NASA Technical Reports Server (NTRS)
Goodwin, Thomas J.; Schneider, Sandra L.; MacIntosh, Victor; Gibbons, Thomas F.
2010-01-01
Acute respiratory infections, including pneumonia and influenza, are the S t" leading cause of United States and worldwide deaths. Newly emerging pathogens signaled the need for an advanced generation of vaccine technology.. Human bronchial-tracheal epithelial tissue was bioengineered to detect, identify, host and study the pathogenesis of acute respiratory viral disease. The 3-dimensional (3D) human lung epithelio-mesechymal tissue-like assemblies (HLEM TLAs) share characteristics with human respiratory epithelium: tight junctions, desmosomes, microvilli, functional markers villin, keratins and production of tissue mucin. Respiratory Syntial Virus (RSV) studies demonstrate viral growth kinetics and membrane bound glycoproteins up to day 20 post infection in the human lung-orgainoid infected cell system. Peak replication of RSV occurred on day 10 at 7 log10 particles forming units per ml/day. HLEM is an advanced virus vaccine model and biosentinel system for emergent viral infectious diseases to support DoD global surveillance and military readiness.
Skin bioengineering: preclinical and clinical applications.
Martínez-Santamaría, L; Guerrero-Aspizua, S; Del Río, M
2012-01-01
Regenerative Medicine is an emerging field that combines basic research and clinical observations in order to identify the elements required to replace damaged tissues and organs in vivo and to stimulate the body's intrinsic regenerative capacity. Great benefits are expected in this field as researchers take advantage of the potential regenerative properties of both embryonic and adult stem cells, and more recently, of induced pluripotent stem cells. Bioengineered skin emerged mainly in response to a critical need for early permanent coverage of extensive burns. Later this technology was also applied to the treatment of chronic ulcers. Our group has established a humanized mouse model of skin grafting that involves the use of bioengineered human skin in immunodeficient mice. This model is suitable for the study of physiologic and pathologic cutaneous processes and the evaluation of treatment strategies for skin diseases, including protocols for gene and cell therapy and tissue engineering. Copyright © 2011 Elsevier España, S.L. and AEDV. All rights reserved.
Bioengineered humanized livers as better three-dimensional drug testing model system.
Vishwakarma, Sandeep Kumar; Bardia, Avinash; Lakkireddy, Chandrakala; Nagarapu, Raju; Habeeb, Md Aejaz; Khan, Aleem Ahmed
2018-01-27
To develop appropriate humanized three-dimensional ex-vivo model system for drug testing. Bioengineered humanized livers were developed in this study using human hepatic stem cells repopulation within the acellularized liver scaffolds which mimics with the natural organ anatomy and physiology. Six cytochrome P-450 probes were used to enable efficient identification of drug metabolism in bioengineered humanized livers. The drug metabolism study in bioengineered livers was evaluated to identify the absorption, distribution, metabolism, excretion and toxicity responses. The bioengineered humanized livers showed cellular and molecular characteristics of human livers. The bioengineered liver showed three-dimensional natural architecture with intact vasculature and extra-cellular matrix. Human hepatic cells were engrafted similar to the human liver. Drug metabolism studies provided a suitable platform alternative to available ex-vivo and in vivo models for identifying cellular and molecular dynamics of pharmacological drugs. The present study paves a way towards the development of suitable humanized preclinical model systems for pharmacological testing. This approach may reduce the cost and time duration of preclinical drug testing and further overcomes on the anatomical and physiological variations in xenogeneic systems.
NASA Astrophysics Data System (ADS)
Baird, Richard
2006-03-01
The mission of the National Institute of Biomedical Imaging and Bioengineering (NIBIB) is to improve human health by promoting the development and translation of emerging technologies in biomedical imaging and bioengineering. To this end, NIBIB supports a coordinated agenda of research programs in advanced imaging technologies and engineering methods that enable fundamental biomedical discoveries across a broad spectrum of biological processes, disorders, and diseases and have significant potential for direct medical application. These research programs dramatically advance the Nation's healthcare by improving the detection, management and, ultimately, the prevention of disease. The research promoted and supported by NIBIB also is strongly synergistic with other NIH Institutes and Centers as well as across government agencies. This presentation will provide an overview of the scientific programs and funding opportunities supported by NIBIB, highlighting those that are of particular important to the field of medical physics.
Bioengineering solutions for neural repair and recovery in stroke.
Modo, Michel; Ambrosio, Fabrisia; Friedlander, Robert M; Badylak, Stephen F; Wechsler, Lawrence R
2013-12-01
This review discusses emerging bioengineering opportunities for the treatment of stroke and their potential to build on current rehabilitation protocols. Bioengineering is a vast field that ranges from biomaterials to brain-computer interfaces. Biomaterials find application in the delivery of pharmacotherapies, as well as the emerging field of tissue engineering. For the treatment of stroke, these approaches have to be seen in the context of physical therapy in order to maximize functional outcomes. There is also an emergence of rehabilitation that engages engineering solutions, such as robot-assisted training, as well as brain-computer interfaces that can potentially assist in the case of paralysis. Stroke remains the main cause of adult disability with rehabilitation therapy being the focus for chronic impairments. Bioengineering is offering new opportunities to both support and synergize with currently available treatment options, and also promises to potentially dramatically improve available approaches. See the Video Supplementary Digital Content 1 (http://links.lww.com/CONR/A21).
Bioengineered vocal fold mucosa for voice restoration*
Ling, Changying; Li, Qiyao; Brown, Matthew E.; Kishimoto, Yo; Toya, Yutaka; Devine, Erin E.; Choi, Kyeong-Ok; Nishimoto, Kohei; Norman, Ian G.; Tsegyal, Tenzin; Jiang, Jack J.; Burlingham, William J.; Gunasekaran, Sundaram; Smith, Lloyd M.; Frey, Brian L.; Welham, Nathan V.
2015-01-01
Patients with voice impairment caused by advanced vocal fold (VF) fibrosis or tissue loss have few treatment options. A transplantable, bioengineered VF mucosa would address the individual and societal costs of voice-related communication loss. Such a tissue must be biomechanically capable of aerodynamic-to-acoustic energy transfer and high-frequency vibration, and physiologically capable of maintaining a barrier against the airway lumen. Here, we isolated primary human VF fibroblasts and epithelial cells and cocultured them under organotypic conditions. The resulting engineered mucosae showed morphologic features of native tissue, proteome-level evidence of mucosal morphogenesis and emerging extracellular matrix complexity, and rudimentary barrier function in vitro. When grafted into canine larynges ex vivo, the mucosae generated vibratory behavior and acoustic output that were indistinguishable from those of native VF tissue. When grafted into humanized mice in vivo, the mucosae survived and were well tolerated by the human adaptive immune system. This tissue engineering approach has the potential to restore voice function in patients with otherwise untreatable VF mucosal disease. PMID:26582902
Engineering stromal-epithelial interactions in vitro for ...
Background: Crosstalk between epithelial and stromal cells drives the morphogenesis of ectodermal organs during development and promotes normal mature adult epithelial tissue function. Epithelial-mesenchymal interactions (EMIs) have been examined using mammalian models, ex vivo tissue recombination, and in vitro co-cultures. Although these approaches have elucidated signaling mechanisms underlying morphogenetic processes and adult mammalian epithelial tissue function, they are limited by the availability of human tissue, low throughput, and human developmental or physiological relevance. Objectives: Bioengineering strategies to promote EMIs using human epithelial and mesenchymal cells have enabled the development of human in vitro models of adult epidermal and glandular tissues. In this review, we describe recent bioengineered models of human epithelial tissue and organs that can instruct the design of organotypic models of human developmental processes.Methods: We reviewed current bioengineering literature and here describe how bioengineered EMIs have enabled the development of human in vitro epithelial tissue models.Discussion: Engineered models to promote EMIs have recapitulated the architecture, phenotype, and function of adult human epithelial tissue, and similar engineering principles could be used to develop models of developmental morphogenesis. We describe how bioengineering strategies including bioprinting and spheroid culture could be implemented to
Cellular and Molecular Bioengineering: A Tipping Point
Brown, Genevieve; Butler, Peter J.; Chang, David W.; Chien, Shu; Clegg, Robert M.; Dewey, C. Forbes; Dong, Cheng; Guo, X. Edward; Helmke, Brian P.; Hess, Henry; Jacobs, Christopher R.; Kaunas, Roland R.; Kumar, Sanjay; Lu, Helen H.; Mathur, Anshu B.; Mow, Van C.; Schmid-Schönbein, Geert W.; Skoracki, Roman; Wang, Ning; Wang, Yingxiao; Zhu, Cheng
2012-01-01
In January of 2011, the Biomedical Engineering Society (BMES) and the Society for Physical Regulation in Biology and Medicine (SPRBM) held its inaugural Cellular and Molecular Bioengineering (CMBE) conference. The CMBE conference assembled worldwide leaders in the field of CMBE and held a very successful Round Table discussion among leaders. One of the action items was to collectively construct a white paper regarding the future of CMBE. Thus, the goal of this report is to emphasize the impact of CMBE as an emerging field, identify critical gaps in research that may be answered by the expertise of CMBE, and provide perspectives on enabling CMBE to address challenges in improving human health. Our goal is to provide constructive guidelines in shaping the future of CMBE. PMID:23264805
Raghavan, Shreya; Miyasaka, Eiichi A; Gilmont, Robert R; Somara, Sita; Teitelbaum, Daniel H; Bitar, Khalil N
2014-04-01
The internal anal sphincter (IAS) is a major contributing factor to pressure within the anal canal and is required for maintenance of rectoanal continence. IAS damage or weakening results in fecal incontinence. We have demonstrated that bioengineered, intrinsically innervated, human IAS tissue replacements possess key aspects of IAS physiology, such as the generation of spontaneous basal tone and contraction/relaxation in response to neurotransmitters. The objective of this study is to demonstrate the feasibility of implantation of bioengineered IAS constructs in the perianal region of athymic rats. Human IAS tissue constructs were bioengineered from isolated human IAS circular smooth muscle cells and human enteric neuronal progenitor cells. After maturation of the bioengineered constructs in culture, they were implanted operatively into the perianal region of athymic rats. Platelet-derived growth factor was delivered to the implanted constructs through a microosmotic pump. Implanted constructs were retrieved from the animals 4 weeks postimplantation. Animals tolerated the implantation well, and there were no early postoperative complications. Normal stooling was observed during the implantation period. At harvest, implanted constructs were adherent to the perirectal rat tissue and appeared healthy and pink. Immunohistochemical analysis revealed neovascularization. Implanted smooth muscle cells maintained contractile phenotype. Bioengineered constructs responded in vitro in a tissue chamber to neuronally evoked relaxation in response to electrical field stimulation and vasoactive intestinal peptide, indicating the preservation of neuronal networks. Our results indicate that bioengineered innervated IAS constructs can be used to augment IAS function in an animal model. This is a regenerative medicine based therapy for fecal incontinence that would directly address the dysfunction of the IAS muscle. Copyright © 2014 Mosby, Inc. All rights reserved.
Successful Implantation of Bioengineered, Intrinsically Innervated, Human Internal Anal Sphincter
Raghavan, Shreya; Gilmont, Robert R.; Miyasaka, Eiichi A.; Somara, Sita; Srinivasan, Shanthi; Teitelbaum, Daniel H; Bitar, Khalil N.
2011-01-01
Background & Aims To restore fecal continence, the weakened pressure of the internal anal sphincter (IAS) must be increased. We bioengineered intrinsically innervated human IAS, to emulate sphincteric physiology, in vitro. Methods We co-cultured human IAS circular smooth muscle with immortomouse fetal enteric neurons. We investigated the ability of bioengineered innervated human IAS, implanted in RAG1−/− mice, to undergo neovascularization and preserve the physiology of the constituent myogenic and neuronal components. Results The implanted IAS was neovascularized in vivo; numerous blood vessels were observed with no signs of inflammation or infection. Real-time force acquisition from implanted and pre-implant IAS showed distinct characteristics of IAS physiology. Features included the development of spontaneous myogenic basal tone; relaxation of 100% of basal tone in response to inhibitory neurotransmitter vasoactive intestinal peptide (VIP) and direct electrical field stimulation of the intrinsic innervation; inhibition of nitrergic and VIPergic EFS-induced relaxation (by antagonizing nitric oxide synthesis or receptor interaction); contraction in response to cholinergic stimulation with acetylcholine; and intact electromechanical coupling (evidenced by direct response to potassium chloride). Implanted, intrinsically innervated bioengineered human IAS tissue preserved the integrity and physiology of myogenic and neuronal components. Conclusion Intrinsically innervated human IAS bioengineered tissue can be successfully implanted in mice. This approach might be used to treat patients with fecal incontinence. PMID:21463628
78 FR 55086 - Center for Scientific Review; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-09
...: Emerging Technologies and Training Neurosciences Integrated Review Group; Bioengineering of Neuroscience, Vision and Low Vision Technologies Study Section. Date: October 3-4, 2013. Time: 8:00 a.m. to 11:00 a.m... . Name of Committee: Bioengineering Sciences & Technologies Integrated Review Group; Biomaterials and...
78 FR 64519 - National Institute of Biomedical Imaging and Bioengineering; Amended Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-29
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Institute of Biomedical Imaging and Bioengineering; Amended Notice of Meeting Notice is hereby given of a change in the meeting of the National Institute of Biomedical Imaging and Bioengineering Special Emphasis Panel, October...
78 FR 64506 - National Institute of Biomedical Imaging and Bioengineering; Amended Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-29
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Institute of Biomedical Imaging and Bioengineering; Amended Notice of Meeting Notice is hereby given of a change in the meeting of the National Institute of Biomedical Imaging and Bioengineering Special Emphasis Panel, October...
78 FR 78982 - National Institute of Biomedical Imaging and Bioengineering; Amended Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-27
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Institute of Biomedical Imaging and Bioengineering; Amended Notice of Meeting Notice is hereby given of a change in the meeting of the National Institute of Biomedical Imaging and Bioengineering Special Emphasis Panel...
76 FR 62814 - National Institute of Biomedical Imaging and Bioengineering; Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-11
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Institute of Biomedical Imaging and Bioengineering; Notice of Closed Meeting Pursuant to section 10(d) of the Federal... Biomedical Imaging and Bioengineering Special Emphasis Panel, 2012-01 NIBIB R13 Conference Grant Review. Date...
78 FR 55268 - National Institute of Biomedical Imaging and Bioengineering Amended; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-10
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Institute of Biomedical Imaging and Bioengineering Amended; Notice of Meeting Notice is hereby given a change in the meeting of the National Institute of Biomedical Imaging and Bioengineering Special Emphasis Panel...
76 FR 5184 - National Institute of Biomedical Imaging and Bioengineering; Amended Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-28
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Institute of Biomedical Imaging and Bioengineering; Amended Notice of Meeting Notice is hereby given of a change in the meeting of the National Institute of Biomedical Imaging and Bioengineering Special Emphasis Panel, March...
78 FR 66755 - National Institute of Biomedical Imaging and Bioengineering; Amended Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-06
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Institute of Biomedical Imaging and Bioengineering; Amended Notice of Meeting Notice is hereby given of a change in the meeting of the National Institute of Biomedical Imaging and Bioengineering Special Emphasis Panel, October...
78 FR 64966 - National Institute of Biomedical Imaging and Bioengineering; Amended Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-30
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Institute of Biomedical Imaging and Bioengineering; Amended Notice of Meeting Notice is hereby given of a change in the meeting of the National Institute of Biomedical Imaging and Bioengineering Special Emphasis Panel, October...
77 FR 25488 - National Institute of Biomedical Imaging and Bioengineering; Amended Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-30
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Institute of Biomedical Imaging and Bioengineering; Amended Notice of Meeting Notice is hereby given a change in the meeting of the National Advisory Council for Biomedical Imaging and Bioengineering, May 21, 2012, 9:00 a.m...
Adult Human Gingival Epithelial Cells as a Source for Whole-tooth Bioengineering
Angelova Volponi, A.; Kawasaki, M.; Sharpe, P.T.
2013-01-01
Teeth develop from interactions between embryonic oral epithelium and neural-crest-derived mesenchyme. These cells can be separated into single-cell populations and recombined to form normal teeth, providing a basis for bioengineering new teeth if suitable, non-embryonic cell sources can be identified. We show here that cells can be isolated from adult human gingival tissue that can be expanded in vitro and, when combined with mouse embryonic tooth mesenchyme cells, form teeth. Teeth with developing roots can be produced from this cell combination following transplantation into renal capsules. These bioengineered teeth contain dentin and enamel with ameloblast-like cells and rests of Malassez of human origin. PMID:23458883
77 FR 37684 - National Institute of Biomedical Imaging and Bioengineering; Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-22
... Imaging and Bioengineering Special Emphasis Panel; Center for Multiscale Simulations in the Human....D., Scientific Review Officer, 6707 Democracy Boulevard, Room 959, Bethesda, MD 20892, 301-451- 3398...
To Predict the Body’s Strength
1988-11-01
requests to Henning E. Von Gierke, Dr. Eng., T"rector, Biodynamics & Bioengineering Division, Wright-Patterson Fig. 1. The anatomy of the human neck ...aircraft emerged. This idea generated the 0 8.O- 0 question, "How much acceleration in the buttocks- 4 0 to- head direction is tolerable in ejecting a...determine that the required 10-12 G head - 0 . JJwards acceleration would be tolerable for I second (21). 01O c 0 0And that was the criteria for the first
Ono, Mitsuaki; Oshima, Masamitsu; Ogawa, Miho; Sonoyama, Wataru; Hara, Emilio Satoshi; Oida, Yasutaka; Shinkawa, Shigehiko; Nakajima, Ryu; Mine, Atsushi; Hayano, Satoru; Fukumoto, Satoshi; Kasugai, Shohei; Yamaguchi, Akira; Tsuji, Takashi; Kuboki, Takuo
2017-01-01
Whole-organ regeneration has great potential for the replacement of dysfunctional organs through the reconstruction of a fully functional bioengineered organ using three-dimensional cell manipulation in vitro. Recently, many basic studies of whole-tooth replacement using three-dimensional cell manipulation have been conducted in a mouse model. Further evidence of the practical application to human medicine is required to demonstrate tooth restoration by reconstructing bioengineered tooth germ using a postnatal large-animal model. Herein, we demonstrate functional tooth restoration through the autologous transplantation of bioengineered tooth germ in a postnatal canine model. The bioengineered tooth, which was reconstructed using permanent tooth germ cells, erupted into the jawbone after autologous transplantation and achieved physiological function equivalent to that of a natural tooth. This study represents a substantial advancement in whole-organ replacement therapy through the transplantation of bioengineered organ germ as a practical model for future clinical regenerative medicine. PMID:28300208
Augustine, Robin
2018-05-12
Significant progress has been made over the past few decades in the development of in vitro-engineered substitutes that mimic human skin, either as grafts for the replacement of lost skin, or for the establishment of in vitro human skin models. Tissue engineering has been developing as a novel strategy by employing the recent advances in various fields such as polymer engineering, bioengineering, stem cell research and nanomedicine. Recently, an advancement of 3D printing technology referred as bioprinting was exploited to make cell loaded scaffolds to produce constructs which are more matching with the native tissue. Bioprinting facilitates the simultaneous and highly specific deposition of multiple types of skin cells and biomaterials, a process that is lacking in conventional skin tissue-engineering approaches. Bioprinted skin substitutes or equivalents containing dermal and epidermal components offer a promising approach in skin bioengineering. Various materials including synthetic and natural biopolymers and cells with or without signalling molecules like growth factors are being utilized to produce functional skin constructs. This technology emerging as a novel strategy to overcome the current bottle-necks in skin tissue engineering such as poor vascularization, absence of hair follicles and sweat glands in the construct.
Insect natural products and processes: new treatments for human disease.
Ratcliffe, Norman A; Mello, Cicero B; Garcia, Eloi S; Butt, Tariq M; Azambuja, Patricia
2011-10-01
In this overview, some of the more significant recent developments in bioengineering natural products from insects with use or potential use in modern medicine are described, as well as in utilisation of insects as models for studying essential mammalian processes such as immune responses to pathogens. To date, insects have been relatively neglected as sources of modern drugs although they have provided valuable natural products, including honey and silk, for at least 4-7000 years, and have featured in folklore medicine for thousands of years. Particular examples of Insect Folk Medicines will briefly be described which have subsequently led through the application of molecular and bioengineering techniques to the development of bioactive compounds with great potential as pharmaceuticals in modern medicine. Insect products reviewed have been derived from honey, venom, silk, cantharidin, whole insect extracts, maggots, and blood-sucking arthropods. Drug activities detected include powerful antimicrobials against antibiotic-resistant bacteria and HIV, as well as anti-cancer, anti-angiogenesis and anti-coagulant factors and wound healing agents. Finally, the many problems in developing these insect products as human therapeutic drugs are considered and the possible solutions emerging to these problems are described. Copyright © 2011 Elsevier Ltd. All rights reserved.
78 FR 24223 - National Institute of Biomedical Imaging and Bioengineering; Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-24
... Imaging and Bioengineering Special Emphasis Panel; Center for Multiscale Simulations in the Human..., Bethesda, MD 20892, (Virtual Meeting). Contact Person: John K. Hayes, Ph.D., Scientific Review Officer... Boulevard, Room 959, Bethesda, MD 20892, 301-451-3398, [email protected] . Dated: April 18, 2013. David...
78 FR 58547 - National Institute of Biomedical Imaging and Bioengineering; Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-24
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Institute of Biomedical Imaging and Bioengineering; Notice of Closed Meeting Pursuant to section 10(d) of the Federal... clearly unwarranted invasion of personal privacy. Name of Committee: National Institute of Biomedical...
76 FR 5593 - National Institute of Biomedical Imaging and Bioengineering; Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-01
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Institute of Biomedical Imaging and Bioengineering; Notice of Closed Meeting Pursuant to section 10(d) of the Federal... clearly unwarranted invasion of personal privacy. Name of Committee: National Institute of Biomedical...
75 FR 57969 - National Institute of Biomedical Imaging and Bioengineering; Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-23
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Institute of Biomedical Imaging and Bioengineering; Notice of Closed Meeting Pursuant to section 10(d) of the Federal... clearly unwarranted invasion of personal privacy. Name of Committee: National Institute of Biomedical...
76 FR 28795 - National Institute of Biomedical Imaging and Bioengineering; Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-18
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Institute of Biomedical Imaging and Bioengineering; Notice of Closed Meeting Pursuant to section 10(d) of the Federal... clearly unwarranted invasion of personal privacy. Name of Committee: National Institute of Biomedical...
75 FR 6039 - National Institute of Biomedical Imaging and Bioengineering; Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-05
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Institute of Biomedical Imaging and Bioengineering; Notice of Closed Meeting Pursuant to section 10(d) of the Federal... clearly unwarranted invasion of personal privacy. Name of Committee: National Institute of Biomedical...
77 FR 2737 - National Institute of Biomedical Imaging and Bioengineering; Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-19
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Institute of Biomedical Imaging and Bioengineering; Notice of Closed Meeting Pursuant to section 10(d) of the Federal... clearly unwarranted invasion of personal privacy. Name of Committee: National Institute of Biomedical...
77 FR 3480 - National Institute of Biomedical Imaging and Bioengineering; Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-24
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Institute of Biomedical Imaging and Bioengineering; Notice of Closed Meeting Pursuant to section 10(d) of the Federal... clearly unwarranted invasion of personal privacy. Name of Committee: National Institute of Biomedical...
76 FR 10910 - National Institute of Biomedical Imaging and Bioengineering; Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-28
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Institute of Biomedical Imaging and Bioengineering; Notice of Closed Meeting Pursuant to section 10(d) of the Federal... clearly unwarranted invasion of personal privacy. Name of Committee: National Institute of Biomedical...
76 FR 77546 - National Institute of Biomedical Imaging and Bioengineering; Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-13
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Institute of Biomedical Imaging and Bioengineering; Notice of Closed Meeting Pursuant to section 10(d) of the Federal... clearly unwarranted invasion of personal privacy. Name of Committee: National Institute of Biomedical...
78 FR 42970 - National Institute of Biomedical Imaging and Bioengineering; Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-18
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Institute of Biomedical Imaging and Bioengineering; Notice of Closed Meeting Pursuant to section 10(d) of the Federal... clearly unwarranted invasion of personal privacy. Name of Committee: National Institute of Biomedical...
78 FR 63998 - National Institute of Biomedical Imaging and Bioengineering; Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-25
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Institute of Biomedical Imaging and Bioengineering; Notice of Closed Meeting Pursuant to section 10(d) of the Federal... clearly unwarranted invasion of personal privacy. Name of Committee: National Institute of Biomedical...
75 FR 54641 - National Institute of Biomedical Imaging and Bioengineering; Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-08
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Institute of Biomedical Imaging and Bioengineering; Notice of Closed Meeting Pursuant to section 10(d) of the Federal... clearly unwarranted invasion of personal privacy. Name of Committee: National Institute of Biomedical...
78 FR 55268 - National Institute of Biomedical Imaging and Bioengineering; Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-10
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Institute of Biomedical Imaging and Bioengineering; Notice of Closed Meeting Pursuant to section 10(d) of the Federal... clearly unwarranted invasion of personal privacy. Name of Committee: National Institute of Biomedical...
78 FR 71627 - National Institute of Biomedical Imaging and Bioengineering; Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-29
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Institute of Biomedical Imaging and Bioengineering; Notice of Closed Meeting Pursuant to section 10(d) of the Federal... clearly unwarranted invasion of personal privacy. Name of Committee: National Institute of Biomedical...
Emergence of Three-Dimensional Printing Technology and Its Utility in Spine Surgery.
Gadia, Akshay; Shah, Kunal; Nene, Abhay
2018-04-01
In the last decade, spine surgery has advanced tremendously. Tissue engineering and three-dimensional (3D) printing/additive manufacturing have provided promising new research avenues in the fields of medicine and orthopedics in recent literature, and their emergent role in spine surgery is encouraging. We reviewed recent articles that highlighted the role of 3D printing in medicine, orthopedics, and spine surgery and summarized the utility of 3D printing. 3D printing has shown promising results in various aspects of spine surgery and can be a useful tool for spine surgeons. The growing research on tissue bioengineering and its application in conjunction with additive manufacturing has revealed great potential for tissue bioengineering in the treatment of spinal ailments.
Emergence of Three-Dimensional Printing Technology and Its Utility in Spine Surgery
Gadia, Akshay; Nene, Abhay
2018-01-01
In the last decade, spine surgery has advanced tremendously. Tissue engineering and three-dimensional (3D) printing/additive manufacturing have provided promising new research avenues in the fields of medicine and orthopedics in recent literature, and their emergent role in spine surgery is encouraging. We reviewed recent articles that highlighted the role of 3D printing in medicine, orthopedics, and spine surgery and summarized the utility of 3D printing. 3D printing has shown promising results in various aspects of spine surgery and can be a useful tool for spine surgeons. The growing research on tissue bioengineering and its application in conjunction with additive manufacturing has revealed great potential for tissue bioengineering in the treatment of spinal ailments. PMID:29713420
Attama, Anthony A; Reichl, Stephan; Müller-Goymann, Christel C
2008-05-01
Solid lipid nanoparticles (SLNs) were prepared with a combination of homolipid from goat (goat fat) and phospholipid, and evaluated for diclofenac sodium (DNa) delivery to the eye using bio-engineered human cornea, produced from immortalized human corneal endothelial cells (HENC), stromal fibroblasts and epithelial cells CEPI 17 CL 4. Encapsulation efficiency was high and sustained release of DNa and high permeation through the bio-engineered cornea were achieved. Results obtained in this work showed that permeation of DNa through the cornea construct was improved by formulation as SLN modified with phospholipid.
Luchetti, Michele M; Moroncini, Gianluca; Jose Escamez, Maria; Svegliati Baroni, Silvia; Spadoni, Tatiana; Grieco, Antonella; Paolini, Chiara; Funaro, Ada; Avvedimento, Enrico V; Larcher, Fernando; Del Rio, Marcela; Gabrielli, Armando
2016-09-01
To describe a skin-SCID mouse chimeric model of systemic sclerosis (SSc; scleroderma) fibrosis based on engraftment of ex vivo-bioengineered skin using skin cells derived either from scleroderma patients or from healthy donors. Three-dimensional bioengineered skin containing human keratinocytes and fibroblasts isolated from skin biopsy specimens from healthy donors or SSc patients was generated ex vivo and then grafted onto the backs of SCID mice. The features of the skin grafts were analyzed by immunohistochemistry, and the functional profile of the graft fibroblasts was defined before and after treatment with IgG from healthy controls or SSc patients. Two procedures were used to investigate the involvement of platelet-derived growth factor receptor (PDGFR): 1) nilotinib, a tyrosine kinase inhibitor, was administered to mice before injection of IgG from SSc patient sera (SSc IgG) into the grafts, and 2) human anti-PDGFR monoclonal antibodies were injected into the grafts. Depending on the type of bioengineered skin grafted, the regenerated human skin exhibited either the typical scleroderma phenotype or the healthy human skin architecture. Treatment of animals carrying healthy donor skin grafts with SSc IgG resulted in the appearance of a bona fide scleroderma phenotype, as confirmed by increased collagen deposition and fibroblast activation markers. Results of the experiments involving administration of nilotinib or monoclonal antibodies confirmed the involvement of PDGFR. Our results provide the first in vivo demonstration of the fibrotic properties of anti-PDGFR agonistic antibodies. This bioengineered skin-humanized mouse model can be used to test in vivo the progression of the disease and to monitor response to antifibrotic drugs. © 2016, American College of Rheumatology.
