Sample records for emergency command system

  1. Implementing the Hospital Emergency Incident Command System: an integrated delivery system's experience.

    PubMed

    Zane, Richard D; Prestipino, Ann L

    2004-01-01

    Hospital disaster manuals and response plans often lack formal command structure; instead, they rely on the presence of key individuals who are familiar with hospital operations, or who are in leadership positions during routine, day-to-day operations. Although this structure occasionally may prove to be successful, it is unreliable, as this leadership may be unavailable at the time of the crisis, and may not be sustainable during a prolonged event. The Hospital Emergency Incident Command System (HEICS) provides a command structure that does not rely on specific individuals, is flexible and expandable, and is ubiquitous in the fire service, emergency medical services, military, and police agencies, thus allowing for ease of communication during event management. A descriptive report of the implementation of the HEICS throughout a large healthcare network is reviewed. Implementation of the HEICS provides a consistent command structure for hospitals that enables consistency and commonality with other hospitals and disaster response entities.

  2. The emergence of Zipf's law - Spontaneous encoding optimization by users of a command language

    NASA Technical Reports Server (NTRS)

    Ellis, S. R.; Hitchcock, R. J.

    1986-01-01

    The distribution of commands issued by experienced users of a computer operating system allowing command customization tends to conform to Zipf's law. This result documents the emergence of a statistical property of natural language as users master an artificial language. Analysis of Zipf's law by Mandelbrot and Cherry shows that its emergence in the computer interaction of experienced users may be interpreted as evidence that these users optimize their encoding of commands. Accordingly, the extent to which users of a command language exhibit Zipf's law can provide a metric of the naturalness and efficiency with which that language is used.

  3. GNSS-based emergency management system

    NASA Astrophysics Data System (ADS)

    Wu, Yuhang; Chen, Xiuwan; Ma, Lei

    2009-06-01

    Public safety and public service is a particularly challenging task. The questions of how to use the limited resources efficiently, how to improve the Government's emergency rapid response and ability of risk resistance, and how to provide a more efficient emergency service for the public, have increasingly become the focus to strengthen urban management. Emergency Response Management System is a highly efficient and powerful command system dealing with natural and social disasters, by using all aspects of the force being gathered in a short period of time, sudden events can be handled efficiently, and further development of the incident can be controlled. In this paper, based on the analysis of development status of the emergency management system at home and abroad, and the key technologies of the emergency management system based on GNSS, research and development on emergency command system based on GNSS has been done. Meanwhile, test in Sichuan earthquake has also been carried out. Practice in Sichuan province earthquake relief work has proved that the emergency management command system based on GNSS can play the advantage function and exert the maximum potential, and can play the role of "lifeline" in the critical moment.

  4. Literature review on medical incident command.

    PubMed

    Rimstad, Rune; Braut, Geir Sverre

    2015-04-01

    It is not known what constitutes the optimal emergency management system, nor is there a consensus on how effectiveness and efficiency in emergency response should be measured or evaluated. Literature on the role and tasks of commanders in the prehospital emergency services in the setting of mass-casualty incidents has not been summarized and published. This comprehensive literature review addresses some of the needs for future research in emergency management through three research questions: (1) What are the basic assumptions underlying incident command systems (ICSs)? (2) What are the tasks of ambulance and medical commanders in the field? And (3) How can field commanders' performances be measured and assessed? A systematic literature search in MEDLINE, PubMed, PsycINFO, Embase, Cochrane Central Register of Controlled Trials, Cochrane Library, ISI Web of Science, Scopus, International Security & Counter Terrorism Reference Center, Current Controlled Trials, and PROSPERO covering January 1, 1990 through March 1, 2014 was conducted. Reference lists of included literature were hand searched. Included papers were analyzed using Framework synthesis. The literature search identified 6,049 unique records, of which, 76 articles and books where included in qualitative synthesis. Most ICSs are described commonly as hierarchical, bureaucratic, and based on military principles. These assumptions are contested strongly, as is the applicability of such systems. Linking of the chains of command in cooperating agencies is a basic difficulty. Incident command systems are flexible in the sense that the organization may be expanded as needed. Commanders may command by direction, by planning, or by influence. Commanders' tasks may be summarized as: conducting scene assessment, developing an action plan, distributing resources, monitoring operations, and making decisions. There is considerable variation between authors in nomenclature and what tasks are included or highlighted. There are no widely acknowledged measurement tools of commanders' performances, though several performance indicators have been suggested. The competence and experience of the commanders, upon which an efficient ICS has to rely, cannot be compensated significantly by plans and procedures, or even by guidance from superior organizational elements such as coordination centers. This study finds that neither a certain system or structure, or a specific set of plans, are better than others, nor can it conclude what system prerequisites are necessary or sufficient for efficient incident management. Commanders need to be sure about their authority, responsibility, and the functional demands posed upon them.

  5. Handbook of emergency management for state-level transportation agencies.

    DOT National Transportation Integrated Search

    2010-03-01

    The Department of Homeland Security has mandated specific systems and techniques for the management of emergencies in the United States, including the Incident Command System, the National Incident Management System, Emergency Operations Plans, Emerg...

  6. Spills of National Significance Response Management System

    DOT National Transportation Integrated Search

    1997-07-15

    This Instruction contains guidance for establishing an Incident Command System : (ICS) Area Command Structure for a Spill of National Significance (SONS). : Reference (a), the National Contingency Plan (NCP), assigns responsibilities for : emergency ...

  7. 76 FR 9039 - Emergency Responder Field Operations Guide

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-16

    ... Command System during incident operations. DATES: Comments must be received by March 18, 2011. ADDRESSES... (ER FOG) is intended for use when implementing the Incident Command System (ICS) in response to an...

  8. Roadside-based communication system and method

    NASA Technical Reports Server (NTRS)

    Bachelder, Aaron D. (Inventor)

    2007-01-01

    A roadside-based communication system providing backup communication between emergency mobile units and emergency command centers. In the event of failure of a primary communication, the mobile units transmit wireless messages to nearby roadside controllers that may take the form of intersection controllers. The intersection controllers receive the wireless messages, convert the messages into standard digital streams, and transmit the digital streams along a citywide network to a destination intersection or command center.

  9. Decrease in medical command errors with use of a "standing orders" protocol system.

    PubMed

    Holliman, C J; Wuerz, R C; Meador, S A

    1994-05-01

    The purpose of this study was to determine the physician medical command error rates and paramedic error rates after implementation of a "standing orders" protocol system for medical command. These patient-care error rates were compared with the previously reported rates for a "required call-in" medical command system (Ann Emerg Med 1992; 21(4):347-350). A secondary aim of the study was to determine if the on-scene time interval was increased by the standing orders system. Prospectively conducted audit of prehospital advanced life support (ALS) trip sheets was made at an urban ALS paramedic service with on-line physician medical command from three local hospitals. All ALS run sheets from the start time of the standing orders system (April 1, 1991) for a 1-year period ending on March 30, 1992 were reviewed as part of an ongoing quality assurance program. Cases were identified as nonjustifiably deviating from regional emergency medical services (EMS) protocols as judged by agreement of three physician reviewers (the same methodology as a previously reported command error study in the same ALS system). Medical command and paramedic errors were identified from the prehospital ALS run sheets and categorized. Two thousand one ALS runs were reviewed; 24 physician errors (1.2% of the 1,928 "command" runs) and eight paramedic errors (0.4% of runs) were identified. The physician error rate was decreased from the 2.6% rate in the previous study (P < .0001 by chi 2 analysis). The on-scene time interval did not increase with the "standing orders" system.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. InteractInteraction mechanism of emergency response in geological hazard perception and risk management: a case study in Zhouqu county

    NASA Astrophysics Data System (ADS)

    Qi, Yuan; Zhao, Hongtao

    2017-04-01

    China is one of few several natural disaster prone countries, which has complex geological and geographical environment and abnormal climate. On August 8, 2010, a large debris flow disaster happened in Zhouqu Country, Gansu province, resulting in more than 1700 casualties and more than 200 buildings damaged. In order to percept landslide and debris flow, an early warning system was established in the county. Spatial information technologies, such as remote sensing, GIS, and GPS, play core role in the early warning system, due to their functions in observing, analyzing, and locating geological disasters. However, all of these spatial information technologies could play an important role only guided by the emergency response mechanism. This article takes the establishment of Zhouqu Country's Disaster Emergency Response Interaction Mechanism (DERIM) as an example to discuss the risk management of country-level administrative units. The country-level risk management aims to information sharing, resources integration, integrated prevention and unified command. Then, nine subsystems support DERIM, which included disaster prevention and emergency data collection and sharing system, joint duty system, disaster verification and evaluation system, disaster consultation system, emergency warning and information release system, emergency response system, disaster reporting system, plan management system, mass prediction and prevention management system. At last, an emergency command platform in Zhouqu Country built up to realize DERIM. The core mission of the platform consists of daily management of disaster, monitoring and warning, comprehensive analysis, information release, consultation and decision-making, emergency response, etc. Five functional modules, including module of disaster information management, comprehensive monitoring module (geological monitoring, meteorological monitoring, water conservancy and hydrological monitoring), alarm management module, emergency command and disaster dispatching management module are developed on the basis of this platform. Based on the internet technology, an web-based office platform is exploited for the nodes scattered in departments and towns, which includes daily business, monitoring and warning, alarm notification, alarm recording, personnel management and update in disaster region, query and analysis of real-time observation data, etc. The platform experienced 3 years' test of the duty in flood period since 2013, and two typical disaster cases during this period fully illustrates the effectiveness of the DERIM and the emergency command platform.

  11. Research of an emergency medical system for mass casualty incidents in Shanghai, China: a system dynamics model.

    PubMed

    Yu, Wenya; Lv, Yipeng; Hu, Chaoqun; Liu, Xu; Chen, Haiping; Xue, Chen; Zhang, Lulu

    2018-01-01

    Emergency medical system for mass casualty incidents (EMS-MCIs) is a global issue. However, China lacks such studies extremely, which cannot meet the requirement of rapid decision-support system. This study aims to realize modeling EMS-MCIs in Shanghai, to improve mass casualty incident (MCI) rescue efficiency in China, and to provide a possible method of making rapid rescue decisions during MCIs. This study established a system dynamics (SD) model of EMS-MCIs using the Vensim DSS program. Intervention scenarios were designed as adjusting scales of MCIs, allocation of ambulances, allocation of emergency medical staff, and efficiency of organization and command. Mortality increased with the increasing scale of MCIs, medical rescue capability of hospitals was relatively good, but the efficiency of organization and command was poor, and the prehospital time was too long. Mortality declined significantly when increasing ambulances and improving the efficiency of organization and command; triage and on-site first-aid time were shortened if increasing the availability of emergency medical staff. The effect was the most evident when 2,000 people were involved in MCIs; however, the influence was very small under the scale of 5,000 people. The keys to decrease the mortality of MCIs were shortening the prehospital time and improving the efficiency of organization and command. For small-scale MCIs, improving the utilization rate of health resources was important in decreasing the mortality. For large-scale MCIs, increasing the number of ambulances and emergency medical professionals was the core to decrease prehospital time and mortality. For super-large-scale MCIs, increasing health resources was the premise.

  12. Occupational Safety and Health System for Workers Engaged in Emergency Response Operations in the USA.

    PubMed

    Toyoda, Hiroyuki; Kubo, Tatsuhiko; Mori, Koji

    2016-12-03

    To study the occupational safety and health systems used for emergency response workers in the USA, we performed interviews with related federal agencies and conducted research on related studies. We visited the Federal Emergency Management Agency (FEMA) and National Institute for Occupational Safety and Health (NIOSH) in the USA and performed interviews with their managers on the agencies' roles in the national emergency response system. We also obtained information prepared for our visit from the USA's Occupational Safety and Health Administration (OSHA). In addition, we conducted research on related studies and information on the website of the agencies. We found that the USA had an established emergency response system based on their National Incident Management System (NIMS). This enabled several organizations to respond to emergencies cooperatively using a National Response Framework (NRF) that clarifies the roles and cooperative functions of each federal agency. The core system in NIMS was the Incident Command System (ICS), within which a Safety Officer was positioned as one of the command staff supporting the commander. All ICS staff were required to complete a training program specific to their position; in addition, the Safety Officer was required to have experience. The All-Hazards model was commonly used in the emergency response system. We found that FEMA coordinated support functions, and OSHA and NIOSH, which had specific functions to protect workers, worked cooperatively under NRF. These agencies employed certified industrial hygienists that play a professional role in safety and health. NIOSH recently executed support activities during disasters and other emergencies. The USA's emergency response system is characterized by functions that protect the lives and health of emergency response workers. Trained and experienced human resources support system effectiveness. The findings provided valuable information that could be used to improve the occupational safety and health function in the Japanese system.

  13. Implementation of a medical command and control team in Switzerland.

    PubMed

    Carron, Pierre-Nicolas; Reigner, Philippe; Vallotton, Laurent; Clouet, Jean-Gabriel; Danzeisen, Claude; Zürcher, Mathias; Yersin, Bertrand

    2014-04-01

    In case of a major incident or disaster, the advance medical rescue command needs to manage several essential tasks simultaneously. These include the rapid deployment of ambulance, police, fire and evacuation services, and their coordinated activity, as well as triage and emergency medical care on site. The structure of such a medical rescue command is crucial for the successful outcome of medical evacuation at major incidents. However, little data has been published on the nature and structure of the command itself. This study presents a flexible approach to command structure, with two command heads: one emergency physician and one experienced paramedic. This approach is especially suitable for Switzerland, whose federal system allows for different structures in each canton. This article examines the development of these structures and their efficiency, adaptability and limitations with respect to major incident response in the French-speaking part of the country. © 2014 The Author(s). Disasters © Overseas Development Institute, 2014.

  14. Research of an emergency medical system for mass casualty incidents in Shanghai, China: a system dynamics model

    PubMed Central

    Liu, Xu; Chen, Haiping; Xue, Chen

    2018-01-01

    Objectives Emergency medical system for mass casualty incidents (EMS-MCIs) is a global issue. However, China lacks such studies extremely, which cannot meet the requirement of rapid decision-support system. This study aims to realize modeling EMS-MCIs in Shanghai, to improve mass casualty incident (MCI) rescue efficiency in China, and to provide a possible method of making rapid rescue decisions during MCIs. Methods This study established a system dynamics (SD) model of EMS-MCIs using the Vensim DSS program. Intervention scenarios were designed as adjusting scales of MCIs, allocation of ambulances, allocation of emergency medical staff, and efficiency of organization and command. Results Mortality increased with the increasing scale of MCIs, medical rescue capability of hospitals was relatively good, but the efficiency of organization and command was poor, and the prehospital time was too long. Mortality declined significantly when increasing ambulances and improving the efficiency of organization and command; triage and on-site first-aid time were shortened if increasing the availability of emergency medical staff. The effect was the most evident when 2,000 people were involved in MCIs; however, the influence was very small under the scale of 5,000 people. Conclusion The keys to decrease the mortality of MCIs were shortening the prehospital time and improving the efficiency of organization and command. For small-scale MCIs, improving the utilization rate of health resources was important in decreasing the mortality. For large-scale MCIs, increasing the number of ambulances and emergency medical professionals was the core to decrease prehospital time and mortality. For super-large-scale MCIs, increasing health resources was the premise. PMID:29440876

  15. Are hospitals ready to response to disasters? Challenges, opportunities and strategies of Hospital Emergency Incident Command System (HEICS).

    PubMed

    Yarmohammadian, Mohammad Hossein; Atighechian, Golrokh; Shams, Lida; Haghshenas, Abbas

    2011-08-01

    Applying an effective management system in emergency incidents provides maximum efficiency with using minimum facilities and human resources. Hospital Emergency Incident Command System (HEICS) is one of the most reliable emergency incident command systems to make hospitals more efficient and to increase patient safety. This research was to study requirements, barriers, and strategies of HEICS in hospitals affiliated to Isfahan University of Medical Sciences (IUMS). This was a qualitative research carried out in Isfahan Province, Iran during 2008-09. The study population included senior hospital managers of IUMS and key informants in emergency incident management across Isfahan Province. Sampling method was in non-random purposeful form and snowball technique was used. The research instrument for data collection was semi-structured interview; collected data was analyzed by Colaizzi Technique. Findings of study were categorized into three general categories including requirements (organizational and sub-organizational), barriers (internal and external) of HEICS establishment, and providing short, mid and long term strategies. These categories are explained in details in the main text. Regarding the existing barriers in establishment of HEICS, it is recommended that responsible authorities in different levels of health care system prepare necessary conditions for implementing such system as soon as possible via encouraging and supporting systems. This paper may help health policy makers to get reasonable framework and have comprehensive view for establishing HEICS in hospitals. It is necessary to consider requirements and viewpoints of stakeholders before any health policy making or planning.

  16. STS-32 Commander Brandenstein in LES prepares for WETF water egress training

    NASA Technical Reports Server (NTRS)

    1989-01-01

    STS-32 Commander Daniel C. Brandenstein, wearing a launch and entry suit (LES), orange parachute harness and life vest, is briefed on emergency egress procedures in JSC's Weightless Environment Training Facility Bldg 29. The crew used the WETF's nearby 25 ft deep pool for the exercises, which familiarize assigned space shuttle crewmembers with procedures associated with the post-Challenger pole system of emergency egress.

  17. Analysis of good practice of public health Emergency Operations Centers.

    PubMed

    Xu, Min; Li, Shi-Xue

    2015-08-01

    To study the public health Emergency Operations Centers (EOCs)in the US, the European Union, the UK and Australia, and summarize the good practice for the improvement of National Health Emergency Response Command Center in Chinese National Health and Family Planning Commission. Literature review was conducted to explore the EOCs of selected countries. The study focused on EOC function, organizational structure, human resources and information management. The selected EOCs had the basic EOC functions of coordinating and commanding as well as the public health related functions such as monitoring the situation, risk assessment, and epidemiological briefings. The organizational structures of the EOCs were standardized, scalable and flexible. Incident Command System was the widely applied organizational structure with a strong preference. The EOCs were managed by a unit of emergency management during routine time and surge staff were engaged upon emergencies. The selected EOCs had clear information management framework including information collection, assessment and dissemination. The performance of National Health Emergency Response Command Center can be improved by learning from the good practice of the selected EOCs, including setting clear functions, standardizing the organizational structure, enhancing the human resource capacity and strengthening information management. Copyright © 2015 Hainan Medical College. Production and hosting by Elsevier B.V. All rights reserved.

  18. Helpful Hints for School Emergency Management: The National Incident Management System (NIMS) and Schools. Frequently Asked Questions and FY 2006 NIMS Compliance Activities for Schools

    ERIC Educational Resources Information Center

    US Department of Education, 2006

    2006-01-01

    "Helpful Hints" offers a quick overview of school emergency preparedness topics that are frequently the subject of inquiries. The National Incident Management System (NIMS) is a comprehensive system that improves tribal and local emergency response operations through the use of the Incident Command System (ICS) and the application of standardized…

  19. Terrain Commander: a next-generation remote surveillance system

    NASA Astrophysics Data System (ADS)

    Finneral, Henry J.

    2003-09-01

    Terrain Commander is a fully automated forward observation post that provides the most advanced capability in surveillance and remote situational awareness. The Terrain Commander system was selected by the Australian Government for its NINOX Phase IIB Unattended Ground Sensor Program with the first systems delivered in August of 2002. Terrain Commander offers next generation target detection using multi-spectral peripheral sensors coupled with autonomous day/night image capture and processing. Subsequent intelligence is sent back through satellite communications with unlimited range to a highly sophisticated central monitoring station. The system can "stakeout" remote locations clandestinely for 24 hours a day for months at a time. With its fully integrated SATCOM system, almost any site in the world can be monitored from virtually any other location in the world. Terrain Commander automatically detects and discriminates intruders by precisely cueing its advanced EO subsystem. The system provides target detection capabilities with minimal nuisance alarms combined with the positive visual identification that authorities demand before committing a response. Terrain Commander uses an advanced beamforming acoustic sensor and a distributed array of seismic, magnetic and passive infrared sensors to detect, capture images and accurately track vehicles and personnel. Terrain Commander has a number of emerging military and non-military applications including border control, physical security, homeland defense, force protection and intelligence gathering. This paper reviews the development, capabilities and mission applications of the Terrain Commander system.

  20. National IVHS Architecture Development Strategy

    DOT National Transportation Integrated Search

    1994-01-27

    NATIONAL INFORMATION AND CONTROL SYSTEMS ARE EMERGING THAT REQUIRE SYSTEM ARCHITECTURES FOR DEPLOYMENT ACROSS THE NATION, E.G., AIR TRAFFIC CONTROL SYSTEMS, MILITARY COMMAND AND CONTROL SYSTEMS, AND OTHER NATIONAL INFORMATION SYSTEMS. THE REQUIRED CH...

  1. Site management of health issues in the 2001 World Trade Center disaster.

    PubMed

    Bradt, David A

    2003-06-01

    The terrorist destruction of the World Trade Center led to the greatest loss of life from a criminal incident in the history of the United States. There were 2,801 persons killed or missing at the disaster site, including 147 dead on two hijacked aircraft. Hundreds of buildings sustained direct damage or contamination. Forty different agencies responded with command and control exercised by an incident command system as well as an emergency operations center. Dozens of hazards complicated relief and recovery efforts. Five victims were rescued from the rubble. Up to 1,000 personnel worked daily at the World Trade Center disaster site. These workers collectively made an average of 270 daily presentations to health care providers in the first month post-disaster. Of presentations for clinical symptoms, leading clinical diagnoses were ocular injuries, headaches, and lung injuries. Mechanical injury accounted for 39% of clinical presentations and appeared preventable by personal protective equipment. Limitations emerged in the site application of emergency triage and clinical care. Notable assets in the site management of health issues include action plans from the incident command system, geographic information system products, wireless application technology, technical consensus among health and safety authorities, and workers' respite care.

  2. STS-79 Commander Readdy and Pilot Wilcutt at slidewire

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Clad in their launch/entry suits, STS-79 Commander William F. Readdy (left) and Pilot Terrence W. Wilcutt test the fit of a slidewire basket on the emergency egress system at Launch Pad 39A. The six astronauts assigned to the fourth Shuttle-Mir docking flight are completing Terminal Countdown Demonstration Test (TCDT) activities. A dress rehearsal for launch, the TCDT includes emergency egress training at the launch pad and culminates with a simulated countdown. The Space Shuttle Atlantis is undergoing preparations for liftoff on STS-79 no earlier than Sept. 12.

  3. Incident Command Systems: Because Life Happens

    ERIC Educational Resources Information Center

    Isaac, Gayle; Moore, Brian

    2011-01-01

    Preparing for every possible contingency seems daunting, but with teamwork and some help from the government, it's almost do-able. There is a great system out there that will help business professionals and educators develop a strong, effective emergency preparedness plan. If they haven't done a good job of implementing a solid emergency response…

  4. Acceptance and utilisation of the Incident Command System in first response and allied disciplines: an Ohio study.

    PubMed

    Decker, Russell J

    2011-10-01

    In response to the terrorist attacks of September 11th, 2001, an effort was made to establish a common and uniform command structure for use by the nation's first responder organisations, as well as those disciplines generally expected to assist first responders during a major incident or disaster. The result was the issuance of the National Incident Management System1 or NIMS by the US Department of Homeland Security in 2004. Included in the NIMS document was an embracing of the Incident Command System or ICS, long utilised in the fire service for the effective management of emergency response. The NIMS doctrine also identified certain allied disciplines that needed to adopt this new system for responding to major events. Some of these disciplines included specialised first response units, such as, bomb squads and hazardous materials teams. Other partner disciplines not usually associated with emergency response to include public health and public works were also included. This study will attempt to look at a single component of NIMS, specifically the Incident Command System, and measure its acceptance and utilisation by first responder organisations and selected allied disciplines in the state of Ohio. This is particularly important at this time since the US government is being forced to reduce budgets significantly and determine which laudable policies and programmes will be cut.

  5. Decision making technical support study for the US Army's Chemical Stockpile Disposal Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feldman, D.L.; Dobson, J.E.

    1990-08-01

    This report examines the adequacy of current command and control systems designed to make timely decisions that would enable sufficient warning and protective response to an accident at the Edgewood area of Aberdeen Proving Ground (APG), Maryland, and at Pine Bluff Arsenal (PBA), Arkansas. Institutional procedures designed to facilitate rapid accident assessment, characterization, warning, notification, and response after the onset of an emergency and computer-assisted decision-making aids designed to provide salient information to on- and-off-post emergency responders are examined. The character of emergency decision making at APG and PBA, as well as potential needs for improvements to decision-making practices, procedures,more » and automated decision-support systems (ADSSs), are described and recommendations are offered to guide equipment acquisition and improve on- and off-post command and control relationships. We recommend that (1) a continued effort be made to integrate on- and off-post command control, and decision-making procedures to permit rapid decision making; (2) the pathways for alert and notification among on- and off-post officials be improved and that responsibilities and chain of command among off-post agencies be clarified; (3) greater attention be given to organizational and social context factors that affect the adequacy of response and the likelihood that decision-making systems will work as intended; and (4) faster improvements be made to on-post ADSSs being developed at APG and PBA, which hold considerable promise for depicting vast amounts of information. Phased development and procurement of computer-assisted decision-making tools should be undertaken to balance immediate needs against available resources and to ensure flexibility, equity among sites, and compatibility among on- and off-post systems. 112 refs., 6 tabs.« less

  6. Federal Emergency Management Information System (FEMIS) system administration guide. Version 1.2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burford, M.J.; Burnett, R.A.; Curtis, L.M.

    The Federal Emergency Management Information System (FEMIS) is an emergency management planning and analysis tool that is being developed under the direction of the US Army Chemical biological Defense Command. The FEMIS System Administration Guide defines FEMIS hardware and software requirements and gives instructions for installing the FEMIS system package. System administrators, database administrators, and general users can use this guide to install, configure, and maintain the FEMIS client software package. This document provides a description of the FEMIS environment; distribution media; data, communications, and electronic mail servers; user workstations; and system management.

  7. Fluidic emergency roll control system. [for emergency aircraft control following failure of primary roll control system

    NASA Technical Reports Server (NTRS)

    Haefner, K. B.; Honda, T. S.

    1973-01-01

    A fluidic emergency roll control system for aircraft stabilization in the event of primary flight control failure was evaluated. The fluidic roll control units were designed to provide roll torque proportional to an electrical command as operated by two diametrically opposed thrust nozzles located in the wing tips. The control package consists of a solid propellant gas generator, two diametrically opposed vortex valve modulated thrust nozzles, and an electromagnetic torque motor. The procedures for the design, development, and performance testing of the system are described.

  8. The Influence of Future Command, Control, Communications, and Computers (C4) on Doctrine and the Operational Commander's Decision-Making Process

    NASA Technical Reports Server (NTRS)

    Mayer, Michael G.

    1996-01-01

    Future C4 systems will alter the traditional balance between force and information, having a profound influence on doctrine and the operational commander's decision making process. The Joint Staff's future vision of C4 is conceptualized in 'C4I for the Warrior' which envisions a joint C4I architecture providing timely sensor to shoot information direct to the warfighter. C4 system must manage and filter an overwhelming amount of information; deal with interoperability issues; overcome technological limitations; meet emerging security requirements; and protect against 'Information Warfare.' Severe budget constraints necessitate unified control of C4 systems under singular leadership for the common good of all the services. In addition, acquisition policy and procedures must be revamped to allow new technologies to be fielded quickly; and the commercial marketplace will become the preferred starting point for modernization. Flatter command structures are recommended in this environment where information is available instantaneously. New responsibilities for decision making at lower levels are created. Commanders will have to strike a balance between exerting greater control and allowing subordinates enough flexibility to maintain initiative. Clearly, the commander's intent remains the most important tool in striking this balance.

  9. [Development of medical emergency response system for accidents due to chemicals in Chongqing municipality].

    PubMed

    Ning, Xu; Dong, Zhao-jun; Mu, Ling; Zhai, Jian-cai

    2006-12-01

    To plan and develop a Chongqing chemical accident rescue command system. Based on the modes of leakage and diffusion of various poisonous gases and chemicals, different modes of injuries produced, and their appropriate rescue and treatments, also taking the following factors such as the condition of storage of chemicals, meteorological and geographic conditions, medical institutions and equipment, and their rescuing capacity into consideration, a plan was drafted to establish the rescue system. Real-time simulation technology, data analysis, evaluation technology and database technology were employed in the planning. Using Visual Studio 6.0 as the software development platform, this project aimed to design the software of an emergency command system for chemical accidents in Chongqing which could be operated with the Windows 2000/XP operating system. This system provided a dynamic scope of the endangered area, casualty number estimates, and recommendation of measures and a rescue plan for various chemical accidents. Furthermore, the system helped retrieve comprehensive information regarding the physical and chemical characteristics of more than 4 200 dangerous poisonous chemicals and their appropriate treatment modalities. This system is easy to operate with a friendly interface, functions rapidly and can provide real-time analysis with comparatively precise results. This system could satisfy the requirements of executing the command and the rescue of a chemical accident with good prospects of application.

  10. Quick response airborne command post communications

    NASA Astrophysics Data System (ADS)

    Blaisdell, Randy L.

    1988-08-01

    National emergencies and strategic crises come in all forms and sizes ranging from natural disasters at one end of the scale up to and including global nuclear warfare at the other. Since the early 1960s the U.S. Government has spent billions of dollars fielding airborne command posts to ensure continuity of government and the command and control function during times of theater conventional, theater nuclear, and global nuclear warfare. Unfortunately, cost has prevented the extension of the airborne command post technology developed for these relatively unlikely events to the lower level, though much more likely to occur, crises such as natural disasters, terrorist acts, political insurgencies, etc. This thesis proposes the implementation of an economical airborne command post concept to address the wide variety of crises ignored by existing military airborne command posts. The system is known as the Quick Response Airborne Command Post (QRAC Post) and is based on the exclusive use of commercially owned and operated aircraft, and commercially available automated data processing and communications resources. The thesis addresses the QRAC Post concept at a systems level and is primarily intended to demonstrate how current technology can be exploited to economically achieve a national objective.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pasquale, David A.; Hansen, Richard G.

    This paper discusses command and control issues relating to the operation of Incident Command Posts (ICPs) and Emergency Operations Centers (EOCs) in the surrounding area jurisdictions following the detonation of an Improvised Nuclear Device (IND). Although many aspects of command and control will be similar to what is considered to be normal operations using the Incident Command System (ICS) and the National Incident Management System (NIMS), the IND response will require many new procedures and associations in order to design and implement a successful response. The scope of this white paper is to address the following questions: • Would themore » current command and control framework change in the face of an IND incident? • What would the management of operations look like as the event unfolded? • How do neighboring and/or affected jurisdictions coordinate with the state? • If the target area’s command and control infrastructure is destroyed or disabled, how could neighboring jurisdictions assist with command and control of the targeted jurisdiction? • How would public health and medical services fit into the command and control structure? • How can pre-planning and common policies improve coordination and response effectiveness? • Where can public health officials get federal guidance on radiation, contamination and other health and safety issues for IND response planning and operations?« less

  12. STS-82 Suit-up for Post Insertion Training in Crew Compartment Trainer 2

    NASA Image and Video Library

    1996-10-30

    S96-18547 (30 Oct. 1996) --- Astronaut Kenneth D. Bowersox, STS-82 mission commander, chats with a crewmate (out of frame) prior to an emergency bailout training session in JSC's systems integration facility. Wearing training versions of the partial pressure launch and entry escape suit, Bowersox and his crew simulated an emergency ejection, using the escape pole system on the middeck.

  13. Intelligent tutoring in the spacecraft command/control environment

    NASA Technical Reports Server (NTRS)

    Truszkowski, Walter F.

    1988-01-01

    The spacecraft command/control environment is becoming increasingly complex. As we enter the era of Space Station and the era of more highly automated systems, it is evident that the critical roles played by operations personnel in supervising the many required control center system components is becoming more cognitively demanding. In addition, the changing and emerging roles in the operations picture have far-reaching effects on the achievement of mission objectives. Thus highly trained and competent operations personnel are mandatory for success. Keeping pace with these developments has been computer-aided instruction utilizing various artificial intelligence technologies. The impacts of this growing capability on the stringent requirements for efficient and effective control center operations personnel is an area of much concentrated study. Some of the research and development of automated tutoring systems for the spacecraft command/control environment is addressed.

  14. Cognitive Systems Modeling and Analysis of Command and Control Systems

    NASA Technical Reports Server (NTRS)

    Norlander, Arne

    2012-01-01

    Military operations, counter-terrorism operations and emergency response often oblige operators and commanders to operate within distributed organizations and systems for safe and effective mission accomplishment. Tactical commanders and operators frequently encounter violent threats and critical demands on cognitive capacity and reaction time. In the future they will make decisions in situations where operational and system characteristics are highly dynamic and non-linear, i.e. minor events, decisions or actions may have serious and irreversible consequences for the entire mission. Commanders and other decision makers must manage true real time properties at all levels; individual operators, stand-alone technical systems, higher-order integrated human-machine systems and joint operations forces alike. Coping with these conditions in performance assessment, system development and operational testing is a challenge for both practitioners and researchers. This paper reports on research from which the results led to a breakthrough: An integrated approach to information-centered systems analysis to support future command and control systems research development. This approach integrates several areas of research into a coherent framework, Action Control Theory (ACT). It comprises measurement techniques and methodological advances that facilitate a more accurate and deeper understanding of the operational environment, its agents, actors and effectors, generating new and updated models. This in turn generates theoretical advances. Some good examples of successful approaches are found in the research areas of cognitive systems engineering, systems theory, and psychophysiology, and in the fields of dynamic, distributed decision making and naturalistic decision making.

  15. [The five commandments for preparing the Israeli healthcare system for emergencies].

    PubMed

    Adini, Bruria; Laor, Danny; Cohen, Robert; Lev, Boaz; Israeli, Avi

    2010-07-01

    In the last decade, the Israeli healthcare system dealt with many casualties that resulted from terrorist actions and at the same time maintained preparedness for other potential hazards such as natural disasters, toxicological, chemical, radiological and biological events. There are various models for emergency preparedness that are utilized in different countries. The aim of the article is to present the structure and the methodology of the Israeli healthcare system for emergencies. Assuring emergency preparedness for the different scenarios is based on 5 major components that include: comprehensive contingency planning; control and command of operations; central control of readiness; capacity building; coordination and collaboration among the numerous emergency agencies. CLose working relationships between the military and civilian systems characterize the operations of the emergency system. There is a mutual sharing of information, coordinated operations to achieve risk assessment and determine priorities, and consensual allocation of resources. The ability of the medical system to operate in optimal coordination with interface bodies, including the Israel Defense Forces, is derived from three main elements: the shortage of resources necessitate that all agencies work together to develop an effective response to emergencies; the Israeli society is characterized by transition of personnel from the military to the civilian system which promotes joint operations, whereas in most other countries these systems are completely separated; and also developing mechanisms for continuous and coordinated operation in routine and emergency times, such as the Supreme Health Authority. The Israeli healthcare system was put to the test several times in the Last decade, during the terror wave that occurred between 2001-2006, the 2nd Lebanon War and in operation "Cast Lead". An extensive process of learning lessons, conducted during and following each of these periods, and the existence of a mechanism which facilitated the definition of a systematic policy and the examination of its implementation, enabled the healthcare system to provide medical services to the population and to improve its preparedness by an ongoing process.

  16. Incident Management: Process into Practice

    ERIC Educational Resources Information Center

    Isaac, Gayle; Moore, Brian

    2011-01-01

    Tornados, shootings, fires--these are emergencies that require fast action by school district personnel, but they are not the only incidents that require risk management. The authors have introduced the National Incident Management System (NIMS) and the Incident Command System (ICS) and assured that these systems can help educators plan for and…

  17. A comparison of command center activations versus disaster drills at three institutions from 2013 to 2015.

    PubMed

    Ebbeling, Laura G; Goralnick, Eric; Bivens, Matthew J; Femino, Meg; Berube, Claire G; Sears, Bryan; Sanchez, Leon D

    2016-01-01

    Disaster exercises often simulate rare, worst-case scenario events that range from mass casualty incidents to severe weather events. In actuality, situations such as information system downtimes and physical plant failures may affect hospital continuity of operations far more significantly. The objective of this study is to evaluate disaster drills at two academic and one community hospital to compare the frequency of planned drills versus real-world events that led to emergency management command center activation. Emergency management exercise and command center activation data from January 1, 2013 to October 1, 2015 were collected from a database. The activations and drills were categorized according to the nature of the event. Frequency of each type of event was compared to determine if the drills were representative of actual activations. From 2013 to 2015, there were a total of 136 command center activations and 126 drills at the three hospital sites. The most common reasons for command center activations included severe weather (25 percent, n = 34), maintenance failure (19.9 percent, n = 27), and planned mass gathering events (16.9 percent, n = 23). The most frequent drills were process tests (32.5 percent, n = 41), hazardous material-related events (22.2 percent, n = 28), and in-house fires (15.10 percent, n = 19). Further study of the reasons behind why hospitals activate emergency management plans may inform better preparedness drills. There is no clear methodology used among all hospitals to create drills and their descriptions are often vague. There is an opportunity to better design drills to address specific purposes and events.

  18. Federal Emergency Management Information System (FEMIS) system administration guide, version 1.4.5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arp, J.A.; Burnett, R.A.; Carter, R.J.

    The Federal Emergency Management Information Systems (FEMIS) is an emergency management planning and response tool that was developed by the Pacific Northwest National Laboratory (PNNL) under the direction of the US Army Chemical Biological Defense Command. The FEMIS System Administration Guide provides information necessary for the system administrator to maintain the FEMIS system. The FEMIS system is designed for a single Chemical Stockpile Emergency Preparedness Program (CSEPP) site that has multiple Emergency Operations Centers (EOCs). Each EOC has personal computers (PCs) that emergency planners and operations personnel use to do their jobs. These PCs are connected via a local areamore » network (LAN) to servers that provide EOC-wide services. Each EOC is interconnected to other EOCs via a Wide Area Network (WAN). Thus, FEMIS is an integrated software product that resides on client/server computer architecture. The main body of FEMIS software, referred to as the FEMIS Application Software, resides on the PC client(s) and is directly accessible to emergency management personnel. The remainder of the FEMIS software, referred to as the FEMIS Support Software, resides on the UNIX server. The Support Software provides the communication, data distribution, and notification functionality necessary to operate FEMIS in a networked, client/server environment. The UNIX server provides an Oracle relational database management system (RDBMS) services, ARC/INFO GIS (optional) capabilities, and basic file management services. PNNL developed utilities that reside on the server include the Notification Service, the Command Service that executes the evacuation model, and AutoRecovery. To operate FEMIS, the Application Software must have access to a site specific FEMIS emergency management database. Data that pertains to an individual EOC`s jurisdiction is stored on the EOC`s local server. Information that needs to be accessible to all EOCs is automatically distributed by the FEMIS database to the other EOCs at the site.« less

  19. A Study of the Emergency Medical Service System at Womack Army Hospital, Fort Bragg, North Carolina.

    DTIC Science & Technology

    1978-04-01

    SECURITY CLASSIFICATION OF THIS PAGE ACKNOWLEDGEMENTS Special thanks must be given to Colonel Llewellyn Legters , Colonel Joseph E. Brannock, and Major James...DEPARTMENT OF THE ARMY HEADQUARTERS. UNITED STATES ARMY HEALTH SERVICES COMMAND FORT SAIA HOUSTON. TEXAS 78234 HSPA 2 2 .0 7 Colonel Llewellyn J. Legters ...Commander US Army Medical Department Activity Fort Bragg, NC 28307 Dear Colonel Legters : The continuing military physician shortage is the most

  20. Essentials of disaster management: the role of the orthopaedic surgeon.

    PubMed

    Born, Christopher T; Monchik, Keith O; Hayda, Roman A; Bosse, Michael J; Pollak, Andrew N

    2011-01-01

    Disaster preparedness and management education is essential for allowing orthopaedic surgeons to play a valuable, constructive role in responding to disasters. The National Incident Management System, as part of the National Response Framework, provides coordination between all levels of government and uses the Incident Command System as its unified command structure. An "all-hazards" approach to disasters, whether natural, man-made, intentional, or unintentional, is fundamental to disaster planning. To respond to any disaster, command and control must be established, and emergency management must be integrated with public health and medical care. In the face of increasing acts of terrorism, an understanding of blast injury pathophysiology allows for improved diagnostic and treatment strategies. A practical understanding of potential biologic, chemical, and nuclear agents and their attendant clinical symptoms is also prerequisite. Credentialing and coordination between designated organizations and the federal government are essential to allow civilian orthopaedic surgeons to access systems capable of disaster response.

  1. Building of communication system for nuclear accident emergency disposal based on IP multimedia subsystem

    NASA Astrophysics Data System (ADS)

    Wang, Kang; Gao, Guiqing; Qin, Yuanli; He, Xiangyong

    2018-05-01

    The nuclear accident emergency disposal must be supported by an efficient, real-time modularization and standardization communication system. Based on the analysis of communication system for nuclear accident emergency disposal which included many functions such as the internal and external communication, multiply access supporting and command center. Some difficult problems of the communication system were discussed such as variety access device type, complex composition, high mobility, set up quickly, multiply business support, and so on. Taking full advantages of the IP Multimedia Subsystem (IMS), a nuclear accident emergency communication system was build based on the IMS. It was studied and implemented that some key unit and module functions of communication system were included the system framework implementation, satellite access, short-wave access, load/vehicle-mounted communication units. The application tests showed that the system could provide effective communication support for the nuclear accident emergency disposal, which was of great practical value.

  2. Application of an integrated flight/propulsion control design methodology to a STOVL aircraft

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay; Mattern, Duane L.

    1991-01-01

    Results are presented from the application of an emerging Integrated Flight/Propulsion Control (IFPC) design methodology to a Short Take Off and Vertical Landing (STOVL) aircraft in transition flight. The steps in the methodology consist of designing command shaping prefilters to provide the overall desired response to pilot command inputs. A previously designed centralized controller is first validated for the integrated airframe/engine plant used. This integrated plant is derived from a different model of the engine subsystem than the one used for the centralized controller design. The centralized controller is then partitioned in a decentralized, hierarchical structure comprising of airframe lateral and longitudinal subcontrollers and an engine subcontroller. Command shaping prefilters from the pilot control effector inputs are then designed and time histories of the closed loop IFPC system response to simulated pilot commands are compared to desired responses based on handling qualities requirements. Finally, the propulsion system safety and nonlinear limited protection logic is wrapped around the engine subcontroller and the response of the closed loop integrated system is evaluated for transients that encounter the propulsion surge margin limit.

  3. NOAA Homeland Security Program Office

    Science.gov Websites

    Emergency Managment Institute IS 100.b - Introduction to Incident Command System IS 700.a - NIMS An Introduction IS 701.b - NIMS Multiagency Coordination System (MACS) Course IS 800.b - National Response Framework, An Introduction United States Coast Guard; Maritime Domain Awareness Privacy Act Statement

  4. Integration of Training Civilian and Military Disaster Responders

    DTIC Science & Technology

    2011-09-01

    Personal hygiene including foot care, hydration, and nutrition will be covered. The appropriate clothing and footwear will be discussed, including how...policy proposals , for review by civilian health system leaders, National Guard command staff, and both the Departments of Homeland Security and...for healthcare emergency response planning. Journal of Business Continuity and Emergency Preparedness, 1(4). Center for Disease Control and

  5. The Role of the Technical Specialist in Disaster Response and Recovery

    NASA Astrophysics Data System (ADS)

    Curtis, J. C.

    2017-12-01

    Technical Specialists provide scientific expertise for making operational decisions during natural hazards emergencies. Technical Specialists are important members of any Incident Management Team (IMT) as is described in in the National Incident Management System (NIMS) that has been designed to respond to emergencies. Safety for the responders and the threatened population is the foremost consideration in command decisions and objectives, and the Technical Specialist is on scene and in the command post to support and promote safety while aiding decisions for incident objectives. The Technical Specialist's expertise can also support plans, logistics, and even finance as well as operations. This presentation will provide actual examples of the value of on-scene Technical Specialists, using National Weather Service "Decision Support Meteorologists" and "Incident Meteorologists". These examples will demonstrate the critical role of scientists that are trained in advising and presenting life-critical analysis and forecasts during emergencies. A case will be made for local, state, and/or a national registry of trained and deployment-ready scientists that can support emergency response.

  6. Prehospital care in Hong Kong.

    PubMed

    Lo, C B; Lai, K K; Mak, K P

    2000-09-01

    A quick and efficient prehospital emergency response depends on immediate ambulance dispatch, patient assessment, triage, and transport to hospital. During 1999, the Ambulance Command of the Hong Kong Fire Services Department responded to 484,923 calls, which corresponds to 1329 calls each day. Cooperation between the Fire Services Department and the Hospital Authority exists at the levels of professional training of emergency medical personnel, quality assurance, and a coordinated disaster response. In response to the incident at the Hong Kong International Airport in the summer of 1999, when an aircraft overturned during landing, the pre-set quota system was implemented to send patients to designated accident and emergency departments. Furthermore, the 'first crew at the scene' model has been adopted, whereby the command is established and triage process started by the first ambulance crew members to reach the scene. The development of emergency protocols should be accompanied by good field-to-hospital and interhospital communication, the upgrading of decision-making skills, a good monitoring and auditing structure, and commitment to training and skills maintenance.

  7. STS-47 Commander Gibson and Pilot Brown at CCT side hatch during JSC training

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-47 Endeavour, Orbiter Vehicle (OV) 105, Spacelab Japan (SLJ) Commander Robert L. Gibson (right) and Pilot Curtis L. Brown, Jr, wearing launch and entry suits (LESs), pose in front of the Crew Compartment Trainer (CCT) mockup side hatch during post landing emergency egress procedures held at JSC's Mockup and Integration Laboratory (MAIL) Bldg 9NE. Note that the crew escape system (CES) pole is in position at side hatch but is not extended.

