Sample records for emergency operation center

  1. Emergency Operation Center

    NASA Technical Reports Server (NTRS)

    Chinea, Anoushka Z.

    1995-01-01

    The Emergency Operation Center (EOC) is a site from which NASA LaRC Emergency Preparedness Officials exercise control and direction in an emergency. Research was conducted in order to determine what makes an effective EOC. Specifically information concerning the various types of equipment and communication capability that an efficient EOC should contain (i.e., computers, software, telephone systems, radio systems, etc.) was documented. With this information a requirements document was written stating a brief description of the equipment and required quantity to be used in an EOC and then compared to current capabilities at the NASA Langley Research Center.

  2. Hurricane risk mitigation - Emergency Operations Center

    NASA Image and Video Library

    2008-07-29

    Construction work on a new Emergency Operations Center at Stennis Space Center is nearing completion. Construction is expected to be complete by February 2009, with actual occupancy of the building planned for later that year. The new building will house fire, medical and security teams and will provide a top-grade facility to support storm emergency responder teams and emergency management operations for the south Mississippi facility.

  3. Emergency Operations Center at Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Caylor, Gary C.

    1997-01-01

    In June 1966, at the start of the Gulf Coast hurricane season, the Johnson Space Center (JSC) celebrated the opening of its new 4,000-square foot, state-of-the-art Emergency Operations Center (EOC). The new EOC has been upgraded and enhanced to support a wide spectrum of emergencies affecting JSC and neighboring communities. One of the main features of the EOC is its premier computerized dispatch center. The new system unites many of JSC's critical emergency functions into one integrated network. It automatically monitors fire alarms, security entrances, and external cameras. It contains the JSC inventory of hazardous materials, by building and room, and can call up Material Safety Data Sheets for most of the generic hazardous materials used on-site. The EOC is available for community use during area emergencies such as hurricanes and is a welcome addition to the Clear Lake/Galveston Bay Area communities' emergency response resources.

  4. Emergency Operations Center ribbon cutting

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Center Director Gene Goldman and special guests celebrate the opening of the site's new Emergency Operations Center on June 2. Participants included (l t r): Steven Cooper, deputy director of the National Weather Service Southern Region; Tom Luedtke, NASA associate administrator for institutions and management; Charles Scales, NASA associate deputy administrator; Mississippi Gov. Haley Barbour; Gene Goldman, director of Stennis Space Center; Jack Forsythe, NASA assistant administrator for the Office of Security and Program Protection; Dr. Richard Williams, NASA chief health and medical officer; and Weldon Starks, president of Starks Contracting Company Inc. of Biloxi.

  5. Emergency Operations Center ribbon cutting

    NASA Image and Video Library

    2009-06-02

    Center Director Gene Goldman and special guests celebrate the opening of the site's new Emergency Operations Center on June 2. Participants included (l t r): Steven Cooper, deputy director of the National Weather Service Southern Region; Tom Luedtke, NASA associate administrator for institutions and management; Charles Scales, NASA associate deputy administrator; Mississippi Gov. Haley Barbour; Gene Goldman, director of Stennis Space Center; Jack Forsythe, NASA assistant administrator for the Office of Security and Program Protection; Dr. Richard Williams, NASA chief health and medical officer; and Weldon Starks, president of Starks Contracting Company Inc. of Biloxi.

  6. Information sharing guidebook for transportation management centers, emergency operations centers, and fusion centers.

    DOT National Transportation Integrated Search

    2010-06-01

    This guidebook provides an overview of the mission and functions of transportation management centers, emergency operations centers, and fusion centers. The guidebook focuses on the types of information these centers produce and manage and how the sh...

  7. Information sharing guidebook for transportation management centers, emergency operations centers, and fusion centers

    DOT National Transportation Integrated Search

    2010-06-01

    This guidebook provides an overview of the mission and functions of transportation management centers, emergency operations centers, and fusion centers. The guidebook focuses on the types of information these centers produce and manage and how the sh...

  8. The current status of emergency operations at a high-volume cancer center.

    PubMed

    Komori, Koji; Kimura, Kenya; Kinoshita, Takashi; Ito, Seiji; Abe, Tetsuya; Senda, Yoshiki; Misawa, Kazunari; Ito, Yuichi; Uemura, Norihisa; Natsume, Seiji; Kawai, Ryosuke; Kawakami, Jiro; Asano, Tomonari; Iwata, Yoshinori; Kurahashi, Shintaro; Tsutsuyama, Masayuki; Shigeyoshi, Itaru; Shimizu, Yasuhiro

    2014-01-01

    This study aimed to assess the pathogenic causes, clinical conditions, surgical procedures, in-hospital mortality, and operative death associated with emergency operations at a high-volume cancer center. Although many reports have described the contents, operative procedures, and prognosis of elective surgeries in high-volume cancer centers, emergency operations have not been studied in sufficient detail. We retrospectively enrolled 28 consecutive patients who underwent emergency surgery. Cases involving operative complications were excluded. The following surgical procedures were performed during emergency operations: closure in 3 cases (10.7%), diversion in 22 cases (78.6%), ileus treatment in 2 cases (7.1%), and hemostasis in 1 case (3.6%). Closure alone was performed only once for peritonitis. Diversion was performed in 17 cases (77.3%) of peritonitis, 4 cases (18.2%) of stenosis of the gastrointestinal tract, and 1 case (4.5%) of bleeding. There was a significant overall difference (P = 0.001). The frequency of emergency operations was very low at a high-volume cancer center. However, the recent shift in treatment approaches toward nonoperative techniques may enhance the status of emergency surgical procedures. The results presented in this study will help prepare for emergency situations and resolve them as quickly and efficiently as possible.

  9. Analysis of good practice of public health Emergency Operations Centers.

    PubMed

    Xu, Min; Li, Shi-Xue

    2015-08-01

    To study the public health Emergency Operations Centers (EOCs)in the US, the European Union, the UK and Australia, and summarize the good practice for the improvement of National Health Emergency Response Command Center in Chinese National Health and Family Planning Commission. Literature review was conducted to explore the EOCs of selected countries. The study focused on EOC function, organizational structure, human resources and information management. The selected EOCs had the basic EOC functions of coordinating and commanding as well as the public health related functions such as monitoring the situation, risk assessment, and epidemiological briefings. The organizational structures of the EOCs were standardized, scalable and flexible. Incident Command System was the widely applied organizational structure with a strong preference. The EOCs were managed by a unit of emergency management during routine time and surge staff were engaged upon emergencies. The selected EOCs had clear information management framework including information collection, assessment and dissemination. The performance of National Health Emergency Response Command Center can be improved by learning from the good practice of the selected EOCs, including setting clear functions, standardizing the organizational structure, enhancing the human resource capacity and strengthening information management. Copyright © 2015 Hainan Medical College. Production and hosting by Elsevier B.V. All rights reserved.

  10. Sustainable Model for Public Health Emergency Operations Centers for Global Settings.

    PubMed

    Balajee, S Arunmozhi; Pasi, Omer G; Etoundi, Alain Georges M; Rzeszotarski, Peter; Do, Trang T; Hennessee, Ian; Merali, Sharifa; Alroy, Karen A; Phu, Tran Dac; Mounts, Anthony W

    2017-10-01

    Capacity to receive, verify, analyze, assess, and investigate public health events is essential for epidemic intelligence. Public health Emergency Operations Centers (PHEOCs) can be epidemic intelligence hubs by 1) having the capacity to receive, analyze, and visualize multiple data streams, including surveillance and 2) maintaining a trained workforce that can analyze and interpret data from real-time emerging events. Such PHEOCs could be physically located within a ministry of health epidemiology, surveillance, or equivalent department rather than exist as a stand-alone space and serve as operational hubs during nonoutbreak times but in emergencies can scale up according to the traditional Incident Command System structure.

  11. Space shuttle operations at the NASA Kennedy Space Center: the role of emergency medicine

    NASA Technical Reports Server (NTRS)

    Rodenberg, H.; Myers, K. J.

    1995-01-01

    The Division of Emergency Medicine at the University of Florida coordinates a unique program with the NASA John F. Kennedy Space Center (KSC) to provide emergency medical support (EMS) for the United States Space Transportation System. This report outlines the organization of the KSC EMS system, training received by physicians providing medical support, logistic and operational aspects of the mission, and experiences of team members. The participation of emergency physicians in support of manned space flight represents another way that emergency physicians provide leadership in prehospital care and disaster management.

  12. Space shuttle operations at the NASA Kennedy Space Center: the role of emergency medicine.

    PubMed

    Rodenberg, H; Myers, K J

    1995-01-01

    The Division of Emergency Medicine at the University of Florida coordinates a unique program with the NASA John F. Kennedy Space Center (KSC) to provide emergency medical support (EMS) for the United States Space Transportation System. This report outlines the organization of the KSC EMS system, training received by physicians providing medical support, logistic and operational aspects of the mission, and experiences of team members. The participation of emergency physicians in support of manned space flight represents another way that emergency physicians provide leadership in prehospital care and disaster management.

  13. Operation of emergency operating centers during mass casualty incidents in taiwan: a disaster management perspective.

    PubMed

    Wen, Jet-Chau; Tsai, Chia-Chou; Chen, Mei-Hsuan; Chang, Wei-Ta

    2014-10-01

    On April 27, 2011, a train derailed and crashed in Taiwan, causing a mass casualty incident (MCI) that was similar to a previous event and with similar consequences. In both disasters, the emergency operating centers (EOCs) could not effectively integrate associated agencies to deal with the incident. The coordination and utilization of resources were inefficient, which caused difficulty in command structure operation and casualty evacuation. This study was designed to create a survey questionnaire with problem items using disaster management phases mandated by Taiwan's Emergency Medical Care Law (EMCL), use statistical methods (t test) to analyze the results and issues the EOCs encountered during the operation, and propose solutions for those problems. Findings showed that EOCs lacked authority to intervene or coordinate with associated agencies. Also, placing emphasis on the recovery phase should improve future prevention and response mechanisms. To improve the response to MCIs, the EMCL needs to be amended to give EOCs the lead during disasters; use feedback from the recovery phase to improve future disaster management and operation coordination; and establish an information-sharing platform across agencies to address all aspects of relief work.(Disaster Med Public Health Preparedness. 2014;0:1-6).

  14. Decision Support for Emergency Operations Centers

    NASA Technical Reports Server (NTRS)

    Harvey, Craig; Lawhead, Joel; Watts, Zack

    2005-01-01

    The Flood Disaster Mitigation Decision Support System (DSS) is a computerized information system that allows regional emergency-operations government officials to make decisions regarding the dispatch of resources in response to flooding. The DSS implements a real-time model of inundation utilizing recently acquired lidar elevation data as well as real-time data from flood gauges, and other instruments within and upstream of an area that is or could become flooded. The DSS information is updated as new data become available. The model generates realtime maps of flooded areas and predicts flood crests at specified locations. The inundation maps are overlaid with information on population densities, property values, hazardous materials, evacuation routes, official contact information, and other information needed for emergency response. The program maintains a database and a Web portal through which real-time data from instrumentation are gathered into the database. Also included in the database is a geographic information system, from which the program obtains the overlay data for areas of interest as needed. The portal makes some portions of the database accessible to the public. Access to other portions of the database is restricted to government officials according to various levels of authorization. The Flood Disaster Mitigation DSS has been integrated into a larger DSS named REACT (Real-time Emergency Action Coordination Tool), which also provides emergency operations managers with data for any type of impact area such as floods, fires, bomb

  15. Public Health Emergency Operations Center - A critical component of mass gatherings management infrastructure.

    PubMed

    Elachola, Habidah; Al-Tawfiq, Jaffar A; Turkestani, Abdulhafiz; Memish, Ziad A

    2016-08-31

    Mass gatherings (MG) are characterized by the influx of large numbers of people with the need to have infrastructural changes to support these gatherings. Thus, Public Health Emergency Operations Center (PHEOC) is critical management infrastructure for both the delivery of public health functions and for mounting adequate response during emergencies. The recognition of the importance of PHEOC at the leadership and political level is foundational for the success of any public health intervention during MG. The ability of the PHEOC to effectively function depends on appropriate design and infrastructure, staffing and command structure, and plans and procedures developed prior to the event. Multi-ministerial or jurisdictional coordination will be required and PHEOC should be positioned with such authorities. This paper outlines the essential concepts, elements, design, and operational aspects of PHEOC during MG.

  16. Operational Research during the Ebola Emergency.

    PubMed

    Fitzpatrick, Gabriel; Decroo, Tom; Draguez, Bertrand; Crestani, Rosa; Ronsse, Axelle; Van den Bergh, Rafael; Van Herp, Michel

    2017-07-01

    Operational research aims to identify interventions, strategies, or tools that can enhance the quality, effectiveness, or coverage of programs where the research is taking place. Médecins Sans Frontières admitted ≈5,200 patients with confirmed Ebola virus disease during the Ebola outbreak in West Africa and from the beginning nested operational research within its emergency response. This research covered critical areas, such as understanding how the virus spreads, clinical trials, community perceptions, challenges within Ebola treatment centers, and negative effects on non-Ebola healthcare. Importantly, operational research questions were decided to a large extent by returning volunteers who had first-hand knowledge of the immediate issues facing teams in the field. Such a method is appropriate for an emergency medical organization. Many challenges were also identified while carrying out operational research across 3 different countries, including the basic need for collecting data in standardized format to enable comparison of findings among treatment centers.

  17. Electromagnetic Pulse (EMP) survey of the Louisiana State Emergency Operating Center, Baton Rouge, Louisiana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crutcher, R.I.; Buchanan, M.E.; Jones, R.W.

    1989-08-01

    The purpose of this report is to develop an engineering design package to protect the federal Emergency Management Agency (FEMA) National Radio System (FNARS) facilities from the effects of high-altitude electromagnetic pulses (HEMP). This report refers to the Louisiana State Emergency Operating Center (EOC) in Baton Rouge, Louisiana. This report addresses electromagnetic pulse (EMP) effects only, and disregards any condition in which radiation effects may be a factor. It has been established that, except for the source region of a surface burst, EMP effects of high-altitude bursts are more severe than comparable detonations in either air or surface regions. Anymore » system hardened to withstand the more extreme EMP environment will survive the less severe conditions. The threatening environment will therefore be limited to HEMP situations. 76 figs., 2 tabs.« less

  18. Operating and Managing a Backup Control Center

    NASA Technical Reports Server (NTRS)

    Marsh, Angela L.; Pirani, Joseph L.; Bornas, Nicholas

    2010-01-01

    Due to the criticality of continuous mission operations, some control centers must plan for alternate locations in the event an emergency shuts down the primary control center. Johnson Space Center (JSC) in Houston, Texas is the Mission Control Center (MCC) for the International Space Station (ISS). Due to Houston s proximity to the Gulf of Mexico, JSC is prone to threats from hurricanes which could cause flooding, wind damage, and electrical outages to the buildings supporting the MCC. Marshall Space Flight Center (MSFC) has the capability to be the Backup Control Center for the ISS if the situation is needed. While the MSFC Huntsville Operations Support Center (HOSC) does house the BCC, the prime customer and operator of the ISS is still the JSC flight operations team. To satisfy the customer and maintain continuous mission operations, the BCC has critical infrastructure that hosts ISS ground systems and flight operations equipment that mirrors the prime mission control facility. However, a complete duplicate of Mission Control Center in another remote location is very expensive to recreate. The HOSC has infrastructure and services that MCC utilized for its backup control center to reduce the costs of a somewhat redundant service. While labor talents are equivalent, experiences are not. Certain operations are maintained in a redundant mode, while others are simply maintained as single string with adequate sparing levels of equipment. Personnel at the BCC facility must be trained and certified to an adequate level on primary MCC systems. Negotiations with the customer were done to match requirements with existing capabilities, and to prioritize resources for appropriate level of service. Because some of these systems are shared, an activation of the backup control center will cause a suspension of scheduled HOSC activities that may share resources needed by the BCC. For example, the MCC is monitoring a hurricane in the Gulf of Mexico. As the threat to MCC

  19. About the National Center for Radiation Field Operations (NCRFO)

    EPA Pesticide Factsheets

    The National Center for Radiation Field Operations (NCRFO) is an essential component of EPA’s Radiological Emergency Response Team (RERT) and is key to EPA's response to radiological emergencies and accidents nationwide.

  20. The Association of Psychological Empowerment and Job Burnout in Operational Staff of Tehran Emergency Center.

    PubMed

    Ghaniyoun, Aram; Shakeri, Khosro; Heidari, Mohammad

    2017-09-01

    Workers in social service professions are the first candidates for job burnout. The researchers believe this is due to daily exposure to stressful situations and lack of positive conditions in the workplace. It seems that psychological empowerment of staff can affect their job burnout. This study aimed to investigate the relationship between psychological empowerment and job burnout in operational staff of emergency center. This was a descriptive correlational study. A total of 1100 operational staff of emergency center were evaluated, and of which, 285 persons were selected by simple random sampling method. Data were collected using Spritzer's psychological empowerment and Maslach Burnout Inventory questionnaires. SPSS software, version 18, was used for data analysis along with descriptive analytical tests. The findings of this study revealed that the majority of units (46%) were in intermediate level in terms of empowerment. Similarly, the majority of cases had intermediate level (77.5%), and a minor percentage (8.4%) had low levels of job burnout. Based on Pearson's correlation test, there was a significant invert correlation between psychological empowerment and job burnout. This inverse and significant relationship was also observed between the four components of psychological empowerment (competence, self-determination, impact, and meaning) and job burnout. According to the results of the study, policy makers and health planners can take some measures in enhancing psychological empowerment to prevent problems associated with job burnout, by identifying stressors and strategies to deal with them.

  1. The Association of Psychological Empowerment and Job Burnout in Operational Staff of Tehran Emergency Center

    PubMed Central

    Ghaniyoun, Aram; Shakeri, Khosro; Heidari, Mohammad

    2017-01-01

    Background: Workers in social service professions are the first candidates for job burnout. The researchers believe this is due to daily exposure to stressful situations and lack of positive conditions in the workplace. It seems that psychological empowerment of staff can affect their job burnout. This study aimed to investigate the relationship between psychological empowerment and job burnout in operational staff of emergency center. Methods: This was a descriptive correlational study. A total of 1100 operational staff of emergency center were evaluated, and of which, 285 persons were selected by simple random sampling method. Data were collected using Spritzer's psychological empowerment and Maslach Burnout Inventory questionnaires. SPSS software, version 18, was used for data analysis along with descriptive analytical tests. Results: The findings of this study revealed that the majority of units (46%) were in intermediate level in terms of empowerment. Similarly, the majority of cases had intermediate level (77.5%), and a minor percentage (8.4%) had low levels of job burnout. Based on Pearson's correlation test, there was a significant invert correlation between psychological empowerment and job burnout. This inverse and significant relationship was also observed between the four components of psychological empowerment (competence, self-determination, impact, and meaning) and job burnout. Conclusions: According to the results of the study, policy makers and health planners can take some measures in enhancing psychological empowerment to prevent problems associated with job burnout, by identifying stressors and strategies to deal with them. PMID:28970654

  2. Emergency Operations Center

    EPA Pesticide Factsheets

    EOC serves as the response operational focal point. A communication and coordination hub designed to increase data management and coordination abilities, provides communication support for Watch Officer, Homeland Security, regional and field assets.

  3. Kennedy Space Center Medical Operations and Medical Kit

    NASA Technical Reports Server (NTRS)

    Scarpa, Philip

    2011-01-01

    This slide presentation reviews the emergency medical operations at Kennedy Space center, the KSC launch and landing contingency modes, the triage site, the medical kit, and the medications available.

  4. Containment of Ebola and Polio in Low-Resource Settings Using Principles and Practices of Emergency Operations Centers in Public Health.

    PubMed

    Shuaib, Faisal M; Musa, Philip F; Muhammad, Ado; Musa, Emmanuel; Nyanti, Sara; Mkanda, Pascal; Mahoney, Frank; Corkum, Melissa; Durojaiye, Modupeoluwa; Nganda, Gatei Wa; Sani, Samuel Usman; Dieng, Boubacar; Banda, Richard; Ali Pate, Muhammad

    Emergency Operations Centers (EOCs) have been credited with driving the recent successes achieved in the Nigeria polio eradication program. EOC concept was also applied to the Ebola virus disease outbreak and is applicable to a range of other public health emergencies. This article outlines the structure and functionality of a typical EOC in addressing public health emergencies in low-resource settings. It ascribes the successful polio and Ebola responses in Nigeria to several factors including political commitment, population willingness to engage, accountability, and operational and strategic changes made by the effective use of an EOC and Incident Management System. In countries such as Nigeria where the central or federal government does not directly hold states accountable, the EOC provides a means to improve performance and use data to hold health workers accountable by using innovative technologies such as geographic position systems, dashboards, and scorecards.

  5. Emergency preparedness for genetics centers, laboratories, and patients: the Southeast Region Genetics Collaborative strategic plan.

    PubMed

    Andersson, Hans C; Perry, William; Bowdish, Bruce; Floyd-Browning, Phaidra

    2011-10-01

    Emergencies occur unpredictably and interrupt routine genetic care. The events after hurricanes Katrina and Rita have led to the recognition that a coherent plan is necessary to ensure continuity of operations for genetic centers and laboratories, including newborn screening. No geographic region is protected from the effects of a variety of potential emergencies. Regional and national efforts have begun to address the need for such preparedness, but a plan for ensuring continuity of operations by creating an emergency preparedness plan must be developed for each genetic center and laboratory, with attention to the interests of patients. This article describes the first steps in development of an emergency preparedness plan for individual centers.

  6. Elements of resilience after the World Trade Center disaster: reconstituting New York City's Emergency Operations Centre.

    PubMed

    Kendra, James M; Wachtendorf, Tricia

    2003-03-01

    In this paper we examine the reconstitution of the Emergency Operations Centre (EOC) after its destruction in the World Trade Center attack, using that event to highlight several features of resilience. The paper summarises basic EOC functions, and then presents conceptions of resilience as understood from several disciplinary perspectives, noting that work in these fields has sought to understand how a natural or social system that experiences disturbance sustains its functional processes. We observe that, although the physical EOC facility was destroyed, the organisation that had been established to manage crises in New York City continued, enabling a response that drew on the resources of New York City and neighbouring communities, states and the federal government. Availability of resources--which substituted for redundancy of personnel, equipment and space--pre-existing relationships that eased communication challenges as the emergency developed and the continuation of organisational patterns of response integration and role assignments were among the factors that contributed to resilience following the attack.

  7. The impact of a large-scale power outage on hemodialysis center operations.

    PubMed

    Abir, Mahshid; Jan, Sophia; Jubelt, Lindsay; Merchant, Raina M; Lurie, Nicole

    2013-12-01

    On June 29, 2012, mid-Atlantic storms resulted in a large-scale power outage affecting up to three million people across multiple (US) states. Hemodialysis centers are dependent on electricity to provide dialysis care to end-stage renal disease patients. The objective of this study was to determine how the power outage impacted operations in a sample of hemodialysis centers in the impacted regions. The sample consisted of all hemodialysis centers located in the District of Columbia and a total of five counties with the largest power losses in West Virginia, Virginia, and Maryland. A semi-structured interview guide was developed, and the charge nurse or supervisor in each facility was interviewed. The survey questions addressed whether their centers lost power, if so, for how long, where their patients received dialysis, whether their centers had backup generators, and if so, whether they had any problems operating them, and whether their center received patients from other centers if they had power. Calls were placed to 90 dialysis centers in the sampled areas and a 90% response rate was achieved. Overall, hemodialysis operations at approximately 30% (n = 24) of the centers queried were impacted by the power outage. Of the 36 centers that lost power, 31% (n = 11) referred their patients to other dialysis centers, 22% (n = 8) accommodated their patients during a later shift or on a different day; the rest of the centers either experienced brief power outages that did not affect operations or experienced a power outage on days that the center is usually closed. Some centers in the study cohort reported receiving patients from other centers for dialysis 33% (n = 27). Thirty-two percent (n = 26) of the centers queried had backup generators on site. Eleven percent (n = 4) of the centers experiencing power outages reported that backup generators were brought in by their parent companies. Comprehensive emergency planning for dialysis centers should include provisions for

  8. The new emergency structure of the Istituto Nazionale di Geofisica e Vulcanologia during the L’Aquila 2009 seismic sequence: the contribution of the COES (Seismological Emergency Operation Center - Centro Operativo Emergenza Sismica)

    NASA Astrophysics Data System (ADS)

    Moretti, M.; Govoni, A.; Nostro, C.; La Longa, F.; Crescimbene, M.; Pignone, M.; Selvaggi, G.; Working Group, C.

    2009-12-01

    The Centro Nazionale Terremoti (CNT - National Earthquake Center), departement of Istituto Nazionale di Geofisica e Vulcanologia (INGV), has designed and setup a rapid response emergency structure to face the occurrence of strong earthquakes. This structure is composed by a real time satellite telemetered temporary seismic network (see Abruzzese et al., 2009 Fall AGU) used to improve the hypocentral locations of the INGV National Seismic Network, a stand alone temporary seismic network whose goal is primarily the high dynamic/high resolution data acquisition in the epicentral area and a mobile operational center, the COES (Centro Operativo Emergenza Sismica, Seismological Emergency Operational Center). The COES structure is a sort of mobile office equipped with satellite internet communication that can be rapidly installed in the disaster area to support all the INGV staff operative needs and to cooperate with the Civil Protection department (DPC) aggregating all the scientific information available on the seismic sequence and providing updated information to Civil Protection for the decision making stage during the emergency. The structure is equipped with a heavy load trolley that carries a 6x6 inflatable tent, a satellite router, an UPS, computers, monitors and furniture. The facility can be installed in a couple of hours in the epicentral area and provides a full featured office with dedicated internet connection and VPN access to the INGV data management center in Rome. Just after the April 6 2009 Mw 6.3 earthquake in L’Aquila (Central Italy) the COES has been installed upon request of the Italian Civil Protection (DPC) in the DICOMAC (Directorate of Command and Control - which is the central structure of the DPC that coordinates the emergency activities in the areas affected by the earthquake) located in the Guardia di Finanza headquarters in Coppito nearby L'Aquila (the same location that hosted the G8 meeting). The COES produces real time reports on the

  9. 14 CFR 133.31 - Emergency operations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Emergency operations. 133.31 Section 133.31... OPERATIONS Operating Rules and Related Requirements § 133.31 Emergency operations. (a) In an emergency... Amdt. 133-11, 54 FR 39294, Sept. 25, 1989] ...

  10. Autologous blood transfusion during emergency trauma operations.

    PubMed

    Brown, Carlos V R; Foulkrod, Kelli H; Sadler, Holli T; Richards, E Kalem; Biggan, Dennis P; Czysz, Clea; Manuel, Tony

    2010-07-01

    Intraoperative cell salvage (CS) of shed blood during emergency surgical procedures provides an effective and cost-efficient resuscitation alternative to allogeneic blood transfusion, which is associated with increased morbidity and mortality in trauma patients. Retrospective matched cohort study. Level I trauma center. All adult trauma patients who underwent an emergency operation and received CS as part of their intraoperative resuscitation. The CS group was matched to a no-CS group for age, sex, Injury Severity Score, mechanism of injury, and operation performed. Amount and cost of allogeneic transfusion of packed red blood cells and plasma. The 47 patients in the CS group were similar to the 47 in the no-CS group for all matched variables. Patients in the CS group received an average of 819 mL of autologous CS blood. The CS group received fewer intraoperative (2 vs 4 U; P = .002) and total (4 vs 8 U; P < .001) units of allogeneic packed red blood cells. The CS group also received fewer total units of plasma (3 vs 5 U; P = .03). The cost of blood product transfusion (including the total cost of CS) was less in the CS group ($1616 vs $2584 per patient; P = .004). Intraoperative CS provides an effective and cost-efficient resuscitation strategy as an alternative to allogeneic blood transfusion in trauma patients undergoing emergency operative procedures.

  11. Modeling operators' emergency response time for chemical processing operations.

    PubMed

    Murray, Susan L; Harputlu, Emrah; Mentzer, Ray A; Mannan, M Sam

    2014-01-01

    Operators have a crucial role during emergencies at a variety of facilities such as chemical processing plants. When an abnormality occurs in the production process, the operator often has limited time to either take corrective actions or evacuate before the situation becomes deadly. It is crucial that system designers and safety professionals can estimate the time required for a response before procedures and facilities are designed and operations are initiated. There are existing industrial engineering techniques to establish time standards for tasks performed at a normal working pace. However, it is reasonable to expect the time required to take action in emergency situations will be different than working at a normal production pace. It is possible that in an emergency, operators will act faster compared to a normal pace. It would be useful for system designers to be able to establish a time range for operators' response times for emergency situations. This article develops a modeling approach to estimate the time standard range for operators taking corrective actions or following evacuation procedures in emergency situations. This will aid engineers and managers in establishing time requirements for operators in emergency situations. The methodology used for this study combines a well-established industrial engineering technique for determining time requirements (predetermined time standard system) and adjustment coefficients for emergency situations developed by the authors. Numerous videos of workers performing well-established tasks at a maximum pace were studied. As an example, one of the tasks analyzed was pit crew workers changing tires as quickly as they could during a race. The operations in these videos were decomposed into basic, fundamental motions (such as walking, reaching for a tool, and bending over) by studying the videos frame by frame. A comparison analysis was then performed between the emergency pace and the normal working pace operations

  12. Hazardous Materials Management and Emergency Response Training Center at Hanford

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ollero, J.; Muth, G.; Bergland, R.

    1994-12-31

    The Hanford Site will provide high-fidelity training using simulated job-site situations to prepare workers for known and unknown hazards. Hanford is developing the Hazardous Materials Management and Emergency Response (HAMMER) Training Center to operate as a user facility for the site, region and international labor unions. The center will focus on providing hands-on, realistic training situations. The Training Center is a partnership among U.S. Department of Energy (DOE); its contractors; labor; local, state, and tribal governments; Xavier and Tulane Universities of Louisiana and other Federal agencies. The hands-on training aids at HAMMER is justified based on regulatory training requirements, themore » desire for enhanced safety, and the commitment to continuous improvement of training quality.« less

  13. 47 CFR 0.192 - Emergency Response Interoperability Center.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 1 2014-10-01 2014-10-01 false Emergency Response Interoperability Center. 0.192 Section 0.192 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL COMMISSION ORGANIZATION Organization Public Safety and Homeland Security Bureau § 0.192 Emergency Response Interoperability Center. (a...

  14. 47 CFR 0.192 - Emergency Response Interoperability Center.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 1 2013-10-01 2013-10-01 false Emergency Response Interoperability Center. 0.192 Section 0.192 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL COMMISSION ORGANIZATION Organization Public Safety and Homeland Security Bureau § 0.192 Emergency Response Interoperability Center. (a...

  15. 47 CFR 0.192 - Emergency Response Interoperability Center.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false Emergency Response Interoperability Center. 0.192 Section 0.192 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL COMMISSION ORGANIZATION Organization Public Safety and Homeland Security Bureau § 0.192 Emergency Response Interoperability Center. (a...

  16. Extreme Ultraviolet Explorer Science Operation Center

    NASA Technical Reports Server (NTRS)

    Wong, G. S.; Kronberg, F. A.; Meriwether, H. D.; Wong, L. S.; Grassi, C. L.

    1993-01-01

    The EUVE Science Operations Center (ESOC) is a satellite payload operations center for the Extreme Ultraviolet Explorer project, located on the Berkeley campus of the University of California. The ESOC has the primary responsibility for commanding the EUVE telescopes and monitoring their telemetry. The ESOC is one of a very few university-based satellite operations facilities operating with NASA. This article describes the history, operation, and advantages of the ESOC as an on-campus operations center.

  17. Contingency Operations Support to NASA Johnson Space Center Medical Operations Division

    NASA Technical Reports Server (NTRS)

    Stepaniak, Philip; Patlach, Bob; Swann, Mark; Adams, Adrien

    2005-01-01

    The Wyle Laboratories Contingency Operations Group provides support to the NASA Johnson Space Center (JSC) Medical Operations Division in the event of a space flight vehicle accident or JSC mishap. Support includes development of Emergency Medical System (EMS) requirements, procedures, training briefings and real-time support of mishap investigations. The Contingency Operations Group is compliant with NASA documentation that provides guidance in these areas and maintains contact with the United States Department of Defense (DOD) to remain current on military plans to support NASA. The contingency group also participates in Space Operations Medical Support Training Courses (SOMSTC) and represents the NASA JSC Medical Operations Division at contingency exercises conducted worldwide by the DOD or NASA. The events of September 11, 2001 have changed how this country prepares and protects itself from possible terrorist attacks on high-profile targets. As a result, JSC is now considered a high-profile target and thus, must prepare for and develop a response to a Weapons of Mass Destruction (WMD) incident. The Wyle Laboratories Contingency Operations Group supports this plan, specifically the medical response, by providing expertise and manpower.

  18. 47 CFR 25.284 - Emergency Call Center Service.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... mobile satellite service to end-user customers (part 25, subparts A-D) must provide Emergency Call Center... Center personnel must determine the emergency caller's phone number and location and then transfer or otherwise redirect the call to an appropriate public safety answering point. Providers of mobile satellite...

  19. Emergency operations program is an excellent platform to deal with in-hospital operation disaster.

    PubMed

    Rogers, Frederick B; McCune, William; Jammula, Shreya; Gross, Brian W; Bradburn, Eric H; Riley, Deborah K; Manning, Jeffrey

    2017-01-01

    Described herein is the utilization of the hospital's Emergency Operations Plan and incident command structure to mitigate damage caused by the sudden loss of the heating, ventilation, and air conditioning system within the entire operating room suite. The ability to ameliorate a devastating situation that occurred during working hours at a busy Level II trauma center can be ascribed to the dedication of the leadership and clinical teams working seamlessly together. Their concerted efforts were augmented by adherence to an established protocol that had been thoroughly substantiated and practiced during numerous training simulations. This resulted in successful and timely resolution of an internal crisis that crippled the surgical capabilities of the sole trauma center in the county. After thorough investigation and identification of the issues that contributed to the malfunction, redundancies were built into the system to ensure that a similar incident did not occur again.

  20. Kepler Science Operations Center Architecture

    NASA Technical Reports Server (NTRS)

    Middour, Christopher; Klaus, Todd; Jenkins, Jon; Pletcher, David; Cote, Miles; Chandrasekaran, Hema; Wohler, Bill; Girouard, Forrest; Gunter, Jay P.; Uddin, Kamal; hide

    2010-01-01

    We give an overview of the operational concepts and architecture of the Kepler Science Data Pipeline. Designed, developed, operated, and maintained by the Science Operations Center (SOC) at NASA Ames Research Center, the Kepler Science Data Pipeline is central element of the Kepler Ground Data System. The SOC charter is to analyze stellar photometric data from the Kepler spacecraft and report results to the Kepler Science Office for further analysis. We describe how this is accomplished via the Kepler Science Data Pipeline, including the hardware infrastructure, scientific algorithms, and operational procedures. The SOC consists of an office at Ames Research Center, software development and operations departments, and a data center that hosts the computers required to perform data analysis. We discuss the high-performance, parallel computing software modules of the Kepler Science Data Pipeline that perform transit photometry, pixel-level calibration, systematic error-correction, attitude determination, stellar target management, and instrument characterization. We explain how data processing environments are divided to support operational processing and test needs. We explain the operational timelines for data processing and the data constructs that flow into the Kepler Science Data Pipeline.

  1. Closing emergency operating rooms improves efficiency.

    PubMed

    Wullink, Gerhard; Van Houdenhoven, Mark; Hans, Erwin W; van Oostrum, Jeroen M; van der Lans, Marieke; Kazemier, Geert

    2007-12-01

    Long waiting times for emergency operations increase a patient's risk of postoperative complications and morbidity. Reserving Operating Room (OR) capacity is a common technique to maximize the responsiveness of an OR in case of arrival of an emergency patient. This study determines the best way to reserve OR time for emergency surgery. In this study two approaches of reserving capacity were compared: (1) concentrating all reserved OR capacity in dedicated emergency ORs, and (2) evenly reserving capacity in all elective ORs. By using a discrete event simulation model the real situation was modelled. Main outcome measures were: (1) waiting time, (2) staff overtime, and (3) OR utilisation were evaluated for the two approaches. Results indicated that the policy of reserving capacity for emergency surgery in all elective ORs led to an improvement in waiting times for emergency surgery from 74 (+/-4.4) minutes to 8 (+/-0.5) min. Working in overtime was reduced by 20%, and overall OR utilisation can increase by around 3%. Emergency patients are operated upon more efficiently on elective Operating Rooms instead of a dedicated Emergency OR. The results of this study led to closing of the Emergency OR in the Erasmus MC (Rotterdam, The Netherlands).

  2. Secure, Autonomous, Intelligent Controller for Integrating Distributed Emergency Response Satellite Operations

    NASA Astrophysics Data System (ADS)

    Ivancic, W. D.; Paulsen, P. E.; Miller, E. M.; Sage, S. P.

    This report describes a Secure, Autonomous, and Intelligent Controller for Integrating Distributed Emergency Response Satellite Operations. It includes a description of current improvements to existing Virtual Mission Operations Center technology being used by US Department of Defense and originally developed under NASA funding. The report also highlights a technology demonstration performed in partnership with the United States Geological Service for Earth Resources Observation and Science using DigitalGlobe® satellites to obtain space-based sensor data.

  3. Secure, Autonomous, Intelligent Controller for Integrating Distributed Emergency Response Satellite Operations

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.; Paulsen, Phillip E.; Miller, Eric M.; Sage, Steen P.

    2013-01-01

    This report describes a Secure, Autonomous, and Intelligent Controller for Integrating Distributed Emergency Response Satellite Operations. It includes a description of current improvements to existing Virtual Mission Operations Center technology being used by US Department of Defense and originally developed under NASA funding. The report also highlights a technology demonstration performed in partnership with the United States Geological Service for Earth Resources Observation and Science using DigitalGlobe(Registered TradeMark) satellites to obtain space-based sensor data.

  4. Dedicated operating room for emergency surgery generates more utilization, less overtime, and less cancellations.

    PubMed

    van Veen-Berkx, Elizabeth; Elkhuizen, Sylvia G; Kuijper, Bart; Kazemier, Geert

    2016-01-01

    Two approaches prevail for reserving operating room (OR) capacity for emergency surgery: (1) dedicated emergency ORs and (2) evenly allocating capacity to all elective ORs, thereby creating a virtual emergency team. Previous studies contradict which approach leads to the best performance in OR utilization. Quasi-experimental controlled time-series design with empirical data from 3 university medical centers. Four different time periods were compared with analysis of variance with contrasts. Performance was measured based on 467,522 surgical cases. After closing the dedicated emergency OR, utilization slightly increased; overtime also increased. This was in contrast to earlier simulated results. The 2 control centers, maintaining a dedicated emergency OR, showed a higher increase in utilization and a decrease in overtime, along with a smaller ratio of case cancellations because of emergency surgery. This study shows that in daily practice a dedicated emergency OR is the preferred approach in performance terms regarding utilization, overtime, and case cancellations. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Poison control center - emergency number

    MedlinePlus

    For a POISON EMERGENCY call: 1-800-222-1222 ANYWHERE IN THE UNITED STATES This national hotline number will let you ... is a free and confidential service. All local poison control centers in the United States use this ...

  6. Doing Pre-operative Investigations in Emergency Department; a Clinical Audit.

    PubMed

    Rafiq, Muhammad Salman; Rafiq, Maria; Rafiq, Muhammad Imran; Salman, Seema Gul; Hafeez, Sania

    2017-01-01

    Pre-operative investigations for emergency surgical patients differ between centers. Following established guidelines can reduce unnecessary investigation, cost of treatment and hospital stay. The present audit was carried out to evaluate the condition of doing pre-operative investigations for three common surgical emergencies compared to National Institute for Health and Care Excellence (NICE) guidelines and local criteria. A retrospective clinical audit of acute-appendicitis, abscess and hernia patients admitted to the emergency department was carried out over a one-year period from July 2014 to July 2015. Data of laboratory investigations, their indication, cost and duration of hospital stay was collected and compared with NICE-guidelines. A total of 201 patients were admitted to the emergency department during the audit period. These included 77(38.3%) cases of acute-appendicitis, 112 (55.7%) cases of abscesses, and 12 (6%) cases of hernia. Investigations not indicated by NICE-guidelines included 42 (20.9%) full blood counts, 29 (14.4%) random blood sugars, 26 (12.9%) urea tests, 4 (2%) chest x-rays, 13 (6.5%) electrocardiographs, and 58 (28.9%) urine analyses. These cost 25,675 Rupees (245.46 Dollars) in unnecessary investigation costs and 65.7 days of additional hospital stay. Unnecessary investigations for emergency surgical patients can be reduced by following NICE-guidelines. This will reduce workload on emergency services, treatment costs and the length of hospital stay.

  7. Industrial Assessment Center (IAC) Operations Manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gopalakrishnan, Bhaskaran; Nimbalkar, Sachin U.; Wenning, Thomas J.

    IAC Operations Manual describes organizational model and operations of the Industrial Assessment Center (IAC), Center management activities, typical process of energy assessment, and energy assessment data for specific industry sectors.

  8. Referral Patterns of Emergent Pediatric Hand Injury Transfers to a Tertiary Care Center.

    PubMed

    Gornitzky, Alex L; Milby, Andrew H; Gunderson, Melissa A; Chang, Benjamin; Carrigan, Robert B

    2016-01-01

    Several studies have identified the inappropriate use of emergent interfacility transfer as an opportunity to improve health care use. The authors sought to identify common characteristics among children who were transferred from a community hospital to a pediatric tertiary care center for definitive treatment of hand/wrist injuries. All patients undergoing emergent transfer to a pediatric Level I trauma center and academic tertiary referral center for evaluation and management of injuries to the hand/wrist during the 2-year study period were retrospectively identified. Demographic and transfer data were abstracted from the medical record. Referring hospitals were subcategorized by the presence or absence of hand surgical emergency department coverage and the capability to admit/operate on children. Overall, 169 patients were identified who transferred to the authors' institution for hand injuries. There were no differences in the day or time of transfer. Of those transferred, 59 (35%) were admitted for definitive care, of whom 51 (86%) required a surgical intervention within 24 hours. Of the remaining 110 (65%) patients discharged from the emergency department, 27 (25%) underwent elective surgical intervention within 2 weeks. There were a greater number of transfers from institutions without the ability to admit children, regardless of hand surgical emergency department coverage status. Understanding pediatric referral patterns may improve use of emergency department facilities because most patients who were transferred were discharged the same day. Educational outreach and improved interfacility communication may result in enhanced resource use for evaluation and management of pediatric hand injuries. Copyright 2016, SLACK Incorporated.

  9. 47 CFR 87.43 - Operation during emergency.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Operation during emergency. 87.43 Section 87.43 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES AVIATION SERVICES Applications and Licenses § 87.43 Operation during emergency. A station may be used for emergency...

  10. 47 CFR 101.205 - Operation during emergency.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Operation during emergency. 101.205 Section 101.205 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Operational Requirements § 101.205 Operation during emergency. The licensee of...

  11. 47 CFR 101.205 - Operation during emergency.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Operation during emergency. 101.205 Section 101.205 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Operational Requirements § 101.205 Operation during emergency. The licensee of...

  12. 47 CFR 101.205 - Operation during emergency.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Operation during emergency. 101.205 Section 101.205 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Operational Requirements § 101.205 Operation during emergency. The licensee of...

  13. 47 CFR 101.205 - Operation during emergency.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Operation during emergency. 101.205 Section 101.205 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Operational Requirements § 101.205 Operation during emergency. The licensee of...

  14. 47 CFR 101.205 - Operation during emergency.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Operation during emergency. 101.205 Section 101.205 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Operational Requirements § 101.205 Operation during emergency. The licensee of...

  15. Virtual Small Business Emergency Operations Center (VSBEOC): Shared Awareness and Decision Making for Small Business

    DTIC Science & Technology

    2011-06-01

    Shared Awareness and Decision Making for Small Business Topic(s) 2. Topic 1: Concepts, Theory , and Policy 1. Topic 5: Collaboration, Shared...emergencies do not have the time or the resources to collaborate on a continual basis with a large number of organizations. 3. A primary Crisis Management...Center (CMC) should be identified in advance. This is the initial site used by the Crisis Management Team and Response Teams for directing and

  16. Patient- and family-centered care of children in the emergency department.

    PubMed

    O'Malley, Patricia J; Brown, Kathleen; Krug, Steven E

    2008-08-01

    Patient- and family-centered care is an innovative approach to the planning, delivery, and evaluation of health care that is grounded in a mutually beneficial partnership among patients, families, and health care professionals. Providing patient- and family-centered care to children in the emergency department setting presents many opportunities and challenges. This technical report draws on previously published policy statements and reports, reviews the current literature, and describes the present state of practice and research regarding patient- and family-centered care for children in the emergency department setting as well as some of the complexities of providing such care. This technical report has been endorsed by the Academic Pediatric Association (formerly the Ambulatory Pediatric Association), the American College of Osteopathic Emergency Physicians, the National Association of Emergency Medical Technicians, the Institute for Family-Centered Care, and the American College of Emergency Physicians. This report is also supported by the Emergency Nurses Association.

  17. Poison control center - Emergency number (image)

    MedlinePlus

    For a poison emergency call 1-800-222-1222 anywhere in the United States. This national hotline number will let you ... is a free and confidential service. All local poison control centers in the U.S. use this national ...

  18. 47 CFR 25.284 - Emergency Call Center Service.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... service to the extent that they offer real-time, two way switched voice service that is interconnected... provider to reuse frequencies and/or accomplish seamless hand-offs of subscriber calls. Emergency Call Center personnel must determine the emergency caller's phone number and location and then transfer or...

  19. 47 CFR 25.284 - Emergency Call Center Service.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... service to the extent that they offer real-time, two way switched voice service that is interconnected... provider to reuse frequencies and/or accomplish seamless hand-offs of subscriber calls. Emergency Call Center personnel must determine the emergency caller's phone number and location and then transfer or...

  20. 47 CFR 25.284 - Emergency Call Center Service.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... service to the extent that they offer real-time, two way switched voice service that is interconnected... provider to reuse frequencies and/or accomplish seamless hand-offs of subscriber calls. Emergency Call Center personnel must determine the emergency caller's phone number and location and then transfer or...

  1. 47 CFR 25.284 - Emergency Call Center Service.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... service to the extent that they offer real-time, two way switched voice service that is interconnected... provider to reuse frequencies and/or accomplish seamless hand-offs of subscriber calls. Emergency Call Center personnel must determine the emergency caller's phone number and location and then transfer or...

  2. Remote Operations and Ground Control Centers

    NASA Technical Reports Server (NTRS)

    Bryant, Barry S.; Lankford, Kimberly; Pitts, R. Lee

    2004-01-01

    The Payload Operations Integration Center (POIC) at the Marshall Space Flight Center supports the International Space Station (ISS) through remote interfaces around the world. The POIC was originally designed as a gateway to space for remote facilities; ranging from an individual user to a full-scale multiuser environment. This achievement was accomplished while meeting program requirements and accommodating the injection of modern technology on an ongoing basis to ensure cost effective operations. This paper will discuss the open POIC architecture developed to support similar and dissimilar remote operations centers. It will include technologies, protocols, and compromises which on a day to day basis support ongoing operations. Additional areas covered include centralized management of shared resources and methods utilized to provide highly available and restricted resources to remote users. Finally, the effort of coordinating the actions of participants will be discussed.

  3. Emergency department operations dictionary: results of the second performance measures and benchmarking summit.

    PubMed

    Welch, Shari J; Stone-Griffith, Suzanne; Asplin, Brent; Davidson, Steven J; Augustine, James; Schuur, Jeremiah D

    2011-05-01

    The public, payers, hospitals, and Centers for Medicare and Medicaid Services (CMS) are demanding that emergency departments (EDs) measure and improve performance, but this cannot be done unless we define the terms used in ED operations. On February 24, 2010, 32 stakeholders from 13 professional organizations met in Salt Lake City, Utah, to standardize ED operations metrics and definitions, which are presented in this consensus paper. Emergency medicine (EM) experts attending the Second Performance Measures and Benchmarking Summit reviewed, expanded, and updated key definitions for ED operations. Prior to the meeting, participants were provided with the definitions created at the first summit in 2006 and relevant documents from other organizations and asked to identify gaps and limitations in the original work. Those responses were used to devise a plan to revise and update the definitions. At the summit, attendees discussed and debated key terminology, and workgroups were created to draft a more comprehensive document. These results have been crafted into two reference documents, one for metrics and the operations dictionary presented here. The ED Operations Dictionary defines ED spaces, processes, patient populations, and new ED roles. Common definitions of key terms will improve the ability to compare ED operations research and practice and provide a common language for frontline practitioners, managers, and researchers. © 2011 by the Society for Academic Emergency Medicine.

  4. SPOT4 Operational Control Center (CMP)

    NASA Technical Reports Server (NTRS)

    Zaouche, G.

    1993-01-01

    CNES(F) is responsible for the development of a new generation of Operational Control Center (CMP) which will operate the new heliosynchronous remote sensing satellite (SPOT4). This Operational Control Center takes large benefit from the experience of the first generation of control center and from the recent advances in computer technology and standards. The CMP is designed for operating two satellites all the same time with a reduced pool of controllers. The architecture of this CMP is simple, robust, and flexible, since it is based on powerful distributed workstations interconnected through an Ethernet LAN. The application software uses modern and formal software engineering methods, in order to improve quality and reliability, and facilitate maintenance. This software is table driven so it can be easily adapted to other operational needs. Operation tasks are automated to the maximum extent, so that it could be possible to operate the CMP automatically with very limited human interference for supervision and decision making. This paper provides an overview of the SPOTS mission and associated ground segment. It also details the CMP, its functions, and its software and hardware architecture.

  5. 47 CFR 87.43 - Operation during emergency.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES AVIATION SERVICES Applications and Licenses § 87.43 Operation during emergency. A station may be used for emergency communications in a manner other than that specified in the station license or in the operating rules when normal...

  6. Hazardous Materials Management and Emergency Response training Center needs assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGinnis, K.A.; Bolton, P.A.; Robinson, R.K.

    1993-09-01

    For the Hanford Site to provide high-quality training using simulated job-site situations to prepare the 4,000 Site workers and 500 emergency responders for known and unknown hazards a Hazardous Materials Management and Emergency Response Training Center is needed. The center will focus on providing classroom lecture as well as hands-on, realistic training. The establishment of the center will create a partnership among the US Department of Energy; its contractors; labor; local, state, and tribal governments; and Xavier and Tulane Universities of Louisiana. This report presents the background, history, need, benefits, and associated costs of the proposed center.

  7. Emergency medicine: an operations management view.

    PubMed

    Soremekun, Olan A; Terwiesch, Christian; Pines, Jesse M

    2011-12-01

    Operations management (OM) is the science of understanding and improving business processes. For the emergency department (ED), OM principles can be used to reduce and alleviate the effects of crowding. A fundamental principle of OM is the waiting time formula, which has clear implications in the ED given that waiting time is fundamental to patient-centered emergency care. The waiting time formula consists of the activity time (how long it takes to complete a process), the utilization rate (the proportion of time a particular resource such a staff is working), and two measures of variation: the variation in patient interarrival times and the variation in patient processing times. Understanding the waiting time formula is important because it presents the fundamental parameters that can be managed to reduce waiting times and length of stay. An additional useful OM principle that is applicable to the ED is the efficient frontier. The efficient frontier compares the performance of EDs with respect to two dimensions: responsiveness (i.e., 1/wait time) and utilization rates. Some EDs may be "on the frontier," maximizing their responsiveness at their given utilization rates. However, most EDs likely have opportunities to move toward the frontier. Increasing capacity is a movement along the frontier and to truly move toward the frontier (i.e., improving responsiveness at a fixed capacity), we articulate three possible options: eliminating waste, reducing variability, or increasing flexibility. When conceptualizing ED crowding interventions, these are the major strategies to consider. © 2011 by the Society for Academic Emergency Medicine.

  8. Remote Science Operation Center research

    NASA Technical Reports Server (NTRS)

    Banks, P. M.

    1986-01-01

    Progress in the following areas is discussed: the design, planning and operation of a remote science payload operations control center; design and planning of a data link via satellite; and the design and prototyping of an advanced workstation environment for multi-media (3-D computer aided design/computer aided engineering, voice, video, text) communications and operations.

  9. A 2-year retrospective study of pediatric dental emergency visits at a hospital emergency center in Taiwan.

    PubMed

    Jung, Chia-Pei; Tsai, Aileen I; Chen, Ching-Ming

    2016-06-01

    There is a paucity of information regarding pediatric dental emergencies in Taiwan. This study investigates the prevalence and characteristics of the pediatric dental emergency services provided at a medical center. This study included a retrospective chart review of patients under 18 years of age with dental complaints who visited the Emergency Department (ED) of Linkou Medical Center of Chang Gung Memorial Hospital from January 2012 to December 2013. Information regarding age, gender, time/day/month of presentation, diagnosis, treatment, and follow-up was collected and analyzed. Statistical analysis included descriptive statistics and Pearson's Chi-square test with the significance level set as p < 0.05. This study revealed that dental emergencies in the medical center ED were predominantly related to orodental trauma (47.1%) and pulpal pain (29.9%). Most patients were male (p < 0.001) and <5 years of age (p < 0.001). The most frequent orodental trauma was luxation, both in primary and permanent dentition. The major management for dental emergencies was prescribing medication for pulp-related problems and orodental trauma. The follow-up rate of orodental trauma was the highest (p < 0.001). For children, trauma and toothache constituted the most common reasons for dental emergency visits at a hospital emergency center in Taiwan. While dental emergencies are sometimes unforeseeable or unavoidable, developing community awareness about proper at-home care as well as regular dental preventive measures can potentially reduce the number of emergency visits. Copyright © 2016 Chang Gung University. Published by Elsevier B.V. All rights reserved.