Bioengineered probiotics, a strategic approach to control enteric infections
Amalaradjou, Mary Anne Roshni; Bhunia, Arun K
2013-01-01
Enteric infections account for high morbidity and mortality and are considered to be the fifth leading cause of death at all ages worldwide. Seventy percent of all enteric infections are foodborne. Thus significant efforts have been directed toward the detection, control and prevention of foodborne diseases. Many antimicrobials including antibiotics have been used for their control and prevention. However, probiotics offer a potential alternative intervention strategy owing to their general health beneficial properties and inhibitory effects against foodborne pathogens. Often, antimicrobial probiotic action is non-specific and non-discriminatory or may be ineffective. In such cases, bioengineered probiotics expressing foreign gene products to achieve specific function is highly desirable. In this review we summarize the strategic development of recombinant bioengineered probiotics to control enteric infections, and to examine how scientific advancements in the human microbiome and their immunomodulatory effects help develop such novel and safe bioengineered probiotics. PMID:23327986
Mathews, Juanita; Levin, Michael
2018-04-20
Breakthroughs in biomedicine and synthetic bioengineering require predictive, rational control over anatomical structure and function. Recent successes in manipulating cellular and molecular hardware have not been matched by progress in understanding the patterning software implemented during embryogenesis and regeneration. A fundamental capability gap is driving desired changes in growth and form to address birth defects and traumatic injury. Here we review new tools, results, and conceptual advances in an exciting emerging field: endogenous non-neural bioelectric signaling, which enables cellular collectives to make global decisions and implement large-scale pattern homeostasis. Spatially distributed electric circuits regulate gene expression, organ morphogenesis, and body-wide axial patterning. Developmental bioelectricity facilitates the interface to organ-level modular control points that direct patterning in vivo. Cracking the bioelectric code will enable transformative progress in bioengineering and regenerative medicine. Copyright © 2018 Elsevier Ltd. All rights reserved.
Shirafkan, Ali; Montalbano, Mauro; McGuire, Joshua; Rastellini, Cristiana; Cicalese, Luca
2016-01-01
Inadequate absorptive surface area poses a great challenge to the patients suffering a variety of intestinal diseases causing short bowel syndrome. To date, these patients are managed with total parenteral nutrition or intestinal transplantation. However, these carry significant morbidity and mortality. Currently, by emergence of tissue engineering, anticipations to utilize an alternative method to increase the intestinal absorptive surface area are increasing. In this paper, we will review the improvements made over time in attempting elongating the intestine with surgical techniques as well as using intestinal bioengineering. Performing sequential intestinal lengthening was the preliminary method applied in humans. However, these methods did not reach widespread use and has limited outcome. Subsequent experimental methods were developed utilizing scaffolds to regenerate intestinal tissue and organoids unit from the intestinal epithelium. Stem cells also have been studied and applied in all types of tissue engineering. Biomaterials were utilized as a structural support for naive cells to produce bio-engineered tissue that can achieve a near-normal anatomical structure. A promising novel approach is the elongation of the intestine with an acellular biologic scaffold to generate a neo-formed intestinal tissue that showed, for the first time, evidence of absorption in vivo. In the large intestine, studies are more focused on regeneration and engineering of sphincters and will be briefly reviewed. From the review of the existing literature, it can be concluded that significant progress has been achieved in these experimental methods but that these now need to be fully translated into a pre-clinical and clinical experimentation to become a future viable therapeutic option. PMID:27011901
Branding the bio/biomedical engineering degree.
Voigt, Herbert F
2011-01-01
The future challenges to medical and biological engineering, sometimes referred to as biomedical engineering or simply bioengineering, are many. Some of these are identifiable now and others will emerge from time to time as new technologies are introduced and harnessed. There is a fundamental issue regarding "Branding the bio/biomedical engineering degree" that requires a common understanding of what is meant by a B.S. degree in Biomedical Engineering, Bioengineering, or Biological Engineering. In this paper we address some of the issues involved in branding the Bio/Biomedical Engineering degree, with the aim of clarifying the Bio/Biomedical Engineering brand.
LaBarge, Mark A; Parvin, Bahram; Lorens, James B
2014-01-01
The field of bioengineering has pioneered the application of new precision fabrication technologies to model the different geometric, physical or molecular components of tissue microenvironments on solid-state substrata. Tissue engineering approaches building on these advances are used to assemble multicellular mimetic-tissues where cells reside within defined spatial contexts. The functional responses of cells in fabricated microenvironments has revealed a rich interplay between the genome and extracellular effectors in determining cellular phenotypes, and in a number of cases has revealed the dominance of microenvironment over genotype. Precision bioengineered substrata are limited to a few aspects, whereas cell/tissue-derived microenvironments have many undefined components. Thus introducing a computational module may serve to integrate these types of platforms to create reasonable models of drug responses in human tissues. This review discusses how combinatorial microenvironment microarrays and other biomimetic microenvironments have revealed emergent properties of cells in particular microenvironmental contexts, the platforms that can measure phenotypic changes within those contexts, and the computational tools that can unify the microenvironment-imposed functional phenotypes with underlying constellations of proteins and genes. Ultimately we propose that a merger of these technologies will enable more accurate pre-clinical drug discovery. PMID:24582543
A brief history of the Bioengineering Institute of California and the UC System-wide Symposia.
Chien, Shu
2011-04-01
The plan to establish a Multicampus Research Unit (MRU) on Bioengineering in the University of California (UC) System started in August 1999. The cooperative efforts of the UC campuses led to the formal establishment of the Bioengineering Institute of California (BIC) in October 2003. Three years prior to the BIC establishment, the System-wide Annual Bioengineering Symposium was started at UC Davis. The Symposia were then hosted sequentially by UC Santa Barbara, UC Berkeley, UCSD, UC Santa Cruz, UC Irvine, UCSF, UCLA, and UC Riverside, with the completion of the first cycle of a decade in the newest campus of UC Merced in 2009. The second cycle began in 2010 with the Symposium returning again to UC Davis. Each campus hosted a wonderful Symposium, with the active participation of students and faculty from all campuses, with the motto of "Ten campuses united as one, learning and growing together." These Symposia have contributed significantly to the collaborative research and training of students and young scientists in bioengineering, as well as fruitful interactions with industry and government agencies, which have provided strong support for these valuable meetings. The BIC will endeavor to further enhance these efforts by fostering research collaborations and joint education and training activities, with the ultimate goal of advancing bioengineering for the improvement of human health and wellbeing.
de Souza, Priscilla Vianna; Alves, Fabiana Bucholdz Teixeira; Costa Ayub, Cristina Lucia Sant'Ana; de Miranda Soares, Maria Albertina; Gomes, Jose Rosa
2013-12-01
During recent years, attention has been given to the potential of therapeutic approaches using stem cells obtained from dental pulp tissue. The aim of this study, therefore, was to give an overview of the papers produced during the last 10 years that have described the use of stem cells obtained from human deciduous teeth in cell therapy or bioengineering. The PubMed database was investigated from January 2002 until July 2011 and the papers published during this period were analyzed according to criteria previously established, using the methodology of systematic review. The measurements were done using "stem cell" as the primary keyword, and "human deciduous teeth dental pulp cell" and "human exfoliated deciduous teeth" as the secondary keywords. Four hundred and seventy-five papers were found. The first screening resulted in 276 papers, from which 84 papers were selected. However, only 11 of them attained the aim proposed in our approach. There were few scientific studies related to direct therapeutic application using stem cells of human deciduous teeth and none of them had been applied to humans. However, the results indicated important and promising applications of the pulp stem-cells in cell therapy and bioengineering as demonstrated by studies in animal models of muscular dystrophy, Parkison's disease, and lupus erythematosus. Copyright © 2013 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Choi, Jin-Ha; Lee, Jaewon; Shin, Woojung; Choi, Jeong-Woo; Kim, Hyun Jung
2016-10-01
Nanotechnology and bioengineering have converged over the past decades, by which the application of multi-functional nanoparticles (NPs) has been emerged in clinical and biomedical fields. The NPs primed to detect disease-specific biomarkers or to deliver biopharmaceutical compounds have beena validated in conventional in vitro culture models including two dimensional (2D) cell cultures or 3D organoid models. However, a lack of experimental models that have strong human physiological relevance has hampered accurate validation of the safety and functionality of NPs. Alternatively, biomimetic human "Organs-on-Chips" microphysiological systems have recapitulated the mechanically dynamic 3D tissue interface of human organ microenvironment, in which the transport, cytotoxicity, biocompatibility, and therapeutic efficacy of NPs and their conjugates may be more accurately validated. Finally, integration of NP-guided diagnostic detection and targeted nanotherapeutics in conjunction with human organs-on-chips can provide a novel avenue to accelerate the NP-based drug development process as well as the rapid detection of cellular secretomes associated with pathophysiological processes.
Synthetic biology: Emerging bioengineering in Indonesia
NASA Astrophysics Data System (ADS)
Suhandono, Sony
2017-05-01
The development of synthetic biology will shape the new era of science and technology. It is an emerging bioengineering technique involving genetic engineering which can alter the phenotype and behavior of the cell or the new product. Synthetic biology may produce biomaterials, drugs, vaccines, biosensors, and even a recombinant secondary metabolite used in herbal and complementary medicine, such as artemisinin, a malaria drug which is usually extracted from the plant Artemisia annua. The power of synthetic biology has encouraged scientists in Indonesia, and is still in early development. This paper also covers some research from an Indonesian research institute in synthetic biology such as observing the production of bio surfactants and the enhanced production of artemisinin using a transient expression system. Synthetic biology development in Indonesia may also be related to the iGEM competition, a large synthetic biology research competition which was attended by several universities in Indonesia. The application of synthetic biology for drug discovery will be discussed.
Bioengineering Human Myocardium on Native Extracellular Matrix
Guyette, Jacques P.; Charest, Jonathan M; Mills, Robert W; Jank, Bernhard J.; Moser, Philipp T.; Gilpin, Sarah E.; Gershlak, Joshua R.; Okamoto, Tatsuya; Gonzalez, Gabriel; Milan, David J.; Gaudette, Glenn R.; Ott, Harald C.
2015-01-01
Rationale More than 25 million individuals suffer from heart failure worldwide, with nearly 4,000 patients currently awaiting heart transplantation in the United States. Donor organ shortage and allograft rejection remain major limitations with only about 2,500 hearts transplanted each year. As a theoretical alternative to allotransplantation, patient-derived bioartificial myocardium could provide functional support and ultimately impact the treatment of heart failure. Objective The objective of this study is to translate previous work to human scale and clinically relevant cells, for the bioengineering of functional myocardial tissue based on the combination of human cardiac matrix and human iPS-derived cardiac myocytes. Methods and Results To provide a clinically relevant tissue scaffold, we translated perfusion-decellularization to human scale and obtained biocompatible human acellular cardiac scaffolds with preserved extracellular matrix composition, architecture, and perfusable coronary vasculature. We then repopulated this native human cardiac matrix with cardiac myocytes derived from non-transgenic human induced pluripotent stem cells (iPSCs) and generated tissues of increasing three-dimensional complexity. We maintained such cardiac tissue constructs in culture for 120 days to demonstrate definitive sarcomeric structure, cell and matrix deformation, contractile force, and electrical conduction. To show that functional myocardial tissue of human scale can be built on this platform, we then partially recellularized human whole heart scaffolds with human iPSC-derived cardiac myocytes. Under biomimetic culture, the seeded constructs developed force-generating human myocardial tissue, showed electrical conductivity, left ventricular pressure development, and metabolic function. Conclusions Native cardiac extracellular matrix scaffolds maintain matrix components and structure to support the seeding and engraftment of human iPS-derived cardiac myocytes, and enable the bioengineering of functional human myocardial-like tissue of multiple complexities. PMID:26503464
A Bioengineered Nisin Derivative to Control Biofilms of Staphylococcus pseudintermedius
Field, Des; Gaudin, Noémie; Lyons, Francy; O'Connor, Paula M.; Cotter, Paul D.; Hill, Colin; Ross, R. Paul
2015-01-01
Antibiotic resistance and the shortage of novel antimicrobials are among the biggest challenges facing society. One of the major factors contributing to resistance is the use of frontline clinical antibiotics in veterinary practice. In order to properly manage dwindling antibiotic resources, we must identify antimicrobials that are specifically targeted to veterinary applications. Nisin is a member of the lantibiotic family of antimicrobial peptides that exhibit potent antibacterial activity against many gram-positive bacteria, including human and animal pathogens such as Staphylococcus, Bacillus, Listeria, and Clostridium. Although not currently used in human medicine, nisin is already employed commercially as an anti-mastitis product in the veterinary field. Recently we have used bioengineering strategies to enhance the activity of nisin against several high profile targets, including multi-drug resistant clinical pathogens such as methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci (VRE) and also against staphylococci and streptococci associated with bovine mastitis. However, newly emerging pathogens such as methicillin resistant Staphylococcus pseudintermedius (MRSP) pose a significant threat in terms of veterinary health and as a reservoir for antibiotic resistance determinants. In this study we created a nisin derivative with enhanced antimicrobial activity against S. pseudintermedius. In addition, the novel nisin derivative exhibits an enhanced ability to impair biofilm formation and to reduce the density of established biofilms. The activities of this peptide represent a significant improvement over that of the wild-type nisin peptide and merit further investigation with a view to their use to treat S. pseudintermedius infections. PMID:25789988
Lawson, Jeffrey H; Glickman, Marc H; Ilzecki, Marek; Jakimowicz, Tomasz; Jaroszynski, Andrzej; Peden, Eric K; Pilgrim, Alison J; Prichard, Heather L; Guziewicz, Malgorzata; Przywara, Stanisław; Szmidt, Jacek; Turek, Jakub; Witkiewicz, Wojciech; Zapotoczny, Norbert; Zubilewicz, Tomasz; Niklason, Laura E
2016-01-01
Summary Background For patients with end-stage renal disease who are not candidates for fistula, dialysis access grafts are the best option for chronic haemodialysis. However, polytetrafluoroethylene arteriovenous grafts are prone to thrombosis, infection, and intimal hyperplasia at the venous anastomosis. We developed and tested a bioengineered human acellular vessel as a potential solution to these limitations in dialysis access. Methods We did two single-arm phase 2 trials at six centres in the USA and Poland. We enrolled adults with end-stage renal disease. A novel bioengineered human acellular vessel was implanted into the arms of patients for haemodialysis access. Primary endpoints were safety (freedom from immune response or infection, aneurysm, or mechanical failure, and incidence of adverse events), and efficacy as assessed by primary, primary assisted, and secondary patencies at 6 months. All patients were followed up for at least 1 year, or had a censoring event. These trials are registered with ClinicalTrials.gov, NCT01744418 and NCT01840956. Findings Human acellular vessels were implanted into 60 patients. Mean follow-up was 16 months (SD 7·6). One vessel became infected during 82 patient-years of follow-up. The vessels had no dilatation and rarely had post-cannulation bleeding. At 6 months, 63% (95% CI 47–72) of patients had primary patency, 73% (57–81) had primary assisted patency, and 97% (85–98) had secondary patency, with most loss of primary patency because of thrombosis. At 12 months, 28% (17–40) had primary patency, 38% (26–51) had primary assisted patency, and 89% (74–93) had secondary patency. Interpretation Bioengineered human acellular vessels seem to provide safe and functional haemodialysis access, and warrant further study in randomised controlled trials. Funding Humacyte and US National Institutes of Health. PMID:27203778
Regenerative immunology: the immunological reaction to biomaterials.
Cravedi, Paolo; Farouk, Samira; Angeletti, Andrea; Edgar, Lauren; Tamburrini, Riccardo; Duisit, Jerome; Perin, Laura; Orlando, Giuseppe
2017-12-01
Regenerative medicine promises to meet two of the most urgent needs of modern organ transplantation, namely immunosuppression-free transplantation and an inexhaustible source of organs. Ideally, bioengineered organs would be manufactured from a patient's own biomaterials-both cells and the supporting scaffolding materials in which cells would be embedded and allowed to mature to eventually regenerate the organ in question. While some groups are focusing on the feasibility of this approach, few are focusing on the immunogenicity of the scaffolds that are being developed for organ bioengineering purposes. This review will succinctly discuss progress in the understanding of immunological characteristics and behavior of different scaffolds currently under development, with emphasis on the extracellular matrix scaffolds obtained decellularized animal or human organs which seem to provide the ideal template for bioengineering purposes. © 2017 Steunstichting ESOT.
Labarge, Mark A; Parvin, Bahram; Lorens, James B
2014-04-01
The field of bioengineering has pioneered the application of new precision fabrication technologies to model the different geometric, physical or molecular components of tissue microenvironments on solid-state substrata. Tissue engineering approaches building on these advances are used to assemble multicellular mimetic-tissues where cells reside within defined spatial contexts. The functional responses of cells in fabricated microenvironments have revealed a rich interplay between the genome and extracellular effectors in determining cellular phenotypes and in a number of cases have revealed the dominance of microenvironment over genotype. Precision bioengineered substrata are limited to a few aspects, whereas cell/tissue-derived microenvironments have many undefined components. Thus, introducing a computational module may serve to integrate these types of platforms to create reasonable models of drug responses in human tissues. This review discusses how combinatorial microenvironment microarrays and other biomimetic microenvironments have revealed emergent properties of cells in particular microenvironmental contexts, the platforms that can measure phenotypic changes within those contexts, and the computational tools that can unify the microenvironment-imposed functional phenotypes with underlying constellations of proteins and genes. Ultimately we propose that a merger of these technologies will enable more accurate pre-clinical drug discovery. Copyright © 2014 Elsevier B.V. All rights reserved.
Evaluation of a human bio-engineered skin equivalent for drug permeation studies.
Asbill, C; Kim, N; El-Kattan, A; Creek, K; Wertz, P; Michniak, B
2000-09-01
To test the barrier function of a bio-engineered human skin (BHS) using three model drugs (caffeine, hydrocortisone, and tamoxifen) in vitro. To investigate the lipid composition and microscopic structure of the BHS. The human skin substitute was composed of both epidermal and dermal layers, the latter having a bovine collagen matrix. The permeability of the BHS to three model drugs was compared to that obtained in other percutaneous testing models (human cadaver skin, hairless mouse skin, and EpiDerm). Lipid analysis of the BHS was performed by high performance thin layered chromatography. Histological evaluation of the BHS was performed using routine H&E staining. The BHS mimicked human skin in terms of lipid composition, gross ultrastructure, and the formation of a stratum corneum. However, the permeability of the BHS to caffeine, hydrocortisone, and tamoxifen was 3-4 fold higher than that of human cadaver skin. In summary, the results indicate that the BHS may be an acceptable in vitro model for drug permeability testing.
Simulation of a Congress at the Chair of Biology II in Bioengineering
NASA Astrophysics Data System (ADS)
Naranjo, A. V.; Reznichenco, V.; López, N.; Hernández, R.; Bajinay, S.
2007-11-01
This work has been developed in the Chair of Biology II, the curricular contents of which correspond to Human Anatomy. This subject is taught in the second semester of the second year of studies in Bioengineering. Our main objective is that the students attending the course may integrate the syllabus contents of Anatomy with those of other subjects in the career. Ever since 1998 we have organized a congress named Congreso Intracátedra de Biología II (Intra Chair Congress on Biology II). This is the last assignment in the semester and is compulsory for regular students of the subject. It consists in simulating a scientific congress with international characteristics. The guidelines for the congress are made known to the students at the beginning of the semester. In groups of up to three members, the students must undertake a work that relates aspects of Anatomy with Bioengineering. Students are expected to investigate on diagnostic and/or therapeutic technology in order to write a paper that must be accepted in advance of the event. The presentation of the work must be made through PowerPoint. The originality of the research work done and the wide range of topics selected are surprising. Problems are tackled from the standpoints both of the various medical fields and of bioengineering despite the fact that they are just students of the second year in Bioengineering.
Successful implantation of physiologically functional bioengineered mouse internal anal sphincter.
Raghavan, Shreya; Miyasaka, Eiichi A; Hashish, Mohamed; Somara, Sita; Gilmont, Robert R; Teitelbaum, Daniel H; Bitar, Khalil N
2010-08-01
We have previously developed bioengineered three-dimensional internal anal sphincter (IAS) rings from circular smooth muscle cells isolated from rabbit and human IAS. We provide proof of concept that bioengineered mouse IAS rings are neovascularized upon implantation into mice of the same strain and maintain concentric smooth muscle alignment, phenotype, and IAS functionality. Rings were bioengineered by using smooth muscle cells from the IAS of C57BL/6J mice. Bioengineered mouse IAS rings were implanted subcutaneously on the dorsum of C57BL/6J mice along with a microosmotic pump delivering fibroblast growth factor-2. The mice remained healthy during the period of implantation, showing no external signs of rejection. Mice were killed 28 days postsurgery and implanted IAS rings were harvested. IAS rings showed muscle attachment, neovascularization, healthy color, and no external signs of infection or inflammation. Assessment of force generation on harvested IAS rings showed the following: 1) spontaneous basal tone was generated in the absence of external stimulation; 2) basal tone was relaxed by vasoactive intestinal peptide, nitric oxide donor, and nifedipine; 3) acetylcholine and phorbol dibutyrate elicited rapid-rising, dose-dependent, sustained contractions repeatedly over 30 min without signs of muscle fatigue; and 4) magnitudes of potassium chloride-induced contractions were 100% of peak maximal agonist-induced contractions. Our preliminary results confirm the proof of concept that bioengineered rings are neovascularized upon implantation. Harvested rings maintain smooth muscle alignment and phenotype. Our physiological studies confirm that implanted rings maintain 1) overall IAS physiology and develop basal tone, 2) integrity of membrane ionic characteristics, and 3) integrity of membrane associated intracellular signaling transduction pathways for contraction and relaxation by responding to cholinergic, nitrergic, and VIP-ergic stimulation. IAS smooth muscle tissue could thus be bioengineered for the purpose of implantation to serve as a potential graft therapy for dysfunctional internal anal sphincter in fecal incontinence.
Coming to terms with tissue engineering and regenerative medicine in the lung
Tschumperlin, Daniel J.; Stenmark, Kurt R.
2015-01-01
Lung diseases such as emphysema, interstitial fibrosis, and pulmonary vascular diseases cause significant morbidity and mortality, but despite substantial mechanistic understanding, clinical management options for them are limited, with lung transplantation being implemented at end stages. However, limited donor lung availability, graft rejection, and long-term problems after transplantation are major hurdles to lung transplantation being a panacea. Bioengineering the lung is an exciting and emerging solution that has the ultimate aim of generating lung tissues and organs for transplantation. In this article we capture and review the current state of the art in lung bioengineering, from the multimodal approaches, to creating anatomically appropriate lung scaffolds that can be recellularized to eventually yield functioning, transplant-ready lungs. Strategies for decellularizing mammalian lungs to create scaffolds with native extracellular matrix components vs. de novo generation of scaffolds using biocompatible materials are discussed. Strengths vs. limitations of recellularization using different cell types of various pluripotency such as embryonic, mesenchymal, and induced pluripotent stem cells are highlighted. Current hurdles to guide future research toward achieving the clinical goal of transplantation of a bioengineered lung are discussed. PMID:26254424
Bioengineering natural product biosynthetic pathways for therapeutic applications.
Wu, Ming-Cheng; Law, Brian; Wilkinson, Barrie; Micklefield, Jason
2012-12-01
With the advent of next-generation DNA sequencing technologies, the number of microbial genome sequences has increased dramatically, revealing a vast array of new biosynthetic gene clusters. Genomics data provide a tremendous opportunity to discover new natural products, and also to guide the bioengineering of new and existing natural product scaffolds for therapeutic applications. Notably, it is apparent that the vast majority of biosynthetic gene clusters are either silent or produce very low quantities of the corresponding natural products. It is imperative therefore to devise methods for activating unproductive biosynthetic pathways to provide the quantities of natural products needed for further development. Moreover, on the basis of our expanding mechanistic and structural knowledge of biosynthetic assembly-line enzymes, new strategies for re-programming biosynthetic pathways have emerged, resulting in focused libraries of modified products with potentially improved biological properties. In this review we will focus on the latest bioengineering approaches that have been utilised to optimise yields and increase the structural diversity of natural product scaffolds for future clinical applications. Copyright © 2012 Elsevier Ltd. All rights reserved.
Paul, Arghya; Hasan, Anwarul; Rodes, Laetitia; Sangaralingam, Mugundhine; Prakash, Satya
2014-05-01
Designing a safe and efficient gene delivery system is required for success of gene therapy trials. Although a wide variety of viral, non-viral and polymeric nanoparticle based careers have been widely studied, the current gene delivery vehicles are limited by their suboptimal, non-specific therapeutic efficacy and acute immunological reactions, leading to unwanted side effects. Recently, there has been a growing interest in insect-cell-originated baculoviruses as gene delivery vehicles for diverse biomedical applications. Specifically, the emergence of diverse types of surface functionalized and bioengineered baculoviruses is posed to edge over currently available gene delivery vehicles. This is primarily because baculoviruses are comparatively non-pathogenic and non-toxic as they cannot replicate in mammalian cells and do not invoke any cytopathic effect. Moreover, emerging advanced studies in this direction have demonstrated that hybridizing the baculovirus surface with different kinds of bioactive therapeutic molecules, cell-specific targeting moieties, protective polymeric grafts and nanomaterials can significantly improve the preclinical efficacy of baculoviruses. This review presents a comprehensive overview of the recent advancements in the field of bioengineering and biotherapeutics to engineer baculovirus hybrids for tailored gene therapy, and articulates in detail the potential and challenges of these strategies for clinical realization. In addition, the article illustrates the rapid evolvement of microfluidic devices as a high throughput platform for optimizing baculovirus production and treatment conditions. Copyright © 2014 Elsevier B.V. All rights reserved.
Sills, E S; Takeuchi, T; Rosenwaks, Z; Palermo, G D
2001-08-01
The molecular biology of human cloning and aging research depend on the closely related laboratory techniques supported by a thorough understanding of cell-signaling processes. Unfortunately, the link between these two research fields has received only marginal attention in the lay press. Cloning is possible when somatic cell differentiation is successfully reprogrammed, and clinical control of cellular senescence depends on a proper reconfiguration of the predetermined number of divisions permitted during the cell life-cycle (the so-called "Hayflick Limit"). In this paper, we discuss these two concepts and compare the impact likely to be associated with bioengineering studies that facilitate both human cloning and longevity therapy.
Zhang, Pei; Huang, Angela; Ferruzzi, Jacopo; Mecham, Robert P; Starcher, Barry C; Tellides, George; Humphrey, Jay D; Giordano, Frank J; Niklason, Laura E; Sessa, William C
2012-03-01
The goal of this study was to determine whether antagonizing microRNA (miR)-29 enhances elastin (ELN) levels in cells and tissues lacking ELN. miR-29 mimics reduced ELN levels in fibroblasts and smooth muscle cells, whereas miR-29 inhibition increased ELN levels. Antagonism of miR-29 also increased ELN levels in cells from patients haploinsufficient for ELN and in bioengineered human vessels. miR-29 antagonism may promote increased ELN levels during conditions of ELN deficiencies.
Bioengineered Noncoding RNAs Selectively Change Cellular miRNome Profiles for Cancer Therapy.
Ho, Pui Yan; Duan, Zhijian; Batra, Neelu; Jilek, Joseph L; Tu, Mei-Juan; Qiu, Jing-Xin; Hu, Zihua; Wun, Theodore; Lara, Primo N; DeVere White, Ralph W; Chen, Hong-Wu; Yu, Ai-Ming
2018-06-01
Noncoding RNAs (ncRNAs) produced in live cells may better reflect intracellular ncRNAs for research and therapy. Attempts were made to produce biologic ncRNAs, but at low yield or success rate. Here we first report a new ncRNA bioengineering technology using more stable ncRNA carrier (nCAR) containing a pre-miR-34a derivative identified by rational design and experimental validation. This approach offered a remarkable higher level expression (40%-80% of total RNAs) of recombinant ncRNAs in bacteria and gave an 80% success rate (33 of 42 ncRNAs). New FPLC and spin-column based methods were also developed for large- and small-scale purification of milligrams and micrograms of recombinant ncRNAs from half liter and milliliters of bacterial culture, respectively. We then used two bioengineered nCAR/miRNAs to demonstrate the selective release of target miRNAs into human cells, which were revealed to be Dicer dependent (miR-34a-5p) or independent (miR-124a-3p), and subsequent changes of miRNome and transcriptome profiles. miRNA enrichment analyses of altered transcriptome confirmed the specificity of nCAR/miRNAs in target gene regulation. Furthermore, nCAR assembled miR-34a-5p and miR-124-3p were active in suppressing human lung carcinoma cell proliferation through modulation of target gene expression (e.g., cMET and CDK6 for miR-34a-5p; STAT3 and ABCC4 for miR-124-3p). In addition, bioengineered miRNA molecules were effective in controlling metastatic lung xenograft progression, as demonstrated by live animal and ex vivo lung tissue bioluminescent imaging as well as histopathological examination. This novel ncRNA bioengineering platform can be easily adapted to produce various ncRNA molecules, and biologic ncRNAs hold the promise as new cancer therapeutics. Copyright © 2018 by The American Society for Pharmacology and Experimental Therapeutics.