  8. STS-82 Suit-up for Post Insertion Training in Crew Compartment Trainer 2

    NASA Image and Video Library

    1996-10-30

    S96-18552 (30 Oct. 1996) --- Astronaut Kenneth D. Bowersox (left), STS-82 mission commander, chats with astronaut Scott J. Horowitz prior to an emergency bailout training session in JSC's systems integration facility. Wearing training versions of the partial pressure launch and entry escape suit, Bowersox and his crew simulated an emergency ejection, using the escape pole system on the mid deck, as well as other phases of their scheduled February mission.

  9. [Mass maritime casualty incidents in German waters: structures and resources].

    PubMed

    Castan, J; Paschen, H-R; Wirtz, S; Dörges, V; Wenderoth, S; Peters, J; Blunk, Y; Bielstein, A; Kerner, T

    2012-07-01

    The Central Command for Maritime Emergencies was founded in Germany in 2003 triggered by the fire on board of the cargo ship "Pallas" in 1998. Its mission is to coordinate and direct measures at or above state level in maritime emergency situations in the North Sea and the Baltic Sea. A special task in this case is to provide firefighting and medical care. To face these challenges at sea emergency doctors and firemen have been specially trained. This form of organization provides a concept to counter mass casualty incidents and peril situations at sea. Since the foundation of the Central Command for Maritime Emergencies there have been 5 operations for firefighting units and 4 for medical response teams. Assignments and structure of the Central Command for Maritime Emergencies are unique in Europe.

  10. 32 CFR 185.4 - Policy.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Chief, Forces Command (CINCFOR); the Commander in Chief, U.S. Atlantic Command (USCINCLANT); and the... provided in Public Law 84-99 (1941), as amended. (4) Forest fire emergencies are responsibilities of the U...

  11. Emergency Preparedness in the Workplace: The Flulapalooza Model for Mass Vaccination.

    PubMed

    Swift, Melanie D; Aliyu, Muktar H; Byrne, Daniel W; Qian, Keqin; McGown, Paula; Kinman, Patricia O; Hanson, Katherine Louise; Culpepper, Demoyne; Cooley, Tamara J; Yarbrough, Mary I

    2017-09-01

    To explore whether an emergency preparedness structure is a feasible, efficient, and sustainable way for health care organizations to manage mass vaccination events. We used the Hospital Incident Command System to conduct a 1-day annual mass influenza vaccination event at Vanderbilt University Medical Center over 5 successive years (2011-2015). Using continuous quality improvement principles, we assessed whether changes in layout, supply management, staffing, and documentation systems improved efficiency. A total of 66 591 influenza vaccines were administered at 5 annual Flulapalooza events; 13 318 vaccines per event on average. Changes to the physical layout, staffing mix, and documentation processes improved vaccination efficiency 74%, from approximately 38 to 67 vaccines per hour per vaccinator, while reducing overall staffing needs by 38%. An unexpected finding was the role of social media in facilitating active engagement. Health care organizations can use a closed point-of-dispensing model and Hospital Incident Command System to conduct mass vaccination events, and can adopt the "Flulapalooza method" as a best practice model to enhance efficiency.

  12. 14 CFR 91.3 - Responsibility and authority of the pilot in command.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... in command. 91.3 Section 91.3 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... § 91.3 Responsibility and authority of the pilot in command. (a) The pilot in command of an aircraft is...-flight emergency requiring immediate action, the pilot in command may deviate from any rule of this part...

  13. 14 CFR 91.3 - Responsibility and authority of the pilot in command.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... in command. 91.3 Section 91.3 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... § 91.3 Responsibility and authority of the pilot in command. (a) The pilot in command of an aircraft is...-flight emergency requiring immediate action, the pilot in command may deviate from any rule of this part...

  14. 14 CFR 91.3 - Responsibility and authority of the pilot in command.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... in command. 91.3 Section 91.3 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... § 91.3 Responsibility and authority of the pilot in command. (a) The pilot in command of an aircraft is...-flight emergency requiring immediate action, the pilot in command may deviate from any rule of this part...

  15. 14 CFR 91.3 - Responsibility and authority of the pilot in command.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... in command. 91.3 Section 91.3 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... § 91.3 Responsibility and authority of the pilot in command. (a) The pilot in command of an aircraft is...-flight emergency requiring immediate action, the pilot in command may deviate from any rule of this part...

  16. 14 CFR 91.3 - Responsibility and authority of the pilot in command.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... in command. 91.3 Section 91.3 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... § 91.3 Responsibility and authority of the pilot in command. (a) The pilot in command of an aircraft is...-flight emergency requiring immediate action, the pilot in command may deviate from any rule of this part...

  17. STS-47 Astronaut Crew at Pad B for TCDT, Emergency Egress Training, and Photo Opportunity

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The crew of STS-47, Commander Robert L. Gibson, Pilot Curtis L. Brown, Payload Commander Mark C. Lee, Mission Specialists N. Jan Davis, Jay Apt, and Mae C. Jemison, and Payload Specialist Mamoru Mohri are seen during emergency egress training. Then Commander Gibson introduces the members of the crew and they each give a brief statement about the mission and answer questions from the press.

  18. Robot Command Interface Using an Audio-Visual Speech Recognition System

    NASA Astrophysics Data System (ADS)

    Ceballos, Alexánder; Gómez, Juan; Prieto, Flavio; Redarce, Tanneguy

    In recent years audio-visual speech recognition has emerged as an active field of research thanks to advances in pattern recognition, signal processing and machine vision. Its ultimate goal is to allow human-computer communication using voice, taking into account the visual information contained in the audio-visual speech signal. This document presents a command's automatic recognition system using audio-visual information. The system is expected to control the laparoscopic robot da Vinci. The audio signal is treated using the Mel Frequency Cepstral Coefficients parametrization method. Besides, features based on the points that define the mouth's outer contour according to the MPEG-4 standard are used in order to extract the visual speech information.

  19. STS-71 astronauts before egress training

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Astronaut Robert L. Gibson (left), STS-71 mission commander, converses with two crew mates prior to emergency egress training in the Systems Integration Facility at JSC. Astronaut Bonnie J. Dunbar and Gregory J. Harbaugh are attired in training versions o

  20. STS-71 astronauts and cosmonauts during egress training

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Astronaut Robert L. Gibson (arms folded, near center) STS-71 mission commander, joins several crew mates during a briefing preceding emergency egress training in the Systems Integration Facility at JSC. Astronauts Bonnie J. Dunbar and Gregory J. Harbaugh

  1. Standardized emergency management system and response to a smallpox emergency.

    PubMed

    Kim-Farley, Robert J; Celentano, John T; Gunter, Carol; Jones, Jessica W; Stone, Rogelio A; Aller, Raymond D; Mascola, Laurene; Grigsby, Sharon F; Fielding, Jonathan E

    2003-01-01

    The smallpox virus is a high-priority, Category-A agent that poses a global, terrorism security risk because it: (1) easily can be disseminated and transmitted from person to person; (2) results in high mortality rates and has the potential for a major public health impact; (3) might cause public panic and social disruption; and (4) requires special action for public health preparedness. In recognition of this risk, the Los Angeles County Department of Health Services (LAC-DHS) developed the Smallpox Preparedness, Response, and Recovery Plan for LAC to prepare for the possibility of an outbreak of smallpox. A unique feature of the LAC-DHS plan is its explicit use of the Standardized Emergency Management System (SEMS) framework for detailing the functions needed to respond to a smallpox emergency. The SEMS includes the Incident Command System (ICS) structure (management, operations, planning/intelligence, logistics, and finance/administration), the mutual-aid system, and the multi/interagency coordination required during a smallpox emergency. Management for incident command includes setting objectives and priorities, information (risk communications), safety, and liaison. Operations includes control and containment of a smallpox outbreak including ring vaccination, mass vaccination, adverse events monitoring and assessment, management of confirmed and suspected smallpox cases, contact tracing, active surveillance teams and enhanced hospital-based surveillance, and decontamination. Planning/intelligence functions include developing the incident action plan, epidemiological investigation and analysis of smallpox cases, and epidemiological assessment of the vaccination coverage status of populations at risk. Logistics functions include receiving, handling, inventorying, and distributing smallpox vaccine and vaccination clinic supplies; personnel; transportation; communications; and health care of personnel. Finally, finance/administration functions include monitoring costs related to the smallpox emergency, procurement, and administrative aspects that are not handled by other functional divisions of incident command systems. The plan was developed and is under frequent review by the LAC-DHS Smallpox Planning Working Group, and is reviewed periodically by the LAC Bioterrorism Advisory Committee, and draws upon the Smallpox Response Plan and Guidelines of the Centers for Disease Control and Prevention (CDC) and recommendations of the Advisory Committee on Immunization Practices (ACIP). The Smallpox Preparedness, Response, and Recovery Plan, with its SEMS framework and ICS structure, now is serving as a model for the development of LAC-DHS plans for responses to other terrorist or natural-outbreak responses.

  2. Introduction of an Emergency Response Plan for flood loading of Sultan Abu Bakar Dam in Malaysia

    NASA Astrophysics Data System (ADS)

    Said, N. F. Md; Sidek, L. M.; Basri, H.; Muda, R. S.; Razad, A. Z. Abdul

    2016-03-01

    Sultan Abu Bakar Dam Emergency Response Plan (ERP) is designed to assist employees for identifying, monitoring, responding and mitigation dam safety emergencies. This paper is outlined to identification of an organization chart, responsibility for emergency management team and triggering level in Sultan Abu Bakar Dam ERP. ERP is a plan that guides responsibilities for proper operation of Sultan Abu Bakar Dam in respond to emergency incidents affecting the dam. Based on this study four major responsibilities are needed for Abu Bakar Dam owing to protect any probable risk for downstream which they can be Incident Commander, Deputy Incident Commander, On-Scene Commander, Civil Engineer. In conclusion, having organization charts based on ERP studies can be helpful for decreasing the probable risks in any projects such as Abu Bakar Dam and it is a way to identify and suspected and actual dam safety emergencies.

  3. Community Environmental Response Facilitation Act (CERFA) Report, Sacramento Army Depot, Sacramento, California

    DTIC Science & Technology

    1994-04-01

    Response, Compensation, and Liability Information System CERFA Community Environmental Response Facilitation Act CORTESE State-designated hazardous...waste cleanup sites DESCOM U.S. Army Depot Systems Command DTSC Department of Toxic Substance Control EMD Environmental Management Division EPA U.S...Environmental Protection Agency ERNS Emergency Response Notification system FFA Federal Facility Agreement FINDS Facility index system HWCSA Hazardous

  4. On-board emergent scheduling of autonomous spacecraft payload operations

    NASA Technical Reports Server (NTRS)

    Lindley, Craig A.

    1994-01-01

    This paper describes a behavioral competency level concerned with emergent scheduling of spacecraft payload operations. The level is part of a multi-level subsumption architecture model for autonomous spacecraft, and it functions as an action selection system for processing a spacecraft commands that can be considered as 'plans-as-communication'. Several versions of the selection mechanism are described, and their robustness is qualitatively compared.

  5. Federal Emergency Management Information System (FEMIS) system administration guide. Version 1.3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burford, M.J.; Burnett, R.A.; Downing, T.R.

    The Federal Emergency Management Information System (FEMIS) is an emergency management planning and analysis tool that was developed by the (Pacific Northwest National Laboratory) (PNNL) under the direction of the U.S. Army Chemical Biological Defense Command. The FEMIS System Administration Guide defines FEMIS hardware and software requirements and gives instructions for installing the FEMIS software package. 91 This document also contains information on the following: software installation for the FEMIS data servers, communication server, mail server, and the emergency management workstations; distribution media loading and FEMIS installation validation and troubleshooting; and system management of FEMIS users, login, privileges, and usage.more » The system administration utilities (tools), available in the FEMIS client software, are described for user accounts and site profile. This document also describes the installation and use of system and database administration utilities that will assist in keeping the FEMIS system running in an operational environment.« less

  6. Autonomous mission planning and scheduling: Innovative, integrated, responsive

    NASA Technical Reports Server (NTRS)

    Sary, Charisse; Liu, Simon; Hull, Larry; Davis, Randy

    1994-01-01

    Autonomous mission scheduling, a new concept for NASA ground data systems, is a decentralized and distributed approach to scientific spacecraft planning, scheduling, and command management. Systems and services are provided that enable investigators to operate their own instruments. In autonomous mission scheduling, separate nodes exist for each instrument and one or more operations nodes exist for the spacecraft. Each node is responsible for its own operations which include planning, scheduling, and commanding; and for resolving conflicts with other nodes. One or more database servers accessible to all nodes enable each to share mission and science planning, scheduling, and commanding information. The architecture for autonomous mission scheduling is based upon a realistic mix of state-of-the-art and emerging technology and services, e.g., high performance individual workstations, high speed communications, client-server computing, and relational databases. The concept is particularly suited to the smaller, less complex missions of the future.

  7. Communications satellite no. 2 (CS-2)

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The purpose of the Japanese CS-2 satellite is to provide national communications and industrial communications, such as special emergency and remote communications, and to contribute to the development of technology pertaining to communications satellites. Description and operating parameters of the following satellite components are presented: structure, communications system, telemetry/command system, electric power system, attitude and antenna control system, secondary propulsion system, apogee motor, framework, and heat control system.

  8. Study on Mine Emergency Mechanism based on TARP and ICS

    NASA Astrophysics Data System (ADS)

    Xi, Jian; Wu, Zongzhi

    2018-01-01

    By analyzing the experiences and practices of mine emergency in China and abroad, especially the United States and Australia, normative principle, risk management principle and adaptability principle of constructing mine emergency mechanism based on Trigger Action Response Plans (TARP) and Incident Command System (ICS) are summarized. Classification method, framework, flow and subject of TARP and ICS which are suitable for the actual situation of domestic mine emergency are proposed. The system dynamics model of TARP and ICS is established. The parameters such as evacuation ratio, response rate, per capita emergency capability and entry rate of rescuers are set up. By simulating the operation process of TARP and ICS, the impact of these parameters on the emergency process are analyzed, which could provide a reference and basis for building emergency capacity, formulating emergency plans and setting up action plans in the emergency process.

  9. Applications of instructional design theory to lesson planning for Superfund incident commander training

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mansfield, N.J.

    1992-01-01

    The increasing number of hazardous materials accidents in the United States has resulted in new federal regulations addressing the emergency response activities associated with chemical releases. A significant part of these new federal standards (29 CFR 1910.120 and 40 CFR Part 311) requires compliance with specific criteria by all personnel involved in a hazardous material emergency. This study investigated alternative lesson design models applicable to instruction for hazardous material emergencies. A specialized design checklist was created based on the work of Gagne, Briggs, and Wager (1988), Merrill (1987), and Clark (1989). This checklist was used in the development of lessonmore » plan templates for the hazardous materials incident commander course. Qualitative data for establishing learning objectives was collected by conducting a needs assessment and a job analysis of the incident commander position. Incident commanders from 14 public and private organizations participated in the needs assessment process. Technical information for the lessons was collected from appropriate governmental agencies. The implementation of the checklist and lesson plans can contribute to assuring quality training for incident commanders throughout the United States.« less

  10. Emergency Response System for Pollution Accidents in Chemical Industrial Parks, China

    PubMed Central

    Duan, Weili; He, Bin

    2015-01-01

    In addition to property damage and loss of lives, environment pollution, such as water pollution and air pollution caused by accidents in chemical industrial parks (CIPs) is a significant issue in China. An emergency response system (ERS) was therefore planned to properly and proactively cope with safety incidents including fire and explosions occurring in the CIPs in this study. Using a scenario analysis, the stages of emergency response were divided into three levels, after introducing the domino effect, and fundamental requirements of ERS design were confirmed. The framework of ERS was composed mainly of a monitoring system, an emergency command center, an action system, and a supporting system. On this basis, six main emergency rescue steps containing alarm receipt, emergency evaluation, launched corresponding emergency plans, emergency rescue actions, emergency recovery, and result evaluation and feedback were determined. Finally, an example from the XiaoHu Chemical Industrial Park (XHCIP) was presented to check on the integrality, reliability, and maneuverability of the ERS, and the result of the first emergency drill with this ERS indicated that the developed ERS can reduce delays, improve usage efficiency of resources, and raise emergency rescue efficiency. PMID:26184260

  11. Emergency Response System for Pollution Accidents in Chemical Industrial Parks, China.

    PubMed

    Duan, Weili; He, Bin

    2015-07-10

    In addition to property damage and loss of lives, environment pollution, such as water pollution and air pollution caused by accidents in chemical industrial parks (CIPs) is a significant issue in China. An emergency response system (ERS) was therefore planned to properly and proactively cope with safety incidents including fire and explosions occurring in the CIPs in this study. Using a scenario analysis, the stages of emergency response were divided into three levels, after introducing the domino effect, and fundamental requirements of ERS design were confirmed. The framework of ERS was composed mainly of a monitoring system, an emergency command center, an action system, and a supporting system. On this basis, six main emergency rescue steps containing alarm receipt, emergency evaluation, launched corresponding emergency plans, emergency rescue actions, emergency recovery, and result evaluation and feedback were determined. Finally, an example from the XiaoHu Chemical Industrial Park (XHCIP) was presented to check on the integrality, reliability, and maneuverability of the ERS, and the result of the first emergency drill with this ERS indicated that the developed ERS can reduce delays, improve usage efficiency of resources, and raise emergency rescue efficiency.

  12. Suggested Guide for Fire Service Standard Operating Procedures.

    ERIC Educational Resources Information Center

    Gillett, Merl; Hertzler, Simon L.

    Suggested guidelines for the development of fire service standard operating procedures are presented in this document. Section topics are as follow: chain of command; communications; emergency response; apparatus; fire service training; disaster response; aircraft fire safety; mutual aid; national reporting system (example reporting forms);…

  13. Workload differences across command levels and emergency response organizations during a major joint training exercise.

    PubMed

    Prytz, Erik G; Rybing, Jonas; Jonson, Carl-Oscar

    2016-01-01

    This study reports on an initial test using a validated workload measurement method, the NASA Task Load Index (TLX), as an indicator of joint emergency exercise effectiveness. Prior research on emergency exercises indicates that exercises must be challenging, ie, result in high workload, to be effective. However, this is often problematic with some participants being underloaded and some overloaded. The NASA TLX was used to test for differences in workload between commanders and subordinates and among three different emergency response organizations during a joint emergency exercise. Questionnaire-based evaluation with professional emergency responders. The study was performed in conjunction with a large-scale interorganizational joint emergency exercise in Sweden. A total of 20 participants from the rescue services, 12 from the emergency medical services, and 12 from the police participated in the study (N=44). Ten participants had a command-level role during the exercise and the remaining 34 were subordinates. The main outcome measures were the workload subscales of the NASA TLX: mental demands, physical demands, temporal demands, performance, effort, and frustration. The results showed that the organizations experienced different levels of workload, that the commanders experienced a higher workload than the subordinates, and that two out of three organizations fell below the twenty-fifth percentile of average workload scores compiled from 237 prior studies. The results support the notion that the NASA TLX could be a useful complementary tool to evaluate exercise designs and outcomes. This should be further explored and verified in additional studies.

  14. Emergency Preparedness in the Workplace: The Flulapalooza Model for Mass Vaccination

    PubMed Central

    Aliyu, Muktar H.; Byrne, Daniel W.; Qian, Keqin; McGown, Paula; Kinman, Patricia O.; Hanson, Katherine Louise; Culpepper, Demoyne; Cooley, Tamara J.; Yarbrough, Mary I.

    2017-01-01

    Objectives. To explore whether an emergency preparedness structure is a feasible, efficient, and sustainable way for health care organizations to manage mass vaccination events. Methods. We used the Hospital Incident Command System to conduct a 1-day annual mass influenza vaccination event at Vanderbilt University Medical Center over 5 successive years (2011–2015). Using continuous quality improvement principles, we assessed whether changes in layout, supply management, staffing, and documentation systems improved efficiency. Results. A total of 66 591 influenza vaccines were administered at 5 annual Flulapalooza events; 13 318 vaccines per event on average. Changes to the physical layout, staffing mix, and documentation processes improved vaccination efficiency 74%, from approximately 38 to 67 vaccines per hour per vaccinator, while reducing overall staffing needs by 38%. An unexpected finding was the role of social media in facilitating active engagement. Conclusions. Health care organizations can use a closed point-of-dispensing model and Hospital Incident Command System to conduct mass vaccination events, and can adopt the “Flulapalooza method” as a best practice model to enhance efficiency. PMID:28892449

  15. 32 CFR 536.7 - Responsibilities of the Commander USARCS.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... (q) Take initial action, as appropriate, on claims arising in emergency situations. (r) Provide... to any legal office or command throughout the world. When authorized by the chain of command or... from Army involvement in civil disturbances, chemical accidents under the Chemical Energy Stockpile...

  16. 32 CFR 536.7 - Responsibilities of the Commander USARCS.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... (q) Take initial action, as appropriate, on claims arising in emergency situations. (r) Provide... to any legal office or command throughout the world. When authorized by the chain of command or... from Army involvement in civil disturbances, chemical accidents under the Chemical Energy Stockpile...

  17. 32 CFR 536.7 - Responsibilities of the Commander USARCS.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... (q) Take initial action, as appropriate, on claims arising in emergency situations. (r) Provide... to any legal office or command throughout the world. When authorized by the chain of command or... from Army involvement in civil disturbances, chemical accidents under the Chemical Energy Stockpile...

  18. 32 CFR 536.7 - Responsibilities of the Commander USARCS.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... (q) Take initial action, as appropriate, on claims arising in emergency situations. (r) Provide... to any legal office or command throughout the world. When authorized by the chain of command or... from Army involvement in civil disturbances, chemical accidents under the Chemical Energy Stockpile...

  19. 32 CFR 536.7 - Responsibilities of the Commander USARCS.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... (q) Take initial action, as appropriate, on claims arising in emergency situations. (r) Provide... to any legal office or command throughout the world. When authorized by the chain of command or... from Army involvement in civil disturbances, chemical accidents under the Chemical Energy Stockpile...

  20. A Tale of Two Design Efforts (and why they both failed in Afghanistan)

    DTIC Science & Technology

    2011-07-07

    talked about and heard presentations on critical and systems thinking, emergence, complexity theory, and different philosophies like post- positivism and...not what the command even wanted to hear. First, quantitative assessments were easier to understand for outside audiences. Second, the current

  1. 32 CFR 761.9 - Entry Control Commanders.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... the Army or the Defense Nuclear Agency. (h) Senior naval commander in defense area. Emergency... 32 National Defense 5 2011-07-01 2011-07-01 false Entry Control Commanders. 761.9 Section 761.9 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY ISLANDS UNDER NAVY JURISDICTION...

  2. 32 CFR 761.9 - Entry Control Commanders.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... the Army or the Defense Nuclear Agency. (h) Senior naval commander in defense area. Emergency... 32 National Defense 5 2012-07-01 2012-07-01 false Entry Control Commanders. 761.9 Section 761.9 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY ISLANDS UNDER NAVY JURISDICTION...

  3. 32 CFR 761.9 - Entry Control Commanders.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... the Army or the Defense Nuclear Agency. (h) Senior naval commander in defense area. Emergency... 32 National Defense 5 2014-07-01 2014-07-01 false Entry Control Commanders. 761.9 Section 761.9 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY ISLANDS UNDER NAVY JURISDICTION...

  4. 32 CFR 761.9 - Entry Control Commanders.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... the Army or the Defense Nuclear Agency. (h) Senior naval commander in defense area. Emergency... 32 National Defense 5 2013-07-01 2013-07-01 false Entry Control Commanders. 761.9 Section 761.9 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY ISLANDS UNDER NAVY JURISDICTION...

  5. Open Systems Architecture for Command, Control and Communications

    DTIC Science & Technology

    1991-07-01

    CONTENTS SECTION TITLE PAGE I. EXECUTIVE SUMMARY 5 II. TERMS OF REFERENCE 7 III. PANEL MEMBERSHIP 9 IV. INTRODUCTION 11 V. INDUSTRIAL REVOLUTION 19 VI...INTRODUCTION 18 19 V. INDUSTRIAL REVOLUTION 20 21 Initial manifestations of computer and communications standards emerged in the early seventies, largely...SYSTEMS INDUSTRIAL REVOLUTION Application Presentation Session Transport Internet Data Link Physical Application Presentation Session Transport

  6. The Emerging Role of the Data Base Manager. Report No. R-1253-PR.

    ERIC Educational Resources Information Center

    Sawtelle, Thomas K.

    The Air Force Logistics Command (AFLC) is revising and enhancing its data-processing capabilities with the development of a large-scale, multi-site, on-line, integrated data base information system known as the Advanced Logistics System (ALS). A data integrity program is to be built around a Data Base Manager (DBM), an individual or a group of…

  7. SSRL Emergency Response Shore Tool

    NASA Technical Reports Server (NTRS)

    Mah, Robert W.; Papasin, Richard; McIntosh, Dawn M.; Denham, Douglas; Jorgensen, Charles; Betts, Bradley J.; Del Mundo, Rommel

    2006-01-01

    The SSRL Emergency Response Shore Tool (wherein SSRL signifies Smart Systems Research Laboratory ) is a computer program within a system of communication and mobile-computing software and hardware being developed to increase the situational awareness of first responders at building collapses. This program is intended for use mainly in planning and constructing shores to stabilize partially collapsed structures. The program consists of client and server components, runs in the Windows operating system on commercial off-the-shelf portable computers, and can utilize such additional hardware as digital cameras and Global Positioning System devices. A first responder can enter directly, into a portable computer running this program, the dimensions of a required shore. The shore dimensions, plus an optional digital photograph of the shore site, can then be uploaded via a wireless network to a server. Once on the server, the shore report is time-stamped and made available on similarly equipped portable computers carried by other first responders, including shore wood cutters and an incident commander. The staff in a command center can use the shore reports and photographs to monitor progress and to consult with structural engineers to assess whether a building is in imminent danger of further collapse.

  8. STS-36 Commander Creighton in LES outside CCT side hatch during JSC training

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Standing on an inflated cushion outside the side hatch of the crew compartment trainer (CCT), STS-36 Commander John O. Creighton, wearing launch and entry suit (LES), smiles before climbing into the shuttle mockup. The crew escape system (CES) pole extends beyond the side hatch opening. Mission Specialist (MS) Richard M. Mullane is seen at the lower corner of the frame rolling on the safety cushion. CCT is located in JSC's Mockup and Integration Laboratory (MAIL) Bldg 9A. The crewmembers are practicing egress procedures that might be necessary in the event of an emergency aboard the shuttle.

  9. The Commander’s Emergency Response Program: A Model for Future Implementation

    DTIC Science & Technology

    2010-04-07

    unintended Effects. The INVEST-E methodology serves as a tool for commanders and their designated practitioners to properly select projects, increasing...for commanders and their designated practitioners to properly select projects, increasing the effectiveness of CERP funds. 4 TABLE OF...and unintended Effects. The INVEST-E methodology serves as a tool for commanders and their designated practitioners to properly select projects

  10. Homeland security and the non-federal healthcare sector: evaluation of your incident command system (ICS).

    PubMed

    Blair, James D

    2005-01-01

    Healthcare and other private sector industries have lagged behind federal agencies in fulfilling their security readiness mission, according to the author. A comprehensive and timely resource is now available, he reports, to help healthcare officials in improving emergency response and preparedness.

  11. Universally Designed Assessments for ELLs with Disabilities: What We've Learned So Far

    ERIC Educational Resources Information Center

    Johnstone, Christopher J.; Anderson, Michael E.; Thompson, Sandra J.

    2006-01-01

    English language learners (ELLs) with disabilities are an emerging population in the U.S. and therefore command special attention in assessment systems. Research has demonstrated that "universal design of assessment" approaches are effective in helping to make assessments more accessible for ELLs with disabilities. Special education…

  12. Expedition Three crew during Emergency Egress Training in bldg 9, CCTII

    NASA Image and Video Library

    2001-04-20

    JSC2001-01130 (20 April 2001) --- Cosmonauts Vladimir N. Dezhurov (left) and Mikhail Tyurin, Expedition Three flight engineers; and astronaut Frank L. Culbertson, Jr., Expedition Three commander, are photographed during mission training in the Johnson Space Center’s Systems Integration Facility. Dezhurov and Tyurin represent Rosaviakosmos.

  13. The new Mobile Command Center at KSC is important addition to emergency preparedness

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Charles Street, part of the Emergency Preparedness team at KSC, uses a phone on the specially equipped emergency response vehicle. The vehicle, nicknamed '''The Brute,''' serves as a mobile command center for emergency preparedness staff and other support personnel when needed. It features a conference room, computer work stations, mobile telephones and a fax machine. It also can generate power with its onboard generator. Besides being ready to respond in case of emergencies during launches, the vehicle must be ready to help address fires, security threats, chemical spills, terrorist attaches, weather damage or other critical situations that might face KSC or Cape Canaveral Air Force Station.

  14. Barriers to surge capacity of an overcrowded emergency department for a serious foodborne disease outbreak.

    PubMed

    Lee, Wen-Huei; Ghee, Chew; Wu, Kuan-Han; Hung, Shih-Chiang

    2010-10-01

    The purpose of this study was to investigate barriers to surge capacity of an overcrowded emergency department (ED) for a foodborne disease outbreak (FBDO) and to identify solutions to the problems. The emergency response of an overcrowded ED to a serious FBDO with histamine fish poisoning was reviewed. The ED of a tertiary academic medical centre (study hospital) with 1600 acute beds in southern Taiwan. Among the 346 patients in the outbreak, 333 (96.2%) were transferred to the study hospital without prehospital management within about 2 h. The most common symptoms were dizziness (58.9%), nausea and vomiting (36.3%). 181 patients (54.4%) received intravenous fluid infusion and blood tests were ordered for 82 (24.6%). All patients were discharged except one who required admission. The prominent problems with surge capacity of the study hospital were shortage of spare space in the ED, lack of biological incident response plan, poor command system, inadequate knowledge and experience of medical personnel to manage the FBDO. Patients with FBDO could arrive at the hospital shortly after exposure without field triage and management. The incident command system and emergency operation plan of the study hospital did not address the clinical characteristics of the FBDO and the problem of ED overcrowding. Further planning and training of foodborne disease and surge capacity would be beneficial for hospital preparedness for an FBDO.

  15. STS-53 Commander Walker adjusts LES prior to JSC emergency egress training

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-53 Discovery, Orbiter Vehicle (OV) 103, Commander David M. Walker pulls at launch and entry suit (LES) neck ring and neck dam in an attempt to adjust it and/or loosen it. Walker appears uncomfortable and makes the adjustments in preparation for launch emergency egress bailout procedures in JSC's Mockup and Integration Laboratory (MAIL) Bldg 9NE.

  16. The German emergency and disaster medicine and management system-history and present.

    PubMed

    Hecker, Norman; Domres, Bernd Dieter

    2018-04-01

    As well for optimized emergency management in individual cases as for optimized mass medicine in disaster management, the principle of the medical doctors approaching the patient directly and timely, even close to the site of the incident, is a long-standing marker for quality of care and patient survival in Germany. Professional rescue and emergency forces, including medical services, are the "Golden Standard" of emergency management systems. Regulative laws, proper organization of resources, equipment, training and adequate delivery of medical measures are key factors in systematic approaches to manage emergencies and disasters alike and thus save lives. During disasters command, communication, coordination and cooperation are essential to cope with extreme situations, even more so in a globalized world. In this article, we describe the major historical milestones, the current state of the German system in emergency and disaster management and its integration into the broader European approach. Copyright © 2018. Production and hosting by Elsevier B.V.

  17. The new Mobile Command Center at KSC is important addition to emergency preparedness

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Robert ZiBerna, Roger Scheidt and Charles Street, the Emergency Preparedness team at KSC, practice for an emergency scenario inside the Mobile Command Center, a specially equipped vehicle. It features a conference room, computer work stations, mobile telephones and a fax machine. It also can generate power with its onboard generator. Besides being ready to respond in case of emergencies during launches, the vehicle must be ready to help address fires, security threats, chemical spills, terrorist attaches, weather damage or other critical situations that might face KSC or Cape Canaveral Air Force Station.

  18. The Fort McMurray, Alberta wildfires: Emergency and recovery management of healthcare services.

    PubMed

    Matear, David

    2017-01-01

    One of the largest wildfires in Canadian history raged through northern Alberta in May to July 2016, and prompted the largest emergency air evacuation in Canadian history. Central to the challenges were the evacuation of a regional hospital, and the emergency and recovery management associated with healthcare services. This paper describes multiple phases of emergency and recovery management, which employed and adapted the Incident Command System to healthcare services. There were no injuries reported throughout the medical evacuation and recovery of medical services. The leadership and management of healthcare services achieved the goals of evacuating patients and staff effectively, supporting emergency first responders and the re-entry of the population to Fort McMurray.

  19. Preparing for veterinary emergencies: disaster management and the Incident Command System.

    PubMed

    Madigan, J; Dacre, I

    2009-08-01

    An important question that all veterinary schools should consider is whether veterinary students should be trained to deal with local or regional states of emergency or disasters, such as hurricanes, tornadoes, wildfires, hail and ice storms, wind storms, fires, earthquakes, tsunamis, floods and epidemics. When a large-scale emergency or disaster does strike, the consequences can be dire for the domestic and wild animals of the region and for the humans within the vicinity of seriously and painfully injured animals. The authors argue that emergency preparedness is essential for the veterinary profession to meet its obligations to both animals and humans. The four basic components of disaster management are: mitigation, preparedness, response/emergency relief and recovery.

  20. Sustainable Model for Public Health Emergency Operations Centers for Global Settings.

    PubMed

    Balajee, S Arunmozhi; Pasi, Omer G; Etoundi, Alain Georges M; Rzeszotarski, Peter; Do, Trang T; Hennessee, Ian; Merali, Sharifa; Alroy, Karen A; Phu, Tran Dac; Mounts, Anthony W

    2017-10-01

    Capacity to receive, verify, analyze, assess, and investigate public health events is essential for epidemic intelligence. Public health Emergency Operations Centers (PHEOCs) can be epidemic intelligence hubs by 1) having the capacity to receive, analyze, and visualize multiple data streams, including surveillance and 2) maintaining a trained workforce that can analyze and interpret data from real-time emerging events. Such PHEOCs could be physically located within a ministry of health epidemiology, surveillance, or equivalent department rather than exist as a stand-alone space and serve as operational hubs during nonoutbreak times but in emergencies can scale up according to the traditional Incident Command System structure.

  1. Cellular-based preemption system

    NASA Technical Reports Server (NTRS)

    Bachelder, Aaron D. (Inventor)

    2011-01-01

    A cellular-based preemption system that uses existing cellular infrastructure to transmit preemption related data to allow safe passage of emergency vehicles through one or more intersections. A cellular unit in an emergency vehicle is used to generate position reports that are transmitted to the one or more intersections during an emergency response. Based on this position data, the one or more intersections calculate an estimated time of arrival (ETA) of the emergency vehicle, and transmit preemption commands to traffic signals at the intersections based on the calculated ETA. Additional techniques may be used for refining the position reports, ETA calculations, and the like. Such techniques include, without limitation, statistical preemption, map-matching, dead-reckoning, augmented navigation, and/or preemption optimization techniques, all of which are described in further detail in the above-referenced patent applications.

  2. Intelligent systems and advanced user interfaces for design, operation, and maintenance of command management systems

    NASA Technical Reports Server (NTRS)

    Potter, William J.; Mitchell, Christine M.

    1993-01-01

    Historically, command management systems (CMS) have been large and expensive spacecraft-specific software systems that were costly to build, operate, and maintain. Current and emerging hardware, software, and user interface technologies may offer an opportunity to facilitate the initial formulation and design of a spacecraft-specific CMS as well as to develop a more generic CMS system. New technologies, in addition to a core CMS common to a range of spacecraft, may facilitate the training and enhance the efficiency of CMS operations. Current mission operations center (MOC) hardware and software include Unix workstations, the C/C++ programming languages, and an X window interface. This configuration provides the power and flexibility to support sophisticated and intelligent user interfaces that exploit state-of-the-art technologies in human-machine interaction, artificial intelligence, and software engineering. One of the goals of this research is to explore the extent to which technologies developed in the research laboratory can be productively applied in a complex system such as spacecraft command management. Initial examination of some of these issues in CMS design and operation suggests that application of technologies such as intelligent planning, case-based reasoning, human-machine systems design and analysis tools (e.g., operator and designer models), and human-computer interaction tools (e.g., graphics, visualization, and animation) may provide significant savings in the design, operation, and maintenance of the CMS for a specific spacecraft as well as continuity for CMS design and development across spacecraft. The first six months of this research saw a broad investigation by Georgia Tech researchers into the function, design, and operation of current and planned command management systems at Goddard Space Flight Center. As the first step, the researchers attempted to understand the current and anticipated horizons of command management systems at Goddard. Preliminary results are given on CMS commonalities and causes of low re-use, and methods are proposed to facilitate increased re-use.

  3. Hierarchical hybrid control of manipulators: Artificial intelligence in large scale integrated circuits

    NASA Technical Reports Server (NTRS)

    Greene, P. H.

    1972-01-01

    Both in practical engineering and in control of muscular systems, low level subsystems automatically provide crude approximations to the proper response. Through low level tuning of these approximations, the proper response variant can emerge from standardized high level commands. Such systems are expressly suited to emerging large scale integrated circuit technology. A computer, using symbolic descriptions of subsystem responses, can select and shape responses of low level digital or analog microcircuits. A mathematical theory that reveals significant informational units in this style of control and software for realizing such information structures are formulated.

  4. Federal Emergency Management Information System (FEMIS) system administration guide. Version 1.4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arp, J.A.; Burnett, R.A.; Downing, T.R.

    The Federal Emergency Management Information System (FEMIS) is an emergency management planning and analysis tool that was developed by the Pacific Northwest National Laboratory (PNNL) under the direction of the US Army Chemical Biological Defense Command. The FEMIS System Administration Guide defines FEMIS hardware and software requirements and gives instructions for installing the FEMIS software package. This document also contains information on the following: software installation for the FEMIS data servers, communication server, mail server, and the emergency management workstations; distribution media loading and FEMIS installation validation and troubleshooting; and system management of FEMIS users, login privileges, and usage. Themore » system administration utilities (tools), available in the FEMIS client software, are described for user accounts and site profile. This document also describes the installation and use of system and database administration utilities that will assist in keeping the FEMIS system running in an operational environment. The FEMIS system is designed for a single Chemical Stockpile Emergency Preparedness Program (CSEPP) site that has multiple Emergency Operations Centers (EOCs). Each EOC has personal computers (PCs) that emergency planners and operations personnel use to do their jobs. These PCs are connected via a local area network (LAN) to servers that provide EOC-wide services. Each EOC is interconnected to other EOCs via telecommunications links.« less

  5. Estimation of Critical Population Support Requirements.

    DTIC Science & Technology

    1984-05-30

    VA 22160 W.U. 4921H 11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE Federal Emergency Management Agency May 30, 1984 Industrial Protection...ensure the availability of industrial production required to support the population, maintain defense capabilities and perform command and control ...the population, maintain national defense capabilities and perform command and control activi- ties during a national emergency such as a threat of a

  6. SOLAR PANELS ON HUDSON COUNTY FACILITIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BARRY, KEVIN

    2014-06-06

    This project involved the installation of an 83 kW grid-connected photovoltaic system tied into the energy management system of Hudson County's new 60,000 square foot Emergency Operations and Command Center and staff offices. Other renewable energy features of the building include a 15 kW wind turbine, geothermal heating and cooling, natural daylighting, natural ventilation, gray water plumbing system and a green roof. The County intends to seek Silver LEED certification for the facility.

  7. Emergency vehicle traffic signal preemption system

    NASA Technical Reports Server (NTRS)

    Bachelder, Aaron D. (Inventor); Foster, Conrad F. (Inventor)

    2011-01-01

    An emergency vehicle traffic light preemption system for preemption of traffic lights at an intersection to allow safe passage of emergency vehicles. The system includes a real-time status monitor of an intersection which is relayed to a control module for transmission to emergency vehicles as well as to a central dispatch office. The system also provides for audio warnings at an intersection to protect pedestrians who may not be in a position to see visual warnings or for various reasons cannot hear the approach of emergency vehicles. A transponder mounted on an emergency vehicle provides autonomous control so the vehicle operator can attend to getting to an emergency and not be concerned with the operation of the system. Activation of a priority-code (i.e. Code-3) situation provides communications with each intersection being approached by an emergency vehicle and indicates whether the intersection is preempted or if there is any conflict with other approaching emergency vehicles. On-board diagnostics handle various information including heading, speed, and acceleration sent to a control module which is transmitted to an intersection and which also simultaneously receives information regarding the status of an intersection. Real-time communications and operations software allow central and remote monitoring, logging, and command of intersections and vehicles.

  8. The new Mobile Command Center at KSC is important addition to emergency preparedness

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This new specially equipped vehicle serves as a mobile command center for emergency preparedness staff and other support personnel when needed at KSC or Cape Canaveral Air Force Station. It features a conference room, computer work stations, mobile telephones and a fax machine. It also can generate power with its onboard generator. Besides being ready to respond in case of emergencies during launches, the vehicle must be ready to help address fires, security threats, chemical spills, terrorist attaches, weather damage or other critical situations that might face KSC or CCAFS.

  9. The new Mobile Command Center at KSC is important addition to emergency preparedness

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This camper-equipped truck known as '''Old Blue''' served as mobile field command center for the Emergency Preparedness team at KSC. It has been replaced with a larger vehicle that includes a conference room, computer work stations, mobile telephones and a fax machine, plus its own onboard generator. Besides being ready to respond in case of emergencies during launches, the vehicle must be ready to help address fires, security threats, chemical spills, terrorist attaches, weather damage or other critical situations that might face KSC or Cape Canaveral Air Force Station.

  10. Federal Emergency Management Information System (FEMIS) System Administration Guide for FEMIS Version 1.4.6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arp, J.A.; Bower, J.C.; Burnett, R.A.

    The Federal Emergency Management Information System (FEMIS) is an emergency management planning and response tool that was developed by the Pacific Northwest National Laboratory (PNNL) under the direction of the U.S. Army Chemical Biological Defense Command. The FEMIS System Administration Guide provides information necessary for the system administrator to maintain the FEMIS system. The FEMIS system is designed for a single Chemical Stockpile Emergency Preparedness Program (CSEPP) site that has multiple Emergency Operations Centers (EOCs). Each EOC has personal computers (PCs) that emergency planners and operations personnel use to do their jobs. These PCs are corrected via a local areamore » network (LAN) to servers that provide EOC-wide services. Each EOC is interconnected to other EOCs via a Wide Area Network (WAN). Thus, FEMIS is an integrated software product that resides on client/server computer architecture. The main body of FEMIS software, referred to as the FEMIS Application Software, resides on the PC client(s) and is directly accessible to emergency management personnel. The remainder of the FEMIS software, referred to as the FEMIS Support Software, resides on the UNIX server. The Support Software provides the communication data distribution and notification functionality necessary to operate FEMIS in a networked, client/server environment.« less

  11. Transfusion service disaster planning.

    PubMed

    Bundy, K L; Foss, M L; Stubbs, J R

    2008-01-01

    The Mayo Clinic, in Rochester, Minnesota, recently set forth a directive to develop a Mayo Emergency Incident Command System (MEICS) plan to respond to major disasters. The MEICS plan that was developed interfaces with national response plans to ensure effective communication and coordination between our institution and local, state, and federal agencies to establish a common language and communication structure. The MEICS plan addresses multiple aspects of dealing with resource needs during a crisis, including the need for blood and transfusion medicine services. The MEICS plan was developed to supplement our current local emergency preparedness procedures and provide a mechanism for responding to the escalating severity of an emergency to deal with situations of a magnitude that is outside the normal experience. A plan was developed to interface the existing Transfusion Medicine disaster plan standard operating procedures (SOP) with the institutional and Department of Laboratory Medicine (DLMP) MEICS plans. The first step in developing this interface was defining MEICS. Other major steps were defining the chain of command, developing a method for visually indicating who is "in charge," planning communication, defining the actions to be taken, assessing resource needs, developing flowcharts and updating SOPs, and developing a blood rationing team to deal with anticipated blood shortages. Several key features of the interface and updated disaster plan that were developed are calling trees for response personnel, plans for relocating leadership to alternative command centers, and action sheets to assist with resource assessment. The action sheets also provide documentation of key actions by response personnel.

  12. Policy Options to Address Crucial Communication Gaps in the Incident Command System

    DTIC Science & Technology

    2012-09-01

    California Department of Forestry and Fire Protection COML Communications Unit Leader COMT Communication Technician EBRPD East Bay Regional Parks...Laguna Fire 1970 - One of California’s Worst Wildfires.” Available at http://www.cccarto.com/cal_wildfire/laguna/fire.html, Accessed August 10, 2012...NIMS - The Evolution of the National Incident Management System.” Fire Rescue Magazine, August 2011. 15 compatibility, and department emergency

  13. Network, system, and status software enhancements for the autonomously managed electrical power system breadboard. Volume 3: Commands specification

    NASA Technical Reports Server (NTRS)

    Mckee, James W.

    1990-01-01

    This volume (3 of 4) contains the specification for the command language for the AMPS system. The volume contains a requirements specification for the operating system and commands and a design specification for the operating system and command. The operating system and commands sits on top of the protocol. The commands are an extension of the present set of AMPS commands in that the commands are more compact, allow multiple sub-commands to be bundled into one command, and have provisions for identifying the sender and the intended receiver. The commands make no change to the actual software that implement the commands.

  14. The Joint Military Medical Executive Skills initiative: an impressive response to changing human resource management rules of engagement.

