the rat barrel cortex was reliably and reproducibly activated through sustained trigeminal nerve (TGN) stimulation. In addition, TGN stimulation induced significant positive changes in lactate (+1.01 μmol/g, p<0.008) and glutamate (+0.92 μmol/g, p<0.02) and significant negative aspartate changes (-0.63 μmol/g, p<0.004) using functional (1)H MRS at 9.4 T in agreement with previous changes observed in human fMRS studies. Finally, for the first time, the dynamics of lactate, glucose, aspartate and glutamate concentrations during sustained somatosensory activation in rats using fMRS were assessed. These results allow demonstrating the feasibility of fMRS measurements during prolonged barrel cortex activation in rats. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Plasticity in the prefrontal cortex of adult rats

    PubMed Central

    Kolb, Bryan; Gibb, Robbin

    2015-01-01

    We review the plastic changes of the prefrontal cortex of the rat in response to a wide range of experiences including sensory and motor experience, gonadal hormones, psychoactive drugs, learning tasks, stress, social experience, metaplastic experiences, and brain injury. Our focus is on synaptic changes (dendritic morphology and spine density) in pyramidal neurons and the relationship to behavioral changes. The most general conclusion we can reach is that the prefrontal cortex is extremely plastic and that the medial and orbital prefrontal regions frequently respond very differently to the same experience in the same brain and the rules that govern prefrontal plasticity appear to differ for those of other cortical regions. PMID:25691857

  4. Effect of chronic usage of tramadol on motor cerebral cortex and testicular tissues of adult male albino rats and the effect of its withdrawal: histological, immunohistochemical and biochemical study.

    PubMed

    Ghoneim, Fatma M; Khalaf, Hanaa A; Elsamanoudy, Ayman Z; Helaly, Ahmed N

    2014-01-01

    This study was designed to demonstrate the histopathological and biochemical changes in rat cerebral cortex and testicles due to chronic usage of tramadol and the effect of withdrawal. Thirty adult male rats weighing 180-200 gm were classified into three groups; group I (control group) group II (10 rats received 50 mg/kg/day of tramadol intraperitoneally for 4 weeks) and group III (10 rats received the same dose as group II then kept 4 weeks later to study the effect of withdrawal). Histological and immunohistochemical examination of cerebral cortex and testicular specimens for Bax (apoptotic marker) were carried out. Testicular specimens were examined by electron microscopy. RT-PCR after RNA extraction from both specimens was done for the genes of some antioxidant enzymes .Also, malondialdehyde (MDA) was measured colourimetrically in tissues homogenizate. The results of this study demonstrated histological changes in testicular and brain tissues in group II compared to group I with increased apoptotic index proved by increased Bax expression. Moreover in this group increased MDA level with decreased gene expression of the antioxidant enzymes revealed oxidative stress. Group III showed signs of improvement but not returned completely normal. It could be concluded that administration of tramadol have histological abnormalities on both cerebral cortex and testicular tissues associated with oxidative stress in these organs. Also, there is increased apoptosis in both organs which regresses with withdrawal. These findings may provide a possible explanation for delayed fertility and psychological changes associated with tramadol abuse.

  5. Effects of moderate prenatal ethanol exposure and age on social behavior, spatial response perseveration errors and motor behavior

    PubMed Central

    Hamilton, Derek A.; Barto, Daniel; Rodriguez, Carlos I.; Magcalas, Christy; Fink, Brandi C.; Rice, James P.; Bird, Clark W.; Davies, Suzy; Savage, Daniel D.

    2014-01-01

    Persistent deficits in social behavior are among the major negative consequences associated with exposure to ethanol during prenatal development. Prior work from our laboratory has linked deficits in social behavior following moderate prenatal alcohol exposure (PAE) in the rat to functional alterations in the ventrolateral frontal cortex [21]. In addition to social behaviors, the regions comprising the ventrolateral frontal cortex are critical for diverse processes ranging from orofacial motor movements to flexible alteration of behavior in the face of changing consequences. The broader behavioral implications of altered ventrolateral frontal cortex function following moderate PAE have, however, not been examined. In the present study we evaluated the consequences of moderate PAE on social behavior, tongue protrusion, and flexibility in a variant of the Morris water task that required modification of a well-established spatial response. PAE rats displayed deficits in tongue protrusion, reduced flexibility in the spatial domain, increased wrestling, and decreased investigation, indicating that several behaviors associated with ventrolateral frontal cortex function are impaired following moderate PAE. A linear discriminant analysis revealed that measures of wrestling and tongue protrusion provided the best discrimination of PAE rats from saccharin-exposed control rats. We also evaluated all behaviors in young adult (4-5 mos.) or older (10-11 mos.) rats to address the persistence of behavioral deficits in adulthood and possible interactions between early ethanol exposure and advancing age. Behavioral deficits in each domain persisted well into adulthood (10-11 mos.), however, there was no evidence that age enhances the effects of moderate PAE within the age ranges that were studied. PMID:24769174

  6. Cocaine-associated odor cue re-exposure increases blood oxygenation level dependent signal in memory and reward regions of the maternal rat brain.

    PubMed

    Caffrey, Martha K; Febo, Marcelo

    2014-01-01

    Cue triggered relapse during the postpartum period can negatively impact maternal care. Given the high reward value of pups in maternal rats, we designed an fMRI experiment to test whether offspring presence reduces the neural response to a cocaine associated olfactory cue. Cocaine conditioned place preference was carried out before pregnancy in the presence of two distinct odors that were paired with cocaine or saline (+Cue and -Cue). The BOLD response to +Cue and -Cue was measured in dams on postpartum days 2-4. Odor cues were delivered to dams in the absence and then the presence of pups. Our data indicate that several limbic and cognitive regions of the maternal rat brain show a greater BOLD signal response to a +Cue versus -Cue. These include dorsal striatum, prelimbic cortex, parietal cortex, habenula, bed nucleus of stria terminalis, lateral septum and the mediodorsal and the anterior thalamic nucleus. Of the aforementioned brain regions, only the parietal cortex of cocaine treated dams showed a significant modulatory effect of pup presence. In this area of the cortex, cocaine exposed maternal rats showed a greater BOLD activation in response to the +Cue in the presence than in the absence of pups. Specific regions of the cocaine exposed maternal rat brain are strongly reactive to drug associated cues. The regions implicated in cue reactivity have been previously reported in clinical imaging work, and previous work supports their role in various motivational and cognitive functions. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  7. COCAINE-ASSOCIATED ODOR CUE RE-EXPOSURE INCREASES BLOOD OXYGENATION LEVEL DEPENDENT SIGNAL IN MEMORY AND REWARD REGIONS OF THE MATERNAL RAT BRAIN*

    PubMed Central

    Caffrey, Martha K.; Febo, Marcelo

    2013-01-01

    BACKGROUND Cue triggered relapse during the postpartum period can negatively impact maternal care. Given the high reward value of pups in maternal rats, we designed an fMRI experiment to test whether offspring presence reduces the neural response to a cocaine associated olfactory cue. METHODS Cocaine conditioned place preference was carried out before pregnancy in the presence of two distinct odors that were paired with cocaine or saline (+Cue and −Cue). The BOLD response to +Cue and −Cue was measured in dams on postpartum days 2–4. Odor cues were delivered to dams in the absence and then the presence of pups. RESULTS Our data indicate that several limbic and cognitive regions of the maternal rat brain show a greater BOLD signal response to a +Cue versus −Cue. These include dorsal striatum, prelimbic cortex, parietal cortex, habenula, bed nucleus of stria terminalis, lateral septum and the mediodorsal and the anterior thalamic nucleus. Of the aforementioned brain regions, only the parietal cortex of cocaine treated dams showed a significant modulatory effect of pup presence. In this area of the cortex, cocaine exposed maternal rats showed a greater BOLD activation in response to the +Cue in the presence than in the absence of pups. CONCLUSIONS Specific regions of the cocaine exposed maternal rat brain are strongly reactive to drug associated cues. The regions implicated in cue reactivity have been previously reported in clinical imaging work, and previous work supports their role in various motivational and cognitive functions. PMID:24183499

  8. Developmental Injury to the Cerebellar Cortex Following Hydroxyurea Treatment in Early Postnatal Life: An Immunohistochemical and Electron Microscopic Study.

    PubMed

    Martí, Joaquín; Molina, Vanesa; Santa-Cruz, M C; Hervás, José P

    2017-02-01

    Postnatal development of the cerebellar cortex was studied in rats administered with a single dose (2 mg/g) of the cytotoxic agent hydroxyurea (HU) on postnatal day (P) 9 and collected at appropriate times ranging from 6 h to 45 days. Quantification of several parameters such as the density of pyknotic, mitotic, BrdU-positive, and vimentin-stained cells revealed that HU compromises the survival of the external granular layer (EGL) cells. Moreover, vimentin immunocytochemistry revealed overexpression and thicker immunoreactive glial processes in HU-treated rats. On the other hand, we also show that HU leads to the activation of apoptotic cellular events, resulting in a substantial number of dying EGL cells, as revealed by TUNEL staining and at the electron microscope level. Additionally, we quantified several features of the cerebellar cortex of rats exposed to HU in early postnatal life and collected in adulthood. Data analysis indicated that the analyzed parameters were less pronounced in rats administered with this agent. Moreover, we observed several alterations in the cerebellar cortex cytoarchitecture of rats injected with HU. Anomalies included ectopic placement of Purkinje cells and abnormities in the dendritic arbor of these macroneurons. Ectopic granule cells were also found in the molecular layer. These findings provide a clue for investigating the mechanisms of HU-induced toxicity during the development of the central nervous system. Our results also suggest that it is essential to avoid underestimating the adverse effects of this hydroxylated analog of urea when administered during early postnatal life.

  9. Switch-task performance in rats is disturbed by 12 h of sleep deprivation but not by 12 h of sleep fragmentation.

    PubMed

    Leenaars, Cathalijn H C; Joosten, Ruud N J M A; Zwart, Allard; Sandberg, Hans; Ruimschotel, Emma; Hanegraaf, Maaike A J; Dematteis, Maurice; Feenstra, Matthijs G P; van Someren, Eus J W

    2012-02-01

    Task-switching is an executive function involving the prefrontal cortex. Switching temporarily attenuates the speed and/or accuracy of performance, phenomena referred to as switch costs. In accordance with the idea that prefrontal function is particularly sensitive to sleep loss, switch-costs increase during prolonged waking in humans. It has been difficult to investigate the underlying neurobiological mechanisms because of the lack of a suitable animal model. Here, we introduce the first switch-task for rats and report the effects of sleep deprivation and inactivation of the medial prefrontal cortex. Rats were trained to repeatedly switch between 2 stimulus-response associations, indicated by the presentation of a visual or an auditory stimulus. These stimulus-response associations were offered in blocks, and performance was compared for the first and fifth trials of each block. Performance was tested after exposure to 12 h of total sleep deprivation, sleep fragmentation, and their respective movement control conditions. Finally, it was tested after pharmacological inactivation of the medial prefrontal cortex. Controlled laboratory settings. 15 male Wistar rats. Both accuracy and latency showed switch-costs at baseline. Twelve hours of total sleep deprivation, but not sleep fragmentation, impaired accuracy selectively on the switch-trials. Inactivation of the medial prefrontal cortex by local neuronal inactivation resulted in an overall decrease in accuracy. We developed and validated a switch-task that is sensitive to sleep deprivation. This introduces the possibility for in-depth investigations on the neurobiological mechanisms underlying executive impairments after sleep disturbance in a rat model.

  10. Unraveling the mechanism of neuroprotection of curcumin in arsenic induced cholinergic dysfunctions in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Srivastava, Pranay; Yadav, Rajesh S.; Department of Crimnology and Forensic Science, Harisingh Gour University, Sagar 470 003

    Earlier, we found that arsenic induced cholinergic deficits in rat brain could be protected by curcumin. In continuation to this, the present study is focused to unravel the molecular mechanisms associated with the protective efficacy of curcumin in arsenic induced cholinergic deficits. Exposure to arsenic (20 mg/kg body weight, p.o) for 28 days in rats resulted to decrease the expression of CHRM2 receptor gene associated with mitochondrial dysfunctions as evident by decrease in the mitochondrial membrane potential, activity of mitochondrial complexes and enhanced apoptosis both in the frontal cortex and hippocampus in comparison to controls. The ultrastructural images of arsenicmore » exposed rats, assessed by transmission electron microscope, exhibited loss of myelin sheath and distorted cristae in the mitochondria both in the frontal cortex and hippocampus as compared to controls. Simultaneous treatment with arsenic (20 mg/kg body weight, p.o) and curcumin (100 mg/kg body weight, p.o) for 28 days in rats was found to protect arsenic induced changes in the mitochondrial membrane potential and activity of mitochondrial complexes both in frontal cortex and hippocampus. Alterations in the expression of pro- and anti-apoptotic proteins and ultrastructural damage in the frontal cortex and hippocampus following arsenic exposure were also protected in rats simultaneously treated with arsenic and curcumin. The data of the present study reveal that curcumin could protect arsenic induced cholinergic deficits by modulating the expression of pro- and anti-apoptotic proteins in the brain. More interestingly, arsenic induced functional and ultrastructural changes in the brain mitochondria were also protected by curcumin. - Highlights: • Neuroprotective mechanism of curcumin in arsenic induced cholinergic deficits studied • Curcumin protected arsenic induced enhanced expression of stress markers in rat brain • Arsenic compromised mitochondrial electron transport chain protected by curcumin • Functional and structural changes in mitochondria by arsenic protected by curcumin.« less

  11. Functional Reorganization of Motor and Limbic Circuits after Exercise Training in a Rat Model of Bilateral Parkinsonism

    PubMed Central

    Wang, Zhuo; Myers, Kalisa G.; Guo, Yumei; Ocampo, Marco A.; Pang, Raina D.; Jakowec, Michael W.; Holschneider, Daniel P.

    2013-01-01

    Exercise training is widely used for neurorehabilitation of Parkinson’s disease (PD). However, little is known about the functional reorganization of the injured brain after long-term aerobic exercise. We examined the effects of 4 weeks of forced running wheel exercise in a rat model of dopaminergic deafferentation (bilateral, dorsal striatal 6-hydroxydopamine lesions). One week after training, cerebral perfusion was mapped during treadmill walking or at rest using [14C]-iodoantipyrine autoradiography. Regional cerebral blood flow-related tissue radioactivity (rCBF) was analyzed in three-dimensionally reconstructed brains by statistical parametric mapping. In non-exercised rats, lesions resulted in persistent motor deficits. Compared to sham-lesioned rats, lesioned rats showed altered functional brain activation during walking, including: 1. hypoactivation of the striatum and motor cortex; 2. hyperactivation of non-lesioned areas in the basal ganglia-thalamocortical circuit; 3. functional recruitment of the red nucleus, superior colliculus and somatosensory cortex; 4. hyperactivation of the ventrolateral thalamus, cerebellar vermis and deep nuclei, suggesting recruitment of the cerebellar-thalamocortical circuit; 5. hyperactivation of limbic areas (amygdala, hippocampus, ventral striatum, septum, raphe, insula). These findings show remarkable similarities to imaging findings reported in PD patients. Exercise progressively improved motor deficits in lesioned rats, while increasing activation in dorsal striatum and rostral secondary motor cortex, attenuating a hyperemia of the zona incerta and eliciting a functional reorganization of regions participating in the cerebellar-thalamocortical circuit. Both lesions and exercise increased activation in mesolimbic areas (amygdala, hippocampus, ventral striatum, laterodorsal tegmental n., ventral pallidum), as well as in related paralimbic regions (septum, raphe, insula). Exercise, but not lesioning, resulted in decreases in rCBF in the medial prefrontal cortex (cingulate, prelimbic, infralimbic). Our results in this PD rat model uniquely highlight the breadth of functional reorganizations in motor and limbic circuits following lesion and long-term, aerobic exercise, and provide a framework for understanding the neural substrates underlying exercise-based neurorehabilitation. PMID:24278239

  12. Chronic Social Stress and Ethanol Increase Expression of KLF11, a Cell Death Mediator, in Rat Brain.

    PubMed

    Duncan, Jeremy; Wang, Niping; Zhang, Xiao; Johnson, Shakevia; Harris, Sharonda; Zheng, Baoying; Zhang, Qinli; Rajkowska, Grazyna; Miguel-Hidalgo, Jose Javier; Sittman, Donald; Ou, Xiao-Ming; Stockmeier, Craig A; Wang, Jun Ming

    2015-07-01

    Major depressive disorder and alcoholism are significant health burdens that can affect executive functioning, cognitive ability, job responsibilities, and personal relationships. Studies in animal models related to depression or alcoholism reveal that the expression of Krüppel-like factor 11 (KLF11, also called TIEG2) is elevated in frontal cortex, which suggests that KLF11 may play a role in stress- or ethanol-induced psychiatric conditions. KLF11 is a transcriptional activator of monoamine oxidase A and B, but also serves other functions in cell cycle regulation and apoptotic cell death. In the present study, immunohistochemistry was used to quantify intensity of nuclear KLF11, combined with an unbiased stereological approach to assess nuclei in fronto-limbic, limbic, and other brain regions of rats exposed chronically to social defeat or ethanol. KLF11 immunoreactivity was increased significantly in the medial prefrontal cortex, frontal cortex, and hippocampus of both stressed rats and rats fed ethanol. However, expression of KLF11 protein was not significantly affected in the thalamus, hypothalamus, or amygdala in either treatment group compared to respective control rats. Triple-label immunofluorescence revealed that KLF11 protein was localized in nuclei of neurons and astrocytes. KLF11 was also co-localized with the immunoreactivity of cleaved caspase-3. In addition, Western blot analysis revealed a significant reduction in anti-apoptotic protein, Bcl-xL, but an increase of caspase-3 expression in the frontal cortex of ethanol-treated rats compared to ethanol-preferring controls. Thus, KLF11 protein is up-regulated following chronic exposure to stress or ethanol in a region-specific manner and may contribute to pro-apoptotic signaling in ethanol-treated rats. Further investigation into the KLF11 signaling cascade as a mechanism for neurotoxicity and cell death in depression and alcoholism may provide novel pharmacological targets to lessen brain damage and maximize neuroprotection in these disorders.

  13. Finding and Not Finding Rat Perirhinal Neuronal Responses to Novelty

    PubMed Central

    Muller, Robert U.; Brown, Malcolm W.

    2016-01-01

    ABSTRACT There is much evidence that the perirhinal cortex of both rats and monkeys is important for judging the relative familiarity of visual stimuli. In monkeys many studies have found that a proportion of perirhinal neurons respond more to novel than familiar stimuli. There are fewer studies of perirhinal neuronal responses in rats, and those studies based on exploration of objects, have raised into question the encoding of stimulus familiarity by rat perirhinal neurons. For this reason, recordings of single neuronal activity were made from the perirhinal cortex of rats so as to compare responsiveness to novel and familiar stimuli in two different behavioral situations. The first situation was based upon that used in “paired viewing” experiments that have established rat perirhinal differences in immediate early gene expression for novel and familiar visual stimuli displayed on computer monitors. The second situation was similar to that used in the spontaneous object recognition test that has been widely used to establish the involvement of rat perirhinal cortex in familiarity discrimination. In the first condition 30 (25%) of 120 perirhinal neurons were visually responsive; of these responsive neurons 19 (63%) responded significantly differently to novel and familiar stimuli. In the second condition eight (53%) of 15 perirhinal neurons changed activity significantly in the vicinity of objects (had “object fields”); however, for none (0%) of these was there a significant activity change related to the familiarity of an object, an incidence significantly lower than for the first condition. Possible reasons for the difference are discussed. It is argued that the failure to find recognition‐related neuronal responses while exploring objects is related to its detectability by the measures used, rather than the absence of all such signals in perirhinal cortex. Indeed, as shown by the results, such signals are found when a different methodology is used. © 2016 The Authors Hippocampus Published by Wiley Periodicals, Inc. PMID:26972751

  14. Peony glycosides reverse the effects of corticosterone on behavior and brain BDNF expression in rats.

    PubMed

    Mao, Qing-Qiu; Huang, Zhen; Ip, Siu-Po; Xian, Yan-Fang; Che, Chun-Tao

    2012-02-01

    Repeated injections of corticosterone (CORT) induce the dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis, resulting in depressive-like behavior. This study aimed to examine the antidepressant-like effect and the possible mechanisms of total glycosides of peony (TGP) in the CORT-induced depression model in rats. The results showed that the 3-week CORT injections induced the significant increase in serum CORT levels in rats. Repeated CORT injections also caused depression-like behavior in rats, as indicated by the significant decrease in sucrose consumption and increase in immobility time in the forced swim test. Moreover, it was found that brain-derived neurotrophic factor (BDNF) protein levels in the hippocampus and frontal cortex were significantly decreased in CORT-treated rats. Treatment of the rats with TGP significantly suppressed the depression-like behavior and increased brain BDNF levels in CORT-treated rats. The results suggest that TGP produces an antidepressant-like effect in CORT-treated rats, which is possibly mediated by increasing BDNF expression in the hippocampus and frontal cortex. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Divergent RNA Localisation Patterns of Maternal Genes Regulating Embryonic Patterning in the Butterfly Pararge aegeria

    PubMed Central

    Carter, Jean-Michel; Gibbs, Melanie; Breuker, Casper J.

    2015-01-01

    The maternal effect genes responsible for patterning the embryo along the antero-posterior (AP) axis are broadly conserved in insects. The precise function of these maternal effect genes is the result of the localisation of their mRNA in the oocyte. The main developmental mechanisms involved have been elucidated in Drosophila melanogaster, but recent studies have shown that other insect orders often diverge in RNA localisation patterns. A recent study has shown that in the butterfly Pararge aegeria the distinction between blastodermal embryonic (i.e. germ band) and extra-embryonic tissue (i.e. serosa) is already specified in the oocyte during oogenesis in the ovariole, long before blastoderm cellularisation. To examine the extent by which a female butterfly specifies and patterns the AP axis within the region fated to be the germ band, and whether she specifies a germ plasm, we performed in situ hybridisation experiments on oocytes in P. aegeria ovarioles and on early embryos. RNA localisation of the following key maternal effect genes were investigated: caudal (cad), orthodenticle (otd), hunchback (hb) and four nanos (nos) paralogs, as well as TDRD7 a gene containing a key functional domain (OST-HTH/LOTUS) shared with oskar. TDRD7 was mainly confined to the follicle cells, whilst hb was exclusively zygotically transcribed. RNA of some of the nos paralogs, otd and cad revealed complex localisation patterns within the cortical region prefiguring the germ band (i.e. germ cortex). Rather interestingly, otd was localised within and outside the anterior of the germ cortex. Transcripts of nos-O formed a distinct granular ring in the middle of the germ cortex possibly prefiguring the region where germline stem cells form. These butterfly RNA localisation patterns are highly divergent with respect to other insects, highlighting the diverse ways in which different insect orders maternally regulate early embryogenesis of their offspring. PMID:26633019

  16. Individual Variations in Maternal Care Early in Life Correlate with Later Life Decision-Making and c-Fos Expression in Prefrontal Subregions of Rats

    PubMed Central

    van Hasselt, Felisa N.; de Visser, Leonie; Tieskens, Jacintha M.; Cornelisse, Sandra; Baars, Annemarie M.; Lavrijsen, Marla; Krugers, Harm J.; van den Bos, Ruud; Joëls, Marian

    2012-01-01

    Early life adversity affects hypothalamus-pituitary-adrenal axis activity, alters cognitive functioning and in humans is thought to increase the vulnerability to psychopathology–e.g. depression, anxiety and schizophrenia- later in life. Here we investigated whether subtle natural variations among individual rat pups in the amount of maternal care received, i.e. differences in the amount of licking and grooming (LG), correlate with anxiety and prefrontal cortex-dependent behavior in young adulthood. Therefore, we examined the correlation between LG received during the first postnatal week and later behavior in the elevated plus maze and in decision-making processes using a rodent version of the Iowa Gambling Task (rIGT). In our cohort of male and female animals a high degree of LG correlated with less anxiety in the elevated plus maze and more advantageous choices during the last 10 trials of the rIGT. In tissue collected 2 hrs after completion of the task, the correlation between LG and c-fos expression (a marker of neuronal activity) was established in structures important for IGT performance. Negative correlations existed between rIGT performance and c-fos expression in the lateral orbitofrontal cortex, prelimbic cortex, infralimbic cortex and insular cortex. The insular cortex correlations between c-fos expression and decision-making performance depended on LG background; this was also true for the lateral orbitofrontal cortex in female rats. Dendritic complexity of insular or infralimbic pyramidal neurons did not or weakly correlate with LG background. We conclude that natural variations in maternal care received by pups may significantly contribute to later-life decision-making and activity of underlying brain structures. PMID:22693577

  17. Increased GABA-A receptor binding and reduced connectivity at the motor cortex in children with hemiplegic cerebral palsy: a multimodal investigation using 18F-fluoroflumazenil PET, immunohistochemistry, and MR imaging.

    PubMed

    Park, Hae-Jeong; Kim, Chul Hoon; Park, Eun Sook; Park, Bumhee; Oh, So Ra; Oh, Maeng-Keun; Park, Chang Il; Lee, Jong Doo

    2013-08-01

    γ-aminobutyric acid (GABA)-A receptor-mediated neural transmission is important to promote practice-dependent plasticity after brain injury. This study investigated alterations in GABA-A receptor binding and functional and anatomic connectivity within the motor cortex in children with cerebral palsy (CP). We conducted (18)F-fluoroflumazenil PET on children with hemiplegic CP to investigate whether in vivo GABA-A receptor binding is altered in the ipsilateral or contralateral hemisphere of the lesion site. To evaluate changes in the GABA-A receptor subunit after prenatal brain injury, we performed GABA-A receptor immunohistochemistry using rat pups with a diffuse hypoxic ischemic insult. We also performed diffusion tensor MR imaging and resting-state functional MR imaging on the same children with hemiplegic CP to investigate alterations in anatomic and functional connectivity at the motor cortex with increased GABA-A receptor binding. In children with hemiplegic CP, the (18)F-fluoroflumazenil binding potential was increased within the ipsilateral motor cortex. GABA-A receptors with the α1 subunit were highly expressed exclusively within cortical layers III, IV, and VI of the motor cortex in rat pups. The motor cortex with increased GABA-A receptor binding in children with hemiplegic CP had reduced thalamocortical and corticocortical connectivity, which might be linked to increased GABA-A receptor distribution in cortical layers in rats. Increased expression of the GABA-A receptor α1 subunit within the ipsilateral motor cortex may be an important adaptive mechanism after prenatal brain injury in children with CP but may be associated with improper functional connectivity after birth and have adverse effects on the development of motor plasticity.

  18. The fate of glucose during the period of decreased metabolism after fluid percussion injury: a 13C NMR study.

    PubMed

    Bartnik, Brenda L; Lee, Stefan M; Hovda, David A; Sutton, Richard L

    2007-07-01

    The present study determined the metabolic fate of [1, 2 13C2] glucose in male control rats and in rats with moderate lateral fluid percussion injured (FPI) at 3.5 h and 24 h post-surgery. After a 3-h infusion, the amount of 13C-labeled glucose increased bilaterally (26% in left/injured cerebral cortex and 45% in right cerebral cortex) at 3.5 h after FPI and in injured cortex (45%) at 24 h after injury, indicating an accumulation of unmetabolised glucose not seen in controls. No evidence of an increase in anaerobic glycolysis above control levels was found after FPI, as 13C-labeled lactate tended to decrease at both time points and was significantly reduced (33%) in the injured cortex at 24 h post-FPI. A bilateral decrease in the 13C-labeling of both glutamate and glutamine was observed in the FPI rats at 3.5 h and the glutamine pool remained significantly decreased in the injured cortex at 24 h, suggesting reduced oxidative metabolism in both neuronal and astrocyte compartments after injury. The percentage of glucose metabolism through the pentose phosphate pathway (PPP) increased in the injured (13%) and contralateral (11%) cortex at 3.5 h post-FPI and in the injured cortex (9%) at 24 h post-injury. Based upon the changes in metabolite pools, our results show an injury-induced decrease in glucose utilization and oxidation within the first 24 h after FPI. Increased metabolism through the PPP would result in increased NADPH synthesis, suggesting a need for reducing equivalents after FPI to help restore the intracellular redox state and/or in response to free radical stress.

  19. The proliferative effect of synthetic N-POMC(1-28) peptides in rat adrenal cortex: a possible role for cyclin E.

    PubMed

    Mendonça, Pedro O R de; Lotfi, Claudimara F P

    2011-04-10

    Modified synthetic N-POMC(1-28) without disulfide bridges has been shown to act as an adrenal mitogen. Cyclins and their inhibitors are the major cell cycle controls, but in the adrenal cortex the effect of ACTH and N-POMC on the expression of these proteins remains unclear. In this work, we evaluate the effect of different synthetic N-POMC peptides on the S-phase of the cell cycle. In addition, we examine the cyclin E expression in rat adrenal cortex. Rats treated with dexamethasone were injected with ACTH and/or synthetic modified N-POMC and/or synthetic N-POMC with disulfide bridges. DNA synthesis was determined by BrdU incorporation and protein expression was analyzed by immunoblotting and immunohistochemistry. The results showed that similarly to modified N-POMC without disulfide bridges, administration of synthetic N-POMC with disulfide bridges and the combination of ACTH and N-POMC promoted an increase of BrdU-positive nuclei in adrenal cortex. However, the proliferative effect of N-POMC was comparable to that of ACTH only in the zona glomerulosa. An increase in cyclin E expression was observed 6 h after N-POMC treatment in the outer fraction of the adrenal cortex, in agreement with immunohistochemical findings in the zona glomerulosa. In summary, the effect of synthetic N-POMC with disulfide bridges was similar to modified synthetic N-POMC, increasing proliferation in the adrenal cortex, confirming previous evidence that disulfide bridges are not essential to the N-POMC mitogenic effect. Moreover, cyclin E appears to be involved in the N-POMC- and ACTH-stimulated proliferation in the zona glomerulosa of the adrenal cortex. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  20. Modulation of sibutramine-induced increases in extracellular noradrenaline concentration in rat frontal cortex and hypothalamus by α2-adrenoceptors

    PubMed Central

    Wortley, K E; Heal, D J; Stanford, S C

    1999-01-01

    The effects of sibutramine (0.25–10 mg kg−1 i.p.) on extracellular noradrenaline concentration in the frontal cortex and hypothalamus of freely-moving rats were investigated using microdialysis. The role of presynaptic α2-adrenoceptors in modulating the effects of sibutramine in these brain areas was also determined.Sibutramine induced an increase in extracellular noradrenaline concentration, the magnitude of which paralleled dose, in both brain areas. In the cortex, this increase was gradual and sustained, whereas in the hypothalamus it was more rapid and of shorter duration.In both the cortex and hypothalamus, pretreatment of rats with the α2-adrenoceptor antagonist RX821002 (3 mg kg−1 i.p.) potentiated increases in the accumulation of extracellular noradrenaline induced by sibutramine (10 mg kg−1 i.p.), by 7 and 10 fold respectively. RX821002 also reduced the latency of sibutramine to reach its maximum effect in the cortex, but not in the hypothalamus.Infusion of RX821002 (1 μM) via the probe increased the accumulation of extracellular noradrenaline induced by sibutramine (10 mg kg−1 i.p.) in both brain areas. In the hypothalamus, the effects of RX821002 on the accumulation of noradrenaline induced by sibutramine were 2 fold greater than those in the cortex.These findings support evidence that sibutramine inhibits the reuptake of noradrenaline in vivo, but that the accumulation of extracellular noradrenaline is limited by noradrenergic activation of presynaptic α2-adrenoceptors. Furthermore, the data suggest that terminal α2-adrenoceptors in the hypothalamus exert a greater inhibitory effect over the control of extracellular noradrenaline accumulation than do those in the cortex. PMID:10516646

  1. Age-related susceptibility to epileptogenesis and neuronal loss in male Fischer rats exposed to soman and treated with medical countermeasures.

    PubMed

    Marrero-Rosado, Brenda; Rossetti, Franco; Rice, Matthew W; Moffett, Mark C; Lee, Robyn; Stone, Michael F; Lumley, Lucille A

    2018-03-27

    Elderly individuals compose a large percentage of the world population; however, few studies have addressed the efficacy of current medical countermeasures (MCM) against the effects of chemical warfare nerve agent exposure in aged populations. We evaluated the efficacy of the anticonvulsant diazepam in an old adult rat model of soman (GD) poisoning and compared the toxic effects to those observed in young adult rats when anticonvulsant treatment is delayed. After determining their respective median lethal dose (LD50) of GD, we exposed young adult and old adult rats to an equitoxic 1.2 LD50 dose of GD followed by treatment with atropine sulfate and the oxime HI-6 at one minute after exposure, and diazepam at 30 minutes after seizure onset. Old adult rats that presented with status epilepticus were more susceptible to developing spontaneous recurrent seizures (SRS). Neuropathological analysis revealed that in rats of both age groups that developed SRS, there was a significant reduction in the density of mature neurons in the piriform cortex, thalamus, and amygdala, with more pronounced neuronal loss in the thalamus of old adult rats compared to young adult rats. Furthermore, old adult rats displayed a reduced density of cells expressing glutamic acid decarboxylase 67, a marker of GABAergic interneurons, in the basolateral amygdala and piriform cortex, and a reduction of astrocyte activation in the piriform cortex. Our observations demonstrate the reduced effectiveness of current MCM in an old adult animal model of GD exposure and strongly suggest the need for countermeasures that are more tailored to the vulnerabilities of an aging population.

  2. D1 Receptors Regulate Dendritic Morphology in Normal and Stressed Prelimbic Cortex

    PubMed Central

    Lin, Grant L.; Borders, Candace B.; Lundewall, Leslie J.; Wellman, Cara L.

    2014-01-01

    Both stress and dysfunction of prefrontal cortex are linked to psychological disorders, and structure and function of medial prefrontal cortex (mPFC) are altered by stress. Chronic restraint stress causes dendritic retraction in the prelimbic region (PL) of mPFC in rats. Dopamine release in mPFC increases during stress, and chronic administration of dopaminergic agonists results in dendritic remodeling. Thus, stress-induced alterations in dopaminergic transmission in PL may contribute to dendritic remodeling. We examined the effects of dopamine D1 receptor (D1R) blockade in PL during daily restraint stress on dendritic morphology in PL. Rats either underwent daily restraint stress (3 h/day, 10 days) or remained unstressed. In each group, rats received daily infusions of either the D1R antagonist SCH23390 or vehicle into PL prior to restraint; unstressed and stressed rats that had not undergone surgery were also examined. On the final day of restraint, rats were euthanized and brains were processed for Golgi histology. Pyramidal neurons in PL were reconstructed and dendritic morphology was quantified. Vehicle-infused stressed rats demonstrated dendritic retraction compared to unstressed rats, and D1R blockade in PL prevented this effect. Moreover, in unstressed rats, D1R blockade produced dendritic retraction. These effects were not due to attenuation of the HPA axis response to acute stress: plasma corticosterone levels in a separate group of rats that underwent acute restraint stress with or without D1R blockade were not significantly different. These findings indicate that dopaminergic transmission in mPFC during stress contributes directly to the stress-induced retraction of apical dendrites, while dopamine transmission in the absence of stress is important in maintaining normal dendritic morphology. PMID:25305546

  3. D1 receptors regulate dendritic morphology in normal and stressed prelimbic cortex.

    PubMed

    Lin, Grant L; Borders, Candace B; Lundewall, Leslie J; Wellman, Cara L

    2015-01-01

    Both stress and dysfunction of prefrontal cortex are linked to psychological disorders, and structure and function of medial prefrontal cortex (mPFC) are altered by stress. Chronic restraint stress causes dendritic retraction in the prelimbic region (PL) of mPFC in rats. Dopamine release in mPFC increases during stress, and chronic administration of dopaminergic agonists results in dendritic remodeling. Thus, stress-induced alterations in dopaminergic transmission in PL may contribute to dendritic remodeling. We examined the effects of dopamine D1 receptor (D1R) blockade in PL during daily restraint stress on dendritic morphology in PL. Rats either underwent daily restraint stress (3h/day, 10 days) or remained unstressed. In each group, rats received daily infusions of either the D1R antagonist SCH23390 or vehicle into PL prior to restraint; unstressed and stressed rats that had not undergone surgery were also examined. On the final day of restraint, rats were euthanized and brains were processed for Golgi histology. Pyramidal neurons in PL were reconstructed and dendritic morphology was quantified. Vehicle-infused stressed rats demonstrated dendritic retraction compared to unstressed rats, and D1R blockade in PL prevented this effect. Moreover, in unstressed rats, D1R blockade produced dendritic retraction. These effects were not due to attenuation of the HPA axis response to acute stress: plasma corticosterone levels in a separate group of rats that underwent acute restraint stress with or without D1R blockade were not significantly different. These findings indicate that dopaminergic transmission in mPFC during stress contributes directly to the stress-induced retraction of apical dendrites, while dopamine transmission in the absence of stress is important in maintaining normal dendritic morphology. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Electroacupunctre improves motor impairment via inhibition of microglia-mediated neuroinflammation in the sensorimotor cortex after ischemic stroke.