  10. Clinical characteristics of dental emergencies and prevalence of dental trauma at a university hospital emergency center in Korea.

    PubMed

    Bae, Ji-Hyun; Kim, Young-Kyun; Choi, Yong-Hoon

    2011-10-01

    The aim of this study was to examine the clinical characteristics of dental emergency patients who visited a university hospital emergency center and to evaluate the incidence of dental trauma. A retrospective chart review of patients with dental complaints and who visited the Seoul National University Bundang Hospital (SNUBH) emergency center in Gyeonggi-do, Korea, from January 2009 to December 2009 was conducted. Information regarding age, gender, the time, day, and month of presentation, diagnosis, treatment, and follow up was collected and analyzed. One thousand four hundred twenty-five patients with dental problems visited the SNUBH emergency center. Dental patients accounted for 1.47% of the total 96,708 patients at the emergency center. The male-to-female ratio was 1.68:1, with a considerably larger number of male patients (62.7%). The age distribution peak was at 0-9 years (27.5%), followed by patients in their forties (14.1%). The number of patients visiting the dental emergency center peaked in May (14.2%), on Sundays (22.4%), and between 2100 and 2400 h (20.8%). The patients' chief complaints were as follows: dental trauma, dental infection, oral bleeding, and temporomandibular joint disorder (TMD). The prevalence of dental trauma was 66%. The reasons for dental emergency visits included the following: dental trauma, dental infection, oral bleeding, and TMD, with 66% of the patients requiring management of dental trauma. It is important that dentists make a prompt, accurate diagnosis and initiate effective treatment in case of dental emergencies, especially dental trauma. © 2011 John Wiley & Sons A/S.

  11. Payload Operations Integration Center Tour

    NASA Image and Video Library

    2013-11-22

    Step inside the International Space Station Payload Operations Integration Center at NASA's Marshall Space Flight Center in Huntsville, Ala. Listen to the people who work around-the-clock with scientists around the world and the crew in space to conduct experiments that improve life on Earth and enable deep space exploration. (NASA/MSFC)

  12. Utah Department of Transportation traffic operation center operator training.

    DOT National Transportation Integrated Search

    2010-11-01

    This paper is a summary of work performed by the Utah Traffic Lab (UTL) to develop training programs for the Utah Department of Transportation (UDOT) Traffic Operations Center (TOC) operators at both the basic and advanced levels. The basic training ...

  13. Comparison of Two Watch Schedules for Personnel at the White House Military Office President's Emergency Operations Center.

    PubMed

    Shattuck, Nita Lewis; Matsangas, Panagiotis; Eriksen, Elke; Kulubis, Spiros

    2015-08-01

    The aim of this study was to assess effectiveness of an alternative, 24-hr-on/72-hr-off watchstanding schedule on sleep and morale of personnel assigned to the President's Emergency Operations Center (PEOC). As part of the White House Military Office, PEOC personnel historically worked a 12-hr "Panama" watch schedule. Personnel reported experiencing chronic insufficient and disrupted sleep patterns and sought advice for improving their watchstanding schedule. Participants (N = 14 active-duty military members, ages 29 to 42 years) completed the Profile of Mood State (POMS) three times: before, during, and after switching to the alternative schedule with 5-hr sleep periods built into their workday. Participants completed a poststudy questionnaire to assess individual schedule preferences. Sleep was measured actigraphically, supplemented by activity logs. As indicated by POMS scores, mood improved significantly on the new schedule. Although average total sleep amount did not change substantively, the timing of sleep was more consistent on the new schedule, resulting in better sleep hygiene. PEOC personnel overwhelmingly preferred the new schedule, reporting not only that they felt more rested but that the new schedule was more conducive to the demands of family life. Demands of family life and time spent commuting were found to be critical factors for acceptance of the alternative schedule. This new schedule will be most effective if personnel adhere to the scheduled rest periods assigned during their 24-hr duty. A successful schedule should avoid conflicts between social life and operational demands. Results may lead to changes in the work schedules of other departments with similar 24/7 responsibilities. © 2015, Human Factors and Ergonomics Society.

  14. Emergency thoracotomies: Two center study.

    PubMed

    Sersar, Sameh Ibrahim; Alanwar, Mohammed Adel

    2013-01-01

    Emergency thoracotomy is performed either immediately at the scene of injury, in the emergency department or in the operating room. It aims to evacuate the pericardial tamponade, control the haemorrhage, to ease the open cardiac massage and to cross-clamp the descending thoracic aorta to redistribute blood flow and maybe to limit sub-diaphragmatic haemorrhage, bleeding and iatrogenic injury are the common risk factors. We aimed to review our experience in the field of emergency thoracotomies, identify the predictors of death, analyze the early results, detect the risk factors and asses the mortalities and their risk factors. Our hospital records of 197 patients who underwent emergency thoracotomy were reviewed. We retrospectively analyzed a piece of the extensive experience of the Mansoura University Hospitals and Mansoura Emergency Hospital; Egypt and Saudi German Hospitals; Jeddah in the last 12 years in the management of trauma cases for whom emergency thoracotomy. The aim was to analyse the early results of such cases and to detect the risk factors of dismal prognosis. Our series included 197 cases of emergency thoractomies in Mansoura; Egypt and SGH; Jeddah; KSA in the last 12 years. The mean age of the victims was 28 years and ranged between 5 and 62 years. Of the 197 patients with emergency thoracotomy, the indications were both penetrating and blunt chest trauma, iatrogenic and postoperative hemodynamito a surgical cause. The commonest indication was stab heart followed by traumatic diaphragmatic ruptures. The results of emergency thoracotomy in our series were cooping with the results of other reports, mainly due to our aggressive measures to achieve rapid stabilization of the hemodynamic condition. We emphasize the importance of emergency medicine education programs on rapid diagnosis of traumatic injuries with early intervention, and adequate hemodynamic and respiratory support. Emergency thoracotomy has an important role in emergency big volume

  15. 14 CFR 125.209 - Emergency equipment: Extended overwater operations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Emergency equipment: Extended overwater... Equipment Requirements § 125.209 Emergency equipment: Extended overwater operations. (a) No person may operate an airplane in extended overwater operations unless it carries, installed in conspicuously marked...

  16. 14 CFR 125.209 - Emergency equipment: Extended overwater operations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Emergency equipment: Extended overwater... Equipment Requirements § 125.209 Emergency equipment: Extended overwater operations. (a) No person may operate an airplane in extended overwater operations unless it carries, installed in conspicuously marked...

  17. 14 CFR 125.209 - Emergency equipment: Extended overwater operations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Emergency equipment: Extended overwater... Equipment Requirements § 125.209 Emergency equipment: Extended overwater operations. (a) No person may operate an airplane in extended overwater operations unless it carries, installed in conspicuously marked...

  18. 14 CFR 125.209 - Emergency equipment: Extended overwater operations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Emergency equipment: Extended overwater... Equipment Requirements § 125.209 Emergency equipment: Extended overwater operations. (a) No person may operate an airplane in extended overwater operations unless it carries, installed in conspicuously marked...

  19. 14 CFR 125.209 - Emergency equipment: Extended overwater operations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Emergency equipment: Extended overwater... Equipment Requirements § 125.209 Emergency equipment: Extended overwater operations. (a) No person may operate an airplane in extended overwater operations unless it carries, installed in conspicuously marked...

  20. Advancing Patient-centered Outcomes in Emergency Diagnostic Imaging: A Research Agenda.

    PubMed

    Kanzaria, Hemal K; McCabe, Aileen M; Meisel, Zachary M; LeBlanc, Annie; Schaffer, Jason T; Bellolio, M Fernanda; Vaughan, William; Merck, Lisa H; Applegate, Kimberly E; Hollander, Judd E; Grudzen, Corita R; Mills, Angela M; Carpenter, Christopher R; Hess, Erik P

    2015-12-01

    Diagnostic imaging is integral to the evaluation of many emergency department (ED) patients. However, relatively little effort has been devoted to patient-centered outcomes research (PCOR) in emergency diagnostic imaging. This article provides background on this topic and the conclusions of the 2015 Academic Emergency Medicine consensus conference PCOR work group regarding "Diagnostic Imaging in the Emergency Department: A Research Agenda to Optimize Utilization." The goal was to determine a prioritized research agenda to establish which outcomes related to emergency diagnostic imaging are most important to patients, caregivers, and other key stakeholders and which methods will most optimally engage patients in the decision to undergo imaging. Case vignettes are used to emphasize these concepts as they relate to a patient's decision to seek care at an ED and the care received there. The authors discuss applicable research methods and approaches such as shared decision-making that could facilitate better integration of patient-centered outcomes and patient-reported outcomes into decisions regarding emergency diagnostic imaging. Finally, based on a modified Delphi process involving members of the PCOR work group, prioritized research questions are proposed to advance the science of patient-centered outcomes in ED diagnostic imaging. © 2015 by the Society for Academic Emergency Medicine.

  1. The X-33 range Operations Control Center

    NASA Technical Reports Server (NTRS)

    Shy, Karla S.; Norman, Cynthia L.

    1998-01-01

    This paper describes the capabilities and features of the X-33 Range Operations Center at NASA Dryden Flight Research Center. All the unprocessed data will be collected and transmitted over fiber optic lines to the Lockheed Operations Control Center for real-time flight monitoring of the X-33 vehicle. By using the existing capabilities of the Western Aeronautical Test Range, the Range Operations Center will provide the ability to monitor all down-range tracking sites for the Extended Test Range systems. In addition to radar tracking and aircraft telemetry data, the Telemetry and Radar Acquisition and Processing System is being enhanced to acquire vehicle command data, differential Global Positioning System corrections and telemetry receiver signal level status. The Telemetry and Radar Acquisition Processing System provides the flexibility to satisfy all X-33 data processing requirements quickly and efficiently. Additionally, the Telemetry and Radar Acquisition Processing System will run a real-time link margin analysis program. The results of this model will be compared in real-time with actual flight data. The hardware and software concepts presented in this paper describe a method of merging all types of data into a common database for real-time display in the Range Operations Center in support of the X-33 program. All types of data will be processed for real-time analysis and display of the range system status to ensure public safety.

  2. An eMERGE Clinical Center at Partners Personalized Medicine

    PubMed Central

    Smoller, Jordan W.; Karlson, Elizabeth W.; Green, Robert C.; Kathiresan, Sekar; MacArthur, Daniel G.; Talkowski, Michael E.; Murphy, Shawn N.; Weiss, Scott T.

    2016-01-01

    The integration of electronic medical records (EMRs) and genomic research has become a major component of efforts to advance personalized and precision medicine. The Electronic Medical Records and Genomics (eMERGE) network, initiated in 2007, is an NIH-funded consortium devoted to genomic discovery and implementation research by leveraging biorepositories linked to EMRs. In its most recent phase, eMERGE III, the network is focused on facilitating implementation of genomic medicine by detecting and disclosing rare pathogenic variants in clinically relevant genes. Partners Personalized Medicine (PPM) is a center dedicated to translating personalized medicine into clinical practice within Partners HealthCare. One component of the PPM is the Partners Healthcare Biobank, a biorepository comprising broadly consented DNA samples linked to the Partners longitudinal EMR. In 2015, PPM joined the eMERGE Phase III network. Here we describe the elements of the eMERGE clinical center at PPM, including plans for genomic discovery using EMR phenotypes, evaluation of rare variant penetrance and pleiotropy, and a novel randomized trial of the impact of returning genetic results to patients and clinicians. PMID:26805891

  3. An eMERGE Clinical Center at Partners Personalized Medicine.

    PubMed

    Smoller, Jordan W; Karlson, Elizabeth W; Green, Robert C; Kathiresan, Sekar; MacArthur, Daniel G; Talkowski, Michael E; Murphy, Shawn N; Weiss, Scott T

    2016-01-20

    The integration of electronic medical records (EMRs) and genomic research has become a major component of efforts to advance personalized and precision medicine. The Electronic Medical Records and Genomics (eMERGE) network, initiated in 2007, is an NIH-funded consortium devoted to genomic discovery and implementation research by leveraging biorepositories linked to EMRs. In its most recent phase, eMERGE III, the network is focused on facilitating implementation of genomic medicine by detecting and disclosing rare pathogenic variants in clinically relevant genes. Partners Personalized Medicine (PPM) is a center dedicated to translating personalized medicine into clinical practice within Partners HealthCare. One component of the PPM is the Partners Healthcare Biobank, a biorepository comprising broadly consented DNA samples linked to the Partners longitudinal EMR. In 2015, PPM joined the eMERGE Phase III network. Here we describe the elements of the eMERGE clinical center at PPM, including plans for genomic discovery using EMR phenotypes, evaluation of rare variant penetrance and pleiotropy, and a novel randomized trial of the impact of returning genetic results to patients and clinicians.

  4. From bioterrorism exercise to real-life public health crisis: lessons for emergency hotline operations.

    PubMed

    Uscher-Pines, Lori; Bookbinder, Sylvia H; Miro, Suzanne; Burke, Thomas

    2007-01-01

    Although public health agencies routinely operate hotlines to communicate key messages to the public, they are rarely evaluated to improve hotline management. Since its creation in 2003, the New Jersey Department of Health & Senior Services' Emergency Communications Center has confronted two large-scale incidents that have tested its capabilities in this area. The influenza vaccine shortage of 2004 and the April 2005 TOPOFF 3 full-scale bioterrorism exercise provided both real-life and simulated crisis situations from which to derive general insights into the strengths and weaknesses of hotline administration. This article identifies problems in the areas of staff and message management by analyzing call volume data and the qualitative observations of group feedback sessions and semistructured interviews with hotline staff. It also makes recommendations based on lessons learned to improve future hotline operations in public health emergencies.

  5. Media Center: Operations Handbook.

    ERIC Educational Resources Information Center

    Dependents Schools (DOD), Washington, DC.

    This guide to basic technical procedures recommended in the operation of within-school media centers is intended for all Department of Defense Dependent Schools (DoDDS) media specialists, clerks, aides, and technicians. The first four sections refer to the general media program functions identified in the related manual, "A is for Apple:…

  6. PNNL’s Building Operations Control Center

    ScienceCinema

    Belew, Shan

    2018-01-16

    PNNL's Building Operations Control Center (BOCC) video provides an overview of the center, its capabilities, and its objectives. The BOCC was relocated to PNNL's new 3820 Systems Engineering Building in 2015. Although a key focus of the BOCC is on monitoring and improving the operations of PNNL buildings, the center's state-of-the-art computational, software and visualization resources also have provided a platform for PNNL buildings-related research projects.

  7. Payload Operations Control Center (POCC). [spacelab flight operations

    NASA Technical Reports Server (NTRS)

    Shipman, D. L.; Noneman, S. R.; Terry, E. S.

    1981-01-01

    The Spacelab payload operations control center (POCC) timeline analysis program which is used to provide POCC activity and resource information as a function of mission time is described. This program is fully automated and interactive, and is equipped with tutorial displays. The tutorial displays are sufficiently detailed for use by a program analyst having no computer experience. The POCC timeline analysis program is designed to operate on the VAX/VMS version V2.1 computer system.

  8. The nature and necessity of operational flexibility in the emergency department.

    PubMed

    Ward, Michael J; Ferrand, Yann B; Laker, Lauren F; Froehle, Craig M; Vogus, Timothy J; Dittus, Robert S; Kripalani, Sunil; Pines, Jesse M

    2015-02-01

    Hospital-based emergency departments (EDs), given their high cost and major role in allocating care resources, are at the center of the debate about how to maximize value in delivering health care in the United States. To operate effectively and create value, EDs must be flexible, having the ability to rapidly adapt to the highly variable needs of patients. The concept of flexibility has not been well described in the ED literature. We introduce the concept, outline its potential benefits, and provide some illustrative examples to facilitate incorporating flexibility into ED management. We draw on operations research and organizational theory to identify and describe 5 forms of flexibility: physical, human resource, volume, behavioral, and conceptual. Each form of flexibility may be useful individually or in combination with other forms in improving ED performance and enhancing value. We also offer suggestions for measuring operational flexibility in the ED. A better understanding of operational flexibility and its application to the ED may help us move away from reactive approaches of managing variable demand to a more systematic approach. We also address the tension between cost and flexibility and outline how "partial flexibility" may help resolve some challenges. Applying concepts of flexibility from other disciplines may help clinicians and administrators think differently about their workflow and provide new insights into managing issues of cost, flow, and quality in the ED. Copyright © 2014 American College of Emergency Physicians. Published by Elsevier Inc. All rights reserved.

  9. Optimizing Patient-centered Communication and Multidisciplinary Care Coordination in Emergency Diagnostic Imaging: A Research Agenda.

    PubMed

    Sabbatini, Amber K; Merck, Lisa H; Froemming, Adam T; Vaughan, William; Brown, Michael D; Hess, Erik P; Applegate, Kimberly E; Comfere, Nneka I

    2015-12-01

    Patient-centered emergency diagnostic imaging relies on efficient communication and multispecialty care coordination to ensure optimal imaging utilization. The construct of the emergency diagnostic imaging care coordination cycle with three main phases (pretest, test, and posttest) provides a useful framework to evaluate care coordination in patient-centered emergency diagnostic imaging. This article summarizes findings reached during the patient-centered outcomes session of the 2015 Academic Emergency Medicine consensus conference "Diagnostic Imaging in the Emergency Department: A Research Agenda to Optimize Utilization." The primary objective was to develop a research agenda focused on 1) defining component parts of the emergency diagnostic imaging care coordination process, 2) identifying gaps in communication that affect emergency diagnostic imaging, and 3) defining optimal methods of communication and multidisciplinary care coordination that ensure patient-centered emergency diagnostic imaging. Prioritized research questions provided the framework to define a research agenda for multidisciplinary care coordination in emergency diagnostic imaging. © 2015 by the Society for Academic Emergency Medicine.

  10. Integrating Automation into a Multi-Mission Operations Center

    NASA Technical Reports Server (NTRS)

    Surka, Derek M.; Jones, Lori; Crouse, Patrick; Cary, Everett A, Jr.; Esposito, Timothy C.

    2007-01-01

    NASA Goddard Space Flight Center's Space Science Mission Operations (SSMO) Project is currently tackling the challenge of minimizing ground operations costs for multiple satellites that have surpassed their prime mission phase and are well into extended mission. These missions are being reengineered into a multi-mission operations center built around modern information technologies and a common ground system infrastructure. The effort began with the integration of four SMEX missions into a similar architecture that provides command and control capabilities and demonstrates fleet automation and control concepts as a pathfinder for additional mission integrations. The reengineered ground system, called the Multi-Mission Operations Center (MMOC), is now undergoing a transformation to support other SSMO missions, which include SOHO, Wind, and ACE. This paper presents the automation principles and lessons learned to date for integrating automation into an existing operations environment for multiple satellites.

  11. Remote Operations Control Center (ROCC)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Undergraduate students Kristina Wines and Dena Renzo at Rensselaer Poloytech Institute (RPI) in Troy, NY, monitor the progress of the Isothermal Dendritic Growth Experiment (IDGE) during the U.S. Microgravity Payload-4 (USMP-4) mission (STS-87), Nov. 19 - Dec.5, 1997). Remote Operations Control Center (ROCC) like this one will become more common during operations with the International Space Station. The Isothermal Dendritic Growth Experiment (IDGE), flown on three Space Shuttle missions, is yielding new insights into virtually all industrially relevant metal and alloy forming operations. Photo credit: Rensselaer Polytechnic Institute (RPI)

  12. Association between patient-centered medical home rating and operating cost at federally funded health centers.

    PubMed

    Nocon, Robert S; Sharma, Ravi; Birnberg, Jonathan M; Ngo-Metzger, Quyen; Lee, Sang Mee; Chin, Marshall H

    2012-07-04

    Little is known about the cost associated with a health center's rating as a patient-centered medical home (PCMH). To determine whether PCMH rating is associated with operating cost among health centers funded by the US Health Resources and Services Administration. Cross-sectional study of PCMH rating and operating cost in 2009. PCMH rating was assessed through surveys of health center administrators conducted by Harris Interactive of all 1009 Health Resources and Services Administration–funded community health centers. The survey provided scores from 0 (worst) to 100 (best) for total PCMH score and 6 subscales: access/communication, care management, external coordination, patient tracking, test/referral tracking, and quality improvement. Costs were obtained from the Uniform Data System reports submitted to the Health Resources and Services Administration. We used generalized linear models to determine the relationship between PCMH rating and operating cost. Operating cost per physician full-time equivalent, operating cost per patient per month, and medical cost per visit. Six hundred sixty-nine health centers (66%) were included in the study sample, with 340 excluded because of nonresponse or incomplete data. Mean total PCMH score was 60 (SD, 12; range, 21-90). For the average health center, a 10-point higher total PCMH score was associated with a $2.26 (4.6%) higher operating cost per patient per month (95% CI, $0.86-$4.12). Among PCMH subscales, a 10-point higher score for patient tracking was associated with higher operating cost per physician full-time equivalent ($27,300; 95% CI, $3047-$57,804) and higher operating cost per patient per month ($1.06; 95% CI, $0.29-$1.98). A 10-point higher score for quality improvement was also associated with higher operating cost per physician full-time equivalent ($32,731; 95% CI, $1571-$73,670) and higher operating cost per patient per month ($1.86; 95% CI, $0.54-$3.61). A 10-point higher PCMH subscale score for access

  13. 23 CFR 752.8 - Privately operated information centers and systems.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 23 Highways 1 2010-04-01 2010-04-01 false Privately operated information centers and systems. 752... may permit privately operated information centers and systems which conform with the standards of this... AND ENVIRONMENT LANDSCAPE AND ROADSIDE DEVELOPMENT § 752.8 Privately operated information centers and...

  14. 23 CFR 752.8 - Privately operated information centers and systems.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 23 Highways 1 2011-04-01 2011-04-01 false Privately operated information centers and systems. 752... may permit privately operated information centers and systems which conform with the standards of this... AND ENVIRONMENT LANDSCAPE AND ROADSIDE DEVELOPMENT § 752.8 Privately operated information centers and...

  15. 23 CFR 752.8 - Privately operated information centers and systems.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 23 Highways 1 2013-04-01 2013-04-01 false Privately operated information centers and systems. 752... may permit privately operated information centers and systems which conform with the standards of this... AND ENVIRONMENT LANDSCAPE AND ROADSIDE DEVELOPMENT § 752.8 Privately operated information centers and...

  16. 23 CFR 752.8 - Privately operated information centers and systems.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 23 Highways 1 2012-04-01 2012-04-01 false Privately operated information centers and systems. 752... may permit privately operated information centers and systems which conform with the standards of this... AND ENVIRONMENT LANDSCAPE AND ROADSIDE DEVELOPMENT § 752.8 Privately operated information centers and...

  17. 23 CFR 752.8 - Privately operated information centers and systems.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 23 Highways 1 2014-04-01 2014-04-01 false Privately operated information centers and systems. 752... may permit privately operated information centers and systems which conform with the standards of this... AND ENVIRONMENT LANDSCAPE AND ROADSIDE DEVELOPMENT § 752.8 Privately operated information centers and...

  18. An Operational Definition of the Emergence Criterion

    ERIC Educational Resources Information Center

    Pallotti, Gabriele

    2007-01-01

    Although acquisition criteria are a fundamental issue for SLA research, they have not always been adequately defined or elaborated in the literature. This article critically scrutinizes one such criterion, the emergence criterion, proposing an explicit, operational definition. After discussing emergence as a theoretical construct, the article…

  19. Association Between Patient-Centered Medical Home Rating and Operating Cost at Federally Funded Health Centers

    PubMed Central

    Nocon, Robert S.; Sharma, Ravi; Birnberg, Jonathan M.; Ngo-Metzger, Quyen; Lee, Sang Mee; Chin, Marshall H.

    2013-01-01

    Context Little is known about the cost associated with a health center’s rating as a patient-centered medical home (PCMH). Objective To determine whether PCMH rating is associated with operating cost among health centers funded by the US Health Resources and Services Administration. Design, Setting, and Participants Cross-sectional study of PCMH rating and operating cost in 2009. PCMH rating was assessed through surveys of health center administrators conducted by Harris Interactive of all 1009 Health Resources and Services Administration–funded community health centers. The survey provided scores from 0 (worst) to 100 (best) for total PCMH score and 6 subscales: access/communication, care management, external coordination, patient tracking, test/referral tracking, and quality improvement. Costs were obtained from the Uniform Data System reports submitted to the Health Resources and Services Administration. We used generalized linear models to determine the relationship between PCMH rating and operating cost. Main Outcome Measures Operating cost per physician full-time equivalent, operating cost per patient per month, and medical cost per visit. Results Six hundred sixty-nine health centers (66%) were included in the study sample, with 340 excluded because of nonresponse or incomplete data. Mean total PCMH score was 60 (SD,12; range, 21–90). For the average health center, a 10-point higher total PCMH score was associated with a $2.26 (4.6%) higher operating cost per patient per month (95% CI, $0.86–$4.12). Among PCMH subscales, a 10-point higher score for patient tracking was associated with higher operating cost per physician full-time equivalent ($27 300; 95% CI,$3047–$57 804) and higher operating cost per patient per month ($1.06;95%CI,$0.29–$1.98). A 10-point higher score for quality improvement was also associated with higher operating cost per physician full-time equivalent ($32 731; 95% CI, $1571–$73 670) and higher operating cost per patient

  20. Anatomy of a Security Operations Center

    NASA Technical Reports Server (NTRS)

    Wang, John

    2010-01-01

    Many agencies and corporations are either contemplating or in the process of building a cyber Security Operations Center (SOC). Those Agencies that have established SOCs are most likely working on major revisions or enhancements to existing capabilities. As principle developers of the NASA SOC; this Presenters' goals are to provide the GFIRST community with examples of some of the key building blocks of an Agency scale cyber Security Operations Center. This presentation viII include the inputs and outputs, the facilities or shell, as well as the internal components and the processes necessary to maintain the SOC's subsistence - in other words, the anatomy of a SOC. Details to be presented include the SOC architecture and its key components: Tier 1 Call Center, data entry, and incident triage; Tier 2 monitoring, incident handling and tracking; Tier 3 computer forensics, malware analysis, and reverse engineering; Incident Management System; Threat Management System; SOC Portal; Log Aggregation and Security Incident Management (SIM) systems; flow monitoring; IDS; etc. Specific processes and methodologies discussed include Incident States and associated Work Elements; the Incident Management Workflow Process; Cyber Threat Risk Assessment methodology; and Incident Taxonomy. The Evolution of the Cyber Security Operations Center viII be discussed; starting from reactive, to proactive, and finally to proactive. Finally, the resources necessary to establish an Agency scale SOC as well as the lessons learned in the process of standing up a SOC viII be presented.

  1. 47 CFR 0.192 - Emergency Response Interoperability Center.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Organization Public Safety and Homeland Security Bureau § 0.192 Emergency Response Interoperability Center. (a... Public Safety and Homeland Security Bureau to develop, recommend, and administer policy goals, objectives... and procedures for the 700 MHz public safety broadband wireless network and other public safety...

  2. 47 CFR 0.192 - Emergency Response Interoperability Center.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Organization Public Safety and Homeland Security Bureau § 0.192 Emergency Response Interoperability Center. (a... Public Safety and Homeland Security Bureau to develop, recommend, and administer policy goals, objectives... and procedures for the 700 MHz public safety broadband wireless network and other public safety...

  3. Human Centered Autonomous and Assistant Systems Testbed for Exploration Operations

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.; Mount, Frances; Carreon, Patricia; Torney, Susan E.

    2001-01-01

    The Engineering and Mission Operations Directorates at NASA Johnson Space Center are combining laboratories and expertise to establish the Human Centered Autonomous and Assistant Systems Testbed for Exploration Operations. This is a testbed for human centered design, development and evaluation of intelligent autonomous and assistant systems that will be needed for human exploration and development of space. This project will improve human-centered analysis, design and evaluation methods for developing intelligent software. This software will support human-machine cognitive and collaborative activities in future interplanetary work environments where distributed computer and human agents cooperate. We are developing and evaluating prototype intelligent systems for distributed multi-agent mixed-initiative operations. The primary target domain is control of life support systems in a planetary base. Technical approaches will be evaluated for use during extended manned tests in the target domain, the Bioregenerative Advanced Life Support Systems Test Complex (BIO-Plex). A spinoff target domain is the International Space Station (ISS) Mission Control Center (MCC). Prodl}cts of this project include human-centered intelligent software technology, innovative human interface designs, and human-centered software development processes, methods and products. The testbed uses adjustable autonomy software and life support systems simulation models from the Adjustable Autonomy Testbed, to represent operations on the remote planet. Ground operations prototypes and concepts will be evaluated in the Exploration Planning and Operations Center (ExPOC) and Jupiter Facility.

  4. Computer Center Harris 1600 Operator’s Guide.

    DTIC Science & Technology

    1982-06-01

    RECIPIENT’S CATALOG NUMBER CMLD-82-15 Vb /9 7 ’ 4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED Computer Center Harris 1600 Operator’s Guide...AD-AIAA 077 DAVID W TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT CE--ETC F/G. 5/9 COMPUTER CENTER HARRIS 1600 OPEAATOR’S GUIDE.dU) M JUN 62 D A SOMMER...20084 COMPUTER CENTER HARRIS 1600 OPERATOR’s GUIDE by David V. Sommer & Sharon E. Good APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED ’-.7 SJ0 o 0

  5. Comparing Utilization and Costs of Care in Freestanding Emergency Departments, Hospital Emergency Departments, and Urgent Care Centers.

    PubMed

    Ho, Vivian; Metcalfe, Leanne; Dark, Cedric; Vu, Lan; Weber, Ellerie; Shelton, George; Underwood, Howard R

    2017-12-01

    We compare utilization, price per visit, and the types of care delivered across freestanding emergency departments (EDs), hospital-based EDs, and urgent care centers in Texas. We analyzed insurance claims processed by Blue Cross Blue Shield of Texas from 2012 to 2015 for patient visits to freestanding EDs, hospital-based EDs, or urgent care centers in 16 Texas metropolitan statistical areas containing 84.1% of the state's population. We calculated the aggregate number of visits, average price per visit, proportion of price attributable to facility and physician services, and proportion of price billed to Blue Cross Blue Shield of Texas versus out of pocket, by facility type. Prices for the top 20 diagnoses and procedures by facility type are compared. Texans use hospital-based EDs and urgent care centers much more than freestanding EDs, but freestanding ED utilization increased 236% between 2012 and 2015. The average price per visit was lower for freestanding EDs versus hospital-based EDs in 2012 ($1,431 versus $1,842), but prices in 2015 were comparable ($2,199 versus $2,259). Prices for urgent care centers were only $164 and $168 in 2012 and 2015. Out-of-pocket liability for consumers for all these facilities increased slightly from 2012 to 2015. There was 75% overlap in the 20 most common diagnoses at freestanding EDs versus urgent care centers and 60% overlap for hospital-based EDs and urgent care centers. However, prices for patients with the same diagnosis were on average almost 10 times higher at freestanding and hospital-based EDs relative to urgent care centers. Utilization of freestanding EDs is rapidly expanding in Texas. Higher prices at freestanding and hospital-based EDs relative to urgent care centers, despite substantial overlap in services delivered, imply potential inefficient use of emergency facilities. Copyright © 2017 American College of Emergency Physicians. Published by Elsevier Inc. All rights reserved.

  6. 10 CFR 50.103 - Suspension and operation in war or national emergency.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Suspension and operation in war or national emergency. 50..., Emergency Operations by the Commission § 50.103 Suspension and operation in war or national emergency. (a) Whenever Congress declares that a state of war or national emergency exists, the Commission, if it finds it...

  7. Penny Pettigrew in the Payload Operations Integration Center

    NASA Image and Video Library

    2017-11-09

    Penny Pettigrew is an International Space Station Payload Communications Manager, or PAYCOM, in the Payload Operations Integration Center at NASA's Marshall Space Flight Center in Huntsville, Alabama.

  8. An Emerging Typology of Academic Interdisciplinary Gerontology Centers in the United States

    ERIC Educational Resources Information Center

    Hertz, Judith E.; Douglass, Carolinda; Johnson, Angela; Richmond, Shirley S.

    2007-01-01

    Little is known about the organization, characteristics or services offered by academic interdisciplinary gerontology centers located in higher education institutions. This article presents a description and an emerging typology of academic interdisciplinary gerontology centers based on information collected from the Websites of 47 centers. The…

  9. The Effect of Utilization Review on Emergency Department Operations.

    PubMed

    Desai, Shoma; Gruber, Phillip F; Eiting, Erick; Seabury, Seth A; Mack, Wendy J; Voyageur, Christian; Vasquez, Veronica; Kim, Hyung T; Terp, Sophie

    2017-11-01

    Increasingly, hospitals are using utilization review software to reduce hospital admissions in an effort to contain costs. Such practices have the potential to increase the number of unsafe discharges, particularly in public safety-net hospitals. Utilization review software tools are not well studied with regard to their effect on emergency department (ED) operations. We study the effect of prospectively used admission decision support on ED operations. In 2012, Los Angeles County + University of Southern California Medical Center implemented prospective use of computerized admission criteria. After implementation, only ED patients meeting primary review (diagnosis-based criteria) or secondary review (medical necessity as determined by an on-site emergency physician) were assigned inpatient beds. Data were extracted from electronic medical records from September 2011 through December 2013. Outcomes included operational metrics, 30-day ED revisits, and 30-day admission rates. Excluding a 6-month implementation period, monthly summary metrics were compared pre- and postimplementation with nonparametric and negative binomial regression methods. All adult ED visits, excluding incarcerated and purely behavioral health visits, were analyzed. The primary outcomes were disposition rates. Secondary outcomes were 30-day ED revisits, 30-day admission rate among return visitors to the ED, and estimated cost. Analysis of 245,662 ED encounters was performed. The inpatient admission rate decreased from 14.2% to 12.8%. Increases in discharge rate (82.4% to 83.4%) and ED observation unit utilization (2.5% to 3.4%) were found. Thirty-day revisits increased (20.4% to 24.4%), although the 30-day admission rate decreased (3.2% to 2.8%). Estimated cost savings totaled $193.17 per ED visit. The prospective application of utilization review software in the ED led to a decrease in the admission rate. This was tempered by a concomitant increase in ED observation unit utilization and 30-day

  10. The Virtual Mission Operations Center

    NASA Technical Reports Server (NTRS)

    Moore, Mike; Fox, Jeffrey

    1994-01-01

    Spacecraft management is becoming more human intensive as spacecraft become more complex and as operations costs are growing accordingly. Several automation approaches have been proposed to lower these costs. However, most of these approaches are not flexible enough in the operations processes and levels of automation that they support. This paper presents a concept called the Virtual Mission Operations Center (VMOC) that provides highly flexible support for dynamic spacecraft management processes and automation. In a VMOC, operations personnel can be shared among missions, the operations team can change personnel and their locations, and automation can be added and removed as appropriate. The VMOC employs a form of on-demand supervisory control called management by exception to free operators from having to actively monitor their system. The VMOC extends management by exception, however, so that distributed, dynamic teams can work together. The VMOC uses work-group computing concepts and groupware tools to provide a team infrastructure, and it employs user agents to allow operators to define and control system automation.

  11. Contextual factors associated with hospitals' decision to operate freestanding emergency departments.

    PubMed

    Patidar, Nitish; Weech-Maldonado, Robert; O'Connor, Stephen J; Sen, Bisakha; Trimm, J M Mickey; Camargo, Carlos A

    Freestanding emergency departments (FSEDs) are fast growing entities in health care, delivering emergency care outside of hospitals. Hospitals may benefit in several ways by opening FSEDs. The study used the resource dependence theory as a means to analyze the relationship between market and organizational factors and the likelihood of hospitals to operate FSEDs. All acute care hospitals in 14 states with FSEDs present during the study period from 2002 to 2011. Data on FSEDs were merged with American Hospital Association Annual Survey, Centers for Medicare and Medicaid Services' Cost Reports, and Area Resource File data. The outcome variable consists of whether or not the hospital operates an FSED. Independent variables include per capita income, percent population over age of 65 years, primary care and specialist physicians per capita, urban location, change in the unemployment rate, change in the population, change in poverty level, market competition, total satellite and autonomous FSEDs in the market, Medicare-managed care penetration rate, hospital beds, total margin, and system membership. We used logistic regression analysis with state and year fixed effects. Standard errors in the regression were clustered by hospital. The number of hospitals operating satellite FSEDs increased from 32 (2.33%) in 2002 to 91 (5.76%) hospitals in 2011 among the 14 states included in the study sample. The results support the hypothesis that hospitals located in munificent environments and more competitive environments (presence of other FSEDs) are more likely to operate an FSED. Organizational level factors such as bed size and system membership are associated with a hospital operating an FSED. The findings may be used by policy makers in developing regulations for hospitals opening FSEDs. Also, study findings of this study may be used by hospitals to make informed decisions when formulating strategies regarding FSEDs.

  12. Starting and Operating a Child Care Center. ERIC/EECE Report.

    ERIC Educational Resources Information Center

    Cesarone, Bernard

    2001-01-01

    Reviews ERIC documents and journal articles that discuss various issues related to starting, operating, and marketing a child care center. Annotations include center and family care operations. (Author/DLH)

  13. Operation Windshield and the simplification of emergency management.

    PubMed

    Andrews, Michael

    2016-01-01

    Large, complex, multi-stakeholder exercises are the culmination of years of gradual progression through a comprehensive training and exercise programme. Exercises intended to validate training, refine procedures and test processes initially tested in isolation are combined to ensure seamless response and coordination during actual crises. The challenges of integrating timely and accurate situational awareness from an array of sources, including response agencies, municipal departments, partner agencies and the public, on an ever-growing range of media platforms, increase information management complexity in emergencies. Considering that many municipal emergency operations centre roles are filled by staff whose day jobs have little to do with crisis management, there is a need to simplify emergency management and make it more intuitive. North Shore Emergency Management has accepted the challenge of making emergency management less onerous to occasional practitioners through a series of initiatives aimed to build competence and confidence by making processes easier to use as well as by introducing technical tools that can simplify processes and enhance efficiencies. These efforts culminated in the full-scale earthquake exercise, Operation Windshield, which preceded the 2015 Emergency Preparedness and Business Continuity Conference in Vancouver, British Columbia.

  14. 20 CFR 670.970 - What are the reporting requirements for center operators and operational support service providers?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... center operators and operational support service providers? 670.970 Section 670.970 Employees' Benefits... INVESTMENT ACT Administrative and Management Provisions § 670.970 What are the reporting requirements for center operators and operational support service providers? The Secretary establishes procedures to...

  15. Emergency Communications Console

    NASA Technical Reports Server (NTRS)

    1978-01-01

    NASA has applied its communications equipment expertise to development of a communications console that provides, in a compact package only slightly larger than an electric typewriter, all the emergency medical services communications functions needed for a regional hospital. A prototype unit, built by Johnson Space Center, has been installed in the Odessa (Texas) Medical Center Hospital. The hospital is the medical control center for the 17-county Permian Basin Emergency Medical System in west Texas. The console project originated in response to a request to NASA from the Texas governor's office, which sought a better way of providing emergency medical care in rural areas. Because ambulance travel time is frequently long in remote areas of west Texas, it is important that treatment begin at the scene of the emergency rather than at the hospital emergency room. A radio and telephone system linking ambulance emergency technicians and hospital staff makes this possible. But earlier equipment was complex, requiring specialized operators. A highly reliable system was needed to minimize breakdowns and provide controls of utmost simplicity, so that the system could be operated by physicians and nurses rather than by communications specialists. The resulting console has both radio and telephone sections. With the radio equipment, hospital personnel can communicate with ambulance drivers and paramedics, receive incoming electrocardiagrams, consult with other hospitals, page hospital staff and set up a radio-to-telephone "patch." The telephone portion of the system includes a hotline from the Permian Basin Emergency Medical Service's resource control center, an automatic dialer for contacting special care facilities in the Permian Basin network, a hospital intercom terminal and a means of relaying cardioscope displays and other data between hospitals. The integrated system also provides links with local disaster and civil defense organizations and with emergency "Dial 911

  16. Appraisal of the Operation Respond Emergency Information System (OREIS)

    DOT National Transportation Integrated Search

    1998-04-01

    The Operation Respond Institute has been instrumental in developing the Operation Respond Emergency Information System (OREIS) for first responders to hazardous material incidents in transportation. The Operation Respond system aims to facilitate rap...

  17. Analysis of mental workload of electrical power plant operators of control and operation centers.

    PubMed

    Vitório, Daiana Martins; Masculo, Francisco Soares; Melo, Miguel O B C

    2012-01-01

    Electrical systems can be categorized as critical systems where failure can result in significant financial loss, injury or threats to human life. The operators of the electric power control centers perform an activity in a specialized environment and have to carry it out by mobilizing knowledge and reasoning to which they have adequate training under the terms of the existing rules. To reach this there is a common mental request of personnel involved in these centers due the need to maintain attention, memory and reasoning request. In this sense, this study aims to evaluate the Mental Workload of technical workers of the Control Centers of Electrical Energy. It was undertaken a research on operators control centers of the electricity sector in Northeast Brazil. It was used for systematic observations, followed by interview and application of the instrument National Aeronautics and Space Administration Task Load Index known as NASA-TLX. As a result there will be subsidies for an assessment of mental workload of operators, and a contribution to improving the processes of managing the operation of electric utilities and the quality of workers.

  18. An Evaluation of the Organizational Structure of Air Force Emergency Operations Centers Using Social Network Analysis and Design Structure Matrices

    DTIC Science & Technology

    2013-03-01

    areas that are most frequently needed 4 in a national response” (FEMA, 2008). Finally, during emergencies, individual Unit Control Centers ( UCCs ...stand up, as a means to supporting the response. Typically, the UCCs provide information or resources as required through communication from the...EOC. Currently there is no defined staffing or organizational structure for the UCC , each unit is responsible for adequately staffing the UCCs as

  19. From comparative effectiveness research to patient-centered outcomes research: integrating emergency care goals, methods, and priorities.

    PubMed

    Meisel, Zachary F; Carr, Brendan G; Conway, Patrick H

    2012-09-01

    Federal legislation placed comparative effectiveness research and patient-centered outcomes research at the center of current and future national investments in health care research. The role of this research in emergency care has not been well described. This article proposes an agenda for researchers and health care providers to consider comparative effectiveness research and patient-centered outcomes research methods and results to improve the care for patients who seek, use, and require emergency care. This objective will be accomplished by (1) exploring the definitions, frameworks, and nomenclature for comparative effectiveness research and patient-centered outcomes research; (2) describing a conceptual model for comparative effectiveness research in emergency care; (3) identifying specific opportunities and examples of emergency care-related comparative effectiveness research; and (4) categorizing current and planned funding for comparative effectiveness research and patient-centered outcomes research that can include emergency care delivery. Copyright © 2012. Published by Mosby, Inc.

  20. An innovative approach to capability-based emergency operations planning

    PubMed Central

    Keim, Mark E

    2013-01-01

    This paper describes the innovative use information technology for assisting disaster planners with an easily-accessible method for writing and improving evidence-based emergency operations plans. This process is used to identify all key objectives of the emergency response according to capabilities of the institution, community or society. The approach then uses a standardized, objective-based format, along with a consensus-based method for drafting capability-based operational-level plans. This information is then integrated within a relational database to allow for ease of access and enhanced functionality to search, sort and filter and emergency operations plan according to user need and technological capacity. This integrated approach is offered as an effective option for integrating best practices of planning with the efficiency, scalability and flexibility of modern information and communication technology. PMID:28228987

  1. An innovative approach to capability-based emergency operations planning.

    PubMed

    Keim, Mark E

    2013-01-01

    This paper describes the innovative use information technology for assisting disaster planners with an easily-accessible method for writing and improving evidence-based emergency operations plans. This process is used to identify all key objectives of the emergency response according to capabilities of the institution, community or society. The approach then uses a standardized, objective-based format, along with a consensus-based method for drafting capability-based operational-level plans. This information is then integrated within a relational database to allow for ease of access and enhanced functionality to search, sort and filter and emergency operations plan according to user need and technological capacity. This integrated approach is offered as an effective option for integrating best practices of planning with the efficiency, scalability and flexibility of modern information and communication technology.

  2. Autonomous Satellite Operations Via Secure Virtual Mission Operations Center

    NASA Technical Reports Server (NTRS)

    Miller, Eric; Paulsen, Phillip E.; Pasciuto, Michael

    2011-01-01

    The science community is interested in improving their ability to respond to rapidly evolving, transient phenomena via autonomous rapid reconfiguration, which derives from the ability to assemble separate but collaborating sensors and data forecasting systems to meet a broad range of research and application needs. Current satellite systems typically require human intervention to respond to triggers from dissimilar sensor systems. Additionally, satellite ground services often need to be coordinated days or weeks in advance. Finally, the boundaries between the various sensor systems that make up such a Sensor Web are defined by such things as link delay and connectivity, data and error rate asymmetry, data reliability, quality of service provisions, and trust, complicating autonomous operations. Over the past ten years, researchers from the NASA Glenn Research Center (GRC), General Dynamics, Surrey Satellite Technology Limited (SSTL), Cisco, Universal Space Networks (USN), the U.S. Geological Survey (USGS), the Naval Research Laboratory, the DoD Operationally Responsive Space (ORS) Office, and others have worked collaboratively to develop a virtual mission operations capability. Called VMOC (Virtual Mission Operations Center), this new capability allows cross-system queuing of dissimilar mission unique systems through the use of a common security scheme and published application programming interfaces (APIs). Collaborative VMOC demonstrations over the last several years have supported the standardization of spacecraft to ground interfaces needed to reduce costs, maximize space effects to the user, and allow the generation of new tactics, techniques and procedures that lead to responsive space employment.

  3. 33 CFR 150.510 - How must tested emergency equipment be operated?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false How must tested emergency equipment be operated? 150.510 Section 150.510 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... Operational Tests and Inspections (general) § 150.510 How must tested emergency equipment be operated? The...

  4. 33 CFR 150.510 - How must tested emergency equipment be operated?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false How must tested emergency equipment be operated? 150.510 Section 150.510 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... Operational Tests and Inspections (general) § 150.510 How must tested emergency equipment be operated? The...

  5. The optimization of nuclear power plants operation modes in emergency situations

    NASA Astrophysics Data System (ADS)

    Zagrebayev, A. M.; Trifonenkov, A. V.; Ramazanov, R. N.

    2018-01-01

    An emergency situations resulting in the necessity for temporary reactor trip may occur at the nuclear power plant while normal operating mode. The paper deals with some of the operation c aspects of nuclear power plant operation in emergency situations and during threatened period. The xenon poisoning causes limitations on the variety of statements of the problem of calculating characteristics of a set of optimal reactor power off controls. The article show a possibility and feasibility of new sets of optimization tasks for the operation of nuclear power plants under conditions of xenon poisoning in emergency circumstances.

  6. 29 CFR 1910.120 - Hazardous waste operations and emergency response.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 5 2014-07-01 2014-07-01 false Hazardous waste operations and emergency response. 1910.120 Section 1910.120 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Hazardous Materials § 1910.120 Hazardous waste operations and emergency...

  7. 29 CFR 1910.120 - Hazardous waste operations and emergency response.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 5 2012-07-01 2012-07-01 false Hazardous waste operations and emergency response. 1910.120 Section 1910.120 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Hazardous Materials § 1910.120 Hazardous waste operations and emergency...

  8. 29 CFR 1910.120 - Hazardous waste operations and emergency response.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 5 2013-07-01 2013-07-01 false Hazardous waste operations and emergency response. 1910.120 Section 1910.120 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Hazardous Materials § 1910.120 Hazardous waste operations and emergency...

  9. 3. EAGLE ROCK CONTROL CENTER, OPERATIONS CONTROL. AS SYSTEM BECOMES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. EAGLE ROCK CONTROL CENTER, OPERATIONS CONTROL. AS SYSTEM BECOMES INCREASINGLY AUTOMATED, EAGLE ROCK WILL BECOME MORE AND MORE THE CENTRAL CONTROL SYSTEM OF THE METROPOLITAN WATER DISTRICT. - Eagle Rock Operations Control Center, Pasadena, Los Angeles County, CA

  10. Computer support for cooperative tasks in Mission Operations Centers

    NASA Technical Reports Server (NTRS)

    Fox, Jeffrey; Moore, Mike

    1994-01-01

    Traditionally, spacecraft management has been performed by fixed teams of operators in Mission Operations Centers. The team cooperatively: (1) ensures that payload(s) on spacecraft perform their work; and (2) maintains the health and safety of the spacecraft through commanding and monitoring the spacecraft's subsystems. In the future, the task demands will increase and overload the operators. This paper describes the traditional spacecraft management environment and describes a new concept in which groupware will be used to create a Virtual Mission Operations Center. Groupware tools will be used to better utilize available resources through increased automation and dynamic sharing of personnel among missions.

  11. An emerging typology of academic interdisciplinary gerontology centers in the United States.

    PubMed

    Hertz, Judith E; Douglass, Carolinda; Johnson, Angela; Richmond, Shirley A

    2007-01-01

    Little is known about the organization, characteristics or services offered by academic interdisciplinary gerontology centers located in higher education institutions. This article presents a description and an emerging typology of academic interdisciplinary gerontology centers based on information collected from the Websites of 47 centers. The emerging typology comprised three dimensions: focus, functions and specialty areas. Significant relationships were found between the center's function and focus as well as function and number of specialties. The newly developed typology is useful for classifying and learning about academic interdisciplinary gerontology centers. Students who have an interest in gerontology might use the classification system to select a school that matches their academic goals. Educators and educational administrators might apply the typology's dimensions in program development. The typology might also serve as a useful framework for future research and policymakers could use the information from the typology and center's Websites to support proposed policies. Furthermore, older adult consumers, their families and professional caregivers can use the information to learn about services and resources.

  12. CNC Turning Center Advanced Operations. Computer Numerical Control Operator/Programmer. 444-332.

    ERIC Educational Resources Information Center

    Skowronski, Steven D.; Tatum, Kenneth

    This student guide provides materials for a course designed to introduce the student to the operations and functions of a two-axis computer numerical control (CNC) turning center. The course consists of seven units. Unit 1 presents course expectations and syllabus, covers safety precautions, and describes the CNC turning center components, CNC…

  13. Training Program for Operation of Emergency Vehicles. Trainee Study Guide.

    ERIC Educational Resources Information Center

    INNOVATRIX, Inc., Ingomar, PA.

    A two-part trainee study guide for use in the classroom phase of the Emergency Vehicle Operation (EVO) training program is provided. Part 1, to be taken by all trainees, contains seven units organized into various subunits and includes the following: (1) introduction to the course; (2) some legal aspects of emergency vehicle operation (state…

  14. 48 CFR 252.232-7011 - Payments in Support of Emergencies and Contingency Operations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Emergencies and Contingency Operations. 252.232-7011 Section 252.232-7011 Federal Acquisition Regulations... Emergencies and Contingency Operations. As prescribed in section 232.908, use the following clause: PAYMENTS IN SUPPORT OF EMERGENCIES AND CONTINGENCY OPERATIONS (JUL 2010) (a) Definitions of pertinent terms...

  15. Planning for organization development in operations control centers.

    DOT National Transportation Integrated Search

    2012-06-01

    The first step in a proposed program of organization development (OD) was to assess organizational processes within the : Technical Operations Services (TechOps) Operations Control Centers (OCCs). The aim of the OD program was to : improve effectiven...

  16. 10 CFR 36.53 - Operating and emergency procedures.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Operating and emergency procedures. 36.53 Section 36.53 Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR IRRADIATORS Operation... the source storage pool; (6) A prolonged loss of electrical power; (7) A fire alarm or explosion in...

  17. 10 CFR 36.53 - Operating and emergency procedures.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Operating and emergency procedures. 36.53 Section 36.53 Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR IRRADIATORS Operation... the source storage pool; (6) A prolonged loss of electrical power; (7) A fire alarm or explosion in...

  18. 10 CFR 36.53 - Operating and emergency procedures.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Operating and emergency procedures. 36.53 Section 36.53 Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR IRRADIATORS Operation... the source storage pool; (6) A prolonged loss of electrical power; (7) A fire alarm or explosion in...

  19. Operational atmospheric modeling system CARIS for effective emergency response associated with hazardous chemical releases in Korea.

    PubMed

    Kim, Cheol-Hee; Park, Jin-Ho; Park, Cheol-Jin; Na, Jin-Gyun

    2004-03-01

    The Chemical Accidents Response Information System (CARIS) was developed at the Center for Chemical Safety Management in South Korea in order to track and predict the dispersion of hazardous chemicals in the case of an accident or terrorist attack involving chemical companies. The main objective of CARIS is to facilitate an efficient emergency response to hazardous chemical accidents by rapidly providing key information in the decision-making process. In particular, the atmospheric modeling system implemented in CARIS, which is composed of a real-time numerical weather forecasting model and an air pollution dispersion model, can be used as a tool to forecast concentrations and to provide a wide range of assessments associated with various hazardous chemicals in real time. This article introduces the components of CARIS and describes its operational modeling system. Some examples of the operational modeling system and its use for emergency preparedness are presented and discussed. Finally, this article evaluates the current numerical weather prediction model for Korea.

  20. Emergency Medical Service

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Lewis Research Center helped design the complex EMS Communication System, originating from space operated telemetry, including the telemetry link between ambulances and hospitals for advanced life support services. In emergency medical use telemetry links ambulances and hospitals for advanced life support services and allows transmission of physiological data -- an electrocardiogram from an ambulance to a hospital emergency room where a physician reads the telemetered message and prescribes emergency procedures to ambulance attendants.

  1. [Hypertensive emergencies at the University Hospital Center in Brazzaville, Congo].