    PubMed

    Kerr, Bernard J

    2007-01-01

    Confronted with a sudden and substantial change in the rules regarding who could command a military medical treatment facility (MTF), the Military Health System (MHS) responded to the challenge with an impressive human resource management solution-the Joint Medical Executive Skills Program. The history, emergence, and continuing role of this initiative exemplifies the MHS's capacity to fulfill the spirit and intent of an arduous Congressional mandate while enhancing professional development and sustaining the career opportunities of medical officers. The MHS response to the Congressional requirement that candidates for MTF command demonstrate professional administrative skills was decisive, creative, and consistent with the basic principles of human resource management. The Joint Medical Executive Skills Program is a management success story that demonstrates how strategic planning, well-defined skills requirements, and structured training can assure a ready supply of qualified commanders for the military's MTFs.

  15. Federal Emergency Management Information System (FEMIS), Installation Guide for FEMIS 1.4.6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arp, J.A.; Burnett, R.A.; Carter, R.J.

    The Federal Emergency Management Information System (FEMIS) is an emergency management planning and response tool that was developed by the Pacific Northwest National Laboratory (PNNL) under the direction of the U.S. Army Chemical Biological Defense Command. The FEMIS System Administration Guide provides information necessary for the system administrator to maintain the FEMIS system. The FEMIS system is designed for a single Chemical Stockpile Emergency Preparedness Program (CSEPP) site that has multiple Emergency Operations Centers (EOCs). Each EOC has personal computers (PCs) that emergency planners and operations personnel use to do their jobs. These PCs are corrected via a local areamore » network (LAN) to servers that provide EOC-wide services. Each EOC is interconnected to other EOCs via a Wide Area Network (WAN). Thus, FEMIS is an integrated software product that resides on client/server computer architecture. The main body of FEMIS software, referred to as the FEMIS Application Software, resides on the PC client(s) and is directly accessible to emergency management personnel. The remainder of the FEMIS software, referred to as the FEMIS Support Software, resides on the UNIX server. The Support Software provides the communication data distribution and notification functionality necessary to operate FEMIS in a networked, client/server environment.« less

  16. Federal Emergency Management Information System (FEMIS) Data Management Guide for FEMIS Version 1.4.6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Angel, L.K.; Bower, J.C.; Burnett, R.A.

    1999-06-29

    The Federal Emergency Management Information System (FEMIS) is an emergency management planning and response tool that was developed by the Pacific Northwest National Laboratory (PNNL) under the direction of the U.S. Army Chemical Biological Defense Command. The FEMIS System Administration Guide provides information necessary for the system administrator to maintain the FEMIS system. The FEMIS system is designed for a single Chemical Stockpile Emergency Preparedness Program (CSEPP) site that has multiple Emergency Operations Centers (EOCs). Each EOC has personal computers (PCs) that emergency planners and operations personnel use to do their jobs. These PCs are corrected via a local areamore » network (LAN) to servers that provide EOC-wide services. Each EOC is interconnected to other EOCs via a Wide Area Network (WAN). Thus, FEMIS is an integrated software product that resides on client/server computer architecture. The main body of FEMIS software, referred to as the FEMIS Application Software, resides on the PC client(s) and is directly accessible to emergency management personnel. The remainder of the FEMIS software, referred to as the FEMIS Support Software, resides on the UNIX server. The Support Software provides the communication data distribution and notification functionality necessary to operate FEMIS in a networked, client/server environment.« less

  17. Improving Emergency Management by Modeling Ant Colonies

    DTIC Science & Technology

    2015-03-01

    LEFT BLANK vii TABLE OF CONTENTS I.  THE INCIDENT COMMAND SYSTEM AND AUTONOMOUS ACTORS ......1  A.  PROBLEM STATEMENT...managerial level tasking.12 The Oklahoma City bombing has generally been viewed as a success for the ICS model; however, there were numerous occurrences...developed. The youngest generation of ant 25 Bert Holldobler and Edward O. Wilson, The Ants

  18. Building a Collaborative Governance System: A Comparative Case Analysis

    DTIC Science & Technology

    2015-06-01

    additional resources. Bandwagon effects occur. As the process emerges and appears to be achieving success, more resources are attracted. Consensus...97 C. WHAT ARE THE ENABLERS AND BARRIERS TO EFFECTIVE COLLABORATION IN THIS CASE...seems as though the challenges are getting bigger as well as more frequent, across many disciplines.”1 Effective incident response requires command

  19. STS-71 astronauts before egress training

    NASA Image and Video Library

    1994-10-18

    S94-47065 (18 Oct 1994) --- Astronaut Robert L. Gibson (left), STS-71 mission commander, converses with two crew mates prior to emergency egress training in the Systems Integration Facility at the Johnson Space Center (JSC). Astronauts Bonnie J. Dunbar and Gregory J. Harbaugh are attired in training versions of the partial pressure launch and entry space suits.

  20. Business Continuity Management Plan

    DTIC Science & Technology

    2014-12-01

    organization ( Shaw , 2004). Navy Supply Systems Command (NAVSUP) does not have a framework that can help develop a business continuity management (BCM...cites two case studies that demonstrate how an organization mitigated issues during catastrophic events that led to disruptions to their business ...www.uschamber.com/sites/default/files/legacy/ issues /defense/files/guideli nesbc.pdf Comprehensive Emergency Management Associates. (2006). Business continuity

  1. Firefighting Trainer

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Firefighting trainees conduct fire control exercises using a prototype simulator known as the Emergency Management Computer Aided Training System (EMCAT). Developed by Marshall Space Flight Center (MFS) in response to a request from the Huntsville (AL) Fire Department, EMCAT enables a trainee to assume the role of fireground commander and make quick decisions on best use of his fire fighting personnel and equipment.

  2. Organizing NORTHCOM for Success: A Theater Special Operations Command

    DTIC Science & Technology

    2003-05-22

    90 U.S. FORSCOM, "Olympic and Paralympic Games Operations Plan for Emergency Contingency Support," (Ft. McPherson: U.S...Army Forces Command. "Olympic and Paralympic Games Operations Plan for Emergency Contingency Support." Ft. McPherson: Georgia, 1996. ———. "HQ FORSCOM and...Atlanta Organizing Committee for the Olympic Games for the purpose of planning for security and logistical support that the Department of Defense may

  3. Network-aware scalable video monitoring system for emergency situations with operator-managed fidelity control

    NASA Astrophysics Data System (ADS)

    Al Hadhrami, Tawfik; Nightingale, James M.; Wang, Qi; Grecos, Christos

    2014-05-01

    In emergency situations, the ability to remotely monitor unfolding events using high-quality video feeds will significantly improve the incident commander's understanding of the situation and thereby aids effective decision making. This paper presents a novel, adaptive video monitoring system for emergency situations where the normal communications network infrastructure has been severely impaired or is no longer operational. The proposed scheme, operating over a rapidly deployable wireless mesh network, supports real-time video feeds between first responders, forward operating bases and primary command and control centers. Video feeds captured on portable devices carried by first responders and by static visual sensors are encoded in H.264/SVC, the scalable extension to H.264/AVC, allowing efficient, standard-based temporal, spatial, and quality scalability of the video. A three-tier video delivery system is proposed, which balances the need to avoid overuse of mesh nodes with the operational requirements of the emergency management team. In the first tier, the video feeds are delivered at a low spatial and temporal resolution employing only the base layer of the H.264/SVC video stream. Routing in this mode is designed to employ all nodes across the entire mesh network. In the second tier, whenever operational considerations require that commanders or operators focus on a particular video feed, a `fidelity control' mechanism at the monitoring station sends control messages to the routing and scheduling agents in the mesh network, which increase the quality of the received picture using SNR scalability while conserving bandwidth by maintaining a low frame rate. In this mode, routing decisions are based on reliable packet delivery with the most reliable routes being used to deliver the base and lower enhancement layers; as fidelity is increased and more scalable layers are transmitted they will be assigned to routes in descending order of reliability. The third tier of video delivery transmits a high-quality video stream including all available scalable layers using the most reliable routes through the mesh network ensuring the highest possible video quality. The proposed scheme is implemented in a proven simulator, and the performance of the proposed system is numerically evaluated through extensive simulations. We further present an in-depth analysis of the proposed solutions and potential approaches towards supporting high-quality visual communications in such a demanding context.

  4. Canadian digitization: radical beginning and pragmatic follow-on

    NASA Astrophysics Data System (ADS)

    Grant, Terrill K.

    2000-08-01

    The Canadian Army, like most Western armies, spent a lot of time soul-searching about the application of technology to its Command and Control processes during the height of the Cold War in the 70's and 80's. In the late 1980's, these efforts were formalized in a program called the Tactical Command, Control and Communications System (TCCCS). As envisioned, the project would replace in one revolutionary Big Bang all of the tactical communications employed in the Canadian field forces. It would also add significant capabilities such as a long range satellite communications system, a universal tactical e-mail system, and a command and control system for the commander and his staff from division to unit HQ. In 1989, the project was scaled back due to budgetary constraints by removing the divisional trunk communications system and the command and control system. At this point a contract was let to Computing Devices Canada for the core communications functionality. During the next 6 years, the Canadian Army expanded on this digitization effort by amending the contract to add in a trunk system and a situational awareness system. As well, in 1996, Computing Devices received a contract to develop and integrate a C2 system with the communications system thereby restoring the final two Cs of TCCCS. This paper discusses the architecture and implementation of the TCCCS as the revolutionary enabler of the Canadian Army's digitization effort for the early 2000 era. The choice of a hybrid approach of using commercial standards supplemented by appropriate NATO communications standards allowed for an easy addition of the trunk system. As well, conformance to the emerging NATO Communications architecture for Land Tactical Communications in the Post 2000 era will enhance interoperability with Canada's allies. The paper also discusses the pragmatic approach taken by the Canadian Army in inserting C2 functionally into TCCCS, and presents the ultimate architecture and functionality. This paper concludes with a review of some of the areas of concern that will need to be addressed to complete a baseline digitization capability for the Canadian Army.

  5. The new Mobile Command Center at KSC is important addition to emergency preparedness

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Charles Street, Roger Scheidt and Robert ZiBerna, the Emergency Preparedness team at KSC, sit in the conference room inside the Mobile Command Center, a specially equipped vehicle. Nicknamed '''The Brute,''' it also features computer work stations, mobile telephones and a fax machine. It also can generate power with its onboard generator. Besides being ready to respond in case of emergencies during launches, the vehicle must be ready to help address fires, security threats, chemical spills, terrorist attaches, weather damage or other critical situations that might face KSC or Cape Canaveral Air Force Station.

  6. The C3-System User. Volume II. Workshop Notes

    DTIC Science & Technology

    1977-02-01

    system that provides the means for operational direction and technical administrative support involved in the function of command and control of U.S...information systems of the Headquarters of the Military Depart- ments; the command and control systems of the Headquarters of the Service Component Commands...the Service Component Commands - Military Airlift Command - Military Sealift Command - Military Traffic Management Command - 3.2.5 Command and

  7. Military aviation: a contact lens review.

    PubMed

    Lattimore, M R

    1990-10-01

    The military aviation communities have benefitted from the development of advanced electro-optical avionics systems. One drawback that has emerged is an increasing system incompatibility with traditional spectacle visual corrections. An alternative solution to the refractive error correction problem that some services have been investigating is that of contact lens wear. Since this much-debated topic is currently of command interest, a general overview of contact lens issues is presented as a framework for future discussions.

  8. Thinking Dangerously: Imagining United States Special Operations Command in the Post CT-World

    DTIC Science & Technology

    2016-12-07

    Dilemma: A Comparative Analysis of Chinese and US Strategy.” International Journal of China Studies 6, no. 1 (April 2015): 45. 31 See also Votel...terms of mission space, operational approach, organization, and culture? The thought exercise above is intended to be provocative and uncomfortable...unless it proactively takes steps to appreciate the emerging international system as it is, rather than how the bureaucracy wants the system to be

  9. UxV Data to the Cloud via Widgets

    DTIC Science & Technology

    2013-06-01

    data when communications and bandwidth are available. 18th ICCRTS - 051 Introduction “ Information dominance enables end-to-end defense and...C2 capabilities.” Of particular concern is an adversary’s potential for contest our information dominance by “employing the full range of emerging...For Information Dominance . Vice Admiral Michael S. Rogers is the Commander of Fleet Cyber Command/ Commander Tenth Fleet. Together they authored

  10. Unstructured Facility Navigation by Applying the NIST 4D/RCS Architecture

    DTIC Science & Technology

    2006-07-01

    control, and the planner); wire- less data and emergency stop radios; GPS receiver; inertial navigation unit; dual stereo cameras; infrared sensors...current Actuators Wheel motors, camera controls Scale & filter signals status commands commands commands GPS Antenna Dual stereo cameras...used in the sensory processing module include the two pairs of stereo color cameras, the physical bumper and infrared bumper sensors, the motor

  11. Fuel cell system logic for differentiating between rapid and normal shutdown commands

    DOEpatents

    Keskula, Donald H.; Doan, Tien M.; Clingerman, Bruce J.

    2000-01-01

    A method of controlling the operation of a fuel cell system wherein each shutdown command for the system is subjected to decision logic which determines whether the command should be a normal shutdown command or rapid shutdown command. If the logic determines that the shutdown command should be a normal shutdown command, then the system is shutdown in a normal step-by-step process in which the hydrogen stream is consumed within the system. If the logic determines that the shutdown command should be a rapid shutdown command, the hydrogen stream is removed from the system either by dumping to atmosphere or routing to storage.

  12. Evaluation of a noninvasive command scheme for upper-limb prostheses in a virtual reality reach and grasp task.

    PubMed

    Kaliki, Rahul R; Davoodi, Rahman; Loeb, Gerald E

    2013-03-01

    C5/C6 tetraplegic patients and transhumeral amputees may be able to use voluntary shoulder motion as command signals for a functional electrical stimulation system or transhumeral prosthesis. Stereotyped relationships, termed "postural synergies," among the shoulder, forearm, and wrist joints emerge during goal-oriented reaching and transport movements as performed by able-bodied subjects. Thus, the posture of the shoulder can potentially be used to infer the desired posture of the elbow and forearm joints during reaching and transporting movements. We investigated how well able-bodied subjects could learn to use a noninvasive command scheme based on inferences from these postural synergies to control a simulated transhumeral prosthesis in a virtual reality task. We compared the performance of subjects using the inferential command scheme (ICS) with subjects operating the simulated prosthesis in virtual reality according to complete motion tracking of their actual arm and hand movements. Initially, subjects performed poorly with the ICS but improved rapidly with modest amounts of practice, eventually achieving performance only slightly less than subjects using complete motion tracking. Thus, inferring the desired movement of distal joints from voluntary shoulder movements appears to be an intuitive and noninvasive approach for obtaining command signals for prostheses to restore reaching and grasping functions.

  13. Hospital Administration and Nursing Leadership in Disasters: An Exploratory Study Using Concept Mapping.

    PubMed

    Veenema, Tener Goodwin; Deruggiero, Katherine; Losinski, Sarah; Barnett, Daniel

    Strong leadership is critical in disaster situations when "patient surge" challenges a hospital's capacity to respond and normally acceptable patterns of care are disrupted. Activation of the emergency operations plan triggers an incident command system structure for leadership decision making. Yet, implementation of the emergency operations plan and incident command system protocols is ultimately subject to nursing and hospital leadership at the service- and unit level. The results of these service-/unit-based leadership decisions have the potential to directly impact staff and patient safety, quality of care, and ultimately, patient outcomes. Despite the critical nature of these events, nurse leaders and administrators receive little education regarding leadership and decision making during disaster events. The purpose of this study is to identify essential competencies of nursing and hospital administrators' leadership during disaster events. An integrative mixed-methods design combining qualitative and quantitative approaches to data collection and analysis was used. Five focus groups were conducted with nurse leaders and hospital administrators at a large urban hospital in the Northeastern United States in a collaborative group process to generate relevant leadership competencies. Concept Systems Incorporated was used to sort, prioritize, and analyze the data (http://conceptsystemsinc.com/). The results suggest that participants' institutional knowledge (of existing resources, communications, processes) and prior disaster experience increase leadership competence.

  14. GIS plays key role in NYC Rescue and Relief Operation

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    New York City, Sept. 17—The posters of missing loved ones are pasted onto New York City walls and street signs six days after 2 hijacked commercial airlines destroyed the World Trade Center in lower Manhattan on September 11. Several miles uptown from “ground zero,” heightened security hovers around the city's Office of Emergency Management rescue and relief command center, an around-the-clock operation. Police, firefighters, military, officials with the Federal Emergency Management Agency, communications technicians, and a beehive of others work in controlled chaos in this cavernous, convention center-sized hall, lined with computers and adorned with several American flags.After the original command center at 7 World Trade Center collapsed to rubble as an after-effect of the plane strikes, city officials scrambled to recreate it. Alan Leidner, director of New York's citywide geographic information systems (GIS), and who is with the Department of Information Technology and Telecommunications, knew that maps would be an integral component of the rescue and relief efforts. Maps provide emergency workers and others with accurate and detailed scientific data in the form of visual aids upon which they can make informed decisions.

  15. A System Dynamic Model of Leader Emergence

    DTIC Science & Technology

    2008-03-01

    Engineering and Management Air Force Institute of Technology Air University Air Education and Training Command In Partial Fulfillment of the...which in turn, have impacts on the success of the leader and the organization (Jung & Avolio, 1999). Group members can modify behaviors such as dissent...Contingency approaches to leadership suggest that environmental conditions combined with leader behavoirs, determine leader effectiveness (Judge

  16. Emergency Multiengine Aircraft System for Lateral Control Using Differential Thrust Control of Wing Engines

    NASA Technical Reports Server (NTRS)

    Burken, John J. (Inventor); Burcham, Frank W., Jr. (Inventor); Bull, John (Inventor)

    2000-01-01

    Development of an emergency flight control system is disclosed for lateral control using only differential engine thrust modulation of multiengine aircraft is currently underway. The multiengine has at least two engines laterally displaced to the left and right from the axis of the aircraft. In response to a heading angle command psi(sub c) is to be tracked. By continually sensing the heading angle psi of the aircraft and computing a heading error signal psi(sub e) as a function of the difference between the heading angle command psi(sub c) and the sensed heading angle psi, a track control signal is developed with compensation as a function of sensed bank angle phi. Bank angle rate phi, or roll rate p, yaw rate tau, and true velocity produce an aircraft thrust control signal ATC(sub psi(L,R)). The thrust control signal is differentially applied to the left and right engines, with equal amplitude and opposite sign, such that a negative sign is applied to the control signal on the side of the aircraft. A turn is required to reduce the error signal until the heading feedback reduces the error to zero.

  17. STS-79 MISSION SPECIALIST JOHN E. BLAHA AND COMMANDER WILLIAM F. READDY CHAT DURING EMERGENCY EGRESS

    NASA Technical Reports Server (NTRS)

    1996-01-01

    STS-79 Mission Specialist John E. Blaha (left) and Mission Commander William F. Readdy chat during emergency egress training at the 195-foot (59-meter) level of Launch Pad 39A. The training is part of their Terminal Countdown Demonstration Test (TCDT) activities. A dress rehearsal for launch, the TCDT culminates with a simulated countdown. The Space Shuttle Atlantis is undergoing preparations for liftoff on STS-79 no earlier than Sept. 12.

  18. Command and Control of Civilian Contract Manned Navy Fleet Support and Military Sealift Command Ships.

    DTIC Science & Technology

    1983-12-01

    58 APPENDIX B: COVER LEITERS RxErV FRC4 LABOR AND SHIPPING ORGANIZATINS ................................ 70 LIST CF...result of a merger between the Coast Seamen’ s Union and the Pacific Steamship Sailors’ Union. The SUP was under the leadership of Mr. Andrew Furuseth... leadership to emerge on the West Coast. As this emerging leadership tried to make new gains on the East Coast, it began to cme in conflict with the old-line

  19. 32 CFR 185.3 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Authorities (DSCA). Support provided by U.S. Federal military forces, DoD civilians, DoD contract personnel... support to those authorities. Emergency Authority. A Federal military commander's authority, in.... Immediate Response Authority. A Federal military commander's, DoD Component Head's, and/or responsible DoD...

  20. 32 CFR 185.3 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Authorities (DSCA). Support provided by U.S. Federal military forces, DoD civilians, DoD contract personnel... support to those authorities. Emergency Authority. A Federal military commander's authority, in.... Immediate Response Authority. A Federal military commander's, DoD Component Head's, and/or responsible DoD...

  1. 32 CFR 185.3 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Authorities (DSCA). Support provided by U.S. Federal military forces, DoD civilians, DoD contract personnel... support to those authorities. Emergency Authority. A Federal military commander's authority, in.... Immediate Response Authority. A Federal military commander's, DoD Component Head's, and/or responsible DoD...

  2. 32 CFR 185.3 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Authorities (DSCA). Support provided by U.S. Federal military forces, DoD civilians, DoD contract personnel... support to those authorities. Emergency Authority. A Federal military commander's authority, in.... Immediate Response Authority. A Federal military commander's, DoD Component Head's, and/or responsible DoD...

  3. Re-engineering the Multimission Command System at the Jet Propulsion Laboratory

    NASA Technical Reports Server (NTRS)

    Alexander, Scott; Biesiadecki, Jeff; Cox, Nagin; Murphy, Susan C.; Reeve, Tim

    1994-01-01

    The Operations Engineering Lab (OEL) at JPL has developed the multimission command system as part of JPL's Advanced Multimission Operations System. The command system provides an advanced multimission environment for secure, concurrent commanding of multiple spacecraft. The command functions include real-time command generation, command translation and radiation, status reporting, some remote control of Deep Space Network antenna functions, and command file management. The mission-independent architecture has allowed easy adaptation to new flight projects and the system currently supports all JPL planetary missions (Voyager, Galileo, Magellan, Ulysses, Mars Pathfinder, and CASSINI). This paper will discuss the design and implementation of the command software, especially trade-offs and lessons learned from practical operational use. The lessons learned have resulted in a re-engineering of the command system, especially in its user interface and new automation capabilities. The redesign has allowed streamlining of command operations with significant improvements in productivity and ease of use. In addition, the new system has provided a command capability that works equally well for real-time operations and within a spacecraft testbed. This paper will also discuss new development work including a multimission command database toolkit, a universal command translator for sequencing and real-time commands, and incorporation of telecommand capabilities for new missions.

  4. The SAS-3 delayed command system

    NASA Technical Reports Server (NTRS)

    Hoffman, E. J.

    1975-01-01

    To meet the requirements arising from the increased complexity of the power, attitude control and telemetry systems, a full redundant high-performance control section with delayed command capability was designed for the Small Astronomy Satellite-3 (SAS-3). The relay command system of SAS-3 is characterized by 56 bystate relay commands, with capability for handling up to 64 commands in future versions. The 'short' data command service of SAS-1 and SAS-2 consisting of shifting 24-bit words to two users was expanded to five users and augmented with a 'long load' data command service (up to 4080 bits) used to program the telemetry system and the delayed command subsystem. The inclusion of a delayed command service ensures a program of up to 30 relay or short data commands to be loaded for execution at designated times. The design and system operation of the SAS-3 command section are analyzed, with special attention given to the delayed command subsystem.

  5. 14 CFR 417.303 - Command control system requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... flight termination system used for each launch. (f) Electromagnetic interference. Each command control system component must function within the electromagnetic environment to which it is exposed. A command... must prevent electromagnetic interference. (g) Command transmitter failover. A command control system...

  6. 14 CFR 417.303 - Command control system requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... flight termination system used for each launch. (f) Electromagnetic interference. Each command control system component must function within the electromagnetic environment to which it is exposed. A command... must prevent electromagnetic interference. (g) Command transmitter failover. A command control system...

  7. 14 CFR 417.303 - Command control system requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... flight termination system used for each launch. (f) Electromagnetic interference. Each command control system component must function within the electromagnetic environment to which it is exposed. A command... must prevent electromagnetic interference. (g) Command transmitter failover. A command control system...

  8. 14 CFR 417.303 - Command control system requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... flight termination system used for each launch. (f) Electromagnetic interference. Each command control system component must function within the electromagnetic environment to which it is exposed. A command... must prevent electromagnetic interference. (g) Command transmitter failover. A command control system...

  9. 14 CFR 417.303 - Command control system requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... flight termination system used for each launch. (f) Electromagnetic interference. Each command control system component must function within the electromagnetic environment to which it is exposed. A command... must prevent electromagnetic interference. (g) Command transmitter failover. A command control system...

  10. Command and Control Analysis of the South West Provincial Regional Emergency Operations Centre during Vancouver 2010

    DTIC Science & Technology

    2011-06-01

    Venue Site WACC - Whistler Area Command Centre OTHER GPPAG - Government Partners Public Affairs Group 18 ANNEX B. Interview questions...Vancouver Vancouver Richmond WACC Decision Authority Link Information Sharing Link DOC’s 2010 Provincial Games Secretariat GPPAG CCG

  11. 33 CFR 230.8 - Emergency actions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... major in scope with potentially significant environmental impacts shall be referred through the division... DEFENSE PROCEDURES FOR IMPLEMENTING NEPA § 230.8 Emergency actions. In responding to emergency situations... this regulation. District commanders shall consider the probable environmental consequences in...

  12. 33 CFR 230.8 - Emergency actions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... major in scope with potentially significant environmental impacts shall be referred through the division... DEFENSE PROCEDURES FOR IMPLEMENTING NEPA § 230.8 Emergency actions. In responding to emergency situations... this regulation. District commanders shall consider the probable environmental consequences in...

  13. 33 CFR 230.8 - Emergency actions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... major in scope with potentially significant environmental impacts shall be referred through the division... DEFENSE PROCEDURES FOR IMPLEMENTING NEPA § 230.8 Emergency actions. In responding to emergency situations... this regulation. District commanders shall consider the probable environmental consequences in...

  14. 33 CFR 230.8 - Emergency actions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... major in scope with potentially significant environmental impacts shall be referred through the division... DEFENSE PROCEDURES FOR IMPLEMENTING NEPA § 230.8 Emergency actions. In responding to emergency situations... this regulation. District commanders shall consider the probable environmental consequences in...

  15. From SARS to H7N9: the mechanism of responding to emerging communicable diseases has made great progress in China.

    PubMed

    Yao, Linong; Chen, Enfu; Chen, Zhiping; Gong, Zhenyu

    2013-12-01

    The outbreak of severe acute respiratory syndrome (SARS) in 2003 indicated that China's existing former mechanism for emergency management was very vulnerable. The Chinese Government has since established a new mechanism for responding to emerging communicable diseases. This paper examined the current status of and developments in China's response to emerging communicable diseases from the outbreak of SARS in 2003 to the outbreak of H7N9 virus infection in 2013. Results indicated that the current mechanism for emergency responses to emerging communicable diseases in China has made great achievements in terms of command and decision-making, organization and collaboration, monitoring and early warning systems, protection, and international communication and cooperation. This mechanism for responding to emerging communicable diseases allowed China to successfully deal with outbreaks of the H5N1 bird flu, H1N1 flu, and H7N9 bird flu. However, a better coordination system, a more complete Office of Responses to Public Health Emergencies, administrative responsibility and error correction, better personnel training, and government responsibility may help to improve the response to emerging communicable diseases. Such improvements are eagerly anticipated.

  16. Multi-agent autonomous system

    NASA Technical Reports Server (NTRS)

    Fink, Wolfgang (Inventor); Dohm, James (Inventor); Tarbell, Mark A. (Inventor)

    2010-01-01

    A multi-agent autonomous system for exploration of hazardous or inaccessible locations. The multi-agent autonomous system includes simple surface-based agents or craft controlled by an airborne tracking and command system. The airborne tracking and command system includes an instrument suite used to image an operational area and any craft deployed within the operational area. The image data is used to identify the craft, targets for exploration, and obstacles in the operational area. The tracking and command system determines paths for the surface-based craft using the identified targets and obstacles and commands the craft using simple movement commands to move through the operational area to the targets while avoiding the obstacles. Each craft includes its own instrument suite to collect information about the operational area that is transmitted back to the tracking and command system. The tracking and command system may be further coupled to a satellite system to provide additional image information about the operational area and provide operational and location commands to the tracking and command system.

  17. Improving Situational Awareness for First Responders via Mobile Computing

    NASA Technical Reports Server (NTRS)

    Betts, Bradley J.; Mah, Robert W.; Papasin, Richard; Del Mundo, Rommel; McIntosh, Dawn M.; Jorgensen, Charles

    2006-01-01

    This project looks to improve first responder incident command, and an appropriately managed flow of situational awareness using mobile computing techniques. The prototype system combines wireless communication, real-time location determination, digital imaging, and three-dimensional graphics. Responder locations are tracked in an outdoor environment via GPS and uploaded to a central server via GPRS or an 802. II network. Responders can also wireless share digital images and text reports, both with other responders and with the incident commander. A pre-built three dimensional graphics model of the emergency scene is used to visualize responder and report locations. Responders have a choice of information end points, ranging from programmable cellular phones to tablet computers. The system also employs location-aware computing to make responders aware of particular hazards as they approach them. The prototype was developed in conjunction with the NASA Ames Disaster Assistance and Rescue Team and has undergone field testing during responder exercises at NASA Ames.

  18. STS-93 M.S. Tognini and Commander Collins take part in emergency egress training

    NASA Technical Reports Server (NTRS)

    1999-01-01

    During emergency egress training inside an M-113 armored personnel carrier at the launch pad, Mission Specialist Michel Tognini of France and Commander Eileen M. Collins share a light moment. In preparation for their mission, the STS-93 crew are participating in Terminal Countdown Demonstration Test activities that also include a launch-day dress rehearsal culminating with a simulated main engine cut-off. Also at KSC are Pilot Jeffrey S. Ashby and Mission Specialists Steven A. Hawley (Ph.D.), and Catherine G. Coleman (Ph.D.). Collins is the first woman to serve as mission commander. Tognini represents the Centre National d'Etudes Spatiales (CNES). The primary mission of STS-93 is the release of the Chandra X-ray Observatory, which will allow scientists from around the world to obtain unprecedented X-ray images of exotic environments in space to help understand the structure and evolution of the universe. Chandra is expected to provide unique and crucial information on the nature of objects ranging from comets in our solar system to quasars at the edge of the observable universe. Since X-rays are absorbed by the Earth's atmosphere, space-based observatories are necessary to study these phenomena and allow scientists to analyze some of the greatest mysteries of the universe. The targeted launch date for STS-93 is no earlier than July 20 at 12:36 a.m. EDT from Launch Pad 39B.

  19. STS-93 Commander Collins takes part in emergency egress training

    NASA Technical Reports Server (NTRS)

    1999-01-01

    STS-93 Commander Eileen M. Collins climbs into an M-113 armored personnel carrier at the launch pad to take part in emergency egress training. Collins is the first woman to serve as mission commander. In preparation for their mission, the STS-93 crew are participating in Terminal Countdown Demonstration Test activities that also include a launch-day dress rehearsal culminating with a simulated main engine cut-off. Others in the crew are Pilot Jeffrey S. Ashby and Mission Specialists Steven A. Hawley (Ph.D.), Catherine G. Coleman (Ph.D.), and Michel Tognini of France, who represents the Centre National d'Etudes Spatiales (CNES). The primary mission of STS-93 is the release of the Chandra X-ray Observatory, which will allow scientists from around the world to obtain unprecedented X-ray images of exotic environments in space to help understand the structure and evolution of the universe. Chandra is expected to provide unique and crucial information on the nature of objects ranging from comets in our solar system to quasars at the edge of the observable universe. Since X-rays are absorbed by the Earth's atmosphere, space-based observatories are necessary to study these phenomena and allow scientists to analyze some of the greatest mysteries of the universe. The targeted launch date for STS-93 is no earlier than July 20 at 12:36 a.m. EDT from Launch Pad 39B.

  20. Multi-agent autonomous system and method

    NASA Technical Reports Server (NTRS)

    Fink, Wolfgang (Inventor); Dohm, James (Inventor); Tarbell, Mark A. (Inventor)

    2010-01-01

    A method of controlling a plurality of crafts in an operational area includes providing a command system, a first craft in the operational area coupled to the command system, and a second craft in the operational area coupled to the command system. The method further includes determining a first desired destination and a first trajectory to the first desired destination, sending a first command from the command system to the first craft to move a first distance along the first trajectory, and moving the first craft according to the first command. A second desired destination and a second trajectory to the second desired destination are determined and a second command is sent from the command system to the second craft to move a second distance along the second trajectory.

  1. Large Capacity Missile Carrier (CMX)

    DTIC Science & Technology

    1993-12-01

    FSU) is emerging from a turbulent period that lasted from about 1990-2005. Some of the great hopes for the emergence of democracy and open markets ...34* AN/ UGC -I43A(V) NST "• OK-455(V) LJHF DAMA "* AN/UYQ-62 C2P VER I Link Processor "* ANIWSC-3(V)3 UHF SAT Transmitter/Receiver "* AN/USC-38 EHF...Graphics System Command, Control & NAVMACS II Communications (C’) AN/ UGC -143A(V) NST OKg455(V) UHF DAMA AN/UYQ-62 C2P VER I Link Processor AN/WSC-3(V

  2. KSC-08pd1182

    NASA Image and Video Library

    2008-05-07

    CAPE CANAVERAL, Fla. -- STS-124 Commander Mark Kelly is ready to practice driving the M113 armored personnel carrier as part of emergency training. He and other crew members are at NASA's Kennedy Space Center for a dress launch rehearsal called the terminal countdown demonstration test. TCDT provides astronauts and ground crews with an opportunity to participate in various simulated countdown activities, including equipment familiarization and emergency training. On the STS-124 mission, the crew will deliver and install the Japanese Experiment Module – Pressurized Module and Japanese Remote Manipulator System. Discovery's launch is targeted for May 31. Photo credit: NASA/Kim Shiflett

  3. NASIS data base management system: IBM 360 TSS implementation. Volume 5: Retrieval command system reference manual

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The retrieval command subsystem reference manual for the NASA Aerospace Safety Information System (NASIS) is presented. The command subsystem may be operated conversationally or in the batch mode. Retrieval commands are categorized into search-oriented and output-oriented commands. The characteristics of ancillary commands and their application are reported.

  4. Joint Task Force - Port Opening: Can this Emerging Capability Expedite Operational Objectives Throughout the Range of Military Operations?

    DTIC Science & Technology

    2009-10-26

    for Acquisition, Technology, and Logistics, 30 July 2007). 16 Craig Koontz , ―U.S. Transportation Command,‖ PowerPoint, 23 September 2009, Newport, RI...Support Group. To Lt Col Michael W. Pratt, Naval War College. Memorandum, 30 September 2009. Koontz , Craig. ―U.S. Transportation Command...PowerPoint. 23 September 2009. 22 Koontz , Craig. Contractor/Advisor to CDR U.S. Transportation Command. To Lt Col Michael W. Pratt, 28

  5. Intelligent Systems and Advanced User Interfaces for Design, Operation, and Maintenance of Command Management Systems

    NASA Technical Reports Server (NTRS)

    Mitchell, Christine M.

    1998-01-01

    Historically Command Management Systems (CMS) have been large, expensive, spacecraft-specific software systems that were costly to build, operate, and maintain. Current and emerging hardware, software, and user interface technologies may offer an opportunity to facilitate the initial formulation and design of a spacecraft-specific CMS as well as a to develop a more generic or a set of core components for CMS systems. Current MOC (mission operations center) hardware and software include Unix workstations, the C/C++ and Java programming languages, and X and Java window interfaces representations. This configuration provides the power and flexibility to support sophisticated systems and intelligent user interfaces that exploit state-of-the-art technologies in human-machine systems engineering, decision making, artificial intelligence, and software engineering. One of the goals of this research is to explore the extent to which technologies developed in the research laboratory can be productively applied in a complex system such as spacecraft command management. Initial examination of some of the issues in CMS design and operation suggests that application of technologies such as intelligent planning, case-based reasoning, design and analysis tools from a human-machine systems engineering point of view (e.g., operator and designer models) and human-computer interaction tools, (e.g., graphics, visualization, and animation), may provide significant savings in the design, operation, and maintenance of a spacecraft-specific CMS as well as continuity for CMS design and development across spacecraft with varying needs. The savings in this case is in software reuse at all stages of the software engineering process.

  6. A Cloud-based, Open-Source, Command-and-Control Software Paradigm for Space Situational Awareness (SSA)

    NASA Astrophysics Data System (ADS)

    Melton, R.; Thomas, J.

    With the rapid growth in the number of space actors, there has been a marked increase in the complexity and diversity of software systems utilized to support SSA target tracking, indication, warning, and collision avoidance. Historically, most SSA software has been constructed with "closed" proprietary code, which limits interoperability, inhibits the code transparency that some SSA customers need to develop domain expertise, and prevents the rapid injection of innovative concepts into these systems. Open-source aerospace software, a rapidly emerging, alternative trend in code development, is based on open collaboration, which has the potential to bring greater transparency, interoperability, flexibility, and reduced development costs. Open-source software is easily adaptable, geared to rapidly changing mission needs, and can generally be delivered at lower costs to meet mission requirements. This paper outlines Ball's COSMOS C2 system, a fully open-source, web-enabled, command-and-control software architecture which provides several unique capabilities to move the current legacy SSA software paradigm to an open source model that effectively enables pre- and post-launch asset command and control. Among the unique characteristics of COSMOS is the ease with which it can integrate with diverse hardware. This characteristic enables COSMOS to serve as the command-and-control platform for the full life-cycle development of SSA assets, from board test, to box test, to system integration and test, to on-orbit operations. The use of a modern scripting language, Ruby, also permits automated procedures to provide highly complex decision making for the tasking of SSA assets based on both telemetry data and data received from outside sources. Detailed logging enables quick anomaly detection and resolution. Integrated real-time and offline data graphing renders the visualization of the both ground and on-orbit assets simple and straightforward.

  7. STS-35 Commander Brand listens to trainer during water egress exercises

    NASA Technical Reports Server (NTRS)

    1990-01-01

    STS-35 Commander Vance D. Brand listens to training personnel during launch emergency egress procedures conducted in JSC's Weightless Environment Training Facility (WETF) Bldg 29. Brand, wearing a launch and entry suit (LES) and launch and entry helmet (LEH), is seated on the pool side while reviewing instructions.

  8. 46 CFR 310.4 - Training Ship.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... mooring. When the Training Ship is not on cruise, the Commanding Officer or Superintendent shall keep the.... Before a Training Ship is released to a School and manned by officers under State control, a condition... damage (except in an emergency, when on foreign cruise), the Commanding Officer or Superintendent shall...

  9. 46 CFR 310.4 - Training Ship.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... mooring. When the Training Ship is not on cruise, the Commanding Officer or Superintendent shall keep the.... Before a Training Ship is released to a School and manned by officers under State control, a condition... damage (except in an emergency, when on foreign cruise), the Commanding Officer or Superintendent shall...

  10. 46 CFR 310.4 - Training Ship.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... mooring. When the Training Ship is not on cruise, the Commanding Officer or Superintendent shall keep the.... Before a Training Ship is released to a School and manned by officers under State control, a condition... damage (except in an emergency, when on foreign cruise), the Commanding Officer or Superintendent shall...

  11. 46 CFR 310.4 - Training Ship.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... mooring. When the Training Ship is not on cruise, the Commanding Officer or Superintendent shall keep the.... Before a Training Ship is released to a School and manned by officers under State control, a condition... damage (except in an emergency, when on foreign cruise), the Commanding Officer or Superintendent shall...

  12. 46 CFR 310.4 - Training Ship.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... mooring. When the Training Ship is not on cruise, the Commanding Officer or Superintendent shall keep the.... Before a Training Ship is released to a School and manned by officers under State control, a condition... damage (except in an emergency, when on foreign cruise), the Commanding Officer or Superintendent shall...

  13. 75 FR 49482 - Privacy Act of 1974; System of Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-13

    ... replace with ``Incident Report Records.'' System location: Delete entry and replace with ``Command Support... may be accessed only by the Commander, Deputy Commander, Chief, Command Support Division, or other... and replace with ``Command Support Division, EU1, Defense Information Systems Agency-Europe, APO AE...

  14. STS-93 crew practices emergency egress training from Launch Pad 39B

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The STS-93 crew pose in front of an M-113, an armored personnel carrier, before emergency egress training from the launch pad. From left are Mission Specialist Steven A. Hawley (Ph.D.), Pilot Jeffrey S. Ashby, Mission Specialist Michel Tognini of France, Commander Eileen M. Collins and Mission Specialist Catherine G. Coleman. Collins is the first woman to serve as mission commander. Tognini represents the Centre National d'Etudes Spatiales (CNES). TCDT activities familiarize the crew with the mission, provide training in emergency exit from the orbiter and launch pad, and include a launch-day dress rehearsal culminating with a simulated main engine cut-off. The primary mission of STS- 93 is the release of the Chandra X-ray Observatory, which will allow scientists from around the world to obtain unprecedented X- ray images of exotic environments in space to help understand the structure and evolution of the universe. Chandra is expected to provide unique and crucial information on the nature of objects ranging from comets in our solar system to quasars at the edge of the observable universe. Since X-rays are absorbed by the Earth's atmosphere, space-based observatories are necessary to study these phenomena and allow scientists to analyze some of the greatest mysteries of the universe.

  15. An affordable wearable video system for emergency response training

    NASA Astrophysics Data System (ADS)

    King-Smith, Deen; Mikkilineni, Aravind; Ebert, David; Collins, Timothy; Delp, Edward J.

    2009-02-01

    Many emergency response units are currently faced with restrictive budgets that prohibit their use of advanced technology-based training solutions. Our work focuses on creating an affordable, mobile, state-of-the-art emergency response training solution through the integration of low-cost, commercially available products. The system we have developed consists of tracking, audio, and video capability, coupled with other sensors that can all be viewed through a unified visualization system. In this paper we focus on the video sub-system which helps provide real time tracking and video feeds from the training environment through a system of wearable and stationary cameras. These two camera systems interface with a management system that handles storage and indexing of the video during and after training exercises. The wearable systems enable the command center to have live video and tracking information for each trainee in the exercise. The stationary camera systems provide a fixed point of reference for viewing action during the exercise and consist of a small Linux based portable computer and mountable camera. The video management system consists of a server and database which work in tandem with a visualization application to provide real-time and after action review capability to the training system.

  16. Burbank participates in a CHeCS Medical Contingency Drill in the U.S. Laboratory

    NASA Image and Video Library

    2011-12-16

    ISS030-E-012613 (16 Dec. 2011) --- NASA astronaut Dan Burbank (foreground), Expedition 30 commander, and Russian cosmonaut Anton Shkaplerov, flight engineer, participate in a Crew Health Care System (CHeCS) medical contingency drill in the Destiny laboratory of the International Space Station. This drill gives crew members the opportunity to work as a team in resolving a simulated medical emergency onboard the space station.

  17. Burbank participates in a CHeCS Medical Contingency Drill in the U.S. Laboratory

    NASA Image and Video Library

    2011-12-16

    ISS030-E-012609 (16 Dec. 2011) --- NASA astronaut Dan Burbank (foreground), Expedition 30 commander, and Russian cosmonaut Anton Shkaplerov, flight engineer, participate in a Crew Health Care System (CHeCS) medical contingency drill in the Destiny laboratory of the International Space Station. This drill gives crew members the opportunity to work as a team in resolving a simulated medical emergency onboard the space station.

  18. Methods of instruction of the incident command system and related topics at US veterinary schools.

    PubMed

    Smith, Joe S; Kuldau, Gretchen A

    2014-12-01

    The Incident Command System (ICS) is an adaptable construct designed to streamline response efforts to a disaster or other incident. We aimed to examine the methods used to teach the ICS at US veterinary schools and to explore alternative and novel methods for instruction of this material. A total of 29 US accredited veterinary schools (as of February 2012) were surveyed, and 18 of the 29 schools responded. The ICS and related topics were taught by both classroom methods and online instruction by most of the surveyed schools. Several of the schools used readily available Federal Emergency Management Agency and US Department of Agriculture resources to aid in instruction. Most schools used one course to teach the ICS, and some schools also used unique methods such as field exercises, drills, side-by-side training with disaster response teams, elective courses, extracurricular clubs, and externships to reinforce the ICS and related topics. Some of the surveyed institutions also utilized fourth-year clinical rotations and field deployments during actual disasters as a component of their ICS and emergency response curriculum. The ICS is being taught at some form at a significant number of US veterinary schools. Additional research is needed to evaluate the efficacy of the teaching methods of the ICS in US veterinary schools.

  19. Westgate Shootings: An Emergency Department Approach to a Mass-casualty Incident.

    PubMed

    Wachira, Benjamin W; Abdalla, Ramadhani O; Wallis, Lee A

    2014-10-01

    At approximately 12:30 pm on Saturday September 21, 2013, armed assailants attacked the upscale Westgate shopping mall in the Westlands area of Nairobi, Kenya. Using the seven key Major Incident Medical Management and Support (MIMMS) principles, command, safety, communication, assessment, triage, treatment, and transport, the Aga Khan University Hospital, Nairobi (AKUH,N) emergency department (ED) successfully coordinated the reception and care of all the casualties brought to the hospital. This report describes the AKUH,N ED response to the first civilian mass-casualty shooting incident in Kenya, with the hope of informing the development and implementation of mass-casualty emergency preparedness plans by other EDs and hospitals in Kenya, appropriate for the local health care system.

  20. AMO EXPRESS: A Command and Control Experiment for Crew Autonomy Onboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Stetson, Howard K.; Frank, Jeremy; Cornelius, Randy; Haddock, Angie; Wang, Lui; Garner, Larry

    2015-01-01

    NASA is investigating a range of future human spaceflight missions, including both Mars-distance and Near Earth Object (NEO) targets. Of significant importance for these missions is the balance between crew autonomy and vehicle automation. As distance from Earth results in increasing communication delays, future crews need both the capability and authority to independently make decisions. However, small crews cannot take on all functions performed by ground today, and so vehicles must be more automated to reduce the crew workload for such missions. NASA's Advanced Exploration Systems Program funded Autonomous Mission Operations (AMO) project conducted an autonomous command and control experiment on-board the International Space Station that demonstrated single action intelligent procedures for crew command and control. The target problem was to enable crew initialization of a facility class rack with power and thermal interfaces, and involving core and payload command and telemetry processing, without support from ground controllers. This autonomous operations capability is enabling in scenarios such as initialization of a medical facility to respond to a crew medical emergency, and representative of other spacecraft autonomy challenges. The experiment was conducted using the Expedite the Processing of Experiments for Space Station (EXPRESS) rack 7, which was located in the Port 2 location within the U.S Laboratory onboard the International Space Station (ISS). Activation and deactivation of this facility is time consuming and operationally intensive, requiring coordination of three flight control positions, 47 nominal steps, 57 commands, 276 telemetry checks, and coordination of multiple ISS systems (both core and payload). Utilization of Draper Laboratory's Timeliner software, deployed on-board the ISS within the Command and Control (C&C) computers and the Payload computers, allowed development of the automated procedures specific to ISS without having to certify and employ novel software for procedure development and execution. The procedures contained the ground procedure logic and actions as possible to include fault detection and recovery capabilities.