    PubMed

    Liu, Weilin; Wang, Xian; Yang, Shanli; Huang, Jia; Xue, Xiehua; Zheng, Yi; Shang, Guanhao; Tao, Jing; Chen, Lidian

    2016-04-15

    Electroacupuncture (EA) is one of the safety and effective therapies for improving neurological and sensorimotor impairment via blockade of inappropriate inflammatory responses. However, the mechanisms of anti-inflammation involved is far from been fully elucidated. Focal cerebral ischemic stroke was administered by the middle cerebral artery occlusion and reperfusion (MCAO/R) surgery. The MCAO/R rats were accepted EA treatment at the LI 11 and ST 36 acupoints for consecutive 3days. The neurological outcome, animal behaviors test and molecular biology assays were used to evaluate the MCAO/R model and therapeutic effect of EA. EA treatment for MCAO rats showed a significant reduction in the infarct volumes accompanied by functional recovery in mNSS outcomes, motor function performances. The possible mechanisms that EA treatment attenuated the over-activation of Iba-1 and ED1 positive microglia in the peri-infract sensorimotor cortex. Simultaneously, both tissue and serum protein levels of the tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6) were decreased by EA treatment in MCAO/R injured rats. The levels of inflammatory cytokine tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6) were decreased in the peri-infract sensorimotor cortex and blood serum of MCAO/R injured rats after EA treatment. Furthermore, we found that EA treatment prevented from the nucleus translocation of NF-κB p65 and suppressed the expression of p38 mitogen-activated protein kinase (p38 MAPK) and myeloid differentiation factor 88 (MyD88) in the peri-infract sensorimotor cortex. The findings from this study indicated that EA improved the motor impairment via inhibition of microglia-mediated neuroinflammation that invoked NF-κB p65, p38 MAPK and MyD88 produced proinflammatory cytokine in the peri-infract sensorimotor cortex of rats following ischemic stroke. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Bacopa monnieri (Brahmi) improved novel object recognition task and increased cerebral vesicular glutamate transporter type 3 in sub-chronic phencyclidine rat model of schizophrenia.

    PubMed

    Piyabhan, Pritsana; Wannasiri, Supaporn; Naowaboot, Jarinyaporn

    2016-12-01

    Reduced vesicular glutamate transporter 1 (VGLUT1) and 2 (VGLUT2) indicate glutamatergic hypofunction leading to cognitive impairment in schizophrenia. However, VGLUT3 involvement in cognitive dysfunction has not been reported in schizophrenia. Brahmi (Bacopa monnieri) might be a new treatment and prevention for cognitive deficits in schizophrenia by acting on cerebral VGLUT3 density. We aimed to study cognitive enhancement- and neuroprotective-effects of Brahmi on novel object recognition and cerebral VGLUT3 immunodensity in sub-chronic (2 mg/kg, Bid, ip) phencyclidine (PCP) rat model of schizophrenia. Rats were assigned to three groups for cognitive enhancement effect study: Group 1, Control; Group 2, PCP administration; Group 3, PCP+Brahmi. A neuroprotective-effect study was also carried out. Rats were again assigned to three groups: Group 1, Control; Group 2, PCP administration; Group 3, Brahmi+PCP. Discrimination ratio (DR) representing cognitive ability was obtained from a novel object recognition task. VGLUT3 immunodensity was measured in the prefrontal cortex, striatum and cornu ammonis fields 1-3 (CA1-3) using immunohistochemistry. We found reduced DR in the PCP group, which occurred alongside VGLUT3 reduction in all brain areas. PCP+Brahmi showed higher DR score with increased VGLUT3 immunodensity in the prefrontal cortex and striatum. Brahmi+PCP group showed a higher DR score with increased VGLUT3 immunodensity in the prefrontal cortex, striatum and CA1-3. We concluded that reduced cerebral VGLUT3 was involved in cognitive deficit in PCP-administrated rats. Receiving Brahmi after PCP restored cognitive deficit by increasing VGLUT3 in the prefrontal cortex and striatum. Receiving Brahmi before PCP prevented cognitive impairment by elevating VGLUT3 in prefrontal cortex, striatum and CA1-3. Therefore, Brahmi could be a new frontier of restoration and prevention of cognitive deficit in schizophrenia. © 2016 John Wiley & Sons Australia, Ltd.

  6. Gene therapy mediated seizure suppression in Genetic Generalised Epilepsy: Neuropeptide Y overexpression in a rat model.

    PubMed

    Powell, Kim L; Fitzgerald, Xavier; Shallue, Claire; Jovanovska, Valentina; Klugmann, Matthias; Von Jonquieres, Georg; O'Brien, Terence J; Morris, Margaret J

    2018-05-01

    Neuropeptide Y (NPY) is an important 36 amino acid peptide that is abundantly expressed in the mammalian CNS and is known to be an endogenous modulator of seizure activity, including in rat models of Genetic Generalised Epilepsy (GGE) with absence seizures. Studies have shown that viral-mediated "gene therapy" with overexpression of NPY in the hippocampus can suppress seizures in acquired epilepsy animal models. This study investigated whether NPY gene delivery to the thalamus or somatosensory cortex, using recombinant adeno-associated viral vector (rAAV), could produce sustained seizure suppression in the GAERS model of GGE with absence seizures. Three cohorts of GAERS were injected bilaterally into the thalamus (short term n = 14 and long term n = 8) or the somatosensory cortex (n = 26) with rAAV-NPY or rAAV-empty. EEG recordings were acquired weekly post-treatment and seizure expression was quantified. Anxiety levels were tested using elevated plus maze and open field test. NPY and NPY receptor mRNA and protein expression were evaluated using quantitative PCR, immunohistochemistry and immunofluorescence. Viral overexpression of human NPY in the thalamus and somatosensory cortex in GAERS significantly reduced the time spent in seizure activity and number of seizures, whereas seizure duration was only reduced after thalamic NPY overexpression. Human and rat NPY and rat Y2 receptor mRNA expression was significantly increased in the somatosensory cortex. NPY overexpression in the thalamus was observed in rAAV-NPY treated rats compared to controls in the long term cohort. No effect was observed on anxiety behaviour. We conclude that virally-mediated human NPY overexpression in the thalamus or somatosensory cortex produces sustained anti-epileptic effects in GAERS. NPY gene therapy may represent a novel approach for the treatment of patients with genetic generalised epilepsies. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Effect of early and late rehabilitation onset in a chronic rat model of ischemic stroke- assessment of motor cortex signaling and gait functionality over time.

    PubMed

    Nielsen, Rasmus K; Samson, Katrine L; Simonsen, Daniel; Jensen, Winnie

    2013-11-01

    The aim of the present study was to investigate the effects of ischemic stroke and onset of subsequent rehabilitation of gait function in rats. Nine male Sprague-Dawley rats were instrumented with a 16-channel intracortical (IC) electrode array. An ischemic stroke was induced within the hindlimb area of the left motor cortex. The rehabilitation consisted of a repetitive training paradigm over 28 days, initiated on day one ("Early-onset", 5 rats) and on day seven, ("Late-onset", 4 rats). Data were obtained from IC microstimulation tests, treadmill walking tests, and beam walking tests. Results revealed an expansion of the hindlimb representation within the motor cortex area and an increased amount of cortical firing rate modulation for the "Early-onset" group but not for the "Late-onset" group. Kinematic data revealed a significant change for both intervention groups. However, this difference was larger for the "Early-onset" group. Results from the beam walking test showed functional performance deficits following stroke which returned to pre-stroke level after the rehabilitative training. The results from the present study indicate the existence of a critical time period following stroke where onset of rehabilitative training may be more effective and related to a higher degree of true recovery.

  8. Beneficial effect of prolyl oligopeptidase inhibition on spatial memory in young but not in old scopolamine-treated rats.

    PubMed

    Jalkanen, Aaro J; Puttonen, Katja A; Venäläinen, Jarkko I; Sinervä, Veijo; Mannila, Anne; Ruotsalainen, Sirja; Jarho, Elina M; Wallén, Erik A A; Männistö, Pekka T

    2007-02-01

    The effects of a novel prolyl oligopeptidase (POP) inhibitor KYP-2047 on spatial memory of young (3-month-old) and old (8- to 9-month-old) scopolamine-treated rats (0.4 mg/kg intraperitoneally) was investigated in the Morris water maze. In addition, the concentrations of promnesic neuropeptide substrates of POP, substance P and neurotensin in various brain areas after acute and chronic POP inhibition were measured in young rats. In addition, inositol-1,4,5-trisphosphate (IP(3)) levels were assayed in rat cortex and hippocampus after effective 2.5-day POP inhibition. KYP-2047 (1 or 5 mg/kg 30 min. before daily testing) dose-dependently improved the escape performance (i.e. latency to find the hidden platform and swimming path length) of the young but not the old rats in the water maze. POP inhibition had no consistent effect on substance P levels in cortex, hippocampus or hypothalamus, and only a modest increase in neurotensin concentration was observed in the hypothalamus after a single dose of KYP-2047. Moreover, IP(3) concentrations remained unaffected in cortex and hippocampus after POP inhibition. In conclusion, the behavioural data support the earlier findings of the promnesic action of POP inhibitors, but the mechanism of the memory-enhancing action remains unclear.

  9. The effects of lesions of the superior colliculus on locomotor orientation and the orienting reflex in the rat.

    PubMed

    Goodale, M A; Murison, R C

    1975-05-02

    The effects of bilateral removal of the superior colliculus or visual cortex on visually guided locomotor movements in rats performing a brightness discrimination task were investigated directly with the use of cine film. Rats with collicular lesions showed patterns of locomotion comparable to or more efficient than those of normal animals when approaching one of 5 small doors located at one end of a large open area. In contrast, animals with large but incomplete lesions of visual cortex were distinctly impaired in their visual control of approach responses to the same stimuli. On the other hand, rats with collicular damage showed no orienting reflex or evidence of distraction in the same task when novel visual or auditory stimuli were presented. However, both normal and visual-decorticate rats showed various components of the orienting reflex and disturbance in task performance when the same novel stimuli were presented. These results suggest that although the superior colliculus does not appear to be essential to the visual control of locomotor orientation, this midbrain structure might participate in the mediation of shifts in visual fixation and attention. Visual cortex, while contributing to visuospatial guidance of locomotor movements, might not play a significant role in the control and integration of the orienting reflex.

  10. Effect of prenatal exposure to ethanol on the ultrastructure of layer V of mature rat somatosensory cortex.

    PubMed

    al-Rabiai, S; Miller, M W

    1989-12-01

    Recent data have shown that the structure and function of layer V pyramidal neurons, e.g. corticospinal neurons, is altered by prenatal exposure to ethanol. We examined the effect of ethanol on the ultrastructure of layer V in somatosensory cortex. Timed pregnant rats were fed a diet containing 6.7% (v/v) ethanol (E) or pair-fed a nutritionally matched control diet (C). Thirty-day-old offspring of these mothers were prepared by standard electron microscopic techniques. The somata of pyramidal and local circuit neurons and the neuropil were analysed. Prenatal exposure to ethanol induced alterations in the somata of both populations of neurons. The parallel stacking of cisternae characteristic of C-treated rats was disorganized in E-treated rats. Moreover, the Golgi complex and lysosomes occupied a larger fraction of the somata of E-treated rats. The number and frequency of symmetric axosomatic synapses, but not asymmetric axosomatic synapses, formed by both types of neurons were significantly greater in E-treated rats. Gestational exposure to ethanol produced a variety of changes in the neuropil. Dendrites, particularly dendritic shafts, occupied less space in E-treated rats. In contrast, axons accounted for significantly more of the neuropil in E-treated rats than in controls. This increase in axonal space was due to a significantly greater coverage by non-myelinated axons and a significantly smaller coverage by myelinated axons in E-treated rats than in C-treated rats. Although the overall frequency of synapses was similar in both treatment groups, there were significantly more asymmetric synapses in E-treated rats, and most of these were axospinous synapses. These differences may contribute to documented physiological changes such as the lower rate of glucose utilization in layer V of somatosensory cortex of E-treated rats and they may underlie the mental retardation which is characteristic of children with foetal alcohol syndrome.

  11. Topographic Distribution of Stimulus-Specific Adaptation across Auditory Cortical Fields in the Anesthetized Rat

    PubMed Central

    Nieto-Diego, Javier; Malmierca, Manuel S.

    2016-01-01

    Stimulus-specific adaptation (SSA) in single neurons of the auditory cortex was suggested to be a potential neural correlate of the mismatch negativity (MMN), a widely studied component of the auditory event-related potentials (ERP) that is elicited by changes in the auditory environment. However, several aspects on this SSA/MMN relation remain unresolved. SSA occurs in the primary auditory cortex (A1), but detailed studies on SSA beyond A1 are lacking. To study the topographic organization of SSA, we mapped the whole rat auditory cortex with multiunit activity recordings, using an oddball paradigm. We demonstrate that SSA occurs outside A1 and differs between primary and nonprimary cortical fields. In particular, SSA is much stronger and develops faster in the nonprimary than in the primary fields, paralleling the organization of subcortical SSA. Importantly, strong SSA is present in the nonprimary auditory cortex within the latency range of the MMN in the rat and correlates with an MMN-like difference wave in the simultaneously recorded local field potentials (LFP). We present new and strong evidence linking SSA at the cellular level to the MMN, a central tool in cognitive and clinical neuroscience. PMID:26950883

  12. Spectral and Temporal Processing in Rat Posterior Auditory Cortex

    PubMed Central

    Pandya, Pritesh K.; Rathbun, Daniel L.; Moucha, Raluca; Engineer, Navzer D.; Kilgard, Michael P.

    2009-01-01

    The rat auditory cortex is divided anatomically into several areas, but little is known about the functional differences in information processing between these areas. To determine the filter properties of rat posterior auditory field (PAF) neurons, we compared neurophysiological responses to simple tones, frequency modulated (FM) sweeps, and amplitude modulated noise and tones with responses of primary auditory cortex (A1) neurons. PAF neurons have excitatory receptive fields that are on average 65% broader than A1 neurons. The broader receptive fields of PAF neurons result in responses to narrow and broadband inputs that are stronger than A1. In contrast to A1, we found little evidence for an orderly topographic gradient in PAF based on frequency. These neurons exhibit latencies that are twice as long as A1. In response to modulated tones and noise, PAF neurons adapt to repeated stimuli at significantly slower rates. Unlike A1, neurons in PAF rarely exhibit facilitation to rapidly repeated sounds. Neurons in PAF do not exhibit strong selectivity for rate or direction of narrowband one octave FM sweeps. These results indicate that PAF, like nonprimary visual fields, processes sensory information on larger spectral and longer temporal scales than primary cortex. PMID:17615251

  13. Muscarinic acetylcholine receptor in cerebellar cortex participates in acetylcholine-mediated blood depressor response in rats.

    PubMed

    Zhou, Peiling; Zhu, Qingfeng; Liu, Ming; Li, Jing; Wang, Yong; Zhang, Changzheng; Hua, Tianmiao

    2015-04-23

    Our previous investigations have revealed that cerebellar cholinergic innervation is involved in cardiovascular regulation. This study was performed to examine the effects of the muscarinic cholinergic receptor (mAChR) in the cerebellar cortex on blood pressure (BP) modulation in rats. Acetylcholine (ACh, 100mM), nonselective mAChR agonist (oxotremorine M; Oxo-M, 10, 30 and 100mM) and 100mM ACh mixed with nonselective mAChR antagonist atropine (1, 3 and 10mM) were microinjected into the cerebellar cortex of anesthetized rats. Mean arterial pressure (MAP), maximal decreased MAP (MDMAP), and reaction time (duration required for BP to return to basal values) were measured and analyzed. The results showed that Oxo-M dose-dependently decreased MAP, increased MDMAP, and prolonged reaction time, which displayed a homodromous effect of ACh-mediated blood depressor response; meanwhile, atropine concentration-dependently blocked the effect of ACh on the BP regulation. In conclusion, the present study showed for the first time that mAChRs in cerebellar cortex could modulate somatic BP by participation in ACh-mediated depressor response. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  14. Decreased serotonin level during pregnancy alters morphological and functional characteristics of tonic nociceptive system in juvenile offspring of the rat.

    PubMed

    Butkevich, Irina P; Khozhai, Ludmila I; Mikhailenko, Victor A; Otellin, Vladimir A

    2003-11-13

    Serotonin (5-HT) contributes to the prenatal development of the central nervous system, acting as a morphogen in the young embryo and later as a neurotransmitter. This biologically active agent influences both morphological and biochemical differentiation of raphe neurons, which give rise to the descending serotonergic paths that regulate the processing of acutely evoked nociceptive inputs. The involvement of 5-HT in the prenatal development of tonic nociceptive system has not been studied. In the present study we evaluated the effects of a single injection (400 mg/kg, 2 ml, i.p.) of the 5-HT synthesis inhibitor, para-chlorophenylalanine (pCPA), given to pregnant rats during the critical period fetal serotonin development. The functional integrity of the tonic nociceptive response was investigated in 25 day old rats using the classic formalin test. Morphological analysis of brain structures involved in formalin-induced pain and 5-HT levels in the heads of 12-day embryos were also evaluated. Embryonic levels of 5-HT were significantly lowered by the treatment. The juvenile rats from pCPA-treated females showed altered brain morphology and cell differentiation in the developing cortex, hippocampus, raphe nuclei, and substantia nigra. In the formalin test, there were significant decreases in the intensity and duration of the second phase of the formalin-induced response, characterizing persistent, tonic pain. The extent of impairments in the brain structures correlated positively with the level of decrease in the behavioral responses. The data demonstrate the involvement of 5-HT in the prenatal development of the tonic nociceptive system. The decreased tonic component of the behavioral response can be explained by lower activity of the descending excitatory serotonergic system originating in the raphe nuclei, resulting in decreased tonic pain processing organized at the level of the dorsal horn of the spinal cord.

  15. Systemic administration of WIN 55,212-2 increases norepinephrine release in the rat frontal cortex.

    PubMed

    Oropeza, V C; Page, M E; Van Bockstaele, E J

    2005-06-07

    Cannabinoid agonists modulate a variety of behavioral functions by activating cannabinoid receptors that are widely distributed throughout the central nervous system. In the present study, norepinephrine efflux was assessed in the frontal cortex of rats that received a systemic administration of the cannabinoid agonist, WIN 55,212-2. The synthetic cannabinoid agonist dose-dependently increased the release of norepinephrine in this brain region. Pretreatment with the cannabinoid receptor antagonist, SR 141716A, blocked the increase in norepinephrine release. To identify sites of cellular activation, immunocytochemical detection of c-Fos was combined with detection of the catecholamine synthesizing enzyme, tyrosine hydroxylase (TH), in the brainstem nucleus locus coeruleus (LC), a region that is the sole source of norepinephrine to the frontal cortex. Systemic administration of WIN 55,212-2 significantly increased the number of c-Fos immunoreactive cells within TH-containing neurons in the LC compared to vehicle-treated rats. Pretreatment with SR 141716A inhibited the WIN 55,212-2 induced c-Fos expression, while the antagonist alone did not affect c-Fos expression. Taken together, these data indicate that systemically administered cannabinoid agonists stimulate norepinephrine release in the frontal cortex by activating noradrenergic neurons in the coeruleo-frontal cortex pathway. These effects may partially underlie changes in attention, arousal and anxiety observed following exposure to cannabis-based drugs.

  16. Unimodal primary sensory cortices are directly connected by long-range horizontal projections in the rat sensory cortex.

    PubMed

    Stehberg, Jimmy; Dang, Phat T; Frostig, Ron D

    2014-01-01

    Research based on functional imaging and neuronal recordings in the barrel cortex subdivision of primary somatosensory cortex (SI) of the adult rat has revealed novel aspects of structure-function relationships in this cortex. Specifically, it has demonstrated that single whisker stimulation evokes subthreshold neuronal activity that spreads symmetrically within gray matter from the appropriate barrel area, crosses cytoarchitectural borders of SI and reaches deeply into other unimodal primary cortices such as primary auditory (AI) and primary visual (VI). It was further demonstrated that this spread is supported by a spatially matching underlying diffuse network of border-crossing, long-range projections that could also reach deeply into AI and VI. Here we seek to determine whether such a network of border-crossing, long-range projections is unique to barrel cortex or characterizes also other primary, unimodal sensory cortices and therefore could directly connect them. Using anterograde (BDA) and retrograde (CTb) tract-tracing techniques, we demonstrate that such diffuse horizontal networks directly and mutually connect VI, AI and SI. These findings suggest that diffuse, border-crossing axonal projections connecting directly primary cortices are an important organizational motif common to all major primary sensory cortices in the rat. Potential implications of these findings for topics including cortical structure-function relationships, multisensory integration, functional imaging, and cortical parcellation are discussed.

  17. Unimodal primary sensory cortices are directly connected by long-range horizontal projections in the rat sensory cortex

    PubMed Central

    Stehberg, Jimmy; Dang, Phat T.; Frostig, Ron D.

    2014-01-01

    Research based on functional imaging and neuronal recordings in the barrel cortex subdivision of primary somatosensory cortex (SI) of the adult rat has revealed novel aspects of structure-function relationships in this cortex. Specifically, it has demonstrated that single whisker stimulation evokes subthreshold neuronal activity that spreads symmetrically within gray matter from the appropriate barrel area, crosses cytoarchitectural borders of SI and reaches deeply into other unimodal primary cortices such as primary auditory (AI) and primary visual (VI). It was further demonstrated that this spread is supported by a spatially matching underlying diffuse network of border-crossing, long-range projections that could also reach deeply into AI and VI. Here we seek to determine whether such a network of border-crossing, long-range projections is unique to barrel cortex or characterizes also other primary, unimodal sensory cortices and therefore could directly connect them. Using anterograde (BDA) and retrograde (CTb) tract-tracing techniques, we demonstrate that such diffuse horizontal networks directly and mutually connect VI, AI and SI. These findings suggest that diffuse, border-crossing axonal projections connecting directly primary cortices are an important organizational motif common to all major primary sensory cortices in the rat. Potential implications of these findings for topics including cortical structure-function relationships, multisensory integration, functional imaging, and cortical parcellation are discussed. PMID:25309339

  18. A new and specific non-NMDA receptor antagonist, FG 9065, blocks L-AP4-evoked depolarization in rat cerebral cortex.

    PubMed

    Sheardown, M J

    1988-04-13

    L(+)-AP4 (2-amino-4-phosphonobutyrate) depolarized slices of rat cerebral cortex, when applied following a 2 min priming application of quisqualate. This response diminishes with time and is not seen after NMDA application. A new selective non-N-methyl-D-aspartate (NMDA) antagonist, 6-cyano-7-nitro-2,3-dihydroxyquinoxaline (FG 9065), inhibits the L(+)-AP4 depolarization. It is argued that the response is mediated indirectly by postsynaptic quisqualate receptors.

  19. Expression of estrogen, estrogen related and androgen receptors in adrenal cortex of intact adult male and female rats.

    PubMed

    Trejter, Marcin; Jopek, Karol; Celichowski, Piotr; Tyczewska, Marianna; Malendowicz, Ludwik K; Rucinski, Marcin

    2015-01-01

    Adrenocortical activity in various species is sensitive to androgens and estrogens. They may affect adrenal cortex growth and functioning either via central pathways (CRH and ACTH) or directly, via specific receptors expressed in the cortex and/or by interfering with adrenocortical enzymes, among them those involved in steroidogenesis. Only limited data on expression of androgen and estrogen receptors in adrenal glands are available. Therefore the present study aimed to characterize, at the level of mRNA, expression of these receptors in specific components of adrenal cortex of intact adult male and female rats. Studies were performed on adult male and female (estrus) Wistar rats. Total RNA was isolated from adrenal zona glomerulosa (ZG) and fasciculate/reticularis (ZF/R). Expression of genes were evaluated by means of Affymetrix® Rat Gene 1.1 ST Array Strip and QPCR. By means of Affymetrix® Rat Gene 1.1 ST Array we examined adrenocortical sex differences in the expression of nearly 30,000 genes. All data were analyzed in relation to the adrenals of the male rats. 32 genes were differentially expressed in ZG, and 233 genes in ZF/R. In the ZG expression levels of 24 genes were lower and 8 higher in female rats. The more distinct sex differences were observed in the ZF/R, in which expression levels of 146 genes were lower and 87 genes higher in female rats. Performed analyses did not reveal sex differences in the expression levels of both androgen (AR) and estrogen (ER) receptor genes in the adrenal cortex of male and female rats. Therefore matrix data were validated by QPCR. QPCR revealed higher expression levels of AR gene both in ZG and ZF/R of male than female rats. On the other hand, QPCR did not reveal sex-related differences in the expression levels of ERα, ERβ and non-genomic GPR30 (GPER-1) receptor. Of those genes expression levels of ERα genes were the highest. In studied adrenal samples the relative expression of ERα mRNA was higher than ERβ mRNA. In adrenals of adult male and female rats expression levels of estrogen-related receptors ERRα and ERRβ were similar, and only in the ZF/R of female rats ERRγ expression levels were significantly higher than in males. We also analyzed expression profile of three isoforms of steroid 5α-reductase (Srd5a1, Srd5a2 and Srd5a3) and aromatase (Cyp19a1) and expression levels of all these genes were similar in ZG and ZF/R of male and female rats. In contrast to Affymetrix microarray data QPCR revealed higher expression levels of AR gene in adrenal glands of the male rats. In adrenals of both sexes expression levels of ERa, ERb, non-genomic GPR30 (GPER-1), ERR α and ERRβ receptors were comparable. The obtained results suggest that acute steroidogenic effect of estrogens on corticosteroid secretion may be mediated by non-genomic GPR30.

  20. Genome wide identification of Staufen2-bound mRNAs in embryonic rat brains.

    PubMed

    Maher-Laporte, Marjolaine; DesGroseillers, Luc

    2010-05-01

    Messenger ribonucleoprotein particles (mRNPs) are used to transport mRNAs along neuronal dendrites to their site of translation. Staufen2 is an mRNA-binding protein expressed in the cell bodies and cellular processes of different brain cells. It is notably involved in the transport of dendritic mRNAs along microtubules. Its knockdown expression was shown to change spine morphology and impair synaptic functions. However, the identity of Staufen2-bound mRNAs in brain cells is still completely unknown. As a mean to identify these mRNAs, we immunoprecipitated Staufen2-containing mRNPs from embryonic rat brains and used a genome wide approach to identify Staufen2-associated mRNAs. The genome wide approach identified 1780 mRNAs in Staufen2-containing mRNPs that code for proteins involved in cellular processes such as post-translational protein modifications, RNA metabolism, intracellular transport and translation. These results represent an additional and important step in the characterization of Staufen2- mediated neuronal functions in rat brains.

  1. Recruitment of the prefrontal cortex and cerebellum in Parkinsonian rats following skilled aerobic exercise.

    PubMed

    Wang, Zhuo; Guo, Yumei; Myers, Kalisa G; Heintz, Ryan; Holschneider, Daniel P

    2015-05-01

    Exercise modality and complexity play a key role in determining neurorehabilitative outcome in Parkinson's disease (PD). Exercise training (ET) that incorporates both motor skill training and aerobic exercise has been proposed to synergistically improve cognitive and automatic components of motor control in PD patients. Here we introduced such a skilled aerobic ET paradigm in a rat model of dopaminergic deafferentation. Rats with bilateral, intra-striatal 6-hydroxydopamine lesions were exposed to forced ET for 4weeks, either on a simple running wheel (non-skilled aerobic exercise, NSAE) or on a complex wheel with irregularly spaced rungs (skilled aerobic exercise, SAE). Cerebral perfusion was mapped during horizontal treadmill walking or at rest using [(14)C]-iodoantipyrine 1week after the completion of ET. Regional cerebral blood flow (rCBF) was quantified by autoradiography and analyzed in 3-dimensionally reconstructed brains by statistical parametric mapping. SAE compared to NSAE resulted in equal or greater recovery in motor deficits, as well as greater increases in rCBF during walking in the prelimbic area of the prefrontal cortex, broad areas of the somatosensory cortex, and the cerebellum. NSAE compared to SAE animals showed greater activation in the dorsal caudate-putamen and dorsal hippocampus. Seed correlation analysis revealed enhanced functional connectivity in SAE compared to NSAE animals between the prelimbic cortex and motor areas, as well as altered functional connectivity between midline cerebellum and sensorimotor regions. Our study provides the first evidence for functional brain reorganization following skilled aerobic exercise in Parkinsonian rats, and suggests that SAE compared to NSAE results in enhancement of prefrontal cortex- and cerebellum-mediated control of motor function. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Recruitment of the prefrontal cortex and cerebellum in Parkinsonian rats following skilled aerobic exercise

    PubMed Central

    Wang, Zhuo; Guo, Yumei; Myers, Kalisa G.; Heintz, Ryan; Holschneider, Daniel P.

    2015-01-01

    Exercise modality and complexity play a key role in determining neurorehabilitative outcome in Parkinson’s disease (PD). Exercise training (ET) that incorporates both motor skill training and aerobic exercise has been proposed to synergistically improve cognitive and automatic components of motor control in PD patients. Here we introduced such a skilled aerobic ET paradigm in a rat model of dopaminergic deafferentation. Rats with bilateral, intra-striatal 6-hydroxydopamine lesions were exposed to forced ET for 4 weeks, either on a simple running wheel (non-skilled aerobic exercise, NSAE) or on a complex wheel with irregularly spaced rungs (skilled aerobic exercise, SAE). Cerebral perfusion was mapped during horizontal treadmill walking or at rest using [14C]-iodoantipyrine 1 week after the completion of ET. Regional cerebral blood flow (rCBF) was quantified by autoradiography and analyzed in 3-dimensionally reconstructed brains by statistical parametric mapping. SAE compared to NSAE resulted in equal or greater recovery in motor deficits, as well as greater increases in rCBF during walking in the prelimbic area of the prefrontal cortex, broad areas of the somatosensory cortex, and the cerebellum. NSAE compared to SAE animals showed greater activation in the dorsal caudate-putamen and dorsal hippocampus. Seed correlation analysis revealed enhanced functional connectivity in SAE compared to NSAE animals between the prelimbic cortex and motor areas, as well as altered functional connectivity between midline cerebellum and sensorimotor regions. Our study provides the first evidence for functional brain reorganization following skilled aerobic exercise in Parkinsonian rats, and suggests that SAE compared to NSAE results in enhancement of prefrontal cortex- and cerebellum-mediated control of motor function. PMID:25747184

  3. Cerebral Oxygenation of the Cortex and Striatum following Normobaric Hyperoxia and Mild Hypoxia in Rats by EPR Oximetry using Multi-Probe Implantable Resonators

    PubMed Central

    Hou, Huagang; Li, Hongbin; Dong, Ruhong; Mupparaju, Sriram; Khan, Nadeem; Swartz, Harold

    2013-01-01

    Multi-site electron paramagnetic resonance (EPR) oximetry, using multi-probe implantable resonators, was used to measure the partial pressure of oxygen (pO2) in the brains of rats following normobaric hyperoxia and mild hypoxia. The cerebral tissue pO2 was measured simultaneously in the cerebral cortex and striatum in the same rats before, during, and after normobaric hyperoxia and mild hypoxia challenges. The baseline mean tissue pO2 values (±SE) were not significantly different between the cortex and striatum. During 30 min of 100% O2 inhalation, a statistically significant increase in tissue pO2 of all four sites was observed, however, the tissue pO2 of the striatum area was significantly higher than in the forelimb area of the cortex. Brain pO2 significantly decreased from the baseline value during 15 min of 15% O2 challenge. No differences in the recovery of the cerebral cortex and striatum pO2 were observed when the rats were allowed to breathe 30% O2. It appears that EPR oximetry using implantable resonators can provide information on pO2 under the experimental conditions needed for such a study. The levels of pO2 that occurred in these experiments are readily resolvable by multi-site EPR oximetry with multi-probe resonators. In addition, the ability to simultaneously measure the pO2 in several areas of the brain provides important information that could potentially help differentiate the pO2 changes that can occur due to global or local mechanisms. PMID:21445770

  4. Effects of Crocin on Learning and Memory in Rats Under Chronic Restraint Stress with Special Focus on the Hippocampal and Frontal Cortex Corticosterone Levels

    PubMed Central

    Dastgerdi, Azadehalsadat Hosseini; Radahmadi, Maryam; Pourshanazari, Ali Asghar; Dastgerdi, Hajaralsadat Hosseini

    2017-01-01

    Background: Chronic stress adversely influences brain functions while crocin, as an effective component of saffron, exhibits positive effects on memory processes. This study investigated the effects of different doses of crocin on the improvement of learning and memory as well as corticosterone (CORT) levels in the hippocampus and frontal cortex of rats subjected to chronic stress. Materials and Methods: Forty male rats were randomly allocated to five different groups (n = 8): Control, sham; stress (6 h/day for 21 days) groups, and two groups receiving daily intraperitoneal injections of one of two doses (30 and 60 mg/kg) of crocin accompanied by 21 days of restraint stress. Latency was evaluated as a brain function using the passive avoidance test before and one-day after a foot shock. CORT levels were measured in the homogenized hippocampus and frontal cortex. Results: Results revealed that chronic stress had a significantly (P < 0.01) negative effect on memory. Crocin (30 and 60 mg/kg), however, gave increase to significantly (P < 0.01 and P < 0.05; respectively) improved memory functions in the stressed rats. Furthermore, the CORT levels in the hippocampus and frontal cortex declined significantly (P < 0.05) in the stress group compared to the control. Only a crocin dose of 30 mg/kg was observed modulate significantly (P < 0.05) the CORT levels in the hippocampus and frontal cortex in the stressed group. Conclusions: It was found that the lower crocin dose (30 mg/kg) had more beneficial effects than its higher (60 mg/kg) dose on learning and memory under chronic stress conditions. Moreover, it was speculated that different doses of crocin act on different neurotransmitters and biochemical factors in the brain. PMID:29387668

  5. Induction of hyperphagia and carbohydrate intake by mu-opioid receptor stimulation in circumscribed regions of frontal cortex

    PubMed Central

    Mena, Jesus D.; Sadeghian, Ken; Baldo, Brian A.