    PubMed

    Ellenga, Mbolla B F; Gombet, T R; Mahoungou, Guimbi K C; Otiobanda, G F; Ossou, Nguiet P M; Ikama, M S; Kimbally-Kaky, G; Etitiele, F

    2011-02-01

    The purpose of this retrospective study conducted in the emergency department of the University Hospital Center in Brazzaville, Congo was to determine the prevalence and clinical characteristics of hypertensive emergencies. With a total of 76 patients admitted during the study period, the prevalence of hypertensive emergency was 4%. The sex ratio was 1 and mean patient age was 57.3 years (range, 30 to 80 years). Risk factors included obesity in 62 cases (81.6%), history of hypertension in 65 (85.5%) and low socioeconomic level in 58 (76.3%). Mean delay for consultation was 50 hours (range, 1 to 240 hours). The disease underlying the hypertensive emergency was stroke with 38 cases (50%), heart failure in 20 (26.3%), hypertensive encephalopathy in 11 (14.4%), malignant hypertension in 9 (11.8%), and renal failure in 10 (13.1%). The mean length of emergency treatment was 14.7 hours (range, 5 to 48 hours). Eight deaths (10.5%) occurred during hospitalization in the emergency department.

  2. 11. SAC command center, main operations area, underground structure, building ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. SAC command center, main operations area, underground structure, building 501, undated - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Command Center, 901 SAC Boulevard, Bellevue, Sarpy County, NE

  3. 9. SAC command center, main operations area, underground structure, building ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. SAC command center, main operations area, underground structure, building 501, undated - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Command Center, 901 SAC Boulevard, Bellevue, Sarpy County, NE

  4. 10 CFR 70.82 - Suspension and operation in war or national emergency.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Suspension and operation in war or national emergency. 70... NUCLEAR MATERIAL Modification and Revocation of Licenses § 70.82 Suspension and operation in war or national emergency. Whenever Congress declares that a state of war or national emergency exists, the...

  5. A Virtual Mission Operations Center: Collaborative Environment

    NASA Technical Reports Server (NTRS)

    Medina, Barbara; Bussman, Marie; Obenschain, Arthur F. (Technical Monitor)

    2002-01-01

    The Virtual Mission Operations Center - Collaborative Environment (VMOC-CE) intent is to have a central access point for all the resources used in a collaborative mission operations environment to assist mission operators in communicating on-site and off-site in the investigation and resolution of anomalies. It is a framework that as a minimum incorporates online chat, realtime file sharing and remote application sharing components in one central location. The use of a collaborative environment in mission operations opens up the possibilities for a central framework for other project members to access and interact with mission operations staff remotely. The goal of the Virtual Mission Operations Center (VMOC) Project is to identify, develop, and infuse technology to enable mission control by on-call personnel in geographically dispersed locations. In order to achieve this goal, the following capabilities are needed: Autonomous mission control systems Automated systems to contact on-call personnel Synthesis and presentation of mission control status and history information Desktop tools for data and situation analysis Secure mechanism for remote collaboration commanding Collaborative environment for remote cooperative work The VMOC-CE is a collaborative environment that facilitates remote cooperative work. It is an application instance of the Virtual System Design Environment (VSDE), developed by NASA Goddard Space Flight Center's (GSFC) Systems Engineering Services & Advanced Concepts (SESAC) Branch. The VSDE is a web-based portal that includes a knowledge repository and collaborative environment to serve science and engineering teams in product development. It is a "one stop shop" for product design, providing users real-time access to product development data, engineering and management tools, and relevant design specifications and resources through the Internet. The initial focus of the VSDE has been to serve teams working in the early portion of the system

  6. 10. SAC command center, main operations area, underground structure, building ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. SAC command center, main operations area, underground structure, building 501, circa 1980 - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Command Center, 901 SAC Boulevard, Bellevue, Sarpy County, NE

  7. 12. SAC command center, main operations area, underground structure, building ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. SAC command center, main operations area, underground structure, building 501, circa 1960 - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Command Center, 901 SAC Boulevard, Bellevue, Sarpy County, NE

  8. 14 CFR 121.339 - Emergency equipment for extended over-water operations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Emergency equipment for extended over-water... § 121.339 Emergency equipment for extended over-water operations. (a) Except where the Administrator, by... certificate holder, the Administrator allows deviation for a particular extended overwater operation, no...

  9. 14 CFR 121.339 - Emergency equipment for extended over-water operations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Emergency equipment for extended over-water... § 121.339 Emergency equipment for extended over-water operations. (a) Except where the Administrator, by... certificate holder, the Administrator allows deviation for a particular extended overwater operation, no...

  10. 14 CFR 121.339 - Emergency equipment for extended over-water operations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Emergency equipment for extended over-water... § 121.339 Emergency equipment for extended over-water operations. (a) Except where the Administrator, by... certificate holder, the Administrator allows deviation for a particular extended overwater operation, no...

  11. 14 CFR 121.339 - Emergency equipment for extended over-water operations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Emergency equipment for extended over-water... § 121.339 Emergency equipment for extended over-water operations. (a) Except where the Administrator, by... certificate holder, the Administrator allows deviation for a particular extended overwater operation, no...

  12. 14 CFR 121.339 - Emergency equipment for extended over-water operations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Emergency equipment for extended over-water... § 121.339 Emergency equipment for extended over-water operations. (a) Except where the Administrator, by... certificate holder, the Administrator allows deviation for a particular extended overwater operation, no...

  13. The National Geospatial Technical Operations Center

    USGS Publications Warehouse

    Craun, Kari J.; Constance, Eric W.; Donnelly, Jay; Newell, Mark R.

    2009-01-01

    The United States Geological Survey (USGS) National Geospatial Technical Operations Center (NGTOC) provides geospatial technical expertise in support of the National Geospatial Program in its development of The National Map, National Atlas of the United States, and implementation of key components of the National Spatial Data Infrastructure (NSDI).

  14. 14 CFR 135.167 - Emergency equipment: Extended overwater operations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Emergency equipment: Extended overwater... Aircraft and Equipment § 135.167 Emergency equipment: Extended overwater operations. (a) Except where the... of the certificate holder, the Administrator allows deviation for a particular extended overwater...

  15. 14 CFR 135.167 - Emergency equipment: Extended overwater operations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Emergency equipment: Extended overwater... Aircraft and Equipment § 135.167 Emergency equipment: Extended overwater operations. (a) Except where the... of the certificate holder, the Administrator allows deviation for a particular extended overwater...

  16. 14 CFR 135.167 - Emergency equipment: Extended overwater operations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Emergency equipment: Extended overwater... Aircraft and Equipment § 135.167 Emergency equipment: Extended overwater operations. (a) Except where the... of the certificate holder, the Administrator allows deviation for a particular extended overwater...

  17. 14 CFR 135.167 - Emergency equipment: Extended overwater operations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Emergency equipment: Extended overwater... Aircraft and Equipment § 135.167 Emergency equipment: Extended overwater operations. (a) Except where the... of the certificate holder, the Administrator allows deviation for a particular extended overwater...

  18. 14 CFR 135.167 - Emergency equipment: Extended overwater operations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Emergency equipment: Extended overwater... Aircraft and Equipment § 135.167 Emergency equipment: Extended overwater operations. (a) Except where the... of the certificate holder, the Administrator allows deviation for a particular extended overwater...

  19. Integration of emergency and weather elements into transportation management centers

    DOT National Transportation Integrated Search

    2006-02-28

    Integration as applied to transportation management and operations is a concept that reflects how Transportation Management Center (TMC) operators, agencies internal to the TMC, external agencies and support systems interact to improve transportation...

  20. Enabling Advanced Automation in Spacecraft Operations with the Spacecraft Emergency Response System

    NASA Technical Reports Server (NTRS)

    Breed, Julie; Fox, Jeffrey A.; Powers, Edward I. (Technical Monitor)

    2001-01-01

    True autonomy is the Holy Grail of spacecraft mission operations. The goal of launching a satellite and letting it manage itself throughout its useful life is a worthy one. With true autonomy, the cost of mission operations would be reduced to a negligible amount. Under full autonomy, any problems (no matter the severity or type) that may arise with the spacecraft would be handled without any human intervention via some combination of smart sensors, on-board intelligence, and/or smart automated ground system. Until the day that complete autonomy is practical and affordable to deploy, incremental steps of deploying ever-increasing levels of automation (computerization of once manual tasks) on the ground and on the spacecraft are gradually decreasing the cost of mission operations. For example, NASA's Goddard Space Flight Center (NASA-GSFC) has been flying spacecraft with low cost operations for several years. NASA-GSFC's SMEX (Small Explorer) and MIDEX (Middle Explorer) missions have effectively deployed significant amounts of automation to enable the missions to fly predominately in 'light-out' mode. Under light-out operations the ground system is run without human intervention. Various tools perform many of the tasks previously performed by the human operators. One of the major issues in reducing human staff in favor of automation is the perceived increased in risk of losing data, or even losing a spacecraft, because of anomalous conditions that may occur when there is no one in the control center. When things go wrong, missions deploying advanced automation need to be sure that anomalous conditions are detected and that key personal are notified in a timely manner so that on-call team members can react to those conditions. To ensure the health and safety of its lights-out missions, NASA-GSFC's Advanced Automation and Autonomy branch (Code 588) developed the Spacecraft Emergency Response System (SERS). The SERS is a Web-based collaborative environment that enables

  1. 25. SITE BUILDING 002 SCANNER BUILDING OPERATIONS CENTER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. SITE BUILDING 002 - SCANNER BUILDING - OPERATIONS CENTER - MWOC IN OPERATION AT 1930 ZULU TIME, 26 OCTOBER, 1999. MWOC SCREEN ALSO SHOWS RADAR "FACE A" AND "FACE B" ACTIVE STATUS. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  2. The Nature and Necessity of Operational Flexibility in the Emergency Department

    PubMed Central

    Ferrand, Yann B.; Laker, Lauren F.; Froehle, Craig M.; Vogus, Timothy J.; Dittus, Robert S.; Kripalani, Sunil; Pines, Jesse M.

    2014-01-01

    Hospital-based emergency departments (ED), given their high cost and major role in allocating care resources,are at the center of the debate regarding how to maximize value in delivering healthcare in the United States. In order to operate effectively and create value, EDs must be flexible: the ability to rapidly adapt to the highly variable needs of patients. The concept of flexibility has not been well described in the ED literature. We introduce the concept,outline its potential benefits, and provide some illustrative examples to facilitate incorporating flexibility into ED management. We draw upon operations research and organizational theory to identify and describe five forms of flexibility: physical, human resource, volume, behavioral, and conceptual. Each form of flexibility may be individually or in combination with others useful in improving ED performance and enhancing value. We also offer suggestions for measuring operational flexibility in the ED. A better understanding of operational flexibility and its application to the ED may help us move away from reactive approaches of managing variable demand to a more systematic approach. We also address the tension between cost and flexibility and outline how “partial flexibility” may potentially help resolve some challenges. Applying concepts of flexibility from other disciplines may help clinicians and administrators think differently about their workflow and provide new insights into managing issues of cost, flow, and quality in the ED. PMID:25233811

  3. Satellite and Aerial Remote Sensing in Support of Disaster Response Operations Conducted by the Texas Division of Emergency Management

    NASA Astrophysics Data System (ADS)

    Wells, G. L.; Tapley, B. D.; Bettadpur, S. V.; Howard, T.; Porter, B.; Smith, S.; Teng, L.; Tapley, C.

    2014-12-01

    The effective use of remote sensing products as guidance to emergency managers and first responders during field operations requires close coordination and communication with state-level decision makers, incident commanders and the leaders of individual strike teams. Information must be tailored to meet the needs of different emergency support functions and must contain current (ideally near real-time) data delivered in standard formats in time to influence decisions made under rapidly changing conditions. Since 2003, a representative of the University of Texas Center for Space Research (CSR) has served as a member of the Governor's Emergency Management Council and has directed the flow of information from remote sensing observations and high performance computing modeling and simulations to the Texas Division of Emergency Management in the State Operations Center. The CSR team has supported response and recovery missions resulting from hurricanes, tornadoes, flash floods, wildfires, oil spills and other natural and man-made disasters in Texas and surrounding states. Through web mapping services, state emergency managers and field teams have received threat model forecasts, real-time vehicle tracking displays and imagery to support search-and-clear operations before hurricane landfall, search-and-rescue missions following floods, tactical wildfire suppression, pollution monitoring and hazardous materials detection. Data servers provide near real-time satellite imagery collected by CSR's direct broadcast receiving system and post data products delivered during activations of the United Nations International Charter on Space and Major Disasters. In the aftermath of large-scale events, CSR is charged with tasking state aviation resources, including the Air National Guard and Texas Civil Air Patrol, to acquire geolocated aerial photography of the affected region for wide area damage assessment. A data archive for each disaster is available online for years following

  4. Emergency end of life operations for CNES remote sensing satellites—Management and operational process

    NASA Astrophysics Data System (ADS)

    Bertrand, Régis; Alby, Fernand; Costes, Thierry; Dejoie, Joël; Delmas, Dominique-Roland; Delobette, Damien; Gibek, Isabelle; Gleyzes, Alain; Masson, Françoise; Meyer, Jean-Renaud; Moreau, Agathe; Perret, Lionel; Riclet, François; Ruiz, Hélène; Schiavon, Françoise; Spizzi, Pierre; Viallefont, Pierre; Villaret, Colette

    2012-10-01

    The French Space Agency (CNES) is currently operating thirteen satellites among which five remote sensing satellites. This fleet is composed of two civilian (SPOT) and three military (HELIOS) satellites and it has been recently completed by the first PLEIADES satellite which is devoted to both civil and military purposes. The CNES operation board decided to appoint a Working Group (WG) in order to anticipate and tackle issues related to the emergency End Of Life (EOL) operations due to unexpected on-board events affecting the satellite. This is of particular interest in the context of the French Law on Space Operations (LSO), entered in force on Dec. 2010, which states that any satellite operator must demonstrate its capability to control the space vehicle whatever the mission phase from the launch up to the EOL. Indeed, after several years in orbit the satellites may be affected by on-board anomalies which could damage the implementation of EOL operations, i.e. orbital manoeuvres or platform disposal. Even if automatic recovery actions ensure autonomous reconfigurations on redundant equipment, i.e. setting for instance the satellite into a safe mode, it is crucial to anticipate the consequences of failures of every equipment and functions necessary for the EOL operations. For this purpose, the WG has focused on each potential anomaly by analysing: its emergency level, as well as the EOL operations potentially inhibited by the failure and the needs of on-board software workarounds… The main contribution of the WG consisted in identifying a particular satellite configuration called "minimal Withdrawal From Service (WFS) configuration". This configuration corresponds to an operational status which involves a redundancy necessary for the EOL operations. Therefore as soon as a satellite reaches this state, a dedicated steering committee is activated and decides of the future of the satellite with respect to three options: a/. the satellite is considered safe and can

  5. Space Operations Center - A concept analysis

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The Space Operations Center (SOC) which is a concept for a Shuttle serviced, permanent, manned facility in low earth orbit is viewed as a major candidate for the manned space flight following the completion of an operational Shuttle. The primary objectives of SOC are: (1) the construction, checkout, and transfer to operational orbit of large, complex space systems, (2) on-orbit assembly, launch, recovery, and servicing of manned and unmanned spacecraft, (3) managing operations of co-orbiting free-flying satellites, and (4) the development of reduced dependence on earth for control and resupply. The structure of SOC, a self-contained orbital facility containing several Shuttle launched modules, includes the service, habitation, and logistics modules as well as construction, and flight support facilities. A schedule is proposed for the development of SOC over ten years and costs for the yearly programs are estimated.

  6. [Computerized monitoring system in the operating center with UNIX and X-window].

    PubMed

    Tanaka, Y; Hashimoto, S; Chihara, E; Kinoshita, T; Hirose, M; Nakagawa, M; Murakami, T

    1992-01-01

    We previously reported the fully automated data logging system in the operating center. Presently, we revised the system using a highly integrated operating system, UNIX instead of OS/9. With this multi-task and multi-window (X-window) system, we could monitor all 12 rooms in the operating center at a time. The system in the operating center consists of 2 computers, SONY NEWS1450 (UNIX workstation) and Sord M223 (CP/M, data logger). On the bitmapped display of the workstation, using X-window, the data of all the operating rooms can be visualized. Furthermore, 2 other minicomputers (Fujitsu A50 in the conference room, and A60 in the ICU) and a workstation (Sun3-80 in the ICU) were connected with ethernet. With the remote login function (NFS), we could easily obtain the data during the operation from outside the operating center. This system works automatically and needs no routine maintenance.

  7. Space Operations Center System Analysis: Requirements for a Space Operations Center, revision A

    NASA Technical Reports Server (NTRS)

    Woodcock, G. R.

    1982-01-01

    The system and program requirements for a space operations center as defined by systems analysis studies are presented as a guide for future study and systems definition. Topics covered include general requirements for safety, maintainability, and reliability, service and habitat modules, the health maintenance facility; logistics modules; the docking tunnel; and subsystem requirements (structures, electrical power, environmental control/life support; extravehicular activity; data management; communications and tracking; docking/berthing; flight control/propulsion; and crew support). Facilities for flight support, construction, satellite and mission servicing, and fluid storage are included as well as general purpose support equipment.

  8. Space Operations Center: A concept analysis

    NASA Technical Reports Server (NTRS)

    Livingston, L. E.

    1979-01-01

    The Space Operations Center is a concept for a shuttle-service, permanent, manned facility in low Earth orbit. An analysis of this concept was conducted and the results are reported. It is noted that there are no NASA plans at present to implement such a concept. The results are intended for consideration in future planning.

  9. Medical Operations Console Procedure Evaluation: BME Response to Crew Call Down for an Emergency

    NASA Technical Reports Server (NTRS)

    Johnson-Troop; Pettys, Marianne; Hurst, Victor, IV; Smaka, Todd; Paul, Bonnie; Rosenquist, Kevin; Gast, Karin; Gillis, David; McCulley, Phyllis

    2006-01-01

    International Space Station (ISS) Mission Operations are managed by multiple flight control disciplines located at the lead Mission Control Center (MCC) at NASA-Johnson Space Center (JSC). ISS Medical Operations are supported by the complementary roles of Flight Surgeons (Surgeon) and Biomedical Engineer (BME) flight controllers. The Surgeon, a board certified physician, oversees all medical concerns of the crew and the BME provides operational and engineering support for Medical Operations Crew Health Care System. ISS Medical Operations is currently addressing the coordinated response to a crew call down for an emergent medical event, in particular when the BME is the only Medical Operations representative in MCC. In this case, the console procedure BME Response to Crew Call Down for an Emergency will be used. The procedure instructs the BME to contact a Surgeon as soon as possible, coordinate with other flight disciplines to establish a Private Medical Conference (PMC) for the crew and Surgeon, gather information from the crew if time permits, and provide Surgeon with pertinent console resources. It is paramount that this procedure is clearly written and easily navigated to assist the BME to respond consistently and efficiently. A total of five BME flight controllers participated in the study. Each BME participant sat in a simulated MCC environment at a console configured with resources specific to the BME MCC console and was presented with two scripted emergency call downs from an ISS crew member. Each participant used the procedure while interacting with analog MCC disciplines to respond to the crew call down. Audio and video recordings of the simulations were analyzed and each BME participant's actions were compared to the procedure. Structured debriefs were conducted at the conclusion of both simulations. The procedure was evaluated for its ability to elicit consistent responses from each BME participant. Trials were examined for deviations in procedure task

  10. The emergence of Quantum Schools: Munich, Göttingen and Copenhagen as new centers of atomic theory

    NASA Astrophysics Data System (ADS)

    Eckert, M.

    2001-01-01

    The institutes of Arnold Sommerfeld in Munich, Niels Bohr in Copenhagen, and Max Born in Göttingen became the leading centers for the study of quantum theory in the first decades of the twentieth century. Although founded for a broader range of theoretical physics, the quantum became the major topic of research in Munich after the Bohr-Sommerfeld-model of the atom (1913-16). The heyday came in the 1920s, when Bohr's and Born's institutes started operation and became further attractive centers for ambitious theorists all over the world. The discovery of quantum mechanics (1925) should be regarded not only as the achievement of a few young geniuses (in particular Werner Heisenberg and Wolfgang Pauli) but also as the result of a collaborative effort emerging in the new social and intellectual environment of their teachers' schools in Munich, Göttingen and Copenhagen.

  11. 26. SITE BUILDING 002 SCANNER BUILDING OPERATIONS CENTER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. SITE BUILDING 002 - SCANNER BUILDING - OPERATIONS CENTER - MWOC IN OPERATION AT 1945 ZULU TIME, 26 OCTOBER, 1999. "SPACE TRACK BOARD" DATA SHOWING ITEMS #16609 MIR (RUSSIA) AND #25544 ISS (INTERNATIONAL SPACE STATION) BEING TRACKED. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  12. Respondents, Operants, and Emergents: Toward an Integrated Perspective on Behavior

    NASA Technical Reports Server (NTRS)

    Rumbaugh, Daune M.; Washburn, David A.; Hillix, William A.

    1996-01-01

    A triarchic organization of behavior, building on Skinner's description of respondents and operants, is proposed by introducing a third class of behavior called 'emergents.' Emergents are new responses, never specifically reinforced, that require operations more complex than association. Some of these operations occur naturally only in animals above a minimum level of brain complexity, and are developed in an interaction between treatment and organismic variables. (Here complexity is defined in terms of relative levels of hierarchical integration made possible both by the amount of brain, afforded both by brain-body allometric relationships and by encephalization, and, also, the elaboration of dendritic and synaptic connections within the cortex and connections between various parts/regions of the brain.) Examples of emergents are discussed to advance this triarchic view, of behavior. The prime example is language. This triarchic view reflects both the common goals and the cumulative nature of psychological science.

  13. Integrated surgical emergency training plan in the internship: A step toward improving the quality of training and emergency center management.

    PubMed

    Akhlaghi, Mohammad Reza; Vafamehr, Vajiheh; Dadgostarnia, Mohammad; Dehghani, Alireza

    2013-01-01

    In this study, by using a problem-oriented approach in the needs assessment, identifying the defects and deficiencies in emergency health training centers has been determined as the basis for the requirements. The main objective of the study was the implementation of surgical emergencies integration of the five surgical groups (general surgery, urology, orthopedics, neurosurgery, and ENT) to meet the needs and determining its efficacy. THIS INTERVENTIONAL STUDY WAS CONDUCTED IN THREE PHASES: (1) Phase I (design and planning): Needs assessment, recognition of implementation barriers and providing the objectives and training program for integrated emergencies. (2) Phase II (implementation): Justification of the main stakeholders of the project, preparation of students' duties in the emergency department, preparation of on-duty plans, supervising the implementation of the program, and reviewing the plan in parallel with the implementation based on the problems. (3) Phase III (evaluation): Reviewing the evidences based on the amount of efficiency of the plan and justification for its continuation. In the first and the second phase, the data were collected through holding focus group meetings and interviews. In the third phase, the opened-reply and closed-reply researcher-made questionnaires were used. The questionnaire face and content validity were confirmed by experts and the reliability was assessed by calculating the Cronbach's alpha. ACCORDING TO THE VIEWS OF THE INTERNS, ASSISTANTS, TEACHERS, AND EMERGENCY PERSONNEL, THE POSITIVE FEATURES OF THE PLAN INCLUDED THE FOLLOWING: Increasing the patients' satisfaction, reducing the patients' stay in the Emergency Department, increasing the speed of handling the patients, balancing the workloads of the interns, direct training of interns by young teachers of emergency medicine, giving the direct responsibility of the patient to the intern, practical and operational training of emergency issues, increasing the teamwork

  14. Space Operations Center orbit altitude selection strategy

    NASA Technical Reports Server (NTRS)

    Indrikis, J.; Myers, H. L.

    1982-01-01

    The strategy for the operational altitude selection has to respond to the Space Operation Center's (SOC) maintenance requirements and the logistics demands of the missions to be supported by the SOC. Three orbit strategies are developed: two are constant altitude, and one variable altitude. In order to minimize the effect of atmospheric uncertainty the dynamic altitude method is recommended. In this approach the SOC will operate at the optimum altitude for the prevailing atmospheric conditions and logistics model, provided that mission safety constraints are not violated. Over a typical solar activity cycle this method produces significant savings in the overall logistics cost.

  15. WFIRST: STScI Science Operations Center (SSOC) Activities and Plans

    NASA Astrophysics Data System (ADS)

    Gilbert, Karoline M.; STScI WFIRST Team

    2018-01-01

    The science operations for the WFIRST Mission will be distributed between Goddard Space Flight Center, the Space Telescope Science Institute (STScI), and the Infrared Processing and Analysis Center (IPAC). The STScI Science Operations Center (SSOC) will schedule and archive all WFIRST observations, will calibrate and produce pipeline-reduced data products for the Wide Field Instrument, and will support the astronomical community in planning WFI observations and analyzing WFI data. During the formulation phase, WFIRST team members at STScI have developed operations concepts for scheduling, data management, and the archive; have performed technical studies investigating the impact of WFIRST design choices on data quality and analysis; and have built simulation tools to aid the community in exploring WFIRST’s capabilities. We will highlight examples of each of these efforts.

  16. Impact of the 80-hour work week on resident emergency operative experience.

    PubMed

    Feanny, Mark A; Scott, Bradford G; Mattox, Kenneth L; Hirshberg, Asher

    2005-12-01

    The goal of this study was to analyze the impact of the 80-hour work week on the emergency operative experience of surgical residents. A 2-year retrospective comparison of the operative experience in emergency abdominal procedures of postgraduate year 4 and 5 residents in a city hospital before (group 1) and after (group 2) duty hour restriction. There was no difference between groups in the mean number of procedures performed as the primary surgeon, but group 2 showed a 40% decrease in technically advanced procedures with a 44% increase in basic procedures. The study also demonstrated a 54% decrease in the operative volume as first assistant. Operative continuity of care by residents decreased from 60% to 26% of cases. The ACGME regulatory environment is adversely affecting the emergency operative experience of surgical residents. Our findings underscore the need to develop alternative methods to augment the residents' operative experience.

  17. 49 CFR 239.301 - Operational (efficiency) tests.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PASSENGER TRAIN EMERGENCY PREPAREDNESS Operational (Efficiency...-board and control center employees to determine the extent of compliance with its emergency preparedness...

  18. The Pacific Center for Emergency Health--an anatomy of collaborative development and change--the Palau perspective.

    PubMed

    Yano, Victor; Ueda, Masao; Tellei, Julie; Wally, Willy; Kuartei, Stevenson; Tokon, Willie; Lalabalavu, Selaima; Otto, Caleb; Pierantozzi, Sandra; Dever, Greg; Finau, Sitalekl

    2006-09-01

    Many Pacific Islands Countries (PICs) by their geographic location, isolation, and lack of resources, are at risk for both environmental and man-made disasters. Disaster management (DM) and mitigation is frustrated by the general underdevelopment of DM planning and lack of adequate emergency medical services (EMS) to deal with daily emergencies let alone large-scale emergencies and disasters. To address this, the U.S. Centers for Disease Control and Prevention (CDC) developed and implemented the Pacific Emergency Health Initiative (PEHI) to review and make recommendations regarding the current level of DM/EMS development of select PICs. As a practical next step, a collaborative demonstration project--the CDC--Palau Community College Pacific Center for Emergency Health--was established in the Republic of Palau with the purpose of providing training and technical assistance in DM/EMS development for the region. In September 2001 the Center conducted two simultaneous training programs addressing Public Health Disaster Planning (one-week) and pre-hospital First Responder Care (two-weeks). Sixty participants included public health planners, physicians, and fire and police officials from eleven PIC jurisdictions and representatives from the Secretariat of the Pacific Community, South Pacific Applied Geoscience Commission, and the Fiji School of Medicine. Eleven country and state public health disaster plans were initiated. Post 9-11 the Center has increased relevance. Through CDC's PEHI additional Center training programs are planned through FY 2003.

  19. Space Operations Learning Center

    NASA Technical Reports Server (NTRS)

    Lui, Ben; Milner, Barbara; Binebrink, Dan; Kuok, Heng

    2012-01-01

    The Space Operations Learning Center (SOLC) is a tool that provides an online learning environment where students can learn science, technology, engineering, and mathematics (STEM) through a series of training modules. SOLC is also an effective media for NASA to showcase its contributions to the general public. SOLC is a Web-based environment with a learning platform for students to understand STEM through interactive modules in various engineering topics. SOLC is unique in its approach to develop learning materials to teach schoolaged students the basic concepts of space operations. SOLC utilizes the latest Web and software technologies to present this educational content in a fun and engaging way for all grade levels. SOLC uses animations, streaming video, cartoon characters, audio narration, interactive games and more to deliver educational concepts. The Web portal organizes all of these training modules in an easily accessible way for visitors worldwide. SOLC provides multiple training modules on various topics. At the time of this reporting, seven modules have been developed: Space Communication, Flight Dynamics, Information Processing, Mission Operations, Kids Zone 1, Kids Zone 2, and Save The Forest. For the first four modules, each contains three components: Flight Training, Flight License, and Fly It! Kids Zone 1 and 2 include a number of educational videos and games designed specifically for grades K-6. Save The Forest is a space operations mission with four simulations and activities to complete, optimized for new touch screen technology. The Kids Zone 1 module has recently been ported to Facebook to attract wider audience.

  20. The TESS science processing operations center

    NASA Astrophysics Data System (ADS)

    Jenkins, Jon M.; Twicken, Joseph D.; McCauliff, Sean; Campbell, Jennifer; Sanderfer, Dwight; Lung, David; Mansouri-Samani, Masoud; Girouard, Forrest; Tenenbaum, Peter; Klaus, Todd; Smith, Jeffrey C.; Caldwell, Douglas A.; Chacon, A. D.; Henze, Christopher; Heiges, Cory; Latham, David W.; Morgan, Edward; Swade, Daryl; Rinehart, Stephen; Vanderspek, Roland

    2016-08-01

    The Transiting Exoplanet Survey Satellite (TESS) will conduct a search for Earth's closest cousins starting in early 2018 and is expected to discover 1,000 small planets with Rp < 4 R⊕ and measure the masses of at least 50 of these small worlds. The Science Processing Operations Center (SPOC) is being developed at NASA Ames Research Center based on the Kepler science pipeline and will generate calibrated pixels and light curves on the NASA Advanced Supercomputing Division's Pleiades supercomputer. The SPOC will also search for periodic transit events and generate validation products for the transit-like features in the light curves. All TESS SPOC data products will be archived to the Mikulski Archive for Space Telescopes (MAST).

  1. Roof plan, Combat Operations Center, Building No. 2605. (Also includes ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Roof plan, Combat Operations Center, Building No. 2605. (Also includes a typical roof section, with new fiberglass and urethane insulation layers.) By Federal Builders, 575 Carreon Drive, Colton, California. Sheet 1 of 1, dated 18 May 1992. Scale one-eighth inch to one foot. 24x36 inches. ink on paper - March Air Force Base, Strategic Air Command, Combat Operations Center, 5220 Riverside Drive, Moreno Valley, Riverside County, CA

  2. The effect of a class IV hurricane on emergency department operations.

    PubMed

    Sheppa, C M; Stevens, J; Philbrick, J T; Canada, M

    1993-09-01

    The objective of this study was to determine the impact on emergency department (ED) operations of Hurricane Hugo, a class IV hurricane that struck Charleston, South Carolina, on September 21, 1989. The study design was a retrospective record-based descriptive study and mail survey of the ED of a 300-bed regional medical center directly in the path of the storm. During the 3 weeks after the storm, ED patient volume increased 19% over that of the 3 weeks before the storm. Increased visit volumes were evident for at least 3 months. Compared with a similar period of the previous year, there was an increase in the proportion of patients seen for lacerations of all types, puncture wounds, stings, and falls. Sixty-two percent of physician offices were still closed 7 days after the storm. The direct effects of a class IV hurricane on ED operations included major alterations in the volume and types of patient visits. Because of the evacuation of approximately 40% of the coastal population and storm damage hindering travel, the increase in visit volume was less in magnitude but of longer duration has been reported in class III hurricanes.

  3. NASA Airline Operations Research Center

    NASA Technical Reports Server (NTRS)

    Mogford, Richard H.

    2016-01-01

    This is a PowerPoint presentation NASA airline operations center (AOC) research. It includes information on using IBM Watson in the AOC. It also reviews a dispatcher decision support tool call the Flight Awareness Collaboration Tool (FACT). FACT gathers information about winter weather onto one screen and includes predictive abilities. It should prove to be useful for airline dispatchers and airport personnel when they manage winter storms and their effect on air traffic. This material is very similar to other previously approved presentations with the same title.

  4. Operation of Reliability Analysis Center (FY88)

    DTIC Science & Technology

    1989-10-01

    4.1 Current Projects 16 4.2 Completed Projects 22 6.0 FINANCIAL SUMMARY FY󈨜 23 7.0 INFORMATION FROM IAC USERS 24 7.1 User Feedback on IAC Services...22 6.0 FINANCIAL SUMMARY FY󈨜 Operating expenditures for carrying out the Reliability Analysis Center’s on-going operational functions and satisfying...Because the RAC does n~ot stand to benefit from either a favorable or unfavorable appraisal of any contractors design, an unbiased analysis can result

  5. Oncologic emergencies in a cancer center emergency department and in general emergency departments countywide and nationwide.

    PubMed

    Yang, Zhi; Yang, Runxiang; Kwak, Min Ji; Qdaisat, Aiham; Lin, Junzhong; Begley, Charles E; Reyes-Gibby, Cielito C; Yeung, Sai-Ching Jim

    2018-01-01

    Although cancer patients (CPs) are increasingly likely to visit emergency department (ED), no population-based study has compared the characteristics of CPs and non-cancer patients (NCPs) who visit the ED and examined factors associated with hospitalization via the ED. In this study, we (1) compared characteristics and diagnoses between CPs and NCPs who visited the ED in a cancer center or general hospital; (2) compared characteristics and diagnoses between CPs and NCPs who were hospitalized via the ED in a cancer center or general hospital; and (3) investigated important factors associated with such hospitalization. We analyzed patient characteristic and diagnosis [based on International Classification of Diseases-9 (ICD-9) codes] data from the ED of a comprehensive cancer center (MDACC), 24 general EDs in Harris County, Texas (HCED), and the National Hospital Ambulatory Medical Care Survey (NHAMCS) from 1/1/2007-12/31/2009. Approximately 3.4 million ED visits were analyzed: 47,245, 3,248,973, and 104,566 visits for MDACC, HCED, and NHAMCS, respectively, of which 44,143 (93.4%), 44,583 (1.4%), and 632 (0.6%) were CP visits. CPs were older than NCPs and stayed longer in EDs. Lung, gastrointestinal (excluding colorectal), and genitourinary (excluding prostate) cancers were the three most common diagnoses related to ED visits at general EDs. CPs visiting MDACC were more likely than CPs visiting HCED to be privately insured. CPs were more likely than NCPs to be hospitalized. Pneumonia and influenza, fluid and electrolyte disorders, and fever were important predictive factors for CP hospitalization; coronary artery disease, cerebrovascular disease, and heart failure were important factors for NCP hospitalization. CPs consumed more ED resources than NCPs and had a higher hospitalization rate. Given the differences in characteristics and diagnoses between CPs and NCPs, ED physicians must pay special attention to CPs and be familiar with their unique set of oncologic

  6. The TESS Science Processing Operations Center

    NASA Technical Reports Server (NTRS)

    Jenkins, Jon M.; Twicken, Joseph D.; McCauliff, Sean; Campbell, Jennifer; Sanderfer, Dwight; Lung, David; Mansouri-Samani, Masoud; Girouard, Forrest; Tenenbaum, Peter; Klaus, Todd; hide

    2016-01-01

    The Transiting Exoplanet Survey Satellite (TESS) will conduct a search for Earth's closest cousins starting in early 2018 and is expected to discover approximately 1,000 small planets with R(sub p) less than 4 (solar radius) and measure the masses of at least 50 of these small worlds. The Science Processing Operations Center (SPOC) is being developed at NASA Ames Research Center based on the Kepler science pipeline and will generate calibrated pixels and light curves on the NASA Advanced Supercomputing Division's Pleiades supercomputer. The SPOC will also search for periodic transit events and generate validation products for the transit-like features in the light curves. All TESS SPOC data products will be archived to the Mikulski Archive for Space Telescopes (MAST).

  7. REACT Real-Time Emergency Action Coordination Tool

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Recently the Emergency Management Operations Center (EMOC) of St. Tammany Parish turned to the Technology Development and Transfer Office (TDTO) of NASA's Stennis Space Center (SSC) for help in combating the problems associated with water inundation. Working through a Dual-Use Development Agreement the Technology Development and Transfer Office, EMOC and a small geospatial applications company named Nvision provided the parish with a new front-line defense. REACT, Real-time Emergency Action coordination Tool is a decision support system that integrates disparate information to enable more efficient decision making by emergency management personnel.

  8. Operation of the Computer Software Management and Information Center (COSMIC)

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The major operational areas of the COSMIC center are described. Quantitative data on the software submittals, program verification, and evaluation are presented. The dissemination activities are summarized. Customer services and marketing activities of the center for the calendar year are described. Those activities devoted to the maintenance and support of selected programs are described. A Customer Information system, the COSMIC Abstract Recording System Project, and the COSMIC Microfiche Project are summarized. Operational cost data are summarized.

  9. Sections. March Air Force Base, Riverside, California, Combat Operations Center, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Sections. March Air Force Base, Riverside, California, Combat Operations Center, Combat Operations Building. By Moffatt and Nichol, Engineers, 122 West Fifth Street, Long Beach, California; for the Corps of Engineers, U.S. Army, Office of the District Engineer, Los Angeles, California. Drawing no. AW-60-02-03, sheet no. 14, approved March, 1962; specifications no. ENG-04-353-62-66; D.O. series AW 1596/15, Rev. "A"; file drawer 1290. Last revised 3 October 1966. Scale one-eighth inch to one foot. 30x36 inches. pencil on paper - March Air Force Base, Strategic Air Command, Combat Operations Center, 5220 Riverside Drive, Moreno Valley, Riverside County, CA

  10. Elevations. March Air Force Base, Riverside, California, Combat Operations Center, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Elevations. March Air Force Base, Riverside, California, Combat Operations Center, Combat Operations Building. By Moffatt and Nichol, Engineers, 122 West Fifth Street, Long Beach, California; for the Corps of Engineers, U.S. Army, Office of the District Engineer, Los Angeles, California. Drawing no. AW-60-02-03, sheet no. 14, approved March, 1962; specifications no. ENG-04-353-62-66; D.O. series AW 1596/14, Rev. "B"; file drawer 77-1/102. Last revised 3 October 1966. Scale one-eighth inch to one foot. 30x36 inches. photocopy on paper - March Air Force Base, Strategic Air Command, Combat Operations Center, 5220 Riverside Drive, Moreno Valley, Riverside County, CA

  11. 3 CFR - Continuation of the National Emergency With Respect to Significant Narcotics Traffickers Centered...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 3 The President 1 2014-01-01 2014-01-01 false Continuation of the National Emergency With Respect to Significant Narcotics Traffickers Centered in Colombia Presidential Documents Other Presidential Documents Notice of October 16, 2013 Continuation of the National Emergency With Respect to Significant...

  12. 3 CFR - Continuation of the National Emergency With Respect to Significant Narcotics Traffickers Centered...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 3 The President 1 2013-01-01 2013-01-01 false Continuation of the National Emergency With Respect to Significant Narcotics Traffickers Centered in Colombia Presidential Documents Other Presidential Documents Notice of October 17, 2012 Continuation of the National Emergency With Respect to Significant...

  13. 3 CFR - Continuation of the National Emergency With Respect to Significant Narcotics Traffickers Centered...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 3 The President 1 2012-01-01 2012-01-01 false Continuation of the National Emergency With Respect to Significant Narcotics Traffickers Centered in Colombia Presidential Documents Other Presidential Documents Notice of October 19, 2011 Continuation of the National Emergency With Respect to Significant...

  14. 10 CFR 39.63 - Operating and emergency procedures.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR WELL LOGGING Radiation Safety Requirements § 39.63 Operating and emergency procedures. Each licensee shall develop and... radiation surveys, including surveys for detecting contamination, as required by § 39.67(c)-(e); (d...

  15. 10 CFR 39.63 - Operating and emergency procedures.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR WELL LOGGING Radiation Safety Requirements § 39.63 Operating and emergency procedures. Each licensee shall develop and... radiation surveys, including surveys for detecting contamination, as required by § 39.67(c)-(e); (d...

  16. 10 CFR 39.63 - Operating and emergency procedures.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR WELL LOGGING Radiation Safety Requirements § 39.63 Operating and emergency procedures. Each licensee shall develop and... radiation surveys, including surveys for detecting contamination, as required by § 39.67(c)-(e); (d...

  17. 10 CFR 39.63 - Operating and emergency procedures.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR WELL LOGGING Radiation Safety Requirements § 39.63 Operating and emergency procedures. Each licensee shall develop and... radiation surveys, including surveys for detecting contamination, as required by § 39.67(c)-(e); (d...

  18. 10 CFR 39.63 - Operating and emergency procedures.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR WELL LOGGING Radiation Safety Requirements § 39.63 Operating and emergency procedures. Each licensee shall develop and... radiation surveys, including surveys for detecting contamination, as required by § 39.67(c)-(e); (d...

  19. 24. SITE BUILDING 002 SCANNER BUILDING OPERATIONS CENTER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. SITE BUILDING 002 - SCANNER BUILDING - OPERATIONS CENTER -- MWOC IN OPEARATION AT 1924 ZULU TIME. 26 OCTOBER, 1999. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  20. Team processes in airway facilities operations control centers.

    DOT National Transportation Integrated Search

    2000-07-01

    In October 2000, the Airway Facilities organization plans to transition the National Airspace System (NAS) monitoring responsibilities to three regional Operations Control Centers (OCCs). Teams in these facilities will be different from those that cu...

  1. The Pacific Center for Emergency Health: an anatomy of collaborative development and change--the Palau perspective.

    PubMed

    Yano, Victor; Ueda, Masao; Dever, Greg; Tellei, Julie; Wally, Willy; Kuartei, Stevenson; Tokon, Willie; Lalabalavu, Seleima; Otto, Caleb; Pierantozzi, Sandra

    2002-03-01

    Many Pacific Islands Countries (PICs) by their geographic location, isolation, and lack of resources, are at risk for both environmental and man-made disasters. Disaster management (DM) and mitigation is frustrated by the general underdevelopment of DM planning and lack of adequate emergency medical services (EMS) to deal with daily emergencies let alone large-scale emergencies and disasters. To address this, the U.S. Centers for Disease Control and Prevention (CDC) developed and implemented the Pacific Emergency Health Initiative (PEHI) to review and make recommendations regarding the current level of DM/EMS development of select PICs. As a practical next step, a collaborative demonstration project--the CDC--Palau Community College Center for Emergency Health--was established in the Republic of Palau with the purpose of providing training and technical assistance in DM/EMS development for the region. In September 2001 the Center conducted two simultaneous training programs addressing Public Health Disaster Planning (one-week) and pre-hospital First Responder Care (two-weeks). Sixty participants included public health planners, physicians, and fire and police officials from eleven PIC jurisdictions and representatives from the Secretariat of the Pacific Community, South Pacific Applied Geoscience Commission, and the Fiji School of Medicine. Eleven country and state public health disaster plans were initiated. Through CDC's PEHI additional Center training programs are planned through FY 2003.

  2. 10 CFR 34.81 - Copies of operating and emergency procedures.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Copies of operating and emergency procedures. 34.81 Section 34.81 Energy NUCLEAR REGULATORY COMMISSION LICENSES FOR INDUSTRIAL RADIOGRAPHY AND RADIATION SAFETY REQUIREMENTS FOR INDUSTRIAL RADIOGRAPHIC OPERATIONS Recordkeeping Requirements § 34.81 Copies of...

  3. 10 CFR 34.81 - Copies of operating and emergency procedures.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Copies of operating and emergency procedures. 34.81 Section 34.81 Energy NUCLEAR REGULATORY COMMISSION LICENSES FOR INDUSTRIAL RADIOGRAPHY AND RADIATION SAFETY REQUIREMENTS FOR INDUSTRIAL RADIOGRAPHIC OPERATIONS Recordkeeping Requirements § 34.81 Copies of...

  4. 10 CFR 34.81 - Copies of operating and emergency procedures.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Copies of operating and emergency procedures. 34.81 Section 34.81 Energy NUCLEAR REGULATORY COMMISSION LICENSES FOR INDUSTRIAL RADIOGRAPHY AND RADIATION SAFETY REQUIREMENTS FOR INDUSTRIAL RADIOGRAPHIC OPERATIONS Recordkeeping Requirements § 34.81 Copies of...

  5. 10 CFR 34.81 - Copies of operating and emergency procedures.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Copies of operating and emergency procedures. 34.81 Section 34.81 Energy NUCLEAR REGULATORY COMMISSION LICENSES FOR INDUSTRIAL RADIOGRAPHY AND RADIATION SAFETY REQUIREMENTS FOR INDUSTRIAL RADIOGRAPHIC OPERATIONS Recordkeeping Requirements § 34.81 Copies of...

  6. 10 CFR 34.81 - Copies of operating and emergency procedures.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Copies of operating and emergency procedures. 34.81 Section 34.81 Energy NUCLEAR REGULATORY COMMISSION LICENSES FOR INDUSTRIAL RADIOGRAPHY AND RADIATION SAFETY REQUIREMENTS FOR INDUSTRIAL RADIOGRAPHIC OPERATIONS Recordkeeping Requirements § 34.81 Copies of...

  7. IVHS Denver Metro Area, Traffic Operations Center Tour

    DOT National Transportation Integrated Search

    1992-10-01

    THE PURPOSE OF THIS DOCUMENT IS TO RELATE THE EXPERIENCES LEARNED DURING THE RECENT TRAFFIC OPERATIONS CENTER (TOC) TOUR. THIS TOUR INCLUDED VISITS TO THE FOLLOWING: : - COMPASS - HIGHWAY 401 TRAFFIC MANAGEMENT SYSTEM IN THE TORONTO METROPOLITAN A...

  8. International Conference on Remote Emergency Medical Services

    NASA Technical Reports Server (NTRS)

    1975-01-01

    An emergency medical system is characterized. Applications of NASA technology in biomedical telecommunication and bioinstrumentation are explored. The training and effectiveness of paramedics, technicians, nurses, and physicians are evaluated as applied to emergency situations and the operations of trauma centers. Civilian and military aeromedical evacuation is discussed.

  9. Assessment of Emerging Networks to Support Future NASA Space Operations

    NASA Technical Reports Server (NTRS)

    Younes, Badri; Chang, Susan; Berman, Ted; Burns, Mark; LaFontaine, Richard; Lease, Robert

    1998-01-01

    Various issues associated with assessing emerging networks to support future NASA space operations are presented in viewgraph form. Specific topics include: 1) Emerging commercial satellite systems; 2) NASA LEO satellite support through commercial systems; 3) Communications coverage, user terminal assessment and regulatory assessment; 4) NASA LEO missions overview; and 5) Simulation assumptions and results.

  10. Crew-Centered Operations: What HAL 9000 Should Have Been

    NASA Technical Reports Server (NTRS)

    Korsmeyer, David J.; Clancy, Daniel J.; Crawford, James M.; Drummond, Mark E.

    2005-01-01

    To date, manned space flight has maintained the locus of control for the mission on the ground. Mission control performs tasks such as activity planning, system health management, resource allocation, and astronaut health monitoring. Future exploration missions require the locus of control to shift to on-board due light speed constraints and potential loss of communication. The lunar campaign must begin to utilize a shared control approach to validate and understand the limitations of the technology allowing astronauts to oversee and direct aspects of operation that require timely decision making. Crew-centered Operations require a system-level approach that integrates multiple technologies together to allow a crew-prime concept of operations. This paper will provide an overview of the driving mission requirements, highlighting the limitations of existing approaches to mission operations and identifying the critical technologies necessary to enable a crew-centered mode of operations. The paper will focus on the requirements, trade spaces, and concepts for fulfillment of this capability. The paper will provide a broad overview of relevant technologies including: Activity Planning and Scheduling; System Monitoring; Repair and Recovery; Crew Work Practices.

  11. 18 CFR 376.209 - Procedures during periods of emergency requiring activation of the Continuity of Operations Plan.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... periods of emergency requiring activation of the Continuity of Operations Plan. 376.209 Section 376.209... GENERAL RULES ORGANIZATION, MISSION, AND FUNCTIONS; OPERATIONS DURING EMERGENCY CONDITIONS Commission Operation During Emergency Conditions § 376.209 Procedures during periods of emergency requiring activation...

  12. Smart garments for emergency operators: the ProeTEX project.

    PubMed

    Curone, Davide; Secco, Emanuele Lindo; Tognetti, Alessandro; Loriga, Giannicola; Dudnik, Gabriela; Risatti, Michele; Whyte, Rhys; Bonfiglio, Annalisa; Magenes, Giovanni

    2010-05-01

    Financed by the European Commission, a consortium of 23 European partners, consisting of universities, research institutions, industries, and organizations operating in the field of emergency management, is developing a new generation of "smart" garments for emergency-disaster personnel. Garments integrate newly developed wearable and textile solutions, such as commercial portable sensors and devices, in order to continuously monitor risks endangering rescuers' lives. The system enables detection of health-state parameters of the users (heart rate, breathing rate, body temperature, blood oxygen saturation, position, activity, and posture) and environmental variables (external temperature, presence of toxic gases, and heat flux passing through the garments), to process data and remotely transmit useful information to the operation manager. The European-integrated project, called ProeTEX (Protection e-Textiles: Micro-Nano-Structured fiber systems for Emergency-Disaster Wear) started on February, 2006 and will end on July, 2010. During this 4.5 years period, three subsequent generations of sensorized garments are being released. This paper proposes an overview of the project and gives a description of the second-generation prototypes, delivered at the end of 2008.

  13. Space Flight Operations Center local area network

    NASA Technical Reports Server (NTRS)

    Goodman, Ross V.

    1988-01-01

    The existing Mission Control and Computer Center at JPL will be replaced by the Space Flight Operations Center (SFOC). One part of the SFOC is the LAN-based distribution system. The purpose of the LAN is to distribute the processed data among the various elements of the SFOC. The SFOC LAN will provide a robust subsystem that will support the Magellan launch configuration and future project adaptation. Its capabilities include (1) a proven cable medium as the backbone for the entire network; (2) hardware components that are reliable, varied, and follow OSI standards; (3) accurate and detailed documentation for fault isolation and future expansion; and (4) proven monitoring and maintenance tools.

  14. Rebuilding Emergency Care After Hurricane Sandy.

    PubMed

    Lee, David C; Smith, Silas W; McStay, Christopher M; Portelli, Ian; Goldfrank, Lewis R; Husk, Gregg; Shah, Nirav R

    2014-04-09

    A freestanding, 911-receiving emergency department was implemented at Bellevue Hospital Center during the recovery efforts after Hurricane Sandy to compensate for the increased volume experienced at nearby hospitals. Because inpatient services at several hospitals remained closed for months, emergency volume increased significantly. Thus, in collaboration with the New York State Department of Health and other partners, the Health and Hospitals Corporation and Bellevue Hospital Center opened a freestanding emergency department without on-site inpatient care. The successful operation of this facility hinged on key partnerships with emergency medical services and nearby hospitals. Also essential was the establishment of an emergency critical care ward and a system to monitor emergency department utilization at affected hospitals. The results of this experience, we believe, can provide a model for future efforts to rebuild emergency care capacity after a natural disaster such as Hurricane Sandy. (Disaster Med Public Health Preparedness. 2014;0:1-4).

  15. Lessons Learned from Engineering a Multi-Mission Satellite Operations Center

    NASA Technical Reports Server (NTRS)

    Madden, Maureen; Cary, Everett, Jr.; Esposito, Timothy; Parker, Jeffrey; Bradley, David

    2006-01-01

    NASA's Small Explorers (SMEX) satellites have surpassed their designed science-lifetimes and their flight operations teams are now facing the challenge of continuing operations with reduced funding. At present, these missions are being reengineered into a fleet-oriented ground system at Goddard Space Flight Center (GSFC). When completed, this ground system will provide command and control of four SMEX missions and will demonstrate fleet automation and control concepts. As a path-finder for future mission consolidation efforts, this ground system will also demonstrate new ground-based technologies that show promise of supporting longer mission lifecycles and simplifying component integration. One of the core technologies being demonstrated in the SMEiX Mission Operations Center is the GSFC Mission Services Evolution Center (GMSEC) architecture. The GMSEC architecture uses commercial Message Oriented Middleware with a common messaging standard to realize a higher level of component interoperability, allowing for interchangeable components in ground systems. Moreover, automation technologies utilizing the GMSEC architecture are being evaluated and implemented to provide extended lights-out operations. This mode of operation will provide routine monitoring and control of the heterogeneous spacecraft fleet. The operational concepts being developed will reduce the need for staffed contacts and is seen as a necessity for fleet management. This paper will describe the experiences of the integration team throughout the reengineering effort of the SMEX ground system. Additionally, lessons learned will be presented based on the team s experiences with integrating multiple missions into a fleet-based automated ground system.

  16. Lessons Learned from Engineering a Multi-Mission Satellite Operations Center

    NASA Technical Reports Server (NTRS)

    Madden, Maureen; Cary, Everett, Jr.; Esposito, Timothy; Parker, Jeffrey; Bradley, David

    2006-01-01

    NASA's Small Explorers (SMEX) satellites have surpassed their designed science-lifetimes and their flight operations teams are now facing the challenge of continuing operations with reduced funding. At present, these missions are being re-engineered into a fleet-oriented ground system at Goddard Space Flight Center (GSFC). When completed, this ground system will provide command and control of four SMEX missions and will demonstrate fleet automation and control concepts. As a path-finder for future mission consolidation efforts, this ground system will also demonstrate new ground-based technologies that show promise of supporting longer mission lifecycles and simplifying component integration. One of the core technologies being demonstrated in the SMEX Mission Operations Center is the GSFC Mission Services Evolution Center (GMSEC) architecture. The GMSEC architecture uses commercial Message Oriented Middleware with a common messaging standard to realize a higher level of component interoperability, allowing for interchangeable components in ground systems. Moreover, automation technologies utilizing the GMSEC architecture are being evaluated and implemented to provide extended lights-out operations. This mode of operation will provide routine monitoring and control of the heterogeneous spacecraft fleet. The operational concepts being developed will reduce the need for staffed contacts and is seen as a necessity for fleet management. This paper will describe the experiences of the integration team throughout the re-enginering effort of the SMEX ground system. Additionally, lessons learned will be presented based on the team's experiences with integrating multiple missions into a fleet-automated ground system.