  1. 14 CFR 417.305 - Command control system testing.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Command control system testing. 417.305..., DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH SAFETY Flight Safety System § 417.305 Command control system testing. (a) General. (1) A command control system, including its subsystems and components must undergo...

  2. 14 CFR 417.305 - Command control system testing.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Command control system testing. 417.305..., DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH SAFETY Flight Safety System § 417.305 Command control system testing. (a) General. (1) A command control system, including its subsystems and components must undergo...

  3. 14 CFR 417.305 - Command control system testing.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Command control system testing. 417.305..., DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH SAFETY Flight Safety System § 417.305 Command control system testing. (a) General. (1) A command control system, including its subsystems and components must undergo...

  4. 14 CFR 417.305 - Command control system testing.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Command control system testing. 417.305..., DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH SAFETY Flight Safety System § 417.305 Command control system testing. (a) General. (1) A command control system, including its subsystems and components must undergo...

  5. 14 CFR 417.305 - Command control system testing.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Command control system testing. 417.305..., DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH SAFETY Flight Safety System § 417.305 Command control system testing. (a) General. (1) A command control system, including its subsystems and components must undergo...

  6. Development of the Macro Command Editing Executive System for Factory Workers-Oriented Programless Visual Inspection System

    NASA Astrophysics Data System (ADS)

    Anezaki, Takashi; Wakitani, Kouichi; Nakamura, Masatoshi; Kubo, Hiroyasu

    Because visual inspection systems are difficult to tune, they create many problems for the kaizen process. This results in increased development costs and time to assure that the inspection systems function properly. In order to improve inspection system development, we designed an easy-tuning system called a “Program-less” visual inspection system. The ROI macro command which consisted of eight kinds of shape recognition macro commands and decision, operation, control commands was built. Furthermore, the macro command editing executive system was developed by the operation of only the GUI without editing source program. The validity of the ROI macro command was proved by the application of 488 places.

  7. Human-Robot Interaction Directed Research Project

    NASA Technical Reports Server (NTRS)

    Rochlis, Jennifer; Ezer, Neta; Sandor, Aniko

    2011-01-01

    Human-robot interaction (HRI) is about understanding and shaping the interactions between humans and robots (Goodrich & Schultz, 2007). It is important to evaluate how the design of interfaces and command modalities affect the human s ability to perform tasks accurately, efficiently, and effectively (Crandall, Goodrich, Olsen Jr., & Nielsen, 2005) It is also critical to evaluate the effects of human-robot interfaces and command modalities on operator mental workload (Sheridan, 1992) and situation awareness (Endsley, Bolt , & Jones, 2003). By understanding the effects of interface design on human performance, workload, and situation awareness, interfaces can be developed that support the human in performing tasks with minimal errors and with appropriate interaction time and effort. Thus, the results of research on human-robot interfaces have direct implications for design. Because the factors associated with interfaces and command modalities in HRI are too numerous to address in 3 years of research, the proposed research concentrates on three manageable areas applicable to National Aeronautics and Space Administration (NASA) robot systems. These topic areas emerged from the Fiscal Year (FY) 2011 work that included extensive literature reviews and observations of NASA systems. The three topic areas are: 1) video overlays, 2) camera views, and 3) command modalities. Each area is described in detail below, along with relevance to existing NASA human-robot systems. In addition to studies in these three topic areas, a workshop is proposed for FY12. The workshop will bring together experts in human-robot interaction and robotics to discuss the state of the practice as applicable to research in space robotics. Studies proposed in the area of video overlays consider two factors in the implementation of augmented reality (AR) for operator displays during teleoperation. The first of these factors is the type of navigational guidance provided by AR symbology. In the proposed studies, participants performance during teleoperation of a robot arm will be compared when they are provided with command-guidance symbology (that is, directing the operator what commands to make) or situation-guidance symbology (that is, providing natural cues so that the operator can infer what commands to make). The second factor for AR symbology is the effects of overlays that are either superimposed or integrated into the external view of the world. A study is proposed in which the effects of superimposed and integrated overlays on operator task performance during teleoperated driving tasks are compared

  8. Acceptability and perceived utility of drone technology among emergency medical service responders and incident commanders for mass casualty incident management.

    PubMed

    Hart, Alexander; Chai, Peter R; Griswold, Matthew K; Lai, Jeffrey T; Boyer, Edward W; Broach, John

    2017-01-01

    This study seeks to understand the acceptability and perceived utility of unmanned aerial vehicle (UAV) technology to Mass Casualty Incidents (MCI) scene management. Qualitative questionnaires regarding the ease of operation, perceived usefulness, and training time to operate UAVs were administered to Emergency Medical Technicians (n = 15). A Single Urban New England Academic Tertiary Care Medical Center. Front-line emergency medical service (EMS) providers and senior EMS personnel in Incident Commander roles. Data from this pilot study indicate that EMS responders are accepting to deploying and operating UAV technology in a disaster scenario. Additionally, they perceived UAV technology as easy to adopt yet impactful in improving MCI scene management.

  9. Operating and Support Costing Guide: Army Weapon Systems

    DTIC Science & Technology

    1974-12-23

    First US Army 1 Commandant, US Army Logistics Management Center (Director Administration and Services) 2 Commander, US Army Management Systems Support...Army Logistics Management Center (Director, Administration and Services) Commander, US Army Management Systems Support Agency (DACS-AME) Commander

  10. Orion Entry Flight Control Stability and Performance

    NASA Technical Reports Server (NTRS)

    Strahan, Alan L.; Loe, Greg R.; Seiler, Pete

    2007-01-01

    The Orion Spacecraft will be required to perform entry and landing functions for both Low Earth Orbit (LEO) and Lunar return missions, utilizing only the Command Module (CM) with its unique systems and GN&C design. This paper presents the current CM Flight Control System (FCS) design to support entry and landing, with a focus on analyses that have supported its development to date. The CM FCS will have to provide for spacecraft stability and control while following guidance or manual commands during exo-atmospheric flight, after Service Module separation, translational powered flight required of the CM, atmospheric flight supporting both direct entry and skip trajectories down to drogue chute deploy, and during roll attitude reorientation just prior to touchdown. Various studies and analyses have been performed or are on-going supporting an overall FCS design with reasonably sized Reaction Control System (RCS) jets, that minimizes fuel usage, that provides appropriate command following but with reasonable stability and control margin. Results from these efforts to date are included, with particular attention on design issues that have emerged, such as the struggle to accommodate sub-sonic pitch and yaw control without using excessively large jets that could have a detrimental impact on vehicle weight. Apollo, with a similar shape, struggled with this issue as well. Outstanding CM FCS related design and analysis issues, planned for future effort, are also briefly be discussed.

  11. Managing multiple-casualty incidents: a rural medical preparedness training assessment.

    PubMed

    Glow, Steven D; Colucci, Vincent J; Allington, Douglas R; Noonan, Curtis W; Hall, Earl C

    2013-08-01

    The objectives of this study were to develop a novel training model for using mass-casualty incident (MCI) scenarios that trained hospital and prehospital staff together using Microsoft Visio, images from Google Earth and icons representing first responders, equipment resources, local hospital emergency department bed capacity, and trauma victims. The authors also tested participants' knowledge in the areas of communications, incident command systems (ICS), and triage. Participants attended Managing Multiple-Casualty Incidents (MCIs), a one-day training which offered pre- and post-tests, two one-hour functional exercises, and four distinct, one-hour didactic instructional periods. Two MCI functional exercises were conducted. The one-hour trainings focused on communications, National Incident Management Systems/Incident Command Systems (NIMS/ICS) and professional roles and responsibilities in NIMS and triage. The trainings were offered throughout communities in western Montana. First response resource inventories and general manpower statistics for fire, police, Emergency Medical Services (EMS), and emergency department hospital bed capacity were determined prior to MCI scenario construction. A test was given prior to and after the training activities. A total of 175 firefighters, EMS, law enforcement, hospital personnel or other first-responders completed the pre- and post-test. Firefighters produced higher baseline scores than all other disciplines during pre-test analysis. At the end of the training all disciplines demonstrated significantly higher scores on the post-test when compared with their respective baseline averages. Improvements in post-test scores were noted for participants from all disciplines and in all didactic areas: communications, NIMS/ICS, and triage. Mass-casualty incidents offer significant challenges for prehospital and emergency room workers. Fire, Police and EMS personnel must secure the scene, establish communications, define individuals' roles and responsibilities, allocate resources, triage patients, and assign transport priorities. After emergency department notification and in advance of arrival, emergency department personnel must assess available physical resources and availability and type of manpower, all while managing patients already under their care. Mass-casualty incident trainings should strengthen the key, individual elements essential to well-coordinated response such as communications, incident management system and triage. The practice scenarios should be matched to the specific resources of the community. The authors also believe that these trainings should be provided with all disciplines represented to eliminate training "silos," to allow for discussion of overlapping jurisdictional or organizational responsibilities, and to facilitate team building.

  12. Iraq Reconstruction: Lessons from Auditing U.S.-funded Stabilization and Reconstruction Activities

    DTIC Science & Technology

    2012-10-01

    Emergency Response Program: Hotel Construction Successfully Completed, but Project Management Issues Remain 09-025 7/26/2009 Commander’s Emergency...Emergency Response Pro- gram: Hotel Construction Completed, but Project Management Issues Remain,” 7/26/2009. 47. SIGIR Audit 11-003, “Iraqi Security Forces

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael Schmitt; Juan Deaton; Curt Papke

    In the event of large-scale natural or manmade catastrophic events, access to reliable and enduring commercial communication systems is critical. Hurricane Katrina provided a recent example of the need to ensure communications during a national emergency. To ensure that communication demands are met during these critical times, Idaho National Laboratory (INL) under the guidance of United States Strategic Command has studied infrastructure issues, concerns, and vulnerabilities associated with an airborne wireless communications capability. Such a capability could provide emergency wireless communications until public/commercial nodes can be systematically restored. This report focuses on the airborne cellular restoration concept; analyzing basic infrastructuremore » requirements; identifying related infrastructure issues, concerns, and vulnerabilities and offers recommended solutions.« less

  14. KSC-08pd1179

    NASA Image and Video Library

    2008-05-07

    CAPE CANAVERAL, Fla. -- STS-124 Mission Specialist Greg Chamitoff drives the M113 armored personnel carrier as part of emergency training. Behind him Commander Mark Kelly. At center is Battalion Chief George Hoggard providing supervision. Chamitoff and other crew members are at NASA's Kennedy Space Center for a dress launch rehearsal called the terminal countdown demonstration test. TCDT provides astronauts and ground crews with an opportunity to participate in various simulated countdown activities, including equipment familiarization and emergency training. On the STS-124 mission, the crew will deliver and install the Japanese Experiment Module – Pressurized Module and Japanese Remote Manipulator System. Discovery's launch is targeted for May 31. Photo credit: NASA/Kim Shiflett

  15. Development and Flight Evaluation of an Emergency Digital Flight Control System Using Only Engine Thrust on an F-15 Airplane

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W., Jr.; Maine, Trindel A.; Fullerton, C. Gordon; Webb, Lannie Dean

    1996-01-01

    A propulsion-controlled aircraft (PCA) system for emergency flight control of aircraft with no flight controls was developed and flight tested on an F-15 aircraft at the NASA Dryden Flight Research Center. The airplane has been flown in a throttles-only manual mode and with an augmented system called PCA in which pilot thumbwheel commands and aircraft feedback parameters were used to drive the throttles. Results from a 36-flight evaluation showed that the PCA system can be used to safety land an airplane that has suffered a major flight control system failure. The PCA system was used to recover from a severe upset condition, descend, and land. Guest pilots have also evaluated the PCA system. This paper describes the principles of throttles-only flight control; a history of loss-of-control accidents; a description of the F-15 aircraft; the PCA system operation, simulation, and flight testing; and the pilot comments.

  16. Fatigue Performance under Multiaxial Loading

    DTIC Science & Technology

    1990-01-01

    Director, Structural Integrity Engineering Officer (N7) Subgroup ( SEA 55Y) Military Seaift Command Naval Sea Systems Command Dr. Donald Liu CDR Michael K...REPRESENTATIVES Mr. William J. Siekierka Mr. Greg D. Woods SEA 55Y3 SEA 55Y3 Naval Sea Systems Command Naval Sea Systems Command SHIP STRUCTURE...AMERICAN BUREAU OF SHIPPING NAVAL SEA SYSTEMS COMMAND Mr. Stephen G. Arntson (Chairman) Mr. Robert A. Sielski Mr. John F. Conlon Mr. Charles L. Null Mr

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barr, Jonathan L.; Taira, Randal Y.; Orr, Heather M.

    The purpose of this document is to describe the operating concepts, capabilities, and benefits of RAMS including descriptions of how the system implementations can improve emergency response, damage assessment, task prioritization, and situation awareness. This CONOPS provides general information on operational processes and procedures required to utilize RAMS, and expected performance benefits of the system. The primary audiences for this document are the end users of RAMS (including flight operators and incident commanders) and the RAMS management team. Other audiences include interested offices within the Department of Homeland Security (DHS), and officials from other state and local jurisdictions who wantmore » to implement similar systems.« less

  18. Aerospace Vehicle Design, Spacecraft Section. Volume 1: Project Groups 3-5

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Three groups of student engineers in an aerospace vehicle design course present their designs for a vehicle that can be used to resupply the Space Station Freedom and provide an emergency crew return to earth capability. The vehicle's requirements include a lifetime that exceeds six years, low cost, the capability for withstanding pressurization, launch, orbit, and reentry hazards, and reliability. The vehicle's subsystems are analyzed. These subsystems are structures, communication and command data systems, attitude and articulation control, life support and crew systems, power and propulsion, reentry and recovery systems, and mission management, planning, and costing.

  19. Electronic warfare microwave components

    NASA Astrophysics Data System (ADS)

    Cosby, L. A.

    1984-09-01

    The current and projected state-of-the-art for electronic warfare (EW) microwave components is reviewed, with attention given to microwave components used extensively in EW systems for reconnaissance, threat warning, direction finding, and repeater jamming. It is emphasized that distributed EW systems must be able to operate from manned tactical and strategic platforms, with requirements including remote aerospace and space elements, as well as the need for expandable devices for detection, location, and denial/deception functions. EW coordination, or battle management, across a distributed system is a rapidly emerging requirement that must be integrated into current and projected command-and-control programs.

  20. Command and Control. Radiological Transportation Emergencies Course. Revision Three.

    ERIC Educational Resources Information Center

    Westinghouse Electric Corp., Carlsbad, NM.

    This 12-section course is designed to explain the responsibilities of an incident commander at the scene of a Waste Isolation Pilot Plant (WIPP) transportation incident. It was created for the U.S. Department of Energy WIPP located near Carlsbad, New Mexico, which receives radioactive shipments. The course has two purposes: (1) to provide first…

  1. Expedition Three Commander Culbertson and STS-105 Commander Horowitz in the White Room

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- Expedition Three Commander Frank Culbertson (left) and STS-105 Commander Scott Horowitz (right), in the White Room at Launch Pad 39A, have placed the mission sign at the entrance into Space Shuttle Discovery. Both crews are at KSC to take part in Terminal Countdown Demonstration Test activities, which include emergency egress training, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001.

  2. Expedition Three Commander Culbertson and STS-105 Commander Horowitz in the White Room

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- Expedition Three Commander Frank Culbertson (left) and STS-105 Commander Scott Horowitz (right), in the White Room at Launch Pad 39A, hold the sign for their mission. Both crews are at KSC to take part in Terminal Countdown Demonstration Test activities, which include emergency egress training, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001.

  3. CDR Cockrell in U.S. Laboratory /Destiny rack

    NASA Image and Video Library

    2001-02-11

    STS98-E-5149 (11 February 2001) --- Astronaut Kenneth D. Cockrell, STS-98 commander, emerges from behind temporary covering in the newly attached Destiny laboratory onboard the International Space Station (ISS). After the Destiny hatch was opened early in the day, members of both crews went to work quickly inside the new module, activating air systems, fire extinguishers, alarm systems, computers and internal communications. The crews also took some photos and continued equipment transfers from the shuttle to the station. The scene was taken with a digital still camera.

  4. CDR Cockrell in U.S. Laboratory /Destiny rack

    NASA Image and Video Library

    2001-02-11

    STS98-E-5150 (11 February 2001) --- Astronaut Kenneth D. Cockrell, STS-98 commander, emerges from behind wall covering in the newly attached Destiny laboratory onboard the International Space Station (ISS). After the Destiny hatch was opened early in the day, members of both crews went to work quickly inside the new module, activating air systems, fire extinguishers, alarm systems, computers and internal communications. The crews also took some photos and continued equipment transfers from the shuttle to the station. The scene was taken with a digital still camera.

  5. Supporting the Air Mobility Needs of Geographic Combatant Commanders: An Evaluation Using the Principal-Agent Construct

    DTIC Science & Technology

    2014-06-01

    had reached over 500,000. Another important aspect of this disaster was the damage sustained by several Fukushima Daiichi Nuclear plant reactors.3...The damage, resulting from the constant battering of tsunami waves, affected the cooling systems of the nuclear plant and resulted in several ... Nuclear Regulatory Commission & DoE nuclear expertise to help with the emerging Fukushima crisis. All branches of the US armed forces actively

  6. Ford and Novitskiy participate in a CHeCS Medical Contingency Drill in the U.S. Laboratory

    NASA Image and Video Library

    2012-11-26

    ISS034-E-005268 (26 Nov. 2012) --- NASA astronaut Kevin Ford (background), Expedition 34 commander; and Russian cosmonaut Oleg Novitskiy, flight engineer, participate in a Crew Health Care System (CHeCS) medical contingency drill in the Destiny laboratory of the International Space Station. This drill gives crew members the opportunity to work as a team in resolving a simulated medical emergency onboard the space station.

  7. STS-93 Crew Training

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Live footage of the STS-93 crewmembers shows Commander Eileen M. Collins, Pilot Jeffrey S. Ashby, Mission Specialists Steven A. Hawley, Catherine G. Coleman, and Michel Tognini going through various training activities. These activities include Bail Out Training NBL, Emergency Egress Training, Earth Observations Classroom Training, Simulator Training, T-38 Departure from Ellington Field, Chandra Deploy Training, SAREX Shuttle Amateur Radio Experiment, CCT Bail Out Crew Compartment Training, and Southwest Research Ultraviolet Imaging System (SWUIS) Training.

  8. Enabling Design

    DTIC Science & Technology

    2009-05-21

    Figure 1. Methodology in Hierarchical Context. 2 Peter Checkland , Systems Thinking, System...Joint Forces Command, 2008. Checkland , Peter. Systems Thinking, System Practice. Chichester: John Wiley & Sons, 1981. FM 6-0 Mission Command: Command

  9. A design proposal of a certain missile tactical command system based on Beidou satellite communication and GPS positioning techniques

    NASA Astrophysics Data System (ADS)

    Ma, Jian; Hao, Yongsheng; Miao, Jian; Zhang, Jianmao

    2007-11-01

    This paper introduced a design proposal of tactical command system that applied to a kind of anti-tank missile carriers. The tactical command system was made up of embedded computer system based on PC104 bus, Linux operating system, digital military map, Beidou satellite communication equipments and GPS positioning equipments. The geographic coordinates was measured by the GPS receiver, the positioning data, commands and information were transmitted real-time between tactical command systems, tactical command systems and command center, by the Beidou satellite communication systems. The Beidou satellite communication equipments and GPS positioning equipments were integrated to an independent module, exchanging data with embedded computer through RS232 serial ports and USB ports. The decision support system software based on information fusion, calculates positioning data, geography information and battle field information synthetically, shows the position of allies and the position of enemy on the military map, and assesses the various threats of different enemy objects, educes a situation assessment and threat assessment.

  10. Military-civilian cooperative emergency response to infectious disease prevention and control in China.

    PubMed

    Ma, Hui; Dong, Ji-Ping; Zhou, Na; Pu, Wei

    2016-01-01

    In recent years, the incidence of severe infectious diseases has increased, and the number of emerging infectious diseases continues to increase. The Chinese government and military forces have paid a great deal of attention to infectious disease prevention and control, and using military-civilian cooperation, they have successfully prevented numerous severe epidemic situations, such as severe acute respiratory syndrome (SARS), influenza A (H1N1), avian influenza H5N1 and H7N9, and Ebola hemorrhagic fever, while actively maintained public health, economic development, and national construction. This paper focuses on the mechanisms of the military-cooperative emergency response to infectious diseases--the joint working mechanism, the information-sharing mechanism, the research collaboration mechanism, and the joint disposal mechanism--and presents a sorted summary of the practices and experiences of cooperative emergency responses to infectious diseases. In the future, the Chinese military and the civilian sector will further strengthen the cooperative joint command system and emergency rescue force and will reinforce their collaborative information-sharing platform and technical equipment system to further improve military-civilian collaborative emergency infectious diseases disposal, advance the level of infectious disease prevention and control, and maintain public health.

  11. Stability boundaries for command augmentation systems

    NASA Technical Reports Server (NTRS)

    Shrivastava, P. C.

    1987-01-01

    The Stability Augmentation System (SAS) is a special case of the Command Augmentation System (CAS). Control saturation imposes bounds on achievable commands. The state equilibrium depends only on the open loop dynamics and control deflection. The control magnitude to achieve a desired command equilibrium is independent of the feedback gain. A feedback controller provides the desired response, maintains the system equilibrium under disturbances, but it does not affect the equilibrium values of states and control. The saturation boundaries change with commands, but the location of the equilibrium points in the saturated region remains unchanged. Nonzero command vectors yield saturation boundaries that are asymmetric with respect to the state equilibrium. Except for the saddle point case with MCE control law, the stability boundaries change with commands. For the cases of saddle point and unstable nodes, the region of stability decreases with increasing command magnitudes.

  12. Emergency Physicians at War.

    PubMed

    Muck, Andrew E; Givens, Melissa; Bebarta, Vikhyat S; Mason, Phillip E; Goolsby, Craig

    2018-05-01

    Operation Enduring Freedom (OEF-A) in Afghanistan and Operation Iraqi Freedom (OIF) represent the first major, sustained wars in which emergency physicians (EPs) fully participated as an integrated part of the military's health system. EPs proved invaluable in the deployments, and they frequently used the full spectrum of trauma and medical care skills. The roles EPs served expanded over the years of the conflicts and demonstrated the unique skill set of emergency medicine (EM) training. EPs supported elite special operations units, served in medical command positions, and developed and staffed flying intensive care units. EPs have brought their combat experience home to civilian practice. This narrative review summarizes the history, contributions, and lessons learned by EPs during OEF-A/OIF and describes changes to daily clinical practice of EM derived from the combat environment.

  13. A Work Station For Control Of Changing Systems

    NASA Technical Reports Server (NTRS)

    Mandl, Daniel J.

    1988-01-01

    Touch screen and microcomputer enable flexible control of complicated systems. Computer work station equipped to produce graphical displays used as command panel and status indicator for command-and-control system. Operator uses images of control buttons displayed on touch screen to send prestored commands. Use of prestored library of commands reduces incidence of errors. If necessary, operator uses conventional keyboard to enter commands in real time to handle unforeseeable situations.

  14. Modular open RF architecture: extending VICTORY to RF systems

    NASA Astrophysics Data System (ADS)

    Melber, Adam; Dirner, Jason; Johnson, Michael

    2015-05-01

    Radio frequency products spanning multiple functions have become increasingly critical to the warfighter. Military use of the electromagnetic spectrum now includes communications, electronic warfare (EW), intelligence, and mission command systems. Due to the urgent needs of counterinsurgency operations, various quick reaction capabilities (QRCs) have been fielded to enhance warfighter capability. Although these QRCs were highly successfully in their respective missions, they were designed independently resulting in significant challenges when integrated on a common platform. This paper discusses how the Modular Open RF Architecture (MORA) addresses these challenges by defining an open architecture for multifunction missions that decomposes monolithic radio systems into high-level components with welldefined functions and interfaces. The functional decomposition maximizes hardware sharing while minimizing added complexity and cost due to modularization. MORA achieves significant size, weight and power (SWaP) savings by allowing hardware such as power amplifiers and antennas to be shared across systems. By separating signal conditioning from the processing that implements the actual radio application, MORA exposes previously inaccessible architecture points, providing system integrators with the flexibility to insert third-party capabilities to address technical challenges and emerging requirements. MORA leverages the Vehicular Integration for Command, Control, Communication, Computers, Intelligence, Surveillance, and Reconnaissance (C4ISR)/EW Interoperability (VICTORY) framework. This paper concludes by discussing how MORA, VICTORY and other standards such as OpenVPX are being leveraged by the U.S. Army Research, Development, and Engineering Command (RDECOM) Communications Electronics Research, Development, and Engineering Center (CERDEC) to define a converged architecture enabling rapid technology insertion, interoperability and reduced SWaP.

  15. Man/terminal interaction evaluation of computer operating system command and control service concepts. [in Spacelab

    NASA Technical Reports Server (NTRS)

    Dodson, D. W.; Shields, N. L., Jr.

    1978-01-01

    The Experiment Computer Operating System (ECOS) of the Spacelab will allow the onboard Payload Specialist to command experiment devices and display information relative to the performance of experiments. Three candidate ECOS command and control service concepts were reviewed and laboratory data on operator performance was taken for each concept. The command and control service concepts evaluated included a dedicated operator's menu display from which all command inputs were issued, a dedicated command key concept with which command inputs could be issued from any display, and a multi-display concept in which command inputs were issued from several dedicated function displays. Advantages and disadvantages are discussed in terms of training, operational errors, task performance time, and subjective comments of system operators.

  16. BEARS: a multi-mission anomaly response system

    NASA Astrophysics Data System (ADS)

    Roberts, Bryce A.

    2009-05-01

    The Mission Operations Group at UC Berkeley's Space Sciences Laboratory operates a highly automated ground station and presently a fleet of seven satellites, each with its own associated command and control console. However, the requirement for prompt anomaly detection and resolution is shared commonly between the ground segment and all spacecraft. The efficient, low-cost operation and "lights-out" staffing of the Mission Operations Group requires that controllers and engineers be notified of spacecraft and ground system problems around the clock. The Berkeley Emergency Anomaly and Response System (BEARS) is an in-house developed web- and paging-based software system that meets this need. BEARS was developed as a replacement for an existing emergency reporting software system that was too closedsource, platform-specific, expensive, and antiquated to expand or maintain. To avoid these limitations, the new system design leverages cross-platform, open-source software products such as MySQL, PHP, and Qt. Anomaly notifications and responses make use of the two-way paging capabilities of modern smart phones.

  17. ASSTC and field sensors: new technology for emergency care

    NASA Astrophysics Data System (ADS)

    Morrison, G. Wayne; Vo-Dinh, Tuan

    2000-05-01

    The US Army Medical Research and Material Command together with the US Marine Corps Combat Development Command sponsored the design and production of a far-forward, lightweight, small footprint, reconfigurable, highly mobile Advanced Surgical Suite for Trauma Casualties (ASSTC) to reduce combat casualties and morbidity. The KIA fraction has remained relatively constant over major wars and conflicts since the early 1900s. One third of the KIA perish after 10 minutes. ASSTC has the potential to dramatically lower this fraction by providing resuscitative care within a short period of wound infliction and not requiring long transport times to the caregivers. ASSTC is also unique in its capability to serve in multiple missions including humanitarian aid, infectious disease control, and disaster relief. Adding field sensor to ASSTC greatly enhances the capability of this highly mobile system to operate in many areas.

  18. STS-52 Commander Wetherbee, in LES/LEH, during JSC WETF bailout exercises

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-52 Columbia, Orbiter Vehicle (OV) 102, Commander James D. Wetherbee, fully outfitted in a launch and entry suit (LES) and launch and entry helmet (LEH), prepares for emergency egress (bailout) training exercise in JSC's Weightless Environment Training Facility (WETF) Bldg 29 pool. The WETF's 25-ft deep pool will be used to simulate a water landing.

  19. Interferometric correction system for a numerically controlled machine

    DOEpatents

    Burleson, Robert R.

    1978-01-01

    An interferometric correction system for a numerically controlled machine is provided to improve the positioning accuracy of a machine tool, for example, for a high-precision numerically controlled machine. A laser interferometer feedback system is used to monitor the positioning of the machine tool which is being moved by command pulses to a positioning system to position the tool. The correction system compares the commanded position as indicated by a command pulse train applied to the positioning system with the actual position of the tool as monitored by the laser interferometer. If the tool position lags the commanded position by a preselected error, additional pulses are added to the pulse train applied to the positioning system to advance the tool closer to the commanded position, thereby reducing the lag error. If the actual tool position is leading in comparison to the commanded position, pulses are deleted from the pulse train where the advance error exceeds the preselected error magnitude to correct the position error of the tool relative to the commanded position.

  20. 44 CFR 352.1 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... boundaries. (q) Command and control means making and issuing protective action decisions and directing... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Definitions. 352.1 Section... SECURITY PREPAREDNESS COMMERCIAL NUCLEAR POWER PLANTS: EMERGENCY PREPAREDNESS PLANNING § 352.1 Definitions...

  1. Reflexive Control in Operational Art: Designing Emergent Opportunity in the Vicksburg Campaign

    DTIC Science & Technology

    2017-05-25

    relating to game theory and deception. This theory relates to a human phenomenon not strictly tied to any specific systems or actors at any level of war... game theory.10 It is worth emphasizing that reflexive control theory is neither synonymous with, nor did it evolve specifically from, maskirovka or... Game of ? And ?," edited by Chet Richards and Chuck Spinney (Defense and the National Interest, 2006). 19 Field Manual 6-0, Mission Command

  2. Beyond Line of Sight (BLOS) Command and Control (C2) Capability to Improve Disaster Response and Recovery

    DTIC Science & Technology

    2013-09-01

    on the possible threat of an electromagnetic pulse (EMP) and its potential consequences following the destructive “ derecho ” that hit Washington, DC...in 2012.19 Spanish for the word “straight,” a derecho is a term used to describe a widespread, long- lived, straight-line windstorm that is...emergency communications system and raised concern for future response. Both Hurricane Katrina and the Washington, DC, area derecho have subsequently

  3. Summaries of Research - Fiscal Year 1983.

    DTIC Science & Technology

    1984-02-01

    computerized dental emergency diagnosis and treatment programs in development at NDRI, has been determined. Portable electrically driven handpiece systems...AD-A140 259 SUMMARIES OF RESEARCH - FISCAL YEAR 1983U NAVAL DENTAL RESEARCH INST GREAT LAKES IL FEB 84U UC’AIE. NDRI-PR-84-01 UNCLASSIFIED F/G 6/5 NL...SUMMARIE-S OF RESEARCH FISCAL YEAR 1983 -CTE SAPR 19 1984 . A NAA.1 DENTAL RESEARCH INSTITUTE Naval Medical Research and Development Command 84 04 18

  4. Navy Reserve: Not Ready for OLC

    DTIC Science & Technology

    2010-06-11

    Navy. Additionally, the need for qualified personnel inspired the Navy to create a new reserve program, the Women Accepted for Volunteer Emergency...Service (WAVES), which peaked at 86,000 women serving in stateside assignments. The Korean War required the mobilization of over 182,000 Navy...Office of Naval Intelligence 3348 3427 1590 47.49 24.50 ONR - NRL 211 231 0 0.00 0.00 Selective Service 42 29 0 0.00 0.00 Space & Warfare Systems Command

  5. STS-82 Suit-up for Post Insertion Training in Crew Compartment Trainer 2

    NASA Image and Video Library

    1996-10-30

    S96-18556 (30 Oct. 1996) --- Astronauts Scott J. Horowitz (standing) and Kenneth D. Bowersox wind up suit donning for a training session in JSC's systems integration facility. Wearing training versions of the partial pressure launch and entry escape suit, the STS-82 pilot and mission commander joined their crewmates in simulating an emergency ejection, using an escape pole on the mid deck, as well as other phases of their scheduled February mission.

  6. The Cyber Threat to Military Just-in-Time Logistics: Risk Mitigation and the Return to Forward Basing

    DTIC Science & Technology

    2017-05-26

    Generation Warfare (RNGW) ......................................................4 What is Traditional Forward-Based or “Just-in- Case ” Logistics...Industrial Control Systems-Cyber Emergency Response Team IT Information Technology JFC Joint Force Commander JIC Just-in- Case JIT Just-in-Time JP Joint...aspects of demand-driven or “Just-in-Time” (JIT) logistics, and bringing back the concept of traditional large inventory or “Just-in- Case ” (JIC) logistics

  7. Unchained Interests: American-British-Dutch-Australian Command 1942

    DTIC Science & Technology

    2014-05-22

    DSO), the Dutch Militaire Willems Orde (MWO), the highest Dutch decoration for valor 1C. E . L. Helfrich, Memoires van C.E.L. Helfrich, Eerste Deel: De...British imperial naval defense system east of the Suez.57 It aimed to deter Japanese aggression by building a large naval base and basing 55C. E . L...clearly signaled the power transition that had emerged in Southeast Asia— the Americans only wanted to discuss strategic matters with the 68David E

  8. Developing Collaboration in Complex Events: A Model for Civil-Military Inter-Organizational Problem-Solving and Decision-Making

    DTIC Science & Technology

    2011-06-01

    2009, p.2). Given the wide adoption of principles and structures associated with the Incident Command System (ICS) in emergency management , it was...relationships in disaster response but also the factors that might lead to a more effective response and management . The cases were analysed...team was guided by the following considerations: 1. Use of an extended timeline – The model was conceptualized within a risk management paradigm in

  9. From pilot's associate to satellite controller's associate

    NASA Technical Reports Server (NTRS)

    Neyland, David L.; Lizza, Carl; Merkel, Philip A.

    1992-01-01

    Associate technology is an emerging engineering discipline wherein intelligent automation can significantly augment the performance of man-machine systems. An associate system is one that monitors operator activity and adapts its operational behavior accordingly. Associate technology is most effectively applied when mapped into management of the human-machine interface and display-control loop in typical manned systems. This paper addresses the potential for application of associate technology into the arena of intelligent command and control of satellite systems, from diagnosis of onboard and onground of satellite systems fault conditions, to execution of nominal satellite control functions. Rather than specifying a specific solution, this paper draws parallels between the Pilot's Associate concept and the domain of satellite control.

  10. Emergency positioning system accuracy with infrared LEDs in high-security facilities

    NASA Astrophysics Data System (ADS)

    Knoch, Sierra N.; Nelson, Charles; Walker, Owens

    2017-05-01

    Instantaneous personnel location presents a challenge in Department of Defense applications where high levels of security restrict real-time tracking of crew members. During emergency situations, command and control requires immediate accountability of all personnel. Current radio frequency (RF) based indoor positioning systems can be unsuitable due to RF leakage and electromagnetic interference with sensitively calibrated machinery on variable platforms like ships, submarines and high-security facilities. Infrared light provide a possible solution to this problem. This paper proposes and evaluates an indoor line-of-sight positioning system that is comprised of IR and high-sensitivity CMOS camera receivers. In this system the movement of the LEDs is captured by the camera, uploaded and analyzed; the highest point of power is located and plotted to create a blueprint of crewmember location. Results provided evaluate accuracy as a function of both wavelength and environmental conditions. Research will further evaluate the accuracy of the LED transmitter and CMOS camera receiver system. Transmissions in both the 780 and 850nm IR are analyzed.

  11. Predicting compliance with command hallucinations: anger, impulsivity and appraisals of voices' power and intent.

    PubMed

    Bucci, Sandra; Birchwood, Max; Twist, Laura; Tarrier, Nicholas; Emsley, Richard; Haddock, Gillian

    2013-06-01

    Command hallucinations are experienced by 33-74% of people who experience voices, with varying levels of compliance reported. Compliance with command hallucinations can result in acts of aggression, violence, suicide and self-harm; the typical response however is non-compliance or appeasement. Two factors associated with such dangerous behaviours are anger and impulsivity, however few studies have examined their relationship with compliance to command hallucinations. The current study aimed to examine the roles of anger and impulsivity on compliance with command hallucinations in people diagnosed with a psychotic disorder. The study was a cross-sectional design and included individuals who reported auditory hallucinations in the past month. Subjects completed a variety of self-report questionnaire measures. Thirty-two people experiencing command hallucinations, from both in-patient and community settings, were included. The tendency to appraise the voice as powerful, to be impulsive, to experience anger and to regulate anger were significantly associated with compliance with command hallucinations to do harm. Two factors emerged as significant independent predictors of compliance with command hallucinations; omnipotence and impulsivity. An interaction between omnipotence and compliance with commands, via a link with impulsivity, is considered and important clinical factors in the assessment of risk when working with clients experiencing command hallucinations are recommended. The data is highly suggestive and warrants further investigation with a larger sample. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Critical systems for public health management of floods, North Dakota.

    PubMed

    Wiedrich, Tim W; Sickler, Juli L; Vossler, Brenda L; Pickard, Stephen P

    2013-01-01

    Availability of emergency preparedness funding between 2002 and 2009 allowed the North Dakota Department of Health to build public health response capabilities. Five of the 15 public health preparedness capability areas identified by the Centers for Disease Control and Prevention in 2011 have been thoroughly tested by responses to flooding in North Dakota in 2009, 2010, and 2011; those capability areas are information sharing, emergency operations coordination, medical surge, material management and distribution, and volunteer management. Increasing response effectiveness has depended on planning, implementation of new information technology, changes to command and control procedures, containerized response materials, and rapid contract procedures. Continued improvement in response and maintenance of response capabilities is dependent on ongoing funding.

  13. Test Telemetry And Command System (TTACS)

    NASA Technical Reports Server (NTRS)

    Fogel, Alvin J.

    1994-01-01

    The Jet Propulsion Laboratory has developed a multimission Test Telemetry and Command System (TTACS) which provides a multimission telemetry and command data system in a spacecraft test environment. TTACS reuses, in the spacecraft test environment, components of the same data system used for flight operations; no new software is developed for the spacecraft test environment. Additionally, the TTACS is transportable to any spacecraft test site, including the launch site. The TTACS is currently operational in the Galileo spacecraft testbed; it is also being provided to support the Cassini and Mars Surveyor Program projects. Minimal personnel data system training is required in the transition from pre-launch spacecraft test to post-launch flight operations since test personnel are already familiar with the data system's operation. Additionally, data system components, e.g. data display, can be reused to support spacecraft software development; and the same data system components will again be reused during the spacecraft integration and system test phases. TTACS usage also results in early availability of spacecraft data to data system development and, as a result, early data system development feedback to spacecraft system developers. The TTACS consists of a multimission spacecraft support equipment interface and components of the multimission telemetry and command software adapted for a specific project. The TTACS interfaces to the spacecraft, e.g., Command Data System (CDS), support equipment. The TTACS telemetry interface to the CDS support equipment performs serial (RS-422)-to-ethernet conversion at rates between 1 bps and 1 mbps, telemetry data blocking and header generation, guaranteed data transmission to the telemetry data system, and graphical downlink routing summary and control. The TTACS command interface to the CDS support equipment is nominally a command file transferred in non-real-time via ethernet. The CDS support equipment is responsible for metering the commands to the CDS; additionally for Galileo, TTACS includes a real-time-interface to the CDS support equipment. The TTACS provides the basic functionality of the multimission telemetry and command data system used during flight operations. TTACS telemetry capabilities include frame synchronization, Reed-Solomon decoding, packet extraction and channelization, and data storage/query. Multimission data display capabilities are also available. TTACS command capabilities include command generation verification, and storage.

  14. Information System Engineering Supporting Observation, Orientation, Decision, and Compliant Action

    NASA Astrophysics Data System (ADS)

    Georgakopoulos, Dimitrios

    The majority of today's software systems and organizational/business structures have been built on the foundation of solving problems via long-term data collection, analysis, and solution design. This traditional approach of solving problems and building corresponding software systems and business processes, falls short in providing the necessary solutions needed to deal with many problems that require agility as the main ingredient of their solution. For example, such agility is needed in responding to an emergency, in military command control, physical security, price-based competition in business, investing in the stock market, video gaming, network monitoring and self-healing, diagnosis in emergency health care, and many other areas that are too numerous to list here. The concept of Observe, Orient, Decide, and Act (OODA) loops is a guiding principal that captures the fundamental issues and approach for engineering information systems that deal with many of these problem areas. However, there are currently few software systems that are capable of supporting OODA. In this talk, we provide a tour of the research issues and state of the art solutions for supporting OODA. In addition, we provide specific examples of OODA solutions we have developed for the video surveillance and emergency response domains.

  15. System-wide power management control via clock distribution network

    DOEpatents

    Coteus, Paul W.; Gara, Alan; Gooding, Thomas M.; Haring, Rudolf A.; Kopcsay, Gerard V.; Liebsch, Thomas A.; Reed, Don D.

    2015-05-19

    An apparatus, method and computer program product for automatically controlling power dissipation of a parallel computing system that includes a plurality of processors. A computing device issues a command to the parallel computing system. A clock pulse-width modulator encodes the command in a system clock signal to be distributed to the plurality of processors. The plurality of processors in the parallel computing system receive the system clock signal including the encoded command, and adjusts power dissipation according to the encoded command.

  16. Implementation science: the laboratory as a command centre.

    PubMed

    Boeras, Debrah I; Nkengasong, John N; Peeling, Rosanna W

    2017-03-01

    Recent advances in point-of-care technologies to ensure universal access to affordable quality-assured diagnostics have the potential to transform patient management, surveillance programmes, and control of infectious diseases. Decentralization of testing can put tremendous stresses on fragile health systems if the laboratory is not involved in the planning, introduction, and scale-up strategies. The impact of investments in novel technologies can only be realized if these tests are evaluated, adopted, and scaled up within the healthcare system with appropriate planning and understanding of the local contexts in which these technologies will be used. In this digital age, the laboratory needs to take on the role of the Command Centre for technology introduction and implementation. Implementation science is needed to understand the political, cultural, economic, and behavioural context for technology introduction. The new paradigm should include: building a comprehensive system of laboratories and point-of-care testing sites to provide quality-assured diagnostic services with good laboratory-clinic interface to build trust in test results and linkage to care; building and coordinating a comprehensive national surveillance and communication system for disease control and global health emergencies; conducting research to monitor the impact of new tools and interventions on improving patient care.

  17. Science in Emergency Response at CDC: Structure and Functions.

    PubMed

    Iskander, John; Rose, Dale A; Ghiya, Neelam D

    2017-09-01

    Recent high-profile activations of the US Centers for Disease Control and Prevention (CDC) Emergency Operations Center (EOC) include responses to the West African Ebola and Zika virus epidemics. Within the EOC, emergency responses are organized according to the Incident Management System, which provides a standardized structure and chain of command, regardless of whether the EOC activation occurs in response to an outbreak, natural disaster, or other type of public health emergency. By embedding key scientific roles, such as the associate director for science, and functions within a Scientific Response Section, the current CDC emergency response structure ensures that both urgent and important science issues receive needed attention. Key functions during emergency responses include internal coordination of scientific work, data management, information dissemination, and scientific publication. We describe a case example involving the ongoing Zika virus response that demonstrates how the scientific response structure can be used to rapidly produce high-quality science needed to answer urgent public health questions and guide policy. Within the context of emergency response, longer-term priorities at CDC include both streamlining administrative requirements and funding mechanisms for scientific research.

  18. Assessment of the Combat Developer’s Role in Post-Deployment Software Support (PDSS) 30 June 1980 - 28 February 1981. Volume IV.

    DTIC Science & Technology

    1981-01-31

    Intelligence and Security Command (INSCOM), the US Army Communications Command (USACC), and the US Army Computer Systems Command (USACSC). (3...responsibilities of the US-Army Intelligence and Security Command (INSCOM), the US Army Communications Command (USACC), and the US Army Computer Systems...necessary to sustain, modify, and improve a deployed system’s computer software, as defined by the User or his representative. It includes evaluation

  19. Benefits Of Mission Command: Balance Of Philosophy And System

    DTIC Science & Technology

    2016-05-26

    The Benefits of Mission Command: Balance of Philosophy and System A Monograph by MAJ Robert R. Rodock United...Sa. CONTRACT NUMBER The Benefits of Mission Command: Balance of Philosophy and System Sb. GRANT NUMBER Sc. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Sd... philosophy and system of mission command, when exercised in balance, provides US Anny leaders the agility and adaptability to ’see the elephant’ sooner

  20. STS-52 Commander Wetherbee floats in life raft during JSC bailout exercises

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-52 Columbia, Orbiter Vehicle (OV) 102, Commander James D. Wetherbee, wearing launch and entry suit (LES) and launch and entry helmet (LEH), floats in single person life raft during emergency egress (bailout) training exercises in JSC's Weightless Environment Training Facility (WETF) Bldg 29 pool. The bailout exercises utilize the WETF's 25-foot deep pool as the ocean for this water landing simulation.

  1. Financial Audit: Financial Reporting and Internal Controls at the Air Force Systems Command

    DTIC Science & Technology

    1991-01-01

    As part of GAO’S audits of the Air Force’s financial management and operations for fiscal years 1988 and 1989, GAO evaluated the Air Force Systems Command’s internal accounting controls and financial reporting systems. For fiscal year 1988 and 1989, the Systems Command received about $26.7 billion and $32.4 billion, respectively, in appropriated funds. This report discusses the results of our audits of the Systems Command.