    2011-01-01

    Frontal cortical regions are activated by food-associated stimuli, and this activation appears to be dysregulated in individuals with eating disorders. Nevertheless, frontal control of basic unconditioned feeding responses remains poorly understood. Here we show that hyperphagia can be driven by μ-opioid receptor stimulation in restricted regions of ventral medial prefrontal cortex (vmPFC) and orbitofrontal cortex. In both ad libitum-fed and food-restricted male Sprague-Dawley rats, bilateral infusions of the μ-opioid agonist, DAMGO, markedly increased intake of standard rat chow. When given a choice between palatable fat- versus carbohydrate enriched test diets, intra-vmPFC DAMGO infusions selectively increased carbohydrate intake, even in rats with a baseline fat preference. Rats also exhibited motor hyperactivity characterized by rapid switching between brief bouts of investigatory and ingestive behaviors. Intra-vmPFC DAMGO affected neither water intake nor non-specific oral behavior. Similar DAMGO infusions into neighboring areas of lateral orbital or anterior motor cortex had minimal effects on feeding. Neither stimulation of vmPFC-localized delta-opioid, kappa-opioid, dopaminergic, serotonergic, or noradrenergic receptors, nor antagonism of D1, 5HT1A, or alpha- or beta-adrenoceptors, reproduced the profile of DAMGO effects. Muscimol-mediated inactivation of the vmPFC, and intra-vmPFC stimulation of κ-opioid receptors or blockade of 5HT2A receptors, suppressed motor activity and increased feeding bout duration-a profile opposite to that seen with DAMGO. Hence, μ-opioid-induced hyperphagia and carbohydrate intake can be elicited with remarkable pharmacological and behavioral specificity from discrete subterritories of the frontal cortex. These findings may have implications for understanding affect-driven feeding and loss of restraint in eating disorders. PMID:21368037

  6. Induction of hyperphagia and carbohydrate intake by μ-opioid receptor stimulation in circumscribed regions of frontal cortex.

    PubMed

    Mena, Jesus D; Sadeghian, Ken; Baldo, Brian A

    2011-03-02

    Frontal cortical regions are activated by food-associated stimuli, and this activation appears to be dysregulated in individuals with eating disorders. Nevertheless, frontal control of basic unconditioned feeding responses remains poorly understood. Here we show that hyperphagia can be driven by μ-opioid receptor stimulation in restricted regions of ventral medial prefrontal cortex (vmPFC) and orbitofrontal cortex. In both ad libitum-fed and food-restricted male Sprague Dawley rats, bilateral infusions of the μ-opioid agonist [d-Ala2, N-Me-Phe4, Gly5-ol]-enkephalin (DAMGO) markedly increased intake of standard rat chow. When given a choice between palatable fat-enriched versus carbohydrate-enriched test diets, intra-vmPFC DAMGO infusions selectively increased carbohydrate intake, even in rats with a baseline fat preference. Rats also exhibited motor hyperactivity characterized by rapid switching between brief bouts of investigatory and ingestive behaviors. Intra-vmPFC DAMGO affected neither water intake nor nonspecific oral behavior. Similar DAMGO infusions into neighboring areas of lateral orbital or anterior motor cortex had minimal effects on feeding. Neither stimulation of vmPFC-localized δ-opioid, κ-opioid, dopaminergic, serotonergic, or noradrenergic receptors, nor antagonism of D1, 5HT1A, or α- or β-adrenoceptors, reproduced the profile of DAMGO effects. Muscimol-mediated inactivation of the vmPFC, and intra-vmPFC stimulation of κ-opioid receptors or blockade of 5-HT2A (5-hydroxytryptamine receptor 2A) receptors, suppressed motor activity and increased feeding bout duration-a profile opposite to that seen with DAMGO. Hence, μ-opioid-induced hyperphagia and carbohydrate intake can be elicited with remarkable pharmacological and behavioral specificity from discrete subterritories of the frontal cortex. These findings may have implications for understanding affect-driven feeding and loss of restraint in eating disorders.

  7. Fragile X mental retardation protein levels increase following complex environment exposure in rat brain regions undergoing active synaptogenesis.

    PubMed

    Irwin, Scott A; Christmon, Chariya A; Grossman, Aaron W; Galvez, Roberto; Kim, Soong Ho; DeGrush, Brian J; Weiler, Ivan Jeanne; Greenough, William T

    2005-05-01

    Fragile X mental retardation protein (FMRP), which is absent in fragile X syndrome, is synthesized in vitro in response to neurotransmitter activation. Humans and mice lacking FMRP exhibit abnormal dendritic spine development, suggesting that this protein plays an important role in synaptic plasticity. Previously, our laboratory demonstrated increased FMRP immunoreactivity in visual cortex of rats exposed to complex environments (EC) and in motor cortex of rats trained on motor-skill tasks compared with animals reared individually in standard laboratory housing (IC). Here, we use immunohistochemistry to extend those findings by investigating FMRP levels in visual cortex and hippocampal dentate gyrus of animals exposed to EC or IC. Rats exposed to EC for 20 days exhibited increased FMRP immunoreactivity in visual cortex compared with animals housed in standard laboratory caging. In the dentate gyrus, animals exposed to EC for 20 days had higher FMRP levels than animals exposed to EC for 5 or 10 days. In light of possible antibody crossreactivity with closely related proteins FXR1P and FXR2P, FMRP immunoreactivity in the posterior-dorsal one-third of cerebral cortex was also examined by Western blotting following 20 days of EC exposure. FMRP levels were greater in EC animals, whereas levels of FXR1P and FXR2P were unaffected by experience. These results provide further evidence for behaviorally induced alteration of FMRP expression in contrast to its homologues, extend previous findings suggesting regulation of its expression by synaptic activity, and support the theories associating FMRP expression with alteration of synaptic structure both in development and later in the life-cycle.

  8. Effects of Crocin on Learning and Memory in Rats Under Chronic Restraint Stress with Special Focus on the Hippocampal and Frontal Cortex Corticosterone Levels.

    PubMed

    Dastgerdi, Azadehalsadat Hosseini; Radahmadi, Maryam; Pourshanazari, Ali Asghar; Dastgerdi, Hajaralsadat Hosseini

    2017-01-01

    Chronic stress adversely influences brain functions while crocin, as an effective component of saffron, exhibits positive effects on memory processes. This study investigated the effects of different doses of crocin on the improvement of learning and memory as well as corticosterone (CORT) levels in the hippocampus and frontal cortex of rats subjected to chronic stress. Forty male rats were randomly allocated to five different groups ( n = 8): Control, sham; stress (6 h/day for 21 days) groups, and two groups receiving daily intraperitoneal injections of one of two doses (30 and 60 mg/kg) of crocin accompanied by 21 days of restraint stress. Latency was evaluated as a brain function using the passive avoidance test before and one-day after a foot shock. CORT levels were measured in the homogenized hippocampus and frontal cortex. Results revealed that chronic stress had a significantly ( P < 0.01) negative effect on memory. Crocin (30 and 60 mg/kg), however, gave increase to significantly ( P < 0.01 and P < 0.05; respectively) improved memory functions in the stressed rats. Furthermore, the CORT levels in the hippocampus and frontal cortex declined significantly ( P < 0.05) in the stress group compared to the control. Only a crocin dose of 30 mg/kg was observed modulate significantly ( P < 0.05) the CORT levels in the hippocampus and frontal cortex in the stressed group. It was found that the lower crocin dose (30 mg/kg) had more beneficial effects than its higher (60 mg/kg) dose on learning and memory under chronic stress conditions. Moreover, it was speculated that different doses of crocin act on different neurotransmitters and biochemical factors in the brain.

  9. Uncaria rhynchophylla upregulates the expression of MIF and cyclophilin A in kainic acid-induced epilepsy rats: A proteomic analysis.

    PubMed

    Lo, Wan-Yu; Tsai, Fuu-Jen; Liu, Chung-Hsiang; Tang, Nou-Ying; Su, Shan-Yu; Lin, Shinn-Zong; Chen, Chun-Chung; Shyu, Woei-Cherng; Hsieh, Ching-Liang

    2010-01-01

    Uncaria rhynchophylla (Miq) Jack (UR) is a traditional Chinese herb and is used for the treatment of convulsive disorders, including epilepsy. Our previous study has shown that UR, as well as its major component rhynchophylline (RH), has an anticonvulsive effect and this effect is closely related to its scavenging activities of oxygen free radicals. The purpose of the present study was to investigate the effect of (UR) on the expression of proteins using a proteomics analysis in Sprague-Dawley (SD) rats with kainic acid (KA)-induced epileptic seizures. We profiled the differentially expressed proteins on two-dimensional electrophoresis (2-DE) maps derived from the frontal cortex and hippocampus of rat brain tissue 24 hours after KA-induced epileptic seizures. The results indicated that macrophage migration inhibitory factor (MIF) and cyclophilin A were under expressed in frontal cortex by an average of 0.19- and 0.23-fold, respectively. In the frontal cortex, MIF and cyclophilin A were significantly decreased in the KA group and these decreases were confirmed by the Western blots. However, in the hippocampus, only cyclophilin A was significantly decreased in the KA group. In addition, in real-time quantitative PCR (Q-PCR), MIF and cyclophilin A gene expressions were also significantly under expressed in the frontal cortex, and only the cyclophilin A gene was also significantly under expressed in the hippocampus in the KA group. These under expressions of MIF and cyclophilin A could be overcome by the treatment of UR and RH. In conclusion, the under expressions of MIF and cyclophilin A in the frontal cortex and hippocampus in KA-treated rats, which were overcome by both UR and UH treatment, suggesting that both MIF and cyclophilin A at least partly participate in the anticonvulsive effect of UR.

  10. Stiff person syndrome associated anti-amphiphysin antibodies reduce GABA associated [Ca(2+)]i rise in embryonic motoneurons.

    PubMed

    Geis, C; Beck, M; Jablonka, S; Weishaupt, A; Toyka, K V; Sendtner, M; Sommer, C

    2009-10-01

    Autoantibodies to the synaptic protein amphiphysin play a crucial pathogenic role in paraneoplastic stiff-person syndrome. Impairment of GABAergic inhibition is the presumed pathophysiological mechanism by which these autoantibodies become pathogenic. Here we used calcium imaging on rat embryonic motor neurons to investigate whether antibodies to amphiphysin directly hinder GABAergic signaling. We found that the immunoglobulin G fraction from a patient with stiff-person syndrome, containing high titer antibodies to amphiphysin and inducing stiffness in rats upon passive transfer, reduced GABA-induced calcium influx in embryonic motor neurons. Depletion of the anti-amphiphysin fraction from the patient's IgG by selective affinity chromatography abolished this effect, showing its specificity for amphiphysin. Quantification of the surface expression of the Na(+)/K(+)/2Cl(2-) cotransporter revealed a reduction after incubation with anti-amphiphysin IgG, which is concordant with a lower intracellular chloride concentration and thus impairment of GABA mediated calcium influx. Thus, anti-amphiphysin antibodies exert a direct effect on GABA signaling, which is likely to contribute to the pathogenesis of SPS.

  11. Degenerative changes and cell death in long-living homo- and heterotopic transplants from embryonic germ layers of rat neocortex.

    PubMed

    Petrova, E S; Otellin, V A

    2003-09-01

    Morphological study of allotransplants of rat embryonic neocortex 14-18 months after transplantation into the neocortex, lateral cerebral ventricle, and sciatic nerve of adult animals revealed death of nerve and glial cells in the delayed postoperation period independently on the site of transplantation. After heterotopic transplantation the count of degenerated neurons was 2 times higher that after homotopic transplantation. In heterotopic transplants a considerable number of grafted neurons underwent reversible and irreversible degenerative changes accompanied by their premature aging. Neuronal death is probably determined by insufficiency of trophic influence from afferent structures and target tissues. We hypothesized that antiapoptotic preparations can be used for prevention of transplanted cell death. It was also found that degeneration of neurons was associated with impaired vascularization of transplants and pronounced immune reaction of the recipient in late posttransplantation period. Transplantation of embryonic brain structures can serve as a model system in studies concerning involutive and pathological processes in the central nervous system and in the search for factors improving survival of neurons.

  12. Visualizing Metal Content and Intracellular Distribution in Primary Hippocampal Neurons with Synchrotron X-Ray Fluorescence

    DOE PAGES

    Colvin, Robert A.; Jin, Qiaoling; Lai, Barry; ...

    2016-07-19

    Increasing evidence suggests that metal dyshomeostasis plays an important role in human neurodegenerative diseases. Although distinctive metal distributions are described for mature hippocampus and cortex, much less is known about metal levels and intracellular distribution in individual hippocampal neuronal somata. To solve this problem, we conducted quantitative metal analyses utilizing synchrotron radiation X-Ray fluorescence on frozen hydrated primary cultured neurons derived from rat embryonic cortex (CTX) and two regions of the hippocampus: dentate gyrus (DG) and CA1. Also, comparing average metal contents showed that the most abundant metals were calcium, iron, and zinc, whereas metals such as copper and manganesemore » were less than 10% of zinc. Average metal contents were generally similar when compared across neurons cultured from CTX, DG, and CA1, except for manganese that was larger in CA1. However, each metal showed a characteristic spatial distribution in individual neuronal somata. Zinc was uniformly distributed throughout the cytosol, with no evidence for the existence of previously identified zinc-enriched organelles, zincosomes. Calcium showed a peri-nuclear distribution consistent with accumulation in endoplasmic reticulum and/or mitochondria. Iron showed 2-3 distinct highly concentrated puncta only in peri-nuclear locations. Notwithstanding the small sample size, these analyses demonstrate that primary cultured neurons show characteristic metal signatures. The iron puncta probably represent iron-accumulating organelles, siderosomes. Thus, the metal distributions observed in mature brain structures are likely the result of both intrinsic neuronal factors that control cellular metal content and extrinsic factors related to the synaptic organization, function, and contacts formed and maintained in each region.« less

  13. Visualizing Metal Content and Intracellular Distribution in Primary Hippocampal Neurons with Synchrotron X-Ray Fluorescence

    PubMed Central

    2016-01-01

    Increasing evidence suggests that metal dyshomeostasis plays an important role in human neurodegenerative diseases. Although distinctive metal distributions are described for mature hippocampus and cortex, much less is known about metal levels and intracellular distribution in individual hippocampal neuronal somata. To solve this problem, we conducted quantitative metal analyses utilizing synchrotron radiation X-Ray fluorescence on frozen hydrated primary cultured neurons derived from rat embryonic cortex (CTX) and two regions of the hippocampus: dentate gyrus (DG) and CA1. Comparing average metal contents showed that the most abundant metals were calcium, iron, and zinc, whereas metals such as copper and manganese were less than 10% of zinc. Average metal contents were generally similar when compared across neurons cultured from CTX, DG, and CA1, except for manganese that was larger in CA1. However, each metal showed a characteristic spatial distribution in individual neuronal somata. Zinc was uniformly distributed throughout the cytosol, with no evidence for the existence of previously identified zinc-enriched organelles, zincosomes. Calcium showed a peri-nuclear distribution consistent with accumulation in endoplasmic reticulum and/or mitochondria. Iron showed 2–3 distinct highly concentrated puncta only in peri-nuclear locations. Notwithstanding the small sample size, these analyses demonstrate that primary cultured neurons show characteristic metal signatures. The iron puncta probably represent iron-accumulating organelles, siderosomes. Thus, the metal distributions observed in mature brain structures are likely the result of both intrinsic neuronal factors that control cellular metal content and extrinsic factors related to the synaptic organization, function, and contacts formed and maintained in each region. PMID:27434052

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colvin, Robert A.; Jin, Qiaoling; Lai, Barry

    Increasing evidence suggests that metal dyshomeostasis plays an important role in human neurodegenerative diseases. Although distinctive metal distributions are described for mature hippocampus and cortex, much less is known about metal levels and intracellular distribution in individual hippocampal neuronal somata. To solve this problem, we conducted quantitative metal analyses utilizing synchrotron radiation X-Ray fluorescence on frozen hydrated primary cultured neurons derived from rat embryonic cortex (CTX) and two regions of the hippocampus: dentate gyrus (DG) and CA1. Also, comparing average metal contents showed that the most abundant metals were calcium, iron, and zinc, whereas metals such as copper and manganesemore » were less than 10% of zinc. Average metal contents were generally similar when compared across neurons cultured from CTX, DG, and CA1, except for manganese that was larger in CA1. However, each metal showed a characteristic spatial distribution in individual neuronal somata. Zinc was uniformly distributed throughout the cytosol, with no evidence for the existence of previously identified zinc-enriched organelles, zincosomes. Calcium showed a peri-nuclear distribution consistent with accumulation in endoplasmic reticulum and/or mitochondria. Iron showed 2-3 distinct highly concentrated puncta only in peri-nuclear locations. Notwithstanding the small sample size, these analyses demonstrate that primary cultured neurons show characteristic metal signatures. The iron puncta probably represent iron-accumulating organelles, siderosomes. Thus, the metal distributions observed in mature brain structures are likely the result of both intrinsic neuronal factors that control cellular metal content and extrinsic factors related to the synaptic organization, function, and contacts formed and maintained in each region.« less

  15. Effects of early overnutrition on the renal response to Ang II and expression of RAAS components in rat renal tissue.

    PubMed

    Granado, M; Amor, S; Fernández, N; Carreño-Tarragona, G; Iglesias-Cruz, M C; Martín-Carro, B; Monge, L; García-Villalón, A L

    2017-10-01

    The aim of this study was to analyze the effects of early overnutrition (EON) on the expression of the renin angiotensin aldosterone system (RAAS) components in renal cortex, renal arteries and renal perivascular adipose tissue (PVAT), as well as the vascular response of renal arteries to Angiotensin II (Ang II). On birth day litters were adjusted to twelve (L12-control) or three (L3-overfed) pups per mother. Half of the animals were sacrificed at weaning (21 days old) and the other half at 5 months of age. Ang II-induced vasoconstriction of renal artery segments increased in young overfed rats and decreased in adult overfed rats. EON decreased the gene expression of angiotensinogen (Agt), Ang II receptors AT1 and AT2 and eNOS in renal arteries of young rats, while it increased the mRNA levels of AT-2 and ET-1 in adult rats. In renal PVAT EON up-regulated the gene expression of COX-2 and TNF-α in young rats and the mRNA levels of renin receptor both in young and in adult rats. On the contrary, Ang II receptors mRNA levels were downregulated at both ages. Renal cortex of overfed rats showed increased gene expression of Agt in adult rats and of AT1 in young rats. However the mRNA levels of AT1 were decreased in the renal cortex of overfed adult rats. EON is associated with alterations in the vascular response of renal arteries to Ang II and changes in the gene expression of RAAS components in renal tissue. Copyright © 2017 The Italian Society of Diabetology, the Italian Society for the Study of Atherosclerosis, the Italian Society of Human Nutrition, and the Department of Clinical Medicine and Surgery, Federico II University. Published by Elsevier B.V. All rights reserved.

  16. [Intervention effects of Jiaotai pills on PCPA-induced insomnia in rats].

    PubMed

    Yue, He; Zhou, Xiang-Yu; Li, Chun-Yuan; Zou, Zhong-Jie; Wang, Shu-Mei; Liang, Sheng-Wang; Gong, Meng-Juan

    2016-09-01

    To elucidate the intervention effects of Jiaotai pills(JTP) on p-chlorophenylalanine (PCPA)-induced insomnia in rats and its underlying mechanism, the insomnia model was established by single intraperitoneal injection with PCPA in rats. The locomotor activity of rats was observed, and the levels of nerve growth factor(NGF) in hypothalamus, hippocampus, prefrontal cortex and serum of rats were determined by using ELISA. Moreover, a proton nuclear magnetic resonance(¹H-NMR)-based metabonomic approach was developed to profile insomnia-related metabolites in rat serum and hippocampus and analyze the intervention effects of JTP on changes in underlying biomarkers related to locomotor activity, NGF and insomnia. According to the results, JTP could significantly suppress the locomotor activity of insomnia rats, and increase the NGF levels in hypothalamus, hippocampus, prefrontal cortex and serum of rats with insomnia. The disturbed metabolic state associated with PCPA-induced insomnia in rat serum and hippocampus could be intervened by JTP. Meanwhile, six and five potential biomarkers related to insomnia in rat serum and hippocampus were reversed by administration of JTP. In conclusion, the current study demonstrated that JTP had protective effects against PCPA-induced insomnia in rats, which was probably correlated with regulation of NGF level and metabolism of amino acids, lipids and choline. Copyright© by the Chinese Pharmaceutical Association.

  17. Forelimb training drives transient map reorganization in ipsilateral motor cortex

    PubMed Central

    Pruitt, David T.; Schmid, Ariel N.; Danaphongse, Tanya T.; Flanagan, Kate E.; Morrison, Robert A.; Kilgard, Michael P.; Rennaker, Robert L.; Hays, Seth A.

    2016-01-01

    Skilled motor training results in reorganization of contralateral motor cortex movement representations. The ipsilateral motor cortex is believed to play a role in skilled motor control, but little is known about how training influences reorganization of ipsilateral motor representations of the trained limb. To determine whether training results in reorganization of ipsilateral motor cortex maps, rats were trained to perform the isometric pull task, an automated motor task that requires skilled forelimb use. After either 3 or 6 months of training, intracortical microstimulation (ICMS) mapping was performed to document motor representations of the trained forelimb in the hemisphere ipsilateral to that limb. Motor training for 3 months resulted in a robust expansion of right forelimb representation in the right motor cortex, demonstrating that skilled motor training drives map plasticity ipsilateral to the trained limb. After 6 months of training, the right forelimb representation in the right motor cortex was significantly smaller than the representation observed in rats trained for 3 months and similar to untrained controls, consistent with a normalization of motor cortex maps. Forelimb map area was not correlated with performance on the trained task, suggesting that task performance is maintained despite normalization of cortical maps. This study provides new insights into how the ipsilateral cortex changes in response to skilled learning and may inform rehabilitative strategies to enhance cortical plasticity to support recovery after brain injury. PMID:27392641

  18. Forelimb training drives transient map reorganization in ipsilateral motor cortex.

    PubMed

    Pruitt, David T; Schmid, Ariel N; Danaphongse, Tanya T; Flanagan, Kate E; Morrison, Robert A; Kilgard, Michael P; Rennaker, Robert L; Hays, Seth A

    2016-10-15

    Skilled motor training results in reorganization of contralateral motor cortex movement representations. The ipsilateral motor cortex is believed to play a role in skilled motor control, but little is known about how training influences reorganization of ipsilateral motor representations of the trained limb. To determine whether training results in reorganization of ipsilateral motor cortex maps, rats were trained to perform the isometric pull task, an automated motor task that requires skilled forelimb use. After either 3 or 6 months of training, intracortical microstimulation (ICMS) mapping was performed to document motor representations of the trained forelimb in the hemisphere ipsilateral to that limb. Motor training for 3 months resulted in a robust expansion of right forelimb representation in the right motor cortex, demonstrating that skilled motor training drives map plasticity ipsilateral to the trained limb. After 6 months of training, the right forelimb representation in the right motor cortex was significantly smaller than the representation observed in rats trained for 3 months and similar to untrained controls, consistent with a normalization of motor cortex maps. Forelimb map area was not correlated with performance on the trained task, suggesting that task performance is maintained despite normalization of cortical maps. This study provides new insights into how the ipsilateral cortex changes in response to skilled learning and may inform rehabilitative strategies to enhance cortical plasticity to support recovery after brain injury. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Protein Synthesis Inhibition in the Peri-Infarct Cortex Slows Motor Recovery in Rats.

    PubMed

    Schubring-Giese, Maximilian; Leemburg, Susan; Luft, Andreas Rüdiger; Hosp, Jonas Aurel

    2016-01-01

    Neuroplasticity and reorganization of brain motor networks are thought to enable recovery of motor function after ischemic stroke. Especially in the cortex surrounding the ischemic scar (i.e., peri-infarct cortex), evidence for lasting reorganization has been found at the level of neurons and networks. This reorganization depends on expression of specific genes and subsequent protein synthesis. To test the functional relevance of the peri-infarct cortex for recovery we assessed the effect of protein synthesis inhibition within this region after experimental stroke. Long-Evans rats were trained to perform a skilled-reaching task (SRT) until they reached plateau performance. A photothrombotic stroke was induced in the forelimb representation of the primary motor cortex (M1) contralateral to the trained paw. The SRT was re-trained after stroke while the protein synthesis inhibitor anisomycin (ANI) or saline were injected into the peri-infarct cortex through implanted cannulas. ANI injections reduced protein synthesis within the peri-infarct cortex by 69% and significantly impaired recovery of reaching performance through re-training. Improvement of motor performance within a single training session remained intact, while improvement between training sessions was impaired. ANI injections did not affect infarct size. Thus, protein synthesis inhibition within the peri-infarct cortex impairs recovery of motor deficits after ischemic stroke by interfering with consolidation of motor memory between training sessions but not short-term improvements within one session.

  20. Changes in corticocortical and corticohippocampal network during absence seizures in WAG/Rij rats revealed with time varying Granger causality.

    PubMed

    Sysoeva, Marina V; Vinogradova, Lyudmila V; Kuznetsova, Galina D; Sysoev, Ilya V; van Rijn, Clementina M

    2016-11-01

    Spike-and-wave discharges (SWDs) recorded in the cortical EEGs of WAG/Rij rats are the hallmark for absence epilepsy in this model. Although this type of epilepsy was long regarded as a form of primary generalized epilepsy, it is now recognized that there is an initiation zone - the perioral region of the somatosensory cortex. However, networks involved in spreading the seizure are not yet fully known. Previously, the dynamics of coupling between different layers of the perioral cortical region and between these zones and different thalamic nuclei was studied in time windows around the SWDs, using nonlinear Granger causality. The aim of the present study was to investigate, using the same method, the coupling dynamics between different regions of the cortex and between these regions and the hippocampus. Local field potentials were recorded in the frontal, parietal, and occipital cortices and in the hippocampus of 19 WAG/Rij rats. To detect changes in coupling reliably in a short time window, in order to provide a good temporal resolution, the innovative adapted time varying nonlinear Granger causality method was used. Mutual information function was calculated in addition to validate outcomes. Results of both approaches were tested for significance. The SWD initiation process was revealed as an increase in intracortical interactions starting from 3.5s before the onset of electrographic seizure. The earliest preictal increase in coupling was directed from the frontal cortex to the parietal cortex. Then, the coupling became bidirectional, followed by the involvement of the occipital cortex (1.5s before SWD onset). There was no driving from any cortical region to hippocampus, but a slight increase in coupling from hippocampus to the frontoparietal cortex was observed just before SWD onset. After SWD onset, an abrupt drop in coupling in all studied pairs was observed. In most of the pairs, the decoupling rapidly disappeared, but driving force from hippocampus and occipital cortex to the frontoparietal cortex was reduced until the SWD termination. Involvement of multiple cortical regions in SWD initiation shows the fundamental role of corticocortical feedback loops, forming coupling architecture and triggering the generalized seizure. The results add to the ultimate aim to construct a complete picture of brain interactions preceding and accompanying absence seizures in rats. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Emergence of transformation-tolerant representations of visual objects in rat lateral extrastriate cortex

    PubMed Central

    Tafazoli, Sina; Safaai, Houman; De Franceschi, Gioia; Rosselli, Federica Bianca; Vanzella, Walter; Riggi, Margherita; Buffolo, Federica; Panzeri, Stefano; Zoccolan, Davide

    2017-01-01

    Rodents are emerging as increasingly popular models of visual functions. Yet, evidence that rodent visual cortex is capable of advanced visual processing, such as object recognition, is limited. Here we investigate how neurons located along the progression of extrastriate areas that, in the rat brain, run laterally to primary visual cortex, encode object information. We found a progressive functional specialization of neural responses along these areas, with: (1) a sharp reduction of the amount of low-level, energy-related visual information encoded by neuronal firing; and (2) a substantial increase in the ability of both single neurons and neuronal populations to support discrimination of visual objects under identity-preserving transformations (e.g., position and size changes). These findings strongly argue for the existence of a rat object-processing pathway, and point to the rodents as promising models to dissect the neuronal circuitry underlying transformation-tolerant recognition of visual objects. DOI: http://dx.doi.org/10.7554/eLife.22794.001 PMID:28395730

  2. Evolution of the dynamic properties of the cortex-basal ganglia network after dopaminergic depletion in rats.

    PubMed

    Dejean, Cyril; Nadjar, Agnes; Le Moine, Catherine; Bioulac, Bernard; Gross, Christian E; Boraud, Thomas

    2012-05-01

    It is well established that parkinsonian syndrome is associated with alterations of neuronal activity temporal pattern basal ganglia (BG). An increase in synchronized oscillations has been observed in different BG nuclei in Parkinson's disease patients as well as animal models such as 6-hydroxydopamine treated rats. We recently demonstrated that this increase in oscillatory synchronization is present during high-voltage spindles (HVS) probably underpinned by the disorganization of cortex-BG interactions. Here we investigated the time course of both oscillatory and motor alterations. For that purpose we performed daily simultaneous recordings of neuronal activity in motor cortex, striatum and substantia nigra pars reticulata (SNr), before and after 6-hydroxydopamine lesion in awake rats. After a brief non-dopamine-specific desynchronization, oscillatory activity first increased during HVS followed by progressive motor impairment and the shortening of SNr activation delay. While the oscillatory firing increase reflects dopaminergic depletion, response alteration in SNr neurons is closely related to motor symptom. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Morphological and functional manifestations of rat adrenal-cortex response to sodium bromide administration under hypodynamic stress

    NASA Technical Reports Server (NTRS)

    Kirichek, L. T.; Zholudeva, V. I.

    1979-01-01

    Functional and morphological manifestations of adrenal cortex response to hypodynamia (2-hr immobilization on an operating table) under the influence of bromine preparations were studied. The sodium bromide was administered intraperitoneally in 100, 250, and 500 mg/kg doses once and repeatedly during ten days. The adrenal gland was evaluated functionally by ascorbic acid and cholesterol content and morphologically by coloring it with hematoxylin-eosin and Sudans for lipid revealing at freezing. Results are displayed in two tables and microphotographs. They are summarized as follows: the bromine weakens the functional state of the adrenal cortex in intact rats, causing changes similar to those under stress. During immobilization combined with preliminary bromine administration, a less pronounced stress reaction is noticeable.

  4. Three-dimensional bioprinting of rat embryonic neural cells.

    PubMed

    Lee, Wonhye; Pinckney, Jason; Lee, Vivian; Lee, Jong-Hwan; Fischer, Krisztina; Polio, Samuel; Park, Je-Kyun; Yoo, Seung-Schik

    2009-05-27

    We present a direct cell printing technique to pattern neural cells in a three-dimensional (3D) multilayered collagen gel. A layer of collagen precursor was printed to provide a scaffold for the cells, and the rat embryonic neurons and astrocytes were subsequently printed on the layer. A solution of sodium bicarbonate was applied to the cell containing collagen layer as nebulized aerosols, which allowed the gelation of the collagen. This process was repeated layer-by-layer to construct the 3D cell-hydrogel composites. Upon characterizing the relationship between printing resolutions and the growth of printed neural cells, single/multiple layers of neural cell-hydrogel composites were constructed and cultured. The on-demand capability to print neural cells in a multilayered hydrogel scaffold offers flexibility in generating artificial 3D neural tissue composites.

  5. Central effects of ghrelin on the adrenal cortex: a morphological and hormonal study.

    PubMed

    Milosević, Verica Lj; Stevanović, Darko M; Nesić, Dejan M; Sosić-Jurjević, Branka T; Ajdzanović, Vladimir Z; Starcević, Vesna P; Severs, Walter B

    2010-06-01

    Ghrelin, a growth hormone secretagogue that exerts an important role in appetite and weight regulation, participates in the activation of the hypothalamo-pituitary-adrenal (HPA) axis. Male Wistar rats (5/group) received daily for 5 days, via an ICV (intracerebroventricular) cannula, 5 microl phosphate buffered saline with or without 1 microg of rat ghrelin. Two hours after the last injection, blood and adrenal glands were collected from decapitated rats for blood hormone analyses and histologic and morphometric processing. Ghrelin treatment resulted in increased (p<0.05) body weight (13%), absolute whole adrenal gland weight (18%) and whole adrenal gland volume (20%). The absolute volumes of the entire adrenal cortex, ZG, ZF, and ZR also increased (p<0.05) after ghrelin by 20%, 21%, 21% and 11%, respectively. Ghrelin-treated rats had elevated (p<0.05) blood concentrations of ACTH, aldosterone and corticosterone (68%, 32% and 67%, respectively). The data clearly provide both morphological and hormonal status that ghrelin acts centrally to exert a global stimulatory effect on the adrenal cortex. Clarifying of the ghrelin precise role in the multiple networks affecting the stress hormone release, besides its well known energy and metabolic unbalance effects, remains a very important research goal.

  6. Effect of Resveratrol Administration on the Element Metabolism in the Blood and Brain Tissues of Rats Subjected to Acute Swimming Exercise.

    PubMed

    Baltaci, Abdulkerim Kasim; Arslangil, Dilek; Mogulkoc, Rasim; Patlar, Suleyman

    2017-02-01

    The aim of the present study is to examine how resveratrol administration affects the element metabolism in the blood and brain cortex tissues of rats subjected to an acute swimming exercise. The study was carried out on Wistar-Albino-type adult male rats supplied by the Center. Group 1 is the control group. Group 2 is the swimming control group. Group 3 is the resveratrol (10 mg/kg/day) + swimming group. Group 4 is the resveratrol (10 mg/kg/day) group. Blood and brain cortex tissues were analyzed for some elements. The acute swimming exercise led to increases in the rats' serum iron, selenium, lead, cobalt, and boron levels, while the resveratrol-swimming group has increases in copper, phosphorus, and calcium values. The brain cortex tissue of the resveratrol-swimming group had significantly higher molybdenum levels than others. The results obtained in the study indicate that acute swimming exercise altered the distribution of elements in the serum to a considerable extent; however, resveratrol's affect is limited. Especially, resveratrol supplementation may have a regulatory affect on serum iron and magnesium levels.

  7. Social defeat stress causes depression-like behavior with metabolite changes in the prefrontal cortex of rats.

    PubMed

    Liu, Yi-Yun; Zhou, Xin-Yu; Yang, Li-Ning; Wang, Hai-Yang; Zhang, Yu-Qing; Pu, Jun-Cai; Liu, Lan-Xiang; Gui, Si-Wen; Zeng, Li; Chen, Jian-Jun; Zhou, Chan-Juan; Xie, Peng

    2017-01-01

    Major depressive disorder is a serious mental disorder with high morbidity and mortality. The role of social stress in the development of depression remains unclear. Here, we used the social defeat stress paradigm to induce depression-like behavior in rats, then evaluated the behavior of the rats and measured metabolic changes in the prefrontal cortex using gas chromatography-mass spectrometry. Within the first week after the social defeat procedure, the sucrose preference test (SPT), open field test (OFT), elevated plus maze (EPM) and forced swim test (FST) were conducted to examine the depressive-like and anxiety-like behaviors. For our metabolite analysis, multivariate statistics were applied to observe the distribution of all samples and to differentiate the socially defeated group from the control group. Ingenuity pathway analysis was used to find the potential relationships among the differential metabolites. In the OFT and EPM, there were no significant differences between the two experimental groups. In the SPT and FST, socially defeated rats showed less sucrose intake and longer immobility time compared with control rats. Metabolic profiling identified 25 significant variables with good predictability. Ingenuity pathways analysis revealed that "Hereditary Disorder, Neurological Disease, Lipid Metabolism" was the most significantly altered network. Stress-induced alterations of low molecular weight metabolites were observed in the prefrontal cortex of rats. Particularly, lipid metabolism, amino acid metabolism, and energy metabolism were significantly perturbed. The results of this study suggest that repeated social defeat can lead to metabolic changes and depression-like behavior in rats.

  8. Increased cerebral oxygen consumption in Eker rats and effects of N-methyl-D-aspartate blockade: Implications for autism.