  17. Network-aware scalable video monitoring system for emergency situations with operator-managed fidelity control

    NASA Astrophysics Data System (ADS)

    Al Hadhrami, Tawfik; Nightingale, James M.; Wang, Qi; Grecos, Christos

    2014-05-01

    In emergency situations, the ability to remotely monitor unfolding events using high-quality video feeds will significantly improve the incident commander's understanding of the situation and thereby aids effective decision making. This paper presents a novel, adaptive video monitoring system for emergency situations where the normal communications network infrastructure has been severely impaired or is no longer operational. The proposed scheme, operating over a rapidly deployable wireless mesh network, supports real-time video feeds between first responders, forward operating bases and primary command and control centers. Video feeds captured on portable devices carried by first responders and by static visual sensors are encoded in H.264/SVC, the scalable extension to H.264/AVC, allowing efficient, standard-based temporal, spatial, and quality scalability of the video. A three-tier video delivery system is proposed, which balances the need to avoid overuse of mesh nodes with the operational requirements of the emergency management team. In the first tier, the video feeds are delivered at a low spatial and temporal resolution employing only the base layer of the H.264/SVC video stream. Routing in this mode is designed to employ all nodes across the entire mesh network. In the second tier, whenever operational considerations require that commanders or operators focus on a particular video feed, a `fidelity control' mechanism at the monitoring station sends control messages to the routing and scheduling agents in the mesh network, which increase the quality of the received picture using SNR scalability while conserving bandwidth by maintaining a low frame rate. In this mode, routing decisions are based on reliable packet delivery with the most reliable routes being used to deliver the base and lower enhancement layers; as fidelity is increased and more scalable layers are transmitted they will be assigned to routes in descending order of reliability. The third tier

  18. THE EPIDEMIOLOGY OF EMERGENCY DEPARTMENT THORACOTOMY IN A STATEWIDE TRAUMA SYSTEM: DOES CENTER VOLUME MATTER?

    PubMed

    Dumas, Ryan P; Seamon, Mark J; Smith, Brian P; Yang, Wei; Cannon, Jeremy W; Schwab, C William; Reilly, Patrick M; Holena, Daniel N

    2018-04-17

    The relationship between high volume and improved outcomes has been described for a host of elective high-impact, low-frequency procedures, but there are little data to support such a relationship in high-impact low-frequency procedures in trauma. Using emergency department thoracotomy (EDT) as a model, we hypothesized that patients presenting to centers with higher institutional volumes of EDT would have improved survival referent to those presenting to lower volume institutions. We queried the Pennsylvania Trauma Outcomes Study (PTOS) registry from 2007-2015 for all EDTs performed at level I and II centers identified by ICD-9 procedure codes and a location stamp indicating the emergency department. We examined patient-level risk factors for survival in univariate regression and multivariable regression models. Centers were divided into tertiles of mean annual EDT volume and the association between mean annual EDT volume and patient survival was examined using logistic regression after controlling for patient factors. 1,399 emergency department thoracotomies were performed at 28 centers. Overall survival was 6.8%. After controlling for patient age, mechanism of injury, signs of life, and injury severity, patients presenting to centers in the highest tertile of volume had significantly higher odds of survival compared to patients presenting to centers in the lowest tertile of volume (OR 4.56, 95% CI 1.43-14.50). Patients presenting to centers with higher mean annual volume of EDTs have improved survival compared to those presenting to institutions with lower mean annual EDT volume. Efforts to understand the etiology of this finding may lead to interventions to improve outcomes at lower volume centers. Level 3: Retrospective cohort study.

  19. Alternate site surge capacity in times of public health disaster maintains trauma center and emergency department integrity: Hurricane Katrina.

    PubMed

    Eastman, Alexander L; Rinnert, Kathy J; Nemeth, Ira R; Fowler, Raymond L; Minei, Joseph P

    2007-08-01

    Hospital surge capacity has been advocated to accommodate large increases in demand for healthcare; however, existing urban trauma centers and emergency departments (TC/EDs) face barriers to providing timely care even at baseline patient volumes. The purpose of this study is to describe how alternate-site medical surge capacity absorbed large patient volumes while minimizing impact on routine TC/ED operations immediately after Hurricane Katrina. From September 1 to 16, 2005, an alternate site for medical care was established. Using an off-site space, the Dallas Convention Center Medical Unit (DCCMU) was established to meet the increased demand for care. Data were collected and compared with TC/ED patient volumes to assess impact on existing facilities. During the study period, 23,231 persons displaced by Hurricane Katrina were registered to receive evacuee services in the City of Dallas, Texas. From those displaced, 10,367 visits for emergent or urgent healthcare were seen at the DCCMU. The mean number of daily visits (mean +/- SD) to the DCCMU was 619 +/- 301 visits with a peak on day 3 (n = 1,125). No patients died, 3.2% (n = 257) were observed in the DCCMU, and only 2.9% (n = 236) required transport to a TC/ED. During the same period, the mean number of TC/ED visits at the region's primary provider of indigent care (Hospital 1) was 346 +/- 36 visits. Using historical data from Hospital 1 during the same period of time (341 +/- 41), there was no significant difference in the mean number of TC/ED visits from the previous year (p = 0.26). Alternate-site medical surge capacity provides for safe and effective delivery of care to a large influx of patients seeking urgent and emergent care. This protects the integrity of existing public hospital TC/ED infrastructure and ongoing operations.

  20. Chest pain emergency centers: improving acute myocardial infarction care.

    PubMed

    Ornato, J P

    1999-08-01

    Uncertainty and delay are common in the diagnosis of acute coronary syndromes (ACS). In the last 20 years, the need for faster, more accurate, and more cost-effective diagnosis gave rise to the concept of specialized treatment of patients with chest pain in emergency departments (EDs). The original strategy dedicated a separate section of the ED and a nursing staff to the task of rapid intervention in patients with acute myocardial infarction (MI) and triage of low-risk patients. Chest pain centers grew quickly in popularity but evolved with a variety of goals, staffing plans, diagnostic resources, and levels of commitment. There existing centers--the University of Cincinnati Heart ER, Brigham and Women's Hospital, and the Medical College of Virginia--have implemented chest pain strategies with the common aims of (1) screening for the entire spectrum of coronary artery disease, (2) avoiding unnecessary admissions, and (3) using multiple diagnostic modalities. Yet, they differ in the specifics of their approaches and diagnostic methods (e.g., echocardiography vs. treadmill vs. myocardial perfusion imaging). The safety and cost effectiveness of these centers are discussed.

  1. Emergency Medical Operations at Kennedy Space Center in Support of Space Shuttle

    NASA Technical Reports Server (NTRS)

    Myers, K. Jeffrey; Tipton, David A.; Woodard, Daniel; Long, Irene D.

    1992-01-01

    The unique environment of the Kennedy Space Center includes a wide variety of industrial processes culminating in launch and spaceflight. Many are potentially hazardous to the work force and the astronauts. Technology, planning, training, and quality control are utilized to prevent contingencies and expedite response should a contingency occur.

  2. Emergency medical operations at Kennedy Space Center in support of space shuttle

    NASA Technical Reports Server (NTRS)

    Myers, K. J.; Tipton, D. A.; Woodard, D.; Long, I. D.

    1992-01-01

    The unique environment of the Kennedy Space Center includes a wide variety of industrial processes culminating in launch and spaceflight. Many are potentially hazardous to the work force and the astronauts. Technology, planning, training, and quality control are utilized to prevent contingencies and expedite response should a contingency occur.

  3. Strengthening Emergency Care Systems to Mitigate Public Health Challenges Arising from Influxes of Individuals with Different Socio-Cultural Backgrounds to a Level One Emergency Center in South East Europe.

    PubMed

    Twomey, Michèle; Šijački, Ana; Krummrey, Gert; Welzel, Tyson; Exadaktylos, Aristomenis K; Ercegovac, Marko

    2018-03-12

    Emergency center visits are mostly unscheduled, undifferentiated, and unpredictable. A standardized triage process is an opportunity to obtain real-time data that paints a picture of the variation in acuity found in emergency centers. This is particularly pertinent as the influx of people seeking asylum or in transit mostly present with emergency care needs or first seek help at an emergency center. Triage not only reduces the risk of missing or losing a patient that may be deteriorating in the waiting room but also enables a time-critical response in the emergency care service provision. As part of a joint emergency care system strengthening and patient safety initiative, the Serbian Ministry of Health in collaboration with the Centre of Excellence in Emergency Medicine (CEEM) introduced a standardized triage process at the Clinical Centre of Serbia (CCS). This paper describes four crucial stages that were considered for the integration of a standardized triage process into acute care pathways.

  4. The new Mobile Command Center at KSC is important addition to emergency preparedness

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Charles Street, part of the Emergency Preparedness team at KSC, uses a phone on the specially equipped emergency response vehicle. The vehicle, nicknamed '''The Brute,''' serves as a mobile command center for emergency preparedness staff and other support personnel when needed. It features a conference room, computer work stations, mobile telephones and a fax machine. It also can generate power with its onboard generator. Besides being ready to respond in case of emergencies during launches, the vehicle must be ready to help address fires, security threats, chemical spills, terrorist attaches, weather damage or other critical situations that might face KSC or Cape Canaveral Air Force Station.

  5. 20 CFR 670.510 - Are Job Corps center operators responsible for providing all vocational training?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 20 Employees' Benefits 4 2014-04-01 2014-04-01 false Are Job Corps center operators responsible for providing all vocational training? 670.510 Section 670.510 Employees' Benefits EMPLOYMENT AND... INVESTMENT ACT Program Activities and Center Operations § 670.510 Are Job Corps center operators responsible...

  6. 20 CFR 670.510 - Are Job Corps center operators responsible for providing all vocational training?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false Are Job Corps center operators responsible for providing all vocational training? 670.510 Section 670.510 Employees' Benefits EMPLOYMENT AND... Program Activities and Center Operations § 670.510 Are Job Corps center operators responsible for...

  7. The new Mobile Command Center at KSC is important addition to emergency preparedness

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Robert ZiBerna, Roger Scheidt and Charles Street, the Emergency Preparedness team at KSC, practice for an emergency scenario inside the Mobile Command Center, a specially equipped vehicle. It features a conference room, computer work stations, mobile telephones and a fax machine. It also can generate power with its onboard generator. Besides being ready to respond in case of emergencies during launches, the vehicle must be ready to help address fires, security threats, chemical spills, terrorist attaches, weather damage or other critical situations that might face KSC or Cape Canaveral Air Force Station.

  8. Initiating Sustainable Operations at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Adams, Daniel E.; Orrell, Josh

    2003-01-01

    Marshall Space Flight Center conducted a preliminary sustainability assessment to identify sustainable projects for potential implementation at its facility in Huntsville, Alabama. This presentation will discuss the results of that assessment, highlighting current and future initiatives aimed at integrating sustainability into daily operations.

  9. Pediatric emergency care in europe: a descriptive survey of 53 tertiary medical centers.

    PubMed

    Mintegi, Santiago; Shavit, Itai; Benito, Javier

    2008-06-01

    To examine determinants of quality of care provided by pediatric emergency departments (PEDs) in tertiary European centers. Analysis of questionnaires was sent to directors of PEDs. Questionnaires were sent through the pediatric research group of the European Society for Emergency Medicine. Three major descriptive categories were included in a 28-point questionnaire: institution's pediatric inpatient capabilities, scope of services, and medical staff education and structure. Sixty-five questionnaires were completed in full. Fifty-three tertiary medical centers from 14 countries were included in the study. In 86.8% of these institutions, the PED is separated from the adult emergency department; 91% have a pediatric intensive care unit, and 72% have an in-patient pediatric trauma service. Eighty-eight percent of the PEDs have incorporated triage protocols. Social service was not available in 17% of the departments. Sedation for painful procedures is provided by the staff in 77% of the PEDs. Only 24% of the PED medical directors have been formally trained in pediatric emergency medicine. In 17% of the departments, there is a 24-hour 7-day residents' coverage with no attending pediatrician or pediatric emergency medicine-trained physician. According to this pilot study, the basic services provided by tertiary PEDs in Europe appear to be appropriate. Physicians training level and staffing may not be adequate to achieve optimal patient outcome.

  10. Competence necessary for Japanese public health center directors in responding to public health emergencies.

    PubMed

    Tachibanai, Tomoko; Takemura, Shinji; Sone, Tomofumi; Segami, Kiyotaka; Kato, Noriko

    2005-11-01

    To clarify the "competencies" required of public health center directors in "public health emergency responses." We selected as our subjects six major public health emergencies in Japan that accorded with a definition of a "health crisis." Their types were: (1) natural disaster; (2) exposure to toxic substances caused by individuals; (3) food poisoning; and (4) accidental hospital infection. Item analysis was conducted using the Incident Analysis Method, based on the "Medical SAFER Technique." The competencies of public health center directors required the following actions: (1) to estimate the impact on local health from the "first notification" of the occurrence and the "initial investigation"; (2) to manage a thorough investigation of causes; (3) to manage organizations undertaking countermeasures; (4) to promptly provide precise information on countermeasures, etc.; and (5) to create systems enabling effective application of countermeasures against recurrence of incidents, and to achieve social consensus. For public health preparedness, public health center directors should have the following competencies: (1) the ability to estimate the "impact" of public health emergencies that have occurred or may occur; (2) be able to establish and carry out proactive policies; (3) be persuasive; and (4) have organizational management skills.

  11. 10 CFR 63.161 - Emergency plan for the geologic repository operations area through permanent closure.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Emergency plan for the geologic repository operations area... OF HIGH-LEVEL RADIOACTIVE WASTES IN A GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN, NEVADA Emergency Planning Criteria § 63.161 Emergency plan for the geologic repository operations area through permanent...

  12. Penny Pettigrew in the Payload Operations Integration Center

    NASA Image and Video Library

    2017-11-09

    Penny Pettigrew chats in real time with a space station crew member conducting an experiment in microgravity some 250 miles overhead. The Payload Operations Integration Center cadre monitor science communications on station 24 hours a day, seven days a week, 365 days per year.

  13. The Challenge of New and Emerging Information Operations

    DTIC Science & Technology

    1999-06-01

    Information Dominance Center (IDC) are addressing the operational and technological needs. The IDC serves as a model for the DoD and a proposed virtual hearing room for Congress. As the IDC and its supporting technologies mature, individuals will be able to freely enter, navigate, plan, and execute operations within Perceptual and Knowledge Landscapes. This capability begins the transition from Information Dominance to Knowledge Dominance. The IDC is instantiating such entities as smart rooms, avatars, square pixel displays, polymorphic views, and

  14. The Spacecraft Emergency Response System (SERS) for Autonomous Mission Operations

    NASA Technical Reports Server (NTRS)

    Breed, Julia; Chu, Kai-Dee; Baker, Paul; Starr, Cynthia; Fox, Jeffrey; Baitinger, Mick

    1998-01-01

    Today, most mission operations are geared toward lowering cost through unmanned operations. 7-day/24-hour operations are reduced to either 5-day/8-hour operations or become totally autonomous, especially for deep-space missions. Proper and effective notification during a spacecraft emergency could mean success or failure for an entire mission. The Spacecraft Emergency Response System (SERS) is a tool designed for autonomous mission operations. The SERS automatically contacts on-call personnel as needed when crises occur, either on-board the spacecraft or within the automated ground systems. Plus, the SERS provides a group-ware solution to facilitate the work of the person(s) contacted. The SERS is independent of the spacecraft's automated ground system. It receives and catalogues reports for various ground system components in near real-time. Then, based on easily configurable parameters, the SERS determines whom, if anyone, should be alerted. Alerts may be issued via Sky-Tel 2-way pager, Telehony, or e-mail. The alerted personnel can then review and respond to the spacecraft anomalies through the Netscape Internet Web Browser, or directly review and respond from the Sky-Tel 2-way pager.

  15. Integrating Emerging Data Sources into Operational Practice : Opportunities for Integration of Emerging Data for Traffic Management and TMCs.

    DOT National Transportation Integrated Search

    2017-11-01

    With the emergence of data generated from connected vehicles, connected travelers, and connected infrastructure, the capabilities of traffic management systems or centers (TMCs) will need to be improved to allow agencies to compile and benefit from u...

  16. Is case triaging a useful tool for emergency surgeries? A review of 106 trauma surgery cases at a level 1 trauma center in South Africa.

    PubMed

    Chowdhury, Sharfuddin; Nicol, Andrew John; Moydien, Mahammed Riyaad; Navsaria, Pradeep Harkison; Montoya-Pelaez, Luis Felipe

    2018-01-01

    The optimal timing for emergency surgical interventions and implementation of protocols for trauma surgery is insufficient in the literature. The Groote Schuur emergency surgery triage (GSEST) system, based on Cape Triaging Score (CTS), is followed at Groote Schuur Hospital (GSH) for triaging emergency surgical cases including trauma cases. The study aimed to look at the effect of delay in surgery after scheduling based on the GSEST system has an impact on outcome in terms of postoperative complications and death. Prospective audit of patients presenting to GSH trauma center following penetrating or blunt chest, abdominal, neck and peripheral vascular trauma who underwent surgery over a 4-month period was performed. Post-operative complications were graded according to Clavien-Dindo classification of surgical complications. One-hundred six patients underwent surgery during the study period. One-hundred two (96.2%) cases were related to penetrating trauma. Stab wounds comprised 71 (67%) and gunshot wounds (GSW) 31 (29.2%) cases. Of the 106 cases, 6, 47, 40, and 13 patients were booked as red, orange, yellow, and green, respectively. The median delay for green, yellow, and orange cases was within the expected time. The red patients took unexpectedly longer (median delay 48 min, IQR 35-60 min). Thirty-one (29.3%) patients developed postoperative complications. Among the booked red, orange, yellow, and green cases, postoperative complications developed in 3, 18, 9, and 1 cases, respectively. Only two (1.9%) postoperative deaths were documented during the study period. There was no statistically significant association between operative triage and post-operative complications ( p  = 0.074). Surgical case categorization has been shown to be useful in prioritizing emergency trauma surgical cases in a resource constraint high-volume trauma center.

  17. International Space Station Payload Operations Integration Center (POIC) Overview

    NASA Technical Reports Server (NTRS)

    Ijames, Gayleen N.

    2012-01-01

    Objectives and Goals: Maintain and operate the POIC and support integrated Space Station command and control functions. Provide software and hardware systems to support ISS payloads and Shuttle for the POIF cadre, Payload Developers and International Partners. Provide design, development, independent verification &validation, configuration, operational product/system deliveries and maintenance of those systems for telemetry, commanding, database and planning. Provide Backup Control Center for MCC-H in case of shutdown. Provide certified personnel and systems to support 24x7 facility operations per ISS Program. Payloads CoFR Implementation Plan (SSP 52054) and MSFC Payload Operations CoFR Implementation Plan (POIF-1006).

  18. Developing an active emergency medical service system based on WiMAX technology.

    PubMed

    Li, Shing-Han; Cheng, Kai-An; Lu, Wen-Hui; Lin, Te-Chang

    2012-10-01

    The population structure has changed with the aging of population. In the present, elders account for 10.63% of the domestic population and the percentage is still gradually climbing. In other words, the demand for emergency services among elders in home environment is expected to grow in the future. In order to improve the efficiency and quality of emergency care, information technology should be effectively utilized to integrate medical systems and facilities, strengthen human-centered operation designs, and maximize the overall performance. The improvement in the quality and survival rate of emergency care is an important basis for better life and health of all people. Through integrated application of medical information systems and information communication technology, this study proposes a WiMAX-based emergency care system addressing the public demands for convenience, speed, safety, and human-centered operation of emergency care. This system consists of a healthcare service center, emergency medical service hospitals, and emergency ambulances. Using the wireless transmission capability of WiMAX, patients' physiological data can be transmitted from medical measurement facilities to the emergency room and emergency room doctors can provide immediate online instructions on emergency treatment via video and audio transmission. WiMAX technology enables the establishment of active emergency medical services.

  19. Ribbon-cutting officially opens Consolidated Support Operations Center at CCAS

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Cutting the ribbon at a ceremony for the opening of the Consolidated Support Operations Center at ROCC, Cape Canaveral Air Station, are (left to right) William P. Hickman, program manager, Space Gateway Support; Ed Gormel, executive director, JPMO; Barbara White, supervisor, Mission Support; KSC Center Director Roy Bridges, and Lt Col Steve Vuresky, USAF.

  20. Transportable Payload Operations Control Center reusable software: Building blocks for quality ground data systems

    NASA Technical Reports Server (NTRS)

    Mahmot, Ron; Koslosky, John T.; Beach, Edward; Schwarz, Barbara

    1994-01-01

    The Mission Operations Division (MOD) at Goddard Space Flight Center builds Mission Operations Centers which are used by Flight Operations Teams to monitor and control satellites. Reducing system life cycle costs through software reuse has always been a priority of the MOD. The MOD's Transportable Payload Operations Control Center development team established an extensive library of 14 subsystems with over 100,000 delivered source instructions of reusable, generic software components. Nine TPOCC-based control centers to date support 11 satellites and achieved an average software reuse level of more than 75 percent. This paper shares experiences of how the TPOCC building blocks were developed and how building block developer's, mission development teams, and users are all part of the process.

  1. Assessing anesthesiology residents' out-of-the-operating-room (OOOR) emergent airway management.

    PubMed

    Rochlen, Lauryn R; Housey, Michelle; Gannon, Ian; Mitchell, Shannon; Rooney, Deborah M; Tait, Alan R; Engoren, Milo

    2017-07-15

    At many academic institutions, anesthesiology residents are responsible for managing emergent intubations outside of the operating room (OOOR), with complications estimated to be as high as 39%. In order to create an OOOR training curriculum, we evaluated residents' familiarity with the content and correct adherence to the American Society of Anesthesiologists' Difficult Airway Algorithm (ASA DAA). Residents completed a pre-simulation multiple-choice survey measuring their understanding and use of the DAA. Residents then managed an emergent, difficult OOOR intubation in the simulation center, where two trained reviewers assessed performance using checklists. Post-simulation, the residents completed a survey rating their behaviors during the simulation. The primary outcome was comprehension and adherence to the DAA as assessed by survey responses and behavior in the simulation. Sixty-three residents completed both surveys and the simulation. Post-survey responses indicated a shift toward decreased self-perceived familiarity with the DAA content compared to pre-survey responses. During the simulation, 22 (35%) residents were unsuccessful with intubation. Of these, 46% placed an LMA and 46% prepared for cricothyroidotomy. Nineteen residents did not attempt intubation. Of these, only 31% considered LMA placement, and 26% initiated cricothyroidotomy. Many anesthesiology residency training programs permit resident autonomy in managing emergent intubations OOOR. Residents self-reported familiarity with the content of and adherence to the DAA was higher than that observed during the simulation. Curriculum focused on comprehension of the DAA, as well as improving communication with higher-level physicians and specialists, may improve outcomes during OOORs.

  2. Epidemiology and characteristics of acute poisoning treated at an emergency center.

    PubMed

    Chen, Feng; Wen, Jun-Ping; Wang, Xiao-Ping; Lin, Qing-Ming; Lin, Cai-Jing

    2010-01-01

    Acute poisoning is frequently encountered at emergency department. This study was to investigate the epidemiology and characteristics of patients with acute poisoning who were treated at the Emergency Center, Fujian Provincial Hospital, China. We retrospectively analyzed the gender, age, causes of poisoning, types of poisons, poisoning route, emergency diagnoses, outcomes, and prognoses of these patients. Altogether 2867 patients with acute poisoning were treated from January 2004 to December 2009. The ratio of male to female was 1:1.04, and their average age was 33.8 years. Of the 2867 patients, 76.39% were between 18 and 40 years old. The incidence of acute poisoning was as high as 11.33% in January each year. The incidence of poisoning was in a descending order: alcohol poisoning (54.55%), medication poisoning (25.95%), pesticide poisoning (5.65%), and drug poisoning (4.88%). Most (56.44%) of the patients with drug poisoning were under 25 years and their mean age was significantly lower than that of patients with medication poisoning or alcohol poisoning (P < 0.01). Approximately 69.54% of the patients were followed up after emergency treatment, 30.39% were hospitalized, and four patients died. Acute poisoning is largely alcohol poisoning and medication poisoning in a city. The emergency green channel "pre-hospital emergency care-emergency department-hospital treatment" can significantly improve the survival rate of patients with acute poisoning.

  3. Current Situation of Treatment for Anaphylaxis in a Japanese Pediatric Emergency Center.

    PubMed

    Ninchoji, Takeshi; Iwatani, Sota; Nishiyama, Masahiro; Kamiyoshi, Naohiro; Taniguchi-Ikeda, Mariko; Morisada, Naoya; Ishibashi, Kazuto; Iijima, Kazumoto; Ishida, Akihito; Morioka, Ichiro

    2018-04-01

    Anaphylaxis is a systemic allergic reaction that sometimes requires prompt treatment with intramuscular adrenaline. The aim of the study was to investigate the current situation regarding anaphylaxis treatment in a representative pediatric primary emergency facility in Japan. We retrospectively examined the medical records dating from April 2011 through March 2014 from Kobe Children's Primary Emergency Medical Center, where general pediatricians work on a part-time basis. Clinical characteristics and current treatments for patients with anaphylaxis who presented to the facility were investigated. Furthermore, we compared the clinical characteristics between anaphylaxis patients given intramuscular adrenaline and those not given it. During the study period, 217 patients were diagnosed with anaphylaxis. The median Sampson grade at the time of visit was 2, and 90 patients (41%) were grade 4 or higher. No patients received self-intramuscular injected adrenaline before arrival at our emergency medical center because none of the patients had been prescribed it. Further treatment during the visit was provided to 128 patients (59%), with only 17 (8%) receiving intramuscular adrenaline. Patients given intramuscular adrenaline had significantly lower peripheral saturation of oxygen at the visit (P = 0.025) and more frequent transfer to a referral hospital (P < 0.001) than those not given intramuscular adrenaline. Education for Japanese pediatric practitioners and patients is warranted, because no patients used self-intramuscular injected adrenaline as a prehospital treatment for anaphylaxis, and only severely affected patients who needed oxygen therapy or hospitalization received intramuscular adrenaline in a pediatric primary emergency setting.

  4. Predicting Employment Outcomes of Consumers of State-Operated Comprehensive Rehabilitation Centers

    ERIC Educational Resources Information Center

    Beach, David Thomas

    2009-01-01

    This study used records from a state-operated comprehensive rehabilitation center to investigate possible predictive factors related to completing comprehensive rehabilitation center programs and successful vocational rehabilitation (VR) case closure. An analysis of demographic data of randomly selected comprehensive rehabilitation center…

  5. Enhancing private sector engagement: Louisiana's business emergency operations centre.

    PubMed

    Day, Jamison M; Strother, Shannon; Kolluru, Ramesh; Booth, Joseph; Rawls, Jason; Calderon, Andres

    2010-07-01

    Public sector emergency management is more effective when it coordinates its efforts with private sector companies that can provide useful capabilities faster, cheaper and better than government agencies. A business emergency operations centre (EOC) provides a space for private sector and non-governmental organisations to gather together in support of government efforts. This paper reviews business-related EOC practices in multiple US states and details the development of a new business EOC by the State of Louisiana, including lessons learned in response to the May 2010 oil spill.

  6. Beyond clinical priority: what matters when making operational decisions about emergency surgical queues?

    PubMed

    Fitzgerald, Anneke; Wu, Yong

    2017-08-01

    Objective This paper describes the perceptions of operating theatre staff in Australia and The Netherlands regarding the influence of logistical or operational reasons that may affect the scheduling of unplanned surgical cases. It is proposed that logistical or operational issues can influence the priority determination of queue position of surgical cases on the emergency waiting list. Methods A questionnaire was developed and conducted in 15 hospitals across The Netherlands and Australia, targeting anaesthetists, managers, nurses and surgeons. Statistical analyses revolved around these four professional groups. Six hypotheses were then developed and tested based on the responses collected from the participants. Results There were significant differences in perceptions of logistics delay factors across different professional groups when patients were waiting for unplanned surgery. There were also significant differences among different groups when setting logistical priority factors for planning and scheduling unplanned cases. The hypotheses tests confirm these differences, and the findings concur with the paradigmatic differences mentioned in the literature. These paradigmatic differences among the four professional groups may explain some of the tensions encountered when making decisions about scheduling emergency surgical queues, and therefore should be taken into consideration for management of operating theatres. Conclusions Queue positions of patients waiting for unplanned surgery, or emergency surgery, are determined by medical clinicians according to clinicians' indication of clinical priority. However, operating theatre managers are important in facilitating smooth operations when planning for emergency surgeries. It is necessary for surgeons to understand the logistical challenges faced by managers when requesting logistical priorities for their operations. What is known about the topic? Tensions exist about the efficient use of operating theatres and

  7. Operative center of the geophysical prognosis in Izmiran

    NASA Astrophysics Data System (ADS)

    Belov, A. V.; Gaidash, S. P.; Kanonidi, K. D.; Kanonidi, K. K.; Kuznetsov, V. D.; Eroshenko, E. A.

    2005-11-01

    IZMIRAN was founded about 65 years ago with one of the goals of carrying out geomagnetic prognoses. More or less, this activity has been developed during its entire history, but about 6 years ago this aim became sufficiently feasible due to the organization of the Forecasting Center of helio-geo-physical conditions. This Center appeared in response to new technologies, numerous new data available and new social demand. The Center uses the extended experimental basis of IZMIRAN and all available Internet sources. Its main tasks consist of continuous monitoring of the processes at the Sun and in the near-Earth environment, development of different kinds of prognoses and delivering them to users. The main product is a short-term (1-6 days) prognosis of geomagnetic activity (mainly daily Ap-index and maximum Kp-index), a long-term (from weeks to years) prognosis and detailed forecasting on the special fixed dates. Among its consumers it is worth mentioning the Russian Space Agency, the Russian Ministry of Civil Defense, Emergencies and Disaster Relief, railway departments, a number of medical institutions, and mass media. In this work we discuss some activities of the Center, along with presenting several examples of the real influence of geomagnetic disturbances on different sides of human activity. Our six years of experience show a growing interest in prognoses of this type and this tendency seems to be retained.

  8. Weather information integration in transportation management center (TMC) operations.

    DOT National Transportation Integrated Search

    2011-01-02

    This report presents the results of the third phase of an on-going FHWA study on weather integration in Transportation Management Center (TMC) operations. The report briefly describes the earlier phases of the integration study, summarizes the findin...

  9. Logistics Operations Management Center: Maintenance Support Baseline (LOMC-MSB)

    NASA Technical Reports Server (NTRS)

    Kurrus, R.; Stump, F.

    1995-01-01

    The Logistics Operations Management Center Maintenance Support Baseline is defined. A historical record of systems, applied to and deleted from, designs in support of future management and/or technical analysis is provided. All Flight elements, Ground Support Equipment, Facility Systems and Equipment and Test Support Equipment for which LOMC has responsibilities at Kennedy Space Center and other locations are listed. International Space Station Alpha Program documentation is supplemented. The responsibility of the Space Station Launch Site Support Office is established.

  10. Worse outcomes among uninsured general surgery patients: does the need for an emergency operation explain these disparities?

    PubMed

    Schwartz, Diane A; Hui, Xuan; Schneider, Eric B; Ali, Mays T; Canner, Joseph K; Leeper, William R; Efron, David T; Haut, Elliot; Haut, Elliot R; Velopulos, Catherine G; Pawlik, Timothy M; Haider, Adil H

    2014-08-01

    We hypothesize that lack of access to care results in propensity toward emergent operative management and may be an important factor in worse outcomes for the uninsured population. The objective of this study is to investigate a possible link to worse outcomes in patients without insurance who undergo an emergent operation. A retrospective cross-sectional analysis was performed using the Nationwide Inpatient Sample (NIS) 2005-2011 dataset. Patients who underwent biliary, hernia, and colorectal operations were evaluated. Multivariate analyses were performed to assess the associations between insurance status, urgency of operation, and outcome. Covariates of age, sex, race, and comorbidities were controlled. The uninsured group had greatest odds ratios of undergoing emergent operative management in biliary (OR 2.43), colorectal (3.54), and hernia (3.95) operations, P < .001. Emergent operation was most likely in the 25- to 34-year age bracket, black and Hispanic patients, men, and patients with at least one comorbidity. Postoperative complications in emergencies, however, were appreciated most frequently in the populations with government coverage. Although the uninsured more frequently underwent emergent operations, patients with coverage through the government had more complications in most categories investigated. Young patients also carried significant risk of emergent operations with increased complication rates. Patients with government insurance tended toward worse outcomes, suggesting disparity for programs such as Medicaid. Disparity related to payor status implies need for policy revisions for equivalent health care access. Copyright © 2014 Mosby, Inc. All rights reserved.

  11. What whiteboards in a trauma center operating suite can teach us about emergency department communication.

    PubMed

    Xiao, Yan; Schenkel, Stephen; Faraj, Samer; Mackenzie, Colin F; Moss, Jacqueline

    2007-10-01

    Highly reliable, efficient collaborative work relies on excellent communication. We seek to understand how a traditional whiteboard is used as a versatile information artifact to support communication in rapid-paced, highly dynamic collaborative work. The similar communicative demands of the trauma operating suite and an emergency department (ED) make the findings applicable to both settings. We took photographs and observed staff's interaction with a whiteboard in a 6-bed surgical suite dedicated to trauma service. We analyzed the integral role of artifacts in cognitive activities as when workers configure and manage visual spaces to simplify their cognitive tasks. We further identified characteristics of the whiteboard as a communicative information artifact in supporting coordination in fast-paced environments. We identified 8 ways in which the whiteboard was used by physicians, nurses, and with other personnel to support collaborative work: task management, team attention management, task status tracking, task articulation, resource planning and tracking, synchronous and asynchronous communication, multidisciplinary problem solving and negotiation, and socialization and team building. The whiteboard was highly communicative because of its location and installation method, high interactivity and usability, high expressiveness, and ability to visualize transition points to support work handoffs. Traditional information artifacts such as whiteboards play significant roles in supporting collaborative work. How these artifacts are used provides insights into complicated information needs of teamwork in highly dynamic, high-risk settings such as an ED.

  12. Space operations center: Shuttle interaction study extension, executive summary

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The Space Operations Center (SOC) is conceived as a permanent facility in low Earth orbit incorporating capabilities for space systems construction; space vehicle assembly, launching, recovery and servicing; and the servicing of co-orbiting satellites. The Shuttle Transportation System is an integral element of the SOC concept. It will transport the various elements of the SOC into space and support the assembly operation. Subsequently, it will regularly service the SOC with crew rotations, crew supplies, construction materials, construction equipment and components, space vehicle elements, and propellants and spare parts. The implications to the SOC as a consequence of the Shuttle supporting operations are analyzed. Programmatic influences associated with propellant deliveries, spacecraft servicing, and total shuttle flight operations are addressed.

  13. Computer Maintenance Operations Center (CMOC), additional computer support equipment ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Computer Maintenance Operations Center (CMOC), additional computer support equipment - Beale Air Force Base, Perimeter Acquisition Vehicle Entry Phased-Array Warning System, Techinical Equipment Building, End of Spencer Paul Road, north of Warren Shingle Road (14th Street), Marysville, Yuba County, CA

  14. Preparedness and Emergency Response Learning Centers: supporting the workforce for national health security.

    PubMed

    Richmond, Alyson L; Sobelson, Robyn K; Cioffi, Joan P

    2014-01-01

    The importance of a competent and prepared national public health workforce, ready to respond to threats to the public's health, has been acknowledged in numerous publications since the 1980s. The Preparedness and Emergency Response Learning Centers (PERLCs) were funded by the Centers for Disease Control and Prevention in 2010 to continue to build upon a decade of focused activities in public health workforce preparedness development initiated under the Centers for Public Health Preparedness program (http://www.cdc.gov/phpr/cphp/). All 14 PERLCs were located within Council on Education for Public Health (CEPH) accredited schools of public health. These centers aimed to improve workforce readiness and competence through the development, delivery, and evaluation of targeted learning programs designed to meet specific requirements of state, local, and tribal partners. The PERLCs supported organizational and community readiness locally, regionally, or nationally through the provision of technical consultation and dissemination of specific, practical tools aligned with national preparedness competency frameworks and public health preparedness capabilities. Public health agencies strive to address growing public needs and a continuous stream of current and emerging public health threats. The PERLC network represented a flexible, scalable, and experienced national learning system linking academia with practice. This system improved national health security by enhancing individual, organizational, and community performance through the application of public health science and learning technologies to frontline practice.

  15. Virtual Network Configuration Management System for Data Center Operations and Management

    NASA Astrophysics Data System (ADS)

    Okita, Hideki; Yoshizawa, Masahiro; Uehara, Keitaro; Mizuno, Kazuhiko; Tarui, Toshiaki; Naono, Ken

    Virtualization technologies are widely deployed in data centers to improve system utilization. However, they increase the workload for operators, who have to manage the structure of virtual networks in data centers. A virtual-network management system which automates the integration of the configurations of the virtual networks is provided. The proposed system collects the configurations from server virtualization platforms and VLAN-supported switches, and integrates these configurations according to a newly developed XML-based management information model for virtual-network configurations. Preliminary evaluations show that the proposed system helps operators by reducing the time to acquire the configurations from devices and correct the inconsistency of operators' configuration management database by about 40 percent. Further, they also show that the proposed system has excellent scalability; the system takes less than 20 minutes to acquire the virtual-network configurations from a large scale network that includes 300 virtual machines. These results imply that the proposed system is effective for improving the configuration management process for virtual networks in data centers.

  16. The TESS Science Processing Operations Center

    NASA Technical Reports Server (NTRS)

    Jenkins, Jon; Twicken, Joseph D.; McCauliff, Sean; Campbell, Jennifer; Sanderfer, Dwight; Lung, David; Mansouri-Samani, Masoud; Girouard, Forrest; Tenenbaum, Peter; Klaus, Todd; hide

    2016-01-01

    The Transiting Exoplanet Survey Satellite (TESS) will conduct a search for Earth’s closest cousins starting in late 2017. TESS will discover approx.1,000 small planets and measure the masses of at least 50 of these small worlds. The Science Processing Operations Center (SPOC) is being developed based on the Kepler science pipeline and will generate calibrated pixels and light curves on the NAS Pleiades supercomputer. The SPOC will search for periodic transit events and generate validation products for the transit-like features in the light curves. All TESS SPOC data products will be archived to the Mikulski Archive for Space Telescopes.

  17. Activities at the JSC Payload Operations Control Center During Spacelab Mission

    NASA Technical Reports Server (NTRS)

    1984-01-01

    During a Spacelab flight, the hub of activity was the Payload Operations Control Center (POCC) at the Johnson Space Flight Center (JSC) in Houston, Texas. The POCC became home to the management and science teams who worked around the clock to guide and support the mission. All Spacelab principal investigators and their teams of scientists and engineers set up work areas in the POCC. Through the use of computers, they could send commands to their instruments and receive and analyze experiment data. Instantaneous video and audio communications made it possible for scientists on the ground to follow the progress of their research almost as if they were in space with the crew. This real-time interaction between investigators on the ground and the crew in space was probably the most exciting of Spacelab's many capabilities. As principal investigators talked to the payload specialists during the mission, they consulted on experiment operations, made decisions, and shared in the thrill of gaining new knowledge. In December 1990, a newly-established POCC at the Marshall Space Flight Center (MSFC) opened its door for the operations of the Spacelab payloads and experiments, while JSC monitored the Shuttle flight operations. MSFC had managing responsibilities for the Spacelab missions.

  18. Compliance of child care centers in Pennsylvania with national health and safety performance standards for emergency and disaster preparedness.

    PubMed

    Olympia, Robert P; Brady, Jodi; Kapoor, Shawn; Mahmood, Qasim; Way, Emily; Avner, Jeffrey R

    2010-04-01

    To determine the preparedness of child care centers in Pennsylvania to respond to emergencies and disasters based on compliance with National Health and Safety Performance Standards for Out-of-Home Child Care Programs. A questionnaire focusing on the presence of a written evacuation plan, the presence of a written plan for urgent medical care, the immediate availability of equipment and supplies, and the training of staff in first aid/cardiopulmonary resuscitation (CPR) as delineated in Caring for Our Children: National Health and Safety Performance Standards for Out-of-Home Child Care Programs, 2nd Edition, was mailed to 1000 randomly selected child care center administrators located in Pennsylvania. Of the 1000 questionnaires sent, 496 questionnaires were available for analysis (54% usable response rate). Approximately 99% (95% confidence interval [CI], 99%-100%) of child care centers surveyed were compliant with recommendations to have a comprehensive written emergency plan (WEP) for urgent medical care and evacuation, and 85% (95% CI, 82%-88%) practice their WEP periodically throughout the year. More than 20% of centers did not have specific written procedures for floods, earthquakes, hurricanes, blizzards, or bomb threats, and approximately half of the centers did not have specific written procedures for urgent medical emergencies such as severe bleeding, unresponsiveness, poisoning, shock/heart or circulation failure, seizures, head injuries, anaphylaxis or allergic reactions, or severe dehydration. A minority of centers reported having medications available to treat an acute asthma attack or anaphylaxis. Also, 77% (95% CI, 73%-80%) of child care centers require first aid training for each one of its staff members, and 33% (95% CI, 29%-37%) require CPR training. Although many of the child care centers we surveyed are in compliance with the recommendations for emergency and disaster preparedness, specific areas for improvement include increasing the frequency

  19. Using Web 2.0 (and Beyond?) in Space Flight Operations Control Centers

    NASA Technical Reports Server (NTRS)

    Scott, David W.

    2010-01-01

    Word processing was one of the earliest uses for small workstations, but we quickly learned that desktop computers were far more than e-typewriters. Similarly, "Web 2.0" capabilities, particularly advanced search engines, chats, wikis, blogs, social networking, and the like, offer tools that could significantly improve our efficiency at managing the avalanche of information and decisions needed to operate space vehicles in realtime. However, could does not necessarily equal should. We must wield two-edged swords carefully to avoid stabbing ourselves. This paper examines some Web 2.0 tools, with an emphasis on social media, and suggests which ones might be useful or harmful in real-time space operations co rnotl environments, based on the author s experience as a Payload Crew Communicator (PAYCOM) at Marshall Space Flight Center s (MSFC) Payload Operations Integration Center (POIC) for the International Space Station (ISS) and on discussions with other space flight operations control organizations and centers. There is also some discussion of an offering or two that may come from beyond the current cyber-horizon.

  20. Implementation of Enhanced Propulsion Control Modes for Emergency Flight Operation

    NASA Technical Reports Server (NTRS)

    Csank, Jeffrey T.; Chin, Jeffrey C.; May, Ryan D.; Litt, Jonathan S.; Guo, Ten-Huei

    2011-01-01

    Aircraft engines can be effective actuators to help pilots avert or recover from emergency situations. Emergency control modes are being developed to enhance the engines performance to increase the probability of recovery under these circumstances. This paper discusses a proposed implementation of an architecture that requests emergency propulsion control modes, allowing the engines to deliver additional performance in emergency situations while still ensuring a specified safety level. In order to determine the appropriate level of engine performance enhancement, information regarding the current emergency scenario (including severity) and current engine health must be known. This enables the engine to operate beyond its nominal range while minimizing overall risk to the aircraft. In this architecture, the flight controller is responsible for determining the severity of the event and the level of engine risk that is acceptable, while the engine controller is responsible for delivering the desired performance within the specified risk range. A control mode selector specifies an appropriate situation-specific enhanced mode, which the engine controller then implements. The enhanced control modes described in this paper provide additional engine thrust or response capabilities through the modification of gains, limits, and the control algorithm, but increase the risk of engine failure. The modifications made to the engine controller to enable the use of the enhanced control modes are described, as are the interaction between the various subsystems and importantly, the interaction between the flight controller/pilot and the propulsion control system. Simulation results demonstrate how the system responds to requests for enhanced operation and the corresponding increase in performance.

  1. Multi-Center Traffic Management Advisor Operational Field Test Results

    NASA Technical Reports Server (NTRS)

    Farley, Todd; Landry, Steven J.; Hoang, Ty; Nickelson, Monicarol; Levin, Kerry M.; Rowe, Dennis W.

    2005-01-01

    The Multi-Center Traffic Management Advisor (McTMA) is a research prototype system which seeks to bring time-based metering into the mainstream of air traffic control (ATC) operations. Time-based metering is an efficient alternative to traditional air traffic management techniques such as distance-based spacing (miles-in-trail spacing) and managed arrival reservoirs (airborne holding). While time-based metering has demonstrated significant benefit in terms of arrival throughput and arrival delay, its use to date has been limited to arrival operations at just nine airports nationally. Wide-scale adoption of time-based metering has been hampered, in part, by the limited scalability of metering automation. In order to realize the full spectrum of efficiency benefits possible with time-based metering, a much more modular, scalable time-based metering capability is required. With its distributed metering architecture, multi-center TMA offers such a capability.

  2. Intelligent transportation systems field operational test cross-cutting study : emergency notification and response.

    DOT National Transportation Integrated Search

    1998-09-01

    Emergency Notification and Response report summarizes and interprets the results of two Field Operational Tests (FOTs) that included emergency notification and response system components. The tests included in this report are: Colorado Mayday and Pug...

  3. The first 24 hours of the World Trade Center attacks of 2001--the Centers for Disease Control and Prevention emergency phase response.

    PubMed

    Cruz, Miguel A; Burger, Ronald; Keim, Mark

    2007-01-01

    On 11 September 2001, terrorists hijacked two passenger planes and crashed them into the two towers of the World Trade Center (WTC) in New York City. These synchronized attacks were the largest act of terrorism ever committed on US soil. The impacts, fires, and subsequent collapse of the towers killed and injured thousands of people. Within minutes after the first plane crashed into the WTC, the Centers for Disease Control and Prevention (CDC) in Atlanta, Georgia, initiated one of the largest public health responses in its history. Staff of the CDC provided technical assistance on several key public health issues. During the acute phase of the event, CDC personnel assisted with: (1) assessing hospital capacity; (2) establishing injury and disease surveillance activities; (3) deploying emergency coordinators/liaisons to facilitate inter-agency coordination with the affected jurisdictions; and (4) arranging rapid delivery of emergency medical supplies, therapeutics, and personal protective equipment. This incident highlighted the need for adequate planning for all potential hazards and the importance of interagency and interdepartmental coordination in preparing for and responding to public health emergencies.

  4. A simulation model for determining the optimal size of emergency teams on call in the operating room at night.

    PubMed

    van Oostrum, Jeroen M; Van Houdenhoven, Mark; Vrielink, Manon M J; Klein, Jan; Hans, Erwin W; Klimek, Markus; Wullink, Gerhard; Steyerberg, Ewout W; Kazemier, Geert

    2008-11-01

    Hospitals that perform emergency surgery during the night (e.g., from 11:00 pm to 7:30 am) face decisions on optimal operating room (OR) staffing. Emergency patients need to be operated on within a predefined safety window to decrease morbidity and improve their chances of full recovery. We developed a process to determine the optimal OR team composition during the night, such that staffing costs are minimized, while providing adequate resources to start surgery within the safety interval. A discrete event simulation in combination with modeling of safety intervals was applied. Emergency surgery was allowed to be postponed safely. The model was tested using data from the main OR of Erasmus University Medical Center (Erasmus MC). Two outcome measures were calculated: violation of safety intervals and frequency with which OR and anesthesia nurses were called in from home. We used the following input data from Erasmus MC to estimate distributions of all relevant parameters in our model: arrival times of emergency patients, durations of surgical cases, length of stay in the postanesthesia care unit, and transportation times. In addition, surgeons and OR staff of Erasmus MC specified safety intervals. Reducing in-house team members from 9 to 5 increased the fraction of patients treated too late by 2.5% as compared to the baseline scenario. Substantially more OR and anesthesia nurses were called in from home when needed. The use of safety intervals benefits OR management during nights. Modeling of safety intervals substantially influences the number of emergency patients treated on time. Our case study showed that by modeling safety intervals and applying computer simulation, an OR can reduce its staff on call without jeopardizing patient safety.

  5. Consensus statement on advancing research in emergency department operations and its impact on patient care.

    PubMed

    Yiadom, Maame Yaa A B; Ward, Michael J; Chang, Anna Marie; Pines, Jesse M; Jouriles, Nick; Yealy, Donald M

    2015-06-01

    The consensus conference on "Advancing Research in Emergency Department (ED) Operations and Its Impact on Patient Care," hosted by The ED Operations Study Group (EDOSG), convened to craft a framework for future investigations in this important but understudied area. The EDOSG is a research consortium dedicated to promoting evidence-based clinical practice in emergency medicine. The consensus process format was a modified version of the NIH Model for Consensus Conference Development. Recommendations provide an action plan for how to improve ED operations study design, create a facilitating research environment, identify data measures of value for process and outcomes research, and disseminate new knowledge in this area. Specifically, we call for eight key initiatives: 1) the development of universal measures for ED patient care processes; 2) attention to patient outcomes, in addition to process efficiency and best practice compliance; 3) the promotion of multisite clinical operations studies to create more generalizable knowledge; 4) encouraging the use of mixed methods to understand the social community and human behavior factors that influence ED operations; 5) the creation of robust ED operations research registries to drive stronger evidence-based research; 6) prioritizing key clinical questions with the input of patients, clinicians, medical leadership, emergency medicine organizations, payers, and other government stakeholders; 7) more consistently defining the functional components of the ED care system, including observation units, fast tracks, waiting rooms, laboratories, and radiology subunits; and 8) maximizing multidisciplinary knowledge dissemination via emergency medicine, public health, general medicine, operations research, and nontraditional publications. © 2015 by the Society for Academic Emergency Medicine.

  6. The new Mobile Command Center at KSC is important addition to emergency preparedness

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Charles Street, Roger Scheidt and Robert ZiBerna, the Emergency Preparedness team at KSC, sit in the conference room inside the Mobile Command Center, a specially equipped vehicle. Nicknamed '''The Brute,''' it also features computer work stations, mobile telephones and a fax machine. It also can generate power with its onboard generator. Besides being ready to respond in case of emergencies during launches, the vehicle must be ready to help address fires, security threats, chemical spills, terrorist attaches, weather damage or other critical situations that might face KSC or Cape Canaveral Air Force Station.

  7. The new Mobile Command Center at KSC is important addition to emergency preparedness

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This new specially equipped vehicle serves as a mobile command center for emergency preparedness staff and other support personnel when needed at KSC or Cape Canaveral Air Force Station. It features a conference room, computer work stations, mobile telephones and a fax machine. It also can generate power with its onboard generator. Besides being ready to respond in case of emergencies during launches, the vehicle must be ready to help address fires, security threats, chemical spills, terrorist attaches, weather damage or other critical situations that might face KSC or CCAFS.

  8. Joint Space Operations Center (JSpOC) Mission System Increment 3 (JMS Inc 3)

    DTIC Science & Technology

    2016-03-01

    2016 Major Automated Information System Annual Report Joint Space Operations Center (JSpOC) Mission System Increment 3 (JMS Inc 3) Defense...1725 DSN Phone: DSN Fax: Date Assigned: May 16, 2014 Program Information Program Name Joint Space Operations Center (JSpOC) Mission System...approved program baseline; therefore, no Original Estimate has been established. JMS Inc 3 2016 MAR UNCLASSIFIED 4 Program Description The Joint Space

  9. The new Mobile Command Center at KSC is important addition to emergency preparedness

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This camper-equipped truck known as '''Old Blue''' served as mobile field command center for the Emergency Preparedness team at KSC. It has been replaced with a larger vehicle that includes a conference room, computer work stations, mobile telephones and a fax machine, plus its own onboard generator. Besides being ready to respond in case of emergencies during launches, the vehicle must be ready to help address fires, security threats, chemical spills, terrorist attaches, weather damage or other critical situations that might face KSC or Cape Canaveral Air Force Station.

  10. 29 CFR 1926.65 - Hazardous waste operations and emergency response.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Section 1926.65 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Occupational Health and Environmental Controls § 1926.65 Hazardous waste operations and emergency response. (a) Scope...

  11. Mission Manager Area of the Spacelab Payload Operations Control Center (SL POCC)

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The primary objective of the STS-35 mission was round the clock observation of the celestial sphere in ultraviolet and X-Ray astronomy with the Astro-1 observatory which consisted of four telescopes: the Hopkins Ultraviolet Telescope (HUT); the Wisconsin Ultraviolet Photo-Polarimeter Experiment (WUPPE); the Ultraviolet Imaging Telescope (UIT); and the Broad Band X-Ray Telescope (BBXRT). The Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at the Marshall Space Flight Center (MSFC) was the air/ground communication channel used between the astronauts and ground control teams during the Spacelab missions. Teams of controllers and researchers directed on-orbit science operations, sent commands to the spacecraft, received data from experiments aboard the Space Shuttle, adjusted mission schedules to take advantage of unexpected science opportunities or unexpected results, and worked with crew members to resolve problems with their experiments. Pictured is Jack Jones in the Mission Manager Area.