  2. Aerospace Vehicle Design, Spacecraft Section. Final Project Reports. Volume 2; Project Groups 6-8

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Three groups of student engineers in an aerospace vehicle design course present their designs for a vehicle that can be used to resupply the Space Station Freedam and provide emergency crew return to earth capability. The vehicle's requirements include a lifetime that exceeds six years, low cost, the capability for withstanding pressurization, launch, orbit, and reentry hazards, and reliability. The vehicle's subsystems are structures, communication and command data systems, attitude and articulation control, life support and crew systems, power and propulsion, reentry and recovery systems, and mission management, planning, and costing. Special attention is given to spacecraft communications.

  3. STS-95 crew members Glenn and Mukai learn about emergency egress system

    NASA Technical Reports Server (NTRS)

    1998-01-01

    STS-95 Pilot Steven W. Lindsey, Payload Specialist John H. Glenn Jr., senator from Ohio, and Payload Specialist Chiaki Mukai, representing the National Space Development Agency of Japan (NASDA), listen to the Safety Egress trainer talk about the emergency egress system from the pad. The STS-95 crew are at KSC to participate in a Terminal Countdown Demonstration Test (TCDT) which includes mission familiarization activities, emergency egress training, and a simulated main engine cut-off exercise. Other crew members are Mission Specialist Scott E. Parazynski, Mission Specialist Pedro Duque of Spain, representing the European Space Agency (ESA), Mission Commander Curtis L. Brown, and Mission Specialist Stephen K. Robinson. The STS-95 mission, targeted for liftoff on Oct. 29, includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process. Following the TCDT, the crew will be returning to Houston for final flight preparations.

  4. Development of an expert system prototype for determining software functional requirements for command management activities at NASA Goddard

    NASA Technical Reports Server (NTRS)

    Liebowitz, J.

    1985-01-01

    The development of an expert system prototype for determining software functional requirements for NASA Goddard's Command Management System (CMS) is described. The role of the CMS is to transform general requests into specific spacecraft commands with command execution conditions. The CMS is part of the NASA Data System which entails the downlink of science and engineering data from NASA near-earth satellites to the user, and the uplink of command and control data to the spacecraft. Subjects covered include: the problem environment of determining CMS software functional requirements; the expert system approach for handling CMS requirements development; validation and evaluation procedures for the expert system.

  5. 78 FR 25974 - Privacy Act of 1974; System of Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-03

    ... Human Resources Command, Reclassification Management Branch, 2461 Eisenhower Avenue, Alexandria, VA... Files. System location: Commander, U.S. Army Human Resources Command, ATTN: AHRC-PED-A, 2461 Eisenhower... Human Resources Command, ATTN: AHRC-PED-A, 2461 Eisenhower Avenue, Alexandria, VA 23321-0482 for Army...

  6. Constellation's Command, Control, Communications and Information (C3I) Architecture

    NASA Technical Reports Server (NTRS)

    Breidenthal, Julian C.

    2007-01-01

    Operations concepts are highly effective for: 1) Developing consensus; 2) Discovering stakeholder needs, goals, objectives; 3) Defining behavior of system components (especially emergent behaviors). An interoperability standard can provide an excellent lever to define the capabilities needed for system evolution. Two categories of architectures are needed in a program of this size are: 1) Generic - Needed for planning, design and construction standards; 2) Specific - Needed for detailed requirement allocations, interface specs. A wide variety of architectural views are needed to address stakeholder concerns, including: 1) Physical; 2) Information (structure, flow, evolution); 3) Processes (design, manufacturing, operations); 4) Performance; 5) Risk.

  7. An Approach to Command and Control Using Emerging Technologies

    DTIC Science & Technology

    2013-06-01

    communicating in disadvantaged networks like fielded tactical radio networks. With the emergence and proliferation of new tactical radios capable of...undesirable, particularly on disadvantaged radio links, so in the return CoT message HTTP links are provided so the client may download the chips

  8. A Theory of Rate-Dependent Plasticity

    DTIC Science & Technology

    1984-05-01

    crystal microplasticity use a variety of parameters, such as mobile dislocation density and velocity, all of which are eventually related in some manner...Info Center Bldg. 2925, Box 22 Fort Ord, CA 93941 55 DISTRIBUTION LIST No. of Copies Organization 1 Commander Naval Sea Systems Command...Washington, DC 20360 Commander Naval Sea Systems Command ( SEA -62R41) ATTN: L. Pasiuk Washington, DC 20360 Commander Naval

  9. Digital Gunnery: How Combat Vehicle Gunnery Training Creates a Model for Training the Mission Command System.

    DTIC Science & Technology

    2017-06-09

    DIGITAL GUNNERY: HOW COMBAT VEHICLE GUNNERY TRAINING CREATES A MODEL FOR TRAINING THE MISSION COMMAND SYSTEM A thesis presented...Training Creates a Model for Training the Mission Command System 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S...digital systems that give commanders an unprecedented ability to understand and lead in the battlefields where they operate. Unfortunately, units

  10. Method and apparatus for creating time-optimal commands for linear systems

    NASA Technical Reports Server (NTRS)

    Seering, Warren P. (Inventor); Tuttle, Timothy D. (Inventor)

    2004-01-01

    A system for and method of determining an input command profile for substantially any dynamic system that can be modeled as a linear system, the input command profile for transitioning an output of the dynamic system from one state to another state. The present invention involves identifying characteristics of the dynamic system, selecting a command profile which defines an input to the dynamic system based on the identified characteristics, wherein the command profile comprises one or more pulses which rise and fall at switch times, imposing a plurality of constraints on the dynamic system, at least one of the constraints being defined in terms of the switch times, and determining the switch times for the input to the dynamic system based on the command profile and the plurality of constraints. The characteristics may be related to poles and zeros of the dynamic system, and the plurality of constraints may include a dynamics cancellation constraint which specifies that the input moves the dynamic system from a first state to a second state such that the dynamic system remains substantially at the second state.

  11. Situational Awareness During Mass-Casualty Events: Command and Control

    PubMed Central

    Demchak, Barry; Chan, Theordore C.; Griswold, William G.; Lenert, Leslie

    2006-01-01

    In existing Incident Command systems1, situational awareness is achieved manually through paper tracking systems. Such systems often produce high latencies and incomplete data, resulting in inefficient and ineffective resource deployment. The WIISARD2 system collects much more data than a paper-based system, dramatically reducing latency while increasing the kinds and quality of information available to Incident Commanders. The WIISARD Command Center solves the problem of data overload and uncertainty through the careful use of limited screen area and novel visualization techniques. PMID:17238524

  12. STS-108 and Expedition 4 crews visit Mobile Command Center at CCAFS

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- STS-108 crew visit the Mobile Command Center at Cape Canaveral Air Force Station. From left are Pilot Mark E. Kelly, Mission Specialist Daniel M. Tani; Commander Dominic L. Gorie and Mission Specialist Linda A. Godwin; and Expedition 4 Commander Onufrienko and Daniel W. Bursch and Carl E. Walz. Crew members are at KSC for Terminal Countdown Demonstration Test activities that include a simulated launch countdown, and emergency exit training from the orbiter and launch pad. STS-108 is a Utilization Flight that will carry the replacement Expedition 4 crew to the International Space Station, as well as the Multi-Purpose Logistics Module Raffaello, filled with supplies and equipment. The l1-day mission is scheduled for launch Nov. 29 on Space Shuttle Endeavour.

  13. Economical Video Monitoring of Traffic

    NASA Technical Reports Server (NTRS)

    Houser, B. C.; Paine, G.; Rubenstein, L. D.; Parham, O. Bruce, Jr.; Graves, W.; Bradley, C.

    1986-01-01

    Data compression allows video signals to be transmitted economically on telephone circuits. Telephone lines transmit television signals to remote traffic-control center. Lines also carry command signals from center to TV camera and compressor at highway site. Video system with television cameras positioned at critical points on highways allows traffic controllers to determine visually, almost immediately, exact cause of traffic-flow disruption; e.g., accidents, breakdowns, or spills, almost immediately. Controllers can then dispatch appropriate emergency services and alert motorists to minimize traffic backups.

  14. Aircraft Command in Emergency Situations (ACES). Phase 1: Concept Development

    DTIC Science & Technology

    1991-04-01

    progresses through a sequence of four stages: incipient, smoldeang, flame, and heat ( ASHREA Handbook 1984 Systems, Chapter 38, Fire and Sino’.e Control...CARGO F FCARGO DETI DET 2 1D DET2 Figure 6-9. Synoptic Display Layout for Concept R SMOKE HEATt I I 110 T AFTCARGO ~HEAT VS TIME SMOKE VS TIME HEAVY 7II...Phosphate Road, Suite 110 , North Charleston, SC 29418. Reference 12 Senturia, S. D., "Fabrication and Evaluation of Polymeric Early-Warning Fire Alarm

  15. Standardization and Implementation of a Standard Emergency Code Call System within Estern Region Medical Command

    DTIC Science & Technology

    2009-03-01

    currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 21-04-2009 2. REPORT TYPE...morph with the advent of the personal computer. Instead, they went out of business . A similar situation exists with the Ford, Chrysler and GM, where...This dissent needs a constructive forum or outlet so outside-the-box solutions and better business practices have a nurturing environment for

  16. STS-113 TCDT emergency exit training at Launch Pad 39A

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - As part of Terminal Countdown Demonstration Test (TCDT) activities, the STS-113 and Expedition 6 crews receive training in emergency exit from the orbiter on Launch Pad 39A. Shown are (from left) Expedition 6 Commander Ken Bowersox; STS-113 Pilot Paul Lockhart; astronaut Donald Pettit; Mission Specialist Michael Lopez-Alegria, Commander James Wetherbee and Mission Specialist John Herrington; and cosmonaut Nikolai Budarin. The TCDT also includes a simulated launch countdown. The 16th assembly flight to the International Space Station, STS-113 will carry the Port 6 crew, who will replace Expedition 5 on the Station. Mission STS-113 is scheduled to launch Nov. 10, 2002.

  17. STS-71 astronauts and cosmonauts listen to briefing during training session

    NASA Image and Video Library

    1994-10-28

    S94-47218 (28 Oct 1994) --- A number of Russian cosmonauts and an American astronaut listen to a briefing on launch and landing emergency situations during a training session in the Systems Integration Facility at the Johnson Space Center (JSC). Scheduled to launch aboard the Space Shuttle Atlantis with the STS-71 crew (in orange suits, left to right) are Nikolai M. Budarin, Mir 19 flight engineer; Anatoliy Y. Solovyev, Mir 19 mission commander; and Bonnie J. Dunbar, STS-71 mission specialist. The three are flanked by cosmonauts Gennadiy M. Strekalov (seated, second left) and Vladimir N. Dezhurov (seated, right foreground), flight engineer and commander, respectively, for the Mir-18 mission, who will return from a Russian Mir Space Station stay in Atlantis along with the two-way crew members of the STS-71 mission. Alexsandr F. Poleshchuk (seated, far left) is a Mir-reserve crew member.

  18. 32 CFR 536.12 - Commanding General, U.S. Army Medical Command.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 3 2011-07-01 2009-07-01 true Commanding General, U.S. Army Medical Command... AND ACCOUNTS CLAIMS AGAINST THE UNITED STATES The Army Claims System § 536.12 Commanding General, U.S. Army Medical Command. (a) After consulting with the Commander USARCS on the selection of medical claims...

  19. 32 CFR 536.14 - Commanders of major Army commands.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 3 2012-07-01 2009-07-01 true Commanders of major Army commands. 536.14 Section... CLAIMS AGAINST THE UNITED STATES The Army Claims System § 536.14 Commanders of major Army commands... respective commands for compliance with the responsibilities assigned in §§ 536.9 and 536.10. (b) Assist...

  20. 32 CFR 536.12 - Commanding General, U.S. Army Medical Command.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 3 2012-07-01 2009-07-01 true Commanding General, U.S. Army Medical Command... AND ACCOUNTS CLAIMS AGAINST THE UNITED STATES The Army Claims System § 536.12 Commanding General, U.S. Army Medical Command. (a) After consulting with the Commander USARCS on the selection of medical claims...

  1. 32 CFR 536.14 - Commanders of major Army commands.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 3 2010-07-01 2010-07-01 true Commanders of major Army commands. 536.14 Section... CLAIMS AGAINST THE UNITED STATES The Army Claims System § 536.14 Commanders of major Army commands... respective commands for compliance with the responsibilities assigned in §§ 536.9 and 536.10. (b) Assist...

  2. 32 CFR 536.14 - Commanders of major Army commands.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 3 2013-07-01 2013-07-01 false Commanders of major Army commands. 536.14... ACCOUNTS CLAIMS AGAINST THE UNITED STATES The Army Claims System § 536.14 Commanders of major Army commands... respective commands for compliance with the responsibilities assigned in §§ 536.9 and 536.10. (b) Assist...

  3. 32 CFR 536.14 - Commanders of major Army commands.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 3 2011-07-01 2009-07-01 true Commanders of major Army commands. 536.14 Section... CLAIMS AGAINST THE UNITED STATES The Army Claims System § 536.14 Commanders of major Army commands... respective commands for compliance with the responsibilities assigned in §§ 536.9 and 536.10. (b) Assist...

  4. 32 CFR 536.12 - Commanding General, U.S. Army Medical Command.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 3 2014-07-01 2014-07-01 false Commanding General, U.S. Army Medical Command... AND ACCOUNTS CLAIMS AGAINST THE UNITED STATES The Army Claims System § 536.12 Commanding General, U.S. Army Medical Command. (a) After consulting with the Commander USARCS on the selection of medical claims...

  5. 32 CFR 536.12 - Commanding General, U.S. Army Medical Command.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 3 2010-07-01 2010-07-01 true Commanding General, U.S. Army Medical Command... AND ACCOUNTS CLAIMS AGAINST THE UNITED STATES The Army Claims System § 536.12 Commanding General, U.S. Army Medical Command. (a) After consulting with the Commander USARCS on the selection of medical claims...

  6. 32 CFR 536.14 - Commanders of major Army commands.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 3 2014-07-01 2014-07-01 false Commanders of major Army commands. 536.14... ACCOUNTS CLAIMS AGAINST THE UNITED STATES The Army Claims System § 536.14 Commanders of major Army commands... respective commands for compliance with the responsibilities assigned in §§ 536.9 and 536.10. (b) Assist...

  7. 32 CFR 536.12 - Commanding General, U.S. Army Medical Command.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 3 2013-07-01 2013-07-01 false Commanding General, U.S. Army Medical Command... AND ACCOUNTS CLAIMS AGAINST THE UNITED STATES The Army Claims System § 536.12 Commanding General, U.S. Army Medical Command. (a) After consulting with the Commander USARCS on the selection of medical claims...

  8. Network command processing system overview

    NASA Technical Reports Server (NTRS)

    Nam, Yon-Woo; Murphy, Lisa D.

    1993-01-01

    The Network Command Processing System (NCPS) developed for the National Aeronautics and Space Administration (NASA) Ground Network (GN) stations is a spacecraft command system utilizing a MULTIBUS I/68030 microprocessor. This system was developed and implemented at ground stations worldwide to provide a Project Operations Control Center (POCC) with command capability for support of spacecraft operations such as the LANDSAT, Shuttle, Tracking and Data Relay Satellite, and Nimbus-7. The NCPS consolidates multiple modulation schemes for supporting various manned/unmanned orbital platforms. The NCPS interacts with the POCC and a local operator to process configuration requests, generate modulated uplink sequences, and inform users of the ground command link status. This paper presents the system functional description, hardware description, and the software design.

  9. Health and rescue services management system during a crisis event

    PubMed Central

    Nicolaidou, Iolie; Hadjichristofi, George; Kyprianou, Stelios; Christou, Synesios; Constantinou, Riana

    2016-01-01

    Τhe performance of rescuers and personnel handling major emergencies or crisis events can be significantly improved through continuous training and through technology support. The work done in order to create a system has been discussed which can support both resources and victims during a crisis or major emergency event. More specifically, the system supports real-time management of firefighter teams, rescue teams, health services, and victims during a major disaster. It can be deployed in an ad hoc manner in the disaster area, as a stand-alone infrastructure (using its own telecommunications and power). It mainly consists of a control station, which is installed in the area command centre, the firefighters units, the rescuers units, the ambulance vehicles units, and the telemedicine units that can be used in order to support victim handling at the casualties clearing station. The system has been tested and improved through continuous communication with experts and through professional exercises; the results and conclusions are presented. PMID:27733928

  10. Integrated command, control, communication and computation system design study. Summary of tasks performed

    NASA Technical Reports Server (NTRS)

    1982-01-01

    A summary of tasks performed on an integrated command, control, communication, and computation system design study is given. The Tracking and Data Relay Satellite System command and control system study, an automated real-time operations study, and image processing work are discussed.

  11. Full-scale regional exercises: closing the gaps in disaster preparedness.

    PubMed

    Klima, David A; Seiler, Sarah H; Peterson, Jeff B; Christmas, A Britton; Green, John M; Fleming, Greg; Thomason, Michael H; Sing, Ronald F

    2012-09-01

    Man-made (9/11) and natural (Hurricane Katrina) disasters have enlightened the medical community regarding the importance of disaster preparedness. In response to Joint Commission requirements, medical centers should have established protocols in place to respond to such events. We examined a full-scale regional exercise (FSRE) to identify gaps in logistics and operations during a simulated mass casualty incident. A multiagency, multijurisdictional, multidisciplinary exercise (FSRE) included 16 area hospitals and one American College of Surgeons-verified Level I trauma center (TC). The scenario simulated a train derailment and chemical spill 20 miles from the TC using 281 moulaged volunteers. Third-party contracted evaluators assessed each hospital in five areas: communications, command structure, decontamination, staffing, and patient tracking. Further analysis examined logistic and operational deficiencies. None of the 16 hospitals were compliant in all five areas. Mean hospital compliance was 1.9 (± 0.9 SD) areas. One hospital, unable to participate because of an air conditioner outage, was deemed 0% compliant. The most common deficiency was communications (15 of 16 hospitals [94%]; State Medical Asset Resource Tracking Tool system deficiencies, lack of working knowledge of Voice Interoperability Plan for Emergency Responders radio system) followed by deficient decontamination in 12 (75%). Other deficiencies included inadequate staffing based on predetermined protocols in 10 hospitals (63%), suboptimal command structure in 9 (56%), and patient tracking deficiencies in 5 (31%). An additional 11 operational and 5 logistic failures were identified. The TC showed an appropriate command structure but was deficient in four of five categories, with understaffing and a decontamination leak into the emergency department, which required diversion of 70 patients. Communication remains a significant gap in the mass casualty scenario 10 years after 9/11. Our findings demonstrate that tabletop exercises are inadequate to expose operational and logistic gaps in disaster response. FSREs should be routinely performed to adequately prepare for catastrophic events.

  12. Natural Disaster & Crisis Management in School Districts and Community Colleges.

    ERIC Educational Resources Information Center

    Florida State Dept. of Education, Tallahassee. Office of Educational Facilities.

    This document provides school districts and community colleges in Florida with guidance on disaster preparedness planning and management for all types of disasters. Procedures include those for insurance coverage, emergency shelters, command centers and disaster team organization, emergency communications, security, preparation prior to disaster,…

  13. Understanding the Emergence of Alshabab in Somalia

    DTIC Science & Technology

    2011-12-16

    UNDERSTANDING THE EMERGENCE OF ALSHABAB IN SOMALIA A thesis presented to the Faculty of the U.S. Army Command and General...failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE...

  14. 77 FR 2052 - Privacy Act of 1974; System of Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-13

    ...; System of Records AGENCY: U.S. Strategic Command, DoD. ACTION: Notice to Add a System of Records. SUMMARY: The U.S. Strategic Command proposes to add a system of records to its inventory of record systems...: The U.S. Strategic Command systems of records notices subject to the Privacy Act of 1974 (5 U.S.C...

  15. A Framework for Failure? The Impact of Short Tour Lengths and Separate National Command and Control on British Operational Art and Coalition Warfare in Iraq, 2003-2009

    DTIC Science & Technology

    2013-12-10

    frame the problem.54 This is a clear example of cognitive dissonance and highlights the intellectual confusion that had emerged in senior British...to explicitly express complete satisfaction with PJHQ and the command and control framework) came from LTG Riley, CG MND (SE) from Dec 04-Jun 05: LTG

  16. U.S. Army Special Forces Roles in Asymmetric Warfare

    DTIC Science & Technology

    2001-06-01

    1Jonathan B . Tucker, “Asymmetric Warfare: An Emerging Threat to U.S. Security,” Forum For Applied Research and Public Policy (Monterey...8Ibid., 34. 9Tucker, 11. 10Ibid., 2. 11 Henry H . Shelton, GEN, USA, Commander in Chief, U.S. Special Operations Command...the Senate Armed Services Committee, “Military Threats and Security Challenges Through 2015,” (Washington: 3 February 2000), 3. 26GEN Henry H

  17. USSR Report, Military Affairs.

    DTIC Science & Technology

    1986-09-02

    Monitoring the Fulfillment of Pledges"] [Text] Northern Group of Forces—That night the tank company commanded by Captain I. Kuznetsov was to rehearse a...are commanders who reason something like this: We’ll go into the field, we can learn everything there. In particular, Capt Kuznetsov , it emerged...this. 36 But in the regiment where Capt Kuznetsov serves there are subunits which now know to achieve high results in combat training while using

  18. Healthcare Information Technology (HIT) in an Anti-Access (A2) and Area Denial (AD) Environment

    DTIC Science & Technology

    2014-03-01

    OFFICE OF THE COMMAND SURGEON, AIR COMBAT COMMAND FELLOWSHIP PAPER HEALTHCARE INFORMATION TECHNOLOGY (HIT) IN AN ANTI-ACCESS (A2) AND AREA...expeditionary responses. A light and lean medical response that utilizes emerging technology , specifically HIT, enhances the AFMS’ readiness posture and...expeditionary medical capability. The new USAF reality in an A2/AD environment is impeded access, very little if any technological dominance

  19. Astronaut John H. Casper, mission commander, has finished the final touches of suit donning and

    NASA Technical Reports Server (NTRS)

    1996-01-01

    STS-77 TRAINING VIEW --- Astronaut John H. Casper, mission commander, has finished the final touches of suit donning and awaits the beginning of a training session for emergency bailout. All six crew members participated in the session, held in the Johnson Space Centers (JSC) Weightless Environment Training Facility (WET-F). The six astronauts will spend nine days aboard the Space Shuttle Endeavour next month.

  20. Iranian threat: Key concerns for the combatant commander in response. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jasper, S.

    1996-03-05

    In the aftermath of the Gulf War with Iraq, the Islamic Republic of Iran has emerged as the greatest long-term threat to peace and stability in the Central Region. Through purchase of a wide range of high-tech weapons, Iran now has a formidable military force capable of influencing Gulf economic policy. However, in the event of Iranian aggression, the United States Central Command stands ready to defend vital U.S. interests in the Middle East. The national strategy of Iran is bound by the religious tenets of Islam and an oil based economy struggling to support a population which has explodedmore » over the past sixteen years. Iran seeks to build global alliances for export of oil and liquid petroleum gas while continuing support for Islamic communities under attack. Iran perceives the U.S. and the emerging regional order to be the greatest threat to the republic`s existence and, in response, has bought fast attack missile patrol boats, diesel electric submarines, ballistic missiles and long range strike aircraft. Iran is now capable of conducting terrorist activities, denying international access to the Gulf and threatening the region with chemical/biological weapons. The Combatant Commander`s theater strategy must be tailored to respond rapidly and decisively to the growing Iranian threat.« less

  1. Goal-oriented training affects decision-making processes in virtual and simulated fire and rescue environments.

    PubMed

    Cohen-Hatton, Sabrina R; Honey, R C

    2015-12-01

    Decisions made by operational commanders at emergency incidents have been characterized as involving a period of information gathering followed by courses of action that are often generated without explicit plan formulation. We examined the efficacy of goal-oriented training in engendering explicit planning that would enable better communication at emergency incidents. While standard training mirrored current operational guidance, goal-oriented training incorporated "decision controls" that highlighted the importance of evaluating goals, anticipated consequences, and risk/benefit analyses once a potential course of action has been identified. In Experiment 1, 3 scenarios (a house fire, road traffic collision, and skip fire) were presented in a virtual environment, and in Experiment 2 they were recreated on the fireground. In Experiment 3, the house fire was recreated as a "live burn," and incident commanders and their crews responded to this scenario as an emergency incident. In all experiments, groups given standard training showed the reported tendency to move directly from information gathering to action, whereas those given goal-oriented training were more likely to develop explicit plans and show anticipatory situational awareness. These results indicate that training can be readily modified to promote explicit plan formulation that could facilitate plan sharing between incident commanders and their teams. (c) 2015 APA, all rights reserved).

  2. 75 FR 19627 - Privacy Act of 1974; System of Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-15

    ... address: Delete entry and replace with ``Commander, Navy Personnel Command (PERS-31), 5720 Integrity Drive... to the Commander, Navy Personnel Command (PERS-312), 5720 Integrity Drive, Millington, TN 38055-3120... should address written inquiries to Commander, Navy Personnel Command (PERS- 312), 5720 Integrity Drive...

  3. DSN command system Mark III-78. [data processing

    NASA Technical Reports Server (NTRS)

    Stinnett, W. G.

    1978-01-01

    The Deep Space Network command Mark III-78 data processing system includes a capability for a store-and-forward handling method. The functions of (1) storing the command files at a Deep Space station; (2) attaching the files to a queue; and (3) radiating the commands to the spacecraft are straightforward. However, the total data processing capability is a result of assuming worst case, failure-recovery, or nonnominal operating conditions. Optional data processing functions include: file erase, clearing the queue, suspend radiation, command abort, resume command radiation, and close window time override.

  4. 14 CFR 121.443 - Pilot in command qualification: Route and airports.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Pilot in command qualification: Route and... Pilot in command qualification: Route and airports. (a) Each certificate holder shall provide a system... to the pilot in command and appropriate flight operation personnel. The system must also provide an...

  5. 14 CFR 121.443 - Pilot in command qualification: Route and airports.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Pilot in command qualification: Route and... Pilot in command qualification: Route and airports. (a) Each certificate holder shall provide a system... to the pilot in command and appropriate flight operation personnel. The system must also provide an...

  6. 14 CFR 121.443 - Pilot in command qualification: Route and airports.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Pilot in command qualification: Route and... Pilot in command qualification: Route and airports. (a) Each certificate holder shall provide a system... to the pilot in command and appropriate flight operation personnel. The system must also provide an...

  7. 14 CFR 121.443 - Pilot in command qualification: Route and airports.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Pilot in command qualification: Route and... Pilot in command qualification: Route and airports. (a) Each certificate holder shall provide a system... to the pilot in command and appropriate flight operation personnel. The system must also provide an...

  8. 14 CFR 121.443 - Pilot in command qualification: Route and airports.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Pilot in command qualification: Route and... Pilot in command qualification: Route and airports. (a) Each certificate holder shall provide a system... to the pilot in command and appropriate flight operation personnel. The system must also provide an...

  9. Command system output bit verification

    NASA Technical Reports Server (NTRS)

    Odd, C. W.; Abbate, S. F.

    1981-01-01

    An automatic test was developed to test the ability of the deep space station (DSS) command subsystem and exciter to generate and radiate, from the exciter, the correct idle bit sequence for a given flight project or to store and radiate received command data elements and files without alteration. This test, called the command system output bit verification test, is an extension of the command system performance test (SPT) and can be selected as an SPT option. The test compares the bit stream radiated from the DSS exciter with reference sequences generated by the SPT software program. The command subsystem and exciter are verified when the bit stream and reference sequences are identical. It is a key element of the acceptance testing conducted on the command processor assembly (CPA) operational program (DMC-0584-OP-G) prior to its transfer from development to operations.

  10. Aeromedical Transport Operations Using Helicopters during the 2016 Kumamoto Earthquake in Japan.

    PubMed

    Motomura, Tomokazu; Hirabayashi, Atsushi; Matsumoto, Hisashi; Yamauchi, Nobutaka; Nakamura, Mitsunobu; Machida, Hiroshi; Fujizuka, Kenji; Otsuka, Naomi; Satoh, Tomoko; Anan, Hideaki; Kondo, Hisayoshi; Koido, Yuichi

    2018-01-01

    More than 6,000 people died in the Great Hanshin (Kobe) Earthquake in 1995, and it was later reported that there were around 500 preventable trauma deaths. In response, the Japanese government developed the helicopter emergency medical service in 2001, known in Japan as the "Doctor-Heli" (DH), which had 46 DHs and 2 private medical helicopters as of April 2016. DHs transport physicians and nurses to provide pre-hospital medical care at the scene of medical emergencies. Following lessons learned in the Great East Japan Earthquake in 2011, a research group in the Ministry of Health, Labour and Welfare developed a command and control system for the DH fleet as well as the Disaster Relief Aircraft Management System Network (D-NET), which uses a satellite communications network to monitor the location of the fleet and weather in real-time during disasters. During the Kumamoto Earthquake disaster in April 2016, 75 patients were transported by 13 DHs and 1 private medical helicopter in the first 5 days. When medical demand for the DHs exceeded supply, 5 patients, 8 patients, and 1 patient were transported by Self-Defense Force, Fire Department, and Coast Guard helicopters, respectively. Of the 89 patients who were transported, 30 (34%) had trauma, 3 (3%) had pulmonary embolisms caused by sleeping in vehicles, and 17 (19%) were pregnant women or newborns. This was the first time that the command and control system for aeromedical transport and D-NET, established after the Great East Japan Earthquake in 2011, were operated in an actual large-scale disaster. Aeromedical transport by DHs and helicopters belonging to several other organizations was accomplished smoothly because the commanders of the involved organizations could communicate directly with each other in person within the Aviation Coordination Section of the prefectural government office. However, ongoing challenges in the detailed operating methods for aeromedical transport were highlighted and include improving shared knowledge and training across the organizational framework. These are particularly important issues to address given the Nankai Trough and Tokyo inland earthquakes that are predicted for the near future in Japan.

  11. KSC-02pd0674

    NASA Image and Video Library

    2002-05-15

    KENNEDY SPACE CENTER, FLA. -- The Expedition 5 and STS-111 crews pose at the Shuttle Landing Facility after their arrival to take part in Terminal Countdown Demonstration Test (TCDT) activities for launch of mission STS-111. From left, they are the Expedition Five crew -- Commander Valeri Korzun and Sergei Treschev, both of the Russian Space Agency, and Peggy Whitson -- and the STS-111 crew -- Pilot Paul Lockhart, Commander Kenneth Cockrell, and Mission Specialists Phillipe Perrin, of the French Space Agency, and Franklin Chang-Diaz. Expedition 5 will travel on Space Shuttle Endeavour to the International Space Station as a replacement crew for Expedition 4. The TCDT is a rehearsal for launch and includes emergency egress training, familiarization with payload and a simulated launch countdown. Mission STS-111 is a utilization flight that will deliver equipment and supplies to the Station. Along with the Multi-Purpose Logisitics Module Leonardo, the payload includes the Mobile Base System, part of the Canadian Mobile Servicing System, or MSS, and an Orbital Replacement Unit, the replacement wrist/roll joint for the SSRMS (Canadarm2). Launch of Endeavour is scheduled for May 30, 2002

  12. COMMAND-AND-CONTROL AND MANAGEMENT DECISION MAKING,

    DTIC Science & Technology

    Reports that the development of command-and-con trol systems in support of decision making and action taking has been accomplished by military...methods applicable to management systems. Concludes that the command-and-control type system for top management decision making is a man-machine system having as its core an on going, dynamic operation. (Author)

  13. Bi-directional power control system for voltage converter

    DOEpatents

    Garrigan, Neil Richard; King, Robert Dean; Schwartz, James Edward

    1999-01-01

    A control system for a voltage converter includes: a power comparator for comparing a power signal on input terminals of the converter with a commanded power signal and producing a power comparison signal; a power regulator for transforming the power comparison signal to a commanded current signal; a current comparator for comparing the commanded current signal with a measured current signal on output terminals of the converter and producing a current comparison signal; a current regulator for transforming the current comparison signal to a pulse width modulator (PWM) duty cycle command signal; and a PWM for using the PWM duty cycle command signal to control electrical switches of the converter. The control system may further include: a command multiplier for converting a voltage signal across the output terminals of the converter to a gain signal having a value between zero (0) and unity (1), and a power multiplier for multiplying the commanded power signal by the gain signal to provide a limited commanded power signal, wherein power comparator compares the limited commanded power signal with the power signal on the input terminals.

  14. Bi-directional power control system for voltage converter

    DOEpatents

    Garrigan, N.R.; King, R.D.; Schwartz, J.E.

    1999-05-11

    A control system for a voltage converter includes: a power comparator for comparing a power signal on input terminals of the converter with a commanded power signal and producing a power comparison signal; a power regulator for transforming the power comparison signal to a commanded current signal; a current comparator for comparing the commanded current signal with a measured current signal on output terminals of the converter and producing a current comparison signal; a current regulator for transforming the current comparison signal to a pulse width modulator (PWM) duty cycle command signal; and a PWM for using the PWM duty cycle command signal to control electrical switches of the converter. The control system may further include: a command multiplier for converting a voltage signal across the output terminals of the converter to a gain signal having a value between zero (0) and unity (1), and a power multiplier for multiplying the commanded power signal by the gain signal to provide a limited commanded power signal, wherein power comparator compares the limited commanded power signal with the power signal on the input terminals. 10 figs.

  15. How will military/civilian coordination work for reception of mass casualties from overseas?

    PubMed

    Mackenzie, Colin; Donohue, John; Wasylina, Philip; Cullum, Woodrow; Hu, Peter; Lam, David M

    2009-01-01

    In Maryland, there have been no military/civilian training exercises of the Medical Mutual Aid Agreement for >20 years. The aims of this paper are to describe the National Disaster Medical System (NDMS), to coordinate military and civilian medical mutual aid in response to arrival of overseas mass casualties, and to evaluate the mass-casualty reception and bed "surge" capacity of Maryland NDMS Hospitals. Three tabletop exercises and a functional exercise were performed using a simulated, overseas, military mass-casualty event. The first tabletop exercise was with military and civilian NMDS partners. The second tested the revised NDMS activation plan. The third exercised the Authorities of State Emergency Medical System and Walter Reed Army Medical Center Directors of Emergency Medicine over Maryland NDMS hospitals, and their Medical Mutual Aid Agreement. The functional exercise used Homeland Security Exercise Evaluation Program tools to evaluate reception, triage, staging, and transportation of 160 notional patients (including 20 live, moulaged "patients") and one canine. The first tabletop exercise identified deficiencies in operational protocols for military/civilian mass-casualty reception, triage, treatment, and problems with sharing a Unified Command. The second found improvements in the revised NDMS activation plan. The third informed expectations for NDMS hospitals. In the functional exercise, all notional patients were received, triaged, dispatched, and accounted in military and five civilian hospitals within two hours. The canine revealed deficiencies in companion/military animal reception, holding, treatment, and evacuation. Three working groups were suggested: (1) to ensure 100% compliance with triage tags, patient accountability, and return of equipment used in mass casualty events and exercises; (2) to investigate making information technology and imaging networks available for Emergency Operation Centers and Incident Command; and (3) to establish NDMS training, education, and evaluation to further integrate and support civil-military operations. The exercises facilitated military/state inter-agency cooperation, resulting in revisions to the Maryland Emergency Operations Plan across all key state emergency response agencies. The recommendations from these exercises likely apply to the vast majority of NDMS activities in the US.

  16. Tactical Firefighter Teams: Pivoting Toward the Fire Service’s Evolving Homeland Security Mission

    DTIC Science & Technology

    2016-09-01

    critical response command C-TECC Committee on Tactical Emergency Casualty Care EMS emergency medical services EMT emergency medical technician ESU...Interagency Tactical Response Model: Integrating Fire and EMS with Law Enforcement to Mitigate Mumbai-Style Terrorist Attacks (New York: FDNY Center...the assailants, several traditional fire and EMS activities must often occur simultaneously to successfully mitigate the threat. Although rare

  17. Lessons learned in command environment development

    NASA Astrophysics Data System (ADS)

    Wallace, Daniel F.; Collie, Brad E.

    2000-11-01

    As we consider the issues associated with the development of an Integrated Command Environment (ICE), we must obviously consider the rich history in the development of control rooms, operations centers, information centers, dispatch offices, and other command and control environments. This paper considers the historical perspective of control environments from the industrial revolution through the information revolution, and examines the historical influences and the implications that that has for us today. Environments to be considered are military command and control spaces, emergency response centers, medical response centers, nuclear reactor control rooms, and operations centers. Historical 'lessons learned' from the development and evolution of these environments will be examined to determine valuable models to use, and those to be avoided. What are the pitfalls? What are the assumptions that drive the environment design? Three case histories will be presented, examining (1) the control room of the Three Mile Island power plant, (2) the redesign of the US Naval Space Command operations center, and (3) a testbed for an ICE aboard a naval surface combatant.

  18. KSC-08pd1168

    NASA Image and Video Library

    2008-05-07

    CAPE CANAVERAL, Fla. -- STS-124 crew members get instructions inside an M113 armored personnel carrier about emergency procedures. Clockwise from left are Mission Specialists Greg Chamitoff and Akihiko Hoshide, Commander Mark Kelly, Mission Specialist Ron Garan, instructor Battalion Chief George Hoggard, Pilot Ken Ham and Mission Specialists Karen Nyberg and Mike Fossum. They are at NASA's Kennedy Space Center for a dress launch rehearsal called the terminal countdown demonstration test. TCDT provides astronauts and ground crews with an opportunity to participate in various simulated countdown activities, including equipment familiarization and emergency training. On the STS-124 mission, the crew will deliver and install the Japanese Experiment Module – Pressurized Module and Japanese Remote Manipulator System. Discovery's launch is targeted for May 31. Photo credit: NASA/Kim Shiflett

  19. KSC-08pd0593

    NASA Image and Video Library

    2008-02-25

    KENNEDY SPACE CENTER, FLA. -- Emergency egress training completed, the STS-123 crew members gather at the slidewire baskets. Clockwise from left are Mission Specialists Mike Foreman, Garrett Reisman and Robert L. Behnken, Commander Dominic Gorie, Mission Specialist Rick Linnehan, Pilot Gregory H. Johnson and Takao Doi. The TCDT provides astronauts and ground crews with an opportunity to participate in various countdown activities, including equipment familiarization and emergency egress training. Endeavour is targeted to launch at 2:28 a.m. EDT March 11 on the 16-day STS-123 mission to the International Space Station. Endeavour and its crew will deliver the first section of the Japan Aerospace Exploration Agency's Kibo laboratory and the Canadian Space Agency's two-armed robotic system, Dextre. Photo credit: NASA/Kim Shiflett

  20. The Combat Vehicle Command and Control System. Combat Performance of Armor Battalions Using Interactive Simulation

    DTIC Science & Technology

    1994-01-31

    ncluded the Commander’s Independent Thermal Viewer and a Command and Control display. Using 1 tank simulators in the Mounted Warfare Test Bed at Fort...CCD), the Commander’s Independent Thermal Viewer (CITV), and digital TOC workstations. Using autoloading tank simulators in the Mounted Warfare Test...identifying ways that the CVCC system might best benefit the battlefield commander, and potential modifications to mounted warfare TTPs. Another area of

  1. 14 CFR 1215.106 - User command and tracking data.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false User command and tracking data. 1215.106... User command and tracking data. (a) User command data may enter the TDRSS via the NASCOM interface at one of three locations: (1) For Shuttle payloads which utilize the Shuttle commanding system, command...

  2. 14 CFR 1215.106 - User command and tracking data.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false User command and tracking data. 1215.106... User command and tracking data. (a) User command data may enter the TDRSS via the NASCOM interface at one of three locations: (1) For Shuttle payloads which utilize the Shuttle commanding system, command...

  3. 14 CFR 1215.106 - User command and tracking data.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true User command and tracking data. 1215.106... User command and tracking data. (a) User command data may enter the TDRSS via the NASCOM interface at one of three locations: (1) For Shuttle payloads which utilize the Shuttle commanding system, command...

  4. Landpower 2020: Enabling Regionally Aligned US Army Forces with Threat-Based Planning

    DTIC Science & Technology

    2013-03-01

    situation, EUCOM has prioritized BPC as a tenet of its theater strategy, and it is the only command to have submitted the requirement for additional...Army forces to enable BPC as part of the annual GCC’s submission of integrated priorities to the joint staff.27 In fact, EUCOM has requested...perform BPC tasks in the AOR. However, United States Central Command (CENTCOM) indicated a vulnerability to effectively respond to emerging

  5. STS-35 Commander Brand is suspended over JSC WETF pool during egress exercise

    NASA Technical Reports Server (NTRS)

    1990-01-01

    STS-35 Commander Vance D. Brand is suspended via his parachute harness above the pool in JSC's Weightless Environment Training Facility (WETF) Bldg 29 during launch emergency egress exercises. Divers in the pool hold Brand's feet to steady him. In the background and on the poolside is Pilot Guy S. Gardner. Both Brand and Gardner are wearing launch and entry suits (LESs) and launch and entry helmets (LEHs).

  6. Left to right, astronauts John H. Casper, mission commander, and Curtis L. Brown, Jr., pilot, get

    NASA Technical Reports Server (NTRS)

    1996-01-01

    STS-77 TRAINING VIEW --- Left to right, astronauts John H. Casper, mission commander, and Curtis L. Brown, Jr., pilot, get help with the final touches of suit donning during emergency bailout training for STS-77 crew members in the Johnson Space Centers (JSC) Weightless Environment Training Facility (WET-F). Casper and Brown will join four other astronauts for nine days aboard the Space Shuttle Endeavour next month.

  7. Astronauts McMonagle and Brown on flight deck mockup during training

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Astronauts Donald R. McMonagle, STS-66 mission commander, left, and Curtis L. Brown, STS-66 pilot, man the commander's and pilot's stations, respectively, during a rehearsal of procedures to be followed during the launch and entry phases of their scheduled November 1994 flight. This rehearsal, held in the crew compartment trainer (CCT) of JSC's Shuttle mockup and integration laboratory, was followed by a training session on emergency egress procedures.

  8. The Big Issue: Command and Combat in the Information Age

    DTIC Science & Technology

    2003-02-01

    a new construct might emerge based on sensing forces, strike forces and manoeuvre forces.5 Whatever the outcome , an agile and razor-sharp command...wide range of mission support functions carried out in the home base – including intelligence, legal support, course of action analysis and operational... analysis as well as rear- based logistics. At the strategic level, once a major expeditionary operation is underway, rear operations might also embrace

  9. Emergency operations program is an excellent platform to deal with in-hospital operation disaster.

    PubMed

    Rogers, Frederick B; McCune, William; Jammula, Shreya; Gross, Brian W; Bradburn, Eric H; Riley, Deborah K; Manning, Jeffrey

    2017-01-01

    Described herein is the utilization of the hospital's Emergency Operations Plan and incident command structure to mitigate damage caused by the sudden loss of the heating, ventilation, and air conditioning system within the entire operating room suite. The ability to ameliorate a devastating situation that occurred during working hours at a busy Level II trauma center can be ascribed to the dedication of the leadership and clinical teams working seamlessly together. Their concerted efforts were augmented by adherence to an established protocol that had been thoroughly substantiated and practiced during numerous training simulations. This resulted in successful and timely resolution of an internal crisis that crippled the surgical capabilities of the sole trauma center in the county. After thorough investigation and identification of the issues that contributed to the malfunction, redundancies were built into the system to ensure that a similar incident did not occur again.

  10. Mobile satellite communications in the Forest Service

    NASA Technical Reports Server (NTRS)

    Warren, John R.

    1988-01-01

    There are usually some places within a forest that do not have adequate communication coverage due to line-of-sight or other reasons. These areas are generally known by the foresters and radio technicians and allowances are made for that when working or traveling in those areas. However, when wildfire or other emergencies occur, communications are vital because wildfires can require hundreds of firefighters and cover thousands of acres. During these emergency operations, the existing communications are not adequate and complete radio systems are moved into the area for the conduct of fire communications. Incident command posts (ICPs) and fire camps are set up in remote locations and there is constant need for communications in the fire area and to agency headquarters and dispatch offices. Mobile satellite communications would be an ideal supplement to the Forest Service's current communications system in aiding forest fire control activities.

  11. A preliminary investigation of the use of throttles for emergency flight control

    NASA Technical Reports Server (NTRS)

    Burcham, F. W., Jr.; Fullerton, C. Gordon; Gilyard, Glenn B.; Wolf, Thomas D.; Stewart, James F.

    1991-01-01

    A preliminary investigation was conducted regarding the use of throttles for emergency flight control of a multiengine aircraft. Several airplanes including a light twin-engine piston-powered airplane, jet transports, and a high performance fighter were studied during flight and piloted simulations. Simulation studies used the B-720, B-727, MD-11, and F-15 aircraft. Flight studies used the Lear 24, Piper PA-30, and F-15 airplanes. Based on simulator and flight results, all the airplanes exhibited some control capability with throttles. With piloted simulators, landings using manual throttles-only control were extremely difficult. An augmented control system was developed that converts conventional pilot stick inputs into appropriate throttle commands. With the augmented system, the B-720 and F-15 simulations were evaluated and could be landed successfully. Flight and simulation data were compared for the F-15 airplane.

  12. 77 FR 4025 - Privacy Act of 1974; System of Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-26

    ...; System of Records AGENCY: U.S. Central Command, DoD. ACTION: Notice to Amend a System of Records. SUMMARY: The U.S. Central Command is amending a system of records notice in its existing inventory of record... INFORMATION: The U.S. Central Command systems of records notices subject to the Privacy Act of 1974 (5 U.S.C...