    PubMed

    Weiss, Harvey R; Liu, Xia; Zhang, Qihang; Chi, Oak Z

    2007-08-15

    Because there is a strong correlation between tuberous sclerosis and autism, we used a tuberous sclerosis model (Eker rat) to test the hypothesis that these animals would have an altered regional cerebral O2 consumption that might be associated with autism. We also examined whether the altered cerebral O2 consumption was related to changes in the importance of N-methyl-D-aspartate (NMDA) receptors. Young (4 weeks) male control Long Evans (N = 14) and Eker (N = 14) rats (70-100 g) were divided into control and CGS-19755 (10 mg/kg, competitive NMDA antagonist)-treated animals. Cerebral regional blood flow (14C-iodoantipyrine) and O2 consumption (cryomicrospectrophotometry) were determined in isoflurane-anesthetized rats. NMDA receptor protein levels were determined by Western immunoblotting. We found significantly increased basal O2 consumption in the cortex (6.2 +/- 0.6 ml O2/min/100 g Eker vs. 4.7 +/- 0.4 Long Evans), hippocampus, cerebellum, and pons. Regional cerebral blood flow was also elevated in Eker rats at baseline, but cerebral O2 extraction was similar. CGS-19755 significantly lowered O2 consumption in the cortex (2.8 +/- 0.3), hippocampus, and pons of the Long Evans rats but had no effect on cortex (5.8 +/- 0.8) or other regions of the Eker rats. Cerebral blood flow followed a similar pattern. NMDA receptor protein levels (NR1 subunit) were similar between groups. In conclusion, Eker rats had significantly elevated cerebral O2 consumption and blood flow, but this was not related to NMDA receptor activation. In fact, the importance of NMDA receptors in the control of basal cerebral O2 consumption was reduced. This might have important implications in the treatment of autism. Copyright 2007 Wiley-Liss, Inc.

  9. Effect of vitamin D3 on behavioural and biochemical parameters in diabetes type 1-induced rats.

    PubMed

    Calgaroto, Nicéia Spanholi; Thomé, Gustavo Roberto; da Costa, Pauline; Baldissareli, Jucimara; Hussein, Fátima Abdala; Schmatz, Roberta; Rubin, Maribel A; Signor, Cristiane; Ribeiro, Daniela Aymone; Carvalho, Fabiano Barbosa; de Oliveira, Lizielle Souza; Pereira, Luciane Belmonte; Morsch, Vera Maria; Schetinger, Maria Rosa Chitolina

    2014-08-01

    Diabetes is associated with long-term complications in the brain and reduced cognitive ability. Vitamin D3 (VD3 ) appears to be involved in the amelioration of hyperglycaemia in streptozotocin (STZ)-induced diabetic rats. Our aim was to analyse the potential of VD3 in avoiding brain damage through evaluation of acetylcholinesterase (AChE), Na(+) K(+) -adenosine triphosphatase (ATPase) and delta aminolevulinate dehydratase (δ-ALA-D) activities and thiobarbituric acid reactive substance (TBARS) levels from cerebral cortex, as well as memory in STZ-induced diabetic rats. Animals were divided into eight groups (n = 5): control/saline, control/metformin (Metf), control/VD3 , control/Metf + VD3 , diabetic/saline, diabetic/Metf, diabetic/VD3 and diabetic/Metf + VD3 . Thirty days after treatment, animals were submitted to contextual fear-conditioning and open-field behavioural tests, after which they were sacrificed and the cerebral cortex was dissected. Our results demonstrate a significant memory deficit, an increase in AChE activity and TBARS levels and a decrease in δ-ALA-D and Na(+) K(+) -ATPase activities in diabetic rats when compared with the controls. Treatment of diabetic rats with Metf and VD3 prevented the increase in AChE activity when compared with the diabetic/saline group. In treated diabetic rats, the decrease in Na(+) K(+) -ATPase was reverted when compared with non-treated rats, but the increase in δ-ALA-D activity was not. VD3 prevented diabetes-induced TBARS level and improved memory. Our results show that VD3 can avoid cognitive deficit through prevention of changes in important enzymes such as Na(+) K(+) -ATPase and AChE in cerebral cortex in type 1 diabetic rats. Copyright © 2014 John Wiley & Sons, Ltd.

  10. Neuroprotective effect of ebselen against intracerebroventricular streptozotocin-induced neuronal apoptosis and oxidative stress in rats.

    PubMed

    Unsal, Cuneyt; Oran, Mustafa; Albayrak, Yakup; Aktas, Cevat; Erboga, Mustafa; Topcu, Birol; Uygur, Ramazan; Tulubas, Feti; Yanartas, Omer; Ates, Ozkan; Ozen, Oguz Aslan

    2016-04-01

    The goal of this study was to examine the neuroprotective effect of ebselen against intracerebroventricular streptozotocin (ICV-STZ)-induced oxidative stress and neuronal apoptosis in rat brain. A total of 30 adult male Sprague-Dawley rats were randomly divided into 3 groups of 10 animals each: control, ICV-STZ, and ICV-STZ treated with ebselen. The ICV-STZ group rats were injected bilaterally with ICV-STZ (3 mg/kg) on days 1 and 3, and ebselen (10 mg/kg/day) was administered for 14 days starting from 1st day of ICV-STZ injection to day 14. Rats were killed at the end of the study and brain tissues were removed for biochemical and histopathological investigation. Our results demonstrated, for the first time, the neuroprotective effect of ebselen on Alzheimer's disease (AD) model in rats. Our present study, in ICV-STZ group, showed significant increase in tissue malondialdehyde levels and significant decrease in enzymatic antioxidants superoxide dismutase and glutathione peroxidase in the frontal cortex tissue. The histopathological studies in the brain of rats also supported that ebselen markedly reduced the ICV-STZ-induced histopathological changes and well preserved the normal histological architecture of the frontal cortex tissue. The number of apoptotic neurons was increased in frontal cortex tissue after ICV-STZ administration. Treatment of ebselen markedly reduced the number of degenerating apoptotic neurons. The study demonstrates the effectiveness of ebselen, as a powerful antioxidant, in preventing the oxidative damage and morphological changes caused by ICV-STZ in rats. Thus, ebselen may have a therapeutic value for the treatment of AD. © The Author(s) 2013.

  11. Effects of rolipram, a phosphodiesterase 4 inhibitor, in combination with imipramine on depressive behavior, CRE-binding activity and BDNF level in learned helplessness rats.

    PubMed

    Itoh, Tetsuji; Tokumura, Miwa; Abe, Kohji

    2004-09-13

    The brain cAMP regulating system and its downstream elements play a pivotal role in the therapeutic effects of antidepressants. We previously reported the increase in activities of phosphodiesterase 4, a major phosphodiesterase isozyme hydrolyzing cAMP, in the frontal cortex and hippocampus of learned helplessness rats, an animal model for depression. The present study was undertaken to examine the combination of effects of rolipram, a phosphodiesterase 4 inhibitor, with imipramine, a typical tricyclic antidepressant, on depressive behavior in learned helplessness rats. Concurrently, cAMP-response element (CRE)-binding activity and brain-derived neurotrophic factor (BDNF) levels related to the therapeutic effects of antidepressants were determined. Repeated administration of imipramine (1.25-10 mg/kg, i.p.) or rolipram (1.25 mg/kg, i.p.) reduced the number of escape failures in learned helplessness rats. Imipramine could not completely ameliorate the escape behavior to a level similar to that of non-stressed rats even at 10 mg/kg. However, repeated coadministration of rolipram with imipramine (1.25 and 2.5 mg/kg, respectively) almost completely eliminated the escape failures in learned helplessness rats. The reduction of CRE-binding activities and BDNF levels in the frontal cortex or hippocampus in learned helplessness rats were ameliorated by treatment with imipramine or rolipram alone. CRE-binding activities and/or BDNF levels of the frontal cortex and hippocampus were significantly increased by treatment with a combination of rolipram and imipramine compared to those in imipramine-treated rats. These results indicated that coadministration of phosphodiesterase type 4 inhibitors with antidepressants may be more effective for depression therapy and suggest that elevation of the cAMP signal transduction pathway is involved in the antidepressive effects.

  12. Impaired fear extinction retention and increased anxiety-like behaviours induced by limited daily access to a high-fat/high-sugar diet in male rats: Implications for diet-induced prefrontal cortex dysregulation.

    PubMed

    Baker, Kathryn D; Reichelt, Amy C

    2016-12-01

    Anxiety disorders and obesity are both common in youth and young adults. Despite increasing evidence that over-consumption of palatable high-fat/high-sugar "junk" foods leads to adverse neurocognitive outcomes, little is known about the effects of palatable diets on emotional memories and fear regulation. In the present experiments we examined the effects of daily 2h consumption of a high-fat/high-sugar (HFHS) food across adolescence on fear inhibition and anxiety-like behaviour in young adult rats. Rats exposed to the HFHS diet exhibited impaired retention of fear extinction and increased anxiety-like behaviour in an emergence test compared to rats fed a standard diet. The HFHS-fed rats displayed diet-induced changes in prefrontal cortex (PFC) function which were detected by altered expression of GABAergic parvalbumin-expressing inhibitory interneurons and the stable transcription factor ΔFosB which accumulates in the PFC in response to chronic stimuli. Immunohistochemical analyses of the medial PFC revealed that animals fed the HFHS diet had fewer parvalbumin-expressing cells and increased levels of FosB/ΔFosB expression in the infralimbic cortex, a region implicated in the consolidation of fear extinction. There was a trend towards increased IBA-1 immunoreactivity, a marker of microglial activation, in the infralimbic cortex after HFHS diet exposure but expression of the extracellular glycoprotein reelin was unaffected. These findings demonstrate that a HFHS diet during adolescence is associated with reductions of prefrontal parvalbumin neurons and impaired fear inhibition in adulthood. Adverse effects of HFHS diets on the mechanisms of fear regulation may precipitate a vulnerability in obese individuals to the development of anxiety disorders. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Deviance detection by a P3-like response in rat posterior parietal cortex

    PubMed Central

    Imada, Allicia; Morris, Allyn; Wiest, Michael C.

    2013-01-01

    To better understand sensory processing in frontal and parietal cortex of the rat, and to further assess the rat as a model of human frontal-parietal processing, we recorded local field potentials (LFPs) from microelectrode arrays implanted in medio-dorsal frontal, and posterior parietal cortex of awake rats as they were presented with a succession of frequent “standard” tones and infrequent “oddball” tones. Extending previous results from surface recordings we found, after controlling for the frequencies of the standard and oddball tones, that rat frontal and parietal-evoked LFPs (eLFPs) exhibit significantly larger N1 (~40 ms latency), P2 (~100 ms), N2 (~160 ms), P3E (~200–240 ms), and P3L (~300–500 ms) amplitudes after an oddball tone. These neural oddball effects could contribute to the automatic allocation of attention to rare stimuli. To determine whether these enhanced responses to rare stimuli could be accounted for in terms of stimulus-specific neural adaptation (SSA), we also recorded during single-tone control sessions involving frequent standard, or infrequent oddball beeps alone. We compared the difference between rare-tone and frequent-tone response amplitudes in the two-tone context (oddball effect) or single-tone context which isolates the contribution of SSA (SSA effect). An analysis of variance (ANOVA) revealed a significant main effect of tone context on rare-tone response enhancements, showing that the rare-tone enhancements were stronger in the two-tone context than the single-tone context. This difference between tone contexts was greatest at the early P3E peak (200–240 ms post-beep) in parietal cortex, suggesting true deviance detection by this evoked response component, which cannot be accounted for in terms of simple models of SSA. PMID:23316147

  14. Effects of the combination of metyrapone and oxazepam on cocaine-induced increases in corticosterone in the medial prefrontal cortex and nucleus accumbens.

    PubMed

    Keller, Courtney M; Breaux, Kelly N; Goeders, Nicholas E

    2017-03-01

    We have previously demonstrated that a combination of drugs (i.e., metyrapone and oxazepam) known to attenuate HPA-axis activity effectively decreases cocaine self-administration and cue reactivity in rats. However, we did not find changes in plasma corticosterone that matched the behavioral effects we observed, indicating that a different mechanism of action must be involved. Therefore, we hypothesized that the combination of metyrapone and oxazepam attenuates cocaine taking and seeking by decreasing cocaine-induced increases in corticosterone in the brain. Male rats were implanted with guide cannulae targeting the medial prefrontal cortex or nucleus accumbens. After the rats recovered from surgery, the microdialysis session was conducted. Rats were housed in the experimental chamber and the dialysis probes inserted into the guide cannulae the night before the session. The following day, dialysate samples were collected over a five-hour session. Baseline samples were collected for the first two hours, every 20min. Samples were then collected following administration of cocaine (15mg/kg, ip). Before injections of cocaine, rats were pretreated with either vehicle or the combination of metyrapone (50mg/kg, ip) and oxazepam (10mg/kg, ip). The administration of cocaine resulted in an increase in corticosterone in the medial prefrontal cortex following vehicle pretreatment, which was not observed in the nucleus accumbens. This cocaine-induced increase in corticosterone was attenuated by metyrapone/oxazepam. Reducing cocaine-induced increases in corticosterone in the medial prefrontal cortex might represent a novel mechanism through which the combination of metyrapone/oxazepam produces its behavioral effects. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Expression of m1-type muscarinic acetylcholine receptors by parvalbumin-immunoreactive neurons in the primary visual cortex: a comparative study of rat, guinea pig, ferret, macaque, and human.

    PubMed

    Disney, Anita A; Reynolds, John H

    2014-04-01

    Cholinergic neuromodulation is a candidate mechanism for aspects of arousal and attention in mammals. We have reported previously that cholinergic modulation in the primary visual cortex (V1) of the macaque monkey is strongly targeted toward GABAergic interneurons, and in particular that the vast majority of parvalbumin-immunoreactive (PV) neurons in macaque V1 express the m1-type (pirenzepine-sensitive, Gq-coupled) muscarinic ACh receptor (m1AChR). In contrast, previous physiological data indicates that PV neurons in rats rarely express pirenzepine-sensitive muscarinic AChRs. To examine further this apparent species difference in the cholinergic effectors for the primary visual cortex, we have conducted a comparative study of the expression of m1AChRs by PV neurons in V1 of rats, guinea pigs, ferrets, macaques, and humans. We visualize PV- and mAChR-immunoreactive somata by dual-immunofluorescence confocal microscopy and find that the species differences are profound; the vast majority (>75%) of PV-ir neurons in macaques, humans, and guinea pigs express m1AChRs. In contrast, in rats only ∼25% of the PV population is immunoreactive for m1AChRs. Our data reveal that while they do so much less frequently than in primates, PV neurons in rats do express Gq-coupled muscarinic AChRs, which appear to have gone undetected in the previous in vitro studies. Data such as these are critical in determining the species that represent adequate models for the capacity of the cholinergic system to modulate inhibition in the primate cortex. Copyright © 2013 Wiley Periodicals, Inc.

  16. Effects of swim stress and fluoxetine on 5-HT1A receptor gene expression and monoamine metabolism in the rat brain regions.

    PubMed

    Shishkina, G T; Kalinina, T S; Dygalo, N N

    2012-07-01

    Changes in gene expression of the brain serotonin (5-HT) 1A receptors may be important for the development and ameliorating depression, however identification of specific stimuli that activate or reduce the receptor transcriptional activity is far from complete. In the present study, the forced swim test (FST) exposure, the first stress session of which is already sufficient to induce behavioral despair in rats, significantly increased 5-HT1A receptor mRNA levels in the brainstem, frontal cortex, and hippocampus at 24 h. In the brainstem and frontal cortex, the elevation in the receptor gene expression after the second forced swim session was not affected following chronic administration of fluoxetine, while in the cortex, both control and FST values were significantly reduced in fluoxetine-treated rats. In contrast to untreated rats, no increase in hippocampal 5-HT1A receptor mRNA was observed in response to FST in rats chronically treated with fluoxetine. Metabolism of 5-HT (5-HIAA/5-HT) in the brainstem was significantly decreased by fluoxetine and further reduced by swim stress, showing a certain degree of independence of these changes on 5-HT1A receptor gene expression that was increased in this brain region only after the FST, but not after fluoxetine. FST exposure also decreased the brainstem dopamine metabolism, which was unexpectedly positively correlated with 5-HT1A receptor mRNA levels in the frontal cortex. Together, these data suggest that the effects of the forced swim stress as well as fluoxetine involve brain region-dependent alterations in 5-HT1A receptor gene transcription, some of which may be interrelated with concomitant changes in catecholamine metabolism.

  17. Binge ethanol effects on prefrontal cortex neurons, spatial working memory and task-induced neuronal activation in male and female rats.

    PubMed

    West, Rebecca K; Maynard, Mark E; Leasure, J Leigh

    2018-05-01

    Excessive alcohol intake is associated with a multitude of health risks, especially for women. Recent studies in animal models indicate that the female brain is more negatively affected by alcohol, compared to the male brain. Among other regions, excessive alcohol consumption damages the frontal cortex, an area important for many functions and decision making of daily life. The objective of the present study was to determine whether the medial prefrontal cortex (mPFC) in female rats is selectively vulnerable to alcohol-induced damage. In humans, loss of prefrontal grey matter resulting from heavy alcohol consumption has been documented, however this volume loss is not necessarily due to a decrease in the number of neurons. We therefore quantified both number and nuclear volume of mPFC neurons following binge alcohol, as well as performance and neuronal activation during a prefrontal-dependent behavioral task. Adult male and female Long-Evans rats were assigned to binge or control groups and exposed to ethanol using a well-established 4-day model of alcohol-induced neurodegeneration. Both males and females had significantly smaller average neuronal nuclei volumes than their respective control groups immediately following alcohol binge, but neither sex showed a decrease in neuron number. Binged rats of both sexes initially showed spatial working memory deficits. Although they eventually achieved control performance, binged rats of both sexes showed increased c-Fos labeling in the mPFC during rewarded alternation, suggesting decreased neural efficiency. Overall, our results substantiate prior evidence indicating that the frontal cortex is vulnerable to alcohol, but also indicate that sex-specific vulnerability to alcohol may be brain region-dependent. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Cocaine Administration and Its Withdrawal Enhance the Expression of Genes Encoding Histone-Modifying Enzymes and Histone Acetylation in the Rat Prefrontal Cortex.

    PubMed

    Sadakierska-Chudy, Anna; Frankowska, Małgorzata; Jastrzębska, Joanna; Wydra, Karolina; Miszkiel, Joanna; Sanak, Marek; Filip, Małgorzata

    2017-07-01

    Chronic exposure to cocaine, craving, and relapse are attributed to long-lasting changes in gene expression arising through epigenetic and transcriptional mechanisms. Although several brain regions are involved in these processes, the prefrontal cortex seems to play a crucial role not only in motivation and decision-making but also in extinction and seeking behavior. In this study, we applied cocaine self-administration and extinction training procedures in rats with a yoked triad to determine differentially expressed genes in prefrontal cortex. Microarray analysis showed significant upregulation of several genes encoding histone modification enzymes during early extinction training. Subsequent real-time PCR testing of these genes following cocaine self-administration or early (third day) and late (tenth day) extinction revealed elevated levels of their transcripts. Interestingly, we found the enrichment of Brd1 messenger RNA in rats self-administering cocaine that lasted until extinction training during cocaine withdrawal with concomitant increased acetylation of H3K9 and H4K8. However, despite elevated levels of methyl- and demethyltransferase-encoded transcripts, no changes in global di- and tri-methylation of histone H3 at lysine 4, 9, 27, and 79 were observed. Surprisingly, at the end of extinction training (10 days of cocaine withdrawal), most of the analyzed genes in the rats actively and passively administering cocaine returned to the control level. Together, the alterations identified in the rat prefrontal cortex may suggest enhanced chromatin remodeling and transcriptional activity induced by early cocaine abstinence; however, to know whether they are beneficial or not for the extinction of drug-seeking behavior, further in vivo evaluation is required.

  19. Effects of Intraventricular Methotrexate on Neuronal Injury and Gene Expression in a Rat Model: Findings From an Exploratory Study.

    PubMed

    Moore, Ida M Ki; Merkle, Carrie J; Byrne, Howard; Ross, Adam; Hawkins, Ashley M; Ameli, Sara S; Montgomery, David W

    2016-10-01

    Central nervous system (CNS)-directed treatment for acute lymphoblastic leukemia, used to prevent disease recurrence in the brain, is essential for survival. Systemic and intrathecal methotrexate, commonly used for CNS-directed treatment, have been associated with cognitive problems during and after treatment. The cortex, hippocampus, and caudate putamen, important brain regions for learning and memory, may be involved in methotrexate-induced brain injury. Objectives of this study were to (1) quantify neuronal degeneration in selected regions of the cortex, hippocampus, and caudate putamen and (2) measure changes in the expression of genes with known roles in oxidant defense, apoptosis/inflammation, and protection from injury. Male Sprague Dawley rats were administered 2 or 4 mg/kg of methotrexate diluted in artificial cerebrospinal fluid (aCSF) or aCSF only into the left cerebral lateral ventricle. Gene expression changes were measured using customized reverse transcription (RT)(2) polymerase chain reaction arrays. The greatest percentage of degenerating neurons in methotrexate-treated animals was in the medial region of the cortex; percentage of degenerating neurons in the dentate gyrus and cornu ammonis 3 regions of the hippocampus was also greater in rats treated with methotrexate compared to perfusion and vehicle controls. There was a greater percentage of degenerating neurons in the inferior cortex of control versus methotrexate-treated animals. Eight genes involved in protection from injury, oxidant defense, and apoptosis/inflammation were significantly downregulated in different brain regions of methotrexate-treated rats. To our knowledge, this is the first study to investigate methotrexate-induced injury in selected brain regions and gene expression changes using a rat model of intraventricular drug administration. © The Author(s) 2016.

  20. Contralesional Axonal Remodeling of the Corticospinal System in Adult Rats After Stroke and Bone Marrow Stromal Cell Treatment

    PubMed Central

    Liu, Zhongwu; Li, Yi; Zhang, Xueguo; Savant-Bhonsale, Smita; Chopp, Michael

    2008-01-01

    Background and Purpose Motor recovery after stroke is associated with neuronal reorganization in bilateral hemispheres. We investigated contralesional corticospinal tract remodeling in the brain and spinal cord in rats after stroke and treatment of bone marrow stromal cells. Methods Adult male Wistar rats were subjected to permanent right middle cerebral artery occlusion. Phosphate-buffered saline or bone marrow stromal cells were injected into a tail vein 1 day postischemia. An adhesive removal test was performed weekly to monitor functional recovery. Threshold currents of intracortical microstimulation on the left motor cortex for evoking bilateral forelimb movements were measured 6 weeks after stroke. When intracortical microstimulation was completed, biotinylated dextran amine was injected into the left motor cortex to anterogradely label the corticospinal tract. At 4 days before euthanization, pseudorabies virus-152-EGFP and 614-mRFP were injected into left or right forelimb extensor muscles, respectively. All animals were euthanized 8 weeks after stroke. Results In normal rats (n=5), the corticospinal tract showed a unilateral innervation pattern. In middle cerebral artery occlusion rats (n=8), our data demonstrated that: 1) stroke reduced the stimulation threshold evoking ipsilateral forelimb movement; 2) EGFP-positive pyramidal neurons were increased in the left intact cortex, which were labeled from the left stroke-impaired forelimb; and 3) biotinylated dextran amine-labeled contralesional axons sprouted into the denervated spinal cord. Bone marrow stromal cells significantly enhanced all 3 responses (n=8, P<0.05). Conclusions Our data demonstrated that corticospinal tract fibers originating from the contralesional motor cortex sprout into the denervated spinal cord after stroke and bone marrow stromal cells treatment, which may contribute to functional recovery. PMID:18617661

  1. Deviance sensitivity in the auditory cortex of freely moving rats

    PubMed Central

    2018-01-01

    Deviance sensitivity is the specific response to a surprising stimulus, one that violates expectations set by the past stimulation stream. In audition, deviance sensitivity is often conflated with stimulus-specific adaptation (SSA), the decrease in responses to a common stimulus that only partially generalizes to other, rare stimuli. SSA is usually measured using oddball sequences, where a common (standard) tone and a rare (deviant) tone are randomly intermixed. However, the larger responses to a tone when deviant does not necessarily represent deviance sensitivity. Deviance sensitivity is commonly tested using a control sequence in which many different tones serve as the standard, eliminating the expectations set by the standard ('deviant among many standards'). When the response to a tone when deviant (against a single standard) is larger than the responses to the same tone in the control sequence, it is concluded that true deviance sensitivity occurs. In primary auditory cortex of anesthetized rats, responses to deviants and to the same tones in the control condition are comparable in size. We recorded local field potentials and multiunit activity from the auditory cortex of awake, freely moving rats, implanted with 32-channel drivable microelectrode arrays and using telemetry. We observed highly significant SSA in the awake state. Moreover, the responses to a tone when deviant were significantly larger than the responses to the same tone in the control condition. These results establish the presence of true deviance sensitivity in primary auditory cortex in awake rats. PMID:29874246

  2. Perirhinal Cortex mGlu5 Receptor Activation Reduces Relapse to Methamphetamine Seeking by Restoring Novelty Salience

    PubMed Central

    Peters, Jamie; Scofield, Michael D; Ghee, Shannon M; Heinsbroek, Jasper A; Reichel, Carmela M

    2016-01-01

    Rats that have self-administered methamphetamine (meth) under long access, but not short access, conditions do not recognize novel objects. The perirhinal cortex is critical for novelty detection, and perirhinal metabotropic glutamate 5 receptors (mGlu5) are downregulated after long-access meth. The novel positive allosteric modulator (PAM) 1-(4-(2,4-difluorophenyl) piperazin-1-yl)-2-((4-fluorobenzyl)oxy)-ethanone, or DPFE, demonstrates improved solubility compared with other mGlu5 PAMs, thus allowing brain-site-specific pharmacological studies. Infusion of DPFE into perirhinal cortex restored novel object recognition in long-access meth rats. To investigate the impact of these cognitive enhancing effects on relapse, we tested the effects of DPFE infusions into perirhinal cortex on meth-seeking under two different test conditions. In the standard cue relapse test, perirhinal DPFE infusions did not alter meth-seeking in the presence of meth cues. However, in a novel cue relapse test, wherein animals were allowed to allocate responding between a novel cue and meth-conditioned cue, perirhinal DPFE infusions shifted the pattern of responding in long-access rats toward a profile resembling short-access rats, which respond equally for novel and meth cues. Perirhinal mGlu5 are thus a promising pharmacological target for the restoration of cognitive function in meth addicts. Targeting these receptors may also reduce relapse, particularly in situations where novel stimuli compete with conditioned stimuli for control over meth seeking. PMID:26365953

  3. Effects of bioactive tetrapeptides on free-radical processes.

    PubMed

    Kozina, L S

    2007-06-01

    Injections of epithalon and cortagen to rats decreased the content of LPO products and reduced oxidative modification of proteins, which was paralleled by suppression of antioxidant activity in rat serum and cerebral cortex.

  4. Regulation of cerebral cortex development by Rho GTPases: insights from in vivo studies

    PubMed Central

    Azzarelli, Roberta; Kerloch, Thomas; Pacary, Emilie

    2015-01-01

    The cerebral cortex is the site of higher human cognitive and motor functions. Histologically, it is organized into six horizontal layers, each containing unique populations of molecularly and functionally distinct excitatory projection neurons and inhibitory interneurons. The stereotyped cellular distribution of cortical neurons is crucial for the formation of functional neural circuits and it is predominantly established during embryonic development. Cortical neuron development is a multiphasic process characterized by sequential steps of neural progenitor proliferation, cell cycle exit, neuroblast migration and neuronal differentiation. This series of events requires an extensive and dynamic remodeling of the cell cytoskeleton at each step of the process. As major regulators of the cytoskeleton, the family of small Rho GTPases has been shown to play essential functions in cerebral cortex development. Here we review in vivo findings that support the contribution of Rho GTPases to cortical projection neuron development and we address their involvement in the etiology of cerebral cortex malformations. PMID:25610373

  5. Altered neurochemical profile in the McGill-R-Thy1-APP rat model of Alzheimer's disease: a longitudinal in vivo 1 H MRS study.

    PubMed

    Nilsen, Linn H; Melø, Torun M; Saether, Oddbjørn; Witter, Menno P; Sonnewald, Ursula

    2012-11-01

    We investigated metabolite levels during the progression of pathology in McGill-R-Thy1-APP rats, a transgenic animal model of Alzheimer's disease, and in healthy age-matched controls. Rats were subjected to in vivo (1) H magnetic resonance spectroscopy (MRS) of the dorsal hippocampus at age 3, 9 and 12 months and of frontal cortex at 9 and 12 months. At 3 months, a stage in which only Aβ oligomers are present, lower glutamate, myo-inositol and total choline content were apparent in McGill-R-Thy1-APP rats. At age 9 months, lower levels of glutamate, GABA, N-acetylaspartate and total choline and elevated myo-inositol and taurine were found in dorsal hippocampus, whereas lower levels of glutamate, GABA, glutamine and N-acetylaspartate were found in frontal cortex. At age 12 months, only the taurine level was significantly different in dorsal hippocampus, whereas taurine, myo-inositol, N-acetylaspartate and total creatine levels were significantly higher in frontal cortex. McGill-R-Thy1-APP rats did not show the same changes in metabolite levels with age as displayed in the controls, and overall, prominent and complex metabolite differences were evident in this transgenic rat model of Alzheimer's disease. The findings also demonstrate that in vivo (1) H MRS is a powerful tool to investigate disease-related metabolite changes in the brain. © 2012 The Authors Journal of Neurochemistry © 2012 International Society for Neurochemistry.

  6. Effects of acute administration of ethanol on the rat adrenal cortex.

    PubMed

    Milovanović, Tatjana; Budec, Mirela; Balint-Perić, Ljiljana; Koko, Vesna; Todorović, Vera

    2003-09-01

    The purpose of this study was to investigate the effect of a single dose of ethanol on rat adrenal cortex and to determine whether the estrous cycle can influence this effect of ethanol. Adult female Wistar rats showing proestrus or diestrus Day 1 (n = 12) were treated intraperitoneally with ethanol (4 g/kg body weight). Untreated (n = 15) and saline-injected (n = 14) rats were used as controls. The animals were sacrificed by decapitation 0.5 hour after ethanol administration. Stereological analysis was performed on paraffin sections of adrenal glands stained with AZAN, and the following parameters were determined: absolute volume of the zona glomerulosa, the zona fasciculata and the zona reticularis, numerical density, volume and the mean diameter of adrenocortical cells and of their nuclei, and diameter and length of capillaries. The diameter and volume of adrenocortical cells in the zona fasciculata and the zona reticularis were significantly increased by acute ethanol treatment at proestrus. In the same group of animals, a single dose of ethanol induced significant decrease in numerical density of adrenocortical cells and of their nuclei in all three zones. Increased length of capillaries of the zona fasciculata as well as enhanced level of serum corticosterone was found in ethanol-treated rats at both phases of the estrous cycle, proestrus and diestrus Day 1. The obtained results indicate that a single dose of ethanol activates adrenal cortex in female rats and that the effect is more pronounced on morphometric parameters at proestrus.

  7. Studies on reproductive toxicity of iloprost in rats, rabbits and monkeys.

    PubMed

    Battenfeld, R; Schuh, W; Schöbel, C

    1995-08-01

    A reproduction toxicological test program was performed with the carbaprostacyclin derivative iloprost, an analogue to the endogenous prostacyclin PGI2, in order to detect possible effects on fertility and reproductive performance, on preimplantational, embryonal and fetal development, on delivery as well as on lactation and postpartum development. While in humans iloprost is administered as an i.v. infusion for 6 h/day, it was administered i.v. to rats, rabbits and monkeys by continuous infusion with a subcutaneously implanted pump. No influence on mating or reproductive parameters was found after treatment of male or female rats during the premating phase up to day 7 post coitum (p.c.). Embryonal and fetal development were not remarkably impaired in rabbits or monkeys after treatment throughout the period of organogenesis. The only remarkable observations in the embryotoxicity and peri-/postnatal studies in the rat were defects on the digits (reductions of phalangeal structures) in single individuals. These malformations were interpreted as resulting from a compound-related hypotonia with subsequent change in the regional blood flow and the consequence of temporary impairments of placental blood supply leading to hypoxia in the affected structures.

  8. Cortical Development Requires Mesodermal Expression of Tbx1, a Gene Haploinsufficient in 22q11.2 Deletion Syndrome.

    PubMed

    Flore, Gemma; Cioffi, Sara; Bilio, Marchesa; Illingworth, Elizabeth

    2017-03-01

    In mammals, proper temporal control of neurogenesis and neural migration during embryonic development ensures correct formation of the cerebral cortex. Changes in the distribution of cortical projection neurons and interneurons are associated with behavioral disorders and psychiatric diseases, including schizophrenia and autism, suggesting that disrupted cortical connectivity contributes to the brain pathology. TBX1 is the major candidate gene for 22q11.2 deletion syndrome (22q11.2DS), a chromosomal deletion disorder characterized by a greatly increased risk for schizophrenia. We have previously shown that Tbx1 heterozygous mice have reduced prepulse inhibition, a behavioral abnormality that is associated with 22q11.2DS and nonsyndromic schizophrenia. Here, we show that loss of Tbx1 disrupts corticogenesis in mice by promoting premature neuronal differentiation in the medio-lateral embryonic cortex, which gives rise to the somatosensory cortex (S1). In addition, we found altered polarity in both radially migrating excitatory neurons and tangentially migrating inhibitory interneurons. Together, these abnormalities lead to altered lamination in the S1 at the terminal stages of corticogenesis in Tbx1 null mice and similar anomalies in Tbx1 heterozygous adult mice. Finally, we show that mesoderm-specific inactivation of Tbx1 is sufficient to recapitulate the brain phenotype indicating that Tbx1 exerts a cell nonautonomous role in cortical development from the mesoderm. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  9. Switch-Task Performance in Rats Is Disturbed by 12 h of Sleep Deprivation But Not by 12 h of Sleep Fragmentation

    PubMed Central

    Leenaars, Cathalijn H.C.; Joosten, Ruud N.J.M.A.; Zwart, Allard; Sandberg, Hans; Ruimschotel, Emma; Hanegraaf, Maaike A.J.; Dematteis, Maurice; Feenstra, Matthijs G.P.; van Someren, Eus J.W.

    2012-01-01

    Study Objectives: Task-switching is an executive function involving the prefrontal cortex. Switching temporarily attenuates the speed and/or accuracy of performance, phenomena referred to as switch costs. In accordance with the idea that prefrontal function is particularly sensitive to sleep loss, switch-costs increase during prolonged waking in humans. It has been difficult to investigate the underlying neurobiological mechanisms because of the lack of a suitable animal model. Here, we introduce the first switch-task for rats and report the effects of sleep deprivation and inactivation of the medial prefrontal cortex. Design: Rats were trained to repeatedly switch between 2 stimulus-response associations, indicated by the presentation of a visual or an auditory stimulus. These stimulus-response associations were offered in blocks, and performance was compared for the first and fifth trials of each block. Performance was tested after exposure to 12 h of total sleep deprivation, sleep fragmentation, and their respective movement control conditions. Finally, it was tested after pharmacological inactivation of the medial prefrontal cortex. Settings: Controlled laboratory settings. Participants: 15 male Wistar rats. Measurements & Results: Both accuracy and latency showed switch-costs at baseline. Twelve hours of total sleep deprivation, but not sleep fragmentation, impaired accuracy selectively on the switch-trials. Inactivation of the medial prefrontal cortex by local neuronal inactivation resulted in an overall decrease in accuracy. Conclusions: We developed and validated a switch-task that is sensitive to sleep deprivation. This introduces the possibility for in-depth investigations on the neurobiological mechanisms underlying executive impairments after sleep disturbance in a rat model. Citation: Leenaars CHC; Joosten RNJMA; Zwart A; Sandberg H; Ruimschotel E; Hanegraaf MAJ; Dematteis M; Feenstra MGP; van Someren EJW. Switch-task performance in rats is disturbed by 12 h of sleep deprivation but not by 12 h of sleep fragmentation. SLEEP 2012;35(2):211-221. PMID:22294811

  10. Early growth hormone (GH) treatment promotes relevant motor functional improvement after severe frontal cortex lesion in adult rats.