  12. Optimal Operation of Data Centers in Future Smart Grid

    NASA Astrophysics Data System (ADS)

    Ghamkhari, Seyed Mahdi

    The emergence of cloud computing has established a growing trend towards building massive, energy-hungry, and geographically distributed data centers. Due to their enormous energy consumption, data centers are expected to have major impact on the electric grid by significantly increasing the load at locations where they are built. However, data centers also provide opportunities to help the grid with respect to robustness and load balancing. For instance, as data centers are major and yet flexible electric loads, they can be proper candidates to offer ancillary services, such as voluntary load reduction, to the smart grid. Also, data centers may better stabilize the price of energy in the electricity markets, and at the same time reduce their electricity cost by exploiting the diversity in the price of electricity in the day-ahead and real-time electricity markets. In this thesis, such potentials are investigated within an analytical profit maximization framework by developing new mathematical models based on queuing theory. The proposed models capture the trade-off between quality-of-service and power consumption in data centers. They are not only accurate, but also they posses convexity characteristics that facilitate joint optimization of data centers' service rates, demand levels and demand bids to different electricity markets. The analysis is further expanded to also develop a unified comprehensive energy portfolio optimization for data centers in the future smart grid. Specifically, it is shown how utilizing one energy option may affect selecting other energy options that are available to a data center. For example, we will show that the use of on-site storage and the deployment of geographical workload distribution can particularly help data centers in utilizing high-risk energy options such as renewable generation. The analytical approach in this thesis takes into account service-level-agreements, risk management constraints, and also the statistical

  13. Emergency Preparedness: Are You Ready?

    ERIC Educational Resources Information Center

    Harley, Lorraine

    2012-01-01

    Most Americans who consider emergency preparedness think of someone or another country attacking the United States. Most newspaper and televised accounts involve community leaders and policymakers preparing for a terrorist attack. However, anyone who operates a child care center, family child care home, or has children of her own, knows that…

  14. 47 CFR 76.616 - Operation near certain aeronautical and marine emergency radio frequencies.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... emergency radio frequencies. 76.616 Section 76.616 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Technical Standards § 76.616 Operation near certain aeronautical and marine emergency radio frequencies. (a) The transmission...

  15. Operational numerical weather prediction on the CYBER 205 at the National Meteorological Center

    NASA Technical Reports Server (NTRS)

    Deaven, D.

    1984-01-01

    The Development Division of the National Meteorological Center (NMC), having the responsibility of maintaining and developing the numerical weather forecasting systems of the center, is discussed. Because of the mission of NMC data products must be produced reliably and on time twice daily free of surprises for forecasters. Personnel of Development Division are in a rather unique situation. They must develop new advanced techniques for numerical analysis and prediction utilizing current state-of-the-art techniques, and implement them in an operational fashion without damaging the operations of the center. With the computational speeds and resources now available from the CYBER 205, Development Division Personnel will be able to introduce advanced analysis and prediction techniques into the operational job suite without disrupting the daily schedule. The capabilities of the CYBER 205 are discussed.

  16. Building a Better Trojan Horse: Emerging Army Roles in Joint Urban Operations

    DTIC Science & Technology

    2001-01-01

    Building a Better Trojan Horse : Emerging Army Roles in Joint Urban Operations A Monograph by MAJ Christopher H. Beckert Infantry, U.S. Army School...xx-xx-2000 to xx-xx-2000 5a. CONTRACT NUMBER 5b. GRANT NUMBER 4. TITLE AND SUBTITLE Building a Better Trojan Horse : Emerging Army Roles in Joint...TELEPHONE NUMBER International Area Code Area Code Telephone Number 703 767-9007 DSN 427-9007 2 Abstract BUILDING A BETTER TROJAN HORSE : EMERGING ARMY

  17. City-scale accessibility of emergency responders operating during flood events

    NASA Astrophysics Data System (ADS)

    Green, Daniel; Yu, Dapeng; Pattison, Ian; Wilby, Robert; Bosher, Lee; Patel, Ramila; Thompson, Philip; Trowell, Keith; Draycon, Julia; Halse, Martin; Yang, Lili; Ryley, Tim

    2017-01-01

    Emergency responders often have to operate and respond to emergency situations during dynamic weather conditions, including floods. This paper demonstrates a novel method using existing tools and datasets to evaluate emergency responder accessibility during flood events within the city of Leicester, UK. Accessibility was quantified using the 8 and 10 min legislative targets for emergency provision for the ambulance and fire and rescue services respectively under "normal" no-flood conditions, as well as flood scenarios of various magnitudes (1 in 20-year, 1 in 100-year and 1 in 1000-year recurrence intervals), with both surface water and fluvial flood conditions considered. Flood restrictions were processed based on previous hydrodynamic inundation modelling undertaken and inputted into a Network Analysis framework as restrictions for surface water and fluvial flood events. Surface water flooding was shown to cause more disruption to emergency responders operating within the city due to its widespread and spatially distributed footprint when compared to fluvial flood events of comparable magnitude. Fire and rescue 10 min accessibility was shown to decrease from 100, 66.5, 39.8 and 26.2 % under the no-flood, 1 in 20-year, 1 in 100-year and 1 in 1000-year surface water flood scenarios respectively. Furthermore, total inaccessibility was shown to increase with flood magnitude from 6.0 % under the 1 in 20-year scenario to 31.0 % under the 1 in 100-year flood scenario. Additionally, the evolution of emergency service accessibility throughout a surface water flood event is outlined, demonstrating the rapid impact on emergency service accessibility within the first 15 min of the surface water flood event, with a reduction in service coverage and overlap being observed for the ambulance service during a 1 in 100-year flood event. The study provides evidence to guide strategic planning for decision makers prior to and during emergency response to flood events at the city

  18. The Armed Forces Health Surveillance Center: Global Emerging Infections Surveillance & Response System, FY 2010

    DTIC Science & Technology

    2010-01-01

    Kochel (2010), “Epidemiology of spotted fever group and typhus group rickettsial infection in the Amazon basin of Peru ,” Am J Trop Med Hyg, 82 (4), 683...Naval Medical Research Unit No. 3 (NAMRU-3) in Cairo, Egypt; and the US Naval Medical Research Unit No. 6 (NAMRU-6) in Lima, Peru . Working in...Collaborating Center for Emerging and Re-emerging Infectious Diseases in 2001 US NAVAL MEDICAL RESEARCH UNIT NO. 6 (NAMRU-6), LIMA, PERU

  19. System security in the space flight operations center

    NASA Technical Reports Server (NTRS)

    Wagner, David A.

    1988-01-01

    The Space Flight Operations Center is a networked system of workstation-class computers that will provide ground support for NASA's next generation of deep-space missions. The author recounts the development of the SFOC system security policy and discusses the various management and technology issues involved. Particular attention is given to risk assessment, security plan development, security implications of design requirements, automatic safeguards, and procedural safeguards.

  20. Simulated emergencies test preparedness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Atkinson, J.D.

    This paper reports that Canadian western Natural Gas has developed emergency plans to enable the company to respond effectively to natural gas incidents. Emergency procedures and training manuals have been developed over many years, stressing prevention first and foremost, and then effective response in the event of an actual occurrence. Canadian western is a natural gas utility serving the southern half of the province of Alberta. It is owned and operated by Canadian Utilities Ltd., which also owns and operates Northwestern Utilities Ltd. in central and northern Alberta. The company has production, storage, transmission and distribution facilities throughout an extensivemore » franchise area. It operates more than 11,000 miles of transmission and distribution pipeline to serve more than 315,000 customers in 115 communities. Canadian Western provides gas service to two major urban centers, the cities of Calgary and Lethbridge.« less

  1. AVESTAR Center for Operational Excellence of Electricity Generation Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zitney, Stephen

    2012-08-29

    To address industry challenges in attaining operational excellence for electricity generation plants, the U.S. Department of Energy’s (DOE) National Energy Technology Laboratory (NETL) has launched a world-class facility for Advanced Virtual Energy Simulation Training and Research (AVESTARTM). This presentation will highlight the AVESTARTM Center simulators, facilities, and comprehensive training, education, and research programs focused on the operation and control of high-efficiency, near-zero-emission electricity generation plants. The AVESTAR Center brings together state-of-the-art, real-time, high-fidelity dynamic simulators with full-scope operator training systems (OTSs) and 3D virtual immersive training systems (ITSs) into an integrated energy plant and control room environment. AVESTAR’s initial offeringmore » combines--for the first time--a “gasification with CO2 capture” process simulator with a “combined-cycle” power simulator together in a single OTS/ITS solution for an integrated gasification combined cycle (IGCC) power plant with carbon dioxide (CO2) capture. IGCC systems are an attractive technology option for power generation, especially when capturing and storing CO2 is necessary to satisfy emission targets. The AVESTAR training program offers a variety of courses that merge classroom learning, simulator-based OTS learning in a control-room operations environment, and immersive learning in the interactive 3D virtual plant environment or ITS. All of the courses introduce trainees to base-load plant operation, control, startups, and shutdowns. Advanced courses require participants to become familiar with coordinated control, fuel switching, power-demand load shedding, and load following, as well as to problem solve equipment and process malfunctions. Designed to ensure work force development, training is offered for control room and plant field operators, as well as engineers and managers. Such comprehensive simulator-based instruction

  2. U.S. Naval Base, Pearl Harbor, Operations & Message Center, Behind ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    U.S. Naval Base, Pearl Harbor, Operations & Message Center, Behind Facility No. 1, corner of Avenue E & Seventh Street, connected to Facility Nos. 1B & 1D by wooden bridges, Pearl City, Honolulu County, HI

  3. CDC's Evolving Approach to Emergency Response.

    PubMed

    Redd, Stephen C; Frieden, Thomas R

    The Centers for Disease Control and Prevention (CDC) transformed its approach to preparing for and responding to public health emergencies following the anthrax attacks of 2001. The Office of Public Health Preparedness and Response, an organizational home for emergency response at CDC, was established, and 4 programs were created or greatly expanded after the anthrax attacks: (1) an emergency management program, including an Emergency Operations Center; (2) increased support of state and local health department efforts to prepare for emergencies; (3) a greatly enlarged Strategic National Stockpile of medicines, vaccines, and medical equipment; and (4) a regulatory program to assure that work done on the most dangerous pathogens and toxins is done as safely and securely as possible. Following these changes, CDC led responses to 3 major public health emergencies: the 2009-10 H1N1 influenza pandemic, the 2014-16 Ebola epidemic in West Africa, and the ongoing Zika epidemic. This article reviews the programs of CDC's Office of Public Health Preparedness, the major responses, and how these responses have resulted in changes in CDC's approach to responding to public health emergencies.

  4. The application of automated operations at the Institutional Processing Center

    NASA Technical Reports Server (NTRS)

    Barr, Thomas H.

    1993-01-01

    The JPL Institutional and Mission Computing Division, Communications, Computing and Network Services Section, with its mission contractor, OAO Corporation, have for some time been applying automation to the operation of JPL's Information Processing Center (IPC). Automation does not come in one easy to use package. Automation for a data processing center is made up of many different software and hardware products supported by trained personnel. The IPC automation effort formally began with console automation, and has since spiraled out to include production scheduling, data entry, report distribution, online reporting, failure reporting and resolution, documentation, library storage, and operator and user education, while requiring the interaction of multi-vendor and locally developed software. To begin the process, automation goals are determined. Then a team including operations personnel is formed to research and evaluate available options. By acquiring knowledge of current products and those in development, taking an active role in industry organizations, and learning of other data center's experiences, a forecast can be developed as to what direction technology is moving. With IPC management's approval, an implementation plan is developed and resources identified to test or implement new systems. As an example, IPC's new automated data entry system was researched by Data Entry, Production Control, and Advance Planning personnel. A proposal was then submitted to management for review. A determination to implement the new system was made and elements/personnel involved with the initial planning performed the implementation. The final steps of the implementation were educating data entry personnel in the areas effected and procedural changes necessary to the successful operation of the new system.

  5. Development and Preliminary Results of CTAS on Airline Operational Control Center Operations

    NASA Technical Reports Server (NTRS)

    Zelenka, Richard; Beatty, Roger; Falcone, Richard; Engelland, Shawn; Tobias, Leonard (Technical Monitor)

    1998-01-01

    Continued growth and expansion of air traffic and increased air carrier economic pressures have mandated greater flexibility and collaboration in air traffic management. The ability of airspace users to select their own routes, so called "free-flight", and to more actively manage their fleet operations for maximum economic advantage are receiving great attention. A first step toward greater airspace user and service provider collaboration is information sharing. In this work, arrival scheduling and airspace management data generated by the NASA/FAA Center/TRACON Automation System (CTAS) and used by the FAA service provider is shared with an airline with extensive operations within the CTAS operational domain. The design and development of a specialized airline CTAS "repeater" system is described, as well as some preliminary results of the impact and benefits of this information on the air carrier's operations. FAA controller per aircraft scheduling information, such as that provided by CTAS, has never before been shared in real-time with an airline. Expected airline benefits include improved fleet planning and arrival gate management, more informed "hold-go" decisions, and avoidance of costly aircraft diversions to alternate airports when faced with uncertain airborne arrival delays.

  6. Development and Preliminary Results of CTAS on Airline Operational Control Center Operations

    NASA Technical Reports Server (NTRS)

    Zelenka, Richard; Beatty, Roger; Engelland, Shawn

    2004-01-01

    Continued growth and expansion of air traffic and increased air carrier economic pressures have mandated greater flexibility and collaboration in air traffic management. The ability of airspace users to select their own routes, so called "free-flight", and to more actively manage their fleet operations for maximum economic advantage are receiving great attention. A first step toward greater airspace user and service provider collaboration is information sharing. In this work, arrival scheduling and airspace management data generated by the NASA/FAA Center/TRACON Automation System (CTAS) and used by the FAA service provider is shared with an airline with extensive operations within the CTAS operational domain. The design and development of a specialized airline CTAS "repeater" system is described, as well as some preliminary results of the impact and benefits of this information on the air carrier's operations. FAA controller per aircraft scheduling information, such as that provided by CTAS, has never before been shared in real-time with an airline. Expected airline benefits include improved fleet planning and arrival gate management, more informed "hold-go decisions, and avoidance of costly aircraft diversions to alternate airports when faced with uncertain airborne arrival delays.

  7. Recommendations; Operational History. Demonstration Center for Language-Hanciapped Children.

    ERIC Educational Resources Information Center

    Hale, James R.

    Recommendations based on the two-and-a-half-year history of The Demonstration Center for Language Handicapped (LH) Children are reported. Noted are such recommendations as the following: that each school district develop its own operational definition of LH based on the state definition, adding the concept of significant discrepancy between…

  8. Educational Applications of Astronomy & Space Flight Operations at the Kennedy Space Center

    NASA Astrophysics Data System (ADS)

    Erickson, L. K.

    1999-09-01

    Within two years, the Kennedy Space Center will complete a total redesign of NASA's busiest Visitor's Center. Three million visitors per year will be witness to a new program focused on expanding the interests of the younger public in NASA's major space programs, in space operations, and in astronomy. This project, being developed through the Visitor's Center director, a NASA faculty fellow, and the Visitor's Center contractor, is centered on the interaction between NASA programs, the visiting youth, and their parents. The goal of the Center's program is to provide an appealing learning experience for teens and pre teens using stimulating displays and interactive exhibits that are also educational.

  9. WFIRST: User and mission support at ISOC - IPAC Science Operations Center

    NASA Astrophysics Data System (ADS)

    Akeson, Rachel; Armus, Lee; Bennett, Lee; Colbert, James; Helou, George; Kirkpatrick, J. Davy; Laine, Seppo; Meshkat, Tiffany; Paladini, Roberta; Ramirez, Solange; Wang, Yun; Xie, Joan; Yan, Lin

    2018-01-01

    The science center for WFIRST is distributed between the Goddard Space Flight Center, the Infrared Processing and Analysis Center (IPAC) and the Space Telescope Science Institute (STScI). The main functions of the IPAC Science Operations Center (ISOC) are:* Conduct the GO, archival and theory proposal submission and evaluation process* Support the coronagraph instrument, including observation planning, calibration and data processing pipeline, generation of data products, and user support* Microlensing survey data processing pipeline, generation of data products, and user support* Community engagement including conferences, workshops and general support of the WFIRST exoplanet communityWe will describe the components planned to support these functions and the community of WFIRST users.

  10. Virtualized Multi-Mission Operations Center (vMMOC) and its Cloud Services

    NASA Technical Reports Server (NTRS)

    Ido, Haisam Kassim

    2017-01-01

    His presentation will cover, the current and future, technical and organizational opportunities and challenges with virtualizing a multi-mission operations center. The full deployment of Goddard Space Flight Centers (GSFC) Virtualized Multi-Mission Operations Center (vMMOC) is nearly complete. The Space Science Mission Operations (SSMO) organizations spacecraft ACE, Fermi, LRO, MMS(4), OSIRIS-REx, SDO, SOHO, Swift, and Wind are in the process of being fully migrated to the vMMOC. The benefits of the vMMOC will be the normalization and the standardization of IT services, mission operations, maintenance, and development as well as ancillary services and policies such as collaboration tools, change management systems, and IT Security. The vMMOC will also provide operational efficiencies regarding hardware, IT domain expertise, training, maintenance and support.The presentation will also cover SSMO's secure Situational Awareness Dashboard in an integrated, fleet centric, cloud based web services fashion. Additionally the SSMO Telemetry as a Service (TaaS) will be covered, which allows authorized users and processes to access telemetry for the entire SSMO fleet, and for the entirety of each spacecrafts history. Both services leverage cloud services in a secure FISMA High and FedRamp environment, and also leverage distributed object stores in order to house and provide the telemetry. The services are also in the process of leveraging the cloud computing services elasticity and horizontal scalability. In the design phase is the Navigation as a Service (NaaS) which will provide a standardized, efficient, and normalized service for the fleet's space flight dynamics operations. Additional future services that may be considered are Ground Segment as a Service (GSaaS), Telemetry and Command as a Service (TCaaS), Flight Software Simulation as a Service, etc.

  11. Extended Operation of Stirling Convertors at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Oriti, Salvatore

    2011-01-01

    Glenn Research Center (GRC) is supporting life and reliability database for free-piston Stirilng conversion via extended convertor operation Ongoing convertor operation: 18 convertors (4 TDCs from Infinia, 14 ASCs from Sunpower). 350,000 total convertor hours of operation. 218,000 on Infinia units and 132,000 on Sunpower units. Demonstrating steady convertor performance requires precise maintenance of operating conditions. Sources of disruption : Investigative tests: Varying operating frequency, hot-end temp, cold-end temp. Hot end control method: Constant heat input mode requires more user-adjustment than constant temperature mode. Long-term transients in hot end insulation were observed. Support facility: Open-bath circulator fluid concentration drifting. Nuisance shutdowns (instrumentation failure, EMI, power outages). Ambient temperature fluctuations due to room HVAC.

  12. Before the Emergency: A Framework for Evaluating Emergency Preparedness Alternatives at Higher Education Institutions

    DTIC Science & Technology

    2010-09-01

    Operations and Procedures • Logistics and Facilities • Training • Exercises, Evaluation and Corrective Actions • Crisis Communications ...Assessment Team BCA Benefit-cost analysis CEO Chief Executive Officer CERT Community Emergency Response Team CFR Code of Federal Regulations...CHDS Center for Homeland Defense and Security CPG 101 Comprehensive Preparedness Guidelines 101 CPP Community Preparedness and Participation CPW

  13. Heavy precipitation and the responses within emergency management - a new approach for emergency planning and disaster prevention by utilizing fire brigade operation data

    NASA Astrophysics Data System (ADS)

    Kutschker, Thomas; Glade, Thomas

    2015-04-01

    An increase of intense rainfall events in the center regions of Europe is one of the assumed effects of climate change. Climate scenarios indicate also large seasonal and regional differences concerning the magnitude. Structural damages and financial loss resulting from heavy precipitation depend on natural parameters such as topography and vegetation cover of the specific area, but also on socio-economic parameters such as urbanized and industrialized areas, population density and the presence of critical infrastructure. In particular mudflows and floods cause damages such as flooded basements and streets, undercutting of roads or spilled sewage drains. The emergency management has to consider these effects appropriately. Commonly, this is the responsibilities is taken by the fire brigades and civil protection units. Within their daily routines, numerous data is collected, but commonly not utilized for scientific purposes. In particular fire brigade operation data can be used accordingly to describe the intensity of the aftermath when heavy precipitation strikes a certain area. One application is described in this study based on a example in Offenbach, Germany. The civil protection in Germany is based on a federal system with a bottom-up command-structure and responsibility to the local community. Therefore it is not easy to collect the overall incident data for a widespread affected area. To examine particular local effects of heavy precipitation events it is necessary to match the meteorological data provided by the German Meteorological Service (DWD) with the incident data of all effected fire brigades, which sometimes is impeded by the usual resolution of meteorological data. In this study, a method of comprehensive evaluation of meteorological data and the operation data from local fire brigades has been developed for the Rhine-Main-Area. This area is one of the largest metropolitan regions in Germany with a very high density in population as well as

  14. 20 CFR 638.530 - Emergency use of personnel, equipment and facilities.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... facilities. 638.530 Section 638.530 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR JOB CORPS PROGRAM UNDER TITLE IV-B OF THE JOB TRAINING PARTNERSHIP ACT Center Operations § 638.530 Emergency use of personnel, equipment and facilities. The Job Corps Director may provide emergency...

  15. Preliminary study of the pilot's workload during emergency procedures in helicopters air operations.

    PubMed

    Bezerra, Flávio G V; Ribeiro, Selma L O

    2012-01-01

    Military air operations and law enforcement operations in helicopters are examples of activities that require high performance of the operator. This article aimed at presenting a preliminary analysis of data obtained in the initial study in order to validate the instruments and the research protocol that focuses on the analysis of the workload imposed on helicopter pilots in emergency situations. The research was conducted in an environment of real flight training and used the NASA-TLX Scale to assess the workload and an interview guide to obtain reports on the main tasks performed. Preliminary data obtained is related to the participation of 10 (ten) volunteer pilots with experience in different types of helicopters. Four scenarios involving helicopter emergency procedures of HB-350 "Squirrel" were outlined. For this article, the analysis used only the data regarding the Physical and Mental Demands of the NASA-TLX Scale. Preliminarily, the results indicate that the "time pressure" as a factor contributing to increase mental requirement in emergency situations in flight, and that this increase was reflected in the request of mental processes such as: identification of the breakdown, attention and monitoring parameters. Future steps include extending the sample and adding physiological tools to better understand the effects of these types of emergencies on pilot performance and flight safety.

  16. An annotated outline for a traffic management center operations manual

    DOT National Transportation Integrated Search

    2000-10-01

    This draft Traffic Management Center (TMC) and Operations manual outline is meant to serve as a model "checklist" for the development of similar manuals used in deployed environments. The purpose of this outline is to provide a reference for agencies...

  17. Emergency pediatric surgery: Comparing the economic burden in specialized versus nonspecialized children's centers.

    PubMed

    Kvasnovsky, Charlotte L; Lumpkins, Kimberly; Diaz, Jose J; Chun, Jeannie Y

    2018-05-01

    The American College of Surgeons has developed a verification program for children's surgery centers. Highly specialized hospitals may be verified as Level I, while those with fewer dedicated resources as Level II or Level III, respectively. We hypothesized that more specialized children's centers would utilize more resources. We performed a retrospective study of the Maryland Health Services Cost Review Commission (HSCRC) database from 2009 to 2013. We assessed total charge, length of stay (LOS), and charge per day for all inpatients with an emergency pediatric surgery diagnosis, controlling for severity of illness (SOI). Using published resources, we assigned theoretical level designations to each hospital. Two hospitals would qualify as Level 1 hospitals, with 4593 total emergency pediatric surgery admissions (38.5%) over the five-year study period. Charges were significantly higher for children treated at Level I hospitals (all P<0.0001). Across all SOI, children at Level I hospitals had significantly longer LOS (all P<0.0001). Hospitals defined as Level II and Level III provided the majority of care and were able to do so with shorter hospitalizations and lower charges, regardless of SOI. As care shifts towards specialized centers, this charge differential may have significant impact on future health care costs. Level III Cost Effectiveness Study. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Recommendations in dispatcher-assisted bystander resuscitation from emergency call center.

    PubMed

    García del Águila, J; López-Messa, J; Rosell-Ortiz, F; de Elías Hernández, R; Martínez del Valle, M; Sánchez-Santos, L; López-Herce, J; Cerdà-Vila, M; Roza-Alonso, C L; Bernardez-Otero, M

    2015-01-01

    Dispatch-assisted bystander cardiopulmonary resuscitation in out-of-hospital cardiac arrest has been shown as an effective measure to improve the survival of this process. The development of a unified protocol for all dispatch centers of the different emergency medical services can be a first step towards this goal in our environment. The process of developing a recommendations document and the realization of posters of dispatch-assisted cardiopulmonary resuscitation, agreed by different actors and promoted by the Spanish Resuscitation Council, is presented. Copyright © 2015 Elsevier España, S.L.U. and SEMICYUC. All rights reserved.

  19. Design Information for Emergency Operations Centers.

    DTIC Science & Technology

    1983-06-01

    STC 40-45 4. Visual privacy. Sound Reflectances: 5. Electrical survey. Ceiling: NRC 50 6. Adequate lighting. Floor: NRC 25 7. Adequate thermal comfort . 4...ceiling to 7. Adequate thermal comfort . reduce noise. 8. Image appropriate for authority 4. 60-in.-high minimum wall panels. given. 5. 110-V outlets as...tions. 5. Electrical supply. 2. 9-ft minimum for open plan office 6. Adequate lighting, schemes. 7. Adequate thermal comfort . 3. Enclosing walls: STC 40

  20. The Deep Impact Network Experiment Operations Center

    NASA Technical Reports Server (NTRS)

    Torgerson, J. Leigh; Clare, Loren; Wang, Shin-Ywan

    2009-01-01

    Delay/Disruption Tolerant Networking (DTN) promises solutions in solving space communications challenges arising from disconnections as orbiters lose line-of-sight with landers, long propagation delays over interplanetary links, and other phenomena. DTN has been identified as the basis for the future NASA space communications network backbone, and international standardization is progressing through both the Consultative Committee for Space Data Systems (CCSDS) and the Internet Engineering Task Force (IETF). JPL has developed an implementation of the DTN architecture, called the Interplanetary Overlay Network (ION). ION is specifically implemented for space use, including design for use in a real-time operating system environment and high processing efficiency. In order to raise the Technology Readiness Level of ION, the first deep space flight demonstration of DTN is underway, using the Deep Impact (DI) spacecraft. Called the Deep Impact Network (DINET), operations are planned for Fall 2008. An essential component of the DINET project is the Experiment Operations Center (EOC), which will generate and receive the test communications traffic as well as "out-of-DTN band" command and control of the DTN experiment, store DTN flight test information in a database, provide display systems for monitoring DTN operations status and statistics (e.g., bundle throughput), and support query and analyses of the data collected. This paper describes the DINET EOC and its value in the DTN flight experiment and potential for further DTN testing.

  1. On-board emergent scheduling of autonomous spacecraft payload operations

    NASA Technical Reports Server (NTRS)

    Lindley, Craig A.

    1994-01-01

    This paper describes a behavioral competency level concerned with emergent scheduling of spacecraft payload operations. The level is part of a multi-level subsumption architecture model for autonomous spacecraft, and it functions as an action selection system for processing a spacecraft commands that can be considered as 'plans-as-communication'. Several versions of the selection mechanism are described, and their robustness is qualitatively compared.

  2. Operative team communication during simulated emergencies: Too busy to respond?

    PubMed

    Davis, W Austin; Jones, Seth; Crowell-Kuhnberg, Adrianna M; O'Keeffe, Dara; Boyle, Kelly M; Klainer, Suzanne B; Smink, Douglas S; Yule, Steven

    2017-05-01

    Ineffective communication among members of a multidisciplinary team is associated with operative error and failure to rescue. We sought to measure operative team communication in a simulated emergency using an established communication framework called "closed loop communication." We hypothesized that communication directed at a specific recipient would be more likely to elicit a check back or closed loop response and that this relationship would vary with changes in patients' clinical status. We used the closed loop communication framework to code retrospectively the communication behavior of 7 operative teams (each comprising 2 surgeons, anesthesiologists, and nurses) during response to a simulated, postanesthesia care unit "code blue." We identified call outs, check backs, and closed loop episodes and applied descriptive statistics and a mixed-effects negative binomial regression to describe characteristics of communication in individuals and in different specialties. We coded a total of 662 call outs. The frequency and type of initiation and receipt of communication events varied between clinical specialties (P < .001). Surgeons and nurses initiated fewer and received more communication events than anesthesiologists. For the average participant, directed communication increased the likelihood of check back by at least 50% (P = .021) in periods preceding acute changes in the clinical setting, and exerted no significant effect in periods after acute changes in the clinical situation. Communication patterns vary by specialty during a simulated operative emergency, and the effect of directed communication in eliciting a response depends on the clinical status of the patient. Operative training programs should emphasize the importance of quality communication in the period immediately after an acute change in the clinical setting of a patient and recognize that communication patterns and needs vary between members of multidisciplinary operative teams. Copyright

  3. Teamwork skills in actual, in situ, and in-center pediatric emergencies: performance levels across settings and perceptions of comparative educational impact.

    PubMed

    Couto, Thomaz Bittencourt; Kerrey, Benjamin T; Taylor, Regina G; FitzGerald, Michael; Geis, Gary L

    2015-04-01

    Pediatric emergencies require effective teamwork. These skills are developed and demonstrated in actual emergencies and in simulated environments, including simulation centers (in center) and the real care environment (in situ). Our aims were to compare teamwork performance across these settings and to identify perceived educational strengths and weaknesses between simulated settings. We hypothesized that teamwork performance in actual emergencies and in situ simulations would be higher than for in-center simulations. A retrospective, video-based assessment of teamwork was performed in an academic, pediatric level 1 trauma center, using the Team Emergency Assessment Measure (TEAM) tool (range, 0-44) among emergency department providers (physicians, nurses, respiratory therapists, paramedics, patient care assistants, and pharmacists). A survey-based, cross-sectional assessment was conducted to determine provider perceptions regarding simulation training. One hundred thirty-two videos, 44 from each setting, were reviewed. Mean total TEAM scores were similar and high in all settings (31.2 actual, 31.1 in situ, and 32.3 in-center, P = 0.39). Of 236 providers, 154 (65%) responded to the survey. For teamwork training, in situ simulation was considered more realistic (59% vs. 10%) and more effective (45% vs. 15%) than in-center simulation. In a video-based study in an academic pediatric institution, ratings of teamwork were relatively high among actual resuscitations and 2 simulation settings, substantiating the influence of simulation-based training on instilling a culture of communication and teamwork. On the basis of survey results, providers favored the in situ setting for teamwork training and suggested an expansion of our existing in situ program.

  4. Computer Maintenance Operations Center (CMOC), showing duplexed cyber 170174 computers ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Computer Maintenance Operations Center (CMOC), showing duplexed cyber 170-174 computers - Beale Air Force Base, Perimeter Acquisition Vehicle Entry Phased-Array Warning System, Techinical Equipment Building, End of Spencer Paul Road, north of Warren Shingle Road (14th Street), Marysville, Yuba County, CA

  5. 29 CFR 1926.65 - Hazardous waste operations and emergency response.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 8 2014-07-01 2014-07-01 false Hazardous waste operations and emergency response. 1926.65 Section 1926.65 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Occupational Health and Environmental Controls § 1926.65...

  6. 29 CFR 1926.65 - Hazardous waste operations and emergency response.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 8 2013-07-01 2013-07-01 false Hazardous waste operations and emergency response. 1926.65 Section 1926.65 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Occupational Health and Environmental Controls § 1926.65...

  7. 29 CFR 1926.65 - Hazardous waste operations and emergency response.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 8 2012-07-01 2012-07-01 false Hazardous waste operations and emergency response. 1926.65 Section 1926.65 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Occupational Health and Environmental Controls § 1926.65...

  8. Training Program for Operation of Emergency Vehicles. Instructor Lesson Plans.

    ERIC Educational Resources Information Center

    INNOVATRIX, Inc., Ingomar, PA.

    Unit lesson plans for the three parts of the Emergency Vehicle (EV) Operator training program are provided. The units in parts 1 and 2 are designed for use in a classroom setting and contain the following components: description of the unit; trainees' knowledge objectives; instructor preparation activities; instructional content/presentation…

  9. Facility Management Child Care Resource Book. Child Care Operations Center of Expertise.

    ERIC Educational Resources Information Center

    General Services Administration, Washington, DC. Public Buildings Service.

    This guidebook provides maintenance and operations guidelines for managing General Services Administration (GSA) child care centers within the same standards and level of a GSA operated facility. Areas covered address cleaning standards and guidelines; equipment funding and inventory; maintenance of living environments and problem areas;…

  10. The Evolution of the Federal Monitoring and Assessment Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NSTec Aerial Measurement System

    2012-07-31

    The Federal Radiological Monitoring and Assessment Center (FRMAC) is a federal emergency response asset whose assistance may be requested by the Department of Homeland Security (DHS), the Department of Defense (DoD), the Environmental Protection Agency (EPA), the Nuclear Regulatory Commission (NRC), and state and local agencies to respond to a nuclear or radiological incident. It is an interagency organization with representation from the Department of Energy’s National Nuclear Security Administration (DOE/NNSA), the Department of Defense (DoD), the Environmental Protection Agency (EPA), the Department of Health and Human Services (HHS), the Federal Bureau of Investigation (FBI), and other federal agencies. FRMAC,more » in its present form, was created in 1987 when the radiological support mission was assigned to the DOE’s Nevada Operations Office by DOE Headquarters. The FRMAC asset, including its predecessor entities, was created, grew, and evolved to function as a response to radiological incidents. Radiological emergency response exercises showed the need for a coordinated approach to managing federal emergency monitoring and assessment activities. The mission of FRMAC is to coordinate and manage all federal radiological environmental monitoring and assessment activities during a nuclear or radiological incident within the United States in support of state,local, tribal governments, DHS, and the federal coordinating agency. Radiological emergency response professionals with the DOE’s national laboratories support the Radiological Assistance Program (RAP), National Atmospheric Release Advisory Center (NARAC), the Aerial MeasuringSystem (AMS), and the Radiation Emergency Assistance Center/Training Site (REAC/TS). These teams support the FRMAC to provide: Atmospheric transport modeling; Radiation monitoring; Radiological analysis and data assessments; and Medical advice for radiation injuries In support of field operations, the FRMAC provides geographic

  11. Consensus Statement on Advancing Research in Emergency Department Operations and Its Impact on Patient Care

    PubMed Central

    Ward, Michael J.; Chang, Anna Marie; Pines, Jesse M.; Jouriles, Nick; Yealy, Donald M.

    2016-01-01

    The Consensus Conference on “Advancing Research in Emergency Department (ED) Operations and Its Impact on Patient Care,” hosted by The ED Operations Study Group (EDOSG), convened to craft a framework for future investigations in this important but underserved area. The EDOSG is a research consortium dedicated to promoting evidence based clinical practice in Emergency Medicine. The consensus process format was a modified version of the NIH Model for Consensus Conference Development. Recommendations provide an action plan for how to improve ED operations study design, create a facilitating research environment, identify data measures of value for process and outcomes research, and disseminate new knowledge in this area. Specifically, we called for eight key initiatives: 1) the development of universal measures for ED patient care processes; 2) attention to patient outcomes, in addition to process efficiency and best practice compliance; 3) the promotion of multi-site clinical operations studies to create more generalizable knowledge; 4) encouraging the use of mixed methods to understand the social community and human behavior factors that influence ED operations; 5) the creation of robust ED operations research registries to drive stronger evidence based research, 6) prioritizing key clinical questions with the input of patients, clinicians, medical leadership, emergency medicine organizations, payers, and other government stakeholders; 7) more consistently defining the functional components of the ED care system including observation units, fast tracks, waiting rooms, laboratories and radiology sub-units; and 8) maximizing multidisciplinary knowledge dissemination via emergency medicine, public health, general medicine, operations research and nontraditional publications. PMID:26014365

  12. Data Management Coordinators Monitor STS-78 Mission at the Huntsville Operations Support Center

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Launched on June 20, 1996, the STS-78 mission's primary payload was the Life and Microgravity Spacelab (LMS), which was managed by the Marshall Space Flight Center (MSFC). During the 17 day space flight, the crew conducted a diverse slate of experiments divided into a mix of life science and microgravity investigations. In a manner very similar to future International Space Station operations, LMS researchers from the United States and their European counterparts shared resources such as crew time and equipment. Five space agencies (NASA/USA, European Space Agency/Europe (ESA), French Space Agency/France, Canadian Space Agency /Canada, and Italian Space Agency/Italy) along with research scientists from 10 countries worked together on the design, development and construction of the LMS. This photo represents Data Management Coordinators monitoring the progress of the mission at the Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at MSFC. Pictured are assistant mission scientist Dr. Dalle Kornfeld, Rick McConnel, and Ann Bathew.

  13. Outcomes of endovascular management of acute thoracic aortic emergencies in an academic level 1 trauma center.

    PubMed

    Echeverria, Angela B; Branco, Bernardino C; Goshima, Kay R; Hughes, John D; Mills, Joseph L

    2014-12-01

    Thoracic aortic emergencies account for 10% of thoracic-related admissions in the United States and remain associated with high morbidity and mortality rates. Open repair has declined owing to the emergence of thoracic endovascular aortic repair (TEVAR), but data on emergency TEVAR use for acute aortic pathology remain limited. We therefore reviewed our experience. We retrospectively evaluated emergency descending thoracic aortic endovascular interventions performed at a single academic level 1 trauma center between January 2005 and August 2013 including all cases of traumatic aortic injury, ruptured descending thoracic aneurysm, penetrating atherosclerotic ulcer, aortoenteric fistula, and acute complicated type B dissection. Demographics, clinical data, and outcomes were extracted. Stepwise logistic regression was used to identify independent risk factors for death. During the study period, 51 patients underwent TEVAR; 22 cases (43.1%) were performed emergently (11 patients [50.0%] traumatic aortic injury; 4 [18.2%] ruptured descending thoracic aneurysm; 4 [18.2%] complicated type B dissection; 2 [9.1%] penetrating aortic ulcer; and 1 [4.5%] aortoenteric fistula). Overall, 72.7% (n = 16) were male with a mean age of 54.8 ± 15.9 years. Nineteen patients (86.4%) required only a single TEVAR procedure, whereas 2 (9.1%) required additional endovascular therapy, and 1 (4.5%) open thoracotomy. Four traumatic aortic injury patients required exploratory laparotomy for concomitant intra-abdominal injuries. During a mean hospital length of stay of 18.9 days (range, 1 to 76 days), 3 patients (13.6%) developed major complications. In-hospital mortality was 27.2%, consisting of 6 deaths from traumatic brain injury (1); exsanguination in the operating room before repair could be achieved (2); bowel ischemia (1) and multisystem organ failure (1); and family withdrawal of care (1). A stepwise logistic regression model identified 24-hour packed red blood cell requirements ≥4

  14. Electronic Commerce Resource Centers. An Industry--University Partnership.

    ERIC Educational Resources Information Center

    Gulledge, Thomas R.; Sommer, Rainer; Tarimcilar, M. Murat

    1999-01-01

    Electronic Commerce Resource Centers focus on transferring emerging technologies to small businesses through university/industry partnerships. Successful implementation hinges on a strategic operating plan, creation of measurable value for customers, investment in customer-targeted training, and measurement of performance outputs. (SK)

  15. Civil Defense, U. S. A.: A Programmed Orientation to Civil Defense. Unit 4. Warning, Emergency Operations, and Support Programs.

    ERIC Educational Resources Information Center

    Defense Civil Preparedness Agency (DOD), Battle Creek, MI.

    The need for, and a description of, emergency functions required to save lives and protect property in nuclear or natural disasters are presented. Topics discussed include: (1) The Civil Defense Warning System, (2) Introduction to the Emergency Operations Program, (3) Five subprograms of the Emergency Operations Program, (4) Emergency Operations…

  16. Hydrologic Modeling at the National Water Center: Operational Implementation of the WRF-Hydro Model to support National Weather Service Hydrology

    NASA Astrophysics Data System (ADS)

    Cosgrove, B.; Gochis, D.; Clark, E. P.; Cui, Z.; Dugger, A. L.; Fall, G. M.; Feng, X.; Fresch, M. A.; Gourley, J. J.; Khan, S.; Kitzmiller, D.; Lee, H. S.; Liu, Y.; McCreight, J. L.; Newman, A. J.; Oubeidillah, A.; Pan, L.; Pham, C.; Salas, F.; Sampson, K. M.; Smith, M.; Sood, G.; Wood, A.; Yates, D. N.; Yu, W.; Zhang, Y.

    2015-12-01

    The National Weather Service (NWS) National Water Center(NWC) is collaborating with the NWS National Centers for Environmental Prediction (NCEP) and the National Center for Atmospheric Research (NCAR) to implement a first-of-its-kind operational instance of the Weather Research and Forecasting (WRF)-Hydro model over the Continental United States (CONUS) and contributing drainage areas on the NWS Weather and Climate Operational Supercomputing System (WCOSS) supercomputer. The system will provide seamless, high-resolution, continuously cycling forecasts of streamflow and other hydrologic outputs of value from both deterministic- and ensemble-type runs. WRF-Hydro will form the core of the NWC national water modeling strategy, supporting NWS hydrologic forecast operations along with emergency response and water management efforts of partner agencies. Input and output from the system will be comprehensively verified via the NWC Water Resource Evaluation Service. Hydrologic events occur on a wide range of temporal scales, from fast acting flash floods, to long-term flow events impacting water supply. In order to capture this range of events, the initial operational WRF-Hydro configuration will feature 1) hourly analysis runs, 2) short-and medium-range deterministic forecasts out to two day and ten day horizons and 3) long-range ensemble forecasts out to 30 days. All three of these configurations are underpinned by a 1km execution of the NoahMP land surface model, with channel routing taking place on 2.67 million NHDPlusV2 catchments covering the CONUS and contributing areas. Additionally, the short- and medium-range forecasts runs will feature surface and sub-surface routing on a 250m grid, while the hourly analyses will feature this same 250m routing in addition to nudging-based assimilation of US Geological Survey (USGS) streamflow observations. A limited number of major reservoirs will be configured within the model to begin to represent the first-order impacts of

  17. The association between pediatric general emergency department visits and post operative adenotonsillectomy hospital return.

    PubMed

    Bangiyev, John N; Thottam, Prasad J; Christenson, Jennifer R; Metz, Christopher M; Haupert, Michael S

    2015-02-01

    To define the association between pre-operative general emergency department visits, gender, and pre-operative diagnosis with post-operative emergency department return following adenotonsillectomy. Retrospective chart review of 1468 pediatric patients who underwent adenotonsillectomy at a tertiary pediatric hospital between 2011 and 2013. There was a significant relationship between patients who visited the ED pre-operatively, 25% (N=96) returned to the ED post-procedure, compared to 10% who did not have a pre-operative ED visit. There was an overall significant relation between having a pre-operative visit (χ(2)=53.6, df=1, p<0.001), female gender (female=56.9%; male=43.1%; χ(2)=4.2, df=1, p=0.04), and having a preoperative diagnosis of recurrent strep tonsillitis (OSA and RST=18%; RST=17.5%; OSA=11.8%; χ(2)=12.8, p=0.002) and having a post-operative ED visit. Generalized pre-operative visits along with gender and diagnosis of recurrent streptococcal tonsillitis were found to be positively associated with post-operative ED visits for common post-operative complaints. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. Smaller-scale Contingency Operations "An Emerging Strategy".

    DTIC Science & Technology

    1999-04-07

    ARMY WAR COLLEGE, CARLISLE BARRACKS, PA 17013-5050 tmc QUALITY INSPECTED - 19990329 068 USAWC STRATEGY RESEARCH PROJECT Smaller-scale Contingency...Operations "An Emerging Strategy" By LTC Craig D. Täte United States Army Reserve COL Otis Elam Project Advisor The views expressed in this...Department of Defense, or any of its agencies. DISTRIBUTION STATEMENT A: Approved for public release, Distribution is unlimited. U.S. Army War College

  19. Application of reliability-centered maintenance to boiling water reactor emergency core cooling systems fault-tree analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Y.A.; Feltus, M.A.

    1995-07-01

    Reliability-centered maintenance (RCM) methods are applied to boiling water reactor plant-specific emergency core cooling system probabilistic risk assessment (PRA) fault trees. The RCM is a technique that is system function-based, for improving a preventive maintenance (PM) program, which is applied on a component basis. Many PM programs are based on time-directed maintenance tasks, while RCM methods focus on component condition-directed maintenance tasks. Stroke time test data for motor-operated valves (MOVs) are used to address three aspects concerning RCM: (a) to determine if MOV stroke time testing was useful as a condition-directed PM task; (b) to determine and compare the plant-specificmore » MOV failure data from a broad RCM philosophy time period compared with a PM period and, also, compared with generic industry MOV failure data; and (c) to determine the effects and impact of the plant-specific MOV failure data on core damage frequency (CDF) and system unavailabilities for these emergency systems. The MOV stroke time test data from four emergency core cooling systems [i.e., high-pressure coolant injection (HPCI), reactor core isolation cooling (RCIC), low-pressure core spray (LPCS), and residual heat removal/low-pressure coolant injection (RHR/LPCI)] were gathered from Philadelphia Electric Company`s Peach Bottom Atomic Power Station Units 2 and 3 between 1980 and 1992. The analyses showed that MOV stroke time testing was not a predictor for eminent failure and should be considered as a go/no-go test. The failure data from the broad RCM philosophy showed an improvement compared with the PM-period failure rates in the emergency core cooling system MOVs. Also, the plant-specific MOV failure rates for both maintenance philosophies were shown to be lower than the generic industry estimates.« less

  20. Shared Decision Making in the Emergency Department: Development of a Policy-Relevant Patient-Centered Research Agenda

    PubMed Central

    Grudzen, Corita R.; Anderson, Jana R.; Carpenter, Christopher R.; Hess, Erik P.

    2016-01-01

    SUMMARY SDM in emergency medicine has the potential to improve the quality, safety, and outcomes of ED patients. Given that the ED is the gateway to care for patients with a variety of illnesses and injuries, SDM in the ED is relevant to numerous healthcare disciplines. We conducted a patient-centered one-day conference to define and develop a high-priority, timely research agenda. Participants included researchers, patients, stakeholder organizations, and content experts across many areas of medicine, health policy agencies, and federal and foundation funding organizations. The results of this conference published in this issue of Academic Emergency Medicine will provide an essential summary of the future research priorities for SDM to increase quality of care and patient-centered outcomes. PMID:27396583

  1. Enhanced Engine Performance During Emergency Operation Using a Model-Based Engine Control Architecture

    NASA Technical Reports Server (NTRS)

    Csank, Jeffrey T.; Connolly, Joseph W.

    2016-01-01

    This paper discusses the design and application of model-based engine control (MBEC) for use during emergency operation of the aircraft. The MBEC methodology is applied to the Commercial Modular Aero-Propulsion System Simulation 40k (CMAPSS40k) and features an optimal tuner Kalman Filter (OTKF) to estimate unmeasured engine parameters, which can then be used for control. During an emergency scenario, normally-conservative engine operating limits may be relaxed to increase the performance of the engine and overall survivability of the aircraft; this comes at the cost of additional risk of an engine failure. The MBEC architecture offers the advantage of estimating key engine parameters that are not directly measureable. Estimating the unknown parameters allows for tighter control over these parameters, and on the level of risk the engine will operate at. This will allow the engine to achieve better performance than possible when operating to more conservative limits on a related, measurable parameter.

  2. Enhanced Engine Performance During Emergency Operation Using a Model-Based Engine Control Architecture

    NASA Technical Reports Server (NTRS)

    Csank, Jeffrey T.; Connolly, Joseph W.

    2015-01-01

    This paper discusses the design and application of model-based engine control (MBEC) for use during emergency operation of the aircraft. The MBEC methodology is applied to the Commercial Modular Aero-Propulsion System Simulation 40,000 (CMAPSS40,000) and features an optimal tuner Kalman Filter (OTKF) to estimate unmeasured engine parameters, which can then be used for control. During an emergency scenario, normally-conservative engine operating limits may be relaxed to increase the performance of the engine and overall survivability of the aircraft; this comes at the cost of additional risk of an engine failure. The MBEC architecture offers the advantage of estimating key engine parameters that are not directly measureable. Estimating the unknown parameters allows for tighter control over these parameters, and on the level of risk the engine will operate at. This will allow the engine to achieve better performance than possible when operating to more conservative limits on a related, measurable parameter.

  3. Analysis of the learning curve for peroral endoscopic myotomy for esophageal achalasia: Single-center, two-operator experience.

    PubMed

    Lv, Houning; Zhao, Ningning; Zheng, Zhongqing; Wang, Tao; Yang, Fang; Jiang, Xihui; Lin, Lin; Sun, Chao; Wang, Bangmao

    2017-05-01

    Peroral endoscopic myotomy (POEM) has emerged as an advanced technique for the treatment of achalasia, and defining the learning curve is mandatory. From August 2011 to June 2014, two operators in our institution (A&B) carried out POEM on 35 and 33 consecutive patients, respectively. Moving average and cumulative sum (CUSUM) methods were used to analyze the POEM learning curve for corrected operative time (cOT), referring to duration of per centimeter myotomy. Additionally, perioperative outcomes were compared among distinct learning curve phases. Using the moving average method, cOT reached a plateau at the 29th case and at the 24th case for operators A and B, respectively. CUSUM analysis identified three phases: initial learning period (Phase 1), efficiency period (Phase 2) and mastery period (Phase 3). The relatively smooth state in the CUSUM graph occurred at the 26th case and at the 24th case for operators A and B, respectively. Mean cOT of distinct phases for operator A were 8.32, 5.20 and 3.97 min, whereas they were 5.99, 3.06 and 3.75 min for operator B, respectively. Eckardt score and lower esophageal sphincter pressure significantly decreased during the 1-year follow-up period. Data were comparable regarding patient characteristics and perioperative outcomes. This single-center study demonstrated that expert endoscopists with experience in esophageal endoscopic submucosal dissection reached a plateau in learning of POEM after approximately 25 cases. © 2016 Japan Gastroenterological Endoscopy Society.

  4. NSI operations center

    NASA Technical Reports Server (NTRS)

    Zanley, Nancy L.

    1991-01-01

    The NASA Science Internet (NSI) Network Operations Staff is responsible for providing reliable communication connectivity for the NASA science community. As the NSI user community expands, so does the demand for greater interoperability with users and resources on other networks (e.g., NSFnet, ESnet), both nationally and internationally. Coupled with the science community's demand for greater access to other resources is the demand for more reliable communication connectivity. Recognizing this, the NASA Science Internet Project Office (NSIPO) expands its Operations activities. By January 1990, Network Operations was equipped with a telephone hotline, and its staff was expanded to six Network Operations Analysts. These six analysts provide 24-hour-a-day, 7-day-a-week coverage to assist site managers with problem determination and resolution. The NSI Operations staff monitors network circuits and their associated routers. In most instances, NSI Operations diagnoses and reports problems before users realize a problem exists. Monitoring of the NSI TCP/IP Network is currently being done with Proteon's Overview monitoring system. The Overview monitoring system displays a map of the NSI network utilizing various colors to indicate the conditions of the components being monitored. Each node or site is polled via the Simple Network Monitoring Protocol (SNMP). If a circuit goes down, Overview alerts the Network Operations staff with an audible alarm and changes the color of the component. When an alert is received, Network Operations personnel immediately verify and diagnose the problem, coordinate repair with other networking service groups, track problems, and document problem and resolution into a trouble ticket data base. NSI Operations offers the NSI science community reliable connectivity by exercising prompt assessment and resolution of network problems.

  5. Skylab IMSS checklist application study for emergency medical care. [emergency medical care operations involving the use and operation of the portable ambulance module

    NASA Technical Reports Server (NTRS)

    Carl, J. G.; Furukawa, S.

    1975-01-01

    A manual is presented that provides basic technical documentation to support the operation and utilization of the Portable Ambulance Module (PAM) in the field. The PAM is designed to be used for emergency resuscitation and victim monitoring. The functions of all the controls, displays, and stowed equipment of the unit are defined. Supportive medical and physiological data in those areas directly related to the uses of the PAM unit are presented.

  6. Opening School-Based Health Centers in a Rural Setting: Effects on Emergency Department Use

    ERIC Educational Resources Information Center

    Schwartz, Katherine E.; Monie, Daphne; Scribani, Melissa B.; Krupa, Nicole L.; Jenkins, Paul; Leinhart, August; Kjolhede, Chris L.

    2016-01-01

    Background: Previous studies of urban school-based health centers (SBHCs) have shown that SBHCs decrease emergency department (ED) utilization. This study seeks to evaluate the effect of SBHCs on ED utilization in a rural setting. Methods: This retrospective, controlled, quasi-experimental study used an ED patient data set from the Bassett…

  7. The Network Operations Control Center upgrade task: Lessons learned

    NASA Technical Reports Server (NTRS)

    Sherif, J. S.; Tran, T.-L.; Lee, S.

    1994-01-01

    This article synthesizes and describes the lessons learned from the Network Operations Control Center (NOCC) upgrade project, from the requirements phase through development and test and transfer. At the outset, the NOCC upgrade was being performed simultaneously with two other interfacing and dependent upgrades at the Signal Processing Center (SPC) and Ground Communications Facility (GCF), thereby adding a significant measure of complexity to the management and overall coordination of the development and transfer-to-operations (DTO) effort. Like other success stories, this project carried with it the traditional elements of top management support and exceptional dedication of cognizant personnel. Additionally, there were several NOCC-specific reasons for success, such as end-to-end system engineering, adoption of open-system architecture, thorough requirements management, and use of appropriate off-the-shelf technologies. On the other hand, there were several difficulties, such as ill-defined external interfaces, transition issues caused by new communications protocols, ambivalent use of two sets of policies and standards, and mistailoring of the new JPL management standard (due to the lack of practical guidelines). This article highlights the key lessons learned, as a means of constructive suggestions for the benefit of future projects.