  13. AirLand Battle and Tactical Command and Control Automation,

    DTIC Science & Technology

    1987-01-07

    Army Tactical Command and Control System (ATCCS) are the primary subjects of the last period. The precepts of AirLand Battle doctrine are examined to...AirLand Battle and the Army Tactical Command and Control System (ATCCS) are thE primary subjects of the last period. The precepts of AirLand Battle...centralized control is identified. AirLand Battle and the Army Tactical Command and Control System (ATCCS) are the primary subjects of the last

  14. Terrorism in Turkey.

    PubMed

    Rodoplu, Ulkumen; Arnold, Jeffrey; Ersoy, Gurkan

    2003-01-01

    Over the past two decades, terrorism has exacted an enormous toll on the Republic of Turkey, a secular democracy with a 99.8% Muslim population. From 1984 to 2000, an estimated 30,000 to 35,000 Turkish citizens were killed by a nearly continuous stream of terrorism-related events. During this period, the Partiya Karekerren Kurdistan (PKK), a Kurdish separatist group (re-named KADEK in 2002), was responsible for the vast majority of terrorism-related events (and casualties), which disproportionately affected the eastern and southeastern regions of Turkey, in which the PKK has focused its activities. Most terrorist attacks over the past two decades have been bombings or shootings that produced < 10 casualties per event. From 1984 to 2003, 15 terrorist attacks produced > or = 30 casualties (eight shootings, five bombings, and two arsons). The maximum number of casualties produced by any of these events was 93 in the Hotel Madimak arson attack by the Turkish Islamic Movement in 1993. This pattern suggests that terrorist attacks in Turkey rarely required more than local systems of emergency medical response, except in rural areas where Emergency Medical Services (EMS) are routinely provided by regional military resources. The last decade has seen the development of several key systems of local emergency response in Turkey, including the establishment of the medical specialty of Emergency Medicine, the establishment of training programs for EMS providers, the spread of a generic, Turkish hospital emergency plan based on the Hospital Emergency Incident Command System, and the spread of advanced training in trauma care modeled after Advanced Trauma Life Support.

  15. 75 FR 11136 - Federal Advisory Committee; U.S. Nuclear Command and Control System Comprehensive Review...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-10

    ... DEPARTMENT OF DEFENSE Office of the Secretary Federal Advisory Committee; U.S. Nuclear Command and Control System Comprehensive Review Committee; Charter Termination AGENCY: Department of Defense (DoD... terminating the charter for the U.S. Nuclear Command and Control System Comprehensive Review Committee. FOR...

  16. Methods, systems and apparatus for adjusting modulation index to improve linearity of phase voltage commands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallegos-Lopez, Gabriel; Perisic, Milun; Kinoshita, Michael H.

    2017-03-14

    Embodiments of the present invention relate to methods, systems and apparatus for controlling operation of a multi-phase machine in a motor drive system. The disclosed embodiments provide a mechanism for adjusting modulation index of voltage commands to improve linearity of the voltage commands.

  17. 77 FR 60678 - Takes of Marine Mammals Incidental to Specified Activities; U.S. Navy Training and Testing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-04

    ...-submarine warfare; mine warfare; naval special warfare; Naval Air Systems Command (NAVAIR) testing; Naval Sea Systems Command (NAVSEA) testing; Space and Naval Warfare Systems Command (SPAWAR) testing; and Office of Naval Research (ONR) and Naval Research Laboratory (NRL) testing. Detailed descriptions of...

  18. Centralized Command, Distributed Control, and Decentralized Execution - a Command and Control Solution to US Air Force A2/AD Challenges

    DTIC Science & Technology

    2017-04-28

    Regional Air Component Commander (the Leader) 5 CC-DC- DE Solution to A2/AD – Distributed Theater Air Control System (the System) 9 CC-DC- DE ... Control , Decentralized Execution” to a new framework of “Centralized Command, Distributed Control , and Decentralized Execution” (CC-DC- DE ).4 5 This...USAF C2 challenges in A2/AD environments describes a three-part Centralized Command, Distributed Control , and Decentralized Execution (CC-DC- DE

  19. VHF command system study. [spectral analysis of GSFC VHF-PSK and VHF-FSK Command Systems

    NASA Technical Reports Server (NTRS)

    Gee, T. H.; Geist, J. M.

    1973-01-01

    Solutions are provided to specific problems arising in the GSFC VHF-PSK and VHF-FSK Command Systems in support of establishment and maintenance of Data Systems Standards. Signal structures which incorporate transmission on the uplink of a clock along with the PSK or FSK data are considered. Strategies are developed for allocating power between the clock and data, and spectral analyses are performed. Bit error probability and other probabilities pertinent to correct transmission of command messages are calculated. Biphase PCM/PM and PCM/FM are considered as candidate modulation techniques on the telemetry downlink, with application to command verification. Comparative performance of PCM/PM and PSK systems is given special attention, including implementation considerations. Gain in bit error performance due to coding is also considered.

  20. Unit Testing for Command and Control Systems

    NASA Technical Reports Server (NTRS)

    Alexander, Joshua

    2018-01-01

    Unit tests were created to evaluate the functionality of a Data Generation and Publication tool for a command and control system. These unit tests are developed to constantly evaluate the tool and ensure it functions properly as the command and control system grows in size and scope. Unit tests are a crucial part of testing any software project and are especially instrumental in the development of a command and control system. They save resources, time and costs associated with testing, and catch issues before they become increasingly difficult and costly. The unit tests produced for the Data Generation and Publication tool to be used in a command and control system assure the users and stakeholders of its functionality and offer assurances which are vital in the launching of spacecraft safely.

  1. Hospital Disaster Preparedness in Italy: a preliminary study utilizing the World Health Organization Hospital Emergency Response Evaluation Toolkit.

    PubMed

    Ingrassia, Pier L; Mangini, Marco; Azzaretto, Massimo; Ciaramitaro, Ilenia; Costa, Laura; Burkle, Frederick M; Della Corte, Francesco; Djalali, Ahmadreza

    2016-12-01

    Natural and human-initiated disasters are occurring with greater devastating consequences and increased frequency. During these events, hospitals have the burden to care for acutely ill and injured patients. The aim of this study was to evaluate the level of disaster preparedness of Italian hospitals. Site visits were conducted from January, 2014 to December, 2014. The hospital emergency response checklist, developed by the WHO, was used as an evaluation toolkit. It consists of 92 items classified as 9 key components, such as command and control, triage, and critical services. The status of each component was determined by consensus of 3 independent evaluators. The study selected 15 hospitals from different areas in Italy. Out of the 15 hospitals, 12 were considered to be at insufficients level of preparedness, only 3 were considered to have an effective level of preparedness. The average preparedness of all components were lower than the optimal level suggested by the WHO checklist. The study revealed that a large majority of Italian hospitals evaluated are not well prepared to manage potential disasters. Also, all important elements of hospital preparedness, such as the command system, surge capacity, and safety, were insufficiently implemented. Nationwide standards, guidelines and procedures are required to improve hospital disaster preparedness in Italy.

  2. The Effect of Faster Engine Response on the Lateral Directional Control of a Damaged Aircraft

    NASA Technical Reports Server (NTRS)

    May, Ryan D.; Lemon, Kimberly A.; Csank, Jeffrey T.; Litt, Jonathan S.; Guo, Ten-Huei

    2012-01-01

    The integration of flight control and propulsion control has been a much discussed topic, especially for emergencies where the engines may be able to help stabilize and safely land a damaged aircraft. Previous research has shown that for the engines to be effective as flight control actuators, the response time to throttle commands must be improved. Other work has developed control modes that accept a higher risk of engine failure in exchange for improved engine response during an emergency. In this effort, a nonlinear engine model (the Commercial Modular Aero-Propulsion System Simulation 40k) has been integrated with a nonlinear airframe model (the Generic Transport Model) in order to evaluate the use of enhanced-response engines as alternative yaw rate control effectors. Tests of disturbance rejection and command tracking were used to determine the impact of the engines on the aircraft's dynamical behavior. Three engine control enhancements that improve the response time of the engine were implemented and tested in the integrated simulation. The enhancements were shown to increase the engine s effectiveness as a yaw rate control effector when used in an automatic feedback loop. The improvement is highly dependent upon flight condition; the airframe behavior is markedly improved at low altitude, low speed conditions, and relatively unchanged at high altitude, high speed.

  3. Operational Experience with Long Duration Wildfire Mapping: UAS Missions Over the Western United States

    NASA Technical Reports Server (NTRS)

    Hall, Philip; Cobleigh, Brent; Buoni, Greg; Howell, Kathleen

    2008-01-01

    The National Aeronautics and Space Administration, United States Forest Service, and National Interagency Fire Center have developed a partnership to develop and demonstrate technology to improve airborne wildfire imaging and data dissemination. In the summer of 2007, a multi-spectral infrared scanner was integrated into NASA's Ikhana Unmanned Aircraft System (UAS) (a General Atomics Predator-B) and launched on four long duration wildfire mapping demonstration missions covering eight western states. Extensive safety analysis, contingency planning, and mission coordination were key to securing an FAA certificate of authorization (COA) to operate in the national airspace. Infrared images were autonomously geo-rectified, transmitted to the ground station by satellite communications, and networked to fire incident commanders within 15 minutes of acquisition. Close coordination with air traffic control ensured a safe operation, and allowed real-time redirection around inclement weather and other minor changes to the flight plan. All objectives of the mission demonstrations were achieved. In late October, wind-driven wildfires erupted in five southern California counties. State and national emergency operations agencies requested Ikhana to help assess and manage the wildfires. Four additional missions were launched over a 5-day period, with near realtime images delivered to multiple emergency operations centers and fire incident commands managing 10 fires.

  4. Friendly Neighborhood Computer Project. Extension of the IBM NJE network to DEC VAX computers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raffenetti, R.C.; Bertoncini, P.J.; Engert, D.E.

    1984-07-01

    This manual is divided into six chapters. The first is an overview of the VAX NJE emulator system and describes what can be done with the VAX NJE emulator software. The second chapter describes the commands that users of the VAX systems will use. Each command description includes the format of the command, a list of valid options and parameters and their meanings, and several short examples of command use. The third chapter describes the commands and capabilities for sending general, sequential files from and to VAX VMS nodes. The fourth chapter describes how to transmit data to a VAXmore » from other computer systems on the network. The fifth chapter explains how to exchange electronic mail with IBM CMS users and with users of other VAX VMS systems connected by NJE communications. The sixth chapter describes operator procedures and the additional commands operators may use.« less

  5. 14 CFR 135.105 - Exception to second in command requirement: Approval for use of autopilot system.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Exception to second in command requirement... PERSONS ON BOARD SUCH AIRCRAFT Flight Operations § 135.105 Exception to second in command requirement... second in command, if it is equipped with an operative approved autopilot system and the use of that...

  6. 14 CFR 135.105 - Exception to second in command requirement: Approval for use of autopilot system.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Exception to second in command requirement... PERSONS ON BOARD SUCH AIRCRAFT Flight Operations § 135.105 Exception to second in command requirement... second in command, if it is equipped with an operative approved autopilot system and the use of that...

  7. 14 CFR 135.105 - Exception to second in command requirement: Approval for use of autopilot system.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Exception to second in command requirement... PERSONS ON BOARD SUCH AIRCRAFT Flight Operations § 135.105 Exception to second in command requirement... second in command, if it is equipped with an operative approved autopilot system and the use of that...

  8. 14 CFR 135.105 - Exception to second in command requirement: Approval for use of autopilot system.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Exception to second in command requirement... PERSONS ON BOARD SUCH AIRCRAFT Flight Operations § 135.105 Exception to second in command requirement... second in command, if it is equipped with an operative approved autopilot system and the use of that...

  9. 14 CFR 135.105 - Exception to second in command requirement: Approval for use of autopilot system.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Exception to second in command requirement... PERSONS ON BOARD SUCH AIRCRAFT Flight Operations § 135.105 Exception to second in command requirement... second in command, if it is equipped with an operative approved autopilot system and the use of that...

  10. Database interfaces on NASA's heterogeneous distributed database system

    NASA Technical Reports Server (NTRS)

    Huang, Shou-Hsuan Stephen

    1989-01-01

    The syntax and semantics of all commands used in the template are described. Template builders should consult this document for proper commands in the template. Previous documents (Semiannual reports) described other aspects of this project. Appendix 1 contains all substituting commands used in the system. Appendix 2 includes all repeating commands. Appendix 3 is a collection of DEFINE templates from eight different DBMS's.

  11. Total energy based flight control system

    NASA Technical Reports Server (NTRS)

    Lambregts, Antonius A. (Inventor)

    1985-01-01

    An integrated aircraft longitudinal flight control system uses a generalized thrust and elevator command computation (38), which accepts flight path angle, longitudinal acceleration command signals, along with associated feedback signals, to form energy rate error (20) and energy rate distribution error (18) signals. The engine thrust command is developed (22) as a function of the energy rate distribution error and the elevator position command is developed (26) as a function of the energy distribution error. For any vertical flight path and speed mode the outerloop errors are normalized (30, 34) to produce flight path angle and longitudinal acceleration commands. The system provides decoupled flight path and speed control for all control modes previously provided by the longitudinal autopilot, autothrottle and flight management systems.

  12. STS-54 Astronaut Crew Emergency Egress Training, Press Q&A, TCDT

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The crew of STS-54, Commander John H. Casper, Pilot Donald R. McMonagle, and Mission Specialists Mario Runco, Jr., Gregory J. Harbaugh, and Susan J. Helms, is seen during a question and answer session with the press and during the Terminal Countdown and Demonstration Test (TCDT), including Emergency Egress Training.

  13. Media Literacy Education: Harnessing the Technological Imaginary

    ERIC Educational Resources Information Center

    Fry, Katherine G.

    2011-01-01

    An important challenge for media literacy education in the next decade will be to cultivate a commanding voice in the cultural conversation about new and emerging communication media. To really have a stake in the social, economic and educational developments that emerge around new digital media in the U.S. and globally, media literacy educators…

  14. Costing Complex Products, Operations, and Support

    DTIC Science & Technology

    2011-04-30

    Symposium, 10-12 May 2011, Seaside, CA. U.S. Government or Federal Rights License 14. ABSTRACT Complex products and systems (CoPS), such as large defense...Program Executive Officer SHIPS • Commander, Naval Sea Systems Command • Army Contracting Command, U.S. Army Materiel Command • Program Manager...Airborne, Maritime and Fixed Station Joint Tactical Radio System = ==================^Åèìáëáíáçå=oÉëÉ~êÅÜW=`ob^qfkd=pvkbodv=clo=fkclojba=`e^kdb=====- ii

  15. Common command-and-control user interface for current force UGS

    NASA Astrophysics Data System (ADS)

    Stolovy, Gary H.

    2009-05-01

    The Current Force Unattended Ground Sensors (UGS) comprise the OmniSense, Scorpion, and Silent Watch systems. As deployed by U.S. Army Central Command in 2006, sensor reports from the three systems were integrated into a common Graphical User Interface (GUI), with three separate vendor-specific applications for Command-and-Control (C2) functions. This paper describes the requirements, system architecture, implementation, and testing of an upgrade to the Processing, Exploitation, and Dissemination back-end server to incorporate common remote Command-and-Control capabilities.

  16. Addressing the gap between public health emergency planning and incident response

    PubMed Central

    Freedman, Ariela M; Mindlin, Michele; Morley, Christopher; Griffin, Meghan; Wooten, Wilma; Miner, Kathleen

    2013-01-01

    Objectives: Since 9/11, Incident Command System (ICS) and Emergency Operations Center (EOC) are relatively new concepts to public health, which typically operates using less hierarchical and more collaborative approaches to organizing staff. This paper describes the 2009 H1N1 influenza outbreak in San Diego County to explore the use of ICS and EOC in public health emergency response. Methods: This study was conducted using critical case study methodology consisting of document review and 18 key-informant interviews with individuals who played key roles in planning and response. Thematic analysis was used to analyze data. Results: Several broad elements emerged as key to ensuring effective and efficient public health response: 1) developing a plan for emergency response; 2) establishing the framework for an ICS; 3) creating the infrastructure to support response; 4) supporting a workforce trained on emergency response roles, responsibilities, and equipment; and 5) conducting regular preparedness exercises. Conclusions: This research demonstrates the value of investments made and that effective emergency preparedness requires sustained efforts to maintain personnel and material resources. By having the infrastructure and experience based on ICS and EOC, the public health system had the capability to surge-up: to expand its day-to-day operation in a systematic and prolonged manner. None of these critical actions are possible without sustained funding for the public health infrastructure. Ultimately, this case study illustrates the importance of public health as a key leader in emergency response. PMID:28228983

  17. 75 FR 42719 - Privacy Act of 1974; System of Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-22

    ...: Commander, Navy Expeditionary Combat Command, 1575 Gator Blvd, Joint Expeditionary Base Little Creek... Expeditionary Combat Command, Code (N8), 1575 Gator Blvd, Joint Expeditionary Base Little Creek, Virginia Beach... to the Commander, Navy Expeditionary Combat Command, Code (N8), 1575 Gator Blvd, Joint Expeditionary...

  18. Innovation for integrated command environments

    NASA Astrophysics Data System (ADS)

    Perry, Amie A.; McKneely, Jennifer A.

    2000-11-01

    Command environments have rarely been able to easily accommodate rapid changes in technology and mission. Yet, command personnel, by their selection criteria, experience, and very nature, tend to be extremely adaptive and flexible, and able to learn new missions and address new challenges fairly easily. Instead, the hardware and software components of the systems do no provide the needed flexibility and scalability for command personnel. How do we solve this problem? In order to even dream of keeping pace with a rapidly changing world, we must begin to think differently about the command environment and its systems. What is the correct definition of the integrated command environment system? What types of tasks must be performed in this environment, and how might they change in the next five to twenty-five years? How should the command environment be developed, maintained, and evolved to provide needed flexibility and scalability? The issues and concepts to be considered as new Integrated Command/Control Environments (ICEs) are designed following a human-centered process. A futuristic model, the Dream Integrated Command Environment (DICE) will be described which demonstrates specific ICE innovations. The major paradigm shift required to be able to think differently about this problem is to center the DICE around the command personnel from its inception. Conference participants may not agree with every concept or idea presented, but will hopefully come away with a clear understanding that to radically improve future systems, designers must focus on the end users.

  19. Emergency Simulation Drill

    NASA Image and Video Library

    2013-12-04

    ISS038-E-011718 (4 Dec. 2013) --- The Expedition 38 crew members participate in an emergency simulation drill with participation from flight controllers on the ground. During the exercise, the crew practiced emergency communication and procedures in response to a predetermined scenario such as pressure leak. Pictured in the International Space Station?s Destiny laboratory are Russian cosmonaut Oleg Kotov (center), commander; NASA astronaut Michael Hopkins (left), Japan Aerospace Exploration Agency astronaut Koichi Wakata, flight engineers.

  20. Emergency Egress Drill On-Board Training (OBT)

    NASA Image and Video Library

    2015-03-17

    ISS043E019025 (03/18/2015) --- Safety training never ends onboard the International Space Station. This photo in the U.S. Laboratory on Mar. 18, 2015 was taken during Emergency Egress Drill On-Board Training (OBT) with the Expedition 43 crew. Russian cosmonaut Mikhail Kornienko (rear) and ESA (European Space Agency) astronaut Samantha Cristoforetti (middle), both flight engineers, are shown with astronaut Terry Virts, Commander (front) during the important emergency drill.

  1. Integrating Social Media Monitoring Into Public Health Emergency Response Operations.

    PubMed

    Hadi, Tamer A; Fleshler, Keren

    2016-10-01

    Social media monitoring for public health emergency response and recovery is an essential response capability for any health department. The value of social media for emergency response lies not only in the capacity to rapidly communicate official and critical incident information, but as a rich source of incoming data that can be gathered to inform leadership decision-making. Social media monitoring is a function that can be formally integrated into the Incident Command System of any response agency. The approach to planning and required resources, such as staffing, logistics, and technology, is flexible and adaptable based on the needs of the agency and size and scope of the emergency. The New York City Department of Health and Mental Hygiene has successfully used its Social Media Monitoring Team during public health emergency responses and planned events including major Ebola and Legionnaires' disease responses. The concepts and implementations described can be applied by any agency, large or small, interested in building a social media monitoring capacity. (Disaster Med Public Health Preparedness. 2016;page 1 of 6).

  2. STS-56 Commander Cameron & Pilot Oswald at CCT hatch during JSC training

    NASA Image and Video Library

    1992-12-01

    STS-56 Discovery, Orbiter Vehicle (OV) 103, Commander Kenneth Cameron (right) and Pilot Stephen S. Oswald, wearing launch and entry suits (LESs), stand at the side hatch of the crew compartment trainer (CCT), a shuttle mockup, prior to entering the mockup. Once inside the CCT, they will don their launch and entry helmets (LEHs) and participate in emergency egress (bailout) procedures. The CCT is located in JSC's Mockup and Integration Laboratory (MAIL) Bldg 9NE.

  3. STS-42 Commander Grabe in single person life raft during JSC egress exercises

    NASA Technical Reports Server (NTRS)

    1991-01-01

    STS-42 Discovery, Orbiter Vehicle (OV) 103, Commander Ronald J. Grabe, wearing launch and entry suit (LES) and launch and entry helmet (LEH), floats in single person life raft during launch emergency egress (bailout) exercises conducted in JSC's Weightless Environment Training Facility (WETF) Bldg 29 pool. The Space Shuttle Search and Rescue Satellite Aided Tracking (SARSAT) portable locating beacon (PLB) antenna is extended through the life raft cover. SCUBA-equipped divers monitor egress exercises.

  4. STS-47 Commander Gibson and MS Apt in JSC WETF for bailout exercises

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-47 Endeavour, Orbiter Vehicle (OV) 105, Commander Robert L. Gibson, wearing launch and entry suit (LES) and launch and entry helmet (LEH), listens to instructions before participating in launch emergency egress (bailout) exercises in JSC's Weightless Environment Trainining Facility (WETF) Bldg 29. Mission Specialist (MS) Jerome Apt, wearing LES and LES parachute, is seen in the background. This exercise is conducted in the WETF pool to simulate a water landing.

  5. Emergency medical rescue efforts after a major earthquake: lessons from the 2008 Wenchuan earthquake.

    PubMed

    Zhang, Lulu; Liu, Xu; Li, Youping; Liu, Yuan; Liu, Zhipeng; Lin, Juncong; Shen, Ji; Tang, Xuefeng; Zhang, Yi; Liang, Wannian

    2012-03-03

    Major earthquakes often result in incalculable environmental damage, loss of life, and threats to health. Tremendous progress has been made in response to many medical challenges resulting from earthquakes. However, emergency medical rescue is complicated, and great emphasis should be placed on its organisation to achieve the best results. The 2008 Wenchuan earthquake was one of the most devastating disasters in the past 10 years and caused more than 370,000 casualties. The lessons learnt from the medical disaster relief effort and the subsequent knowledge gained about the regulation and capabilities of medical and military back-up teams should be widely disseminated. In this Review we summarise and analyse the emergency medical rescue efforts after the Wenchuan earthquake. Establishment of a national disaster medical response system, an active and effective commanding system, successful coordination between rescue forces and government agencies, effective treatment, a moderate, timely and correct public health response, and long-term psychological support are all crucial to reduce mortality and morbidity and promote overall effectiveness of rescue efforts after a major earthquake. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Terminal Information Processing System (TIPS) Consolidated CAB Display (CCD) Comparative Analysis.

    DTIC Science & Technology

    1982-04-01

    Barometric pressure 3. Center field wind speed, direction and gusts 4. Runway visual range 5. Low-level wind shear 6. Vortex advisory 7. Runway equipment...PASSWORD Command (standard user) u. PAUSE Command (standard user) v. PMSG Command (standard user) w. PPD Command (standard user) x. PURGE Command (standard

  7. The next generation of command post computing

    NASA Astrophysics Data System (ADS)

    Arnold, Ross D.; Lieb, Aaron J.; Samuel, Jason M.; Burger, Mitchell A.

    2015-05-01

    The future of command post computing demands an innovative new solution to address a variety of challenging operational needs. The Command Post of the Future is the Army's primary command and control decision support system, providing situational awareness and collaborative tools for tactical decision making, planning, and execution management from Corps to Company level. However, as the U.S. Army moves towards a lightweight, fully networked battalion, disconnected operations, thin client architecture and mobile computing become increasingly essential. The Command Post of the Future is not designed to support these challenges in the coming decade. Therefore, research into a hybrid blend of technologies is in progress to address these issues. This research focuses on a new command and control system utilizing the rich collaboration framework afforded by Command Post of the Future coupled with a new user interface consisting of a variety of innovative workspace designs. This new system is called Tactical Applications. This paper details a brief history of command post computing, presents the challenges facing the modern Army, and explores the concepts under consideration for Tactical Applications that meet these challenges in a variety of innovative ways.

  8. STS-71 astronauts and cosmonauts during egress training

    NASA Image and Video Library

    1994-10-18

    S94-47079 (18 Oct 1994) --- Astronaut Robert L. Gibson, (arms folded, near center) STS-71 mission commander, joins several crew mates during a briefing preceding emergency egress training in the Systems Integration Facility at the Johnson Space Center (JSC). Astronauts Bonnie J. Dunbar and Gregory J. Harbaugh (partially obscured), along with cosmonaut Anatoliy Y. Solovyev, all mission specialists, are attired in training versions of the partial pressure launch and entry space suits. Astronaut Charles J. Precourt, pilot, is in center foreground, and Ellen S. Baker, mission specialist, is in left background.

  9. Real-Time Reconfigurable Adaptive Speech Recognition Command and Control Apparatus and Method

    NASA Technical Reports Server (NTRS)

    Salazar, George A. (Inventor); Haynes, Dena S. (Inventor); Sommers, Marc J. (Inventor)

    1998-01-01

    An adaptive speech recognition and control system and method for controlling various mechanisms and systems in response to spoken instructions and in which spoken commands are effective to direct the system into appropriate memory nodes, and to respective appropriate memory templates corresponding to the voiced command is discussed. Spoken commands from any of a group of operators for which the system is trained may be identified, and voice templates are updated as required in response to changes in pronunciation and voice characteristics over time of any of the operators for which the system is trained. Provisions are made for both near-real-time retraining of the system with respect to individual terms which are determined not be positively identified, and for an overall system training and updating process in which recognition of each command and vocabulary term is checked, and in which the memory templates are retrained if necessary for respective commands or vocabulary terms with respect to an operator currently using the system. In one embodiment, the system includes input circuitry connected to a microphone and including signal processing and control sections for sensing the level of vocabulary recognition over a given period and, if recognition performance falls below a given level, processing audio-derived signals for enhancing recognition performance of the system.

  10. Smart command recognizer (SCR) - For development, test, and implementation of speech commands

    NASA Technical Reports Server (NTRS)

    Simpson, Carol A.; Bunnell, John W.; Krones, Robert R.

    1988-01-01

    The SCR, a rapid prototyping system for the development, testing, and implementation of speech commands in a flight simulator or test aircraft, is described. A single unit performs all functions needed during these three phases of system development, while the use of common software and speech command data structure files greatly reduces the preparation time for successive development phases. As a smart peripheral to a simulation or flight host computer, the SCR interprets the pilot's spoken input and passes command codes to the simulation or flight computer.

  11. Design of an all-attitude flight control system to execute commanded bank angles and angles of attack

    NASA Technical Reports Server (NTRS)

    Burgin, G. H.; Eggleston, D. M.

    1976-01-01

    A flight control system for use in air-to-air combat simulation was designed. The input to the flight control system are commanded bank angle and angle of attack, the output are commands to the control surface actuators such that the commanded values will be achieved in near minimum time and sideslip is controlled to remain small. For the longitudinal direction, a conventional linear control system with gains scheduled as a function of dynamic pressure is employed. For the lateral direction, a novel control system, consisting of a linear portion for small bank angle errors and a bang-bang control system for large errors and error rates is employed.

  12. Moving base simulation evaluation of translational rate command systems for STOVL aircraft in hover

    NASA Technical Reports Server (NTRS)

    Franklin, James A.; Stortz, Michael W.

    1996-01-01

    Using a generalized simulation model, a moving-base simulation of a lift-fan short takeoff/vertical landing fighter aircraft has been conducted on the Vertical Motion Simulator at Ames Research Center. Objectives of the experiment were to determine the influence of system bandwidth and phase delay on flying qualities for translational rate command and vertical velocity command systems. Assessments were made for precision hover control and for landings aboard an LPH type amphibious assault ship in the presence of winds and rough seas. Results obtained define the boundaries between satisfactory and adequate flying qualities for these design features for longitudinal and lateral translational rate command and for vertical velocity command.

  13. Space vehicle onboard command encoder

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A flexible onboard encoder system was designed for the space shuttle. The following areas were covered: (1) implementation of the encoder design into hardware to demonstrate the various encoding algorithms/code formats, (2) modulation techniques in a single hardware package to maintain comparable reliability and link integrity of the existing link systems and to integrate the various techniques into a single design using current technology. The primary function of the command encoder is to accept input commands, generated either locally onboard the space shuttle or remotely from the ground, format and encode the commands in accordance with the payload input requirements and appropriately modulate a subcarrier for transmission by the baseband RF modulator. The following information was provided: command encoder system design, brassboard hardware design, test set hardware and system packaging, and software.

  14. Command and Control of Joint Air Operations through Mission Command

    DTIC Science & Technology

    2016-06-01

    and outlines the C2 architecture systems, processes, and philosophy of com- mand required to enable mission command effectively. Mission Command...General Dempsey highlights the fact that “trust is the moral sinew that binds the distributed Joint Force 2020 together” and observes that “unless...con- fident about how their subordinates will make decisions and adapt to the dynamic battlespace environment. Processes, Systems, and Philosophy of

  15. 14 CFR Special Federal Aviation... - Process for Requesting Waiver of Mandatory Separation Age for a Federal Aviation Administration...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Stations, Enroute or Terminal Facilities, and the David J. Hurley Air Traffic Control System Command Center... Stations, Enroute or Terminal Facilities, and the David J. Hurley Air Traffic Control System Command Center..., enroute facilities, terminal facilities, or at the David J. Hurley Air Traffic Control System Command...

  16. 14 CFR Special Federal Aviation... - Process for Requesting Waiver of Mandatory Separation Age for a Federal Aviation Administration...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Stations, Enroute or Terminal Facilities, and the David J. Hurley Air Traffic Control System Command Center... Stations, Enroute or Terminal Facilities, and the David J. Hurley Air Traffic Control System Command Center..., enroute facilities, terminal facilities, or at the David J. Hurley Air Traffic Control System Command...

  17. 14 CFR Special Federal Aviation... - Process for Requesting Waiver of Mandatory Separation Age for a Federal Aviation Administration...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Stations, Enroute or Terminal Facilities, and the David J. Hurley Air Traffic Control System Command Center... Stations, Enroute or Terminal Facilities, and the David J. Hurley Air Traffic Control System Command Center..., enroute facilities, terminal facilities, or at the David J. Hurley Air Traffic Control System Command...

  18. 14 CFR Special Federal Aviation... - Process for Requesting Waiver of Mandatory Separation Age for a Federal Aviation Administration...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Stations, Enroute or Terminal Facilities, and the David J. Hurley Air Traffic Control System Command Center... Stations, Enroute or Terminal Facilities, and the David J. Hurley Air Traffic Control System Command Center..., enroute facilities, terminal facilities, or at the David J. Hurley Air Traffic Control System Command...

  19. 77 FR 37006 - Privacy Act of 1974; System of Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-20

    ... 210, Peterson Air Force Base, CO 80914-4500. Back-up servers: U.S. Strategic Command (USSTRATCOM... JSME Project Manager, U.S. Strategic Command J663, 901 SAC Boulevard, Suite 3J11, Offutt Air Force Base...; System of Records AGENCY: U.S. Strategic Command (USSTRATCOM), DoD. ACTION: Notice to add a system of...

  20. Fire Weather Products for Public and Emergency Use: Extending Professional Resources to the Public

    NASA Astrophysics Data System (ADS)

    Rogers, M. A.; Schranz, S.; Kriederman, L.

    2012-12-01

    Large wildfires require significant resources to combat, including dedicated meteorological support to provide accurate and timely forecasts to assist incident commanders in making decisions for logistical and tactical firefighting operations. Smaller fires often require the same capabilities for understanding fire and the fire weather environment, but access to needed resources and tools is often limited due to technical, training, or education limitations. Providing fire weather information and training to incident commanders for smaller wildfires should prove to enhance firefighting capabilities and improve safety for both firefighters and for the public as well. One of the premier tools used to support fire weather forecasting for the largest wildfires is the FX-Net product, a thin-client version of the Advanced Weather Interactive Processing System used by NWS incident meteorologists (IMETs) deployed to large wildfires. We present results from an ongoing project to extend the sophisticated products available from FX-Net to more accessible and mobile software platforms, such as Google Earth. The project involves input from IMETs and fire commanders to identify the key parameters used in fighting wildfires, and involves a large training component for fire responders to utilize simplified products to improve understanding of fire weather in the context of firefighting operations.

  1. Glossary

    MedlinePlus

    ... effective, directed treatments. Central Nervous System The "central command system" of the body, it includes the brain, ... The central nervous system (CNS) is the "central command system" of the body, and includes the brain, ...

  2. VAPEPS user's reference manual, version 5.0

    NASA Technical Reports Server (NTRS)

    Park, D. M.

    1988-01-01

    This is the reference manual for the VibroAcoustic Payload Environment Prediction System (VAPEPS). The system consists of a computer program and a vibroacoustic database. The purpose of the system is to collect measurements of vibroacoustic data taken from flight events and ground tests, and to retrieve this data and provide a means of using the data to predict future payload environments. This manual describes the operating language of the program. Topics covered include database commands, Statistical Energy Analysis (SEA) prediction commands, stress prediction command, and general computational commands.

  3. Requirements for the Military Message System (MMS) Family: Data Types and User Commands.

    DTIC Science & Technology

    1986-04-11

    AD-A167 126 REQUIREMENTS FOR THE MILITARY MESSASE SYSTEM (NHS) i FRILY: DATA TYPES AND USER CONNNDS(U) NAVAL RESEARCH LAB WASHINGTON DC C L HEITHEVER... System (MMS) Family: Data Types and User Commands CONSTANCE L. HEITMEYER Computer Science and Systems Branch I Information Technology Division April 11...Security Classification) Requirements for the Military Message System (MMS) Family: Data Types and User Commands 12. PERSONAL AUTHOR(S) Heitmeer, Constance

  4. Self-organization processes in field-invasion team sports : implications for leadership.

    PubMed

    Passos, Pedro; Araújo, Duarte; Davids, Keith

    2013-01-01

    In nature, the interactions between agents in a complex system (fish schools; colonies of ants) are governed by information that is locally created. Each agent self-organizes (adjusts) its behaviour, not through a central command centre, but based on variables that emerge from the interactions with other system agents in the neighbourhood. Self-organization has been proposed as a mechanism to explain the tendencies for individual performers to interact with each other in field-invasion sports teams, displaying functional co-adaptive behaviours, without the need for central control. The relevance of self-organization as a mechanism that explains pattern-forming dynamics within attacker-defender interactions in field-invasion sports has been sustained in the literature. Nonetheless, other levels of interpersonal coordination, such as intra-team interactions, still raise important questions, particularly with reference to the role of leadership or match strategies that have been prescribed in advance by a coach. The existence of key properties of complex systems, such as system degeneracy, nonlinearity or contextual dependency, suggests that self-organization is a functional mechanism to explain the emergence of interpersonal coordination tendencies within intra-team interactions. In this opinion article we propose how leadership may act as a key constraint on the emergent, self-organizational tendencies of performers in field-invasion sports.

  5. KSC-07pd0489

    NASA Image and Video Library

    2007-02-22

    KENNEDY SPACE CENTER, FLA. -- At the 195-foot level of the fixed service structure on Launch Pad 39A, STS-117 crew members receive instruction on emergency egress during Terminal Countdown Demonstration Test activities. From left are Mission Specialist Danny Olivas, Commander Rick Sturckow, Pilot Lee Archambault, and Mission Specialists James Reilly, Steven Swanson and Patrick Forrester. They are practicing the emergency egress procedure using the slidewire basket system to get off the pad. The TCDT also includes M-113 armored personnel carrier training, and a simulated launch countdown. The mission payload aboard Space Shuttle Atlantis is the S3/S4 integrated truss structure, along with a third set of solar arrays and batteries. The crew of six astronauts will install the truss to continue assembly of the International Space Station. Photo credit: NASA/Kim Shiflett

  6. KSC-07pd0487

    NASA Image and Video Library

    2007-02-22

    KENNEDY SPACE CENTER, FLA. -- At the 195-foot level of the fixed service structure on Launch Pad 39A, STS-117 crew members receive instruction on emergency egress during Terminal Countdown Demonstration Test activities. From left are Commander Rick Sturckow, Mission Specialist Danny Olivas and Pilot Lee Archambault. They and other crew members are practicing the emergency egress procedure using the slidewire basket system to get off the pad. The TCDT also includes M-113 armored personnel carrier training, and a simulated launch countdown. The mission payload aboard Space Shuttle Atlantis is the S3/S4 integrated truss structure, along with a third set of solar arrays and batteries. The crew of six astronauts will install the truss to continue assembly of the International Space Station. Photo credit: NASA/Kim Shiflett

  7. Supporting the Social Media Needs of Emergency Public Information Officers with Human-Centered Design and Development

    ERIC Educational Resources Information Center

    Hughes, Amanda Lee

    2012-01-01

    Emergency response agencies, which operate as command-and-control organizations, push information to members of the public with too few mechanisms to support communication flowing back. Recently, information communication technologies (ICTs) such as social media have challenged this one-way model by allowing the public to participate in emergency…

  8. Astronaut Stephen Oswald during emergency bailout training

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Suited in a training version of the Shuttle partial-pressure launch and entry garment, astronaut Stephen S. Oswald, STS-67 commander, gets help with a piece of gear from Boeing's David Brandt. The scene was photographed prior to a session of emergency bailout training in the 25-feet deep pool at JSC's Weightless Environment Training Facility (WETF).

  9. STS-56 Commander Cameron and Pilot Oswald at CCT hatch during JSC training

    NASA Technical Reports Server (NTRS)

    1993-01-01

    STS-56 Discovery, Orbiter Vehicle (OV) 103, Commander Kenneth Cameron (right) and Pilot Stephen S. Oswald, wearing launch and entry suits (LESs), stand at the side hatch of the crew compartment trainer (CCT), a shuttle mockup, prior to entering the mockup. Once inside the CCT, they will don their launch and entry helmets (LEHs) and participate in emergency egress (bailout) procedures. The CCT is located in JSC's Mockup and Integration Laboratory (MAIL) Bldg 9NE.

  10. STS-48 Commander Creighton, in LES, stands at JSC FFT side hatch

    NASA Technical Reports Server (NTRS)

    1991-01-01

    STS-48 Discovery, Orbiter Vehicle (OV) 103, Commander John O. Creighton, wearing a launch and entry suit (LES), stands at the side hatch of JSC's full fuselage trainer (FFT). Creighton will enter the FFT shuttle mockup through the side hatch and take his assigned position on the forward flight deck. Creighton, along with the other crewmembers, is participating in a post-landing emergency egress exercise. The FFT is located in the Mockup and Integration Laboratory (MAIL) Bldg 9A.

  11. Taking Off the Wedding Ring: The Consequences of the Netherlands’ Choice to Forgo a Nuclear Capable F-35

    DTIC Science & Technology

    2015-02-17

    F-16. After his commission, flying assignments included duties as Weapons Instructor Pilot, Flight Commander and Operations Officer at Volkel AB ...the Netherlands. He also served a tour at the Tactical Leadership Program (TLP) at Florennes AB , Belgium as a Seminar Leader. He is a command pilot...the glue that keeps NATO together.40 The deepening crisis between Russia, NATO, EU and the United States over Ukraine that has emerged over the last

  12. The Emergence of a Content Acceptance Model (CAM): New Thoughts Regarding the Trial, Adoption, and Usage of New Media

    DTIC Science & Technology

    2009-03-26

    child vi Acknowledgments I took on this thesis as a challenge to myself for two reasons. First, I wanted to complete a thesis outside my...first child . I also need to think all my previous Wing Commander, Air Force squadron commanders, previous teachers, and other Air Force leaders...their mind 18: Phishers, spammers, and porn agencies send out messages trying to make money 17: To stay connected with family/friends all over nation

  13. Reconstruction Leaders’ Perceptions of the Commander’s Emergency Response Program in Iraq

    DTIC Science & Technology

    2012-04-30

    provided immediate support to the Iraqi people. American Commanders in Iraq used CERP funds to build schools , roads, health clinics, sewers, and...and 2008 we considered them as having served during the surge. If their time in Iraq was before those years we considered them to be pre- surge. If...their time in Iraq was after those years we considered them as having served post-surge. More details about our survey methodology are in Appendix

  14. STS-65 Commander Cabana floats in life raft during WETF bailout exercise

    NASA Technical Reports Server (NTRS)

    1994-01-01

    STS-65 Commander Robert D. Cabana, suited in his launch and entry suit (LES) and launch and entry helmet, deploys a single person life raft during launch emergency egress (bailout) training at the Johnson Space Center's (JSC's) Weightless Environment Training Facility (WETF) Bldg 29. Cabana will be joined by five other NASA astronauts and a Japanese payload specialist for the International Microgravity Laboratory 2 (IML-2) mission aboard the Space Shuttle Columbia, Orbiter Vehicle (OV) 102, later this year.

  15. An Advanced Commanding and Telemetry System

    NASA Astrophysics Data System (ADS)

    Hill, Maxwell G. G.

    The Loral Instrumentation System 500 configured as an Advanced Commanding and Telemetry System (ACTS) supports the acquisition of multiple telemetry downlink streams, and simultaneously supports multiple uplink command streams for today's satellite vehicles. By using industry and federal standards, the system is able to support, without relying on a host computer, a true distributed dataflow architecture that is complemented by state-of-the-art RISC-based workstations and file servers.

  16. The Combat Vehicle Command and Control System: Combat Performance of Armor Battalions Using Interactive Simulation

    DTIC Science & Technology

    1994-05-01

    Command and Control display. Using Ml tank simulators in the Mounted Warfare Test Bed at Fort Knox, Kentucky, the researchers evaluated tank battalion... Warfare Test Bed (MWTB) at Fort Knox, Kentucky, eight MOS-qualified armor crews (battalion commander, battalion opera- tions officer, three company...concerned with identifying ways that the CVCC system might best benefit the battlefield commander, and potential modifications to mounted warfare TTPs

  17. The Command and Control of the Grand Armee: Napoleon as Organizational Designer

    DTIC Science & Technology

    2009-06-01

    AUTHOR(S) Norman L. Durham 5. FUNDING NUMBERS 7 . PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Naval Postgraduate School Monterey, CA 93943-5000...served as the framework for a highly effective command and control system. This command and control network allowed Napoleon to dominate a war with...within his organizational design was a vast information network that served as the framework for a highly effective command and control system. This

  18. Apparatus and method for data communication in an energy distribution network

    DOEpatents

    Hussain, Mohsin; LaPorte, Brock; Uebel, Udo; Zia, Aftab

    2014-07-08

    A system for communicating information on an energy distribution network is disclosed. In one embodiment, the system includes a local supervisor on a communication network, wherein the local supervisor can collect data from one or more energy generation/monitoring devices. The system also includes a command center on the communication network, wherein the command center can generate one or more commands for controlling the one or more energy generation devices. The local supervisor can periodically transmit a data signal indicative of the data to the command center via a first channel of the communication network at a first interval. The local supervisor can also periodically transmit a request for a command to the command center via a second channel of the communication network at a second interval shorter than the first interval. This channel configuration provides effective data communication without a significant increase in the use of network resources.

  19. Application Of Optical Techniques To Command, Control, And Communications (C3) Systems

    NASA Astrophysics Data System (ADS)

    Weinberg, M.; Steensma, P. D.

    1981-02-01

    This paper identifies and discusses specific applications of the optical transmission technology to various Command Control and Communications (C3) systems. Candidate C3 systems will first be identified and discussed briefly. These will include: 407L/485L Tactical Air Defense Systems (USAF) TAOC-85 Tactical Air Operations Central (USMC) SACDIN Strategic Air Command Digital Integrated Network (USAF) MX-C3 Missile "X" Command Control Communications Network The first tr are classified as tactical C3 systems while the latter two are classified as strategic C systems. Potential optical applications will be identified along with the benefits derived. Each application will be discussed with key parameters, cost performance benefits, potential problem areas, time frame for development identified.

  20. Electromyographic decoding of response to command in disorders of consciousness.

    PubMed

    Lesenfants, Damien; Habbal, Dina; Chatelle, Camille; Schnakers, Caroline; Laureys, Steven; Noirhomme, Quentin

    2016-11-15

    To propose a new methodology based on single-trial analysis for detecting residual response to command with EMG in patients with disorders of consciousness (DOC), overcoming the issue of trial dependency and decreasing the influence of a patient's fluctuation of vigilance or arousal over time on diagnostic accuracy. Forty-five patients with DOC (18 with vegetative/unresponsive wakefulness syndrome [VS/UWS], 22 in a minimally conscious state [MCS], 3 who emerged from MCS [EMCS], and 2 with locked-in syndrome [LIS]) and 20 healthy controls were included in the study. Patients were randomly instructed to either move their left or right hand or listen to a control command ("It is a sunny day") while EMG activity was recorded on both arms. Differential EMG activity was detected in all MCS cases displaying reproducible response to command at bedside on multiple assessments, even though only 6 of the 14 individuals presented a behavioral response to command on the day of the EMG assessment. An EMG response was also detected in all EMCS and LIS patients, and 2 MCS patients showing nonreflexive movements without command following at the bedside. None of the VS/UWS presented a response to command with this method. This method allowed us to reliably distinguish between different levels of consciousness and could potentially help decrease diagnostic errors in patients with motor impairment but presenting residual motor activity. © 2016 American Academy of Neurology.

