Preliminary Flight Results of a Fly-by-throttle Emergency Flight Control System on an F-15 Airplane
NASA Technical Reports Server (NTRS)
Burcham, Frank W., Jr.; Maine, Trindel A.; Fullerton, C. Gordon; Wells, Edward A.
1993-01-01
A multi-engine aircraft, with some or all of the flight control system inoperative, may use engine thrust for control. NASA Dryden has conducted a study of the capability and techniques for this emergency flight control method for the F-15 airplane. With an augmented control system, engine thrust, along with appropriate feedback parameters, is used to control flightpath and bank angle. Extensive simulation studies were followed by flight tests. The principles of throttles only control, the F-15 airplane, the augmented system, and the flight results including actual landings with throttles-only control are discussed.
NASA Technical Reports Server (NTRS)
Burcham, Frank W., Jr.; Maine, Trindel A.; Fullerton, C. G.; Wells, Edward A.
1993-01-01
A multi-engine aircraft, with some or all of the flight control system inoperative, may use engine thrust for control. NASA Dryden has conducted a study of the capability and techniques for this emergency flight control method for the F-15 airplane. With an augmented control system, engine thrust, along with appropriate feedback parameters, is used to control flightpath and bank angle. Extensive simulation studies have been followed by flight tests. This paper discusses the principles of throttles-only control, the F-15 airplane, the augmented system, and the flight results including landing approaches with throttles-only control to within 10 ft of the ground.
ISS emergency scenarios and a virtual training simulator for Flight Controllers
NASA Astrophysics Data System (ADS)
Uhlig, Thomas; Roshani, Frank-Cyrus; Amodio, Ciro; Rovera, Alessandro; Zekusic, Nikola; Helmholz, Hannes; Fairchild, Matthew
2016-11-01
The current emergency response concept for the International Space Station (ISS) includes the support of the Flight Control Team. Therefore, the team members need to be trained in emergencies and the corresponding crew procedures to ensure a smooth collaboration between crew and ground. In the case where the astronaut and ground personnel training is not collocated it is a challenging endeavor to ensure and maintain proper knowledge and skills for the Flight Control Team. Therefore, a virtual 3D simulator at the Columbus Control Center (Col-CC) is presented, which is used for ground personnel training in the on-board emergency response. The paper briefly introduces the main ISS emergency scenarios and the corresponding response strategy, details the resulting learning objectives for the Flight Controllers and elaborates on the new simulation method, which will be used in the future. The status of the 3D simulator, first experiences and further plans are discussed.
Using Engine Thrust for Emergency Flight Control: MD-11 and B-747 Results
NASA Technical Reports Server (NTRS)
Burcham, Frank W., Jr.; Maine, Trindel A.; Burken, John J.; Bull, John
1998-01-01
With modern digital control systems, using engine thrust for emergency flight control to supplement or replace failed aircraft normal flight controls has become a practical consideration. The NASA Dryden Flight Research Center has developed a propulsion-controlled aircraft (PCA) system in which computer-controlled engine thrust provides emergency flight control. An F-15 and an MD-11 airplane have been landed without using any flight control surfaces. Preliminary studies have also been conducted that show that engines on only one wing can provide some flight control capability if the lateral center of gravity can be shifted toward the side of the airplane that has the operating engine(s). Simulator tests of several airplanes with no flight control surfaces operating and all engines out on the left wing have all shown positive control capability within the available range of lateral center-of-gravity offset. Propulsion-controlled aircraft systems that can operate without modifications to engine control systems, thus allowing PCA technology to be installed on less capable airplanes or at low cost, are also desirable. Further studies have examined simplified 'PCA Lite' and 'PCA Ultralite' concepts in which thrust control is provided by existing systems such as auto-throttles or a combination of existing systems and manual pilot control.
Manual Manipulation of Engine Throttles for Emergency Flight Control
NASA Technical Reports Server (NTRS)
Burcham, Frank W., Jr.; Fullerton, C. Gordon; Maine, Trindel A.
2004-01-01
If normal aircraft flight controls are lost, emergency flight control may be attempted using only engines thrust. Collective thrust is used to control flightpath, and differential thrust is used to control bank angle. Flight test and simulation results on many airplanes have shown that pilot manipulation of throttles is usually adequate to maintain up-and-away flight, but is most often not capable of providing safe landings. There are techniques that will improve control and increase the chances of a survivable landing. This paper reviews the principles of throttles-only control (TOC), a history of accidents or incidents in which some or all flight controls were lost, manual TOC results for a wide range of airplanes from simulation and flight, and suggested techniques for flying with throttles only and making a survivable landing.
Advances in Thrust-Based Emergency Control of an Airplane
NASA Technical Reports Server (NTRS)
Creech, Gray; Burken, John J.; Burcham, Bill
2003-01-01
Engineers at NASA's Dryden Flight Research Center have received a patent on an emergency flight-control method implemented by a propulsion-controlled aircraft (PCA) system. Utilizing the preexisting auto-throttle and engine-pressure-ratio trim controls of the airplane, the PCA system provides pitch and roll control for landing an airplane safely without using aerodynamic control surfaces that have ceased to function because of a primary-flight-control-system failure. The installation of the PCA does not entail any changes in pre-existing engine hardware or software. [Aspects of the method and system at previous stages of development were reported in Thrust-Control System for Emergency Control of an Airplane (DRC-96-07), NASA Tech Briefs, Vol. 25, No. 3 (March 2001), page 68 and Emergency Landing Using Thrust Control and Shift of Weight (DRC-96-55), NASA Tech Briefs, Vol. 26, No. 5 (May 2002), page 58.]. Aircraft flight-control systems are designed with extensive redundancy to ensure low probabilities of failure. During recent years, however, several airplanes have exhibited major flight-control-system failures, leaving engine thrust as the last mode of flight control. In some of these emergency situations, engine thrusts were successfully modulated by the pilots to maintain flight paths or pitch angles, but in other situations, lateral control was also needed. In the majority of such control-system failures, crashes resulted and over 1,200 people died. The challenge lay in creating a means of sufficient degree of thrust-modulation control to safely fly and land a stricken airplane. A thrust-modulation control system designed for this purpose was flight-tested in a PCA an MD-11 airplane. The results of the flight test showed that without any operational control surfaces, a pilot can land a crippled airplane (U.S. Patent 5,330,131). The installation of the original PCA system entailed modifications not only of the flight-control computer (FCC) of the airplane but also of each engine-control computer. Inasmuch as engine-manufacturer warranties do not apply to modified engines, the challenge became one of creating a PCA system that does not entail modifications of the engine computers.
Low Bandwidth Robust Controllers for Flight
NASA Technical Reports Server (NTRS)
Biezad, Daniel J.; Chou, Hwei-Lan
1993-01-01
Through throttle manipulations, engine thrust can be used for emergency flight control for multi-engine aircraft. Previous study by NASA Dryden has shown the use of throttles for emergency flight control to be very difficult. In general, manual fly-by-throttle is extremely difficult - with landing almost impossible, but control augmentation makes runway landings feasible. Flight path control using throttles-only to achieve safe emergency landing for a large jet transport airplane, Boeing 720, was investigated using Quantitative Feedback Theory (QFT). Results were compared to an augmented control developed in a previous simulation study. The control augmentation corrected the unsatisfactory open-loop characteristics by increasing system bandwidth and damping, but increasing the control bandwidth substantially proved very difficult. The augmented pitch control is robust under no or moderate turbulence. The augmented roll control is sensitive to configuration changes.
Low bandwidth robust controllers for flight
NASA Technical Reports Server (NTRS)
Biezad, Daniel J.; Chou, Hwei-Lan
1993-01-01
Through throttle manipulations, engine thrust can be used for emergency flight control for multi-engine aircraft. Previous study by NASA Dryden has shown the use of throttles for emergency flight control to be very difficult. In general, manual fly-by-throttle is extremely difficult - with landing almost impossible, but control augmentation makes runway landings feasible. Flight path control using throttles-only to achieve safe emergency landing for a large jet transport airplane, Boeing 720, was investigated using Quantitative Feedback Theory (QFT). Results were compared to an augmented control developed in a previous simulation study. The control augmentation corrected the unsatisfactory open-loop characteristics by increasing system bandwidth and damping, but increasing the control bandwidth substantially proved very difficult. The augmented pitch control is robust under no or moderate turbulence. The augmented roll control is sensitive to configuration changes.
NASA Technical Reports Server (NTRS)
Burcham, Frank W., Jr.; Maine, Trindel A.; Fullerton, C. Gordon; Webb, Lannie Dean
1996-01-01
A propulsion-controlled aircraft (PCA) system for emergency flight control of aircraft with no flight controls was developed and flight tested on an F-15 aircraft at the NASA Dryden Flight Research Center. The airplane has been flown in a throttles-only manual mode and with an augmented system called PCA in which pilot thumbwheel commands and aircraft feedback parameters were used to drive the throttles. Results from a 36-flight evaluation showed that the PCA system can be used to safety land an airplane that has suffered a major flight control system failure. The PCA system was used to recover from a severe upset condition, descend, and land. Guest pilots have also evaluated the PCA system. This paper describes the principles of throttles-only flight control; a history of loss-of-control accidents; a description of the F-15 aircraft; the PCA system operation, simulation, and flight testing; and the pilot comments.
NASA Technical Reports Server (NTRS)
Burken, John J.; Burcham, Frank W., Jr.; Maine, Trindel A.; Feather, John; Goldthorpe, Steven; Kahler, Jeffrey A.
1996-01-01
A large, civilian, multi-engine transport MD-11 airplane control system was recently modified to perform as an emergency backup controller using engine thrust only. The emergency backup system, referred to as the propulsion-controlled aircraft (PCA) system, would be used if a major primary flight control system fails. To allow for longitudinal and lateral-directional control, the PCA system requires at least two engines and is implemented through software modifications. A flight-test program was conducted to evaluate the PCA system high-altitude flying characteristics and to demonstrate its capacity to perform safe landings. The cruise flight conditions, several low approaches and one landing without any aerodynamic flight control surface movement, were demonstrated. This paper presents results that show satisfactory performance of the PCA system in the longitudinal axis. Test results indicate that the lateral-directional axis of the system performed well at high attitude but was sluggish and prone to thermal upsets during landing approaches. Flight-test experiences and test techniques are also discussed with emphasis on the lateral-directional axis because of the difficulties encountered in flight test.
NASA Technical Reports Server (NTRS)
Burcham, Frank W., Jr.; Kaneshige, John; Bull, John; Maine, Trindel A.
1999-01-01
With the advent of digital engine control systems, considering the use of engine thrust for emergency flight control has become feasible. Many incidents have occurred in which engine thrust supplemented or replaced normal aircraft flight controls. In most of these cases, a crash has resulted, and more than 1100 lives have been lost. The NASA Dryden Flight Research Center has developed a propulsion-controlled aircraft (PCA) system in which computer-controlled engine thrust provides emergency flight control capability. Using this PCA system, an F-15 and an MD-11 airplane have been landed without using any flight controls. In simulations, C-17, B-757, and B-747 PCA systems have also been evaluated successfully. These tests used full-authority digital electronic control systems on the engines. Developing simpler PCA systems that can operate without full-authority engine control, thus allowing PCA technology to be installed on less capable airplanes or at lower cost, is also a desire. Studies have examined simplified ?PCA Ultralite? concepts in which thrust control is provided using an autothrottle system supplemented by manual differential throttle control. Some of these concepts have worked well. The PCA Ultralite study results are presented for simulation tests of MD-11, B-757, C-17, and B-747 aircraft.
The Aircraft Simulation Role in Improving Flight Safety Through Control Room Training
NASA Technical Reports Server (NTRS)
Shy, Karla S.; Hageman, Jacob J.; Le, Jeanette H.; Sitz, Joel (Technical Monitor)
2002-01-01
NASA Dryden Flight Research Center uses its six-degrees-of-freedom (6-DOF) fixed-base simulations for mission control room training to improve flight safety and operations. This concept is applied to numerous flight projects such as the F-18 High Alpha Research Vehicle (HARV), the F-15 Intelligent Flight Control System (IFCS), the X-38 Actuator Control Test (XACT), and X-43A (Hyper-X). The Dryden 6-DOF simulations are typically used through various stages of a project, from design to ground tests. The roles of these simulations have expanded to support control room training, reinforcing flight safety by building control room staff proficiency. Real-time telemetry, radar, and video data are generated from flight vehicle simulation models. These data are used to drive the control room displays. Nominal static values are used to complete information where appropriate. Audio communication is also an integral part of training sessions. This simulation capability is used to train control room personnel and flight crew for nominal missions and emergency situations. Such training sessions are also opportunities to refine flight cards and control room display pages, exercise emergency procedures, and practice control room setup for the day of flight. This paper describes this technology as it is used in the X-43A and F-15 IFCS and XACT projects.
A preliminary investigation of the use of throttles for emergency flight control
NASA Technical Reports Server (NTRS)
Burcham, F. W., Jr.; Fullerton, C. Gordon; Gilyard, Glenn B.; Wolf, Thomas D.; Stewart, James F.
1991-01-01
A preliminary investigation was conducted regarding the use of throttles for emergency flight control of a multiengine aircraft. Several airplanes including a light twin-engine piston-powered airplane, jet transports, and a high performance fighter were studied during flight and piloted simulations. Simulation studies used the B-720, B-727, MD-11, and F-15 aircraft. Flight studies used the Lear 24, Piper PA-30, and F-15 airplanes. Based on simulator and flight results, all the airplanes exhibited some control capability with throttles. With piloted simulators, landings using manual throttles-only control were extremely difficult. An augmented control system was developed that converts conventional pilot stick inputs into appropriate throttle commands. With the augmented system, the B-720 and F-15 simulations were evaluated and could be landed successfully. Flight and simulation data were compared for the F-15 airplane.
14 CFR Appendix D to Part 25 - Appendix D to Part 25
Code of Federal Regulations, 2013 CFR
2013-01-01
... considered: (1) Flight path control. (2) Collision avoidance. (3) Navigation. (4) Communications. (5... flight, power, and equipment controls, including emergency fuel shutoff valves, electrical controls... crew action to guard against loss of hydraulic or electric power to flight controls or to other...
NASA Technical Reports Server (NTRS)
Burcham, Frank W., Jr.; Burken, John J.; Maine, Trindel A.; Fullerton, C. Gordon
1997-01-01
An emergency flight control system that uses only engine thrust, called the propulsion-controlled aircraft (PCA) system, was developed and flight tested on an MD-11 airplane. The PCA system is a thrust-only control system, which augments pilot flightpath and track commands with aircraft feedback parameters to control engine thrust. The PCA system was implemented on the MD-11 airplane using only software modifications to existing computers. Results of a 25-hr flight test show that the PCA system can be used to fly to an airport and safely land a transport airplane with an inoperative flight control system. In up-and-away operation, the PCA system served as an acceptable autopilot capable of extended flight over a range of speeds, altitudes, and configurations. PCA approaches, go-arounds, and three landings without the use of any normal flight controls were demonstrated, including ILS-coupled hands-off landings. PCA operation was used to recover from an upset condition. The PCA system was also tested at altitude with all three hydraulic systems turned off. This paper reviews the principles of throttles-only flight control, a history of accidents or incidents in which some or all flight controls were lost, the MD-11 airplane and its systems, PCA system development, operation, flight testing, and pilot comments.
Emergency Flight Control of a Twin-Jet Commercial Aircraft using Manual Throttle Manipulation
NASA Technical Reports Server (NTRS)
Cole, Jennifer H.; Cogan, Bruce R.; Fullerton, C. Gordon; Burken, John J.; Venti, Michael W.; Burcham, Frank W.
2007-01-01
The Department of Homeland Security (DHS) created the PCAR (Propulsion-Controlled Aircraft Recovery) project in 2005 to mitigate the ManPADS (man-portable air defense systems) threat to the commercial aircraft fleet with near-term, low-cost proven technology. Such an attack could potentially cause a major FCS (flight control system) malfunction or other critical system failure onboard the aircraft, despite the extreme reliability of current systems. For the situations in which nominal flight controls are lost or degraded, engine thrust may be the only remaining means for emergency flight control [ref 1]. A computer-controlled thrust system, known as propulsion-controlled aircraft (PCA), was developed in the mid 1990s with NASA, McDonnell Douglas and Honeywell. PCA's major accomplishment was a demonstration of an automatic landing capability using only engine thrust [ref 11. Despite these promising results, no production aircraft have been equipped with a PCA system, due primarily to the modifications required for implementation. A minimally invasive option is TOC (throttles-only control), which uses the same control principles as PCA, but requires absolutely no hardware, software or other aircraft modifications. TOC is pure piloting technique, and has historically been utilized several times by flight crews, both military and civilian, in emergency situations stemming from a loss of conventional control. Since the 1990s, engineers at NASA Dryden Flight Research Center (DFRC) have studied TOC, in both simulation and flight, for emergency flight control with test pilots in numerous configurations. In general, it was shown that TOC was effective on certain aircraft for making a survivable landing. DHS sponsored both NASA Dryden Flight Research Center (Edwards, CA) and United Airlines (Denver, Colorado) to conduct a flight and simulation study of the TOC characteristics of a twin-jet commercial transport, and assess the ability of a crew to control an aircraft down to a survivable runway landing using TOC. The PCAR project objective was a set of pilot procedures for operation of a specific aircraft without hydraulics that (a) have been validated in both simulation and flight by relevant personnel, and (b) mesh well with existing commercial operations, maintenance, and training at a minimum cost. As a result of this study, a procedure has been developed to assist a crew in making a survivable landing using TOC. In a simulation environment, line pilots with little or no previous TOC experience performed survivable runway landings after a few practice TOC approaches. In-flight evaluations put line pilots in a simulated emergency situation where TOC was used to recover the aircraft, maneuver to a landing site, and perform an approach down to 200 feet AGL. The results of this research, including pilot observations, procedure comments, recommendations, future work and lessons learned, will he discussed. Flight data and video footage of TOC approaches may also be shown.
Emergency Flight Control Using Only Engine Thrust and Lateral Center-of-Gravity Offset: A First Look
NASA Technical Reports Server (NTRS)
Burcham, Frank W., Jr.; Burken, John; Maine, Trindel A.; Bull, John
1997-01-01
Normally, the damage that results in a total loss of the primary flight controls of a jet transport airplane, including all engines on one side, would be catastrophic. In response, NASA Dryden has conceived an emergency flight control system that uses only the thrust of a wing-mounted engine along with a lateral center-of-gravity (CGY) offset from fuel transfer. Initial analysis and simulation studies indicate that such a system works, and recent high-fidelity simulation tests on the MD-11 and B-747 suggest that the system provides enough control for a survivable landing. This paper discusses principles of flight control using only a wing engine thrust and CGY offset, along with the amount of CGY offset capability of some transport airplanes. The paper also presents simulation results of the throttle-only control capability and closed-loop control of ground track using computer-controlled thrust.
Manual Throttles-Only Control Effectivity for Emergency Flight Control of Transport Aircraft
NASA Technical Reports Server (NTRS)
Stevens, Richard; Burcham, Frank W., Jr.
2009-01-01
If normal aircraft flight controls are lost, emergency flight control may be attempted using only the thrust of engines. Collective thrust is used to control flightpath, and differential thrust is used to control bank angle. One issue is whether a total loss of hydraulics (TLOH) leaves an airplane in a recoverable condition. Recoverability is a function of airspeed, altitude, flight phase, and configuration. If the airplane can be recovered, flight test and simulation results on several transport-class airplanes have shown that throttles-only control (TOC) is usually adequate to maintain up-and-away flight, but executing a safe landing is very difficult. There are favorable aircraft configurations, and also techniques that will improve recoverability and control and increase the chances of a survivable landing. The DHS and NASA have recently conducted a flight and simulator study to determine the effectivity of manual throttles-only control as a way to recover and safely land a range of transport airplanes. This paper discusses TLOH recoverability as a function of conditions, and TOC landability results for a range of transport airplanes, and some key techniques for flying with throttles and making a survivable landing. Airplanes evaluated include the B-747, B-767, B-777, B-757, A320, and B-737 airplanes.
A Risk Management Architecture for Emergency Integrated Aircraft Control
NASA Technical Reports Server (NTRS)
McGlynn, Gregory E.; Litt, Jonathan S.; Lemon, Kimberly A.; Csank, Jeffrey T.
2011-01-01
Enhanced engine operation--operation that is beyond normal limits--has the potential to improve the adaptability and safety of aircraft in emergency situations. Intelligent use of enhanced engine operation to improve the handling qualities of the aircraft requires sophisticated risk estimation techniques and a risk management system that spans the flight and propulsion controllers. In this paper, an architecture that weighs the risks of the emergency and of possible engine performance enhancements to reduce overall risk to the aircraft is described. Two examples of emergency situations are presented to demonstrate the interaction between the flight and propulsion controllers to facilitate the enhanced operation.
Flight testing and simulation of an F-15 airplane using throttles for flight control
NASA Technical Reports Server (NTRS)
Burcham, Frank W., Jr.; Maine, Trindel; Wolf, Thomas
1992-01-01
Flight tests and simulation studies using the throttles of an F-15 airplane for emergency flight control have been conducted at the NASA Dryden Flight Research Facility. The airplane and the simulation are capable of extended up-and-away flight, using only throttles for flight path control. Initial simulation results showed that runway landings using manual throttles-only control were difficult, but possible with practice. Manual approaches flown in the airplane were much more difficult, indicating a significant discrepancy between flight and simulation. Analysis of flight data and development of improved simulation models that resolve the discrepancy are discussed. An augmented throttle-only control system that controls bank angle and flight path with appropriate feedback parameters has also been developed, evaluated in simulations, and is planned for flight in the F-15.
2013-12-04
ISS038-E-011708 (4 Dec. 2013) --- In the International Space Station?s Zvezda Service Module, Russian cosmonaut Sergey Ryazanskiy, Expedition 38 flight engineer, reads a procedures checklist during an emergency simulation drill with participation from flight controllers on the ground. During the exercise, the crew practiced emergency communication and procedures in response to a predetermined scenario such as pressure leak.
Simulation Based Evaluation of Integrated Adaptive Control and Flight Planning Technologies
NASA Technical Reports Server (NTRS)
Campbell, Stefan Forrest; Kaneshige, John T.
2008-01-01
The objective of this work is to leverage NASA resources to enable effective evaluation of resilient aircraft technologies through simulation. This includes examining strengths and weaknesses of adaptive controllers, emergency flight planning algorithms, and flight envelope determination algorithms both individually and as an integrated package.
Emergency Flight Control Using Computer-Controlled Thrust
NASA Technical Reports Server (NTRS)
Burcham, Frank W., Jr.; Fullerton, C. Gordon; Stewart, James F.; Gilyard, Glenn B.; Conley, Joseph A.
1995-01-01
Propulsion Controlled Aircraft (PCA) systems are digital electronic control systems undergoing development to provide limited maneuvering ability through variations of individual engine thrusts in multiple-engine airplanes. Provide landing capability when control surfaces inoperable. Incorporated on existing and future airplanes that include digital engine controls, digital flight controls, and digital data buses, adding no weight for additional hardware to airplane. Possible to handle total failure of hydraulic system, depending on how surfaces respond to loss of hydraulic pressure, and broken control cables or linkages. Future airplanes incorporate data from Global Positioning System for guidance to any suitable emergency runway in world.
Implementation of Enhanced Propulsion Control Modes for Emergency Flight Operation
NASA Technical Reports Server (NTRS)
Csank, Jeffrey T.; Chin, Jeffrey C.; May, Ryan D.; Litt, Jonathan S.; Guo, Ten-Huei
2011-01-01
Aircraft engines can be effective actuators to help pilots avert or recover from emergency situations. Emergency control modes are being developed to enhance the engines performance to increase the probability of recovery under these circumstances. This paper discusses a proposed implementation of an architecture that requests emergency propulsion control modes, allowing the engines to deliver additional performance in emergency situations while still ensuring a specified safety level. In order to determine the appropriate level of engine performance enhancement, information regarding the current emergency scenario (including severity) and current engine health must be known. This enables the engine to operate beyond its nominal range while minimizing overall risk to the aircraft. In this architecture, the flight controller is responsible for determining the severity of the event and the level of engine risk that is acceptable, while the engine controller is responsible for delivering the desired performance within the specified risk range. A control mode selector specifies an appropriate situation-specific enhanced mode, which the engine controller then implements. The enhanced control modes described in this paper provide additional engine thrust or response capabilities through the modification of gains, limits, and the control algorithm, but increase the risk of engine failure. The modifications made to the engine controller to enable the use of the enhanced control modes are described, as are the interaction between the various subsystems and importantly, the interaction between the flight controller/pilot and the propulsion control system. Simulation results demonstrate how the system responds to requests for enhanced operation and the corresponding increase in performance.
2013-12-04
ISS038-E-011710 (4 Dec. 2013) --- In the International Space Station’s Destiny laboratory, NASA astronaut Michael Hopkins (foreground) and Japan Aerospace Exploration Agency astronaut Koichi Wakata, both Expedition 38 flight engineers, participate in an emergency simulation drill with participation from flight controllers on the ground. During the exercise, the crew practiced emergency communication and procedures in response to a predetermined scenario such as pressure leak.
Design Challenges Encountered in a Propulsion-Controlled Aircraft Flight Test Program
NASA Technical Reports Server (NTRS)
Maine, Trindel; Burken, John; Burcham, Frank; Schaefer, Peter
1994-01-01
The NASA Dryden Flight Research Center conducted flight tests of a propulsion-controlled aircraft system on an F-15 airplane. This system was designed to explore the feasibility of providing safe emergency landing capability using only the engines to provide flight control in the event of a catastrophic loss of conventional flight controls. Control laws were designed to control the flightpath and bank angle using only commands to the throttles. Although the program was highly successful, this paper highlights some of the challenges associated with using engine thrust as a control effector. These challenges include slow engine response time, poorly modeled nonlinear engine dynamics, unmodeled inlet-airframe interactions, and difficulties with ground effect and gust rejection. Flight and simulation data illustrate these difficulties.
Integrated Flight-propulsion Control Concepts for Supersonic Transport Airplanes
NASA Technical Reports Server (NTRS)
Burcham, Frank W., Jr.; Gilyard, Glenn B.; Gelhausen, Paul A.
1990-01-01
Integration of propulsion and flight control systems will provide significant performance improvements for supersonic transport airplanes. Increased engine thrust and reduced fuel consumption can be obtained by controlling engine stall margin as a function of flight and engine operating conditions. Improved inlet pressure recovery and decreased inlet drag can result from inlet control system integration. Using propulsion system forces and moments to augment the flight control system and airplane stability can reduce the flight control surface and tail size, weight, and drag. Special control modes may also be desirable for minimizing community noise and for emergency procedures. The overall impact of integrated controls on the takeoff gross weight for a generic high speed civil transport is presented.
78 FR 41285 - Airworthiness Directives; Pilatus Aircraft Ltd. Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-10
... manual). The limitations were revised to include an emergency fuel control system adjustment test. We are... a 300 Flight Hour (FH) hour inspection on the Emergency Fuel Control System (FCS). For the reason...., maintenance manual). The limitations were revised to include an emergency fuel control system adjustment test...
14 CFR 135.345 - Pilots: Initial, transition, and upgrade ground training.
Code of Federal Regulations, 2014 CFR
2014-01-01
...; (9) Flight planning; (10) Each normal and emergency procedure; and (11) The approved Aircraft Flight... following, as applicable to their duties: (a) General subjects— (1) The certificate holder's flight locating...., flight controls, electrical, and hydraulic), other systems, as appropriate, principles of normal...
14 CFR 135.345 - Pilots: Initial, transition, and upgrade ground training.
Code of Federal Regulations, 2013 CFR
2013-01-01
...; (9) Flight planning; (10) Each normal and emergency procedure; and (11) The approved Aircraft Flight... following, as applicable to their duties: (a) General subjects— (1) The certificate holder's flight locating...., flight controls, electrical, and hydraulic), other systems, as appropriate, principles of normal...
14 CFR 135.345 - Pilots: Initial, transition, and upgrade ground training.
Code of Federal Regulations, 2012 CFR
2012-01-01
...; (9) Flight planning; (10) Each normal and emergency procedure; and (11) The approved Aircraft Flight... following, as applicable to their duties: (a) General subjects— (1) The certificate holder's flight locating...., flight controls, electrical, and hydraulic), other systems, as appropriate, principles of normal...
14 CFR 135.345 - Pilots: Initial, transition, and upgrade ground training.
Code of Federal Regulations, 2011 CFR
2011-01-01
...; (9) Flight planning; (10) Each normal and emergency procedure; and (11) The approved Aircraft Flight... following, as applicable to their duties: (a) General subjects— (1) The certificate holder's flight locating...., flight controls, electrical, and hydraulic), other systems, as appropriate, principles of normal...
14 CFR 135.345 - Pilots: Initial, transition, and upgrade ground training.
Code of Federal Regulations, 2010 CFR
2010-01-01
...; (9) Flight planning; (10) Each normal and emergency procedure; and (11) The approved Aircraft Flight... following, as applicable to their duties: (a) General subjects— (1) The certificate holder's flight locating...., flight controls, electrical, and hydraulic), other systems, as appropriate, principles of normal...
A benchmark for fault tolerant flight control evaluation
NASA Astrophysics Data System (ADS)
Smaili, H.; Breeman, J.; Lombaerts, T.; Stroosma, O.
2013-12-01
A large transport aircraft simulation benchmark (REconfigurable COntrol for Vehicle Emergency Return - RECOVER) has been developed within the GARTEUR (Group for Aeronautical Research and Technology in Europe) Flight Mechanics Action Group 16 (FM-AG(16)) on Fault Tolerant Control (2004 2008) for the integrated evaluation of fault detection and identification (FDI) and reconfigurable flight control strategies. The benchmark includes a suitable set of assessment criteria and failure cases, based on reconstructed accident scenarios, to assess the potential of new adaptive control strategies to improve aircraft survivability. The application of reconstruction and modeling techniques, based on accident flight data, has resulted in high-fidelity nonlinear aircraft and fault models to evaluate new Fault Tolerant Flight Control (FTFC) concepts and their real-time performance to accommodate in-flight failures.
Development and flight test experiences with a flight-crucial digital control system
NASA Technical Reports Server (NTRS)
Mackall, Dale A.
1988-01-01
Engineers and scientists in the advanced fighter technology integration (AFTI) F-16 program investigated the integration of emerging technologies into an advanced fighter aircraft. AFTI's three major technologies included: flight-crucial digital control, decoupled aircraft flight control, and integration of avionics, flight control, and pilot displays. In addition to investigating improvements in fighter performance, researchers studied the generic problems confronting the designers of highly integrated flight-crucial digital control. An overview is provided of both the advantages and problems of integration digital control systems. Also, an examination of the specification, design, qualification, and flight test life-cycle phase is provided. An overview is given of the fault-tolerant design, multimoded decoupled flight control laws, and integrated avionics design. The approach to qualifying the software and system designs is discussed, and the effects of design choices on system qualification are highlighted.
Flight-determined benefits of integrated flight-propulsion control systems
NASA Technical Reports Server (NTRS)
Stewart, James F.; Burcham, Frank W., Jr.; Gatlin, Donald H.
1992-01-01
Over the last two decades, NASA has conducted several experiments in integrated flight-propulsion control. Benefits have included improved maneuverability; increased thrust, range, and survivability; reduced fuel consumption; and reduced maintenance. This paper presents the basic concepts for control integration, examples of implementation, and benefits. The F-111E experiment integrated the engine and inlet control systems. The YF-12C incorporated an integral control system involving the inlet, autopilot, autothrottle, airdata, navigation, and stability augmentation systems. The F-15 research involved integration of the engine, flight, and inlet control systems. Further extension of the integration included real-time, onboard optimization of engine, inlet, and flight control variables; a self-repairing flight control system; and an engines-only control concept for emergency control. The F-18A aircraft incorporated thrust vectoring integrated with the flight control system to provide enhanced maneuvering at high angles of attack. The flight research programs and the resulting benefits of each program are described.
Comparison of Aircraft Models and Integration Schemes for Interval Management in the TRACON
NASA Technical Reports Server (NTRS)
Neogi, Natasha; Hagen, George E.; Herencia-Zapana, Heber
2012-01-01
Reusable models of common elements for communication, computation, decision and control in air traffic management are necessary in order to enable simulation, analysis and assurance of emergent properties, such as safety and stability, for a given operational concept. Uncertainties due to faults, such as dropped messages, along with non-linearities and sensor noise are an integral part of these models, and impact emergent system behavior. Flight control algorithms designed using a linearized version of the flight mechanics will exhibit error due to model uncertainty, and may not be stable outside a neighborhood of the given point of linearization. Moreover, the communication mechanism by which the sensed state of an aircraft is fed back to a flight control system (such as an ADS-B message) impacts the overall system behavior; both due to sensor noise as well as dropped messages (vacant samples). Additionally simulation of the flight controller system can exhibit further numerical instability, due to selection of the integration scheme and approximations made in the flight dynamics. We examine the theoretical and numerical stability of a speed controller under the Euler and Runge-Kutta schemes of integration, for the Maintain phase for a Mid-Term (2035-2045) Interval Management (IM) Operational Concept for descent and landing operations. We model uncertainties in communication due to missed ADS-B messages by vacant samples in the integration schemes, and compare the emergent behavior of the system, in terms of stability, via the boundedness of the final system state. Any bound on the errors incurred by these uncertainties will play an essential part in a composable assurance argument required for real-time, flight-deck guidance and control systems,. Thus, we believe that the creation of reusable models, which possess property guarantees, such as safety and stability, is an innovative and essential requirement to assessing the emergent properties of novel airspace concepts of operation.
2013-12-04
ISS038-E-011718 (4 Dec. 2013) --- The Expedition 38 crew members participate in an emergency simulation drill with participation from flight controllers on the ground. During the exercise, the crew practiced emergency communication and procedures in response to a predetermined scenario such as pressure leak. Pictured in the International Space Station?s Destiny laboratory are Russian cosmonaut Oleg Kotov (center), commander; NASA astronaut Michael Hopkins (left), Japan Aerospace Exploration Agency astronaut Koichi Wakata, flight engineers.
Control Room Training for the Hyper-X Project Utilizing Aircraft Simulation
NASA Technical Reports Server (NTRS)
Lux-Baumann, Jesica; Dees, Ray; Fratello, David
2006-01-01
The NASA Dryden Flight Research Center flew two Hyper-X research vehicles and achieved hypersonic speeds over the Pacific Ocean in March and November 2004. To train the flight and mission control room crew, the NASA Dryden simulation capability was utilized to generate telemetry and radar data, which was used in nominal and emergency mission scenarios. During these control room training sessions personnel were able to evaluate and refine data displays, flight cards, mission parameter allowable limits, and emergency procedure checklists. Practice in the mission control room ensured that all primary and backup Hyper-X staff were familiar with the nominal mission and knew how to respond to anomalous conditions quickly and successfully. This report describes the technology in the simulation environment and the Mission Control Center, the need for and benefit of control room training, and the rationale and results of specific scenarios unique to the Hyper-X research missions.
Control Room Training for the Hyper-X Program Utilizing Aircraft Simulation
NASA Technical Reports Server (NTRS)
Lux-Baumann, Jessica R.; Dees, Ray A.; Fratello, David J.
2006-01-01
The NASA Dryden Flight Research Center flew two Hyper-X Research Vehicles and achieved hypersonic speeds over the Pacific Ocean in March and November 2004. To train the flight and mission control room crew, the NASA Dryden simulation capability was utilized to generate telemetry and radar data, which was used in nominal and emergency mission scenarios. During these control room training sessions, personnel were able to evaluate and refine data displays, flight cards, mission parameter allowable limits, and emergency procedure checklists. Practice in the mission control room ensured that all primary and backup Hyper-X staff were familiar with the nominal mission and knew how to respond to anomalous conditions quickly and successfully. This paper describes the technology in the simulation environment and the mission control center, the need for and benefit of control room training, and the rationale and results of specific scenarios unique to the Hyper-X research missions.
View of Mission Control Center during the Apollo 13 emergency return
1970-04-16
S70-35369 (16 April 1970) --- Discussion in the Mission Operations Control Room (MOCR) dealing with the Apollo 13 crewmen during their final day in space. From left to right are Glynn S. Lunney, Shift 4 flight director; Gerald D. Griffin, Shift 2 flight director; astronaut James A. McDivitt, manager, Apollo Spacecraft Program, MSC; Dr. Donald K. Slayton, director of Flight Crew Operations, MSC; and Dr. Willard R. Hawkins, M.D., Shift 1 flight surgeon.
Flight control systems development of highly maneuverable aircraft technology /HiMAT/ vehicle
NASA Technical Reports Server (NTRS)
Petersen, K. L.
1979-01-01
The highly maneuverable aircraft technology (HiMAT) program was conceived to demonstrate advanced technology concepts through scaled-aircraft flight tests using a remotely piloted technique. Closed-loop primary flight control is performed from a ground-based cockpit, utilizing a digital computer and up/down telemetry links. A backup flight control system for emergency operation resides in an onboard computer. The onboard systems are designed to provide fail-operational capabilities and utilize two microcomputers, dual uplink receiver/decoders, and redundant hydraulic actuation and power systems. This paper discusses the design and validation of the primary and backup digital flight control systems as well as the unique pilot and specialized systems interfaces.
NASA Technical Reports Server (NTRS)
Burcham, Frank W., Jr.; Maine, Trindel A.; Burken, John J.; Pappas, Drew
1996-01-01
An emergency flight control system using only engine thrust, called Propulsion-Controlled Aircraft (PCA), has been developed and flight tested on an MD-11 airplane. In this thrust-only control system, pilot flight path and track commands and aircraft feedback parameters are used to control the throttles. The PCA system was installed on the MD-11 airplane using software modifications to existing computers. Flight test results show that the PCA system can be used to fly to an airport and safely land a transport airplane with an inoperative flight control system. In up-and-away operation, the PCA system served as an acceptable autopilot capable of extended flight over a range of speeds and altitudes. The PCA approaches, go-arounds, and three landings without the use of any non-nal flight controls have been demonstrated, including instrument landing system-coupled hands-off landings. The PCA operation was used to recover from an upset condition. In addition, PCA was tested at altitude with all three hydraulic systems turned off. This paper reviews the principles of throttles-only flight control; describes the MD-11 airplane and systems; and discusses PCA system development, operation, flight testing, and pilot comments.
Integrated controls pay-off. [for flight/propulsion aircraft systems
NASA Technical Reports Server (NTRS)
Putnam, Terrill W.; Christiansen, Richard S.
1989-01-01
It is shown that the integration of the propulsion and flight control systems for high performance aircraft can help reduce pilot workload while simultaneously increasing overall aircraft performance. Results of the Highly Integrated Digital Electronic Control (HiDEC) flight research program are presented to demonstrate the emerging payoffs of controls integration. Ways in which the performance of fighter aircraft can be improved through the use of propulsion for primary aircraft control are discussed. Research being conducted by NASA with the F-18 High Angle-of Attack Research Vehicle is described.
2013-12-04
ISS038-E-011716 (4 Dec. 2013) --- The Expedition 38 crew members participate in an emergency simulation drill with participation from flight controllers on the ground. During the exercise, the crew practiced emergency communication and procedures in response to a predetermined scenario such as pressure leak. Pictured in the International Space Station?s Destiny laboratory are Russian cosmonaut Oleg Kotov (left), commander; NASA astronaut Michael Hopkins (bottom), Japan Aerospace Exploration Agency astronaut Koichi Wakata (center) and Russian cosmonaut Sergey Ryazanskiy, all flight engineers.
Flight Research Using F100 Engine P680063 in the NASA F-15 Airplane
NASA Technical Reports Server (NTRS)
Burcham, Frank W., Jr.; Conners, Timothy R.; Maxwell, Michael D.
1994-01-01
The value of flight research in developing and evaluating gas turbine engines is high. NASA Dryden Flight Research Center has been conducting flight research on propulsion systems for many years. The F100 engine has been tested in the NASA F-15 research airplane in the last three decades. One engine in particular, S/N P680063, has been used for the entire program and has been flown in many pioneering propulsion flight research activities. Included are detailed flight-to-ground facility tests; tests of the first production digital engine control system, the first active stall margin control system, the first performance-seeking control system; and the first use of computer-controlled engine thrust for emergency flight control. The flight research has been supplemented with altitude facility tests at key times. This paper presents a review of the tests of engine P680063, the F-15 airplanes in which it flew, and the role of the flight test in maturing propulsion technology.
14 CFR 91.1101 - Pilots: Initial, transition, and upgrade ground training.
Code of Federal Regulations, 2014 CFR
2014-01-01
... consumption and cruise control; (9) Flight planning; (10) Each normal and emergency procedure; and (11) The..., DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT... manager's flight locating procedures; (2) Principles and methods for determining weight and balance, and...
14 CFR 91.1101 - Pilots: Initial, transition, and upgrade ground training.
Code of Federal Regulations, 2013 CFR
2013-01-01
... consumption and cruise control; (9) Flight planning; (10) Each normal and emergency procedure; and (11) The..., DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT... manager's flight locating procedures; (2) Principles and methods for determining weight and balance, and...
14 CFR 91.1101 - Pilots: Initial, transition, and upgrade ground training.
Code of Federal Regulations, 2012 CFR
2012-01-01
... consumption and cruise control; (9) Flight planning; (10) Each normal and emergency procedure; and (11) The..., DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT... manager's flight locating procedures; (2) Principles and methods for determining weight and balance, and...
Emergency flight control system using one engine and fuel transfer
NASA Technical Reports Server (NTRS)
Burcham, Jr., Frank W. (Inventor); Burken, John J. (Inventor); Le, Jeanette (Inventor)
2000-01-01
A system for emergency aircraft control uses at least one engine and lateral fuel transfer that allows a pilot to regain control over an aircraft under emergency conditions. Where aircraft propulsion is available only through engines on one side of the aircraft, lateral fuel transfer provides means by which the center of gravity of the aircraft can be moved over to the wing associated with the operating engine, thus inducing a moment that balances the moment from the remaining engine, allowing the pilot to regain control over the aircraft. By implementing the present invention in flight control programming associated with a flight control computer (FCC), control of the aircraft under emergency conditions can be linked to the yoke or autopilot knob of the aircraft. Additionally, the center of gravity of the aircraft can be shifted in order to effect maneuvers and turns by spacing such center of gravity either closer to or farther away from the propelling engine or engines. In an alternative embodiment, aircraft having a third engine associated with the tail section or otherwise are accommodated and implemented by the present invention by appropriately shifting the center of gravity of the aircraft. Alternatively, where a four-engine aircraft has suffered loss of engine control on one side of the plane, the lateral fuel transfer may deliver the center of gravity closer to the two remaining engines. Differential thrust between the two can then control the pitch and roll of the aircraft in conjunction with lateral fuel transfer.
32 CFR 245.22 - Policy for application of EATPL.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) MISCELLANEOUS PLAN FOR THE EMERGENCY SECURITY CONTROL OF AIR TRAFFIC (ESCAT) ESCAT Air Traffic... individual filing the flight plan will be responsible for including the priority number as determined by the originator of the aircraft flight operation, in the remarks section of the flight plan. (c) Situations may...
Flight testing a propulsion-controlled aircraft emergency flight control system on an F-15 airplane
NASA Technical Reports Server (NTRS)
Burcham, F. W., Jr.; Burken, John; Maine, Trindel A.
1994-01-01
Flight tests of a propulsion-controlled aircraft (PCA) system on an F-15 airplane have been conducted at the NASA Dryden Flight Research Center. The airplane was flown with all flight control surfaces locked both in the manual throttles-only mode and in an augmented system mode. In the latter mode, pilot thumbwheel commands and aircraft feedback parameters were used to position the throttles. Flight evaluation results showed that the PCA system can be used to land an airplane that has suffered a major flight control system failure safely. The PCA system was used to recover the F-15 airplane from a severe upset condition, descend, and land. Pilots from NASA, U.S. Air Force, U.S. Navy, and McDonnell Douglas Aerospace evaluated the PCA system and were favorably impressed with its capability. Manual throttles-only approaches were unsuccessful. This paper describes the PCA system operation and testing. It also presents flight test results and pilot comments.
Integrated Neural Flight and Propulsion Control System
NASA Technical Reports Server (NTRS)
Kaneshige, John; Gundy-Burlet, Karen; Norvig, Peter (Technical Monitor)
2001-01-01
This paper describes an integrated neural flight and propulsion control system. which uses a neural network based approach for applying alternate sources of control power in the presence of damage or failures. Under normal operating conditions, the system utilizes conventional flight control surfaces. Neural networks are used to provide consistent handling qualities across flight conditions and for different aircraft configurations. Under damage or failure conditions, the system may utilize unconventional flight control surface allocations, along with integrated propulsion control, when additional control power is necessary for achieving desired flight control performance. In this case, neural networks are used to adapt to changes in aircraft dynamics and control allocation schemes. Of significant importance here is the fact that this system can operate without emergency or backup flight control mode operations. An additional advantage is that this system can utilize, but does not require, fault detection and isolation information or explicit parameter identification. Piloted simulation studies were performed on a commercial transport aircraft simulator. Subjects included both NASA test pilots and commercial airline crews. Results demonstrate the potential for improving handing qualities and significantly increasing survivability rates under various simulated failure conditions.
2007 Ikhana Western States and Southern California Emergency UAS Fire Missions
NASA Technical Reports Server (NTRS)
Cobleigh, Brent
2008-01-01
Four demonstration and four emergency fire imaging missions completed: a) Thermal infrared imagery delivered in near real-time (5 to 15 minutes) to: 1) SoCal Emergency: FEMA, NIFC, NorthCom, California EOC; 2) Demo Flights: NIFC, Individual Fire Incident Commands. Imagery used for tactical and strategic decision making. Air Traffic Control gave excellent support. Mission plans flown in reverse. Real time requests for revisits of active fires. Added new fire during mission. Moved fire loiter points as fires moved. Real-time reroute around thunderstorm activity. Pre & Post flight telecons with FAA were held to review mission and discuss operational improvements. No issues with air traffic control during the 8 fire missions flown.
Man-vehicle systems research facility advanced aircraft flight simulator throttle mechanism
NASA Technical Reports Server (NTRS)
Kurasaki, S. S.; Vallotton, W. C.
1985-01-01
The Advanced Aircraft Flight Simulator is equipped with a motorized mechanism that simulates a two engine throttle control system that can be operated via a computer driven performance management system or manually by the pilots. The throttle control system incorporates features to simulate normal engine operations and thrust reverse and vary the force feel to meet a variety of research needs. While additional testing to integrate the work required is principally now in software design, since the mechanical aspects function correctly. The mechanism is an important part of the flight control system and provides the capability to conduct human factors research of flight crews with advanced aircraft systems under various flight conditions such as go arounds, coupled instrument flight rule approaches, normal and ground operations and emergencies that would or would not normally be experienced in actual flight.
The Evolution of On-Board Emergency Training for the International Space Station Crew
NASA Technical Reports Server (NTRS)
LaBuff, Skyler
2015-01-01
The crew of the International Space Station (ISS) receives extensive ground-training in order to safely and effectively respond to any potential emergency event while on-orbit, but few people realize that their training is not concluded when they launch into space. The evolution of the emergency On- Board Training events (OBTs) has recently moved from paper "scripts" to an intranet-based software simulation that allows for the crew, as well as the flight control teams in Mission Control Centers across the world, to share in an improved and more realistic training event. This emergency OBT simulator ensures that the participants experience the training event as it unfolds, completely unaware of the type, location, or severity of the simulated emergency until the scenario begins. The crew interfaces with the simulation software via iPads that they keep with them as they translate through the ISS modules, receiving prompts and information as they proceed through the response. Personnel in the control centers bring up the simulation via an intranet browser at their console workstations, and can view additional telemetry signatures in simulated ground displays in order to assist the crew and communicate vital information to them as applicable. The Chief Training Officers and emergency instructors set the simulation in motion, choosing the type of emergency (rapid depressurization, fire, or toxic atmosphere) and specific initial conditions to emphasize the desired training objectives. Project development, testing, and implementation was a collaborative effort between ISS emergency instructors, Chief Training Officers, Flight Directors, and the Crew Office using commercial off the shelf (COTS) hardware along with simulation software created in-house. Due to the success of the Emergency OBT simulator, the already-developed software has been leveraged and repurposed to develop a new emulator used during fire response ground-training to deliver data that the crew receives from the handheld Compound Specific Analyzer for Combustion Products (CSA-CP). This CSA-CP emulator makes use of a portion of codebase from the Emergency OBT simulator dealing with atmospheric contamination during fire scenarios, and feeds various data signatures to crew via an iPod Touch with a flight-like CSA-CP display. These innovative simulations, which make use of COTS hardware with custom in-house software, have yielded drastic improvements to emergency training effectiveness and risk reduction for ISS crew and flight control teams during on-orbit and ground training events.
Cooperative airframe/propulsion control for supersonic cruise aircraft
NASA Technical Reports Server (NTRS)
Schweikhard, W. G.; Berry, D. T.
1974-01-01
Interactions between propulsion systems and flight controls have emerged as a major control problem on supersonic cruise aircraft. This paper describes the nature and causes of these interactions and the approaches to predicting and solving the problem. Integration of propulsion and flight control systems appears to be the most promising solution if the interaction effects can be adequately predicted early in the vehicle design. Significant performance, stability, and control improvements may be realized from a cooperative control system.
Design of Low Complexity Model Reference Adaptive Controllers
NASA Technical Reports Server (NTRS)
Hanson, Curt; Schaefer, Jacob; Johnson, Marcus; Nguyen, Nhan
2012-01-01
Flight research experiments have demonstrated that adaptive flight controls can be an effective technology for improving aircraft safety in the event of failures or damage. However, the nonlinear, timevarying nature of adaptive algorithms continues to challenge traditional methods for the verification and validation testing of safety-critical flight control systems. Increasingly complex adaptive control theories and designs are emerging, but only make testing challenges more difficult. A potential first step toward the acceptance of adaptive flight controllers by aircraft manufacturers, operators, and certification authorities is a very simple design that operates as an augmentation to a non-adaptive baseline controller. Three such controllers were developed as part of a National Aeronautics and Space Administration flight research experiment to determine the appropriate level of complexity required to restore acceptable handling qualities to an aircraft that has suffered failures or damage. The controllers consist of the same basic design, but incorporate incrementally-increasing levels of complexity. Derivations of the controllers and their adaptive parameter update laws are presented along with details of the controllers implementations.
NASA Technical Reports Server (NTRS)
Haefner, K. B.; Honda, T. S.
1973-01-01
A fluidic emergency roll control system for aircraft stabilization in the event of primary flight control failure was evaluated. The fluidic roll control units were designed to provide roll torque proportional to an electrical command as operated by two diametrically opposed thrust nozzles located in the wing tips. The control package consists of a solid propellant gas generator, two diametrically opposed vortex valve modulated thrust nozzles, and an electromagnetic torque motor. The procedures for the design, development, and performance testing of the system are described.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-20
... flight characteristics associated with fixed attitude limits. Embraer S.A. will implement pitch and roll attitude protection functions through the normal modes of the electronic flight control system that will... pitch attitudes necessary for emergency maneuvering or roll angles up to 66 degrees with flaps up, or 60...
A review of in-flight emergencies in the ASRS data base
NASA Technical Reports Server (NTRS)
Porter, R. F.
1981-01-01
A series of 154 in-flight emergencies as reported to the Aviation Safety Reporting System are described. The various types of emergencies are examined and an attempt is made to determine the human errors and other factors associated with each incident, as well as the measures taken to resolve the emergency. It is concluded that nearly one half of those emergencies reported were related to failure or malfunction of aircraft subsystems. Of all the emergencies, nearly one quarter were associated with power plant failure. Other frequently encountered emergency types are associated with operation in instrument meteorological conditions without appropriate clearance or qualification, and with low fuel state situations. Human error is prominently featured in many of the incidents, appearing in the actions of pilots and air traffic controllers.
16. NBS TOPSIDE CONTROL ROOM, THE NBS HYPERBARIC CHAMBER IS ...
16. NBS TOPSIDE CONTROL ROOM, THE NBS HYPERBARIC CHAMBER IS VERY CLOSE TO THE WATER'S EDGE AND HERE FOR DIVER EMERGENCY SUPPORT. A MEDICAL STAFF IS LOCATED ON THE MARSHALL SPACE FLIGHT CENTER (MSFC) AND SUPPORTS THE NBS PERSONNEL WHEN HYPERBARIC CHAMBER OPERATION IS NECESSARY. - Marshall Space Flight Center, Neutral Buoyancy Simulator Facility, Rideout Road, Huntsville, Madison County, AL
NASA Technical Reports Server (NTRS)
Bosworth, John T.
2009-01-01
Adaptive control should be integrated with a baseline controller and only used when necessary (5 responses). Implementation as an emergency system. Immediately re-stabilize and return to controlled flight. Forced perturbation (excitation) for fine-tuning system a) Check margins; b) Develop requirements for amplitude of excitation. Adaptive system can improve performance by eating into margin constraints imposed on the non-adaptive system. Nonlinear effects due to multi-string voting.
Application and Evaluation of Control Modes for Risk-Based Engine Performance Enhancements
NASA Technical Reports Server (NTRS)
Liu, Yuan; Litt, Jonathan S.; Sowers, T. Shane; Owen, A. Karl (Compiler); Guo, Ten-Huei
2014-01-01
The engine control system for civil transport aircraft imposes operational limits on the propulsion system to ensure compliance with safety standards. However, during certain emergency situations, aircraft survivability may benefit from engine performance beyond its normal limits despite the increased risk of failure. Accordingly, control modes were developed to improve the maximum thrust output and responsiveness of a generic high-bypass turbofan engine. The algorithms were designed such that the enhanced performance would always constitute an elevation in failure risk to a consistent predefined likelihood. This paper presents an application of these risk-based control modes to a combined engine/aircraft model. Through computer and piloted simulation tests, the aim is to present a notional implementation of these modes, evaluate their effects on a generic airframe, and demonstrate their usefulness during emergency flight situations. Results show that minimal control effort is required to compensate for the changes in flight dynamics due to control mode activation. The benefits gained from enhanced engine performance for various runway incursion scenarios are investigated. Finally, the control modes are shown to protect against potential instabilities during propulsion-only flight where all aircraft control surfaces are inoperable.