Vast potential for using the piggyBac transposon to engineer transgenic plants
USDA-ARS?s Scientific Manuscript database
The acceptance of bioengineered plants by some nations is hampered by a number of factors, including the random insertion of a transgene into the host genome. Emerging technologies, such as site-specific nucleases, are enabling plant scientists to promote recombination or mutations at specific plant...
Regenerative Rehabilitation: Applied Biophysics Meets Stem Cell Therapeutics.
Rando, Thomas A; Ambrosio, Fabrisia
2018-03-01
The emerging field of regenerative rehabilitation integrates biological and bioengineering advances in regenerative medicine with rehabilitative sciences. Here we highlight recent stem cell-based examples of the regenerative rehabilitation paradigm to promote tissue repair and regeneration, and we discuss remaining challenges and future directions for the field. Published by Elsevier Inc.
Stoff, Jesse A; Nix, David E; DeYoung, D W
2006-01-01
Methicillin-resistant Staphylococcus aureus (MRSA) is an important pathogen of humans and other animals, causing septicemia, abcessation, toxemia, and other infectious diseases. Refined bioengineered lacteal complex (BLC), made specifically against MRSA, is a novel complex of low molecular weight immunogenic and antimicrobial molecules. It was evaluated in vivo using a mouse model of MRSA-induced peritonitis. Intraperitoneal dosing of anti-MRSA BLC demonstrated a therapeutic effect (83% survival) against an intraperitoneal MRSA challenge that caused 100% mortality in untreated animals. Anti-MRSA BLC is a promising therapeutic modality for MRSA infection.
ERIC Educational Resources Information Center
Basta, Nicholas
1986-01-01
Discusses the human, plant and animal, and industrial dimensions of biotechnology, focusing on current uses in such fields as: (1) genetics; (2) electronics; (3) prosthetics; (4) drugs; (5) agriculture; and (6) the environment. (JN)
Biomaterials for intervertebral disc regeneration and repair.
Bowles, Robert D; Setton, Lori A
2017-06-01
The intervertebral disc contributes to motion, weight bearing, and flexibility of the spine, but is susceptible to damage and morphological changes that contribute to pathology with age and injury. Engineering strategies that rely upon synthetic materials or composite implants that do not interface with the biological components of the disc have not met with widespread use or desirable outcomes in the treatment of intervertebral disc pathology. Here we review bioengineering advances to treat disc disorders, using cell-supplemented materials, or acellular, biologically based materials, that provide opportunity for cell-material interactions and remodeling in the treatment of intervertebral disc disorders. While a field still in early development, bioengineering-based strategies employing novel biomaterials are emerging as promising alternatives for clinical treatment of intervertebral disc disorders. Copyright © 2017 Elsevier Ltd. All rights reserved.
Bioengineered Lungs: A Challenge and An Opportunity.
Farré, Ramon; Otero, Jordi; Almendros, Isaac; Navajas, Daniel
2018-01-01
Lung biofabrication is a new tissue engineering and regenerative development aimed at providing organs for potential use in transplantation. Lung biofabrication is based on seeding cells into an acellular organ scaffold and on culturing them in an especial purpose bioreactor. The acellular lung scaffold is obtained by decellularizing a non-transplantable donor lung by means of conventional procedures based on application of physical, enzymatic and detergent agents. To avoid immune recipient's rejection of the transplanted bioengineered lung, autologous bone marrow/adipose tissue-derived mesenchymal stem cells, lung progenitor cells or induced pluripotent stem cells are used for biofabricating the bioengineered lung. The bioreactor applies circulatory perfusion and mechanical ventilation with physiological parameters to the lung during biofabrication. These physical stimuli to the organ are translated into the stem cell local microenvironment - e.g. shear stress and cyclic stretch - so that cells sense the physiological conditions in normally functioning mature lungs. After seminal proof of concept in a rodent model was published in 2010, the hypothesis that lungs can be biofabricated is accepted and intense research efforts are being devoted to the topic. The current experimental evidence obtained so far in animal tests and in ex vivo human bioengineered lungs suggests that the date of first clinical tests, although not immediate, is coming. Lung bioengineering is a disrupting concept that poses a challenge for improving our basic science knowledge and is also an opportunity for facilitating lung transplantation in future clinical translation. Copyright © 2017 SEPAR. Publicado por Elsevier España, S.L.U. All rights reserved.
Odontogenic epithelial stem cells: hidden sources.
Padma Priya, Sivan; Higuchi, Akon; Abu Fanas, Salem; Pooi Ling, Mok; Kumari Neela, Vasantha; Sunil, P M; Saraswathi, T R; Murugan, Kadarkarai; Alarfaj, Abdullah A; Munusamy, Murugan A; Kumar, Suresh
2015-12-01
The ultimate goal of dental stem cell research is to construct a bioengineered tooth. Tooth formation occurs based on the well-organized reciprocal interaction of epithelial and mesenchymal cells. The dental mesenchymal stem cells are the best explored, but because the human odontogenic epithelium is lost after the completion of enamel formation, studies on these cells are scarce. The successful creation of a bioengineered tooth is achievable only when the odontogenic epithelium is reconstructed to produce a replica of natural enamel. This article discusses the untapped sources of odontogenic epithelial stem cells in humans, such as those present in the active dental lamina in postnatal life, in remnants of dental lamina (the gubernaculum cord), in the epithelial cell rests of Malassez, and in reduced enamel epithelium. The possible uses of these stem cells in regenerative medicine, not just for enamel formation, are discussed.
Lamberth, Kasper; Reedtz-Runge, Stine Louise; Simon, Jonathan; Klementyeva, Ksenia; Pandey, Gouri Shankar; Padkjær, Søren Berg; Pascal, Véronique; León, Ileana R; Gudme, Charlotte Nini; Buus, Søren; Sauna, Zuben E
2017-01-11
Immunogenicity is an important consideration in the licensure of a therapeutic protein because the development of neutralizing anti-drug antibodies (ADAs) can affect both safety and efficacy. Neoantigens introduced by bioengineering of a protein drug are a particular cause for concern. The development of a bioengineered recombinant factor VIIa (rFVIIa) analog was discontinued after phase 3 trials because of the development of ADAs. The unmodified parent molecule (rFVIIa), on the other hand, has been successfully used as a drug for more than two decades with no reports of immunogenicity in congenital hemophilia patients with inhibitors. We used computational and experimental methods to demonstrate that the observed ADAs could have been elicited by neoepitopes in the engineered protein. The human leukocyte antigen type of the patients who developed ADAs is consistent with this hypothesis of a neoepitope-driven immune response, a finding that might have implications for the preclinical screening of therapeutic protein analogs. Copyright © 2017, American Association for the Advancement of Science.
Toward human organ printing: Charleston Bioprinting Symposium.
Mironov, Vladimir
2006-01-01
The First Annual Charleston Bioprinting Symposium was organized by the Bioprinting Research Center of the Medical University of South Carolina (MUSC) and convened July 21, 2006, in Charleston, South Carolina. In broad terms, bioprinting is the application of rapid prototyping technology to the biomedical field. More specifically, it is defined as the layer by layer deposition of biologically relevant material. The 2006 Symposium included four sessions: Computer-aided design and Bioprinting, Bioprinting Technologies; Hydrogel for Bioprinting and, finally, a special session devoted to ongoing research projects at the MUSC Bioprinting Research Center. The Symposium highlight was the presentation of the multidisciplinary Charleston Bioengineered Kidney Project. This symposium demonstrated that bioprinting or robotic biofabrication is one of the most exciting and fast-emerging branches in the tissue engineering field. Robotic biofabrication will eventually lead to industrial production of living human organs suitable for clinical transplantation. The symposium demonstrated that although there are still many technological challenges, organ printing is a rapidly evolving feasible technology.
Analogs of natural aminoacyl-tRNA synthetase inhibitors clear malaria in vivo
Novoa, Eva Maria; Camacho, Noelia; Tor, Anna; Wilkinson, Barrie; Moss, Steven; Marín-García, Patricia; Azcárate, Isabel G.; Bautista, José M.; Mirando, Adam C.; Francklyn, Christopher S.; Varon, Sònia; Royo, Miriam; Cortés, Alfred; Ribas de Pouplana, Lluís
2014-01-01
Malaria remains a major global health problem. Emerging resistance to existing antimalarial drugs drives the search for new antimalarials, and protein translation is a promising pathway to target. Here we explore the potential of the aminoacyl-tRNA synthetase (ARS) family as a source of antimalarial drug targets. First, a battery of known and novel ARS inhibitors was tested against Plasmodium falciparum cultures, and their activities were compared. Borrelidin, a natural inhibitor of threonyl-tRNA synthetase (ThrRS), stands out for its potent antimalarial effect. However, it also inhibits human ThrRS and is highly toxic to human cells. To circumvent this problem, we tested a library of bioengineered and semisynthetic borrelidin analogs for their antimalarial activity and toxicity. We found that some analogs effectively lose their toxicity against human cells while retaining a potent antiparasitic activity both in vitro and in vivo and cleared malaria from Plasmodium yoelii-infected mice, resulting in 100% mice survival rates. Our work identifies borrelidin analogs as potent, selective, and unexplored scaffolds that efficiently clear malaria both in vitro and in vivo. PMID:25489076
Assisted human reproductive techniques--emerging ethical and legal implications.
Rao, R A
2001-01-01
The unprecedented and rapid advances in medical sciences have revolutionized modern medicine and surgery in a number of ways. These advances such as human embryo cloning, trans-genetic manipulation, in-vitro fertilization and surrogate motherhood have been able to cure infertility to a large extent by offering 'made to measure or super babies' and can cure a number of conventional diseases and improve the quality of life. Scientists and sociologists are concerned about moral and ethical issues, which have arisen due to these advances in medicine. The new biotechnology and the achievements in bio-engineering offered hope to those couples in fulfilling their yearning for children. What we witness today is just the beginning and not the end of the adventurous march of science in unravelling the mysteries of nature. The moot point now is how can nature be engineered to yield positive results without offending values of human morality, ethics and decency. It is high time that governments and society take stock of the current dilemma, as these advances in biosciences pose a threat to the moral and ethical fabric of modern society.
Malecki, Marek
2013-01-01
Clinical trials, to regenerate the human heart injured by myocardial infarction, involve the delivery of stem cells to the site of the injury. However, only a small fraction of the introduced stem cells are detected at the site of the injury, merely two weeks after this therapeutic intervention. This significantly hampers the effectiveness of the stem cell therapy. To resolve the aforementioned problem, we genetically and molecularly bioengineered heterospecific, tetravalent antibodies (htAbs), which have both exquisite specificity and high affinity towards human, pluripotent, stem cells through the htAbs’ domains binding SSEA-4, SSEA-3, TRA-1-60, and TRA-1-81, as well as towards the injured cardiac muscle through the htAbs’ domains binding human cardiac myosin, α-actinin, actin, and titin. The cardiac tissue was acquired from the patients, who were receiving heart transplants. The autologous, human, induced, pluripotent stem cells (hiPSCs) were generated from the patients’ fibroblasts by non-viral delivery and transient expression of the DNA constructs for: Oct4, Nanog, Sox2, Lin28, Klf4, c-Myc. In the trials involving the htAbs, the human, induced, pluripotent stem cells anchored to the myocardial sarcomeres with the efficiency, statistically, significantly higher, than in the trials with non-specific or without antibodies (p < 0.0003). Moreover, application of the htAbs resulted in cross-linking of the sarcomeric proteins to create the stable scaffolds for anchoring of the stem cells. Thereafter, these human, induced pluripotent stem cells differentiated into cardiomyocytes at their anchorage sites. By bioengineering of these novel heterospecific, tetravalent antibodies and using them to guide and to anchor the stem cells specifically to the stabilized sarcomeric scaffolds, we demonstrated the proof of concept in vitro for improving effectiveness of regenerative therapy of myocardial infarction and created the foundations for the trials in vivo. PMID:23956947
Environmental Life Cycle Assessment Model for Soil Bioengineering Measures on Infrastructure Slopes
NASA Astrophysics Data System (ADS)
Hoerbinger, Stephan; Obriejetan, Michael
2015-04-01
Soil bioengineering techniques can be a helpful instrument for civil engineers taking into account not only technical but also ecological, socio-economic and sustainability aspects. Environmental Life Cycle Assessment (LCA) models can serve as supplementary evaluation methods to economic analyses, taking into account the resource demand and environmental burdens of engineering structures. The presented LCA model includes the functional grade of structures in addition to environmental aspects. When using vegetation as living construction material, several factors have to be considered. There is the provision of ecosystem services of plants, such as the stabilization of the slope through its root-system, CO2 sequestration through biomass production et cetera. However, it must be noted that vegetation can cause security issues on infrastructure facilities and entail costs through the necessity of maintenance works. For this reason, it is necessary to already define the target systems during the planning phase of a soil bioengineering structure. In this way, necessary measures can be adapted in all life cycles of a structure. The objective of the presented LCA model is to serve as a basis for the definition of target systems. In the designed LCA model the soil bioengineering structures are divided into four life phases; construction phase, operational phase, end of life phase and subsequent use phase. A main objective of the LCA model is the understanding of the "Cumulative Energy Demand" (CED) and "Global Warming Potential" (GWP) of soil bioengineering structures during all life cycle phases. Additionally, the biomass production and the CO2 sequestration potential of the used plants are regarded as well as the functional integrity of the soil bioengineering system. In the life phase of soil bioengineering structures, a major part of the energy input is required during the construction phase. This is mainly due to the cumulative energy demand of the inert materials used. The principle of biological engineering constructions is based on the combination of dead and living materials and the emerging positive synergistic effects. The dead auxiliaries (stone, wood, etc.) protect the living plants until they undertake technical functions. During the operational phase of the structure, maintenance work has to be done in order to maintain the protective properties of the used plants. Through measures like cutting the vegetation back to the trunk, energy will be put into the system (e.g. through machine use), but will also be put out in form of biomass. Additionally, carbon is sequestered by the biomass production of the plants. The end of life phase is reached after the projected lifetime of a structure. Outside of zones with plant growth restrictions like within a clearance gauge, soil bioengineering approaches are designed to have a subsequent use phase. That means, that after the actual lifespan of the construction, a forest should have developed and maintain its balance by natural succession. The LCA model aims at supporting sustainable management strategies for CED and GWP as a base for Green Public Procurement and eco- friendly implementation and maintenance of soil bioengineering structures on infrastructure slopes.
Kidney regeneration: Where we are and future perspectives
Zambon, Joao Paulo; Magalhaes, Renata S; Ko, Inkap; Ross, Christina L; Orlando, Giuseppe; Peloso, Andrea; Atala, Anthony; Yoo, James J
2014-01-01
In 2012, about 16487 people received kidney transplants in the United States, whereas 95022 candidates were on the waiting list by the end of the year. Despite advances in renal transplant immunology, approximately 40% of recipients will die or lose graft within 10 years. The limitations of current therapies for renal failure have led researchers to explore the development of modalities that could improve, restore, or replace the renal function. The aim of this paper is to describe a reasonable approach for kidney regeneration and review the current literature regarding cell sources and mechanisms to develop a bioengineering kidney. Due to kidneys peculiar anatomy, extracellular matrix based scaffolds are rational starting point for their regeneration. The perfusion of detergents through the kidney vasculature is an efficient method for delivering decellularizing agents to cells and for removing of cellular material from the tissue. Many efforts have focused on the search of a reliable cell source to provide enrichment for achieving stable renal cell systems. For an efficient bioengineered kidney, these cells must be attached to the organ and then maturated into the bioractors, which simulates the human body environment. A functional bioengineered kidney is still a big challenge for scientists. In the last ten years we have got many improvements on the field of solid organ regeneration; however, we are still far away from the main target. Currently, regenerative centers worldwide have been striving to find feasible strategies to develop bioengineered kidneys. Cell-scaffold technology gives hope to end-stage renal disease patients who struggle with morbidity and mortality due to extended periods on dialysis or immunosupression. The potential of bioengineered organ is to provide a reliable source of organs, which can be refunctionalized and transplanted. PMID:25332894
77 FR 58146 - National Institute of Biomedical Imaging and Bioengineering; Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-19
... Biomedical Imaging and Bioengineering; Notice of Closed Meeting Pursuant to section 10(d) of the Federal... Institute of Biomedical Imaging and Bioengineering Special Emphasis Panel; Scientific Conference Award... Officer, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, 6707...
The Status of Fluid Mechanics in Bioengineering Curricula.
ERIC Educational Resources Information Center
Miller, Gerald E.; Hyman, William A.
1981-01-01
Describes the status of fluid mechanics courses in bioengineering curricula. A survey of institutions offering bioengineering degrees indicates that over half do not require fluid mechanics courses. Suggests increasing number of mechanics courses to increase the quality of bioengineering students and to prepare students for graduate work and more…
Engineering artificial machines from designable DNA materials for biomedical applications.
Qi, Hao; Huang, Guoyou; Han, Yulong; Zhang, Xiaohui; Li, Yuhui; Pingguan-Murphy, Belinda; Lu, Tian Jian; Xu, Feng; Wang, Lin
2015-06-01
Deoxyribonucleic acid (DNA) emerges as building bricks for the fabrication of nanostructure with complete artificial architecture and geometry. The amazing ability of DNA in building two- and three-dimensional structures raises the possibility of developing smart nanomachines with versatile controllability for various applications. Here, we overviewed the recent progresses in engineering DNA machines for specific bioengineering and biomedical applications.
Engineering Artificial Machines from Designable DNA Materials for Biomedical Applications
Huang, Guoyou; Han, Yulong; Zhang, Xiaohui; Li, Yuhui; Pingguan-Murphy, Belinda; Lu, Tian Jian; Xu, Feng
2015-01-01
Deoxyribonucleic acid (DNA) emerges as building bricks for the fabrication of nanostructure with complete artificial architecture and geometry. The amazing ability of DNA in building two- and three-dimensional structures raises the possibility of developing smart nanomachines with versatile controllability for various applications. Here, we overviewed the recent progresses in engineering DNA machines for specific bioengineering and biomedical applications. PMID:25547514
Alexaline, Maia M.; Trouillas, Marina; Nivet, Muriel; Bourreau, Emilie; Leclerc, Thomas; Duhamel, Patrick; Martin, Michele T.; Doucet, Christelle; Fortunel, Nicolas O.
2015-01-01
Cultured epithelial autografts (CEAs) produced from a small, healthy skin biopsy represent a lifesaving surgical technique in cases of full-thickness skin burn covering >50% of total body surface area. CEAs also present numerous drawbacks, among them the use of animal proteins and cells, the high fragility of keratinocyte sheets, and the immaturity of the dermal-epidermal junction, leading to heavy cosmetic and functional sequelae. To overcome these weaknesses, we developed a human plasma-based epidermal substitute (hPBES) for epidermal coverage in cases of massive burn, as an alternative to traditional CEA, and set up critical quality controls for preclinical and clinical studies. In this study, phenotypical analyses in conjunction with functional assays (clonal analysis, long-term culture, or in vivo graft) showed that our new substitute fulfills the biological requirements for epidermal regeneration. hPBES keratinocytes showed high potential for cell proliferation and subsequent differentiation similar to healthy skin compared with a well-known reference material, as ascertained by a combination of quality controls. This work highlights the importance of integrating relevant multiparameter quality controls into the bioengineering of new skin substitutes before they reach clinical development. Significance This work involves the development of a new bioengineered epidermal substitute with pertinent functional quality controls. The novelty of this work is based on this quality approach. PMID:25848122
Alexaline, Maia M; Trouillas, Marina; Nivet, Muriel; Bourreau, Emilie; Leclerc, Thomas; Duhamel, Patrick; Martin, Michele T; Doucet, Christelle; Fortunel, Nicolas O; Lataillade, Jean-Jacques
2015-06-01
Cultured epithelial autografts (CEAs) produced from a small, healthy skin biopsy represent a lifesaving surgical technique in cases of full-thickness skin burn covering >50% of total body surface area. CEAs also present numerous drawbacks, among them the use of animal proteins and cells, the high fragility of keratinocyte sheets, and the immaturity of the dermal-epidermal junction, leading to heavy cosmetic and functional sequelae. To overcome these weaknesses, we developed a human plasma-based epidermal substitute (hPBES) for epidermal coverage in cases of massive burn, as an alternative to traditional CEA, and set up critical quality controls for preclinical and clinical studies. In this study, phenotypical analyses in conjunction with functional assays (clonal analysis, long-term culture, or in vivo graft) showed that our new substitute fulfills the biological requirements for epidermal regeneration. hPBES keratinocytes showed high potential for cell proliferation and subsequent differentiation similar to healthy skin compared with a well-known reference material, as ascertained by a combination of quality controls. This work highlights the importance of integrating relevant multiparameter quality controls into the bioengineering of new skin substitutes before they reach clinical development. This work involves the development of a new bioengineered epidermal substitute with pertinent functional quality controls. The novelty of this work is based on this quality approach. ©AlphaMed Press.
78 FR 107 - National Institute of Biomedical Imaging and Bioengineering; Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-02
... Biomedical Imaging and Bioengineering; Notice of Closed Meeting Pursuant to section 10(d) of the Federal... Biomedical Imaging and Bioengineering Special Emphasis Panel, 2013-05 ZEB1 OSR-D(M1)S/Low- Dose CT Imaging..., National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, 6707 Democracy...
Surfactant irritation: in vitro corneosurfametry and in vivo bioengineering.
Gabard, B; Chatelain, E; Bieli, E; Haas, S
2001-02-01
Irritant reactions to surfactants, cleansing products, soaps and detergents are common in clinical and occupational dermatology. Mildness has become a major benefit claimed, and testing for mildness now ranks among the first concerns of the manufacturing industry. A wealth of publications deals with this problem, trying to improve the methodology, reduce the costs of testing and facilitate decision-making. Differences in vivo can be measured clinically and/or instrumentally. This is difficult, as commercially available products are generally safe to use and none are harsh in the absolute sense. Nineteen different products (syndets, shampoos, personal cleansers), all claiming to be mild, were tested in vitro by a newly introduced method, corneosurfametry. For evaluating the aggressiveness of the products, the calculation of an index of irritation (IOI) was proposed. A concentration-effect curve of sodium lauryl sulfate (SLS) as standard and model surfactant was obtained. Some of the products were further tested in vivo with a flex wash test and with a soap chamber test and compared to SLS. Bioengineering methods (transepidermal water loss TEWL, skin color) were used to evaluate the results. The results of the corneosurfametry allowed us to classify the products in three categories, with increasing aggressiveness towards the stratum corneum, according to their IOIs. The in vivo tests were not able to discriminate between the products, but ranks from the results of the bioengineering measurements showed a good correlation between TEWL changes, but not between colour changes, and IOIs from corneosurfametry. Corneosurfametry emerged as a simple, low-cost and fast method for ranking commercial products according to their mildness. However, the skin bioengineering techniques showed that some products could lead to skin reactions, such as erythema, that could not be detected by the in vitro technique.
Paving the Way for Lignin Valorisation: Recent Advances in Bioengineering, Biorefining and Catalysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rinaldi, Roberto; Jastrzebski, Robin; Clough, Matthew T.
2016-06-17
Lignin is an abundant biopolymer with a high carbon content and high aromaticity. Despite its potential as a raw material for the fuel and chemical industries, lignin remains the most poorly utilised of the lignocellulosic biopolymers. Effective valorisation of lignin requires careful fine-tuning of multiple “upstream” (i.e., lignin bioengineering, lignin isolation and “early-stage catalytic conversion of lignin”) and “downstream” (i.e., lignin depolymerisation and upgrading) process stages, demanding input and understanding from a broad array of scientific disciplines. This review provides a “beginning-to-end” analysis of the recent advances reported in lignin valorisation. Particular emphasis is placed on the improved understanding ofmore » ligninÏs biosynthesis and structure, differences in structure and chemical bonding between native and technical lignins, emerging catalytic valorisation strategies, and the relationships between lignin structure and catalyst performance.« less
Paving the Way for Lignin Valorisation: Recent Advances in Bioengineering, Biorefining and Catalysis
Rinaldi, Roberto; Jastrzebski, Robin; Clough, Matthew T.; ...
2016-06-17
In this study, lignin is an abundant biopolymer with a high carbon content and high aromaticity. Despite its potential as a raw material for the fuel and chemical industries, lignin remains the most poorly utilised of the lignocellulosic biopolymers. Effective valorisation of lignin requires careful fine-tuning of multiple “upstream” (i.e., lignin bioengineering, lignin isolation and “early-stage catalytic conversion of lignin”) and “downstream” (i.e., lignin depolymerisation and upgrading) process stages, demanding input and understanding from a broad array of scientific disciplines. This review provides a “beginning-to-end” analysis of the recent advances reported in lignin valorisation. Particular emphasis is placed on themore » improved understanding of ligninÏs biosynthesis and structure, differences in structure and chemical bonding between native and technical lignins, emerging catalytic valorisation strategies, and the relationships between lignin structure and catalyst performance.« less
Extracellular Matrix Scaffold Technology for Bioartificial Pancreas Engineering
Salvatori, Marcus; Katari, Ravi; Patel, Timil; Peloso, Andrea; Mugweru, Jon; Owusu, Kofi
2014-01-01
Emergent technologies in regenerative medicine may soon overcome the limitations of conventional diabetes therapies. Collaborative efforts across the subfields of stem cell technology, islet encapsulation, and biomaterial carriers seek to produce a bioengineered pancreas capable of restoring endocrine function in patients with insulin-dependent diabetes. These technologies rely on a robust understanding of the extracellular matrix (ECM), the supportive 3-dimensional network of proteins necessary for cellular attachment, proliferation, and differentiation. Although these functions can be partially approximated by biosynthetic carriers, novel decellularization protocols have allowed researchers to discover the advantages afforded by the native pancreatic ECM. The native ECM has proven to be an optimal platform for recellularization and whole-organ pancreas bioengineering, an exciting new field with the potential to resolve the dire shortage of transplantable organs. This review seeks to contextualize recent findings, discuss current research goals, and identify future challenges of regenerative medicine as it applies to diabetes management. PMID:24876552
Ishii, Masaru
2017-07-01
Recent advances in the bioengineering of monoclonal antibodies (mAbs) have revolutionized the treatment of several immunological and rheumatic diseases. mAbs exhibit high specificity and affinity, and are very effective targeting agents, associated with minimal off-target adverse effects. Of several relevant immunological diseases, rheumatoid arthritis was the condition initially treated with mAbs, with great success. Currently, many immunological disorders are targeted and successfully treated using such novel approaches; these include inflammatory bowel diseases, multiple sclerosis, lupus and psoriasis. Today, the efforts of researchers in basic immunology (with a long history) have borne fruit; bioengineered mAbs are employed in clinical practice. In this brief review, I will describe the current and emerging therapeutic mAbs and molecular targeted agents, and discuss the future of the field, especially from the viewpoint of pharmacology. © 2017 The British Pharmacological Society.
77 FR 19675 - National Institute of Biomedical Imaging and Bioengineering; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-02
... Biomedical Imaging and Bioengineering; Notice of Meeting Pursuant to section 10(d) of the Federal Advisory... Council for Biomedical Imaging and Bioengineering. The meeting will be open to the public as indicated... for Biomedical Imaging and Bioengineering, NACBIB May, 2012. Date: May 21, 2012. Open: 9 a.m. to 1 p.m...
77 FR 50703 - Center for Scientific Review; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-22
... . Name of Committee: Bioengineering Sciences & Technologies Integrated Review Group; Nanotechnology Study... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health Center for Scientific Review... personal privacy. Name of Committee: Center for Scientific Review Special Emphasis Panel; Dermatology and...
Bio-engineering for land stabilization : executive summary report.
DOT National Transportation Integrated Search
2010-06-30
Soil-bioengineering, or simply : bioengineering, is the use of vegetation for : slope stabilization. Currently, a large : number of slopes near Ohio highways are : experiencing stability problems. These : failures usually begin as local erosion...
Wang, Xiaoxiao; Wang, Xusheng; Liu, Jianjun; Cai, Ting; Guo, Ling; Wang, Shujuan; Wang, Jinmei; Cao, Yanpei; Ge, Jianfeng; Jiang, Yuyang; Tredget, Edward E; Cao, Mengjun; Wu, Yaojiong
2016-12-01
: Stem cell-based organ regeneration is purported to enable the replacement of impaired organs in the foreseeable future. Here, we demonstrated that a combination of cultured epidermal stem cells (Epi-SCs) derived from the epidermis and skin-derived precursors (SKPs) was capable of reconstituting functional hair follicles and sebaceous glands (SG). When Epi-SCs and SKPs were mixed in a hydrogel and implanted into an excisional wound in nude mice, the Epi-SCs formed de novo epidermis along with hair follicles, and SKPs contributed to dermal papilla in the neogenic hair follicles. Notably, a combination of culture-expanded Epi-SCs and SKPs derived from the adult human scalp were sufficient to generate hair follicles and hair. Bone morphogenetic protein 4, but not Wnts, sustained the expression of alkaline phosphatase in SKPs in vitro and the hair follicle-inductive property in vivo when SKPs were engrafted with neonatal epidermal cells into excisional wounds. In addition, Epi-SCs were capable of differentiating into sebocytes and formed de novo SGs, which excreted lipids as do normal SGs. Thus our results indicate that cultured Epi-SCs and SKPs are sufficient to generate de novo hair follicles and SGs, implying great potential to develop novel bioengineered skin substitutes with appendage genesis capacity. In postpartum humans, skin appendages lost in injury are not regenerated, despite the considerable achievement made in skin bioengineering. In this study, transplantation of a combination of culture-expanded epidermal stem cells and skin-derived progenitors from mice and adult humans led to de novo regeneration of functional hair follicles and sebaceous glands. The data provide transferable knowledge for the development of novel bioengineered skin substitutes with epidermal appendage regeneration capacity. ©AlphaMed Press.