  8. Space Operations Center system analysis study extension. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The analysis fo Space Operations Center (SOC) systems is summarized. Design considerations, configurations of the manned orbital space station, planned operational and research missions, and subsystem tradeoffs are considered. Integration into the space transportation system is discussed. A modular design concept permitting growth of the SOC as its functions are expanded is described. Additional considerations are special requirements for habitat modules, design modifications needed to operate in geosynchronous orbits, and use of the external tank for cryogenic propellant storage or as a pressurized hangar. A cost summary is presented.

  9. The Emerging Role of Regional Service Centers: Proceedings of the National Conference of NFIRE, The National Federation for the Improvement of Rural Education (2nd, Las Vegas, Nevada, January 30 - February 1, 1974).

    ERIC Educational Resources Information Center

    ERIC Clearinghouse on Rural Education and Small Schools, Las Cruces, NM.

    The National Federation for the Improvement of Rural Education (NFIRE) Conference on the Emerging Role of Regional Service Centers (RESA), a gathering of educational leaders from 19 States, was held in January 1974 (Las Vegas, Nevada). It examined alternatives and resolved issues related to the development, organization, and operation of RESA's…

  10. On the neural substrates leading to the emergence of mental operational structures

    NASA Technical Reports Server (NTRS)

    Ogmen, H.

    1993-01-01

    A developmental approach to the study of the emergence of mental operational structures in neural networks is presented. Neural architectures proposed to underlie the six stages of the sensory-motor period are discussed.

  11. Alternate NASDA Payload Specialists in the Huntsville Operations Support Center (HOSC) Spacelab

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The science laboratory, Spacelab-J (SL-J), flown aboard the STS-47 flight was a joint venture between NASA and the National Space Development Agency of Japan (NASDA) utilizing a manned Spacelab module. The mission conducted 24 materials science and 20 life science experiments, of which 35 were sponsored by NASDA, 7 by NASA, and two collaborative efforts. Materials science investigations covered such fields as biotechnology, electronic materials, fluid dynamics and transport phenomena, glasses and ceramics, metals and alloys, and acceleration measurements. Life sciences included experiments on human health, cell separation and biology, developmental biology, animal and human physiology and behavior, space radiation, and biological rhythms. Test subjects included the crew, Japanese koi fish (carp), cultured animal and plant cells, chicken embryos, fruit flies, fungi and plant seeds, and frogs and frog eggs. Pictured in the Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) of Marshall Space Flight Center (MSFC) are NASDA alternate payload specialists Dr. Doi and Dr. Mukai.

  12. Emergency care centers--an efficient method for mitigation of consequences after a dirty bomb attack.

    PubMed

    Miska, Horst

    2012-08-01

    For emergency preparedness and response with respect to nuclear power plant accidents, the concept of Emergency Care Centers has been developed in Germany. This setup aims at monitoring contamination, to decontaminate if needed, assess the dose, and perform an initial medical evaluation of people who might have been affected by the accident. The concept has been tested in many exercises. In response to a terrorist attack involving a dirty bomb, this concept may prove useful for attending contaminated people who are not severely injured.

  13. 49 CFR 192.605 - Procedural manual for operations, maintenance, and emergencies.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... maintenance activities and for emergency response. For transmission lines, the manual must also include... and effective manner. (5) Starting up and shutting down any part of the pipeline in a manner designed... control room management procedures required by § 192.631. (c) Abnormal operation. For transmission lines...

  14. Statistical process control: separating signal from noise in emergency department operations.

    PubMed

    Pimentel, Laura; Barrueto, Fermin

    2015-05-01

    Statistical process control (SPC) is a visually appealing and statistically rigorous methodology very suitable to the analysis of emergency department (ED) operations. We demonstrate that the control chart is the primary tool of SPC; it is constructed by plotting data measuring the key quality indicators of operational processes in rationally ordered subgroups such as units of time. Control limits are calculated using formulas reflecting the variation in the data points from one another and from the mean. SPC allows managers to determine whether operational processes are controlled and predictable. We review why the moving range chart is most appropriate for use in the complex ED milieu, how to apply SPC to ED operations, and how to determine when performance improvement is needed. SPC is an excellent tool for operational analysis and quality improvement for these reasons: 1) control charts make large data sets intuitively coherent by integrating statistical and visual descriptions; 2) SPC provides analysis of process stability and capability rather than simple comparison with a benchmark; 3) SPC allows distinction between special cause variation (signal), indicating an unstable process requiring action, and common cause variation (noise), reflecting a stable process; and 4) SPC keeps the focus of quality improvement on process rather than individual performance. Because data have no meaning apart from their context, and every process generates information that can be used to improve it, we contend that SPC should be seriously considered for driving quality improvement in emergency medicine. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. ESOC - The satellite operation center of the European Space Agency

    NASA Astrophysics Data System (ADS)

    Dworak, H. P.

    1980-04-01

    The operation and individual functions of the European Space Operation Center (ESOC) that controls the flight of ESA satellites are presented. The main role of the ESOC is discussed and its division into three areas: telemetry, remote piloting, and tracking is outlined. Attention is given to the manipulation of experimental data collected on board the satellites as well as to the functions of the individual ground stations. A block diagram of the information flow to the Meteosat receiving station is presented along with the network outlay of data flow between the ground stations and the ESOC. Distribution of tasks between the ground operation manager, spacecraft operations manager, and flight dynamic software coordinator is discussed with reference to a mission team. A short description of the current missions including COS-B, GEOS-1 and 2, Meteosat, OTS, and ISEE-B is presented

  16. Vocal symptoms, voice activity, and participation profile and professional performance of call center operators.

    PubMed

    Piwowarczyk, Tatiana Carvalho; Oliveira, Gisele; Lourenço, Luciana; Behlau, Mara

    2012-03-01

    To analyze the phonatory and laryngopharyngeal symptoms reported by call center operators; and quantify the impact of these symptoms on quality of life, and the association between these issues and professional performance, number of monthly calls, and number of missed workdays. Call center operators (n=157) from a billing call center completed the Vocal Signs and Symptoms Questionnaire and the Brazilian version of the Voice Activity and Participation Profile (VAPP). The company provided data regarding professional performance, average number of monthly calls, and number of missed workdays for each employee. The mean number of current symptoms (6.8) was greater in the operators than data for the general population (1.7). On average, 4.2 symptoms were attributed to occupational factors. The average number of symptoms did not correlate with professional performance (P=0.571). However, fewer symptoms correlated with decreased missed workdays and higher mean monthly call figures. The VAPP scores were relatively low, suggesting little impact of voice difficulties on call center operator's quality of life. However, subjects with elevated VAPP scores also had poorer professional performance. The presence of vocal symptoms does not necessarily relate to decreased professional performance. However, an association between higher vocal activity limitation and participation scores and poorer professional performance was observed. Copyright © 2012 The Voice Foundation. Published by Mosby, Inc. All rights reserved.

  17. A Study of Fuel Supplies for Emergency Power Generation at Air Logistics Centers.

    DTIC Science & Technology

    1980-06-01

    D-AD087 088 AIR FORCE INST OF TECH WRIGHT-PATTERSON AFB OH SCHOOL--ETC F/. I"/. STUDY OF FUEL SUPPLIES FOR EMERGENCY POWER GENERATION AT AIR -ETCIU...public release; distribution unlimited 17. DISTRIBUTION STATEMENT (at thme abstract sneered lei Black 20. 1 itoINt~ &P 190-17. FlEDiC C. L N uS "il I...operations required by a wartime scenario may depend upon the use of emergency back-up generators to provide electrical power to critical facilities. After

  18. Managing and Communicating Operational Workflow

    PubMed Central

    Weinberg, Stuart T.; Danciu, Ioana; Unertl, Kim M.

    2016-01-01

    Summary Background Healthcare team members in emergency department contexts have used electronic whiteboard solutions to help manage operational workflow for many years. Ambulatory clinic settings have highly complex operational workflow, but are still limited in electronic assistance to communicate and coordinate work activities. Objective To describe and discuss the design, implementation, use, and ongoing evolution of a coordination and collaboration tool supporting ambulatory clinic operational workflow at Vanderbilt University Medical Center (VUMC). Methods The outpatient whiteboard tool was initially designed to support healthcare work related to an electronic chemotherapy order-entry application. After a highly successful initial implementation in an oncology context, a high demand emerged across the organization for the outpatient whiteboard implementation. Over the past 10 years, developers have followed an iterative user-centered design process to evolve the tool. Results The electronic outpatient whiteboard system supports 194 separate whiteboards and is accessed by over 2800 distinct users on a typical day. Clinics can configure their whiteboards to support unique workflow elements. Since initial release, features such as immunization clinical decision support have been integrated into the system, based on requests from end users. Conclusions The success of the electronic outpatient whiteboard demonstrates the usefulness of an operational workflow tool within the ambulatory clinic setting. Operational workflow tools can play a significant role in supporting coordination, collaboration, and teamwork in ambulatory healthcare settings. PMID:27081407

  19. Estimates of emergency operating capacity in US manufacturing and nonmanufacturing industries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belzer, D.B.; Serot, D.E.; Kellogg, M.A.

    1991-03-01

    Development of integrated mobilization preparedness policies requires planning estimates of available productive capacity during national emergency conditions. Such estimates must be developed in a manner that allows evaluation of current trends in capacity and the consideration of uncertainties in various data inputs and in engineering assumptions. This study, conducted by Pacific Northwest Laboratory (PNL), developed estimates of emergency operating capacity (EOC) for 446 manufacturing industries at the 4-digit Standard Industrial Classification (SIC) level of aggregation and for 24 key non-manufacturing sectors. This volume presents tabular and graphical results of the historical analysis and projections for each SIC industry. (JF)

  20. 20 CFR 638.531 - Limitation on the use of students in emergency projects.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... emergency projects. 638.531 Section 638.531 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR JOB CORPS PROGRAM UNDER TITLE IV-B OF THE JOB TRAINING PARTNERSHIP ACT Center Operations § 638.531 Limitation on the use of students in emergency projects. The Job Corps Director shall develop...

  1. Notification: Audit on Status of Corrective Actions to Address Operational Deficiencies at the EPA’s National Center for Radiation Field Operations

    EPA Pesticide Factsheets

    Project #OA-FY16-0179, May 5, 2016. The EPA OIG plans to begin research on EPA actions to address operational deficiencies relative to QA requirements and staff technical competencies at the National Center for Radiation Field Operations (NCRFO).

  2. Education and Training of Emergency Medical Teams: Recommendations for a Global Operational Learning Framework.

    PubMed

    Amat Camacho, Nieves; Hughes, Amy; Burkle, Frederick M; Ingrassia, Pier Luigi; Ragazzoni, Luca; Redmond, Anthony; Norton, Ian; von Schreeb, Johan

    2016-10-21

    An increasing number of international emergency medical teams are deployed to assist disaster-affected populations worldwide. Since Haiti earthquake those teams have been criticised for ill adapted care, lack of preparedness in addition to not coordinating with the affected country healthcare system. The Emergency Medical Teams (EMTs) initiative, as part of the Word Health Organization's Global Health Emergency Workforce program, aims to address these shortcomings by improved EMT coordination, and mechanisms to ensure quality and accountability of national and international EMTs. An essential component to reach this goal is appropriate education and training. Multiple disaster education and training programs are available. However, most are centred on individuals' professional development rather than on the EMTs operational performance. Moreover, no common overarching or standardised training frameworks exist. In this report, an expert panel review and discuss the current approaches to disaster education and training and propose a three-step operational learning framework that could be used for EMTs globally. The proposed framework includes the following steps: 1) ensure professional competence and license to practice, 2) support adaptation of technical and non-technical professional capacities into the low-resource and emergency context and 3) prepare for an effective team performance in the field. A combination of training methodologies is also recommended, including individual theory based education, immersive simulations and team training. Agreed curriculum and open access training materials for EMTs need to be further developed, ideally through collaborative efforts between WHO, operational EMT organizations, universities, professional bodies and training agencies.  Keywords: disasters; education; emergencies; global health; learning.

  3. Education and Training of Emergency Medical Teams: Recommendations for a Global Operational Learning Framework

    PubMed Central

    Amat Camacho, Nieves; Hughes, Amy; Burkle, Frederick M.; Ingrassia, Pier Luigi; Ragazzoni, Luca; Redmond, Anthony; Norton, Ian; von Schreeb, Johan

    2016-01-01

    An increasing number of international emergency medical teams are deployed to assist disaster-affected populations worldwide. Since Haiti earthquake those teams have been criticised for ill adapted care, lack of preparedness in addition to not coordinating with the affected country healthcare system. The Emergency Medical Teams (EMTs) initiative, as part of the Word Health Organization’s Global Health Emergency Workforce program, aims to address these shortcomings by improved EMT coordination, and mechanisms to ensure quality and accountability of national and international EMTs. An essential component to reach this goal is appropriate education and training. Multiple disaster education and training programs are available. However, most are centred on individuals’ professional development rather than on the EMTs operational performance. Moreover, no common overarching or standardised training frameworks exist. In this report, an expert panel review and discuss the current approaches to disaster education and training and propose a three-step operational learning framework that could be used for EMTs globally. The proposed framework includes the following steps: 1) ensure professional competence and license to practice, 2) support adaptation of technical and non-technical professional capacities into the low-resource and emergency context and 3) prepare for an effective team performance in the field. A combination of training methodologies is also recommended, including individual theory based education, immersive simulations and team training. Agreed curriculum and open access training materials for EMTs need to be further developed, ideally through collaborative efforts between WHO, operational EMT organizations, universities, professional bodies and training agencies.  Keywords: disasters; education; emergencies; global health; learning PMID:27917306

  4. The MMS Science Data Center. Operations, Capabilities, and Data Availability.

    NASA Astrophysics Data System (ADS)

    Larsen, Kristopher; Pankratz, Chris; Giles, Barbara; Kokkonen, Kim; Putnam, Brian; Schafer, Corey; Baker, Dan; Burch, Jim

    2016-04-01

    On September 1, 2015 the Magnetospheric MultiScale (MMS) constellation of satellites completed their six-month commissioning period and began collecting data under nominal conditions. Science operations for the mission are conducted at the Science Operations Center (SOC) at the Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, Colorado, USA. The Science Data Center (SDC) is a component of the SOC responsible for the data production, management, distribution, archiving, and visualization of the data from the Solving Magnetospheric Acceleration, Reconnection, and Turbulence (SMART) instrument package on board the spacecraft. The mission collects several gigabytes of particle and field data per day, but the constraints on download volumes require efficient tools to manage the selection, transmission, and analysis of data to determine the highest value science data to downlink. This is the Scientist-in-the-Loop (SITL) program and is a critical piece of the MMS science data operations. As of March 2016, MMS science data is available to the entire science community. This includes both the survey data as well as the ultra-high resolution burst data downlinked through the SITL process. This presentation will explain the data and demonstrate the tools available to the community via the SDC so as to encourage as many scientists as possible to look at the wealth of magnetospheric data being produced and made available from MMS.

  5. SLAC Occupational Health Center

    Science.gov Websites

    Images ESH Home > SLAC Occupational Health Center SLAC Occupational Health Center Medical Emergency After Hours Care Services at SLAC Wellness Programs SLAC Occupational Health Center Monday - Friday 8:00 nearest emergency department to SLAC is the Stanford Health Care Emergency Department, open 24/7, located

  6. Middleware Evaluation and Benchmarking for Use in Mission Operations Centers

    NASA Technical Reports Server (NTRS)

    Antonucci, Rob; Waktola, Waka

    2005-01-01

    Middleware technologies have been promoted as timesaving, cost-cutting alternatives to the point-to-point communication used in traditional mission operations systems. However, missions have been slow to adopt the new technology. The lack of existing middleware-based missions has given rise to uncertainty about middleware's ability to perform in an operational setting. Most mission architects are also unfamiliar with the technology and do not know the benefits and detriments to architectural choices - or even what choices are available. We will present the findings of a study that evaluated several middleware options specifically for use in a mission operations system. We will address some common misconceptions regarding the applicability of middleware-based architectures, and we will identify the design decisions and tradeoffs that must be made when choosing a middleware solution. The Middleware Comparison and Benchmark Study was conducted at NASA Goddard Space Flight Center to comprehensively evaluate candidate middleware products, compare and contrast the performance of middleware solutions with the traditional point- to-point socket approach, and assess data delivery and reliability strategies. The study focused on requirements of the Global Precipitation Measurement (GPM) mission, validating the potential use of middleware in the GPM mission ground system. The study was jointly funded by GPM and the Goddard Mission Services Evolution Center (GMSEC), a virtual organization for providing mission enabling solutions and promoting the use of appropriate new technologies for mission support. The study was broken into two phases. To perform the generic middleware benchmarking and performance analysis, a network was created with data producers and consumers passing data between themselves. The benchmark monitored the delay, throughput, and reliability of the data as the characteristics were changed. Measurements were taken under a variety of topologies, data demands

  7. Lessons learned from the introduction of autonomous monitoring to the EUVE science operations center

    NASA Technical Reports Server (NTRS)

    Lewis, M.; Girouard, F.; Kronberg, F.; Ringrose, P.; Abedini, A.; Biroscak, D.; Morgan, T.; Malina, R. F.

    1995-01-01

    The University of California at Berkeley's (UCB) Center for Extreme Ultraviolet Astrophysics (CEA), in conjunction with NASA's Ames Research Center (ARC), has implemented an autonomous monitoring system in the Extreme Ultraviolet Explorer (EUVE) science operations center (ESOC). The implementation was driven by a need to reduce operations costs and has allowed the ESOC to move from continuous, three-shift, human-tended monitoring of the science payload to a one-shift operation in which the off shifts are monitored by an autonomous anomaly detection system. This system includes Eworks, an artificial intelligence (AI) payload telemetry monitoring package based on RTworks, and Epage, an automatic paging system to notify ESOC personnel of detected anomalies. In this age of shrinking NASA budgets, the lessons learned on the EUVE project are useful to other NASA missions looking for ways to reduce their operations budgets. The process of knowledge capture, from the payload controllers for implementation in an expert system, is directly applicable to any mission considering a transition to autonomous monitoring in their control center. The collaboration with ARC demonstrates how a project with limited programming resources can expand the breadth of its goals without incurring the high cost of hiring additional, dedicated programmers. This dispersal of expertise across NASA centers allows future missions to easily access experts for collaborative efforts of their own. Even the criterion used to choose an expert system has widespread impacts on the implementation, including the completion time and the final cost. In this paper we discuss, from inception to completion, the areas where our experiences in moving from three shifts to one shift may offer insights for other NASA missions.

  8. Operational Products Archived at the National Snow and Ice Data Center

    NASA Astrophysics Data System (ADS)

    Fetterer, F. M.; Ballagh, L.; Gergely, K.; Kovarik, J.; Wallace, A.; Windnagel, A.

    2009-12-01

    Sea ice charts for shipping interests from the Navy/NOAA/Coast Guard National Ice Center are often laboriously produced by manually interpreting and synthesizing data from many sources, both satellite and in situ. They are generally more accurate than similar products from single sources. Upward looking sonar data from U.S. Navy submarines operating in the Arctic provides information on ice thickness. Similarly extensive data were available from no other source prior to the recently established reliability of ice thickness estimates from polar orbiting instruments like the Geoscience Laser Altimeter System (GLAS). Snow Data Assimilation System (SNODAS) products from the NOAA NWS National Operational Hydrologic Remote Sensing Center give researchers the best possible estimates of snow cover and associated variables to support hydrologic modeling and analysis for the continental U.S. These and other snow and ice data products are produced by the U.S. Navy, the NOAA National Weather Service, and other agency entities to serve users who have an operational need: to get a ship safely to its destination, for example, or to predict stream flow. NOAA supports work at NSIDC with data from operational sources that can be used for climate research and change detection. We make these products available to a new user base, by archiving operational data, making data available online, providing documentation, and fielding questions from researchers about the data. These data demand special consideration: often they are advantageous because they are available on a schedule in near real time, but their use in climate studies is problematic since many are produced with regard for ‘best now’ and without regard for time series consistency. As arctic climate changes rapidly, operational and semi-operational products have an expanding science support role to play.

  9. Application of reliability-centered-maintenance to BWR ECCS motor operator valve performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feltus, M.A.; Choi, Y.A.

    1993-01-01

    This paper describes the application of reliability-centered maintenance (RCM) methods to plant probabilistic risk assessment (PRA) and safety analyses for four boiling water reactor emergency core cooling systems (ECCSs): (1) high-pressure coolant injection (HPCI); (2) reactor core isolation cooling (RCIC); (3) residual heat removal (RHR); and (4) core spray systems. Reliability-centered maintenance is a system function-based technique for improving a preventive maintenance program that is applied on a component basis. Those components that truly affect plant function are identified, and maintenance tasks are focused on preventing their failures. The RCM evaluation establishes the relevant criteria that preserve system function somore » that an RCM-focused approach can be flexible and dynamic.« less

  10. Safety management of a complex R&D ground operating system

    NASA Technical Reports Server (NTRS)

    Connors, J. F.; Maurer, R. A.

    1975-01-01

    A perspective on safety program management has been developed for a complex R&D operating system, such as the NASA-Lewis Research Center. Using a systems approach, hazardous operations are subjected to third-party reviews by designated area safety committees and are maintained under safety permit controls. To insure personnel alertness, emergency containment forces and employees are trained in dry-run emergency simulation exercises. The keys to real safety effectiveness are top management support and visibility of residual risks.

  11. Alternate NASDA Payload Specialists in the Huntsville Operations Support Center (HOSC) Spacelab

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The science laboratory, Spacelab-J (SL-J), flown aboard the STS-47 flight was a joint venture between NASA and the National Space Development Agency of Japan (NASDA) utilizing a manned Spacelab module. The mission conducted 24 materials science and 20 life science experiments, of which 35 were sponsored by NASDA, 7 by NASA, and two collaborative efforts. Materials science investigations covered such fields as biotechnology, electronic materials, fluid dynamics and transport phenomena, glasses and ceramics, metals and alloys, and acceleration measurements. Life sciences included experiments on human health, cell separation and biology, developmental biology, animal and human physiology and behavior, space radiation, and biological rhythms. Test subjects included the crew, Japanese koi fish (carp), cultured animal and plant cells, chicken embryos, fruit flies, fungi and plant seeds, and frogs and frog eggs. Pictured along with George Norris in the Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at Marshall Space Flight Center (MSFC) are NASDA alternate payload specialists Dr. Doi and Dr. Mukai.

  12. 33 CFR 334.1170 - San Pablo Bay, Calif.; gunnery range, Naval Inshore Operations Training Center, Mare Island...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... range, Naval Inshore Operations Training Center, Mare Island, Vallejo. 334.1170 Section 334.1170... Operations Training Center, Mare Island, Vallejo. (a) The danger zone. A sector in San Pablo Bay delineated... regulations. The Commanding Officer, Coastal River Division Eleven, Department of the Navy, Mare Island...

  13. 33 CFR 334.1170 - San Pablo Bay, Calif.; gunnery range, Naval Inshore Operations Training Center, Mare Island...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... range, Naval Inshore Operations Training Center, Mare Island, Vallejo. 334.1170 Section 334.1170... Operations Training Center, Mare Island, Vallejo. (a) The Danger Zone. A sector in San Pablo Bay delineated... regulations. The Commanding Officer, Coastal River Division Eleven, Department of the Navy, Mare Island...

  14. 33 CFR 334.1170 - San Pablo Bay, Calif.; gunnery range, Naval Inshore Operations Training Center, Mare Island...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... range, Naval Inshore Operations Training Center, Mare Island, Vallejo. 334.1170 Section 334.1170... Operations Training Center, Mare Island, Vallejo. (a) The Danger Zone. A sector in San Pablo Bay delineated... regulations. The Commanding Officer, Coastal River Division Eleven, Department of the Navy, Mare Island...

  15. 33 CFR 334.1170 - San Pablo Bay, Calif.; gunnery range, Naval Inshore Operations Training Center, Mare Island...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... range, Naval Inshore Operations Training Center, Mare Island, Vallejo. 334.1170 Section 334.1170... Operations Training Center, Mare Island, Vallejo. (a) The Danger Zone. A sector in San Pablo Bay delineated... regulations. The Commanding Officer, Coastal River Division Eleven, Department of the Navy, Mare Island...

  16. 33 CFR 334.1170 - San Pablo Bay, Calif.; gunnery range, Naval Inshore Operations Training Center, Mare Island...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... range, Naval Inshore Operations Training Center, Mare Island, Vallejo. 334.1170 Section 334.1170... Operations Training Center, Mare Island, Vallejo. (a) The Danger Zone. A sector in San Pablo Bay delineated... regulations. The Commanding Officer, Coastal River Division Eleven, Department of the Navy, Mare Island...

  17. Space Weather Forecasting at the Joint Space Operations Center (JSpOC)

    NASA Astrophysics Data System (ADS)

    Nava, O.

    2012-12-01

    The Joint Space Operations Center (JSpOC) at Vandenberg Air Force Base is the command and control focal point for the operational employment of worldwide joint space forces. The JSpOC focuses on planning and executing US Strategic Command's Joint Functional Component Command for Space (JFCC SPACE) mission. Through the JSpOC, the Weather Specialty Team (WST) monitors space and terrestrial weather effects, plans and assesses weather impacts on military operations, and provides reach-back support for deployed theater solar and terrestrial needs. This presentation will detail how space weather affects the JSpOC mission set and how the scientific community can enhance the WST's capabilities and effectiveness.

  18. Preliminary Investigation of Time Remaining Display on the Computer-based Emergency Operating Procedure

    NASA Astrophysics Data System (ADS)

    Suryono, T. J.; Gofuku, A.

    2018-02-01

    One of the important thing in the mitigation of accidents in nuclear power plant accidents is time management. The accidents should be resolved as soon as possible in order to prevent the core melting and the release of radioactive material to the environment. In this case, operators should follow the emergency operating procedure related with the accident, in step by step order and in allowable time. Nowadays, the advanced main control rooms are equipped with computer-based procedures (CBPs) which is make it easier for operators to do their tasks of monitoring and controlling the reactor. However, most of the CBPs do not include the time remaining display feature which informs operators of time available for them to execute procedure steps and warns them if the they reach the time limit. Furthermore, the feature will increase the awareness of operators about their current situation in the procedure. This paper investigates this issue. The simplified of emergency operating procedure (EOP) of steam generator tube rupture (SGTR) accident of PWR plant is applied. In addition, the sequence of actions on each step of the procedure is modelled using multilevel flow modelling (MFM) and influenced propagation rule. The prediction of action time on each step is acquired based on similar case accidents and the Support Vector Regression. The derived time will be processed and then displayed on a CBP user interface.

  19. Partnering to develop a talent pipeline for emerging health leaders in operations research.

    PubMed

    Ng, Alfred; Henshaw, Carly; Carter, Michael

    2017-05-01

    In initiating its first central office for Quality Improvement (QI), The Scarborough Hospital (TSH) sought to accelerate momentum towards achieving its "Quality and Sustainability" strategic priority by building internal capacity in the emerging QI specialty of operations research. The Scarborough Hospital reviewed existing models of talent management in conjunction with Lean and improvement philosophies. Through simple guiding principles and in collaboration with the University of Toronto's Centre for Healthcare Engineering, TSH developed a targeted approach to talent management for Operations Research (OR) in the Office of Innovation and Performance Improvement, reduced the time from staffing need to onboarding, accelerated the development of new staff in delivering QI and OR projects, and defined new structures and processes to retain and develop this group of new emerging health leaders.

  20. Comparing Methodologies for Evaluating Emergency Medical Services Ground Transport Access to Time-critical Emergency Services: A Case Study Using Trauma Center Care.

    PubMed

    Doumouras, Aristithes G; Gomez, David; Haas, Barbara; Boyes, Donald M; Nathens, Avery B

    2012-09-01

    The regionalization of medical services has resulted in improved outcomes and greater compliance with existing guidelines. For certain "time-critical" conditions intimately associated with emergency medicine, early intervention has demonstrated mortality benefits. For these conditions, then, appropriate triage within a regionalized system at first diagnosis is paramount, ideally occurring in the field by emergency medical services (EMS) personnel. Therefore, EMS ground transport access is an important metric in the ongoing evaluation of a regionalized care system for time-critical emergency services. To our knowledge, no studies have demonstrated how methodologies for calculating EMS ground transport access differ in their estimates of access over the same study area for the same resource. This study uses two methodologies to calculate EMS ground transport access to trauma center care in a single study area to explore their manifestations and critically evaluate the differences between the methodologies. Two methodologies were compared in their estimations of EMS ground transport access to trauma center care: a routing methodology (RM) and an as-the-crow-flies methodology (ACFM). These methodologies were adaptations of the only two methodologies that had been previously used in the literature to calculate EMS ground transport access to time-critical emergency services across the United States. The RM and ACFM were applied to the nine Level I and Level II trauma centers within the province of Ontario by creating trauma center catchment areas at 30, 45, 60, and 120 minutes and calculating the population and area encompassed by the catchments. Because the methodologies were identical for measuring air access, this study looks specifically at EMS ground transport access. Catchments for the province were created for each methodology at each time interval, and their populations and areas were significantly different at all time periods. Specifically, the RM calculated

  1. Cognitive Task Analysis and Work-Centered Support System Recommendations for a Deployed Network Operations Support Center (NOSC-D)

    DTIC Science & Technology

    2001-08-01

    This report presents the results of a preliminary Cognitive Task Analysis (CTA) of the deployed Network Operations Support Center (NOSC-D), and the...conducted Cognitive Task Analysis interviews with four (4) NOSC-D personnel. Because of the preliminary nature of the finding, the analysis is

  2. Provision of emergency contraception at student health centers in California community colleges.

    PubMed

    Trieu, Sang Leng; Shenoy, Divya P; Bratton, Sally; Marshak, Helen Hopp

    2011-01-01

    Approximately half of all pregnancies in the United States are unintended, with the highest rates reported among college-age women. The availability of emergency contraception (EC) pills can be an important component of efforts to reduce unintended pregnancy. Student health centers at community colleges can uniquely support student retention and academic achievement among college students by making EC available to reduce the rate of unintended pregnancy and prevent college drop-out. This article highlights findings from an assessment of EC provision in student health centers within the California community college system (n = 73). A web-based survey was used to explore the provision of EC, challenges and barriers of EC administration, promotion of EC availability, and attitudes toward EC. Descriptive statistics conducted revealed that more than 6 out of 10 (62%) student health centers provided EC, 77% of which dispense EC on site during clinic visits. The most common EC promotion methods were providing brochures at the health center (80%) and through information provided at family planning or primary care visits (73%). Challenges to EC administration included a perceived lack of awareness of EC among students (71%), followed by the notion that some students may overutilize EC (40%). Attitudes toward EC provision were more favorable among health center staff whose campuses offered EC than those who did not (p < .05). This article provides recommendations for community college health centers to improve access and delivery of EC by addressing issues such as cost and offering more novel EC promotion methods. Copyright © 2011 Jacobs Institute of Women's Health. Published by Elsevier Inc. All rights reserved.

  3. Manipulating Motivating Operations to Facilitate the Emergence of Mands for a Child with Autism

    ERIC Educational Resources Information Center

    Davis, Barbara Janine; Kahng, SungWoo; Coryat, Kaitlin

    2012-01-01

    Research on the functional independence of verbal operants (Skinner, 1957) has demonstrated inconsistent findings. One explanation may be that these studies have not manipulated the motivating operation (MO) to facilitate the emergence of mands (Hall & Sundberg, 1987; Lamarre & Holland, 1985). In the current study, 1 participant, diagnosed with…

  4. Evaluation of the Emergency Response Dose Assessment System(ERDAS)

    NASA Technical Reports Server (NTRS)

    Evans, Randolph J.; Lambert, Winifred C.; Manobianco, John T.; Taylor, Gregory E.; Wheeler, Mark M.; Yersavich, Ann M.

    1996-01-01

    The emergency response dose assessment system (ERDAS) is a protype software and hardware system configured to produce routine mesoscale meteorological forecasts and enhanced dispersion estimates on an operational basis for the Kennedy Space Center (KSC)/Cape Canaveral Air Station (CCAS) region. ERDAS provides emergency response guidance to operations at KSC/CCAS in the case of an accidental hazardous material release or an aborted vehicle launch. This report describes the evaluation of ERDAS including: evaluation of sea breeze predictions, comparison of launch plume location and concentration predictions, case study of a toxic release, evaluation of model sensitivity to varying input parameters, evaluation of the user interface, assessment of ERDA's operational capabilities, and a comparison of ERDAS models to the ocean breeze dry gultch diffusion model.

  5. Portable Neutron Sensors for Emergency Response Operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ,

    2012-06-24

    This article presents the experimental work performed in the area of neutron detector development at the Remote Sensing Laboratory–Andrews Operations (RSL-AO) sponsored by the U.S. Department of Energy, National Nuclear Security Administration (NNSA) in the last four years. During the 1950s neutron detectors were developed mostly to characterize nuclear reactors where the neutron flux is high. Due to the indirect nature of neutron detection via interaction with other particles, neutron counting and neutron energy measurements have never been as precise as gamma-ray counting measurements and gamma-ray spectroscopy. This indirect nature is intrinsic to all neutron measurement endeavors (except perhaps formore » neutron spin-related experiments, viz. neutron spin-echo measurements where one obtains μeV energy resolution). In emergency response situations generally the count rates are low, and neutrons may be scattered around in inhomogeneous intervening materials. It is also true that neutron sensors are most efficient for the lowest energy neutrons, so it is not as easy to detect and count energetic neutrons. Most of the emergency response neutron detectors are offshoots of nuclear device diagnostics tools and special nuclear materials characterization equipment, because that is what is available commercially. These instruments mostly are laboratory equipment, and not field-deployable gear suited for mobile teams. Our goal is to design and prototype field-deployable, ruggedized, lightweight, efficient neutron detectors.« less

  6. Financial assessment of the Space Operations Center as a Private Business Venture

    NASA Technical Reports Server (NTRS)

    Simon, M.

    1982-01-01

    The possibility of private financing and operation of the Space Operations Center (SOC) is considered as an alternative to SOC development by the government. A hypothetical revenue model for SOC services is constructed and is compared with NASA estimates of SOC development and operating costs. A present value analysis based on a 1985 to 2000 investment horizon shows a potential for substantial profit in a private SOC venture, although the possibility of large losses is not discounted. Present value estimates range from $8.6 billion down to a low minus $3.3 billion.

  7. Operating The Central Process Systems At Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Weiler, Carly P.

    2004-01-01

    As a research facility, the Glenn Research Center (GRC) trusts and expects all the systems, controlling their facilities to run properly and efficiently in order for their research and operations to occur proficiently and on time. While there are many systems necessary for the operations at GRC, one of those most vital systems is the Central Process Systems (CPS). The CPS controls operations used by GRC's wind tunnels, propulsion systems lab, engine components research lab, and compressor, turbine and combustor test cells. Used widely throughout the lab, it operates equipment such as exhausters, chillers, cooling towers, compressors, dehydrators, and other such equipment. Through parameters such as pressure, temperature, speed, flow, etc., it performs its primary operations on the major systems of Electrical Dispatch (ED), Central Air Dispatch (CAD), Central Air Equipment Building (CAEB), and Engine Research Building (ERB). In order for the CPS to continue its operations at Glenn, a new contract must be awarded. Consequently, one of my primary responsibilities was assisting the Source Evaluation Board (SEB) with the process of awarding the recertification contract of the CPS. The job of the SEB was to evaluate the proposals of the contract bidders and then to present their findings to the Source Selecting Official (SSO). Before the evaluations began, the Center Director established the level of the competition. For this contract, the competition was limited to those companies classified as a small, disadvantaged business. After an industry briefing that explained to qualified companies the CPS and type of work required, each of the interested companies then submitted proposals addressing three components: Mission Suitability, Cost, and Past Performance. These proposals were based off the Statement of Work (SOW) written by the SEB. After companies submitted their proposals, the SEB reviewed all three components and then presented their results to the SSO. While the

  8. Information Systems Coordinate Emergency Management

    NASA Technical Reports Server (NTRS)

    2012-01-01

    The rescue crews have been searching for the woman for nearly a week. Hurricane Katrina devastated Hancock County, the southernmost point in Mississippi, and the woman had stayed through the storm in her beach house. There is little hope of finding her alive; the search teams know she is gone because the house is gone. Late at night in the art classroom of the school that is serving as the county s emergency operations center, Craig Harvey is discussing the search with the center s commander. Harvey is the Chief Operating Officer of a unique company called NVision Solutions Inc., based at NASA s Stennis Space Center in Bay St. Louis, only a couple of miles away. He and his entire staff have set up a volunteer operation in the art room, supporting the emergency management efforts using technology and capabilities the company developed through its NASA partnerships. As he talks to the commander, Harvey feels an idea taking shape that might lead them to the woman s location. Working with surface elevation data and hydrological principles, Harvey creates a map showing how the floodwaters from the storm would have flowed along the topography of the region around the woman s former home. Using the map, search crews find the woman s body in 15 minutes. Recovering individuals who have been lost is a sad reality of emergency management in the wake of a disaster like Hurricane Katrina in 2005. But the sooner answers can be provided, the sooner a community s overall recovery can take place. When damage is extensive, resources are scattered, and people are in dire need of food, shelter, and medical assistance, the speed and efficiency of emergency operations can be the key to limiting the impact of a disaster and speeding the process of recovery. And a key to quick and effective emergency planning and response is geographic information. With a host of Earth-observing satellites orbiting the globe at all times, NASA generates an unmatched wealth of data about our ever

  9. Emergency department performance measures updates: proceedings of the 2014 emergency department benchmarking alliance consensus summit.

    PubMed

    Wiler, Jennifer L; Welch, Shari; Pines, Jesse; Schuur, Jeremiah; Jouriles, Nick; Stone-Griffith, Suzanne

    2015-05-01

    The objective was to review and update key definitions and metrics for emergency department (ED) performance and operations. Forty-five emergency medicine leaders convened for the Third Performance Measures and Benchmarking Summit held in Las Vegas, February 21-22, 2014. Prior to arrival, attendees were assigned to workgroups to review, revise, and update the definitions and vocabulary being used to communicate about ED performance and operations. They were provided with the prior definitions of those consensus summits that were published in 2006 and 2010. Other published definitions from key stakeholders in emergency medicine and health care were also reviewed and circulated. At the summit, key terminology and metrics were discussed and debated. Workgroups communicated online, via teleconference, and finally in a face-to-face meeting to reach consensus regarding their recommendations. Recommendations were then posted and open to a 30-day comment period. Participants then reanalyzed the recommendations, and modifications were made based on consensus. A comprehensive dictionary of ED terminology related to ED performance and operation was developed. This article includes definitions of operating characteristics and internal and external factors relevant to the stratification and categorization of EDs. Time stamps, time intervals, and measures of utilization were defined. Definitions of processes and staffing measures are also presented. Definitions were harmonized with performance measures put forth by the Centers for Medicare and Medicaid Services (CMS) for consistency. Standardized definitions are necessary to improve the comparability of EDs nationally for operations research and practice. More importantly, clear precise definitions describing ED operations are needed for incentive-based pay-for-performance models like those developed by CMS. This document provides a common language for front-line practitioners, managers, health policymakers, and researchers.

  10. The academic health center in complex humanitarian emergencies: lessons learned from the 2010 Haiti earthquake.

    PubMed

    Babcock, Christine; Theodosis, Christian; Bills, Corey; Kim, Jimin; Kinet, Melodie; Turner, Madeleine; Millis, Michael; Olopade, Olufunmilayo; Olopade, Christopher

    2012-11-01

    On January 12, 2010, a 7.0-magnitude earthquake struck Haiti. The event disrupted infrastructure and was marked by extreme morbidity and mortality. The global response to the disaster was rapid and immense, comprising multiple actors-including academic health centers (AHCs)-that provided assistance in the field and from home. The authors retrospectively examine the multidisciplinary approach that the University of Chicago Medicine (UCM) applied to postearthquake Haiti, which included the application of institutional structure and strategy, systematic deployment of teams tailored to evolving needs, and the actual response and recovery. The university mobilized significant human and material resources for deployment within 48 hours and sustained the effort for over four months. In partnership with international and local nongovernmental organizations as well as other AHCs, the UCM operated one of the largest and more efficient acute field hospitals in the country. The UCM's efforts in postearthquake Haiti provide insight into the role AHCs can play, including their strengths and limitations, in complex disasters. AHCs can provide necessary intellectual and material resources as well as technical expertise, but the cost and speed required for responding to an emergency, and ongoing domestic responsibilities, may limit the response of a large university and hospital system. The authors describe the strong institutional backing, the detailed predeployment planning and logistical support UCM provided, the engagement of faculty and staff who had previous experience in complex humanitarian emergencies, and the help of volunteers fluent in the local language which, together, made UCM's mission in postearthquake Haiti successful.

  11. Kepler Science Operations Center Pipeline Framework

    NASA Technical Reports Server (NTRS)

    Klaus, Todd C.; McCauliff, Sean; Cote, Miles T.; Girouard, Forrest R.; Wohler, Bill; Allen, Christopher; Middour, Christopher; Caldwell, Douglas A.; Jenkins, Jon M.

    2010-01-01

    The Kepler mission is designed to continuously monitor up to 170,000 stars at a 30 minute cadence for 3.5 years searching for Earth-size planets. The data are processed at the Science Operations Center (SOC) at NASA Ames Research Center. Because of the large volume of data and the memory and CPU-intensive nature of the analysis, significant computing hardware is required. We have developed generic pipeline framework software that is used to distribute and synchronize the processing across a cluster of CPUs and to manage the resulting products. The framework is written in Java and is therefore platform-independent, and scales from a single, standalone workstation (for development and research on small data sets) to a full cluster of homogeneous or heterogeneous hardware with minimal configuration changes. A plug-in architecture provides customized control of the unit of work without the need to modify the framework itself. Distributed transaction services provide for atomic storage of pipeline products for a unit of work across a relational database and the custom Kepler DB. Generic parameter management and data accountability services are provided to record the parameter values, software versions, and other meta-data used for each pipeline execution. A graphical console allows for the configuration, execution, and monitoring of pipelines. An alert and metrics subsystem is used to monitor the health and performance of the pipeline. The framework was developed for the Kepler project based on Kepler requirements, but the framework itself is generic and could be used for a variety of applications where these features are needed.

  12. Metropolitan transportation management center concepts of operation : a cross-cutting study : improving transportation network efficiency

    DOT National Transportation Integrated Search

    1999-10-01

    The implementor and operator of a regional transportation management center (TMC) face a challenging task. Operators of TMCsthe primary point of coordination for managing transportation resourcestypically control millions of dollars of intellig...

  13. Validation and refinement of a rule to predict emergency intervention in adult trauma patients.

    PubMed

    Haukoos, Jason S; Byyny, Richard L; Erickson, Catherine; Paulson, Stephen; Hopkins, Emily; Sasson, Comilla; Bender, Brooke; Gravitz, Craig S; Vogel, Jody A; Colwell, Christopher B; Moore, Ernest E

    2011-08-01

    Trauma centers use "secondary triage" to determine the necessity of trauma surgeon involvement. A clinical decision rule, which includes penetrating injury, an initial systolic blood pressure less than 100 mm Hg, or an initial pulse rate greater than 100 beats/min, was developed to predict which trauma patients require emergency operative intervention or emergency procedural intervention (cricothyroidotomy or thoracotomy) in the emergency department. Our goal was to validate this rule in an adult trauma population and to compare it with the American College of Surgeons' major resuscitation criteria. We used Level I trauma center registry data from September 1, 1995, through November 30, 2008. Outcomes were confirmed with blinded abstractors. Sensitivity, specificity, and 95% confidence intervals (CIs) were calculated. Our patient sample included 20,872 individuals. The median Injury Severity Score was 9 (interquartile range 4 to 16), 15.3% of patients had penetrating injuries, 13.5% had a systolic blood pressure less than 100 mm Hg, and 32.5% had a pulse rate greater than 100 beats/min. Emergency operative intervention or procedural intervention was required in 1,099 patients (5.3%; 95% CI 5.0% to 5.6%). The sensitivities and specificities of the rule and the major resuscitation criteria for predicting emergency operative intervention or emergency procedural intervention were 95.6% (95% CI 94.3% to 96.8%) and 56.1% (95% CI 55.4% to 56.8%) and 85.5% (95% CI 83.3% to 87.5%) and 80.9% (95% CI 80.3% to 81.4%), respectively. This new rule was more sensitive for predicting the need for emergency operative intervention or emergency procedural intervention directly compared with the American College of Surgeons' major resuscitation criteria, which may improve the effectiveness and efficiency of trauma triage. Copyright © 2011 American College of Emergency Physicians. Published by Mosby, Inc. All rights reserved.

  14. Environmental health research recommendations from the Inter-Environmental Health Sciences Core Center Working Group on unconventional natural gas drilling operations.

    PubMed

    Penning, Trevor M; Breysse, Patrick N; Gray, Kathleen; Howarth, Marilyn; Yan, Beizhan

    2014-11-01

    Unconventional natural gas drilling operations (UNGDO) (which include hydraulic fracturing and horizontal drilling) supply an energy source that is potentially cleaner than liquid or solid fossil fuels and may provide a route to energy independence. However, significant concerns have arisen due to the lack of research on the public health impact of UNGDO. Environmental Health Sciences Core Centers (EHSCCs), funded by the National Institute of Environmental Health Sciences (NIEHS), formed a working group to review the literature on the potential public health impact of UNGDO and to make recommendations for needed research. The Inter-EHSCC Working Group concluded that a potential for water and air pollution exists that might endanger public health, and that the social fabric of communities could be impacted by the rapid emergence of drilling operations. The working group recommends research to inform how potential risks could be mitigated. Research on exposure and health outcomes related to UNGDO is urgently needed, and community engagement is essential in the design of such studies.

  15. A 12-month descriptive analysis of emergency intubations at Brooke Army Medical Center: a National Emergency Airway Registry study.

    PubMed

    April, Michael D; Schauer, Steven G; Brown Rd, Calvin A; Ng, Patrick C; Fernandez, Jessie; Fantegrossi, Andrea E; Maddry, Joseph K; Summers, Shane; Sessions, Daniel J; Barnwell, Robert M; Antonacci, Mark

    2017-01-01

    Emergency airway management is a critical skill for military healthcare providers. Our goal was to describe the Emergency Department (ED) intubations at Brooke Army Medical Center (BAMC) over a 12-month period. Physicians performing endotracheal intubations in the BAMC ED complete data collection forms for each intubation event as part of the National Emergency Airway Registry, including patient demographics, intubation techniques, success and failure rates, adverse events, and patient disposition. We cross-referenced these forms against the numbers of intubation events reported in the ED nursing daily reports to ensure capture of all intubations. Providers completed forms for every intubation within 6 weeks of the procedure. We analyzed data from March 28, 2016, to March 27, 2017. During the study period, providers performed 259 intubations in the BAMC ED. Reasons for intubation were related to trauma for 184 patients (71.0%) and medical conditions for 75 patients (29.0%). Overall, first-attempt success was 83.0%. Emergency medicine residents performed a majority of first attempts (95.0%). Most common devices chosen on first attempt were a video laryngoscope for 143 patients (55.2%) and a direct laryngoscope for 115 patients (44.4%). One patient underwent cricothyrotomy. The 2 most common induction agents were ketamine (59.8%; 95% CI, 55.2%-67.4%) and etomidate (19.3%; 95% CI, 14.7%-24.7%). The most common neuromuscular blocking agents were rocuronium (62.9%; 95% CI, 56.7%-68.8%) and succinylcholine (18.9%; 95% CI, 14.3%-24.2%). In the BAMC ED, emergency intubation most commonly occurred for trauma indications using video laryngoscopy with a high first-pass success.

  16. Biosensing and environmental sensing for emergency and protection e-Textiles.

    PubMed

    Magenes, G; Curone, D; Secco, E L; Bonfiglio, A

    2011-01-01

    The ProeTEX project introduced for the first time a complete set of smart garments integrating sensors for the physiological and environmental monitoring of emergency operators. These "smart" garments have been deeply tested in emergency-like contexts by professional rescuers, in order to assess real-time acquisition, processing and transmission of data from moving subjects while operating in harsh conditions. Here we report an overview of the main results obtained during field trials performed in 2010 by Italian and French professional firefighters, in specialized training centers, while dressing the ProeTEX prototypes. Results clearly demonstrate the benefit and step forward of such a system in order to monitor and coordinate rescuers even during intervention far away from the emergency headquarter.

  17. Safety management of a complex R and D ground operating system

    NASA Technical Reports Server (NTRS)

    Connors, J. F.; Maurer, R. A.

    1975-01-01

    A perspective on safety program management was developed for a complex R&D operating system, such as the NASA-Lewis Research Center. Using a systems approach, hazardous operations are subjected to third-party reviews by designated-area safety committees and are maintained under safety permit controls. To insure personnel alertness, emergency containment forces and employees are trained in dry-run emergency simulation exercises. The keys to real safety effectiveness are top management support and visibility of residual risks.

  18. Capabilities for Clinical Management of Radiation Injuries of the Nikiforov Russian Center of Emergency and Radiation Medicine (EMERCOM of Russia).

    PubMed

    Aleksanin, S

    2016-09-01

    This article presents an overview of the capabilities for clinical management of radiation injuries available at the Nikiforov Russian Center of Emergency and Radiation Medicine (NRCERM) of the Ministry of the Russian Federation for Civil Defense, Emergencies and Elimination of Consequences of Natural Disasters (EMERCOM). NRCERM is a federal state budgetary institution and the Russian Federation's head organization for providing medical assistance for persons overexposed to ionizing radiation, responders to radiation emergencies and people evacuated from radiation contaminated areas. As the WHO Collaborating Center for Treatment and Rehabilitation of Accident Recovery Workers of Nuclear and Other Disasters and a member of the WHO Radiation Emergency Medical Preparedness and Assistance Network (REMPAN), NRCERM is prepared to provide assistance and technical support in case of a radiation accident. For this purpose, NRCERM hospitals are equipped with technologically advanced facilities and possess well-trained specialist staff. © World Health Organisation 2016. All rights reserved. The World Health Organization has granted Oxford University Press permission for the reproduction of this article.

  19. NASA Headquarters Space Operations Center: Providing Situational Awareness for Spaceflight Contingency Response

    NASA Technical Reports Server (NTRS)

    Maxwell, Theresa G.; Bihner, William J.

    2010-01-01

    This paper discusses the NASA Headquarters mishap response process for the Space Shuttle and International Space Station programs, and how the process has evolved based on lessons learned from the Space Shuttle Challenger and Columbia accidents. It also describes the NASA Headquarters Space Operations Center (SOC) and its special role in facilitating senior management's overall situational awareness of critical spaceflight operations, before, during, and after a mishap, to ensure a timely and effective contingency response.

  20. Marginal analysis in assessing factors contributing time to physician in the Emergency Department using operations data.

    PubMed

    Pathan, Sameer A; Bhutta, Zain A; Moinudheen, Jibin; Jenkins, Dominic; Silva, Ashwin D; Sharma, Yogdutt; Saleh, Warda A; Khudabakhsh, Zeenat; Irfan, Furqan B; Thomas, Stephen H

    2016-01-01

    Background: Standard Emergency Department (ED) operations goals include minimization of the time interval (tMD) between patients' initial ED presentation and initial physician evaluation. This study assessed factors known (or suspected) to influence tMD with a two-step goal. The first step was generation of a multivariate model identifying parameters associated with prolongation of tMD at a single study center. The second step was the use of a study center-specific multivariate tMD model as a basis for predictive marginal probability analysis; the marginal model allowed for prediction of the degree of ED operations benefit that would be affected with specific ED operations improvements. Methods: The study was conducted using one month (May 2015) of data obtained from an ED administrative database (EDAD) in an urban academic tertiary ED with an annual census of approximately 500,000; during the study month, the ED saw 39,593 cases. The EDAD data were used to generate a multivariate linear regression model assessing the various demographic and operational covariates' effects on the dependent variable tMD. Predictive marginal probability analysis was used to calculate the relative contributions of key covariates as well as demonstrate the likely tMD impact on modifying those covariates with operational improvements. Analyses were conducted with Stata 14MP, with significance defined at p  < 0.05 and confidence intervals (CIs) reported at the 95% level. Results: In an acceptable linear regression model that accounted for just over half of the overall variance in tMD (adjusted r 2 0.51), important contributors to tMD included shift census ( p  = 0.008), shift time of day ( p  = 0.002), and physician coverage n ( p  = 0.004). These strong associations remained even after adjusting for each other and other covariates. Marginal predictive probability analysis was used to predict the overall tMD impact (improvement from 50 to 43 minutes, p  < 0.001) of consistent

  1. Emergency radiology and mass casualty incidents-report of a mass casualty incident at a level 1 trauma center.

    PubMed

    Bolster, Ferdia; Linnau, Ken; Mitchell, Steve; Roberge, Eric; Nguyen, Quynh; Robinson, Jeffrey; Lehnert, Bruce; Gross, Joel

    2017-02-01

    The aims of this article are to describe the events of a recent mass casualty incident (MCI) at our level 1 trauma center and to describe the radiology response to the event. We also describe the findings and recommendations of our radiology department after-action review. An MCI activation was triggered after an amphibious military vehicle, repurposed for tourist activities, carrying 37 passengers, collided with a charter bus carrying 45 passengers on a busy highway bridge in Seattle, WA, USA. There were 4 deaths at the scene, and 51 patients were transferred to local hospitals following prehospital scene triage. Nineteen patients were transferred to our level 1 trauma center. Eighteen casualties arrived within 72 min. Sixteen arrived within 1 h of the first patient arrival, and 1 casualty was transferred 3 h later having initially been assessed at another hospital. Eighteen casualties (94.7 %) underwent diagnostic imaging in the emergency department. Of these 18 casualties, 15 had a trauma series (portable chest x-ray and x-ray of pelvis). Whole-body trauma computed tomography scans (WBCT) were performed on 15 casualties (78.9 %), 12 were immediate and performed during the initial active phase of the MCI, and 3 WBCTs were delayed. The initial 12 WBCTs were completed in 101 min. The mean number of radiographic studies performed per patient was 3 (range 1-8), and the total number of injuries detected was 88. The surge in imaging requirements during an MCI can be significant and exceed normal operating capacity. This report of our radiology experience during a recent MCI and subsequent after-action review serves to provide an example of how radiology capacity and workflow functioned during an MCI, in order to provide emergency radiologists and response planners with practical recommendations for implementation in the event of a future MCI.