Application and Evaluation of Control Modes for Risk-Based Engine Performance Enhancements
NASA Technical Reports Server (NTRS)
Liu, Yuan; Litt, Jonathan S.; Sowers, T. Shane; Owen, A. Karl; Guo, Ten-Huei
2015-01-01
The engine control system for civil transport aircraft imposes operational limits on the propulsion system to ensure compliance with safety standards. However, during certain emergency situations, aircraft survivability may benefit from engine performance beyond its normal limits despite the increased risk of failure. Accordingly, control modes were developed to improve the maximum thrust output and responsiveness of a generic high-bypass turbofan engine. The algorithms were designed such that the enhanced performance would always constitute an elevation in failure risk to a consistent predefined likelihood. This paper presents an application of these risk-based control modes to a combined engine/aircraft model. Through computer and piloted simulation tests, the aim is to present a notional implementation of these modes, evaluate their effects on a generic airframe, and demonstrate their usefulness during emergency flight situations. Results show that minimal control effort is required to compensate for the changes in flight dynamics due to control mode activation. The benefits gained from enhanced engine performance for various runway incursion scenarios are investigated. Finally, the control modes are shown to protect against potential instabilities during propulsion-only flight where all aircraft control surfaces are inoperable.
NASA Technical Reports Server (NTRS)
Guo, Ten-Huei; Litt, Jonathan S.
2007-01-01
Gas turbine engines are designed to provide sufficient safety margins to guarantee robust operation with an exceptionally long life. However, engine performance requirements may be drastically altered during abnormal flight conditions or emergency maneuvers. In some situations, the conservative design of the engine control system may not be in the best interest of overall aircraft safety; it may be advantageous to "sacrifice" the engine to "save" the aircraft. Motivated by this opportunity, the NASA Aviation Safety Program is conducting resilient propulsion research aimed at developing adaptive engine control methodologies to operate the engine beyond the normal domain for emergency operations to maximize the possibility of safely landing the damaged aircraft. Previous research studies and field incident reports show that the propulsion system can be an effective tool to help control and eventually land a damaged aircraft. Building upon the flight-proven Propulsion Controlled Aircraft (PCA) experience, this area of research will focus on how engine control systems can improve aircraft safe-landing probabilities under adverse conditions. This paper describes the proposed research topics in Engine System Requirements, Engine Modeling and Simulation, Engine Enhancement Research, Operational Risk Analysis and Modeling, and Integrated Flight and Propulsion Controller Designs that support the overall goal.
14 CFR 27.805 - Flight crew emergency exits.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Flight crew emergency exits. 27.805 Section... § 27.805 Flight crew emergency exits. (a) For rotorcraft with passenger emergency exits that are not convenient to the flight crew, there must be flight crew emergency exits, on both sides of the rotorcraft or...
14 CFR 29.805 - Flight crew emergency exits.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Flight crew emergency exits. 29.805 Section... Accommodations § 29.805 Flight crew emergency exits. (a) For rotorcraft with passenger emergency exits that are not convenient to the flight crew, there must be flight crew emergency exits, on both sides of the...
14 CFR 29.805 - Flight crew emergency exits.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Flight crew emergency exits. 29.805 Section... Accommodations § 29.805 Flight crew emergency exits. (a) For rotorcraft with passenger emergency exits that are not convenient to the flight crew, there must be flight crew emergency exits, on both sides of the...
14 CFR 27.805 - Flight crew emergency exits.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Flight crew emergency exits. 27.805 Section... § 27.805 Flight crew emergency exits. (a) For rotorcraft with passenger emergency exits that are not convenient to the flight crew, there must be flight crew emergency exits, on both sides of the rotorcraft or...
Flight-determined benefits of integrated flight-propulsion control systems
NASA Technical Reports Server (NTRS)
Stewart, James F.; Burcham, Frank W., Jr.; Gatlin, Donald H.
1992-01-01
The fundamentals of control integration for propulsion are reviewed giving practical illustrations of its use to demonstrate the advantages of integration. Attention is given to the first integration propulsion-control systems (IPCSs) which was developed for the F-111E, and the integrated controller design is described that NASA developed for the YF-12C aircraft. The integrated control systems incorporate a range of aircraft components including the engine, inlet controls, autopilot, autothrottle, airdata, navigation, and/or stability-augmentation systems. Also described are emergency-control systems, onboard engine optimization, and thrust-vectoring control technologies developed for the F-18A and the F-15. Integrated flight-propulsion control systems are shown to enhance the thrust, range, and survivability of the aircraft while reducing fuel consumption and maintenance.
A Comprehensive Analysis of the X-15 Flight 3-65 Accident
NASA Technical Reports Server (NTRS)
Dennehy, Cornelius J.; Orr, Jeb S.; Barshi, Immanuel; Statler, Irving C.
2014-01-01
The November 15, 1967, loss of X-15 Flight 3-65-97 (hereafter referred to as Flight 3-65) was a unique incident in that it was the first and only aerospace flight accident involving loss of crew on a vehicle with an adaptive flight control system (AFCS). In addition, Flight 3-65 remains the only incidence of a single-pilot departure from controlled flight of a manned entry vehicle in a hypersonic flight regime. To mitigate risk to emerging aerospace systems, the NASA Engineering and Safety Center (NESC) proposed a comprehensive review of this accident. The goal of the assessment was to resolve lingering questions regarding the failure modes of the aircraft systems (including the AFCS) and thoroughly analyze the interactions among the human agents and autonomous systems that contributed to the loss of the pilot and aircraft. This document contains the outcome of the accident review.
NASA Technical Reports Server (NTRS)
Bull, John; Mah, Robert; Davis, Gloria; Conley, Joe; Hardy, Gordon; Gibson, Jim; Blake, Matthew; Bryant, Don; Williams, Diane
1995-01-01
Failures of aircraft primary flight-control systems to aircraft during flight have led to catastrophic accidents with subsequent loss of lives (e.g. , DC-1O crash, B-747 crash, C-5 crash, B-52 crash, and others). Dryden Flight Research Center (DFRC) investigated the use of engine thrust for emergency flight control of several airplanes, including the B-720, Lear 24, F-15, C-402, and B-747. A series of three piloted simulation tests have been conducted at Ames Research Center to investigate propulsion control for safely landing a medium size jet transport which has experienced a total primary flight-control failure. The first series of tests was completed in July 1992 and defined the best interface for the pilot commands to drive the engines. The second series of tests was completed in August 1994 and investigated propulsion controlled aircraft (PCA) display requirements and various command modes. The third series of tests was completed in May 1995 and investigated PCA full-flight envelope capabilities. This report describes the concept of a PCA, discusses pilot controls, displays, and procedures; and presents the results of piloted simulation evaluations of the concept by a cross-section of air transport pilots.
Status and trends in active control technology
NASA Technical Reports Server (NTRS)
Rediess, H. A.; Szalai, K. J.
1975-01-01
The emergence of highly reliable fly-by-wire flight control systems makes it possible to consider a strong reliance on automatic control systems in the design optimization of future aircraft. This design philosophy has been referred to as the control configured vehicle approach or the application of active control technology. Several studies and flight tests sponsored by the Air Force and NASA have demonstrated the potential benefits of control configured vehicles and active control technology. The present status and trends of active control technology are reviewed and the impact it will have on aircraft designs, design techniques, and the designer is predicted.
The aerodynamics and control of free flight manoeuvres in Drosophila.
Dickinson, Michael H; Muijres, Florian T
2016-09-26
A firm understanding of how fruit flies hover has emerged over the past two decades, and recent work has focused on the aerodynamic, biomechanical and neurobiological mechanisms that enable them to manoeuvre and resist perturbations. In this review, we describe how flies manipulate wing movement to control their body motion during active manoeuvres, and how these actions are regulated by sensory feedback. We also discuss how the application of control theory is providing new insight into the logic and structure of the circuitry that underlies flight stability.This article is part of the themed issue 'Moving in a moving medium: new perspectives on flight'. © 2016 The Author(s).
Pediatric emergencies on a US-based commercial airline.
Moore, Brian R; Ping, Jennifer M; Claypool, David W
2005-11-01
The purpose of this investigation was to determine the incidence and character of pediatric emergencies on a US-based commercial airline and to evaluate current in-flight medical kits. In-flight consultations to a major US airline by a member of our staff are recorded in an institutional database. In this observational retrospective review, the database was queried for consultations for all passengers up to 18 years old between January 1, 1995, and December 31, 2002. Consultations were reviewed for type of emergency, use of the medical kit, and unscheduled landings. Two hundred twenty-two pediatric consultations were identified, representing 1 pediatric call per 20,775 flights. The mean age of patients was 6.8 years. Fifty-three emergencies were preflight calls, and 169 were in-flight pediatric consultations. The most common in-flight consultations concerned infectious disease (45 calls, 27%), neurological (25 calls, 15%), and respiratory tract (22 calls, 13%) emergencies. The emergency medical kit was used for 60 emergencies. Nineteen consultations (11%) resulted in flight diversions (1/240,000 flights), most commonly because of in-flight neurological (9) and respiratory tract (5) emergencies. International flights had a higher incidence than domestic flights of consultations and diversions for pediatric emergencies. The most common in-flight pediatric emergencies involved infectious diseases and neurological and respiratory tract problems. Emergency medical kits should be expanded to include pediatric medications.
Cooperative Physics of Fly Swarms: An Emergent Behavior.
1994-12-01
Report, volume 6, pages 161-178, Berlin, 1977. Dahlem Konferenzen. [10] M. F. Land and T.S. Collett. Chasing behaviour of houseflies (Fannia...Flight control and visual control of flight of the free-flying housefly (Musca domestica). Part III. Philosoph. Trans. Royal Soc. London, B(312):581-595...1986. ] C. Wehrhahn. Sex specific differences in the ori- entation behaviour of houseflies . Biol. Cybernetics, 29:237-247, 1978. [20] C
Control System Upgrade for a Mass Property Measurement Facility
NASA Technical Reports Server (NTRS)
Chambers, William; Hinkle, R. Kenneth (Technical Monitor)
2002-01-01
The Mass Property Measurement Facility (MPMF) at the Goddard Space Flight Center has undergone modifications to ensure the safety of Flight Payloads and the measurement facility. The MPMF has been technically updated to improve reliability and increase the accuracy of the measurements. Modifications include the replacement of outdated electronics with a computer based software control system, the addition of a secondary gas supply in case of a catastrophic failure to the gas supply and a motor controlled emergency stopping feature instead of a hard stop.
Skylab Saturn 1B flight manual
NASA Technical Reports Server (NTRS)
1972-01-01
A Saturn 1B Flight Manual provides launch vehicle systems descriptions and predicted performance data for the Skylab missions. Vehicle SL-2 (SA-206) is the baseline for this manual; but, as a result of the great similarity, the material is representative of SL-3 and SL-4 launch vehicles, also. The Flight Manual is not a control document but is intended primarily as an aid to astronauts who are training for Skylab missions. In order to provide a comprehensive reference for that purpose, the manual also contains descriptions of the ground support interfaces, prelaunch operations, and emergency procedures. Mission variables and constraints are summarized, and mission control monitoring and data flow during launch preparation and flight are discussed.
The Effect of Faster Engine Response on the Lateral Directional Control of a Damaged Aircraft
NASA Technical Reports Server (NTRS)
May, Ryan D.; Lemon, Kimberly A.; Csank, Jeffrey T.; Litt, Jonathan S.; Guo, Ten-Huei
2012-01-01
The integration of flight control and propulsion control has been a much discussed topic, especially for emergencies where the engines may be able to help stabilize and safely land a damaged aircraft. Previous research has shown that for the engines to be effective as flight control actuators, the response time to throttle commands must be improved. Other work has developed control modes that accept a higher risk of engine failure in exchange for improved engine response during an emergency. In this effort, a nonlinear engine model (the Commercial Modular Aero-Propulsion System Simulation 40k) has been integrated with a nonlinear airframe model (the Generic Transport Model) in order to evaluate the use of enhanced-response engines as alternative yaw rate control effectors. Tests of disturbance rejection and command tracking were used to determine the impact of the engines on the aircraft's dynamical behavior. Three engine control enhancements that improve the response time of the engine were implemented and tested in the integrated simulation. The enhancements were shown to increase the engine s effectiveness as a yaw rate control effector when used in an automatic feedback loop. The improvement is highly dependent upon flight condition; the airframe behavior is markedly improved at low altitude, low speed conditions, and relatively unchanged at high altitude, high speed.
Flight Simulator Evaluation of Enhanced Propulsion Control Modes for Emergency Operation
NASA Technical Reports Server (NTRS)
Litt, Jonathan, S; Sowers, T.; Owen, A., Karl; Fulton, Christopher, E.; Chicatelli, Amy, K.
2012-01-01
This paper describes piloted evaluation of enhanced propulsion control modes for emergency operation of aircraft. Fast Response and Overthrust modes were implemented to assess their ability to help avoid or mitigate potentially catastrophic situations, both on the ground and in flight. Tests were conducted to determine the reduction in takeoff distance achievable using the Overthrust mode. Also, improvements in Dutch roll damping, enabled by using yaw rate feedback to the engines to replace the function of a stuck rudder, were investigated. Finally, pilot workload and ability to handle the impaired aircraft on approach and landing were studied. The results showed that improvement in all aspects is possible with these enhanced propulsion control modes, but the way in which they are initiated and incorporated is important for pilot comfort and perceived benefit.
View of Mission Control Center during the Apollo 13 emergency return
1970-04-16
S70-35368 (16 April 1970) --- Overall view showing some of the feverish activity in the Mission Operations Control Room (MOCR) of the Mission Control Center (MCC) during the final 24 hours of the problem-plagued Apollo 13 mission. Here, flight controllers and several NASA/MSC officials confer at the flight director's console. When this picture was made, the Apollo 13 lunar landing had already been canceled, and the Apollo 13 crewmembers were in trans-Earth trajectory attempting to bring their crippled spacecraft back home.
Medical emergencies at a major international airport: in-flight symptoms and ground-based follow-up.
Chan, Shu B; Hogan, Teresita M; Silva, Julio C
2002-10-01
There is limited recent data about the treatments and outcomes of commercial airline passengers who suffer in-flight medical symptoms resulting in subsequent EMS evaluation. The study objectives are to determine incidence, post-flight treatments, outcomes, morbidity, and mortality of these in-flight medical emergencies (IFMEs). A 1-yr retrospective study of emergency medical service (EMS), emergency department (ED), and inpatient hospital records of IFME patients from Chicago O'Hare International Airport was completed. All commercial passengers or crew with in-flight medical symptoms who subsequently activated the EMS system on flight arrival are included in the study. The main outcome measures are: in-flight sudden deaths, post-flight mortality, hospital admission rate, ICU admission rate, ED procedures, inpatient procedures, and discharge diagnoses. There were 744 IFMEs for an incidence of 21.3 per million passengers per year. The hospital admission rate was 24.5%. The ICU admission rate was 5.9%. There were five in-flight sudden deaths and six in-hospital deaths for an overall mortality rate of 0.3 per million passengers per year. Emergency stabilization procedures were required on 4.8% of patients. Cardiac emergencies accounted for 29.1% of inpatient diagnoses and 13.1% of all discharge diagnoses. The incidence of in-flight medical emergencies is small but these IFMEs are potentially lethal. Although the majority of IFME patients have uneventful outcomes, there is associated morbidity and mortality. These included in-flight deaths, in-hospital deaths, and emergency procedures. Cardiac emergencies were the most common of serious EMS evaluated in-flight medical emergencies.
NASA Technical Reports Server (NTRS)
Roskam, Jan; Ackers, Deane E.; Gerren, Donna S.
1995-01-01
A propulsion controlled aircraft (PCA) system has been developed at NASA Dryden Flight Research Center at Edwards Air Force Base, California, to provide safe, emergency landing capability should the primary flight control system of the aircraft fail. As a result of the successful PCA work being done at NASA Dryden, this project investigated the possibility of incorporating the PCA system as a backup flight control system in the design of a large, ultra-high capacity megatransport in such a way that flight path control using only the engines is not only possible, but meets MIL-Spec Level 1 or Level 2 handling quality requirements. An 800 passenger megatransport aircraft was designed and programmed into the NASA Dryden simulator. Many different analysis methods were used to evaluate the flying qualities of the megatransport while using engine thrust for flight path control, including: (1) Bode and root locus plot analysis to evaluate the frequency and damping ratio response of the megatransport; (2) analysis of actual simulator strip chart recordings to evaluate the time history response of the megatransport; and (3) analysis of Cooper-Harper pilot ratings by two NaSA test pilots.
Qin, Jianyang; Liu, Yueqiu; Zhang, Lei; Cheng, Yunxia; Sappington, Thomas W; Jiang, Xingfu
2018-05-28
To understand the migratory flight behaviors of the loreyi leafworm, Mythimna loreyi Walker (Lepidoptera: Noctuidae), both tethered (flight distance, time, and velocity) and free-flight activity (flight action, duration, and frequency) of adults at different ages, sexes, and temperatures were investigated using computer-controlled insect flight mills and an autonomous flight monitoring system. Tethered flight activity differed significantly among ages and rearing temperature, but not sex. Newly emerged adults (the first day after emergence) displayed the lowest flight time, distance, and speed. However, flight performance increased with age, peaking at 3 d. Relatively strong flight performance was maintained up to 5 d postemergence and then declined significantly by day 6. There was no significant difference in flight performance between sexes for 3-d-old moths. Adults reared as larvae at 24°C averaged significantly longer flight duration and distance than those reared at other temperatures. Both lower and higher rearing temperatures negatively affected tethered flight. Similar results among age and rearing temperature treatments were observed in autonomous free-flight tests. During 12-h free-flight tests, flight activity peaked from 6 to 10 h after beginning of darkness. Free-flight activity of 1- and 6-d-old adults was significantly less than that of 3-, 4-, and 5-d-old adults. Adults reared at 24°C showed significantly greater free-flight action, duration, and frequency than those reared at other temperatures. The results suggest that M. loreyi may be a migratory species.
Neck muscle activity in fighter pilots wearing night-vision equipment during simulated flight.
Ang, Björn O; Kristoffersson, Mats
2013-02-01
Night-vision goggles (NVG) in jet fighter aircraft appear to increase the risk of neck strain due to increased neck loading. The present aim was, therefore, to evaluate the effect on neck-muscle activity and subjective ratings of head-worn night-vision (NV) equipment in controlled simulated flights. Five experienced fighter pilots twice flew a standardized 2.5-h program in a dynamic flight simulator; one session with NVG and one with standard helmet mockup (control session). Each session commenced with a 1-h simulation at 1 Gz followed by a 1.5-h dynamic flight with repeated Gz profiles varying between 3 and 7 Gz and including aerial combat maneuvers (ACM) at 3-5 Gz. Large head-and-neck movements under high G conditions were avoided. Surface electromyographic (EMG) data was simultaneously measured bilaterally from anterior neck, upper and lower posterior neck, and upper shoulder muscles. EMG activity was normalized as the percentage of pretest maximal voluntary contraction (%MVC). Head-worn equipment (helmet comfort, balance, neck mobility, and discomfort) was rated subjectively immediately after flight. A trend emerged toward greater overall neck muscle activity in NV flight during sustained ACM episodes (10% vs. 8% MVC for the control session), but with no such effects for temporary 3-7 Gz profiles. Postflight ratings for NV sessions emerged as "unsatisfactory" for helmet comfort/neck discomfort. However, this was not significant compared to the control session. Helmet mounted NV equipment caused greater neck muscle activity during sustained combat maneuvers, indicating increased muscle strain due to increased neck loading. In addition, postflight ratings indicated neck discomfort after NV sessions, although not clearly increased compared to flying with standard helmet mockup.
An Overview of the NASA F-18 High Alpha Research Vehicle
NASA Technical Reports Server (NTRS)
Bowers, Albion H.; Pahle, Joseph W.; Wilson, R. Joseph; Flick, Bradley C.; Rood, Richard L.
1996-01-01
This paper gives an overview of the NASA F-18 High Alpha Research Vehicle. The three flight phases of the program are introduced, along with the specific goals and data examples taken during each phase. The aircraft configuration and systems needed to perform the disciplinary and inter-disciplinary research are discussed. The specific disciplines involved with the flight research are introduced, including aerodynamics, controls, propulsion, systems, and structures. Decisions that were made early in the planning of the aircraft project and the results of those decisions are briefly discussed. Each of the three flight phases corresponds to a particular aircraft configuration, and the research dictated the configuration to be flown. The first phase gathered data with the baseline F-18 configuration. The second phase was the thrust-vectoring phase. The third phase used a modified forebody with deployable nose strakes. Aircraft systems supporting these flights included extensive instrumentation systems, integrated research flight controls using flight control hardware and corresponding software, analog interface boxes to control forebody strakes, a thrust-vectoring system using external post-exit vanes around axisymmetric nozzles, a forebody vortex control system with strakes, and backup systems using battery-powered emergency systems and a spin recovery parachute.
NASA Technical Reports Server (NTRS)
Duke, Eugene L.; Hewett, Marle D.; Brumbaugh, Randal W.; Tartt, David M.; Antoniewicz, Robert F.; Agarwal, Arvind K.
1988-01-01
An automated flight test management system (ATMS) and its use to develop a rapid-prototyping flight research facility for artificial intelligence (AI) based flight systems concepts are described. The ATMS provides a flight test engineer with a set of tools that assist in flight planning and simulation. This system will be capable of controlling an aircraft during the flight test by performing closed-loop guidance functions, range management, and maneuver-quality monitoring. The rapid-prototyping flight research facility is being developed at the Dryden Flight Research Facility of the NASA Ames Research Center (Ames-Dryden) to provide early flight assessment of emerging AI technology. The facility is being developed as one element of the aircraft automation program which focuses on the qualification and validation of embedded real-time AI-based systems.
Factors Associated with Delayed Ejection in Mishaps Between 1993 and 2013.
Miles, John E
2015-09-01
The purpose of this investigation was to identify factors associated with Air Force aviators delaying ejection during in-flight emergencies. The investigator reviewed all reports within the Air Force Safety Automated System describing mishaps that resulted in the destruction of Air Force ejection-seat equipped aircraft between 1993 and 2013. Crewmembers were classified as either timely or delayed ejectors based on altitude at onset of emergency, altitude at ejection, and a determination regarding whether or not the aircraft was controlled during the mishap sequence. Univariate analysis and multivariate logistic regression were used to explore the association between delayed ejection and multiple potential risk factors. In total, 366 crewmembers were involved in in-flight emergencies in ejection-seat-equipped aircraft that resulted in the loss of the aircraft; 201 (54.9%) of these crewmembers delayed ejection until their aircraft had descended below recommended minimum ejection altitudes. Multivariate analysis indicated that independent risk factors for delayed ejection included increased crewmember flight hours and a mechanical or human-factors related cause of the emergency versus bird strike or midair collision. This investigation provided quantitative assessments of factors associated with aviators delaying ejection during in-flight emergencies. Increased odds of delay among crewmembers with greater than 1500 total flight hours suggests that complacency and overconfidence may adversely influence the ejection decision to at least as great a degree as inexperience. Increased odds of delay during mechanical and human factors mishaps confirms previously reported hypotheses and reaffirms the importance of targeting these areas to reduce aviator injuries and fatalities.
Katzer, Robert J; Duong, David; Weber, Matthew; Memmer, Amy; Buchanan, Ian
2014-11-01
In-flight medical emergencies on commercial aircraft are common in both domestic and international flights. We hypothesized that fourth-year medical students feel inadequately prepared to lend assistance during in-flight medical emergencies. This multicenter study of two U.S. medical schools obtains a baseline assessment of knowledge and confidence in managing in-flight medical emergencies. A 25-question survey was administered to fourth-year medical students at two United States medical schools. Questions included baseline knowledge of in-flight medicine (10 questions) and perceived ability to respond to in-flight medical emergencies. 229 participants completed the survey (75% response rate). The average score on the fund of knowledge questions was 64%. Responses to the 5-point Likert scale questions indicated that, on average, students did not feel confident or competent responding to an in-flight medical emergency. Participants on average also disagreed with statements that they had adequate understanding of supplies, flight crew training, and ground-based management. This multicenter survey indicates that fourth-year medical students do not feel adequately prepared to respond to in-flight medical emergencies and may have sub-optimal knowledge. This study provides an initial step in identifying a deficiency in current medical education.
Katzer, Robert J.; Duong, David; Weber, Matthew; Memmer, Amy; Buchanan, Ian
2014-01-01
Introduction In-flight medical emergencies on commercial aircraft are common in both domestic and international flights. We hypothesized that fourth-year medical students feel inadequately prepared to lend assistance during in-flight medical emergencies. This multicenter study of two U.S. medical schools obtains a baseline assessment of knowledge and confidence in managing in-flight medical emergencies. Methods A 25-question survey was administered to fourth-year medical students at two United States medical schools. Questions included baseline knowledge of in-flight medicine (10 questions) and perceived ability to respond to in-flight medical emergencies. Results 229 participants completed the survey (75% response rate). The average score on the fund of knowledge questions was 64%. Responses to the 5-point Likert scale questions indicated that, on average, students did not feel confident or competent responding to an in-flight medical emergency. Participants on average also disagreed with statements that they had adequate understanding of supplies, flight crew training, and ground-based management. Conclusion This multicenter survey indicates that fourth-year medical students do not feel adequately prepared to respond to in-flight medical emergencies and may have sub-optimal knowledge. This study provides an initial step in identifying a deficiency in current medical education. PMID:25493155
NASA Technical Reports Server (NTRS)
Liu, Dahai; Goodrich, Kenneth H.; Peak, Bob
2010-01-01
This study investigated the effects of synthetic vision system (SVS) concepts and advanced flight controls on the performance of pilots flying a light, single-engine general aviation airplane. We evaluated the effects and interactions of two levels of terrain portrayal, guidance symbology, and flight control response type on pilot performance during the conduct of a relatively complex instrument approach procedure. The terrain and guidance presentations were evaluated as elements of an integrated primary flight display system. The approach procedure used in the study included a steeply descending, curved segment as might be encountered in emerging, required navigation performance (RNP) based procedures. Pilot performance measures consisted of flight technical performance, perceived workload, perceived situational awareness and subjective preference. The results revealed that an elevation based generic terrain portrayal significantly improved perceived situation awareness without adversely affecting flight technical performance or workload. Other factors (pilot instrument rating, control response type, and guidance symbology) were not found to significantly affect the performance measures.
NASA Technical Reports Server (NTRS)
Sitterley, T. E.; Berge, W. A.
1972-01-01
Manual flight control and emergency procedure task skill degradation was evaluated after time intervals of from 1 to 6 months. The tasks were associated with a simulated launch through the orbit insertion flight phase of a space vehicle. The results showed that acceptable flight control performance was retained for 2 months, rapidly deteriorating thereafter by a factor of 1.7 to 3.1 depending on the performance measure used. Procedural task performance showed unacceptable degradation after only 1 month, and exceeded an order of magnitude after 4 months. The effectiveness of static rehearsal (checklists and briefings) and dynamic warmup (simulator practice) retraining methods were compared for the two tasks. Static rehearsal effectively countered procedural skill degradation, while some combination of dynamic warmup appeared necessary for flight control skill retention. It was apparent that these differences between methods were not solely a function of task type or retraining method, but were a function of the performance measures used for each task.
78 FR 42406 - Airworthiness Directives; Eurocopter France Helicopters
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-16
... 3 of the Rotorcraft Flight Manual. Many of the non-compliant servo-controls were installed by the... Emergency AD, we have discovered that the servo-control's component history card or equivalent record may... servo-controls with a non-compliant input lever bearing be replaced and returned to the manufacturer. AD...
Preparing Flight Attendants for In-Flight Psychiatric Emergencies: A Training Manual
ERIC Educational Resources Information Center
Gras, Rebecca E.
2011-01-01
While in-flight psychiatric emergencies occur at a lower rate than other medical emergencies (Matsumoto & Goebert, 2001), they tend to cause a higher degree of disruption for passengers (Gordan, Kingham, & Goodwin, 2004). However, flight attendants often receive training that is too basic, minimal, and insufficient to effectively manage…
Experimental flights using a small unmanned aircraft system for mapping emergent sandbars
Kinzel, Paul J.; Bauer, Mark A.; Feller, Mark R.; Holmquist-Johnson, Christopher; Preston, Todd
2015-01-01
The US Geological Survey and Parallel Inc. conducted experimental flights with the Tarantula Hawk (T-Hawk) unmanned aircraft system (UAS ) at the Dyer and Cottonwood Ranch properties located along reaches of the Platte River near Overton, Nebraska, in July 2013. We equipped the T-Hawk UAS platform with a consumer-grade digital camera to collect imagery of emergent sandbars in the reaches and used photogrammetric software and surveyed control points to generate orthophotographs and digital elevation models (DEMS ) of the reaches. To optimize the image alignment process, we retained and/or eliminated tie points based on their relative errors and spatial resolution, whereby minimizing the total error in the project. Additionally, we collected seven transects that traversed emergent sandbars concurrently with global positioning system location data to evaluate the accuracy of the UAS survey methodology. The root mean square errors for the elevation of emergent points along each transect across the DEMS ranged from 0.04 to 0.12 m. If adequate survey control is established, a UAS combined with photogrammetry software shows promise for accurate monitoring of emergent sandbar morphology and river management activities in short (1–2 km) river reaches.
Medical Operations Console Procedure Evaluation: BME Response to Crew Call Down for an Emergency
NASA Technical Reports Server (NTRS)
Johnson-Troop; Pettys, Marianne; Hurst, Victor, IV; Smaka, Todd; Paul, Bonnie; Rosenquist, Kevin; Gast, Karin; Gillis, David; McCulley, Phyllis
2006-01-01
International Space Station (ISS) Mission Operations are managed by multiple flight control disciplines located at the lead Mission Control Center (MCC) at NASA-Johnson Space Center (JSC). ISS Medical Operations are supported by the complementary roles of Flight Surgeons (Surgeon) and Biomedical Engineer (BME) flight controllers. The Surgeon, a board certified physician, oversees all medical concerns of the crew and the BME provides operational and engineering support for Medical Operations Crew Health Care System. ISS Medical Operations is currently addressing the coordinated response to a crew call down for an emergent medical event, in particular when the BME is the only Medical Operations representative in MCC. In this case, the console procedure BME Response to Crew Call Down for an Emergency will be used. The procedure instructs the BME to contact a Surgeon as soon as possible, coordinate with other flight disciplines to establish a Private Medical Conference (PMC) for the crew and Surgeon, gather information from the crew if time permits, and provide Surgeon with pertinent console resources. It is paramount that this procedure is clearly written and easily navigated to assist the BME to respond consistently and efficiently. A total of five BME flight controllers participated in the study. Each BME participant sat in a simulated MCC environment at a console configured with resources specific to the BME MCC console and was presented with two scripted emergency call downs from an ISS crew member. Each participant used the procedure while interacting with analog MCC disciplines to respond to the crew call down. Audio and video recordings of the simulations were analyzed and each BME participant's actions were compared to the procedure. Structured debriefs were conducted at the conclusion of both simulations. The procedure was evaluated for its ability to elicit consistent responses from each BME participant. Trials were examined for deviations in procedure task completion and/or navigation, in particular the execution of the Surgeon call sequence. Debrief comments were used to analyze unclear procedural steps and to discern any discrepancies between the procedure and generally accepted BME actions. The sequence followed by BME participants differed considerably from the sequence intended by the procedure. Common deviations included the call sequence used to contact Surgeon, the content of BME and crew interaction and the gathering of pertinent console resources. Differing perceptions of task priority and imprecise language seem to have caused multiple deviations from the procedure s intended sequence. The study generated 40 recommendations for the procedure, of which 34 are being implemented. These recommendations address improving the clarity of the instructions, identifying training considerations, expediting Surgeon contact, improving cues for anticipated flight control team communication and identifying missing console tools.
Pilot Domain Task Experience in Night Fatal Helicopter Emergency Medical Service Accidents.
Aherne, Bryan B; Zhang, Chrystal; Newman, David G
2016-06-01
In the United States, accident and fatality rates in helicopter emergency medical service (HEMS) operations increase significantly under nighttime environmentally hazardous operational conditions. Other studies have found pilots' total flight hours unrelated to HEMS accident outcomes. Many factors affect pilots' decision making, including their experience. This study seeks to investigate whether pilot domain task experience (DTE) in HEMS plays a role against likelihood of accidents at night when hazardous operational conditions are entered. There were 32 flights with single pilot nighttime fatal HEMS accidents between 1995 and 2013 with findings of controlled flight into terrain (CFIT) and loss of control (LCTRL) due to spatial disorientation (SD) identified. The HEMS DTE of the pilots were compared with industry survey data. Of the pilots, 56% had ≤2 yr of HEMS experience and 9% had >10 yr of HEMS experience. There were 21 (66%) accidents that occurred in non-visual flight rules (VFR) conditions despite all flights being required to be conducted under VFR. There was a statistically significant increase in accident rates in pilots with <2 and <4 yr HEMS DTE and a statistically significant decrease in accident rates in pilots with >10 yr HEMS DTE. HEMS DTE plays a preventive role against the likelihood of a night operational accident. Pilots with limited HEMS DTE are more likely to make a poor assessment of hazardous conditions at night, and this will place HEMS flight crew at high risk in the VFR night domain.
Autogenic-feedback training improves pilot performance during emergency flying conditions
NASA Technical Reports Server (NTRS)
Kellar, Michael A.; Folen, Raymond A.; Cowings, Patricia S.; Toscano, William B.; Hisert, Glen L.
1994-01-01
Studies have shown that autonomous mode behavior is one cause of aircraft fatalities due to pilot error. In such cases, the pilot is in a high state of psychological and physiological arousal and tends to focus on one problem, while ignoring more critical information. This study examined the effect of training in physiological self-recognition and regulation, as a means of improving crew cockpit performance. Seventeen pilots were assigned to the treatment and control groups matched for accumulated flight hours. The treatment group comprised three pilots of HC-130 Hercules aircraft and four HH-65 Dolphin helicopter pilots; the control group comprised three pilots of HC-130's and six Dolphin helicopter pilots. During an initial flight, physiological data were recorded for each crew member and individual crew performance was rated by an instructor pilot. Eight crewmembers were then taught to regulate their own physiological response levels using Autogenic-Feedback Training (AFT). The remaining subjects received no training. During a second flight, treatment subjects showed significant improvement in performance, while controls did not improve. The results indicate that AFT management of high states of physiological arousal may improve pilot performance during emergency flying conditions.
Autogenic-feedback training improves pilot performance during emergency flying conditions
NASA Technical Reports Server (NTRS)
Kellar, Michael A.; Folen, Raymond A.; Cowings, Patricia S.; Toscano, William B.; Hisert, Glen L.
1993-01-01
Studies have shown that autonomous mode behavior is one cause of aircraft fatalities due to pilot error. In such cases, the pilot is in a high state of psychological and physiological arousal and tends to focus on one problem, while ignoring more critical information. The effect of training in physiological self-recognition and regulation, as a means of improving crew cockpit performance was examined. Seventeen pilots were assigned to the treatment and control groups matched for accumulated flight hours. The treatment group comprised four pilots of HC-130 Hercules aircraft and four HH-65 Dolphin helicopter pilots; the control group comprised three pilots of HC-130's and six Dolphin helicopter pilots. During an initial flight physiological data were recorded for each crewmember and individual crew performance and rated by an instructor pilot. Eight crewmembers were then taught to regulate their own physiological response levels using Autogenic-Feedback Training (AFT). The remaining subjects received no training. During a second flight, treatment subjects showed significant improvement in performance, while controls did not improve. The results indicate that AFT management of high states of physiological arousal may improve pilot performance during emergency flying conditions.
Outcomes of medical emergencies on commercial airline flights.
Peterson, Drew C; Martin-Gill, Christian; Guyette, Francis X; Tobias, Adam Z; McCarthy, Catherine E; Harrington, Scott T; Delbridge, Theodore R; Yealy, Donald M
2013-05-30
Worldwide, 2.75 billion passengers fly on commercial airlines annually. When in-flight medical emergencies occur, access to care is limited. We describe in-flight medical emergencies and the outcomes of these events. We reviewed records of in-flight medical emergency calls from five domestic and international airlines to a physician-directed medical communications center from January 1, 2008, through October 31, 2010. We characterized the most common medical problems and the type of on-board assistance rendered. We determined the incidence of and factors associated with unscheduled aircraft diversion, transport to a hospital, and hospital admission, and we determined the incidence of death. There were 11,920 in-flight medical emergencies resulting in calls to the center (1 medical emergency per 604 flights). The most common problems were syncope or presyncope (37.4% of cases), respiratory symptoms (12.1%), and nausea or vomiting (9.5%). Physician passengers provided medical assistance in 48.1% of in-flight medical emergencies, and aircraft diversion occurred in 7.3%. Of 10,914 patients for whom postflight follow-up data were available, 25.8% were transported to a hospital by emergency-medical-service personnel, 8.6% were admitted, and 0.3% died. The most common triggers for admission were possible stroke (odds ratio, 3.36; 95% confidence interval [CI], 1.88 to 6.03), respiratory symptoms (odds ratio, 2.13; 95% CI, 1.48 to 3.06), and cardiac symptoms (odds ratio, 1.95; 95% CI, 1.37 to 2.77). Most in-flight medical emergencies were related to syncope, respiratory symptoms, or gastrointestinal symptoms, and a physician was frequently the responding medical volunteer. Few in-flight medical emergencies resulted in diversion of aircraft or death; one fourth of passengers who had an in-flight medical emergency underwent additional evaluation in a hospital. (Funded by the National Institutes of Health.).
14 CFR 121.703 - Service difficulty reports.
Code of Federal Regulations, 2013 CFR
2013-01-01
... system or ability of the system to control overspeed during flight; (11) A fuel or fuel-dumping system..., takeoff, climb, cruise, desent landing, and inspection). (4) The emergency procedure effected (e.g...
14 CFR 121.703 - Service difficulty reports.
Code of Federal Regulations, 2012 CFR
2012-01-01
... system or ability of the system to control overspeed during flight; (11) A fuel or fuel-dumping system..., takeoff, climb, cruise, desent landing, and inspection). (4) The emergency procedure effected (e.g...
14 CFR 121.703 - Service difficulty reports.
Code of Federal Regulations, 2011 CFR
2011-01-01
... system or ability of the system to control overspeed during flight; (11) A fuel or fuel-dumping system..., takeoff, climb, cruise, desent landing, and inspection). (4) The emergency procedure effected (e.g...
14 CFR 121.703 - Service difficulty reports.
Code of Federal Regulations, 2014 CFR
2014-01-01
... system or ability of the system to control overspeed during flight; (11) A fuel or fuel-dumping system..., takeoff, climb, cruise, desent landing, and inspection). (4) The emergency procedure effected (e.g...
Effects of weightlessness in man.
NASA Technical Reports Server (NTRS)
Berry, C. A.
1973-01-01
The program for the Apollo 16 flight was designed to include both safeguards against and investigations of the physiological problems arising from increase in the period of manned space flight. Precautions included the provision of a controlled diet with high potassium content, carefully controlled work loads and work-rest cycles, and an emergency cardiology consultation service, and investigations were made to enable preflight vs postflight comparisons of metabolic, cardiovascular, and central nervous system data. Results of these investigations indicate that adjustment to weightlessness can be satisfactorily assisted by appropriate countermeasures, including attention to diet.
NASA Technical Reports Server (NTRS)
Lovell, Powell M., Jr.
1954-01-01
An experimental investigation has been conducted to determine the dynamic stability and control characteristics in hovering and transition flight of a 0.13-scale flying model of the Convair XFY-1 vertically rising airplane with the lower vertical tail removed. The purpose of the tests was to obtain a general indication of the behavior of a vertically rising airplane of the same general type as the XFY-1 but without a lower vertical tail in order to simplify power-off belly landings in an emergency. The model was flown satisfactorily in hovering flight and in the transition from hovering to normal unstalled forward flight (angle of attack approximately 30deg). From an angle of attack of about 30 down to the lowest angle of attack covered in the flight tests (approximately 15deg) the model became progressively more difficult to control. These control difficulties were attributed partly to a lightly damped Dutch roll oscillation and partly to the fact that the control deflections required for hovering and transition flight were too great for smooth flight at high speeds. In the low-angle-of-attack range not covered in the flight tests, force tests have indicated very low static directional stability which would probably result in poor flight characteristics. It appears, therefore, that the attainment of satisfactory directional stability, at angles of attack less than 10deg, rather than in the hovering and transition ranges of flight is the critical factor in the design of the vertical tail for such a configuration.
Commercial Airline In-Flight Emergency: Medical Student Response and Review of Medicolegal Issues.
Bukowski, Josh H; Richards, John R
2016-01-01
As the prevalence of air travel increases, in-flight medical emergencies occur more frequently. A significant percentage of these emergencies occur when there is no certified physician, nurse, or paramedic onboard. During these situations, flight crews might enlist the help of noncertified passengers, such as medical students, dentists, or emergency medical technicians in training. Although Good Samaritan laws exist, many health care providers are unfamiliar with the limited legal protections and resources provided to them after responding to an in-flight emergency. A 78-year-old woman lost consciousness and became pulseless onboard a commercial aircraft. No physician was available. A medical student responded and coordinated care with the flight crew, ground support physician, and other passengers. After receiving a packet (4 g) of sublingual sucrose and 1 L i.v. crystalloid, the patient regained pulses and consciousness. The medical student made the decision not to divert the aircraft based on the patient's initial response to therapy and, 45 min later, the patient had normal vital signs. Upon landing, she was met and taken by paramedics to the nearest emergency department for evaluation of her collapse. WHY SHOULD AN EMERGENCY PHYSICIAN BE AWARE OF THIS?: Emergency physicians are the most qualified to assist in-flight emergencies, but they might not be aware of the medicolegal risks involved with in-flight care, the resources available, and the role of the flight crew in liability and decision making. This case, which involved a medical student who was not given explicit protection under Good Samaritan laws, illustrates the authority of the flight crew during these events and highlights areas of uncertainty in the legislation for volunteer medical professionals. Copyright © 2016 Elsevier Inc. All rights reserved.
Outcomes of Medical Emergencies on Commercial Airline Flights
Peterson, Drew C.; Martin-Gill, Christian; Guyette, Francis X.; Tobias, Adam Z.; McCarthy, Catherine E.; Harrington, Scott T.; Delbridge, Theodore R.; Yealy, Donald M.
2013-01-01
Background Worldwide, 2.75 billion passengers fly on commercial airlines annually. When inflight medical emergencies occur, access to care is limited. We describe in-flight medical emergencies and the outcomes of these events. Methods We reviewed records of in-flight medical emergency calls from five domestic and international airlines to a physician-directed medical communications center from January 1, 2008, through October 31, 2010. We characterized the most common medical problems and the type of on-board assistance rendered. We determined the incidence of and factors associated with unscheduled aircraft diversion, transport to a hospital, and hospital admission, and we determined the incidence of death. Results There were 11,920 in-flight medical emergencies resulting in calls to the center (1 medical emergency per 604 flights). The most common problems were syncope or presyncope (37.4% of cases), respiratory symptoms (12.1%), and nausea or vomiting (9.5%). Physician passengers provided medical assistance in 48.1% of in-flight medical emergencies, and aircraft diversion occurred in 7.3%. Of 10,914 patients for whom postflight follow-up data were available, 25.8% were transported to a hospital by emergency-medical-service personnel, 8.6% were admitted, and 0.3% died. The most common triggers for admission were possible stroke (odds ratio, 3.36; 95% confidence interval [CI], 1.88 to 6.03), respiratory symptoms (odds ratio, 2.13; 95% CI, 1.48 to 3.06), and cardiac symptoms (odds ratio, 1.95; 95% CI, 1.37 to 2.77). Conclusions Most in-flight medical emergencies were related to syncope, respiratory symptoms, or gastrointestinal symptoms, and a physician was frequently the responding medical volunteer. Few in-flight medical emergencies resulted in diversion of aircraft or death; one fourth of passengers who had an in-flight medical emergency underwent additional evaluation in a hospital. (Funded by the National Institutes of Health.) PMID:23718164
Advanced Technology Blade testing on the XV-15 Tilt Rotor Research Aircraft
NASA Technical Reports Server (NTRS)
Wellman, Brent
1992-01-01
The XV-15 Tilt Rotor Research Aircraft has just completed the first series of flight tests with the Advanced Technology Blade (ATB) rotor system. The ATB are designed specifically for flight research and provide the ability to alter blade sweep and tip shape. A number of problems were encountered from first installation through envelope expansion to airplane mode flight that required innovative solutions to establish a suitable flight envelope. Prior to operation, the blade retention hardware had to be requalified to a higher rated centrifugal load, because the blade weight was higher than expected. Early flights in the helicopter mode revealed unacceptably high vibratory control system loads which required a temporary modification of the rotor controls to achieve higher speed flight and conversion to airplane mode. The airspeed in airplane mode was limited, however, because of large static control loads. Furthermore, analyses based on refined ATB blade mass and inertia properties indicated a previously unknown high-speed blade mode instability, also requiring airplane-mode maximum airspeed to be restricted. Most recently, a structural failure of an ATB cuff (root fairing) assembly retention structure required a redesign of the assembly. All problems have been addressed and satisfactory solutions have been found to allow continued productive flight research of the emerging tilt rotor concept.
Biologically Inspired Micro-Flight Research
NASA Technical Reports Server (NTRS)
Raney, David L.; Waszak, Martin R.
2003-01-01
Natural fliers demonstrate a diverse array of flight capabilities, many of which are poorly understood. NASA has established a research project to explore and exploit flight technologies inspired by biological systems. One part of this project focuses on dynamic modeling and control of micro aerial vehicles that incorporate flexible wing structures inspired by natural fliers such as insects, hummingbirds and bats. With a vast number of potential civil and military applications, micro aerial vehicles represent an emerging sector of the aerospace market. This paper describes an ongoing research activity in which mechanization and control concepts for biologically inspired micro aerial vehicles are being explored. Research activities focusing on a flexible fixed- wing micro aerial vehicle design and a flapping-based micro aerial vehicle concept are presented.
The aerodynamics and control of free flight manoeuvres in Drosophila
Muijres, Florian T.
2016-01-01
A firm understanding of how fruit flies hover has emerged over the past two decades, and recent work has focused on the aerodynamic, biomechanical and neurobiological mechanisms that enable them to manoeuvre and resist perturbations. In this review, we describe how flies manipulate wing movement to control their body motion during active manoeuvres, and how these actions are regulated by sensory feedback. We also discuss how the application of control theory is providing new insight into the logic and structure of the circuitry that underlies flight stability. This article is part of the themed issue ‘Moving in a moving medium: new perspectives on flight’. PMID:27528778
Hinkelbein, Jochen; Böhm, Lennert; Braunecker, Stefan; Genzwürker, Harald V; Kalina, Steffen; Cirillo, Fabrizio; Komorowski, Matthieu; Hohn, Andreas; Siedenburg, Jörg; Bernhard, Michael; Janicke, Ilse; Adler, Christoph; Jansen, Stefanie; Glaser, Eckard; Krawczyk, Pawel; Miesen, Mirko; Andres, Janusz; De Robertis, Edoardo; Neuhaus, Christopher
2018-05-05
By the end of the year 2016, approximately 3 billion people worldwide travelled by commercial air transport. Between 1 out of 14,000 and 1 out of 50,000 passengers will experience acute medical problems/emergencies during a flight (i.e., in-flight medical emergency). Cardiac arrest accounts for 0.3% of all in-flight medical emergencies. So far, no specific guideline exists for the management and treatment of in-flight cardiac arrest (IFCA). A task force with clinical and investigational expertise in aviation, aviation medicine, and emergency medicine was created to develop a consensus based on scientific evidence and compiled a guideline for the management and treatment of in-flight cardiac arrests. Using the GRADE, RAND, and DELPHI methods, a systematic literature search was performed in PubMed. Specific recommendations have been developed for the treatment of IFCA. A total of 29 specific recommendations for the treatment and management of in-flight cardiac arrests were generated. The main recommendations included emergency equipments as well as communication of the emergency. Training of the crew is of utmost importance, and should ideally have a focus on CPR in aircraft. The decision for a diversion should be considered very carefully.
Conceptual Design of a Tiltrotor Transport Flight Deck
NASA Technical Reports Server (NTRS)
Decker, William A.; Dugan, Daniel C.; Simmons, Rickey C.; Tucker, George E.; Aiken, Edwin W. (Technical Monitor)
1995-01-01
A tiltrotor transport has considerable potential as a regional transport, increasing the air transportation system capacity by off-loading conventional runways. Such an aircraft will have a flight deck suited to its air transportation task and adapted to unique urban vertiport operating requirements. Such operations are likely to involve steep, slow instrument approaches for vertical and extremely short rolling take-offs and landings. While much of a tiltrotor transport's operations will be in common with commercial fixed-wing operations, terminal area operations will impose alternative flight deck design solutions. Control systems, displays and guidance, and control inceptors must be tailored to both routine and emergency vertical flight operations. This paper will survey recent experience with flight deck design elements suitable to a tiltrotor transport and will propose a conceptual cockpit design for such an aircraft. A series of piloted simulations using the NASA Ames Vertical Motion Simulator have investigated cockpit design elements and operating requirements for tiltrotor transports operating into urban vertiports. These experiments have identified the need for a flight director or equivalent display guidance for steep final approaches. A flight path vector display format has proven successful for guiding tiltrotor transport terminal area operations. Experience with a Head-Up Display points to the need for a bottom-mounted display device to maximize its utility on steep final approach paths. Configuration control (flap setting and nacelle angle) requires appropriate augmentation and tailoring for civil transport operations, flown to an airline transport pilot instrument flight rules (ATP-IFR) standard. The simulation experiments also identified one thrust control lever geometry as inappropriate to the task and found at least acceptable results with the vertical thrust control lever of the XV-15. In addition to the thrust controller, the attitude control of a tiltrotor transport may be effected through an inceptor other than the current center sticks in the XV-15 and V-22. Simulation and flight investigations of side-stick control inceptors for rotorcraft, augmented by a 1985 flight test of a side-stick controller in the XV-15 suggest the potential of such a device in a transport cockpit.
Tussey, Dylan A; Aukema, Brian H; Charvoz, Anthony M; Venette, Robert C
2018-06-06
Emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), an invasive beetle from Asia, spreads through human-mediated movement and active flight. The effects of adult feeding and overwintering conditions on A. planipennis energy reserves (e.g., lipid, glycogen, and sugars) and flight are poorly understood. We conjectured that the potential energetic demands associated with the production of cryoprotectants might affect dispersal capacity and partially explain slower spread of A. planipennis in Minnesota than in the other states. Two studies sought to measure the effects of adult feeding on lipid content and flight capacity. Adult A. planipennis were fed shamel ash, Fraxinus uhdei Wenzig, leaves for 0-20 d after emergence, and half were flown on a custom flight mill for 24 h, before being frozen for comparative lipid analysis with a control group. The second study compared the effects of adult feeding on energy reserves and flight capacity of A. planipennis that were originally from St. Paul, Minnesota but overwintered in infested logs placed in Grand Rapids, Minnesota (low winter temperature, -34°C) or St. Paul, Minnesota (-26.3°C). Live adults consumed foliage at a constant rate, but lipid content (percentage of fresh mass) did not change with increases in feeding or flight. Adult glycogen content declined with flight and increased only slightly with feeding. Overwintering location affected survival rates but not energy reserves or flight capacity. These results suggest that the flight capacity of A. planipennis is largely determined before emergence, with no differences in energy reserves after cryoprotectant investment.
Review of Considerations, Management, and Treatment of Medical Emergencies During Commercial Flight
2017-04-01
OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for...assistance during an in-flight medical emergency. 15. SUBJECT TERMS In-flight medical emergency, commercial air travel , in-flight medical care...England [7-10]. These ground-based medical consultation services establish a 24- hour, 7-day, 365-days-per-year response capability for real- time
Orion Entry Flight Control Stability and Performance
NASA Technical Reports Server (NTRS)
Strahan, Alan L.; Loe, Greg R.; Seiler, Pete
2007-01-01
The Orion Spacecraft will be required to perform entry and landing functions for both Low Earth Orbit (LEO) and Lunar return missions, utilizing only the Command Module (CM) with its unique systems and GN&C design. This paper presents the current CM Flight Control System (FCS) design to support entry and landing, with a focus on analyses that have supported its development to date. The CM FCS will have to provide for spacecraft stability and control while following guidance or manual commands during exo-atmospheric flight, after Service Module separation, translational powered flight required of the CM, atmospheric flight supporting both direct entry and skip trajectories down to drogue chute deploy, and during roll attitude reorientation just prior to touchdown. Various studies and analyses have been performed or are on-going supporting an overall FCS design with reasonably sized Reaction Control System (RCS) jets, that minimizes fuel usage, that provides appropriate command following but with reasonable stability and control margin. Results from these efforts to date are included, with particular attention on design issues that have emerged, such as the struggle to accommodate sub-sonic pitch and yaw control without using excessively large jets that could have a detrimental impact on vehicle weight. Apollo, with a similar shape, struggled with this issue as well. Outstanding CM FCS related design and analysis issues, planned for future effort, are also briefly be discussed.