    PubMed

    Heredia, Margarita; Fuente, A; Criado, J; Yajeya, J; Devesa, J; Riolobos, A S

    2013-06-15

    A number of studies, in animals and humans, describe the positive effects of the growth hormone (GH) treatment combined with rehabilitation on brain reparation after brain injury. We examined the effect of GH treatment and rehabilitation in adult rats with severe frontal motor cortex ablation. Thirty-five male rats were trained in the paw-reaching-for-food task and the preferred forelimb was recorded. Under anesthesia, the motor cortex contralateral to the preferred forelimb was aspirated or sham-operated. Animals were then treated with GH (0.15 mg/kg/day, s.c) or vehicle during 5 days, commencing immediately or 6 days post-lesion. Rehabilitation was applied at short- and long-term after GH treatment. Behavioral data were analized by ANOVA following Bonferroni post hoc test. After sacrifice, immunohistochemical detection of glial fibrillary acid protein (GFAP) and nestin were undertaken in the brain of all groups. Animal group treated with GH immediately after the lesion, but not any other group, showed a significant improvement of the motor impairment induced by the motor lesion, and their performances in the motor test were no different from sham-operated controls. GFAP immunolabeling and nestin immunoreactivity were observed in the perilesional area in all injured animals; nestin immunoreactivity was higher in GH-treated injured rats (mainly in animals GH-treated 6 days post-lesion). GFAP immunoreactivity was similar among injured rats. Interestingly, nestin re-expression was detected in the contralateral undamaged motor cortex only in GH-treated injured rats, being higher in animals GH-treated immediately after the lesion than in animals GH-treated 6 days post-lesion. Early GH treatment induces significant recovery of the motor impairment produced by frontal cortical ablation. GH effects include increased neurogenesis for reparation (perilesional area) and for increased brain plasticity (contralateral motor area). Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Curcumin administration suppress acetylcholinesterase gene expression in cadmium treated rats.

    PubMed

    Akinyemi, Ayodele Jacob; Oboh, Ganiyu; Fadaka, Adewale Oluwaseun; Olatunji, Babawale Peter; Akomolafe, Seun

    2017-09-01

    Curcumin, the main polyphenolic component of turmeric (Curcuma longa) rhizomes have been reported to exert anticholinesterase potential with limited information on how they regulate acetylcholinesterase (AChE) gene expression. Hence, this study sought to evaluate the effect of curcumin on cerebral cortex acetylcholinesterase (AChE) activity and their mRNA gene expression level in cadmium (Cd)-treated rats. Furthermore, in vitro effect of different concentrations of curcumin (1-5μg/mL) on rat cerebral cortex AChE activity was assessed. Animals were divided into six groups (n=6): group 1 serve as control (without Cd) and receive saline/vehicle, group 2 receive saline plus curcumin at 25mg/kg, group 3 receive saline plus curcumin 50mg/kg, group 4 receive Cd plus vehicle, group 5 receive Cd plus curcumin at 25mg/kg and group 6 receive Cd plus curcumin at 50mg/kg. Rats received Cd (2.5mg/kg) and curcumin (25 and 50mg/kg, respectively) by oral gavage for 7days. Acetylcholinesterase activity was measured by Ellman's method and AChE expression was carried out by a quantitative reverse transcriptase polymerase chain reaction (RT-qPCR) assay. We observed that acute administration of Cd increased acetylcholinesterase activity and in addition caused a significant (P<0.05) increase in AChE mRNA levels in whole cerebral cortex when compared to control group. However, co-treatment with curcumin inhibited AChE activity and alters AChE mRNA levels when compared to Cd-treated group. In addition, curcumin inhibits rat cerebral cortex AChE activity in vitro. In conclusion, curcumin exhibit anti-acetylcholinesterase activity and suppressed AChE mRNA gene expression level in Cd exposed rats, thus providing some biochemical and molecular evidence on the therapeutic effect of this turmeric-derived compound in treating neurological disorders including Alzheimer's disease. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Safflower and olive oil dietary treatments rescue aberrant embryonic arachidonic acid and nitric oxide metabolism and prevent diabetic embryopathy in rats.

    PubMed

    Higa, R; White, V; Martínez, N; Kurtz, M; Capobianco, E; Jawerbaum, A

    2010-04-01

    Aberrant arachidonic acid and nitric oxide (NO) metabolic pathways are involved in diabetic embryopathy. Previous works have found diminished concentrations of PGE(2) and PGI(2) in embryos from diabetic rats, and that PGI(2) is capable of increasing embryonic PGE(2) concentrations through the activation of the nuclear receptor PPARdelta. PPARdelta activators are lipid molecules such as oleic and linoleic acids, present in high concentrations in olive and safflower oils, respectively. The aim of this study was to analyze the capability of dietary supplementation with either 6% olive or 6% safflower oils to regulate PGE(2), PGI(2) and NO concentrations in embryos and deciduas from control and diabetic rats during early organogenesis. Diabetes was induced by a single injection of streptozotocin (55 mg/kg) 1 week before mating. Animals were fed with the oil-supplemented diets from Days 0.5 to 10.5 of gestation. PGI(2) and PGE(2) were measured by EIA and NO through the evaluation of its stable metabolites nitrates-nitrites in 10.5 day embryos and deciduas. We found that the olive and safflower oil-supplemented treatments highly reduced resorption and malformation rates in diabetic animals, and that they were able to prevent maternal diabetes-induced alterations in embryonic and decidual PGI(2) and PGE(2) concentrations. Moreover, these dietary treatments prevented NO overproduction in embryos and deciduas from diabetic rats. These data indicate that in maternal diabetes both the embryo and the decidua benefit from the olive and safflower oil supplementation probably through mechanisms that involve the rescue of aberrant prostaglandin and NO generation and that prevent developmental damage during early organogenesis.

  13. Maternal hyperthyroidism increases the prevalence of foregut atresias in fetal rats exposed to adriamycin.

    PubMed

    Fragoso, Ana Catarina; Martinez, Leopoldo; Estevão-Costa, José; Tovar, Juan A

    2014-02-01

    Gastrointestinal malformations such as esophageal atresia with tracheoesophageal fistula (EA/TEF) and duodenal atresia (DA) have been reported in infants born to hyperthyroid mothers or with congenital hypothyroidism. The present study aimed to test whether maternal thyroid status during embryonic foregut division has any influence on the prevalence of EA/TEF and DA in an accepted rat model of these malformations. Pregnant rats received either vehicle or 1.75 mg/kg i.p. adriamycin on gestational days 7, 8 and 9. Transient maternal hyper or hypothyroidism was induced by oral administration of levothyroxine (LT4, 50 μg/kg/day) or propylthiouracil (PTU, 2 mg/kg/day), respectively, on days 7 to 12 of gestation. Plasma cholesterol, total T3, free T4 and TSH were measured at gestational days 7, 12, and 21. At the end of gestation, the mothers were sacrificed and embryo-fetal mortality was recorded. Fetuses were dissected to determine the prevalence of esophageal and intestinal atresias. At gestational day 12, mothers treated with LT4 or PTU had hyper or hypothyroid status, respectively; plasma cholesterol levels were similar. In the adriamycin-exposed fetuses from hyperthyroid mothers, the embryonal resorption rate and the prevalence of both EA/TEF and DA were significantly higher than in the other groups; maternal hypothyroidism during the same period did not have significant effect on the prevalence of atresias. Maternal hyperthyroidism during the embryonic window corresponding to foregut cleavage increased the prevalence of both EA/TEF and duodenal atresia in fetal rats exposed to adriamycin. This suggests that maternal thyroid hormone status might be involved in the pathogenesis of foregut atresias and invites further research on this likely clinically relevant issue in humans.

  14. Brain processing of biologically relevant odors in the awake rat, as revealed by manganese-enhanced MRI.

    PubMed

    Lehallier, Benoist; Rampin, Olivier; Saint-Albin, Audrey; Jérôme, Nathalie; Ouali, Christian; Maurin, Yves; Bonny, Jean-Marie

    2012-01-01

    So far, an overall view of olfactory structures activated by natural biologically relevant odors in the awake rat is not available. Manganese-enhanced MRI (MEMRI) is appropriate for this purpose. While MEMRI has been used for anatomical labeling of olfactory pathways, functional imaging analyses have not yet been performed beyond the olfactory bulb. Here, we have used MEMRI for functional imaging of rat central olfactory structures and for comparing activation maps obtained with odors conveying different biological messages. Odors of male fox feces and of chocolate flavored cereals were used to stimulate conscious rats previously treated by intranasal instillation of manganese (Mn). MEMRI activation maps showed Mn enhancement all along the primary olfactory cortex. Mn enhancement elicited by male fox feces odor and to a lesser extent that elicited by chocolate odor, differed from that elicited by deodorized air. This result was partly confirmed by c-Fos immunohistochemistry in the piriform cortex. By providing an overall image of brain structures activated in awake rats by odorous stimulation, and by showing that Mn enhancement is differently sensitive to different stimulating odors, the present results demonstrate the interest of MEMRI for functional studies of olfaction in the primary olfactory cortex of laboratory small animals, under conditions close to natural perception. Finally, the factors that may cause the variability of the MEMRI signal in response to different odor are discussed.

  15. Redox Status and Neuro Inflammation Indexes in Cerebellum and Motor Cortex of Wistar Rats Supplemented with Natural Sources of Omega-3 Fatty Acids and Astaxanthin: Fish Oil, Krill Oil, and Algal Biomass.

    PubMed

    Polotow, Tatiana G; Poppe, Sandra C; Vardaris, Cristina V; Ganini, Douglas; Guariroba, Maísa; Mattei, Rita; Hatanaka, Elaine; Martins, Maria F; Bondan, Eduardo F; Barros, Marcelo P

    2015-09-28

    Health authorities worldwide have consistently recommended the regular consumption of marine fishes and seafood to preserve memory, sustain cognitive functions, and prevent neurodegenerative processes in humans. Shrimp, crabs, lobster, and salmon are of particular interest in the human diet due to their substantial provision of omega-3 fatty acids (n-3/PUFAs) and the antioxidant carotenoid astaxanthin (ASTA). However, the optimal ratio between these nutraceuticals in natural sources is apparently the key factor for maximum protection against most neuro-motor disorders. Therefore, we aimed here to investigate the effects of a long-term supplementation with (n-3)/PUFAs-rich fish oil, ASTA-rich algal biomass, the combination of them, or krill oil (a natural combination of both nutrients) on baseline redox balance and neuro-inflammation indexes in cerebellum and motor cortex of Wistar rats. Significant changes in redox metabolism were only observed upon ASTA supplementation, which reinforce its antioxidant properties with a putative mitochondrial-centered action in rat brain. Krill oil imposed mild astrocyte activation in motor cortex of Wistar rats, although no redox or inflammatory index was concomitantly altered. In summary, there is no experimental evidence that krill oil, fish oil, oralgal biomass (minor variation), drastically change the baseline oxidative conditions or the neuro-inflammatory scenario in neuromotor-associated rat brain regions.

  16. Effect of boric acid on oxidative stress in rats with fetal alcohol syndrome

    PubMed Central

    SOGUT, IBRAHIM; OGLAKCI, AYSEGUL; KARTKAYA, KAZIM; OL, KEVSER KUSAT; SOGUT, MELIS SAVASAN; KANBAK, GUNGOR; INAL, MINE ERDEN

    2015-01-01

    To the best of our knowledge, this is the first study concerning the effect of boric acid (BA) administration on fetal alcohol syndrome (FAS). In this study, the aim was to investigate prenatal alcohol-induced oxidative stress on the cerebral cortex of newborn rat pups and assess the protective and beneficial effects of BA supplementation on rats with FAS. Pregnant rats were divided into three groups, namely the control, alcohol and alcohol + boric acid groups. As markers of alcohol-induced oxidative stress in the cerebral cortex of the newborn pups, malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) levels were measured. Although the MDA levels in the alcohol group were significantly increased compared with those in the control group (P<0.05), the MDA level in the alcohol + boric acid group was shown to be significantly decreased compared with that in the alcohol group (P<0.01). The CAT activity of the alcohol + boric acid group was significantly higher than that in the alcohol group (P<0.05). The GPx activity in the alcohol group was decreased compared with that in the control group (P<0.05). These results demonstrate that alcohol is capable of triggering damage to membranes of the cerebral cortex of rat pups and BA could be influential in antioxidant mechanisms against oxidative stress resulting from prenatal alcohol exposure. PMID:25667671

  17. Effect of boric acid on oxidative stress in rats with fetal alcohol syndrome.

    PubMed

    Sogut, Ibrahim; Oglakci, Aysegul; Kartkaya, Kazim; Ol, Kevser Kusat; Sogut, Melis Savasan; Kanbak, Gungor; Inal, Mine Erden

    2015-03-01

    To the best of our knowledge, this is the first study concerning the effect of boric acid (BA) administration on fetal alcohol syndrome (FAS). In this study, the aim was to investigate prenatal alcohol-induced oxidative stress on the cerebral cortex of newborn rat pups and assess the protective and beneficial effects of BA supplementation on rats with FAS. Pregnant rats were divided into three groups, namely the control, alcohol and alcohol + boric acid groups. As markers of alcohol-induced oxidative stress in the cerebral cortex of the newborn pups, malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) levels were measured. Although the MDA levels in the alcohol group were significantly increased compared with those in the control group (P<0.05), the MDA level in the alcohol + boric acid group was shown to be significantly decreased compared with that in the alcohol group (P<0.01). The CAT activity of the alcohol + boric acid group was significantly higher than that in the alcohol group (P<0.05). The GPx activity in the alcohol group was decreased compared with that in the control group (P<0.05). These results demonstrate that alcohol is capable of triggering damage to membranes of the cerebral cortex of rat pups and BA could be influential in antioxidant mechanisms against oxidative stress resulting from prenatal alcohol exposure.

  18. Progesterone induces the growth and infiltration of human astrocytoma cells implanted in the cerebral cortex of the rat.

    PubMed

    Germán-Castelán, Liliana; Manjarrez-Marmolejo, Joaquín; González-Arenas, Aliesha; González-Morán, María Genoveva; Camacho-Arroyo, Ignacio

    2014-01-01

    Progesterone (P4) promotes cell proliferation in several types of cancer, including brain tumors such as astrocytomas, the most common and aggressive primary intracerebral neoplasm in humans. In this work, we studied the effects of P4 and its intracellular receptor antagonist, RU486, on growth and infiltration of U373 cells derived from a human astrocytoma grade III, implanted in the motor cortex of adult male rats, using two treatment schemes. In the first one, fifteen days after cells implantation, rats were daily subcutaneously treated with vehicle (propylene glycol, 160  μ L), P4 (1 mg), RU486 (5 mg), or P4 + RU486 (1 mg and 5 mg, resp.) for 21 days. In the second one, treatments started 8 weeks after cells implantation and lasted for 14 days. In both schemes we found that P4 significantly increased the tumor area as compared with the rest of the treatments, whereas RU486 blocked P4 effects. All rats treated with P4 showed tumor infiltration, while 28.6% and 42.9% of the animals treated with RU486 and P4 + RU486, respectively, presented it. Our data suggest that P4 promotes growth and migration of human astrocytoma cells implanted in the motor cortex of the rat through the interaction with its intracellular receptor.

  19. Progesterone Induces the Growth and Infiltration of Human Astrocytoma Cells Implanted in the Cerebral Cortex of the Rat

    PubMed Central

    Germán-Castelán, Liliana; Manjarrez-Marmolejo, Joaquín; González-Arenas, Aliesha; González-Morán, María Genoveva; Camacho-Arroyo, Ignacio

    2014-01-01

    Progesterone (P4) promotes cell proliferation in several types of cancer, including brain tumors such as astrocytomas, the most common and aggressive primary intracerebral neoplasm in humans. In this work, we studied the effects of P4 and its intracellular receptor antagonist, RU486, on growth and infiltration of U373 cells derived from a human astrocytoma grade III, implanted in the motor cortex of adult male rats, using two treatment schemes. In the first one, fifteen days after cells implantation, rats were daily subcutaneously treated with vehicle (propylene glycol, 160 μL), P4 (1 mg), RU486 (5 mg), or P4 + RU486 (1 mg and 5 mg, resp.) for 21 days. In the second one, treatments started 8 weeks after cells implantation and lasted for 14 days. In both schemes we found that P4 significantly increased the tumor area as compared with the rest of the treatments, whereas RU486 blocked P4 effects. All rats treated with P4 showed tumor infiltration, while 28.6% and 42.9% of the animals treated with RU486 and P4 + RU486, respectively, presented it. Our data suggest that P4 promotes growth and migration of human astrocytoma cells implanted in the motor cortex of the rat through the interaction with its intracellular receptor. PMID:24982875

  20. Distinct roles of hippocampus and medial prefrontal cortex in spatial and nonspatial memory.

    PubMed

    Sapiurka, Maya; Squire, Larry R; Clark, Robert E

    2016-12-01

    In earlier work, patients with hippocampal damage successfully path integrated, apparently by maintaining spatial information in working memory. In contrast, rats with hippocampal damage were unable to path integrate, even when the paths were simple and working memory might have been expected to support performance. We considered possible ways to understand these findings. We tested rats with either hippocampal lesions or lesions of medial prefrontal cortex (mPFC) on three tasks of spatial or nonspatial memory: path integration, spatial alternation, and a nonspatial alternation task. Rats with mPFC lesions were impaired on both spatial and nonspatial alternation but performed normally on path integration. By contrast, rats with hippocampal lesions were impaired on path integration and spatial alternation but performed normally on nonspatial alternation. We propose that rodent neocortex is limited in its ability to construct a coherent spatial working memory of complex environments. Accordingly, in tasks such as path integration and spatial alternation, working memory cannot depend on neocortex alone. Rats may accomplish many spatial memory tasks by relying on long-term memory. Alternatively, they may accomplish these tasks within working memory through sustained coordination between hippocampus and other cortical brain regions such as mPFC, in the case of spatial alternation, or parietal cortex in the case of path integration. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  1. Motor Skills Training Improves Sensorimotor Dysfunction and Increases Microtubule-Associated Protein 2 mRNA Expression in Rats with Intracerebral Hemorrhage.

    PubMed

    Tamakoshi, Keigo; Kawanaka, Kentaro; Onishi, Hideaki; Takamatsu, Yasuyuki; Ishida, Kazuto

    2016-08-01

    In this study, we examined the effects of motor skills training on the sensorimotor function and the expression of genes associated with synaptic plasticity after intracerebral hemorrhage (ICH) in rats. Male Wistar rats were subjected to ICH or sham operation. ICH was caused by the injection of collagenase into the left striatum. Rats were randomly assigned to no training, acrobatic training, and sham groups. The acrobatic group performed 5 types of acrobatic tasks from 4 to 28 days after surgery. The forelimb sensorimotor function was evaluated over time using forepaw grasping, forelimb placing, and postural instability tests. At 14 and 29 days after the lesion, we analyzed the mRNA expression levels of microtubule-associated protein 2 (MAP2), brain-derived neurotrophic factor, and growth-associated protein 43 in the bilateral sensorimotor cortex (forelimb area) by real-time reverse transcription-polymerase chain reaction. Motor skills training in ICH rats improved the sensorimotor dysfunction significantly from the early phase. The mRNA expression level of MAP2 was upregulated in the ipsilesional sensorimotor cortex by motor skills training at 29 days after the lesion. Our results suggest that sensorimotor functional recovery following motor skills training after ICH is promoted by dendritic growth in the ipsilesional sensorimotor cortex. Copyright © 2016 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  2. Inactivation of the Infralimbic but Not the Prelimbic Cortex Impairs Consolidation and Retrieval of Fear Extinction

    ERIC Educational Resources Information Center

    Laurent, Vincent; Westbrook, R. Frederick

    2009-01-01

    Rats were subjected to one or two cycles of context fear conditioning and extinction to study the roles of the prelimbic cortex (PL) and infralimbic cortex (IL) in learning and relearning to inhibit fear responses. Inactivation of the PL depressed fear responses across the first or second extinction but did not impair learning or relearning fear…

  3. Reorganization of Motor Cortex by Vagus Nerve Stimulation Requires Cholinergic Innervation.

    PubMed

    Hulsey, Daniel R; Hays, Seth A; Khodaparast, Navid; Ruiz, Andrea; Das, Priyanka; Rennaker, Robert L; Kilgard, Michael P

    2016-01-01

    Vagus nerve stimulation (VNS) paired with forelimb training drives robust, specific reorganization of movement representations in the motor cortex. The mechanisms that underlie VNS-dependent enhancement of map plasticity are largely unknown. The cholinergic nucleus basalis (NB) is a critical substrate in cortical plasticity, and several studies suggest that VNS activates cholinergic circuitry. We examined whether the NB is required for VNS-dependent enhancement of map plasticity in the motor cortex. Rats were trained to perform a lever pressing task and then received injections of the immunotoxin 192-IgG-saporin to selectively lesion cholinergic neurons of the NB. After lesion, rats underwent five days of motor training during which VNS was paired with successful trials. At the conclusion of behavioral training, intracortical microstimulation was used to document movement representations in motor cortex. VNS paired with forelimb training resulted in a substantial increase in the representation of proximal forelimb in rats with an intact NB compared to untrained controls. NB lesions prevent this VNS-dependent increase in proximal forelimb area and result in representations similar to untrained controls. Motor performance was similar between groups, suggesting that differences in forelimb function cannot account for the difference in proximal forelimb representation. Together, these findings indicate that the NB is required for VNS-dependent enhancement of plasticity in the motor cortex and may provide insight into the mechanisms that underlie the benefits of VNS therapy. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Stereotactically-guided Ablation of the Rat Auditory Cortex, and Localization of the Lesion in the Brain.

    PubMed

    Lamas, Verónica; Estévez, Sheila; Pernía, Marianni; Plaza, Ignacio; Merchán, Miguel A

    2017-10-11

    The rat auditory cortex (AC) is becoming popular among auditory neuroscience investigators who are interested in experience-dependence plasticity, auditory perceptual processes, and cortical control of sound processing in the subcortical auditory nuclei. To address new challenges, a procedure to accurately locate and surgically expose the auditory cortex would expedite this research effort. Stereotactic neurosurgery is routinely used in pre-clinical research in animal models to engraft a needle or electrode at a pre-defined location within the auditory cortex. In the following protocol, we use stereotactic methods in a novel way. We identify four coordinate points over the surface of the temporal bone of the rat to define a window that, once opened, accurately exposes both the primary (A1) and secondary (Dorsal and Ventral) cortices of the AC. Using this method, we then perform a surgical ablation of the AC. After such a manipulation is performed, it is necessary to assess the localization, size, and extension of the lesions made in the cortex. Thus, we also describe a method to easily locate the AC ablation postmortem using a coordinate map constructed by transferring the cytoarchitectural limits of the AC to the surface of the brain.The combination of the stereotactically-guided location and ablation of the AC with the localization of the injured area in a coordinate map postmortem facilitates the validation of information obtained from the animal, and leads to a better analysis and comprehension of the data.

  5. [The effect of hyperthyroidism on the cognition processes and the state of the glial intermediate filaments in the rat brain].

    PubMed

    Nedzvets'kyĭ, V S; Nerush, P O

    2010-01-01

    The effects of hyperthyreosis on oxidative stress, state of glial intermediate filaments and memory were investigated. We observed a significant increase in lipid peroxidation products into both hippocampus and cortex and memory worsening. The changes of GFAP polypeptides was observed in hippocampus and cortex. In group of rats with hyperthyreosis, the content of GFAP in both soluble and filamentous fractions was increased in hippocampus. This data shows, that glial cytoskeleton is reconstructed under thyroid hormone effects.

  6. The Functional Organization and Cortical Connections of Motor Cortex in Squirrels

    PubMed Central

    Cooke, Dylan F.; Padberg, Jeffrey; Zahner, Tony

    2012-01-01

    Despite extraordinary diversity in the rodent order, studies of motor cortex have been limited to only 2 species, rats and mice. Here, we examine the topographic organization of motor cortex in the Eastern gray squirrel (Sciurus carolinensis) and cortical connections of motor cortex in the California ground squirrel (Spermophilus beecheyi). We distinguish a primary motor area, M1, based on intracortical microstimulation (ICMS), myeloarchitecture, and patterns of connectivity. A sensorimotor area between M1 and the primary somatosensory area, S1, was also distinguished based on connections, functional organization, and myeloarchitecture. We term this field 3a based on similarities with area 3a in nonrodent mammals. Movements are evoked with ICMS in both M1 and 3a in a roughly somatotopic pattern. Connections of 3a and M1 are distinct and suggest the presence of a third far rostral field, termed “F,” possibly involved in motor processing based on its connections. We hypothesize that 3a is homologous to the dysgranular zone (DZ) in S1 of rats and mice. Our results demonstrate that squirrels have both similar and unique features of M1 organization compared with those described in rats and mice, and that changes in 3a/DZ borders appear to have occurred in both lineages. PMID:22021916

  7. Exposure to a mildly aversive early life experience leads to prefrontal cortex deficits in the rat.

    PubMed

    Stamatakis, Antonios; Manatos, Vasileios; Kalpachidou, Theodora; Stylianopoulou, Fotini

    2016-11-01

    Aversive early life experiences in humans have been shown to result in deficits in the function of the prefrontal cortex (PFC). In an effort to elucidate possible neurobiological mechanisms involved, we investigated in rats, the effects of a mildly aversive early experience on PFC structure and function. The early experience involved exposure of rat pups during postnatal days (PND) 10-13 to a T-maze in which they search for their mother, but upon finding her are prohibited contact with her, thus being denied the expected reward (DER). We found that the DER experience resulted in adulthood in impaired PFC function, as assessed by two PFC-dependent behavioral tests [attention set-shifting task (ASST) and fear extinction]. In the ASST, DER animals showed deficits specifically in the intra-dimensional reversal shifts and a lower activation-as determined by c-Fos immunohistochemistry-of the medial orbital cortex (MO), a PFC subregion involved in this aspect of the task. Furthermore, the DER experience resulted in decreased glutamatergic neuron and dendritic spine density in the MO and infralimbic cortex (IL) in the adult brain. The decreased neuronal density was detected as early as PND12 and was accompanied by increased micro- and astroglia-density in the MO/IL.

  8. Exposure to Inorganic Mercury Causes Oxidative Stress, Cell Death, and Functional Deficits in the Motor Cortex.

    PubMed

    Teixeira, Francisco B; de Oliveira, Ana C A; Leão, Luana K R; Fagundes, Nathália C F; Fernandes, Rafael M; Fernandes, Luanna M P; da Silva, Márcia C F; Amado, Lilian L; Sagica, Fernanda E S; de Oliveira, Edivaldo H C; Crespo-Lopez, Maria E; Maia, Cristiane S F; Lima, Rafael R

    2018-01-01

    Mercury is a toxic metal that can be found in the environment in three different forms - elemental, organic and inorganic. Inorganic mercury has a lower liposolubility, which results in a lower organism absorption and reduced passage through the blood-brain barrier. For this reason, exposure models that use inorganic mercury in rats in order to evaluate its effects on the central nervous system are rare, especially in adult subjects. This study investigated if a chronic exposure to low doses of mercury chloride (HgCl2), an inorganic form of mercury, is capable of promoting motor alterations and neurodegenerative in the motor cortex of adult rats. Forty animals were exposed to a dose of 0.375 mg/kg/day, for 45 days. They were then submitted to motor evaluation and euthanized to collect the motor cortex. Measurement of mercury deposited in the brain parenchyma, evaluation of oxidative balance, quantification of cellular cytotoxicity and apoptosis and density of mature neurons and astrocytes of the motor cortex were performed. It was observed that chronic exposure to inorganic mercury caused a decrease in balance and fine motor coordination, formation of mercury deposits and oxidative stress verified by the increase of lipoperoxidation and nitrite concentration and a decrease of the total antioxidant capacity. In addition, we found that this model of exposure to inorganic mercury caused cell death by cytotoxicity and induction of apoptosis with a decreased number of neurons and astrocytes in the motor cortex. Our results provide evidence that exposure to inorganic mercury in low doses, even in spite of its poor ability to cross biological barriers, is still capable of inducing motor deficits, cell death by cytotoxicity and apoptosis, and oxidative stress in the motor cortex of adult rats.

  9. Characterizing synaptic protein development in human visual cortex enables alignment of synaptic age with rat visual cortex

    PubMed Central

    Pinto, Joshua G. A.; Jones, David G.; Williams, C. Kate; Murphy, Kathryn M.

    2015-01-01

    Although many potential neuroplasticity based therapies have been developed in the lab, few have translated into established clinical treatments for human neurologic or neuropsychiatric diseases. Animal models, especially of the visual system, have shaped our understanding of neuroplasticity by characterizing the mechanisms that promote neural changes and defining timing of the sensitive period. The lack of knowledge about development of synaptic plasticity mechanisms in human cortex, and about alignment of synaptic age between animals and humans, has limited translation of neuroplasticity therapies. In this study, we quantified expression of a set of highly conserved pre- and post-synaptic proteins (Synapsin, Synaptophysin, PSD-95, Gephyrin) and found that synaptic development in human primary visual cortex (V1) continues into late childhood. Indeed, this is many years longer than suggested by neuroanatomical studies and points to a prolonged sensitive period for plasticity in human sensory cortex. In addition, during childhood we found waves of inter-individual variability that are different for the four proteins and include a stage during early development (<1 year) when only Gephyrin has high inter-individual variability. We also found that pre- and post-synaptic protein balances develop quickly, suggesting that maturation of certain synaptic functions happens within the 1 year or 2 of life. A multidimensional analysis (principle component analysis) showed that most of the variance was captured by the sum of the four synaptic proteins. We used that sum to compare development of human and rat visual cortex and identified a simple linear equation that provides robust alignment of synaptic age between humans and rats. Alignment of synaptic ages is important for age-appropriate targeting and effective translation of neuroplasticity therapies from the lab to the clinic. PMID:25729353

  10. Exposure to Inorganic Mercury Causes Oxidative Stress, Cell Death, and Functional Deficits in the Motor Cortex

    PubMed Central

    Teixeira, Francisco B.; de Oliveira, Ana C. A.; Leão, Luana K. R.; Fagundes, Nathália C. F.; Fernandes, Rafael M.; Fernandes, Luanna M. P.; da Silva, Márcia C. F.; Amado, Lilian L.; Sagica, Fernanda E. S.; de Oliveira, Edivaldo H. C.; Crespo-Lopez, Maria E.; Maia, Cristiane S. F.; Lima, Rafael R.

    2018-01-01

    Mercury is a toxic metal that can be found in the environment in three different forms – elemental, organic and inorganic. Inorganic mercury has a lower liposolubility, which results in a lower organism absorption and reduced passage through the blood–brain barrier. For this reason, exposure models that use inorganic mercury in rats in order to evaluate its effects on the central nervous system are rare, especially in adult subjects. This study investigated if a chronic exposure to low doses of mercury chloride (HgCl2), an inorganic form of mercury, is capable of promoting motor alterations and neurodegenerative in the motor cortex of adult rats. Forty animals were exposed to a dose of 0.375 mg/kg/day, for 45 days. They were then submitted to motor evaluation and euthanized to collect the motor cortex. Measurement of mercury deposited in the brain parenchyma, evaluation of oxidative balance, quantification of cellular cytotoxicity and apoptosis and density of mature neurons and astrocytes of the motor cortex were performed. It was observed that chronic exposure to inorganic mercury caused a decrease in balance and fine motor coordination, formation of mercury deposits and oxidative stress verified by the increase of lipoperoxidation and nitrite concentration and a decrease of the total antioxidant capacity. In addition, we found that this model of exposure to inorganic mercury caused cell death by cytotoxicity and induction of apoptosis with a decreased number of neurons and astrocytes in the motor cortex. Our results provide evidence that exposure to inorganic mercury in low doses, even in spite of its poor ability to cross biological barriers, is still capable of inducing motor deficits, cell death by cytotoxicity and apoptosis, and oxidative stress in the motor cortex of adult rats. PMID:29867340

  11. Dissociable contributions of the orbitofrontal and infralimbic cortex to pavlovian autoshaping and discrimination reversal learning: further evidence for the functional heterogeneity of the rodent frontal cortex.

    PubMed

    Chudasama, Y; Robbins, Trevor W

    2003-09-24

    To examine possible heterogeneity of function within the ventral regions of the rodent frontal cortex, the present study compared the effects of excitotoxic lesions of the orbitofrontal cortex (OFC) and the infralimbic cortex (ILC) on pavlovian autoshaping and discrimination reversal learning. During the pavlovian autoshaping task, in which rats learn to approach a stimulus predictive of reward [conditional stimulus (CS+)], only the OFC group failed to acquire discriminated approach but was unimpaired when preoperatively trained. In the visual discrimination learning and reversal task, rats were initially required to discriminate a stimulus positively associated with reward. There was no effect of either OFC or ILC lesions on discrimination learning. When the stimulus-reward contingencies were reversed, both groups of animals committed more errors, but only the OFC-lesioned animals were unable to suppress the previously rewarded stimulus-reward association, committing more "stimulus perseverative" errors. In contrast, the ILC group showed a pattern of errors that was more attributable to "learning" than perseveration. These findings suggest two types of dissociation between the effects of OFC and ILC lesions: (1) OFC lesions impaired the learning processes implicated in pavlovian autoshaping but not instrumental simultaneous discrimination learning, whereas ILC lesions were unimpaired at autoshaping and their reversal learning deficit did not reflect perseveration, and (2) OFC lesions induced perseverative responding in reversal learning but did not disinhibit responses to pavlovian CS-. In contrast, the ILC lesion had no effect on response inhibitory control in either of these settings. The findings are discussed in the context of dissociable executive functions in ventral sectors of the rat prefrontal cortex.

  12. Effects of analogues of substance P fragments on the MAO activity in rat brain.

    PubMed

    Turska, E; Lachowicz, L; Koziołkiewicz, W; Wasiak, T

    1985-01-01

    The influence in vitro of analogues of Sp5-11 and SP6-11 substance P fragments on the activity of monoamine oxidase (MAO) in homogenates and crude mitochondrial fractions of rat brain was examined. The rat brain was divided into: I--cerebral cortex, II--hippocampus, III--midbrain, IV--thalamus with hypothalamus, V--cerebellum and VI--medulla oblongata. The obtained results proved that the analogues of SP fragments inhibit selectively the activity of the enzyme in the homogenates of cerebral cortex, hippocampus, midbrain and cerebellum. In the crude mitochondrial fractions the applied analogues of SP fragments caused a slight increase of the enzyme activity. The most significant changes in the activity of MAO were observed in hippocampus homogenate fraction.

  13. Effect of Different Forms of Hypokinesia on the Ultrastructure of Limbic, Extrapyramidal and Neocortical Areas of the Rat Brain: Electron Microscopic Study

    NASA Astrophysics Data System (ADS)

    Zhvania, Mzia G.; Japaridze, Nadezhda J.; Ksovreli, Mariam G.

    The effect of chronic restraint stress and chronic hypokinesia "without stress" on the ultrastructure of central and lateral nuclei of amygdala, CA1 and CA3 area of the hippocampus, cingular cortex, nucleus caudatus and motor cortex of adult male rats were elucidated. In some neurons and synapses of abovementioned regions pathological modifications were revealed. More significant alterations provokes chronic restraint stress. Alterations are mostly concentrated: first—in the nuclei of amygdala, then in the CA1 and CA3 areas. Moderate alterations were observed in cingular cortex and nucleus caudatus. In comparing with it, hypokinesia "without stress" provokes only moderate modifications: predominantly in the nucleus caudatus, in lesser degree—in the hippocampus and amygdalae.