  1. Assessment of hospital emergency management in the Beijing area.

    PubMed

    Yantao, Xin

    2011-06-01

    In recent years, the number of public health emergencies has increased. Improving hospital emergency management is an important challenge. This is a pilot study intended to assess hospital emergency management in the Beijing area, make recommendations to government health authorities and hospital managers, and offer references for similar studies. This was an observational, cross-sectional survey. Forty-five hospitals in the Beijing area were selected randomly. A self-administered questionnaire was used as a data collection tool. It comprised of three sections: (1) Section A was the introduction; (2) Section B asked for the respondent's personal information; and (3) Section C comprised the major part of the questionnaire and was intended to gather information regarding the hospital's general emergency management situation. The survey response rate was 44%, accounting for 29% of total hospitals that the study targeted. No hospital had an established emergency management department or full-time staff for emergency management. A total of 15-45% of the hospitals had established a hospital emergency management committee, performed a vulnerability analysis, or evaluated emergency management regularly. Twenty-five percent of respondents thought that the local government health authority had established an integrated hospital incident command system. A total of 40%-55% of hospitals contracted with outside institutions for supplements, backup of key functional systems and professional support. After the occurrence of the 2003 severe acute respiratory syndrome (SARS) epidemic, Chinese hospital managers took many measures to improve hospital resilience. However, most of these efforts lacked the guidance of theories, concepts, principles, and methods. An integrated, standardized, operational hospital emergency management model has not been established. Although the survey response rate was relatively low, some clues for further study were discovered, and suggestions to the health authority for hospital emergency management improvement were revealed.

  2. Integrated command, control, communications and computation system functional architecture

    NASA Technical Reports Server (NTRS)

    Cooley, C. G.; Gilbert, L. E.

    1981-01-01

    The functional architecture for an integrated command, control, communications, and computation system applicable to the command and control portion of the NASA End-to-End Data. System is described including the downlink data processing and analysis functions required to support the uplink processes. The functional architecture is composed of four elements: (1) the functional hierarchy which provides the decomposition and allocation of the command and control functions to the system elements; (2) the key system features which summarize the major system capabilities; (3) the operational activity threads which illustrate the interrelationahip between the system elements; and (4) the interfaces which illustrate those elements that originate or generate data and those elements that use the data. The interfaces also provide a description of the data and the data utilization and access techniques.

  3. Information retrieval and display system

    NASA Technical Reports Server (NTRS)

    Groover, J. L.; King, W. L.

    1977-01-01

    Versatile command-driven data management system offers users, through simplified command language, a means of storing and searching data files, sorting data files into specified orders, performing simple or complex computations, effecting file updates, and printing or displaying output data. Commands are simple to use and flexible enough to meet most data management requirements.

  4. Control apparatus and method for efficiently heating a fuel processor in a fuel cell system

    DOEpatents

    Doan, Tien M.; Clingerman, Bruce J.

    2003-08-05

    A control apparatus and method for efficiently controlling the amount of heat generated by a fuel cell processor in a fuel cell system by determining a temperature error between actual and desired fuel processor temperatures. The temperature error is converted to a combustor fuel injector command signal or a heat dump valve position command signal depending upon the type of temperature error. Logic controls are responsive to the combustor fuel injector command signals and the heat dump valve position command signal to prevent the combustor fuel injector command signal from being generated if the heat dump valve is opened or, alternately, from preventing the heat dump valve position command signal from being generated if the combustor fuel injector is opened.

  5. Physician acceptance of the IRIS user interface during a clinical trial at the Ottawa Civic Hospital

    NASA Astrophysics Data System (ADS)

    Coristine, Marjorie; Beeton, Carolyn; Tombaugh, Jo W.; Ahuja, J.; Belanger, Garry; Dillon, Richard F.; Currie, Shawn; Hind, E.

    1990-07-01

    During a clinical trial, emergency physicians and radiologists at the Ottawa Civic Hospital used IRIS (Integrated Radiological Information System) to process patients' x-rays, requisitions, and reports, and to have consultations, for 319 active cases. This paper discusses IRIS user interface issues raised during the clinical trial. The IRIS workstation consists of three major system components: 1) an image screen for viewing and enhancing images; 2) a control screen for presenting patient information, selecting images, and executing commands; and 3) a hands-free telephone for reporting activities and consultations. The control screen and hands-free telephone user interface allow physicians to navigate through patient files, select images and access reports, enter new reports, and perform remote consultations. Physicians were observed using the system during the trial and responded to questions about the user interface on an extensive debriefing interview after the trial. Overall, radiologists and emergency physicians were satisfied with IRIS control screen functionality and user interface. In a number of areas radiologists and emergency physicians differed in their user interface needs. Some features were found to be acceptable to one group of physicians but required modification to meet the needs of the other physician group. The data from the interviews, along with the comments from radiologists and emergency physicians provided important information for the revision of some features, and for the evolution of new features.

  6. Built-In Diagnostics (BID) Of Equipment/Systems

    NASA Technical Reports Server (NTRS)

    Granieri, Michael N.; Giordano, John P.; Nolan, Mary E.

    1995-01-01

    Diagnostician(TM)-on-Chip (DOC) technology identifies faults and commands systems reconfiguration. Smart microcontrollers operating in conjunction with other system-control circuits, command self-correcting system/equipment actions in real time. DOC microcontroller generates commands for associated built-in test equipment to stimulate unit of equipment diagnosed, collects and processes response data obtained by built-in test equipment, and performs diagnostic reasoning on response data, using diagnostic knowledge base derived from design data.

  7. Survey of Command Execution Systems for NASA Spacecraft and Robots

    NASA Technical Reports Server (NTRS)

    Verma, Vandi; Jonsson, Ari; Simmons, Reid; Estlin, Tara; Levinson, Rich

    2005-01-01

    NASA spacecraft and robots operate at long distances from Earth Command sequences generated manually, or by automated planners on Earth, must eventually be executed autonomously onboard the spacecraft or robot. Software systems that execute commands onboard are known variously as execution systems, virtual machines, or sequence engines. Every robotic system requires some sort of execution system, but the level of autonomy and type of control they are designed for varies greatly. This paper presents a survey of execution systems with a focus on systems relevant to NASA missions.

  8. Decisionmaking in Military Command Teams: An Experimental Study

    DTIC Science & Technology

    1992-03-01

    of the problems that remain to be solved by systems designers . The Fogarty report concluded that "The AEGIS combat system’s performance was excellent...1989). He maintains that the designers of the AEGIS system failed to incorporate enough human engineering in their design . Without addressing the fault...Naval Command Teams (RAINCOAT), Composite Warfare Commander - Destributed Dynamc Decisionmaking ICWC-[I)), resource coordination, resource effectiveness

  9. Emergency Simulation Drill

    NASA Image and Video Library

    2013-12-04

    ISS038-E-011716 (4 Dec. 2013) --- The Expedition 38 crew members participate in an emergency simulation drill with participation from flight controllers on the ground. During the exercise, the crew practiced emergency communication and procedures in response to a predetermined scenario such as pressure leak. Pictured in the International Space Station?s Destiny laboratory are Russian cosmonaut Oleg Kotov (left), commander; NASA astronaut Michael Hopkins (bottom), Japan Aerospace Exploration Agency astronaut Koichi Wakata (center) and Russian cosmonaut Sergey Ryazanskiy, all flight engineers.

  10. Getting Down to Business: An Action Plan for Public-Private Disaster Response Coordination. The Report of the Business Response Task Force

    DTIC Science & Technology

    2007-01-01

    gency Management Association ( NEMA ) to explore application of the Emergency Management Assistance Compact (EMAC) model to the task of identifying...organizations combined—are the norm . The challenge for government and the private sector is to ensure that donated goods and services from the latter...Association ( NEMA ). EOC – Emergency Operations Center – the central command and control facility responsible for carrying out emergency preparedness and

  11. STS-111 Crew in white room during TCDT

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- In the White Room, Launch Pad 39A, the STS-111 and Expedition 5 crews pose in front of the entry into Space Shuttle Endeavour. From left are Expedition 5 crew member Sergei Treschev and Commander Valeri Korzun, with the Russian Space Agency; STS-111 Mission Specialist Philippe Perrin, with the French Space Agency; Commander Kenneth Cockrell and Pilot Paul Lockhart; Expedition 5 crew member Peggy Whitson; and Mission Specialist Franklin Chang-Diaz. The crews are taking part in Terminal Countdown Demonstration Test activities at the pad, which include emergency egress training and a simulated launch countdown. The mission is Utilization Flight 2, carrying supplies and equipment to the International Space Station, the Mobile Base System, which will be installed on the Mobile Transporter to complete the Canadian Mobile Servicing System, or MSS, and a replacement wrist/roll joint for Canadarm 2. The mechanical arm will then have the capability to 'inchworm' from the U.S. Lab Destiny to the MSS and travel along the truss to work sites. Expedition 5 will travel to the Station on Endeavour as the replacement crew for Expedition 4, who will return to Earth aboard the orbiter. Launch is scheduled for May 30, 2002.

  12. KSC-02pd0726

    NASA Image and Video Library

    2002-05-17

    KENNEDY SPACE CENTER, FLA. -- Expedition 5 Commander Valeri Korzun (with microphone) speaks to the media before leaving KSC. Behind him (left to right) are STS-111 Commander Kenneth Cockrell and Pilot Paul Lockhart; astronaut Peggy Whitson and cosmonaut Sergei Treschev; Mission Specialists Philippe Perrin and Franklin Chang-Diaz. Korzun and Treschev are with the Russian Space Agency; Perrin is with the French Space Agency. They have been taking part in Terminal Countdown Demonstration Test activities that include emergency egress training and a simulated launch countdown. Expedition 5 will travel to the International Space Station on mission STS-111 as the replacement crew for Expedition 4, who will return to Earth aboard the orbiter. Mission STS-111 is known as Utilization Flight 2, carrying supplies and equipment in the Multi-Purpose Logistics Module Leonardo to the International Space Station. The payload also includes the Mobile Base System, which will be installed on the Mobile Transporter to complete the Canadian Mobile Servicing System, or MSS, and a replacement wrist/roll joint for Canadarm 2. The mechanical arm will then have the capability to "inchworm" from the U.S. Lab Destiny to the MSS and travel along the truss to work sites. Launch is scheduled for May 30, 2002

  13. Flight test results for a separate surface stability augmented Beech model 99

    NASA Technical Reports Server (NTRS)

    Jenks, G. E.; Henry, H. F.; Roskam, J.

    1977-01-01

    A flight evaluation of a Beech model 99 equipped with an attitude command control system incorporating separate surface stability augmentation (SSSA) was conducted to determine whether an attitude command control system could be implemented using separate surface controls, and to determine whether the handling and ride qualities of the aircraft were improved by the SSSA attitude command system. The results of the program revealed that SSSA is a viable approach to implementing attitude command and also that SSSA has the capability of performing less demanding augmentation tasks such as yaw damping, wing leveling, and pitch damping. The program also revealed that attitude command did improve the pilot rating and ride qualities of the airplane while flying an IFR mission in turbulence. Some disadvantages of the system included the necessity of holding aileron force in a banked turn and excessive stiffness in the pitch axis.

  14. Adjustable impedance, force feedback and command language aids for telerobotics (parts 1-4 of an 8-part MIT progress report)

    NASA Technical Reports Server (NTRS)

    Sheridan, Thomas B.; Raju, G. Jagganath; Buzan, Forrest T.; Yared, Wael; Park, Jong

    1989-01-01

    Projects recently completed or in progress at MIT Man-Machine Systems Laboratory are summarized. (1) A 2-part impedance network model of a single degree of freedom remote manipulation system is presented in which a human operator at the master port interacts with a task object at the slave port in a remote location is presented. (2) The extension of the predictor concept to include force feedback and dynamic modeling of the manipulator and the environment is addressed. (3) A system was constructed to infer intent from the operator's commands and the teleoperation context, and generalize this information to interpret future commands. (4) A command language system is being designed that is robust, easy to learn, and has more natural man-machine communication. A general telerobot problem selected as an important command language context is finding a collision-free path for a robot.

  15. STS-93 crew members take part in an emergency egress exercise

    NASA Technical Reports Server (NTRS)

    1999-01-01

    During an emergency egress exercise at the launch pad, Pilot Jeffrey S. Ashby (left) and Commander Eileen M. Collins (right) practice getting into the slidewire basket that is part of an emergency escape route for persons in the Shuttle and on the Rotating Service Structure. The STS-93 crew has been taking part in Terminal Countdown Demonstration Test (TCDT) activities that include the emergency exit training and a launch-day dress rehearsal culminating with a simulated main engine cut-off. Other crew members participating are Mission Specialists Catherine G. Coleman (Ph.D.), Steven A. Hawley (Ph.D.), and Michel Tognini of France, who represents the Centre National d'Etudes Spatiales (CNES). Collins is the first woman to serve as a Shuttle commander. The primary mission of STS-93 is the release of the Chandra X-ray Observatory, which will allow scientists from around the world to obtain unprecedented X-ray images of exotic environments in space to help understand the structure and evolution of the universe. The targeted launch date for STS-93 is no earlier than July 20 at 12:36 a.m. EDT from Launch Pad 39B.

  16. STS-93 crew members take part in an emergency egress exercise

    NASA Technical Reports Server (NTRS)

    1999-01-01

    During an emergency egress exercise at the launch pad, Pilot Jeffrey S. Ashby (left) and Commander Eileen M. Collins (right) hurry down the yellow-painted path to a slidewire basket. The baskets are part of an emergency escape route for persons in the Shuttle and on the Rotating Service Structure. The STS-93 crew members have been taking part in Terminal Countdown Demonstration Test (TCDT) activities that include the emergency exit training and a launch-day dress rehearsal culminating with a simulated main engine cut-off. Other crew members participating are Mission Specialists Catherine G. Coleman (Ph.D.), Steven A. Hawley (Ph.D.), and Michel Tognini of France, who represents the Centre National d'Etudes Spatiales (CNES). Collins is the first woman to serve as a Shuttle commander. The primary mission of STS-93 is the release of the Chandra X-ray Observatory, which will allow scientists from around the world to obtain unprecedented X-ray images of exotic environments in space to help understand the structure and evolution of the universe. The targeted launch date for STS-93 is no earlier than July 20 at 12:36 a.m. EDT from Launch Pad 39B.

  17. M1A2 Adjunct Analysis (POSNOV Volume)

    DTIC Science & Technology

    1989-12-01

    MD 20814-2797 Director 2 U.S. Army Materiel Systems Analysis Activity ATTN: AMXSY-CS, AMXSY-GA Aberden Proving Grounds , MD 21005-5071 U.S. Army...Leonard Wood, MO Commander U.S. Army Ordnance Center & School ATTN: ATSL-CD-CS Aberdeen Proving Ground , MD 21005 Commander 2 U.S. Army Soldier Support...NJ Commander U.S. Army Test and Evaluation Command ATrN: AMSTE-CM-R Aberdeen Proving Ground , MD 21005 Commander U.S. Army Tank Automotive Command

  18. Audit Oversight: Quality Control System at U.S. Special Operations Command Inspector General Audit Division

    DTIC Science & Technology

    2002-08-21

    The Audit Division provides the Commander, U.S. Special Operations Command (USSOCOM) with professional auditing services to safeguard, account for...and ensure the proper use of special operations forces assets in accomplishing the USSOCOM mission. The Audit Division reports to the USSOCOM Inspector...U.S. Army Special Operations Command, Naval Special Warfare Command, and the Joint Special Operations Command. Appendix A contains a summary of the Audit Division policy and procedures.

  19. Distance Learning Methodologies. TRANSCOM Regulating and Command & Control Evacuation System (TRAC2ES).

    ERIC Educational Resources Information Center

    Bloomquist, Carroll R.

    The TRANSCOM (Transportation Command) Regulating Command and Control Evacuation System (TRAC2ES), which applies state-of-the-art technology to manage global medical regulating (matching patients to clinical availability) and medical evacuation processes, will be installed at all Department of Defense medical locations globally. A combination of…

  20. AI challenges for spacecraft control programs

    NASA Technical Reports Server (NTRS)

    Lightfoot, Patricia

    1986-01-01

    The application of AI technology to the spacecraft and experiment command and control systems environment is proposed. The disadvantages of the present methods for analyzing and resolving spacecraft experiment command and control problems are discussed. The potential capabilities and advantages of using AI for the spacecraft and experiment command and control systems are described.

  1. 77 FR 13573 - Privacy Act of 1974; System of Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-07

    ... FR 71537). Reason: The system at Army Human Resource Command (AHRC) has been deactivated and records... (January 6, 2004, 69 FR 790). Reason: The files are no longer collected at Army Human Resource Command... 8183). Reason: The files are no longer collected at Army Human Resource Command, records have met the...

  2. User guide to a command and control system; a part of a prelaunch wind monitoring program

    NASA Technical Reports Server (NTRS)

    Cowgill, G. R.

    1976-01-01

    A set of programs called Command and Control System (CCS), intended as a user manual, is described for the operation of CCS by the personnel supporting the wind monitoring portion of the launch mission. Wind data obtained by tracking balloons is sent by electronic means using telephone lines to other locations. Steering commands are computed from a system called ADDJUST for the on-board computer and relays this data. Data are received and automatically stored in a microprocessor, then via a real time program transferred to the UNIVAC 1100/40 computer. At this point the data is available to be used by the Command and Control system.

  3. Command and control of Sierra Leone's Ebola outbreak response: evolution of the response architecture.

    PubMed

    Ross, Emma

    2017-05-26

    Management, coordination and logistics were critical for responding effectively to the Ebola outbreak in Sierra Leone, and the duration of the epidemic provided a rare opportunity to study the management of an outbreak that endured long enough for the response to mature. This qualitative study examines the structures and systems used to manage the response, and how and why they changed and evolved. It also discusses the quality of relationships between key responders and their impact. Early coordination mechanisms failed and the President took operational control away from the Ministry of Health and Sanitation and established a National Ebola Response Centre, headed by the Minister of Defence, and District Ebola Response Centres. British civilian and military personnel were deeply embedded in this command and control architecture and, together with the United Nations Mission for Ebola Emergency Response lead, were the dominant coordination partners at the national level. Coordination, politics and tensions in relationships hampered the response, but as the response mechanisms matured, coordination improved and rifts healed. Simultaneously setting up new organizations, processes and plans as well as attempting to reconcile different cultures, working practices and personalities in such an emergency was bound to be challenging.This article is part of the themed issue 'The 2013-2016 West African Ebola epidemic: data, decision-making and disease control'. © 2017 The Author(s).

  4. KSC-99pp0723

    NASA Image and Video Library

    1999-06-22

    The STS-93 crew pose in front of an M-113, an armored personnel carrier, which they will use for emergency egress training from the launch pad. From left are Mission Specialist Steven A. Hawley (Ph.D.), Pilot Jeffrey S. Ashby, Mission Specialist Michel Tognini of France, Commander Eileen M. Collins and Mission Specialist Catherine G. Coleman (Ph.D.). Collins is the first woman to serve as mission commander. Tognini represents the Centre National d'Etudes Spatiales (CNES). TCDT activities familiarize the crew with the mission, provide training in emergency exit from the orbiter and launch pad, and include a launch-day dress rehearsal culminating with a simulated main engine cut-off. The primary mission of STS-93 is the release of the Chandra X-ray Observatory, which will allow scientists from around the world to obtain unprecedented X-ray images of exotic environments in space to help understand the structure and evolution of the universe. Chandra is expected to provide unique and crucial information on the nature of objects ranging from comets in our solar system to quasars at the edge of the observable universe. Since X-rays are absorbed by the Earth's atmosphere, space-based observatories are necessary to study these phenomena and allow scientists to analyze some of the greatest mysteries of the universe. The targeted launch date for STS-93 is no earlier than July 20 at 12:36 a.m. EDT from Launch Pad 39B

  5. Commander Wilcutt works at the commander's workstation during STS-106

    NASA Image and Video Library

    2000-09-11

    STS106-352-009 (8-20 September 2000) --- Astronaut Terrence W. Wilcutt, STS-106 mission commander, performs a firing of the reaction control system on the flight deck of the Space Shuttle Atlantis. Earth’s horizon is visible through the commander’s window.

  6. Helicopter force-feel and stability augmentation system with parallel servo-actuator

    NASA Technical Reports Server (NTRS)

    Hoh, Roger H. (Inventor)

    2006-01-01

    A force-feel system is implemented by mechanically coupling a servo-actuator to and in parallel with a flight control system. The servo-actuator consists of an electric motor, a gearing device, and a clutch. A commanded cockpit-flight-controller position is achieved by pilot actuation of a trim-switch. The position of the cockpit-flight-controller is compared with the commanded position to form a first error which is processed by a shaping function to correlate the first error with a commanded force at the cockpit-flight-controller. The commanded force on the cockpit-flight-controller provides centering forces and improved control feel for the pilot. In an embodiment, the force-feel system is used as the basic element of stability augmentation system (SAS). The SAS provides a stabilization signal that is compared with the commanded position to form a second error signal. The first error is summed with the second error for processing by the shaping function.

  7. Step 1: Human System Integration Simulation and Flight Test Progress Report

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The Access 5 Human Systems Integration Work Package produced simulation and flight demonstration planning products for use throughout the program. These included: Test Objectives for Command, Control, Communications; Pilot Questionnaire for Command, Control, Communications; Air Traffic Controller Questionnaire for Command, Control, Communications; Test Objectives for Collision Avoidance; Pilot Questionnaire for Collision Avoidance; Plans for Unmanned Aircraft Systems Control Station Simulations Flight Requirements for the Airspace Operations Demonstration

  8. 32 CFR 536.3 - Command and organizational relationships.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 3 2014-07-01 2014-07-01 false Command and organizational relationships. 536.3... ACCOUNTS CLAIMS AGAINST THE UNITED STATES The Army Claims System § 536.3 Command and organizational.... Army Claims Service. USARCS, a command and component of the Office of TJAG, is the agency through which...

  9. 32 CFR 536.3 - Command and organizational relationships.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 3 2012-07-01 2009-07-01 true Command and organizational relationships. 536.3... ACCOUNTS CLAIMS AGAINST THE UNITED STATES The Army Claims System § 536.3 Command and organizational.... Army Claims Service. USARCS, a command and component of the Office of TJAG, is the agency through which...

  10. 32 CFR 536.3 - Command and organizational relationships.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 3 2011-07-01 2009-07-01 true Command and organizational relationships. 536.3... ACCOUNTS CLAIMS AGAINST THE UNITED STATES The Army Claims System § 536.3 Command and organizational.... Army Claims Service. USARCS, a command and component of the Office of TJAG, is the agency through which...

  11. 32 CFR 536.3 - Command and organizational relationships.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 3 2010-07-01 2010-07-01 true Command and organizational relationships. 536.3... ACCOUNTS CLAIMS AGAINST THE UNITED STATES The Army Claims System § 536.3 Command and organizational.... Army Claims Service. USARCS, a command and component of the Office of TJAG, is the agency through which...

  12. 32 CFR 536.3 - Command and organizational relationships.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 3 2013-07-01 2013-07-01 false Command and organizational relationships. 536.3... ACCOUNTS CLAIMS AGAINST THE UNITED STATES The Army Claims System § 536.3 Command and organizational.... Army Claims Service. USARCS, a command and component of the Office of TJAG, is the agency through which...

  13. Pilot Non-Conformance to Alerting System Commands During Closely Spaced Parallel Approaches

    NASA Technical Reports Server (NTRS)

    Pritchett, Amy Ruth; Hansman, R. John; Corker, Kevin (Technical Monitor)

    1997-01-01

    Cockpit alerting systems monitor potentially hazardous situations, both inside and outside the aircraft. When a hazard is projected to occur, the alerting system displays alerts and/or command decisions to the pilot. However, pilots have been observed to not conform to alerting system commands by delaying their response or by not following the automatic commands exactly. This non-conformance to the automatic alerting system can reduce its benefit. Therefore, a need exists to understand the causes and effects of pilot non-conformance in order to develop automatic alerting systems whose commands the pilots are more likely to follow. These considerations were examined through flight simulator evaluations of the collision avoidance task during closely spaced parallel approaches. This task provided a useful case-study because the effects of non-conformance can be significant, given the time-critical nature of the task. A preliminary evaluation of alerting systems identified non-conformance in over 40% of the cases and a corresponding drop in collision avoidance performance. A follow-on experiment found subjects' alerting and maneuver selection criteria were consistent with different strategies than those used by automatic systems, indicating the pilot may potentially disagree with the alerting system if the pilot attempts to verify automatic alerts and commanded avoidance maneuvers. A final experiment found supporting automatic alerts with the explicit display of its underlying criteria resulted in more consistent subject reactions. In light of these experimental results, a general discussion of pilot non-conformance is provided. Contributing factors in pilot non-conformance include a lack of confidence in the automatic system and mismatches between the alerting system's commands and the pilots' own decisions based on the information available to them. The effects of non-conformance on system performance are discussed. Possible methods of reconciling mismatches are given, and design considerations for alerting systems which alleviate the problem of non-conformance are provided.

  14. A Productivity Enhancement Study for the U.S. Army Information Systems Engineering Command.

    DTIC Science & Technology

    1985-09-01

    This is not to say "doing one’s homework" is unimportant. It is as long as it does not snuff out enthusiasm and innovativeness. Peters tells us: The...Commander 10 U.S. Army Information Systems Engineering Command Ft Belvoir, Virginia 22060-5456 134 71" ~..-.-------..~.-.-........ -PV S FILMED

  15. Marine Tactical Command and Control System (MTACCS) Field Development System-1 (FDS-1) assessment: Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avery, L.W.; Hunt, S.T.; Savage, S.F.

    1992-04-01

    The United State Marine Corps (USMC) is continuing the development and fielding of the Marine Corps Tactical Command and Control System (MTACCS), a system which exists in varying states of development, fielding, or modernization. MTACCS is currently composed of the following components: Tactical Combat Operations System (TCO) for ground command and control (C2), Intelligence Analysis System (IAS) with a Genser terminal connected to a TCO workstation for intelligence C2, Marine Integrated Personnel System (MIPS) and a TCO workstation using the Marine Combat Personnel System (MCPERS) software for personnel C2, Marine Integrated Logistics System (MILOGS) which is composed of the Landingmore » Force Asset Distribution System (LFADS), the Marine Air-Ground Task Force (MAGTF) II, and a TCO terminal using the Marine Combat Logistics System (MCLOG) for logistics C2, Marine Corps Fire Support System (MCFSS) for fire support C2, and Advanced Tactical Air Command Central (ATACC) and the Improved Direct Air Support Central for aviation C2.« less

  16. Two Validated Ways of Improving the Ability of Decision-Making in Emergencies; Results from a Literature Review

    PubMed Central

    Khorram-Manesh, Amir; Berlin, Johan; Carlström, Eric

    2016-01-01

    The aim of the current review wasto study the existing knowledge about decision-making and to identify and describe validated training tools.A comprehensive literature review was conducted by using the following keywords: decision-making, emergencies, disasters, crisis management, training, exercises, simulation, validated, real-time, command and control, communication, collaboration, and multi-disciplinary in combination or as an isolated word. Two validated training systems developed in Sweden, 3 level collaboration (3LC) and MacSim, were identified and studied in light of the literature review in order to identify how decision-making can be trained. The training models fulfilled six of the eight identified characteristics of training for decision-making.Based on the results, these training models contained methods suitable to train for decision-making. PMID:27878123

  17. A local network integrated into a balloon-borne apparatus

    NASA Astrophysics Data System (ADS)

    Imori, Masatosi; Ueda, Ikuo; Shimamura, Kotaro; Maeno, Tadashi; Murata, Takahiro; Sasaki, Makoto; Matsunaga, Hiroyuki; Matsumoto, Hiroshi; Shikaze, Yoshiaki; Anraku, Kazuaki; Matsui, Nagataka; Yamagami, Takamasa

    A local network is incorporated into an apparatus for a balloon-borne experiment. A balloon-borne system implemented in the apparatus is composed of subsystems interconnected through a local network, which introduces modular architecture into the system. The network decomposes the balloon-borne system into subsystems, which are similarly structured from the point of view that the systems is kept under the control of a ground station. The subsystem is functionally self-contained and electrically independent. A computer is integrated into a subsystem, keeping the subsystem under the control. An independent group of batteries, being dedicated to a subsystem, supplies the whole electricity of the subsystem. The subsystem could be turned on and off independently of the other subsystems. So communication among the subsystems needs to be based on such a protocol that could guarantee the independence of the individual subsystems. An Omninet protocol is employed to network the subsystems. A ground station sends commands to the balloon-borne system. The command is received and executed at the system, then results of the execution are returned to the ground station. Various commands are available so that the system borne on a balloon could be controlled and monitored remotely from the ground station. A subsystem responds to a specific group of commands. A command is received by a transceiver subsystem and then transferred through the network to the subsystem to which the command is addressed. Then the subsystem executes the command and returns results to the transceiver subsystem, where the results are telemetered to the ground station. The network enhances independence of the individual subsystems, which enables programs of the individual subsystems to be coded independently. Independence facilitates development and debugging of programs, improving the quality of the system borne on a balloon.

  18. STS-79 CREW COMMANDER WILLIAM F. READDY PREPARES TO ENTER ATLANTIS AT PAD 39A FOR TCDT

    NASA Technical Reports Server (NTRS)

    1996-01-01

    At Launch Pad 39A, the astronauts assigned to Space Shuttle Mission STS-79 are wrapping up Terminal Countdown Demonstration Test (TCDT) activities with participation in a simulated countdown. Shown here in the white room of the Orbiter Access Arm is Commander William F. Readdy. Besides the realistic launch day preparation, the TCDT also includes emergency egress training at the pad. The Space Shuttle Atlantis is undergoing preparations for liftoff on the fourth Shuttle-Mir docking flight no earlier than Sept. 12.

  19. STS-105 Commander Horowitz tries on gas mask at Launch Pad 39A

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- At Launch Pad 39A, STS-105 Commander Scott Horowitz puts on a gas mask as part of Terminal Countdown Demonstration Test activities, which also include emergency egress, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch is scheduled no earlier than Aug. 9, 2001.

  20. Status of Centrifugal Impeller Internal Aerodynamics: Experiments and Calculations

    DTIC Science & Technology

    1979-02-01

    Dan Adler February 1979 TJ Approved for public release; distribution unlimited 267.5 16 Prepared for: A35 Naval Air Systems Command Washington...The work reported herein was supported by the Naval Air Systems Command, Washington, DC. Reproduction of all or part of this report is authorized...6115 3N; N00019-79-WR-91115 II. CONTROLLING OFFICE NAME AND ADDRESS Naval Air Systems Command Washington, DC 20361 12. REPORT DATE

  1. Financial Management: Naval Air Systems Command Financial Reporting of Non-Ammunition Operating Material and Supplies for FY 2002

    DTIC Science & Technology

    2002-11-08

    Financial Management November 8, 2002 Office of the Inspector General of the Department of Defense Naval Air Systems Command Financial Reporting of...from... to) - Title and Subtitle Financial Management: Naval Air Systems Command Financial Reporting of Non-Ammunition Operating Material and...This report is the first in a series of planned reports and discusses the financial reporting of non-ammunition operating materials and supplies

  2. The Design and Transfer of Advanced Command and Control (C2) Computer-Based Systems

    DTIC Science & Technology

    1980-03-31

    TECHNICAL REPORT 80-02 QUARTERLY TECHNICAL REPORT: THE DESIGN AND TRANSFER OF ADVANCED COMMAND AND CONTROL (C 2 ) COMPUTER-BASED SYSTEMS ARPA...The Tasks/Objectives and/or Purposes of the overall project are connected with the design , development, demonstration and transfer of advanced...command and control (C2 ) computer-based systems; this report covers work in the computer-based design and transfer areas only. The Technical Problems thus

  3. Macintosh II based space Telemetry and Command (MacTac) system

    NASA Technical Reports Server (NTRS)

    Dominy, Carol T.; Chesney, James R.; Collins, Aaron S.; Kay, W. K.

    1991-01-01

    The general architecture and the principal functions of the Macintosh II based Telemetry and Command system, presently under development, are described, with attention given to custom telemetry cards, input/output interfaces, and the icon driven user interface. The MacTac is a low-cost, transportable, easy to use, compact system designed to meet the requirements specified by the Consultative Committeee for Space Data Systems while remaining flexible enough to support a wide variety of other user specific telemetry processing requirements, such as TDM data. In addition, the MacTac can accept or generate forward data (such as spacecraft commands), calculate and append a Polynomial Check Code, and output these data to NASCOM to provide full Telemetry and Command capability.

  4. The evacuation of cairns hospitals due to severe tropical cyclone Yasi.

    PubMed

    Little, Mark; Stone, Theona; Stone, Richard; Burns, Jan; Reeves, Jim; Cullen, Paul; Humble, Ian; Finn, Emmeline; Aitken, Peter; Elcock, Mark; Gillard, Noel

    2012-09-01

    On February 2, 2011, Tropical Cyclone Yasi, the largest cyclone to cross the Australian coast and a system the size of Hurricane Katrina, threatened the city of Cairns. As a result, the Cairns Base Hospital (CBH) and Cairns Private Hospital (CPH) were both evacuated, the hospitals were closed, and an alternate emergency medical center was established in a sports stadium 15 km from the Cairns central business district. This article describes the events around the evacuation of 356 patients, staff, and relatives to Brisbane (approximately 1,700 km away by road), closure of the hospitals, and the provision of a temporary emergency medical center for 28 hours during the height of the cyclone. Our experience highlights the need for adequate and exercised hospital evacuation plans; the need for clear command and control with identified decision-makers; early decision-making on when to evacuate; having good communication systems with redundancy; ensuring that patients are adequately identified and tracked and have their medications and notes; ensuring adequate staff, medications, and oxygen for holding patients; and planning in detail the alternate medical facility safety and its role, function, and equipment. © 2012 by the Society for Academic Emergency Medicine.

  5. Joint Command and Control of Cyber Operations: The Joint Force Cyber Component Command (JFCCC)

    DTIC Science & Technology

    2012-05-04

    relies so heavily on complex command and control systems and interconnectivity in general, cyber warfare has become a serious topic of interest at the...defensive cyber warfare into current and future operations and plans. In particular, Joint Task Force (JTF) Commanders must develop an optimum method to

  6. 77 FR 27202 - 36(b)(1) Arms Sales Notification

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-09

    ... includes: Electronic Warfare Systems, Command, Control, Communication, Computers and Intelligence/Communication, Navigational and Identifications (C4I/CNI), Autonomic Logistics Global Support System (ALGS... Systems, Command, Control, Communication, Computers and Intelligence/Communication, Navigational and...

  7. Core commands across airway facilities systems.

    DOT National Transportation Integrated Search

    2003-05-01

    This study takes a high-level approach to evaluate computer systems without regard to the specific method of : interaction. This document analyzes the commands that Airway Facilities (AF) use across different systems and : the meanings attributed to ...

  8. Unix Survival Guide.

    PubMed

    Stein, Lincoln D

    2015-09-03

    Most bioinformatics software has been designed to run on Linux and other Unix-like systems. Unix is different from most desktop operating systems because it makes extensive use of a text-only command-line interface. It can be a challenge to become familiar with the command line, but once a person becomes used to it, there are significant rewards, such as the ability to string a commonly used series of commands together with a script. This appendix will get you started with the command line and other Unix essentials. Copyright © 2015 John Wiley & Sons, Inc.

  9. Fuzzy Finite-Time Command Filtered Control of Nonlinear Systems With Input Saturation.

    PubMed

    Yu, Jinpeng; Zhao, Lin; Yu, Haisheng; Lin, Chong; Dong, Wenjie

    2017-08-22

    This paper considers the fuzzy finite-time tracking control problem for a class of nonlinear systems with input saturation. A novel fuzzy finite-time command filtered backstepping approach is proposed by introducing the fuzzy finite-time command filter, designing the new virtual control signals and the modified error compensation signals. The proposed approach not only holds the advantages of the conventional command-filtered backstepping control, but also guarantees the finite-time convergence. A practical example is included to show the effectiveness of the proposed method.

  10. Pendulation control system and method for rotary boom cranes

    DOEpatents

    Robinett, III, Rush D.; Groom, Kenneth N.; Feddema, John T.; Parker, Gordon G.

    2002-01-01

    A command shaping control system and method for rotary boom cranes provides a way to reduce payload pendulation caused by real-time input signals, from either operator command or automated crane maneuvers. The method can take input commands and can apply a command shaping filter to reduce contributors to payload pendulation due to rotation, elevation, and hoisting movements in order to control crane response and reduce tangential and radial payload pendulation. A filter can be applied to a pendulation excitation frequency to reduce residual radial pendulation and tangential pendulation amplitudes.

  11. TRICCS: A proposed teleoperator/robot integrated command and control system for space applications

    NASA Technical Reports Server (NTRS)

    Will, R. W.

    1985-01-01

    Robotic systems will play an increasingly important role in space operations. An integrated command and control system based on the requirements of space-related applications and incorporating features necessary for the evolution of advanced goal-directed robotic systems is described. These features include: interaction with a world model or domain knowledge base, sensor feedback, multiple-arm capability and concurrent operations. The system makes maximum use of manual interaction at all levels for debug, monitoring, and operational reliability. It is shown that the robotic command and control system may most advantageously be implemented as packages and tasks in Ada.

  12. Innovative 3D Textile Structures for Soft Body Armor Protection: The EPIDARM Project

    NASA Astrophysics Data System (ADS)

    Maillet, Jérôme; Lefebvre, Marie; Boussu, François; Pirlot, Marc

    There is a real need for battlefield soldiers to be protected from ­ballistic and CBRNE threats and also to be in permanent contact and localization with the logistic support of the commander. Ballistic, CBRNE and tactical jackets are currently three different components, developed separately and worn on top of each other. One of the EPIDARM project's targets is to propose a personal protection demonstration for the optimal system configuration in order to reduce the cost and weight while improving protection. The systems approach used for the EPIDARM program considers the protective system inside its environment (threat, the wearer - generic soldier, task and climates). The latest emergent technologies in ballistic and CBRN protection, ergonomic effectiveness and financial cost are considered and help to select final solutions.

  13. Information Dominance in Military Decision Making.

    DTIC Science & Technology

    1999-06-04

    This study considers how ABCS (Army Battle Command System) capabilities achieve information dominance and how they influence the military decision...making process. The work examines how ABCS enables commanders and staffs to achieve information dominance at the brigade and battalion levels. Further...future digitized systems that will gain information dominance for the future commander. It promotes the continued development information dominance technologies

  14. 2015 Assessment of the Ballistic Missile Defense System (BMDS)

    DTIC Science & Technology

    2016-04-01

    performance and test adequacy of the BMDS, its four autonomous BMDS systems, and its sensor/command and control architecture. The four autonomous BMDS...Patriot. The Command and Control , Battle Management, and Communications (C2BMC) element anchors the sensor/command and control architecture. This...Warfare operations against a cruise missile surrogate. Ground-based Midcourse Defense (GMD). GMD has demonstrated capability against small

  15. M1A2 tank commander's independent thermal viewer optics: system engineering perspective

    NASA Astrophysics Data System (ADS)

    Ratcliff, David D.

    1993-08-01

    As successful as the M1A1 Abrams tank was in the Gulf War, a program has been under way for several years to improve and modernize the M1A1 to keep pace with new threats and to take advantage of new technology. This program has resulted in the M1A2 upgrade program which significantly improves the survivability and lethality of the tank. First, the point-to-point wiring and analog signal processing was replaced with digital processing and control with a modern, aircraft-style digital data bus. Additional command and control aspects of the upgrade greatly improved the situational awareness of the M1A2 commander. Finally, an additional thermal imaging system was added for the commander. This system, the M1A2 Commander's Independent Thermal Viewer (CITV) is the topic of the following paper, which details the design from a system engineering perspective, and a companion paper that presents the optical design perspective.

  16. GSFC Information Systems Technology Developments Supporting the Vision for Space Exploration

    NASA Technical Reports Server (NTRS)

    Hughes, Peter; Dennehy, Cornelius; Mosier, Gary; Smith, Dan; Rykowski, Lisa

    2004-01-01

    The Vision for Space Exploration will guide NASA's future human and robotic space activities. The broad range of human and robotic missions now being planned will require the development of new system-level capabilities enabled by emerging new technologies. Goddard Space Flight Center is actively supporting the Vision for Space Exploration in a number of program management, engineering and technology areas. This paper provides a brief background on the Vision for Space Exploration and a general overview of potential key Goddard contributions. In particular, this paper focuses on describing relevant GSFC information systems capabilities in architecture development; interoperable command, control and communications; and other applied information systems technology/research activities that are applicable to support the Vision for Space Exploration goals. Current GSFC development efforts and task activities are presented together with future plans.

  17. Exploring the Impact of Fuel Data Acquisition Technology on the USMC Expeditionary Energy Command and Control System

    DTIC Science & Technology

    2016-09-01

    suggested interventions that may reduce inefficient energy practices (Salem & Gallenson, 2014). The E2O selected a commercial-off-the-shelf (COTS) wireless ...IMPACT OF FUEL DATA ACQUISITION TECHNOLOGY ON THE USMC EXPEDITIONARY ENERGY COMMAND AND CONTROL SYSTEM by Jeremy F. Thomas September 2016...ON THE USMC EXPEDITIONARY ENERGY COMMAND AND CONTROL SYSTEM 5. FUNDING NUMBERS 6. AUTHOR(S) Jeremy F. Thomas 7. PERFORMING ORGANIZATION NAME(S

  18. NASIS data base management system - IBM 360/370 OS MVT implementation. 5: Retrieval command system reference manual

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The retrieval command subsystem reference manual for the NASA Aerospace Safety Information System (NASIS) is presented. The output oriented classification of retrieval commands provides the user with the ability to review a set of data items for verification or inspection as a typewriter or CRT terminal and to print a set of data on a remote printer. Predefined and user-definable data formatting are available for both output media.

  19. An intelligent automated command and control system for spacecraft mission operations

    NASA Technical Reports Server (NTRS)

    Stoffel, A. William

    1994-01-01

    The Intelligent Command and Control (ICC) System research project is intended to provide the technology base necessary for producing an intelligent automated command and control (C&C) system capable of performing all the ground control C&C functions currently performed by Mission Operations Center (MOC) project Flight Operations Team (FOT). The ICC research accomplishments to date, details of the ICC, and the planned outcome of the ICC research, mentioned above, are discussed in detail.

  20. High angle of attack flying qualities criteria for longitudinal rate command systems

    NASA Technical Reports Server (NTRS)

    Wilson, David J.; Citurs, Kevin D.; Davidson, John B.

    1994-01-01

    This study was designed to investigate flying qualities requirements of alternate pitch command systems for fighter aircraft at high angle of attack. Flying qualities design guidelines have already been developed for angle of attack command systems at 30, 45, and 60 degrees angle of attack, so this research fills a similar need for rate command systems. Flying qualities tasks that require post-stall maneuvering were tested during piloted simulations in the McDonnell Douglas Aerospace Manned Air Combat Simulation facility. A generic fighter aircraft model was used to test angle of attack rate and pitch rate command systems for longitudinal gross acquisition and tracking tasks at high angle of attack. A wide range of longitudinal dynamic variations were tested at 30, 45, and 60 degrees angle of attack. Pilot comments, Cooper-Harper ratings, and pilot induced oscillation ratings were taken from five pilots from NASA, USN, CAF, and McDonnell Douglas Aerospace. This data was used to form longitudinal design guidelines for rate command systems at high angle of attack. These criteria provide control law design guidance for fighter aircraft at high angle of attack, low speed flight conditions. Additional time history analyses were conducted using the longitudinal gross acquisition data to look at potential agility measures of merit and correlate agility usage to flying qualities boundaries. This paper presents an overview of this research.

  1. History of Command and Control at KSC: Kennedy Engineering Academy Series

    NASA Technical Reports Server (NTRS)

    Hurt, George Richard

    2007-01-01

    Agenda for this presentation is: Evolution of Command and Control (C&C), C&C history, Launch Processing System overview, Core System Overview, Checkout & Launch Control System, Overview and Commercial-Off-The-Shelf guidelines

  2. Astronaut Donald McMonagle checks drainage hose on his life raft in training

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Astronaut Donald R. McMonagle, STS-66 mission commander, checks the drainage hose on his rapidly fashioned life raft during an emergency bailout training exercise in JSC's Weightless Environment Training Facility (WETF).

  3. KSC-01pp1334

    NASA Image and Video Library

    2001-07-19

    KENNEDY SPACE CENTER, Fla. -- On the 195-foot level of the Fixed Service Structure, Launch Pad 39A, the STS-105 and Expedition Three crews listen to instructions about use of the slidewire basket, part of emergency egress training at the pad. From left are Expedition Three Commander Frank Culbertson, STS-105 Pilot Rick Sturckow; cosmonauts Mikhail Tyurin and Vladimir Nikolaevich Dezhurov; Mission Specialist Patrick Forrester, Commander Scott Horowitz and Mission Specialist Daniel Barry. Both crews are at KSC to take part in Terminal Countdown Demonstration Test activities, which include the emergency egress training, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001

  4. STS-105 and Expedition Three crews get slidewire training at Launch Pad 39A

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- On the 195-foot level of the Fixed Service Structure, Launch Pad 39A, the STS-105 and Expedition Three crews listen to instructions about use of the slidewire basket, part of emergency egress training at the pad. From left are Expedition Three Commander Frank Culbertson, STS-105 Pilot Rick Sturckow; cosmonauts Mikhail Tyurin and Vladimir Nikolaevich Dezhurov; Mission Specialist Patrick Forrester, Commander Scott Horowitz and Mission Specialist Daniel Barry. Both crews are at KSC to take part in Terminal Countdown Demonstration Test activities, which include the emergency egress training, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001.

  5. Mature data transport and command management services for the Space Station

    NASA Technical Reports Server (NTRS)

    Carper, R. D.