61. Upper panel in cornerpower panel lcpa lower panel in ...
61. Upper panel in corner-power panel lcpa lower panel in corner-oxygen regeneration unit, at right-air conditioner control panel, on floor-bio-pack 45 for emergency breathing, looking northwest - Ellsworth Air Force Base, Delta Flight, Launch Control Facility, County Road CS23A, North of Exit 127, Interior, Jackson County, SD
1994-12-01
three times with newly emerged adults and three times with adults at least a month old. Treatments were (a) four hydrilla sprigs, (b) four hydrilla...Methods conducted to determine if feeding on nonhost plants stimulated the develop- ment of flight muscles. Newly emerged females were held in a plastic...Fecundity and adult longevity A fecundity and adult longevity test was conducted with newly emerged adults. Adults were held initially with moist paper
Chen, H; Li, Z; Bu, S H; Tian, Z Q
2011-02-01
The flight distance, flight time and individual flight activities of males and females of Dendroctonus armandi were recorded during 96-h flight trials using a flight mill system. The body weight, glucose, glycogen and lipid content of four treatments (naturally emerged, starved, phloem-fed and water-fed) were compared among pre-flight, post-flight and unflown controls. There was no significant difference between males and females in total flight distance and flight time in a given 24-h period. The flight distance and flight time of females showed a significant linear decline as the tethered flying continued, but the sustained flight ability of females was better than that of males. The females had higher glycogen and lipid content than the males; however, there was no significant difference between both sexes in glucose content. Water-feeding and phloem-feeding had significant effects on longevity, survival days and flight potential of D. armandi, which resulted in longer feeding days, poorer flight potential and lower energy substrate content. Our results demonstrate that flight distances in general do not differ between water-fed and starved individuals, whereas phloem-fed females and males fly better than water-fed and starved individuals.
Sodium-sulfur Cell Technology Flight Experiment (SSCT)
NASA Technical Reports Server (NTRS)
Halbach, Carl R.
1992-01-01
The sodium-sulfur battery is emerging as a prime high-temperature energy storage technology for space flight applications. A Na-S cell demonstration is planned for a 1995-96 NASA Space Shuttle flight which focuses on the microgravity effects on individual cells. The experiment is not optimized for battery performance as such. Rather, it maximizes the variety of operating conditions which the Na-S cell is capable of in a relatively short 5-day flight. The demonstration is designed to reveal the effects of microgravity by comparison with ground test control cells experiencing identical test conditions but with gravity. Specifically, limitations of transport dynamics and associated cell performance characteristics should be revealed. The Na-S Cell Technology Flight Experiment consists of three separate experiments designed to determine cell operating characteristics, detailed electrode kinetics and reactant distributions.
User type certification for advanced flight control systems
NASA Technical Reports Server (NTRS)
Gilson, Richard D.; Abbott, David W.
1994-01-01
Advanced avionics through flight management systems (FMS) coupled with autopilots can now precisely control aircraft from takeoff to landing. Clearly, this has been the most important improvement in aircraft since the jet engine. Regardless of the eventual capabilities of this technology, it is doubtful that society will soon accept pilotless airliners with the same aplomb they accept driverless passenger trains. Flight crews are still needed to deal with inputing clearances, taxiing, in-flight rerouting, unexpected weather decisions, and emergencies; yet it is well known that the contribution of human errors far exceed those of current hardware or software systems. Thus human errors remain, and are even increasing in percentage as the largest contributor to total system error. Currently, the flight crew is regulated by a layered system of certification: by operation, e.g., airline transport pilot versus private pilot; by category, e.g., airplane versus helicopter; by class, e.g., single engine land versus multi-engine land; and by type (for larger aircraft and jet powered aircraft), e.g., Boeing 767 or Airbus A320. Nothing in the certification process now requires an in-depth proficiency with specific types of avionics systems despite their prominent role in aircraft control and guidance.
NASA Technical Reports Server (NTRS)
Daugherty, Colin C.
2010-01-01
International Space Station (ISS) crew and flight controller training documentation is used to aid in training operations. The Generic Simulations References SharePoint (Gen Sim) site is a database used as an aid during flight simulations. The Gen Sim site is used to make individual mission segment timelines, data, and flight information easily accessible to instructors. The Waste and Hygiene Compartment (WHC) training schematic includes simple and complex fluid schematics, as well as overall hardware locations. It is used as a teaching aid during WHC lessons for both ISS crew and flight controllers. ISS flight control documentation is used to support all aspects of ISS mission operations. The Quick Look Database and Consolidated Tool Page are imagery-based references used in real-time to help the Operations Support Officer (OSO) find data faster and improve discussions with the Flight Director and Capsule Communicator (CAPCOM). A Quick Look page was created for the Permanent Multipurpose Module (PMM) by locating photos of the module interior, labeling specific hardware, and organizing them in schematic form to match the layout of the PMM interior. A Tool Page was created for the Maintenance Work Area (MWA) by gathering images, detailed drawings, safety information, procedures, certifications, demonstration videos, and general facts of each MWA component and displaying them in an easily accessible and consistent format. Participation in ISS mechanisms and maintenance lessons, mission simulation On-the-Job Training (OJT), and real-time flight OJT was used as an opportunity to train for day-to-day operations as an OSO, as well as learn how to effectively respond to failures and emergencies during mission simulations and real-time flight operations.
Application of an integrated flight/propulsion control design methodology to a STOVL aircraft
NASA Technical Reports Server (NTRS)
Garg, Sanjay; Mattern, Duane L.
1991-01-01
Results are presented from the application of an emerging Integrated Flight/Propulsion Control (IFPC) design methodology to a Short Take Off and Vertical Landing (STOVL) aircraft in transition flight. The steps in the methodology consist of designing command shaping prefilters to provide the overall desired response to pilot command inputs. A previously designed centralized controller is first validated for the integrated airframe/engine plant used. This integrated plant is derived from a different model of the engine subsystem than the one used for the centralized controller design. The centralized controller is then partitioned in a decentralized, hierarchical structure comprising of airframe lateral and longitudinal subcontrollers and an engine subcontroller. Command shaping prefilters from the pilot control effector inputs are then designed and time histories of the closed loop IFPC system response to simulated pilot commands are compared to desired responses based on handling qualities requirements. Finally, the propulsion system safety and nonlinear limited protection logic is wrapped around the engine subcontroller and the response of the closed loop integrated system is evaluated for transients that encounter the propulsion surge margin limit.
NASA Technical Reports Server (NTRS)
Rosowski, J. R.; Gouthro, M. A.; Schmidt, K. K.; Klement, B. J.; Spooner, B. S.
1995-01-01
Cysts of brine shrimp attached with a liquid adhesive to 12-mm diameter glass coverslips in a syringe-type fluid processing apparatus were flown aboard the NASA space shuttle Discovery, flight STS-60, from 3-11 February 1994, and were allowed to undergo postencystment embryogenesis and to hatch in microgravity. The shuttle flight and the ground-based control coverslips with attached cysts were parallel to the earth's surface during incubation in salt water. Based on the position of the cyst shell crack in the attached cyst population, the ground-control nauplii emerged mostly upward. On the shuttle in microgravity, although our method of detection of orientation would not reveal emergence toward the coverslip, the ratio of the position of the cyst shell crack in the population after hatching best fit the predicted values of a random direction for nauplii emergence. Centrifugation on earth was then used to create hypergravity forces of up to 73 g during postencystment embryogenesis and hatching. The upward orientation of emerging nauplii showed a high degree of correlation (r(2) =98.8%) with a linear relationship to the log of g, with 78.2% of the total hatching upward at 1 g and 91.0% hatching upward at 73 g.
Emergency medicine and the airline passenger
NASA Technical Reports Server (NTRS)
Mohler, S. R.; Nicogossian, A.; Margulies, R. A.
1980-01-01
Problems related to immediate medical care in case of in-flight emergencies are discussed with reference to such critical types of medical emergencies as obstructed airway, cardiac dysfunction, trauma, hemorrhage, hypoxia, and pain. It is shown that training flight attendants to deal with in-flight medical emergencies and to use first-aid support equipment and essential and useful drugs may later help with stabilization of a victim and allow continuing the flight to the scheduled destination without the need for a diverted landing. Among the steps suggested in order to upgrade inflight welfare and safety of passengers are the development of an advisory circular by the FAA covering standardized training for flight attendants, regulatory action requiring upgrading of the present rudimentary first-aid kit, and the enactment of Good Samaritan legislation by the U.S. Government.
Aircraft control forces and EMG activity in a C-130 Hercules during strength-critical maneuvers.
Hewson, D J; McNair, P J; Marshall, R N
2001-03-01
The force levels required to operate aircraft controls should be readily generated by pilots, without undue fatigue or exertion. However, maximum pilot applied forces, as specified in aircraft design standards, were empirically derived from the subjective comments of test pilots, and may not be applicable for the majority of pilots. Further, experienced RNZAF Hercules flying instructors have indicated that endurance and fatigue are problems for Hercules pilots. The aim of this study was to quantify aircraft control forces during emergency maneuvers in a Hercules aircraft and compare these forces with design standards. In addition, EMG data were recorded as an indicator of muscle fatigue during flight. Six subjects were tested in a C-130 Hercules aircraft. The maneuvers performed were low-level dynamic flight, one engine-off straight-and-level flight, and a two-engines-off simulated approach. The variables recorded were pilot-applied forces and EMG activity. Left rudder pedal force and vastus lateralis activity were both significantly greater during engine-off maneuvers than during low-level dynamic flight (p < 0.05). Maximum aircraft control forces for all controls were within 10% of the design standards. The mean EMG activity across all muscles and maneuvers was 26% MVC, with a peak of 61% MVC in vastus lateralis during the two-engine-off approach. The median frequency of the vastus lateralis EMG signal decreased 13.0% and 16.0% for the one engine-off and two-engine-off maneuvers, respectively. The forces required to fly a Hercules aircraft during emergency maneuvers are similar to the aircraft design standards. However, the levels of vastus lateralis muscle activation observed during the engine-off maneuvers can be sustained for approximately 1 min only. Thus, if two engines fail more than 1 min before landing, pilots may have to alternate control of the aircraft to share the workload and enable the aircraft to land safely.
Background and principles of throttles-only flight control
NASA Technical Reports Server (NTRS)
Burcham, Frank W., Jr.
1995-01-01
There have been many cases in which the crew of a multi-engine airplane had to use engine thrust for emergency flight control. Such a procedure is very difficult, because the propulsive control forces are small, the engine response is slow, and airplane dynamics such as the phugoid and dutch roll are difficult to damp with thrust. In general, thrust increases are used to climb, thrust decreases to descend, and differential thrust is used to turn. Average speed is not significantly affected by changes in throttle setting. Pitch control is achieved because of pitching moments due to speed changes, from thrust offset, and from the vertical component of thrust. Roll control is achieved by using differential thrust to develop yaw, which, through the normal dihedral effect, causes a roll. Control power in pitch and roll tends to increase as speed decreases. Although speed is not controlled by the throttles, configuration changes are often available (lowering gear, flaps, moving center-of-gravity) to change the speed. The airplane basic stability is also a significant factor. Fuel slosh and gyroscopic moments are small influences on throttles-only control. The background and principles of throttles-only flight control are described.
Small Aircraft Transportation System, Higher Volume Operations Concept: Off-Nominal Operations
NASA Technical Reports Server (NTRS)
Abbott, Terence S.; Consiglio, Maria C.; Baxley, Brian T.; Williams, Daniel M.; Conway, Sheila R.
2005-01-01
This document expands the Small Aircraft Transportation System, (SATS) Higher Volume Operations (HVO) concept to include off-nominal conditions. The general philosophy underlying the HVO concept is the establishment of a newly defined area of flight operations called a Self-Controlled Area (SCA). During periods of poor weather, a block of airspace would be established around designated non-towered, non-radar airports. Aircraft flying enroute to a SATS airport would be on a standard instrument flight rules flight clearance with Air Traffic Control providing separation services. Within the SCA, pilots would take responsibility for separation assurance between their aircraft and other similarly equipped aircraft. Previous work developed the procedures for normal HVO operations. This document provides details for off-nominal and emergency procedures for situations that could be expected to occur in a future SCA.
2013-09-27
CAPE CANAVERAL, Fla. – Inside the Launch Abort System Facility at NASA’s Kennedy Space Center in Florida, the launch abort system, or LAS, components are horizontally stacked as processing continues for the Orion Exploration Flight Test-1 mission. Components of the LAS are the launch abort motor, the attitude control motor, the jettison motor and the fairing. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. The LAS is designed to safely pull the Orion crew module away from the launch vehicle in the event of an emergency on the launch pad or during the initial ascent of NASA’s Space Launch System, or SLS, rocket. Orion’s first unpiloted test flight is scheduled to launch in 2014 atop a Delta IV rocket. A second uncrewed flight test is scheduled for 2017 on the SLS rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Jim Grossmann
2013-09-27
CAPE CANAVERAL, Fla. – Inside the Launch Abort System Facility at NASA’s Kennedy Space Center in Florida, the launch abort system, or LAS, components are horizontally stacked as processing continues for the Orion Exploration Flight Test-1 mission. Components of the LAS are the launch abort motor, the attitude control motor, the jettison motor and the fairing. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. The LAS is designed to safely pull the Orion crew module away from the launch vehicle in the event of an emergency on the launch pad or during the initial ascent of NASA’s Space Launch System, or SLS, rocket. Orion’s first unpiloted test flight is scheduled to launch in 2014 atop a Delta IV rocket. A second uncrewed flight test is scheduled for 2017 on the SLS rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Jim Grossmann
Wind Tunnel Test of an RPV with Shape-Change Control Effector and Sensor Arrays
NASA Technical Reports Server (NTRS)
Raney, David L.; Cabell, Randolph H.; Sloan, Adam R.; Barnwell, William G.; Lion, S. Todd; Hautamaki, Bret A.
2004-01-01
A variety of novel control effector concepts have recently emerged that may enable new approaches to flight control. In particular, the potential exists to shift the composition of the typical aircraft control effector suite from a small number of high authority, specialized devices (rudder, aileron, elevator, flaps), toward larger numbers of smaller, less specialized, distributed device arrays. The concept envisions effector and sensor networks composed of relatively small high-bandwidth devices able to simultaneously perform a variety of control functions using feedback from disparate data sources. To investigate this concept, a remotely piloted flight vehicle has been equipped with an array of 24 trailing edge shape-change effectors and associated pressure measurements. The vehicle, called the Multifunctional Effector and Sensor Array (MESA) testbed, was recently tested in NASA Langley's 12-ft Low Speed wind tunnel to characterize its stability properties, control authorities, and distributed pressure sensitivities for use in a dynamic simulation prior to flight testing. Another objective was to implement and evaluate a scheme for actively controlling the spanwise pressure distribution using the shape-change array. This report describes the MESA testbed, design of the pressure distribution controller, and results of the wind tunnel test.
Design and Demonstration of Emergency Control Modes for Enhanced Engine Performance
NASA Technical Reports Server (NTRS)
Liu, Yuan; Litt, Jonathan S.; Guo, Ten-Huei
2013-01-01
A design concept is presented for developing control modes that enhance aircraft engine performance during emergency flight scenarios. The benefits of increased engine performance to overall vehicle survivability during these situations may outweigh the accompanied elevated risk of engine failure. The objective involves building control logic that can consistently increase engine performance beyond designed maximum levels based on an allowable heightened probability of failure. This concept is applied to two previously developed control modes: an overthrust mode that increases maximum engine thrust output and a faster response mode that improves thrust response to dynamic throttle commands. This paper describes the redesign of these control modes and presents simulation results demonstrating both enhanced engine performance and robust maintenance of the desired elevated risk level.
Characteristics of nontrauma scene flights for air medical transport.
Krebs, Margaret G; Fletcher, Erica N; Werman, Howard; McKenzie, Lara B
2014-01-01
Little is known about the use of air medical transport for patients with medical, rather than traumatic, emergencies. This study describes the practices of air transport programs, with respect to nontrauma scene responses, in several areas throughout the United States and Canada. A descriptive, retrospective study was conducted of all nontrauma scene flights from 2008 and 2009. Flight information and patient demographic data were collected from 5 air transport programs. Descriptive statistics were used to examine indications for transport, Glasgow Coma Scale Scores, and loaded miles traveled. A total of 1,785 nontrauma scene flights were evaluated. The percentage of scene flights contributed by nontraumatic emergencies varied between programs, ranging from 0% to 44.3%. The most common indication for transport was cardiac, nonST-segment elevation myocardial infarction (22.9%). Cardiac arrest was the indication for transport in 2.5% of flights. One air transport program reported a high percentage (49.4) of neurologic, stroke, flights. The use of air transport for nontraumatic emergencies varied considerably between various air transport programs and regions. More research is needed to evaluate which nontraumatic emergencies benefit from air transport. National guidelines regarding the use of air transport for nontraumatic emergencies are needed. Copyright © 2014 Air Medical Journal Associates. Published by Elsevier Inc. All rights reserved.
Long range planning for the development of space flight emergency systems.
NASA Technical Reports Server (NTRS)
Bolger, P. H.; Childs, C. W.
1972-01-01
The importance of long-range planning for space flight emergency systems is pointed out. Factors in emergency systems planning are considered, giving attention to some of the mission classes which have to be taken into account. Examples of the hazards in space flight include fire, decompression, mechanical structure failures, radiation, collision, and meteoroid penetration. The criteria for rescue vehicles are examined together with aspects regarding the conduction of rescue missions. Future space flight programs are discussed, taking into consideration low earth orbit space stations, geosynchronous orbit space stations, lunar operations, manned planetary missions, future space flight vehicles, the space shuttle, special purpose space vehicles, and a reusable nuclear shuttle.
Training Implications of the Tactical Aircraft Recapitalization
2008-06-13
and Wayne L. Waag , The Use of Simulators for Training In-Flight and Emergency Procedures in AGARD-AG-248 (Neuilly-Sur-Seine, France: Advisory Group...11 Edward E. Eddowes and Wayne L. Waag , The Use of Simulators for Training In-Flight and Emergency Procedures in AGARD-AG-248 (Neuilly-Sur...17 Edward E. Eddowes and Wayne L. Waag , The Use of Simulators for Training In-Flight and Emergency Procedures in AGARD-AG-248 (Neuilly-Sur-Seine
Commercial aviation in-flight emergencies and the physician.
Cocks, Robert; Liew, Michele
2007-02-01
Commercial aviation in-flight emergencies are relatively common, so it is likely that a doctor travelling frequently by air will receive a call for help at some stage in their career. These events are stressful, even for experienced physicians. The present paper reviews what is known about the incidence and types of in-flight emergencies that are likely to be encountered, the international regulations governing medical kits and drugs, and the liability, fitness and indemnity issues facing 'Good Samaritan' medical volunteers. The medical and aviation literature was searched, and information was collated from airlines and other sources regarding medical equipment available on board commercial aircraft. Figures for the incidence of significant in-flight emergencies are approximately 1 per 10-40 000 passengers, with one death occurring per 3-5 million passengers. Medically related diversion of an aircraft following an in-flight emergency may occur in up to 7-13% of cases, but passenger prescreening, online medical advice and on-board medical assistance from volunteers reduce this rate. Medical volunteers may find assisting with an in-flight emergency stressful, but should acknowledge that they play a vital role in successful outcomes. The medico-legal liability risk is extremely small, and various laws and industry indemnity practices offer additional protection to the volunteer. In addition, cabin crew receive training in a number of emergency skills, including automated defibrillation, and are one of several sources of help available to the medical volunteer, who is not expected to work alone.
NASA Technical Reports Server (NTRS)
Middleton, D. B.; Hurt, G. J., Jr.
1971-01-01
A fixed-base piloted simulator investigation has been made of the feasibility of using any of several manual guidance and control techniques for emergency lunar escape to orbit with very simplified, lightweight vehicle systems. The escape-to-orbit vehicles accommodate two men, but one man performs all of the guidance and control functions. Three basic attitude-control modes and four manually executed trajectory-guidance schemes were used successfully during approximately 125 simulated flights under a variety of conditions. These conditions included thrust misalinement, uneven propellant drain, and a vehicle moment-of-inertia range of 250 to 12,000 slugs per square foot. Two types of results are presented - orbit characteristics and pilot ratings of vehicle handling qualities.
14 CFR 135.271 - Helicopter hospital emergency medical evacuation service (HEMES).
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Helicopter hospital emergency medical....271 Helicopter hospital emergency medical evacuation service (HEMES). (a) No certificate holder may... certificate holder may assign a helicopter flight crewmember, and no flight crewmember may accept an...
14 CFR 135.271 - Helicopter hospital emergency medical evacuation service (HEMES).
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Helicopter hospital emergency medical....271 Helicopter hospital emergency medical evacuation service (HEMES). (a) No certificate holder may... certificate holder may assign a helicopter flight crewmember, and no flight crewmember may accept an...
14 CFR 135.271 - Helicopter hospital emergency medical evacuation service (HEMES).
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Helicopter hospital emergency medical....271 Helicopter hospital emergency medical evacuation service (HEMES). (a) No certificate holder may... certificate holder may assign a helicopter flight crewmember, and no flight crewmember may accept an...
14 CFR 135.271 - Helicopter hospital emergency medical evacuation service (HEMES).
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Helicopter hospital emergency medical....271 Helicopter hospital emergency medical evacuation service (HEMES). (a) No certificate holder may... certificate holder may assign a helicopter flight crewmember, and no flight crewmember may accept an...
14 CFR 135.271 - Helicopter hospital emergency medical evacuation service (HEMES).
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Helicopter hospital emergency medical....271 Helicopter hospital emergency medical evacuation service (HEMES). (a) No certificate holder may... certificate holder may assign a helicopter flight crewmember, and no flight crewmember may accept an...
14 CFR Special Federal Aviation... - Air Traffic Control System Emergency Operation
Code of Federal Regulations, 2012 CFR
2012-01-01
... Operation Federal Special Federal Aviation Regulation No. 60 Aeronautics and Space FEDERAL AVIATION... OPERATING AND FLIGHT RULES Pt. 91, SFAR No. 60 Special Federal Aviation Regulation No. 60—Air Traffic... Aviation Regulations (14 CFR chapter I), be familiar with all available information concerning that...
14 CFR Special Federal Aviation... - Air Traffic Control System Emergency Operation
Code of Federal Regulations, 2013 CFR
2013-01-01
... Operation Federal Special Federal Aviation Regulation No. 60 Aeronautics and Space FEDERAL AVIATION... OPERATING AND FLIGHT RULES Pt. 91, SFAR No. 60 Special Federal Aviation Regulation No. 60—Air Traffic... Aviation Regulations (14 CFR chapter I), be familiar with all available information concerning that...
14 CFR Special Federal Aviation... - Air Traffic Control System Emergency Operation
Code of Federal Regulations, 2011 CFR
2011-01-01
... Operation Federal Special Federal Aviation Regulation No. 60 Aeronautics and Space FEDERAL AVIATION... OPERATING AND FLIGHT RULES Pt. 91, SFAR No. 60 Special Federal Aviation Regulation No. 60—Air Traffic... Aviation Regulations (14 CFR chapter I), be familiar with all available information concerning that...
14 CFR Special Federal Aviation... - Air Traffic Control System Emergency Operation
Code of Federal Regulations, 2014 CFR
2014-01-01
... Operation Federal Special Federal Aviation Regulation No. 60 Aeronautics and Space FEDERAL AVIATION... OPERATING AND FLIGHT RULES Pt. 91, SFAR No. 60 Special Federal Aviation Regulation No. 60—Air Traffic... Aviation Regulations (14 CFR chapter I), be familiar with all available information concerning that...
14 CFR 25.819 - Lower deck service compartments (including galleys).
Code of Federal Regulations, 2010 CFR
2010-01-01
... flight loads when occupied. (g) For each powered lift system installed between a lower deck service... following requirements: (1) Each lift control switch outside the lift, except emergency stop buttons, must be designed to prevent the activation of the life if the lift door, or the hatch required by...
14 CFR 25.819 - Lower deck service compartments (including galleys).
Code of Federal Regulations, 2011 CFR
2011-01-01
... flight loads when occupied. (g) For each powered lift system installed between a lower deck service... following requirements: (1) Each lift control switch outside the lift, except emergency stop buttons, must be designed to prevent the activation of the life if the lift door, or the hatch required by...
14 CFR 91.139 - Emergency air traffic rules.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Emergency air traffic rules. 91.139 Section...) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Flight Rules General § 91.139 Emergency air traffic rules. (a) This section prescribes a process for utilizing Notices to Airmen...
14 CFR 91.139 - Emergency air traffic rules.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Emergency air traffic rules. 91.139 Section...) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Flight Rules General § 91.139 Emergency air traffic rules. (a) This section prescribes a process for utilizing Notices to Airmen...
14 CFR 91.139 - Emergency air traffic rules.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Emergency air traffic rules. 91.139 Section...) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Flight Rules General § 91.139 Emergency air traffic rules. (a) This section prescribes a process for utilizing Notices to Airmen...
Zhang, Lei; Pan, Pan; Sappington, Thomas W.; Lu, Weixiang; Luo, Lizhi; Jiang, Xingfu
2015-01-01
Physiological management of migration-reproduction trade-offs in energy allocation often includes a package of adaptions referred to as the oogenesis-flight syndrome. In some species, this trade-off may be overestimated, because factors like flight behavior and environmental conditions may mitigate it. In this study, we examined the reproductive consequences induced by different flight scenarios in an economically-important Asian migrant insect, Cnaphalocrocis medinalis. We found that the influences of flight on reproduction are not absolutely positive or negative, but instead depend on the age at which the moth begins flight, flight duration, and how many consecutive nights they are flown. Adult flight on the 1st or 2nd night after emergence, flight for 6 h or 12 h nightly, and flight on the first two consecutive nights after emergence significantly accelerated onset of oviposition or enhanced synchrony of egg-laying. The latter can contribute to subsequent larval outbreaks. However, flight after the 3rd night, flight for 18 h at any age, or flight on more than 3 consecutive nights after adult emergence did not promote reproductive development, and in some scenarios even constrained adult reproduction. These results indicate that there is a migration/reproduction trade-off in C.medinalis, but that it is mitigated or eliminated by flight under appropriate conditions. The strategy of advanced and synchronized oviposition triggered by migratory flight of young females may be common in other migratory insect pests. PMID:25815767
Adaptive Guidance and Control Algorithms applied to the X-38 Reentry Mission
NASA Astrophysics Data System (ADS)
Graesslin, M.; Wallner, E.; Burkhardt, J.; Schoettle, U.; Well, K. H.
International Space Station's Crew Return/Rescue Vehicle (CRV) is planned to autonomously return the complete crew of 7 astronauts back to earth in case of an emergency. As prototype of such a vehicle, the X-38, is being developed and built by NASA with European participation. The X-38 is a lifting body with a hyper- sonic lift to drag ratio of about 0.9. In comparison to the Space Shuttle Orbiter, the X-38 has less aerodynamic manoeuvring capability and less actuators. Within the German technology programme TETRA (TEchnologies for future space TRAnsportation systems) contributing to the X-38 program, guidance and control algorithms have been developed and applied to the X-38 reentry mission. The adaptive guidance concept conceived combines an on-board closed-loop predictive guidance algorithm with flight load control that temporarily overrides the attitude commands of the predictive component if the corre- sponding load constraints are violated. The predictive guidance scheme combines an optimization step and a sequence of constraint restoration cycles. In order to satisfy on-board computation limitations the complete scheme is performed only during the exo-atmospheric flight coast phase. During the controlled atmospheric flight segment the task is reduced to a repeatedly solved targeting problem based on the initial optimal solution, thus omitting in-flight constraints. To keep the flight loads - especially the heat flux, which is in fact a major concern of the X-38 reentry flight - below their maximum admissible values, a flight path controller based on quadratic minimization techniques may override the predictive guidance command for a flight along the con- straint boundary. The attitude control algorithms developed are based on dynamic inversion. This methodology enables the designer to straightforwardly devise a controller structure from the system dynamics. The main ad- vantage of this approach with regard to reentry control design lies in the fact that inversion renders a scheduled controller. Throughout the reentry, varying sets of actuators are available for control. Depending on which set is available, different inversion schemes are applied. With at least three controls effectors, decoupled control of the attitude angles can be achieved via a successive inversion which exploits the time-scale separation inherent in the attitude dynamics. However, during a flight phase where control needs to be achieved with only two body flaps, internal dynamics must be taken into account. To this end, a redefinition of the controlled variables is carried out so that the internal dynamics are stabilized while satisfactory tracking performance is achieved. The objectives of the present paper are to discuss the guidance and control approach taken, and asses the per- formance of the concepts by numerical flight simulations. For this purpose results obtained by means of a nu- merical flight simulator (CREDITS), that accurately models the characteristics of the X-38 vehicle, are presented to demonstrate the performance and effectiveness of the guidance and control design. Sensitivities to non- nominal flight conditions have been evaluated by Monte-Carlo analyses comprising motion simulations in both three and six degree of freedom. The results show that the mission requirements are met.
14 CFR 1204.1406 - Procedures in the event of a declared in-flight emergency.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Procedures in the event of a declared in-flight emergency. 1204.1406 Section 1204.1406 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE... the Benefit of the Federal Government § 1204.1406 Procedures in the event of a declared in-flight...
14 CFR 1204.1406 - Procedures in the event of a declared in-flight emergency.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Procedures in the event of a declared in-flight emergency. 1204.1406 Section 1204.1406 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE... the Benefit of the Federal Government § 1204.1406 Procedures in the event of a declared in-flight...
14 CFR 1204.1406 - Procedures in the event of a declared in-flight emergency.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Procedures in the event of a declared in-flight emergency. 1204.1406 Section 1204.1406 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE... the Benefit of the Federal Government § 1204.1406 Procedures in the event of a declared in-flight...
14 CFR 1204.1406 - Procedures in the event of a declared in-flight emergency.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Procedures in the event of a declared in-flight emergency. 1204.1406 Section 1204.1406 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE... the Benefit of the Federal Government § 1204.1406 Procedures in the event of a declared in-flight...
NASA Technical Reports Server (NTRS)
Sadoff, Melvin; McFadden, Norman M.; Heinle, Donovan R.
1961-01-01
As part of a general investigation to determine the effects of simulator motions on pilot opinion and task performance over a wide range of vehicle longitudinal dynamics, a cooperative NASA-AMAL program was conducted on the centrifuge at Johnsville, Pennsylvania. The test parameters and measurements for this program duplicated those of earlier studies made at Ames Research Center with a variable-stability airplane and with a pitch-roll chair flight simulator. Particular emphasis was placed on the minimum basic damping and stability the pilots would accept and on the minimum dynamics they considered controllable in the event of stability-augmentation system failure. Results of the centrifuge-simulator program indicated that small positive damping was required by the pilots over most of the frequency range covered for configurations rated acceptable for emergency conditions only (e.g., failure of a pitch damper). It was shown that the pilot's tolerance for unstable dynamics was dependent primarily on the value of damping. For configurations rated acceptable for emergency operation only, the allowable instability and damping corresponded to a divergence time to double amplitude of about 1 second. Comparisons were made of centrifuge, pitch-chair and fixed-cockpit simulator tests with flight tests. Pilot ratings indicated that the effects of incomplete or spurious motion cues provided by these three modes of simulation were important only for high-frequency, lightly damped dynamics or unstable, moderately damped dynamics. The pitch- chair simulation, which provided accurate angular-acceleration cues to the pilot, compared most favorably with flight. For the centrifuge simulation, which furnished accurate normal accelerations but spurious pitching and longitudinal accelerations, there was a deterioration of pilots' opinion relative to flight results. Results of simulator studies with an analog pilot replacing the human pilot illustrated the adaptive capability of human pilots in coping with the wide range of vehicle dynamics and the control problems covered in this study. It was shown that pilot-response characteristics, deduced by the analog-pilot method, could be related to pilot opinion. Possible application of these results for predicting flight-control problems was illustrated by means of an example control-problem analysis. The results of a brief evaluation of a pencil-type side-arm controller in the centrifuge showed a considerable improvement in the pilots' ability to cope with high-frequency, low-damping dynamics, compared to results obtained with the center stick. This improvement with the pencil controller was attributed primarily to a marked reduction in the adverse effects of large and exaggerated pitching and longitudinal accelerations on pilot control precision.
2013-09-27
CAPE CANAVERAL, Fla. – Inside the Launch Abort System Facility at NASA’s Kennedy Space Center in Florida, technicians prepare to work on the launch abort system, or LAS, for the Orion Exploration Flight Test-1 mission. Horizontally stacked together are the components of the LAS, the launch abort motor, the attitude control motor, the jettison motor and the fairing. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. The LAS is designed to safely pull the Orion crew module away from the launch vehicle in the event of an emergency on the launch pad or during the initial ascent of NASA’s Space Launch System, or SLS, rocket. Orion’s first unpiloted test flight is scheduled to launch in 2014 atop a Delta IV rocket. A second uncrewed flight test is scheduled for 2017 on the SLS rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Jim Grossmann
2013-09-27
CAPE CANAVERAL, Fla. – Inside the Launch Abort System Facility at NASA’s Kennedy Space Center in Florida, a technician works on the launch abort system, or LAS, for the Orion Exploration Flight Test-1 mission. Horizontally stacked together are the components of the LAS, the launch abort motor, the attitude control motor, the jettison motor and the fairing. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. The LAS is designed to safely pull the Orion crew module away from the launch vehicle in the event of an emergency on the launch pad or during the initial ascent of NASA’s Space Launch System, or SLS, rocket. Orion’s first unpiloted test flight is scheduled to launch in 2014 atop a Delta IV rocket. A second uncrewed flight test is scheduled for 2017 on the SLS rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Jim Grossmann
A Risk Assessment Architecture for Enhanced Engine Operation
NASA Technical Reports Server (NTRS)
Litt, Jonathan S.; Sharp. Lauren M.; Guo, Ten-Huei
2010-01-01
On very rare occasions, in-flight emergencies have occurred that required the pilot to utilize the aircraft's capabilities to the fullest extent possible, sometimes using actuators in ways for which they were not intended. For instance, when flight control has been lost due to damage to the hydraulic systems, pilots have had to use engine thrust to maneuver the plane to the ground and in for a landing. To assist the pilot in these situations, research is being performed to enhance the engine operation by making it more responsive or able to generate more thrust. Enabled by modification of the propulsion control, enhanced engine operation can increase the probability of a safe landing during an inflight emergency. However, enhanced engine operation introduces risk as the nominal control limits, such as those on shaft speed, temperature, and acceleration, are exceeded. Therefore, an on-line tool for quantifying this risk must be developed to ensure that the use of an enhanced control mode does not actually increase the overall danger to the aircraft. This paper describes an architecture for the implementation of this tool. It describes the type of data and algorithms required and the information flow, and how the risk based on engine component lifing and operability for enhanced operation is determined.
M. Lake Maner; James Hanula; S. Kristine Braman
2013-01-01
Flight and emergence of the redbay ambrosia beetle, Xyleborus glabratus Eichhoff, were monitored from March 2011 through August 2012 using Lindgren funnel traps baited with manuka oil and emergence traps attached over individual beetle galleries on infested redbay (Persea borbonia (L.) Sprengel) trees. Of the 432 gallery entrances...
A Flexible Evolvable Architecture for Constellation Mission Systems User Applications
NASA Technical Reports Server (NTRS)
Trimble, Jay P.; Crocker, Alan R.
2008-01-01
While simulating a complex set of repair tasks to be performed by EVA crewmembers on an upcoming mission, flight controllers and astronauts determine that the repair will take much longer than originally anticipated. All equipment in the vicinity of the worksite must be powered off to maintain a safe environment for the astronauts. Because heater power will be unavailable, several critical components will now be at risk of freezing and permanent damage. If an impending thermal violation is detected, Mission Control will have very limited time to react. Therefore, flight controllers must not only modify their procedures to account for these risks, they must also incorporate into their displays outputs from thermal models, alternate temperature measurements, new alarm limits, and emergency power-on commands to enable the detection and response to freezing conditions. Current software for mission control systems makes scenarios like this difficult to address. Given the time frame for modifying software, operations teams are left with labor-intensive operational workarounds as their only options. NASA Ames Research Center (ARC) and NASA Johnson Space Center (JSC) are collaborating on the development of a flexible software system for mission operations that will enable greater user flexibility than has been available to date. Using composable software, end users in the scenario described above could recompose procedures and command and control displays to allow flight controllers to monitor temperature measurements, identify time-critical conditions, and execute the procedures required to respond to these conditions before flight hardware is permanently damaged.
Liu, Zhongfang; McNeil, Jeremy N; Wu, Kongming
2011-02-01
The lacewing Chrysoperla sinica (Tjeder) (Neuroptera: Chrysopidae) is an important predator of several insect pests in China and has considerable potential as a biological control agent. An inoculative approach would be the releasing adults early in the season to ensure that populations are present before pest densities increase. However, an understanding of adult flight activity under different conditions is necessary to develop appropriate release strategies. Therefore, we used a 32-channel, computer-monitored flight mill system to determine the effect of age on the flight activity of unmated female and male adults. Both sexes had high total flight activity levels as well as the longest individual flight bouts 2 and 3 d after emergence. The effects of temperature (between 13 and 33 degrees C at 75% RH) and relative humidity (between 30 and 90% RH at 23 degrees C) on the flight activity of 3-d-old unmated adults also were determined. Flight activity declined at the lowest (13 degrees C) and highest (33 degrees C) temperatures tested, as well as at the lowest relative humidity (30% RH). These findings are discussed within the context of selecting the appropriate environmental conditions for releasing C. sinica.
X-15 #2 on lakebed after engine failure forced pilot Jack McKay to make an emergency landing at Mud
NASA Technical Reports Server (NTRS)
1962-01-01
On 9 November 1962, an engine failure forced Jack McKay, a NASA research pilot, to make an emergency landing at Mud Lake, Nevada, in the second X-15 (56-6671); its landing gear collapsed and the X-15 flipped over on its back. McKay was promptly rescued by an Air Force medical team standing by near the launch site, and eventually recovered to fly the X-15 again. But his injuries, more serious than at first thought, eventually forced his retirement from NASA. The aircraft was sent back to the manufacturer, where it underwent extensive repairs and modifications. It returned to Edwards in February 1964 as the X-15A-2, with a longer fuselage (52 ft 5 in) and external fuel tanks. The basic X-15 was a rocket-powered aircraft 50 ft long with a wingspan of 22 ft. It was a missile-shaped vehicle with an unusual wedge-shaped vertical tail, thin stubby wings, and unique side fairings that extended along the side of the fuselage. The X-15 weighed about 14,000 lb empty and approximately 34,000 lb at launch. The XLR-99 rocket engine, manufactured by Thiokol Chemical Corp., was pilot controlled and was capable of developing 57,000 lb of thrust. North American Aviation built three X-15 aircraft for the program. The X-15 research aircraft was developed to provide in-flight information and data on aerodynamics, structures, flight controls, and the physiological aspects of high-speed, high-altitude flight. A follow-on program used the aircraft as a testbed to carry various scientific experiments beyond the Earth's atmosphere on a repeated basis. For flight in the dense air of the usable atmosphere, the X-15 used conventional aerodynamic controls such as rudder surfaces on the vertical stabilizers to control yaw and movable horizontal stabilizers to control pitch when moving in synchronization or roll when moved differentially. For flight in the thin air outside of the appreciable Earth's atmosphere, the X-15 used a reaction control system. Hydrogen peroxide thrust rockets located on the nose of the aircraft provided pitch and yaw control. Those on the wings provided roll control. Because of the large fuel consumption, the X-15 was air launched from a B-52 aircraft at 45,000 ft and a speed of about 500 mph. Depending on the mission, the rocket engine provided thrust for the first 80 to 120 sec of flight. The remainder of the normal 10 to 11 min. flight was powerless and ended with a 200-mph glide landing. Generally, one of two types of X-15 flight profiles was used; a high-altitude flight plan that called for the pilot to maintain a steep rate of climb, or a speed profile that called for the pilot to push over and maintain a level altitude. The X-15 was flown over a period of nearly 10 years--June 1959 to Oct. 1968--and set the world's unofficial speed and altitude records of 4,520 mph (Mach 6.7) and 354,200 ft in a program to investigate all aspects of manned hypersonic flight. Information gained from the highly successful X-15 program contributed to the development of the Mercury, Gemini, and Apollo manned spaceflight programs, and also the Space Shuttle program. The X-15s made a total of 199 flights, and were manufactured by North American Aviation. X-15-1, serial number 56-6670, is now located at the National Air and Space Museum, Washington DC. North American X-15A-2, serial number 56-6671, is at the United States Air Force Museum, Wright-Patterson AFB, Ohio. The X-15-3, serial number 56-6672, crashed on 15 November 1967, resulting in the death of Maj. Michael J. Adams.
Hinkelbein, Jochen; Neuhaus, Christopher; Böhm, Lennert; Kalina, Steffen; Braunecker, Stefan
2017-01-01
Data on the incidence of in-flight medical emergencies on-board civil aircraft are uncommon and rarely published. Such data could provide information regarding required medical equipment on-board aircraft and requisite training for cabin crew. The aim of the present study was to gather data on the incidences, nature, and medical equipment for in-flight medical emergencies by way of a survey of physician members of a German aerospace medical society. Using unipark.de (QuestBack GmbH, Cologne, Germany), an online survey was developed and used to gather specific information. Members of the German Society for Aviation and Space Medicine (Deutsche Gesellschaft für Luft- und Raumfahrtmedizin e.V.; DGLRM) were invited to participate in the survey during a 4-week period (21 March 2015 to 20 April 2015). Chi-square test was used for statistical analysis ( p <0.05 was considered significant). Altogether, 121 members of the society responded to the survey (n=335 sent out). Of the 121 respondents, n=54 (44.6%) of the participants (89.9% male and 10.1% female; mean age, 54.1 years; n=121) were involved in at least one in-flight medical emergency. Demographic parameters in this survey were in concordance with the society members' demographics. The mean duration of flights was 5.7 hours and the respondents performed 7.1 airline flights per year (median). Cardiovascular (40.0%) and neurological disorders (17.8%) were the most frequent diagnoses. The medical equipment (78.7%) provided was sufficient. An emergency diversion was undertaken in 10.6% of the cases. Although using a different method of data acquisition, this survey confirms previous data on the nature of emergencies and gives plausible numbers. Our data strongly argue for the establishment of a standardized database for recording the incidence and nature of in-flight medical emergencies. Such a database could inform on required medical equipment and cabin crew training.
Muscle function in avian flight: achieving power and control
Biewener, Andrew A.
2011-01-01
Flapping flight places strenuous requirements on the physiological performance of an animal. Bird flight muscles, particularly at smaller body sizes, generally contract at high frequencies and do substantial work in order to produce the aerodynamic power needed to support the animal's weight in the air and to overcome drag. This is in contrast to terrestrial locomotion, which offers mechanisms for minimizing energy losses associated with body movement combined with elastic energy savings to reduce the skeletal muscles' work requirements. Muscles also produce substantial power during swimming, but this is mainly to overcome body drag rather than to support the animal's weight. Here, I review the function and architecture of key flight muscles related to how these muscles contribute to producing the power required for flapping flight, how the muscles are recruited to control wing motion and how they are used in manoeuvring. An emergent property of the primary flight muscles, consistent with their need to produce considerable work by moving the wings through large excursions during each wing stroke, is that the pectoralis and supracoracoideus muscles shorten over a large fraction of their resting fibre length (33–42%). Both muscles are activated while being lengthened or undergoing nearly isometric force development, enhancing the work they perform during subsequent shortening. Two smaller muscles, the triceps and biceps, operate over a smaller range of contractile strains (12–23%), reflecting their role in controlling wing shape through elbow flexion and extension. Remarkably, pigeons adjust their wing stroke plane mainly via changes in whole-body pitch during take-off and landing, relative to level flight, allowing their wing muscles to operate with little change in activation timing, strain magnitude and pattern. PMID:21502121
14 CFR § 1204.1406 - Procedures in the event of a declared in-flight emergency.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false Procedures in the event of a declared in-flight emergency. § 1204.1406 Section § 1204.1406 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE... the Benefit of the Federal Government § 1204.1406 Procedures in the event of a declared in-flight...
2013-06-07
CAPE CANAVERAL, Fla. -- Inside the Launch Abort System Facility at NASA’s Kennedy Space Center in Florida, technicians prepare the launch abort motor for connection to the attitude control motor. Both are segments of Orion’s Launch Abort System, which is designed to safely pull the Orion crew module away from the launch vehicle in the event of an emergency on the launch pad or during the initial ascent of NASA’s Space Launch System, or SLS, rocket. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. Orion’s first unpiloted test flight is scheduled to launch in 2014 atop a Delta IV rocket. A second uncrewed flight test is scheduled for 2017 on the SLS rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Dimitri Gerondidakis
2013-06-07
CAPE CANAVERAL, Fla. -- Inside the Launch Abort System Facility at NASA’s Kennedy Space Center in Florida, the launch abort motor has been prepared for connection to the attitude control motor. Both are segments of Orion’s Launch Abort System, which is designed to safely pull the Orion crew module away from the launch vehicle in the event of an emergency on the launch pad or during the initial ascent of NASA’s Space Launch System, or SLS, rocket. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. Orion’s first unpiloted test flight is scheduled to launch in 2014 atop a Delta IV rocket. A second uncrewed flight test is scheduled for 2017 on the SLS rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Dimitri Gerondidakis
2013-06-07
CAPE CANAVERAL, Fla. -- Inside the Launch Abort System Facility at NASA’s Kennedy Space Center in Florida, a technician prepares the launch abort motor for connection to the attitude control motor. Both are segments of Orion’s Launch Abort System, which is designed to safely pull the Orion crew module away from the launch vehicle in the event of an emergency on the launch pad or during the initial ascent of NASA’s Space Launch System, or SLS, rocket. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. Orion’s first unpiloted test flight is scheduled to launch in 2014 atop a Delta IV rocket. A second uncrewed flight test is scheduled for 2017 on the SLS rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Dimitri Gerondidakis
2013-06-07
CAPE CANAVERAL, Fla. -- Inside the Launch Abort System Facility at NASA’s Kennedy Space Center in Florida, a technician prepares the launch abort motor for connection to the attitude control motor. Both are segments of Orion’s Launch Abort System, which is designed to safely pull the Orion crew module away from the launch vehicle in the event of an emergency on the launch pad or during the initial ascent of NASA’s Space Launch System, or SLS, rocket. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. Orion’s first unpiloted test flight is scheduled to launch in 2014 atop a Delta IV rocket. A second uncrewed flight test is scheduled for 2017 on the SLS rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Dimitri Gerondidakis
2013-06-07
CAPE CANAVERAL, Fla. -- Inside the Launch Abort System Facility at NASA’s Kennedy Space Center in Florida, a technician prepares the launch abort motor for connection to the attitude control motor. Both are segments of Orion’s Launch Abort System, which is designed to safely pull the Orion crew module away from the launch vehicle in the event of an emergency on the launch pad or during the initial ascent of NASA’s Space Launch System, or SLS, rocket. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. Orion’s first unpiloted test flight is scheduled to launch in 2014 atop a Delta IV rocket. A second uncrewed flight test is scheduled for 2017 on the SLS rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Dimitri Gerondidakis
NASA Technical Reports Server (NTRS)
Bailey, Randall E.; Prinzel, Lawrence J.; Kramer, Lynda J.; Young, Steve D.
2011-01-01
The document describes a Concept of Operations for Flight Deck Display and Decision Support technologies which may help enable emerging Next Generation Air Transportation System capabilities while also maintaining, or improving upon, flight safety. This concept of operations is used as the driving function within a spiral program of research, development, test, and evaluation for the Integrated Intelligent Flight Deck (IIFD) project. As such, the concept will be updated at each cycle within the spiral to reflect the latest research results and emerging developments
Danthanarayana, W
1976-12-01
The flight activity of Epiphyas postvittana was studied at two sites near Melbourne with the aid of suction traps, over a period of 4 years. Maximum numbers were found to fly during the period September to March with peak activity coinciding with the emergence of winter, spring and summer generation moths. E. postivittana is predominantly a nocturnal flier with maximum activity around 20.00-24.00 h. The lower temperature threshold of flight was 8-11°C. The upper temperature threshold varied from 20-21°C, 24-25°C and 27-28°C for the winter, spring and summer generation moths respectively. Flight was highly influenced by the prevailing wind. The lower wind speed threshold was 0.5-0.8 m -s and the upper wind speed threshold was 2.6-2.7 m -s . The relationship between wind speed and the amount of flight was non-linear, with the frequency of flights decreasing sharply with increasing wind speed. No flights occurred at wind speeds greater than 2.8 m -s . Variation in relative humidity had no influence on flight, but lack of rain favoured flight. The amount of flight activity and the amount of rainfall were negatively correlated; flights did not occur when the daily precipitation exceeded 32.5 mm, and with a precipitation exceeding 39 mm no flights could be expected. The value of these findings to pest control programmes is discussed.
A status report on NASA general aviation stall/spin flight testing
NASA Technical Reports Server (NTRS)
Patton, J. M., Jr.
1980-01-01
The NASA Langley Research Center has undertaken a comprehensive program involving spin tunnel, static and rotary balance wind tunnel, full-scale wind tunnel, free flight radio control model, flight simulation, and full-scale testing. Work underway includes aerodynamic definition of various configurations at high angles of attack, testing of stall and spin prevention concepts, definition of spin and spin recovery characteristics, and development of test techniques and emergency spin recovery systems. This paper presents some interesting results to date for the first aircraft (low-wing, single-engine) in the program, in the areas of tail design, wing leading edge design, mass distribution, center of gravity location, and small airframe changes, with associated pilot observations. The design philosophy of the spin recovery parachute system is discussed in addition to test techniques.
NASA Technical Reports Server (NTRS)
1984-01-01
Firefighting trainees conduct fire control exercises using a prototype simulator known as the Emergency Management Computer Aided Training System (EMCAT). Developed by Marshall Space Flight Center (MFS) in response to a request from the Huntsville (AL) Fire Department, EMCAT enables a trainee to assume the role of fireground commander and make quick decisions on best use of his fire fighting personnel and equipment.
Effects of space flight on locomotor control
NASA Technical Reports Server (NTRS)
Bloomberg, Jacob J.; Layne, Charles S.; McDonald, P. Vernon; Peters, Brian T.; Huebner, William P.; Reschke, Millard F.; Berthoz, Alain; Glasauer, Stefan; Newman, Dava; Jackson, D. Keoki
1999-01-01
In the microgravity environment of spaceflight, the relationship between sensory input and motor output is altered. During prolonged missions, neural adaptive processes come into play to recalibrate central nervous system function, thereby permitting new motor control strategies to emerge in the novel sensory environment of microgravity. However, the adaptive state achieved during spaceflight is inappropriate for a unit gravity environment and leads to motor control alterations upon return to Earth that include disturbances in locomotion. Indeed, gait and postural instabilities following the return to Earth have been reported in both U.S. astronauts and Russian cosmonauts even after short duration (5- to 10-day) flights. After spaceflight, astronauts may: (1) experience the sensation of turning while attempting to walk a straight path, (2) encounter sudden loss of postural stability, especially when rounding corners, (3) perceive exaggerated pitch and rolling head movements during walking, (4) experience sudden loss of orientation in unstructured visual environments, or (5) experience significant oscillopsia during locomotion.
Intelligent Pilot Aids for Flight Re-Planning in Emergencies
NASA Technical Reports Server (NTRS)
Pritchett, Amy R.; Ockerman, Jennifer
2005-01-01
Effective and safe control of an aircraft may be difficult or nearly impossible for a pilot following an unexpected system failure. Without prior training, the pilot must ascertain on the fly those changes in both manual control technique and procedures that will lead to a safe landing of the aircraft. Sophisticated techniques for determining the required control techniques are now available. Likewise, a body of literature on pilot decision making provides formalisms for examining how pilots approach discrete decisions framed as the selection between options. However, other aspects of behavior, such as the task of route planning and guidance, are not as well studied. Not only is the pilot faced with possible performance changes to the aircraft dynamics, but he or she is also tasked to create a plan of actions that will effectively take the aircraft down to a safe landing. In this plan, the many actions that the pilot can perform are closely intertwined with the trajectory of the aircraft, making it difficult to accurately predict the final outcome. Coupled with the vast number of potential actions to be taken, this problem may seem intractable. This is reflected in the lack of a pre-specified procedure capable of giving pilots the ability to find a resolution for this task. This report summarizes a multi-year effort to examine methods to aid pilots in planning an approach and arrival to an airport following an aircraft systems failure. Ultimately, we hypothesize that automatic assistance to pilots can be provided in real-time in the form of improving pilot control of a damaged aircraft and providing pilots with procedural directives suitable for critical flight conditions; such systems may also benefit pilot training and procedure design. To achieve this result, a systematic, comprehensive research program was followed, building on prior research. This approach included a pencil-and-paper study with airline pilots examining methods of representing a flight route in an immediately understandable manner, and in a manner that would allow the pilot to modify an automatically-generated route and/or detect any inappropriate elements in an automatically-generated route. Likewise, a flight simulator study examined different cockpit systems for the relative merits of providing pilots with any of a variety of automated functions for emergency flight planning. The results provide specific guidance for the design of such systems.