  14. Enhanced Extinction of Aversive Memories by High-Frequency Stimulation of the Rat Infralimbic Cortex

    PubMed Central

    Maroun, Mouna; Kavushansky, Alexandra; Holmes, Andrew; Wellman, Cara; Motanis, Helen

    2012-01-01

    Electrical stimulation of the rodent medial prefrontal cortex (mPFC), including the infralimbic cortex (IL), immediately prior to or during fear extinction training facilitates extinction memory. Here we examined the effects of high-frequency stimulation (HFS) of the rat IL either prior to conditioning or following retrieval of the conditioned memory, on extinction of Pavlovian fear and conditioned taste aversion (CTA). IL-HFS applied immediately after fear memory retrieval, but not three hours after retrieval or prior to conditioning, subsequently reduced freezing during fear extinction. Similarly, IL-HFS given immediately, but not three hours after, retrieval of a CTA memory reduced aversion during extinction. These data indicate that HFS of the IL may be an effective method for reducing both learned fear and learned aversion. PMID:22586453

  15. Brain-derived neurotrophic factor (BDNF) and its precursor (proBDNF) in genetically defined fear-induced aggression.

    PubMed

    Ilchibaeva, Tatiana V; Kondaurova, Elena M; Tsybko, Anton S; Kozhemyakina, Rimma V; Popova, Nina K; Naumenko, Vladimir S

    2015-09-01

    The brain-derived neurotrophic factor (BDNF), its precursor (proBDNF) and BDNF mRNA levels were studied in the brain of wild rats selectively bred for more than 70 generations for either high level or for the lack of affective aggressiveness towards man. Significant increase of BDNF mRNA level in the frontal cortex and increase of BDNF level in the hippocampus of aggressive rats was revealed. In the midbrain and hippocampus of aggressive rats proBDNF level was increased, whereas BDNF/proBDNF ratio was reduced suggesting the prevalence and increased influence of proBDNF in highly aggressive rats. In the frontal cortex, proBDNF level in aggressive rats was decreased. Thus, considerable structure-specific differences in BDNF and proBDNF levels as well as in BDNF gene expression between highly aggressive and nonaggressive rats were shown. The data suggested the implication of BDNF and its precursor proBDNF in the mechanism of aggressiveness and in the creation of either aggressive or nonaggressive phenotype. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Rat immunoreactive cholecystokinin (CCK): characterization using two chromatographic techniques.

    PubMed

    Bacarese-Hamilton, A J; Adrian, T E; Chohan, P; Bloom, S R

    1985-06-01

    Acid and neutral extracts of rat cerebral cortex and upper small intestine were prepared and the endogenous concentrations of cholecystokinin-like immunoreactivity (CCK-LI) measured by three new CCK-specific radioimmunoassays. The characterization of the immunoreactive CCK molecular forms was undertaken using gel permeation chromatography in the presence of 6 M urea to minimise problems relating to peptide adsorption or aggregation. Reverse-phase high-performance liquid chromatography (HPLC) was also performed on the rat tissue extracts. Rat cortex contained 268 +/- 12 pmol/g CCK-LI, and over 90% resembled the sulphated CCK-8, which was preferentially extracted at neutral pH. In contrast, the rat upper small intestine (97 +/- 8 pmol/g of CCK-LI) contained less than 20% CCK-8, the majority of immunoreactive CCK being of larger molecular size and being preferentially extracted at acid pH. In the small intestine the predominant molecular form(s) was intermediate in size between CCK-33 and CCK-8. Large amounts of CCK-33 and of a molecular form larger than CCK-33 were also detected. It is concluded that post-translational cleavage of CCK differs in rat brain and gut.

  17. Repeatedly pairing vagus nerve stimulation with a movement reorganizes primary motor cortex.

    PubMed

    Porter, Benjamin A; Khodaparast, Navid; Fayyaz, Tabbassum; Cheung, Ryan J; Ahmed, Syed S; Vrana, William A; Rennaker, Robert L; Kilgard, Michael P

    2012-10-01

    Although sensory and motor systems support different functions, both systems exhibit experience-dependent cortical plasticity under similar conditions. If mechanisms regulating cortical plasticity are common to sensory and motor cortices, then methods generating plasticity in sensory cortex should be effective in motor cortex. Repeatedly pairing a tone with a brief period of vagus nerve stimulation (VNS) increases the proportion of primary auditory cortex responding to the paired tone (Engineer ND, Riley JR, Seale JD, Vrana WA, Shetake J, Sudanagunta SP, Borland MS, Kilgard MP. 2011. Reversing pathological neural activity using targeted plasticity. Nature. 470:101-104). In this study, we predicted that repeatedly pairing VNS with a specific movement would result in an increased representation of that movement in primary motor cortex. To test this hypothesis, we paired VNS with movements of the distal or proximal forelimb in 2 groups of rats. After 5 days of VNS movement pairing, intracranial microstimulation was used to quantify the organization of primary motor cortex. Larger cortical areas were associated with movements paired with VNS. Rats receiving identical motor training without VNS pairing did not exhibit motor cortex map plasticity. These results suggest that pairing VNS with specific events may act as a general method for increasing cortical representations of those events. VNS movement pairing could provide a new approach for treating disorders associated with abnormal movement representations.

  18. A periodic network of neurochemical modules in the inferior colliculus.

    PubMed

    Chernock, Michelle L; Larue, David T; Winer, Jeffery A

    2004-02-01

    A new organization has been found in shell nuclei of rat inferior colliculus. Chemically specific modules with a periodic distribution fill about half of layer 2 of external cortex and dorsal cortex. Modules contain clusters of small glutamic acid decarboxylase-positive neurons and large boutons at higher density than in other inferior colliculus subdivisions. The modules are also present in tissue stained for parvalbumin, cytochrome oxidase, nicotinamide adenine dinucleotide phosphate-diaphorase, and acetylcholinesterase. Six to seven bilaterally symmetrical modules extend from the caudal extremity of the external cortex of the inferior colliculus to its rostral pole. Modules are from approximately 800 to 2200 microm long and have areas between 5000 and 40,000 microm2. Modules alternate with immunonegative regions. Similar modules are found in inbred and outbred strains of rat, and in both males and females. They are absent in mouse, squirrel, cat, bat, macaque monkey, and barn owl. Modules are immunonegative for glycine, calbindin, serotonin, and choline acetyltransferase. The auditory cortex and ipsi- and contralateral inferior colliculi project to the external cortex. Somatic sensory influences from the dorsal column nuclei and spinal trigeminal nucleus are the primary ascending sensory input to the external cortex; ascending auditory input to layer 2 is sparse. If the immunopositive modular neurons receive this input, the external cortex could participate in spatial orientation and somatic motor control through its intrinsic and extrinsic projections.

  19. Expression of regulatory genes in the embryonic brain of a lizard and implications for understanding pallial organization and evolution

    PubMed Central

    Abellán, Antonio; Sentandreu, Vicente

    2017-01-01

    Abstract The comparison of gene expression patterns in the embryonic brain of mouse and chicken is being essential for understanding pallial organization. However, the scarcity of gene expression data in reptiles, crucial for understanding evolution, makes it difficult to identify homologues of pallial divisions in different amniotes. We cloned and analyzed the expression of the genes Emx1, Lhx2, Lhx9, and Tbr1 in the embryonic telencephalon of the lacertid lizard Psammodromus algirus. The comparative expression patterns of these genes, critical for pallial development, are better understood when using a recently proposed six‐part model of pallial divisions. The lizard medial pallium, expressing all genes, includes the medial and dorsomedial cortices, and the majority of the dorsal cortex, except the region of the lateral cortical superposition. The latter is rich in Lhx9 expression, being excluded as a candidate of dorsal or lateral pallia, and may belong to a distinct dorsolateral pallium, which extends from rostral to caudal levels. Thus, the neocortex homolog cannot be found in the classical reptilian dorsal cortex, but perhaps in a small Emx1‐expressing/Lhx9‐negative area at the front of the telencephalon, resembling the avian hyperpallium. The ventral pallium, expressing Lhx9, but not Emx1, gives rise to the dorsal ventricular ridge and appears comparable to the avian nidopallium. We also identified a distinct ventrocaudal pallial sector comparable to the avian arcopallium and to part of the mammalian pallial amygdala. These data open new venues for understanding the organization and evolution of the pallium. PMID:28891227

  20. Expression profiling of mouse subplate reveals a dynamic gene network and disease association with autism and schizophrenia

    PubMed Central

    Hoerder-Suabedissen, Anna; Oeschger, Franziska M.; Krishnan, Michelle L.; Belgard, T. Grant; Wang, Wei Zhi; Lee, Sheena; Webber, Caleb; Petretto, Enrico; Edwards, A. David; Molnár, Zoltán

    2013-01-01

    The subplate zone is a highly dynamic transient sector of the developing cerebral cortex that contains some of the earliest generated neurons and the first functional synapses of the cerebral cortex. Subplate cells have important functions in early establishment and maturation of thalamocortical connections, as well as in the development of inhibitory cortical circuits in sensory areas. So far no role has been identified for cells in the subplate in the mature brain and disease association of the subplate-specific genes has not been analyzed systematically. Here we present gene expression evidence for distinct roles of the mouse subplate across development as well as unique molecular markers to extend the repertoire of subplate labels. Performing systematic comparisons between different ages (embryonic days 15 and 18, postnatal day 8, and adult), we reveal the dynamic and constant features of the markers labeling subplate cells during embryonic and early postnatal development and in the adult. This can be visualized using the online database of subplate gene expression at https://molnar.dpag.ox.ac.uk/subplate/. We also identify embryonic similarities in gene expression between the ventricular zones, intermediate zone, and subplate, and distinct postnatal similarities between subplate, layer 5, and layers 2/3. The genes expressed in a subplate-specific manner at some point during development show a statistically significant enrichment for association with autism spectrum disorders and schizophrenia. Our report emphasizes the importance of the study of transient features of the developing brain to better understand neurodevelopmental disorders. PMID:23401504

  1. A high-fat diet decreases GABA concentration in the frontal cortex and hippocampus of rats.

    PubMed

    Sandoval-Salazar, Cuauhtemoc; Ramírez-Emiliano, Joel; Trejo-Bahena, Aurora; Oviedo-Solís, Cecilia I; Solís-Ortiz, Martha Silvia

    2016-02-29

    It has been proposed that the γ-aminobutyric acid (GABA) plays a key role in the regulation of food intake and body weight by controlling the excitability, plasticity and the synchronization of neuronal activity in the frontal cortex (FC). It has been also proposed that the high-fat diet (HFD) could disturb the metabolism of glutamate and consequently the GABA levels, but the mechanism is not yet clearly understood. Therefore, the aim of this study was to investigate the effect of a HFD on the GABA levels in the FC and hippocampus of rats. The HFD significantly increased weight gain and blood glucose levels, whereas decreased the GABA levels in the FC and hippocampus compared with standard diet-fed rats. HFD decreases GABA levels in the FC and hippocampus of rat, which likely disrupts the GABAergic inhibitory processes, underlying feeding behavior.

  2. [Free radical modification of proteins in brain structure of Sprague-Dawley rats and some behaviour indicators after prenatal stress].

    PubMed

    V'iushina, A V; Pritvorova, A V; Flerov, M A

    2012-08-01

    We studied the influence of late prenatal stress on free radical oxidation processes in Sprague-Dawley rats cortex, striatum, hippocampus, hypothalamus proteins. It was shown that after prenatal stress most changes were observed in hypothalamus and hippocampus. It was shown that in hypothalamus spontaneous oxidation level increased, but level of induced oxidation decreased, the opposite changes were found in hippocampus. Simultaneously minor changes of protein modification were observed in cortex and striatum. It was shown that prenatal stress changed both correlation of proteins free radical oxidation in studied structures and values of these data regarding to control. In test of "open field" motor activity in rats after prenatal stress decreased and time of freezing and grooming increased; opposite, in T-labyrinth motor activity and time of grooming in rats after prenatal stress increased, but time of freezing decreased.

  3. The role of the medial prefrontal cortex in the play fighting of rats.

    PubMed

    Bell, Heather C; McCaffrey, David R; Forgie, Margaret L; Kolb, Bryan; Pellis, Sergio M

    2009-12-01

    Although decorticated rats are able to engage in play, their play is abnormal in three ways. First, decorticates do not display the normal, age-related shifts in defensive strategies during development. Second, decorticates do not modify their defensive tactics in response to the social identity of their partners. Third, decorticates display a global shift in defensive tactics from more complex to less complex strategies. It has been shown that lesions of the motor cortex (MC) selectively produce the abnormal developmental effects on play, and that lesions of the orbitofrontal cortex (OFC) selectively produce the deficits in behavioral discrimination between social partners. In the current set of experiments, we demonstrate that lesions of the medial prefrontal cortex (mPFC) produce the shift from more complex to less complex defensive tactics, while leaving intact the age-related and partner-related modulation of defensive strategies. Thus, we have evidence for a triple dissociation of function between the MC, the OFC, and the mPFC with respect to social play behavior.

  4. Cholinergic neurons and fibres in the rat visual cortex.

    PubMed

    Parnavelas, J G; Kelly, W; Franke, E; Eckenstein, F

    1986-06-01

    Choline acetyltransferase (ChAT), the acetylcholine synthesizing enzyme, was localized immunocytochemically in neurons and fibres in the rat visual cortex using a monoclonal antibody. ChAT-labelled cells were non-pyramidal neurons, primarily of the bipolar form, distributed in layers II through VI but concentrated in layers II & III. Their perikarya contained a large nucleus and a small amount of perinuclear cytoplasm. The somata and dendrites of all labelled cells received Gray's type I and type II synapses. ChAT-stained axons formed a dense and diffuse network throughout the visual cortex and particularly in layer V. Electron microscopy revealed that the great majority formed type II synaptic contacts with dendrites of various sizes, unlabelled non-pyramidal somata and, on a few occasions, with ChAT-labelled cells. However, a very small number of terminals appeared to form type I synaptic contacts. This study describes the morphological organization of the cholinergic system in the visual cortex, the function of which has been under extensive investigation.

  5. Texture coarseness responsive neurons and their mapping in layer 2–3 of the rat barrel cortex in vivo

    PubMed Central

    Garion, Liora; Dubin, Uri; Rubin, Yoav; Khateb, Mohamed; Schiller, Yitzhak; Azouz, Rony; Schiller, Jackie

    2014-01-01

    Texture discrimination is a fundamental function of somatosensory systems, yet the manner by which texture is coded and spatially represented in the barrel cortex are largely unknown. Using in vivo two-photon calcium imaging in the rat barrel cortex during artificial whisking against different surface coarseness or controlled passive whisker vibrations simulating different coarseness, we show that layer 2–3 neurons within barrel boundaries differentially respond to specific texture coarsenesses, while only a minority of neurons responded monotonically with increased or decreased surface coarseness. Neurons with similar preferred texture coarseness were spatially clustered. Multi-contact single unit recordings showed a vertical columnar organization of texture coarseness preference in layer 2–3. These findings indicate that layer 2–3 neurons perform high hierarchical processing of tactile information, with surface coarseness embodied by distinct neuronal subpopulations that are spatially mapped onto the barrel cortex. DOI: http://dx.doi.org/10.7554/eLife.03405.001 PMID:25233151

  6. Associative learning changes cross-modal representations in the gustatory cortex

    PubMed Central

    Vincis, Roberto; Fontanini, Alfredo

    2016-01-01

    A growing body of literature has demonstrated that primary sensory cortices are not exclusively unimodal, but can respond to stimuli of different sensory modalities. However, several questions concerning the neural representation of cross-modal stimuli remain open. Indeed, it is poorly understood if cross-modal stimuli evoke unique or overlapping representations in a primary sensory cortex and whether learning can modulate these representations. Here we recorded single unit responses to auditory, visual, somatosensory, and olfactory stimuli in the gustatory cortex (GC) of alert rats before and after associative learning. We found that, in untrained rats, the majority of GC neurons were modulated by a single modality. Upon learning, both prevalence of cross-modal responsive neurons and their breadth of tuning increased, leading to a greater overlap of representations. Altogether, our results show that the gustatory cortex represents cross-modal stimuli according to their sensory identity, and that learning changes the overlap of cross-modal representations. DOI: http://dx.doi.org/10.7554/eLife.16420.001 PMID:27572258

  7. Use of a simplified method of optical recording to identify foci of maximal neuron activity in the somatosensory cortex of white rats.

    PubMed

    Inyushin, M Y; Volnova, A B; Lenkov, D N

    2001-01-01

    Eight mongrel white male rats were studied under urethane anesthesia, and neuron activity evoked by mechanical and/or electrical stimulation of the contralateral whiskers was recorded in the primary somatosensory cortex. Recordings were made using a digital USB chamber attached to the printer port of a Pentium 200MMX computer running standard programs. Optical images were obtained in the barrel-field zone using a differential signal, i.e., the difference signal for cortex images in control and experimental animals. The results obtained here showed that subtraction of averaged sequences of frames yielded images consisting of spots reflecting the probable position of activated groups of neurons. The most effective stimulation consisted of natural low-frequency stimulation of the whiskers. The method can be used for preliminary mapping of cortical zones, as it provides for rapid and reproducible testing of the activity of neuron ensembles over large areas of the cortex.

  8. Evidence for a modulatory effect of sulbutiamine on glutamatergic and dopaminergic cortical transmissions in the rat brain.

    PubMed

    Trovero, F; Gobbi, M; Weil-Fuggaza, J; Besson, M J; Brochet, D; Pirot, S

    2000-09-29

    Chronic treatment of rats by sulbutiamine induced no change in density of N-methyl-D-aspartate (NMDA) and (+/-)-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors in the cingular cortex, but a significant decrease of the kainate binding sites, as measured by quantitative autoradiography. In the same treated animals, an increase of D1 dopaminergic (DA) binding sites was measured both in the prefrontal and the cingular cortex, while no modification of the D2 binding sites was detected. Furthermore, an acute sulbutiamine administration induced a decrease of kainate binding sites but no change of the density of D1 and D2 DA receptors. Acute sulbutiamine injection led to a decrease of the DA levels in the prefrontal cortex and 3,4-dihydroxyphenylacetic acid levels in both the cingular and the prefrontal cortex. These observations are discussed in terms of a modulatory effect of sulbutiamine on both dopaminergic and glutamatergic cortical transmissions.

  9. Effects of hindlimb unloading on neuromuscular development of neonatal rats

    NASA Technical Reports Server (NTRS)

    Huckstorf, B. L.; Slocum, G. R.; Bain, J. L.; Reiser, P. M.; Sedlak, F. R.; Wong-Riley, M. T.; Riley, D. A.

    2000-01-01

    We hypothesized that hindlimb suspension unloading of 8-day-old neonatal rats would disrupt the normal development of muscle fiber types and the motor innervation of the antigravity (weightbearing) soleus muscles but not extensor digitorum longus (EDL) muscles. Five rats were suspended 4.5 h and returned 1.5 h to the dam for nursing on a 24 h cycle for 9 days. To control for isolation from the dam, the remaining five littermates were removed on the same schedule but not suspended. Another litter of 10 rats housed in the same room provided a vivarium control. Fibers were typed by myofibrillar ATPase histochemistry and immunostaining for embryonic, slow, fast IIA and fast IIB isomyosins. The percentage of multiple innervation and the complexity of singly-innervated motor terminal endings were assessed in silver/cholinesterase stained sections. Unique to the soleus, unloading accelerated production of fast IIA myosin, delayed expression of slow myosin and retarded increases in standardized muscle weight and fiber size. Loss of multiple innervation was not delayed. However, fewer than normal motor nerve endings achieved complexity. Suspended rats continued unloaded hindlimb movements. These findings suggest that motor neurons resolve multiple innervation through nerve impulse activity, whereas the postsynaptic element (muscle fiber) controls endplate size, which regulates motor terminal arborization. Unexpectedly, in the EDL of unloaded rats, transition from embryonic to fast myosin expression was retarded. Suspension-related foot drop, which stretches and chronically loads EDL, may have prevented fast fiber differentiation. These results demonstrate that neuromuscular development of both weightbearing and non-weightbearing muscles in rats is dependent upon and modulated by hindlimb loading.

  10. Effectiveness of memantine on depression-like behavior, memory deficits and brain mRNA levels of BDNF and TrkB in rats subjected to repeated unpredictable stress.

    PubMed

    Amidfar, Meysam; Kim, Yong-Ku; Wiborg, Ove

    2018-06-01

    Previous clinical and preclinical studies have indicated that the N-methyl-d-aspartate (NMDA) receptor antagonist, memantine, has neuroprotective properties as well as antidepressant effects. The present study was designed to examine behavioral and molecular effects of memantine administration in rats subjected to the repeated unpredictable stress (RUS) paradigm. Rats were split into four groups at random including control+saline, control+memantine, stressed+saline and stressed+memantine. After 10days of exposure to the RUS paradigm, rats were administered memantine (20mg/kg) intraperitoneally (ip) for 14days. Depression-like behavior and memory performance were assessed by measuring immobility time in the forced swim test and passive avoidance test, respectively. The mRNA levels of BDNF and TrkB in the prefrontal cortex and hippocampus were measured by real-time quantitative PCR. Our results demonstrated that the RUS paradigm caused depression-like behavior and impairment of memory retrieval in rats. We did not find significant changes in BDNF or TrkB mRNA levels in hippocampus, but mRNA levels of TrkB in the prefrontal cortex showed a significant downregulation. Administration of memantine reversed depression-like behavior and memory impairment and significantly increased BDNF and TrkB mRNA levels in both prefrontal cortex and hippocampus of stress exposed rats. Our study supports the hypothesis that drugs with antagonistic properties on the NMDA receptor, such as memantine, might be efficient in treatment of major depression. Our results also suggest that upregulated mRNA levels of BDNF and TrkB in the brain might be essential for antidepressant-like activity of memantine in stress exposed rats. Copyright © 2017 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  11. Adrenal-dependent and -independent stress-induced Per1 mRNA in hypothalamic paraventricular nucleus and prefrontal cortex of male and female rats.

    PubMed

    Chun, Lauren E; Christensen, Jenny; Woodruff, Elizabeth R; Morton, Sarah J; Hinds, Laura R; Spencer, Robert L

    2018-01-01

    Oscillating clock gene expression gives rise to a molecular clock that is present not only in the body's master circadian pacemaker, the hypothalamic suprachiasmatic nucleus (SCN), but also in extra-SCN brain regions. These extra-SCN molecular clocks depend on the SCN for entrainment to a light:dark cycle. The SCN has limited neural efferents, so it may entrain extra-SCN molecular clocks through its well-established circadian control of glucocorticoid hormone secretion. Glucocorticoids can regulate the normal rhythmic expression of clock genes in some extra-SCN tissues. Untimely stress-induced glucocorticoid secretion may compromise extra-SCN molecular clock function. We examined whether acute restraint stress during the rat's inactive phase can rapidly (within 30 min) alter clock gene (Per1, Per2, Bmal1) and cFos mRNA (in situ hybridization) in the SCN, hypothalamic paraventricular nucleus (PVN), and prefrontal cortex (PFC) of male and female rats (6 rats per treatment group). Restraint stress increased Per1 and cFos mRNA in the PVN and PFC of both sexes. Stress also increased cFos mRNA in the SCN of male rats, but not when subsequently tested during their active phase. We also examined in male rats whether endogenous glucocorticoids are necessary for stress-induced Per1 mRNA (6-7 rats per treatment group). Adrenalectomy attenuated stress-induced Per1 mRNA in the PVN and ventral orbital cortex, but not in the medial PFC. These data indicate that increased Per1 mRNA may be a means by which extra-SCN molecular clocks adapt to environmental stimuli (e.g. stress), and in the PFC this effect is largely independent of glucocorticoids.

  12. Reduced dopamine and glutamate neurotransmission in the nucleus accumbens of quinpirole-sensitized rats hints at inhibitory D2 autoreceptor function.

    PubMed

    Escobar, Angélica P; Cornejo, Francisca A; Olivares-Costa, Montserrat; González, Marcela; Fuentealba, José A; Gysling, Katia; España, Rodrigo A; Andrés, María E

    2015-09-01

    Dopamine from the ventral tegmental area and glutamate from several brain nuclei converge in the nucleus accumbens (NAc) to drive motivated behaviors. Repeated activation of D2 receptors with quinpirole (QNP) induces locomotor sensitization and compulsive behaviors, but the mechanisms are unknown. In this study, in vivo microdialysis and fast scan cyclic voltammetry in adult anesthetized rats were used to investigate the effect of repeated QNP on dopamine and glutamate neurotransmission within the NAc. Following eight injections of QNP, a significant decrease in phasic and tonic dopamine release was observed in rats that displayed locomotor sensitization. Either a systemic injection or the infusion of QNP into the NAc decreased dopamine release, and the extent of this effect was similar in QNP-sensitized and control rats, indicating that inhibitory D2 autoreceptor function is maintained despite repeated activation of D2 receptors and decreased dopamine extracellular levels. Basal extracellular levels of glutamate in the NAc were also significantly lower in QNP-treated rats than in controls. Moreover, the increase in NAc glutamate release induced by direct stimulation of medial prefrontal cortex was significantly lower in QNP-sensitized rats. Together, these results indicate that repeated activation of D2 receptors disconnects NAc from medial prefrontal cortex and ventral tegmental area. Repeated administration of the dopamine D2 receptor agonist quinpirole (QNP) induces locomotor sensitization. We found that the NAc of QNP-sensitized rats has reduced glutamate levels coming from prefrontal cortex together with a decreased phasic and tonic dopamine neurotransmission but a conserved presynaptic D2 receptor function. We suggest that locomotor sensitization is because of increased affinity state of D2 post-synaptic receptors. © 2015 International Society for Neurochemistry.

  13. Orbital cortex neuronal responses during an odor-based conditioned associative task in rats.

    PubMed

    Yonemori, M; Nishijo, H; Uwano, T; Tamura, R; Furuta, I; Kawasaki, M; Takashima, Y; Ono, T

    2000-01-01

    Neuronal activity in the rat orbital cortex during discrimination of various odors [five volatile organic compounds (acetophenone, isoamyl acetate, cyclohexanone, p-cymene and 1,8-cineole), and food- and cosmetic-related odorants (black pepper, cheese, rose and perfume)] and other conditioned sensory stimuli (tones, light and air puff) was recorded and compared with behavioral responses to the same odors (black pepper, cheese, rose and perfume). In a neurophysiological study, the rats were trained to lick a spout that protruded close to its mouth to obtain sucrose or intracranial self-stimulation reward after presentation of conditioned stimuli. Of 150 orbital cortex neurons recorded during the task, 65 responded to one or more types of sensory stimuli. Of these, 73.8% (48/65) responded during presentation of an odor. Although the mean breadth of responsiveness (entropy) of the olfactory neurons based on the responses to five volatile organic compounds and air (control) was rather high (0.795), these stimuli were well discriminated in an odor space resulting from multidimensional scaling using Pearson's correlation coefficients between the stimuli. In a behavioral study, a rat was housed in an equilateral octagonal cage, with free access to food and choice among eight levers, four of which elicited only water (no odor, controls), and four of which elicited both water and one of four odors (black pepper, cheese, rose or perfume). Lever presses for each odor and control were counted. Distributions of these five stimuli (four odors and air) in an odor space derived from the multidimensional scaling using Pearson's correlation coefficients based on behavioral responses were very similar to those based on neuronal responses to the same five stimuli. Furthermore, Pearson's correlation coefficients between the same five stimuli based on the neuronal responses and those based on behavioral responses were significantly correlated. The results demonstrated a pivotal role of the rat orbital cortex in olfactory sensory processing and suggest that the orbital cortex is important in the manifestation of various motivated behaviors of the animals, including odor-guided motivational behaviors (odor preference).

  14. [Dynamic changes of 'substantianigra-ventralislateralis-cortex' pathway neural activity coherence and neurotransmitters in rat during exhausting exercise].

    PubMed

    Hu, Yan-Ru; Liu, Xiao-Li; Qiao, De-Cai

    2017-03-08

    To reveal the possible mechanism of changes of 'substantianigra-ventralislateralis-cortex' pathway neural activity during one bout of exhausting exercise through observing the neural activity coherence between different nucleus and the concentration of extra-cellular glutamate (Glu) and gamma-aminobutyric acid (GABA). Male Wistar rats were randomly divided into neural activity real-time observation group, substantianigra (SNr) extracellular neurotransmitters observation group, ventralislateralis (VL) extracellular neuro-transmitters observation group and supplementary motor area (SMA) extracellular neurotransmitters observation group, 10 rats in each group. For rats of neural activity real-time observation group, by using LFPs and ECoG recording technique, and self-comparison, we simultaneously recorded the dynamic changes of neural activity of rat SNr, VL and SMA during one bout of exhausting exercise. The dynamic changes of ex-tracellular Glu and GABA in rat SNr, VL and SMA were also observed through microdialysis combined high performance liquid chromatography (HPLC) technique and self-comparison method. Based on the behavioral performance, the exhausting exercise process could be di-vided into 5 different stages, the rest condition, auto exercise period, early fatigue period, exhaustion condition and recovery period. The elec-trophysiological study results showed that, the coherence between neural activity in rat SNr, VL and SMA was significant between 0~30 Hz during all the procedure of exhausting exercise. Compared with the rest condition, the microdialysis study showed that the Glu concentrations and Glu/GABA ratio in SNr were decreased significantly during automatic exercise period ( P < 0.05, P < 0.01), the GABA concentrations were increased significantly ( P < 0.05, P < 0.01), while, in VL and cortex, the Glu concentrations and Glu/GABA ratio were increased significantly ( P < 0.05, P < 0.01), the GABA concentrations were decreased significantly ( P < 0.05, P < 0.01). Under early fatigue and ex-haustion conditions, compared with the rest condition,the Glu concentrations and Glu/GABA ratio in SNr were increased significantly ( P < 0.05, P < 0.01), the GABA concentrations were decreased significantly ( P < 0.05, P < 0.01), while the Glu concentrations and Glu/GABA ratio in VL and cortex were decreased significantly ( P < 0.05, P < 0.01), the GABA concentrations were increased significantly ( P < 0.05, P < 0.01). The neural net work communication between 'substantianigra-ventralislateralis-cortex' pathway exists, changes of Glu and GABA in the nucelus of the pathway are one of the factors resulting in the changes of neural activity.

  15. Effects of embryonic ethanol exposure at low doses on neuronal development, voluntary ethanol consumption and related behaviors in larval and adult zebrafish: Role of hypothalamic orexigenic peptides

    PubMed Central

    Sterling, M.E.; Chang, G.-Q.; Karatayev, O.; Chang, S.Y.; Leibowitz, S.F.

    2016-01-01

    Embryonic exposure to ethanol is known to affect neurochemical systems in rodents and increase alcohol drinking and related behaviors in humans and rodents. With zebrafish emerging as a powerful tool for uncovering neural mechanisms of numerous diseases and exhibiting similarities to rodents, the present report building on our rat studies examined in zebrafish the effects of embryonic ethanol exposure on hypothalamic neurogenesis, expression of orexigenic neuropeptides, and voluntary ethanol consumption and locomotor behaviors in larval and adult zebrafish, and also effects of central neuropeptide injections on these behaviors affected by ethanol. At 24 h post-fertilization, zebrafish embryos were exposed for 2 h to ethanol, at low concentrations of 0.25% and 0.5%, in the tank water. Embryonic ethanol compared to control dose-dependently increased hypothalamic neurogenesis and the proliferation and expression of the orexigenic peptides, galanin (GAL) and orexin (OX), in the anterior hypothalamus. These changes in hypothalamic peptide neurons were accompanied by an increase in voluntary consumption of 10% ethanol-gelatin and in novelty-induced locomotor and exploratory behavior in adult zebrafish and locomotor activity in larvae. After intracerebroventricular injection, these peptides compared to vehicle had specific effects on these behaviors altered by ethanol, with GAL stimulating consumption of 10% ethanol-gelatin more than plain gelatin food and OX stimulating novelty-induced locomotor behavior while increasing intake of food and ethanol equally. These results, similar to those obtained in rats, suggest that the ethanol-induced increase in genesis and expression of these hypothalamic peptide neurons contribute to the behavioral changes induced by embryonic exposure to ethanol. PMID:26778786

  16. Transplantation of human embryonic stem cell-derived oligodendrocyte progenitors into rat spinal cord injuries does not cause harm.

    PubMed

    Cloutier, Frank; Siegenthaler, Monica M; Nistor, Gabriel; Keirstead, Hans S

    2006-07-01

    Demyelination contributes to loss of function following spinal cord injury. We have shown previously that transplantation of human embryonic stem cell-derived oligodendrocyte progenitors into adult rat 200 kD contusive spinal cord injury sites enhances remyelination and promotes recovery of motor function. Previous studies using oligodendrocyte lineage cells have noted a correlation between the presence of demyelinating pathology and the survival and migration rate of the transplanted cells. The present study compared the survival and migration of human embryonic stem cell-derived oligodendrocyte progenitors injected 7 days after a 200 or 50 kD contusive spinal cord injury, as well as the locomotor outcome of transplantation. Our findings indicate that a 200 kD spinal cord injury induces extensive demyelination, whereas a 50 kD spinal cord injury induces no detectable demyelination. Cells transplanted into the 200 kD injury group survived, migrated, and resulted in robust remyelination, replicating our previous studies. In contrast, cells transplanted into the 50 kD injury group survived, exhibited limited migration, and failed to induce remyelination as demyelination in this injury group was absent. Animals that received a 50 kD injury displayed only a transient decline in locomotor function as a result of the injury. Importantly, human embryonic stem cell-derived oligodendrocyte progenitor transplants into the 50 kD injury group did not cause a further decline in locomotion. Our studies highlight the importance of a demyelinating pathology as a prerequisite for the function of transplanted myelinogenic cells. In addition, our results indicate that transplantation of human embryonic stem cell-derived oligodendrocyte progenitor cells into the injured spinal cord is not associated with a decline in locomotor function.

  17. Effects of embryonic ethanol exposure at low doses on neuronal development, voluntary ethanol consumption and related behaviors in larval and adult zebrafish: Role of hypothalamic orexigenic peptides.

    PubMed

    Sterling, M E; Chang, G-Q; Karatayev, O; Chang, S Y; Leibowitz, S F

    2016-05-01

    Embryonic exposure to ethanol is known to affect neurochemical systems in rodents and increase alcohol drinking and related behaviors in humans and rodents. With zebrafish emerging as a powerful tool for uncovering neural mechanisms of numerous diseases and exhibiting similarities to rodents, the present report building on our rat studies examined in zebrafish the effects of embryonic ethanol exposure on hypothalamic neurogenesis, expression of orexigenic neuropeptides, and voluntary ethanol consumption and locomotor behaviors in larval and adult zebrafish, and also effects of central neuropeptide injections on these behaviors affected by ethanol. At 24h post-fertilization, zebrafish embryos were exposed for 2h to ethanol, at low concentrations of 0.25% and 0.5%, in the tank water. Embryonic ethanol compared to control dose-dependently increased hypothalamic neurogenesis and the proliferation and expression of the orexigenic peptides, galanin (GAL) and orexin (OX), in the anterior hypothalamus. These changes in hypothalamic peptide neurons were accompanied by an increase in voluntary consumption of 10% ethanol-gelatin and in novelty-induced locomotor and exploratory behavior in adult zebrafish and locomotor activity in larvae. After intracerebroventricular injection, these peptides compared to vehicle had specific effects on these behaviors altered by ethanol, with GAL stimulating consumption of 10% ethanol-gelatin more than plain gelatin food and OX stimulating novelty-induced locomotor behavior while increasing intake of food and ethanol equally. These results, similar to those obtained in rats, suggest that the ethanol-induced increase in genesis and expression of these hypothalamic peptide neurons contribute to the behavioral changes induced by embryonic exposure to ethanol. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Prefrontal cortex, caloric restriction and stress during aging: studies on dopamine and acetylcholine release, BDNF and working memory.

    PubMed

    Del Arco, Alberto; Segovia, Gregorio; de Blas, Marta; Garrido, Pedro; Acuña-Castroviejo, Dario; Pamplona, Reinald; Mora, Francisco

    2011-01-01

    This study was designed to investigate whether long-term caloric restriction during the life span of the rat changes the effects of an acute mild stress on the release of dopamine and acetylcholine in the prefrontal cortex (PFC) and on working memory performance. Spontaneous motor activity was also monitored and levels of BDNF measured in the prefrontal cortex, amygdala and hippocampus. Male Wistar rats (3 months of age) were housed during 3, 12, 21 and 27 months (6, 15, 24 and 30 months of age at the end of housing) in caloric restriction (CR; 40% food intake restriction) or control conditions. After behavioural testing, animals were further subdivided into two other groups. In one of the groups BDNF protein levels were determined. In the other group rats were implanted with guide cannulas into the PFC to perform microdialysis experiments. In CR rats the release of dopamine produced by handling stress did not differ from the response found in control rats of 6, 15 and 24 months of age. The release of acetylcholine was not changed at the ages of 6 and 15 months but reduced at the age of 24 months. Stress did not change dopamine or acetylcholine release in CR and control rats of 30 months of age. BDNF levels were increased in the hippocampus and amygdala, but not in the PFC, of 6 and 15 months CR rats. Spontaneous motor activity was increased in all groups of CR rats. Age, however, decreased motor activity in CR and control rats. Both experimental groups showed similar working memory performance in a delayed alternation task in basal conditions and after a situation of acute stress. These results suggest that CR does not modify the function of the PFC in response to an acute stress nor the changes found as a result of the normal process of aging. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. Midbrain dopamine neurons regulate preprotachykinin-A mRNA expression in the rat forebrain during development.