Wang, Xiaoxiao; Wang, Xusheng; Liu, Jianjun; Cai, Ting; Guo, Ling; Wang, Shujuan; Wang, Jinmei; Cao, Yanpei; Ge, Jianfeng; Jiang, Yuyang; Tredget, Edward E.; Cao, Mengjun
2016-01-01
Stem cell-based organ regeneration is purported to enable the replacement of impaired organs in the foreseeable future. Here, we demonstrated that a combination of cultured epidermal stem cells (Epi-SCs) derived from the epidermis and skin-derived precursors (SKPs) was capable of reconstituting functional hair follicles and sebaceous glands (SG). When Epi-SCs and SKPs were mixed in a hydrogel and implanted into an excisional wound in nude mice, the Epi-SCs formed de novo epidermis along with hair follicles, and SKPs contributed to dermal papilla in the neogenic hair follicles. Notably, a combination of culture-expanded Epi-SCs and SKPs derived from the adult human scalp were sufficient to generate hair follicles and hair. Bone morphogenetic protein 4, but not Wnts, sustained the expression of alkaline phosphatase in SKPs in vitro and the hair follicle-inductive property in vivo when SKPs were engrafted with neonatal epidermal cells into excisional wounds. In addition, Epi-SCs were capable of differentiating into sebocytes and formed de novo SGs, which excreted lipids as do normal SGs. Thus our results indicate that cultured Epi-SCs and SKPs are sufficient to generate de novo hair follicles and SGs, implying great potential to develop novel bioengineered skin substitutes with appendage genesis capacity. Significance In postpartum humans, skin appendages lost in injury are not regenerated, despite the considerable achievement made in skin bioengineering. In this study, transplantation of a combination of culture-expanded epidermal stem cells and skin-derived progenitors from mice and adult humans led to de novo regeneration of functional hair follicles and sebaceous glands. The data provide transferable knowledge for the development of novel bioengineered skin substitutes with epidermal appendage regeneration capacity. PMID:27458264
Introduction to bioengineering: melding of engineering and biological sciences.
Shoureshi, Rahmat A
2005-04-01
Engineering has traditionally focused on the external extensions of organisms, such as transportation systems, high-rise buildings, and entertainment systems. In contrast, bioengineering is concerned with inward processes of biologic organisms. Utilization of engineering principles and techniques in the analysis and solution of problems in medicine and biology is the basis for bioengineering. This article discusses subspecialties in bioengineering and presents examples of projects in this discipline.
The Rapidly Evolving Concept of Whole Heart Engineering
Dal Sasso, Eleonora; Menabò, Roberta; Di Lisa, Fabio; Gerosa, Gino
2017-01-01
Whole heart engineering represents an incredible journey with as final destination the challenging aim to solve end-stage cardiac failure with a biocompatible and living organ equivalent. Its evolution started in 2008 with rodent organs and is nowadays moving closer to clinical application thanks to scaling-up strategies to human hearts. This review will offer a comprehensive examination on the important stages to be reached for the bioengineering of the whole heart, by describing the approaches of organ decellularization, repopulation, and maturation so far applied and the novel technologies of potential interest. In addition, it will carefully address important demands that still need to be satisfied in order to move to a real clinical translation of the whole bioengineering heart concept. PMID:29250121
Biomaterials and bioengineering tomorrow’s healthcare
Bhat, Sumrita; Kumar, Ashok
2013-01-01
Biomaterials are being used for the healthcare applications from ancient times. But subsequent evolution has made them more versatile and has increased their utility. Biomaterials have revolutionized the areas like bioengineering and tissue engineering for the development of novel strategies to combat life threatening diseases. Together with biomaterials, stem cell technology is also being used to improve the existing healthcare facilities. These concepts and technologies are being used for the treatment of different diseases like cardiac failure, fractures, deep skin injuries, etc. Introduction of nanomaterials on the other hand is becoming a big hope for a better and an affordable healthcare. Technological advancements are underway for the development of continuous monitoring and regulating glucose levels by the implantation of sensor chips. Lab-on-a-chip technology is expected to modernize the diagnostics and make it more easy and regulated. Other area which can improve the tomorrow’s healthcare is drug delivery. Micro-needles have the potential to overcome the limitations of conventional needles and are being studied for the delivery of drugs at different location in human body. There is a huge advancement in the area of scaffold fabrication which has improved the potentiality of tissue engineering. Most emerging scaffolds for tissue engineering are hydrogels and cryogels. Dynamic hydrogels have huge application in tissue engineering and drug delivery. Furthermore, cryogels being supermacroporous allow the attachment and proliferation of most of the mammalian cell types and have shown application in tissue engineering and bioseparation. With further developments we expect these technologies to hit the market in near future which can immensely improve the healthcare facilities. PMID:23628868
Restoration of active gully systems following the implementation of bioengineering techniques.
NASA Astrophysics Data System (ADS)
Borja, Pablo; Vanacker, Veerle; Govers, Gerard
2015-04-01
Intensive land use in the central parts of the Andean basin has led to widespread land degradation. The formation of badlands dates back from the 1950s and 1960s. Several studies indicate that human activities have accelerated mountain erosion rates by up to 100 times. In this study, we have evaluated the effects of bio-engineering works aiming to stabilize degraded catchments. Five micro-catchments (0.2 up to 5 ha) have been selected within a 3 km2 area in the lower part of the Loreto catchment (Southern Ecuadorian Andes). The five micro-catchments differ in vegetation cover and implementation of bio-engineering works. The experimental design consisted of three micro-catchments: (1) DI with conservation works, (2) DF with reforestation by Eucalyptus sp and (3) DT with no conservation works. Two micro-catchments have been monitored in an agricultural area: with (AI) and without (AT) bio-engineering works in the active gullies. Small checkdams were constructed in the gully floors of two of the micro-catchments in the badland area (DI) and the agricultural area (AI). The checkdams are made of wood and tires. Water flow has been measured in every micro-catchment, while sediment traps were constructed to monitor sediment transport. Results show that bio-engineering techniques are effective to stabilize active gullies. Deposition of sediments in manmade dams is strongly dependent on previous rainfall events, as well as gully channel slope, and its vegetation cover. From the experimental data, an I30 max threshold value was determined. Above this threshold value, all micro-catchments are actively contributing sediment to the main river system. The checkdams built with wood and tires have an efficiency of 70%, and were shown to be very effective to stabilize active gullies in bad lands through significant reduction (about 62%) of the amount of sediment exported from the micro-catchments. Key words: degraded soils, erosion, sediment, restoration, reforestation
Hair organ regeneration via the bioengineered hair follicular unit transplantation
Asakawa, Kyosuke; Toyoshima, Koh-ei; Ishibashi, Naoko; Tobe, Hirofumi; Iwadate, Ayako; Kanayama, Tatsuya; Hasegawa, Tomoko; Nakao, Kazuhisa; Toki, Hiroshi; Noguchi, Shotaro; Ogawa, Miho; Sato, Akio; Tsuji, Takashi
2012-01-01
Organ regenerative therapy aims to reproduce fully functional organs to replace organs that have been lost or damaged as a result of disease, injury, or aging. For the fully functional regeneration of ectodermal organs, a concept has been proposed in which a bioengineered organ is developed by reproducing the embryonic processes of organogenesis. Here, we show that a bioengineered hair follicle germ, which was reconstituted with embryonic skin-derived epithelial and mesenchymal cells and ectopically transplanted, was able to develop histologically correct hair follicles. The bioengineered hair follicles properly connected to the host skin epithelium by intracutaneous transplantation and reproduced the stem cell niche and hair cycles. The bioengineered hair follicles also autonomously connected with nerves and the arrector pili muscle at the permanent region and exhibited piloerection ability. Our findings indicate that the bioengineered hair follicles could restore physiological hair functions and could be applicable to surgical treatments for alopecia. PMID:22645640
ERIC Educational Resources Information Center
Landa-Jiménez, M. A.; González-Gaspar, P.; Pérez-Estudillo, C.; López-Meraz, M. L.; Morgado-Valle, C.; Beltran-Parrazal, L.
2016-01-01
A Muscle-Computer Interface (muCI) is a human-machine system that uses electromyographic (EMG) signals to communicate with a computer. Surface EMG (sEMG) signals are currently used to command robotic devices, such as robotic arms and hands, and mobile robots, such as wheelchairs. These signals reflect the motor intention of a user before the…
Abu-Faraj, Ziad O
2008-01-01
Bioengineering/Biomedical Engineering is considered amongst the most reputable fields within the global arena, and will likely be the primer for any future breakthroughs in Medicine and Biology. Bioengineering/biomedical engineering education has evolved since late 1950s and is undergoing advancement in leading academic institutions worldwide. This paper delineates an original study on the world proliferation of bioengineering/biomedical engineering education and bears the name 'Project Alexander the Great'. The initial step of the project was to survey all 10448 universities, recognized by the International Association of Universities, spread among the 193 member states of the United Nations within the six continents. The project aims at identifying, disseminating, and networking, through the world-wide-web, those institutions of higher learning that provide bioengineering/biomedical engineering education. The significance of this project is multifold: i) the inception of a web-based 'world-map' in bioengineering/biomedical engineering education for the potential international student desiring to pursue a career in this field; ii) the global networking of bioengineering/biomedical engineering academic/research programs; iii) the promotion of first-class bioengineering/biomedical engineering education and the catalysis of global proliferation of this field; iv) the erection of bridges among educational institutions, industry, and professional societies or organizations involved in Bioengineering/Biomedical Engineering; and v) the catalysis in the establishment of framework agreements for cooperation among the identified institutions offering curricula in this field. This paper presents the results obtained from Africa and North America. The whole project is due to be completed by 2009.
Harris, Thomas R; Brophy, Sean P
2005-09-01
Vanderbilt University, Northwestern University, the University of Texas and the Harvard/MIT Health Sciences Technology Program have collaborated since 1999 to develop means to improve bioengineering education. This effort, funded by the National Science Foundation as the VaNTH Engineering Research Center in Bioengineering Educational Technologies, has sought a synthesis of learning science, learning technology, assessment and the domains of bioengineering in order to improve learning by bioengineering students. Research has shown that bioengineering educational materials may be designed to emphasize challenges that engage the student and, when coupled with a learning cycle and appropriate technologies, can lead to improvements in instruction.
Biogenic synthesized nanoparticles and their applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Abhijeet, E-mail: abhijeet.singh@jaipur.manipal.edu; Sharma, Madan Mohan
In the present scenario, there are growing concerns over the potential impacts of bioengineered nanoparticles in the health sector. However, our understanding of how bioengineered nanoparticles may affect organisms within natural ecosystems, lags far behind our rapidly increasing ability to engineer novel nanoparticles. To date, research on the biological impacts of bioengineered nanoparticles has primarily consisted of controlled lab studies of model organisms with single species in culture media. Here, we described a cost effective and environment friendly technique for green synthesis of silver nanoparticles. Silver nanoparticles were successfully synthesized from 1 mM AgNO{sub 3} via a green synthesis processmore » using leaf extract as reducing as well as capping agent. Nanoparticles were characterized with the help of UV–vis absorption spectroscopy, X-ray diffraction and TEM analysis which revealed the size of nanoparticles of 30-40 nm size. Further the nanoparticles synthesized by green route are found highly toxic against pathogenic bacteria and plant pathogenic fungi viz. Escherichia coli, Pseudomonas syringae and Sclerotiniasclerotiorum. The most important outcome of this work will be the development of value-added products and protection of human health from pathogens viz., bacteria, virus, fungi etc.« less
Bioengineering Spin-Offs from Dynamical Systems Theory
NASA Astrophysics Data System (ADS)
Collins, J. J.
1997-03-01
Recently, there has been considerable interest in applying concepts and techniques from dynamical systems and statistical physics to physiological systems. In this talk, we present work dealing which two active topics in this area: stochastic resonance and (2) chaos control. Stochastic resonance is a phenomenon wherein the response of nonlinear system to a weak input signal is optimally enhanced by the presence of a particular level of noise. Here we demonstrate that noise-based techniques can be used to lower sensory detection thresholds in humans. We discuss how from a bioengineering and clinical standpoint, these developments may be particularly relevant for individuals with elevated sensory thresholds, such as older adults and patients with peripheral neuropathy. Chaos control techniques have been applied to a wide range of experimental systems, including biological preparations. The application of chaos control to biological systems has led to speculations that these methods may be clinically useful. Here we demonstrate that the principles of chaos control can be utilized to stabilize underlying unstable periodic orbits in non-chaotic biological systems. We discuss how from a bioengineering and clinical standpoint, these developments may be important for suppressing or eliminating certain types of cardiac arrhythmias.
The 1986 advances in bioengineering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lantz, S.A.; King, A.I.
1986-01-01
This book presents the papers given at a conference on biomedicine. Topics considered at the conference included a mathematical method for obtaining three-dimensional information from standard two-dimensional radiographs, the human lumbar spine, scoliosis and instrumentation, vehicle crashworthiness, lung mechanics, physiological fluid mechanics, microgravity, cardiovascular mechanics, and soft tissue.
Schultz, Jane S; Rodgers, V G J
2012-07-01
The Department of Bioengineering at the University of California, Riverside (UCR), was established in 2006 and is the youngest department in the Bourns College of Engineering. It is an interdisciplinary research engine that builds strength from highly recognized experts in biochemistry, biophysics, biology, and engineering, focusing on common critical themes. The range of faculty research interests is notable for its diversity, from the basic cell biology through cell function to the physiology of the whole organism, each directed at breakthroughs in biomedical devices for measurement and therapy. The department forges future leaders in bioengineering, mirroring the field in being energetic, interdisciplinary, and fast moving at the frontiers of biomedical discoveries. Our educational programs combine a solid foundation in bio logical sciences and engineering, diverse communication skills, and training in the most advanced quantitative bioengineering research. Bioengineering at UCR also includes the Bioengineering Interdepartmental Graduate (BIG) program. With its slogan Start-Grow-Be-BIG, it is already recognized for its many accomplishments, including being third in the nation in 2011 for bioengineering students receiving National Science Foundation graduate research fellowships as well as being one of the most ethnically inclusive programs in the nation.
Radical Vernacular: Bacterial Architecture on Mars
NASA Astrophysics Data System (ADS)
Dade-Robertson, M.; Ramirez-Figueroa, C.; Zhang, M.
Our current speculative discourse on the colonisation of other planets tends to consider future buildings through the lens of hitech architecture. However, we suggest that developments in biotechnology will enable types of construction which are beyond even our current science fictions. The paper presents an argument for bioengineered building materials framed by the notion of constructing buildings on Mars. It introduces the concept of biomineralisation and its processes and applications, and focuses on the creation of calcium carbonate by certain strains of bacteria. We will suggest that by utilising this process in conjunction with synthetic biology (where bacteria are engineered to survive and respond to the environment on other planets) a building process emerges where the materials are adaptive and, to some extent, self-constructed in relation to their environments. The paper concludes by speculating about a building process involving the use of bioengineered bacteria to consolidate materials, found on the surface of Mars, to create materials and structures which are functionally graded.
Levin, Michael; Pezzulo, Giovanni; Finkelstein, Joshua M
2017-06-21
Living systems exhibit remarkable abilities to self-assemble, regenerate, and remodel complex shapes. How cellular networks construct and repair specific anatomical outcomes is an open question at the heart of the next-generation science of bioengineering. Developmental bioelectricity is an exciting emerging discipline that exploits endogenous bioelectric signaling among many cell types to regulate pattern formation. We provide a brief overview of this field, review recent data in which bioelectricity is used to control patterning in a range of model systems, and describe the molecular tools being used to probe the role of bioelectrics in the dynamic control of complex anatomy. We suggest that quantitative strategies recently developed to infer semantic content and information processing from ionic activity in the brain might provide important clues to cracking the bioelectric code. Gaining control of the mechanisms by which large-scale shape is regulated in vivo will drive transformative advances in bioengineering, regenerative medicine, and synthetic morphology, and could be used to therapeutically address birth defects, traumatic injury, and cancer.
Context clues: the importance of stem cell-material interactions
Murphy, William L.
2014-01-01
Understanding the processes by which stem cells give rise to de novo tissues is an active focus of stem cell biology and bioengineering disciplines. Instructive morphogenic cues surrounding the stem cell during morphogenesis create what is referred to as the stem cell microenvironment. An emerging paradigm in stem cell bioengineering involves “biologically driven assembly,” in which stem cells are encouraged to largely define their own morphogenesis processes. However, even in the case of biologically driven assembly, stem cells do not act alone. The properties of the surrounding microenvironment can be critical regulators of cell fate. Stem cell-material interactions are among the most well-characterized microenvironmental effectors of stem cell fate, and they establish a signaling “context” that can define the mode of influence for morphogenic cues. Here we describe illustrative examples of cell-material interactions that occur during in vitro stem cell studies, with an emphasis on how cell-material interactions create instructive contexts for stem cell differentiation and morphogenesis. PMID:24369691
Salvatori, Marcus; Katari, Ravi; Patel, Timil; Peloso, Andrea; Mugweru, Jon; Owusu, Kofi; Orlando, Giuseppe
2014-01-01
Emergent technologies in regenerative medicine may soon overcome the limitations of conventional diabetes therapies. Collaborative efforts across the subfields of stem cell technology, islet encapsulation, and biomaterial carriers seek to produce a bioengineered pancreas capable of restoring endocrine function in patients with insulin-dependent diabetes. These technologies rely on a robust understanding of the extracellular matrix (ECM), the supportive 3-dimensional network of proteins necessary for cellular attachment, proliferation, and differentiation. Although these functions can be partially approximated by biosynthetic carriers, novel decellularization protocols have allowed researchers to discover the advantages afforded by the native pancreatic ECM. The native ECM has proven to be an optimal platform for recellularization and whole-organ pancreas bioengineering, an exciting new field with the potential to resolve the dire shortage of transplantable organs. This review seeks to contextualize recent findings, discuss current research goals, and identify future challenges of regenerative medicine as it applies to diabetes management. © 2014 Diabetes Technology Society.
Bioengineering Kidneys for Transplantation
Madariaga, Maria Lucia L.; Ott, Harald C.
2014-01-01
One in ten Americans suffer from chronic kidney disease, and close to 90,000 people die each year from causes related to kidney failure. Patients with end-stage renal disease are faced with two options: hemodialysis or transplantation. Unfortunately, the reach of transplantation is limited because of the shortage of donor organs and the need for immunosuppression. Bioengineered kidney grafts theoretically present a novel solution to both problems. Herein we discuss the history of bioengineering organs, the current status of bioengineered kidneys, considerations for the future of the field, and challenges to clinical translation. We hope that by integrating principles of tissue engineering, and stem cell and developmental biology, bioengineered kidney grafts will advance the field of regenerative medicine while meeting a critical clinical need. PMID:25217267
78 FR 109 - Center for Scientific Review; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-02
... personal privacy. Name of Committee: Bioengineering Sciences & Technologies Integrated Review Group Nanotechnology Study Section. Date: January 31-February 1, 2013. Time: 7:00 a.m. to 5:00 p.m. Agenda: To review... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health Center for Scientific Review...
Ohara, H
2003-10-01
The biorefinery produces fuels, solvents, plastics and food for human beings. In some countries, these biorefinery products are made from waste biomass. The main processes in the biorefinery involve ethanol fermentation and lactic acid fermentation. For the biorefinery, many hybrid technologies were developed from different fields, such as bioengineering, polymer chemistry, food science and agriculture.
Abaci, Hasan E; Guo, Zongyou; Coffman, Abigail; Gillette, Brian; Lee, Wen-Han; Sia, Samuel K; Christiano, Angela M
2016-07-01
Vascularization of engineered human skin constructs is crucial for recapitulation of systemic drug delivery and for their long-term survival, functionality, and viable engraftment. In this study, the latest microfabrication techniques are used and a novel bioengineering approach is established to micropattern spatially controlled and perfusable vascular networks in 3D human skin equivalents using both primary and induced pluripotent stem cell (iPSC)-derived endothelial cells. Using 3D printing technology makes it possible to control the geometry of the micropatterned vascular networks. It is verified that vascularized human skin equivalents (vHSEs) can form a robust epidermis and establish an endothelial barrier function, which allows for the recapitulation of both topical and systemic delivery of drugs. In addition, the therapeutic potential of vHSEs for cutaneous wounds on immunodeficient mice is examined and it is demonstrated that vHSEs can both promote and guide neovascularization during wound healing. Overall, this innovative bioengineering approach can enable in vitro evaluation of topical and systemic drug delivery as well as improve the potential of engineered skin constructs to be used as a potential therapeutic option for the treatment of cutaneous wounds. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
77 FR 2987 - National Institute of Biomedical Imaging and Bioengineering; Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-20
... Biomedical Imaging and Bioengineering; Notice of Closed Meeting Pursuant to section 10(d) of the Federal... clearly unwarranted invasion of personal privacy. Name of Committee: National Institute of Biomedical..., Ph.D., Scientific Review Officer, National Institute of Biomedical Imaging and Bioengineering...
76 FR 76744 - National Institute of Biomedical Imaging and Bioengineering; Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-08
... Biomedical Imaging and Bioengineering; Notice of Closed Meeting Pursuant to section 10(d) of the Federal... clearly unwarranted invasion of personal privacy. Name of Committee: National Institute of Biomedical... Review Officer, National Institute of Biomedical Imaging and Bioengineering, National Institutes of...
77 FR 37684 - National Institute of Biomedical Imaging and Bioengineering; Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-22
... Biomedical Imaging and Bioengineering; Notice of Closed Meeting Pursuant to section 10(d) of the Federal... clearly unwarranted invasion of personal privacy. Name of Committee: National Institute of Biomedical... Grossman, DDS, Scientific Review Officer, National Institute of Biomedical Imaging and Bioengineering...
77 FR 51544 - National Institute of Biomedical Imaging and Bioengineering; Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-24
... Biomedical Imaging and Bioengineering; Notice of Closed Meeting Pursuant to section 10(d) of the Federal... clearly unwarranted invasion of personal privacy. Name of Committee: National Institute of Biomedical... Review Officer, National Institute of Biomedical Imaging, and Bioengineering, National Institutes of...
77 FR 54581 - National Institute of Biomedical Imaging and Bioengineering; Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-05
... Biomedical Imaging and Bioengineering; Notice of Closed Meeting Pursuant to section 10(d) of the Federal... clearly unwarranted invasion of personal privacy. Name of Committee: National Institute of Biomedical...., Scientific Review Officer, National Institute of Biomedical Imaging and Bioengineering, National Institutes...
78 FR 9066 - National Institute of Biomedical Imaging and Bioengineering; Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-07
... Biomedical Imaging and Bioengineering; Notice of Closed Meeting Pursuant to section 10(d) of the Federal... clearly unwarranted invasion of personal privacy. Name of Committee: National Institute of Biomedical... Review Officer, National Institute of Biomedical Imaging and Bioengineering, National Institutes of...
75 FR 61769 - National Institute of Biomedical Imaging and Bioengineering; Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-06
... Biomedical Imaging and Bioengineering; Notice of Closed Meeting Pursuant to section 10(d) of the Federal... clearly unwarranted invasion of personal privacy. Name of Committee: National Institute of Biomedical..., Scientific Review Officer, National Institute of Biomedical Imaging and Bioengineering, National Institutes...
78 FR 3009 - National Institute of Biomedical Imaging and Bioengineering; Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-15
... Biomedical Imaging and Bioengineering; Notice of Closed Meeting Pursuant to section 10(d) of the Federal... clearly unwarranted invasion of personal privacy. Name of Committee: National Institute of Biomedical... Review Officer, National Institute of Biomedical Imaging and Bioengineering, National Institutes of...
75 FR 39547 - National Institute of Biomedical Imaging and Bioengineering; Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-09
... Biomedical Imaging and Bioengineering; Notice of Closed Meeting Pursuant to section 10(d) of the Federal... clearly unwarranted invasion of personal privacy. Name of Committee: National Institute of Biomedical..., National Institute of Biomedical Imaging and Bioengineering, 6707 Democracy Boulevard, Room 960, Bethesda...
78 FR 11660 - National Institute of Biomedical Imaging And Bioengineering; Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-19
... Biomedical Imaging And Bioengineering; Notice of Closed Meeting Pursuant to section 10(d) of the Federal... clearly unwarranted invasion of personal privacy. Name of Committee: National Institute of Biomedical... Biomedical Imaging and Bioengineering, National Institutes of Health, 6707 Democracy Boulevard, Room 959...
76 FR 58023 - National Institute of Biomedical Imaging and Bioengineering; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-19
... Biomedical Imaging and Bioengineering; Notice of Closed Meetings Pursuant to section 10(d) of the Federal... clearly unwarranted invasion of personal privacy. Name of Committee: National Institute of Biomedical.... Hayes, PhD, Scientific Review Officer, National Institute of Biomedical Imaging and Bioengineering...
78 FR 77474 - National Institute of Biomedical Imaging and Bioengineering; Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-23
... Biomedical Imaging and Bioengineering; Notice of Closed Meeting Pursuant to section 10(d) of the Federal... clearly unwarranted invasion of personal privacy. Name of Committee: National Institute of Biomedical..., National Institute of Biomedical Imaging and Bioengineering, 6707 Democracy Boulevard, Suite 959, Bethesda...
76 FR 53690 - National Institute of Biomedical Imaging and Bioengineering; Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-29
... Biomedical Imaging and Bioengineering; Notice of Closed Meeting Pursuant to section 10(d) of the Federal... Biomedical Imaging and Bioengineering Special Emphasis Panel, NIBIB 2012 R25 Team Based Education. Date... Person: Ruth Grossman, DDS, Scientific Review Officer, National Institute of Biomedical Imaging and...
75 FR 54641 - National Institute of Biomedical Imaging and Bioengineering; Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-08
... Biomedical Imaging and Bioengineering; Notice of Closed Meeting Pursuant to section 10(d) of the Federal... clearly unwarranted invasion of personal privacy. Name of Committee: National Institute of Biomedical... Officer, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, 6707...
78 FR 10185 - National Institute of Biomedical Imaging and Bioengineering; Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-13
... Biomedical Imaging and Bioengineering; Notice of Closed Meeting Pursuant to section 10(d) of the Federal... clearly unwarranted invasion of personal privacy. Name of Committee: National Institute of Biomedical... Officer, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, 6707...
75 FR 15715 - National Institute of Biomedical Imaging and Bioengineering; Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-30
... Biomedical Imaging and Bioengineering; Notice of Closed Meeting Pursuant to section 10(d) of the Federal... clearly unwarranted invasion of personal privacy. Name of Committee: National Institute of Biomedical... Institute of Biomedical Imaging and Bioengineering, 6707 Democracy Boulevard, Room 960, Bethesda, MD 20892...
77 FR 17080 - National Institute of Biomedical Imaging and Bioengineering; Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-23
... Biomedical Imaging and Bioengineering; Notice of Closed Meeting Pursuant to section 10(d) of the Federal... clearly unwarranted invasion of personal privacy. Name of Committee: National Institute of Biomedical... Sukhareva, Ph.D., Scientific Review Officer, National Institute of Biomedical Imaging and Bioengineering...
76 FR 40922 - National Institute of Biomedical Imaging and Bioengineering; Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-12
... Biomedical Imaging and Bioengineering; Notice of Closed Meeting Pursuant to section 10(d) of the Federal... clearly unwarranted invasion of personal privacy. Name of Committee: National Institute of Biomedical..., National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, 6707 Democracy...
76 FR 572 - National Institute of Biomedical Imaging and Bioengineering; Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-05
... Biomedical Imaging and Bioengineering; Notice of Closed Meeting Pursuant to section 10(d) of the Federal... clearly unwarranted invasion of personal privacy. Name of Committee: National Institute of Biomedical... Biomedical Imaging and Bioengineering, National Institutes of Health, 6707 Democracy Boulevard, Suite 959...
77 FR 72365 - National Institute of Biomedical Imaging and Bioengineering; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-05
... Biomedical Imaging and Bioengineering; Notice of Meeting Pursuant to section 10(d) of the Federal Advisory... Council for Biomedical Imaging and Bioengineering. The meeting will be open to the public as indicated... of personal privacy. Name of Committee: National Advisory Council for Biomedical Imaging and...
78 FR 66373 - National Institute of Biomedical Imaging and Bioengineering; Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-05
... Biomedical Imaging and Bioengineering; Notice of Closed Meeting Pursuant to section 10(d) of the Federal... clearly unwarranted invasion of personal privacy. Name of Committee: National Institute of Biomedical... of Biomedical Imaging and Bioengineering, 6707 Democracy Boulevard, Room 960, Bethesda, MD 20892, 301...
77 FR 49821 - National Institute of Biomedical Imaging and Bioengineering; Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-17
... Biomedical Imaging and Bioengineering; Notice of Closed Meeting Pursuant to section 10(d) of the Federal... clearly unwarranted invasion of personal privacy. Name of Committee: National Institute of Biomedical..., National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, 6707 Democracy...
76 FR 370 - National Institute of Biomedical Imaging and Bioengineering; Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-04
... Biomedical Imaging and Bioengineering; Notice of Closed Meeting Pursuant to section 10(d) of the Federal... clearly unwarranted invasion of personal privacy. Name of Committee: National Institute of Biomedical..., National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, 6707 Democracy...