Hinkelbein, Jochen; Neuhaus, Christopher; Böhm, Lennert; Kalina, Steffen; Braunecker, Stefan
2017-01-01
Background Data on the incidence of in-flight medical emergencies on-board civil aircraft are uncommon and rarely published. Such data could provide information regarding required medical equipment on-board aircraft and requisite training for cabin crew. The aim of the present study was to gather data on the incidences, nature, and medical equipment for in-flight medical emergencies by way of a survey of physician members of a German aerospace medical society. Materials and methods Using unipark.de (QuestBack GmbH, Cologne, Germany), an online survey was developed and used to gather specific information. Members of the German Society for Aviation and Space Medicine (Deutsche Gesellschaft für Luft- und Raumfahrtmedizin e.V.; DGLRM) were invited to participate in the survey during a 4-week period (21 March 2015 to 20 April 2015). Chi-square test was used for statistical analysis (p<0.05 was considered significant). Results Altogether, 121 members of the society responded to the survey (n=335 sent out). Of the 121 respondents, n=54 (44.6%) of the participants (89.9% male and 10.1% female; mean age, 54.1 years; n=121) were involved in at least one in-flight medical emergency. Demographic parameters in this survey were in concordance with the society members’ demographics. The mean duration of flights was 5.7 hours and the respondents performed 7.1 airline flights per year (median). Cardiovascular (40.0%) and neurological disorders (17.8%) were the most frequent diagnoses. The medical equipment (78.7%) provided was sufficient. An emergency diversion was undertaken in 10.6% of the cases. Although using a different method of data acquisition, this survey confirms previous data on the nature of emergencies and gives plausible numbers. Conclusion Our data strongly argue for the establishment of a standardized database for recording the incidence and nature of in-flight medical emergencies. Such a database could inform on required medical equipment and cabin crew training. PMID:28260956
NASA Technical Reports Server (NTRS)
Dufrene, Warren R., Jr.
2004-01-01
This paper describes the development of a planned approach for Autonomous operation of an Unmanned Aerial Vehicle (UAV). A Hybrid approach will seek to provide Knowledge Generation thru the application of Artificial Intelligence (AI) and Intelligent Agents (IA) for UAV control. The application of many different types of AI techniques for flight will be explored during this research effort. The research concentration will be directed to the application of different AI methods within the UAV arena. By evaluating AI approaches, which will include Expert Systems, Neural Networks, Intelligent Agents, Fuzzy Logic, and Complex Adaptive Systems, a new insight may be gained into the benefits of AI techniques applied to achieving true autonomous operation of these systems thus providing new intellectual merit to this research field. The major area of discussion will be limited to the UAV. The systems of interest include small aircraft, insects, and miniature aircraft. Although flight systems will be explored, the benefits should apply to many Unmanned Vehicles such as: Rovers, Ocean Explorers, Robots, and autonomous operation systems. The flight system will be broken down into control agents that will represent the intelligent agent approach used in AI. After the completion of a successful approach, a framework of applying a Security Overseer will be added in an attempt to address errors, emergencies, failures, damage, or over dynamic environment. The chosen control problem was the landing phase of UAV operation. The initial results from simulation in FlightGear are presented.
Orion EFT-1 Wet Dress Rehearsal
2014-11-05
In the Hangar A&E control room, displays are seen during a dress rehearsal for the launch of the United Launch Alliance Delta IV Heavy rocket for the upcoming Orion Flight Test. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch Dec. 4, 2014 atop a United Launch Alliance Delta IV Heavy rocket, and in 2018 on NASA’s Space Launch System rocket.
NASA Technical Reports Server (NTRS)
Anders, John B.
2000-01-01
Biologic flight has undoubtedly intrigued man for thousands of years, yet it has been only the last 100 years or so that any serious challenge has been mounted to the pre-eminence of birds. Although present-day large-scale aircraft are now clearly able to fly higher, faster and farther than any bird or insect, it is obvious that these biological creatures have a mastery of low Reynolds number, unsteady flows that is unrivaled by man-made systems. This paper suggests that biological flight should be examined for mechanisms that may apply to engineered flight systems, especially in the emerging field of small-scale, uninhabited aerial vehicles (UAV). This paper discusses the kinematics and aerodynamics of bird and insect flight, including some aspects of unsteady aerodynamics. The dynamics of flapping wing flight is briefly examined, including gait selection, flapping frequency and amplitude selection, as well as wing planform and angle-of-attack dynamics. Unsteady aerodynamic mechanisms as practiced by small birds and insects are reviewed. Drag reduction morphologies of birds and marine animals are discussed and fruitful areas of research are suggested.
14 CFR 121.419 - Pilots and flight engineers: Initial, transition, and upgrade ground training.
Code of Federal Regulations, 2012 CFR
2012-01-01
...; (ix) Flight planning; (x) Each normal and emergency procedure; and (xi) The approved Airplane Flight... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Pilots and flight engineers: Initial... Program § 121.419 Pilots and flight engineers: Initial, transition, and upgrade ground training. (a...
14 CFR 121.419 - Pilots and flight engineers: Initial, transition, and upgrade ground training.
Code of Federal Regulations, 2011 CFR
2011-01-01
...; (ix) Flight planning; (x) Each normal and emergency procedure; and (xi) The approved Airplane Flight... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Pilots and flight engineers: Initial... Program § 121.419 Pilots and flight engineers: Initial, transition, and upgrade ground training. (a...
14 CFR 121.419 - Pilots and flight engineers: Initial, transition, and upgrade ground training.
Code of Federal Regulations, 2014 CFR
2014-01-01
...; (ix) Flight planning; (x) Each normal and emergency procedure; and (xi) The approved Airplane Flight... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Pilots and flight engineers: Initial... Program § 121.419 Pilots and flight engineers: Initial, transition, and upgrade ground training. Link to...
14 CFR 121.419 - Pilots and flight engineers: Initial, transition, and upgrade ground training.
Code of Federal Regulations, 2010 CFR
2010-01-01
...; (ix) Flight planning; (x) Each normal and emergency procedure; and (xi) The approved Airplane Flight... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Pilots and flight engineers: Initial... Program § 121.419 Pilots and flight engineers: Initial, transition, and upgrade ground training. (a...
14 CFR 121.419 - Pilots and flight engineers: Initial, transition, and upgrade ground training.
Code of Federal Regulations, 2013 CFR
2013-01-01
...; (ix) Flight planning; (x) Each normal and emergency procedure; and (xi) The approved Airplane Flight... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Pilots and flight engineers: Initial... Program § 121.419 Pilots and flight engineers: Initial, transition, and upgrade ground training. (a...
Re-Educating Jet-Engine-Researchers to Stay Relevant
NASA Astrophysics Data System (ADS)
Gal-Or, Benjamin
2016-06-01
To stay relevantly supported, jet-engine researchers, designers and operators should follow changing uses of small and large jet engines, especially those anticipated to be used by/in the next generation, JET-ENGINE-STEERED ("JES") fleets of jet drones but fewer, JES-Stealth-Fighter/Strike Aircraft. In addition, some diminishing returns from isolated, non-integrating, jet-engine component studies, vs. relevant, supersonic, shock waves control in fluidic-JES-side-effects on compressor stall dynamics within Integrated Propulsion Flight Control ("IPFC"), and/or mechanical JES, constitute key relevant methods that currently move to China, India, South Korea and Japan. The central roles of the jet engine as primary or backup flight controller also constitute key relevant issues, especially under post stall conditions involving induced engine-stress while participating in crash prevention or minimal path-time maneuvers to target. And when proper instructors are absent, self-study of the JES-STVS REVOLUTION is an updating must, where STVS stands for wing-engine-airframe-integrated, embedded stealthy-jet-engine-inlets, restructured engines inside Stealth, Tailless, canard-less, Thrust Vectoring IFPC Systems. Anti-terror and Airliners Super-Flight-Safety are anticipated to overcome US legislation red-tape that obstructs JES-add-on-emergency-kits-use.
Cowings, P S; Kellar, M A; Folen, R A; Toscano, W B; Burge, J D
2001-01-01
Studies have shown that autonomous mode behavior is one cause of aircraft fatalities due to pilot error. In such cases, the pilot is in a high state of psychological and physiological arousal and tends to focus on one problem, while ignoring more critical information. This study examined the effect of training in physiological self-recognition and regulation, as a means of improving crew cockpit performance. Seventeen pilots were assigned to the treatment and control groups matched for accumulated flight hours. The treatment group contained 4 pilots from HC-130 Hercules aircraft and 4 HH-65 Dolphin helicopter pilots; the control group contained 3 pilots of HC-130s and 6 helicopter pilots. During an initial flight, physiological data were recorded on each crewmember and an instructor pilot rated individual crew performance. Eight crewmembers were then taught to regulate their own physiological response levels using Autogenic-Feedback Training Exercise (AFTE). The remaining participants received no training. During a second flight, treatment participants showed significant improvement in performance (rated by the same instructor pilot as in pretests) while controls did not improve. The results indicate that AFTE management of high states of physiological arousal may improve pilot performance during emergency flying conditions.
NASA Technical Reports Server (NTRS)
Cowings, P. S.; Kellar, M. A.; Folen, R. A.; Toscano, W. B.; Burge, J. D.
2001-01-01
Studies have shown that autonomous mode behavior is one cause of aircraft fatalities due to pilot error. In such cases, the pilot is in a high state of psychological and physiological arousal and tends to focus on one problem, while ignoring more critical information. This study examined the effect of training in physiological self-recognition and regulation, as a means of improving crew cockpit performance. Seventeen pilots were assigned to the treatment and control groups matched for accumulated flight hours. The treatment group contained 4 pilots from HC-130 Hercules aircraft and 4 HH-65 Dolphin helicopter pilots; the control group contained 3 pilots of HC-130s and 6 helicopter pilots. During an initial flight, physiological data were recorded on each crewmember and an instructor pilot rated individual crew performance. Eight crewmembers were then taught to regulate their own physiological response levels using Autogenic-Feedback Training Exercise (AFTE). The remaining participants received no training. During a second flight, treatment participants showed significant improvement in performance (rated by the same instructor pilot as in pretests) while controls did not improve. The results indicate that AFTE management of high states of physiological arousal may improve pilot performance during emergency flying conditions.
Enhanced Engine Control for Emergency Operation
NASA Technical Reports Server (NTRS)
Litt, Jonathan S.
2012-01-01
C-MAPSS40k engine simulation has been developed and is available to the public. The authenticity of the engine performance and controller enabled the development of realistic enhanced control modes through controller modification alone. Use of enhanced control modes improved stability and control of an impaired aircraft. - Fast Response is useful for manual manipulation of the throttles - Use of Fast Response improved stability as part of a yaw rate feedback system. - Use of Overthrust shortened takeoff distance, but was generally useful in flight, too. Initial lack of pilot familiarity resulted in discomfort, especially with yaw rate feedback, but that was the only drawback, overall the pilot found the enhanced modes very helpful.
NASA Technical Reports Server (NTRS)
Schutte, Paul C.; Goodrich, Kenneth H.; Cox, David E.; Jackson, Bruce; Palmer, Michael T.; Pope, Alan T.; Schlecht, Robin W.; Tedjojuwono, Ken K.; Trujillo, Anna C.; Williams, Ralph A.;
2007-01-01
This paper reviews current and emerging operational experiences, technologies, and human-machine interaction theories to develop an integrated flight system concept designed to increase the safety, reliability, and performance of single-pilot operations in an increasingly accommodating but stringent national airspace system. This concept, know as the Naturalistic Flight Deck (NFD), uses a form of human-centered automation known as complementary-automation (or complemation) to structure the relationship between the human operator and the aircraft as independent, collaborative agents having complimentary capabilities. The human provides commonsense knowledge, general intelligence, and creative thinking, while the machine contributes specialized intelligence and control, extreme vigilance, resistance to fatigue, and encyclopedic memory. To support the development of the NFD, an initial Concept of Operations has been created and selected normal and non-normal scenarios are presented in this document.
NASA Technical Reports Server (NTRS)
Ippolito, Corey; Nguyen, Nhan; Lohn, Jason; Dolan, John
2014-01-01
The emergence of advanced lightweight materials is resulting in a new generation of lighter, flexible, more-efficient airframes that are enabling concepts for active aeroelastic wing-shape control to achieve greater flight efficiency and increased safety margins. These elastically shaped aircraft concepts require non-traditional methods for large-scale multi-objective flight control that simultaneously seek to gain aerodynamic efficiency in terms of drag reduction while performing traditional command-tracking tasks as part of a complete guidance and navigation solution. This paper presents results from a preliminary study of a notional multi-objective control law for an aeroelastic flexible-wing aircraft controlled through distributed continuous leading and trailing edge control surface actuators. This preliminary study develops and analyzes a multi-objective control law derived from optimal linear quadratic methods on a longitudinal vehicle dynamics model with coupled aeroelastic dynamics. The controller tracks commanded attack-angle while minimizing drag and controlling wing twist and bend. This paper presents an overview of the elastic aircraft concept, outlines the coupled vehicle model, presents the preliminary control law formulation and implementation, presents results from simulation, provides analysis, and concludes by identifying possible future areas for research
Mori, N; Pozzebon, A; Duso, C; Reggiani, N; Pavan, F
2016-02-01
Stinging nettle (Urtica dioica L.) is the most important host plant for both phytoplasma associated with Bois noir disease of the grapevine and its vector Hyalesthes obsoletus Signoret (Hemiptera: Cixiidae). Vector abundance in vineyards is favored by stinging nettle growing in surrounding areas. Nettle control by herbicides or cutting can reduce vector population in vineyards. However, chemical weeding can cause environmental problems. Many authors suggest that stinging nettle control applied during H. obsoletus flight could force adults to migrate into vineyards. We evaluate if cutting of nettle growing along ditches during adult flight favors vineyard colonization by H. obsoletus. Three different weed management regimes ("no cuts," "one cut" just before the beginning of adult flight, and "frequent cuts" over the whole vegetative season) were applied to the herbaceous vegetation in ditches bordering two vineyards. The flight dynamics of H. obsoletus were recorded by placing yellow sticky traps on the vegetation along the ditches and at different positions in the vineyards. Frequent stinging nettle cuts (compared with a single cut) in surrounding areas favored the dispersion of vectors inside the vineyards. Stinging nettle control should be based on an integration of a single herbicide application before H. obsoletus emergence followed by frequent cuts to minimize negative side effects of chemical weeding. In organic viticulture, a frequent-cuts strategy should avoid cuts during H. obsoletus flight period, at least in the first year of adoption. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
On the frontier: Flight research at Dryden 1946-1981
NASA Technical Reports Server (NTRS)
Hallion, R. P.
1984-01-01
The history of flight research at the NASA Hugh L. Dryden Flight Research Center is recounted. The period of emerging supersonic flight technology (1944 to 1959) is reviewed along with the era of flight outside the Earth's atmosphere (1959 to 1981). Specific projects such as the X-15, Gemini, Apollo, and the space shuttle are addressed. The flight chronologies of various aircraft and spacecraft are given.
14 CFR 125.327 - Briefing of passengers before flight.
Code of Federal Regulations, 2010 CFR
2010-01-01
... flotation equipment; (7) If the flight involves operations above 12,000 feet MSL, the normal and emergency... expeditiously to an exit if an emergency occurs and that person's attendant, if any, has received a briefing as... the crew. It shall be supplemented by printed cards for the use of each passenger containing— (1) A...
14 CFR 125.327 - Briefing of passengers before flight.
Code of Federal Regulations, 2013 CFR
2013-01-01
... flotation equipment; (7) If the flight involves operations above 12,000 feet MSL, the normal and emergency... expeditiously to an exit if an emergency occurs and that person's attendant, if any, has received a briefing as... the crew. It shall be supplemented by printed cards for the use of each passenger containing— (1) A...
14 CFR 125.327 - Briefing of passengers before flight.
Code of Federal Regulations, 2011 CFR
2011-01-01
... flotation equipment; (7) If the flight involves operations above 12,000 feet MSL, the normal and emergency... expeditiously to an exit if an emergency occurs and that person's attendant, if any, has received a briefing as... the crew. It shall be supplemented by printed cards for the use of each passenger containing— (1) A...
14 CFR 125.327 - Briefing of passengers before flight.
Code of Federal Regulations, 2014 CFR
2014-01-01
... flotation equipment; (7) If the flight involves operations above 12,000 feet MSL, the normal and emergency... expeditiously to an exit if an emergency occurs and that person's attendant, if any, has received a briefing as... the crew. It shall be supplemented by printed cards for the use of each passenger containing— (1) A...
14 CFR 125.327 - Briefing of passengers before flight.
Code of Federal Regulations, 2012 CFR
2012-01-01
... flotation equipment; (7) If the flight involves operations above 12,000 feet MSL, the normal and emergency... expeditiously to an exit if an emergency occurs and that person's attendant, if any, has received a briefing as... the crew. It shall be supplemented by printed cards for the use of each passenger containing— (1) A...
NASA Technical Reports Server (NTRS)
Hudlicka, Eva; Corker, Kevin
1988-01-01
In this paper, a problem-solving system which uses a multilevel causal model of its domain is described. The system functions in the role of a pilot's assistant in the domain of commercial air transport emergencies. The model represents causal relationships among the aircraft subsystems, the effectors (engines, control surfaces), the forces that act on an aircraft in flight (thrust, lift), and the aircraft's flight profile (speed, altitude, etc.). The causal relationships are represented at three levels of abstraction: Boolean, qualitative, and quantitative, and reasoning about causes and effects can take place at each of these levels. Since processing at each level has different characteristics with respect to speed, the type of data required, and the specificity of the results, the problem-solving system can adapt to a wide variety of situations. The system is currently being implemented in the KEE(TM) development environment on a Symbolics Lisp machine.
Aerodynamic control of NASP-type vehicles through vortex manipulation, volume 4
NASA Technical Reports Server (NTRS)
Smith, Brooke C.; Suarez, Carlos J.; Porada, William M.; Malcolm, Gerald N.
1993-01-01
Forebody Vortex Control (FVC) is an emerging technology that has received widespread and concentrated attention by many researchers for application on fighter aircraft to enhance aerodynamic controllability at high angles of attack. This research explores potential application of FVC to a NASP-type configuration. The configuration investigated is characterized by a slender, circular cross-section forebody and a 78 deg swept delta wing. A man-in-the-loop, six-degress-of-freedom, high-fidelity simulation was developed that demonstrates the implementation and advantages of pneumatic forebody vortex control. Static wind tunnel tests were used as the basis for the aerodynamic characteristics modeled in the simulation. Dynamic free-to-roll wind tunnel tests were analyzed and the wing rock motion investigated. A non-linear model of the dynamic effects of the bare airframe and the forebody vortex control system were developed that closely represented the observed behavior. Multiple state-of-the-art digital flight control systems were developed that included different utilizations of pneumatic vortex control. These were evaluated through manned simulation. Design parameters for a pneumatic forebody vortex control system were based on data collected regarding the use of blowing and the mass flow required during realistic flight maneuvers.
[Roles and functions of military flight nursing: aeromedical evacuation].
Lee, Chun-Lan; Hsiao, Yun-Chien; Chen, Chao-Yen
2012-06-01
Evacuating the injured is an important part of disaster medicine. Aircraft provide timely access to distant and remote areas and, in an emergency, can evacuate sick or injured individuals in such areas quickly and safely for critical treatment elsewhere. Aeromedical evacuation (AE) comprises the two categories of fixed-wing ambulance service and helicopter emergency medical service (HEMS). Each aims to accomplish unique objectives. In Taiwan, the Second Taiwan Strait Crisis in 1958 established the unique role and functions of medical flight nursing. Significant knowledge and experience has been accumulated in the field since that time in such areas as the effects of high altitude environments on individuals and equipment; physiological, psychological, social and spiritual factors that affect the injured and / or response team members; and emergency care delivery techniques. All have been essential elements in the development and delivery of comprehensive medical flight nurse training. Medical flight nursing belongs in a special professional category, as nurses must master knowledge on general and special-case casualty evacuation procedures, relevant instruments and equipment, triage, in-flight medical care, and aircraft loading requirements related to transporting the sick and injured. The internationalization of medical care has opened the potential to expand medical flight nursing roles and functions into disaster nursing. Although military considerations continue to frame medical flight nursing training and preparation today, the authors feel that creating strategic alliances with disaster nursing specialists and organizations overseas is a future developmental direction for Taiwan's medical flight nursing sector worth formal consideration.
Latency Requirements for Head-Worn Display S/EVS Applications
NASA Technical Reports Server (NTRS)
Bailey, Randall E.; Trey Arthur, J. J., III; Williams, Steven P.
2004-01-01
NASA s Aviation Safety Program, Synthetic Vision Systems Project is conducting research in advanced flight deck concepts, such as Synthetic/Enhanced Vision Systems (S/EVS), for commercial and business aircraft. An emerging thrust in this activity is the development of spatially-integrated, large field-of-regard information display systems. Head-worn or helmet-mounted display systems are being proposed as one method in which to meet this objective. System delays or latencies inherent to spatially-integrated, head-worn displays critically influence the display utility, usability, and acceptability. Research results from three different, yet similar technical areas flight control, flight simulation, and virtual reality are collectively assembled in this paper to create a global perspective of delay or latency effects in head-worn or helmet-mounted display systems. Consistent definitions and measurement techniques are proposed herein for universal application and latency requirements for Head-Worn Display S/EVS applications are drafted. Future research areas are defined.
Effects of Long-duration Space Flight on Toe Clearance During Treadmill Walking
NASA Technical Reports Server (NTRS)
Miller, Chris; Peters, Brian; Brady, Rachel; Mulavara, Ajitkumar; Richards, Jason; Hayat, Matthew; Bloomberg, Jacob
2008-01-01
Upon returning from long-duration space flight, astronauts and cosmonauts must overcome physiologic and sensorimotor changes induced by prolonged exposure to microgravity as they readapt to a gravitational environment. Their compromised balance and coordination lead to an altered and more variable walking pattern (Bloomberg & Mulavara, 2003; McDonald, et al., 1996). Toe trajectory during the swing phase of locomotion has been identified as a precise motor control task (Karst, et al., 1999), thus providing an indication of the coordination of the lower limbs (Winter, 1992). Failure to achieve sufficient toe clearance may put the crew member at a greater risk of tripping and falling, especially if an emergency egress from the vehicle should be necessary upon landing. The purpose of this study was to determine the pre- to post-flight changes in toe clearance in crew members returning from long-duration missions and the recovery thereafter.
Latency requirements for head-worn display S/EVS applications
NASA Astrophysics Data System (ADS)
Bailey, Randall E.; Arthur, Jarvis J., III; Williams, Steven P.
2004-08-01
NASA's Aviation Safety Program, Synthetic Vision Systems Project is conducting research in advanced flight deck concepts, such as Synthetic/Enhanced Vision Systems (S/EVS), for commercial and business aircraft. An emerging thrust in this activity is the development of spatially-integrated, large field-of-regard information display systems. Head-worn or helmet-mounted display systems are being proposed as one method in which to meet this objective. System delays or latencies inherent to spatially-integrated, head-worn displays critically influence the display utility, usability, and acceptability. Research results from three different, yet similar technical areas - flight control, flight simulation, and virtual reality - are collectively assembled in this paper to create a global perspective of delay or latency effects in head-worn or helmet-mounted display systems. Consistent definitions and measurement techniques are proposed herein for universal application and latency requirements for Head-Worn Display S/EVS applications are drafted. Future research areas are defined.
2000-10-11
STS-92 Mission Specialist Leroy Chiao waves while waiting for suit check in the White Room. Behind him is Commander Brian Duffy. The White Room is an environmentally controlled area at the end of the Orbiter Access Arm that provides entry to the orbiter as well as emergency egress if needed. The arm remains in the extended position until 7 minutes 24 seconds before launch. Chiao, Duffy and the rest of the crew are undertaking the fifth flight to the International Space Station for construction. Discovery carries a payload that includes the Integrated Truss Structure Z-1, first of 10 trusses that will form the backbone of the Space Station, and the third Pressurized Mating Adapter that will provide a Shuttle docking port for solar array installation on the sixth Station flight and Lab installation on the seventh Station flight. The mission includes four spacewalks for the construction activities. Discovery’s landing is expected Oct. 22 at 2:10 p.m. EDT
2000-10-11
STS-92 Mission Specialist William S. McArthur Jr. undergoes final suit check in the White Room before entering Discovery. The White Room is an environmentally controlled area at the end of the Orbiter Access Arm that provides entry to the orbiter as well as emergency egress if needed. The arm remains in the extended position until 7 minutes 24 seconds before launch. McArthur and the rest of the crew are making the fifth flight to the International Space Station for construction. Discovery carries a payload that includes the Integrated Truss Structure Z-1, first of 10 trusses that will form the backbone of the Space Station, and the third Pressurized Mating Adapter that will provide a Shuttle docking port for solar array installation on the sixth Station flight and Lab installation on the seventh Station flight. The mission includes four spacewalks for the construction activities. Discovery’s landing is expected Oct. 22 at 2:10 p.m. EDT
2000-10-11
STS-92 Commander Brian Duffy is helped with final suit check in the White Room before entering Discovery. The White Room is an environmentally controlled area at the end of the Orbiter Access Arm that provides entry to the orbiter as well as emergency egress if needed. The arm remains in the extended position until 7 minutes 24 seconds before launch. Duffy and the rest of the crew are undertaking the fifth flight to the International Space Station for construction. Discovery carries a payload that includes the Integrated Truss Structure Z-1, first of 10 trusses that will form the backbone of the Space Station, and the third Pressurized Mating Adapter that will provide a Shuttle docking port for solar array installation on the sixth Station flight and Lab installation on the seventh Station flight. The mission includes four spacewalks for the construction activities. Discovery’s landing is expected Oct. 22 at 2:10 p.m. EDT
2000-10-11
STS-92 Pilot Pamela Ann Melroy has a final check on her launch and entry suit in the White Room before entering Discovery. The White Room is an environmentally controlled area at the end of the Orbiter Access Arm that provides entry to the orbiter as well as emergency egress if needed. The arm remains in the extended position until 7 minutes 24 seconds before launch. Melroy and the rest of the crew are undertaking the fifth flight to the International Space Station for construction. Discovery carries a payload that includes the Integrated Truss Structure Z-1, first of 10 trusses that will form the backbone of the Space Station, and the third Pressurized Mating Adapter that will provide a Shuttle docking port for solar array installation on the sixth Station flight and Lab installation on the seventh Station flight. The mission includes four spacewalks for the construction activities. Discovery’s landing is expected Oct. 22 at 2:10 p.m. EDT
"If there is a doctor aboard this flight. . .": issues and advice for the passenger-psychiatrist.
Macleod, Sandy
2008-08-01
On several occasions, the author has responded to requests for medical assistance while travelling by air. This paper examines the various issues when a passenger-psychiatrist is confronted with an in-flight medical emergency. A range of medical problems can present during air travel. A review of the available literature on a doctor's obligations when confronted with an in-flight medical emergency is provided. Guidelines for the passenger psychiatrist,who at some stage is likely to encounter such a circumstance, are offered.
14 CFR 93.307 - Minimum flight altitudes.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Minimum flight altitudes. 93.307 Section 93...) AIR TRAFFIC AND GENERAL OPERATING RULES SPECIAL AIR TRAFFIC RULES Special Flight Rules in the Vicinity of Grand Canyon National Park, AZ § 93.307 Minimum flight altitudes. Except in an emergency, or if...
14 CFR 93.307 - Minimum flight altitudes.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Minimum flight altitudes. 93.307 Section 93...) AIR TRAFFIC AND GENERAL OPERATING RULES SPECIAL AIR TRAFFIC RULES Special Flight Rules in the Vicinity of Grand Canyon National Park, AZ § 93.307 Minimum flight altitudes. Except in an emergency, or if...
NASA Astrophysics Data System (ADS)
Efremov, Denis; Khaykin, Sergey; Lykov, Alexey; Berezhko, Yaroslav; Lunin, Aleksey
High-resolution measurements of climate-relevant trace gases and aerosols in the upper troposphere and stratosphere (UTS) have been and remain technically challenging. The high cost of measurements onboard airborne platforms or heavy stratospheric balloons results in a lack of accurate information on vertical distribution of atmospheric constituents. Whereas light-weight instruments carried by meteorological balloons are becoming progressively available, their usage is constrained by the cost of the equipment or the recovery operations. The evolving need in cost-efficient observations for UTS process studies has led to development of small airborne platforms - unmanned aerial vehicles (UAV), capable of carrying small sensors for in-situ measurements. We present a new UAV-based stratospheric sounding platform capable of carrying scientific payload of up to 2 kg. The airborne platform comprises of a latex meteorological balloon and detachable flying wing type UAV with internal measurement controller. The UAV is launched on a balloon to stratospheric altitudes up to 20 km, where it can be automatically released by autopilot or by a remote command sent from the ground control. Having been released from the balloon the UAV glides down and returns to the launch position. Autopilot using 3-axis gyro, accelerometer, barometer, compas and GPS navigation provides flight stabilization and optimal way back trajectory. Backup manual control is provided for emergencies. During the flight the onboard measurement controller stores the data into internal memory and transmits current flight parameters to the ground station via telemetry. Precise operation of the flight control systems ensures safe landing at the launch point. A series of field tests of the detachable stratospheric UAV has been conducted. The scientific payload included the following instruments involved in different flights: a) stratospheric Lyman-alpha hygrometer (FLASH); b) backscatter sonde; c) electrochemical ozone sonde; d) optical CO2 sensor; e) radioactivity sensor; f) solar radiation sensor. In addition, each payload included temperature sensor, barometric sensor and a GPS receiver. Design features of measurement systems onboard UAV and flight results are presented. Possible applications for atmospheric studies and validation of remote ground-based and space-borne observations is discussed.
The Case for Intelligent Propulsion Control for Fast Engine Response
NASA Technical Reports Server (NTRS)
Litt, Jonathan S.; Frederick, Dean K.; Guo, Ten-Huei
2009-01-01
Damaged aircraft have occasionally had to rely solely on thrust to maneuver as a consequence of losing hydraulic power needed to operate flight control surfaces. The lack of successful landings in these cases inspired research into more effective methods of utilizing propulsion-only control. That research demonstrated that one of the major contributors to the difficulty in landing is the slow response of the engines as compared to using traditional flight control. To address this, research is being conducted into ways of making the engine more responsive under emergency conditions. This can be achieved by relaxing controller limits, adjusting schedules, and/or redesigning the regulators to increase bandwidth. Any of these methods can enable faster response at the potential expense of engine life and increased likelihood of stall. However, an example sensitivity analysis revealed a complex interaction of the limits and the difficulty in predicting the way to achieve the fastest response. The sensitivity analysis was performed on a realistic engine model, and demonstrated that significantly faster engine response can be achieved compared to standard Bill of Material control. However, the example indicates the need for an intelligent approach to controller limit adjustment in order for the potential to be fulfilled.
AFTI/F-16 50th flight team photo
NASA Technical Reports Server (NTRS)
1983-01-01
An early (1983) photograph of the AFTI F-16 team, commemorating the aircraft's 50th flight. It shows the initial configuration and paint finish of the AFTI F-16, as well as the forward mounted canards and the spin chute. During the 1980s and 1990s, NASA and the U.S. Air Force participated in a joint program to integrate and demonstrate new avionics technologies to improve close air support capabilities in next-generation aircraft. The testbed aircraft, seen here in flight over the desert at NASA's Dryden Flight Research Center, Edwards, California, was called the Advanced Fighter Technology Integration (AFTI) F-16. The tests demonstrated technologies to improve navigation and the pilot's ability to find and destroy enemy ground targets day or night, including adverse weather. The aircraft--an F-16A Fighting Falcon (Serial #75-0750)--underwent numerous modifications. A relatively low-cost testbed, it evaluated the feasability of advanced, intergrated-sensor, avionics, and flight control technologies. During the first phase of the AFTI/F-16 program, which began in 1983, the aircraft demonstrated voice-actuated commands, helmet-mounted sights, flat turns, and selective fuselage pointing using forward-mounted canards and a triplex digital flight control computer system. The second phase of research, which began in the summer of 1991, demonstrated advanced technologies and capabilities to find and destroy ground targets day or night, and in adverse weather while using maneuverability and speed at low altitude. This phase was known as the close air support and battlefield air interdiction (CAS/BAI) phase. Finally, the aircraft was used to assess the Automatic Ground Collision Avoidance System (Auto - GCAS), a joint project with the Swedish Government. For these tests, the pilot flew the aircraft directly toward the ground, simulating a total loss of control. The GCAS was designed to take command in such emergencies and bring the aircraft back to level flight. The AFTI F-16 program ended at Dryden on November 4, 1997 after 15 years and over 700 research flights. The USAF continued to fly the aircraft until retiring it to the Air Force Museum on January 9, 2001.
NASA Technical Reports Server (NTRS)
Carter, John; Stephenson, Mark
1999-01-01
The NASA Dryden Flight Research Center has completed the initial flight test of a modified set of F/A-18 flight control computers that gives the aircraft a research control law capability. The production support flight control computers (PSFCC) provide an increased capability for flight research in the control law, handling qualities, and flight systems areas. The PSFCC feature a research flight control processor that is "piggybacked" onto the baseline F/A-18 flight control system. This research processor allows for pilot selection of research control law operation in flight. To validate flight operation, a replication of a standard F/A-18 control law was programmed into the research processor and flight-tested over a limited envelope. This paper provides a brief description of the system, summarizes the initial flight test of the PSFCC, and describes future experiments for the PSFCC.
NASA Technical Reports Server (NTRS)
Johnson, C. F.; Dreschel, T. W.; Brown, C. S.; Wheeler, R. M.
1996-01-01
The Porous Tube Plant Nutrient Delivery System (PTPNDS), a hydrophilic, microporous ceramic tube hydroponic system designed for microgravity, will be tested in a middeck locker of the Space Shuttle. The flight experiment will focus on hardware operation and assess its ability to support seed germination and early seedling growth in microgravity. The water controlling system of the PTPNDS hardware has been successfully tested during the parabolic flight of the KC-135. One challenge to the development of the space flight experiment was to devise a method of holding seeds to the cylindrical porous tube. The seed-holder must provide water and air to the seed, absorb water from the porous tube, withstand sterilization, provide a clear path for shoots and roots to emerge, and be composed of flight qualified materials. In preparation for the flight experiment, a wheat seed-holder has been designed that utilizes a cellulose acetate plug to facilitate imbibition and to hold the wheat seeds in contact with the porous tube in the correct orientation during the vibration of launch and the microgravity environment of orbit. Germination and growth studies with wheat at a range of temperatures showed that optimal moisture was 78% (by weight) in the cellulose acetate seed holders. These and other design considerations are discussed.
Consensus of satellite cluster flight using an energy-matching optimal control method
NASA Astrophysics Data System (ADS)
Luo, Jianjun; Zhou, Liang; Zhang, Bo
2017-11-01
This paper presents an optimal control method for consensus of satellite cluster flight under a kind of energy matching condition. Firstly, the relation between energy matching and satellite periodically bounded relative motion is analyzed, and the satellite energy matching principle is applied to configure the initial conditions. Then, period-delayed errors are adopted as state variables to establish the period-delayed errors dynamics models of a single satellite and the cluster. Next a novel satellite cluster feedback control protocol with coupling gain is designed, so that the satellite cluster periodically bounded relative motion consensus problem (period-delayed errors state consensus problem) is transformed to the stability of a set of matrices with the same low dimension. Based on the consensus region theory in the research of multi-agent system consensus issues, the coupling gain can be obtained to satisfy the requirement of consensus region and decouple the satellite cluster information topology and the feedback control gain matrix, which can be determined by Linear quadratic regulator (LQR) optimal method. This method can realize the consensus of satellite cluster period-delayed errors, leading to the consistency of semi-major axes (SMA) and the energy-matching of satellite cluster. Then satellites can emerge the global coordinative cluster behavior. Finally the feasibility and effectiveness of the present energy-matching optimal consensus for satellite cluster flight is verified through numerical simulations.
The Orion Pad Abort 1 (PA-1) Flight Test: A Propulsion Success
NASA Technical Reports Server (NTRS)
Jones, Daniel S.
2015-01-01
This poster provides a concise overview of the highly successful Orion Pad Abort 1 (PA-1) flight test, and the three rocket motors that contributed to this success. The primary purpose of the Orion PA-1 flight was to help certify the Orion Launch Abort System (LAS), which can be utilized in the unlikely event of an emergency on the launchpad or during mission vehicle ascent. The PA-1 test was the first fully integrated flight test of the Orion LAS, one of the primary systems within the Orion Multi-Purpose Crew Vehicle (MPCV). The Orion MPCV is part of the architecture within the Space Launch System (SLS), which is being designed to transport astronauts beyond low-Earth orbit for future exploration missions. Had the Orion PA-1 flight abort occurred during launch preparations for a real human spaceflight mission, the PA-1 LAS would have saved the lives of the crew. The PA-1 flight test was largely successful due to the three solid rocket motors of the LAS: the Attitude Control Motor (ACM); the Jettison Motor (JM); and the Abort Motor (AM). All three rocket motors successfully performed their required functions during the Orion PA-1 flight test, flown on May 6, 2010 at the White Sands Missile Range in New Mexico, culminating in a successful demonstration of an abort capability from the launchpad.
Operating and Managing a Backup Control Center
NASA Technical Reports Server (NTRS)
Marsh, Angela L.; Pirani, Joseph L.; Bornas, Nicholas
2010-01-01
Due to the criticality of continuous mission operations, some control centers must plan for alternate locations in the event an emergency shuts down the primary control center. Johnson Space Center (JSC) in Houston, Texas is the Mission Control Center (MCC) for the International Space Station (ISS). Due to Houston s proximity to the Gulf of Mexico, JSC is prone to threats from hurricanes which could cause flooding, wind damage, and electrical outages to the buildings supporting the MCC. Marshall Space Flight Center (MSFC) has the capability to be the Backup Control Center for the ISS if the situation is needed. While the MSFC Huntsville Operations Support Center (HOSC) does house the BCC, the prime customer and operator of the ISS is still the JSC flight operations team. To satisfy the customer and maintain continuous mission operations, the BCC has critical infrastructure that hosts ISS ground systems and flight operations equipment that mirrors the prime mission control facility. However, a complete duplicate of Mission Control Center in another remote location is very expensive to recreate. The HOSC has infrastructure and services that MCC utilized for its backup control center to reduce the costs of a somewhat redundant service. While labor talents are equivalent, experiences are not. Certain operations are maintained in a redundant mode, while others are simply maintained as single string with adequate sparing levels of equipment. Personnel at the BCC facility must be trained and certified to an adequate level on primary MCC systems. Negotiations with the customer were done to match requirements with existing capabilities, and to prioritize resources for appropriate level of service. Because some of these systems are shared, an activation of the backup control center will cause a suspension of scheduled HOSC activities that may share resources needed by the BCC. For example, the MCC is monitoring a hurricane in the Gulf of Mexico. As the threat to MCC increases, HOSC must begin a phased activation of the BCC, while working resource conflicts with normal HOSC activities. In a long duration outage to the MCC, this could cause serious impacts to the BCC host facility s primary mission support activities. This management of a BCC is worked based on customer expectations and negotiations done before emergencies occur. I.
JPRS Report, Soviet Union. Aviation & Cosmonautics, No. 6, June 1988
1988-12-12
squadron party organi- zation. Party members self -critically assessed their activ- ities, held violators and indifferent individuals strictly to account...courage, self -control, and decisiveness as well. These in-flight emergencies did not catch them napping. Maj A. Smir- nov safely brought his helicopter...this mood and attitude. We therefore consider everything which would help raise the level of all our pedagogic activities. I should note that this
14 CFR 121.422 - Aircraft dispatchers: Initial and transition ground training.
Code of Federal Regulations, 2011 CFR
2011-01-01
... computations; (iv) Basic airplane performance dispatch requirements and procedures; (v) Flight planning including track selection, flight time analysis, and fuel requirements; and (vi) Emergency procedures. (3... procedures, and other subjects having a bearing on dispatcher duties and responsibilities; (ii) Flight...
14 CFR 121.422 - Aircraft dispatchers: Initial and transition ground training.
Code of Federal Regulations, 2012 CFR
2012-01-01
... computations; (iv) Basic airplane performance dispatch requirements and procedures; (v) Flight planning including track selection, flight time analysis, and fuel requirements; and (vi) Emergency procedures. (3... procedures, and other subjects having a bearing on dispatcher duties and responsibilities; (ii) Flight...
14 CFR 121.422 - Aircraft dispatchers: Initial and transition ground training.
Code of Federal Regulations, 2013 CFR
2013-01-01
... computations; (iv) Basic airplane performance dispatch requirements and procedures; (v) Flight planning including track selection, flight time analysis, and fuel requirements; and (vi) Emergency procedures. (3... procedures, and other subjects having a bearing on dispatcher duties and responsibilities; (ii) Flight...
14 CFR 121.422 - Aircraft dispatchers: Initial and transition ground training.
Code of Federal Regulations, 2010 CFR
2010-01-01
... computations; (iv) Basic airplane performance dispatch requirements and procedures; (v) Flight planning including track selection, flight time analysis, and fuel requirements; and (vi) Emergency procedures. (3... procedures, and other subjects having a bearing on dispatcher duties and responsibilities; (ii) Flight...
14 CFR 121.422 - Aircraft dispatchers: Initial and transition ground training.
Code of Federal Regulations, 2014 CFR
2014-01-01
... computations; (iv) Basic airplane performance dispatch requirements and procedures; (v) Flight planning including track selection, flight time analysis, and fuel requirements; and (vi) Emergency procedures. (3... procedures, and other subjects having a bearing on dispatcher duties and responsibilities; (ii) Flight...
Serial Escape System For Aircraft Crews
NASA Technical Reports Server (NTRS)
Wood, Kenneth E.
1990-01-01
Emergency escape system for aircraft and aerospace vehicles ejects up to seven crewmembers, one by one, within 120 s. Intended for emergencies in which disabled craft still in stable flight at no more than 220 kn (113 m/s) equivalent airspeed and sinking no faster than 110 ft/s (33.5 m/s) at altitudes up to 50,000 ft (15.2 km). Ejection rockets load themselves from magazine after each crewmember ejected. Jumpmaster queues other crewmembers and helps them position themselves on egress ramp. Rockets pull crewmembers clear of aircraft structure. Provides orderly, controlled exit and avoids ditching at sea or landing in rough terrain.
Cost effective development of a national test bed
NASA Technical Reports Server (NTRS)
Waites, H. B.; Jones, V. L.; Seltzer, S. M.
1988-01-01
For several years, the Marshall Space Flight Center has pursued the coordinated development of a Large Space Structures (LSS) National Test Bed for the investigation of numerous technical issues involved in the use of LSS in space. The origins of this development, the current status of the various test facilities and the plans laid down for the next five years' activities are described. Particular emphasis on the control and structural interaction issues has been paid so far; however, immediately emerging are user applications (such as the proposed pinhole occulter facility). In the immediate future, such emerging technologies as smart robots and multibody interactions will be studied. These areas are covered.
F-8 DFBW simulating STS contro l system - Pilot-induced oscillation (PIO) on landing
NASA Technical Reports Server (NTRS)
1978-01-01
From 1972 to 1985 the NASA Dryden Flight Research Center conducted flight research with an F-8C employing the first digital fly-by-wire flight control system without a mechanical back up. The decision to replace all mechanical control linkages to rudder, ailerons, and other flight control surfaces was made for two reasons. First, it forced the research engineers to focus on the technology and issues that were truly critical for a production fly-by-wire aircraft. Secondly, it would give industry the confidence it needed to apply the technology--confidence it would not have had if the experimental system relied on a mechanical back up. In the first few decades of flight, pilots had controlled aircraft through direct force--moving control sticks and rudder pedals linked to cables and pushrods that pivoted control surfaces on the wings and tails. As engine power and speeds increased, more force was needed and hydraulically boosted controls emerged. Soon, all high-performance and large aircraft had hydraulic-mechanical flight-control systems. These conventional flight control systems restricted designers in the configuration and design of aircraft because of the need for flight stability. As the electronic era grew in the 1960s, so did the idea of aircraft with electronic flight-control systems. Wires replacing mechanical devices would give designers greater flexibility in configuration and in the size and placement of components such as tail surfaces and wings. A fly-by-wire system also would be smaller, more reliable, and in military aircraft, much less vulnerable to battle damage. A fly-by-wire aircraft would also be much more responsive to pilot control inputs. The result would be more efficient, safer aircraft with improved performance and design. The Aircraft By the late 1960s, engineers at Dryden began discussing how to modify an aircraft and create a fly-by-wire testbed. Support for the concept at NASA Headquarters came from Neil Armstrong, former research pilot at Dryden. He served in the Office of Advanced Research and Technology following his historic Apollo 11 lunar landing and knew electronic control systems from his days training in and operating the lunar module. Armstrong supported the proposed Dryden project and backed the transfer of an F-8C Crusader from the U.S. Navy to NASA to become the Digital Fly-By-Wire (DFBW) research aircraft. It was given the tail number 'NASA 802.' Wires from the control stick in the cockpit to the control surfaces on the wings and tail surfaces replaced the entire mechanical flight-control system in the F-8. The heart of the system was an off-the-shelf backup Apollo digital flight-control computer and inertial sensing unit, which transmitted pilot inputs to the actuators on the control surfaces. On May 25, 1972, the highly modified F-8 became the first aircraft to fly completely dependent upon an electronic flight-control system without any mechanical backup. The pilot was Gary Krier. The first phase of the DFBW program validated the fly-by-wire concept and quickly showed that a refined system, especially in large aircraft, would greatly enhance flying qualities by sensing motion changes and applying pilot inputs instantaneously. The Phase 1 system had a backup analog fly-by-wire system in the event of a failure in the Apollo computer unit, but it was never necessary to use the system in flight. In a joint program carried out with the Langley Research Center in the second phase of research, the original Apollo system was replaced with a triply redundant digital system. It would provide backup computer capabilities if a failure occurred. The DFBW program lasted 13 years. The final research flight, the 210th of the program, was made April 2, 1985, with Dryden Research Pilot Ed Schneider at the controls. Research Benefits The F-8 DFBW validated the principal concepts of the all-electric flight control systems now used in a variety of airplanes ranging from the F/A-18 to the Boeing 777 and the space shuttles. A DFBW flight control system also is used on the space shuttles. NASA 802 was the testbed for the sidestick-controller used in the F-16 fighter, the second U.S. high performance aircraft with a DFBW system. In addition to pioneering the space shuttle's fly-by-wire flight-control system, NASA 802 was the testbed that explored Pilot Induced Oscillations (PIO) and validated methods to suppress them. PIOs occur when a pilot over-controls an aircraft and a sustained oscillation results. On the last of five free flights of the prototype Space Shuttle Enterprise during approach and landing tests in l977, a PIO developed as the vehicle settled onto the runway. The problem was duplicated with the F-8 DFBW and a series of PIO suppression filters was developed and tested on the aircraft for the shuttle program office. DFBW research carried out with NASA 802 at Dryden is now considered one of the most significant and successful aeronautical programs in NASA history. In this clip we see NASA research pilot John Manke at the controls of Dryden's F-8 Digital Fly-By-Wire aircraft as it enters a severe pilot induced oscillation or PIO just after completion of a touch-and-go landing while testing for a signal-delay-related problem that occurred during an approach to landing on the shuttle prototype Enterprise.
Liu, M G; Jiang, C X; Mao, M; Liu, C; Li, Q; Wang, X G; Yang, Q F; Wang, H J
2017-04-01
Sogatella furcifera Horváth (Hemiptera: Delphacidae), is a major migratory pest of rice crops in Asia. The ultrastructure of the flight muscle directly affects the flight ability of insects. The ultrastructure of the flight muscle of some insects can be affected by insecticides. However, the ultrastructure of the flight muscle of S. furcifera and the effect of insecticides on the flight muscle of S. furcifera are not well understood. The present study was conducted to determine the effect of the insecticide dinotefuran on the ultrastructure of the flight muscle of S. furcifera females. In this study, the cross-sectional area and the diameter of the myofibril cross-sections of dinotefuran-treated S. furcifera females increased with the number of days after emergence (DAE), and they were higher than in untreated females. The sarcomere length of myofibrils increased with the number of DAE, and it differed from that of the untreated females. On the first day after emergence, the higher the concentration of dinotefuran, the smaller was the extent of decrease. On the third day after emergence, the higher the concentration of dinotefuran, the larger was the extent of enhancement. For the percentage of mitochondria, those of LC10 and LC20 dinotefuran-treated S. furcifera females increased with the number of DAE and were higher than in untreated females. LC10 dinotefuran-treated S. furcifera females exhibited the largest increase. Thus, our results suggest that the flight ability of S. furcifera increased with time. Some concentrations of dinotefuran can enhance the flight capacity of S. furcifera. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Technical Reports Server (NTRS)
Ronca, A. E.; Moyer, E. L.; Talyansky, Y.; Solomides, P.; Choi, S.; Gong, C.; Globus, R. K.
2017-01-01
As interest in long duration effects of space habitation increases, understanding the behavior of model organisms living within the habitats engineered to fly them is vital for designing, validating, and interpreting future spaceflight studies. Only a handful of papers have previously reported behavior of mice and rats in the weightless environment of space (Andreev-Andrievskiy, et al., 2013; Cancedda et al., 2012; Ronca et al., 2008). The Rodent Research Hardware and Operations Validation Mission (Rodent Research-1; RR1) utilized the Rodent Habitat (RH) developed at NASA Ames Research Center to fly mice on the ISS. Ten adult (16-week-old) female C57BL6J mice were launched on September 21st, 2014 in an unmanned Dragon Capsule, and spent 37 days in flight. Here we report group behavioral phenotypes of the RR1 Flight (FLT) and environment-matched Ground Control (GC) mice in the RH during this long duration flight. Video was recorded for 34 days on the ISS, permitting daily assessments of overall health and well being of the mice, and providing a valuable repository for detailed behavioral analysis. As compared to GC mice, RR1 FLT mice exhibited the same range of behaviors, including eating, drinking, exploration, self- and allogrooming,and social interactions at similar or greater levels of occurrence. Overallactivity was greater in FLT as compared to GC mice, with spontaneous ambulatory behavior, including organized circling or race-tracking behavior that emerged within thefirst few days of flight following a common developmental sequence, comprising theprimary dark cycle activity of FLT mice. Circling participation by individual micepersisted throughout the mission. Analysis of group behavior over mission days revealed recruitment of mice into the group phenotype, coupled with decreasing numbers of collisions between circling mice. This analysis provides insights into the behavior of mice in microgravity, and clear evidence for the emergence of a distinctive,organized group behavior unique to the weightless space environment.
X-38 sails to a landing at NASA Dryden Flight Research Center July 10, 2001
NASA Technical Reports Server (NTRS)
2001-01-01
The seventh free flight of an X-38 prototype for an emergency space station crew return vehicle culminated in a graceful glide to landing under the world's largest parafoil. The mission began when the X-38 was released from NASA's B-52 mother ship over Edwards Air Force Base, California, where NASA Dryden Flight Research Center is located. The July 10, 2001 flight helped researchers evaluate software and deployment of the X-38's drogue parachute and subsequent parafoil. NASA intends to create a space-worthy Crew Return Vehicle (CRV) to be docked to the International Space Station as a 'lifeboat' to enable a full seven-person station crew to evacuate in an emergency.
X-38 sails to a landing at NASA Dryden Flight Research Center July 10, 2001
2001-07-10
The seventh free flight of an X-38 prototype for an emergency space station crew return vehicle culminated in a graceful glide to landing under the world's largest parafoil. The mission began when the X-38 was released from NASA's B-52 mother ship over Edwards Air Force Base, California, where NASA Dryden Flight Research Center is located. The July 10, 2001 flight helped researchers evaluate software and deployment of the X-38's drogue parachute and subsequent parafoil. NASA intends to create a space-worthy Crew Return Vehicle (CRV) to be docked to the International Space Station as a "lifeboat" to enable a full seven-person station crew to evacuate in an emergency.
X-38 vehicle #131R in first free flight
NASA Technical Reports Server (NTRS)
2000-01-01
The third iteration of the X-38, V-131R, glides down under a giant parafoil towards a landing on Rogers Dry Lake near NASA's Dryden Flight Research Center during its first free flight Nov. 2, 2000. The X-38 prototypes are intended to perfect technology for a planned Crew Return Vehicle (CRV) 'lifeboat' to carry a crew to safety in the event of an emergency on the International Space Station. Free-flight tests of X-38 V-131R are evaluating upgraded avionics and control systems and the aerodynamics of the modified upper body, which is more representative of the final design of the CRV than the two earlier X-38 test craft, including a simulated hatch atop the body. The huge 7,500 square-foot parafoil will enable the CRV to land in the length of a football field after returning from space. The first three X-38's are air-launched from NASA's venerable NB-52B mother ship, while the last version, V-201, will be carried into space by a Space Shuttle and make a fully autonomous re-entry and landing.
Neural Networks for Flight Control
NASA Technical Reports Server (NTRS)
Jorgensen, Charles C.
1996-01-01
Neural networks are being developed at NASA Ames Research Center to permit real-time adaptive control of time varying nonlinear systems, enhance the fault-tolerance of mission hardware, and permit online system reconfiguration. In general, the problem of controlling time varying nonlinear systems with unknown structures has not been solved. Adaptive neural control techniques show considerable promise and are being applied to technical challenges including automated docking of spacecraft, dynamic balancing of the space station centrifuge, online reconfiguration of damaged aircraft, and reducing cost of new air and spacecraft designs. Our experiences have shown that neural network algorithms solved certain problems that conventional control methods have been unable to effectively address. These include damage mitigation in nonlinear reconfiguration flight control, early performance estimation of new aircraft designs, compensation for damaged planetary mission hardware by using redundant manipulator capability, and space sensor platform stabilization. This presentation explored these developments in the context of neural network control theory. The discussion began with an overview of why neural control has proven attractive for NASA application domains. The more important issues in control system development were then discussed with references to significant technical advances in the literature. Examples of how these methods have been applied were given, followed by projections of emerging application needs and directions.