    PubMed

    Brené, S; Lindefors, N; Persson, H

    1992-06-01

    Intracerebroventricular 6-hydroxydopamine injections were performed at postnatal days 3 and 6 in animals pretreated with the norepinephrine uptakeblocker desimipramine in order to generate a selective lesion of dopamine neurons. In situ hybridization was then used to analyze preprotachykinin-A (PPT-A) mRNA expression in the lesioned as well as in saline-injected control animals. The midbrain dopaminergic lesion caused a 22-25% increase in the level of PPT-A mRNA in cingulate cortex and frontoparietal cortex when analysed at 2 weeks of age, compared to saline-injected control animals. In contrast, the lesion caused no change in PPT-A mRNA expression in the neonatal caudate-putamen. These results indicate that dopamine neurons downregulate the expression of PPT-A mRNA specifically in cingulate cortex and frontoparietal cortex during early postnatal brain development. In the adult rat forebrain, lesioned at P3 and P6, no change in the level of PPT-A mRNA was seen in cingulate cortex and frontoparietal cortex. However, a 29% decrease in PPT-A mRNA was seen in the lateral caudate-putamen with no significant change in neurons of medial caudate-putamen. Thus, dopamine neurons appears to exert a region specific influence on PPT-A mRNA expression during brain development.

  20. Experimental Traumatic Brain Injury Results in Long-Term Recovery of Functional Responsiveness in Sensory Cortex but Persisting Structural Changes and Sensorimotor, Cognitive, and Emotional Deficits.

    PubMed

    Johnstone, Victoria P A; Wright, David K; Wong, Kendrew; O'Brien, Terence J; Rajan, Ramesh; Shultz, Sandy R

    2015-09-01

    Traumatic brain injury (TBI) is a leading cause of death worldwide. In recent studies, we have shown that experimental TBI caused an immediate (24-h post) suppression of neuronal processing, especially in supragranular cortical layers. We now examine the long-term effects of experimental TBI on the sensory cortex and how these changes may contribute to a range of TBI morbidities. Adult male Sprague-Dawley rats received either a moderate lateral fluid percussion injury (n=14) or a sham surgery (n=12) and 12 weeks of recovery before behavioral assessment, magnetic resonance imaging, and electrophysiological recordings from the barrel cortex. TBI rats demonstrated sensorimotor deficits, cognitive impairments, and anxiety-like behavior, and this was associated with significant atrophy of the barrel cortex and other brain structures. Extracellular recordings from ipsilateral barrel cortex revealed normal neuronal responsiveness and diffusion tensor MRI showed increased fractional anisotropy, axial diffusivity, and tract density within this region. These findings suggest that long-term recovery of neuronal responsiveness is owing to structural reorganization within this region. Therefore, it is likely that long-term structural and functional changes within sensory cortex post-TBI may allow for recovery of neuronal responsiveness, but that this recovery does not remediate all behavioral deficits.

  1. Local administration of a cannabinoid agonist alters norepinephrine efflux in the rat frontal cortex.

    PubMed

    Page, M E; Oropeza, V C; Van Bockstaele, E J

    2008-01-24

    Delta(9)-tetrahydrocannabinol, the main psychoactive ingredient in marijuana, activates specific cannabinoid (CB) receptors to exert complex actions on modulatory neurotransmitters involved in attention and cognition. Previous research has demonstrated that systemic administration of the synthetic cannabinoid agonist, WIN 55,212-2, increases norepinephrine efflux in the frontal cortex. The distribution of CB1 receptors on noradrenergic fibers in the frontal cortex suggests this may be one potential site for the regulation of norepinephrine release. In the present study, we first examined the ability of a CB1 antagonist, applied locally in the frontal cortex of adult male Sprague-Dawley rats, to block the actions of systemic WIN 55,212-2. Pretreatment with SR 141716A (300 microM) significantly attenuated the excitatory effects of WIN 55,212-2 (15 mg/kg, i.p.). Next, the impact of direct perfusion of WIN 55,212-2 into the frontal cortex on extracellular norepinephrine efflux was measured. Direct application of WIN 55,212-2 (100 microM) into the frontal cortex elicited a significant increase in extracellular norepinephrine efflux suggesting that activation of cortical cannabinoid receptors contributes to alterations in norepinephrine levels in this brain region. Finally, local administration of SR 141716A followed by local administration of WIN 55,212-2 revealed a paradoxical inhibition of norepinephrine efflux.

  2. BDNF-GSK-3β-β-Catenin Pathway in the mPFC Is Involved in Antidepressant-Like Effects of Morinda officinalis Oligosaccharides in Rats.

    PubMed

    Xu, Ling-Zhi; Xu, De-Feng; Han, Ying; Liu, Li-Jing; Sun, Cheng-Yu; Deng, Jia-Hui; Zhang, Ruo-Xi; Yuan, Ming; Zhang, Su-Zhen; Li, Zhi-Meng; Xu, Yi; Li, Jin-Sheng; Xie, Su-Hua; Li, Su-Xia; Zhang, Hong-Yan; Lu, Lin

    2017-01-01

    Morinda officinalis oligosaccharides have been reported to exert neuroprotective and antidepressant-like effects in the forced swim test in mice. However, the mechanisms that underlie the antidepressant-like effects of Morinda officinalis oligosaccharides are unclear. Chronic unpredictable stress and forced swim test were used to explore the antidepressant-like effects of Morinda officinalis oligosaccharides and resilience to stress in rats. The phosphoinositide-3 kinase inhibitor LY294002 was microinjected in the medial prefrontal cortex to explore the role of glycogen synthase kinase-3β in the antidepressant-like effects of Morinda officinalis oligosaccharides. The expression of brain-derived neurotrophic factor, phosphorylated-Ser9-glycogen synthase kinase 3β, β-catenin, and synaptic proteins was determined in the medial prefrontal cortex and the orbitofrontal cortex by western blot. We found that Morinda officinalis oligosaccharides effectively ameliorated chronic unpredictable stress-induced depression-like behaviors in the sucrose preference test and forced swim test. The Morinda officinalis oligosaccharides also significantly rescued chronic unpredictable stress-induced abnormalities in the brain-derived neurotrophic factor-glycogen synthase kinase-3β-β-catenin pathway and synaptic protein deficits in the medial prefrontal cortex but not orbitofrontal cortex. The activation of glycogen synthase kinase-3β by the phosphoinositide-3 kinase inhibitor LY294002 abolished the antidepressant-like effects of Morinda officinalis oligosaccharides in the forced swim test. Naïve rats that were treated with Morinda officinalis oligosaccharides exhibited resilience to chronic unpredictable stress, accompanied by increases in the expression of brain-derived neurotrophic factor, phosphorylated-Ser9-glycogen synthase kinase-3β, and β-catenin in the medial prefrontal cortex. Our findings indicate that the brain-derived neurotrophic factor-glycogen synthase kinase-3β-β-catenin pathway in the medial prefrontal cortex may underlie the antidepressant-like effect of Morinda officinalis oligosaccharides and resilience to stress. © The Author 2016. Published by Oxford University Press on behalf of CINP.

  3. Ethylene glycol ethers induce apoptosis and disturb glucose metabolism in the rat brain.

    PubMed

    Pomierny, Bartosz; Krzyżanowska, Weronika; Niedzielska, Ewa; Broniowska, Żaneta; Budziszewska, Bogusława

    2016-02-01

    Ethylene glycol ethers (EGEs) are compounds widely used in industry and household products, but their potential, adverse effect on brain is poorly understood, so far. The aim of the present study was to determine whether 4-week administration of 2-buthoxyethanol (BE), 2-phenoxyethanol (PHE), and 2-ethoxyethanol (EE) induces apoptotic process in the rat hippocampus and frontal cortex, and whether their adverse effect on the brain cells can result from disturbances in the glucose metabolism. Experiments were conducted on 40 rats, exposed to BE, PHE, EE, saline or sunflower oil for 4 weeks. Markers of apoptosis and glucose metabolism were determined in frontal cortex and hippocampus by western blot, ELISA, and fluorescent-based assays. BE and PHE, but not EE, increased expression of the active form of caspase-3 in the examined brain regions. BE and PHE increased caspase-9 level in the cortex and PHE also in the hippocampus. BE and PHE increased the level of pro-apoptotic proteins (Bax, Bak) and/or reduced the concentration of anti-apoptotic proteins (Bcl-2, Bcl-xL); whereas, the effect of BE was observed mainly in the cortex and that of PHE in the hippocampus. It has also been found that PHE increased brain glucose level, and both BE and PHE elevated pyruvate and lactate concentration. It can be concluded that chronic treatment with BE and PHE induced mitochondrial pathway of apoptosis, and disturbed glucose metabolism in the rat brain. Copyright © 2015 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  4. Age-related decrease in the mitochondrial sirtuin deacetylase Sirt3 expression associated with ROS accumulation in the auditory cortex of the mimetic aging rat model.

    PubMed

    Zeng, Lingling; Yang, Yang; Hu, Yujuan; Sun, Yu; Du, Zhengde; Xie, Zhen; Zhou, Tao; Kong, Weijia

    2014-01-01

    Age-related dysfunction of the central auditory system, also known as central presbycusis, can affect speech perception and sound localization. Understanding the pathogenesis of central presbycusis will help to develop novel approaches to prevent or treat this disease. In this study, the mechanisms of central presbycusis were investigated using a mimetic aging rat model induced by chronic injection of D-galactose (D-Gal). We showed that malondialdehyde (MDA) levels were increased and manganese superoxide dismutase (SOD2) activity was reduced in the auditory cortex in natural aging and D-Gal-induced mimetic aging rats. Furthermore, mitochondrial DNA (mtDNA) 4834 bp deletion, abnormal ultrastructure and cell apoptosis in the auditory cortex were also found in natural aging and D-Gal mimetic aging rats. Sirt3, a mitochondrial NAD+-dependent deacetylase, has been shown to play a crucial role in controlling cellular reactive oxygen species (ROS) homeostasis. However, the role of Sirt3 in the pathogenesis of age-related central auditory cortex deterioration is still unclear. Here, we showed that decreased Sirt3 expression might be associated with increased SOD2 acetylation, which negatively regulates SOD2 activity. Oxidative stress accumulation was likely the result of low SOD2 activity and a decline in ROS clearance. Our findings indicate that Sirt3 might play an essential role, via the mediation of SOD2, in central presbycusis and that manipulation of Sirt3 expression might provide a new approach to combat aging and oxidative stress-related diseases.

  5. Curcumin improves episodic memory in cadmium induced memory impairment through inhibition of acetylcholinesterase and adenosine deaminase activities in a rat model.

    PubMed

    Akinyemi, Ayodele Jacob; Okonkwo, Princess Kamsy; Faboya, Opeyemi Ayodeji; Onikanni, Sunday Amos; Fadaka, Adewale; Olayide, Israel; Akinyemi, Elizabeth Olufisayo; Oboh, Ganiyu

    2017-02-01

    Curcumin, the main polyphenolic component of turmeric (Curcuma longa) rhizomes has been reported to exert cognitive enhancing potential with limited scientific basis. Hence, this study sought to evaluate the effect of curcumin on cerebral cortex acetylcholinesterase (AChE) and adenosine deaminase (ADA) activities in cadmium (Cd)-induced memory impairment in rats. Animals were divided into six groups (n = 6): saline/vehicle, saline/curcumin 12.5 mg/kg, saline/curcumin 25 mg/kg, Cd/vehicle, Cd/curcumin 12.5 mg/kg, and Cd/curcumin 25 mg/kg. Rats received Cd (2.5 mg/kg) and curcumin (12.5 and 25 mg/kg, respectively) by gavage for 7 days. The results of this study revealed that cerebral cortex AChE and ADA activities were increased in Cd-poisoned rats, and curcumin co-treatment reversed these activities to the control levels. Furthermore, Cd intoxication increased the level of lipid peroxidation in cerebral cortex with a concomitant decreased in functional sulfuhydryl (-SH) group and nitric oxide (NO), a potent neurotransmitter and neuromodulatory agent. However, the co-treatment with curcumin at 12.5 and 25 mg/kg, respectively increased the non-enzymatic antioxidant status and NO in cerebral cortex with a decreased in malondialdehyde (MDA) level. Therefore, inhibition of AChE and ADA activities as well as increased antioxidant status by curcumin in Cd-induced memory dysfunction could suggest some possible mechanism of action for their cognitive enhancing properties.

  6. Behavioural, neurochemical and neuroendocrine effects of the endogenous β-carboline harmane in fear-conditioned rats.

    PubMed

    Smith, Karen L; Ford, Gemma K; Jessop, David S; Finn, David P

    2013-02-01

    The putative endogenous imidazoline binding site ligand harmane enhances neuronal activation in response to psychological stress and alters behaviour in animal models of anxiety and antidepressant efficacy. However, the neurobiological mechanisms underlying harmane's psychotropic effects are poorly understood. We investigated the effects of intraperitoneal injection of harmane (2.5 and 10 mg/kg) on fear-conditioned behaviour, hypothalamo-pituitary-adrenal axis activity, and monoaminergic activity within specific fear-associated areas of the rat brain. Harmane had no significant effect on the duration of contextually induced freezing or 22 kHz ultrasonic vocalisations and did not alter the contextually induced suppression of motor activity, including rearing. Harmane reduced the duration of rearing and tended to increase freezing in non-fear-conditioned controls, suggesting potential sedative effects. Harmane increased plasma ACTH and corticosterone concentrations, and serotonin (in hypothalamus, amygdaloid cortex, prefrontal cortex and hippocampus) and noradrenaline (prefrontal cortex) content, irrespective of fear-conditioning. Furthermore, harmane reduced dopamine and serotonin turnover in the PFC and hypothalamus, and serotonin turnover in the amygdaloid cortex in both fear-conditioned and non-fear-conditioned rats. In contrast, harmane increased dopamine and noradrenaline content and reduced dopamine turnover in the amygdala of fear-conditioned rats only, suggesting differential effects on catecholaminergic transmission in the presence and absence of fear. The precise mechanism(s) mediating these effects of harmane remain to be determined but may involve its inhibitory action on monoamine oxidases. These findings support a role for harmane as a neuromodulator, altering behaviour, brain neurochemistry and neuroendocrine function.

  7. Impairment of Novel Object Recognition Memory and Brain Insulin Signaling in Fructose- but Not Glucose-Drinking Female Rats.

    PubMed

    Sangüesa, Gemma; Cascales, Mar; Griñán, Christian; Sánchez, Rosa María; Roglans, Núria; Pallàs, Mercè; Laguna, Juan Carlos; Alegret, Marta

    2018-01-26

    Excessive sugar intake has been related to cognitive alterations, but it remains unclear whether these effects are related exclusively to increased energy intake, and the molecular mechanisms involved are not fully understood. We supplemented Sprague-Dawley female rats with 10% w/v fructose in drinking water or with isocaloric glucose solution for 7 months. Cognitive function was assessed through the Morris water maze (MWM) and the novel object recognition (NOR) tests. Plasma parameters and protein/mRNA expression in the frontal cortex and hippocampus were determined. Results showed that only fructose-supplemented rats displayed postprandial and fasting hypertriglyceridemia (1.4 and 1.9-fold, p < 0.05) and a significant reduction in the discrimination index in the NOR test, whereas the results of the MWM test showed no differences between groups. Fructose-drinking rats displayed an abnormal glucose tolerance test and impaired insulin signaling in the frontal cortex, as revealed by significant reductions in insulin receptor substrate-2 protein levels (0.77-fold, p < 0.05) and Akt phosphorylation (0.72-fold, p < 0.05), and increased insulin-degrading enzyme levels (1.86-fold, p < 0.001). Fructose supplementation reduced the expression of antioxidant enzymes and altered the amount of proteins involved in mitochondrial fusion/fission in the frontal cortex. In conclusion, cognitive deficits induced by chronic liquid fructose consumption are not exclusively related to increased caloric intake and are correlated with hypertriglyceridemia, impaired insulin signaling, increased oxidative stress and altered mitochondrial dynamics, especially in the frontal cortex.

  8. Acute renal failure potentiates methylmalonate-induced oxidative stress in brain and kidney of rats.

    PubMed

    Schuck, P F; Alves, L; Pettenuzzo, L F; Felisberto, F; Rodrigues, L B; Freitas, B W; Petronilho, F; Dal-Pizzol, F; Streck, E L; Ferreira, G C

    2013-03-01

    Tissue methylmalonic acid (MMA) accumulation is the biochemical hallmark of methylmalonic acidemia. The disease is clinically characterized by progressive neurological deterioration and kidney failure, whose pathophysiology is still unclear. In the present work we investigated the effects of acute MMA administration on various parameters of oxidative stress in cerebral cortex and kidney of young rats, as well as the influence of acute renal failure on MMA-elicited effects on these parameters. Acute renal failure was induced by gentamicin, an aminoglycoside antibiotic whose utilization over prolonged periods causes nephrotoxicity. The administration of gentamicin alone increased carbonyl content and inhibited superoxide dismutase (SOD) activity in cerebral cortex, as well as increased thiobarbituric acid-reactive substances (TBA-RS) and sulfhydryl levels and diminished glutathione peroxidase activity in kidney. On the other hand, MMA administration increased TBA-RS levels in cerebral cortex and decreased SOD activity in kidney. Furthermore, the simultaneous administration of MMA and gentamicin to the rats provoked an augment in TBA-RS levels and superoxide generation in cerebral cortex and in TBA-RS, carbonyl and sulfhydryl levels in kidney, while diminished SOD activity in both studied tissues. Finally, nitrate/nitrite content, reduced glutathione levels, 2',7'-dihydrodichlorofluorescein oxidation and catalase activity were not affected by this animal treatment in either tissue. In conclusion, our present data are in line with the hypothesis that MMA acts as a toxin in brain and kidney of rats and suggest that renal injury potentiates the toxicity of MMA on oxidative stress parameters in brain and peripheral tissues.

  9. Activation of cannabinoid system in anterior cingulate cortex and orbitofrontal cortex modulates cost-benefit decision making.

    PubMed

    Khani, Abbas; Kermani, Mojtaba; Hesam, Soghra; Haghparast, Abbas; Argandoña, Enrike G; Rainer, Gregor

    2015-06-01

    Despite the evidence for altered decision making in cannabis abusers, the role of the cannabinoid system in decision-making circuits has not been studied. Here, we examined the effects of cannabinoid modulation during cost-benefit decision making in the anterior cingulate cortex (ACC) and orbitofrontal cortex (OFC), key brain areas involved in decision making. We trained different groups of rats in a delay-based and an effort-based form of cost-benefit T-maze decision-making task. During test days, the rats received local injections of either vehicle or ACEA, a cannabinoid type-1 receptor (CB1R) agonist in the ACC or OFC. We measured spontaneous locomotor activity following the same treatments and characterized CB1Rs localization on different neuronal populations within these regions using immunohistochemistry. We showed that CB1R activation in the ACC impaired decision making such that rats were less willing to invest physical effort to gain high reward. Similarly, CB1R activation in the OFC induced impulsive pattern of choice such that rats preferred small immediate rewards to large delayed rewards. Control tasks ensured that the effects were specific for differential cost-benefit tasks. Furthermore, we characterized widespread colocalizations of CB1Rs on GABAergic axonal ends but few colocalizations on glutamatergic, dopaminergic, and serotonergic neuronal ends. These results provide first direct evidence that the cannabinoid system plays a critical role in regulating cost-benefit decision making in the ACC and OFC and implicate cannabinoid modulation of synaptic ends of predominantly interneurons and to a lesser degree other neuronal populations in these two frontal regions.

  10. Human and Rodent Homologies in Action Control: Corticostriatal Determinants of Goal-Directed and Habitual Action

    PubMed Central

    Balleine, Bernard W; O'Doherty, John P

    2010-01-01

    Recent behavioral studies in both humans and rodents have found evidence that performance in decision-making tasks depends on two different learning processes; one encoding the relationship between actions and their consequences and a second involving the formation of stimulus–response associations. These learning processes are thought to govern goal-directed and habitual actions, respectively, and have been found to depend on homologous corticostriatal networks in these species. Thus, recent research using comparable behavioral tasks in both humans and rats has implicated homologous regions of cortex (medial prefrontal cortex/medial orbital cortex in humans and prelimbic cortex in rats) and of dorsal striatum (anterior caudate in humans and dorsomedial striatum in rats) in goal-directed action and in the control of habitual actions (posterior lateral putamen in humans and dorsolateral striatum in rats). These learning processes have been argued to be antagonistic or competing because their control over performance appears to be all or none. Nevertheless, evidence has started to accumulate suggesting that they may at times compete and at others cooperate in the selection and subsequent evaluation of actions necessary for normal choice performance. It appears likely that cooperation or competition between these sources of action control depends not only on local interactions in dorsal striatum but also on the cortico-basal ganglia network within which the striatum is embedded and that mediates the integration of learning with basic motivational and emotional processes. The neural basis of the integration of learning and motivation in choice and decision-making is still controversial and we review some recent hypotheses relating to this issue. PMID:19776734

  11. Mild Contralesional Hypothermia Reduces Use of the Unimpaired Forelimb in a Skilled Reaching Task After Motor Cortex Injury in Rats.

    PubMed

    Klahr, Ana C; Fagan, Kelly; Aziz, Jasmine R; John, Roseleen; Colbourne, Frederick

    2018-06-01

    Therapeutic hypothermia (TH) mitigates neuronal injury in models of ischemic stroke. Although this therapy is meant for injured tissue, most protocols cool the whole body, including the contralesional hemisphere. Neuroplasticity responses within this hemisphere can affect functional outcome. Thus, cooling the contralesional hemisphere serves no clear neuroprotective function and may instead be detrimental. In this study, we cooled the contralesional hemisphere to determine whether this harms behavioral recovery after cortical injury in rats. All rats were trained on skilled reaching and walking tasks. Rats then received a motor cortex insult contralateral to their dominant paw after which they were randomly assigned to focal contralesional TH (∼33°C) for 1-48, 1-97, or 48-96 hours postinjury, or to a normothermic control group. Contralesional cooling did not impact lesion volume (p = 0.371) and had minimal impact on neurological outcome of the impaired limb. However, rats cooled early were significantly less likely to shift paw preference to the unimpaired paw (p ≤ 0.043), suggesting that cooling reduced learned nonuse. In a second experiment, we tested whether cooling impaired learning of the skilled reaching task in naive rats. Localized TH applied to the hemisphere contralateral or ipsilateral to the preferred paw did not impair learning (p ≥ 0.677) or dendritic branching/length in the motor cortex (p ≥ 0.105). In conclusion, localized TH did not impair learning or plasticity in the absence of neural injury, but contralesional TH may reduce unwanted shifts in limb preference after stroke.

  12. Motor Skills Training Enhances α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid Receptor Subunit mRNA Expression in the Ipsilateral Sensorimotor Cortex and Striatum of Rats Following Intracerebral Hemorrhage.

    PubMed

    Tamakoshi, Keigo; Ishida, Kazuto; Kawanaka, Kentaro; Takamatsu, Yasuyuki; Tamaki, Hiroyuki

    2017-10-01

    We investigated the effects of acrobatic training (AT) on expression of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) subunits in the sensorimotor cortex and striatum after intracerebral hemorrhage (ICH). Male Wistar rats were divided into 4 groups: ICH without AT (ICH), ICH with AT (ICH + AT), sham operation without AT (SHAM), and sham operation with AT (SHAM + AT). ICH was induced by collagenase injection into the left striatum. The ICH + AT group performed 5 acrobatic tasks daily on days 4-28 post ICH. Forelimb sensorimotor function was evaluated using the forelimb placing test. On days 14 and 29, mRNA expression levels of AMPAR subunits GluR1-4 were measured by real-time reverse transcription-polymerase chain reaction. Forelimb placing test scores were significantly higher in the ICH + AT group than in the ICH group. Expression levels of all AMPAR subunit mRNAs were significantly higher in the ipsilateral sensorimotor cortex of rats in the ICH + AT group than in that of rats in the ICH group on day 29. GluR3 and GluR4 expression levels were reduced in the ipsilateral striatum of rats in the ICH group compared with that of rats in the SHAM group on day 14. These changes may play a critical role in motor skills training-induced recovery after ICH. Copyright © 2017 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  13. Discrimination of brief speech sounds is impaired in rats with auditory cortex lesions

    PubMed Central

    Porter, Benjamin A.; Rosenthal, Tara R.; Ranasinghe, Kamalini G.; Kilgard, Michael P.

    2011-01-01

    Auditory cortex (AC) lesions impair complex sound discrimination. However, a recent study demonstrated spared performance on an acoustic startle response test of speech discrimination following AC lesions (Floody et al., 2010). The current study reports the effects of AC lesions on two operant speech discrimination tasks. AC lesions caused a modest and quickly recovered impairment in the ability of rats to discriminate consonant-vowel-consonant speech sounds. This result seems to suggest that AC does not play a role in speech discrimination. However, the speech sounds used in both studies differed in many acoustic dimensions and an adaptive change in discrimination strategy could allow the rats to use an acoustic difference that does not require an intact AC to discriminate. Based on our earlier observation that the first 40 ms of the spatiotemporal activity patterns elicited by speech sounds best correlate with behavioral discriminations of these sounds (Engineer et al., 2008), we predicted that eliminating additional cues by truncating speech sounds to the first 40 ms would render the stimuli indistinguishable to a rat with AC lesions. Although the initial discrimination of truncated sounds took longer to learn, the final performance paralleled rats using full-length consonant-vowel-consonant sounds. After 20 days of testing, half of the rats using speech onsets received bilateral AC lesions. Lesions severely impaired speech onset discrimination for at least one-month post lesion. These results support the hypothesis that auditory cortex is required to accurately discriminate the subtle differences between similar consonant and vowel sounds. PMID:21167211

  14. The effect of retrosplenial cortex lesions in rats on incidental and active spatial learning

    PubMed Central

    Nelson, A. J. D.; Hindley, E. L.; Pearce, J. M.; Vann, S. D.; Aggleton, J. P.

    2015-01-01

    The study examined the importance of the retrosplenial cortex for the incidental learning of the spatial arrangement of distinctive features within a scene. In a modified Morris water-maze, rats spontaneously learnt the location of an escape platform prior to swimming to that location. For this, rats were repeatedly placed on a submerged platform in one corner of either a rectangular (Experiment 1) or square (Experiments 2, 3) pool with walls of different appearance. The rats were then released in the center of the pool for their first test trial. In Experiment 1, the correct corner and its diagonally opposite partner (also correct) were specified by the geometric properties of the pool. Rats with retrosplenial lesions took longer to first reach a correct corner, subsequently showing an attenuated preference for the correct corners. A reduced preference for the correct corner was also found in Experiment 2, when platform location was determined by the juxtaposition of highly salient visual cues (black vs. white walls). In Experiment 3, less salient visual cues (striped vs. white walls) led to a robust lesion impairment, as the retrosplenial lesioned rats showed no preference for the correct corner. When subsequently trained actively to swim to the correct corner over successive trials, retrosplenial lesions spared performance on all three discriminations. The findings not only reveal the importance of the retrosplenial cortex for processing various classes of visuospatial information but also highlight a broader role in the incidental learning of the features of a spatial array, consistent with the translation of scene information. PMID:25705182

  15. Fgfr3 regulates development of the caudal telencephalon.

    PubMed

    Moldrich, Randal X; Mezzera, Cecilia; Holmes, William M; Goda, Sailaja; Brookfield, Sam J; Rankin, Alastair J; Barr, Emily; Kurniawan, Nyoman; Dewar, Deborah; Richards, Linda J; López-Bendito, Guillermina; Iwata, Tomoko

    2011-06-01

    The fibroblast growth factor receptor 3 (Fgfr3) is expressed in a rostral(low) to caudal(high) gradient in the developing cerebral cortex. Therefore, we hypothesized that Fgfr3 contributes to the correct morphology and connectivity of the caudal cortex. Overall, the forebrain structures appeared normal in Fgfr3(-/-) mice. However, cortical and hippocampal volumes were reduced by 26.7% and 16.3%, respectively. Hypoplasia was particularly evident in the caudo-ventral region of the telencephalon where proliferation was mildly decreased at embryonic day 18.5. Dysplasia of GABAergic neurons in the amygdala and piriform cortex was seen following GAD67 immunohistochemistry. Dye-tracing studies and diffusion magnetic resonance imaging and tractography detected a subtle thalamocortical tract deficit, and significant decreases in the stria terminalis and lateral arms of the anterior commissure. These results indicate the subtle role of Fgfr3 in formation of caudal regions of the telencephalon affecting some brain projections. Copyright © 2011 Wiley-Liss, Inc.

  16. Activator-inhibitor coupling between Rho signaling and actin assembly make the cell cortex an excitable medium

    PubMed Central

    Bement, William M.; Leda, Marcin; Moe, Alison M.; Kita, Angela M.; Larson, Matthew E.; Golding, Adriana E.; Pfeuti, Courtney; Su, Kuan-Chung; Miller, Ann L.; Goryachev, Andrew B.; von Dassow, George

    2016-01-01

    Animal cell cytokinesis results from patterned activation of the small GTPase Rho, which directs assembly of actomyosin in the equatorial cortex. Cytokinesis is restricted to a portion of the cell cycle following anaphase onset in which the cortex is responsive to signals from the spindle. We show that shortly after anaphase onset oocytes and embryonic cells of frogs and echinoderms exhibit cortical waves of Rho activity and F-actin polymerization. The waves are modulated by cyclin-dependent kinase 1 (Cdk1) activity and require the Rho GEF (guanine nucleotide exchange factor), Ect2. Surprisingly, during wave propagation, while Rho activity elicits F-actin assembly, F-actin subsequently inactivates Rho. Experimental and modeling results show that waves represent excitable dynamics of a reaction diffusion system with Rho as the activator and F-actin the inhibitor. We propose that cortical excitability explains fundamental features of cytokinesis including its cell cycle regulation. PMID:26479320

  17. The perirhinal cortex of the rat is necessary for spatial memory retention long after but not soon after learning.

    PubMed

    Ramos, Juan M J; Vaquero, Joaquín M M

    2005-09-15

    Many observations in humans and experimental animals support the view that the hippocampus is critical immediately after learning in order for long-term memory formation to take place. However, exactly when the medial temporal cortices adjacent to the hippocampus are necessary for this process to occur normally is not yet well known. Using a spatial task, we studied whether the perirhinal cortex of rats is necessary to establish representations in long-term memory. Results showed that, in a spatial task sensitive to hippocampal lesions, control and perirhinal lesioned rats can both learn at the same rate (Experiment 1). Interestingly, a differential involvement of the perirhinal cortex in memory retention was observed as time passes after learning. Thus, 24 days following the end of learning, lesioned and control rats remembered the task perfectly as measured by a retraining test. In contrast, 74 days after the learning the perirhinal animals showed a profound impairment in the retention of the spatial information (Experiment 2). Taken together, these results suggest that the perirhinal region is critical for the formation of long-term spatial memory. However, its contribution to memory formation and retention is time-dependent, it being necessary only long after learning takes place and not during the phase immediately following acquisition.

  18. Peptides and Ageing.

    PubMed

    Khavinson, Vladimir Kh

    2002-01-01

    A technology has been developed for manufacturing of biologically active complex peptide preparations from extracts of different tissues. In particular, the pineal preparation (Epithalamin) augments the in vitro outgrowth of explants from the pineal gland but not from other tissues, the latter being stimulated by peptide preparations from respective tissues. Epithalamin increases melatonin production by the pineal gland of rats, improves immunological parameters in rats and mice, produces anticarcinogenic effects in different experimental models, stimulates antioxidant defenses, and restores the reproductive function in old rats. These effects are combined in the ability of Epithalamin to increase the lifespan in rats, mice, and fruit flies. Many of these effects are reproduced in clinical trials, which have demonstrated the geroprotector activity of Epithalamin in humans. Among the effects of the thymic preparation Thymalin, those related to its ability to stimulate immunity are the most prominent. This ability is associated with anticarcinogenic and geroprotector activities. Clinical trials of the peptide preparations obtained from other organs including the prostate, the cerebral cortex, and the eye retina, have demonstrated beneficial effects reflected by the improvement of the conditions of respective organs. Based on the data about the amino acid compositions of the peptide preparations, novel principles of the design of biologically active short peptides possessing tissue-specific activities has been developed. Dipeptides specific for the thymus and tetrapeptides specific for the heart, liver, brain cortex, and pineal glands stimulate the in vitro outgrowth of explants of respective organs. Interestingly, for eye retina and the pineal gland, a common tetrapeptide Ala-Glu-Asp-Gly (Epitalon) has been designed, probably reflecting the common embryonal origin of these two organs. Epitalon reproduces the effects of Epithalamin including those related to its geroprotector activity. In particular, Epitalon increases the lifespan of mice and fruit flies and restores the circadian rhythms of melatonin and cortisol production in old rhesus monkeys. At the same time, Epitalon prolongs the functional integrity of the eye retina in Campbell rats with hereditary Retinitis Pigmentosa and improves the visual functions in patients with pigmental retinal degeneration. Changes in gene expression were observed to be produced by the short peptide preparations. Therefore, the effects of Epitalon are suggested to be mediated by transcriptional machinery common for the pineal gland and the retina and, probably, for regulation of melatonin production in fruit flies. Based on three decades of studies of the peptide preparations, the peptide theory of ageing has been put forward. According this theory, ageing is an evolutionary determined biological process of changes in gene expression resulting in impaired synthesis of regulatory and tissue-specific peptides in organs and tissues, which provokes their structural and functional changes and the development of diseases. Correspondingly, correction of such disorders by means of stimulation of peptide production in the organism or through their delivery can promote the normalisation of disturbed body functions.

  19. Human embryonic stem cell-derived cells rescue visual function in dystrophic RCS rats.

    PubMed

    Lund, Raymond D; Wang, Shaomei; Klimanskaya, Irina; Holmes, Toby; Ramos-Kelsey, Rebeca; Lu, Bin; Girman, Sergej; Bischoff, N; Sauvé, Yves; Lanza, Robert

    2006-01-01

    Embryonic stem cells promise to provide a well-characterized and reproducible source of replacement tissue for human clinical studies. An early potential application of this technology is the use of retinal pigment epithelium (RPE) for the treatment of retinal degenerative diseases such as macular degeneration. Here we show the reproducible generation of RPE (67 passageable cultures established from 18 different hES cell lines); batches of RPE derived from NIH-approved hES cells (H9) were tested and shown capable of extensive photoreceptor rescue in an animal model of retinal disease, the Royal College of Surgeons (RCS) rat, in which photoreceptor loss is caused by a defect in the adjacent retinal pigment epithelium. Improvement in visual performance was 100% over untreated controls (spatial acuity was approximately 70% that of normal nondystrophic rats) without evidence of untoward pathology. The use of somatic cell nuclear transfer (SCNT) and/or the creation of banks of reduced complexity human leucocyte antigen (HLA) hES-RPE lines could minimize or eliminate the need for immunosuppressive drugs and/or immunomodulatory protocols.

  20. Toluene effects on oxidative stress in brain regions of young-adult, middle-age, and senescent Brown Norway rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kodavanti, Prasada Rao S., E-mail: kodavanti.prasada@epa.gov; Royland, Joyce E.; Richards, Judy E.