77 FR 27784 - National Institute of Biomedical Imaging and Bioengineering; Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-11
... Biomedical Imaging and Bioengineering; Notice of Closed Meeting Pursuant to section 10(d) of the Federal... clearly unwarranted invasion of personal privacy. Name of Committee: National Institute of Biomedical..., National Institute of Biomedical Imaging and Bioengineering, 6707 Democracy Boulevard, Room 960, Bethesda...
Report of the Action Committee on Bioengineering.
ERIC Educational Resources Information Center
Schein, Martin W.
Bioengineering has been defined as "the application of knowledge gained by a cross fertilization of engineering and the biological sciences so that both will be more fully utilized for the benefit of mankind." Bioengineering has at least six areas of application: (1) medical engineering, (2) environmental health engineering, (3)…
Bioengineering and Cybernetics: A Modern Caduceus.
Magin, Richard L
2017-01-01
Like the caduceus, a medical symbol of entwined serpents, bioengineering and cybernetics have interwoven together ideas and concepts for over 50 years. Half a century is a long time, and whether we are talking about an academic discipline, our lives, or an old car, achieving 50 is a number that brings pause to the conversation. In books, wine, or collectibles, 50 years is termed vintage, which carries the connotation of depth and maturity. Certainly, in the case of the discipline of bioengineering, 50 years is a milestone of growth and development. By all academic measures (number of departments, current enrollment and graduates, size of faculty, and impact factor for its publications), bioengineering is a mature discipline. Presently, there are almost 100 ABET-certified bioengineering degree programs in the United States alone.
77 FR 54584 - National Institute of Biomedical Imaging and Bioengineering; Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-05
... Biomedical Imaging and Bioengineering; Notice of Closed Meeting Pursuant to section 10(d) of the Federal... clearly unwarranted invasion of personal privacy. Name of Committee: National Institute of Biomedical Imaging and Bioengineering Special Emphasis Panel, ZEB1 OSR-D(J2) P Tissue Engineering Resource Center...
Imamura, Aya; Ogawa, Miho; Yasukawa, Masato; Yamazaki, Hiromichi; Morita, Ritsuko; Ikeda, Etsuko; Nakao, Kazuhisa; Takano-Yamamoto, Teruko; Kasugai, Shohei; Saito, Masahiro; Tsuji, Takashi
2011-01-01
Donor organ transplantation is currently an essential therapeutic approach to the replacement of a dysfunctional organ as a result of disease, injury or aging in vivo. Recent progress in the area of regenerative therapy has the potential to lead to bioengineered mature organ replacement in the future. In this proof of concept study, we here report a further development in this regard in which a bioengineered tooth unit comprising mature tooth, periodontal ligament and alveolar bone, was successfully transplanted into a properly-sized bony hole in the alveolar bone through bone integration by recipient bone remodeling in a murine transplantation model system. The bioengineered tooth unit restored enough the alveolar bone in a vertical direction into an extensive bone defect of murine lower jaw. Engrafted bioengineered tooth displayed physiological tooth functions such as mastication, periodontal ligament function for bone remodeling and responsiveness to noxious stimulations. This study thus represents a substantial advance and demonstrates the real potential for bioengineered mature organ replacement as a next generation regenerative therapy. PMID:21765896
Non-invasive, investigative methods in skin aging.
Longo, C; Ciardo, S; Pellacani, G
2015-12-01
A precise and noninvasive quantification of aging is of outmost importance for in vivo assessment of the skin aging "stage", and thus acts to minimize it. Several bioengineering methods have been proposed to objectively, precisely, and non-invasively measure skin aging, and to detect early skin damage, that is sub-clinically observable. In this review we have described the most relevant methods that have emerged from recently introduced technologies, aiming at quantitatively assessing the effects of aging on the skin.
78 FR 66027 - Center for Scientific Review; Amended Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-04
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health Center for Scientific Review; Amended Notice of Meeting Notice is hereby given of a change in the meeting of the Bioengineering of Neuroscience, Vision and Low Vision Technologies Study Section, October 03, 2013, 08:00 a.m. to October 04...
Shao, Yue
2014-01-01
The rapid development of micro/nanoengineered functional biomaterials in the last two decades has empowered materials scientists and bioengineers to precisely control different aspects of the in vitro cell microenvironment. Following a philosophy of reductionism, many studies using synthetic functional biomaterials have revealed instructive roles of individual extracellular biophysical and biochemical cues in regulating cellular behaviors. Development of integrated micro/nanoengineered functional biomaterials to study complex and emergent biological phenomena has also thrived rapidly in recent years, revealing adaptive and integrated cellular behaviors closely relevant to human physiological and pathological conditions. Working at the interface between materials science and engineering, biology, and medicine, we are now at the beginning of a great exploration using micro/nanoengineered functional biomaterials for both fundamental biology study and clinical and biomedical applications such as regenerative medicine and drug screening. In this review, we present an overview of state of the art micro/nanoengineered functional biomaterials that can control precisely individual aspects of cell-microenvironment interactions and highlight them as well-controlled platforms for mechanistic studies of mechano-sensitive and -responsive cellular behaviors and integrative biology research. We also discuss the recent exciting trend where micro/nanoengineered biomaterials are integrated into miniaturized biological and biomimetic systems for dynamic multiparametric microenvironmental control of emergent and integrated cellular behaviors. The impact of integrated micro/nanoengineered functional biomaterials for future in vitro studies of regenerative medicine, cell biology, as well as human development and disease models are discussed. PMID:24339188
Rosch, David M; Imoukhuede, P I
2016-12-01
The development of a leadership identity has become significant in bioengineering education as a result of an increasing emphasis on teamwork within the profession and corresponding shifts in accreditation criteria. Unsurprisingly, placing bioengineering students in teams to complete classroom-based projects has become a dominant pedagogical tool. However, recent research indicates that engineering students may not develop a leadership identity, much less increased leadership capacity, as a result of such efforts. Within this study, we assessed two similar sections of an introductory course in bioengineering; each placed students in teams, while one also included leadership training and leadership practice. Results suggest that students in the leadership intervention section developed a strong self-image of themselves as leaders compared to students in the control section. These data suggest that creating mechanisms for bioengineering students to be trained in leadership and to practice leadership behaviors within a classroom team may be keys for unlocking leadership development.
Experimental design methods for bioengineering applications.
Keskin Gündoğdu, Tuğba; Deniz, İrem; Çalışkan, Gülizar; Şahin, Erdem Sefa; Azbar, Nuri
2016-01-01
Experimental design is a form of process analysis in which certain factors are selected to obtain the desired responses of interest. It may also be used for the determination of the effects of various independent factors on a dependent factor. The bioengineering discipline includes many different areas of scientific interest, and each study area is affected and governed by many different factors. Briefly analyzing the important factors and selecting an experimental design for optimization are very effective tools for the design of any bioprocess under question. This review summarizes experimental design methods that can be used to investigate various factors relating to bioengineering processes. The experimental methods generally used in bioengineering are as follows: full factorial design, fractional factorial design, Plackett-Burman design, Taguchi design, Box-Behnken design and central composite design. These design methods are briefly introduced, and then the application of these design methods to study different bioengineering processes is analyzed.
NASA Astrophysics Data System (ADS)
Carrere, C.; Milesi, S.; Lapyckyj, I.; Ravera, E.; Escher, L.; Miyara, A.; Pita, G.; Añino, M.
2016-04-01
Bioengineering is currently considered an interdisciplinary professional field which provides solutions to different problems arising in the area of health care. Its strategic importance is widely acknowledged since its developments and proposals could help diminish the level of technological dependence in the sector. The fast pace of innovation in the area of biomedical technology gives rise to permanent reflection on the learning goals and teaching strategies proposed by educators in the different training stages of a bioengineer. In this context, learning assessment appears as a controversial issue which needs to be debated and rethought. This paper describes the reflections of teachers of a Mathematics course within a Bioengineering program around the question, What approach to assessment favors the student’s participation, autonomy and training as a future bioengineer? The investigation was carried out in the framework of a Participatory Research Action project and helped us to redesign assessment activities from a different perspective.
A Bioengineered Human Skin Equivalent (HSE) for the Evaluation of Protectants
2006-11-01
agonist clofibrate to the growth media. Medium supplemented with 25 μM palmitic acid , 15 μM linoleic acid , 25 μM oleic acid , 7 μM arachidonic acid , 0.25...granules (indicated by arrows). Fig. 6: A cross section of the HSE with lipids, ascorbic acid and clofibrate supplementation. The combination of... Clofibrate , Ascorbic Acid and Lipids Compared With the Lipid Profile of Native Human Skin. Clofibrate 300 μM Lipid class Control No ascorbic
Shaban, Lamyaa; Chen, Ying; Fasciano, Alyssa C; Lin, Yinan; Kaplan, David L; Kumamoto, Carol A; Mecsas, Joan
2018-04-01
Endospore-forming Clostridioides difficile is a causative agent of antibiotic-induced diarrhea, a major nosocomial infection. Studies of its interactions with mammalian tissues have been hampered by the fact that C. difficile requires anaerobic conditions to survive after spore germination. We recently developed a bioengineered 3D human intestinal tissue model and found that low O 2 conditions are produced in the lumen of these tissues. Here, we compared the ability of C. difficile spores to germinate, produce toxin and cause tissue damage in our bioengineered 3D tissue model versus in a 2D transwell model in which human cells form a polarized monolayer. 3D tissue models or 2D polarized monolayers on transwell filters were challenged with the non-toxin producing C. difficile CCUG 37787 serotype X (ATCC 43603) and the toxin producing UK1 C. difficile spores in the presence of the germinant, taurocholate. Spores germinated in both the 3D tissue model as well as the 2D transwell system, however toxin activity was significantly higher in the 3D tissue models compared to the 2D transwells. Moreover, the epithelium damage in the 3D tissue model was significantly more severe than in 2D transwells and damage correlated significantly with the level of toxin activity detected but not with the amount of germinated spores. Combined, these results show that the bioengineered 3D tissue model provides a powerful system with which to study early events leading to toxin production and tissue damage of C. difficile with mammalian cells under anaerobic conditions. Furthermore, these systems may be useful for examining the effects of microbiota, novel drugs and other potential therapeutics directed towards C. difficile infections. Copyright © 2018 Elsevier Ltd. All rights reserved.
Attama, A A; Reichl, S; Müller-Goymann, C C
2009-08-01
The aim of the study was to formulate and evaluate surface-modified solid lipid nanoparticles sustained delivery system of timolol hydrogen maleate, a prototype ocular drug using a human cornea construct. Surface-modified solid lipid nanoparticles containing timolol with and without phospholipid were formulated by melt emulsification with high-pressure homogenization and characterized by particle size, wide-angle X-ray diffraction, encapsulation efficiency, and in vitro drug release. Drug transport studies through cornea bioengineered from human donor cornea cells were carried out using a modified Franz diffusion cell and drug concentration analyzed by high-performance liquid chromatography. Results show that surface-modified solid lipid nanoparticles possessed very small particles (42.9 +/- 0.3 nm, 47.2 +/- 0.3 nm, 42.7 +/- 0.7 nm, and 37.7 +/- 0.3 nm, respectively for SM-SLN 1, SM-SLN 2, SM-SLN 3, and SM-SLN 4) with low polydispersity indices, increased encapsulation efficiency (> 44%), and sustained in vitro release compared with unmodified lipid nanoparticles whose particles were greater than 160 nm. Permeation of timolol hydrogen maleate from the surface-modified lipid nanoparticles across the cornea construct was sustained compared with timolol hydrogen maleate solution in distilled water. Surface-modified solid lipid nanoparticles could provide an efficient way of improving ocular bioavailability of timolol hydrogen maleate.
A draft map of the human ovarian proteome for tissue engineering and clinical applications.
Ouni, Emna; Vertommen, Didier; Chiti, Maria Costanza; Dolmans, Marie-Madeleine; Amorim, Christiani Andrade
2018-02-23
Fertility preservation research in women today is increasingly taking advantage of bioengineering techniques to develop new biomimetic materials and solutions to safeguard ovarian cell function and microenvironment in vitro and in vivo. However, available data on the human ovary are limited and fundamental differences between animal models and humans are hampering researchers in their quest for more extensive knowledge of human ovarian physiology and key reproductive proteins that need to be preserved. We therefore turned to multi-dimensional label-free mass spectrometry to analyze human ovarian cortex, as it is a high-throughput and conclusive technique providing information on the proteomic composition of complex tissues like the ovary. In-depth proteomic profiling through two-dimensional liquid chromatography-mass spectrometry, western blot, histological and immunohistochemical analyses, and data mining helped us to confidently identify 1,508 proteins. Moreover, our method allowed us to chart the most complete representation so far of the ovarian matrisome, defined as the ensemble of extracellular matrix proteins and associated factors, including more than 80 proteins. In conclusion, this study will provide a better understanding of ovarian proteomics, with a detailed characterization of the ovarian follicle microenvironment, in order to enable bioengineers to create biomimetic scaffolds for transplantation and three-dimensional in vitro culture. By publishing our proteomic data, we also hope to contribute to accelerating biomedical research into ovarian health and disease in general. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.
Zakhem, Elie; Raghavan, Shreya; Gilmont, Robert R; Bitar, Khalil N
2012-01-01
Intestinal tissue engineering is an emerging field due to a growing demand for intestinal lengthening and replacement procedures secondary to massive resections of the bowel. Here, we demonstrate the potential use of a chitosan/collagen scaffold as a 3D matrix to support the bioengineered circular muscle constructs maintain their physiological functionality. We investigated the biocompatibility of chitosan by growing rabbit colonic circular smooth muscle cells (RCSMCs) on chitosan-coated plates. The cells maintained their spindle-like morphology and preserved their smooth muscle phenotypic markers. We manufactured tubular scaffolds with central openings composed of chitosan and collagen in a 1:1 ratio. Concentrically-aligned 3D circular muscle constructs were bioengineered using fibrin-based hydrogel seeded with RCSMCs. The constructs were placed around the scaffold for 2 weeks, after which they were taken off and tested for their physiological functionality. The muscle constructs contracted in response to Acetylcholine (Ach) and potassium chloride (KCl) and they relaxed in response to vasoactive intestinal peptide (VIP). These results demonstrate that chitosan is a biomaterial possibly suitable for intestinal tissue engineering applications. PMID:22483012
Test Tube Tooth: The Next Big Thing.
Yadav, Preeti; Tahir, Mohammed; Yadav, Harsh; Sureka, Rakshit; Garg, Aarti
2016-06-01
Unlike some vertebrates and fishes, humans do not have the capacity for tooth regeneration after the loss of permanent teeth. Although artificial replacement with removable dentures, fixed prosthesis and implants is possible through advances in the field of prosthetic dentistry, it would be ideal to recreate a third set of natural teeth to replace lost dentition. For many years now, researchers in the field of tissue engineering have been trying to bioengineer dental tissues as well as whole teeth. In order to attain a whole tooth through dental engineering, that has the same or nearly same biological, mechanical and physical properties of a natural tooth, it's necessary to deal with all the cells and tissues which are concerned with the formation, maintenance and repair of the tooth. In this article we review the steps involved in odontogenesis or organogenesis of a tooth and progress in the bioengineering of a whole tooth.
Bioengineering Hematopoietic Stem Cell Niche toward Regenerative Medicine.
Sugimura, Ryohichi
2016-04-01
The scope of this chapter is to introduce the current consensus of hematopoietic stem cell (HSC) niche biology to bioengineering field so that can apply to regenerative medicine. A decade of research has been addressing "what is HSC niche", then next step is "how it advances medicine". The demand to improve HSC transplantation has advanced the methodology to expand HSC in vitro. Still precise modeling of bone marrow (BM) is demanded by bioengineering HSC niche in vitro. Better understanding of HSC niche is essential toward this progress. Now it would be the time to apply the knowledge of HSC niche field to the venue of bioengineering, so that a promising new approach to regenerative medicine might appear. This chapter describes the current consensus of niche that endothelial cell and perivascular mesenchymal stromal cell maintain HSC, expansion of cord blood HSC by small molecules, bioengineering efforts to model HSC niche by microfluidics chip, organoids, and breakthroughs to induce HSC from heterologous types of cells. Copyright © 2015 Elsevier B.V. All rights reserved.
Functional salivary gland regeneration by transplantation of a bioengineered organ germ
Ogawa, Miho; Oshima, Masamitsu; Imamura, Aya; Sekine, Yurie; Ishida, Kentaro; Yamashita, Kentaro; Nakajima, Kei; Hirayama, Masatoshi; Tachikawa, Tetsuhiko; Tsuji, Takashi
2013-01-01
Salivary gland hypofunction, also known as xerostomia, occurs as a result of radiation therapy for head cancer, Sjögren’s syndrome or aging, and can cause a variety of critical oral health issues, including dental decay, bacterial infection, mastication dysfunction, swallowing dysfunction and reduced quality of life. Here we demonstrate the full functional regeneration of a salivary gland that reproduces the morphogenesis induced by reciprocal epithelial and mesenchymal interactions through the orthotopic transplantation of a bioengineered salivary gland germ as a regenerative organ replacement therapy. The bioengineered germ develops into a mature gland through acinar formations with a myoepithelium and innervation. The bioengineered submandibular gland produces saliva in response to the administration of pilocarpine and gustatory stimulation by citrate, protects against oral bacterial infection and restores normal swallowing in a salivary gland-defective mouse model. This study thus provides a proof-of-concept for bioengineered salivary gland regeneration as a potential treatment of xerostomia. PMID:24084982
Bioengineered Tooth Buds Exhibit Features of Natural Tooth Buds.
Smith, E E; Angstadt, S; Monteiro, N; Zhang, W; Khademhosseini, A; Yelick, P C
2018-06-01
Tooth loss is a significant health issue currently affecting millions of people worldwide. Artificial dental implants, the current gold standard tooth replacement therapy, do not exhibit many properties of natural teeth and can be associated with complications leading to implant failure. Here we propose bioengineered tooth buds as a superior alternative tooth replacement therapy. We describe improved methods to create highly cellularized bioengineered tooth bud constructs that formed hallmark features that resemble natural tooth buds such as the dental epithelial stem cell niche, enamel knot signaling centers, transient amplifying cells, and mineralized dental tissue formation. These constructs were composed of postnatal dental cells encapsulated within a hydrogel material that were implanted subcutaneously into immunocompromised rats. To our knowledge, this is the first report describing the use of postnatal dental cells to create bioengineered tooth buds that exhibit evidence of these features of natural tooth development. We propose future bioengineered tooth buds as a promising, clinically relevant tooth replacement therapy.
Life cycle performances of log wood applied for soil bioengineering constructions
NASA Astrophysics Data System (ADS)
Kalny, Gerda; Strauss-Sieberth, Alexandra; Strauss, Alfred; Rauch, Hans Peter
2016-04-01
Nowadays there is a high demand on engineering solutions considering not only technical aspects but also ecological and aesthetic values. Soil bioengineering is a construction technique that uses biological components for hydraulic and civil engineering solutions. Soil bioengineering solutions are based on the application of living plants and other auxiliary materials including among others log wood. This kind of construction material supports the soil bioengineering system as long as the plants as living construction material overtake the stability function. Therefore it is important to know about the durability and the degradation process of the wooden logs to retain the integral performance of a soil bio engineering system. These aspects will be considered within the framework of the interdisciplinary research project „ELWIRA Plants, wood, steel and concrete - life cycle performances as construction materials". Therefore field investigations on soil bioengineering construction material, specifically European Larch wood logs, of different soil bioengineering structures at the river Wien have been conducted. The drilling resistance as a parameter for particular material characteristics of selected logs was measured and analysed. The drilling resistance was measured with a Rinntech Resistograph instrument at different positions of the wooden logs, all surrounded with three different backfills: Fully surrounded with air, with earth contact on one side and near the water surface in wet-dry conditions. The age of the used logs ranges from one year old up to 20 year old. Results show progress of the drilling resistance throughout the whole cross section as an indicator to assess soil bioengineering construction material. Logs surrounded by air showed a higher drilling resistance than logs with earth contact and the ones exposed to wet-dry conditions. Hence the functional capability of wooden logs were analysed and discussed in terms of different levels of degradation. The results contribute to a sustainable and resource conserving handling with building materials in frame of construction and maintenance works of soil bioengineering structures.
New Phase of Growth for Xenogeneic-Based Bioartificial Organs
Pitkin, Zorina
2016-01-01
In this article, we examine the advanced clinical development of bioartificial organs and describe the challenges to implementing such systems into patient care. The case for bioartificial organs is evident: they are meant to reduce patient morbidity and mortality caused by the persistent shortage of organs available for allotransplantation. The widespread introduction and adoption of bioengineered organs, incorporating cells and tissues derived from either human or animal sources, would help address this shortage. Despite the decades of development, the variety of organs studied and bioengineered, and continuous progress in the field, only two bioengineered systems are currently commercially available: Apligraf® and Dermagraft® are both approved by the FDA to treat diabetic foot ulcers, and Apligraf® is approved to treat venous leg ulcers. Currently, no products based on xenotransplantation have been approved by the FDA. Risk factors include immunological barriers and the potential infectivity of porcine endogenous retrovirus (PERV), which is unique to xenotransplantation. Recent breakthroughs in gene editing may, however, mitigate risks related to PERV. Because of its primary role in interrupting progress in xenotransplantation, we present a risk assessment for PERV infection, and conclude that the formerly high risk has been reduced to a moderate level. Advances in gene editing, and more broadly in the field, may make it more likely than ever before that bioartificial organs will alleviate the suffering of patients with organ failure. PMID:27657057
JPRS Report, Science & Technology, China
1991-01-04
B27 Recognizes an Allospecific Determinant of HLA - B27 Lymphoblastoid Cell Lines [Shi Bingiun, et al.; ZHONGHUA WEISHENGWUXUE HE MIANYIXUE ZAZHI, No 5...Antibody Produced by industrialization of bioengineering. Immunization With the Synthetic Peptide From HLA - B27 Recognizes an Allospecific Determinant...Direct Detection of Human Immunodeficiency of HLA - B27 Lymphoblastoid Cell Lines Virus (HIV) Gene by the Polymerase Chain 40091003C Beijing ZHONGHUA
Bioengineered Hydrogel to Inhibit Post-Traumatic Central Nervous System Scarring
2016-10-01
AWARD NUMBER: W81XWH-14-1-0586 TITLE: Bioengineered Hydrogel to Inhibit Post-Traumatic Central Nervous System Scarring PRINCIPAL INVESTIGATOR...Bioengineered Hydrogel to Inhibit Post-Traumatic Central Nervous System Scarring 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH- 14-1-0586 5c. PROGRAM ELEMENT...cavitations that are not spontaneously repaired. Early after injury, blood enters the central nervous system (CNS) and directly kills brain cells but also
Bioengineered Skin From Stem Cells for Treatment of Cutaneous Vesicant Injury
2006-11-01
sterile gauze; the gauze was dipped into the decontamination solution using forceps and gently applied to the injury site using circular motions...weight ratio of the skin biopsy of the animals exposed to CEES and treated with either bioengineered skin or saline. Briefly, at different time...The CEES + saline or CEES + bioengineered skin treated areas were excised using a sterile blade, scissors, and forceps . Half of the skin sample
Career development in Bioengineering/Biomedical Engineering: a student's roadmap.
Abu-Faraj, Ziad O
2008-01-01
Bioengineering/biomedical engineering education has progressed since the late 1950s and is still evolving in leading academic institutions worldwide. Today, Bioengineering/Biomedical Engineering is acclaimed as one of the most reputable fields within the global arena, and will likely be the catalyst for any future breakthroughs in Medicine and Biology. This paper provides a set of strategies and recommendations to be pursued by individuals aiming at planning and developing careers in this field. The paper targets the international student contemplating bioengineering/biomedical engineering as a career, with an underlying emphasis on the student within developing and transitional countries where career guidance is found deficient. The paper also provides a comprehensive definition of the field and an enumeration of its subdivisions.
Emotion-affected decision making in human simulation.
Zhao, Y; Kang, J; Wright, D K
2006-01-01
Human modelling is an interdisciplinary research field. The topic, emotion-affected decision making, was originally a cognitive psychology issue, but is now recognized as an important research direction for both computer science and biomedical modelling. The main aim of this paper is to attempt to bridge the gap between psychology and bioengineering in emotion-affected decision making. The work is based on Ortony's theory of emotions and bounded rationality theory, and attempts to connect the emotion process with decision making. A computational emotion model is proposed, and the initial framework of this model in virtual human simulation within the platform of Virtools is presented.
Miniaturized soft bio-hybrid robotics: a step forward into healthcare applications.
Patino, T; Mestre, R; Sánchez, S
2016-10-07
Soft robotics is an emerging discipline that employs soft flexible materials such as fluids, gels and elastomers in order to enhance the use of robotics in healthcare applications. Compared to their rigid counterparts, soft robotic systems have flexible and rheological properties that are closely related to biological systems, thus allowing the development of adaptive and flexible interactions with complex dynamic environments. With new technologies arising in bioengineering, the integration of living cells into soft robotic systems offers the possibility of accomplishing multiple complex functions such as sensing and actuating upon external stimuli. These emerging bio-hybrid systems are showing promising outcomes and opening up new avenues in the field of soft robotics for applications in healthcare and other fields.
Guillemot, Fabien; Mironov, Vladimir; Nakamura, Makoto
2010-03-01
The International Conference on Bioprinting and Biofabrication in Bordeaux (3B'09) demonstrated that the field of bioprinting and biofabrication continues to evolve. The increasing number and broadening geography of participants, the emergence of new exciting bioprinting technologies, and the attraction of young investigators indicates the strong growth potential of this emerging field. Bioprinting can be defined as the use of computer-aided transfer processes for patterning and assembling living and non-living materials with a prescribed 2D or 3D organization in order to produce bio-engineered structures serving in regenerative medicine, pharmacokinetic and basic cell biology studies. The use of bioprinting technology for biofabrication of in vitro assay has been shown to be a realistic short-term application. At the same time, the principal feasibility of bioprinting vascularized human organs as well as in vivo bioprinting has been demonstrated. The bioprinting of complex 3D human tissues and constructs in vitro and especially in vivo are exciting, but long-term, applications. It was decided that the 5th International Conference on Bioprinting and Biofabrication would be held in Philadelphia, USA in October 2010. The specially appointed 'Eploratory Committee' will consider the possibility of turning the growing bioprinting community into a more organized entity by creating a new bioprinting and biofabrication society. The new journal Biofabrication was also presented at 3B'09. This is an important milestone per se which provides additional objective evidence that the bioprinting and biofabrication field is consolidating and maturing. Thus, it is safe to state that bioprinting technology is coming of age.
Shao, Yue; Fu, Jianping
2014-03-12
The rapid development of micro/nanoengineered functional biomaterials in the last two decades has empowered materials scientists and bioengineers to precisely control different aspects of the in vitro cell microenvironment. Following a philosophy of reductionism, many studies using synthetic functional biomaterials have revealed instructive roles of individual extracellular biophysical and biochemical cues in regulating cellular behaviors. Development of integrated micro/nanoengineered functional biomaterials to study complex and emergent biological phenomena has also thrived rapidly in recent years, revealing adaptive and integrated cellular behaviors closely relevant to human physiological and pathological conditions. Working at the interface between materials science and engineering, biology, and medicine, we are now at the beginning of a great exploration using micro/nanoengineered functional biomaterials for both fundamental biology study and clinical and biomedical applications such as regenerative medicine and drug screening. In this review, an overview of state of the art micro/nanoengineered functional biomaterials that can control precisely individual aspects of cell-microenvironment interactions is presented and they are highlighted them as well-controlled platforms for mechanistic studies of mechano-sensitive and -responsive cellular behaviors and integrative biology research. The recent exciting trend where micro/nanoengineered biomaterials are integrated into miniaturized biological and biomimetic systems for dynamic multiparametric microenvironmental control of emergent and integrated cellular behaviors is also discussed. The impact of integrated micro/nanoengineered functional biomaterials for future in vitro studies of regenerative medicine, cell biology, as well as human development and disease models are discussed. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
U.K. science budget. Gene jocks, data crunchers hit jackpot.
Pickrell, J
2000-12-01
Unveiling its science spending plan for the next 3 years, the U.K. government last week announced major new investments in three key areas: tracking disease genes, leveraging the Internet for data analysis, and supporting emerging industries such as nanotechnology and bioengineering. Although these programs cut across a range of disciplines funded by the U.K.'s science councils, the government also bestowed a long-anticipated gift on astronomers: membership in the European Southern Observatory, which will give U.K. researchers access to the world's largest optical telescope.
Diffusion MRI and the Detection of Alterations Following Traumatic Brain Injury
2017-06-13
Bioengineering, National Institutes of Health , Bethesda, Maryland 2Section on Quantitative Imaging and Tissue Sciences, Eunice Kennedy Shriver National...Institute of Child Health and Human Development, National Institutes of Health , Bethesda, Maryland 3Henry M. Jackson Foundation for the Advancement of...Military Medicine, Inc, Bethesda, Maryland 4Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda
ERIC Educational Resources Information Center
García, Yeni Violeta
2013-01-01
The future of this country depends on utilizing human intellectual resources from varying viewpoints to make informed decisions on issues from conservation biology to biotechnology, or even bioengineering. An increase in Latina/o students in the biological sciences would bring a variety of viewpoints, as well as personal and cultural experiences…
Love, Michael J.; Bhandari, Dinesh; Dobson, Renwick C. J.