NASA Astrophysics Data System (ADS)
Huang, Haifeng; Long, Jingjing; Yi, Wu; Yi, Qinglin; Zhang, Guodong; Lei, Bangjun
2017-11-01
In recent years, unmanned aerial vehicles (UAVs) have become widely used in emergency investigations of major natural hazards over large areas; however, UAVs are less commonly employed to investigate single geo-hazards. Based on a number of successful investigations in the Three Gorges Reservoir area, China, a complete UAV-based method for performing emergency investigations of single geo-hazards is described. First, a customized UAV system that consists of a multi-rotor UAV subsystem, an aerial photography subsystem, a ground control subsystem and a ground surveillance subsystem is described in detail. The implementation process, which includes four steps, i.e., indoor preparation, site investigation, on-site fast processing and application, and indoor comprehensive processing and application, is then elaborated, and two investigation schemes, automatic and manual, that are used in the site investigation step are put forward. Moreover, some key techniques and methods - e.g., the layout and measurement of ground control points (GCPs), route planning, flight control and image collection, and the Structure from Motion (SfM) photogrammetry processing - are explained. Finally, three applications are given. Experience has shown that using UAVs for emergency investigation of single geo-hazards greatly reduces the time, intensity and risks associated with on-site work and provides valuable, high-accuracy, high-resolution information that supports emergency responses.
Inflight Emergencies During Eurasian Flights.
Kesapli, Mustafa; Akyol, Can; Gungor, Faruk; Akyol, Angelika Janitzky; Guven, Dilek Soydam; Kaya, Gokhan
2015-01-01
This study evaluated the incidence and status of urgent medical conditions, the attitudes of health professionals who encounter such conditions, the adequacy of medical kits and training of cabin crew in data-received-company aircrafts suggested by Aerospace Medical Association, and the demographic data of patients. Data were collected from medical records of a major flight company from 2011 through 2013. All patients with complete records were included in the study. Numerical variables were defined as median and interquartiles (IQR) for median, while categorical variables were defined as numbers and percentage. During the study period, 10,100,000 passengers were carried by the company flights, with 1,312 (0.013%) demands for urgent medical support (UMS). The median age of the passengers who requested UMS was 45 years (IQR: 29-62). Females constituted 698 (53.2%) among the patients, and 721 (55%) patients were evaluated by medical professionals found among passengers. The most common nontraumatic complaints resulting in requests for UMS were flight anxiety (311 patients, 23.7%) and dyspnea (145 patients, 11%). The most common traumatic complaint was burns (221 patients, 16.8%) resulting from trauma during flight. A total of 22 (1.67%) emergency landings occurred for which the most frequent reasons were epilepsy (22.7%) and death (18.2%). Deaths during flights were recorded in 13 patients, whose median age was 77 years (IQR: 69-82), which was significantly higher compared to the age of patients requiring UMS (p < 0.0001). A total of 592 (45%) patients did not require any treatment for UMS. Medical kits and training were found to be sufficient according to the symptomatic treatments. Most of the urgent cases encountered during flights can be facilitated with basic medical support. "Traumatic emergency procedures inflight medical care" would be useful for additional training. Medical professionals as passengers are significantly involved in encountered emergency situations. Adding automated external defibrillator and pulse oximetry to recommended kits and training can help facilitate staff decisions such as emergency landings and tele-assistance. © 2015 International Society of Travel Medicine.
X-38 Vehicle #132 in Flight Approaching Landing during First Free Flight
NASA Technical Reports Server (NTRS)
1999-01-01
The X-38, a research vehicle built to help develop technology for an emergency Crew Return Vehicle (CRV), maneuvers toward landing at the end of a March 1999 test flight at the Dryden Flight Research Center, Edwards, California. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily 'old' technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. It's landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for internal power. The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, Dryden's B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground.
X-38 Vehicle #132 in Flight with Deployed Parafoil during First Free Flight
NASA Technical Reports Server (NTRS)
1999-01-01
The X-38, a research vehicle built to help develop technology for an emergency Crew Return Vehicle (CRV), descends under its steerable parafoil on a March 1999 test flight at the Dryden Flight Research Center, Edwards, California. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily 'old' technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. It's landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for internal power. The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, Dryden's B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground.
Astolfi, L; Toppi, J; Borghini, G; Vecchiato, G; He, E J; Roy, A; Cincotti, F; Salinari, S; Mattia, D; He, B; Babiloni, F
2012-01-01
Controlling an aircraft during a flight is a compelling condition, which requires a strict and well coded interaction between the crew. The interaction level between the Captain and the First Officer changes during the flight, ranging from a maximum (during takeoff and landing, as well as in case of a failure of the instrumentation or other emergency situations) to a minimum during quiet mid-flight. In this study, our aim is to investigate the neural correlates of different kinds and levels of interaction between couples of professional crew members by means of the innovative technique called brain hyperscanning, i.e. the simultaneous recording of the hemodynamic or neuroelectrical activity of different human subjects involved in interaction tasks. This approach allows the observation and modeling of the neural signature specifically dependent on the interaction between subjects, and, even more interestingly, of the functional links existing between the brain activities of the subjects interacting together. In this EEG hyperscanning study, different phases of a flight were reproduced in a professional flight simulator, which allowed, on one side, to reproduce the ecological setting of a real flight, and, on the other, to keep under control the different levels of interaction induced in the crew by means of systematic and simulated failures of the aircraft instrumentation. Results of the procedure of linear inverse estimation, together with functional hyperconnectivity estimated by means of Partial Directed Coherence, showed a dense network of connections between the activity in the two brains in the takeoff and landing phases, when the cooperation between the crew is maximal, while conversely no significant links were shown during the phases in which the activity of the two pilots was independent.
Two Phase Technology Development Initiatives
NASA Technical Reports Server (NTRS)
Didion, Jeffrey R.
1999-01-01
Three promising thermal technology development initiatives, vapor compression thermal control system, electronics cooling, and electrohydrodynamics applications are outlined herein. These technologies will provide thermal engineers with additional tools to meet the thermal challenges presented by increased power densities and reduced architectural options that will be available in future spacecraft. Goddard Space Flight Center and the University of Maryland are fabricating and testing a 'proto- flight' vapor compression based thermal control system for the Ultra Long Duration Balloon (ULDB) Program. The vapor compression system will be capable of transporting approximately 400 W of heat while providing a temperature lift of 60C. The system is constructed of 'commercial off-the-shelf' hardware that is modified to meet the unique environmental requirements of the ULDB. A demonstration flight is planned for 1999 or early 2000. Goddard Space Flight Center has embarked upon a multi-discipline effort to address a number of design issues regarding spacecraft electronics. The program addressed the high priority design issues concerning the total mass of standard spacecraft electronics enclosures and the impact of design changes on thermal performance. This presentation reviews the pertinent results of the Lightweight Electronics Enclosure Program. Electronics cooling is a growing challenge to thermal engineers due to increasing power densities and spacecraft architecture. The space-flight qualification program and preliminary results of thermal performance tests of copper-water heat pipes are presented. Electrohydrodynamics (EHD) is an emerging technology that uses the secondary forces that result from the application of an electric field to a flowing fluid to enhance heat transfer and manage fluid flow. A brief review of current EHD capabilities regarding heat transfer enhancement of commercial heat exchangers and capillary pumped loops is presented. Goddard Space Flight Center research efforts applying this technique to fluid management and fluid pumping are discussed.
AirSTAR Hardware and Software Design for Beyond Visual Range Flight Research
NASA Technical Reports Server (NTRS)
Laughter, Sean; Cox, David
2016-01-01
The National Aeronautics and Space Administration (NASA) Airborne Subscale Transport Aircraft Research (AirSTAR) Unmanned Aerial System (UAS) is a facility developed to study the flight dynamics of vehicles in emergency conditions, in support of aviation safety research. The system was upgraded to have its operational range significantly expanded, going beyond the line of sight of a ground-based pilot. A redesign of the airborne flight hardware was undertaken, as well as significant changes to the software base, in order to provide appropriate autonomous behavior in response to a number of potential failures and hazards. Ground hardware and system monitors were also upgraded to include redundant communication links, including ADS-B based position displays and an independent flight termination system. The design included both custom and commercially available avionics, combined to allow flexibility in flight experiment design while still benefiting from tested configurations in reversionary flight modes. A similar hierarchy was employed in the software architecture, to allow research codes to be tested, with a fallback to more thoroughly validated flight controls. As a remotely piloted facility, ground systems were also developed to ensure the flight modes and system state were communicated to ground operations personnel in real-time. Presented in this paper is a general overview of the concept of operations for beyond visual range flight, and a detailed review of the airborne hardware and software design. This discussion is held in the context of the safety and procedural requirements that drove many of the design decisions for the AirSTAR UAS Beyond Visual Range capability.
NASA Technical Reports Server (NTRS)
Baxley, B.; Williams, D.; Consiglio, M.; Conway, S.; Adams, C.; Abbott, T.
2005-01-01
The ability to conduct concurrent, multiple aircraft operations in poor weather, at virtually any airport, offers an important opportunity for a significant increase in the rate of flight operations, a major improvement in passenger convenience, and the potential to foster growth of charter operations at small airports. The Small Aircraft Transportation System, (SATS) Higher Volume Operations (HVO) concept is designed to increase traffic flow at any of the 3400 nonradar, non-towered airports in the United States where operations are currently restricted to one-in/one-out procedural separation during Instrument Meteorological Conditions (IMC). The concept's key feature is pilots maintain their own separation from other aircraft using procedures, aircraft flight data sent via air-to-air datalink, cockpit displays, and on-board software. This is done within the Self-Controlled Area (SCA), an area of flight operations established during poor visibility or low ceilings around an airport without Air Traffic Control (ATC) services. The research described in this paper expands the HVO concept to include most off-nominal situations that could be expected to occur in a future SATS environment. The situations were categorized into routine off-nominal operations, procedural deviations, equipment malfunctions, and aircraft emergencies. The combination of normal and off-nominal HVO procedures provides evidence for an operational concept that is safe, requires little ground infrastructure, and enables concurrent flight operations in poor weather.
Studies of planning behavior of aircraft pilots in normal, abnormal, and emergency situations
NASA Technical Reports Server (NTRS)
Johannsen, G.; Rouse, W. B.; Hillmann, K.
1981-01-01
A methodology for the study of human planning behavior in complex dynamic systems is presented and applied to the study of aircraft pilot behavior in normal, abnormal and emergency situations. The method measures the depth of planning, that is the level of detail employed with respect to a specific task, according to responses to a verbal questionnaire, and compares planning depth with variables relating to time, task criticality and the probability of increased task difficulty. In two series of experiments, depth of planning was measured on a five- or ten-point scale during various phases of flight in a HFB-320 simulator under normal flight conditions, abnormal scenarios involving temporary runway closure due to snow removal or temporary CAT-III conditions due to a dense fog, and emergency scenarios involving engine shut-down or hydraulic pressure loss. Results reveal a dichotomy between event-driven and time-driven planning, different effects of automation in abnormal and emergency scenarios and a low correlation between depth of planning and workload or flight performance.
Aviation instruction through flight simulation and related learning
NASA Astrophysics Data System (ADS)
Green, Mavis Frankel
The use of simulation in General Aviation flight training is an emergent practice and promises to increase substantially. Training through simulation is not addressed in the primary publication used to train flight instructors, however. In effect, training devices have been added into the curriculum by those using the technology as a cross between flight and ground instruction. The significance of how one learns in a training device is the potential effect on both in-flight learning and normal practices. A review of the literature, document review, interviews with flight instructors and students, and observations of instructional sessions in training devices, provided data to answer the prime research question: (a) What type(s) of learning best explain how learners are socialized to aviation through the use of simulation technology? One segment of the general aviation population, college and university flight programs, was sampled. Four types of learning provided a conceptual framework: reception; autonomous; guided inquiry; and social cognitive operationalized as cognitive apprenticeship. A central dilemma was identified from the data collected. This dilemma is the extent to which aviation and aviation instruction in training devices is perceived by instructors as being either safe or risky. Two sub-dilemmas of the central dilemma are also identified: (1) whether the perception of aviation on the part of instructors is one of control or autonomy and (2) whether aviators use and should be taught routines or innovation;. Three ways of viewing the aviation environment were identified from the combination of these sub-dilemmas by instructors: (1) aviation as safe; (2) aviation as somewhat safe; and (3) aviation as risky. Resolution of the fundamental dilemma results in an emergent view of aviation as risky and the implications of this view are discussed. Social cognitive learning operationalized as cognitive apprenticeship as an appropriate type of learning for high-risk fields is examined. A second dilemma was also identified from the data. This is a socio-technical dilemma addressing the influence of training device design on the type of learning employed by instructors. Implications of the findings are discussed in terms of task analyses, curriculum development, equipment, and instructional resources and training.
General Aviation Avionics Statistics: 1977.
1980-06-01
combustion of fuel, the gases of combustion (or the heated air) being used both to rotate the turbine and to create a thrust-producing engine. Turboprop...cc 0 4) 0 ) cu z 4) 0 a$. .- MCI 1001 APPENDIX D AIRSPACE STRUCTURE 101 APPENDIX D. AIRSPACE STRUCTURE -t FLIO* - -FL450 I ContinentalI Control...Compass 9. Landing gear 4. Tachometer 10. Belts 5. Oil temperature 11. Special equipment for 6. Emergency locator over water flights transmitter
Gender differences in navigational memory: pilots vs. nonpilots.
Verde, Paola; Piccardi, Laura; Bianchini, Filippo; Guariglia, Cecilia; Carrozzo, Paolo; Morgagni, Fabio; Boccia, Maddalena; Di Fiore, Giacomo; Tomao, Enrico
2015-02-01
The coding of space as near and far is not only determined by arm-reaching distance, but is also dependent on how the brain represents the extension of the body space. Recent reports suggest that the dissociation between reaching and navigational space is not limited to perception and action but also involves memory systems. It has been reported that gender differences emerged only in adverse learning conditions that required strong spatial ability. In this study we investigated navigational versus reaching memory in air force pilots and a control group without flight experience. We took into account temporal duration (working memory and long-term memory) and focused on working memory, which is considered critical in the gender differences literature. We found no gender effects or flight hour effects in pilots but observed gender effects in working memory (but not in learning and delayed recall) in the nonpilot population (Women's mean = 5.33; SD= 0.90; Men's mean = 5.54; SD= 0.90). We also observed a difference between pilots and nonpilots in the maintenance of on-line reaching information: pilots (mean = 5.85; SD=0.76) were more efficient than nonpilots (mean = 5.21; SD=0.83) and managed this type of information similarly to that concerning navigational space. In the navigational learning phase they also showed better navigational memory (mean = 137.83; SD=5.81) than nonpilots (mean = 126.96; SD=15.81) and were significantly more proficient than the latter group. There is no gender difference in a population of pilots in terms of navigational abilities, while it emerges in a control group without flight experience. We found also that pilots performed better than nonpilots. This study suggests that once selected, male and female pilots do not differ from each other in visuo-spatial abilities and spatial navigation.
NASA Technical Reports Server (NTRS)
1989-01-01
This photo depicts the AFTI F-16 in the configuration used midway through the program. The sensor pods were added to the fuselage, but the chin canards remained in place. Painted in non-standard gray tones, it carried Sidewinder air-to-air missles on its wingtips. During the 1980s and 1990s, NASA and the U.S. Air Force participated in a joint program to integrate and demonstrate new avionics technologies to improve close air support capabilities in next-generation aircraft. The testbed aircraft, seen here in flight over the desert at NASA's Dryden Flight Research Center, Edwards, California, was called the Advanced Fighter Technology Integration (AFTI) F-16. The tests demonstrated technologies to improve navigation and the pilot's ability to find and destroy enemy ground targets day or night, including adverse weather. The aircraft--an F-16A Fighting Falcon (Serial #75-0750)--underwent numerous modifications. A relatively low-cost testbed, it evaluated the feasability of advanced, intergrated-sensor, avionics, and flight control technologies. During the first phase of the AFTI/F-16 program, which began in 1983, the aircraft demonstrated voice-actuated commands, helmet-mounted sights, flat turns, and selective fuselage pointing using forward-mounted canards and a triplex digital flight control computer system. The second phase of research, which began in the summer of 1991, demonstrated advanced technologies and capabilities to find and destroy ground targets day or night, and in adverse weather while using maneuverability and speed at low altitude. This phase was known as the close air support and battlefield air interdiction (CAS/BAI) phase. Finally, the aircraft was used to assess the Automatic Ground Collision Avoidance System (Auto - GCAS), a joint project with the Swedish Government. For these tests, the pilot flew the aircraft directly toward the ground, simulating a total loss of control. The GCAS was designed to take command in such emergencies and bring the aircraft back to level flight. The AFTI F-16 program ended at Dryden on November 4, 1997 after 15 years and over 700 research flights. The USAF continued to fly the aircraft until retiring it to the Air Force Museum on January 9, 2001.
NASA Astrophysics Data System (ADS)
Marco Antonio, David Santos; Guidugli-Lazzarini, Karina Rosa; Do Nascimento, Adriana Mendes; Simões, Zilá Luz Paulino; Hartfelder, Klaus
2008-10-01
The switch from within-hive activities to foraging behavior is a major transition in the life cycle of a honeybee ( Apis mellifera) worker. A prominent regulatory role in this switch has long been attributed to juvenile hormone (JH), but recent evidence also points to the yolk precursor protein vitellogenin as a major player in behavioral development. In the present study, we injected vitellogenin double-stranded RNA (dsVg) into newly emerged worker bees of Africanized genetic origin and introduced them together with controls into observation hives to record flight behavior. RNA interference-mediated silencing of vitellogenin gene function shifted the onset of long-duration flights (>10 min) to earlier in life (by 3 4 days) when compared with sham and untreated control bees. In fact, dsVg bees were observed conducting such flights extremely precociously, when only 3 days old. Short-duration flights (<10 min), which bees usually perform for orientation and cleaning, were not affected. Additionally, we found that the JH titer in dsVg bees collected after 7 days was not significantly different from the controls. The finding that depletion of the vitellogenin titer can drive young bees to become extremely precocious foragers could imply that vitellogenin is the primary switch signal. At this young age, downregulation of vitellogenin gene activity apparently had little effect on the JH titer. As this unexpected finding stands in contrast with previous results on the vitellogenin/JH interaction at a later age, when bees normally become foragers, we propose a three-step sequence in the constellation of physiological parameters underlying behavioral development.
X-38 Vehicle #132 Landing on First Free Flight
NASA Technical Reports Server (NTRS)
1999-01-01
The X-38, a research vehicle built to help develop technology for an emergency Crew Return Vehicle (CRV), flares for its lakebed landing at the end of a March 1999 test flight at the Dryden Flight Research Center, Edwards, California. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily 'old' technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. It's landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for internal power. The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, Dryden's B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground.
Orion Launch Abort System (LAS) Propulsion on Pad Abort 1 (PA-1)
NASA Technical Reports Server (NTRS)
Jones, Daniel S.
2015-01-01
This presentation provides a concise overview of the highly successful Orion Pad Abort 1 (PA-1) flight test, and the three rocket motors that contributed to this success. The primary purpose of the Orion PA-1 flight was to help certify the Orion Launch Abort System (LAS), which can be utilized in the unlikely event of an emergency on the launchpad or during mission vehicle ascent. The PA-1 test was the first fully integrated flight test of the Orion LAS, one of the primary systems within the Orion Multi-Purpose Crew Vehicle (MPCV). The Orion MPCV is part of the architecture within the Space Launch System (SLS), which is being designed to transport astronauts beyond low-Earth orbit for future exploration missions. Had the Orion PA-1 flight abort occurred during launch preparations for a real human spaceflight mission, the PA-1 LAS would have saved the lives of the crew. The PA-1 flight test was largely successful due to the three solid rocket motors of the LAS: the Attitude Control Motor (ACM); the Jettison Motor (JM); and the Abort Motor (AM). All three rocket motors successfully performed their required functions during the Orion PA-1 flight test, flown on May 6, 2010 at the White Sands Missile Range in New Mexico, culminating in a successful demonstration of an abort capability from the launchpad.
14 CFR 25.865 - Fire protection of flight controls, engine mounts, and other flight structure.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Design and Construction Fire Protection § 25.865 Fire protection of flight controls, engine mounts, and other flight structure. Essential flight controls, engine mounts, and other flight structures located in... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fire protection of flight controls, engine...
14 CFR 25.865 - Fire protection of flight controls, engine mounts, and other flight structure.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Design and Construction Fire Protection § 25.865 Fire protection of flight controls, engine mounts, and other flight structure. Essential flight controls, engine mounts, and other flight structures located in... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fire protection of flight controls, engine...
14 CFR 23.865 - Fire protection of flight controls, engine mounts, and other flight structure.
Code of Federal Regulations, 2013 CFR
2013-01-01
... controls, engine mounts, and other flight structure. Flight controls, engine mounts, and other flight... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fire protection of flight controls, engine mounts, and other flight structure. 23.865 Section 23.865 Aeronautics and Space FEDERAL AVIATION...
14 CFR 25.865 - Fire protection of flight controls, engine mounts, and other flight structure.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Design and Construction Fire Protection § 25.865 Fire protection of flight controls, engine mounts, and other flight structure. Essential flight controls, engine mounts, and other flight structures located in... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fire protection of flight controls, engine...
14 CFR 23.865 - Fire protection of flight controls, engine mounts, and other flight structure.
Code of Federal Regulations, 2012 CFR
2012-01-01
... controls, engine mounts, and other flight structure. Flight controls, engine mounts, and other flight... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fire protection of flight controls, engine mounts, and other flight structure. 23.865 Section 23.865 Aeronautics and Space FEDERAL AVIATION...
14 CFR 23.865 - Fire protection of flight controls, engine mounts, and other flight structure.
Code of Federal Regulations, 2014 CFR
2014-01-01
... controls, engine mounts, and other flight structure. Flight controls, engine mounts, and other flight... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fire protection of flight controls, engine mounts, and other flight structure. 23.865 Section 23.865 Aeronautics and Space FEDERAL AVIATION...
14 CFR 23.865 - Fire protection of flight controls, engine mounts, and other flight structure.
Code of Federal Regulations, 2011 CFR
2011-01-01
... controls, engine mounts, and other flight structure. Flight controls, engine mounts, and other flight... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fire protection of flight controls, engine mounts, and other flight structure. 23.865 Section 23.865 Aeronautics and Space FEDERAL AVIATION...
14 CFR 25.865 - Fire protection of flight controls, engine mounts, and other flight structure.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Design and Construction Fire Protection § 25.865 Fire protection of flight controls, engine mounts, and other flight structure. Essential flight controls, engine mounts, and other flight structures located in... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fire protection of flight controls, engine...
14 CFR 23.865 - Fire protection of flight controls, engine mounts, and other flight structure.
Code of Federal Regulations, 2010 CFR
2010-01-01
... controls, engine mounts, and other flight structure. Flight controls, engine mounts, and other flight... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fire protection of flight controls, engine mounts, and other flight structure. 23.865 Section 23.865 Aeronautics and Space FEDERAL AVIATION...
14 CFR 25.865 - Fire protection of flight controls, engine mounts, and other flight structure.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Design and Construction Fire Protection § 25.865 Fire protection of flight controls, engine mounts, and other flight structure. Essential flight controls, engine mounts, and other flight structures located in... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fire protection of flight controls, engine...
The redder the better: wing color predicts flight performance in monarch butterflies.
Davis, Andrew K; Chi, Jean; Bradley, Catherine; Altizer, Sonia
2012-01-01
The distinctive orange and black wings of monarchs (Danaus plexippus) have long been known to advertise their bitter taste and toxicity to potential predators. Recent work also showed that both the orange and black coloration of this species can vary in response to individual-level and environmental factors. Here we examine the relationship between wing color and flight performance in captive-reared monarchs using a tethered flight mill apparatus to quantify butterfly flight speed, duration and distance. In three different experiments (totaling 121 individuals) we used image analysis to measure body size and four wing traits among newly-emerged butterflies prior to flight trials: wing area, aspect ratio (length/width), melanism, and orange hue. Results showed that monarchs with darker orange (approaching red) wings flew longer distances than those with lighter orange wings in analyses that controlled for sex and other morphometric traits. This finding is consistent with past work showing that among wild monarchs, those sampled during the fall migration are darker in hue (redder) than non-migratory monarchs. Together, these results suggest that pigment deposition onto wing scales during metamorphosis could be linked with traits that influence flight, such as thorax muscle size, energy storage or metabolism. Our results reinforce an association between wing color and flight performance in insects that is suggested by past studies of wing melansim and seasonal polyphenism, and provide an important starting point for work focused on mechanistic links between insect movement and color.
The Redder the Better: Wing Color Predicts Flight Performance in Monarch Butterflies
Davis, Andrew K.; Chi, Jean; Bradley, Catherine; Altizer, Sonia
2012-01-01
The distinctive orange and black wings of monarchs (Danaus plexippus) have long been known to advertise their bitter taste and toxicity to potential predators. Recent work also showed that both the orange and black coloration of this species can vary in response to individual-level and environmental factors. Here we examine the relationship between wing color and flight performance in captive-reared monarchs using a tethered flight mill apparatus to quantify butterfly flight speed, duration and distance. In three different experiments (totaling 121 individuals) we used image analysis to measure body size and four wing traits among newly-emerged butterflies prior to flight trials: wing area, aspect ratio (length/width), melanism, and orange hue. Results showed that monarchs with darker orange (approaching red) wings flew longer distances than those with lighter orange wings in analyses that controlled for sex and other morphometric traits. This finding is consistent with past work showing that among wild monarchs, those sampled during the fall migration are darker in hue (redder) than non-migratory monarchs. Together, these results suggest that pigment deposition onto wing scales during metamorphosis could be linked with traits that influence flight, such as thorax muscle size, energy storage or metabolism. Our results reinforce an association between wing color and flight performance in insects that is suggested by past studies of wing melansim and seasonal polyphenism, and provide an important starting point for work focused on mechanistic links between insect movement and color. PMID:22848463
NASA Technical Reports Server (NTRS)
Burken, John J. (Inventor); Burcham, Frank W., Jr. (Inventor); Bull, John (Inventor)
2000-01-01
Development of an emergency flight control system is disclosed for lateral control using only differential engine thrust modulation of multiengine aircraft is currently underway. The multiengine has at least two engines laterally displaced to the left and right from the axis of the aircraft. In response to a heading angle command psi(sub c) is to be tracked. By continually sensing the heading angle psi of the aircraft and computing a heading error signal psi(sub e) as a function of the difference between the heading angle command psi(sub c) and the sensed heading angle psi, a track control signal is developed with compensation as a function of sensed bank angle phi. Bank angle rate phi, or roll rate p, yaw rate tau, and true velocity produce an aircraft thrust control signal ATC(sub psi(L,R)). The thrust control signal is differentially applied to the left and right engines, with equal amplitude and opposite sign, such that a negative sign is applied to the control signal on the side of the aircraft. A turn is required to reduce the error signal until the heading feedback reduces the error to zero.
X-38 Ship #2 Landing on Lakebed, Completing the Program's 4th Flight
NASA Technical Reports Server (NTRS)
1999-01-01
The X-38, a research vehicle built to help develop technology for an emergency Crew Return Vehicle (CRV), makes a gentle lakebed landing at the end of a July 1999 test flight at the Dryden Flight Research Center, Edwards, California. It was the fourth free flight of the test vehicles in the X-38 program, and the second free flight test of Vehicle 132 or Ship 2. The goal of this flight was to release the vehicle from a higher altitude -- 31,500 feet -- and to fly the vehicle longer -- 31 seconds -- than any previous X-38 vehicle had yet flown. The project team also conducted aerodynamic verification maneuvers and checked improvements made to the drogue parachute. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily 'old' technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. It's landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for internal power. The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, Dryden's B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground.
[Development of the helicopter-rescue concept in the Basel region].
Demartines, N; Castelli, I; Scheidegger, D; Harder, F
1992-03-24
1927 medical helicopter transports were performed in Basle between 1986 and 1989. Of the total flights, 173 transports without patients and 186 incubator transports were excluded from the study. Treatment and transportation were provided for 1085 victims of trauma (70.2%) and 461 medical-surgical patients (29.8%), mostly with life-threatening conditions. 589 trauma patients were treated at the scene of accident and later transported by helicopter to a nearby medical center (54.3%). The 4.3% rate of negative emergency flights is low. Since introduction of the helicopter rescue system at Basle in 1975, scene flights have increased from 29% in 1984 to 46% in 1989. 47.4% of all patients were categorized as seriously ill or severely injured. 36.4% of all patients required intubation and assisted ventilation. Of the trauma patients, 54.3% involved scene-flights requiring in-field intensive therapy. Helicopter transport provides not only a rapid source of transportation, but also vital medical assistance at the scene of emergency. Transport generally occurs only after stabilization of vital functions. These factors contribute to the low mortality before return flights (3%) as well as during transport (0.3%). We conclude that early aggressive in-field intensive therapy can help to decrease both morbidity and mortality in emergency-care patients.
So Near and Yet So Far: Harmonic Radar Reveals Reduced Homing Ability of Nosema Infected Honeybees
Wolf, Stephan; McMahon, Dino P.; Lim, Ka S.; Pull, Christopher D.; Clark, Suzanne J.; Paxton, Robert J.; Osborne, Juliet L.
2014-01-01
Pathogens may gain a fitness advantage through manipulation of the behaviour of their hosts. Likewise, host behavioural changes can be a defence mechanism, counteracting the impact of pathogens on host fitness. We apply harmonic radar technology to characterize the impact of an emerging pathogen - Nosema ceranae (Microsporidia) - on honeybee (Apis mellifera) flight and orientation performance in the field. Honeybees are the most important commercial pollinators. Emerging diseases have been proposed to play a prominent role in colony decline, partly through sub-lethal behavioural manipulation of their hosts. We found that homing success was significantly reduced in diseased (65.8%) versus healthy foragers (92.5%). Although lost bees had significantly reduced continuous flight times and prolonged resting times, other flight characteristics and navigational abilities showed no significant difference between infected and non-infected bees. Our results suggest that infected bees express normal flight characteristics but are constrained in their homing ability, potentially compromising the colony by reducing its resource inputs, but also counteracting the intra-colony spread of infection. We provide the first high-resolution analysis of sub-lethal effects of an emerging disease on insect flight behaviour. The potential causes and the implications for both host and parasite are discussed. PMID:25098331
Air ambulance nurses as expert supplement to local emergency services.
Wisborg, Torben; Bjerkan, Bjørn
2014-01-01
Flight nurses in the Norwegian National Air Ambulance Service are specialist nurse anesthetists or intensive care nursing specialists. For air ambulance bases far from hospitals, these nurses present otherwise unavailable competencies. This study reports a 6-year experience with flight nurse participation in local emergencies beyond the transportation phase. The fixed-wing air ambulance base in Alta, Northern Norway (20,000 inhabitants), with 2 aircraft and 2 on-call teams is 150 km by road from the nearest hospital. We did a prospective registration of all emergency nonflight missions near the air ambulance base from January 1, 2005, to December 31, 2010. The 217 completed missions corresponded to 3 missions per month, half during daytime. Twenty-three percent of patients were under age 18, injury rate was high (36%), 63% had potentially or manifest life-threatening conditions, and 11% died during treatment. One third of all missions (67/217) resulted in an air ambulance flight to the hospital. Mission frequency did not significantly reduce flight availability, and precision in case selection for this special service was good. The use of flight nurses in the local community promotes equal access to advanced medical services for populations far from hospitals. Copyright © 2014 Air Medical Journal Associates. Published by Elsevier Inc. All rights reserved.
Goossens, D; Bangels, E; Belien, T; Schoevaerts, C; De Maeyer, L
2011-01-01
During summer the parasitoid Aphelinus mali may certainly reduce the infestation of woolly apple aphid (Eriosoma lanigerum), but studies on the single interaction rarely indicate sufficient biological control in the period May-June. In this period chemical control by spirotetramat or pirimicarb remains indispensable in order to anticipate on dense migration waves and subsequent colonization of extension shoots by E. lanigerum. The limited parasitation by A. mali around flowering is linked with a delayed emergence from diapause and with a slower reproduction rate than its host. In 2010 and 2011 the first adult flights monitored on yellow sticky traps corresponded perfectly with the currently used prediction models for A. mali. Further accurate monitoring all along the season enabled also to determine a well defined endo-parasitic phase of A. mali occurring after the small peak observed around flowering. During this endo-parasitic phase A. mali larvae reside inside their mummified host. Compounds with higher acute toxicity on A. mali adults, like chloronicotinyl insecticides (CNI's), are preferably positioned here. Selectivity in the time can then be claimed. Respecting this principle, the further parasitation potential of A. mali in summer is not hampered. Preservation of the first peak of flights of A. mali in the pre-flowering period is essential for an exponential flight increase. This is essential for the parasitation of E. lanigerum in summer, which constitutes a valuable complement in the integrated control strategy.
For Spacious Skies: Self-Separation with "Autonomous Flight Rules" in US Domestic Airspace
NASA Technical Reports Server (NTRS)
Wing, David J.; Cotton, William B.
2011-01-01
Autonomous Flight Rules (AFR) are proposed as a new set of operating regulations in which aircraft navigate on tracks of their choice while self-separating from traffic and weather. AFR would exist alongside Instrument and Visual Flight Rules (IFR and VFR) as one of three available flight options for any appropriately trained and qualified operator with the necessary certified equipment. Historically, ground-based separation services evolved by necessity as aircraft began operating in the clouds and were unable to see each other. Today, technologies for global precision navigation, emerging airborne surveillance, and onboard computing enable traffic conflict management to be fully integrated with navigation procedures onboard the aircraft. By self-separating, aircraft can operate with more flexibility and fewer flight restrictions than are required when using ground-based separation. The AFR concept proposes a practical means in which self-separating aircraft could share the same airspace as IFR and VFR aircraft without disrupting the ongoing processes of Air Traffic Control. The paper discusses the context and motivation for implementing self-separation in US domestic airspace. It presents a historical perspective on separation, the proposed way forward in AFR, the rationale behind mixed operations, and the expected benefits of AFR for the airspace user community.
NASA Technical Reports Server (NTRS)
Johnson, Corinne F.; Dreschel, Thomas W.; Brown, Christopher S.; Wheeler, Raymond M.
1994-01-01
The Porous Tube Plant Nutrient Delivery System (PTPNDS), a hydrophilic, microporous ceramic tube hydroponic system designed for microgravity, will be tested in a middeck locker of the Space Shuttle. The flight experiment will focus on hardware operation and assess its ability to support seed germination and early seedling growth in microgravity. The water controlling system of the PTPNDS hardware has been successfully tested during the parabolic flight of the KC-135. One challenge to the development of the spaceflight experiment was to devise a method of holding seeds to the cylindrical porous tube. The seed holder must provide water and air to the seed, absorb water from the porous tube, withstand sterilization, provide a clear path for shoots and roots to emerge, and be composed of flight qualified materials. In preparation for the flight experiment, a wheat seed-holder has been designed that utilizes a cellulose acetate plug to facilitate imbibition and to hold the wheat seeds in contact with the porous tube in the correct orientation during the vibration of launch and the microgravity environment of orbit. Germination and growth studies with wheat at a range of temperatures showed that optimal moisture was 78% (by weight) in the cellulose acetate seed holders. These and other design considerations are discussed.
2013-10-24
CAPE CANAVERAL, Fla. – Inside the Orion Test and Launch Control Center at NASA’s Kennedy Space Center in Florida, engineers monitor data for the first Exploration Flight Test 1, or EFT-1, power up test. NASA’s first-ever deep space craft, Orion, was powered on for the first time, marking a major milestone in the final year of preparations for flight. Orion’s avionics system was installed on the crew module and powered up for a series of systems tests. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion, EFT-1, is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Dimitri Gerondidakis
2013-10-24
CAPE CANAVERAL, Fla. – Inside the Orion Test and Launch Control Center at NASA’s Kennedy Space Center in Florida, an engineer prepares for the first Exploration Flight Test 1, or EFT-1, power up test. NASA’s first-ever deep space craft, Orion, was powered on for the first time, marking a major milestone in the final year of preparations for flight. Orion’s avionics system was installed on the crew module and powered up for a series of systems tests. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion, EFT-1, is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Dimitri Gerondidakis
2013-10-24
CAPE CANAVERAL, Fla. – Inside the Orion Test and Launch Control Center at NASA’s Kennedy Space Center in Florida, engineers prepare for the first Exploration Flight Test 1, or EFT-1, power up test. NASA’s first-ever deep space craft, Orion, was powered on for the first time, marking a major milestone in the final year of preparations for flight. Orion’s avionics system was installed on the crew module and powered up for a series of systems tests. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion, EFT-1, is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Dimitri Gerondidakis
2013-10-24
CAPE CANAVERAL, Fla. – Inside the Orion Test and Launch Control Center at NASA’s Kennedy Space Center in Florida, engineers prepare for the first Exploration Flight Test 1, or EFT-1, power up test. NASA’s first-ever deep space craft, Orion, was powered on for the first time, marking a major milestone in the final year of preparations for flight. Orion’s avionics system was installed on the crew module and powered up for a series of systems tests. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion, EFT-1, is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Dimitri Gerondidakis
2013-10-24
CAPE CANAVERAL, Fla. – Inside the Orion Test and Launch Control Center at NASA’s Kennedy Space Center in Florida, engineers monitor data during the first Exploration Flight Test 1, or EFT-1, power up test. NASA’s first-ever deep space craft, Orion, was powered on for the first time, marking a major milestone in the final year of preparations for flight. Orion’s avionics system was installed on the crew module and powered up for a series of systems tests. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion, EFT-1, is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Dimitri Gerondidakis
2013-10-24
CAPE CANAVERAL, Fla. – Inside the Orion Test and Launch Control Center at NASA’s Kennedy Space Center in Florida, engineers prepare for the first Exploration Flight Test 1, or EFT-1, power up test. NASA’s first-ever deep space craft, Orion, was powered on for the first time, marking a major milestone in the final year of preparations for flight. Orion’s avionics system was installed on the crew module and powered up for a series of systems tests. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion, EFT-1, is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Dimitri Gerondidakis
Orbiter fire rescue and crew escape training for EVA crew systems support
1993-01-28
Photos of orbiter fire rescue and crew escape training for extravehicular activity (EVA) crew systems support conducted in Bldg 9A Crew Compartment Trainer (CCT) and Fuel Fuselage Trainer (FFT) include views of CCT interior of middeck starboard fuselage showing middeck forward (MF) locker and COAS assembly filter, artiflex film and camcorder bag (26834); launch/entry suit (LES) helmet assembly, neckring and helmet hold-down assembly (26835-26836); middeck aft (MA) lockers (26837); area of middeck airlock and crew escape pole (26838); connectors of crew escape pole in the middeck (268390); three test subjects in LES in the flight deck (26840); emergency side hatch slide before inflated stowage (26841); area of below adjacent to floor panel MD23R (26842); a test subject in LES in the flight deck (26843); control board and also showing sign of "orbital maneuvering system (OMS) secure and OMS TK" (26844); test subject in the flight deck also showing chart of "ascent/abort summary" (26845).
STS-92 MS Wakata gets suit checked in the White Room before launch
NASA Technical Reports Server (NTRS)
2000-01-01
STS-92 Mission Specialist Koichi Wakata of Japan gets a final check of his launch and entry suit in the White Room before entering Discovery. The White Room is an environmentally controlled area at the end of the Orbiter Access Arm that provides entry to the orbiter as well as emergency egress if needed. The arm remains in the extended position until 7 minutes 24 seconds before launch. Wakata and the rest of the crew are making the fifth flight to the International Space Station for construction. Discovery carries a payload that includes the Integrated Truss Structure Z-1, first of 10 trusses that will form the backbone of the Space Station, and the third Pressurized Mating Adapter that will provide a Shuttle docking port for solar array installation on the sixth Station flight and Lab installation on the seventh Station flight. The mission includes four spacewalks for the construction activities. Discovery's landing is expected Oct. 22 at 2:10 p.m. EDT.
STS-92 Pilot Melroy gets suit checked in the White Room before launch
NASA Technical Reports Server (NTRS)
2000-01-01
STS-92 Pilot Pamela Ann Melroy has a final check on her launch and entry suit in the White Room before entering Discovery. The White Room is an environmentally controlled area at the end of the Orbiter Access Arm that provides entry to the orbiter as well as emergency egress if needed. The arm remains in the extended position until 7 minutes 24 seconds before launch. Melroy and the rest of the crew are undertaking the fifth flight to the International Space Station for construction. Discovery carries a payload that includes the Integrated Truss Structure Z-1, first of 10 trusses that will form the backbone of the Space Station, and the third Pressurized Mating Adapter that will provide a Shuttle docking port for solar array installation on the sixth Station flight and Lab installation on the seventh Station flight. The mission includes four spacewalks for the construction activities. Discovery's landing is expected Oct. 22 at 2:10 p.m. EDT.
2000-10-11
STS-92 Mission Specialist Koichi Wakata of Japan gets a final check of his launch and entry suit in the White Room before entering Discovery. The White Room is an environmentally controlled area at the end of the Orbiter Access Arm that provides entry to the orbiter as well as emergency egress if needed. The arm remains in the extended position until 7 minutes 24 seconds before launch. Wakata and the rest of the crew are making the fifth flight to the International Space Station for construction. Discovery carries a payload that includes the Integrated Truss Structure Z-1, first of 10 trusses that will form the backbone of the Space Station, and the third Pressurized Mating Adapter that will provide a Shuttle docking port for solar array installation on the sixth Station flight and Lab installation on the seventh Station flight. The mission includes four spacewalks for the construction activities. Discovery’s landing is expected Oct. 22 at 2:10 p.m. EDT
STS-92 MS McArthur gets suit checked in the White Room before launch
NASA Technical Reports Server (NTRS)
2000-01-01
STS-92 Mission Specialist William S. McArthur Jr. undergoes final suit check in the White Room before entering Discovery. The White Room is an environmentally controlled area at the end of the Orbiter Access Arm that provides entry to the orbiter as well as emergency egress if needed. The arm remains in the extended position until 7 minutes 24 seconds before launch. McArthur and the rest of the crew are making the fifth flight to the International Space Station for construction. Discovery carries a payload that includes the Integrated Truss Structure Z-1, first of 10 trusses that will form the backbone of the Space Station, and the third Pressurized Mating Adapter that will provide a Shuttle docking port for solar array installation on the sixth Station flight and Lab installation on the seventh Station flight. The mission includes four spacewalks for the construction activities. Discovery's landing is expected Oct. 22 at 2:10 p.m. EDT.
STS-92 MS Chiao gets suit checked in the White Room before launch
NASA Technical Reports Server (NTRS)
2000-01-01
STS-92 Mission Specialist Leroy Chiao waves while waiting for suit check in the White Room. Behind him is Commander Brian Duffy. The White Room is an environmentally controlled area at the end of the Orbiter Access Arm that provides entry to the orbiter as well as emergency egress if needed. The arm remains in the extended position until 7 minutes 24 seconds before launch. Chiao, Duffy and the rest of the crew are undertaking the fifth flight to the International Space Station for construction. Discovery carries a payload that includes the Integrated Truss Structure Z-1, first of 10 trusses that will form the backbone of the Space Station, and the third Pressurized Mating Adapter that will provide a Shuttle docking port for solar array installation on the sixth Station flight and Lab installation on the seventh Station flight. The mission includes four spacewalks for the construction activities. Discovery's landing is expected Oct. 22 at 2:10 p.m. EDT.
STS-92 Commander Duffy gets suit checked in the White Room before launch
NASA Technical Reports Server (NTRS)
2000-01-01
STS-92 Commander Brian Duffy is helped with final suit check in the White Room before entering Discovery. The White Room is an environmentally controlled area at the end of the Orbiter Access Arm that provides entry to the orbiter as well as emergency egress if needed. The arm remains in the extended position until 7 minutes 24 seconds before launch. Duffy and the rest of the crew are undertaking the fifth flight to the International Space Station for construction. Discovery carries a payload that includes the Integrated Truss Structure Z-1, first of 10 trusses that will form the backbone of the Space Station, and the third Pressurized Mating Adapter that will provide a Shuttle docking port for solar array installation on the sixth Station flight and Lab installation on the seventh Station flight. The mission includes four spacewalks for the construction activities. Discovery's landing is expected Oct. 22 at 2:10 p.m. EDT.
2000-10-11
STS-92 Mission Specialist Michael E. Lopez-Alegria gets a final check of his launch and entry suit in the White Room before entering Discovery. The White Room is an environmentally controlled area at the end of the Orbiter Access Arm that provides entry to the orbiter as well as emergency egress if needed. The arm remains in the extended position until 7 minutes 24 seconds before launch. Lopez-Alegria and the rest of the crew are undertaking the fifth flight to the International Space Station for construction. Discovery carries a payload that includes the Integrated Truss Structure Z-1, first of 10 trusses that will form the backbone of the Space Station, and the third Pressurized Mating Adapter that will provide a Shuttle docking port for solar array installation on the sixth Station flight and Lab installation on the seventh Station flight. The mission includes four spacewalks for the construction activities. Discovery’s landing is expected Oct. 22 at 2:10 p.m. EDT
STS-92 MS Lopez-Alegria gets suit checked in the White Room before launch
NASA Technical Reports Server (NTRS)
2000-01-01
STS-92 Mission Specialist Michael E. Lopez-Alegria gets a final check of his launch and entry suit in the White Room before entering Discovery. The White Room is an environmentally controlled area at the end of the Orbiter Access Arm that provides entry to the orbiter as well as emergency egress if needed. The arm remains in the extended position until 7 minutes 24 seconds before launch. Lopez-Alegria and the rest of the crew are undertaking the fifth flight to the International Space Station for construction. Discovery carries a payload that includes the Integrated Truss Structure Z-1, first of 10 trusses that will form the backbone of the Space Station, and the third Pressurized Mating Adapter that will provide a Shuttle docking port for solar array installation on the sixth Station flight and Lab installation on the seventh Station flight. The mission includes four spacewalks for the construction activities. Discovery's landing is expected Oct. 22 at 2:10 p.m. EDT.
Medical emergencies on board commercial airlines: is documentation as expected?
2012-01-01
Introduction The purpose of this study was to perform a descriptive, content-based analysis on the different forms of documentation for in-flight medical emergencies that are currently provided in the emergency medical kits on board commercial airlines. Methods Passenger airlines in the World Airline Directory were contacted between March and May 2011. For each participating airline, sample in-flight medical emergency documentation forms were obtained. All items in the sample documentation forms were subjected to a descriptive analysis and compared to a sample "medical incident report" form published by the International Air Transport Association (IATA). Results A total of 1,318 airlines were contacted. Ten airlines agreed to participate in the study and provided a copy of their documentation forms. A descriptive analysis revealed a total of 199 different items, which were summarized into five sub-categories: non-medical data (63), signs and symptoms (68), diagnosis (26), treatment (22) and outcome (20). Conclusions The data in this study illustrate a large variation in the documentation of in-flight medical emergencies by different airlines. A higher degree of standardization is preferable to increase the data quality in epidemiologic aeromedical research in the future. PMID:22397530
Selected Flight Test Results for Online Learning Neural Network-Based Flight Control System
NASA Technical Reports Server (NTRS)
Williams-Hayes, Peggy S.
2004-01-01
The NASA F-15 Intelligent Flight Control System project team developed a series of flight control concepts designed to demonstrate neural network-based adaptive controller benefits, with the objective to develop and flight-test control systems using neural network technology to optimize aircraft performance under nominal conditions and stabilize the aircraft under failure conditions. This report presents flight-test results for an adaptive controller using stability and control derivative values from an online learning neural network. A dynamic cell structure neural network is used in conjunction with a real-time parameter identification algorithm to estimate aerodynamic stability and control derivative increments to baseline aerodynamic derivatives in flight. This open-loop flight test set was performed in preparation for a future phase in which the learning neural network and parameter identification algorithm output would provide the flight controller with aerodynamic stability and control derivative updates in near real time. Two flight maneuvers are analyzed - pitch frequency sweep and automated flight-test maneuver designed to optimally excite the parameter identification algorithm in all axes. Frequency responses generated from flight data are compared to those obtained from nonlinear simulation runs. Flight data examination shows that addition of flight-identified aerodynamic derivative increments into the simulation improved aircraft pitch handling qualities.
Interprofessional Flight Camp.
Alfes, Celeste M; Rowe, Amanda S
2016-01-01
The Dorothy Ebersbach Academic Center for Flight Nursing in Cleveland, OH, holds an annual flight camp designed for master's degree nursing students in the acute care nurse practitioner program, subspecializing in flight nursing at the Frances Payne Bolton School of Nursing at Case Western Reserve University. The weeklong interprofessional training is also open to any health care provider working in an acute care setting and focuses on critical care updates, trauma, and emergency care within the critical care transport environment. This year, 29 graduate nursing students enrolled in a master's degree program from Puerto Rico attended. Although the emergency department in Puerto Rico sees and cares for trauma patients, there is no formal trauma training program. Furthermore, the country only has 1 rotor wing air medical transport service located at the Puerto Rico Medical Center in San Juan. Flight faculty and graduate teaching assistants spent approximately 9 months planning for their participation in our 13th annual flight camp. Students from Puerto Rico were extremely pleased with the learning experiences at camp and expressed particular interest in having more training time within the helicopter flight simulator. Copyright © 2016 Air Medical Journal Associates. Published by Elsevier Inc. All rights reserved.
76 FR 68297 - Airworthiness Directives; Agusta S.p.A. (Agusta) Model AB139 and AW139 Helicopters
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-04
... card assemblies. Analysis of the in-flight emergencies identified salt water and extreme moisture as... and related connectors for corrosion. If there is corrosion on the connectors, this AD requires cleaning the connectors before further flight. If there is corrosion on a module, before further flight...
Medical issues in flight and updating the emergency medical kit.
Verjee, Mohamud A; Crone, Robert; Ostrovskiy, Grigory
2018-01-01
Airline travel is more affordable than ever and likely safer than ever too. Within half a day, a passenger can be on the other side of the world. However, medical care in-flight has been an issue for those with medical conditions and for those who fall sick during a journey. While airlines have the advice of multiple recognized organizations on needs and standards of care, in-flight emergencies occur at various levels. An emergency medical kit (EMK) together with trained cabin crew can be very effective at resolving the minor problems that arise and reducing the risk of escalation. On occasion, an overhead plea may be announced for additional medical expertise. Having the right content in a medical kit is more important in modern day travel, coupled with advances in equipment and passenger expectations. The authors address current issues of illness and other relevant conditions and suggest a content enhancement for an onboard EMK.
Medical issues in flight and updating the emergency medical kit
Verjee, Mohamud A; Crone, Robert; Ostrovskiy, Grigory
2018-01-01
Airline travel is more affordable than ever and likely safer than ever too. Within half a day, a passenger can be on the other side of the world. However, medical care in-flight has been an issue for those with medical conditions and for those who fall sick during a journey. While airlines have the advice of multiple recognized organizations on needs and standards of care, in-flight emergencies occur at various levels. An emergency medical kit (EMK) together with trained cabin crew can be very effective at resolving the minor problems that arise and reducing the risk of escalation. On occasion, an overhead plea may be announced for additional medical expertise. Having the right content in a medical kit is more important in modern day travel, coupled with advances in equipment and passenger expectations. The authors address current issues of illness and other relevant conditions and suggest a content enhancement for an onboard EMK. PMID:29750057
Enhancing Public Helicopter Safety as a Component of Homeland Security
2016-12-01
Risk Assessment Tool GPS Global Positioning System IFR instrument flight rules ILS instrument landing system IMC instrument meteorological...flight rules ( IFR ) flying and the lack of a pre-flight risk assessment. Pilot fatigue is a factor that appeared in two of the accident reports (New...three common factors that emerged from the qualitative analysis of coding: inadequate proficiency of IFR flying, lack of a pre- flight risk assessment
NASA Technical Reports Server (NTRS)
1989-01-01
Overhead photograph of the AFTI F-16 painted in a non-standard gray finish, taken during a research flight in 1989. The two sensor pods are visible on the fuselage just forward of the wings and one of the two chin canards can be seen as a light-colored triangle ahead of one of the pods. A Sidewinder air-to-air missile is mounted on each wing tip. During the 1980s and 1990s, NASA and the U.S. Air Force participated in a joint program to integrate and demonstrate new avionics technologies to improve close air support capabilities in next-generation aircraft. The testbed aircraft, seen here in flight over the desert at NASA's Dryden Flight Research Center, Edwards, California, was called the Advanced Fighter Technology Integration (AFTI) F-16. The tests demonstrated technologies to improve navigation and the pilot's ability to find and destroy enemy ground targets day or night, including adverse weather. The aircraft--an F-16A Fighting Falcon (Serial #75-0750)--underwent numerous modifications. A relatively low-cost testbed, it evaluated the feasability of advanced, intergrated-sensor, avionics, and flight control technologies. During the first phase of the AFTI/F-16 program, which began in 1983, the aircraft demonstrated voice-actuated commands, helmet-mounted sights, flat turns, and selective fuselage pointing using forward-mounted canards and a triplex digital flight control computer system. The second phase of research, which began in the summer of 1991, demonstrated advanced technologies and capabilities to find and destroy ground targets day or night, and in adverse weather while using maneuverability and speed at low altitude. This phase was known as the close air support and battlefield air interdiction (CAS/BAI) phase. Finally, the aircraft was used to assess the Automatic Ground Collision Avoidance System (Auto - GCAS), a joint project with the Swedish Government. For these tests, the pilot flew the aircraft directly toward the ground, simulating a total loss of control. The GCAS was designed to take command in such emergencies and bring the aircraft back to level flight. The AFTI F-16 program ended at Dryden on November 4, 1997 after 15 years and over 700 research flights. The USAF continued to fly the aircraft until retiring it to the Air Force Museum on January 9, 2001.
14 CFR 91.519 - Passenger briefing.
Code of Federal Regulations, 2014 CFR
2014-01-01
... AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Large and Turbine-Powered Multiengine... flotation equipment required under § 91.509 for a flight over water; and (6) The normal and emergency use of...