  2. Alimentary tract surgery in the nonagenarian: elective vs. emergent operations.

    PubMed

    Blansfield, Joseph A; Clark, Susan C; Hofmann, Mary T; Morris, Jon B

    2004-01-01

    The objective of this study was to compare elective with emergent surgery in patients over the age of 90 years. We retrospectively reviewed the records of patients over 90 years of age who underwent alimentary tract surgery between 1994 and 2002 at a community teaching hospital. Of 100 patients (mean age 92 years; range 90 to 98 years), 82 were women and 18 were men. Seventy-three percent were admitted from private homes or assisted-living facilities, and 27% came from a skilled-nursing facility (SNF). Major comorbid conditions existed in 93%. Procedures included right hemicolectomy (22%), adhesiolysis and/or small bowel resection (19%), cholecystectomy (14%), left-sided or sigmoid colectomy (11%), and perineal proctectomy (8%). Overall morbidity and mortality were 36% and 15%, respectively. Postoperative complications included respiratory failure and pneumonia (11%), arrhythmias (9%), delirium (7%), congestive heart failure and myocardial infarction (6%), and urinary complications (4%). Twenty-eight percent of the operations were elective, and 72% were emergent. Morbidity and mortality were higher in the emergent group (41% and 19%, respectively) than in the elective group (26% and 4%, respectively; P=0.04), especially for patients with an emergent surgical problem who came from a nursing home (22%). Average length of stay was 12 +/- 10 days (range 2 to 69 days) with little difference between elective and emergent cases. Sixty-four percent of patients were discharged to skilled-nursing facilities. Alimentary tract surgery can be performed safely in nonagenarians, and they should not be denied surgical care solely because of age.

  3. Implementing Data Definition Consistency for Emergency Department Operations Benchmarking and Research.

    PubMed

    Yiadom, Maame Yaa A B; Scheulen, James; McWade, Conor M; Augustine, James J

    2016-07-01

    The objective was to obtain a commitment to adopt a common set of definitions for emergency department (ED) demographic, clinical process, and performance metrics among the ED Benchmarking Alliance (EDBA), ED Operations Study Group (EDOSG), and Academy of Academic Administrators of Emergency Medicine (AAAEM) by 2017. A retrospective cross-sectional analysis of available data from three ED operations benchmarking organizations supported a negotiation to use a set of common metrics with identical definitions. During a 1.5-day meeting-structured according to social change theories of information exchange, self-interest, and interdependence-common definitions were identified and negotiated using the EDBA's published definitions as a start for discussion. Methods of process analysis theory were used in the 8 weeks following the meeting to achieve official consensus on definitions. These two lists were submitted to the organizations' leadership for implementation approval. A total of 374 unique measures were identified, of which 57 (15%) were shared by at least two organizations. Fourteen (4%) were common to all three organizations. In addition to agreement on definitions for the 14 measures used by all three organizations, agreement was reached on universal definitions for 17 of the 57 measures shared by at least two organizations. The negotiation outcome was a list of 31 measures with universal definitions to be adopted by each organization by 2017. The use of negotiation, social change, and process analysis theories achieved the adoption of universal definitions among the EDBA, EDOSG, and AAAEM. This will impact performance benchmarking for nearly half of US EDs. It initiates a formal commitment to utilize standardized metrics, and it transitions consistency in reporting ED operations metrics from consensus to implementation. This work advances our ability to more accurately characterize variation in ED care delivery models, resource utilization, and performance. In

  4. National Emergency Centers Establishment Act

    THOMAS, 113th Congress

    Rep. Hastings, Alcee L. [D-FL-20

    2013-01-23

    House - 02/21/2013 Referred to the Subcommittee on Intelligence, Emerging Threats & Capabilities. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  5. Notification: Cancellation of Audit on Status of Corrective Actions to Address Operational Deficiencies at the EPA’s National Center for Radiation Field Operations

    EPA Pesticide Factsheets

    Project #OA-FY16-0179, September 20, 2016. The EPA OIG is canceling its audit on status of corrective actions to address operational deficiencies at the EPA’s National Center for Radiation Field Operations.

  6. Development of a rapidly deployed Department of Energy emergency response element.

    PubMed

    Tighe, R J; Riland, C A; Hopkins, R C

    2000-02-01

    The Federal Radiological Emergency Response Plan (FRERP) directs the Department of Energy (DOE) to maintain a viable, timely, and fully documented response option capable of supporting the responsible Lead Federal Agency in the event of a radiological emergency impacting any state or United States territory (e.g., CONUS). In addition, the DOE maintains a response option to support radiological emergencies outside the continental United States (OCONUS). While the OCONUS mission is not governed by the FRERP, this response is operationally similar to that assigned to the DOE by the FRERP The DOE is prepared to alert, activate, and deploy radiological response teams to augment the Radiological Assistance Program and/or local responders. The Radiological Monitoring and Assessment Center (RMAC) is a phased response that integrates with the Federal Radiological Monitoring and Assessment Center (FRMAC) in CONUS environments and represents a stand-alone DOE response for OCONUS environments. The FRMAC/RMAC Phase I was formally "stood up" as an operational element in April 1999. The FRMAC/RMAC Phase II proposed "stand-up" date is midyear 2000.

  7. GODAE Systems in Operation

    DTIC Science & Technology

    2009-10-09

    Ocean Data Assimilation Scientist, Met Office, Exeter, UK. Shan Mei is Research Scientist, National Marine Environment Forecast Center, Beijing ...An MFS-MEDSLICK coupled system is operationally used for oil spill fore- casting in support of Regional Marine Pollution Emergency Response Centre...configura- tion with 11-km to 16-km horizontal resolution and 22 hybrid vertical layers. HYCOM is coupled to an Elastic Viscous Plastic dynamic and

  8. Sankofan socio-ethical reflections: the Tuskegee University National Bioethics Center's decade of operation, 1999-2009.

    PubMed

    Earl, Riggins R

    2010-08-01

    Primarily, this is a Sankofan socio-ethical analysis of the moral foundation of the Tuskegee University National Bioethics Center's decade of operation. The first section of the study will do the following: a) a Sankofan socio-ethical analysis of the Center's raison d'être; and b) definitions of ethical terms and the social world of the infamous syphilis study. The second section, as a result of the analysis, will address the Center's following challenges: c) the Center's challenge of theory and practice; d) the Center's challenge of moral heritage; and e) the Center's challenge of the future.

  9. Piloting a real-time surface water flood nowcasting system for enhancing operational resilience of emergency responders

    NASA Astrophysics Data System (ADS)

    Yu, Dapeng; Guan, Mingfu; Wilby, Robert; Bruce, Wright; Szegner, Mark

    2017-04-01

    Emergency services (such as Fire & Rescue, and Ambulance) can face the challenging tasks of having to respond to or operate under extreme and fast changing weather conditions, including surface water flooding. UK-wide, return period based surface water flood risk mapping undertaken by the Environment Agency provides useful information about areas at risks. Although these maps are useful for planning purposes for emergency responders, their utility to operational response during flood emergencies can be limited. A street-level, high resolution, real-time, surface water flood nowcasting system, has been piloted in the City of Leicester, UK to assess emergency response resilience to surface water flooding. Precipitation nowcasting over 7- and 48-hour horizons are obtained from the UK Met Office and used as inputs to the system. A hydro-inundation model is used to simulate urban surface water flood depths/areas at both the city and basin scale, with a 20 m and 3 m spatial resolution respectively, and a 15-minute temporal resolution, 7-hour and 48-hour in advance. Based on this, we evaluate both the direct and indirect impacts of potential surface water flood events on emergency responses, including: (i) identifying vulnerable populations (e.g. care homes and schools) at risk; and (ii) generating novel metrics of accessibility (e.g. travel time from service stations to vulnerable sites; spatial coverage with certain legislative timeframes) in real-time. In doing so, real-time information on potential risks and impacts of emerging flood incidents arising from intense rainfall can be communicated via a dedicated web-based platform to emergency responders thereby improving response times and operational resilience.

  10. SPOT satellite family: Past, present, and future of the operations in the mission and control center

    NASA Technical Reports Server (NTRS)

    Philippe, Pacholczyk

    1993-01-01

    SPOT sun-synchronous remote sensing satellites are operated by CNES since February 1986. Today, the SPOT mission and control center (CCM) operates SPOT1, SPOT2, and is ready to operate SPOT3. During these seven years, the way to operate changed and the CCM, initially designed for the control of one satellite, has been modified and upgraded to support these new operating modes. All these events have shown the performances and the limits of the system. A new generation of satellite (SPOT4) will continue the remote sensing mission during the second half of the 90's. Its design takes into account the experience of the first generation and supports several improvements. A new generation of control center (CMP) has been developed and improves the efficiency, quality, and reliability of the operations. The CMP is designed for operating two satellites at the same time during launching, in-orbit testing, and operating phases. It supports several automatic procedures and improves data retrieval and reporting.

  11. The WHO/PEPFAR collaboration to prepare an operations manual for HIV prevention, care, and treatment at primary health centers in high-prevalence, resource-constrained settings: defining laboratory services.

    PubMed

    Spira, Thomas; Lindegren, Mary Lou; Ferris, Robert; Habiyambere, Vincent; Ellerbrock, Tedd

    2009-06-01

    The expansion of HIV/AIDS care and treatment in resource-constrained countries, especially in sub-Saharan Africa, has generally developed in a top-down manner. Further expansion will involve primary health centers where human and other resources are limited. This article describes the World Health Organization/President's Emergency Plan for AIDS Relief collaboration formed to help scale up HIV services in primary health centers in high-prevalence, resource-constrained settings. It reviews the contents of the Operations Manual developed, with emphasis on the Laboratory Services chapter, which discusses essential laboratory services, both at the center and the district hospital level, laboratory safety, laboratory testing, specimen transport, how to set up a laboratory, human resources, equipment maintenance, training materials, and references. The chapter provides specific information on essential tests and generic job aids for them. It also includes annexes containing a list of laboratory supplies for the health center and sample forms.

  12. Science in Emergency Response at CDC: Structure and Functions.

    PubMed

    Iskander, John; Rose, Dale A; Ghiya, Neelam D

    2017-09-01

    Recent high-profile activations of the US Centers for Disease Control and Prevention (CDC) Emergency Operations Center (EOC) include responses to the West African Ebola and Zika virus epidemics. Within the EOC, emergency responses are organized according to the Incident Management System, which provides a standardized structure and chain of command, regardless of whether the EOC activation occurs in response to an outbreak, natural disaster, or other type of public health emergency. By embedding key scientific roles, such as the associate director for science, and functions within a Scientific Response Section, the current CDC emergency response structure ensures that both urgent and important science issues receive needed attention. Key functions during emergency responses include internal coordination of scientific work, data management, information dissemination, and scientific publication. We describe a case example involving the ongoing Zika virus response that demonstrates how the scientific response structure can be used to rapidly produce high-quality science needed to answer urgent public health questions and guide policy. Within the context of emergency response, longer-term priorities at CDC include both streamlining administrative requirements and funding mechanisms for scientific research.

  13. STS-35 Mission Manager Actions Room at the Marshall Space Flight Center Spacelab Payload Operations

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The primary objective of the STS-35 mission was round the clock observation of the celestial sphere in ultraviolet and X-Ray astronomy with the Astro-1 observatory which consisted of four telescopes: the Hopkins Ultraviolet Telescope (HUT); the Wisconsin Ultraviolet Photo-Polarimeter Experiment (WUPPE); the Ultraviolet Imaging Telescope (UIT); and the Broad Band X-Ray Telescope (BBXRT). The Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at the Marshall Space Flight Center (MSFC) was the air/ground communication channel used between the astronauts and ground control teams during the Spacelab missions. Teams of controllers and researchers directed on-orbit science operations, sent commands to the spacecraft, received data from experiments aboard the Space Shuttle, adjusted mission schedules to take advantage of unexpected science opportunities or unexpected results, and worked with crew members to resolve problems with their experiments. Due to loss of data used for pointing and operating the ultraviolet telescopes, MSFC ground teams were forced to aim the telescopes with fine tuning by the flight crew. This photo captures the activities at the Mission Manager Actions Room during the mission.

  14. Use of National Burden to Define Operative Emergency General Surgery.

    PubMed

    Scott, John W; Olufajo, Olubode A; Brat, Gabriel A; Rose, John A; Zogg, Cheryl K; Haider, Adil H; Salim, Ali; Havens, Joaquim M

    2016-06-15

    Emergency general surgery (EGS) represents 11% of surgical admissions and 50% of surgical mortality in the United States. However, there is currently no established definition of the EGS procedures. To define a set of procedures accounting for at least 80% of the national burden of operative EGS. A retrospective review was conducted using data from the 2008-2011 National Inpatient Sample. Adults (age, ≥18 years) with primary EGS diagnoses consistent with the American Association for the Surgery of Trauma definition, admitted urgently or emergently, who underwent an operative procedure within 2 days of admission were included in the analyses. Procedures were ranked to account for national mortality and complication burden. Among ranked procedures, contributions to total EGS frequency, mortality, and hospital costs were assessed. The data query and analysis were performed between November 15, 2015, and February 16, 2016. Overall procedure frequency, in-hospital mortality, major complications, and inpatient costs calculated per 3-digit International Classification of Diseases, Ninth Revision, Clinical Modification procedure codes. The study identified 421 476 patient encounters associated with operative EGS, weighted to represent 2.1 million nationally over the 4-year study period. The overall mortality rate was 1.23% (95% CI, 1.18%-1.28%), the complication rate was 15.0% (95% CI, 14.6%-15.3%), and mean cost per admission was $13 241 (95% CI, $12 957-$13 525). After ranking the 35 procedure groups by contribution to EGS mortality and morbidity burden, a final set of 7 operative EGS procedures were identified, which collectively accounted for 80.0% of procedures, 80.3% of deaths, 78.9% of complications, and 80.2% of inpatient costs nationwide. These 7 procedures included partial colectomy, small-bowel resection, cholecystectomy, operative management of peptic ulcer disease, lysis of peritoneal adhesions, appendectomy, and laparotomy. Only 7 procedures account

  15. Operating efficiency of an emergency Burns theatre: An eight month analysis.

    PubMed

    Mohan, Arvind; Lutterodt, Christopher; Leon-Villapalos, Jorge

    2017-11-01

    The efficient use of operating theatres is important to insure optimum cost-benefit for the hospital. We used the emergency Burns theatre as a model to assess theatre efficiency at our institution. Data was collected retrospectively on every operation performed in the Burns theatre between 01/04/15 and 30/11/15. Each component of the operating theatre process was considered and integrated to calculate values for surgical/anaesthetic time, changeover time and ultimately theatre efficiency. A total of 426 operations were carried out over 887h of allocated theatre time (ATT). Actual operating time represented 67.7%, anaesthetic time 8.8% and changeover time 14.2% of ATT. The average changeover time between patients was 30.1min. Lists started on average 27.7min late each day. There were a total of 5.8h of overruns and 9.6h of no useful activity. Operating theatre efficiency was 69.3% for the 8 month period. Our study highlights areas where theatre efficiency can be improved. We suggest various strategies to improve this that may be applied universally. Copyright © 2017 Elsevier Ltd and ISBI. All rights reserved.

  16. Don't panic--prepare: towards crisis-aware models of emergency department operations.

    PubMed

    Ceglowski, Red; Churilov, Leonid; Wasserheil, Jeff

    2005-12-01

    The existing models of Emergency Department (ED) operations that are based on the "flow-shop" management logic do not provide adequate decision support in dealing with the ED overcrowding crises. A conceptually different crisis-aware approach to ED modelling and operational decision support is introduced in this paper. It is based on Perrow's theory of "normal accidents" and calls for recognizing the inevitable nature of ED overcrowding crises within current health system setup. Managing the crisis before it happens--a standard approach in crisis management area--should become an integral part of ED operations management. The potential implications of adopting such a crisis-aware perspective for health services research and ED management are outlined.

  17. The role of smart traffic centers in regional system operations : a Hampton Roads case study.

    DOT National Transportation Integrated Search

    2005-01-01

    The objectives of this study were to define the role of smart traffic centers (STCs) in regional systems operations and to help identify performance measures for monitoring the performance of STCs in the scope of regional systems operations. Without ...

  18. Short-Term Prediction Research and Transition (SPoRT) Center: Transitioning Satellite Data to Operations

    NASA Technical Reports Server (NTRS)

    Zavodsky, Bradley

    2012-01-01

    The Short-term Prediction Research and Transition (SPoRT) Center located at NASA Marshall Space Flight Center has been conducting testbed activities aimed at transitioning satellite products to National Weather Service operational end users for the last 10 years. SPoRT is a NASA/NOAA funded project that has set the bar for transition of products to operational end users through a paradigm of understanding forecast challenges and forecaster needs, displaying products in end users decision support systems, actively assessing the operational impact of these products, and improving products based on forecaster feedback. Aiming for quality partnerships rather than a large quantity of data users, SPoRT has become a community leader in training operational forecasters on the use of up-and-coming satellite data through the use of legacy instruments and proxy data. Traditionally, SPoRT has supplied satellite imagery and products from NASA instruments such as the Moderate-resolution Imaging Spectroradiometer (MODIS) and the Atmospheric Infrared Sounder (AIRS). However, recently, SPoRT has been funded by the GOES-R and Joint Polar Satellite System (JPSS) Proving Grounds to accelerate the transition of selected imagery and products to help improve forecaster awareness of upcoming operational data from the Visible Infrared Imager Radiometer Suite (VIIRS), Cross-track Infrared Sounder (CrIS), Advanced Baseline Imager (ABI), and Geostationary Lightning Mapper (GLM). This presentation provides background on the SPoRT Center, the SPoRT paradigm, and some example products that SPoRT is excited to work with forecasters to evaluate.

  19. An academic medical center's response to widespread computer failure.

    PubMed

    Genes, Nicholas; Chary, Michael; Chason, Kevin W

    2013-01-01

    As hospitals incorporate information technology (IT), their operations become increasingly vulnerable to technological breakdowns and attacks. Proper emergency management and business continuity planning require an approach to identify, mitigate, and work through IT downtime. Hospitals can prepare for these disasters by reviewing case studies. This case study details the disruption of computer operations at Mount Sinai Medical Center (MSMC), an urban academic teaching hospital. The events, and MSMC's response, are narrated and the impact on hospital operations is analyzed. MSMC's disaster management strategy prevented computer failure from compromising patient care, although walkouts and time-to-disposition in the emergency department (ED) notably increased. This incident highlights the importance of disaster preparedness and mitigation. It also demonstrates the value of using operational data to evaluate hospital responses to disasters. Quantifying normal hospital functions, just as with a patient's vital signs, may help quantitatively evaluate and improve disaster management and business continuity planning.

  20. Trauma triage in the emergency departments of nontrauma centers: an analysis of individual physician caseload on triage patterns.

    PubMed

    Mohan, Deepika; Barnato, Amber E; Rosengart, Matthew R; Farris, Coreen; Yealy, Donald M; Switzer, Galen E; Fischhoff, Baruch; Saul, Melissa; Angus, Derek C

    2013-06-01

    Treatment at Level I/II trauma centers improves outcomes for patients with severe injuries. Little is known about the role of physicians' clinical judgment in triage at outlying hospitals. We assessed the association between physician caseload, case mix, and the triage of trauma patients presenting to nontrauma centers. A retrospective cohort analysis of patients evaluated between January 1, 2007, and December 31, 2010, by emergency physicians working in eight community hospitals in western Pennsylvania. We linked billing records to hospital charts, summarized physicians' caseloads, and calculated rates of undertriage (proportion of patients with moderate-to-severe injuries not transferred to a trauma center), and overtriage (proportion of patients transferred with a minor injury). We measured the correlation between physician characteristics, caseload, and rates of triage. Of 50 eligible physicians, 29 (58%) participated in the study. Physicians had a mean (SD) of 16.8 (10.1) years of postresidency clinical experience; 21 (72%) were board certified in emergency medicine. They evaluated a median of 2,423 patients per year, of whom 148 (6%) were trauma patients and 3 (0.1%) had moderate-to-severe injuries. The median undertriage rate was 80%; the median overtriage rate was 91%. Physicians' caseload of patients with moderate-to-severe injuries was inversely associated with rates of undertriage (correlation coefficient, -0.42; p = 0.03). Compared with physicians in the lowest quartile, those in the highest quartile undertriaged 31% fewer patients. Emergency physicians working in nontrauma centers rarely encounter patients with moderate-to-severe injuries. Caseload was strongly associated with compliance with American College of Surgeons' Committee on Trauma guidelines. Therapeutic/care management, level IV.

  1. Eye injuries with metal missiles presenting to an emergency center: a three year study.

    PubMed

    Schwartz, J G; Somerset, J S; Harrison, J M; Garriott, J C; Castorena, J L

    1991-07-01

    The authors retrospectively evaluated 33 eye injuries due to metal missiles in 31 patients presenting to our emergency center over the last 3 years. Injuries occurred most frequently when the patients were grinding metal or working on their cars. The type of metal involved in the injury often dictates the type of ophthalmic reaction that will occur. A discussion of intraocular metallic foreign bodies with an emphasis on electroretinograms and metal analysis is presented.

  2. 47 CFR 76.616 - Operation near certain aeronautical and marine emergency radio frequencies.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false Operation near certain aeronautical and marine emergency radio frequencies. 76.616 Section 76.616 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Technical Standards § 76...

  3. Exploring the psychological health of emergency dispatch centre operatives: a systematic review and narrative synthesis.

    PubMed

    Golding, Sarah E; Horsfield, Claire; Davies, Annette; Egan, Bernadette; Jones, Martyn; Raleigh, Mary; Schofield, Patricia; Squires, Allison; Start, Kath; Quinn, Tom; Cropley, Mark

    2017-01-01

    The study objective was to investigate and synthesize available evidence relating to the psychological health of Emergency Dispatch Centre (EDC) operatives, and to identify key stressors experienced by EDC operatives. Eight electronic databases (Embase, PubMed, Medline, CINAHL, PsycInfo, PsycArticles, The Psychology and Behavioural Sciences Collection, and Google Scholar) were searched. All study designs were included, and no date limits were set. Studies were included if they were published in English, and explored the psychological health of any EDC operatives, across fire, police, and emergency medical services. Studies were excluded if they related solely to other emergency workers, such as police officers or paramedics. Methodological quality of included studies was assessed using checklists adapted from the Critical Appraisal Skills Programme. A narrative synthesis was conducted, using thematic analysis. A total of 16 articles were included in the review. Two overarching themes were identified during the narrative synthesis: 'Organisational and Operational Factors' and 'Interactions with Others'. Stressors identified included being exposed to traumatic calls, lacking control over high workload, and working in under-resourced and pressured environments. Lack of support from management and providing an emotionally demanding service were additional sources of stress. Peer support and social support from friends and family were helpful in managing work-related stress. EDC operatives experience stress as a result of their work, which appears to be related to negative psychological health outcomes. Future research should explore the long-term effects of this stress, and the potential for workplace interventions to alleviate the negative impacts on psychological health. CRD42014010806.

  4. Emergency operation for penetrating thoracic trauma in a metropolitan surgical service in South Africa.

    PubMed

    Clarke, Damian Luiz; Quazi, Muhammed A; Reddy, Kriban; Thomson, Sandie Rutherford

    2011-09-01

    This audit examines our total experience with penetrating thoracic trauma. It reviews all the patients who were brought alive to our surgical service and all who were taken directly to the mortuary. The group of patients who underwent emergency operation for penetrating thoracic trauma is examined in detail. A prospective trauma registry is maintained by the Pietermaritzburg Metropolitan Complex. This database was retrospectively interrogated for all patients requiring an emergency thoracic operation for penetrating injury from July 2006 till July 2009. A retrospective review of mortuary data for the same period was undertaken to identify patients with penetrating thoracic trauma who had been taken to the forensic mortuary. Over the 3-year period July 2006 to July 2009, a total of 1186 patients, 77 of whom were female, were admitted to the surgical services in Pietermaritzburg with penetrating thoracic trauma. There were 124 gunshot wounds and 1062 stab wounds. A total of 108 (9%) patients required emergency operation during the period under review. The mechanism of trauma in the operative group was stab wounds (n = 102), gunshot wound (n = 4), stab with compass (n = 1), and impalement by falling on an arrow (n = 1). Over the same period 676 persons with penetrating thoracic trauma were taken to the mortuary. There were 135 (20%) gunshot wounds of the chest in the mortuary cohort. The overall mortality for penetrating thoracic trauma was 541 (33%) of 1603 for stab wounds and 135 (52%) of 259 for gunshot wounds of the chest. Among the 541 subjects with stab wounds from the mortuary cohort, there were 206 (38%) with cardiac injuries. In the emergency operation group there were 11 (10%) deaths. In 76 patients a cardiac injury was identified. The other injuries identified were lung parenchyma bleeding (n = 12) intercostal vessels (n = 10), great vessels of the chest (n = 6), internal thoracic vessel (n = 2), and pericardial injury with no myocardial injury (n = 2

  5. 40 CFR 60.4237 - What are the monitoring requirements if I am an owner or operator of an emergency stationary SI...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... I am an owner or operator of an emergency stationary SI internal combustion engine? 60.4237 Section... Internal Combustion Engines Other Requirements for Owners and Operators § 60.4237 What are the monitoring requirements if I am an owner or operator of an emergency stationary SI internal combustion engine? (a...

  6. 40 CFR 60.4237 - What are the monitoring requirements if I am an owner or operator of an emergency stationary SI...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... I am an owner or operator of an emergency stationary SI internal combustion engine? 60.4237 Section... Internal Combustion Engines Other Requirements for Owners and Operators § 60.4237 What are the monitoring requirements if I am an owner or operator of an emergency stationary SI internal combustion engine? (a...

  7. 40 CFR 60.4237 - What are the monitoring requirements if I am an owner or operator of an emergency stationary SI...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... I am an owner or operator of an emergency stationary SI internal combustion engine? 60.4237 Section... Internal Combustion Engines Other Requirements for Owners and Operators § 60.4237 What are the monitoring requirements if I am an owner or operator of an emergency stationary SI internal combustion engine? (a...

  8. 40 CFR 60.4237 - What are the monitoring requirements if I am an owner or operator of an emergency stationary SI...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... I am an owner or operator of an emergency stationary SI internal combustion engine? 60.4237 Section... Internal Combustion Engines Other Requirements for Owners and Operators § 60.4237 What are the monitoring requirements if I am an owner or operator of an emergency stationary SI internal combustion engine? (a...

  9. 40 CFR 60.4237 - What are the monitoring requirements if I am an owner or operator of an emergency stationary SI...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... I am an owner or operator of an emergency stationary SI internal combustion engine? 60.4237 Section... Internal Combustion Engines Other Requirements for Owners and Operators § 60.4237 What are the monitoring requirements if I am an owner or operator of an emergency stationary SI internal combustion engine? (a...

  10. Glenn's Telescience Support Center Provided Around-the-Clock Operations Support for Space Experiments on the International Space Station

    NASA Technical Reports Server (NTRS)

    Malarik, Diane C.

    2005-01-01

    NASA Glenn Research Center s Telescience Support Center (TSC) allows researchers on Earth to operate experiments onboard the International Space Station (ISS) and the space shuttles. NASA s continuing investment in the required software, systems, and networks provides distributed ISS ground operations that enable payload developers and scientists to monitor and control their experiments from the Glenn TSC. The quality of scientific and engineering data is enhanced while the long-term operational costs of experiments are reduced because principal investigators and engineering teams can operate their payloads from their home institutions.

  11. Re-Engineering the ISS Payload Operations Control Center During Increased Utilization and Critical Onboard Events

    NASA Technical Reports Server (NTRS)

    Dudley, Stephanie R. B.; Marsh, Angela L.

    2014-01-01

    With an increase in utilization and hours of payload operations being executed onboard the International Space Station (ISS), upgrading the NASA Marshall Space Flight Center (MSFC) Huntsville Operations Support Center (HOSC) ISS Payload Control Area (PCA) was essential to gaining efficiencies and assurance of current and future payload health and science return. PCA houses the Payload Operations Integration Center (POIC) responsible for the execution of all NASA payloads onboard the ISS. POIC Flight Controllers are responsible for the operation of voice, stowage, command, telemetry, video, power, thermal, and environmental control in support of ISS science experiments. The methodologies and execution of the PCA refurbishment were planned and performed within a four-month period in order to assure uninterrupted operation of ISS payloads and minimal impacts to payload operations teams. To vacate the PCA, three additional HOSC control rooms were reconfigured to handle ISS real-time operations, Backup Control Center (BCC) to Mission Control in Houston, simulations, and testing functions. This involved coordination and cooperation from teams of ISS operations controllers, multiple engineering and design disciplines, management, and construction companies performing an array of activities simultaneously and in sync delivering a final product with no issues that impacted the schedule. For each console operator discipline, studies of Information Technology (IT) tools and equipment layouts, ergonomics, and lines of sight were performed. Infusing some of the latest IT into the project was an essential goal in ensuring future growth and success of the ISS payload science returns. Engineering evaluations led to a state of the art Video Wall implementation and more efficient ethernet cabling distribution providing the latest products and the best solution for the POIC. These engineering innovations led to cost savings for the project. Constraints involved in the management of

  12. Gravity Plant Physiology Facility (GPPF) Team in the Spacelab Payload Operations Control Center (SL

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The primary payload for Space Shuttle Mission STS-42, launched January 22, 1992, was the International Microgravity Laboratory-1 (IML-1), a pressurized manned Spacelab module. The goal of IML-1 was to explore in depth the complex effects of weightlessness of living organisms and materials processing. Around-the-clock research was performed on the human nervous system's adaptation to low gravity and effects of microgravity on other life forms such as shrimp eggs, lentil seedlings, fruit fly eggs, and bacteria. Materials processing experiments were also conducted, including crystal growth from a variety of substances such as enzymes, mercury iodide, and a virus. The Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at the Marshall Space Flight Center (MSFC) was the air/ground communication channel used between the astronauts and ground control teams during the Spacelab missions. Featured is the Gravity Plant Physiology Facility (GPPF) team in the SL POCC during the IML-1 mission.

  13. Critical Point Facility (CPE) Group in the Spacelab Payload Operations Control Center (SL POCC)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The primary payload for Space Shuttle Mission STS-42, launched January 22, 1992, was the International Microgravity Laboratory-1 (IML-1), a pressurized manned Spacelab module. The goal of IML-1 was to explore in depth the complex effects of weightlessness of living organisms and materials processing. Around-the-clock research was performed on the human nervous system's adaptation to low gravity and effects of microgravity on other life forms such as shrimp eggs, lentil seedlings, fruit fly eggs, and bacteria. Materials processing experiments were also conducted, including crystal growth from a variety of substances such as enzymes, mercury iodide, and a virus. The Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at the Marshall Space Flight Center (MSFC) was the air/ground communication channel used between the astronauts and ground control teams during the Spacelab missions. Featured is the Critical Point Facility (CPE) group in the SL POCC during STS-42, IML-1 mission.

  14. Computer-aided dispatch--traffic management center field operational test : Washington State final report

    DOT National Transportation Integrated Search

    2006-05-01

    This document provides the final report for the evaluation of the USDOT-sponsored Computer-Aided Dispatch - Traffic Management Center Integration Field Operations Test in the State of Washington. The document discusses evaluation findings in the foll...

  15. Techniques for evaluating optimum data center operation

    DOEpatents

    Hamann, Hendrik F.; Rodriguez, Sergio Adolfo Bermudez; Wehle, Hans-Dieter

    2017-06-14

    Techniques for modeling a data center are provided. In one aspect, a method for determining data center efficiency is provided. The method includes the following steps. Target parameters for the data center are obtained. Technology pre-requisite parameters for the data center are obtained. An optimum data center efficiency is determined given the target parameters for the data center and the technology pre-requisite parameters for the data center.

  16. Emergency Procedure Training for Reactor Operators at the High Flux Beam Reactor for Brookhaven National Laboratory.

    ERIC Educational Resources Information Center

    Reyer, Ronald

    A project was conducted to analyze, design, develop, implement, and evaluate an instructional unit intended to improve the diagnostic skills of operating personnel in responding to abnormal and emergency conditions at the High Flux Beam Reactor at Brookhaven National Laboratory. Research was conducted on the occurrence of emergencies at similar…

  17. Space Operations Center system analysis. Volume 3, book 2: SOC system definition report, revision A

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The Space Operations Center (SOC) orbital space station program operations are described. A work breakdown structure for the general purpose support equipment, construction and transportation support, and resupply and logistics support systems is given. The basis for the design of each element is presented, and a mass estimate for each element supplied. The SOC build-up operation, construction, flight support, and satellite servicing operations are described. Detailed programmatics and cost analysis are presented.

  18. 40 CFR 60.4390 - What are my reporting requirements if I operate an emergency combustion turbine or a research and...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... operate an emergency combustion turbine or a research and development turbine? 60.4390 Section 60.4390... PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Stationary Combustion Turbines Reporting § 60.4390 What are my reporting requirements if I operate an emergency combustion turbine or a research...

  19. 40 CFR 60.4390 - What are my reporting requirements if I operate an emergency combustion turbine or a research and...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... operate an emergency combustion turbine or a research and development turbine? 60.4390 Section 60.4390... PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Stationary Combustion Turbines Reporting § 60.4390 What are my reporting requirements if I operate an emergency combustion turbine or a research...

  20. 40 CFR 60.4390 - What are my reporting requirements if I operate an emergency combustion turbine or a research and...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... operate an emergency combustion turbine or a research and development turbine? 60.4390 Section 60.4390... PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Stationary Combustion Turbines Reporting § 60.4390 What are my reporting requirements if I operate an emergency combustion turbine or a research...

  1. 40 CFR 60.4390 - What are my reporting requirements if I operate an emergency combustion turbine or a research and...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... operate an emergency combustion turbine or a research and development turbine? 60.4390 Section 60.4390... PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Stationary Combustion Turbines Reporting § 60.4390 What are my reporting requirements if I operate an emergency combustion turbine or a research...

  2. 40 CFR 60.4390 - What are my reporting requirements if I operate an emergency combustion turbine or a research and...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... operate an emergency combustion turbine or a research and development turbine? 60.4390 Section 60.4390... PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Stationary Combustion Turbines Reporting § 60.4390 What are my reporting requirements if I operate an emergency combustion turbine or a research...

  3. Using Simulation to Examine the Effect of Physician Heterogeneity on the Operational Efficiency of an Overcrowded Hospital Emergency Department

    NASA Astrophysics Data System (ADS)

    Kuo, Y.-H.; Leung, J. M. Y.; Graham, C. A.

    2015-05-01

    In this paper, we present a case study of modelling and analyzing the patient flow of a hospital emergency department in Hong Kong. The emergency department is facing the challenge of overcrowding and the patients there usually experience a long waiting time. Our project team was requested by a senior consultant of the emergency department to analyze the patient flow and provide a decision support tool to help improve their operations. We adopt a simulation approach to mimic their daily operations. With the simulation model, we conduct a computational study to examine the effect of physician heterogeneity on the emergency department performance. We found that physician heterogeneity has a great impact on the operational efficiency and thus should be considered when developing simulation models. Our computational results show that, with the same average of service rates among the physicians, variation in the rates can improve overcrowding situation. This suggests that emergency departments may consider having some efficient physicians to speed up the overall service rate in return for more time for patients who need extra medical care.

  4. CDC's Emergency Management Program activities - worldwide, 2003-2012.

    PubMed

    2013-09-06

    In 2003, recognizing the increasing frequency and complexity of disease outbreaks and disasters and a greater risk for terrorism, CDC established the Emergency Operations Center (EOC), bringing together CDC staff members who respond to public health emergencies to enhance communication and coordination. To complement the physical EOC environment, CDC implemented the Incident Management System (IMS), a staffing structure and set of standard operational protocols and services to support and monitor CDC program-led responses to complex public health emergencies. The EOC and IMS are key components of CDC's Emergency Management Program (EMP), which applies emergency management principles to public health practice. To enumerate activities conducted by the EMP during 2003-2012, CDC analyzed data from daily reports and activity logs. The results of this analysis determined that, during 2003-2012, the EMP fully activated the EOC and IMS on 55 occasions to support responses to infectious disease outbreaks, natural disasters, national security events (e.g., conventions, presidential addresses, and international summits), mass gatherings (e.g., large sports and social events), and man-made disasters. On 109 other occasions, the EMP was used to support emergency responses that did not require full EOC activation, and the EMP also conducted 30 exercises and drills. This report provides an overview of those 194 EMP activities.

  5. A CNES remote operations center for the MSL ChemCam instrument

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiens, Roger C; Lafaille, Vivian; Lorgny, Eric

    2010-01-01

    For the first time, a CNES remote operations center in Toulouse will be involved in the tactical operations of a Martian rover in order to operate the ChemCam science instrument in the framework of the NASA MSL (Mars Science Laboratory) mission in 2012. CNES/CESR and LANL have developed and delivered to JPL the ChemCam (Chemistry Camera) instrument located on the top of mast and in the body of the rover. This instrument incorporates a Laser-Induced Breakdown Spectrometer (LIBS) and a Remote Micro-Imager (RMI) for determining elemental compositions of rock targets or soil samples at remote distances from the rover (2-7more » m). An agreement has been achieved for operating ChemCam, alternatively, from Toulouse (FR) and Los Alamos (NM, USA), through the JPL ground data system in Pasadena (CA, USA) for a complete Martian year (2 years on Earth). After a brief overview of the MSL mission, this paper presents the instrument, the mission operational system and JPL organization requirements for the scientific investigators (PI and Co-Is). This paper emphasizes innovations applied on the ground segment components and on the operational approach to satisfy the requirements and constraints due to these shared and distributed operations over the world.« less

  6. Joint Space Operations Center (JSpOC) Mission System (JMS)

    NASA Astrophysics Data System (ADS)

    Morton, M.; Roberts, T.

    2011-09-01

    US space capabilities benefit the economy, national security, international relationships, scientific discovery, and our quality of life. Realizing these space responsibilities is challenging not only because the space domain is increasingly congested, contested, and competitive but is further complicated by the legacy space situational awareness (SSA) systems approaching end of life and inability to provide the breadth of SSA and command and control (C2) of space forces in this challenging domain. JMS will provide the capabilities to effectively employ space forces in this challenging domain. Requirements for JMS were developed based on regular, on-going engagement with the warfighter. The use of DoD Architecture Framework (DoDAF) products facilitated requirements scoping and understanding and transferred directly to defining and documenting the requirements in the approved Capability Development Document (CDD). As part of the risk reduction efforts, the Electronic System Center (ESC) JMS System Program Office (SPO) fielded JMS Capability Package (CP) 0 which includes an initial service oriented architecture (SOA) and user defined operational picture (UDOP) along with force status, sensor management, and analysis tools. Development efforts are planned to leverage and integrate prototypes and other research projects from Defense Advanced Research Projects Agency, Air Force Research Laboratories, Space Innovation and Development Center, and Massachusetts Institute of Technology/Lincoln Laboratories. JMS provides a number of benefits to the space community: a reduction in operational “transaction time” to accomplish key activities and processes; ability to process the increased volume of metric observations from new sensors (e.g., SBSS, SST, Space Fence), as well as owner/operator ephemerides thus enhancing the high accuracy near-real-time catalog, and greater automation of SSA data sharing supporting collaboration with government, civil, commercial, and foreign

  7. Space Operations Center system analysis study extension. Volume 2: Programmatics and cost

    NASA Technical Reports Server (NTRS)

    1982-01-01

    A summary of Space Operations Center (SOC) orbital space station costs, program options and program recommendations is presented. Program structure, hardware commonality, schedules and program phasing are considered. Program options are analyzed with respect to mission needs, design and technology options, and anticipated funding constraints. Design and system options are discussed.

  8. Regulations for Child Day Care Centers Operated by Religious Bodies or Groups.

    ERIC Educational Resources Information Center

    South Carolina State Dept. of Social Services, Columbia.

    As set forth in this manual, the regulations for child day care centers operated by religious bodies or groups constitute the minimum requirements to be met and maintained by each such facility in South Carolina. Regulation 114-5-20 sets out definitions and procedures for preapplication consultation, original registration, inspection, and…

  9. View of Mission Control Center during the Apollo 13 emergency return

    NASA Image and Video Library

    1970-04-16

    S70-35368 (16 April 1970) --- Overall view showing some of the feverish activity in the Mission Operations Control Room (MOCR) of the Mission Control Center (MCC) during the final 24 hours of the problem-plagued Apollo 13 mission. Here, flight controllers and several NASA/MSC officials confer at the flight director's console. When this picture was made, the Apollo 13 lunar landing had already been canceled, and the Apollo 13 crewmembers were in trans-Earth trajectory attempting to bring their crippled spacecraft back home.

  10. Estimates of emergency operating capacity in US manufacturing and nonmanufacturing industries - Volume 1: Concepts and Methodology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belzer, D.B.; Serot, D.E.; Kellogg, M.A.

    1991-03-01

    Development of integrated mobilization preparedness policies requires planning estimates of available productive capacity during national emergency conditions. Such estimates must be developed in a manner to allow evaluation of current trends in capacity and the consideration of uncertainties in various data inputs and in engineering assumptions. This study developed estimates of emergency operating capacity (EOC) for 446 manufacturing industries at the 4-digit Standard Industrial Classification (SIC) level of aggregation and for 24 key nonmanufacturing sectors. This volume lays out the general concepts and methods used to develop the emergency operating estimates. The historical analysis of capacity extends from 1974 throughmore » 1986. Some nonmanufacturing industries are included. In addition to mining and utilities, key industries in transportation, communication, and services were analyzed. Physical capacity and efficiency of production were measured. 3 refs., 2 figs., 12 tabs. (JF)« less

  11. Exploring the psychological health of emergency dispatch centre operatives: a systematic review and narrative synthesis

    PubMed Central

    Davies, Annette; Egan, Bernadette; Jones, Martyn; Raleigh, Mary; Schofield, Patricia; Squires, Allison; Start, Kath; Quinn, Tom

    2017-01-01

    Background The study objective was to investigate and synthesize available evidence relating to the psychological health of Emergency Dispatch Centre (EDC) operatives, and to identify key stressors experienced by EDC operatives. Methods Eight electronic databases (Embase, PubMed, Medline, CINAHL, PsycInfo, PsycArticles, The Psychology and Behavioural Sciences Collection, and Google Scholar) were searched. All study designs were included, and no date limits were set. Studies were included if they were published in English, and explored the psychological health of any EDC operatives, across fire, police, and emergency medical services. Studies were excluded if they related solely to other emergency workers, such as police officers or paramedics. Methodological quality of included studies was assessed using checklists adapted from the Critical Appraisal Skills Programme. A narrative synthesis was conducted, using thematic analysis. Results A total of 16 articles were included in the review. Two overarching themes were identified during the narrative synthesis: ‘Organisational and Operational Factors’ and ‘Interactions with Others’. Stressors identified included being exposed to traumatic calls, lacking control over high workload, and working in under-resourced and pressured environments. Lack of support from management and providing an emotionally demanding service were additional sources of stress. Peer support and social support from friends and family were helpful in managing work-related stress. Discussion EDC operatives experience stress as a result of their work, which appears to be related to negative psychological health outcomes. Future research should explore the long-term effects of this stress, and the potential for workplace interventions to alleviate the negative impacts on psychological health. PROSPERO Registration Number CRD42014010806. PMID:29062596

  12. Status of the TESS Science Processing Operations Center

    NASA Technical Reports Server (NTRS)

    Jenkins, Jon M.; Twicken, Joseph D.; Campbell, Jennifer; Tenebaum, Peter; Sanderfer, Dwight; Davies, Misty D.; Smith, Jeffrey C.; Morris, Rob; Mansouri-Samani, Masoud; Girouardi, Forrest; hide

    2017-01-01

    The Transiting Exoplanet Survey Satellite (TESS) science pipeline is being developed by the Science Processing Operations Center (SPOC) at NASA Ames Research Center based on the highly successful Kepler Mission science pipeline. Like the Kepler pipeline, the TESS science pipeline will provide calibrated pixels, simple and systematic error-corrected aperture photometry, and centroid locations for all 200,000+ target stars, observed over the 2-year mission, along with associated uncertainties. The pixel and light curve products are modeled on the Kepler archive products and will be archived to the Mikulski Archive for Space Telescopes (MAST). In addition to the nominal science data, the 30-minute Full Frame Images (FFIs) simultaneously collected by TESS will also be calibrated by the SPOC and archived at MAST. The TESS pipeline will search through all light curves for evidence of transits that occur when a planet crosses the disk of its host star. The Data Validation pipeline will generate a suite of diagnostic metrics for each transit-like signature discovered, and extract planetary parameters by fitting a limb-darkened transit model to each potential planetary signature. The results of the transit search will be modeled on the Kepler transit search products (tabulated numerical results, time series products, and pdf reports) all of which will be archived to MAST.

  13. Experimental study of high density foods for the Space Operations Center

    NASA Technical Reports Server (NTRS)

    Ahmed, S. M.

    1981-01-01

    The experimental study of high density foods for the Space Operations Center is described. A sensory evaluation of the high density foods was conducted first to test the acceptability of the products. A shelf-life study of the high density foods was also conducted for three different time lengths at three different temperatures. The nutritional analysis of the high density foods is at present incomplete.

  14. Space Operations Center system analysis study extension. Volume 4, book 2: SOC system analysis report

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The Space Operations Center (SOC) orbital space station research missions integration, crew requirements, SOC operations, and configurations are analyzed. Potential research and applications missions and their requirements are described. The capabilities of SOC are compared with user requirements. The SOC/space shuttle and shuttle-derived vehicle flight support operations and SOC orbital operations are described. Module configurations and systems options, SOC/external tank configurations, and configurations for geostationary orbits are described. Crew and systems safety configurations are summarized.

  15. Operating room efficiency: benefits of an orthopaedic traumatologist at a level II trauma center.

    PubMed

    Althausen, Peter L; Kauk, Justin R; Shannon, Steven; Lu, Minggen; O'Mara, Timothy J; Bray, Timothy J

    2014-05-01

    Fellowship-trained orthopaedic traumatologists are presumably taught skill sets leading to "best practice" outcomes and more efficient use of hospital resources. This should result in more favorable economic opportunities when compared with general orthopaedic surgeons (GOSs) providing similar clinical services. The purpose of our study was to compare the operating room utilization and financial data of traumatologists versus GOSs at a level II trauma center. Retrospective review. Level II community-based trauma hospital. Patients who presented to the emergency room at our institution with fractures and orthopaedic conditions requiring surgical intervention from January 1, 2010, to December 31, 2011. Operative fracture fixation by members of our orthopaedic trauma panel, including fellowship and nontrauma fellowship-trained orthopaedic surgeons. Our institutional database was queried to determine operative times, surgical supply and implant costs, and surgery labor expenses. Patients were stratified according to those treated by our trauma panel's 3 traumatologists and those treated by the 15 GOSs on our trauma panel. These 2 groups were then compared using standard statistical methods. A total of 6449 orthopedic cases were identified and 2076 of these involved fracture care. One thousand one hundred ninety-nine patients were treated by traumatologists and 877 by GOSs. There was no statistical difference detected in American Society of Anesthesiologists score between trauma and nontrauma groups. Overall, the traumatologist group demonstrated significantly decreased procedure times when compared with the GOS group (55.6 vs. 75.8 minutes, P < 0.0001). In 16 of 18 most common procedure types, traumatologists were more efficient. This led to significantly decreased surgical labor costs ($381.4 vs. $484.8; P < 0.0001) and surgical supply and implant costs ($2567 vs. $3003; P < 0.0001). This study demonstrates that in our community-based trauma system, fracture care

  16. Operating Room Efficiency: Benefits of an Orthopaedic Traumatologist at a Level II Trauma Center.

    PubMed

    Althausen, Peter L; Kauk, Justin R; Shannon, Steven; Lu, Minggen; O'Mara, Timothy J; Bray, Timothy J

    2016-12-01

    Fellowship-trained orthopaedic traumatologists are presumably taught skill sets leading to "best practice" outcomes and more efficient use of hospital resources. This should result in more favorable economic opportunities when compared with general orthopaedic surgeons (GOSs) providing similar clinical services. The purpose of our study was to compare the operating room utilization and financial data of traumatologists versus GOSs at a level II trauma center. Retrospective review. Level II community-based trauma hospital. Patients who presented to the emergency room at our institution with fractures and orthopaedic conditions requiring surgical intervention from January 1, 2010, to December 31, 2011. Operative fracture fixation by members of our orthopaedic trauma panel, including fellowship and nontrauma fellowship-trained orthopaedic surgeons. Our institutional database was queried to determine operative times, surgical supply and implant costs, and surgery labor expenses. Patients were stratified according to those treated by our trauma panel's 3 traumatologists and those treated by the 15 GOSs on our trauma panel. These 2 groups were then compared using standard statistical methods. A total of 6449 orthopedic cases were identified and 2076 of these involved fracture care. One thousand one hundred ninety-nine patients were treated by traumatologists and 877 by GOSs. There was no statistical difference detected in American Society of Anesthesiologists score between trauma and nontrauma groups. Overall, the traumatologist group demonstrated significantly decreased procedure times when compared with the GOS group (55.6 vs. 75.8 minutes, P , 0.0001). In 16 of 18 most common procedure types, traumatologists were more efficient. This led to significantly decreased surgical labor costs ($381.4 vs. $484.8; P < 0.0001) and surgical supply and implant costs ($2567 vs. $3003; P < 0.0001). This study demonstrates that in our communitybased trauma system, fracture care

  17. Give Design a Chance: A Case for a Human Centered Approach to Operational Art

    DTIC Science & Technology

    2017-03-30

    strategy development and operational art. This demands fuller integration of the Army Design Methodology (ADM) and the Military Decision Making Process...MDMP). This monograph proposes a way of thinking and planning that goes beyond current Army doctrinal methodologies to address the changing...between conceptual and detailed planning. 15. SUBJECT TERMS Design; Army Design Methodology (ADM); Human Centered; Strategy; Operational Art

  18. GIS plays key role in NYC Rescue and Relief Operation

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    New York City, Sept. 17—The posters of missing loved ones are pasted onto New York City walls and street signs six days after 2 hijacked commercial airlines destroyed the World Trade Center in lower Manhattan on September 11. Several miles uptown from “ground zero,” heightened security hovers around the city's Office of Emergency Management rescue and relief command center, an around-the-clock operation. Police, firefighters, military, officials with the Federal Emergency Management Agency, communications technicians, and a beehive of others work in controlled chaos in this cavernous, convention center-sized hall, lined with computers and adorned with several American flags.After the original command center at 7 World Trade Center collapsed to rubble as an after-effect of the plane strikes, city officials scrambled to recreate it. Alan Leidner, director of New York's citywide geographic information systems (GIS), and who is with the Department of Information Technology and Telecommunications, knew that maps would be an integral component of the rescue and relief efforts. Maps provide emergency workers and others with accurate and detailed scientific data in the form of visual aids upon which they can make informed decisions.

  19. Overall view of Mission Operations Control in Mission Control Center

    NASA Image and Video Library

    1969-05-18

    S69-34316 (18 May 1969) --- Overall view of the Mission Operations Control Room in the Mission Control Center, Building 30, on the first day of the Apollo 10 lunar orbit mission. A color television transmission was being received from Apollo 10. This picture was made following Command and Service Module/Lunar Module/Saturn IVB (CSM/LM-S-IVB) separation and prior to LM extraction from the S-IVB. The CSM were making the docking approach to the LM/S-IVB.

  20. Space Operations Center, shuttle interaction study, volume 1

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The feasibility of the shuttle remote manipulator system (SRMS)-aided space operations center (SOC)/orbiter berthing was evaluated to determine: (1) whether the initial rates between the SOC and the orbiter can be removed by the arm; (2) what is the best strategy to be used; (3) whether the post-capture and maneuvering loads are within the capability of the SRMS; (4) can the SOC berthing port be brought in the immediate proximity of the orbiter berthing port; and (5) what is the best way to remove the residual relative motions. Various notational conventions are established and various important locations on the orbiter and SOC structures are defined. Reference frames are defined together with the mass properties of both the SOC and the orbiter.

  1. 31. VIEW NORTHEAST OF OPERATING MACHINERY. GEAR 'C5' IS AT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    31. VIEW NORTHEAST OF OPERATING MACHINERY. GEAR 'C5' IS AT LOWER LEFT AND EMERGENCY BRAKE MECHANISM ON PEDESTAL AT CENTER. NOTE LOWER EQUALIZING LINKAGE FOR COUNTERWEIGHT AT LEFT CENTER OF PHOTOGRAPH - THIS WAS A KEY COMPONENT OF STRAUSS' PATENT PARALLOGRAM LINKAGE - Tomlinson Bridge, Spanning Quinnipiac River at Forbes Street (U.S. Route 1), New Haven, New Haven County, CT

  2. Space Weather Products at the Community Coordinated Modeling Center

    NASA Technical Reports Server (NTRS)

    Hesse, Michael; Kuznetsova, M.; Pulkkinen, A.; Maddox, M.; Rastaetter, L.; Berrios, D.; MacNeice, P.