2018-01-01
There is growing concern about the emergence of bacterial strains showing resistance to all classes of antibiotics commonly used in human medicine. Despite the broad range of available antibiotics, bacterial resistance has been identified for every antimicrobial drug developed to date. Alarmingly, there is also an increasing prevalence of multidrug-resistant bacterial strains, rendering some patients effectively untreatable. Therefore, there is an urgent need to develop alternatives to conventional antibiotics for use in the treatment of both humans and food-producing animals. Bacteriophage-encoded lytic enzymes (endolysins), which degrade the cell wall of the bacterial host to release progeny virions, are potential alternatives to antibiotics. Preliminary studies show that endolysins can disrupt the cell wall when applied exogenously, though this has so far proven more effective in Gram-positive bacteria compared with Gram-negative bacteria. Their potential for development is furthered by the prospect of bioengineering, and aided by the modular domain structure of many endolysins, which separates the binding and catalytic activities into distinct subunits. These subunits can be rearranged to create novel, chimeric enzymes with optimized functionality. Furthermore, there is evidence that the development of resistance to these enzymes may be more difficult compared with conventional antibiotics due to their targeting of highly conserved bonds. PMID:29495476
Bioengineering and Rehabilitation: Windows of Opportunity Past, Present and Future
NASA Technical Reports Server (NTRS)
1985-01-01
The applications of NASA research in the areas of bioengineering and rehabilitation are discussed. Wheelchairs, gait analysis, blood analyzers, programmable pacemakers and cardiology mannequins are among the topics covered.
Optical properties of an anterior lamellar human cornea model based on fibrin-agarose
NASA Astrophysics Data System (ADS)
Ionescu, Ana M.; Cardona, Juan de la Cruz; Ghinea, Razvan; Garzón, Ingrid; González-Andrades, Miguel; Alaminos, Miguel; Pérez, Maria del Mar
2017-08-01
The optical evaluation carried out using the Inverse Adding-Doubling (IAD) method to determine the scattering and the absorption coefficients of the bioengineered human corneal stromas showed that this type of artificial biomaterials shared many similarities with native control cornea after four weeks of development in culture. Their absorption and reduced scattering coefficients values were higher than the ones of the control cornea, but their spectral behaviors of both coefficients were similar. Time of development in culture was an influencing factor on the results.
Strategies to increase vitamin C in plants: from plant defense perspective to food biofortification.
Locato, Vittoria; Cimini, Sara; Gara, Laura De
2013-01-01
Vitamin C participates in several physiological processes, among others, immune stimulation, synthesis of collagen, hormones, neurotransmitters, and iron absorption. Severe deficiency leads to scurvy, whereas a limited vitamin C intake causes general symptoms, such as increased susceptibility to infections, fatigue, insomnia, and weight loss. Surprisingly vitamin C deficiencies are spread in both developing and developed countries, with the latter actually trying to overcome this lack through dietary supplements and food fortification. Therefore new strategies aimed to increase vitamin C in food plants would be of interest to improve human health. Interestingly, plants are not only living bioreactors for vitamin C production in optimal growing conditions, but also they can increase their vitamin C content as consequence of stress conditions. An overview of the different approaches aimed at increasing vitamin C level in plant food is given. They include genotype selection by "classical" breeding, bio-engineering and changes of the agronomic conditions, on the basis of the emerging concepts that plant can enhance vitamin C synthesis as part of defense responses.
Bio-engineering for land stabilization : final report.
DOT National Transportation Integrated Search
2010-06-01
As part of the Ohio Department of Transportations (ODOTs) ongoing effort to solve engineering problems for the Ohio : transportation system through research, The Ohio State University has undertaken a study entitled Bioengineering for : Land...
Functional lacrimal gland regeneration by transplantation of a bioengineered organ germ
Hirayama, Masatoshi; Ogawa, Miho; Oshima, Masamitsu; Sekine, Yurie; Ishida, Kentaro; Yamashita, Kentaro; Ikeda, Kazutaka; Shimmura, Shigeto; Kawakita, Tetsuya; Tsubota, Kazuo; Tsuji, Takashi
2013-01-01
The lacrimal gland has a multifaceted role in maintaining a homeostatic microenvironment for a healthy ocular surface via tear secretion. Dry-eye disease, which is caused by lacrimal gland dysfunction, is one of the most prevalent eye diseases that cause corneal epithelial damage and results in significant loss of vision and a reduction in the quality of life. Here we demonstrate orthotopic transplantation of bioengineered lacrimal gland germs into adult mice with an extra-orbital lacrimal gland defect, a mouse model that mimics the corneal epithelial damage caused by lacrimal gland dysfunction. The bioengineered lacrimal gland germs and harderian gland germs both develop in vivo and achieve sufficient physiological functionality, including tear production in response to nervous stimulation and ocular surface protection. This study demonstrates the potential for bioengineered organ replacement to functionally restore the lacrimal gland. PMID:24084941
Fully functional hair follicle regeneration through the rearrangement of stem cells and their niches
Toyoshima, Koh-ei; Asakawa, Kyosuke; Ishibashi, Naoko; Toki, Hiroshi; Ogawa, Miho; Hasegawa, Tomoko; Irié, Tarou; Tachikawa, Tetsuhiko; Sato, Akio; Takeda, Akira; Tsuji, Takashi
2012-01-01
Organ replacement regenerative therapy is purported to enable the replacement of organs damaged by disease, injury or aging in the foreseeable future. Here we demonstrate fully functional hair organ regeneration via the intracutaneous transplantation of a bioengineered pelage and vibrissa follicle germ. The pelage and vibrissae are reconstituted with embryonic skin-derived cells and adult vibrissa stem cell region-derived cells, respectively. The bioengineered hair follicle develops the correct structures and forms proper connections with surrounding host tissues such as the epidermis, arrector pili muscle and nerve fibres. The bioengineered follicles also show restored hair cycles and piloerection through the rearrangement of follicular stem cells and their niches. This study thus reveals the potential applications of adult tissue-derived follicular stem cells as a bioengineered organ replacement therapy. PMID:22510689
Merryman, W David
2008-03-01
The following hypothetical case study was developed for bioengineering students and is concerned with choosing between two devices used for development of a pediatric tissue engineered heart valve (TEHV). This case is intended to elicit assessment of the devices, possible future outcomes, and ramifications of the decision making. It is framed in light of two predominant ethical theories: utilitarianism and rights of persons. After the case was presented to bioengineering graduate students, they voted on which device should be released. The results revealed that these bioengineering students preferred the more reliable (and substantially more expensive) design, though this choice precludes the majority of the world from having access to this technology. This case is intended to examine and explore where the balance lies between design, cost, and adequate distribution of biomedical devices.
The junctional epithelium originates from the odontogenic epithelium of an erupted tooth.
Yajima-Himuro, Sara; Oshima, Masamitsu; Yamamoto, Gou; Ogawa, Miho; Furuya, Madoka; Tanaka, Junichi; Nishii, Kousuke; Mishima, Kenji; Tachikawa, Tetsuhiko; Tsuji, Takashi; Yamamoto, Matsuo
2014-05-02
The junctional epithelium (JE) is an epithelial component that is directly attached to the tooth surface and has a protective function against periodontal diseases. In this study, we determined the origin of the JE using a bioengineered tooth technique. We transplanted the bioengineered tooth germ into the alveolar bone with an epithelial component that expressed green fluorescence protein. The reduced enamel epithelium from the bioengineered tooth fused with the oral epithelium, and the JE was apparently formed around the bioengineered tooth 50 days after transplantation. Importantly, the JE exhibited green fluorescence for at least 140 days after transplantation, suggesting that the JE was not replaced by oral epithelium. Therefore, our results demonstrated that the origin of the JE was the odontogenic epithelium, and odontogenic epithelium-derived JE was maintained for a relatively long period.
The junctional epithelium originates from the odontogenic epithelium of an erupted tooth
Yajima-Himuro, Sara; Oshima, Masamitsu; Yamamoto, Gou; Ogawa, Miho; Furuya, Madoka; Tanaka, Junichi; Nishii, Kousuke; Mishima, Kenji; Tachikawa, Tetsuhiko; Tsuji, Takashi; Yamamoto, Matsuo
2014-01-01
The junctional epithelium (JE) is an epithelial component that is directly attached to the tooth surface and has a protective function against periodontal diseases. In this study, we determined the origin of the JE using a bioengineered tooth technique. We transplanted the bioengineered tooth germ into the alveolar bone with an epithelial component that expressed green fluorescence protein. The reduced enamel epithelium from the bioengineered tooth fused with the oral epithelium, and the JE was apparently formed around the bioengineered tooth 50 days after transplantation. Importantly, the JE exhibited green fluorescence for at least 140 days after transplantation, suggesting that the JE was not replaced by oral epithelium. Therefore, our results demonstrated that the origin of the JE was the odontogenic epithelium, and odontogenic epithelium-derived JE was maintained for a relatively long period. PMID:24785116
Bioengineered bugs, drugs and contentious issues in patenting
2010-01-01
Bioengineered bugs, as is the scope of this journal, have great potential in various practical applications. A corollary to bringing useful products to the market is that such products need protection from copying by other people or businesses. Such government-sponsored protections are legally enforced through a patent, copyright or trademark/trade secret system commonly known as intellectual property rights. A condition for obtaining a patent is that the invention must not be disclosed to public either through seminars, informal public disclosures or publications in journals, although in the United States, there is a one year grace period that is allowed to obtain a patent after public disclosure. This article describes my personal experience in obtaining a patent in 1980 on a genetically manipulated bacterium designed for oil spill cleanup. This patent application went through a series of court cases that finally ended up in the Supreme Court of the United States. I also mention a similar contentious legal issue that is on the horizon and that the readers of Bioengineered Bugs should be aware of. Finally, I have taken the opportunity to describe my current efforts to bring to the market some unique potential multi-disease-targeting candidate drugs from Pseudomonas aeruginosa and gonococci/meningococci that, if found non-toxic and efficacious in humans, will revolutionize the drug industry. To ensure their marketability, we are trying to develop a patent portfolio that will ensure that they will be legally protected and such protections will be broad-based and enforceable. PMID:21327122
Femtosecond laser cutting of multiple thin corneal stromal lamellae for endothelial bioengineering.
Bernard, Aurélien; He, Zhiguo; Forest, Fabien; Gauthier, Anne-Sophie; Peocʼh, Michel; Dumollard, Jean-Marc; Acquart, Sophie; Montard, Romain; Delbosc, Bernard; Gain, Philippe; Thuret, Gilles
2015-02-01
To assess the feasibility of cutting multiple thin stromal lamellae in human donor corneas using a commercial femtosecond laser (FSL) to provide cell carriers for future endothelial graft bioengineering. Eight edematous organ-cultured corneas not suitable for grafting for endothelial reasons were mounted on a Ziemer anterior chamber and cut with a Z6 FSL with 6 successive parallel cuts, from depth to surface. Target thickness of each lamella ranged from 100 to 150 μm depending on initial corneal thickness. Thickness was measured using anterior segment optical coherence tomography before and after cutting on mounted corneas, and on each stromal lamella after detachment. Scanning electron microscopy observation was performed on 4 lamellae and histological cross sections on 1 cornea before detachment. A median of 5 (minimum 3, maximum 7) lamellae was obtained per cornea. All lamellae still attached were the most posterior ones, suggesting that FSL was less efficient because of light scattering by edematous stroma. Cut precision and postdetachment swelling were correlated with anterior-posterior position within the cornea. Median lamella thickness was 127 μm (56-222 μm) before detachment and 196 μm (80-304 μm) after detachment. Surface state was consistent with previously reported FSL lamellar cuts during Descemet stripping automated endothelial keratoplasty. Up to 7 thin lamellae can be cut in stored corneas with an FSL. This method, once optimized primarily by using deswelled, more transparent corneas, could prove effective for recycling unsuitable donor corneas in corneal bioengineering processes.
Bastos, Teodiano F; Muller, Sandra M T
2010-01-01
Several students of Bioengineering complain about the excess of theoretical classes and the difficulty to assimilate the subject taught. This article presents a strategy to mix theory and practice when teaching, thus motivating students to engage in their studies.
Biomedical wellness challenges and opportunities
NASA Astrophysics Data System (ADS)
Tangney, John F.
2012-06-01
The mission of ONR's Human and Bioengineered Systems Division is to direct, plan, foster, and encourage Science and Technology in cognitive science, computational neuroscience, bioscience and bio-mimetic technology, social/organizational science, training, human factors, and decision making as related to future Naval needs. This paper highlights current programs that contribute to future biomedical wellness needs in context of humanitarian assistance and disaster relief. ONR supports fundamental research and related technology demonstrations in several related areas, including biometrics and human activity recognition; cognitive sciences; computational neurosciences and bio-robotics; human factors, organizational design and decision research; social, cultural and behavioral modeling; and training, education and human performance. In context of a possible future with automated casualty evacuation, elements of current science and technology programs are illustrated.
A review of biotransport education in the 21st century: lessons learned from experts.
Banerjee, Rupak K; D'Souza, Gavin A; Rylander, Christopher; Devireddy, Ram
2014-11-01
The field of bioengineering is relatively new and complex including multiple disciplines encompassing areas in science and engineering. Efforts including the National Science Foundation (NSF) sponsored Integrative Graduate Education and Research Traineeship (IGERT) and VaNTH Engineering Research Center in Bioengineering Educational Technologies have been made to establish and disseminate knowledge and proven methods for teaching bioengineering concepts. Further, the summer bioengineering conference (SBC), sponsored by the American Society of Mechanical Engineers' (ASME) Bioengineering Division, was established to provide a meeting place for engineering educators and students having common interests in biological systems. Of the many subdisciplines of bioengineering, biotransport is a key subject that has wide applicability to many issues in engineering, biology, medicine, pharmacology, and environmental science, among others. The absence of standard content, guidelines, and texts needed for teaching biotransport courses to students motivated the Biotransport committee of ASME's Bioengineering Division to establish a biotransport education initiative. Biotransport education workshop sessions were conducted during the SBC 2011, 2012, and 2013 as part of this initiative. The workshop sessions included presentations from experienced faculty covering a spectrum of information from general descriptions of undergraduate biotransport courses to very detailed outlines of graduate courses to successful teaching techniques. A list of texts and references available for teaching biotransport courses at undergraduate and graduate levels has been collated and documented based on the workshop presentations. Further, based on individual teaching experiences and methodologies shared by the presenters, it was noted that active learning techniques, including cooperative and collaborative learning, can be useful for teaching undergraduate courses while problem based learning (PBL) can be a beneficial method for graduate courses. The outcomes of the education initiative will help produce students who are knowledgeable in the subject of biotransport, facile in applying biotransport concepts for solving problems in various application areas, and comfortable with their own abilities as life-long learners.
Monitoring of bioengineering stabilization projects : final report.
DOT National Transportation Integrated Search
2009-08-01
Four sites with bioengineered stream banks were monitored for four years. Observations included quantitative : measurements of stream discharge, stage and velocity. No bank erosion was observed to have affected the stream : banks at any of the monito...
Suitability of soil bioengineering techniques in Central America: a case study in Nicaragua
NASA Astrophysics Data System (ADS)
Petrone, A.; Preti, F.
2008-10-01
In the last few years "D. I. A. F." (Department of Agriculture and Forestry Engineering of Florence University), has been testing the effectiveness of soil bioengineering techniques in Central America. The focus of the present study was to find out which native plants were most suited for soil bioengineering purposes, particularly in the realization of riverbank protection in Nicaragua. Furthermore, we have also been aiming at economic efficiency. These techniques are appropriate for sustainable watershed management especially in underdeveloped countries. Concerning the plants to be used we experimented four native species. Gliricidia Sepium, Cordia dentata and Jatropha curcas are suitable for soil bioengineering more than Bursera Simaruba. Economically speaking, the sustainability of such interventions in underdeveloped countries, has been shown by the evaluation of the cost of riverbank protection using vegetated crib-walls in Nicaragua compared to the cost in different contexts.
Immunosuppression-free transplantation reconsidered from a regenerative medicine perspective.
Orlando, Giuseppe
2012-02-01
Recent groundbreaking progress in regenerative medicine has shown its potential to meet the two major needs of solid organ transplantation, namely the achievement of an immunosuppression-free state (IFS) and the identification of a new, potentially inexhaustible source of organs. This review illustrates how regenerative medicine technology may contribute to the achievement of IFS. There are three possible strategies: organ bioengineering, immuno-isolation and thymus bioengineering. The goal of organ bioengineering is to manufacture organs ex vivo from autologous cells. Immuno-isolation technology implements strategies aiming to prevent recognition of nonself antigens by the host immune system. Thymus organoids have been bioengineered with scaffold-seeding methods to allow deletion of T-cell clones responsible for allograft rejection. Despite the several hurdles that must be overcome, regenerative medicine technologies offer alternative strategies aimed at establishing immediate, stable and durable IFS in solid organ graft recipients.
Bioengineering of the Enterobacter aerogenes strain for biohydrogen production.
Zhang, Chong; Lv, Feng-Xiang; Xing, Xin-Hui
2011-09-01
Enterobacter aerogenes is one of the most widely-studied model strains for fermentative hydrogen production. To improve the hydrogen yield of E. aerogenes, the bioengineering on a biomolecular level and metabolic network level is of importance. In this review, the fermentative technology of E. aerogenes for hydrogen production will be first briefly summarized. And then the bioengineering of E. aerogenes for the improvement of hydrogen yield will be thoroughly reviewed, including the anaerobic metabolic networks for hydrogen evolution in E. aerogenes, metabolic engineering for improving hydrogen production in E. aerogenes and mixed culture of E. aerogenes with other hydrogen-producing bacteria to enhance the overall yield in anaerobic cultivation. Finally, a perspective on E. aerogenes as a hydrogen producer including systems bioengineering approach for improving the hydrogen yield and application of the engineered E. aerogenes in mixed culture will be presented. Copyright © 2011 Elsevier Ltd. All rights reserved.
Special Delivery | The UCSB Current
Mitragotri inflammation bioengineering Center for BioEngineering engineering Categories Alumni Business Sciences Staff International Affairs Medicine + Health Students Theater + Dance Environment Archives Topics Arts + Culture Science + Technology Alumni Campus About News@UCSB Public Affairs &
Application of an acoustofluidic perfusion bioreactor for cartilage tissue engineering.
Li, Siwei; Glynne-Jones, Peter; Andriotis, Orestis G; Ching, Kuan Y; Jonnalagadda, Umesh S; Oreffo, Richard O C; Hill, Martyn; Tare, Rahul S
2014-12-07
Cartilage grafts generated using conventional static tissue engineering strategies are characterised by low cell viability, suboptimal hyaline cartilage formation and, critically, inferior mechanical competency, which limit their application for resurfacing articular cartilage defects. To address the limitations of conventional static cartilage bioengineering strategies and generate robust, scaffold-free neocartilage grafts of human articular chondrocytes, the present study utilised custom-built microfluidic perfusion bioreactors with integrated ultrasound standing wave traps. The system employed sweeping acoustic drive frequencies over the range of 890 to 910 kHz and continuous perfusion of the chondrogenic culture medium at a low-shear flow rate to promote the generation of three-dimensional agglomerates of human articular chondrocytes, and enhance cartilage formation by cells of the agglomerates via improved mechanical stimulation and mass transfer rates. Histological examination and assessment of micromechanical properties using indentation-type atomic force microscopy confirmed that the neocartilage grafts were analogous to native hyaline cartilage. Furthermore, in the ex vivo organ culture partial thickness cartilage defect model, implantation of the neocartilage grafts into defects for 16 weeks resulted in the formation of hyaline cartilage-like repair tissue that adhered to the host cartilage and contributed to significant improvements to the tissue architecture within the defects, compared to the empty defects. The study has demonstrated the first successful application of the acoustofluidic perfusion bioreactors to bioengineer scaffold-free neocartilage grafts of human articular chondrocytes that have the potential for subsequent use in second generation autologous chondrocyte implantation procedures for the repair of partial thickness cartilage defects.
Dorr, Casey R; Remmel, Rory P; Muthusamy, Amutha; Fisher, James; Moriarity, Branden S; Yasuda, Kazuto; Wu, Baolin; Guan, Weihua; Schuetz, Erin G; Oetting, William S; Jacobson, Pamala A; Israni, Ajay K
2017-08-01
Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 engineering of the CYP3A5 *3 locus (rs776746) in human liver cell line HuH-7 ( CYP3A5 *3/*3 ) has led to three CYP3A5 *1 cell lines by deletion of the exon 3B splice junction or point mutation. Cell lines CYP3A5 *1/*3 sd (single deletion), CYP3A5 *1/*1 dd (double deletion), or CYP3A5 *1/*3 pm (point mutation) expressed the CYP3A5 *1 mRNA and had elevated CYP3A5 mRNA ( P < 0.0005 for all engineered cell lines) and protein expression compared with HuH-7. In metabolism assays, HuH-7 had less tacrolimus (all P < 0.05) or midazolam (MDZ) (all P < 0.005) disappearance than all engineered cell lines. HuH-7 had less 1-OH MDZ (all P < 0.0005) or 4-OH (all P < 0.005) production in metabolism assays than all bioengineered cell lines. We confirmed CYP3A5 metabolic activity with the CYP3A4 selective inhibitor CYP3CIDE. This is the first report of genomic CYP3A5 bioengineering in human cell lines with drug metabolism analysis. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.
Kaur, Pardeep; Robin; Mehta, Rajendra G; Arora, Saroj; Singh, Balbir
2018-06-01
Cancer cell lines of human tissue origin have been extensively used to investigate antiproliferative activity and toxicity of herbal extracts, isolated compounds, and anticancer drugs. These cell lines are genetically and/or epigenetically well characterized to determine the altered expression of proteins within given cellular pathways and critical genes in cancer. Human derived hepatoma (HepG2) cell line has been extensively exploited to examine cytoprotective, antioxidative, hepatoprotective, anti-hepatoma, hypocholesterolemic, anti-steatosis, bioenergetic homeostatic and anti-insulin resistant properties. Moreover, mechanism of action of various botanicals and bioactive constituents has been reported using these cells. HepG2 cells have significant differences as compared to primary hepatocytes with respect to expression of cytochrome P450 enzymes and xenobiotic receptors in conventional in vitro culture conditions. Therefore, strategies have been employed to overcome limitations of two dimensional (2D) in vitro HepG2 cell culture in order to recognize functional biomarkers more accurately and to boost its predictive value in clinical research. In consequence, three dimensional (3D) human hepatoma cell culture models are being developed as a resource to achieve these goals of simulating the in vivo tumor microenvironment. It is assumed that bioengineered 3D hepatoma cell culture models can provide significant assistance in scrutinizing the molecular response of herbal natural products to recognize novel prognostic targets and crucial biomarkers in treatment strategies for cancer patients in near future.
Early-career researchers: an interview with Kakani Katija.
2017-09-15
Kakani Katija is a Principal Engineer at the Monterey Bay Aquarium Research Institute, USA, where she designs and builds instrumentation to study marine invertebrate ecomechanics. She received her Bachelor's degree in Aeronautics and Astronautics from the University of Washington, USA, before moving to the California Institute of Technology, USA, for her Master's degree in Aeronautics with Morteza Gharib and PhD in Bioengineering in the laboratory of John Dabiri, completed in 2010. Katija was recognised as a National Geographic Emerging Explorer in 2011 and has given presentations at TEDYouth and TEDWomen. © 2017. Published by The Company of Biologists Ltd.
Addressing endotoxin issues in bioengineered heparin.
Suwan, Jiraporn; Torelli, Amanda; Onishi, Akihiro; Dordick, Jonathan S; Linhardt, Robert J
2012-01-01
Heparin is a widely used clinical anticoagulant that is prepared from pig intestine. A contamination of heparin in 2008 has led to a reexamination of animal-derived pharmaceuticals. A bioengineered heparin prepared by bacterial fermentation and chemical and enzymatic processing is currently under development. This study examines the challenges of reducing or removing endotoxins associated with this process that are necessary to proceed with preclinical in vivo evaluation of bioengineered heparin. The current process is assessed for endotoxin levels, and strategies are examined for endotoxin removal from polysaccharides and enzymes involved in this process. © 2012 International Union of Biochemistry and Molecular Biology, Inc.
Bioengineered transplantable porcine livers with re-endothelialized vasculature.
Ko, In Kap; Peng, Li; Peloso, Andrea; Smith, Charesa J; Dhal, Abritee; Deegan, Daniel B; Zimmerman, Cindy; Clouse, Cara; Zhao, Weixin; Shupe, Thomas D; Soker, Shay; Yoo, James J; Atala, Anthony
2015-02-01
Donor shortage remains a continued challenge in liver transplantation. Recent advances in tissue engineering have provided the possibility of creating functional liver tissues as an alternative to donor organ transplantation. Small bioengineered liver constructs have been developed, however a major challenge in achieving functional bioengineered liver in vivo is the establishment of a functional vasculature within the scaffolds. Our overall goal is to bioengineer intact livers, suitable for transplantation, using acellular porcine liver scaffolds. We developed an effective method for reestablishing the vascular network within decellularized liver scaffolds by conjugating anti-endothelial cell antibodies to maximize coverage of the vessel walls with endothelial cells. This procedure resulted in uniform endothelial attachment throughout the liver vasculature extending to the capillary bed of the liver scaffold and greatly reduced platelet adhesion upon blood perfusion in vitro. The re-endothelialized livers, when transplanted to recipient pigs, were able to withstand physiological blood flow and maintained for up to 24 h. This study demonstrates, for the first time, that vascularized bioengineered livers, of clinically relevant size, can be transplanted and maintained in vivo, and represents the first step towards generating engineered livers for transplantation to patients with end-stage liver failure. Copyright © 2014 Elsevier Ltd. All rights reserved.
REMOTE SENSING FOR BIOENGINEERED CROPS-POTENTIAL APPLICATIONS
Crops bioengineered to contain toxins derived from Bacillus thuringensis (Bt) are under regulatory scrutiny by USEPA under the FIFRA legislation. The agency has declared these crops to be "in the public good" based on the reduced use of pesticides required for management of these...
NASA Astrophysics Data System (ADS)
von der Thannen, Magdalena; Paratscha, Roman; Smutny, Roman; Lampalzer, Thomas; Strauss, Alfred; Rauch, Hans Peter
2016-04-01
Nowadays there is a high demand on engineering solutions considering not only technical aspects but also ecological and aesthetic values. In this context soil bioengineering techniques are often used as standalone solutions or in combination with conventional engineering structures. It is a construction technique that uses biological components for hydraulic and civil engineering solutions. In general it pursues the same objectives as conventional civil engineering structures. Currently the used assessment methods for soil bioengineering structures are referencing technically, ecologically and socio-economically. In a modern engineering approach additionally, environmental impacts and potential added values should be considered. The research project E-Protect aims at developing Environmental Life Cycle Assessment (LCA) models for this special field of alpine protective constructions. Both, the Cumulative Energy Demand (CED) and the Global Warming Potential (GWP) should be considered in an Environmental LCA over the whole life cycle of an engineering structure. The life cycle itself can be divided into three phases: the construction phase, the use phase and the end of life phase. The paper represents a concept to apply an Environmental LCA model for soil bioengineering structures. Beside the construction phase of these structures particular attention will be given to the use phase. It is not only important in terms of engineering effects but also plays an important role for positive carbon footprint due to the growing plants of soil bioengineering structures in contrast to conventional structures. Innovative Environmental LCA models will be applied to soil bioengineering structures which provide a new transparency for the responsible planners and stakeholders, by pointing out the total consumption of resources in all construction phases and components.
POTENTIAL APPLICATIONS OF REMOTE SENSING TO BIOENGINEERED CROPS
Crops bioengineered to contain toxins derived from Bacillus thuringiensis (Bt) are subject to regulatory scrutiny by USEPA under the FIFRA legislation. The agency has declared these crops to be "in the public good" based on the reduced use of pesticides required for management of...
Teaching for adaptive expertise in biomedical engineering ethics.
Martin, Taylor; Rayne, Karen; Kemp, Nate J; Hart, Jack; Diller, Kenneth R
2005-04-01
This paper considers an approach to teaching ethics in bioengineering based on the How People Learn (HPL) framework. Curricula based on this framework have been effective in mathematics and science instruction from the kindergarten to the college levels. This framework is well suited to teaching bioengineering ethics because it helps learners develop "adaptive expertise". Adaptive expertise refers to the ability to use knowledge and experience in a domain to learn in unanticipated situations. It differs from routine expertise, which requires using knowledge appropriately to solve routine problems. Adaptive expertise is an important educational objective for bioengineers because the regulations and knowledge base in the discipline are likely to change significantly over the course of their careers. This study compares the performance of undergraduate bioengineering students who learned about ethics for stem cell research using the HPL method of instruction to the performance of students who learned following a standard lecture sequence. Both groups learned the factual material equally well, but the HPL group was more prepared to act adaptively when presented with a novel situation.
Conscience dilemma: to become a bioengineer or to survive as a biologist.
Selimoglu, Sureyya Mert
2014-01-01
Bioengineering is the consideration of biological problems from modern engineering, therefore money-oriented, perspective. Today, grant-giving bodies always favor bioengineering projects rather than pure biology projects (like those in ecology, entomology, etc.). Therefore, today's biologist is forced to be on the horns of a dilemma. They have to either submit a very powerful and valid reason for the proposal of their project, or change the project to one having a potential of money-based outcome. On the other hand, because of dealing with the living components of nature, conducting a research in pure biology is like a kind of worship. For this reason, from a believer scientist's view, a deviation (in terms of research) from biology to bioengineering can be considered like committing a sin. Unfortunately, today's wild capitalism has been bringing new sinners day by day, and this system will continue for the foreseeable future unless grant-giving bodies comprehend the real importance of pure biology.