14 CFR 91.519 - Passenger briefing.
Code of Federal Regulations, 2012 CFR
2012-01-01
... AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Large and Turbine-Powered Multiengine... flotation equipment required under § 91.509 for a flight over water; and (6) The normal and emergency use of...
14 CFR 91.519 - Passenger briefing.
Code of Federal Regulations, 2010 CFR
2010-01-01
... AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Large and Turbine-Powered Multiengine... flotation equipment required under § 91.509 for a flight over water; and (6) The normal and emergency use of...
14 CFR 91.519 - Passenger briefing.
Code of Federal Regulations, 2011 CFR
2011-01-01
... AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Large and Turbine-Powered Multiengine... flotation equipment required under § 91.509 for a flight over water; and (6) The normal and emergency use of...
14 CFR 91.519 - Passenger briefing.
Code of Federal Regulations, 2013 CFR
2013-01-01
... AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Large and Turbine-Powered Multiengine... flotation equipment required under § 91.509 for a flight over water; and (6) The normal and emergency use of...
Cheng, Bo; Tobalske, Bret W; Powers, Donald R; Hedrick, Tyson L; Wang, Yi; Wethington, Susan M; Chiu, George T-C; Deng, Xinyan
2016-11-15
The superior manoeuvrability of hummingbirds emerges from complex interactions of specialized neural and physiological processes with the unique flight dynamics of flapping wings. Escape manoeuvring is an ecologically relevant, natural behaviour of hummingbirds, from which we can gain understanding into the functional limits of vertebrate locomotor capacity. Here, we extend our kinematic analysis of escape manoeuvres from a companion paper to assess two potential limiting factors of the manoeuvring performance of hummingbirds: (1) muscle mechanical power output and (2) delays in the neural sensing and control system. We focused on the magnificent hummingbird (Eugenes fulgens, 7.8 g) and the black-chinned hummingbird (Archilochus alexandri, 3.1 g), which represent large and small species, respectively. We first estimated the aerodynamic forces, moments and the mechanical power of escape manoeuvres using measured wing kinematics. Comparing active-manoeuvring and passive-damping aerodynamic moments, we found that pitch dynamics were lightly damped and dominated by the effect of inertia, while roll dynamics were highly damped. To achieve observed closed-loop performance, pitch manoeuvres required faster sensorimotor transduction, as hummingbirds can only tolerate half the delay allowed in roll manoeuvres. Accordingly, our results suggested that pitch control may require a more sophisticated control strategy, such as those based on prediction. For the magnificent hummingbird, we estimated that escape manoeuvres required muscle mass-specific power 4.5 times that during hovering. Therefore, in addition to the limitation imposed by sensorimotor delays, muscle power could also limit the performance of escape manoeuvres. © 2016. Published by The Company of Biologists Ltd.
Design and Testing of Flight Control Laws on the RASCAL Research Helicopter
NASA Technical Reports Server (NTRS)
Frost, Chad R.; Hindson, William S.; Moralez. Ernesto, III; Tucker, George E.; Dryfoos, James B.
2001-01-01
Two unique sets of flight control laws were designed, tested and flown on the Army/NASA Rotorcraft Aircrew Systems Concepts Airborne Laboratory (RASCAL) JUH-60A Black Hawk helicopter. The first set of control laws used a simple rate feedback scheme, intended to facilitate the first flight and subsequent flight qualification of the RASCAL research flight control system. The second set of control laws comprised a more sophisticated model-following architecture. Both sets of flight control laws were developed and tested extensively using desktop-to-flight modeling, analysis, and simulation tools. Flight test data matched the model predicted responses well, providing both evidence and confidence that future flight control development for RASCAL will be efficient and accurate.
Joshi, Neelendra K; Rajotte, Edwin G; Naithani, Kusum J; Krawczyk, Greg; Hull, Larry A
2016-01-01
Apple orchard management practices may affect development and phenology of arthropod pests, such as the codling moth (CM), Cydia pomonella (L.) (Lepidoptera: Tortricidae), which is a serious internal fruit-feeding pest of apples worldwide. Estimating population dynamics and accurately predicting the timing of CM development and phenology events (for instance, adult flight, and egg-hatch) allows growers to understand and control local populations of CM. Studies were conducted to compare the CM flight phenology in commercial and abandoned apple orchard ecosystems using a logistic function model based on degree-days accumulation. The flight models for these orchards were derived from the cumulative percent moth capture using two types of commercially available CM lure baited traps. Models from both types of orchards were also compared to another model known as PETE (prediction extension timing estimator) that was developed in 1970s to predict life cycle events for many fruit pests including CM across different fruit growing regions of the United States. We found that the flight phenology of CM was significantly different in commercial and abandoned orchards. CM male flight patterns for first and second generations as predicted by the constrained and unconstrained PCM (Pennsylvania Codling Moth) models in commercial and abandoned orchards were different than the flight patterns predicted by the currently used CM model (i.e., PETE model). In commercial orchards, during the first and second generations, the PCM unconstrained model predicted delays in moth emergence compared to current model. In addition, the flight patterns of females were different between commercial and abandoned orchards. Such differences in CM flight phenology between commercial and abandoned orchard ecosystems suggest potential impact of orchard environment and crop management practices on CM biology.
Joshi, Neelendra K.; Rajotte, Edwin G.; Naithani, Kusum J.; Krawczyk, Greg; Hull, Larry A.
2016-01-01
Apple orchard management practices may affect development and phenology of arthropod pests, such as the codling moth (CM), Cydia pomonella (L.) (Lepidoptera: Tortricidae), which is a serious internal fruit-feeding pest of apples worldwide. Estimating population dynamics and accurately predicting the timing of CM development and phenology events (for instance, adult flight, and egg-hatch) allows growers to understand and control local populations of CM. Studies were conducted to compare the CM flight phenology in commercial and abandoned apple orchard ecosystems using a logistic function model based on degree-days accumulation. The flight models for these orchards were derived from the cumulative percent moth capture using two types of commercially available CM lure baited traps. Models from both types of orchards were also compared to another model known as PETE (prediction extension timing estimator) that was developed in 1970s to predict life cycle events for many fruit pests including CM across different fruit growing regions of the United States. We found that the flight phenology of CM was significantly different in commercial and abandoned orchards. CM male flight patterns for first and second generations as predicted by the constrained and unconstrained PCM (Pennsylvania Codling Moth) models in commercial and abandoned orchards were different than the flight patterns predicted by the currently used CM model (i.e., PETE model). In commercial orchards, during the first and second generations, the PCM unconstrained model predicted delays in moth emergence compared to current model. In addition, the flight patterns of females were different between commercial and abandoned orchards. Such differences in CM flight phenology between commercial and abandoned orchard ecosystems suggest potential impact of orchard environment and crop management practices on CM biology. PMID:27713702
2007-07-20
JSC2007-E-41011 (20 July 2007) --- STS-118 Ascent/Entry flight control team pose for a group portrait in the space shuttle flight control room of Houston's Mission Control Center (MCC). Flight director Steve Stich (center right) and astronaut Tony Antonelli, spacecraft communicator (CAPCOM), hold the STS-118 mission logo.
Selected Flight Test Results for Online Learning Neural Network-Based Flight Control System
NASA Technical Reports Server (NTRS)
Williams, Peggy S.
2004-01-01
The NASA F-15 Intelligent Flight Control System project team has developed a series of flight control concepts designed to demonstrate the benefits of a neural network-based adaptive controller. The objective of the team is to develop and flight-test control systems that use neural network technology to optimize the performance of the aircraft under nominal conditions as well as stabilize the aircraft under failure conditions. Failure conditions include locked or failed control surfaces as well as unforeseen damage that might occur to the aircraft in flight. This report presents flight-test results for an adaptive controller using stability and control derivative values from an online learning neural network. A dynamic cell structure neural network is used in conjunction with a real-time parameter identification algorithm to estimate aerodynamic stability and control derivative increments to the baseline aerodynamic derivatives in flight. This set of open-loop flight tests was performed in preparation for a future phase of flights in which the learning neural network and parameter identification algorithm output would provide the flight controller with aerodynamic stability and control derivative updates in near real time. Two flight maneuvers are analyzed a pitch frequency sweep and an automated flight-test maneuver designed to optimally excite the parameter identification algorithm in all axes. Frequency responses generated from flight data are compared to those obtained from nonlinear simulation runs. An examination of flight data shows that addition of the flight-identified aerodynamic derivative increments into the simulation improved the pitch handling qualities of the aircraft.
NASA Astrophysics Data System (ADS)
Gülci, S.; Dindaroğlu, T.; Gündoğan, R.
2017-11-01
Unmanned air vehicle systems (UAVSs), which are presently defined as effective measuring instruments, can be used for measurements and evaluation studies in fields. Furthermore, UAVs are effective tools that can produce high-precision and resolution data for use in geographic information system-based work. This study examined a multicopter (hexacopter) as an air platform to seek opportunity in generating DSM with high resolution. Flights were performed in Kahramanmaras Sutcu Imam University Campus area in Turkey. Pre-assessment of field works, mission, tests and installation were prepared by using a Laptop with an adaptive ground control station. Hand remote controller unit was also linked and activated during flight to interfere with emergency situations. Canon model IXSUS 160 was preferred as sensor. As a result of this study, as mentioned previous studies, .The orthophotos can be produced by RGB (Red-green-blue) images obtained with UAV, herewith information on terrain topography, land cover and soil erosion can be evaluated.
[Some approaches to the countermeasure system for a mars exploration mission].
Kozlovskaia, I B; Egorov, A D; Son'kin, V D
2010-01-01
In article discussed physiological and methodical principles of the organization of training process and his (its) computerization during Martian flight in conditions of autonomous activity of the crew, providing interaction with onboard medical means, self-maintained by crew of the their health, performance of preventive measures, diagnostic studies and, in case of necessity, carrying out of treatment. In super long autonomous flights essentially become complicated the control of ground experts over of crew members conditions, that testifies to necessity of a computerization of control process by a state of health of crew, including carrying out of preventive actions. The situation becomes complicated impossibility of reception and transfer aboard the necessary information in real time and emergency returning of crew to the Earth. In these conditions realization of problems of physical preventive maintenance should be solved by means of the onboard automated expert system, providing management by trainings of each crew members, directed on optimization of their psychophysical condition.
Steering a virtual blowfly: simulation of visual pursuit.
Boeddeker, Norbert; Egelhaaf, Martin
2003-09-22
The behavioural repertoire of male flies includes visually guided chasing after moving targets. The visuomotor control system for these pursuits belongs to the fastest found in the animal kingdom. We simulated a virtual fly, to test whether or not experimentally established hypotheses on the underlying control system are sufficient to explain chasing behaviour. Two operating instructions for steering the chasing virtual fly were derived from behavioural experiments: (i) the retinal size of the target controls the fly's forward speed and, thus, indirectly its distance to the target; and (ii) a smooth pursuit system uses the retinal position of the target to regulate the fly's flight direction. Low-pass filters implement neuronal processing time. Treating the virtual fly as a point mass, its kinematics are modelled in consideration of the effects of translatory inertia and air friction. Despite its simplicity, the model shows behaviour similar to that of real flies. Depending on its starting position and orientation as well as on target size and speed, the virtual fly either catches the target or follows it indefinitely without capture. These two behavioural modes of the virtual fly emerge from the control system for flight steering without implementation of an explicit decision maker.
Flight demonstration of a self repairing flight control system in a NASA F-15 fighter aircraft
NASA Technical Reports Server (NTRS)
Urnes, James M.; Stewart, James; Eslinger, Robert
1990-01-01
Battle damage causing loss of control capability can compromise mission objectives and even result in aircraft loss. The Self Repairing Flight Control System (SRFCS) flight development program directly addresses this issue with a flight control system design that measures the damage and immediately refines the control system commands to preserve mission potential. The system diagnostics process detects in flight the type of faults that are difficult to isolate post flight, and thus cause excessive ground maintenance time and cost. The control systems of fighter aircraft have the control power and surface displacement to maneuver the aircraft in a very large flight envelope with a wide variation in airspeed and g maneuvering conditions, with surplus force capacity available from each control surface. Digital flight control processors are designed to include built-in status of the control system components, as well as sensor information on aircraft control maneuver commands and response. In the event of failure or loss of a control surface, the SRFCS utilizes this capability to reconfigure control commands to the remaining control surfaces, thus preserving maneuvering response. Correct post-flight repair is the key to low maintainability support costs and high aircraft mission readiness. The SRFCS utilizes the large data base available with digital flight control systems to diagnose faults. Built-in-test data and sensor data are used as inputs to an Onboard Expert System process to accurately identify failed components for post-flight maintenance action. This diagnostic technique has the advantage of functioning during flight, and so is especially useful in identifying intermittent faults that are present only during maneuver g loads or high hydraulic flow requirements. A flight system was developed to test the reconfiguration and onboard maintenance diagnostics concepts on a NASA F-15 fighter aircraft.
X-38 vehicle #131R during landing on first free flight
NASA Technical Reports Server (NTRS)
2000-01-01
The latest version of the X-38, V-131R, touches down on Rogers Dry Lake adjacent to NASA's Dryden Flight Research Center at Edwards, California, at the end of its first free flight under a giant parafoil on Nov. 2, 2000. The X-38 prototypes are intended to perfect technology for a planned Crew Return Vehicle (CRV) 'lifeboat' to carry a crew to safety in the event of an emergency on the International Space Station. Free-flight tests of X-38 V-131R are evaluating upgraded avionics and control systems and the aerodynamics of the modified upper body, which is more representative of the final design of the CRV than the two earlier X-38 test craft, including a simulated hatch atop the body. The huge 7,500 square-foot parafoil will enable the CRV to land in the length of a football field after returning from space. The first three X-38's are air-launched from NASA's venerable NB-52B mother ship, while the last version, V-201, will be carried into space by a Space Shuttle and make a fully autonomous re-entry and landing.
Performance Support Tools for Space Medical Operations
NASA Technical Reports Server (NTRS)
Byrne, Vicky; Schmid, Josef; Barshi, Immanuel
2010-01-01
Early Constellation space missions are expected to have medical capabilities similar to those currently on board the Space Shuttle and International Space Station (ISS). Flight surgeons on the ground in Mission Control will direct the Crew Medical Officer (CMO) during medical situations. If the crew is unable to communicate with the ground, the CMO will carry out medical procedures without the aid of a flight surgeon. In these situations, use of performance support tools can reduce errors and time to perform emergency medical tasks. The research presented here is part of the Human Factors in Training Directed Research Project of the Space Human Factors Engineering Project under the Space Human Factors and Habitability Element of the Human Research Program. This is a joint project consisting of human factors teams from the Johnson Space Center (JSC) and the Ames Research Center (ARC). Work on medical training has been conducted in collaboration with the Medical Training Group at JSC and with Wyle that provides medical training to crew members, biomedical engineers (BMEs), and flight surgeons under the Bioastronautics contract. Human factors personnel at Johnson Space Center have investigated medical performance support tools for CMOs and flight surgeons.
X-38 vehicle #131R in first free flight
2000-11-02
The third iteration of the X-38, V-131R, glides down under a giant parafoil towards a landing on Rogers Dry Lake near NASAÕs Dryden Flight Research Center during its first free flight Nov. 2, 2000. The X-38 prototypes are intended to perfect technology for a planned Crew Return Vehicle (CRV) ÒlifeboatÓ to carry a crew to safety in the event of an emergency on the International Space Station. Free-flight tests of X-38 V-131R are evaluating upgraded avionics and control systems and the aerodynamics of the modified upper body, which is more representative of the final design of the CRV than the two earlier X-38 test craft, including a simulated hatch atop the body. The huge 7,500 square-foot parafoil will enable the CRV to land in the length of a football field after returning from space. The first three X-38Õs are air-launched from NASAÕs venerable NB-52B mother ship, while the last version, V-201, will be carried into space by a Space Shuttle and make a fully autonomous re-entry and landing.
X-38 vehicle #131R during landing on first free flight
2000-11-02
The latest version of the X-38, V-131R, touches down on Rogers Dry Lake adjacent to NASAÕs Dryden Flight Research Center at Edwards, California, at the end of its first free flight under a giant parafoil on Nov. 2, 2000. The X-38 prototypes are intended to perfect technology for a planned Crew Return Vehicle (CRV) ÒlifeboatÓ to carry a crew to safety in the event of an emergency on the International Space Station. Free-flight tests of X-38 V-131R are evaluating upgraded avionics and control systems and the aerodynamics of the modified upper body, which is more representative of the final design of the CRV than the two earlier X-38 test craft, including a simulated hatch atop the body. The huge 7,500 square-foot parafoil will enable the CRV to land in the length of a football field after returning from space. The first three X-38Õs are air-launched from NASAÕs venerable NB-52B mother ship, while the last version, V-201, will be carried into space by a Space Shuttle and make a fully autonomous re-entry and landing.
Techniques for Improving Pilot Recovery from System Failures
NASA Technical Reports Server (NTRS)
Pritchett, Amy R.
2001-01-01
This project examined the application of intelligent cockpit systems to aid air transport pilots at the tasks of reacting to in-flight system failures and of planning and then following a safe four dimensional trajectory to the runway threshold during emergencies. Two studies were conducted. The first examined pilot performance with a prototype awareness/alerting system in reacting to on-board system failures. In a full-motion, high-fidelity simulator, Army helicopter pilots were asked to fly a mission during which, without warning or briefing, 14 different failures were triggered at random times. Results suggest that the amount of information pilots require from such diagnostic systems is strongly dependent on their training; for failures they are commonly trained to react to with a procedural response, they needed only an indication of which failure to follow, while for 'un-trained' failures, they benefited from more intelligent and informative systems. Pilots were also found to over-rely on the system in conditions were it provided false or mis-leading information. In the second study, a proof-of-concept system was designed suitable for helping pilots replan their flights in emergency situations for quick, safe trajectory generation. This system is described in this report, including: the use of embedded fast-time simulation to predict the trajectory defined by a series of discrete actions; the models of aircraft and pilot dynamics required by the system; and the pilot interface. Then, results of a flight simulator evaluation with airline pilots are detailed. In 6 of 72 simulator runs, pilots were not able to establish a stable flight path on localizer and glideslope, suggesting a need for cockpit aids. However, results also suggest that, to be operationally feasible, such an aid must be capable of suggesting safe trajectories to the pilot; an aid that only verified plans entered by the pilot was found to have significantly detrimental effects on performance and pilot workload. Results also highlight that the trajectories suggested by the aid must capture the context of the emergency; for example, in some emergencies pilots were willing to violate flight envelope limits to reduce time in flight - in other emergencies the opposite was found.
X-38 Drop Model: Testing Parafoil Landing System during Drop Tests
NASA Technical Reports Server (NTRS)
1995-01-01
A 4-foot-long model of NASA's X-38, an experimental crew return vehicle, glides to earth after being dropped from a Cessna aircraft in late 1995. The model was used to test the ram-air parafoil landing system, which could allow for accurate and controlled landings of an emergency Crew Return Vehicle spacecraft returning to Earth. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily 'old' technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. It's landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for internal power. The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, Dryden's B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground.
An informal analysis of flight control tasks
NASA Technical Reports Server (NTRS)
Andersen, George J.
1991-01-01
Issues important in rotorcraft flight control are discussed. A perceptual description is suggested of what is believed to be the major issues in flight control. When the task is considered of a pilot controlling a helicopter in flight, the task is decomposed in several subtasks. These subtasks include: (1) the control of altitude, (2) the control of speed, (3) the control of heading, (4) the control of orientation, (5) the control of flight over obstacles, and (6) the control of flight to specified positions in the world. The first four subtasks can be considered to be primary control tasks as they are not dependent on any other subtasks. However, the latter two subtasks can be considered hierarchical tasks as they are dependent on other subtasks. For example, the task of flight control over obstacles can be decomposed as a task requiring the control of speed, altitude, and heading. Thus, incorrect control of altitude should result in poor control of flight over an obstacle.
14 CFR 27.151 - Flight controls.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Flight controls. 27.151 Section 27.151... STANDARDS: NORMAL CATEGORY ROTORCRAFT Flight Flight Characteristics § 27.151 Flight controls. (a) Longitudinal, lateral, directional, and collective controls may not exhibit excessive breakout force, friction...
14 CFR 29.151 - Flight controls.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Flight controls. 29.151 Section 29.151... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Flight Flight Characteristics § 29.151 Flight controls. (a) Longitudinal, lateral, directional, and collective controls may not exhibit excessive breakout force, friction...
Airborne Trajectory Management (ABTM): A Blueprint for Greater Autonomy in Air Traffic Management
NASA Technical Reports Server (NTRS)
Cotton, William B.; Wing, David
2017-01-01
The aviation users of the National Airspace System (NAS) - the airlines, General Aviation (GA), the military and, most recently, operators of Unmanned Aircraft Systems (UAS) - are constrained in their operations by the design of the current paradigm for air traffic control (ATC). Some of these constraints include ATC preferred routes, departure fix restrictions and airspace ground delay programs. As a result, most flights cannot operate on their most efficient business trajectories and a great many flights are delayed even getting into the air, which imposes a significant challenge to maintaining efficient flight and network operations. Rather than accepting ever more sophisticated scheduling solutions to accommodate the existing constraints in the airspace, a series of increasingly capable airborne technologies, integrated with planned improvements in the ground system through the Federal Aviation Administration (FAA) Next Generation Air Traffic Management System (NextGen) programs, could produce much greater operational flexibility for flight path optimization by the aviation system users. These capabilities, described in research coming out of NASA's Aeronautics Research Mission Directorate, can maintain or improve operational safety while taking advantage of air and ground NextGen technologies in novel ways. The underlying premise is that the nation's physical airspace is still abundant and underused, and that the delays and inefficient flight operations resulting from artificial structure in airspace use and procedural constraints on those operations may not be necessary for safe and efficient flight. This article is not an indictment of today's NAS or the people who run it. Indeed, it is an exceptional achievement that Air Traffic Management (ATM) - the complex human/machine conglomeration of communications, navigation and surveillance equipment and the rules and procedures for controlling traffic in the airspace - has both the capacity and enables the degree of efficiency in air travel that it does. But it is also true that sixty years of the "radar religion" (i.e., reliance on radar-based command and control) has produced several generations of ATM system operators and researchers who believe that introducing automation within the existing functional structure of ATM is the only way to "modernize" the system. Even NextGen, which began as a proposal for "transformational" change in the way ATC is performed, has morphed over the last decade and a half to become just the inclusion of Global Positioning System (GPS) for navigation, Automatic Dependent Surveillance Broadcast (ADS-B) for surveillance, and Data Communications (Data Comm) for communications, while still operating in rigidly structured airspace with human controllers being responsible for separation and traffic flow management (TFM) within defined sectors of airspace, using the same horizontal separation standards that have been in use since raw primary radar was introduced in the 1950s. No system as massive as the current NAS ATM can be replaced with a better system while simultaneously meeting the transportation and other aviation needs of the nation. A new generation of more flexible operations must emerge and yet coexist in harmony with the current operation (i.e., share the same airspace without segregation), thereby enabling a long-term transformation to take place in the way increasing numbers of flights are handled. Market forces will be the ultimate driver of this transformation, and investment realities mandate that real benefits must accrue to the first operators to adopt these new capabilities. In fact, the kinds of missions envisioned in the emerging world of UAS operations, unachievable under conventional ATM, demand that this transformation take place. Airborne Trajectory Management (ABTM) is proposed as a series of transformational steps leading to vastly increased flexibility in flight operations and capacity in the airspace to accommodate many varied airspace uses while improving safety. As will be described, ABTM enables the gradual emergence of a new paradigm for user-based trajectory management in ATM that brings tangible benefits to equipped operators at every step while leveraging the air and ground investments of NextGen. There are five steps in this ABTM transformation.1 NASA has extensively studied the first and last of these steps, and a roadmap of increasing capabilities and benefits is proposed for bridging between these operational concepts.
A neural based intelligent flight control system for the NASA F-15 flight research aircraft
NASA Technical Reports Server (NTRS)
Urnes, James M.; Hoy, Stephen E.; Ladage, Robert N.; Stewart, James
1993-01-01
A flight control concept that can identify aircraft stability properties and continually optimize the aircraft flying qualities has been developed by McDonnell Aircraft Company under a contract with the NASA-Dryden Flight Research Facility. This flight concept, termed the Intelligent Flight Control System, utilizes Neural Network technology to identify the host aircraft stability and control properties during flight, and use this information to design on-line the control system feedback gains to provide continuous optimum flight response. This self-repairing capability can provide high performance flight maneuvering response throughout large flight envelopes, such as needed for the National Aerospace Plane. Moreover, achieving this response early in the vehicle's development schedule will save cost.
Flight Test Implementation of a Second Generation Intelligent Flight Control System
NASA Technical Reports Server (NTRS)
Williams-Hayes, Peggy S.
2005-01-01
The NASA F-15 Intelligent Flight Control System project team has developed a series of flight control concepts designed to demonstrate the benefits of a neural network-based adaptive controller. The objective of the team was to develop and flight-test control systems that use neural network technology, to optimize the performance of the aircraft under nominal conditions, and to stabilize the aircraft under failure conditions. Failure conditions include locked or failed control surfaces as well as unforeseen damage that might occur to the aircraft in flight. The Intelligent Flight Control System team is currently in the process of implementing a second generation control scheme, collectively known as Generation 2 or Gen 2, for flight testing on the NASA F-15 aircraft. This report describes the Gen 2 system as implemented by the team for flight test evaluation. Simulation results are shown which describe the experiment to be performed in flight and highlight the ways in which the Gen 2 system meets the defined objectives.
Propulsion system-flight control integration-flight evaluation and technology transition
NASA Technical Reports Server (NTRS)
Burcham, Frank W., Jr.; Gilyard, Glenn B.; Myers, Lawrence P.
1990-01-01
Integration of propulsion and flight control systems and their optimization offering significant performance improvement are assessed. In particular, research programs conducted by NASA on flight control systems and propulsion system-flight control interactions on the YF-12 and F-15 aircraft are addressed; these programs have demonstrated increased thrust, reduced fuel consumption, increased engine life, and improved aircraft performance. Focus is placed on altitude control, speed-Mach control, integrated controller design, as well as flight control systems and digital electronic engine control. A highly integrated digital electronic control program is analyzed and compared with a performance seeking control program. It is shown that the flight evaluation and demonstration of these technologies have been a key part in the transition of the concepts to production and operational use on a timely basis.
Flight Test of the F/A-18 Active Aeroelastic Wing Airplane
NASA Technical Reports Server (NTRS)
Clarke, Robert; Allen, Michael J.; Dibley, Ryan P.; Gera, Joseph; Hodgkinson, John
2005-01-01
Successful flight-testing of the Active Aeroelastic Wing airplane was completed in March 2005. This program, which started in 1996, was a joint activity sponsored by NASA, Air Force Research Laboratory, and industry contractors. The test program contained two flight test phases conducted in early 2003 and early 2005. During the first phase of flight test, aerodynamic models and load models of the wing control surfaces and wing structure were developed. Design teams built new research control laws for the Active Aeroelastic Wing airplane using these flight-validated models; and throughout the final phase of flight test, these new control laws were demonstrated. The control laws were designed to optimize strategies for moving the wing control surfaces to maximize roll rates in the transonic and supersonic flight regimes. Control surface hinge moments and wing loads were constrained to remain within hydraulic and load limits. This paper describes briefly the flight control system architecture as well as the design approach used by Active Aeroelastic Wing project engineers to develop flight control system gains. Additionally, this paper presents flight test techniques and comparison between flight test results and predictions.
Round and Round and Round We Go: Behavior of Adult Female Mice on the ISS
NASA Technical Reports Server (NTRS)
Ronca, April E.
2016-01-01
The NASA Decadal Survey (2011) emphasized the importance of long duration rodent experiments on the International Space Station (ISS). To accomplish this objective, flight hardware and science capabilities supporting mouse studies in space were developed at Ames Research Center. Here we present a video-based behavioral analysis of ten C57BL6 female adult mice exposed to a total of 37 days in space compared with identically housed Ground Controls. Flight and Control mice exhibited the same range of behaviors, including feeding, drinking, exploratory behavior, grooming, and social interactions. Mice propelled themselves freely and actively throughout the Habitat using their forelimbs to push off or by floating from one cage area to another. Overall activity was greater in Flt as compared to GC mice. Spontaneous, organized circling or race-tracking behavior emerged within the first few days of flight and encompassed the primary dark cycle activity for the remainder of the experiment. I will summarize qualitative observations and quantitative comparisons of mice in microgravity and 1g conditions. Behavioral phenotyping revealed important insights into the overall health and adaptation of mice to the space environment, and identified unique behaviors that can guide future habitat development and research on rodents in space.
Flight Validation of a Metrics Driven L(sub 1) Adaptive Control
NASA Technical Reports Server (NTRS)
Dobrokhodov, Vladimir; Kitsios, Ioannis; Kaminer, Isaac; Jones, Kevin D.; Xargay, Enric; Hovakimyan, Naira; Cao, Chengyu; Lizarraga, Mariano I.; Gregory, Irene M.
2008-01-01
The paper addresses initial steps involved in the development and flight implementation of new metrics driven L1 adaptive flight control system. The work concentrates on (i) definition of appropriate control driven metrics that account for the control surface failures; (ii) tailoring recently developed L1 adaptive controller to the design of adaptive flight control systems that explicitly address these metrics in the presence of control surface failures and dynamic changes under adverse flight conditions; (iii) development of a flight control system for implementation of the resulting algorithms onboard of small UAV; and (iv) conducting a comprehensive flight test program that demonstrates performance of the developed adaptive control algorithms in the presence of failures. As the initial milestone the paper concentrates on the adaptive flight system setup and initial efforts addressing the ability of a commercial off-the-shelf AP with and without adaptive augmentation to recover from control surface failures.
Nonclassical Flight Control for Unhealthy Aircraft
NASA Technical Reports Server (NTRS)
Lu, Ping
1997-01-01
This research set out to investigate flight control of aircraft which has sustained damage in regular flight control effectors, due to jammed control surfaces or complete loss of hydraulic power. It is recognized that in such an extremely difficult situation unconventional measures may need to be taken to regain control and stability of the aircraft. Propulsion controlled aircraft (PCA) concept, initiated at the NASA Dryden Flight Research Center. represents a ground-breaking effort in this direction. In this approach, the engine is used as the only flight control effector in the rare event of complete loss of normal flight control system. Studies and flight testing conducted at NASA Dryden have confirmed the feasibility of the PCA concept. During the course of this research (March 98, 1997 to November 30, 1997), a comparative study has been done using the full nonlinear model of an F-18 aircraft. Linear controllers and nonlinear controllers based on a nonlinear predictive control method have been designed for normal flight control system and propulsion controlled aircraft. For the healthy aircraft with normal flight control, the study shows that an appropriately designed linear controller can perform as well as a nonlinear controller. On the other hand. when the normal flight control is lost and the engine is the only available means of flight control, a nonlinear PCA controller can significantly increase the size of the recoverable region in which the stability of the unstable aircraft can be attained by using only thrust modulation. The findings and controller design methods have been summarized in an invited paper entitled.
Code of Federal Regulations, 2010 CFR
2010-01-01
... in the briefing under § 125.327; (l) Flight locating procedures, when applicable; (m) Procedures for... required crewmembers in connection with an emergency and emergency evacuation; (n) The approved airplane...
Skripochka during Emergency Scario Drill
2011-01-11
ISS026-E-016987 (11 Jan. 2011) --- Russian cosmonaut Oleg Skripochka, Expedition 26 flight engineer, participates in an emergency scenarios drill in the Harmony node of the International Space Station.
Kondratyev during Emergency Scario Drill
2011-01-11
ISS026-E-016985 (11 Jan. 2011) --- Russian cosmonaut Dmitry Kondratyev, Expedition 26 flight engineer, participates in an emergency scenarios drill in the Harmony node of the International Space Station.
Free-flight investigation of forebody blowing for stability and control
NASA Technical Reports Server (NTRS)
Brandon, Jay M.; Simon, James M.; Owens, D. Bruce; Kiddy, Jason S.
1996-01-01
A free-flight wind-tunnel investigation was conducted on a generic fighter model with forebody pneumatic vortex control for high angle-of-attack directional control. This is believed to be the first flight demonstration of a forebody blowing concept integrated into a closed-loop flight control system for stability augmentation and control. The investigation showed that the static wind tunnel estimates of the yaw control available generally agreed with flight results. The control scheme for the blowing nozzles consisted of an on/off control with a deadband. Controlled flight was obtained for the model using forebody blowing for directional control to beyond 45 deg. angle of attack.
A Piloted Evaluation of Damage Accommodating Flight Control Using a Remotely Piloted Vehicle
NASA Technical Reports Server (NTRS)
Cunningham, Kevin; Cox, David E.; Murri, Daniel G.; Riddick, Stephen E.
2011-01-01
Toward the goal of reducing the fatal accident rate of large transport airplanes due to loss of control, the NASA Aviation Safety Program has conducted research into flight control technologies that can provide resilient control of airplanes under adverse flight conditions, including damage and failure. As part of the safety program s Integrated Resilient Aircraft Control Project, the NASA Airborne Subscale Transport Aircraft Research system was designed to address the challenges associated with the safe and efficient subscale flight testing of research control laws under adverse flight conditions. This paper presents the results of a series of pilot evaluations of several flight control algorithms used during an offset-to-landing task conducted at altitude. The purpose of this investigation was to assess the ability of various flight control technologies to prevent loss of control as stability and control characteristics were degraded. During the course of 8 research flights, data were recorded while one task was repeatedly executed by a single evaluation pilot. Two generic failures, which degraded stability and control characteristics, were simulated inflight for each of the 9 different flight control laws that were tested. The flight control laws included three different adaptive control methodologies, several linear multivariable designs, a linear robust design, a linear stability augmentation system, and a direct open-loop control mode. Based on pilot Cooper-Harper Ratings obtained for this test, the adaptive flight control laws provided the greatest overall benefit for the stability and control degradation scenarios that were considered. Also, all controllers tested provided a significant improvement in handling qualities over the direct open-loop control mode.
Combining control input with flight path data to evaluate pilot performance in transport aircraft.
Ebbatson, Matt; Harris, Don; Huddlestone, John; Sears, Rodney
2008-11-01
When deriving an objective assessment of piloting performance from flight data records, it is common to employ metrics which purely evaluate errors in flight path parameters. The adequacy of pilot performance is evaluated from the flight path of the aircraft. However, in large jet transport aircraft these measures may be insensitive and require supplementing with frequency-based measures of control input parameters. Flight path and control input data were collected from pilots undertaking a jet transport aircraft conversion course during a series of symmetric and asymmetric approaches in a flight simulator. The flight path data were analyzed for deviations around the optimum flight path while flying an instrument landing approach. Manipulation of the flight controls was subject to analysis using a series of power spectral density measures. The flight path metrics showed no significant differences in performance between the symmetric and asymmetric approaches. However, control input frequency domain measures revealed that the pilots employed highly different control strategies in the pitch and yaw axes. The results demonstrate that to evaluate pilot performance fully in large aircraft, it is necessary to employ performance metrics targeted at both the outer control loop (flight path) and the inner control loop (flight control) parameters in parallel, evaluating both the product and process of a pilot's performance.
Autonomous Control of a Quadrotor UAV Using Fuzzy Logic
NASA Astrophysics Data System (ADS)
Sureshkumar, Vijaykumar
UAVs are being increasingly used today than ever before in both military and civil applications. They are heavily preferred in "dull, dirty or dangerous" mission scenarios. Increasingly, UAVs of all kinds are being used in policing, fire-fighting, inspection of structures, pipelines etc. Recently, the FAA gave its permission for UAVs to be used on film sets for motion capture and high definition video recording. The rapid development in MEMS and actuator technology has made possible a plethora of UAVs that are suited for commercial applications in an increasingly cost effective manner. An emerging popular rotary wing UAV platform is the Quadrotor A Quadrotor is a helicopter with four rotors, that make it more stable; but more complex to model and control. Characteristics that provide a clear advantage over other fixed wing UAVs are VTOL and hovering capabilities as well as a greater maneuverability. It is also simple in construction and design compared to a scaled single rotorcraft. Flying such UAVs using a traditional radio Transmitter-Receiver setup can be a daunting task especially in high stress situations. In order to make such platforms widely applicable, a certain level of autonomy is imperative to the future of such UAVs. This thesis paper presents a methodology for the autonomous control of a Quadrotor UAV using Fuzzy Logic. Fuzzy logic control has been chosen over conventional control methods as it can deal effectively with highly nonlinear systems, allows for imprecise data and is extremely modular. Modularity and adaptability are the key cornerstones of FLC. The objective of this thesis is to present the steps of designing, building and simulating an intelligent flight control module for a Quadrotor UAV. In the course of this research effort, a Quadrotor UAV is indigenously developed utilizing the resources of an online open source project called Aeroquad. System design is comprehensively dealt with. A math model for the Quadrotor is developed and a simulation environment is built in the MATLAB/Simulink framework. The Fuzzy flight controller development is discussed intensively. Validation of the math model developed is presented using actual flight data. Excellent attitude tracking is demonstrated for near hover flight regimes. The responses are analyzed and future work involving implementation is discussed.
NASA Technical Reports Server (NTRS)
Ronca, A. E.; Moyer, E. L.; Talyansky, Y.; Solomides, P.; Choi, S.; Gong, C.; Globus, R. K.
2017-01-01
As interest in long duration effects of space habitation increases, understanding the behavior of model organisms living within the habitats engineered to fly them is vital for designing, validating, and interpreting future spaceflight studies. Only a handful of papers have previously reported behavior of mice and rats in the weightless environment of space (Andreev-Andrievskiy, et al., 2013; Cancedda et al., 2012; Ronca et al., 2008). The Rodent Research Hardware and Operations Validation Mission (Rodent Research-1; RR1) utilized the Rodent Habitat (RH) developed at NASA Ames Research Center to fly mice on the ISS. Ten adult (16-week-old) female C57BL6J mice were launched on September 21st, 2014 in an unmanned Dragon Capsule, and spent 37 days in flight. Here we report group behavioral phenotypes of the RR1 Flight (FLT) and environment-matched Ground Control (GC) mice in the RH during this long duration flight. Video was recorded for 34 days on the ISS, permitting daily assessments of overall health and well being of the mice, and providing a valuable repository for detailed behavioral analysis. As compared to GC mice, RR1 FLT mice exhibited the same range of behaviors, including eating, drinking, exploration, self- and allogrooming, and social interactions at similar or greater levels of occurrence. Overall activity was greater in FLT as compared to GC mice, with spontaneous ambulatory behavior, including organized circling or race-tracking behavior that emerged within the first few days of flight following a common developmental sequence, comprising the primary dark cycle activity of FLT mice. Circling participation by individual mice persisted throughout the mission. Analysis of group behavior over mission days revealed recruitment of mice into the group phenotype, coupled with decreasing numbers of collisions between circling mice. This analysis provides insights into the behavior of mice in microgravity, and clear evidence for the emergence of a distinctive, organized group behavior unique to the weightless space environment. Supported by the NASA Rodent Research Project, Space Biology Program, and Space Life Sciences Training Program.
NASA Technical Reports Server (NTRS)
1991-01-01
The AFTI F-16 flying at high angle of attack, shown in the final configuration and paint finish. Dummy Sidewinder air-to-air missles are attached to the wing tips. The white objects visible on the wing racks represent practice bomb dispensers, used in weapon tests. During the 1980s and 1990s, NASA and the U.S. Air Force participated in a joint program to integrate and demonstrate new avionics technologies to improve close air support capabilities in next-generation aircraft. The testbed aircraft, seen here in flight over the desert at NASA's Dryden Flight Research Center, Edwards, California, was called the Advanced Fighter Technology Integration (AFTI) F-16. The tests demonstrated technologies to improve navigation and the pilot's ability to find and destroy enemy ground targets day or night, including adverse weather. The aircraft--an F-16A Fighting Falcon (Serial #75-0750)--underwent numerous modifications. A relatively low-cost testbed, it evaluated the feasability of advanced, intergrated-sensor, avionics, and flight control technologies. During the first phase of the AFTI/F-16 program, which began in 1983, the aircraft demonstrated voice-actuated commands, helmet-mounted sights, flat turns, and selective fuselage pointing using forward-mounted canards and a triplex digital flight control computer system. The second phase of research, which began in the summer of 1991, demonstrated advanced technologies and capabilities to find and destroy ground targets day or night, and in adverse weather while using maneuverability and speed at low altitude. This phase was known as the close air support and battlefield air interdiction (CAS/BAI) phase. Finally, the aircraft was used to assess the Automatic Ground Collision Avoidance System (Auto - GCAS), a joint project with the Swedish Government. For these tests, the pilot flew the aircraft directly toward the ground, simulating a total loss of control. The GCAS was designed to take command in such emergencies and bring the aircraft back to level flight. The AFTI F-16 program ended at Dryden on November 4, 1997 after 15 years and over 700 research flights. The USAF continued to fly the aircraft until retiring it to the Air Force Museum on January 9, 2001.
NASA Technical Reports Server (NTRS)
1992-01-01
The AFTI F-16 in its final configuration, flying in the vicinity of Edwards Air Force Base, California. During this phase, the two forward infrared turrets were added ahead of the cockpit, the chin canards were removed, and the aircraft was repainted in a standard Air Force scheme. A fuel drop tank is visible below the wing. During the 1980s and 1990s, NASA and the U.S. Air Force participated in a joint program to integrate and demonstrate new avionics technologies to improve close air support capabilities in next-generation aircraft. The testbed aircraft, seen here in flight over the desert at NASA's Dryden Flight Research Center, Edwards, California, was called the Advanced Fighter Technology Integration (AFTI) F-16. The tests demonstrated technologies to improve navigation and the pilot's ability to find and destroy enemy ground targets day or night, including adverse weather. The aircraft--an F-16A Fighting Falcon (Serial #75-0750)--underwent numerous modifications. A relatively low-cost testbed, it evaluated the feasability of advanced, intergrated-sensor, avionics, and flight control technologies. During the first phase of the AFTI/F-16 program, which began in 1983, the aircraft demonstrated voice-actuated commands, helmet-mounted sights, flat turns, and selective fuselage pointing using forward-mounted canards and a triplex digital flight control computer system. The second phase of research, which began in the summer of 1991, demonstrated advanced technologies and capabilities to find and destroy ground targets day or night, and in adverse weather while using maneuverability and speed at low altitude. This phase was known as the close air support and battlefield air interdiction (CAS/BAI) phase. Finally, the aircraft was used to assess the Automatic Ground Collision Avoidance System (Auto - GCAS), a joint project with the Swedish Government. For these tests, the pilot flew the aircraft directly toward the ground, simulating a total loss of control. The GCAS was designed to take command in such emergencies and bring the aircraft back to level flight. The AFTI F-16 program ended at Dryden on November 4, 1997 after 15 years and over 700 research flights. The USAF continued to fly the aircraft until retiring it to the Air Force Museum on January 9, 2001.
Progress in aeronautical research and technology applicable to civil air transports
NASA Technical Reports Server (NTRS)
Bower, R. E.
1981-01-01
Recent progress in the aeronautical research and technology program being conducted by the United States National Aeronautics and Space Administration is discussed. Emphasis is on computational capability, new testing facilities, drag reduction, turbofan and turboprop propulsion, noise, composite materials, active controls, integrated avionics, cockpit displays, flight management, and operating problems. It is shown that this technology is significantly impacting the efficiency of the new civil air transports. The excitement of emerging research promises even greater benefits to future aircraft developments.
2010-05-01
Aviation Administration Oklahoma City, OK 73125 Alan Campbell Johns Creek, GA 30022 Alfred M. Hendrix Ruby Hendrix HCS Consulting Services Roswell , NM...OK 73125 2A. Campbell, Johns Creek, GA, 30022 3HCS Consulting Service, Roswell , NM 88201 12. Sponsoring Agency name and Address 13. Type...52 was making its third approach into JFK Airport and failed to inform air traffic control they had a fuel emergency and crashed . 2 In November
STS-97 flight control team in WFCR - JSC - MCC
2000-11-24
JSC2000-07303 (24 November 2000) --- The 30-odd flight controllers supporting the STS-97 entry shift pose for a pre-flight group portrait in the shuttle flight control room in Houston's Mission Control Center (JSC). Entry flight director LeRoy Cain (front center) holds a mission logo.
Billeisen, T L; Brandenburg, R L
2016-04-01
Seasonal flight activity, adult beetle sex count, and egg production were examined in sugarcane beetles Euetheola rugiceps (LeConte) caught in light traps in North Carolina from the fall of 2009 through the summer of 2014. A regression model using variable environmental conditions as predictive parameters was developed to examine the impact of these conditions on flight activity. Depending on flight trap location and sampling years, beetles exhibited an inconsistent flight pattern, with the majority of adults flying in the spring (April-June) and intermittently in the fall (September-October). Our model indicated that larger numbers of adults collected from traps coincided with an increase in average soil temperature. Sugarcane beetles also exhibit a synchronous emergence during both periods of flight activity. Eggs were detected in females collected from light traps every week throughout the entire sampling period. The majority of females produced 7-12 eggs, with most egg production occurring between 15 May and 1 August. The findings of this research provide adult sugarcane beetle emergence and flight behavior information necessary to determine optimal pesticide application timing. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Preliminary study of the pilot's workload during emergency procedures in helicopters air operations.
Bezerra, Flávio G V; Ribeiro, Selma L O
2012-01-01
Military air operations and law enforcement operations in helicopters are examples of activities that require high performance of the operator. This article aimed at presenting a preliminary analysis of data obtained in the initial study in order to validate the instruments and the research protocol that focuses on the analysis of the workload imposed on helicopter pilots in emergency situations. The research was conducted in an environment of real flight training and used the NASA-TLX Scale to assess the workload and an interview guide to obtain reports on the main tasks performed. Preliminary data obtained is related to the participation of 10 (ten) volunteer pilots with experience in different types of helicopters. Four scenarios involving helicopter emergency procedures of HB-350 "Squirrel" were outlined. For this article, the analysis used only the data regarding the Physical and Mental Demands of the NASA-TLX Scale. Preliminarily, the results indicate that the "time pressure" as a factor contributing to increase mental requirement in emergency situations in flight, and that this increase was reflected in the request of mental processes such as: identification of the breakdown, attention and monitoring parameters. Future steps include extending the sample and adding physiological tools to better understand the effects of these types of emergencies on pilot performance and flight safety.
NASA Technical Reports Server (NTRS)
Powers, Sheryll Goecke (Compiler)
1995-01-01
Flight research for the F-15 HIDEC (Highly Integrated Digital Electronic Control) program was completed at NASA Dryden Flight Research Center in the fall of 1993. The flight research conducted during the last two years of the HIDEC program included two principal experiments: (1) performance seeking control (PSC), an adaptive, real-time, on-board optimization of engine, inlet, and horizontal tail position on the F-15; and (2) propulsion controlled aircraft (PCA), an augmented flight control system developed for landings as well as up-and-away flight that used only engine thrust (flight controls locked) for flight control. In September 1994, the background details and results of the PSC and PCA experiments were presented in an electronic workshop, accessible through the Dryden World Wide Web (http://www.dfrc.nasa.gov/dryden.html) and as a compact disk.
The Emerging Shield. The Air Force and the Evolution of Continental Air Defense 1945-1960
1991-01-01
flight plans other than those reported to the Presque Isle site. No one blamed the pilots; they had reported their changes in flighit to Canadian flight...monitor stations. Communications between the stations and ADC’s Presque Isle radar site had failed, and the course changes were not identified in the...Identification Zone: 134 "Pregnant Goose": 20 GOC on coast of: 156 Presque Isle , Maine: 170-71 Northw st emergency air defense for: Project CHARLEs: 145
Orion Launch Abort System Performance on Exploration Flight Test 1
NASA Technical Reports Server (NTRS)
McCauley, R.; Davidson, J.; Gonzalez, Guillermo
2015-01-01
This paper will present an overview of the flight test objectives and performance of the Orion Launch Abort System during Exploration Flight Test-1. Exploration Flight Test-1, the first flight test of the Orion spacecraft, was managed and led by the Orion prime contractor, Lockheed Martin, and launched atop a United Launch Alliance Delta IV Heavy rocket. This flight test was a two-orbit, high-apogee, high-energy entry, low-inclination test mission used to validate and test systems critical to crew safety. This test included the first flight test of the Launch Abort System preforming Orion nominal flight mission critical objectives. NASA is currently designing and testing the Orion Multi-Purpose Crew Vehicle (MPCV). Orion will serve as NASA's new exploration vehicle to carry astronauts to deep space destinations and safely return them to earth. The Orion spacecraft is composed of four main elements: the Launch Abort System, the Crew Module, the Service Module, and the Spacecraft Adapter (Fig. 1). The Launch Abort System (LAS) provides two functions; during nominal launches, the LAS provides protection for the Crew Module from atmospheric loads and heating during first stage flight and during emergencies provides a reliable abort capability for aborts that occur within the atmosphere. The Orion Launch Abort System (LAS) consists of an Abort Motor to provide the abort separation from the Launch Vehicle, an Attitude Control Motor to provide attitude and rate control, and a Jettison Motor for crew module to LAS separation (Fig. 2). The jettison motor is used during a nominal launch to separate the LAS from the Launch Vehicle (LV) early in the flight of the second stage when it is no longer needed for aborts and at the end of an LAS abort sequence to enable deployment of the crew module's Landing Recovery System. The LAS also provides a Boost Protective Cover fairing that shields the crew module from debris and the aero-thermal environment during ascent. Although the Orion Program has tested a number of the critical systems of the Orion spacecraft on the ground, the launch environment cannot be replicated completely on Earth. A number of flight tests have been conducted and are planned to demonstrate the performance and enable certification of the Orion Spacecraft. Exploration Flight Test 1, the first flight test of the Orion spacecraft, was successfully flown on December 5, 2014 from Cape Canaveral Air Force Station's Space Launch Complex 37. Orion's first flight was a two-orbit, high-apogee, high-energy entry, low-inclination test mission used to validate and test systems critical to crew safety, such as heat shield performance, separation events, avionics and software performance, attitude control and guidance, parachute deployment and recovery operations. One of the key separation events tested during this flight was the nominal jettison of the LAS. Data from this flight will be used to verify the function of the jettison motor to separate the Launch Abort System from the crew module so it can continue on with the mission. The LAS nominal jettison event on Exploration Flight Test 1 occurred at six minutes and twenty seconds after liftoff (See Fig. 3). The abort motor and attitude control motors were inert for Exploration Flight Test 1, since the mission did not require abort capabilities. A suite of developmental flight instrumentation was included on the flight test to provide data on spacecraft subsystems and separation events. This paper will focus on the flight test objectives and performance of the LAS during ascent and nominal jettison. Selected LAS subsystem flight test data will be presented and discussed in the paper. Exploration Flight Test -1 will provide critical data that will enable engineering to improve Orion's design and reduce risk for the astronauts it will protect as NASA continues to move forward on its human journey to Mars. The lessons learned from Exploration Flight Test 1 and the other Flight Test Vehicles will certainly contribute to the vehicle architecture of a human-rated space launch vehicle.
NASA Technical Reports Server (NTRS)
Clinedinst, Winston C.; Debure, Kelly R.; Dickson, Richard W.; Heaphy, William J.; Parks, Mark A.; Slominski, Christopher J.; Wolverton, David A.
1988-01-01
The Flight Management/Flight Controls (FM/FC) software for the Norden 2 (PDP-11/70M) computer installed on the NASA 737 aircraft is described. The software computes the navigation position estimates, guidance commands, those commands to be issued to the control surfaces to direct the aircraft in flight based on the modes selected on the Advanced Guidance Control System (AGSC) mode panel, and the flight path selected via the Navigation Control/Display Unit (NCDU).
X-38 in Flight during Second Free Flight
1999-02-06
NASA's X-38, a research vehicle developed as part of an effort to build an emergency Crew Return Vehicle (CRV) for the International Space Station, descends toward a desert lakebed under its steerable parafoil on its second free flight. The X-38 was launched from NASA Dryden's B-52 Mothership on Saturday, February 6, 1999, from an altitude of approximately 23,000 feet.
X-38 in Flight during Second Free Flight
1999-02-06
NASA's X-38, a research vehicle developed as part of an effort to build an emergency Crew Return Vehicle (CRV) for the International Space Station, descends toward the desert floor under its steerable parafoil on its second free flight. The X-38 was launched from NASA Dryden's B-52 Mothership on Saturday, February 6, 1999, from an altitude of approximately 23,000 feet.
Full-Scale Crash Tests and Analyses of Three High-Wing Single
NASA Technical Reports Server (NTRS)
Annett, Martin S.; Littell, Justin D.; Stimson, Chad M.; Jackson, Karen E.; Mason, Brian H.
2015-01-01
The NASA Emergency Locator Transmitter Survivability and Reliability (ELTSAR) project was initiated in 2014 to assess the crash performance standards for the next generation of ELT systems. Three Cessna 172 aircraft have been acquired to conduct crash testing at NASA Langley Research Center's Landing and Impact Research Facility. Testing is scheduled for the summer of 2015 and will simulate three crash conditions; a flare to stall while emergency landing, and two controlled flight into terrain scenarios. Instrumentation and video coverage, both onboard and external, will also provide valuable data of airframe response. Full-scale finite element analyses will be performed using two separate commercial explicit solvers. Calibration and validation of the models will be based on the airframe response under these varying crash conditions.
NASA Astrophysics Data System (ADS)
Yang, T. D.; Zhang, R. G.; Wang, C. M.; Fu, H. W.; Zhang, B. L.; Zhang, J. X.