    The influence of aging on susceptibility to environmental contaminants is not well understood. To extend knowledge in this area, we examined effects in rat brain of the volatile organic compound, toluene. The objective was to test whether oxidative stress (OS) plays a role in the adverse effects caused by toluene exposure, and if so, if effects are age-dependent. OS parameters were selected to measure the production of reactive oxygen species (NADPH Quinone oxidoreductase 1 (NQO1), NADH Ubiquinone reductase (UBIQ-RD)), antioxidant homeostasis (total antioxidant substances (TAS), superoxide dismutase (SOD), {gamma}-glutamylcysteine synthetase ({gamma}-GCS), glutathione transferase (GST), glutathione peroxidase (GPX), glutathione reductase (GRD)),more » and oxidative damage (total aconitase and protein carbonyls). In this study, Brown Norway rats (4, 12, and 24 months) were dosed orally with toluene (0, 0.65 or 1 g/kg) in corn oil. Four hours later, frontal cortex, cerebellum, striatum, and hippocampus were dissected, quick frozen on dry ice, and stored at - 80 Degree-Sign C until analysis. Some parameters of OS were found to increase with age in select brain regions. Toluene exposure also resulted in increased OS in select brain regions. For example, an increase in NQO1 activity was seen in frontal cortex and cerebellum of 4 and 12 month old rats following toluene exposure, but only in the hippocampus of 24 month old rats. Similarly, age and toluene effects on glutathione enzymes were varied and brain-region specific. Markers of oxidative damage reflected changes in oxidative stress. Total aconitase activity was increased by toluene in frontal cortex and cerebellum at 12 and 24 months, respectively. Protein carbonyls in both brain regions and in all age groups were increased by toluene, but step-down analyses indicated toluene effects were statistically significant only in 12 month old rats. These results indicate changes in OS parameters with age and toluene exposure resulted in oxidative damage in frontal cortex and cerebellum of 12 month old rats. Although increases in oxidative damage are associated with increases in horizontal motor activity in older rats, further research is warranted to determine if these changes in OS parameters are related to neurobehavioral and neurophysiological effects of toluene in animal models of aging.« less

  1. Cortical ensemble activity increasingly predicts behaviour outcomes during learning of a motor task

    NASA Astrophysics Data System (ADS)

    Laubach, Mark; Wessberg, Johan; Nicolelis, Miguel A. L.

    2000-06-01

    When an animal learns to make movements in response to different stimuli, changes in activity in the motor cortex seem to accompany and underlie this learning. The precise nature of modifications in cortical motor areas during the initial stages of motor learning, however, is largely unknown. Here we address this issue by chronically recording from neuronal ensembles located in the rat motor cortex, throughout the period required for rats to learn a reaction-time task. Motor learning was demonstrated by a decrease in the variance of the rats' reaction times and an increase in the time the animals were able to wait for a trigger stimulus. These behavioural changes were correlated with a significant increase in our ability to predict the correct or incorrect outcome of single trials based on three measures of neuronal ensemble activity: average firing rate, temporal patterns of firing, and correlated firing. This increase in prediction indicates that an association between sensory cues and movement emerged in the motor cortex as the task was learned. Such modifications in cortical ensemble activity may be critical for the initial learning of motor tasks.

  2. Electrolytic lesions of the bilateral ventrolateral orbital cortex inhibit methamphetamine-associated contextual memory formation in rats.

    PubMed

    Zhao, Yan; Liu, Peng; Chu, Zheng; Liu, Fei; Han, Wei; Xun, Xi; Dang, Yong-Hui

    2015-10-22

    The memories that are formed between rewarding and drug-associated contextual cues have been suggested to contribute to drug addiction relapse. Recent evidence has indicated that the ventrolateral orbital cortex (VLO) plays important roles in reward-based learning and reversal learning. However, whether the VLO is required for methamphetamine-induced contextual memory formation is not well understood. In the present study, a three-phase methamphetamine-induced conditioned place preference (CPP) model was used to investigate the effects of VLO lesions on the formation of drug-associated contextual memories in rats. We found that the VLO lesions themselves elicited no observable effects on place preferences. However, the VLO lesions delayed the acquisition and extinction phases of CPP without affecting the expression level. Furthermore, the VLO lesions did not have an obvious influence on CPP reinstatement. These results indicate that electrolytic lesions of the bilateral ventrolateral orbital cortex can inhibit the formation of methamphetamine-induced contextual memories in rats. Moreover, VLO may not be critically involved in memory storage and retrieval. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Cannabis agonist injection effect on the coupling architecture in cortex of WAG/Rij rats during absence seizures

    NASA Astrophysics Data System (ADS)

    Sysoeva, Marina V.; Kuznetsova, Galina D.; van Rijn, Clementina M.; Sysoev, Ilya V.

    2016-04-01

    WAG/Rij rats are well known genetic model of absence epilepsy, which is traditionally considered as a nonconvulsive generalised epilepsy of unknown aetiology. In current study the effect of (R)-(+)-WIN 55,212-2 (cannabis agonist) injection on the coupling between different parts of cortex was studied on 27 male 8 month old rats using local field potentials. Recently developed non-linear adapted Granger causality approach was used as a primary method. It was shown that first 2 hours after the injection the coupling between most channel pairs rises in comparison with the spontaneous activity, whilst long after the injection (2-6 hours) it drops down. The coupling increase corresponds to the mentioned before treatment effect, when the number and the longitude of seizures significantly decreases. However the subsequent decrease of the coupling in the cortex is accompanied by the dramatic increase of the longitude and the number of seizures. This assumes the hypothesis that a relatively higher coupling in the cortical network can prevent the seizure propagation and generalisation.

  4. Agmatine protection against chlorpromazine-induced forebrain cortex injury in rats.

    PubMed

    Dejanovic, Bratislav; Stevanovic, Ivana; Ninkovic, Milica; Stojanovic, Ivana; Lavrnja, Irena; Radicevic, Tatjana; Pavlovic, Milos

    2016-03-01

    This study was conducted to investigate whether agmatine (AGM) provides protection against oxidative stress induced by treatment with chlorpromazine (CPZ) in Wistar rats. In addition, the role of reactive oxygen species and efficiency of antioxidant protection in the brain homogenates of forebrain cortexes prepared 48 h after treatment were investigated. Chlorpromazine was applied intraperitoneally (i.p.) in single dose of 38.7 mg/kg body weight (BW) The second group was treated with both CPZ and AGM (75 mg/kg BW). The control group was treated with 0.9% saline solution in the same manner. All tested compounds were administered i.p. in a single dose. Rats were sacrificed by decapitation 48 h after treatment Treatment with AGM significantly attenuated the oxidative stress parameters and restored antioxidant capacity in the forebrain cortex. The data indicated that i.p. administered AGM exerted antioxidant action in CPZ-treated animals. Moreover, reactive astrocytes and microglia may contribute to secondary nerve-cell damage and participate in the balance of destructive vs. protective actions involved in the pathogenesis after poisoning.

  5. Agmatine protection against chlorpromazine-induced forebrain cortex injury in rats

    PubMed Central

    Stevanovic, Ivana; Ninkovic, Milica; Stojanovic, Ivana; Lavrnja, Irena; Radicevic, Tatjana; Pavlovic, Milos

    2016-01-01

    This study was conducted to investigate whether agmatine (AGM) provides protection against oxidative stress induced by treatment with chlorpromazine (CPZ) in Wistar rats. In addition, the role of reactive oxygen species and efficiency of antioxidant protection in the brain homogenates of forebrain cortexes prepared 48 h after treatment were investigated. Chlorpromazine was applied intraperitoneally (i.p.) in single dose of 38.7 mg/kg body weight (BW) The second group was treated with both CPZ and AGM (75 mg/kg BW). The control group was treated with 0.9% saline solution in the same manner. All tested compounds were administered i.p. in a single dose. Rats were sacrificed by decapitation 48 h after treatment Treatment with AGM significantly attenuated the oxidative stress parameters and restored antioxidant capacity in the forebrain cortex. The data indicated that i.p. administered AGM exerted antioxidant action in CPZ-treated animals. Moreover, reactive astrocytes and microglia may contribute to secondary nerve-cell damage and participate in the balance of destructive vs. protective actions involved in the pathogenesis after poisoning. PMID:27051340

  6. Decreased norepinephrine (NE) uptake in cerebral cortex and inferior colliculus of genetically epilepsy prone (GEP) rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Browning, R.A.; Rigler-Daugherty, S.K.; Long, G.

    1986-03-01

    GEP rats are characterized by an enhanced susceptibility to seizures caused by a variety of stimuli, most notably sound. Pharmacological treatments that reduce the synaptic concentration of NE increase seizure severity in GEP rats while elevations in NE have the opposite effect. GEP rats also display a widespread deficit in brain NE concentration suggesting that their increased seizure susceptibility is related to a deficit in noradrenergic transmission. The authors have compared the kinetics of /sup 3/H-NE uptake in the P/sub 2/ synaptosomal fraction isolated from the cerebral cortex of normal and GEP-rats. Although the apparent Kms were not significantly differentmore » (Normal +/- SEM:0.37 +/- 0.13..mu..M; GEP +/- SEM: 0.29 +/- 0.07..mu..M), the Vmax for GEP rats was 48% lower than that of normal rats (Normal +/- SEM: 474 +/- 45 fmole/mg/4min; GEP +/- SEM: 248 +/- 16 fmole/mg/4min). Because of the possible role of the inferior colliculus (IC) in the initiation of sound-induced seizures in GEP rats, the authors measured synaptosomal NE uptake in the IC using a NE concentration of 50 nM. The IC synaptosomal NE uptake was found to be 35% lower in GEP than in normal rats. These findings are consistent with the hypothesis that a deficit in noradrenergic transmission is related to the increased seizure susceptibility of GEP rats.« less

  7. Audiovisual Temporal Processing and Synchrony Perception in the Rat.

    PubMed

    Schormans, Ashley L; Scott, Kaela E; Vo, Albert M Q; Tyker, Anna; Typlt, Marei; Stolzberg, Daniel; Allman, Brian L

    2016-01-01

    Extensive research on humans has improved our understanding of how the brain integrates information from our different senses, and has begun to uncover the brain regions and large-scale neural activity that contributes to an observer's ability to perceive the relative timing of auditory and visual stimuli. In the present study, we developed the first behavioral tasks to assess the perception of audiovisual temporal synchrony in rats. Modeled after the parameters used in human studies, separate groups of rats were trained to perform: (1) a simultaneity judgment task in which they reported whether audiovisual stimuli at various stimulus onset asynchronies (SOAs) were presented simultaneously or not; and (2) a temporal order judgment task in which they reported whether they perceived the auditory or visual stimulus to have been presented first. Furthermore, using in vivo electrophysiological recordings in the lateral extrastriate visual (V2L) cortex of anesthetized rats, we performed the first investigation of how neurons in the rat multisensory cortex integrate audiovisual stimuli presented at different SOAs. As predicted, rats ( n = 7) trained to perform the simultaneity judgment task could accurately (~80%) identify synchronous vs. asynchronous (200 ms SOA) trials. Moreover, the rats judged trials at 10 ms SOA to be synchronous, whereas the majority (~70%) of trials at 100 ms SOA were perceived to be asynchronous. During the temporal order judgment task, rats ( n = 7) perceived the synchronous audiovisual stimuli to be "visual first" for ~52% of the trials, and calculation of the smallest timing interval between the auditory and visual stimuli that could be detected in each rat (i.e., the just noticeable difference (JND)) ranged from 77 ms to 122 ms. Neurons in the rat V2L cortex were sensitive to the timing of audiovisual stimuli, such that spiking activity was greatest during trials when the visual stimulus preceded the auditory by 20-40 ms. Ultimately, given that our behavioral and electrophysiological results were consistent with studies conducted on human participants and previous recordings made in multisensory brain regions of different species, we suggest that the rat represents an effective model for studying audiovisual temporal synchrony at both the neuronal and perceptual level.

  8. Audiovisual Temporal Processing and Synchrony Perception in the Rat

    PubMed Central

    Schormans, Ashley L.; Scott, Kaela E.; Vo, Albert M. Q.; Tyker, Anna; Typlt, Marei; Stolzberg, Daniel; Allman, Brian L.

    2017-01-01

    Extensive research on humans has improved our understanding of how the brain integrates information from our different senses, and has begun to uncover the brain regions and large-scale neural activity that contributes to an observer’s ability to perceive the relative timing of auditory and visual stimuli. In the present study, we developed the first behavioral tasks to assess the perception of audiovisual temporal synchrony in rats. Modeled after the parameters used in human studies, separate groups of rats were trained to perform: (1) a simultaneity judgment task in which they reported whether audiovisual stimuli at various stimulus onset asynchronies (SOAs) were presented simultaneously or not; and (2) a temporal order judgment task in which they reported whether they perceived the auditory or visual stimulus to have been presented first. Furthermore, using in vivo electrophysiological recordings in the lateral extrastriate visual (V2L) cortex of anesthetized rats, we performed the first investigation of how neurons in the rat multisensory cortex integrate audiovisual stimuli presented at different SOAs. As predicted, rats (n = 7) trained to perform the simultaneity judgment task could accurately (~80%) identify synchronous vs. asynchronous (200 ms SOA) trials. Moreover, the rats judged trials at 10 ms SOA to be synchronous, whereas the majority (~70%) of trials at 100 ms SOA were perceived to be asynchronous. During the temporal order judgment task, rats (n = 7) perceived the synchronous audiovisual stimuli to be “visual first” for ~52% of the trials, and calculation of the smallest timing interval between the auditory and visual stimuli that could be detected in each rat (i.e., the just noticeable difference (JND)) ranged from 77 ms to 122 ms. Neurons in the rat V2L cortex were sensitive to the timing of audiovisual stimuli, such that spiking activity was greatest during trials when the visual stimulus preceded the auditory by 20–40 ms. Ultimately, given that our behavioral and electrophysiological results were consistent with studies conducted on human participants and previous recordings made in multisensory brain regions of different species, we suggest that the rat represents an effective model for studying audiovisual temporal synchrony at both the neuronal and perceptual level. PMID:28119580

  9. Placenta Defects and Embryonic Lethality Resulting from Disruption of Mouse Hydroxysteroid (17-β) Dehydrogenase 2 Gene

    PubMed Central

    Rantakari, Pia; Strauss, Leena; Kiviranta, Riku; Lagerbohm, Heidi; Paviala, Jenni; Holopainen, Irma; Vainio, Seppo; Pakarinen, Pirjo; Poutanen, Matti

    2008-01-01

    Hydroxysteroid (17-β) dehydrogenase 2 (HSD17B2) is a member of aldo-keto reductase superfamily, known to catalyze the inactivation of 17β-hydroxysteroids to less active 17-keto forms and catalyze the conversion of 20α-hydroxyprogesterone to progesterone in vitro. To examine the role of HSD17B2 in vivo, we generated mice deficient in Hsd17b2 [HSD17B2 knockout (KO)] by a targeted gene disruption in embryonic stem cells. From the homozygous mice carrying the disrupted Hsd17b2, 70% showed embryonic lethality appearing at the age of embryonic d 11.5 onward. The embryonic lethality was associated with reduced placental size measured at embryonic d 17.5. The HSD17B2KO mice placentas presented with structural abnormalities in all three major layers: the decidua, spongiotrophoblast, and labyrinth. Most notable was the disruption of the spongiotrophoblast and labyrinthine layers, together with liquid-filled cysts in the junctional region and the basal layer. Treatments with an antiestrogen or progesterone did not rescue the embryonic lethality or the placenta defect in the homozygous mice. In hybrid background used, 24% of HSD17B2KO mice survived through the fetal period but were born growth retarded and displayed a phenotype in the brain with enlargement of ventricles, abnormal laminar organization, and increased cellular density in the cortex. Furthermore, the HSD17B2KO mice had unilateral renal degeneration, the affected kidney frequently appearing as a fluid-filled sac. Our results provide evidence for a role for HSD17B2 enzyme in the cellular organization of the mouse placenta. PMID:18048640

  10. Corticotrigeminal Projections from the Insular Cortex to the Trigeminal Caudal Subnucleus Regulate Orofacial Pain after Nerve Injury via Extracellular Signal-Regulated Kinase Activation in Insular Cortex Neurons.

    PubMed

    Wang, Jian; Li, Zhi-Hua; Feng, Ban; Zhang, Ting; Zhang, Han; Li, Hui; Chen, Tao; Cui, Jing; Zang, Wei-Dong; Li, Yun-Qing

    2015-01-01

    Cortical neuroplasticity alterations are implicated in the pathophysiology of chronic orofacial pain. However, the relationship between critical cortex excitability and orofacial pain maintenance has not been fully elucidated. We recently demonstrated a top-down corticospinal descending pain modulation pathway from the anterior cingulate cortex (ACC) to the spinal dorsal horn that could directly regulate nociceptive transmission. Thus, we aimed to investigate possible corticotrigeminal connections that directly influence orofacial nociception in rats. Infraorbital nerve chronic constriction injury (IoN-CCI) induced significant orofacial nociceptive behaviors as well as pain-related negative emotions such as anxiety/depression in rats. By combining retrograde and anterograde tract tracing, we found powerful evidence that the trigeminal caudal subnucleus (Vc), especially the superficial laminae (I/II), received direct descending projections from granular and dysgranular parts of the insular cortex (IC). Extracellular signal-regulated kinase (ERK), an important signaling molecule involved in neuroplasticity, was significantly activated in the IC following IoN-CCI. Moreover, in IC slices from IoN-CCI rats, U0126, an inhibitor of ERK activation, decreased both the amplitude and the frequency of spontaneous excitatory postsynaptic currents (sEPSCs) and reduced the paired-pulse ratio (PPR) of Vc-projecting neurons. Additionally, U0126 also reduced the number of action potentials in the Vc-projecting neurons. Finally, intra-IC infusion of U0126 obviously decreased Fos expression in the Vc, accompanied by the alleviation of both nociceptive behavior and negative emotions. Thus, the corticotrigeminal descending pathway from the IC to the Vc could directly regulate orofacial pain, and ERK deactivation in the IC could effectively alleviate neuropathic pain as well as pain-related negative emotions in IoN-CCI rats, probably through this top-down pathway. These findings may help researchers and clinicians to better understand the underlying modulation mechanisms of orofacial neuropathic pain and indicate a novel mechanism of ERK inhibitor-induced analgesia.

  11. Synaptic protein changes after a chronic period of sensorimotor perturbation in adult rats: a potential role of phosphorylation/O-GlcNAcylation interplay.

    PubMed

    Fourneau, Julie; Canu, Marie-Hélène; Cieniewski-Bernard, Caroline; Bastide, Bruno; Dupont, Erwan

    2018-05-28

    In human, a chronic sensorimotor perturbation (SMP) through prolonged body immobilization alters motor task performance through a combination of peripheral and central factors. Studies performed on a rat model of SMP have shown biomolecular changes and a reorganization of sensorimotor cortex through events such as morphological modifications of dendritic spines (number, length, functionality). However, underlying mechanisms are still unclear. It is well known that phosphorylation regulates a wide field of synaptic activity leading to neuroplasticity. Another post-translational modification that interplays with phosphorylation is O-GlcNAcylation. This atypical glycosylation, reversible and dynamic, is involved in essential cellular and physiological processes such as synaptic activity, neuronal morphogenesis, learning and memory. We examined potential roles of phosphorylation/O-GlcNAcylation interplay in synaptic plasticity within rat sensorimotor cortex after a SMP period. For this purpose, sensorimotor cortex synaptosomes were separated by sucrose gradient, in order to isolate a subcellular compartment enriched in proteins involved in synaptic functions. A period of SMP induced plastic changes at the pre- and postsynaptic levels, characterized by a reduction of phosphorylation (synapsin1, AMPAR GluA2) and expression (synaptophysin, PSD-95, AMPAR GluA2) of synaptic proteins, as well as a decrease in MAPK/ERK42 activation. Expression levels of OGT/OGA enzymes was unchanged but we observed a specific reduction of synapsin1 O-GlcNAcylation in sensorimotor cortex synaptosomes. The synergistic regulation of synapsin1 phosphorylation/O-GlcNAcylation could affect presynaptic neurotransmitter release. Associated with other pre- and postsynaptic changes, synaptic efficacy could be impaired in somatosensory cortex of SMP rat. Thus, synapsin1 O-GlcNAcylation/phosphorylation interplay also appears to be involved in this synaptic plasticity by finely regulating neural activity. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  12. Prenatal stress decreases glycogen synthase kinase-3 phosphorylation in the rat frontal cortex.

    PubMed

    Szymańska, Magdalena; Suska, Anna; Budziszewska, Bogusława; Jaworska-Feil, Lucylla; Basta-Kaim, Agnieszka; Leśkiewicz, Monika; Kubera, Marta; Gergont, Aleksandra; Kroczka, Sławomir; Kaciński, Marek; Lasoń, Władysław

    2009-01-01

    It has been postulated that hyperactive glycogen synthase kinase-3 (GSK-3) is an important factor in the pathogenesis of depression, and that this enzyme also contributes to the mechanism of antidepressant drug action. In the present study, we investigated the effect of prenatal stress (an animal model of depression) and long-term treatment with antidepressant drugs on the concentration of GSK-3beta and its main regulating protein kinase B (PKB, Akt). The concentration of GSK-3beta, its inactive form (phospho-Ser9-GSK-3beta), and the amounts of active (phospho-Akt) and total Akt were determined in the hippocampus and frontal cortex in rats. In order to verify our animal model of depression, immobility time in the forced swim test (Porsolt test) was also determined.We found that prenatally stressed rats display a high level of immobility in the Porsolt test and chronic treatment with imipramine, fluoxetine, mirtazapine and tianeptine normalize this change. Western blot analysis demonstrated that GSK-3beta levels were significantly elevated in the frontal cortex, but not in the hippocampus, of prenatally stressed rats. The concentration of its non-active form (phospho-Ser9-GSK-3beta) was decreased only in the former brain structure. No changes were found in the amounts of active (phospho-Akt) and total Akt in both studied brain structures. Chronic treatment with antidepressant drugs diminished stress-induced alterations in GSK-3beta and phospho-GSK-3beta the frontal cortex, but had no effect on the concentration of these enzymes in the hippocampus. Moreover, levels of Akt and phospho-Akt in all experimental groups remained unchanged. Since our animal model of depression is connected with hyperactivity of the HPA axis, our results suggest that GSK-3beta is an important intracellular target for maladaptive glucocorticoid action on frontal cortex neurons and in antidepressant drug effects. Furthermore, the influence of stress and antidepressant drugs on GSK-3beta does not appear to impact the kinase activity of Akt.

  13. Role of estrogen and progesterone in the modulation of CNG-A1 and Na/K+-ATPase expression in the renal cortex.

    PubMed

    Gracelli, Jones B; Souza-Menezes, Jackson; Barbosa, Carolina M L; Ornellas, Felipe S; Takiya, Christina M; Alves, Leandro M; Wengert, Mira; Feltran, Georgia da Silva; Caruso-Neves, Celso; Moyses, Margareth R; Prota, Luiz F M; Morales, Marcelo M

    2012-01-01

    The steroid hormones, estrogen and progesterone, are involved mainly in the control of female reproductive functions. Among other effects, estrogen and progesterone can modulate Na(+) reabsorption along the nephron altering the body's hydroelectrolyte balance. In this work, we analyzed the expression of cyclic nucleotide-gated channel A1 (CNG-A1) and α1 Na(+)/K(+)-ATPase subunit in the renal cortex and medulla of female ovariectomized rats and female ovariectomized rats subjected to 10 days of 17β-estradiol benzoate (2.0 µg/kg body weight) and progesterone (1.7 mg/kg body weight) replacement. Na(+)/K(+) ATPase activity was also measured. Immunofluorescence localization of CNG-A1 in the cortex and medulla was performed in control animals. We observed that CNG-A1 is localized at the basolateral membrane of proximal and distal tubules. Female ovariectomized rats showed low expression of CNG-A1 and low expression and activity of Na(+)/K(+) ATPase in the renal cortex. When female ovariectomized rats were subjected to 17β-estradiol benzoate replacement, normalization of CNG-A1 expression and Na(+)/K(+) ATPase expression and activity was observed. The replacement of progesterone was not able to recover CNG-A1 expression and Na(+)/K(+) ATPase expression at the control level. Only the activity of Na(+)/K(+) ATPase was able to be recovered at control levels in animals subjected to progesterone replacement. No changes in expression and activity were observed in the renal medulla. The expression of CNG-A1 is higher in cortex compared to medulla. In this work, we observed that estrogen and progesterone act in renal tissues modulating CNG-A1 and Na(+)/K(+) ATPase and these effects could be important in Na(+) and water balance. Copyright © 2012 S. Karger AG, Basel.

  14. High-anxiety rats are less sensitive to the rewarding affects of amphetamine on 50kHz USV.

    PubMed

    Lehner, Małgorzata H; Taracha, Ewa; Kaniuga, Ewelina; Wisłowska-Stanek, Aleksandra; Wróbel, Jacek; Sobolewska, Alicja; Turzyńska, Danuta; Skórzewska, Anna; Płaźnik, Adam

    2014-12-15

    This study assessed behaviour, as measured by 50kHz calls related to positive affect, in rats with different fear conditioned response strengths: low-anxiety rats (LR) and high-anxiety rats (HR), after amphetamine injection in a two-injection protocol (TIPS). The results showed that the first dose of amphetamine evoked similar behavioural effects in frequency-modulated (FM) 50kHz calls in the LR and HR groups. The second injection of amphetamine resulted in stronger FM 50kHz calls in LR compared with HR rats. The biochemical data ('ex vivo' analysis) showed that the LR rats had increased basal levels of dopamine in the amygdala, and increased homovanilic acid (HVA), dopamine's main metabolite, in the amygdala and prefrontal cortex compared with HR rats. The 'in vivo' analysis (microdialysis study) showed that the LR rats had increased HVA concentrations in the basolateral amygdala in response to an aversively conditioned context. Research has suggested that differences in dopaminergic system activity in the amygdala and prefrontal cortex may be one of the biological factors that underlie individual differences in response to fear stimuli, which may also affect the rewarding effects of amphetamine. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Individual differences in schedule-induced polydipsia: neuroanatomical dopamine divergences.

    PubMed

    Pellón, Ricardo; Ruíz, Ana; Moreno, Margarita; Claro, Francisco; Ambrosio, Emilio; Flores, Pilar

    2011-02-02

    Autoradiography analysis of D1 and D2 dopamine receptors and c-Fos activity were performed in brain of rats classified as low drinkers (LD) and high drinkers (HD) according to schedule-induced polydipsia (SIP) performance. Previous studies have shown that groups selected according to their rate of drinking in SIP differ in behavioral response to dopaminergic drugs. This study reports differences between LD and HD rats in dopamine D1 and D2 receptor binding through different mesocorticolimbic brain areas. LD and HD rats showed opposite patterns of binding in dopamine D1 and D2 receptors in the nucleus accumbens, medial prefrontal cortex, amygdala, ventral tegmental area and substantia nigra. Whereas LD rats showed higher binding than HD rats for D1 receptors, HD rats showed higher binding than LD rats for D2 receptors (except in substantia nigra that were roughly similar). These neuroanatomical differences in dopamine receptor binding were also associated with an elevated c-Fos count in the medial prefrontal cortex of HD rats. In tandem with previous evidence, our results suggest a different dopaminergic function between LD and HD, and points to SIP as a behavioral model for distinguishing populations possibly vulnerable to dopaminergic function disorders. Copyright © 2010 Elsevier B.V. All rights reserved.

  16. Effects of oxotremorine on local glucose utilization in the rat cerebral cortex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dam, M.; Wamsley, J.K.; Rapoport, S.I.

    The (/sup 14/C)2-deoxy-D-glucose technique was used to examine the effects of central muscarinic stimulation on local cerebral glucose utilization (LCGU) in the cerebral cortex of the unanesthetized rat. Systemic administration of the muscarinic agonist oxotremorine (OXO, 0.1 to 1.0 mg/kg, i.p.) increased LCGU in the neocortex, mesocortex, and paleocortex. In the neocortex, OXO was more potent in elevating LCGU of the auditory, frontal, and sensorimotor regions compared with the visual cortex. Within these neocortical regions, OXO effects were greatest in cortical layers IV and V. OXO effects were more dramatic in the neocortex than in the meso- or paleocortex, andmore » no significant effect occurred in the perirhinal and pyriform cortices. OXO-induced LCGU increases were not influenced by methylatropine (1 mg/kg, s.c.) but were antagonized completely by scopolamine (2.5 mg/kg, i.p.). Scopolamine reduced LCGU in layer IV of the auditory cortex and in the retrosplenial cortex. The distribution and magnitude of the cortical LCGU response to OXO apparently were related to the distributions of cholinergic neurochemical markers, especially high affinity muscarinic binding sites.« less

  17. Effect of methylphenidate treatment during adolescence on norepinephrine transporter function in orbitofrontal cortex in a rat model of Attention Deficit Hyperactivity Disorder

    PubMed Central

    Somkuwar, Sucharita S.; Kantak, Kathleen M.; Dwoskin, Linda P.

    2015-01-01

    Attention Deficit Hyperactivity Disorder (ADHD) is associated with hypofunctional medial prefrontal cortex (mPFC) and orbitofrontal cortex (OFC). Methylphenidate (MPH) remediates ADHD, in part, by inhibiting the norepinephrine transporter (NET). MPH also reduces ADHD-like symptoms in Spontaneously Hypertensive Rats (SHRs), a model of ADHD. However, effects of chronic MPH treatment on NET function in mPFC and OFC in SHR have not been reported. In the current study, long-term effects of repeated treatment with a therapeutically relevant oral dose of MPH during adolescence on NET function in subregions of mPFC (cingulate gyrus, prelimbic cortex and infralimbic cortex) and in the OFC of adult SHR, Wistar-Kyoto (WKY, inbred control) and Wistar (WIS, outbred control) rats were determined using in vivo voltammetry. Following local ejection of norepinephrine (NE), uptake rate was determined as peak amplitude (Amax) x first-order rate constant (k-1). In mPFC subregions, no strain or treatment effects were found in NE uptake rate. In OFC, NE uptake rate in vehicle-treated adult SHR was greater than in adult WKY and WIS administered vehicle. MPH treatment during adolescence normalized NE uptake rate in OFC in SHR. Thus, the current study implicates increased NET function in OFC as an underlying mechanism for reduced noradrenergic transmission in OFC, and consequently, the behavioral deficits associated with ADHD. MPH treatment during adolescence normalized NET function in OFC in adulthood, suggesting that the therapeutic action of MPH persists long after treatment cessation and may contribute to lasting reductions in deficits associated with ADHD. PMID:25680322

  18. Light-Emitting Diode (LED) therapy improves occipital cortex damage by decreasing apoptosis and increasing BDNF-expressing cells in methanol-induced toxicity in rats.

    PubMed

    Ghanbari, Amir; Ghareghani, Majid; Zibara, Kazem; Delaviz, Hamdallah; Ebadi, Elham; Jahantab, Mohammad Hossein

    2017-05-01

    Methanol-induced retinal toxicity, frequently associated with elevated free radicals and cell edema, is characterized by progressive retinal ganglion cell (RGC) death and vision loss. Previous studies investigated the effect of photomodulation on RGCs, but not the visual cortex. In this study, the effect of 670nm Light-Emitting Diode (LED) therapy on RGCs and visual cortex recovery was investigated in a seven-day methanol-induced retinal toxicity protocol in rats. Methanol administration showed a reduction in the number of RGCs, loss of neurons (neuronal nuclear antigen, NeuN+), activation of glial fibrillary acidic protein (GFAP+) expressing cells, suppression of brain-derived neurotrophic factor (BDNF+) positive cells, increase in apoptosis (caspase 3+) and enhancement of nitric oxide (NO) release in serum and brain. On the other hand, LED therapy significantly reduced RGC death, in comparison to the methanol group. In addition, the number of BDNF positive cells was significantly higher in the visual cortex of LED-treated group, in comparison to methanol-intoxicated and control groups. Moreover, LED therapy caused a significant decrease in cell death (caspase 3+ cells) and a significant reduction in the NO levels, both in serum and brain tissue, in comparison to methanol-intoxicated rats. Overall, LED therapy demonstrated a number of beneficial effects in decreasing oxidative stress and in functional recovery of RGCs and visual cortex. Our data suggest that LED therapy could be a potential condidate as a non-invasive approach for treatment of retinal damage, which needs further clinicl studies. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  19. Prenatal exposure to the cannabinoid receptor agonist WIN 55,212-2 increases glutamate uptake through overexpression of GLT1 and EAAC1 glutamate transporter subtypes in rat frontal cerebral cortex.

    PubMed

    Castaldo, Pasqualina; Magi, Simona; Gaetani, Silvana; Cassano, Tommaso; Ferraro, Luca; Antonelli, Tiziana; Amoroso, Salvatore; Cuomo, Vincenzo

    2007-09-01

    Prenatal exposure to the CB1 receptor agonist (R)-(+)-[2,3-dihydro-5-methyl-3-(4-morpholinylmethyl)-pyrrolo[1,2,3-de]-1,4-benzoxazinyl]-(1-naphthalenyl)methanone) mesylate (WIN) at a daily dose of 0.5 mg/kg, and Delta9-tetrahydrocannabinol (Delta9-THC) at a daily dose of 5 mg/kg, reduced dialysate glutamate levels in frontal cerebral cortex of adolescent offspring (40-day-old) with respect to those born from vehicle-treated mothers. WIN treatment induced a statistically significant enhancement of Vmaxl-[3H]glutamate uptake, whereas it did not modify glutamate Km, in frontal cerebral cortex synaptosomes of adolescent rats. Western blotting analysis, performed either in membrane proteins derived from homogenates and in proteins extracted from synaptosomes of frontal cerebral cortex, revealed that prenatal WIN exposure enhanced the expression of glutamate transporter 1 (GLT1) and excitatory amino acid carrier 1 (EAAC1). Moreover, immunocytochemical analyses of frontal cortex area revealed a more intense GLT1 and EAAC1 immunoreactivity (ir) distribution in the WIN-treated group. Collectively these results show that prenatal exposure to the cannabinoid CB1 receptor agonist WIN increases expression and functional activity of GLT1 and EAAC1 glutamate transporters (GluTs) associated to a decrease of cortical glutamate outflow, in adolescent rats. These findings may contribute to explain the mechanism underlying the cognitive impairment observed in the offspring of mothers who used marijuana during pregnancy.

  20. Exercise-induced stress resistance is independent of exercise controllability and the medial prefrontal cortex

    PubMed Central

    Greenwood, Benjamin N.; Spence, Katie G.; Crevling, Danielle M.; Clark, Peter J.; Craig, Wendy C.; Fleshner, Monika

    2014-01-01

    Exercise increases resistance against stress-related disorders such as anxiety and depression. Similarly, the perception of control is a powerful predictor of neurochemical and behavioral responses to stress, but whether the experience of choosing to exercise, and exerting control over that exercise, is a critical factor in producing exercise-induced stress resistance is unknown. The current studies investigated whether the protective effects of exercise against the anxiety- and depression-like consequences of stress are dependent on exercise controllability and a brain region implicated in the protective effects of controllable experiences, the medial prefrontal cortex. Adult male Fischer 344 rats remained sedentary, were forced to run on treadmills or motorised running wheels, or had voluntary access to wheels for 6 weeks. Three weeks after exercise onset, rats received sham surgery or excitotoxic lesions of the medial prefrontal cortex. Rats were exposed to home cage or uncontrollable tail shock treatment three weeks later. Shock-elicited fear conditioning and shuttle box escape testing occurred the next day. Both forced and voluntary wheel running, but not treadmill training, prevented the exaggerated fear conditioning and interference with escape learning produced by uncontrollable stress. Lesions of the medial prefrontal cortex failed to eliminate the protective effects of forced or voluntary wheel running. These data suggest that exercise controllability and the medial prefrontal cortex are not critical factors in conferring the protective effects of exercise against the affective consequences of stressor exposure, and imply that exercise perceived as forced may still benefit affect and mental health. PMID:23121339

Top