Bioengineered vascular constructs as living models for in vitro cardiovascular research.
Wolf, Frederic; Vogt, Felix; Schmitz-Rode, Thomas; Jockenhoevel, Stefan; Mela, Petra
2016-09-01
Cardiovascular diseases represent the most common cause of morbidity and mortality worldwide. In this review, we explore the potential of bioengineered vascular constructs as living models for in vitro cardiovascular research to advance the current knowledge of pathophysiological processes and support the development of clinical therapies. Bioengineered vascular constructs capable of recapitulating the cellular and mechanical environment of native vessels represent a valuable platform to study cellular interactions and signaling cascades, test drugs and medical devices under (patho)physiological conditions, with the additional potential benefit of reducing the number of animals required for preclinical testing. Copyright © 2016 Elsevier Ltd. All rights reserved.
Pezzulo, Giovanni; Levin, Michael
2016-11-01
It is widely assumed in developmental biology and bioengineering that optimal understanding and control of complex living systems follows from models of molecular events. The success of reductionism has overshadowed attempts at top-down models and control policies in biological systems. However, other fields, including physics, engineering and neuroscience, have successfully used the explanations and models at higher levels of organization, including least-action principles in physics and control-theoretic models in computational neuroscience. Exploiting the dynamic regulation of pattern formation in embryogenesis and regeneration requires new approaches to understand how cells cooperate towards large-scale anatomical goal states. Here, we argue that top-down models of pattern homeostasis serve as proof of principle for extending the current paradigm beyond emergence and molecule-level rules. We define top-down control in a biological context, discuss the examples of how cognitive neuroscience and physics exploit these strategies, and illustrate areas in which they may offer significant advantages as complements to the mainstream paradigm. By targeting system controls at multiple levels of organization and demystifying goal-directed (cybernetic) processes, top-down strategies represent a roadmap for using the deep insights of other fields for transformative advances in regenerative medicine and systems bioengineering. © 2016 The Author(s).
2016-01-01
It is widely assumed in developmental biology and bioengineering that optimal understanding and control of complex living systems follows from models of molecular events. The success of reductionism has overshadowed attempts at top-down models and control policies in biological systems. However, other fields, including physics, engineering and neuroscience, have successfully used the explanations and models at higher levels of organization, including least-action principles in physics and control-theoretic models in computational neuroscience. Exploiting the dynamic regulation of pattern formation in embryogenesis and regeneration requires new approaches to understand how cells cooperate towards large-scale anatomical goal states. Here, we argue that top-down models of pattern homeostasis serve as proof of principle for extending the current paradigm beyond emergence and molecule-level rules. We define top-down control in a biological context, discuss the examples of how cognitive neuroscience and physics exploit these strategies, and illustrate areas in which they may offer significant advantages as complements to the mainstream paradigm. By targeting system controls at multiple levels of organization and demystifying goal-directed (cybernetic) processes, top-down strategies represent a roadmap for using the deep insights of other fields for transformative advances in regenerative medicine and systems bioengineering. PMID:27807271
78 FR 35041 - National Institute of Biomedical Imaging and Bioengineering; Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-11
... Biomedical Imaging and Bioengineering; Notice of Closed Meeting Pursuant to section 10(d) of the Federal... clearly unwarranted invasion of personal privacy. Name of Committee: National Institute of Biomedical...: Ruth Grossman, DDS, Scientific Review Officer, National Institute of Biomedical Imaging and...
76 FR 69748 - National Institute of Biomedical Imaging and Bioengineering; Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-09
... Grossman, DDS, Scientific Review Officer, National Institute of Biomedical Imagin and Bioengineering... Bethesda Metro Station, Bethesda, MD 20814. Contact Person: Ruth Grossman, DDS, Scientific Review Officer...Continental Chicago, 505 North Michigan Avenue, Chicago, IL. Contact Person: Ruth Grossman, DDS, Scientific...
DEVELOPMENT OF NEW TECHNOLOGY FOR RISK MANAGEMENT OF BIOENGINEERED CROPS
Crops bioengineered to contain toxins derived from Bacillus thuringensis (Bt) are under regulatory scrutiny by USEPA under the FIFRA legislation. The agency has declared these crops to be "in the public good" based on the reduced use of pesticides required for management of these...
Novel chemicals from plants via bioengineering. An overview.
Kolodziejczyk, P P; Shahidi, F
1999-01-01
Novel chemicals were traditionally extracted from medicinal plants or produced synthetically. However, new development in the field of bioengineering has allowed production of novel products from plants such as edible and industrial oils as well as specific chemicals which could be used as foods with remedial effects.
Rasmussen, Cathy A; Allen-Hoffmann, B Lynn
2012-04-01
For patients suffering from catastrophic burns, few treatment options are available. Chimeric coculture of patient-derived autologous cells with a "carrier" cell source of allogeneic keratinocytes has been proposed as a means to address the complex clinical problem of severe skin loss. Currently, autologous keratinocytes are harvested, cultured, and expanded to form graftable epidermal sheets. However, epidermal sheets are thin, are extremely fragile, and do not possess barrier function, which only develops as skin stratifies and matures. Grafting is typically delayed for up to 4 weeks to propagate a sufficient quantity of the patient's cells for application to wound sites. Fully stratified chimeric bioengineered skin substitutes could not only provide immediate wound coverage and restore barrier function, but would simultaneously deliver autologous keratinocytes to wounds. The ideal allogeneic cell source for this application would be an abundant supply of clinically evaluated, nontumorigenic, pathogen-free, human keratinocytes. To evaluate this potential cell-based therapy, mixed populations of a green fluorescent protein-labeled neonatal human keratinocyte cell line (NIKS) and unlabeled primary keratinocytes were used to model the allogeneic and autologous components of chimeric monolayer and organotypic cultures. Relatively few autologous keratinocytes may be required to produce fully stratified chimeric skin substitute tissue substantially composed of autologous keratinocyte-derived regions. The need for few autologous cells interspersed within an allogeneic "carrier" cell population may decrease cell expansion time, reducing the time to patient application. This study provides proof of concept for utilizing NIKS keratinocytes as the allogeneic carrier for the generation of bioengineered chimeric skin substitute tissues capable of providing immediate wound coverage while simultaneously supplying autologous human cells for tissue regeneration.
Stevenson, G; Rehman, S; Draper, E; Hernández-Nava, E; Hunt, J; Haycock, J W
2016-07-01
In this study, we report on a group of complementary human osteoblast in vitro test methods for the preclinical evaluation of 3D porous titanium surfaces. The surfaces were prepared by additive manufacturing (electron beam melting [EBM]) and plasma spraying, allowing the creation of complex lattice surface geometries. Physical properties of the surfaces were characterized by SEM and profilometry and 3D in vitro cell culture using human osteoblasts. Primary human osteoblast cells were found to elicit greater differences between titanium sample surfaces than an MG63 osteoblast-like cell line, particularly in terms of cell survival. Surface morphology was associated with higher osteoblast metabolic activity and mineralization on rougher titanium plasma spray coated surfaces than smoother surfaces. Differences in osteoblast survival and metabolic activity on titanium lattice structures were also found, despite analogous surface morphology at the cellular level. 3D confocal microscopy identified osteoblast organization within complex titanium surface geometries, adhesion, spreading, and alignment to the biomaterial strut geometries. Mineralized nodule formation throughout the lattice structures was also observed, and indicative of early markers of bone in-growth on such materials. Testing methods such as those presented are not traditionally considered by medical device manufacturers, but we suggest have value as an increasingly vital tool in efficiently translating pre-clinical studies, especially in balance with current regulatory practice, commercial demands, the 3Rs, and the relative merits of in vitro and in vivo studies. Biotechnol. Bioeng. 2016;113: 1586-1599. © 2015 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc. © 2015 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.
Enzymatic regulation of functional vascular networks using gelatin hydrogels
Chuang, Chia-Hui; Lin, Ruei-Zeng; Tien, Han-Wen; Chu, Ya-Chun; Li, Yen-Cheng; Melero-Martin, Juan M.; Chen, Ying-Chieh
2015-01-01
To manufacture tissue engineering-based functional tissues, scaffold materials that can be sufficiently vascularized to mimic the functionality and complexity of native tissues are needed. Currently, vascular network bioengineering is largely carried out using natural hydrogels as embedding scaffolds, but most natural hydrogels have poor mechanical stability and durability, factors that critically limit their widespread use. In this study, we examined the suitability of gelatin-phenolic hydroxyl (gelatin-Ph) hydrogels that can be enzymatically crosslinked, allowing tuning of the storage modulus and the proteolytic degradation rate, for use as injectable hydrogels to support the human progenitor cell-based formation of a stable and mature vascular network. Porcine gelatin-Ph hydrogels were found to be cytocompatible with human blood-derived endothelial colony-forming cells and white adipose tissue-derived mesenchymal stem cells, resulting in >87% viability, and cell proliferation and spreading could be modulated by using hydrogels with different proteolytic degradability and stiffness. In addition, gelatin was extracted from mouse dermis and murine gelatin-Ph hydrogels were prepared. Importantly, implantation of human cell-laden porcine or murine gelatin-Ph hydrogels into immunodeficient mice resulted in the rapid formation of functional anastomoses between the bioengineered human vascular network and the mouse vasculature. Furthermore, the degree of enzymatic crosslinking of the gelatin-Ph hydrogels could be used to modulate cell behavior and the extent of vascular network formation in vivo. Our report details a technique for the synthesis of gelatin-Ph hydrogels from allogeneic or xenogeneic dermal skin and suggests that these hydrogels can be used for biomedical applications that require the formation of microvascular networks, including the development of complex engineered tissues. PMID:25749296
Johnson, Angela N
2016-08-01
In bioengineering training for new researchers and engineers, a great deal of time is spent discussing what constitutes "good" design. Conceptualization of good design, however, varies widely across interdisciplinary team members, with potential to both foster innovation or lead to unproductive conflict. To explore how groups central to bioengineering teams (physicians/clinicians and engineers/physicists) conceptualize good design, we asked 176 professionals in bioengineering to complete a comprehensive online survey including items designed to assess cognitive and moral foundations (validated MFQ30 tool) and custom items assessing perceptions on good design in three areas (good design characteristics, reputation of design approvers, and perceived design patient/consumer suitability). Of those that responded, 82 completed all quantitative survey sections and were included in this preliminary analysis. Correlations between response areas were examined to explore the possible links between cognitive and moral biases and perspectives on good design. The survey results indicated that both groups were more conservative than average Americans based on previous reports, and clinicians scored higher on average for all MFQ30 domains. Numerous significant correlations with good design were observed among clinicians, while engineers/physicists most closely correlated good design with prescriber approval and scientific/technical literature. The exploratory analysis demonstrated the potential utility of sociological frameworks to explore relationships in design thinking with potential utility to stimulate thriving conversation on team-based design thinking in bioengineering education and practice.
Soil Bioengineering Application and Practices in Nepal
NASA Astrophysics Data System (ADS)
Dhital, Yam Prasad; Kayastha, Rijan Bhakta; Shi, Jiancheng
2013-02-01
The small mountainous country Nepal is situated in the central part of the Himalayas. Its climate varies from tropical in the south to arctic in the north; and natural vegetation follows the pattern of climate and altitude. Water-induced disaster problems including soil erosion, debris flow, landslides and flooding are common due to the unstable landscape. Soil erosion is the most important driving force for the degradation of upland and mountain ecosystems. Soil bioengineering has been used in Nepal for nearly 30 years to deal with erosion problems on slopes, in high way construction and riverbank stabilization. The main soil bioengineering techniques used in Nepal are brush layering, palisades, live check dams, fascines and vegetative stone pitching. This study is based on the geology, climate and vegetation of Nepal and briefly summarizes the application of soil bioengineering on slopes and stream banks, with especial attention to the role of vegetation on slope and stream bank stabilization. Furthermore, this paper addresses the role of community participation and responsibility for successful application of vegetation-based techniques in management, maintenance and utility aspects for the future. In recent years, soil bioengineering techniques are extensively used due to their cost-effectiveness, using locally available materials and low-cost labour in comparison to more elaborate civil engineering works. However, scientific implementation and record-keeping and evaluation of the work are indeed essential.
Soil bioengineering application and practices in Nepal.
Dhital, Yam Prasad; Kayastha, Rijan Bhakta; Shi, Jiancheng
2013-02-01
The small mountainous country Nepal is situated in the central part of the Himalayas. Its climate varies from tropical in the south to arctic in the north; and natural vegetation follows the pattern of climate and altitude. Water-induced disaster problems including soil erosion, debris flow, landslides and flooding are common due to the unstable landscape. Soil erosion is the most important driving force for the degradation of upland and mountain ecosystems. Soil bioengineering has been used in Nepal for nearly 30 years to deal with erosion problems on slopes, in high way construction and riverbank stabilization. The main soil bioengineering techniques used in Nepal are brush layering, palisades, live check dams, fascines and vegetative stone pitching. This study is based on the geology, climate and vegetation of Nepal and briefly summarizes the application of soil bioengineering on slopes and stream banks, with especial attention to the role of vegetation on slope and stream bank stabilization. Furthermore, this paper addresses the role of community participation and responsibility for successful application of vegetation-based techniques in management, maintenance and utility aspects for the future. In recent years, soil bioengineering techniques are extensively used due to their cost-effectiveness, using locally available materials and low-cost labour in comparison to more elaborate civil engineering works. However, scientific implementation and record-keeping and evaluation of the work are indeed essential.
Teaching statics of fluids in bioengineering: a multidisciplinary proposal based on competences
NASA Astrophysics Data System (ADS)
Alborch, A.; Puzzella, A.; Lopez, N.; Cabrera, L.; Zabala, A.; Demartini, H.
2007-11-01
The aim of this work is to share the findings of an educational experience undertaken by first-year university students of bioengineering, oriented towards the model of Competence-based Education. Different aspects on integrative education pursued in the subject goals are explicitly focused here by designing a strategy within a contextualized and multidisciplinary approach that combines knowledge from Physics, Chemistry and Biology. The topic chosen for the work is Static of Fluids, because it allows relating pressure to its biological effects on human beings. After evaluating a pre-test, new interrelated strategies are implemented. Due to the motivation audiovisuals generate in adolescents, we start showing an argumentative film entitled 'The Big Blue', and continue with different individual and/or group activities, finishing with a post-test to assess the development of the competences proposed. Results are encouraging as regards the level of specific competences acquired and, complementarily, basic and professional competences in general. Besides, the experience met expectations as regards student motivation, interest and commitment to learning, which ensured the path taken by the academicians by means of implementing innovative strategies.
Development of an Interdisciplinary Undergraduate Bioengineering Program at Lehigh University
ERIC Educational Resources Information Center
Herz, Lori; Russo, M. Jean; Ou-Yang, H. Daniel; El-Aasser, Mohamed; Jagota, Anand; Tatic-Lucic, Svetlana; Ochs, John
2011-01-01
The undergraduate Bioengineering Program at Lehigh University was established as part of the university's Bioscience and Biotechnology Initiative with support from the National Science Foundation through a grant from its Division of Engineering Education and Centers (EEC). The objective here is to describe the program development and…
USDA-ARS?s Scientific Manuscript database
Bioengineering of lignin to contain atypical components derived from other metabolic pathways is increasingly being pursued to custom design lignified cell walls that are inherently more digestible by livestock or more easily pretreated and saccharified for biofuel production. Because plants produce...
77 FR 50516 - National Institute of Biomedical Imaging and Bioengineering; Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-21
... Biomedical Imaging and Bioengineering; Notice of Closed Meeting Pursuant to section 10(d) of the Federal... clearly unwarranted invasion of personal privacy. Name of Committee: National Institute of Biomedical...). Contact Person: Manana Sukhareva, Ph.D., Scientific Review Officer, National Institute of Biomedical...
78 FR 45254 - National Institute of Biomedical Imaging and Bioengineering; Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-26
... Biomedical Imaging and Bioengineering; Notice of Closed Meeting Pursuant to section 10(d) of the Federal... clearly unwarranted invasion of personal privacy. Name of Committee: National Institute of Biomedical... Person: Manana Sukhareva, Ph.D., Scientific Review Officer, National Institute of Biomedical Imaging and...
78 FR 67375 - National Institute of Biomedical Imaging and Bioengineering; Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-12
... Biomedical Imaging and Bioengineering; Notice of Closed Meeting Pursuant to section 10(d) of the Federal... clearly unwarranted invasion of personal privacy. Name of Committee: National Institute of Biomedical... Meeting). Contact Person: Ruth Grossman, DDS, Scientific Review Officer, National Institute of Biomedical...
77 FR 25487 - National Institute of Biomedical Imaging and Bioengineering; Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-30
... Biomedical Imaging and Bioengineering; Notice of Closed Meeting Pursuant to section 10(d) of the Federal... clearly unwarranted invasion of personal privacy. Name of Committee: National Institute of Biomedical...: Manana Sukhareva, Ph.D., Scientific Review Officer, National Institute of Biomedical Imaging and...
76 FR 23326 - National Institute of Biomedical Imaging and Bioengineering; Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-26
... Biomedical Imaging and Bioengineering; Notice of Closed Meeting Pursuant to section 10(d) of the Federal... clearly unwarranted invasion of personal privacy. Name of Committee: National Institute of Biomedical...). Contact Person: Manana Sukhareva, PhD, Scientific Review Officer, National Institute of Biomedical Imaging...
76 FR 10910 - National Institute of Biomedical Imaging and Bioengineering; Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-28
... Biomedical Imaging and Bioengineering; Notice of Closed Meeting Pursuant to section 10(d) of the Federal... clearly unwarranted invasion of personal privacy. Name of Committee: National Institute of Biomedical...: Manana Sukhareva, PhD, Scientific Review Officer, National Institute of Biomedical Imaging and...
78 FR 52938 - National Institute of Biomedical Imaging and Bioengineering; Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-27
... Biomedical Imaging and Bioengineering; Notice of Closed Meeting Pursuant to section 10(d) of the Federal... clearly unwarranted invasion of personal privacy. Name of Committee: National Institute of Biomedical...). Contact Person: John K. Hayes, Ph.D., Scientific Review Officer, National Institute of Biomedical Imaging...
78 FR 67373 - National Institute of Biomedical Imaging and Bioengineering; Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-12
... Biomedical Imaging and Bioengineering; Notice of Closed Meeting Pursuant to section 10(d) of the Federal... clearly unwarranted invasion of personal privacy. Name of Committee: National Institute of Biomedical... Meeting). Contact Person: Ruth Grossman, DDS, Scientific Review Officer, National Institute of Biomedical...
75 FR 25273 - National Institute of Biomedical Imaging and Bioengineering; Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-07
... Biomedical Imaging and Bioengineering; Notice of Closed Meeting Pursuant to section 10(d) of the Federal... clearly unwarranted invasion of personal privacy. Name of Committee: National Institute of Biomedical...: Manana Sukhareva, PhD, Scientific Review Officer, National Institute of Biomedical Imaging & Bioeng...
77 FR 13347 - National Institute of Biomedical Imaging and Bioengineering; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-06
... Biomedical Imaging and Bioengineering; Notice of Closed Meetings Pursuant to section 10(d) of the Federal... clearly unwarranted invasion of personal privacy. Name of Committee: National Institute of Biomedical..., 301-496-4773, [email protected] . Name of Committee: National Institute of Biomedical Imaging and...
78 FR 54259 - National Institute of Biomedical Imaging and Bioengineering; Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-03
... Biomedical Imaging and Bioengineering; Notice of Closed Meeting Pursuant to section 10(d) of the Federal... clearly unwarranted invasion of personal privacy. Name of Committee: National Institute of Biomedical...). Contact Person: Manana Sukhareva, Ph.D., Scientific Review Officer, National Institute of Biomedical...
78 FR 76632 - National Institute of Biomedical Imaging and Bioengineering; Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-18
... Biomedical Imaging and Bioengineering; Notice of Closed Meeting Pursuant to section 10(d) of the Federal... clearly unwarranted invasion of personal privacy. Name of Committee: National Institute of Biomedical...). Contact Person: John K. Hayes, Ph.D., Scientific Review Officer, National Institute of Biomedical Imaging...
78 FR 46995 - National Institute of Biomedical Imaging and Bioengineering; Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-02
...) and 552b(c)(6), Title 5 U.S.C., as amended. The grant applications and the discussions could disclose... concerning individuals associated with the grant applications, the disclosure of which would constitute a... Imaging and Bioengineering Special Emphasis Panel Computer Integrated Systems for Microscopy...
Bio-Engineering Services to the Developmentally Disabled Adolescent. Final Report.
ERIC Educational Resources Information Center
Mallik, Kalisankar; Yuspeh, Sheldon
A 1-year demonstration project involving 24 developmentally disabled students (9- to 20-years-old) with severe physical limitations was conducted to increase their educational and vocational possibilities by using cost-effective bio-engineering techniques to modify their physical environment and develop improved adaptive devices. Phase I of the…
An Introductory Course in Bioengineering and Biotechnology for Chemical Engineering Sophomores
ERIC Educational Resources Information Center
O'Connor, Kim C.
2007-01-01
Advances in the biological sciences necessitate the training of chemical engineers to translate these fundamental discoveries into applications that will benefit society. Accordingly, Tulane University revised its core chemical engineering curriculum in 2005 to include a new introductory course in bioengineering and biotechnology for sophomores.…
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-19
... NIBIB Design by Biomedical Undergraduate Teams (DEBUT) Challenge Authority: 15 U.S.C. 3719. SUMMARY: The National Institute of Biomedical Imaging and Bioengineering (NIBIB) DEBUT Challenge is open to teams of... students valuable experiences such as working in teams, identifying unmet clinical needs, and designing...
Production of G protein-coupled receptors in an insect-based cell-free system.
Sonnabend, Andrei; Spahn, Viola; Stech, Marlitt; Zemella, Anne; Stein, Christoph; Kubick, Stefan
2017-10-01
The biochemical analysis of human cell membrane proteins remains a challenging task due to the difficulties in producing sufficient quantities of functional protein. G protein-coupled receptors (GPCRs) represent a main class of membrane proteins and drug targets, which are responsible for a huge number of signaling processes regulating various physiological functions in living cells. To circumvent the current bottlenecks in GPCR studies, we propose the synthesis of GPCRs in eukaryotic cell-free systems based on extracts generated from insect (Sf21) cells. Insect cell lysates harbor the fully active translational and translocational machinery allowing posttranslational modifications, such as glycosylation and phosphorylation of de novo synthesized proteins. Here, we demonstrate the production of several GPCRs in a eukaryotic cell-free system, performed within a short time and in a cost-effective manner. We were able to synthesize a variety of GPCRs ranging from 40 to 133 kDa in an insect-based cell-free system. Moreover, we have chosen the μ opioid receptor (MOR) as a model protein to analyze the ligand binding affinities of cell-free synthesized MOR in comparison to MOR expressed in a human cell line by "one-point" radioligand binding experiments. Biotechnol. Bioeng. 2017;114: 2328-2338. © 2017 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc. © 2017 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.
An Evo-Devo perspective on ever-growing teeth in mammals and dental stem cell maintenance
Renvoisé, Elodie; Michon, Frederic
2014-01-01
A major challenge for current evolutionary and developmental biology research is to understand the evolution of morphogenesis and the mechanisms involved. Teeth are well suited for the investigation of developmental processes. In addition, since teeth are composed of hard-mineralized tissues, primarily apatite, that are readily preserved, the evolution of mammals is well documented through their teeth in the fossil record. Hypsodonty, high crowned teeth with shallow roots, and hypselodonty, ever-growing teeth, are convergent innovations that have appeared multiple times since the mammalian radiation 65 million years ago, in all tooth categories (incisors, canines, premolars, and molars). A shift to hypsodonty, or hypselodonty, during mammalian evolution is often, but not necessarily, associated with increasingly abrasive diet during important environmental change events. Although the evolution of hypsodonty and hypselodonty is considered to be the result of heterochrony of development, little has been known about the exact developmental mechanisms at the origin of these morphological traits. Developmental biologists have been intrigued by the mechanism of hypselodonty since it requires the maintenance of continuous crown formation during development via stem cell niche activity. Understanding this mechanism may allow bioengineered tooth formation in humans. Hypsodonty and hypselodonty are thus examples of phenotypic features of teeth that have both impacts in understanding the evolution of mammals and holds promise for human tooth bioengineering. PMID:25221518
Decellularized human liver as a natural 3D-scaffold for liver bioengineering and transplantation
Mazza, Giuseppe; Rombouts, Krista; Rennie Hall, Andrew; Urbani, Luca; Vinh Luong, Tu; Al-Akkad, Walid; Longato, Lisa; Brown, David; Maghsoudlou, Panagiotis; Dhillon, Amar P.; Fuller, Barry; Davidson, Brian; Moore, Kevin; Dhar, Dipok; De Coppi, Paolo; Malago, Massimo; Pinzani, Massimo
2015-01-01
Liver synthetic and metabolic function can only be optimised by the growth of cells within a supportive liver matrix. This can be achieved by the utilisation of decellularised human liver tissue. Here we demonstrate complete decellularization of whole human liver and lobes to form an extracellular matrix scaffold with a preserved architecture. Decellularized human liver cubic scaffolds were repopulated for up to 21 days using human cell lines hepatic stellate cells (LX2), hepatocellular carcinoma (Sk-Hep-1) and hepatoblastoma (HepG2), with excellent viability, motility and proliferation and remodelling of the extracellular matrix. Biocompatibility was demonstrated by either omental or subcutaneous xenotransplantation of liver scaffold cubes (5 × 5 × 5 mm) into immune competent mice resulting in absent foreign body responses. We demonstrate decellularization of human liver and repopulation with derived human liver cells. This is a key advance in bioartificial liver development. PMID:26248878
Zijah, Vahid; Salehi, Roya; Aghazadeh, Marziyeh; Samiei, Mohammad; Alizadeh, Effat; Davaran, Soodabeh
2017-06-01
Tissue engineering has emerged as a potential therapeutic option for dental problems in recent years. One of the policies in tissue engineering is to use both scaffolds and additive factors for enhancing cell responses. This study aims to evaluate and compare the effect of three types of biofactors on poly-caprolactone-poly-ethylene glycol-poly caprolactone (PCL-PEG-PCL) nanofibrous scaffold on human dental pulp stem cell (hDPSCs) engineering. The PCL-PEG-PCL copolymer was synthesized with ring opening polymerization method, and its nanofiber scaffold was prepared by electrospinning method. Nanofibrous scaffold-seeded hDPSCs were treated with sodium fluoride (NaF), melanocyte-stimulating hormone (MSH), or simvastatin (SIM). Non-treated nanofiber seeded cells were utilized as control. The viability, biocompatibility, adhesion, proliferation rate, morphology, osteo/odontogenic potential, and the expression of tissue-specific genes were studied. The results showed that significant higher results demonstrated significant higher adhesive behavior, viability, alizarin red activity, and dentin specific gene expression in MSH- and SIM-treated cells (p < 0.05). This study is unique; in that, it compares the effects of different treatments for optimization of dental tissue engineering.
3D bioprinting of functional human skin: production and in vivo analysis.
Cubo, Nieves; Garcia, Marta; Del Cañizo, Juan F; Velasco, Diego; Jorcano, Jose L
2016-12-05
Significant progress has been made over the past 25 years in the development of in vitro-engineered substitutes that mimic human skin, either to be used as grafts for the replacement of lost skin, or for the establishment of in vitro human skin models. In this sense, laboratory-grown skin substitutes containing dermal and epidermal components offer a promising approach to skin engineering. In particular, a human plasma-based bilayered skin generated by our group, has been applied successfully to treat burns as well as traumatic and surgical wounds in a large number of patients in Spain. There are some aspects requiring improvements in the production process of this skin; for example, the relatively long time (three weeks) needed to produce the surface required to cover an extensive burn or a large wound, and the necessity to automatize and standardize a process currently performed manually. 3D bioprinting has emerged as a flexible tool in regenerative medicine and it provides a platform to address these challenges. In the present study, we have used this technique to print a human bilayered skin using bioinks containing human plasma as well as primary human fibroblasts and keratinocytes that were obtained from skin biopsies. We were able to generate 100 cm 2 , a standard P100 tissue culture plate, of printed skin in less than 35 min (including the 30 min required for fibrin gelation). We have analysed the structure and function of the printed skin using histological and immunohistochemical methods, both in 3D in vitro cultures and after long-term transplantation to immunodeficient mice. In both cases, the generated skin was very similar to human skin and, furthermore, it was indistinguishable from bilayered dermo-epidermal equivalents, handmade in our laboratories. These results demonstrate that 3D bioprinting is a suitable technology to generate bioengineered skin for therapeutical and industrial applications in an automatized manner.
Innovations in deep brain stimulation methodology.
Kühn, Andrea A; Volkmann, Jens
2017-01-01
Deep brain stimulation is a powerful clinical method for movement disorders that no longer respond satisfactorily to pharmacological management, but its progress has been hampered by stagnation in technological procedure solutions and device development. Recently, the combined research efforts of bioengineers, neuroscientists, and clinicians have helped to better understand the mechanisms of deep brain stimulation, and solutions for the translational roadblock are emerging. Here, we define the needs for methodological advances in deep brain stimulation from a neurophysiological perspective and describe technological solutions that are currently evaluated for near-term clinical application. © 2016 International Parkinson and Movement Disorder Society. © 2016 International Parkinson and Movement Disorder Society.