1999-01-01
Cabin emergent depressurization (CED) may occur in spacecraft during manned space flight. The purpose of this paper was to study the combined effects of simulated weightlessness (SW) and CED factors on humans and animals. It was found that the amplitude of T wave of human electrocardiograms (ECG) significantly decreased in bed rest and hypoxia compared with the control condition (P<0.05), and that suspension with pure O2 induced severer edema in the lungs of rats than that in only a pure O2 environment. SW and pure O2 caused middle ear congestion and decreased the barofunction during pressure changes. These results indicate that human response to CED factors become more serious under SW because of the blood redistribution.
NASA Technical Reports Server (NTRS)
Kaufman, Howard
1998-01-01
Many papers relevant to reconfigurable flight control have appeared over the past fifteen years. In general these have consisted of theoretical issues, simulation experiments, and in some cases, actual flight tests. Results indicate that reconfiguration of flight controls is certainly feasible for a wide class of failures. However many of the proposed procedures although quite attractive, need further analytical and experimental studies for meaningful validation. Many procedures assume the availability of failure detection and identification logic that will supply adequately fast, the dynamics corresponding to the failed aircraft. This in general implies that the failure detection and fault identification logic must have access to all possible anticipated faults and the corresponding dynamical equations of motion. Unless some sort of explicit on line parameter identification is included, the computational demands could possibly be too excessive. This suggests the need for some form of adaptive control, either by itself as the prime procedure for control reconfiguration or in conjunction with the failure detection logic. If explicit or indirect adaptive control is used, then it is important that the identified models be such that the corresponding computed controls deliver adequate performance to the actual aircraft. Unknown changes in trim should be modelled, and parameter identification needs to be adequately insensitive to noise and at the same time capable of tracking abrupt changes. If however, both failure detection and system parameter identification turn out to be too time consuming in an emergency situation, then the concepts of direct adaptive control should be considered. If direct model reference adaptive control is to be used (on a linear model) with stability assurances, then a positive real or passivity condition needs to be satisfied for all possible configurations. This condition is often satisfied with a feedforward compensator around the plant. This compensator must be robustly designed such that the compensated plant satisfies the required positive real conditions over all expected parameter values. Furthermore, with the feedforward only around the plant, a nonzero (but bounded error) will exist in steady state between the plant and model outputs. This error can be removed by placing the compensator also in the reference model. Design of such a compensator should not be too difficult a problem since for flight control it is generally possible to feedback all the system states.
Linearized aerodynamic and control law models of the X-29A airplane and comparison with flight data
NASA Technical Reports Server (NTRS)
Bosworth, John T.
1992-01-01
Flight control system design and analysis for aircraft rely on mathematical models of the vehicle dynamics. In addition to a six degree of freedom nonlinear simulation, the X-29A flight controls group developed a set of programs that calculate linear perturbation models throughout the X-29A flight envelope. The models include the aerodynamics as well as flight control system dynamics and were used for stability, controllability, and handling qualities analysis. These linear models were compared to flight test results to help provide a safe flight envelope expansion. A description is given of the linear models at three flight conditions and two flight control system modes. The models are presented with a level of detail that would allow the reader to reproduce the linear results if desired. Comparison between the response of the linear model and flight measured responses are presented to demonstrate the strengths and weaknesses of the linear models' ability to predict flight dynamics.
NASA Astrophysics Data System (ADS)
Soppa, Uwe; Görlach, Thomas; Roenneke, Axel Justus
2002-01-01
As a solution to meet a safety requirement to the future full scale space station infrastructure, the Crew Return/Rescue Vehicle (CRV) was supposed to supply the return capability for the complete ISS crew of 7 astronauts back to earth in case of an emergency. A prototype of such a vehicle named X-38 has been developed and built by NASA with European partnership (ESA, DLR). An series of aerial demonstrators (V13x) for tests of the subsonic TAEM phase and the parafoil descent and landing system has been flown by NASA from 1998 to 2001. A full scale unmanned space flight demonstrator (V201) has been built at JSC Houston and although the project has been stopped for budgetary reasons in 2002, it will hopefully still be flown in near future. The X-38 is a lifting body with hypersonic lift to drag ratio about 0.9. In comparison to the Space Shuttle Orbiter, this design provides less aerodynamic maneuvrability and a different actuator layout (divided body flap and winglet rudders instead as combined aileron and elevon in addition to thrust- ers for the early re-entry phase). Hence, the guidance and control concepts used onboard the shuttle orbiter had to be adapted and further developed for the application on the new vehicle. In the frame of the European share of the X-38 project and also of the German TETRA (TEchnol- ogy for future space TRAnsportation) project different GNC related contributions have been made: First, the primary flight control software for the autonomous guidance and control of the X-38 para- foil descent and landing phase has been developed, integrated and successfully flown on multiple vehicles and missions during the aerial drop test campaign conducted by NASA. Second, a real time X-38 vehicle simulator was provided to NASA which has also been used for the validation of a European re-entry guidance and control software (see below). According to the NASA verification and validation plan this simulator is supposed to be used as an independent vali- dation tool for the X-38 re-entry simulation and onboard software. Third, alternate guidance and control algorithms for the re-entry flight phase of X-38, using onboard flight path optimization for the guidance task and dynamic inversion control methods for attitude control have been developed. The resulting alternate guidance and control software shall be flown as a flight experiment onboard the V201 spaceflight test vehicle. Fourth, a fault tolerant computer similar to the one used onboard the ISS is planned to be integrated into the V201 spaceflight test vehicle as a host of the re-entry GNC software mentioned above. This paper will summarize the development and test phases of European guidance and control soft- ware and avionics elements for the different phases of the X-38 mission. Flight test results from the X38 aerial drop test campaigns will be presented and discussed. In addition, the flight experiment of the fault tolerant computer will be described.
Experience with synchronous and asynchronous digital control systems. [for flight
NASA Technical Reports Server (NTRS)
Regenie, Victoria A.; Chacon, Claude V.; Lock, Wilton P.
1986-01-01
Flight control systems have undergone a revolution since the days of simple mechanical linkages; presently the most advanced systems are full-authority, full-time digital systems controlling unstable aircraft. With the use of advanced control systems, the aerodynamic design can incorporate features that allow greater performance and fuel savings, as can be seen on the new Airbus design and advanced tactical fighter concepts. These advanced aircraft will be and are relying on the flight control system to provide the stability and handling qualities required for safe flight and to allow the pilot to control the aircraft. Various design philosophies have been proposed and followed to investigate system architectures for these advanced flight control systems. One major area of discussion is whether a multichannel digital control system should be synchronous or asynchronous. This paper addressed the flight experience at the Dryden Flight Research Facility of NASA's Ames Research Center with both synchronous and asynchronous digital flight control systems. Four different flight control systems are evaluated against criteria such as software reliability, cost increases, and schedule delays.
14 CFR 27.673 - Primary flight control.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Primary flight control. 27.673 Section 27... AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction Control Systems § 27.673 Primary flight control. Primary flight controls are those used by the pilot for immediate control of pitch, roll...
14 CFR 29.673 - Primary flight controls.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Primary flight controls. 29.673 Section 29... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction Control Systems § 29.673 Primary flight controls. Primary flight controls are those used by the pilot for immediate control of pitch, roll...
14 CFR 29.673 - Primary flight controls.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Primary flight controls. 29.673 Section 29... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction Control Systems § 29.673 Primary flight controls. Primary flight controls are those used by the pilot for immediate control of pitch, roll...
14 CFR 27.673 - Primary flight control.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Primary flight control. 27.673 Section 27... AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction Control Systems § 27.673 Primary flight control. Primary flight controls are those used by the pilot for immediate control of pitch, roll...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-17
... for transport category airplanes. These design features include an electronic flight control system... Design Features The GVI has an electronic flight control system and no direct coupling from the cockpit...: Gulfstream Model GVI Airplane; Electronic Flight Control System: Control Surface Position Awareness AGENCY...
14 CFR 27.673 - Primary flight control.
Code of Federal Regulations, 2013 CFR
2013-01-01
... AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction Control Systems § 27.673 Primary flight control. Primary flight controls are those used by the pilot for immediate control of pitch, roll... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Primary flight control. 27.673 Section 27...
14 CFR 29.673 - Primary flight controls.
Code of Federal Regulations, 2013 CFR
2013-01-01
... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction Control Systems § 29.673 Primary flight controls. Primary flight controls are those used by the pilot for immediate control of pitch, roll... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Primary flight controls. 29.673 Section 29...
STS-119 Flight Control Team in WFCR - Orbit 3 - Flight Director Bryan Lunney
2009-03-24
JSC2009-E-061542 (24 March 2009) --- The members of the STS-119 Orbit 3 flight control team pose for a group portrait in the space shuttle flight control room in the Mission Control Center at NASA?s Johnson Space Center. Flight director Bryan Lunney (center) near the front.
STS-125 Flight Control Team in WFCR - Orbit 1 - Flight Director Tony Ceccacci
2009-05-20
JSC2009-E-120813 (20 May 2009) --- The members of the STS-125 Orbit 1 flight control team pose for a group portrait in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center. Flight director Tony Ceccacci holds the STS-125 mission logo.
STS-131 Flight Control Team in WFCR - Orbit 2 - Flight Director Mike Sarafin
2010-04-14
JSC2010-E-051978 (14 April 2010) --- The members of the STS-131 Orbit 2 flight control team pose for a group portrait in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center. Flight director Mike Sarafin holds the STS-131 mission logo.
STS-131 Flight Control Team in WFCR - Planning - Flight Director: Ginger Kerrick
2010-04-12
JSC2010-E-050902 (12 April 2010) --- The members of the STS-131 Planning flight control team pose for a group portrait in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center. Flight director Ginger Kerrick (center) is visible on the second row.
Software systems for operation, control, and monitoring of the EBEX instrument
NASA Astrophysics Data System (ADS)
Milligan, Michael; Ade, Peter; Aubin, François; Baccigalupi, Carlo; Bao, Chaoyun; Borrill, Julian; Cantalupo, Christopher; Chapman, Daniel; Didier, Joy; Dobbs, Matt; Grainger, Will; Hanany, Shaul; Hillbrand, Seth; Hubmayr, Johannes; Hyland, Peter; Jaffe, Andrew; Johnson, Bradley; Kisner, Theodore; Klein, Jeff; Korotkov, Andrei; Leach, Sam; Lee, Adrian; Levinson, Lorne; Limon, Michele; MacDermid, Kevin; Matsumura, Tomotake; Miller, Amber; Pascale, Enzo; Polsgrove, Daniel; Ponthieu, Nicolas; Raach, Kate; Reichborn-Kjennerud, Britt; Sagiv, Ilan; Tran, Huan; Tucker, Gregory S.; Vinokurov, Yury; Yadav, Amit; Zaldarriaga, Matias; Zilic, Kyle
2010-07-01
We present the hardware and software systems implementing autonomous operation, distributed real-time monitoring, and control for the EBEX instrument. EBEX is a NASA-funded balloon-borne microwave polarimeter designed for a 14 day Antarctic flight that circumnavigates the pole. To meet its science goals the EBEX instrument autonomously executes several tasks in parallel: it collects attitude data and maintains pointing control in order to adhere to an observing schedule; tunes and operates up to 1920 TES bolometers and 120 SQUID amplifiers controlled by as many as 30 embedded computers; coordinates and dispatches jobs across an onboard computer network to manage this detector readout system; logs over 3 GiB/hour of science and housekeeping data to an onboard disk storage array; responds to a variety of commands and exogenous events; and downlinks multiple heterogeneous data streams representing a selected subset of the total logged data. Most of the systems implementing these functions have been tested during a recent engineering flight of the payload, and have proven to meet the target requirements. The EBEX ground segment couples uplink and downlink hardware to a client-server software stack, enabling real-time monitoring and command responsibility to be distributed across the public internet or other standard computer networks. Using the emerging dirfile standard as a uniform intermediate data format, a variety of front end programs provide access to different components and views of the downlinked data products. This distributed architecture was demonstrated operating across multiple widely dispersed sites prior to and during the EBEX engineering flight.
STS-125 Flight Controllers on Console - (Orbit Shift 2). Flight Director: Richard LaBrode
2009-05-12
JSC2009-E-119382 (12 May 2009) --- Flight director Rick LaBrode monitors data at his console in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during STS-125 flight day two activities. Flight director Chris Edelen is at right.
NASA Technical Reports Server (NTRS)
Litt, Jonathan S.; Guo, Ten-Huei; Sowers, T. Shane; Chicatelli, Amy K.; Fulton, Christopher E.; May, Ryan D.; Owen, A. Karl
2012-01-01
This paper describes the implementation and evaluation of a yaw rate to throttle feedback system designed to replace a damaged rudder. It can act as a Dutch roll damper and as a means to facilitate pilot input for crosswind landings. Enhanced propulsion control modes were implemented to increase responsiveness and thrust level of the engine, which impact flight dynamics and performance. Piloted evaluations were performed to determine the capability of the engines to substitute for the rudder function under emergency conditions. The results showed that this type of implementation is beneficial, but the engines' capability to replace the rudder is limited.
Flight Approach to Adaptive Control Research
NASA Technical Reports Server (NTRS)
Pavlock, Kate Maureen; Less, James L.; Larson, David Nils
2011-01-01
The National Aeronautics and Space Administration's Dryden Flight Research Center completed flight testing of adaptive controls research on a full-scale F-18 testbed. The testbed served as a full-scale vehicle to test and validate adaptive flight control research addressing technical challenges involved with reducing risk to enable safe flight in the presence of adverse conditions such as structural damage or control surface failures. This paper describes the research interface architecture, risk mitigations, flight test approach and lessons learned of adaptive controls research.
ISS-12A.1 Orbit 1 Flight Control Team in FCR-1 with Flight Director Derek Hassmann
2006-12-15
JSC2006-E-54411 (15 Dec. 2006) --- The members of the STS-116/12A.1 ISS Orbit 1 flight control team pose for a group portrait in the station flight control room of Houston's Mission Control Center (MCC). Flight director Derek Hassman (center right) holds the STS-116 mission logo. Astronaut Terry W. Virts Jr., spacecraft communicator (CAPCOM), is at center. PHALCON flight controller Scott Stover (center left) holds the P5 truss power reconfiguration logo.
L(sub 1) Adaptive Flight Control System: Flight Evaluation and Technology Transition
NASA Technical Reports Server (NTRS)
Xargay, Enric; Hovakimyan, Naira; Dobrokhodov, Vladimir; Kaminer, Isaac; Gregory, Irene M.; Cao, Chengyu
2010-01-01
Certification of adaptive control technologies for both manned and unmanned aircraft represent a major challenge for current Verification and Validation techniques. A (missing) key step towards flight certification of adaptive flight control systems is the definition and development of analysis tools and methods to support Verification and Validation for nonlinear systems, similar to the procedures currently used for linear systems. In this paper, we describe and demonstrate the advantages of L(sub l) adaptive control architectures for closing some of the gaps in certification of adaptive flight control systems, which may facilitate the transition of adaptive control into military and commercial aerospace applications. As illustrative examples, we present the results of a piloted simulation evaluation on the NASA AirSTAR flight test vehicle, and results of an extensive flight test program conducted by the Naval Postgraduate School to demonstrate the advantages of L(sub l) adaptive control as a verifiable robust adaptive flight control system.
Flight Test of an Intelligent Flight-Control System
NASA Technical Reports Server (NTRS)
Davidson, Ron; Bosworth, John T.; Jacobson, Steven R.; Thomson, Michael Pl; Jorgensen, Charles C.
2003-01-01
The F-15 Advanced Controls Technology for Integrated Vehicles (ACTIVE) airplane (see figure) was the test bed for a flight test of an intelligent flight control system (IFCS). This IFCS utilizes a neural network to determine critical stability and control derivatives for a control law, the real-time gains of which are computed by an algorithm that solves the Riccati equation. These derivatives are also used to identify the parameters of a dynamic model of the airplane. The model is used in a model-following portion of the control law, in order to provide specific vehicle handling characteristics. The flight test of the IFCS marks the initiation of the Intelligent Flight Control System Advanced Concept Program (IFCS ACP), which is a collaboration between NASA and Boeing Phantom Works. The goals of the IFCS ACP are to (1) develop the concept of a flight-control system that uses neural-network technology to identify aircraft characteristics to provide optimal aircraft performance, (2) develop a self-training neural network to update estimates of aircraft properties in flight, and (3) demonstrate the aforementioned concepts on the F-15 ACTIVE airplane in flight. The activities of the initial IFCS ACP were divided into three Phases, each devoted to the attainment of a different objective. The objective of Phase I was to develop a pre-trained neural network to store and recall the wind-tunnel-based stability and control derivatives of the vehicle. The objective of Phase II was to develop a neural network that can learn how to adjust the stability and control derivatives to account for failures or modeling deficiencies. The objective of Phase III was to develop a flight control system that uses the neural network outputs as a basis for controlling the aircraft. The flight test of the IFCS was performed in stages. In the first stage, the Phase I version of the pre-trained neural network was flown in a passive mode. The neural network software was running using flight data inputs with the outputs provided to instrumentation only. The IFCS was not used to control the airplane. In another stage of the flight test, the Phase I pre-trained neural network was integrated into a Phase III version of the flight control system. The Phase I pretrained neural network provided realtime stability and control derivatives to a Phase III controller that was based on a stochastic optimal feedforward and feedback technique (SOFFT). This combined Phase I/III system was operated together with the research flight-control system (RFCS) of the F-15 ACTIVE during the flight test. The RFCS enables the pilot to switch quickly from the experimental- research flight mode back to the safe conventional mode. These initial IFCS ACP flight tests were completed in April 1999. The Phase I/III flight test milestone was to demonstrate, across a range of subsonic and supersonic flight conditions, that the pre-trained neural network could be used to supply real-time aerodynamic stability and control derivatives to the closed-loop optimal SOFFT flight controller. Additional objectives attained in the flight test included (1) flight qualification of a neural-network-based control system; (2) the use of a combined neural-network/closed-loop optimal flight-control system to obtain level-one handling qualities; and (3) demonstration, through variation of control gains, that different handling qualities can be achieved by setting new target parameters. In addition, data for the Phase-II (on-line-learning) neural network were collected, during the use of stacked-frequency- sweep excitation, for post-flight analysis. Initial analysis of these data showed the potential for future flight tests that will incorporate the real-time identification and on-line learning aspects of the IFCS.
Flight crew aiding for recovery from subsystem failures
NASA Technical Reports Server (NTRS)
Hudlicka, E.; Corker, K.; Schudy, R.; Baron, Sheldon
1990-01-01
Some of the conceptual issues associated with pilot aiding systems are discussed and an implementation of one component of such an aiding system is described. It is essential that the format and content of the information the aiding system presents to the crew be compatible with the crew's mental models of the task. It is proposed that in order to cooperate effectively, both the aiding system and the flight crew should have consistent information processing models, especially at the point of interface. A general information processing strategy, developed by Rasmussen, was selected to serve as the bridge between the human and aiding system's information processes. The development and implementation of a model-based situation assessment and response generation system for commercial transport aircraft are described. The current implementation is a prototype which concentrates on engine and control surface failure situations and consequent flight emergencies. The aiding system, termed Recovery Recommendation System (RECORS), uses a causal model of the relevant subset of the flight domain to simulate the effects of these failures and to generate appropriate responses, given the current aircraft state and the constraints of the current flight phase. Since detailed information about the aircraft state may not always be available, the model represents the domain at varying levels of abstraction and uses the less detailed abstraction levels to make inferences when exact information is not available. The structure of this model is described in detail.
Experience with synchronous and asynchronous digital control systems
NASA Technical Reports Server (NTRS)
Regenie, V. A.; Chacon, C. V.; Lock, W. P.
1986-01-01
Flight control systems have undergone a revolution since the days of simple mechanical linkages; presently the most advanced systems are full-authority, full-time digital systems controlling unstable aircraft. With the use of advanced control systems, the aerodynamic design can incorporate features that allow greater performance and fuel savings, as can be seen on the new Airbus design and advanced tactical fighter concepts. These advanced aircraft will be and are relying on the flight control system to provide the stability and handling qualities required for safe flight and to allow the pilot to control the aircraft. Various design philosophies have been proposed and followed to investigate system architectures for these advanced flight control systems. One major area of discussion is whether a multichannel digital control system should be synchronous or asynchronous. This paper addressed the flight experience at the Dryden Flight Research Facility of NASA's Ames Research Center with both synchronous and asynchronous digital flight control systems. Four different flight control systems are evaluated against criteria such as software reliability, cost increases, and schedule delays.
An Overview of Controls and Flying Qualities Technology on the F/A-18 High Alpha Research Vehicle
NASA Technical Reports Server (NTRS)
Pahle, Joseph W.; Wichman, Keith D.; Foster, John V.; Bundick, W. Thomas
1996-01-01
The NASA F/A-18 High Alpha Research Vehicle (HARV) has been the flight test bed of a focused technology effort to significantly increase maneuvering capability at high angles of attack. Development and flight test of control law design methodologies, handling qualities metrics, performance guidelines, and flight evaluation maneuvers are described. The HARV has been modified to include two research control effectors, thrust vectoring, and actuated forebody strakes in order to provide increased control power at high angles of attack. A research flight control system has been used to provide a flexible, easily modified capability for high-angle-of-attack research controls. Different control law design techniques have been implemented and flight-tested, including eigenstructure assignment, variable gain output feedback, pseudo controls, and model-following. Extensive piloted simulation has been used to develop nonlinear performance guide-lines and handling qualities criteria for high angles of attack. This paper reviews the development and evaluation of technologies useful for high-angle-of-attack control. Design, development, and flight test of the research flight control system, control laws, flying qualities specifications, and flight test maneuvers are described. Flight test results are used to illustrate some of the lessons learned during flight test and handling qualities evaluations.
A Demonstration Advanced Avionics System for general aviation
NASA Technical Reports Server (NTRS)
Denery, D. G.; Callas, G. P.; Jackson, C. T.; Berkstresser, B. K.; Hardy, G. H.
1979-01-01
A program initiated within NASA has emphasized the use of a data bus, microprocessors, electronic displays and data entry devices for general aviation. A Demonstration Advanced Avionics System (DAAS) capable of evaluating critical and promising elements of an integrating system that will perform the functions of (1) automated guidance and navigation; (2) flight planning; (3) weight and balance performance computations; (4) monitoring and warning; and (5) storage of normal and emergency check lists and operational limitations is described. Consideration is given to two major parts of the DAAS instrument panel: the integrated data control center and an electronic horizontal situation indicator, and to the system architecture. The system is to be installed in the Ames Research Center's Cessna 402B in the latter part of 1980; engineering flight testing will begin in the first part of 1981.
Flight control actuation system
NASA Technical Reports Server (NTRS)
Wingett, Paul T. (Inventor); Gaines, Louie T. (Inventor); Evans, Paul S. (Inventor); Kern, James I. (Inventor)
2004-01-01
A flight control actuation system comprises a controller, electromechanical actuator and a pneumatic actuator. During normal operation, only the electromechanical actuator is needed to operate a flight control surface. When the electromechanical actuator load level exceeds 40 amps positive, the controller activates the pneumatic actuator to offset electromechanical actuator loads to assist the manipulation of flight control surfaces. The assistance from the pneumatic load assist actuator enables the use of an electromechanical actuator that is smaller in size and mass, requires less power, needs less cooling processes, achieves high output forces and adapts to electrical current variations. The flight control actuation system is adapted for aircraft, spacecraft, missiles, and other flight vehicles, especially flight vehicles that are large in size and travel at high velocities.
Flight control actuation system
NASA Technical Reports Server (NTRS)
Wingett, Paul T. (Inventor); Gaines, Louie T. (Inventor); Evans, Paul S. (Inventor); Kern, James I. (Inventor)
2006-01-01
A flight control actuation system comprises a controller, electromechanical actuator and a pneumatic actuator. During normal operation, only the electromechanical actuator is needed to operate a flight control surface. When the electromechanical actuator load level exceeds 40 amps positive, the controller activates the pneumatic actuator to offset electromechanical actuator loads to assist the manipulation of flight control surfaces. The assistance from the pneumatic load assist actuator enables the use of an electromechanical actuator that is smaller in size and mass, requires less power, needs less cooling processes, achieves high output forces and adapts to electrical current variations. The flight control actuation system is adapted for aircraft, spacecraft, missiles, and other flight vehicles, especially flight vehicles that are large in size and travel at high velocities.
Visual cues to geographical orientation during low-level flight
NASA Technical Reports Server (NTRS)
Battiste, Vernol; Delzell, Suzanne
1991-01-01
A field study of an operational Emergency Medical Service (EMS) unit was conducted to investigate the relationships among geographical orientation, pilot decision making, and workload in EMS flights. The map data collected during this study were compared to protocols gathered in the laboratory, where pilots viewed a simulated flight over different types of unfamiliar terrain and verbally identified the features utilized to maintain geographical orientation. The EMS pilot's questionnaire data were compared with data from non-EMS helicopter pilots with comparable flight experience.
Expedition 13 flight controller on console during mission - Orbit 1, BFCR
2006-08-31
JSC2006-E-38926 (31 Aug. 2006) --- Flight director Rick LaBrode discusses Expedition 13 mission activities with another flight controller (out of frame) in the Station (Blue) Flight Control Room in Houston's Mission Control Center.
IMPAC: An Integrated Methodology for Propulsion and Airframe Control
NASA Technical Reports Server (NTRS)
Garg, Sanjay; Ouzts, Peter J.; Lorenzo, Carl F.; Mattern, Duane L.
1991-01-01
The National Aeronautics and Space Administration is actively involved in the development of enabling technologies that will lead towards aircraft with new/enhanced maneuver capabilities such as Short Take-Off Vertical Landing (STOVL) and high angle of attack performance. Because of the high degree of dynamic coupling between the airframe and propulsion systems of these types of aircraft, one key technology is the integration of the flight and propulsion control. The NASA Lewis Research Center approach to developing Integrated Flight Propulsion Control (IFPC) technologies is an in-house research program referred to as IMPAC (Integrated Methodology for Propulsion and Airframe Control). The goals of IMPAC are to develop a viable alternative to the existing integrated control design methodologies that will allow for improved system performance and simplicity of control law synthesis and implementation, and to demonstrate the applicability of the methodology to a supersonic STOVL fighter aircraft. Based on some preliminary control design studies that included evaluation of the existing methodologies, the IFPC design methodology that is emerging at the Lewis Research Center consists of considering the airframe and propulsion system as one integrated system for an initial centralized controller design and then partitioning the centralized controller into separate airframe and propulsion system subcontrollers to ease implementation and to set meaningful design requirements for detailed subsystem control design and evaluation. An overview of IMPAC is provided and detailed discussion of the various important design and evaluation steps in the methodology are included.
14 CFR 29.673 - Primary flight controls.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Primary flight controls. 29.673 Section 29.673 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... flight controls. Primary flight controls are those used by the pilot for immediate control of pitch, roll...
14 CFR 29.673 - Primary flight controls.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Primary flight controls. 29.673 Section 29.673 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... flight controls. Primary flight controls are those used by the pilot for immediate control of pitch, roll...
14 CFR 27.673 - Primary flight control.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Primary flight control. 27.673 Section 27.673 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... flight control. Primary flight controls are those used by the pilot for immediate control of pitch, roll...
14 CFR 27.673 - Primary flight control.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Primary flight control. 27.673 Section 27.673 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... flight control. Primary flight controls are those used by the pilot for immediate control of pitch, roll...
STS-125 Flight Control Team in WFCR - Orbit 2 - Flight Director Richard LaBrode
2009-05-20
JSC2009-E-120845 (20 May 2009) --- The members of the STS-125 Orbit 2 flight control team pose for a group portrait in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center. Flight director Rick LaBrode (right) is visible on the front row.
STS-125 Flight Control Team in WFCR - Orbit 3 - Flight Director Paul Dye
2009-05-20
JSC2009-E-120846 (20 May 2009) --- The members of the STS-125 Orbit 3 flight control team pose for a group portrait in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center. Flight director Paul Dye (center left) is visible on the front row.
STS-131 Flight Control Team in WFCR - Orbit 1 - Flight Director: Richard Jones
2010-04-12
JSC2010-E-050680 (12 April 2010) --- The members of the STS-131 Orbit 1 flight control team pose for a group portrait in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center. Flight director Richard Jones (second left) is on the front row.
NASA Technical Reports Server (NTRS)
Stewart, James F.; Shuck, Thomas L.
1990-01-01
Flight tests conducted with the self-repairing flight control system (SRFCS) installed on the NASA F-15 highly integrated digital electronic control aircraft are described. The development leading to the current SRFCS configuration is highlighted. Key objectives of the program are outlined: (1) to flight-evaluate a control reconfiguration strategy with three types of control surface failure; (2) to evaluate a cockpit display that will inform the pilot of the maneuvering capacity of the damage aircraft; and (3) to flight-evaluate the onboard expert system maintenance diagnostics process using representative faults set to occur only under maneuvering conditions. Preliminary flight results addressing the operation of the overall system, as well as the individual technologies, are included.
The Flight Service Station Training Program : 1981-1985.
DOT National Transportation Integrated Search
1986-06-01
This report describes the performance of the ATC classes in the Flight Service Station Training Program 1981 to 1985 on the skills tests and laboratory exercises in Preflight (pilot briefing), Inflight, and Emergency Services. Over 80% of the final g...
NASA Technical Reports Server (NTRS)
1978-01-01
The Mission Control Center Shuttle (MCC) Shuttle Orbital Flight Test (OFT) Data System (OFTDS) provides facilities for flight control and data systems personnel to monitor and control the Shuttle flights from launch (tower clear) to rollout (wheels stopped on runway). It also supports the preparation for flight (flight planning, flight controller and crew training, and integrated vehicle and network testing activities). The MCC Shuttle OFTDS is described in detail. Three major support systems of the OFTDS and the data types and sources of data entering or exiting the MCC were illustrated. These systems are the communication interface system, the data computation complex, and the display and control system.
NASA Technical Reports Server (NTRS)
Baumann, Ethan
2006-01-01
A viewgraph presentation detailing X-43A Flight controls at NASA Dryden Flight Research Center is shown. The topics include: 1) NASA Dryden, Overview and current and recent flight test programs; 2) Unmanned Aerial Vehicle Synthetic Aperture Radar (UAVSAR) Program, Program Overview and Platform Precision Autopilot; and 3) Hyper-X Program, Program Overview, X-43A Flight Controls and Flight Results.
Mission Adaptive Uas Capabilities for Earth Science and Resource Assessment
NASA Astrophysics Data System (ADS)
Dunagan, S.; Fladeland, M.; Ippolito, C.; Knudson, M.; Young, Z.
2015-04-01
Unmanned aircraft systems (UAS) are important assets for accessing high risk airspace and incorporate technologies for sensor coordination, onboard processing, tele-communication, unconventional flight control, and ground based monitoring and optimization. These capabilities permit adaptive mission management in the face of complex requirements and chaotic external influences. NASA Ames Research Center has led a number of Earth science remote sensing missions directed at the assessment of natural resources and here we describe two resource mapping problems having mission characteristics requiring a mission adaptive capability extensible to other resource assessment challenges. One example involves the requirement for careful control over solar angle geometry for passive reflectance measurements. This constraint exists when collecting imaging spectroscopy data over vegetation for time series analysis or for the coastal ocean where solar angle combines with sea state to produce surface glint that can obscure the signal. Furthermore, the primary flight control imperative to minimize tracking error should compromise with the requirement to minimize aircraft motion artifacts in the spatial measurement distribution. A second example involves mapping of natural resources in the Earth's crust using precision magnetometry. In this case the vehicle flight path must be oriented to optimize magnetic flux gradients over a spatial domain having continually emerging features, while optimizing the efficiency of the spatial mapping task. These requirements were highlighted in recent Earth Science missions including the OCEANIA mission directed at improving the capability for spectral and radiometric reflectance measurements in the coastal ocean, and the Surprise Valley Mission directed at mapping sub-surface mineral composition and faults, using high-sensitivity magnetometry. This paper reports the development of specific aircraft control approaches to incorporate the unusual and demanding requirements to manage solar angle, aircraft attitude and flight path orientation, and efficient (directly geo-rectified) surface and sub-surface mapping, including the near-time optimization of these sometimes competing requirements.
NASA Technical Reports Server (NTRS)
Hanson, Curt
2014-01-01
An adaptive augmenting control algorithm for the Space Launch System has been developed at the Marshall Space Flight Center as part of the launch vehicles baseline flight control system. A prototype version of the SLS flight control software was hosted on a piloted aircraft at the Armstrong Flight Research Center to demonstrate the adaptive controller on a full-scale realistic application in a relevant flight environment. Concerns regarding adverse interactions between the adaptive controller and a proposed manual steering mode were investigated by giving the pilot trajectory deviation cues and pitch rate command authority.
Digital Electronic Engine Control (DEEC) Flight Evaluation in an F-15 Airplane
NASA Technical Reports Server (NTRS)
1984-01-01
Flight evaluation in an F-15 aircraft by digital electronic engine control (DEEC) was investigated. Topics discussed include: system description, F100 engine tests, effects of inlet distortion on static pressure probe, flight tests, digital electronic engine control fault detection and accommodation flight evaluation, flight evaluation of a hydromechanical backup control, augmentor transient capability of an F100 engine, investigation of nozzle instability, real time in flight thrust calculation, and control technology for future aircraft propulsion systems. It is shown that the DEEC system is a powerful and flexible controller for the F100 engine.
NASA Technical Reports Server (NTRS)
Wolverton, David A.; Dickson, Richard W.; Clinedinst, Winston C.; Slominski, Christopher J.
1993-01-01
The flight software developed for the Flight Management/Flight Controls (FM/FC) MicroVAX computer used on the Transport Systems Research Vehicle for Advanced Transport Operating Systems (ATOPS) research is described. The FM/FC software computes navigation position estimates, guidance commands, and those commands issued to the control surfaces to direct the aircraft in flight. Various modes of flight are provided for, ranging from computer assisted manual modes to fully automatic modes including automatic landing. A high-level system overview as well as a description of each software module comprising the system is provided. Digital systems diagrams are included for each major flight control component and selected flight management functions.
14 CFR 23.673 - Primary flight controls.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Primary flight controls. 23.673 Section 23... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Design and Construction Control Systems § 23.673 Primary flight controls. Primary flight controls are those used by the pilot for...
14 CFR 23.673 - Primary flight controls.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Primary flight controls. 23.673 Section 23... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Design and Construction Control Systems § 23.673 Primary flight controls. Primary flight controls are those used by the pilot for...
14 CFR 23.673 - Primary flight controls.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Primary flight controls. 23.673 Section 23... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Design and Construction Control Systems § 23.673 Primary flight controls. Primary flight controls are those used by the pilot for...
14 CFR 23.673 - Primary flight controls.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Primary flight controls. 23.673 Section 23... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Design and Construction Control Systems § 23.673 Primary flight controls. Primary flight controls are those used by the pilot for...
14 CFR 23.673 - Primary flight controls.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Primary flight controls. 23.673 Section 23... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Design and Construction Control Systems § 23.673 Primary flight controls. Primary flight controls are those used by the pilot for...
NASA Flight Operations of Ikhana and Global Hawk
NASA Technical Reports Server (NTRS)
Posada, Herman D.
2009-01-01
This viewgraph presentation reviews the flight operations of Ikhana and Global Hawk Fire missions. The Ikhana fire missions modifications, ground systems, flight operations, range safety zones, primary and secondary emergency landing sites, and the Ikhana western states fire missions of 2007 are described, along with The Global Hawk specs, a description of the Global Hawk Pacific Science Campaign (GloPac '09) and GloPac payloads.
DOT National Transportation Integrated Search
1995-08-21
This report explains the accident involving Atlantic Southeast Airlines flight 529, an EMB-120RT airplane, which experienced the loss of a propeller blade and crashed during an emergency landing near Carrollton, Georgia, on August 21, 1995. Safety is...
NASA Technical Reports Server (NTRS)
Antoniewicz, Robert F.; Duke, Eugene L.; Menon, P. K. A.
1991-01-01
The design of nonlinear controllers has relied on the use of detailed aerodynamic and engine models that must be associated with the control law in the flight system implementation. Many of these controllers were applied to vehicle flight path control problems and have attempted to combine both inner- and outer-loop control functions in a single controller. An approach to the nonlinear trajectory control problem is presented. This approach uses linearizing transformations with measurement feedback to eliminate the need for detailed aircraft models in outer-loop control applications. By applying this approach and separating the inner-loop and outer-loop functions two things were achieved: (1) the need for incorporating detailed aerodynamic models in the controller is obviated; and (2) the controller is more easily incorporated into existing aircraft flight control systems. An implementation of the controller is discussed, and this controller is tested on a six degree-of-freedom F-15 simulation and in flight on an F-15 aircraft. Simulation data are presented which validates this approach over a large portion of the F-15 flight envelope. Proof of this concept is provided by flight-test data that closely matches simulation results. Flight-test data are also presented.
Spacecraft Design Thermal Control Subsystem
NASA Technical Reports Server (NTRS)
Miyake, Robert N.
2008-01-01
The Thermal Control Subsystem engineers task is to maintain the temperature of all spacecraft components, subsystems, and the total flight system within specified limits for all flight modes from launch to end-of-mission. In some cases, specific stability and gradient temperature limits will be imposed on flight system elements. The Thermal Control Subsystem of "normal" flight systems, the mass, power, control, and sensing systems mass and power requirements are below 10% of the total flight system resources. In general the thermal control subsystem engineer is involved in all other flight subsystem designs.
Autonomous formation flight of helicopters: Model predictive control approach
NASA Astrophysics Data System (ADS)
Chung, Hoam
Formation flight is the primary movement technique for teams of helicopters. However, the potential for accidents is greatly increased when helicopter teams are required to fly in tight formations and under harsh conditions. This dissertation proposes that the automation of helicopter formations is a realistic solution capable of alleviating risks. Helicopter formation flight operations in battlefield situations are highly dynamic and dangerous, and, therefore, we maintain that both a high-level formation management system and a distributed coordinated control algorithm should be implemented to help ensure safe formations. The starting point for safe autonomous formation flights is to design a distributed control law attenuating external disturbances coming into a formation, so that each vehicle can safely maintain sufficient clearance between it and all other vehicles. While conventional methods are limited to homogeneous formations, our decentralized model predictive control (MPC) approach allows for heterogeneity in a formation. In order to avoid the conservative nature inherent in distributed MPC algorithms, we begin by designing a stable MPC for individual vehicles, and then introducing carefully designed inter-agent coupling terms in a performance index. Thus the proposed algorithm works in a decentralized manner, and can be applied to the problem of helicopter formations comprised of heterogenous vehicles. Individual vehicles in a team may be confronted by various emerging situations that will require the capability for in-flight reconfiguration. We propose the concept of a formation manager to manage separation, join, and synchronization of flight course changes. The formation manager accepts an operator's commands, information from neighboring vehicles, and its own vehicle states. Inside the formation manager, there are multiple modes and complex mode switchings represented as a finite state machine (FSM). Based on the current mode and collected information, the FSM generates discrete reference points in state space. Then, the reference trajectory generator makes smooth trajectories from discrete reference points using interpolation and/or an online optimization scheme. By modifying the reference trajectory and triggering mode changes, the formation manager can override behaviors of the MPC controller. When a vehicle outside of the formation approaches a vehicle at the edge of the formation, the motion of the vehicle at the formation edge acts like a disturbance with respect to the vehicle attempting to join the formation. The vehicle at the edge of the formation cannot cooperate with any vehicle outside of the formation due to constraints on maintaining the existing formation. (Abstract shortened by UMI.)
STS-125 Flight Controllers on Console - (Orbit Shift 2). Flight Director: Richard LaBrode
2009-05-12
JSC2009-E-119390 (12 May 2009) --- Flight director Rick LaBrode monitors data at his console in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during STS-125 flight day two activities.
Muscle Feasibility for Cosmos Rhesus
NASA Technical Reports Server (NTRS)
Edgerton, V. Reggie (Principal Investigator); Roland, Roy R.; Hodgson, John A.
1994-01-01
The following tasks were proposed for the Cosmos project: 1) Complete recordings of all preflight candidates during performance of a foot pedal motor control task while in the space capsule mock-up. 2) Complete recordings of all preflight candidates during locomotion and postural tasks. 3) Complete recordings of 24-hour spontaneous cage activity in the two flight monkeys before and after flight and of at least three control (non-flight) monkeys after the flight has been completed. 4) Complete recordings of the foot pedal and motor control tasks during flight and postflight as scheduled. 5) Complete recordings of the vertical drop test pre, during and postflight for the two flight and three control monkeys. 6) Complete recordings of locomotion and posture tests of the two flight monkeys postflight. 7) Complete recordings of locomotion and postural tests of at least three control (non-flight) monkeys during the postflight period. 8) Recalibrate buckles of the two flight and of at least three control monkeys postflight. 9) Complete analysis of the 24 hour EMG recordings of all monkeys. 10) Complete analysis of the foot pedal, locomotor and postural motor control tasks for the two flight and three control monkeys. It was proposed that efforts in the first postflight year be concentrated on the two flight animals and three postflight animals.
Flight simulation for flight control computer S/N 0104-1 (ASTP)
NASA Technical Reports Server (NTRS)
1975-01-01
Flight control computer (FCC) 0104-I has been designated the prime unit for the SA-210 launch vehicle. The results of the final flight simulation for FCC S/N 0104-I are documented. These results verify satisfactory implementation of the design release and proper interfacing of the FCC with flight-type control sensor elements and simulated thrust vector control system.
ISS15A Flight Control Team in FCR-1 Orbit 1 - Flight Director Kwatsi Alibaruho
2009-03-20
JSC2009-E-060959 (20 March 2009) --- The members of the STS-119/15A ISS Orbit 1 flight control team pose for a group portrait in the space station flight control room in the Mission Control Center at NASA’s Johnson Space Center. Flight director Kwatsi Alibaruho (right) is visible on the front row.
STS-131/19A Flight Control Team in FCR-1 - Orbit 1- Flight Director Ron Spencer
2010-04-14
JSC2010-E-052008 (14 April 2010) --- The members of the STS-131/19A ISS Orbit 2 flight control team pose for a group portrait in the space station flight control room in the Mission Control Center at NASA's Johnson Space Center. Flight director Ron Spencer (right) holds the STS-131 mission logo.
ISS ULF2 Flight Control Team in FCR-1 - Orbit 3 - Flight Director David Korth
2009-03-20
JSC2009-E-061164 (20 March 2009) --- The members of the STS-119/15A ISS Orbit 3 flight control team pose for a group portrait in the space station flight control room in the Mission Control Center at NASA’s Johnson Space Center. Flight director David Korth (right) is visible on the front row.
STS-131/19A Flight Control Team in FCR-1 - Orbit 1- Flight Director Courtney McMillan
2010-04-14
JSC2010-E-052979 (14 April 2010) --- The members of the STS-131/19A ISS Orbit 1 flight control team pose for a group portrait in the space station flight control room in the Mission Control Center at NASA's Johnson Space Center. Flight director Courtenay McMillan (center) stands on the front row.
STS-131/19A Flight Control Team in FCR-1 - Orbit 3- Flight Director Ed Van Cise
2010-04-14
JSC2010-E-052556 (14 April 2010) --- The members of the STS-131/19A ISS Orbit 3 flight control team pose for a group portrait in the space station flight control room in the Mission Control Center at NASA's Johnson Space Center. Flight director Ed Van Cise holds the STS-131 mission logo.
A Flight Control System Architecture for the NASA AirSTAR Flight Test Infrastructure
NASA Technical Reports Server (NTRS)
Murch, Austin M.
2008-01-01
A flight control system architecture for the NASA AirSTAR infrastructure has been designed to address the challenges associated with safe and efficient flight testing of research control laws in adverse flight conditions. The AirSTAR flight control system provides a flexible framework that enables NASA Aviation Safety Program research objectives, and includes the ability to rapidly integrate and test research control laws, emulate component or sensor failures, inject automated control surface perturbations, and provide a baseline control law for comparison to research control laws and to increase operational efficiency. The current baseline control law uses an angle of attack command augmentation system for the pitch axis and simple stability augmentation for the roll and yaw axes.
Functional integration of vertical flight path and speed control using energy principles
NASA Technical Reports Server (NTRS)
Lambregts, A. A.
1984-01-01
A generalized automatic flight control system was developed which integrates all longitudinal flight path and speed control functions previously provided by a pitch autopilot and autothrottle. In this design, a net thrust command is computed based on total energy demand arising from both flight path and speed targets. The elevator command is computed based on the energy distribution error between flight path and speed. The engine control is configured to produce the commanded net thrust. The design incorporates control strategies and hierarchy to deal systematically and effectively with all aircraft operational requirements, control nonlinearities, and performance limits. Consistent decoupled maneuver control is achieved for all modes and flight conditions without outer loop gain schedules, control law submodes, or control function duplication.
X-38 in Flight during Second Free Flight
NASA Technical Reports Server (NTRS)
1999-01-01
NASA's X-38, a research vehicle developed as part of an effort to build an emergency Crew Return Vehicle (CRV) for the International Space Station, descends toward the desert floor under its steerable parafoil on its second free flight. The X-38 was launched from NASA Dryden's B-52 Mothership on Saturday, February 6, 1999, from an altitude of approximately 23,000 feet. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily 'old' technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. It's landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for internal power. The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, Dryden's B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground.
X-38 in Flight during Second Free Flight
NASA Technical Reports Server (NTRS)
1999-01-01
NASA's X-38, a research vehicle developed as part of an effort to build an emergency Crew Return Vehicle (CRV) for the International Space Station, descends toward a desert lakebed under its steerable parafoil on its second free flight. The X-38 was launched from NASA Dryden's B-52 Mothership on Saturday, February 6, 1999, from an altitude of approximately 23,000 feet. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily 'old' technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. It's landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for internal power. The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, Dryden's B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground.
STS-92 MS Wisoff gets suit checked in the White Room before launch
NASA Technical Reports Server (NTRS)
2000-01-01
STS-92 Mission Specialist Peter J.K. '''Jeff''' Wisoff reaches out to shake the hand of Danny Wyatt, KSC NASA Quality Assurance specialist, after completing final check of his launch and entry suit in the White Room before entering Discovery. The White Room is an environmentally controlled area at the end of the Orbiter Access Arm that provides entry to the orbiter as well as emergency egress if needed. The arm remains in the extended position until 7 minutes 24 seconds before launch. Wisoff and the rest of the crew are undertaking the fifth flight to the International Space Station for construction. Discovery carries a payload that includes the Integrated Truss Structure Z-1, first of 10 trusses that will form the backbone of the Space Station, and the third Pressurized Mating Adapter that will provide a Shuttle docking port for solar array installation on the sixth Station flight and Lab installation on the seventh Station flight. The mission includes four spacewalks for the construction activities. Discovery's landing is expected Oct. 22 at 2:10 p.m. EDT.
2000-10-11
STS-92 Mission Specialist Peter J.K. “Jeff” Wisoff reaches out to shake the hand of Danny Wyatt, KSC NASA Quality Assurance specialist, after completing final check of his launch and entry suit in the White Room before entering Discovery. The White Room is an environmentally controlled area at the end of the Orbiter Access Arm that provides entry to the orbiter as well as emergency egress if needed. The arm remains in the extended position until 7 minutes 24 seconds before launch. Wisoff and the rest of the crew are undertaking the fifth flight to the International Space Station for construction. Discovery carries a payload that includes the Integrated Truss Structure Z-1, first of 10 trusses that will form the backbone of the Space Station, and the third Pressurized Mating Adapter that will provide a Shuttle docking port for solar array installation on the sixth Station flight and Lab installation on the seventh Station flight. The mission includes four spacewalks for the construction activities. Discovery’s landing is expected Oct. 22 at 2:10 p.m. EDT
2000-10-11
STS-92 Mission Specialist Peter J.K. “Jeff” Wisoff reaches out to shake the hand of Danny Wyatt, KSC NASA Quality Assurance specialist, after completing final check of his launch and entry suit in the White Room before entering Discovery. The White Room is an environmentally controlled area at the end of the Orbiter Access Arm that provides entry to the orbiter as well as emergency egress if needed. The arm remains in the extended position until 7 minutes 24 seconds before launch. Wisoff and the rest of the crew are undertaking the fifth flight to the International Space Station for construction. Discovery carries a payload that includes the Integrated Truss Structure Z-1, first of 10 trusses that will form the backbone of the Space Station, and the third Pressurized Mating Adapter that will provide a Shuttle docking port for solar array installation on the sixth Station flight and Lab installation on the seventh Station flight. The mission includes four spacewalks for the construction activities. Discovery’s landing is expected Oct. 22 at 2:10 p.m. EDT
Emergency mental health: lessons learned from flight 3407.
Homish, Gregory G; Frazer, Bonita S; McCartan, Daniel P; Billittier, Anthony J
2010-12-01
Emergency mental health (EMH), a field that is often not well represented when considering emergency preparedness, is nonetheless a vital component to any disaster response. Emergency mental health issues must be considered not only for victims of disasters and their families, friends, and coworkers but also for both on-scene and off-scene responders and members of the community who may have witnessed the disaster. This article describes the EMH preparation for and response to the crash of Continental Airlines flight 3407 in western New York on February 12, 2009, killing all 49 crew and passengers on board and 1 person on the ground. It describes aspects of the response that went as planned and highlights areas for improvement. The lessons learned from this EMH preparation and response can be used to inform future planning for disaster response.
NASA Technical Reports Server (NTRS)
Burcham, Frank W., Jr.; Gatlin, Donald H.; Stewart, James F.
1995-01-01
The NASA Dryden Flight Research Center has been conducting integrated flight-propulsion control flight research using the NASA F-15 airplane for the past 12 years. The research began with the digital electronic engine control (DEEC) project, followed by the F100 Engine Model Derivative (EMD). HIDEC (Highly Integrated Digital Electronic Control) became the umbrella name for a series of experiments including: the Advanced Digital Engine Controls System (ADECS), a twin jet acoustics flight experiment, self-repairing flight control system (SRFCS), performance-seeking control (PSC), and propulsion controlled aircraft (PCA). The upcoming F-15 project is ACTIVE (Advanced Control Technology for Integrated Vehicles). This paper provides a brief summary of these activities and provides background for the PCA and PSC papers, and includes a bibliography of all papers and reports from the NASA F-15 project.
A technique for the assessment of fighter aircraft precision controllability
NASA Technical Reports Server (NTRS)
Sisk, T. R.
1978-01-01
Today's emerging fighter aircraft are maneuvering as well at normal accelerations of 7 to 8 g's as their predecessors did at 4 to 5 g's. This improved maneuvering capability has significantly expanded their operating envelope and made the task of evaluating handling qualities more difficult. This paper describes a technique for assessing the precision controllability of highly maneuverable aircraft, a technique that was developed to evaluate the effects of buffet intensity on gunsight tracking capability and found to be a useful tool for the general assessment of fighter aircraft handling qualities. It has also demonstrated its usefulness for evaluating configuration and advanced flight control system refinements. This technique is believed to have application to future aircraft dynamics and pilot-vehicle interface studies.
Flight diversions due to onboard medical emergencies on an international commercial airline.
Valani, Rahim; Cornacchia, Marisa; Kube, Douglas
2010-11-01
Each year, close to 2 billion passengers travel on commercial airlines. In-flight medical events result in suboptimal care due to a variety of factors. Flight diversions due to medical emergencies carry a significant financial and legal cost. The purpose of this study was to determine the causes of in-flight medical diversions from Air Canada. This was a review of in-flight medical emergencies from 2004-2008. Both telemedicine and Air Canada databases were crossreferenced to capture all incidents. Presenting complaints were categorized by systems. Descriptive statistics were used to analyze the data. Over the 5 yr, there were 220 diversions, of which 91 (41.4%) of the decisions were made by pilots or onboard medical personnel. During this period there were 5386 telemedicine contacts with ground support providers, who on average recommended 2.4 diversions per 100 calls. The rate for diversions almost doubled from 2006 to 2007, with a sharp drop in telemedicine contacts during the same period. The four most common categories resulting in diversions were cardiac (58 diversions, 26.4%), neurological (43 diversions, 19.5%), gastrointestinal (GI) (25 diversions, 11.4%), and syncope (22 diversions, 10.0%). Only 6.8% of all diversions were due to cardiac arrest. Medical conditions most commonly leading to diversions were cardiac, neurological, gastrointestinal, and syncope. Our study showed that a decrease in telemedicine contact during this period was accompanied by an increase in diversions, while increased pre-screening of passengers did not prove effective in decreasing diversion rates.
Anthropometric considerations for a 4-axis side-arm flight controller
NASA Technical Reports Server (NTRS)
Debellis, W. B.
1986-01-01
A data base on multiaxis side-arm flight controls was generated. The rapid advances in fly-by-light technology, automatic stability systems, and onboard computers have combined to create flexible flight control systems which could reduce the workload imposed on the operator by complex new equipment. This side-arm flight controller combines four controls into one unit and should simplify the pilot's task. However, the use of a multiaxis side-arm flight controller without complete cockpit integration may tend to increase the pilot's workload.
Performance seeking control program overview
NASA Technical Reports Server (NTRS)
Orme, John S.
1995-01-01
The Performance Seeking Control (PSC) program evolved from a series of integrated propulsion-flight control research programs flown at NASA Dryden Flight Research Center (DFRC) on an F-15. The first of these was the Digital Electronic Engine Control (DEEC) program and provided digital engine controls suitable for integration. The DEEC and digital electronic flight control system of the NASA F-15 were ideally suited for integrated controls research. The Advanced Engine Control System (ADECS) program proved that integrated engine and aircraft control could improve overall system performance. The objective of the PSC program was to advance the technology for a fully integrated propulsion flight control system. Whereas ADECS provided single variable control for an average engine, PSC controlled multiple propulsion system variables while adapting to the measured engine performance. PSC was developed as a model-based, adaptive control algorithm and included four optimization modes: minimum fuel flow at constant thrust, minimum turbine temperature at constant thrust, maximum thrust, and minimum thrust. Subsonic and supersonic flight testing were conducted at NASA Dryden covering the four PSC optimization modes and over the full throttle range. Flight testing of the PSC algorithm, conducted in a series of five flight test phases, has been concluded at NASA Dryden covering all four of the PSC optimization modes. Over a three year period and five flight test phases 72 research flights were conducted. The primary objective of flight testing was to exercise each PSC optimization mode and quantify the resulting performance improvements.