    1986-01-01

    The duplex space/ground/space data services for the Space Station are described. The need to separate the uplink data service functions from the command functions is discussed. Command management is a process shared by an operation control center and a command management system and consists of four functions: (1) uplink data communications, (2) management of the on-board computer, (3) flight resource allocation and management, and (4) real command management. The new data service capabilities provided by microprocessors, ground and flight nodes, and closed loop and open loop capabilities are studied. The need for and functions of a flight resource allocation management service are examined. The system is designed so only users can access the system; the problems encountered with open loop uplink access are analyzed. The procedures for delivery of operational, verification, computer, and surveillance and monitoring data directly to users are reviewed.

  6. XTCE GOVSAT Tool Suite 1.0

    NASA Technical Reports Server (NTRS)

    Rice, J. Kevin

    2013-01-01

    The XTCE GOVSAT software suite contains three tools: validation, search, and reporting. The Extensible Markup Language (XML) Telemetric and Command Exchange (XTCE) GOVSAT Tool Suite is written in Java for manipulating XTCE XML files. XTCE is a Consultative Committee for Space Data Systems (CCSDS) and Object Management Group (OMG) specification for describing the format and information in telemetry and command packet streams. These descriptions are files that are used to configure real-time telemetry and command systems for mission operations. XTCE s purpose is to exchange database information between different systems. XTCE GOVSAT consists of rules for narrowing the use of XTCE for missions. The Validation Tool is used to syntax check GOVSAT XML files. The Search Tool is used to search (i.e. command and telemetry mnemonics) the GOVSAT XML files and view the results. Finally, the Reporting Tool is used to create command and telemetry reports. These reports can be displayed or printed for use by the operations team.

  7. 77 FR 59596 - Procurement List; Proposed Additions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-28

    ... within the authority of Naval Supply Systems Command (NAVSUP) Fleet Logistics Center in Jacksonville, FL, as aggregated by the Naval Supply Systems Command (NAVSUP) Fleet Logistics Center, Jacksonville, FL...

  8. Development of an Integrated Package of Physics Models for Scene Simulation Studies to Support Smart Weapons Design Studies

    DTIC Science & Technology

    1992-03-17

    No. 1 Approved for Public Release; Distribution Unlimited PHILLIPS LABORATORY AIR FORCE SYSTEMS COMMAND HANSCOM AIR FORCE BASE, MASSACHUSETTS 01731...the SWOE thermal models and the design of a new Command Interface System and User Interface System . 14. SUBJECT TERMS 15. NUMBER OF PAGES 116 BTI/SWOE...to the 3-D Tree Model 24 4.2.1 Operation Via the SWOE Command Interface System 26 4.2.2 Addition of Radiation Exchange to the Environment 26 4.2.3

  9. Uncertainty and operational considerations in mass prophylaxis workforce planning.

    PubMed

    Hupert, Nathaniel; Xiong, Wei; King, Kathleen; Castorena, Michelle; Hawkins, Caitlin; Wu, Cindie; Muckstadt, John A

    2009-12-01

    The public health response to an influenza pandemic or other large-scale health emergency may include mass prophylaxis using multiple points of dispensing (PODs) to deliver countermeasures rapidly to affected populations. Computer models created to date to determine "optimal" staffing levels at PODs typically assume stable patient demand for service. The authors investigated POD function under dynamic and uncertain operational environments. The authors constructed a Monte Carlo simulation model of mass prophylaxis (the Dynamic POD Simulator, or D-PODS) to assess the consequences of nonstationary patient arrival patterns on POD function under a variety of POD layouts and staffing plans. Compared are the performance of a standard POD layout under steady-state and variable patient arrival rates that may mimic real-life variation in patient demand. To achieve similar performance, PODs functioning under nonstationary patient arrival rates require higher staffing levels than would be predicted using the assumption of stationary arrival rates. Furthermore, PODs may develop severe bottlenecks unless staffing levels vary over time to meet changing patient arrival patterns. Efficient POD networks therefore require command and control systems capable of dynamically adjusting intra- and inter-POD staff levels to meet demand. In addition, under real-world operating conditions of heightened uncertainty, fewer large PODs will require a smaller total staff than many small PODs to achieve comparable performance. Modeling environments that capture the effects of fundamental uncertainties in public health disasters are essential for the realistic evaluation of response mechanisms and policies. D-PODS quantifies POD operational efficiency under more realistic conditions than have been modeled previously. The authors' experiments demonstrate that effective POD staffing plans must be responsive to variation and uncertainty in POD arrival patterns. These experiments highlight the need for command and control systems to be created to manage emergency response successfully.

  10. A network approach to assessing cognition in disorders of consciousness(e–Pub ahead of print)(CME)

    PubMed Central

    Rodriguez Moreno, D.; Schiff, N.D.; Giacino, J.; Kalmar, K.; Hirsch, J.

    2010-01-01

    Objective: Conventional assessments of consciousness rely on motor responses to indicate awareness. However, overt behaviors may be absent or ambiguous in patients with disorders of consciousness (DOC) resulting in underrating capacity for cognition. fMRI during a silent picture-naming task was evaluated as an indicator of command following when conventional methods are not sufficient. Methods: A total of 10 patients with and without conventional evidence of awareness, who met diagnostic criteria for the minimally conscious state (MCS) (n = 5), vegetative state (VS) (n = 3), emerged from MCS (EMCS) (n = 1), and locked-in syndrome (LIS) (n = 1), participated in this observational fMRI study. Results: The LIS and EMCS patients engaged a complete network of essential language-related regions during the object-naming task. The MCS and 2 of the VS patients demonstrated both complete and partial preservation of the object-naming system. Patients who engaged a complete network scored highest on the Coma Recovery Scale-Revised. Conclusions: This study supports the view that fMRI during object naming can elicit brain activations in patients with DOC similar to those observed in healthy subjects during command following, and patients can be stratified by completeness of the engaged neural system. These results suggest that activity of the language network may serve as an indicator of high-level cognition and possibly volitional processes that cannot be discerned through conventional behavioral assessment alone. GLOSSARY BA = Brodmann area; BOLD = blood oxygenation level–dependent; CRS-R = Coma Recovery Scale-Revised; DOC = disorders of consciousness; EMCS = emerged from minimally conscious state; GFi(d) = dorsal inferior frontal gyrus; GFi(v) = ventral inferior frontal gyrus; hrf = hemodynamic response function; LIS = locked-in syndrome; MCS = minimally conscious state; preSMA = pre-supplementary motor area; STG = superior temporal gyrus; VS = vegetative state. PMID:20980667

  11. Tone-Based Command of Deep Space Probes using Ground Antennas

    NASA Technical Reports Server (NTRS)

    Bokulic, Robert S.; Jensen, J. Robert

    2008-01-01

    A document discusses a technique for enabling the reception of spacecraft commands at received signal levels as much as three orders of magnitude below those of current deep space systems. Tone-based commanding deals with the reception of commands that are sent in the form of precise frequency offsets using an open-loop receiver. The key elements of this technique are an ultrastable oscillator and open-loop receiver onboard the spacecraft, both of which are part of the existing New Horizons (Pluto flyby) communications system design. This enables possible flight experimentation for tone-based commanding during the long cruise of the spacecraft to Pluto. In this technique, it is also necessary to accurately remove Doppler shift from the uplink signal presented to the spacecraft. A signal processor in the spacecraft performs a discrete Fourier transform on the received signal to determine the frequency of the received signal. Due to the long-term drift in the oscillators and orbit prediction model, the system is likely to be implemented differentially, where changes in the uplink frequency convey the command information.

  12. The Army's Use of the Advanced Communications Technology Satellite

    NASA Technical Reports Server (NTRS)

    Ilse, Kenneth

    1996-01-01

    Tactical operations require military commanders to be mobile and have a high level of independence in their actions. Communications capabilities providing intelligence and command orders in these tactical situations have been limited to simple voice communications or low-rate narrow bandwidth communications because of the need for immediate reliable connectivity. The Advanced Communications Technology Satellite (ACTS) has brought an improved communications tool to the tactical commander giving the ability to gain access to a global communications system using high data rates and wide bandwidths. The Army has successfully tested this new capability of bandwidth-on-demand and high data rates for commanders in real-world conditions during Operation UPHOLD DEMOCRACY in Haiti during the fall and winter of 1994. This paper examines ACTS use by field commanders and details the success of the ACTS system in support of a wide variety of field condition command functions.

  13. Command Filtering-Based Fuzzy Control for Nonlinear Systems With Saturation Input.

    PubMed

    Yu, Jinpeng; Shi, Peng; Dong, Wenjie; Lin, Chong

    2017-09-01

    In this paper, command filtering-based fuzzy control is designed for uncertain multi-input multioutput (MIMO) nonlinear systems with saturation nonlinearity input. First, the command filtering method is employed to deal with the explosion of complexity caused by the derivative of virtual controllers. Then, fuzzy logic systems are utilized to approximate the nonlinear functions of MIMO systems. Furthermore, error compensation mechanism is introduced to overcome the drawback of the dynamics surface approach. The developed method will guarantee all signals of the systems are bounded. The effectiveness and advantages of the theoretic result are obtained by a simulation example.

  14. System and method for islanding detection and prevention in distributed generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhowmik, Shibashis; Mazhari, Iman; Parkhideh, Babak

    Various examples are directed to systems and methods for detecting an islanding condition at an inverter configured to couple a distributed generation system to an electrical grid network. A controller may determine a command frequency and a command frequency variation. The controller may determine that the command frequency variation indicates a potential islanding condition and send to the inverter an instruction to disconnect the distributed generation system from the electrical grid network. When the distributed generation system is disconnected from the electrical grid network, the controller may determine whether the grid network is valid.

  15. [Network Design of the Spaceport Command and Control System

    NASA Technical Reports Server (NTRS)

    Teijeiro, Antonio

    2017-01-01

    I helped the Launch Control System (LCS) hardware team sustain the network design of the Spaceport Command and Control System. I wrote the procedure that will be used to satisfy an official hardware test for the hardware carrying data from the Launch Vehicle. I installed hardware and updated design documents in support of the ongoing development of the Spaceport Command and Control System and applied firewall experience I gained during my spring 2017 semester to inspect and create firewall security policies as requested. Finally, I completed several online courses concerning networking fundamentals and Unix operating systems.

  16. Design Challenges Encountered in a Propulsion-Controlled Aircraft Flight Test Program

    NASA Technical Reports Server (NTRS)

    Maine, Trindel; Burken, John; Burcham, Frank; Schaefer, Peter

    1994-01-01

    The NASA Dryden Flight Research Center conducted flight tests of a propulsion-controlled aircraft system on an F-15 airplane. This system was designed to explore the feasibility of providing safe emergency landing capability using only the engines to provide flight control in the event of a catastrophic loss of conventional flight controls. Control laws were designed to control the flightpath and bank angle using only commands to the throttles. Although the program was highly successful, this paper highlights some of the challenges associated with using engine thrust as a control effector. These challenges include slow engine response time, poorly modeled nonlinear engine dynamics, unmodeled inlet-airframe interactions, and difficulties with ground effect and gust rejection. Flight and simulation data illustrate these difficulties.

  17. @Astro_Wheels Tweetup

    NASA Image and Video Library

    2011-03-16

    Astronaut Doug Wheelock discusses his experiences while living on the International Space Station during a tweetup at NASA Headquarters in Washington, Wednesday, March 16, 2011. Wheelock, who has accumulated a total of 178 days in space, assumed command of the International Space Station and the Expedition 25 crew. During Expedition 25, there were more than 120 microgravity experiments in human research; biology and biotechnology; physical and materials sciences; technology development; and Earth and space sciences. Wheelock also responded to an emergency shutdown of half of the station's external cooling system and supported three unplanned spacewalks to replace the faulty pump module that caused the shutdown. His efforts restored the station's critical cooling system to full function. The mission duration was 163 days. Photo Credit: (NASA/Paul E. Alers)

  18. Remote Control and Monitoring of VLBI Experiments by Smartphones

    NASA Astrophysics Data System (ADS)

    Ruztort, C. H.; Hase, H.; Zapata, O.; Pedreros, F.

    2012-12-01

    For the remote control and monitoring of VLBI operations, we developed a software optimized for smartphones. This is a new tool based on a client-server architecture with a Web interface optimized for smartphone screens and cellphone networks. The server uses variables of the Field System and its station specific parameters stored in the shared memory. The client running on the smartphone by a Web interface analyzes and visualizes the current status of the radio telescope, receiver, schedule, and recorder. In addition, it allows commands to be sent remotely to the Field System computer and displays the log entries. The user has full access to the entire operation process, which is important in emergency cases. The software also integrates a webcam interface.

  19. [Initial medical management in radiological accidents and nuclear disaster].

    PubMed

    Tanigawa, Koichi

    2012-03-01

    Major radiological emergencies include criticality in nuclear power plants or terrorist attacks using dirty bombs or nuclear device detonation. Because irradiation itself does not cause any immediate death of the victims, and there is a minimum risk of secondary irradiation to medical personnel during decontamination procedures, lifesaving treatments should be prioritized. When a major radiological accident occurs, information is scarce and/or becomes intricate. We might face with significant difficulties in determining the exact culprits of the event, i.e., radiological or chemical or others. Therefore, it is strongly recommended for the national and local governments, related organizations and hospitals to develop comprehensive systems to cope with all hazards(chemical, biological, radiation, nuclear, and explosion) under the common incident command system.

  20. Simulation evaluation of two VTOL control/display systems in IMC approach and shipboard landing

    NASA Technical Reports Server (NTRS)

    Merrick, V. K.

    1984-01-01

    Two control/display systems, which differed in overall complexity but were both designed for VTOL flight operations to and from small ships in instrument meteorological conditions (IMC), were tested using the Ames Flight Simulator for Advanced Aircraft (FSAA). Both systems have attitude command in transition and horizontal-velocity command in hover; the more complex system also has longitudinal-acceleration and flightpath-angle command in transition, and vertical-velocity command in hover. The most important overall distinction between the two systems for the viewpoint of implementation is that in one - the more complex - engine power and nozzle position are operated indirectly through flight controllers, whereas in the other they are operated directly by the pilot. Simulated landings were made on a moving model of a DD 963 Spruance-class destroyer. Acceptable transitions can be performed in turbulence of 3 m/sec rms using either system. Acceptable landings up to sea state 6 can be performed using the more complex system, and up to sea state 5 using the other system.

  1. Development and Flight Test of an Emergency Flight Control System Using Only Engine Thrust on an MD-11 Transport Airplane

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W., Jr.; Burken, John J.; Maine, Trindel A.; Fullerton, C. Gordon

    1997-01-01

    An emergency flight control system that uses only engine thrust, called the propulsion-controlled aircraft (PCA) system, was developed and flight tested on an MD-11 airplane. The PCA system is a thrust-only control system, which augments pilot flightpath and track commands with aircraft feedback parameters to control engine thrust. The PCA system was implemented on the MD-11 airplane using only software modifications to existing computers. Results of a 25-hr flight test show that the PCA system can be used to fly to an airport and safely land a transport airplane with an inoperative flight control system. In up-and-away operation, the PCA system served as an acceptable autopilot capable of extended flight over a range of speeds, altitudes, and configurations. PCA approaches, go-arounds, and three landings without the use of any normal flight controls were demonstrated, including ILS-coupled hands-off landings. PCA operation was used to recover from an upset condition. The PCA system was also tested at altitude with all three hydraulic systems turned off. This paper reviews the principles of throttles-only flight control, a history of accidents or incidents in which some or all flight controls were lost, the MD-11 airplane and its systems, PCA system development, operation, flight testing, and pilot comments.

  2. KSC-2009-3103

    NASA Image and Video Library

    2009-05-11

    CAPE CANAVERAL, Fla. – The mini-convoy is lined up on the Shuttle Landing Facility runway at NASA's Kennedy Space Center in Florida awaiting space shuttle Atlantis' launch on the STS-125 mission to service NASA's Hubble Space Telescope. The convoy is prepared to act should the shuttle need to return to the launch site in the event of an emergency. At left is the Convoy Command Vehicle which is the command post for the convoy commander. Atlantis launched successfully on time at 2:01 p.m. EDT. Atlantis' 11-day flight will include five spacewalks to refurbish and upgrade the telescope with state-of-the-art science instruments that will expand Hubble's capabilities and extend its operational lifespan through at least 2014. The payload includes a Wide Field Camera 3, Fine Guidance Sensor and the Cosmic Origins Spectrograph. Photo credit: NASA/Jack Pfaller

  3. MASCAL: RFID Tracking of Patients, Staff and Equipment to Enhance Hospital Response to Mass Casualty Events

    PubMed Central

    Fry, Emory A.; Lenert, Leslie A.

    2005-01-01

    Most medical facilities practice managing the large numbers of seriously injured patients expected during catastrophic events. As the demands on the healthcare team increase, however, the challenges faced by managers escalate, workflow bottlenecks develop and system capacity decreases. This paper describes MASCAL, an integrated software–hardware system designed to enhance management of resources at a hospital during a mass casualty situation. MASCAL uses active 802.11b asset tags to track patients, equipment and staff during the response to a disaster. The system integrates tag position information with data from personnel databases, medical information systems, registration applications and the US Navy’s TACMEDCS triage application in a custom visual disaster management environment. MASCAL includes interfaces for a hospital command center, local area managers (emergency room, operating suites, radiology, etc.) and registration personnel. MASCAL is an operational system undergoing functional evaluation at the Naval Medical Center, San Diego, CA. PMID:16779042

  4. CCSDS Mission Operations Action Service Core Capabilities

    NASA Technical Reports Server (NTRS)

    Reynolds, Walter F.; Lucord, Steven A.; Stevens, John E.

    2009-01-01

    This slide presentation reviews the operations concepts of the command (action) services. Since the consequences of sending the wrong command are unacceptable, the command system provides a collaborative and distributed work environment for flight controllers and operators. The system prescribes a review and approval process where each command is viewed by other individuals before being sent to the vehicle. The action service needs additional capabilities to support he operations concepts of manned space flight. These are : (1) Action Service methods (2) Action attributes (3) Action parameter/argument attributes (4 ) Support for dynamically maintained action data. (5) Publish subscri be capabilities.

  5. GSFC Systems Test and Operation Language (STOL) functional requirements and language description

    NASA Technical Reports Server (NTRS)

    Desjardins, R.; Hall, G.; Mcguire, J.; Merwarth, P.; Mocarsky, W.; Truszkowski, W.; Villasenor, A.; Brosi, F.; Burch, P.; Carey, D.

    1978-01-01

    The Systems Tests and Operation Language (STOL) provides the means for user communication with payloads, applications programs, and other ground system elements. It is a systems operation language that enables an operator or user to communicate a command to a computer system. The system interprets each high level language directive from the user and performs the indicated action, such as executing a program, printing out a snapshot, or sending a payload command. This document presents the following: (1) required language features and implementation considerations; (2) basic capabilities; (3) telemetry, command, and input/output directives; (4) procedure definition and control; (5) listing, extension, and STOL nucleus capabilities.

  6. TRAVEL WITH COMMANDER QUALICIA

    EPA Science Inventory

    Commander Qualicia is a cartoon character created for an on-line training course that describes the quality system for the National Exposure Research Laboratory. In the training, which was developed by the QA staff and graphics/IT support contractors, Commander Qualicia and the ...

  7. 32 CFR 105.4 - Policy.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... capable and engaged. (2) Require that medical care and SAPR services are gender-responsive, culturally... actions shall be supported by all commanders. (e) Standardized SAPR requirements, terminology, guidelines... comprehensive medical and psychological treatment, including emergency care treatment and services, as described...

  8. 32 CFR 105.4 - Policy.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... capable and engaged. (2) Require that medical care and SAPR services are gender-responsive, culturally... actions shall be supported by all commanders. (e) Standardized SAPR requirements, terminology, guidelines... comprehensive medical and psychological treatment, including emergency care treatment and services, as described...

  9. Lessons Learned From Implementing an Incident Command System During a Local Multiagency Response to a Legionnaires' Disease Cluster in Sydney, NSW.

    PubMed

    Quinn, Emma; Johnstone, Travers; Najjar, Zeina; Cains, Toni; Tan, Geoff; Huhtinen, Essi; Nilsson, Sven; Burgess, Stuart; Dunn, Matthew; Gupta, Leena

    2017-09-05

    The incident command system (ICS) provides a common structure to control and coordinate an emergency response, regardless of scale or predicted impact. The lessons learned from the application of an ICS for large infectious disease outbreaks are documented. However, there is scant evidence on the application of an ICS to manage a local multiagency response to a disease cluster with environmental health risks. The Sydney Local Health District Public Health Unit (PHU) in New South Wales, Australia, was notified of 5 cases of Legionnaires' disease during 2 weeks in May 2016. This unusual incident triggered a multiagency investigation involving an ICS with staff from the PHU, 3 local councils, and the state health department to help prevent any further public health risk. The early and judicious use of ICS enabled a timely and effective response by supporting clear communication lines between the incident controller and field staff. The field team was key in preventing any ongoing public health risk through inspection, sampling, testing, and management of water systems identified to be at-risk for transmission of legionella. Good working relationships between partner agencies and trust in the technical proficiency of environmental health staff aided in the effective management of the response. (Disaster Med Public Health Preparedness. 2017;page 1 of 4).

  10. Creating and Sustaining Effective Partnership between Government and Industry

    DTIC Science & Technology

    2011-04-30

    defense industry, fielding, contracting, interoperability, organizational behavior, risk management , cost estimating, and many others. Approaches...Finance from Cameron University and an MBA from Drury University. [scott.fouse@dau.mil] Allen Green—Engineer and Program Manager , SAIC, Inc...Program Executive Officer SHIPS • Commander, Naval Sea Systems Command • Army Contracting Command, U.S. Army Materiel Command • Program Manager , Airborne

  11. Joint Command Decision Support System

    DTIC Science & Technology

    2011-06-01

    2010 Olympics and Paralympics games , about a hundred agencies and organizations were involved with the safety and security of the games . Accordingly...Joint Task Force Games (JTFG) staff members were augmented with other Command Staff from Canada Command and Canadian Operational Support Command...CANOSCOM) to create an operational HQ. The scenario used for demonstration was based on fictitious Olympic Games (Breton and Guitouni 2008). The scenario

  12. Mass Storage System - Gyrfalcon | High-Performance Computing | NREL

    Science.gov Websites

    . At the command line of one of Peregrine's login nodes, enter one of the following commands to copy directory.tgz /mss/ Option 3: The rsync command compares one directory to another and makes > Option 4: The simple Linux cp command can be used to copy a file from one directory to another

  13. A self-learning rule base for command following in dynamical systems

    NASA Technical Reports Server (NTRS)

    Tsai, Wei K.; Lee, Hon-Mun; Parlos, Alexander

    1992-01-01

    In this paper, a self-learning Rule Base for command following in dynamical systems is presented. The learning is accomplished though reinforcement learning using an associative memory called SAM. The main advantage of SAM is that it is a function approximator with explicit storage of training samples. A learning algorithm patterned after the dynamic programming is proposed. Two artificially created, unstable dynamical systems are used for testing, and the Rule Base was used to generate a feedback control to improve the command following ability of the otherwise uncontrolled systems. The numerical results are very encouraging. The controlled systems exhibit a more stable behavior and a better capability to follow reference commands. The rules resulting from the reinforcement learning are explicitly stored and they can be modified or augmented by human experts. Due to overlapping storage scheme of SAM, the stored rules are similar to fuzzy rules.

  14. Servo control booster system for minimizing following error

    DOEpatents

    Wise, William L.

    1985-01-01

    A closed-loop feedback-controlled servo system is disclosed which reduces command-to-response error to the system's position feedback resolution least increment, .DELTA.S.sub.R, on a continuous real-time basis for all operating speeds. The servo system employs a second position feedback control loop on a by exception basis, when the command-to-response error .gtoreq..DELTA.S.sub.R, to produce precise position correction signals. When the command-to-response error is less than .DELTA.S.sub.R, control automatically reverts to conventional control means as the second position feedback control loop is disconnected, becoming transparent to conventional servo control means. By operating the second unique position feedback control loop used herein at the appropriate clocking rate, command-to-response error may be reduced to the position feedback resolution least increment. The present system may be utilized in combination with a tachometer loop for increased stability.

  15. Apollo Command and Service Module Propulsion Systems Overview

    NASA Technical Reports Server (NTRS)

    Interbartolo, Michael A.

    2009-01-01

    An overview of the Apollo Command and Service Module (CSM) propulsion systems is provided. The systems for CSM propulsion and control are defined, the times during the mission when each system is used are listed, and, the basic components and operation of the service propulsion system, SM reaction control system and CM reaction control system are described.

  16. Improved head direction command classification using an optimised Bayesian neural network.

    PubMed

    Nguyen, Son T; Nguyen, Hung T; Taylor, Philip B; Middleton, James

    2006-01-01

    Assistive technologies have recently emerged to improve the quality of life of severely disabled people by enhancing their independence in daily activities. Since many of those individuals have limited or non-existing control from the neck downward, alternative hands-free input modalities have become very important for these people to access assistive devices. In hands-free control, head movement has been proved to be a very effective user interface as it can provide a comfortable, reliable and natural way to access the device. Recently, neural networks have been shown to be useful not only for real-time pattern recognition but also for creating user-adaptive models. Since multi-layer perceptron neural networks trained using standard back-propagation may cause poor generalisation, the Bayesian technique has been proposed to improve the generalisation and robustness of these networks. This paper describes the use of Bayesian neural networks in developing a hands-free wheelchair control system. The experimental results show that with the optimised architecture, classification Bayesian neural networks can detect head commands of wheelchair users accurately irrespective to their levels of injuries.

  17. Ada and the rapid development lifecycle

    NASA Technical Reports Server (NTRS)

    Deforrest, Lloyd; Gref, Lynn

    1991-01-01

    JPL is under contract, through NASA, with the US Army to develop a state-of-the-art Command Center System for the US European Command (USEUCOM). The Command Center System will receive, process, and integrate force status information from various sources and provide this integrated information to staff officers and decision makers in a format designed to enhance user comprehension and utility. The system is based on distributed workstation class microcomputers, VAX- and SUN-based data servers, and interfaces to existing military mainframe systems and communication networks. JPL is developing the Command Center System utilizing an incremental delivery methodology called the Rapid Development Methodology with adherence to government and industry standards including the UNIX operating system, X Windows, OSF/Motif, and the Ada programming language. Through a combination of software engineering techniques specific to the Ada programming language and the Rapid Development Approach, JPL was able to deliver capability to the military user incrementally, with comparable quality and improved economies of projects developed under more traditional software intensive system implementation methodologies.

  18. TOPEX NASA Altimeter Operations Handbook, September 1992. Volume 6

    NASA Technical Reports Server (NTRS)

    Hancock, David W., III; Hayne, George S.; Purdy, Craig L.; Bull, James B.; Brooks, Ronald L.

    2003-01-01

    This operations handbook identifies the commands for the NASA radar altimeter for the TOPEX/Poseidon spacecraft, defines the functions of these commands, and provides supplemental reference material for use by the altimeter operations personnel. The main emphasis of this document is placed on command types, command definitions, command sequences, and operational constraints. Additional document sections describe uploadable altimeter operating parameters, the telemetry stream data contents (for both the science and the engineering data), the Missions Operations System displays, and the spacecraft and altimeter health monitors.

  19. Short-Time Mass Variation in Natural Atmospheric Dust.

    DTIC Science & Technology

    1979-11-01

    many years. When the Krakatoa volcano in the South Pacific erupted in 1883, ejecting tons of dust into the high atmosphere, people from many parts of the...Flight Center, AL 35812 Commander Naval Ocean Systems Center (Code 4473) Commander ATTN: Technical Library US Army Missile R&D Command San Diego, CA...PO Box 67 ATTN: DRDMI-TBD APO San Francisco, CA 96555 US Army Missile R&D Command Redstone Arsenal, AL 35809 Director NOAA/ERL/APCL R31 Commander RB3

  20. KSC00pp1573

    NASA Image and Video Library

    2000-09-21

    Robert ZiBerna, Roger Scheidt and Charles Street, the Emergency Preparedness team at KSC, practice for an emergency scenario inside the Mobile Command Center, a specially equipped vehicle. It features a conference room, computer work stations, mobile telephones and a fax machine. It also can generate power with its onboard generator. Besides being ready to respond in case of emergencies during launches, the vehicle must be ready to help address fires, security threats, chemical spills, terrorist attaches, weather damage or other critical situations that might face KSC or Cape Canaveral Air Force Station

  1. KSC-00pp1573

    NASA Image and Video Library

    2000-09-21

    Robert ZiBerna, Roger Scheidt and Charles Street, the Emergency Preparedness team at KSC, practice for an emergency scenario inside the Mobile Command Center, a specially equipped vehicle. It features a conference room, computer work stations, mobile telephones and a fax machine. It also can generate power with its onboard generator. Besides being ready to respond in case of emergencies during launches, the vehicle must be ready to help address fires, security threats, chemical spills, terrorist attaches, weather damage or other critical situations that might face KSC or Cape Canaveral Air Force Station

  2. Hydrodynamic Hull Damping (Phase 1)

    DTIC Science & Technology

    1987-06-01

    Administration Mr. Alexander Malakhoff Mr. Thomas W. Allen Director, Structural Integrity Engineering Officer (N7) Subgroup ( SEA 55Y) MR" Sealift Command...Shipping U. S. Coast Guard CONTRACTING OFFICER TECHNICAL REPRESENTATIVES Mr. William J. Siekierka Mr. Greg D. Woods SEA 55Y3 SEA 55Y3 Naval Sea Systems...Command Naval Sea Systems Command SHIP STRUCTURE SUBCOMMITTEE The SHIP STRUCTURE SUBCOMMITTEE acts for the Ship Structure Committee on technical matters

  3. Personnel Evaluation: Noncommissioned Officer Evaluation Reporting System

    DTIC Science & Technology

    2002-05-15

    Maintenance System), paper copies will be maintained in state, command, or local career manage- ment individual files ( CMIF ) such as AGR management...Routine use DA Form 2166-8 will be maintained in the rated NCO’s official military personnel file (OMPF) and career manage- ment individual file ( CMIF ). A...CAR Chief, Army Reserve CDR commander CE commander’s evaluation CG commanding general CMIF career management individual file CNGB Chief, National Guard

  4. The Role of the NCO Inside the BCT Command Post

    DTIC Science & Technology

    2016-11-22

    account for and maintain individual and unit equipment while caring for Soldiers and their families on and off duty. NCOs coach, mentor , and teach...information system capabilities for the commander while also serving as the senior trainer for information system sustainment training. This...equipment, and the individual and team training in itself that is required to execute the science of mission command can seem overwhelming; however, senior

  5. Systems Engineering Approach and Metrics for Evaluating Network-Centric Operations for U.S. Army Battle Command

    DTIC Science & Technology

    2013-07-01

    Systems Engineering Approach and Metrics for Evaluating Network-Centric Operations for U.S. Army Battle Command by Jock O. Grynovicki and...Battle Command Jock O. Grynovicki and Teresa A. Branscome Human Research and Engineering Directorate, ARL...NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Jock O. Grynovicki and Teresa A. Branscome 5d. PROJECT NUMBER 622716H70 5e. TASK NUMBER

  6. A New Approach to Site Demand-Based Level Inventory Optimization

    DTIC Science & Technology

    2016-06-01

    Command (2016) Navy supply chain management. Accessed April 17, 2016, https://www.navsup.navy.mil/navsup/capabilities/nscm Salmeron J, Craparo E (2016...Engineering 53: 122-142. Naval Supply Systems Command (2016a) Navy supply chain management. Accessed April 17, 2016, https://www.navsup.navy.mil...distribution is unlimited 12b. DISTRIBUTION CODE 13. ABSTRACT (maximum 200 words) Naval Supply Systems Command (NAVSUP) supports Navy, Marine Corps

  7. Software Development With Application Generators: The Naval Aviation Logistics Command Management Information System Case

    DTIC Science & Technology

    1992-09-01

    Aviation Logistics Command Management Information System (NALCOMIS) prototyping development effort, the critical success factors required to implement prototyping with application generators in other areas of DoD.

  8. The Clinician as Leader: Why, How, and When.

    PubMed

    Stoller, James K

    2017-11-01

    Clinicians are inveterate leaders. We lead patients through the difficult maze of illness, families through the travails of ill loved ones, and physicians-in-training through the gauntlet of learning medicine. Yet, in the context of a range of leadership styles that effective leaders must be able to deploy situationally, physician leaders have traditionally defaulted to a "command and control" style that fosters the concept of physicians as "Viking warriors" or "heroic lone healers." The perverse effects of "command and control" are that this style conspires against collaboration and tends to be perpetuated as aspiring leaders emulate their predecessors. Because healthcare faces challenges of cost, access, and quality and is in the throes of change, the current landscape requires effective leadership. Though still relatively uncommon among healthcare organizations, frontrunner organizations are offering leadership development programs. The design of such programs requires clarity about requisite leadership competencies and about how and when to best to deliver such curricula. As one example, the American Thoracic Society has launched its Emerging Leaders Program (ELP), which is currently offering a leadership development curriculum to 18 selected emerging leaders. The ATS ELP curriculum focuses on awareness of self and system and incorporates highly participatory sessions on emotional intelligence, teambuilding, change management, situational leadership, appreciative inquiry, process and quality improvement, strategic planning, and organizational culture. Short-term deliverables are the development and presentation of business plans for innovations proposed by the group. Hoped for longer-term outcomes include an enhanced leadership pipeline for global respiratory health.

  9. Prosthetic avian vocal organ controlled by a freely behaving bird based on a low dimensional model of the biomechanical periphery.

    PubMed

    Arneodo, Ezequiel M; Perl, Yonatan Sanz; Goller, Franz; Mindlin, Gabriel B

    2012-01-01

    Because of the parallels found with human language production and acquisition, birdsong is an ideal animal model to study general mechanisms underlying complex, learned motor behavior. The rich and diverse vocalizations of songbirds emerge as a result of the interaction between a pattern generator in the brain and a highly nontrivial nonlinear periphery. Much of the complexity of this vocal behavior has been understood by studying the physics of the avian vocal organ, particularly the syrinx. A mathematical model describing the complex periphery as a nonlinear dynamical system leads to the conclusion that nontrivial behavior emerges even when the organ is commanded by simple motor instructions: smooth paths in a low dimensional parameter space. An analysis of the model provides insight into which parameters are responsible for generating a rich variety of diverse vocalizations, and what the physiological meaning of these parameters is. By recording the physiological motor instructions elicited by a spontaneously singing muted bird and computing the model on a Digital Signal Processor in real-time, we produce realistic synthetic vocalizations that replace the bird's own auditory feedback. In this way, we build a bio-prosthetic avian vocal organ driven by a freely behaving bird via its physiologically coded motor commands. Since it is based on a low-dimensional nonlinear mathematical model of the peripheral effector, the emulation of the motor behavior requires light computation, in such a way that our bio-prosthetic device can be implemented on a portable platform.

  10. STS-93 Mission Specialist Coleman takes part in emergency egress training

    NASA Technical Reports Server (NTRS)

    1999-01-01

    STS-93 Mission Specialist Catherine G. Coleman (Ph.D.) smiles for the photographer before climbing into an M-113 armored personnel carrier at the launch pad to take part in emergency egress training. In preparation for their mission, the STS-93 crew are participating in Terminal Countdown Demonstration Test activities that also include a launch-day dress rehearsal culminating with a simulated main engine cut-off. Others in the crew are Commander Eileen M. Collins, Pilot Jeffrey S. Ashby, and Mission Specialists Steven A. Hawley (Ph.D.) and Michel Tognini of France, who represents the Centre National d'Etudes Spatiales (CNES). Collins is the first woman to serve as a mission commander. The primary mission of STS-93 is the release of the Chandra X-ray Observatory, which will allow scientists from around the world to obtain unprecedented X-ray images of exotic environments in space to help understand the structure and evolution of the universe. Chandra is expected to provide unique and crucial information on the nature of objects ranging from comets in our solar system to quasars at the edge of the observable universe. Since X-rays are absorbed by the Earth's atmosphere, space-based observatories are necessary to study these phenomena and allow scientists to analyze some of the greatest mysteries of the universe. The targeted launch date for STS-93 is no earlier than July 20 at 12:36 a.m. EDT from Launch Pad 39B.

  11. STS-93 Mission Specialist Tognini takes part in emergency egress training

    NASA Technical Reports Server (NTRS)

    1999-01-01

    STS-93 Michel Tognini of France, who represents the Centre National d'Etudes Spatiales (CNES), pauses for the photographer before climbing into an M-113 armored personnel carrier at the launch pad to take part in emergency egress training. In preparation for their mission, the STS-93 crew are participating in Terminal Countdown Demonstration Test activities that also include a launch-day dress rehearsal culminating with a simulated main engine cut-off. Others in the crew are Commander Eileen M. Collins, Pilot Jeffrey S. Ashby, and Mission Specialists Steven A. Hawley (Ph.D.) and Catherine G. Coleman (Ph.D.). Collins is the first woman to serve as a mission commander. The primary mission of STS-93 is the release of the Chandra X-ray Observatory, which will allow scientists from around the world to obtain unprecedented X-ray images of exotic environments in space to help understand the structure and evolution of the universe. Chandra is expected to provide unique and crucial information on the nature of objects ranging from comets in our solar system to quasars at the edge of the observable universe. Since X-rays are absorbed by the Earth's atmosphere, space-based observatories are necessary to study these phenomena and allow scientists to analyze some of the greatest mysteries of the universe. The targeted launch date for STS-93 is no earlier than July 20 at 12:36 a.m. EDT from Launch Pad 39B.

  12. The STS-93 crew practice emergency egress training from Launch Pad 39B.

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Inside an M-113 armored personnel carrier at the launch pad, the STS-93 crew take part in emergency egress training under the watchful eyes of Capt. George Hoggard (center), trainer with the KSC Fire Department. From left are Mission Specialist Michel Tognini of France, Commander Eileen M. Collins, Hoggard, Mission Specialist Steven A. Hawley (Ph.D.), Pilot Jeffrey S. Ashby, and Mission Specialist Catherine G. Coleman (Ph.D.). Collins is the first woman to serve as mission commander. Tognini represents the Centre National d'Etudes Spatiales (CNES). The training is part of Terminal Countdown Demonstration Test activities that also include a launch-day dress rehearsal culminating with a simulated main engine cut-off. The primary mission of STS-93 is the release of the Chandra X-ray Observatory, which will allow scientists from around the world to obtain unprecedented X-ray images of exotic environments in space to help understand the structure and evolution of the universe. Chandra is expected to provide unique and crucial information on the nature of objects ranging from comets in our solar system to quasars at the edge of the observable universe. Since X-rays are absorbed by the Earth's atmosphere, space-based observatories are necessary to study these phenomena and allow scientists to analyze some of the greatest mysteries of the universe. The targeted launch date for STS-93 is no earlier than July 20 at 12:36 a.m. EDT from Launch Pad 39B.

  13. STS-93 Pilot Ashby takes part in emergency egress training

    NASA Technical Reports Server (NTRS)

    1999-01-01

    STS-93 Pilot Jeffrey S. Ashby pauses for the photographer before climbing into an M-113 armored personnel carrier at the launch pad to take part in emergency egress training. In preparation for their mission, the STS-93 crew are participating in Terminal Countdown Demonstration Test activities that also include a launch-day dress rehearsal culminating with a simulated main engine cut-off. Others in the crew are Commander Eileen M. Collins and Mission Specialists Steven A. Hawley (Ph.D.), Catherine G. Coleman (Ph.D.), and Michel Tognini of France, who represents the Centre National d'Etudes Spatiales (CNES). Collins is the first woman to serve as a mission commander. The primary mission of STS-93 is the release of the Chandra X-ray Observatory, which will allow scientists from around the world to obtain unprecedented X-ray images of exotic environments in space to help understand the structure and evolution of the universe. Chandra is expected to provide unique and crucial information on the nature of objects ranging from comets in our solar system to quasars at the edge of the observable universe. Since X-rays are absorbed by the Earth's atmosphere, space-based observatories are necessary to study these phenomena and allow scientists to analyze some of the greatest mysteries of the universe. The targeted launch date for STS-93 is no earlier than July 20 at 12:36 a.m. EDT from Launch Pad 39B.

  14. Traffic Alert and Collision Avoidance System. Developmental Simulation.

    DTIC Science & Technology

    1982-07-01

    deck system concepts, fuinctional capailities, and interface features. Proposed ;ystpms, system chanoes , and Alternative mechanizations can he evaluated...What chanoes should be made in the voice? Clarify limit command D-8 .A . .. .. . . . 10. Does the modification of the TYSI by addition Of command

  15. Control Software for Advanced Video Guidance Sensor

    NASA Technical Reports Server (NTRS)

    Howard, Richard T.; Book, Michael L.; Bryan, Thomas C.

    2006-01-01

    Embedded software has been developed specifically for controlling an Advanced Video Guidance Sensor (AVGS). A Video Guidance Sensor is an optoelectronic system that provides guidance for automated docking of two vehicles. Such a system includes pulsed laser diodes and a video camera, the output of which is digitized. From the positions of digitized target images and known geometric relationships, the relative position and orientation of the vehicles are computed. The present software consists of two subprograms running in two processors that are parts of the AVGS. The subprogram in the first processor receives commands from an external source, checks the commands for correctness, performs commanded non-image-data-processing control functions, and sends image data processing parts of commands to the second processor. The subprogram in the second processor processes image data as commanded. Upon power-up, the software performs basic tests of functionality, then effects a transition to a standby mode. When a command is received, the software goes into one of several operational modes (e.g. acquisition or tracking). The software then returns, to the external source, the data appropriate to the command.

  16. Astronaut James McDivitt photographed inside Command Module during Apollo 9

    NASA Image and Video Library

    1969-03-06

    AS09-20-3154 (3-13 March 1969) --- This close-up view of astronaut James A. McDivitt shows several days' beard growth. The Apollo 9 mission commander was onboard the Lunar Module (LM) "Spider" in Earth orbit, near the end of the flight. He was joined on the mission by astronauts David R. Scott, command module pilot, and Russell L. Schweickart, lunar module pilot. Schweickart took this picture while Scott remained in the Command Module (CM) "Gumdrop." In Earth orbit, the three tested the transposition and docking systems of the lunar module and command module. On a scheduled lunar landing mission later this year, a team of three astronauts and ground controllers will use what this crew and its support staff have learned in handling the systems of the two spacecraft.

  17. Methods and Systems for Authorizing an Effector Command in an Integrated Modular Environment

    NASA Technical Reports Server (NTRS)

    Sunderland, Dean E. (Inventor); Ahrendt, Terry J. (Inventor); Moore, Tim (Inventor)

    2013-01-01

    Methods and systems are provided for authorizing a command of an integrated modular environment in which a plurality of partitions control actions of a plurality of effectors is provided. A first identifier, a second identifier, and a third identifier are determined. The first identifier identifies a first partition of the plurality of partitions from which the command originated. The second identifier identifies a first effector of the plurality of effectors for which the command is intended. The third identifier identifies a second partition of the plurality of partitions that is responsible for controlling the first effector. The first identifier and the third identifier are compared to determine whether the first partition is the same as the second partition for authorization of the command.

  18. Evaluating the Performance of the NASA LaRC CMF Motion Base Safety Devices

    NASA Technical Reports Server (NTRS)

    Gupton, Lawrence E.; Bryant, Richard B., Jr.; Carrelli, David J.

    2006-01-01

    This paper describes the initial measured performance results of the previously documented NASA Langley Research Center (LaRC) Cockpit Motion Facility (CMF) motion base hardware safety devices. These safety systems are required to prevent excessive accelerations that could injure personnel and damage simulator cockpits or the motion base structure. Excessive accelerations may be caused by erroneous commands or hardware failures driving an actuator to the end of its travel at high velocity, stepping a servo valve, or instantly reversing servo direction. Such commands may result from single order failures of electrical or hydraulic components within the control system itself, or from aggressive or improper cueing commands from the host simulation computer. The safety systems must mitigate these high acceleration events while minimizing the negative performance impacts. The system accomplishes this by controlling the rate of change of valve signals to limit excessive commanded accelerations. It also aids hydraulic cushion performance by limiting valve command authority as the actuator approaches its end of travel. The design takes advantage of inherent motion base hydraulic characteristics to implement all safety features using hardware only solutions.

  19. Integration and Testing of LCS Software

    NASA Technical Reports Server (NTRS)

    Wang, John

    2014-01-01

    Kennedy Space Center is in the midst of developing a command and control system for the launch of the next generation manned space vehicle. The Space Launch System (SLS) will launch using the new Spaceport Command and Control System (SCCS). As a member of the Software Integration and Test (SWIT) Team, command scripts, and bash scripts were written to assist in integration and testing of the Launch Control System (LCS), which is a component of SCCS. The short term and midterm tasks are for the most part completed. The long term tasks if time permits will require a presentation and demonstration.

  20. Towards Human-Friendly Efficient Control of Multi-Robot Teams

    NASA Technical Reports Server (NTRS)

    Stoica, Adrian; Theodoridis, Theodoros; Barrero, David F.; Hu, Huosheng; McDonald-Maiers, Klaus

    2013-01-01

    This paper explores means to increase efficiency in performing tasks with multi-robot teams, in the context of natural Human-Multi-Robot Interfaces (HMRI) for command and control. The motivating scenario is an emergency evacuation by a transport convoy of unmanned ground vehicles (UGVs) that have to traverse, in shortest time, an unknown terrain. In the experiments the operator commands, in minimal time, a group of rovers through a maze. The efficiency of performing such tasks depends on both, the levels of robots' autonomy, and the ability of the operator to command and control the team. The paper extends the classic framework of levels of autonomy (LOA), to levels/hierarchy of autonomy characteristic of Groups (G-LOA), and uses it to determine new strategies for control. An UGVoriented command language (UGVL) is defined, and a mapping is performed from the human-friendly gesture-based HMRI into the UGVL. The UGVL is used to control a team of 3 robots, exploring the efficiency of different G-LOA; specifically, by (a) controlling each robot individually through the maze, (b) controlling a leader and cloning its controls to followers, and (c) controlling the entire group. Not surprisingly, commands at increased G-LOA lead to a faster traverse, yet a number of aspects are worth discussing in this context.

Top