    2010-01-01

    The Community Coordinated Modeling Center (CCMC) is a US inter-agency activity aiming at research in support of the generation of advanced space weather models. As one of its main functions, the CCMC provides to researchers the use of space science models, even if they are not model owners themselves. The second CCMC activity is to support Space Weather forecasting at national Space Weather Forecasting Centers. This second activity involves model evaluations, model transitions to operations, and the development of space weather forecasting tools. Owing to the pace of development in the science community, new model capabilities emerge frequently. Consequently, space weather products and tools involve not only increased validity, but often entirely new capabilities. This presentation will review the present state of space weather tools as well as point out emerging future capabilities.

  3. Pheochromocytoma crisis is not a surgical emergency.

    PubMed

    Scholten, Anouk; Cisco, Robin M; Vriens, Menno R; Cohen, Jenny K; Mitmaker, Elliot J; Liu, Chienying; Tyrrell, J Blake; Shen, Wen T; Duh, Quan-Yang

    2013-02-01

    Pheochromocytoma crisis is a feared and potentially lethal complication of pheochromocytoma. We sought to determine the best treatment strategy for pheochromocytoma crisis patients and hypothesized that emergency resection is not indicated. Retrospective cohort study (1993-2011); literature review (1944-2011). Tertiary referral center. There were 137 pheochromocytoma patients from our center and 97 pheochromocytoma crisis patients who underwent adrenalectomy from the literature. Medical management of pheochromocytoma crisis; adrenalectomy. Perioperative complications, conversion, and mortality. In our database, 25 patients (18%) presented with crisis. After medical stabilization and α-blockade, 15 patients were discharged and readmitted for elective surgery and 10 patients were operated on urgently during the same hospitalization. None underwent emergency surgery. Postoperatively, patients who underwent elective surgery had shorter hospital stays (1.7 vs 5.7 d, P = 0.001) and fewer postoperative complications (1 of 15 [7%] vs 5 of 10 [50%], P = 0.045) and were less often admitted to the intensive care unit (1 of 15 [7%] vs 5 of 10 [50%], P = 0.045) in comparison with urgently operated patients. There was no mortality. Review of the literature (n = 97) showed that crisis patients who underwent elective or urgent surgery vs emergency surgery had less intraoperative (13 of 31 [42%] vs 20 of 25 [80%], P < 0.001) and postoperative complications (15 of 45 [33%] vs 15 of 21 [71%], P = 0.047) and a lower mortality (0 of 64 vs 6 of 33 [18%], P = 0.002). Management of patients presenting with pheochromocytoma crisis should include initial stabilization of the acute crisis followed by sufficient α-blockade before surgery. Emergency resection of pheochromocytoma is associated with high surgical morbidity and mortality.

  4. Federal Health Care Center: VA and DOD Need to Develop Better Information to Monitor Operations and Improve Efficiency

    DTIC Science & Technology

    2017-01-01

    delivery of health care that would be more accessible and less expensive than operating two federal medical centers serving VA and DOD beneficiaries in...departments—including DOD’s operational readiness mission—by integrating services previously provided by the former North Chicago VA Medical Center...1VA beneficiaries include veterans of military service and certain dependents and survivors. DOD beneficiaries include active duty

  5. Deep Space Network (DSN), Network Operations Control Center (NOCC) computer-human interfaces

    NASA Technical Reports Server (NTRS)

    Ellman, Alvin; Carlton, Magdi

    1993-01-01

    The Network Operations Control Center (NOCC) of the DSN is responsible for scheduling the resources of DSN, and monitoring all multi-mission spacecraft tracking activities in real-time. Operations performs this job with computer systems at JPL connected to over 100 computers at Goldstone, Australia and Spain. The old computer system became obsolete, and the first version of the new system was installed in 1991. Significant improvements for the computer-human interfaces became the dominant theme for the replacement project. Major issues required innovating problem solving. Among these issues were: How to present several thousand data elements on displays without overloading the operator? What is the best graphical representation of DSN end-to-end data flow? How to operate the system without memorizing mnemonics of hundreds of operator directives? Which computing environment will meet the competing performance requirements? This paper presents the technical challenges, engineering solutions, and results of the NOCC computer-human interface design.

  6. 20 CFR 670.955 - Are center operators and service providers subject to Federal audits?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... ADMINISTRATION, DEPARTMENT OF LABOR THE JOB CORPS UNDER TITLE I OF THE WORKFORCE INVESTMENT ACT Administrative and Management Provisions § 670.955 Are center operators and service providers subject to Federal...

  7. Extended Operation of Stirling Convertors at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Oriti, Salvatore, M.

    2012-01-01

    NASA Glenn Research Center (GRC) has been supporting development of free-piston Stirling conversion technology for spaceflight electrical power generation since 1999. GRC has also been supporting the development of the Advanced Stirling Radioisotope Generator (ASRG) since 2006. A key element of the ASRG project is providing life, reliability, and performance data for the Advanced Stirling Convertor (ASC). The Thermal Energy Conversion branch at GRC is conducting extended operation of several free-piston Stirling convertors. The goal of this effort is to generate long-term performance data (tens of thousands of hours) on multiple units to build a life and reliability database. Currently, GRC is operating 18 convertors. This hardware set includes Technology Demonstration Convertors (TDCs) from Infinia Corporation, of which one pair (TDCs #13 and #14) has accumulated over 60,000 hr (6.8 years) of operation. Also under test are various Sunpower, Inc. convertors that were fabricated during the ASC development activity, including ASC-0, ASC-E (including those in the ASRG engineering unit), and ASC-E2. The ASC-E2s also completed, or are in progress of completing workmanship vibration testing, performance mapping, and extended operation. Two ASC-E2 units will also be used for durability testing, during which components will be stressed to levels above nominal mission usage. Extended operation data analyses from these tests are covered in this paper.

  8. Trade study: Liquid hydrogen transportation - Kennedy Space Center. [cost and operational effectivenss of shipping methods.

    NASA Technical Reports Server (NTRS)

    Gray, D. J.

    1978-01-01

    Cryogenic transportation methods for providing liquid hydrogen requirements are examined in support of shuttle transportation system launch operations at Kennedy Space Center, Florida, during the time frames 1982-1991 in terms of cost and operational effectiveness. Transportation methods considered included sixteen different options employing mobile semi-trailer tankers, railcars, barges and combinations of each method. The study concludes that the most effective method of delivering liquid hydrogen from the vendor production facility in New Orleans to Kennedy Space Center includes maximum utilization of existing mobile tankers and railcars supplemented by maximum capacity mobile tankers procured incrementally in accordance with shuttle launch rates actually achieved.

  9. Institutional environmental impact statement (space shuttle development and operations) amendment no. 1. [space shuttle operations at Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Data are presented to support the environmental impact statement on space shuttle actions at Kennedy Space Center. Studies indicate that land use to accommodate space shuttle operations may have the most significant impact. The impacts on air, water and noise quality are predicted to be less on the on-site environment. Considerations of operating modes indicate that long and short term land use will not affect wildlife productivity. The potential for adverse environmental impact is small and such impacts will be local, short in duration, controllable, and environmentally acceptable.

  10. Scenario-based design: a method for connecting information system design with public health operations and emergency management.

    PubMed

    Reeder, Blaine; Turner, Anne M

    2011-12-01

    Responding to public health emergencies requires rapid and accurate assessment of workforce availability under adverse and changing circumstances. However, public health information systems to support resource management during both routine and emergency operations are currently lacking. We applied scenario-based design as an approach to engage public health practitioners in the creation and validation of an information design to support routine and emergency public health activities. Using semi-structured interviews we identified the information needs and activities of senior public health managers of a large municipal health department during routine and emergency operations. Interview analysis identified 25 information needs for public health operations management. The identified information needs were used in conjunction with scenario-based design to create 25 scenarios of use and a public health manager persona. Scenarios of use and persona were validated and modified based on follow-up surveys with study participants. Scenarios were used to test and gain feedback on a pilot information system. The method of scenario-based design was applied to represent the resource management needs of senior-level public health managers under routine and disaster settings. Scenario-based design can be a useful tool for engaging public health practitioners in the design process and to validate an information system design. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Scenario-based design: A method for connecting information system design with public health operations and emergency management

    PubMed Central

    Reeder, Blaine; Turner, Anne M

    2011-01-01

    Responding to public health emergencies requires rapid and accurate assessment of workforce availability under adverse and changing circumstances. However, public health information systems to support resource management during both routine and emergency operations are currently lacking. We applied scenario-based design as an approach to engage public health practitioners in the creation and validation of an information design to support routine and emergency public health activities. Methods: Using semi-structured interviews we identified the information needs and activities of senior public health managers of a large municipal health department during routine and emergency operations. Results: Interview analysis identified twenty-five information needs for public health operations management. The identified information needs were used in conjunction with scenario-based design to create twenty-five scenarios of use and a public health manager persona. Scenarios of use and persona were validated and modified based on follow-up surveys with study participants. Scenarios were used to test and gain feedback on a pilot information system. Conclusion: The method of scenario-based design was applied to represent the resource management needs of senior-level public health managers under routine and disaster settings. Scenario-based design can be a useful tool for engaging public health practitioners in the design process and to validate an information system design. PMID:21807120

  12. [Proposing a physiological model for Emergency Department. Operating principles, classification of overcrowding and guidelines for redesign].

    PubMed

    Herrera Carranza, M; Aguado Correa, F; Padilla Garrido, N; López Camacho, F

    2017-04-30

    The operation of Emergency Departments (ED) is determined by demand, their own organizational structures and the connection to other medical care levels. When these elements are not simultaneous, it hinders patient flow and decreases capacity, making it necessary to employ a systemic approach to the chain of emergency care as a single operational entity. With this theoretical orientation, we suggest a conceptual model similar to the physiological cardiac output, in which the preload is the demand, the contractile or flow pump is the organizational structure, the afterload is the hospital, the pre-ED valve is primary care and outpatient emergencies, and the post-ED valve is the diagnostic support services and the specialist consultants. Based on this theoretical approach we classify the different types of ED overcrowding and systematise its causes and the different waiting lists that it generates, which can help to redesign the service and avoid its saturation.

  13. Joint Spacelab-J (SL-J) Activities at the Huntsville Operations Support Center (HOSC) Spacelab

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The science laboratory, Spacelab-J (SL-J), flown aboard the STS-47 flight was a joint venture between NASA and the National Space Development Agency of Japan (NASDA) utilizing a manned Spacelab module. The mission conducted 24 materials science and 20 life science experiments, of which 35 were sponsored by NASDA, 7 by NASA, and two collaborative efforts. Materials science investigations covered such fields as biotechnology, electronic materials, fluid dynamics and transport phenomena, glasses and ceramics, metals and alloys, and acceleration measurements. Life sciences included experiments on human health, cell separation and biology, developmental biology, animal and human physiology and behavior, space radiation, and biological rhythms. Test subjects included the crew, Japanese koi fish (carp), cultured animal and plant cells, chicken embryos, fruit flies, fungi and plant seeds, and frogs and frog eggs. Featured together in joint ground activities during the SL-J mission are NASA/NASDA personnel at the Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at Marshall Space Flight Center (MSFC).

  14. Re-Engineering the ISS Payload Operations Control Center During Increased Utilization and Critical Onboard Events

    NASA Technical Reports Server (NTRS)

    Marsh, Angela L.; Dudley, Stephanie R. B.

    2014-01-01

    With an increase in the utilization and hours of payload operations being executed onboard the International Space Station (ISS), upgrading the NASA Marshall Space Flight Center (MSFC) Huntsville Operations Support Center (HOSC) ISS Payload Control Area (PCA) was essential to gaining efficiencies and assurance of current and future payload health and science return. PCA houses the Payload Operations Integration Center (POIC) responsible for the execution of all NASA payloads onboard the ISS. POIC Flight Controllers are responsible for the operation of voice, stowage, command, telemetry, video, power, thermal, and environmental control in support of ISS science experiments. The methodologies and execution of the PCA refurbishment were planned and performed within a four month period in order to assure uninterrupted operation of ISS payloads and minimal impacts to payload operations teams. To vacate the PCA, three additional HOSC control rooms were reconfigured to handle ISS realtime operations, Backup Control Center (BCC) to Mission Control in Houston, simulations, and testing functions. This involved coordination and cooperation from teams of ISS operations controllers, multiple engineering and design disciplines, management, and construction companies performing an array of activities simultaneously and in sync delivering a final product with no issues that impacted the schedule. For each console operator discipline, studies of Information Technology (IT) tools and equipment layouts, ergonomics, and lines of sight were performed. Infusing some of the latest IT into the project was an essential goal in ensuring future growth and success of the ISS payload science returns. Engineering evaluations led to a state of the art media wall implementation and more efficient ethernet cabling distribution providing the latest products and the best solution for the POIC. These engineering innovations led to cost savings for the project. Constraints involved in the management

  15. Mental workload measurement for emergency operating procedures in digital nuclear power plants.

    PubMed

    Gao, Qin; Wang, Yang; Song, Fei; Li, Zhizhong; Dong, Xiaolu

    2013-01-01

    Mental workload is a major consideration for the design of emergency operation procedures (EOPs) in nuclear power plants. Continuous and objective measures are desired. This paper compares seven mental workload measurement methods (pupil size, blink rate, blink duration, heart rate variability, parasympathetic/sympathetic ratio, total power and (Goals, Operations, Methods, and Section Rules)-(Keystroke Level Model) GOMS-KLM-based workload index) with regard to sensitivity, validity and intrusiveness. Eighteen participants performed two computerised EOPs of different complexity levels, and mental workload measures were collected during the experiment. The results show that the blink rate is sensitive to both the difference in the overall task complexity and changes in peak complexity within EOPs, that the error rate is sensitive to the level of arousal and correlate to the step error rate and that blink duration increases over the task period in both low and high complexity EOPs. Cardiac measures were able to distinguish tasks with different overall complexity. The intrusiveness of the physiological instruments is acceptable. Finally, the six physiological measures were integrated using group method of data handling to predict perceived overall mental workload. The study compared seven measures for evaluating the mental workload with emergency operation procedure in nuclear power plants. An experiment with simulated procedures was carried out, and the results show that eye response measures are useful for assessing temporal changes of workload whereas cardiac measures are useful for evaluating the overall workload.

  16. Using Engine Thrust for Emergency Flight Control: MD-11 and B-747 Results

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W., Jr.; Maine, Trindel A.; Burken, John J.; Bull, John

    1998-01-01

    With modern digital control systems, using engine thrust for emergency flight control to supplement or replace failed aircraft normal flight controls has become a practical consideration. The NASA Dryden Flight Research Center has developed a propulsion-controlled aircraft (PCA) system in which computer-controlled engine thrust provides emergency flight control. An F-15 and an MD-11 airplane have been landed without using any flight control surfaces. Preliminary studies have also been conducted that show that engines on only one wing can provide some flight control capability if the lateral center of gravity can be shifted toward the side of the airplane that has the operating engine(s). Simulator tests of several airplanes with no flight control surfaces operating and all engines out on the left wing have all shown positive control capability within the available range of lateral center-of-gravity offset. Propulsion-controlled aircraft systems that can operate without modifications to engine control systems, thus allowing PCA technology to be installed on less capable airplanes or at low cost, are also desirable. Further studies have examined simplified 'PCA Lite' and 'PCA Ultralite' concepts in which thrust control is provided by existing systems such as auto-throttles or a combination of existing systems and manual pilot control.

  17. Operational space weather product development and validation at the joint SMC-AFRL Rapid Prototyping Center

    NASA Astrophysics Data System (ADS)

    Quigley, S.

    The Air Force Research Laboratory (AFRL/VSB) and Detachment 11, Space &Missile Systems Center (SMC, Det 11/CIT) have combined efforts to design, develop, test, and implement graphical products for the Air Force's space weather operations center. These products are generated to analyze, specify, and forecast the effects of the near-earth space environment on Department of Defense systems and communications. Jointly-developed products that have been, or will soon be added to real-time operations include: 1) the Operational Space Environment Network Display (OpSEND) suit - a set of four products that address HF communication, UHF satellite communication scintillation, radar auroral clutter, and GP S single- frequency errors; 2) a solar radio background and burst effects (SoRBE) product suite; and C) a meteor effects (ME) product suite. The RPC is also involved in a rather substantial "V&V" effort to produce multiple operational product verifications and validations, with an added end goal of a generalized validation software package. The presentation will provide a general overview of the RPC and each of the products mentioned above, to include background science, operational history, inputs, outputs, dissemination, and customer uses for each.

  18. 911 Emergency Medical Services and Re-Triage to Level I Trauma Centers.

    PubMed

    Kuncir, Eric; Spencer, Dean; Feldman, Kelly; Barrios, Cristobal; Miller, Kenneth; Lush, Stephanie; Dolich, Matthew; Lekawa, Michael

    2018-01-01

    Interfacility transfer of undertriaged patients to higher-level trauma centers has been found to result in a delay of appropriate care and an increase in mortality. To address this, for the last 10 years our region has used 911 emergency medical services (EMS) paramedics for rapid re-triage of undertriaged patients to our institution's Level I trauma center. We sought to determine whether using 911 EMS for re-triage to our institution was associated with worse outcomes-with mortality as the primary end point-compared with direct EMS transport from point of injury. We retrospectively reviewed all trauma activations to our institution during a 16-month period; 3,394 active traumas were analyzed. Two hundred and seventy patients (8%) arrived via 911 EMS re-triage and 3,124 (92%) arrived via direct EMS transport. Total EMS transport time was significantly longer (122.5 minutes vs 33.7 minutes; p < 0.001) between the 2 groups, but there was no significant difference in mortality rates (4.1% vs 3.6%; p = 0.67). These data show that although using 911 EMS for re-triage is associated with an increase in total transport time, it does not result in an increase in mortality compared with direct EMS transport. We conclude that the use of 911 EMS can be considered a safe method to re-triage patients to higher-level trauma centers. Copyright © 2017 American College of Surgeons. Published by Elsevier Inc. All rights reserved.

  19. Activities During Spacelab-J Mission at Payload Operations and Control Center

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The group of Japanese researchers of the Spacelab-J (SL-J) were thumbs-up in the Payload Operations Control Center (POCC) at the Marshall Space Flight Center after the successful launch of Space Shuttle Orbiter Endeavour that carried their experiments. The SL-J was a joint mission of NASA and the National Space Development Agency of Japan (NASDA) utilizing a marned Spacelab module. The mission conducted microgravity investigations in materials and life sciences. Materials science investigations covered such fields as biotechnology, electronic materials, fluid dynamics and transport phenomena, glasses and ceramics, metals and alloys, and acceleration measurements. Life sciences included experiments on human health, cell separation and biology, developmental biology, animal and human physiology and behavior, space radiation, and biological rhythms. Test subjects included the crew, Japanese koi fish (carp), cultured animal and plant cells, chicken embryos, fruit flies, fungi and plant seeds, frogs, and frog eggs. The POCC was the air/ground communications channel between the astronauts and ground control teams during the Spacelab missions. The Spacelab science operations were a cooperative effort between the science astronaut crew in orbit and their colleagues in the POCC. Spacelab-J was launched aboard the Space Shuttle Orbiter Endeavour on September 12, 1992.

  20. The Worker Component At The World Trade Center Cleanup: Addressing Cultural And Language Differences In Emergency Operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCabe, B.; Carpenter, C.; Blair. D.

    On September 11, 2001, the terrorist attacks on the World Trade Center (WTC) caused astronomical loss of life and property. Systems in place to manage disaster response were strained to the limit because key first responders were among the casualties when the twin towers collapsed. In addition, the evolution of events required immediate response in a rapidly changing and extremely hazardous situation. Rescue, recovery, and clean up became an overpowering and sustained effort that would utilize the resources of federal, state and local governments and agencies. One issue during the response to the WTC disaster site that did not receivemore » much attention was that of the limited and non-English speaking worker. The Operating Engineers National HAZMAT Program (OENHP), with its history of a Hispanic Outreach Program, was acutely aware of this issue with the Hispanic worker. The Hispanic population comprises approximately 27% of the population of New York City (1). The extremely unfortunate and tragic events of that day provided an opportunity to not only provide assistance for the Hispanic workers, but also to apply lessons learned and conduct studies on worker training with language barriers in a real life environment. However, due to the circumstances surrounding this tragedy, the study of these issues was conducted primarily by observation. Through partnerships with other organizations such as the Occupational Safety and Health Administration (OSHA), the New York Health Department, the New York Department of Design and Construction (DDC), the New York Committee for Occupational Safety and Health (NYCOSH), and private companies such as 3M and MSA, OENHP was able to provide translated information on hazards, protective measures, fit testing of respirators, and site specific safety and health training. The OENHP translated materials on hazards and how to protect workers into Spanish to assist in getting the information to the limited and non- English speaking

  1. Air Quality Monitoring of the Post-Operative Recovery Room and Locations Surrounding Operating Theaters in a Medical Center in Taiwan

    PubMed Central

    Tang, Chin-Sheng; Wan, Gwo-Hwa

    2013-01-01

    To prevent surgical site infection (SSI), the airborne microbial concentration in operating theaters must be reduced. The air quality in operating theaters and nearby areas is also important to healthcare workers. Therefore, this study assessed air quality in the post-operative recovery room, locations surrounding the operating theater area, and operating theaters in a medical center. Temperature, relative humidity (RH), and carbon dioxide (CO2), suspended particulate matter (PM), and bacterial concentrations were monitored weekly over one year. Measurement results reveal clear differences in air quality in different operating theater areas. The post-operative recovery room had significantly higher CO2 and bacterial concentrations than other locations. Bacillus spp., Micrococcus spp., and Staphylococcus spp. bacteria often existed in the operating theater area. Furthermore, Acinetobacter spp. was the main pathogen in the post-operative recovery room (18%) and traumatic surgery room (8%). The mixed effect models reveal a strong correlation between number of people in a space and high CO2 concentration after adjusting for sampling locations. In conclusion, air quality in the post-operative recovery room and operating theaters warrants attention, and merits long-term surveillance to protect both surgical patients and healthcare workers. PMID:23573296

  2. Air quality monitoring of the post-operative recovery room and locations surrounding operating theaters in a medical center in Taiwan.

    PubMed

    Tang, Chin-Sheng; Wan, Gwo-Hwa

    2013-01-01

    To prevent surgical site infection (SSI), the airborne microbial concentration in operating theaters must be reduced. The air quality in operating theaters and nearby areas is also important to healthcare workers. Therefore, this study assessed air quality in the post-operative recovery room, locations surrounding the operating theater area, and operating theaters in a medical center. Temperature, relative humidity (RH), and carbon dioxide (CO2), suspended particulate matter (PM), and bacterial concentrations were monitored weekly over one year. Measurement results reveal clear differences in air quality in different operating theater areas. The post-operative recovery room had significantly higher CO2 and bacterial concentrations than other locations. Bacillus spp., Micrococcus spp., and Staphylococcus spp. bacteria often existed in the operating theater area. Furthermore, Acinetobacter spp. was the main pathogen in the post-operative recovery room (18%) and traumatic surgery room (8%). The mixed effect models reveal a strong correlation between number of people in a space and high CO2 concentration after adjusting for sampling locations. In conclusion, air quality in the post-operative recovery room and operating theaters warrants attention, and merits long-term surveillance to protect both surgical patients and healthcare workers.

  3. Proposed energy conservation contingency plan: emergency restrictions on advertising lighting. Authorities, need, rationale, and operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The emergency restrictions on advertising lighting proposed in Energy Conservation Contingency Plan No. 5 of 1977 are presented. A statement is given on the need for rationale and operation of the Contingency Plan.

  4. 20 CFR 670.515 - What responsibilities do the center operators have in managing work-based learning?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... have in managing work-based learning? 670.515 Section 670.515 Employees' Benefits EMPLOYMENT AND... operators have in managing work-based learning? (a) The center operator must emphasize and implement work... training, and through arrangements with employers. Work-based learning must be under actual working...

  5. 20 CFR 670.515 - What responsibilities do the center operators have in managing work-based learning?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... have in managing work-based learning? 670.515 Section 670.515 Employees' Benefits EMPLOYMENT AND... operators have in managing work-based learning? (a) The center operator must emphasize and implement work... training, and through arrangements with employers. Work-based learning must be under actual working...

  6. 20 CFR 670.515 - What responsibilities do the center operators have in managing work-based learning?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... have in managing work-based learning? 670.515 Section 670.515 Employees' Benefits EMPLOYMENT AND... operators have in managing work-based learning? (a) The center operator must emphasize and implement work... training, and through arrangements with employers. Work-based learning must be under actual working...

  7. AMS data production facilities at science operations center at CERN

    NASA Astrophysics Data System (ADS)

    Choutko, V.; Egorov, A.; Eline, A.; Shan, B.

    2017-10-01

    The Alpha Magnetic Spectrometer (AMS) is a high energy physics experiment on the board of the International Space Station (ISS). This paper presents the hardware and software facilities of Science Operation Center (SOC) at CERN. Data Production is built around production server - a scalable distributed service which links together a set of different programming modules for science data transformation and reconstruction. The server has the capacity to manage 1000 paralleled job producers, i.e. up to 32K logical processors. Monitoring and management tool with Production GUI is also described.

  8. Computer-aided dispatch--traffic management center field operational test : state of Utah final report

    DOT National Transportation Integrated Search

    2006-07-01

    This document provides the final report for the evaluation of the USDOT-sponsored Computer-Aided Dispatch Traffic Management Center Integration Field Operations Test in the State of Utah. The document discusses evaluation findings in the followin...

  9. Balancing Dynamic Strength of Spur Gears Operated at Extended Center Distance

    NASA Technical Reports Server (NTRS)

    Lin, Hsiang Hsi; Liou, Chuen-Huei; Oswald, Fred B.; Townsend, Dennis P.

    1996-01-01

    This paper presents an analytical study on using hob offset to balance the dynamic tooth strength of spur gears operated at a center distance greater than the standard value. This study is an extension of a static study by Mabie and others. The study was limited to the offset values that assure the pinion and gear teeth will neither be undercut nor become pointed. The analysis presented in this paper was performed using DANST-PC, a new version of the NASA gear dynamics code. The operating speed of the transmission influences the amount of hob offset required to equalize the dynamic stresses in the pinion and gear. The optimum hob offset for the pinion was found to vary within a small range as the speed changes. The optimum value is generally greater than the optimum value found by static procedures. For gears that must operate over a wide range of speeds, an average offset value may be used.

  10. Continuity of operations planning in college athletic programs: The case for incorporating Federal Emergency Management Guidelines.

    PubMed

    Hall, Stacey A; Allen, Brandon L; Phillips, Dennis

    2016-01-01

    College athletic departments have a responsibility to provide a safe environment for student-athletes; however, most colleges do not have a crisis management plan that includes procedures for displaced student-athletes or alternate facilities to perform athletic events. Continuity of operations planning ensures athletic programs are equipped to maintain essential functions during, or shortly after, a disruption of operations due to possible hazards. Previous studies have identified a lack of emergency preparedness and continuity planning in college athletic departments. The purpose of this article is to illustrate in detail one approach to disaster planning for college athletic departments, namely the Federal Emergency Management Agency (FEMA) continuity of operations framework. By adhering to FEMA guidelines and promoting a best practices model, athletic programs can effectively plan to address potential hazards, as well as protect the organization's brand, image, and financial sustainability after a crisis event.

  11. Preparedness and Emergency Response Research Centers: Using a Public Health Systems Approach to Improve All-Hazards Preparedness and Response

    PubMed Central

    Leinhos, Mary; Williams-Johnson, Mildred

    2014-01-01

    In 2008, at the request of the Centers for Disease Control and Prevention (CDC), the Institute of Medicine (IOM) prepared a report identifying knowledge gaps in public health systems preparedness and emergency response and recommending near-term priority research areas. In accordance with the Pandemic and All-Hazards Preparedness Act mandating new public health systems research for preparedness and emergency response, CDC provided competitive awards establishing nine Preparedness and Emergency Response Research Centers (PERRCs) in accredited U.S. schools of public health. The PERRCs conducted research in four IOM-recommended priority areas: (1) enhancing the usefulness of public health preparedness and response (PHPR) training, (2) creating and maintaining sustainable preparedness and response systems, (3) improving PHPR communications, and (4) identifying evaluation criteria and metrics to improve PHPR for all hazards. The PERRCs worked closely with state and local public health, community partners, and advisory committees to produce practice-relevant research findings. PERRC research has generated more than 130 peer-reviewed publications and nearly 80 practice and policy tools and recommendations with the potential to significantly enhance our nation's PHPR to all hazards and that highlight the need for further improvements in public health systems. PMID:25355970

  12. Web-Based Real-Time Emergency Monitoring

    NASA Technical Reports Server (NTRS)

    Harvey, Craig A.; Lawhead, Joel

    2007-01-01

    The Web-based Real-Time Asset Monitoring (RAM) module for emergency operations and facility management enables emergency personnel in federal agencies and local and state governments to monitor and analyze data in the event of a natural disaster or other crisis that threatens a large number of people and property. The software can manage many disparate sources of data within a facility, city, or county. It was developed on industry-standard Geo- Spatial software and is compliant with open GIS standards. RAM View can function as a standalone system, or as an integrated plugin module to Emergency Operations Center (EOC) software suites such as REACT (Real-time Emergency Action Coordination Tool), thus ensuring the widest possible distribution among potential users. RAM has the ability to monitor various data sources, including streaming data. Many disparate systems are included in the initial suite of supported hardware systems, such as mobile GPS units, ambient measurements of temperature, moisture and chemical agents, flow meters, air quality, asset location, and meteorological conditions. RAM View displays real-time data streams such as gauge heights from the U.S. Geological Survey gauging stations, flood crests from the National Weather Service, and meteorological data from numerous sources. Data points are clearly visible on the map interface, and attributes as specified in the user requirements can be viewed and queried.

  13. Transit vehicle-to-infrastructure (V2I) applications : near term research and development : transit vehicle and center data exchange : operational concept.

    DOT National Transportation Integrated Search

    2015-03-01

    This document serves as an Operational Concept for the Transit Vehicle and Center Data Exchange application. The purpose of this document is to provide an operational description of how the Transit Vehicle and Center Data Exchange application m...

  14. 40 CFR 60.4204 - What emission standards must I meet for non-emergency engines if I am an owner or operator of a...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... non-emergency engines if I am an owner or operator of a stationary CI internal combustion engine? 60... Compression Ignition Internal Combustion Engines Emission Standards for Owners and Operators § 60.4204 What... internal combustion engine? (a) Owners and operators of pre-2007 model year non-emergency stationary CI ICE...

  15. 40 CFR 60.4204 - What emission standards must I meet for non-emergency engines if I am an owner or operator of a...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... non-emergency engines if I am an owner or operator of a stationary CI internal combustion engine? 60... Compression Ignition Internal Combustion Engines Emission Standards for Owners and Operators § 60.4204 What... internal combustion engine? (a) Owners and operators of pre-2007 model year non-emergency stationary CI ICE...

  16. 40 CFR 60.4204 - What emission standards must I meet for non-emergency engines if I am an owner or operator of a...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... non-emergency engines if I am an owner or operator of a stationary CI internal combustion engine? 60... Compression Ignition Internal Combustion Engines Emission Standards for Owners and Operators § 60.4204 What... internal combustion engine? (a) Owners and operators of pre-2007 model year non-emergency stationary CI ICE...

  17. 40 CFR 60.4204 - What emission standards must I meet for non-emergency engines if I am an owner or operator of a...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... non-emergency engines if I am an owner or operator of a stationary CI internal combustion engine? 60... Compression Ignition Internal Combustion Engines Emission Standards for Owners and Operators § 60.4204 What... internal combustion engine? (a) Owners and operators of pre-2007 model year non-emergency stationary CI ICE...

  18. Expedition 49/50 Astronaut Shane Kimbrough briefs the press on his extended mission to the International Space Station in the Marshall Space Flight Center Payload Operations Integration Center (POIC).

    NASA Image and Video Library

    2017-08-31

    Expedition 49/50 Astronaut Shane Kimbrough briefs the press on his extended mission to the International Space Station in the Marshall Space Flight Center Payload Operations Integration Center (POIC).

  19. Trauma center staffing, infrastructure, and patient characteristics that influence trauma center need.

    PubMed

    Faul, Mark; Sasser, Scott M; Lairet, Julio; Mould-Millman, Nee-Kofi; Sugerman, David

    2015-01-01

    The most effective use of trauma center resources helps reduce morbidity and mortality, while saving costs. Identifying critical infrastructure characteristics, patient characteristics and staffing components of a trauma center associated with the proportion of patients needing major trauma care will help planners create better systems for patient care. We used the 2009 National Trauma Data Bank-Research Dataset to determine the proportion of critically injured patients requiring the resources of a trauma center within each Level I-IV trauma center (n=443). The outcome variable was defined as the portion of treated patients who were critically injured. We defined the need for critical trauma resources and interventions ("trauma center need") as death prior to hospital discharge, admission to the intensive care unit, or admission to the operating room from the emergency department as a result of acute traumatic injury. Generalized Linear Modeling (GLM) was used to determine how hospital infrastructure, staffing Levels, and patient characteristics contributed to trauma center need. Nonprofit Level I and II trauma centers were significantly associated with higher levels of trauma center need. Trauma centers that had a higher percentage of transferred patients or a lower percentage of insured patients were associated with a higher proportion of trauma center need. Hospital infrastructure characteristics, such as bed capacity and intensive care unit capacity, were not associated with trauma center need. A GLM for Level III and IV trauma centers showed that the number of trauma surgeons on staff was associated with trauma center need. Because the proportion of trauma center need is predominantly influenced by hospital type, transfer frequency, and insurance status, it is important for administrators to consider patient population characteristics of the catchment area when planning the construction of new trauma centers or when coordinating care within state or regional

  20. Emergency medicine in the United Arab Emirates

    PubMed Central

    2014-01-01

    It has been a decade since emergency medicine was recognized as a specialty in the United Arab Emirates (UAE). In this short time, emergency medicine has established itself and developed rapidly in the UAE. Large, well-equipped emergency departments (EDs) are usually located in government hospitals, some of which function as regional trauma centers. Most of the larger EDs are staffed with medically or surgically trained physicians, with board-certified emergency medicine physicians serving as consultants overseeing care. Prehospital care and emergency medical services (EMS) operate under the auspices of the police department. Standardized protocols have been established for paramedic certification, triage, and destination decisions. The majority of ambulances offer basic life support (BLS/Type 2) with a growing minority offering advanced life support (ALS/Type 3). Medicine residency programs were established 5 years ago and form the foundation for training emergency medicine specialists for UAE. This article describes the full spectrum of emergency medicine in the UAE: prehospital care, EMS, hospital-based emergency care, training in emergency medicine, and disaster preparedness. We hope that our experience, our understanding of the challenges faced by the specialty, and the anticipated future directions will be of importance to others advancing emergency medicine in their region and across the globe. PMID:24401695

  1. 73. VIEW OF LAUNCH OPERATOR AND LAUNCH ANAYLST PANELS LOCATED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    73. VIEW OF LAUNCH OPERATOR AND LAUNCH ANAYLST PANELS LOCATED NEAR CENTER OF SOUTH WALL OF SLC-3E CONTROL ROOM. FROM LEFT TO RIGHT ON WALL IN BACKGROUND: COMMUNICATIONS HEADSET AND FOOT PEDAL IN FORGROUND. ACCIDENT REPORTING EMERGENCY NOTIFICATION SYSTEM TELEPHONE, ATLAS H FUEL COUNTER, AND DIGITAL COUNTDOWN CLOCK. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  2. Emergency Management of Chronic Wounds

    DTIC Science & Technology

    2007-01-01

    ABEMe aDepartment of Emergency Medicine , Oregon Health & Science University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97239-7500, USA...bVeterans Administration Medical Center, Portland, OR, USA cEmergency Medicine , The University of Texas Health Science Center at San Antonio, San Antonio...result in a sustained restoration of anatomic and * Corresponding author. Department of Emergency Medicine , Oregon Health & Science University, 3181

  3. Impact of new technologies on stress, attrition and well-being in emergency call centers: the NextGeneration 9-1-1 study protocol.

    PubMed

    Baseman, Janet; Revere, Debra; Painter, Ian; Stangenes, Scott; Lilly, Michelle; Beaton, Randal; Calhoun, Rebecca; Meischke, Hendrika

    2018-05-04

    Our public health emergency response system relies on the "first of the first responders"-the emergency call center workforce that handles the emergency needs of a public in distress. Call centers across the United States have been preparing for the "Next Generation 9-1-1" initiative, which will allow citizens to place 9-1-1 calls using a variety of digital technologies. The impacts of this initiative on a workforce that is already highly stressed is unknown. There is concern that these technology changes will increase stress, reduce job performance, contribute to maladaptive coping strategies, lower employee retention, or change morale in the workplace. Understanding these impacts to inform approaches for mitigating the health and performance risks associated with new technologies is crucial for ensuring the 911 system fulfills its mission of providing optimal emergency response to the public. Our project is an observational, prospective cohort study framed by the first new technology that will be implemented: text-to-911 calling. Emergency center call takers will be recruited nationwide. Data will be collected by online surveys distributed at each center before text-to-911 implementation; within the first month of implementation; and 6 months after implementation. Primary outcome measures are stress as measured by the Calgary Symptoms of Stress Index, use of sick leave, job performance, and job satisfaction. Primary analyses will use mixed effects regression models and mixed effects logistic regression models to estimate the change in outcome variables associated with text-to-911 implementation. Multiple secondary analyses will examine effects of stress on absenteeism; associations between technology attitudes and stress; effects of implementation on attitudes towards technology; and mitigating effects of job demands, job satisfaction, attitudes towards workplace technology and workplace support on change in stress. Our public health dependence on this workforce

  4. Toward a statewide health information technology center (abbreviated version).

    PubMed

    Sittig, Dean F; Joe, John C

    2010-11-01

    With the passage of The American Reinvestment and Recovery Act of 2009 that includes the Health Care Information Technology for Economic & Clinical Health Act, the opportunity for states to develop a Health Information Technology Center (THITC) has emerged. The Center provides the intellectual, financial, and technical leadership along with the governance and oversight for all health information technology-related activities in the state. This Center would be a free-standing, not-for-profit, public-private partnership that would be responsible for operating one or more (in large states) Regional Health Information Technology Extension Centers (Extension Centers) along with several Regional Health Information Exchanges (HIEs) and one or more Regional Health Information Data Centers (Data Centers). We believe that if these features and functions could be developed, deployed, and integrated statewide, the health and welfare of the citizens of the state could be improved while simultaneously reducing the costs associated with the provision of care.

  5. Addressing the gap between public health emergency planning and incident response

    PubMed Central

    Freedman, Ariela M; Mindlin, Michele; Morley, Christopher; Griffin, Meghan; Wooten, Wilma; Miner, Kathleen

    2013-01-01

    Objectives: Since 9/11, Incident Command System (ICS) and Emergency Operations Center (EOC) are relatively new concepts to public health, which typically operates using less hierarchical and more collaborative approaches to organizing staff. This paper describes the 2009 H1N1 influenza outbreak in San Diego County to explore the use of ICS and EOC in public health emergency response. Methods: This study was conducted using critical case study methodology consisting of document review and 18 key-informant interviews with individuals who played key roles in planning and response. Thematic analysis was used to analyze data. Results: Several broad elements emerged as key to ensuring effective and efficient public health response: 1) developing a plan for emergency response; 2) establishing the framework for an ICS; 3) creating the infrastructure to support response; 4) supporting a workforce trained on emergency response roles, responsibilities, and equipment; and 5) conducting regular preparedness exercises. Conclusions: This research demonstrates the value of investments made and that effective emergency preparedness requires sustained efforts to maintain personnel and material resources. By having the infrastructure and experience based on ICS and EOC, the public health system had the capability to surge-up: to expand its day-to-day operation in a systematic and prolonged manner. None of these critical actions are possible without sustained funding for the public health infrastructure. Ultimately, this case study illustrates the importance of public health as a key leader in emergency response. PMID:28228983

  6. Emergency Department Query for Patient-Centered Approaches to Sexual Orientation and Gender Identity

    PubMed Central

    Schneider, Eric B.; Kodadek, Lisa M.; Adler, Rachel R.; Ranjit, Anju; Torain, Maya; Shields, Ryan Y.; Snyder, Claire; Schuur, Jeremiah D.; Vail, Laura; German, Danielle; Peterson, Susan; Lau, Brandyn D.

    2017-01-01

    Importance The Institute of Medicine and The Joint Commission recommend routine documentation of patients’ sexual orientation in health care settings. Currently, very few health care systems collect these data since patient preferences and health care professionals’ support regarding collection of data about patient sexual orientation are unknown. Objective To identify the optimal patient-centered approach to collect sexual orientation data in the emergency department (ED) in the Emergency Department Query for Patient-Centered Approaches to Sexual Orientation and Gender Identity study. Design, Setting, and Participants An exploratory, sequential, mixed-methods design was used first to evaluate qualitative interviews conducted in the Baltimore, Maryland, and Washington, DC, areas. Fifty-three patients and 26 health care professionals participated in the qualitative interviews. Interviews were followed by a national online survey, in which 1516 (potential) patients (244 lesbian, 289 gay, 179 bisexual, and 804 straight) and 429 ED health care professionals (209 physicians and 220 nurses) participated. Survey participants were recruited using random digit dialing and address-based sampling techniques. Main Outcomes and Measures Qualitative interviews were used to obtain the perspectives of patients and health care professionals on sexual orientation data collection, and a quantitative survey was used to gauge patients' and health care professionals' willingness to provide or obtain sexual orientation information. Results Mean (SD) age of patient and clinician participants was 49 (16.4) and 51 (9.4) years, respectively. Qualitative interviews suggested that patients were less likely to refuse to provide sexual orientation than providers expected. Nationally, 154 patients (10.3%) reported that they would refuse to provide sexual orientation; however, 333 (77.8%) of all clinicians thought patients would refuse to provide sexual orientation. After adjustment for

  7. Stirling Convertor Extended Operation Testing and Data Analysis at Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Cornell, Peggy A.; Lewandowski, Edward J.; Oriti, Salvatore M.; Wilson, Scott D.

    2010-01-01

    Extended operation of Stirling convertors is essential to the development of radioisotope power systems and their potential use for longduration missions. To document the reliability of the convertors, regular monitoring and analysis of the extended operation data is particularly valuable, allowing us to better understand and quantify long-life characteristics of the convertors. Furthermore, investigation and comparison of the extended operation data to baseline performance data provides an opportunity to understand system behavior should any off-nominal performance occur. Glenn Research Center (GRC) has tested 16 Stirling convertors under 24-hr unattended extended operation, including four that have operated in a thermal vacuum environment and two that are operating in the Advanced Stirling Radioisotope Generator Engineering Unit. Ten of the sixteen convertors are the Advanced Stirling Convertors (ASC) developed by Sunpower, Inc. with GRC. These are highly efficient (conversion efficiency of up to 38 percent for the ASC-1), low-mass convertors that have evolved through technologically progressive convertor builds. Six convertors at GRC are Technology Demonstration Convertors from Infinia Corporation. They have achieved greater than 27 percent conversion efficiency and have accumulated over 185,000 of the total 265,000 hr of extended operation at GRC. This paper presents the extended operation testing and data analysis of free-piston Stirling convertors at NASA GRC as well as how these tests have contributed to the Stirling convertor s progression toward flight.

  8. Evaluation of the PuSHMe regional mayday system operational test : final report

    DOT National Transportation Integrated Search

    1997-09-01

    This report is an independent evaluation of the Puget Sound Emergency Response Operational Test (PuSHMe), a test of regional mayday systems that allow a driver to signal his or her location and need for assistance to a response center.

  9. Federal Emergency Management Information System (FEMIS), Installation Guide for FEMIS 1.4.6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arp, J.A.; Burnett, R.A.; Carter, R.J.

    The Federal Emergency Management Information System (FEMIS) is an emergency management planning and response tool that was developed by the Pacific Northwest National Laboratory (PNNL) under the direction of the U.S. Army Chemical Biological Defense Command. The FEMIS System Administration Guide provides information necessary for the system administrator to maintain the FEMIS system. The FEMIS system is designed for a single Chemical Stockpile Emergency Preparedness Program (CSEPP) site that has multiple Emergency Operations Centers (EOCs). Each EOC has personal computers (PCs) that emergency planners and operations personnel use to do their jobs. These PCs are corrected via a local areamore » network (LAN) to servers that provide EOC-wide services. Each EOC is interconnected to other EOCs via a Wide Area Network (WAN). Thus, FEMIS is an integrated software product that resides on client/server computer architecture. The main body of FEMIS software, referred to as the FEMIS Application Software, resides on the PC client(s) and is directly accessible to emergency management personnel. The remainder of the FEMIS software, referred to as the FEMIS Support Software, resides on the UNIX server. The Support Software provides the communication data distribution and notification functionality necessary to operate FEMIS in a networked, client/server environment.« less

  10. FRA/Volpe Center Task Force Observation of Operations at TVE Transrapid Test Facility, Addendum

    DOT National Transportation Integrated Search

    1993-12-01

    This report is an addendum to a report (No. DOT-VNTSC-RR393-PM-93-1) prepared in April : 1993 describing the operations witnessed and the relevant information obtained by nine members : of the FRA/Volpe Center High Speed Guided Ground Transportation ...

  11. Emergency Locator Transmitter Survivability and Reliability Study

    NASA Technical Reports Server (NTRS)

    Stimson, Chad M.; Littell, Justin D.; Mazzuca, Lisa M.; Foster, Anthony W.; Theodorakos, George J.

    2017-01-01

    A comprehensive study of Emergency Locator Transmitter (ELT) performance was conducted over a three year period concluding in 2016 in support of the Search and Rescue (SAR) Mission Office at National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC). The study began with a review of reported performance cited in a collection of works published as early as 1980 as well as analysis of a focused set of contemporary aviation crash reports. Based on initial research findings, a series of subscale and fullscale system tests were performed at NASA Langley Research Center (LaRC) with the goals of investigating ELT system failure modes and developing recommended improvements to the Radio Technical Commission for Aeronautics (RTCA) Minimum Operational Performance Specification (MOPS) that will result in improved system performance. Enhanced performance of ELT systems in aviation accidents will reduce unnecessary loss of human life and make SAR operations safer and less costly by reducing the amount of time required to locate accident sites.

  12. A Vision for the MRO/HiRISE Operations Center: Getting the Data to the People

    NASA Technical Reports Server (NTRS)

    Eliason, E. M.; McEwen, A. S.; Delamere, W. A.; Grant, J. A.; Gulick, V. C.; Hansen, C. J.; Herkenhoff, K. E.; Keszthelyi, L.; Kirk, R. L.; Mellon, M. T.

    2002-01-01

    The MRO/HiRISE Operations Center provides a mechanism for Mars investigators to particaipate in selection of targets and access to the aquired images. Additional information is contained in the original extended abstract.

  13. Barriers to the operation of mental health legislation in Australian emergency departments: a qualitative analysis.

    PubMed

    Jelinek, George; Mackinlay, Claire; Weiland, Tracey; Hill, Nicole; Gerdtz, Marie

    2011-06-01

    This study aimed to describe the perceived barriers faced by emergency clinicians in utilising mental health legislation in Australian hospital emergency departments. A semi-structured interview methodology was used to assess what barriers emergency department doctors and nurses perceive in the operation of mental health legislation. Key findings from the interview data were drawn in accordance with the most commonly represented themes. A total of 36 interviews were conducted with 20 members of the Australasian College for Emergency Medicine and 16 members of the College for Emergency Nursing Australasia representing the various Australian jurisdictions. Most concerning to clinicians were the effects of access block and overcrowding on the appropriate use of mental health legislation, and the substandard medical care that mental health patients received as a result of long periods in the emergency department. Many respondents were concerned about the lack of applicability of mental health legislation to the emergency department environment, variation in legislation between States and Territories causing problems for clinicians working interstate, and a lack of knowledge and training in mental health legislation. Many felt that clarification of legislative issues around duty of care and intoxicated or violent patients was required. The authors conclude that access block has detrimental effects on emergency mental health care as it does in other areas of emergency medicine. Consideration should be given to uniform national mental health legislation to better serve the needs of people with mental health emergencies.

  14. Southeastern Center for Emerging Biologic Threats Tabletop Exercise: Foodborne Toxoplasmosis Outbreak on College Campuses

    PubMed Central

    Morris, J. Glenn; Greenspan, Allison; Howell, Kelly; Mitchell, Joanne; Jones, Jeffrey L.; Potter, Morris; Isakov, Alexander; Woods, Christopher; Hughes, James M.

    2012-01-01

    The use of tabletop exercises as a tool in emergency preparedness and response has proven to be an effective means of assessing readiness for unexpected events. Whereas most exercise developers target a population in a defined space (eg, state, county, metropolitan area, hospital), the Southeastern Center for Emerging Biologic Threats (SECEBT) conducted an innovative tabletop exercise involving an unusual foodborne outbreak pathogen, targeting public health agencies and academic institutions in 7 southeastern states. The exercise tested the ability of participants to respond to a simulated foodborne disease outbreak affecting the region. The attendees represented 4 federal agencies, 9 state agencies, 6 universities, 1 nonprofit organization, and 1 private corporation. The goals were to promote collaborative relationships among the players, identify gaps in plans and policies, and identify the unique contributions of each organization—and notably academic institutions—to outbreak recognition, investigation, and control. Participants discussed issues and roles related to outbreak detection and management, risk communication, and coordination of policies and responsibilities before, during, and after an emergency, with emphasis on assets of universities that could be mobilized during an outbreak response. The exercise generated several lessons and recommendations identified by participants and evaluators. Key recommendations included a need to establish trigger points and protocols for information sharing and alerts among public health, academic, and law enforcement; to establish relationships with local, state, and federal stakeholders to facilitate communications during an emergency; and to catalogue and leverage strengths, assets, and priorities of academic institutions to add value to outbreak responses. PMID:22283568

  15. Computer-aided dispatch--traffic management center field operational test final detailed test plan : WSDOT deployment

    DOT National Transportation Integrated Search

    2003-10-01

    The purpose of this document is to expand upon the evaluation components presented in "Computer-aided dispatch--traffic management center field operational test final evaluation plan : WSDOT deployment". This document defines the objective, approach,...

  16. Federal Emergency Management Information System (FEMIS) system administration guide. Version 1.4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arp, J.A.; Burnett, R.A.; Downing, T.R.

    The Federal Emergency Management Information System (FEMIS) is an emergency management planning and analysis tool that was developed by the Pacific Northwest National Laboratory (PNNL) under the direction of the US Army Chemical Biological Defense Command. The FEMIS System Administration Guide defines FEMIS hardware and software requirements and gives instructions for installing the FEMIS software package. This document also contains information on the following: software installation for the FEMIS data servers, communication server, mail server, and the emergency management workstations; distribution media loading and FEMIS installation validation and troubleshooting; and system management of FEMIS users, login privileges, and usage. Themore » system administration utilities (tools), available in the FEMIS client software, are described for user accounts and site profile. This document also describes the installation and use of system and database administration utilities that will assist in keeping the FEMIS system running in an operational environment. The FEMIS system is designed for a single Chemical Stockpile Emergency Preparedness Program (CSEPP) site that has multiple Emergency Operations Centers (EOCs). Each EOC has personal computers (PCs) that emergency planners and operations personnel use to do their jobs. These PCs are connected via a local area network (LAN) to servers that provide EOC-wide services. Each EOC is interconnected to other EOCs via telecommunications links.« less

  17. Crystal Growth Team in the Spacelab Payload Operations Control Center (SL POCC) During the STS-42

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The primary payload for Space Shuttle Mission STS-42, launched January 22, 1992, was the International Microgravity Laboratory-1 (IML-1), a pressurized manned Spacelab module. The goal of IML-1 was to explore in depth the complex effects of weightlessness of living organisms and materials processing. Around-the-clock research was performed on the human nervous system's adaptation to low gravity and effects of microgravity on other life forms such as shrimp eggs, lentil seedlings, fruit fly eggs, and bacteria. Materials processing experiments were also conducted, including crystal growth from a variety of substances such as enzymes, mercury iodide, and a virus. The Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at the Marshall Space Flight Center (MSFC) was the air/ground communication channel used between the astronauts and ground control teams during the Spacelab missions. Featured is the Crystal Growth team in the SL POCC during STS-42, IML-1 mission.

  18. Supporting the Social Media Needs of Emergency Public Information Officers with Human-Centered Design and Development

    ERIC Educational Resources Information Center

    Hughes, Amanda Lee

    2012-01-01

    Emergency response agencies, which operate as command-and-control organizations, push information to members of the public with too few mechanisms to support communication flowing back. Recently, information communication technologies (ICTs) such as social media have challenged this one-way model by allowing the public to participate in emergency…

  19. The NASA Short-term Prediction Research and Transition (SPoRT) Center: A Collaborative Model for Accelerating Research into Operations

    NASA Technical Reports Server (NTRS)

    Goodman, S. J.; Lapenta, W.; Jedlovec, G.; Dodge, J.; Bradshaw, T.

    2003-01-01

    The NASA Short-term Prediction Research and Transition (SPoRT) Center in Huntsville, Alabama was created to accelerate the infusion of NASA earth science observations, data assimilation and modeling research into NWS forecast operations and decision-making. The principal focus of experimental products is on the regional scale with an emphasis on forecast improvements on a time scale of 0-24 hours. The SPoRT Center research is aligned with the regional prediction objectives of the US Weather Research Program dealing with 0-1 day forecast issues ranging from convective initiation to 24-hr quantitative precipitation forecasting. The SPoRT Center, together with its other interagency partners, universities, and the NASA/NOAA Joint Center for Satellite Data Assimilation, provides a means and a process to effectively transition NASA Earth Science Enterprise observations and technology to National Weather Service operations and decision makers at both the global/national and regional scales. This paper describes the process for the transition of experimental products into forecast operations, current products undergoing assessment by forecasters, and plans for the future.

  20. Computer-aided dispatch--traffic management center field operational test final test plans : state of Utah

    DOT National Transportation Integrated Search

    2004-01-01

    The purpose of this document is to expand upon the evaluation components presented in "Computer-aided dispatch--traffic management center field operational test final evaluation plan : state of Utah". This document defines the objective, approach, an...