STS-125 Flight Controllers on Console - (Orbit Shift 2). Flight Director: Richard LaBrode
2009-05-12
JSC2009-E-119397 (12 May 2009) --- Flight directors Rick LaBrode (left) and Chris Edelen monitor data at their console in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during STS-125 flight day two activities.
14 CFR 121.543 - Flight crewmembers at controls.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Flight crewmembers at controls. 121.543... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations § 121.543 Flight crewmembers at controls. (a) Except as provided in paragraph (b) of this section, each required flight crewmember on...
14 CFR 121.543 - Flight crewmembers at controls.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Flight crewmembers at controls. 121.543... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations § 121.543 Flight crewmembers at controls. (a) Except as provided in paragraph (b) of this section, each required flight crewmember on...
14 CFR 121.543 - Flight crewmembers at controls.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Flight crewmembers at controls. 121.543... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations § 121.543 Flight crewmembers at controls. (a) Except as provided in paragraph (b) of this section, each required flight crewmember on...
14 CFR 121.543 - Flight crewmembers at controls.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight crewmembers at controls. 121.543... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations § 121.543 Flight crewmembers at controls. (a) Except as provided in paragraph (b) of this section, each required flight crewmember on...
14 CFR 121.543 - Flight crewmembers at controls.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Flight crewmembers at controls. 121.543... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations § 121.543 Flight crewmembers at controls. (a) Except as provided in paragraph (b) of this section, each required flight crewmember on...
DOT National Transportation Integrated Search
1999-03-01
This report documents an investigation of the flight paths of 13 selected controlled flight into terrain (CFIT) aircraft accidents that occurred between 1985 and 1997. The Operations Assessment Division (DTS-43) and the Aviation Safety Division (DTS-...
Atmospheric reentry flight test of winged space vehicle
NASA Astrophysics Data System (ADS)
Inatani, Yoshifumi; Akiba, Ryojiro; Hinada, Motoki; Nagatomo, Makoto
A summary of the atmospheric reentry flight experiment of winged space vehicle is presented. The test was conducted and carried out by the Institute of Space and Astronautical Science (ISAS) in Feb. 1992 in Kagoshima Space Center. It is the first Japanese atmospheric reentry flight of the controlled lifting vehicle. A prime objective of the flight is to demonstrate a high speed atmospheric entry flight capability and high-angle-of-attack flight capability in terms of aerodynamics, flight dynamics and flight control of these kind of vehicles. The launch of the winged vehicle was made by balloon and solid propellant rocket booster which was also the first trial in Japan. The vehicle accomplishes the lfight from space-equivalent condition to the atmospheric flight condition where reaction control system (RCS) attitude stabilization and aerodynamic control was used, respectively. In the flight, the vehicle's attitude was measured by both an inertial measurement unit (IMU) and an air data sensor (ADS) which were employed into an auto-pilot flight control loop. After completion of the entry transient flight, the vehicle experienced unexpected instability during the atmospheric decelerating flight; however, it recovered the attitude orientation and completed the transonic flight after that. The latest analysis shows that it is due to the ADS measurement error and the flight control gain scheduling; what happened was all understood. Some details of the test and the brief summary of the current status of the post flight analysis are presented.
Flight Control Laws for NASA's Hyper-X Research Vehicle
NASA Technical Reports Server (NTRS)
Davidson, J.; Lallman, F.; McMinn, J. D.; Martin, J.; Pahle, J.; Stephenson, M.; Selmon, J.; Bose, D.
1999-01-01
The goal of the Hyper-X program is to demonstrate and validate technology for design and performance predictions of hypersonic aircraft with an airframe-integrated supersonic-combustion ramjet propulsion system. Accomplishing this goal requires flight demonstration of a hydrogen-fueled scramjet powered hypersonic aircraft. A key enabling technology for this flight demonstration is flight controls. Closed-loop flight control is required to enable a successful stage separation, to achieve and maintain the design condition during the engine test, and to provide a controlled descent. Before the contract award, NASA developed preliminary flight control laws for the Hyper-X to evaluate the feasibility of the proposed scramjet test sequence and descent trajectory. After the contract award, a Boeing/NASA partnership worked to develop the current control laws. This paper presents a description of the Hyper-X Research Vehicle control law architectures with performance and robustness analyses. Assessments of simulated flight trajectories and stability margin analyses demonstrate that these control laws meet the flight test requirements.
Thompson, Helen; Coulson, Mike; Ruddle, Natalie; Wilkins, Selwyn; Harkin, Sarah
2016-02-01
The present study was designed to assess homing behavior of bees foraging on winter oilseed rape grown from seed treated with thiamethoxam (as Cruiser OSR), with 1 field drilled with thiamethoxam-treated seed and 2 control fields drilled with fungicide-only-treated seed. Twelve honeybee colonies were used per treatment group, 4 each located at the field edge (on-field site), at approximately 500 m and 1000 m from the field. A total of nearly 300 newly emerged bees per colony were fitted (tagged) with Mic3 radio frequency identification (RFID) transponders and introduced into each of the 36 study hives. The RFID readers fitted to the entrances of the test colonies were used to monitor the activity of the tagged bees for the duration of the 5-wk flowering period of the crop. These activity data were analyzed to assess any impact on flight activity of bees foraging on the treated compared with untreated crops. Honeybees were seen to be actively foraging within all 3 treatment groups during the exposure period. The data for the more than 3000 RFID-tagged bees and more than 90 000 foraging flights monitored throughout the exposure phase for the study follow the same trends across the treatment and controls and at each of the 3 apiary distances, indicating that there were no effects from foraging on the treated crop. Under the experimental conditions, there was no effect of foraging on thiamethoxam-treated oilseed rape on honeybee flight activity or on their ability to return to the hive. © 2015 SETAC.
Experimental Validation of L1 Adaptive Control: Rohrs' Counterexample in Flight
NASA Technical Reports Server (NTRS)
Xargay, Enric; Hovakimyan, Naira; Dobrokhodov, Vladimir; Kaminer, Issac; Kitsios, Ioannis; Cao, Chengyu; Gregory, Irene M.; Valavani, Lena
2010-01-01
The paper presents new results on the verification and in-flight validation of an L1 adaptive flight control system, and proposes a general methodology for verification and validation of adaptive flight control algorithms. The proposed framework is based on Rohrs counterexample, a benchmark problem presented in the early 80s to show the limitations of adaptive controllers developed at that time. In this paper, the framework is used to evaluate the performance and robustness characteristics of an L1 adaptive control augmentation loop implemented onboard a small unmanned aerial vehicle. Hardware-in-the-loop simulations and flight test results confirm the ability of the L1 adaptive controller to maintain stability and predictable performance of the closed loop adaptive system in the presence of general (artificially injected) unmodeled dynamics. The results demonstrate the advantages of L1 adaptive control as a verifiable robust adaptive control architecture with the potential of reducing flight control design costs and facilitating the transition of adaptive control into advanced flight control systems.
Practical aspects of modeling aircraft dynamics from flight data
NASA Technical Reports Server (NTRS)
Iliff, K. W.; Maine, R. E.
1984-01-01
The purpose of parameter estimation, a subset of system identification, is to estimate the coefficients (such as stability and control derivatives) of the aircraft differential equations of motion from sampled measured dynamic responses. In the past, the primary reason for estimating stability and control derivatives from flight tests was to make comparisons with wind tunnel estimates. As aircraft became more complex, and as flight envelopes were expanded to include flight regimes that were not well understood, new requirements for the derivative estimates evolved. For many years, the flight determined derivatives were used in simulations to aid in flight planning and in pilot training. The simulations were particularly important in research flight test programs in which an envelope expansion into new flight regimes was required. Parameter estimation techniques for estimating stability and control derivatives from flight data became more sophisticated to support the flight test programs. As knowledge of these new flight regimes increased, more complex aircraft were flown. Much of this increased complexity was in sophisticated flight control systems. The design and refinement of the control system required higher fidelity simulations than were previously required.
Bertrand, C; Rodriguez Redington, P; Lecarpentier, E; Bellaiche, G; Michel, D; Teiger, E; Morris, W; Le Bourgeois, J P; Barthout, M
2004-11-01
The positive effect of early defibrillation on survival from cardiac arrest has been demonstrated. We describe the use of AEDs over 1 year following the training of flight attendants. Air France and the University of Paris XII together designed a 1 year training programme for 14000 flight attendants. The university emergency departments (SAMU) provided 250 instructors. AEDs training and certification was conducted for crew members between November 2001 and November 2002. By January 2003, all aircraft were fully equipped with AEDs. All cases of cardiac arrest that occurred during the study were reviewed comprehensively. Comments from the crew were collected. Twelve cardiac arrests were reported between November 2002 and November 2003 out of 4194 cases of emergency care delivered to passengers. Shock treatment was advised initially in 5/12 cases. The survival rate after in-flight cardiac arrest was 3/12. The survival rate at discharge from hospital following in flight shock was 2/5. No complications arose from the use of AEDs. Training by professionals gave the flight attendants confidence and allowed for the survival of two young passengers. Our study highlights the ability of flight attendants to give better onboard care for the future. The next step is to consolidate the network between in-flight care and the medical dispatch centre in Paris.
Potential benefits of propulsion and flight control integration for supersonic cruise vehicles
NASA Technical Reports Server (NTRS)
Berry, D. T.; Schweikhard, W. G.
1976-01-01
Typical airframe/propulsion interactions such as Mach/altitude excursions and inlet unstarts are reviewed. The improvements in airplane performance and flight control that can be achieved by improving the interfaces between propulsion and flight control are estimated. A research program to determine the feasibility of integrating propulsion and flight control is described. This program includes analytical studies and YF-12 flight tests.
STS-125 Flight Control Team in WFCR - Ascent/Entry with Flight Director Norman Knight
2009-05-21
JSC2009-E-121353 (21 May 2009) --- The members of the STS-125 Ascent and Entry flight control team pose for a group portrait in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center. Flight director Norm Knight (left) and astronaut Gregory H. Johnson, spacecraft communicator (CAPCOM), hold the STS-125 mission logo.
F-16XL ship #1 (#849) during first flight of the Digital Flight Control System (DFCS)
NASA Technical Reports Server (NTRS)
1997-01-01
After completing its first flight with the Digital Flight Control System on December 16, 1997, the F-16XL #1 aircraft began a series of envelope expansion flights. On January 27 and 29, 1998, it successfully completed structural clearance tests, as well as most of the load testing Only flights at Mach 1.05 at 10,000 feet, Mach 1.1 at 15,000 feet, and Mach 1.2 at 20,000 feet remained. During the next flight, on February 4, an instrumentation problem cut short the planned envelope expansion tests. After the problem was corrected, the F-16XL returned to flight status, and on February 18 and 20, flight control and evaluation flights were made. Two more research flights were planned for the following week, but another problem appeared. During the ground start up, project personnel noticed that the leading edge flap moved without being commanded. The Digital Flight Control Computer was sent to the Lockheed-Martin facility at Fort Worth, where the problem was traced to a defective chip in the computer. After it was replaced, the F-16XL #1 flew a highly successful flight controls and handling qualities evaluation flight on March 26, clearing the way for the final tests. The final limited loads expansion flight occurred on March 31, and was fully successful. As a result, the on-site Lockheed-Martin loads engineer cleared the aircraft to Mach 1.8. The remaining two handling qualities and flight control evaluation flights were both made on April 3, 1998. These three flights concluded the flight test portion of the DFCS upgrade.
Is There a Doctor Onboard? Medical Emergencies at 40,000 Feet.
Donner, Howard J
2017-05-01
It is estimated 2.75 billion people travel aboard commercial airlines every year and 44,000 in-flight medical emergencies occur worldwide each year. Wilderness medicine requires a commonsense and improvisational approach to medical issues. A sudden call for assistance in the austere and unfamiliar surroundings of an airliner cabin may present the responding medical professional with a "wilderness medicine" experience. From resource management to equipment, this article sheds light on the unique conditions, challenges, and constraints of the flight environment. Copyright © 2017 Elsevier Inc. All rights reserved.
STS-120 Orbit 2 Flight Control Team Photo
2007-10-31
JSC2007-E-095908 (31 Oct. 2007) --- The members of the STS-120 Orbit 2 flight control team pose for a group portrait in the space shuttle flight control room of Houston's Mission Control Center (MCC). Flight director Mike Moses holds the STS-120 mission logo.
1999-07-09
The X-38, a research vehicle built to help develop technology for an emergency Crew Return Vehicle (CRV), descends under its steerable parachute during a July 1999 test flight at the Dryden Flight Research Center, Edwards, California. It was the fourth free flight of the test vehicles in the X-38 program, and the second free flight test of Vehicle 132 or Ship 2. The goal of this flight was to release the vehicle from a higher altitude -- 31,500 feet -- and to fly the vehicle longer -- 31 seconds -- than any previous X-38 vehicle had yet flown. The project team also conducted aerodynamic verification maneuvers and checked improvements made to the drogue parachute.
In-Flight Hypoxemia in a Tracheostomy-Dependent Infant
Cropsey, Christopher
2017-01-01
Millions of passengers board commercial flights every year. Healthcare providers are often called upon to treat other passengers during in-flight emergencies. The case presented involves an anesthesia resident treating a tracheostomy-dependent infant who developed hypoxemia on a domestic flight. The patient had an underlying congenital muscular disorder and was mechanically ventilated while at altitude. Although pressurized, cabin barometric pressure while at altitude is less than at sea level. Due to this environment patients with underlying pulmonary or cardiac pathology might not be able to tolerate commercial flight. The Federal Aviation Administration (FAA) has mandated a specific set of medical supplies be present on all domestic flights in addition to legislature protecting “Good Samaritan” providers. PMID:28348895
Gałazkowski, Robert
2010-01-01
In Poland, two types of medical services are accomplished by the Medical Air Rescue (MAR) operating all over the country: emergency transport from the incident scene to hospital and inter-hospital transport. Helicopters or planes are used for this purpose. In 2009, helicopters performed 4359 flights to incidents and 1537 inter-hospital transports whereas planes performed 589 inter-hospital ambulance and 196 rescue flights. MAR operates from 17 bases of the Helicopter Emergency Medical Service (HEMS) and one airbase. Helicopters are mainly used when medical transport is emergent, within the operational region of a given base whereas planes when the distance between the present and target airports exceeds 250 km. In 2008, new modern aircraft were introduced to HEMS-helicopters EC 135. They fulfil all requirements of air transport regulations and are adjusted to visual (VFR) and instrumental (IFR) flights rules, at day and night. The medical cabin of EC 135 is ergonomic and functional considering the majority of rescue activities under life-saving circumstances. It is equipped with ventilator, defibrillator, infusion pumps etc. Defibrillators have 12-lead ECG, E(T)CO2, SpO2, NIBP, and IBP modules. Transport ventilators can work in a variety of ventilation modes including CMV, SIMV, SVV, BILEVEL, PCV, ASB, PPV and CPAP. The purchase of helicopters with modern avionic and medical configuration ensures high quality services of MAR for many years to come.
Flight Test of an Adaptive Controller and Simulated Failure/Damage on the NASA NF-15B
NASA Technical Reports Server (NTRS)
Buschbacher, Mark; Maliska, Heather
2006-01-01
The method of flight-testing the Intelligent Flight Control System (IFCS) Second Generation (Gen-2) project on the NASA NF-15B is herein described. The Gen-2 project objective includes flight-testing a dynamic inversion controller augmented by a direct adaptive neural network to demonstrate performance improvements in the presence of simulated failure/damage. The Gen-2 objectives as implemented on the NASA NF-15B created challenges for software design, structural loading limitations, and flight test operations. Simulated failure/damage is introduced by modifying control surface commands, therefore requiring structural loads measurements. Flight-testing began with the validation of a structural loads model. Flight-testing of the Gen-2 controller continued, using test maneuvers designed in a sequenced approach. Success would clear the new controller with respect to dynamic response, simulated failure/damage, and with adaptation on and off. A handling qualities evaluation was conducted on the capability of the Gen-2 controller to restore aircraft response in the presence of a simulated failure/damage. Control room monitoring of loads sensors, flight dynamics, and controller adaptation, in addition to postflight data comparison to the simulation, ensured a safe methodology of buildup testing. Flight-testing continued without major incident to accomplish the project objectives, successfully uncovering strengths and weaknesses of the Gen-2 control approach in flight.
Software control and system configuration management - A process that works
NASA Technical Reports Server (NTRS)
Petersen, K. L.; Flores, C., Jr.
1983-01-01
A comprehensive software control and system configuration management process for flight-crucial digital control systems of advanced aircraft has been developed and refined to insure efficient flight system development and safe flight operations. Because of the highly complex interactions among the hardware, software, and system elements of state-of-the-art digital flight control system designs, a systems-wide approach to configuration control and management has been used. Specific procedures are implemented to govern discrepancy reporting and reconciliation, software and hardware change control, systems verification and validation testing, and formal documentation requirements. An active and knowledgeable configuration control board reviews and approves all flight system configuration modifications and revalidation tests. This flexible process has proved effective during the development and flight testing of several research aircraft and remotely piloted research vehicles with digital flight control systems that ranged from relatively simple to highly complex, integrated mechanizations.
Software control and system configuration management: A systems-wide approach
NASA Technical Reports Server (NTRS)
Petersen, K. L.; Flores, C., Jr.
1984-01-01
A comprehensive software control and system configuration management process for flight-crucial digital control systems of advanced aircraft has been developed and refined to insure efficient flight system development and safe flight operations. Because of the highly complex interactions among the hardware, software, and system elements of state-of-the-art digital flight control system designs, a systems-wide approach to configuration control and management has been used. Specific procedures are implemented to govern discrepancy reporting and reconciliation, software and hardware change control, systems verification and validation testing, and formal documentation requirements. An active and knowledgeable configuration control board reviews and approves all flight system configuration modifications and revalidation tests. This flexible process has proved effective during the development and flight testing of several research aircraft and remotely piloted research vehicles with digital flight control systems that ranged from relatively simple to highly complex, integrated mechanizations.
NASA Technical Reports Server (NTRS)
Woodruff, Kristin K.; Lee, Stuart M. C.; Greenisen, Michael C.; Schneider, Suzanne M.
2000-01-01
The two flight suits currently worn by crew members during Shuttle launch and landing, the Launch and Entry Suit (LES) and the Advanced Crew Escape Suit (ACES), are designed to protect crew members in the case of emergency. Although the Liquid Cooling Garment (LCG) worn under the flight suits was designed to counteract the heat storage of the suits, the suits may increase thermal stress and limit the astronaut's egress capabilities. The purpose of this study was to assess the thermal loads experienced by crew members during a simulated emergency egress before and after spaceflight. Comparisons of skin temperatures were made between the preflight unsuited and suited conditions. between the pre- and postflight suited conditions, and between the two flight suits.
Doern, Christopher D; Butler-Wu, Susan M
2016-11-01
The performance of matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MS) for routine bacterial and yeast identification as well as direct-from-blood culture bottle identification has been thoroughly evaluated in the peer-reviewed literature. Microbiologists are now moving beyond these methods to apply MS to other areas of the diagnostic process. This review discusses the emergence of advanced matrix-assisted laser desorption ionization time-of-flight MS applications, including the identification of filamentous fungi and mycobacteria and the current and future state of antimicrobial resistance testing. Copyright © 2016 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.
Piloted evaluation of an integrated propulsion and flight control simulator
NASA Technical Reports Server (NTRS)
Bright, Michelle M.; Simon, Donald L.
1992-01-01
A piloted evaluation of the integrated flight and propulsion control simulator for advanced integrated propulsion and airframe control design is described. The evaluation will cover control effector gains and deadbands, control effectiveness and control authority, and heads up display functionality. For this evaluation the flight simulator is configured for transition flight using an advanced Short Take-Off and Vertical Landing fighter aircraft model, a simplified high-bypass turbofan engine model, fighter cockpit displays, and pilot effectors. The piloted tasks used for rating displays and control effector gains are described. Pilot comments and simulation results confirm that the display symbology and control gains are very adequate for the transition flight task. Additionally, it is demonstrated that this small-scale, fixed base flight simulator facility can adequately perform a real time, piloted control evaluation.
NASA Technical Reports Server (NTRS)
VanZwieten, Tannen S.; Gilligan, Eric T.; Wall, John H.; Miller, Christopher J.; Hanson, Curtis E.; Orr, Jeb S.
2015-01-01
NASA's Space Launch System (SLS) Flight Control System (FCS) includes an Adaptive Augmenting Control (AAC) component which employs a multiplicative gain update law to enhance the performance and robustness of the baseline control system for extreme off-nominal scenarios. The SLS FCS algorithm including AAC has been flight tested utilizing a specially outfitted F/A-18 fighter jet in which the pitch axis control of the aircraft was performed by a Non-linear Dynamic Inversion (NDI) controller, SLS reference models, and the SLS flight software prototype. This paper describes test cases from the research flight campaign in which the fundamental F/A-18 airframe structural mode was identified using post-flight frequency-domain reconstruction, amplified to result in closed loop instability, and suppressed in-flight by the SLS adaptive control system.
NASA Technical Reports Server (NTRS)
Bomben, Craig R.; Smolka, James W.; Bosworth, John T.; Silliams-Hayes, Peggy S.; Burken, John J.; Larson, Richard R.; Buschbacher, Mark J.; Maliska, Heather A.
2006-01-01
The Intelligent Flight Control System (IFCS) project at the NASA Dryden Flight Research Center, Edwards AFB, CA, has been investigating the use of neural network based adaptive control on a unique NF-15B test aircraft. The IFCS neural network is a software processor that stores measured aircraft response information to dynamically alter flight control gains. In 2006, the neural network was engaged and allowed to learn in real time to dynamically alter the aircraft handling qualities characteristics in the presence of actual aerodynamic failure conditions injected into the aircraft through the flight control system. The use of neural network and similar adaptive technologies in the design of highly fault and damage tolerant flight control systems shows promise in making future aircraft far more survivable than current technology allows. This paper will present the results of the IFCS flight test program conducted at the NASA Dryden Flight Research Center in 2006, with emphasis on challenges encountered and lessons learned.
14 CFR 91.503 - Flying equipment and operating information.
Code of Federal Regulations, 2010 CFR
2010-01-01
... each flight at the pilot station of the airplane: (1) A flashlight having at least two size “D” cells...) Emergency operation of fuel, hydraulic, electrical, and mechanical systems. (2) Emergency operation of...
14 CFR 91.503 - Flying equipment and operating information.
Code of Federal Regulations, 2011 CFR
2011-01-01
... each flight at the pilot station of the airplane: (1) A flashlight having at least two size “D” cells...) Emergency operation of fuel, hydraulic, electrical, and mechanical systems. (2) Emergency operation of...
STS-114 Mission Support - Flight Controllers on Launch Day
2005-07-26
Documentation of flight controllers in the White Flight Control Room (WFCR) on STS-114 Launch Day, July 26, 2005. View of Phil Engelauf and Flight Director Paul Hill standing at the Mission Operations Directorate (MOD) console.
STS-125 Flight Controllers on Console During HST Grapple - Orbit 1. Flight Director: Tony Ceccacci
2009-05-13
JSC2009-E-119632 (13 May 2009) --- Flight director Tony Ceccacci and astronaut Dan Burbank (background), STS-125 spacecraft communicator (CAPCOM), monitor data at their consoles in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during flight day three activities.
Attitude control system for a lightweight flapping wing MAV.
Tijmons, Sjoerd; Karásek, Matěj; de Croon, G C H E
2018-03-14
Robust attitude control is an essential aspect of research on autonomous flight of flapping wing Micro Air Vehicles. The mechanical solutions by which the necessary control moments are realised come at the price of extra weight and possible loss of aerodynamic efficiency. Stable flight of these vehicles has been shown by several designs using a conventional tail, but also by tailless designs that use active control of the wings. In this study a control mechanism is proposed that provides active control over the wings. The mechanism improves vehicle stability and agility by generation of control moments for roll, pitch and yaw. Its effectiveness is demonstrated by static measurements around all the three axes. Flight test results confirm that the attitude of the test vehicle, including a tail, can be successfully controlled in slow forward flight conditions. Furthermore, the flight envelope is extended with robust hovering and the ability to reverse the flight direction using a small turn space. This capability is very important for autonomous flight capabilities such as obstacle avoidance. Finally, it is demonstrated that the proposed control mechanism allows for tailless hovering flight. © 2018 IOP Publishing Ltd.
NASA Technical Reports Server (NTRS)
Cunningham, Kevin; Foster, John V.; Morelli, Eugene A.; Murch, Austin M.
2008-01-01
Over the past decade, the goal of reducing the fatal accident rate of large transport aircraft has resulted in research aimed at the problem of aircraft loss-of-control. Starting in 1999, the NASA Aviation Safety Program initiated research that included vehicle dynamics modeling, system health monitoring, and reconfigurable control systems focused on flight regimes beyond the normal flight envelope. In recent years, there has been an increased emphasis on adaptive control technologies for recovery from control upsets or failures including damage scenarios. As part of these efforts, NASA has developed the Airborne Subscale Transport Aircraft Research (AirSTAR) flight facility to allow flight research and validation, and system testing for flight regimes that are considered too risky for full-scale manned transport airplane testing. The AirSTAR facility utilizes dynamically-scaled vehicles that enable the application of subscale flight test results to full scale vehicles. This paper describes the modeling and simulation approach used for AirSTAR vehicles that supports the goals of efficient, low-cost and safe flight research in abnormal flight conditions. Modeling of aerodynamics, controls, and propulsion will be discussed as well as the application of simulation to flight control system development, test planning, risk mitigation, and flight research.
STS-125 Entry flight controllers on console with Flight Director Norman Knight
2009-05-24
JSC2009-E-121510 (24 May 2009) --- Flight controllers in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center watch the big screens during the landing of Space Shuttle Atlantis (STS-125) at Edwards Air Force Base in California.
STS-125 Entry flight controllers on console with Flight Director Norman Knight
2009-05-24
JSC2009-E-121511 (24 May 2009) --- Flight controllers in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center watch the big screens during the landing of Space Shuttle Atlantis (STS-125) at Edwards Air Force Base in California.
STS-125 Entry flight controllers on console with Flight Director Norman Knight
2009-05-24
JSC2009-E-121512 (24 May 2009) --- Flight controllers in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center watch the big screens during the landing of Space Shuttle Atlantis (STS-125) at Edwards Air Force Base in California.
STS-125 Entry flight controllers on console with Flight Director Norman Knight
2009-05-24
JSC2009-E-121509 (24 May 2009) --- Flight controllers in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center watch the big screens during the landing of Space Shuttle Atlantis (STS-125) at Edwards Air Force Base in California.
75 FR 80886 - Ninth Meeting-RTCA Special Committee 220: Automatic Flight Guidance and Control
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-23
... 220: Automatic Flight Guidance and Control AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of RTCA Special Committee 220: Automatic Flight Guidance and Control meeting. SUMMARY: The FAA is... for a Special Committee 220: Automatic Flight Guidance and Control meeting. The agenda will include...
Extraction of stability and control derivatives from orbiter flight data
NASA Technical Reports Server (NTRS)
Iliff, Kenneth W.; Shafer, Mary F.
1993-01-01
The Space Shuttle Orbiter has provided unique and important information on aircraft flight dynamics. This information has provided the opportunity to assess the flight-derived stability and control derivatives for maneuvering flight in the hypersonic regime. In the case of the Space Shuttle Orbiter, these derivatives are required to determine if certain configuration placards (limitations on the flight envelope) can be modified. These placards were determined on the basis of preflight predictions and the associated uncertainties. As flight-determined derivatives are obtained, the placards are reassessed, and some of them are removed or modified. Extraction of the stability and control derivatives was justified by operational considerations and not by research considerations. Using flight results to update the predicted database of the orbiter is one of the most completely documented processes for a flight vehicle. This process followed from the requirement for analysis of flight data for control system updates and for expansion of the operational flight envelope. These results show significant changes in many important stability and control derivatives from the preflight database. This paper presents some of the stability and control derivative results obtained from Space Shuttle flights. Some of the limitations of this information are also examined.
NASA Technical Reports Server (NTRS)
Garg, Sanjay
1993-01-01
Results are presented from an application of H-infinity control design methodology to a centralized integrated flight/propulsion control (IFPC) system design for a supersonic STOVL fighter aircraft in transition flight. The emphasis is on formulating the H-infinity optimal control synthesis problem such that the critical requirements for the flight and propulsion systems are adequately reflected within the linear, centralized control problem formulation and the resulting controller provides robustness to modeling uncertainties and model parameter variations with flight condition. Detailed evaluation results are presented for a reduced order controller obtained from the improved H-infinity control design showing that the control design meets the specified nominal performance objective as well as provides stability robustness for variations in plant system dynamics with changes in aircraft trim speed within the transition flight envelope.
NASA Technical Reports Server (NTRS)
Carter-Journet, Katrina; Clahoun, Jessica; Morrow, Jason; Duncan, Gary
2012-01-01
The National Aeronautics and Space Administration (NASA) originally designed the International Space Station (ISS) to operate until 2015, but have extended operations until at least 2020. As part of this very dynamic Program, there is an effort underway to simplify the certification of Commercial ]of ]the ]Shelf (COTS) hardware. This change in paradigm allows the ISS Program to take advantage of technologically savvy and commercially available hardware, such as the iPad. The iPad, a line of tablet computers designed and marketed by Apple Inc., was chosen to support this endeavor. The iPad is functional, portable, and could be easily accessed in an emergency situation. The iPad Electronic Flight Bag (EFB), currently approved for use in flight by the Federal Aviation Administration (FAA), is a fraction of the cost of a traditional Class 2 EFB. In addition, the iPad fs ability to use electronic aeronautical data in lieu of paper in route charts and approach plates can cut the annual cost of paper data in half for commercial airlines. ISS may be able to benefit from this type of trade since one of the most important factors considered is information management. Emergency procedures onboard the ISS are currently available to the crew in paper form. Updates to the emergency books can either be launched on an upcoming visiting vehicle such as a Russian Soyuz flight or printed using the onboard ISS printer. In both cases, it is costly to update hardcopy procedures. A new operations concept was proposed to allow for the use of a tablet system that would provide a flexible platform to support space station crew operations. The purpose of the system would be to provide the crew the ability to view and maintain operational data, such as emergency procedures while also allowing Mission Control Houston to update the procedures. The ISS Program is currently evaluating the safety risks associated with the use of iPads versus paper. Paper products can contribute to the flammability risk and require manual updates that take time away from research tasks. The ISS program has recently purchased three iPads for the astronauts and the certification has been approved. The crew is currently using the iPads onboard. The results of this analysis could be used to discern whether the iPad is a viable option for use in emergencies by assessing the risk posture through the development of a quantitative probabilistic risk assessment (PRA).
Ros, Ivo G; Biewener, Andrew A
2017-01-01
Similar flight control principles operate across insect and vertebrate fliers. These principles indicate that robust solutions have evolved to meet complex behavioral challenges. Following from studies of visual and cervical feedback control of flight in insects, we investigate the role of head stabilization in providing feedback cues for controlling turning flight in pigeons. Based on previous observations that the eyes of pigeons remain at relatively fixed orientations within the head during flight, we test potential sensory control inputs derived from head and body movements during 90° aerial turns. We observe that periods of angular head stabilization alternate with rapid head repositioning movements (head saccades), and confirm that control of head motion is decoupled from aerodynamic and inertial forces acting on the bird's continuously rotating body during turning flapping flight. Visual cues inferred from head saccades correlate with changes in flight trajectory; whereas the magnitude of neck bending predicts angular changes in body position. The control of head motion to stabilize a pigeon's gaze may therefore facilitate extraction of important motion cues, in addition to offering mechanisms for controlling body and wing movements. Strong similarities between the sensory flight control of birds and insects may also inspire novel designs of robust controllers for human-engineered autonomous aerial vehicles.
Ros, Ivo G.; Biewener, Andrew A.
2017-01-01
Similar flight control principles operate across insect and vertebrate fliers. These principles indicate that robust solutions have evolved to meet complex behavioral challenges. Following from studies of visual and cervical feedback control of flight in insects, we investigate the role of head stabilization in providing feedback cues for controlling turning flight in pigeons. Based on previous observations that the eyes of pigeons remain at relatively fixed orientations within the head during flight, we test potential sensory control inputs derived from head and body movements during 90° aerial turns. We observe that periods of angular head stabilization alternate with rapid head repositioning movements (head saccades), and confirm that control of head motion is decoupled from aerodynamic and inertial forces acting on the bird's continuously rotating body during turning flapping flight. Visual cues inferred from head saccades correlate with changes in flight trajectory; whereas the magnitude of neck bending predicts angular changes in body position. The control of head motion to stabilize a pigeon's gaze may therefore facilitate extraction of important motion cues, in addition to offering mechanisms for controlling body and wing movements. Strong similarities between the sensory flight control of birds and insects may also inspire novel designs of robust controllers for human-engineered autonomous aerial vehicles. PMID:29249929
Flight Test Results on the Stability and Control of the F-15B Quiet Spike Aircraft
NASA Technical Reports Server (NTRS)
Moua, Cheng; McWherter, Shaun H.; Cox, Timothy H.; Gera, Joseph
2007-01-01
The Quiet Spike (QS) flight research program was an aerodynamic and structural proof-of-concept of a telescoping sonic-boom suppressing nose boom on an F-15 B aircraft. The program goal was to collect flight data for model validation up to 1.8 Mach. The primary test philosophy was maintaining safety of flight. In the area of stability and controls the primary concerns were to assess the potential destabilizing effect of the spike on the stability, controllability, and handling qualities of the aircraft and to ensure adequate stability margins across the entire QS flight envelop. This paper reports on the stability and control methods used for flight envelope clearance and flight test results of the F-15B Quiet Spike. Also discussed are the flight test approach, the criteria to proceed to the next flight condition, brief pilot commentary on typical piloting tasks, approach and landing, and refueling task, and air data sensitivity to the flight control system.
NASA Technical Reports Server (NTRS)
Carter, John F.
1997-01-01
NASA Dryden Flight Research Center (DFRC) is working with the United States Navy to complete ground testing and initiate flight testing of a modified set of F/A-18 flight control computers. The Production Support Flight Control Computers (PSFCC) can give any fleet F/A-18 airplane an in-flight, pilot-selectable research control law capability. NASA DFRC can efficiently flight test the PSFCC for the following four reasons: (1) Six F/A-18 chase aircraft are available which could be used with the PSFCC; (2) An F/A-18 processor-in-the-loop simulation exists for validation testing; (3) The expertise has been developed in programming the research processor in the PSFCC; and (4) A well-defined process has been established for clearing flight control research projects for flight. This report presents a functional description of the PSFCC. Descriptions of the NASA DFRC facilities, PSFCC verification and validation process, and planned PSFCC projects are also provided.
ATD Occupant Responses from Three Full-Scale General Aviation Crash Tests
NASA Technical Reports Server (NTRS)
Littell, Justin D.; Annett, Martin S.
2016-01-01
During the summer of 2015, three Cessna 172 General Aviation (GA) aircraft were crash tested at the Landing and Impact Research (LandIR) Facility at NASA Langley Research Center (LaRC). Three different crash scenarios were represented. The first test simulated a flare-to-stall emergency or hard landing onto a rigid surface such as a road or runway. The second test simulated a controlled flight into terrain with a nose down pitch of the aircraft, and the third test simulated a controlled flight into terrain with an attempt to unsuccessfully recover the aircraft immediately prior to impact, resulting in a tail strike condition. An on-board data acquisition system (DAS) captured 64 channels of airframe acceleration, along with accelerations and loads in two onboard Hybrid II 50th percentile Anthropomorphic Test Devices (ATDs) representing the pilot and copilot. Each of the three tests contained different airframe loading conditions and different types of restraints for both the pilot and co-pilot ATDs. The results show large differences in occupant response and restraint performance with varying likelihoods of occupant injury.
NASA Technical Reports Server (NTRS)
Littell, Justin D.
2015-01-01
During the summer of 2015, three Cessna 172 aircraft were crash tested at the Landing and Impact Research Facility (LandIR) at NASA Langley Research Center (LaRC). The three tests simulated three different crash scenarios. The first simulated a flare-to-stall emergency or hard landing onto a rigid surface such as a road or runway, the second simulated a controlled flight into terrain with a nose down pitch on the aircraft, and the third simulated a controlled flight into terrain with an attempt to unsuccessfully recover the aircraft immediately prior to impact, resulting in a tail strike condition. An on-board data acquisition system captured 64 channels of airframe acceleration, along with acceleration and load in two onboard Hybrid II 50th percentile Anthropomorphic Test Devices, representing the pilot and co-pilot. Each test contained different airframe loading conditions and results show large differences in airframe performance. This paper presents test methods used to conduct the crash tests and will summarize the airframe results from the test series.
Interplanetary Radiation and Fault Tolerant Mini-Star Tracker System
NASA Technical Reports Server (NTRS)
Rakoczy, John; Paceley, Pete
2015-01-01
The Charles Stark Draper Laboratory, Inc. is partnering with the NASA Marshall Space Flight Center (MSFC) Engineering Directorate's Avionics Design Division and Flight Mechanics & Analysis Division to develop and test a prototype small, low-weight, low-power, radiation-hardened, fault-tolerant mini-star tracker (fig. 1). The project is expected to enable Draper Laboratory and its small business partner, L-1 Standards and Technologies, Inc., to develop a new guidance, navigation, and control sensor product for the growing small sat technology market. The project also addresses MSFC's need for sophisticated small sat technologies to support a variety of science missions in Earth orbit and beyond. The prototype star tracker will be tested on the night sky on MSFC's Automated Lunar and Meteor Observatory (ALAMO) telescope. The specific goal of the project is to address the need for a compact, low size, weight, and power, yet radiation hardened and fault tolerant star tracker system that can be used as a stand-alone attitude determination system or incorporated into a complete attitude determination and control system for emerging interplanetary and operational CubeSat and small sat missions.
Geoscience Laser Altimeter System (GLAS) Loop Heat Pipes: An Eventual First Year On-Orbit
NASA Technical Reports Server (NTRS)
Grob, E.; Baker, C.; McCarthy, T.
2004-01-01
Goddard Space Flight Center's Geoscience Laser Altimeter System (GLAS) is the sole scientific instrument on the Ice, Cloud and land Elevation Satellite (ICESat) that was launched on January 12, 2003 from Vandenberg AFB. A thermal control architecture based on propylene Loop Heat Pipe technology was developed to provide selectable/stable temperature control for the lasers and other electronics over the widely varying mission environment. Following a nominal LHP and instrument start-up, the mission was interrupted with the failure of the first laser after only 36 days of operation. During the 5-month failure investigation, the two GLAS LHPs and the electronics operated nominally, using heaters as a substitute for the laser heat load. Just prior to resuming the mission, following a seasonal spacecraft yaw maneuver, one of the LHPs deprimed and created a thermal runaway condition that resulted in an emergency shutdown of the GLAS instrument. This paper presents details of the LHP anomaly, the resulting investigation and recovery, along with on-orbit flight data during these critical events.
Initial flight qualification and operational maintenance of X-29A flight software
NASA Technical Reports Server (NTRS)
Earls, Michael R.; Sitz, Joel R.
1989-01-01
A discussion is presented of some significant aspects of the initial flight qualification and operational maintenance of the flight control system softward for the X-29A technology demonstrator. Flight qualification and maintenance of complex, embedded flight control system software poses unique problems. The X-29A technology demonstrator aircraft has a digital flight control system which incorporates functions generally considered too complex for analog systems. Organizational responsibilities, software assurance issues, tools, and facilities are discussed.
2000-09-14
JSC2000-06244 (September 2000)--- Flight director Jeff Hanley, front center, and the fifty-odd flight controllers making up the ISS Orbit 2 Team pose for their group portrait in the ISS Flight Control Room of Houston's Mission Control Center.
NASA Technical Reports Server (NTRS)
Orasanu, Judith
1991-01-01
Aircrew effectiveness in coping with emergencies has been linked to captain's personality profile. The present study analyzed cockpit communication during simulated flight to examine the relation between captains' discourse strategies, personality profiles, and crew performance. Positive Instrumental/Expressive captains and Instrumental-Negative captains used very similar communication strategies and their crews made few errors. Their talk was distinguished by high levels of planning and strategizing, gathering information, predicting/alerting, and explaining, especially during the emergency flight phase. Negative-Expressive captains talked less overall, and engaged in little problem solving talk, even during emergencies. Their crews made many errors. Findings support the theory that high crew performance results when captains use language to build shared mental models for problem situations.
Remotely Piloted Vehicles for Experimental Flight Control Testing
NASA Technical Reports Server (NTRS)
Motter, Mark A.; High, James W.
2009-01-01
A successful flight test and training campaign of the NASA Flying Controls Testbed was conducted at Naval Outlying Field, Webster Field, MD during 2008. Both the prop and jet-powered versions of the subscale, remotely piloted testbeds were used to test representative experimental flight controllers. These testbeds were developed by the Subsonic Fixed Wing Project s emphasis on new flight test techniques. The Subsonic Fixed Wing Project is under the Fundamental Aeronautics Program of NASA's Aeronautics Research Mission Directorate (ARMD). The purpose of these testbeds is to quickly and inexpensively evaluate advanced concepts and experimental flight controls, with applications to adaptive control, system identification, novel control effectors, correlation of subscale flight tests with wind tunnel results, and autonomous operations. Flight tests and operator training were conducted during four separate series of tests during April, May, June and August 2008. Experimental controllers were engaged and disengaged during fully autonomous flight in the designated test area. Flaps and landing gear were deployed by commands from the ground control station as unanticipated disturbances. The flight tests were performed NASA personnel with support from the Maritime Unmanned Development and Operations (MUDO) team of the Naval Air Warfare Center, Aircraft Division
Document handover of ISS Flight Control room to new Flight Control Room in old MCC
2006-10-06
JSC2006-E-43860 (6 Oct. 2006)--- International Space Station flight controllers have this area as their new home with increased technical capabilities, more workspace and a long, distinguished history. The newly updated facility is just down the hall from its predecessor at NASA's Johnson Space Center, Houston. Known as Flight Control Room 1, it was first used to control a space flight 38 years ago, the mission of Apollo 7 launched Oct. 11, 1968. It was one of two control rooms for NASA's manned missions. The room it replaces in its new ISS role, designated the Blue Flight Control Room, had been in operation since the first station component was launched in 1998.
The Analysis of the Contribution of Human Factors to the In-Flight Loss of Control Accidents
NASA Technical Reports Server (NTRS)
Ancel, Ersin; Shih, Ann T.
2012-01-01
In-flight loss of control (LOC) is currently the leading cause of fatal accidents based on various commercial aircraft accident statistics. As the Next Generation Air Transportation System (NextGen) emerges, new contributing factors leading to LOC are anticipated. The NASA Aviation Safety Program (AvSP), along with other aviation agencies and communities are actively developing safety products to mitigate the LOC risk. This paper discusses the approach used to construct a generic integrated LOC accident framework (LOCAF) model based on a detailed review of LOC accidents over the past two decades. The LOCAF model is comprised of causal factors from the domain of human factors, aircraft system component failures, and atmospheric environment. The multiple interdependent causal factors are expressed in an Object-Oriented Bayesian belief network. In addition to predicting the likelihood of LOC accident occurrence, the system-level integrated LOCAF model is able to evaluate the impact of new safety technology products developed in AvSP. This provides valuable information to decision makers in strategizing NASA's aviation safety technology portfolio. The focus of this paper is on the analysis of human causal factors in the model, including the contributions from flight crew and maintenance workers. The Human Factors Analysis and Classification System (HFACS) taxonomy was used to develop human related causal factors. The preliminary results from the baseline LOCAF model are also presented.
A fault-tolerant control architecture for unmanned aerial vehicles
NASA Astrophysics Data System (ADS)
Drozeski, Graham R.
Research has presented several approaches to achieve varying degrees of fault-tolerance in unmanned aircraft. Approaches in reconfigurable flight control are generally divided into two categories: those which incorporate multiple non-adaptive controllers and switch between them based on the output of a fault detection and identification element, and those that employ a single adaptive controller capable of compensating for a variety of fault modes. Regardless of the approach for reconfigurable flight control, certain fault modes dictate system restructuring in order to prevent a catastrophic failure. System restructuring enables active control of actuation not employed by the nominal system to recover controllability of the aircraft. After system restructuring, continued operation requires the generation of flight paths that adhere to an altered flight envelope. The control architecture developed in this research employs a multi-tiered hierarchy to allow unmanned aircraft to generate and track safe flight paths despite the occurrence of potentially catastrophic faults. The hierarchical architecture increases the level of autonomy of the system by integrating five functionalities with the baseline system: fault detection and identification, active system restructuring, reconfigurable flight control; reconfigurable path planning, and mission adaptation. Fault detection and identification algorithms continually monitor aircraft performance and issue fault declarations. When the severity of a fault exceeds the capability of the baseline flight controller, active system restructuring expands the controllability of the aircraft using unconventional control strategies not exploited by the baseline controller. Each of the reconfigurable flight controllers and the baseline controller employ a proven adaptive neural network control strategy. A reconfigurable path planner employs an adaptive model of the vehicle to re-shape the desired flight path. Generation of the revised flight path is posed as a linear program constrained by the response of the degraded system. Finally, a mission adaptation component estimates limitations on the closed-loop performance of the aircraft and adjusts the aircraft mission accordingly. A combination of simulation and flight test results using two unmanned helicopters validates the utility of the hierarchical architecture.
NASA Technical Reports Server (NTRS)
Reveley, Mary s.; Briggs, Jeffrey L.; Leone, Karen M.; Kurtoglu, Tolga; Withrow, Colleen A.
2010-01-01
Literature from academia, industry, and other Government agencies was surveyed to assess the state of the art in current Integrated Resilient Aircraft Control (IRAC) aircraft technologies. Over 100 papers from 25 conferences from the time period 2004 to 2009 were reviewed. An assessment of the general state of the art in adaptive flight control is summarized first, followed by an assessment of the state of the art as applicable to 13 identified adverse conditions. Specific areas addressed in the general assessment include flight control when compensating for damage or reduced performance, retrofit software upgrades to flight controllers, flight control through engine response, and finally test and validation of new adaptive controllers. The state-of-the-art assessment applicable to the adverse conditions include technologies not specifically related to flight control, but may serve as inputs to a future flight control algorithm. This study illustrates existing gaps and opportunities for additional research by the NASA IRAC Project
Integrated Resilient Aircraft Control Project Full Scale Flight Validation
NASA Technical Reports Server (NTRS)
Bosworth, John T.
2009-01-01
Objective: Provide validation of adaptive control law concepts through full scale flight evaluation. Technical Approach: a) Engage failure mode - destabilizing or frozen surface. b) Perform formation flight and air-to-air tracking tasks. Evaluate adaptive algorithm: a) Stability metrics. b) Model following metrics. Full scale flight testing provides an ability to validate different adaptive flight control approaches. Full scale flight testing adds credence to NASA's research efforts. A sustained research effort is required to remove the road blocks and provide adaptive control as a viable design solution for increased aircraft resilience.
Propulsion system/flight control integration for supersonic aircraft
NASA Technical Reports Server (NTRS)
Reukauf, P. J.; Burcham, F. W., Jr.
1976-01-01
Digital integrated control systems are studied. Such systems allow minimization of undesirable interactions while maximizing performance at all flight conditions. One such program is the YF-12 cooperative control program. The existing analog air data computer, autothrottle, autopilot, and inlet control systems are converted to digital systems by using a general purpose airborne computer and interface unit. Existing control laws are programed and tested in flight. Integrated control laws, derived using accurate mathematical models of the airplane and propulsion system in conjunction with modern control techniques, are tested in flight. Analysis indicates that an integrated autothrottle autopilot gives good flight path control and that observers are used to replace failed sensors.
High Stability Engine Control (HISTEC) Flight Test Results
NASA Technical Reports Server (NTRS)
Southwick, Robert D.; Gallops, George W.; Kerr, Laura J.; Kielb, Robert P.; Welsh, Mark G.; DeLaat, John C.; Orme, John S.
1998-01-01
The High Stability Engine Control (HISTEC) Program, managed and funded by the NASA Lewis Research Center, is a cooperative effort between NASA and Pratt & Whitney (P&W). The program objective is to develop and flight demonstrate an advanced high stability integrated engine control system that uses real-time, measurement-based estimation of inlet pressure distortion to enhance engine stability. Flight testing was performed using the NASA Advanced Controls Technologies for Integrated Vehicles (ACTIVE) F-15 aircraft at the NASA Dryden Flight Research Center. The flight test configuration, details of the research objectives, and the flight test matrix to achieve those objectives are presented. Flight test results are discussed that show the design approach can accurately estimate distortion and perform real-time control actions for engine accommodation.
Implementation of an Adaptive Controller System from Concept to Flight Test
NASA Technical Reports Server (NTRS)
Larson, Richard R.; Burken, John J.; Butler, Bradley S.; Yokum, Steve
2009-01-01
The National Aeronautics and Space Administration Dryden Flight Research Center (Edwards, California) is conducting ongoing flight research using adaptive controller algorithms. A highly modified McDonnell-Douglas NF-15B airplane called the F-15 Intelligent Flight Control System (IFCS) is used to test and develop these algorithms. Modifications to this airplane include adding canards and changing the flight control systems to interface a single-string research controller processor for neural network algorithms. Research goals include demonstration of revolutionary control approaches that can efficiently optimize aircraft performance in both normal and failure conditions and advancement of neural-network-based flight control technology for new aerospace system designs. This report presents an overview of the processes utilized to develop adaptive controller algorithms during a flight-test program, including a description of initial adaptive controller concepts and a discussion of modeling formulation and performance testing. Design finalization led to integration with the system interfaces, verification of the software, validation of the hardware to the requirements, design of failure detection, development of safety limiters to minimize the effect of erroneous neural network commands, and creation of flight test control room displays to maximize human situational awareness; these are also discussed.
NASA Technical Reports Server (NTRS)
Wall, John H.; VanZwieten, Tannen S.; Gilligan, Eric T.; Miller, Christopher J.; Hanson, Curtis E.; Orr, Jeb S.
2015-01-01
NASA's Space Launch System (SLS) Flight Control System (FCS) includes an Adaptive Augmenting Control (AAC) component which employs a multiplicative gain update law to enhance the performance and robustness of the baseline control system for extreme off nominal scenarios. The SLS FCS algorithm including AAC has been flight tested utilizing a specially outfitted F/A-18 fighter jet in which the pitch axis control of the aircraft was performed by a Non-linear Dynamic Inversion (NDI) controller, SLS reference models, and the SLS flight software prototype. This paper describes test cases from the research flight campaign in which the fundamental F/A-18 airframe structural mode was identified using frequency-domain reconstruction of flight data, amplified to result in closed loop instability, and suppressed in-flight by the SLS adaptive control system.
Thirsk during CHeCS medical emergency training
2009-07-02
ISS020-E-016866 (2 July 2009) --- Canadian Space Agency astronaut Robert Thirsk, Expedition 20 flight engineer, participates in Crew Health Care Systems (CHeCS) medical emergency training in the Destiny laboratory of the International Space Station.
14 CFR 91.1067 - Initial and recurrent flight attendant crewmember testing requirements.
Code of Federal Regulations, 2011 CFR
2011-01-01
... emergency; (d) Briefing of passengers; (e) Location and operation of portable fire extinguishers and other... person to move rapidly to an exit in an emergency as prescribed by the program manager's operations...
14 CFR 91.1067 - Initial and recurrent flight attendant crewmember testing requirements.
Code of Federal Regulations, 2013 CFR
2013-01-01
... emergency; (d) Briefing of passengers; (e) Location and operation of portable fire extinguishers and other... person to move rapidly to an exit in an emergency as prescribed by the program manager's operations...
75 FR 59326 - Eighth Meeting-RTCA Special Committee 220: Automatic Flight Guidance and Control
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-27
... Committee 220: Automatic Flight Guidance and Control AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of RTCA Special Committee 220: Automatic Flight Guidance and Control meeting. SUMMARY: The... Flight Guidance and Control. DATES: The meeting will be held October 12-14, 2010. October 12th and 13th...
76 FR 50809 - Eleventh Meeting: RTCA Special Committee 220: Automatic Flight Guidance and Control
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-16
... Committee 220: Automatic Flight Guidance and Control AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Correction of Notice of RTCA Special Committee 220 meeting: Automatic Flight Guidance and Control...: Automatic Flight Guidance and Control DATES: The meeting will be held September 13-15, 2011, from 9 a.m. to...
STS-132/ULF-4 Flight Control Team in FCR-1
2010-05-20
JSC2010-E-085365 (20 May 2010) --- The members of the STS-132/ULF-4 ISS Orbit 2 flight control team pose for a group portrait in the space station flight control room in the Mission Control Center at NASA's Johnson Space Center. Flight director Emily Nelson holds the Expedition 23 mission logo.
STS-124/1J ISS Orbit 3 flight control team portrait
2008-06-09
JSC2008-E-045777 (9 June 2008) --- The members of the STS-124/1J ISS Orbit 3 flight control team pose for a group portrait in the space station flight control room in the Mission Control Center at NASA's Johnson Space Center. Flight director Emily Nelson stands in the center foreground.