Characterizing RNA Dynamics at Atomic Resolution Using Solution-state NMR Spectroscopy
Bothe, Jameson R.; Nikolova, Evgenia N.; Eichhorn, Catherine D.; Chugh, Jeetender; Hansen, Alexandar L.; Al-Hashimi, Hashim M.
2012-01-01
Many recently discovered non-coding RNAs do not fold into a single native conformation, but rather, sample many different conformations along their free energy landscape to carry out their biological function. Unprecedented insights into the RNA dynamic structure landscape are provided by solution-state NMR techniques that measure the structural, kinetic, and thermodynamic characteristics of motions spanning picosecond to second timescales at atomic resolution. From these studies a basic description of the RNA dynamic structure landscape is emerging, bringing new insights into how RNA structures change to carry out their function as well as applications in RNA-targeted drug discovery and RNA bioengineering. PMID:22036746
On the road to bioartificial organs.
Ren, X; Ott, H C
2014-10-01
Biological organs are highly orchestrated systems with well-coordinated positioning, grouping, and interaction of different cell types within their specialized extracellular environment. Bioartificial organs are intended to be functional replacements of native organs generated through bioengineering techniques and hold the potential to alleviate donor organ shortage for transplantation. The development, production, and evaluation of such bioartificial organs require synergistic efforts of biology, material science, engineering, and medicine. In this review, we highlight the emerging platforms enabling structured assembly of multiple cell types into functional grafts and discuss recent advances and challenges in the development of bioartificial organs, including cell sources, in vitro organ culture, in vivo evaluation, and clinical considerations.
Exosomes in Cancer Nanomedicine and Immunotherapy: Prospects and Challenges.
Syn, Nicholas L; Wang, Lingzhi; Chow, Edward Kai-Hua; Lim, Chwee Teck; Goh, Boon-Cher
2017-07-01
Exosomes (versatile, cell-derived nanovesicles naturally endowed with exquisite target-homing specificity and the ability to surmount in vivo biological barriers) hold substantial promise for developing exciting approaches in drug delivery and cancer immunotherapy. Specifically, bioengineered exosomes are being successfully deployed to deliver potent tumoricidal drugs (siRNAs and chemotherapeutic compounds) preferentially to cancer cells, while a new generation of exosome-based therapeutic cancer vaccines has produced enticing results in early-phase clinical trials. Here, we review the state-of-the-art technologies and protocols, and discuss the prospects and challenges for the clinical development of this emerging class of therapeutics. Copyright © 2017 Elsevier Ltd. All rights reserved.
75 FR 35820 - National Institute of Biomedical Imaging and Bioengineering; Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-23
... Imaging and Bioengineering Special Emphasis Panel Decision Support Systems and Comparative Effectiveness Research (ARRA). Date: July 23, 2010. Time: 12 p.m. to 5 p.m. Agenda: To review and evaluate grant... Assistance Program Nos. 93.701, ARRA Related Biomedical Research and Research Support Awards, National...
76 FR 19104 - Center for Scientific Review; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-06
... Behavioral and Social Sciences. Date: May 16, 2011. Time: 8 a.m. to 5 p.m. Agenda: To review and evaluate... of Committee: Surgical Sciences, Biomedical Imaging and Bioengineering Integrated Review Group; Bioengineering, Technology and Surgical Sciences Study Section. Date: May 16-17, 2011. Time:8 a.m. to 5 p.m...
USDA-ARS?s Scientific Manuscript database
Increasingly, bioengineering of lignin to contain atypical building blocks from other metabolic pathways is being pursued to custom-design lignin that is easier to remove by chemical pretreatments and less inhibitory toward polysaccharide saccharification. Because plants produce such a diverse array...
USDA-ARS?s Scientific Manuscript database
Bioengineering of lignin to contain atypical components derived from other metabolic pathways is increasingly being pursued to custom design lignified cell walls that are more readily pretreated and saccharified for biofuel production or easily digested by livestock. Because plants produce such a di...
Kas Dumroese; Mary I. Williams; John A. Stanturf; Brad St. Clair
2015-01-01
Tomorrowâs forests face extreme pressures from contemporary climate change, invasive pests, and anthropogenic demands for other land uses. These pressures, collectively, demand land managers to reassess current and potential forest management practices. We discuss three considerations, functional restoration, assisted migration, and bioengineering, which are currently...
Xiong, Jian; Bhaskar, Ujjwal; Li, Guoyun; Fu, Li; Li, Lingyun; Zhang, Fuming; Dordick, Jonathan S; Linhardt, Robert J
2013-09-10
Heparin is a critically important anticoagulant drug that is prepared from pig intestine. In 2007-2008, there was a crisis in the heparin market when the raw material was adulterated with the toxic polysaccharide, oversulfated chondroitin sulfate, which was associated with 100 deaths in the U.S. alone. As the result of this crisis, our laboratory and others have been actively pursuing alternative sources for this critical drug, including synthetic heparins and bioengineered heparin. In assessing the bioengineering processing costs it has become clear that the use of both enzyme-catalyzed cofactor recycling and enzyme immobilization will be needed for commercialization. In the current study, we examine the use of immobilization of C₅-epimerase and 2-O-sulfotransferase involved in the first enzymatic step in the bioengineered heparin process, as well as arylsulfotransferase-IV involved in cofactor recycling in all three enzymatic steps. We report the successful immobilization of all three enzymes and their use in converting N-sulfo, N-acetyl heparosan into N-sulfo, N-acetyl 2-O-sulfo heparin. Copyright © 2013 Elsevier B.V. All rights reserved.
Nonaka, Paula N; Uriarte, Juan J; Campillo, Noelia; Oliveira, Vinicius R; Navajas, Daniel; Farré, Ramon
2016-11-28
A current approach to obtain bioengineered lungs as a future alternative for transplantation is based on seeding stem cells on decellularized lung scaffolds. A fundamental question to be solved in this approach is how to drive stem cell differentiation onto the different lung cell phenotypes. Whereas the use of soluble factors as agents to modulate the fate of stem cells was established from an early stage of the research with this type of cells, it took longer to recognize that the physical microenvironment locally sensed by stem cells (e.g. substrate stiffness, 3D architecture, cyclic stretch, shear stress, air-liquid interface, oxygenation gradient) also contributes to their differentiation. The potential role played by physical stimuli would be particularly relevant in lung bioengineering since cells within the organ are physiologically subjected to two main stimuli required to facilitate efficient gas exchange: air ventilation and blood perfusion across the organ. The present review focuses on describing how the cell mechanical microenvironment can modulate stem cell differentiation and how these stimuli could be incorporated into lung bioreactors for optimizing organ bioengineering.
Toward integration of in vivo molecular computing devices: successes and challenges
Hayat, Sikander; Hinze, Thomas
2008-01-01
The computing power unleashed by biomolecule based massively parallel computational units has been the focus of many interdisciplinary studies that couple state of the art ideas from mathematical logic, theoretical computer science, bioengineering, and nanotechnology to fulfill some computational task. The output can influence, for instance, release of a drug at a specific target, gene expression, cell population, or be a purely mathematical entity. Analysis of the results of several studies has led to the emergence of a general set of rules concerning the implementation and optimization of in vivo computational units. Taking two recent studies on in vivo computing as examples, we discuss the impact of mathematical modeling and simulation in the field of synthetic biology and on in vivo computing. The impact of the emergence of gene regulatory networks and the potential of proteins acting as “circuit wires” on the problem of interconnecting molecular computing device subunits is also highlighted. PMID:19404433
Schiller, Jürgen; Huster, Daniel
2012-01-01
The extracellular matrix (ECM) comprises a gel of numerous biopolymers that occurs in a multitude of biological tissues. The ECM provides the basic support and mechanical strength of skeletal tissue and is responsible for shape retention. At the same time, the ECM is responsible for the viscoelastic properties and the elasticity of soft tissues. As expected, there are several important diseases that affect and degenerate the ECM with severe consequences for its properties. Bioengineering is a promising approach to support the regenerative capacity of the body. Unfortunately, the biomechanical properties of bioengineered ECM often only poorly meet the standards of their native counterparts. Many bioengineered tissues are characterized by an increased glycosaminoglycan (GAG) but decreased collagen content. This leads to an enhanced water content that strongly alters the viscoelastic and thus the biomechanical properties. Therefore, compositional analysis is important to estimate the tissue quality. We will show that nuclear magnetic resonance (NMR) spectroscopy and soft-ionization mass spectrometry (MS) represent useful techniques for ECM research both in natural and bioengineered tissues. Both methods are strongly complimentary: while MS techniques such as matrix-assisted laser desorption and ionization (MALDI) are excellent and very sensitive analytical tools to determine the collagen and the GAG contents of tissues, NMR spectroscopy provides insight into the molecular architecture of the ECM, its dynamics and other important parameters such as the water content of the tissue as well as the diffusion of molecules within the ECM. PMID:23507863
In vitro 3D regeneration-like growth of human patient brain tissue.
Tang-Schomer, M D; Wu, W B; Kaplan, D L; Bookland, M J
2018-05-01
In vitro culture of primary neurons is widely adapted with embryonic but not mature brain tissue. Here, we extended a previously developed bioengineered three-dimensional (3D) embryonic brain tissue model to resected normal patient brain tissue in an attempt to regenerate human neurons in vitro. Single cells and small sized (diameter < 100 μm) spheroids from dissociated brain tissue were seeded into 3D silk fibroin-based scaffolds, with or without collagen or Matrigel, and compared with two-dimensional cultures and scaffold-free suspension cultures. Changes of cell phenotypes (neuronal, astroglial, neural progenitor, and neuroepithelial) were quantified with flow cytometry and analyzed with a new method of statistical analysis specifically designed for percentage comparison. Compared with a complete lack of viable cells in conventional neuronal cell culture condition, supplements of vascular endothelial growth factor-containing pro-endothelial cell condition led to regenerative growth of neurons and astroglial cells from "normal" human brain tissue of epilepsy surgical patients. This process involved delayed expansion of Nestin+ neural progenitor cells, emergence of TUJ1+ immature neurons, and Vimentin+ neuroepithelium-like cell sheet formation in prolonged cultures (14 weeks). Micro-tissue spheroids, but not single cells, supported the brain tissue growth, suggesting importance of preserving native cell-cell interactions. The presence of 3D scaffold, but not hydrogel, allowed for Vimentin+ cell expansion, indicating a different growth mechanism than pluripotent cell-based brain organoid formation. The slow and delayed process implied an origin of quiescent neural precursors in the neocortex tissue. Further optimization of the 3D tissue model with primary human brain cells could provide personalized brain disease models. Copyright © 2018 John Wiley & Sons, Ltd.
2004-06-17
KENNEDY SPACE CENTER, FLA. - In the KSC Space Life Sciences Lab’s Resource Recovery lab, bioengineer Tony Rector checks the ARMS reactor vessel. ARMS, or Aerobic Rotational Membrane System, is a wastewater processing project being tested for use on the International Space Station to collect, clean and reuse wastewater. It could be adapted for use on the Moon and Mars. The Lab is exploring various aspects of a bioregenerative life support system. Such research and technology development will be crucial to long-term habitation of space by humans.
2004-06-17
KENNEDY SPACE CENTER, FLA. - In the KSC Space Life Sciences Lab’s Resource Recovery lab, bioengineer Tony Rector checks the clear plexiglass ARMS reactor vessel. ARMS, or Aerobic Rotational Membrane System, is a wastewater processing project being tested for use on the International Space Station to collect, clean and reuse wastewater. It could be adapted for use on the Moon and Mars. The Lab is exploring various aspects of a bioregenerative life support system. Such research and technology development will be crucial to long-term habitation of space by humans.
Unlocking the brain's mysteries: Meet the bioengineers behind next-generation neural devices
Pannu, Sat; Shah, Kedar; Tolosa, Vanessa; Tooker, Angela
2018-01-16
Bioengineers in the Neural Technologies Group at Lawrence Livermore are creating the next generation of clinical- and research-quality neural interfaces. The goal is to gain a fundamental understanding of neuroscience, treat a variety of debilitating neurological disorders (such as Parkinson's, depression, and epilepsy), and restore lost neural functions such as sight, hearing, and mobility.
ERIC Educational Resources Information Center
Volz, Tracy; Saterbak, Ann
2009-01-01
In engineering fields, students are expected to construct technical arguments that demonstrate a discipline's expected use of logic, evidence, and conventions. Many undergraduate bioengineering students struggle to enact the appropriate argument structures when they produce technical posters. To address this problem we implemented Calibrated Peer…
Unlocking the brain's mysteries: Meet the bioengineers behind next-generation neural devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pannu, Sat; Shah, Kedar; Tolosa, Vanessa
Bioengineers in the Neural Technologies Group at Lawrence Livermore are creating the next generation of clinical- and research-quality neural interfaces. The goal is to gain a fundamental understanding of neuroscience, treat a variety of debilitating neurological disorders (such as Parkinson's, depression, and epilepsy), and restore lost neural functions such as sight, hearing, and mobility.
ERIC Educational Resources Information Center
Cox, Monica; Cawthorne, James; McNeill, Nathan; Cekic, Osman; Frye, Matthew; Stacer, Melissa
2011-01-01
From 1999 to 2007, the Vanderbilt-Northwestern-Texas-Harvard/MIT (VaNTH) Engineering Research Center focused on improving bioengineering education through the applications of learning science, learning technology, and assessment and evaluation within the domain of bioengineering. This paper discusses results from a survey to explore the impact of…
Modeling human diseases with induced pluripotent stem cells: from 2D to 3D and beyond.
Liu, Chun; Oikonomopoulos, Angelos; Sayed, Nazish; Wu, Joseph C
2018-03-08
The advent of human induced pluripotent stem cells (iPSCs) presents unprecedented opportunities to model human diseases. Differentiated cells derived from iPSCs in two-dimensional (2D) monolayers have proven to be a relatively simple tool for exploring disease pathogenesis and underlying mechanisms. In this Spotlight article, we discuss the progress and limitations of the current 2D iPSC disease-modeling platform, as well as recent advancements in the development of human iPSC models that mimic in vivo tissues and organs at the three-dimensional (3D) level. Recent bioengineering approaches have begun to combine different 3D organoid types into a single '4D multi-organ system'. We summarize the advantages of this approach and speculate on the future role of 4D multi-organ systems in human disease modeling. © 2018. Published by The Company of Biologists Ltd.
Bioengineered Lacrimal Gland Organ Regeneration in Vivo
Hirayama, Masatoshi; Tsubota, Kazuo; Tsuji, Takashi
2015-01-01
The lacrimal gland plays an important role in maintaining a homeostatic environment for healthy ocular surfaces via tear secretion. Dry eye disease, which is caused by lacrimal gland dysfunction, is one of the most prevalent eye disorders and causes ocular discomfort, significant visual disturbances, and a reduced quality of life. Current therapies for dry eye disease, including artificial tear eye drops, are transient and palliative. The lacrimal gland, which consists of acini, ducts, and myoepithelial cells, develops from its organ germ via reciprocal epithelial-mesenchymal interactions during embryogenesis. Lacrimal tissue stem cells have been identified for use in regenerative therapeutic approaches aimed at restoring lacrimal gland functions. Fully functional organ replacement, such as for tooth and hair follicles, has also been developed via a novel three-dimensional stem cell manipulation, designated the Organ Germ Method, as a next-generation regenerative medicine. Recently, we successfully developed fully functional bioengineered lacrimal gland replacements after transplanting a bioengineered organ germ using this method. This study represented a significant advance in potential lacrimal gland organ replacement as a novel regenerative therapy for dry eye disease. In this review, we will summarize recent progress in lacrimal regeneration research and the development of bioengineered lacrimal gland organ replacement therapy. PMID:26264034
Immune responses to bioengineered organs
Ochando, Jordi; Charron, Dominique; Baptista, Pedro M.; Uygun, Basak E.
2017-01-01
Purpose of review Organ donation in the United States registered 9079 deceased organ donors in 2015. This high percentage of donations allowed organ transplantation in 29 851 recipients. Despite increasing numbers of transplants performed in comparison with previous years, the numbers of patients that are in need for a transplant increase every year at a higher rate. This reveals that the discrepancy between the demand and availability of organs remains fundamental problem in organ transplantation. Recent findings Development of bioengineered organs represents a promising approach to increase the pool of organs for transplantation. The technology involves obtaining complex three-dimensional scaffolds that support cellular activity and functional remodeling though tissue recellularization protocols using progenitor cells. This innovative approach integrates cross-thematic approaches from specific areas of transplant immunology, tissue engineering and stem cell biology, to potentially manufacture an unlimited source of donor organs for transplantation. Summary Although bioengineered organs are thought to escape immune recognition, the potential immune reactivity toward each of its components has not been studied in detail. Here, we summarize the host immune response toward different progenitor cells and discuss the potential implications of using nonself biological scaffolds to develop bioengineered organs. PMID:27926545
Biomimetic chemical sensors using bioengineered olfactory and taste cells.
Du, Liping; Zou, Ling; Zhao, Luhang; Wang, Ping; Wu, Chunsheng
2014-01-01
Biological olfactory and taste systems are natural chemical sensing systems with unique performances for the detection of environmental chemical signals. With the advances in olfactory and taste transduction mechanisms, biomimetic chemical sensors have achieved significant progress due to their promising prospects and potential applications. Biomimetic chemical sensors exploit the unique capability of biological functional components for chemical sensing, which are often sourced from sensing units of biological olfactory or taste systems at the tissue level, cellular level, or molecular level. Specifically, at the cellular level, there are mainly two categories of cells have been employed for the development of biomimetic chemical sensors, which are natural cells and bioengineered cells, respectively. Natural cells are directly isolated from biological olfactory and taste systems, which are convenient to achieve. However, natural cells often suffer from the undefined sensing properties and limited amount of identical cells. On the other hand, bioengineered cells have shown decisive advantages to be applied in the development of biomimetic chemical sensors due to the powerful biotechnology for the reconstruction of the cell sensing properties. Here, we briefly summarized the most recent advances of biomimetic chemical sensors using bioengineered olfactory and taste cells. The development challenges and future trends are discussed as well.
Masri, Maria Fernanda; Lawrence, Kate; Wall, Ivan; Hoare, Michael
2017-06-01
Tools that allow cost-effective screening of the susceptibility of cell lines to operating conditions which may apply during full scale processing are central to the rapid development of robust processes for cell-based therapies. In this paper, an ultra scale-down (USD) device has been developed for the characterization of the response of a human cell line to membrane-based processing, using just a small quantity of cells that is often all that is available at the early discovery stage. The cell line used to develop the measurements was a clinically relevant human fibroblast cell line. The impact was evaluated by cell damage on completion of membrane processing as assessed by trypan blue exclusion and release of intracellular lactate dehydrogenase (LDH). Similar insight was gained from both methods and this allowed the extension of the use of the LDH measurements to examine cell damage as it occurs during processing by a combination of LDH appearance in the permeate and mass balancing of the overall operation. Transmission of LDH was investigated with time of operation and for the two disc speeds investigated (6,000 and 10,000 rpm or ϵ max ≈ 1.9 and 13.5 W mL -1 , respectively). As expected, increased energy dissipation rate led to increased transmission as well as significant increases in rate and extent of cell damage. The method developed can be used to test the impact of varying operating conditions and cell lines on cell damage and morphological changes. Biotechnol. Bioeng. 2017;114: 1241-1251. © 2017 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc. © 2017 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.
Use of telomerase to create bioengineered tissues.
Shay, Jerry W; Wright, Woodring E
2005-12-01
Telomeres are repetitive DNA (TTAGGG) elements at the ends of chromosomes. Telomerase is a ribonucleoprotein complex that catalyzes the addition of telomeric sequences to the ends of chromosomes. The catalytic protein component of telomerase (hTERT) is expressed only in specific germ line cells, proliferative stem cells of renewal tissues, and cancer cells. The expression of hTERT in normal cells reconstitutes telomerase activity and circumvents the induction of senescence. Telomeres shorten with each cell division, eventually leading to senescence (aging), due to incomplete lagging DNA strand synthesis and end-processing events, and because telomerase activity is not detected in most somatic tissues. There are specific tissues and locations in which replicative senescence likely contributes to the decline in human physiological function with increased age and with chronic illnesses. While expressing hTERT in cells results in the maintenance of telomere length and greatly extended life span, blocking replicative aging systemically would be predicted to increase the potential for tumor formation. However, there are many situations in which the transient rejuvenation of cells could be beneficial. Ectopic expression of hTERT has been shown to immortalize human skin keratinocytes, dermal fibroblasts, muscle satellite (stem), and vascular endothelial, myometrial, retinal-pigmented, and breast epithelial cells. In addition, human bronchial, corneal and skin cells expressing hTERT can be used to form organotypic (3D) cultures (bioengineered tissues) that express differentiation-specific proteins, demonstrating that hTERT by itself does not alter normal physiology. The production of hTERT-engineered tissues offers the possibility of producing tissues to treat a variety of chronic diseases and age-related medical conditions that are due to telomere-based replicative senescence.
Diversification and enrichment of clinical biomaterials inspired by Darwinian evolution.
Green, D W; Watson, G S; Watson, J A; Lee, D-J; Lee, J-M; Jung, H-S
2016-09-15
Regenerative medicine and biomaterials design are driven by biomimicry. There is the essential requirement to emulate human cell, tissue, organ and physiological complexity to ensure long-lasting clinical success. Biomimicry projects for biomaterials innovation can be re-invigorated with evolutionary insights and perspectives, since Darwinian evolution is the original dynamic process for biological organisation and complexity. Many existing human inspired regenerative biomaterials (defined as a nature generated, nature derived and nature mimicking structure, produced within a biological system, which can deputise for, or replace human tissues for which it closely matches) are without important elements of biological complexity such as, hierarchy and autonomous actions. It is possible to engineer these essential elements into clinical biomaterials via bioinspired implementation of concepts, processes and mechanisms played out during Darwinian evolution; mechanisms such as, directed, computational, accelerated evolutions and artificial selection contrived in the laboratory. These dynamos for innovation can be used during biomaterials fabrication, but also to choose optimal designs in the regeneration process. Further evolutionary information can help at the design stage; gleaned from the historical evolution of material adaptations compared across phylogenies to changes in their environment and habitats. Taken together, harnessing evolutionary mechanisms and evolutionary pathways, leading to ideal adaptations, will eventually provide a new class of Darwinian and evolutionary biomaterials. This will provide bioengineers with a more diversified and more efficient innovation tool for biomaterial design, synthesis and function than currently achieved with synthetic materials chemistry programmes and rational based materials design approach, which require reasoned logic. It will also inject further creativity, diversity and richness into the biomedical technologies that we make. All of which are based on biological principles. Such evolution-inspired biomaterials have the potential to generate innovative solutions, which match with existing bioengineering problems, in vital areas of clinical materials translation that include tissue engineering, gene delivery, drug delivery, immunity modulation, and scar-less wound healing. Evolution by natural selection is a powerful generator of innovations in molecular, materials and structures. Man has influenced evolution for thousands of years, to create new breeds of farm animals and crop plants, but now molecular and materials can be molded in the same way. Biological molecules and simple structures can be evolved, literally in the laboratory. Furthermore, they are re-designed via lessons learnt from evolutionary history. Through a 3-step process to (1) create variants in material building blocks, (2) screen the variants with beneficial traits/properties and (3) select and support their self-assembly into usable materials, improvements in design and performance can emerge. By introducing biological molecules and small organisms into this process, it is possible to make increasingly diversified, sophisticated and clinically relevant materials for multiple roles in biomedicine. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Self-organized amniogenesis by human pluripotent stem cells in a biomimetic implantation-like niche
NASA Astrophysics Data System (ADS)
Shao, Yue; Taniguchi, Kenichiro; Gurdziel, Katherine; Townshend, Ryan F.; Xue, Xufeng; Yong, Koh Meng Aw; Sang, Jianming; Spence, Jason R.; Gumucio, Deborah L.; Fu, Jianping
2017-04-01
Amniogenesis--the development of amnion--is a critical developmental milestone for early human embryogenesis and successful pregnancy. However, human amniogenesis is poorly understood due to limited accessibility to peri-implantation embryos and a lack of in vitro models. Here we report an efficient biomaterial system to generate human amnion-like tissue in vitro through self-organized development of human pluripotent stem cells (hPSCs) in a bioengineered niche mimicking the in vivo implantation environment. We show that biophysical niche factors act as a switch to toggle hPSC self-renewal versus amniogenesis under self-renewal-permissive biochemical conditions. We identify a unique molecular signature of hPSC-derived amnion-like cells and show that endogenously activated BMP-SMAD signalling is required for the amnion-like tissue development by hPSCs. This study unveils the self-organizing and mechanosensitive nature of human amniogenesis and establishes the first hPSC-based model for investigating peri-implantation human amnion development, thereby helping advance human embryology and reproductive medicine.
Serpooshan, Vahid; Mahmoudi, Morteza
2015-02-13
Cell-based therapies are a recently established path for treating a wide range of human disease. Tissue engineering of contractile heart muscle for replacement therapy is among the most exciting and important of these efforts. However, current in vitro techniques of cultivating functional mature cardiac grafts have only been moderately successful due to the poor capability of traditional two-dimensional cell culture systems to recapitulate necessary in vivo conditions. In this issue, Kiefer et al introduce a laser-patterned nanostructured substrate (Al/Al2O3 nanowires) for efficient maintenance of oriented human cardiomyocytes, with great potential to open new roads to mass-production of contractile myocardial grafts for cardiovascular tissue engineering.
Micropatterned nanostructures: a bioengineered approach to mass-produce functional myocardial grafts
NASA Astrophysics Data System (ADS)
Serpooshan, Vahid; Mahmoudi, Morteza
2015-02-01
Cell-based therapies are a recently established path for treating a wide range of human disease. Tissue engineering of contractile heart muscle for replacement therapy is among the most exciting and important of these efforts. However, current in vitro techniques of cultivating functional mature cardiac grafts have only been moderately successful due to the poor capability of traditional two-dimensional cell culture systems to recapitulate necessary in vivo conditions. In this issue, Kiefer et al [1] introduce a laser-patterned nanostructured substrate (Al/Al2O3 nanowires) for efficient maintenance of oriented human cardiomyocytes, with great potential to open new roads to mass-production of contractile myocardial grafts for cardiovascular tissue engineering.
In Vitro Differentiation and Propagation of Urothelium from Pluripotent Stem Cell Lines.
Osborn, Stephanie L; Kurzrock, Eric A
2018-01-01
Bioengineering of bladder tissue, particularly for those patients who have advanced bladder disease, requires a source of urothelium that is healthy, capable of significant proliferation in vitro and immunologically tolerated upon transplant. As pluripotent stem cells have the potential to fulfill such criteria, they provide a critical cell source from which urothelium might be derived in vitro and used clinically. Herein, we describe the in vitro differentiation of urothelium from the H9 human embryonic stem cell (hESC) line through the definitive endoderm (DE) phase via selective culture techniques. The protocol can be used to derive urothelium from other hESCs or human-induced pluripotent stem cells.
Diniz, Ivana M A; Carreira, Ana C O; Sipert, Carla R; Uehara, Cindi M; Moreira, Maria S N; Freire, Laila; Pelissari, Cibele; Kossugue, Patrícia M; de Araújo, Daniele R; Sogayar, Mari C; Marques, Márcia M
2018-06-01
Photobiomodulation (PBM) therapy displays relevant properties for tissue healing and regeneration, which may be of interest for the tissue engineering field. Here, we show that PBM is able to improve cell survival and to interact with recombinant human Bone Morphogenetic Protein 4 (rhBMP4) to direct and accelerate odonto/osteogenic differentiation of dental derived mesenchymal stem cells (MSCs). MSCs were encapsulated in an injectable and thermo-responsive cell carrier (Pluronic ® F-127) loaded with rhBMP4 and then photoactivated. PBM improved MSCs self-renewal and survival upon encapsulation in the Pluronic ® F-127. In the presence of rhBMP4, cell odonto/osteogenic differentiation was premature and markedly improved in the photoactivated MSCs. An in vivo calvarial critical sized defect model demonstrated significant increase in bone formation after PBM treatment. Finally, a balance in the reactive oxygen species levels may be related to the favorable results of PBM and rhBMP4 association. PBM may act in synergism with rhBMP4 and is a promise candidate to direct and accelerate hard tissue bioengineering. © 2017 Wiley Periodicals, Inc.
Bergeron, Zachary L.; Bingham, Jon-Paul
2012-01-01
Scorpion toxins have been central to the investigation and understanding of the physiological role of potassium (K+) channels and their expansive function in membrane biophysics. As highly specific probes, toxins have revealed a great deal about channel structure and the correlation between mutations, altered regulation and a number of human pathologies. Radio- and fluorescently-labeled toxin isoforms have contributed to localization studies of channel subtypes in expressing cells, and have been further used in competitive displacement assays for the identification of additional novel ligands for use in research and medicine. Chimeric toxins have been designed from multiple peptide scaffolds to probe channel isoform specificity, while advanced epitope chimerization has aided in the development of novel molecular therapeutics. Peptide backbone cyclization has been utilized to enhance therapeutic efficiency by augmenting serum stability and toxin half-life in vivo as a number of K+-channel isoforms have been identified with essential roles in disease states ranging from HIV, T-cell mediated autoimmune disease and hypertension to various cardiac arrhythmias and Malaria. Bioengineered scorpion toxins have been monumental to the evolution of channel science, and are now serving as templates for the development of invaluable experimental molecular therapeutics. PMID:23202307
PREFACE: XVII Congress of Bioengineering and VI Clinical Engineering Conference
NASA Astrophysics Data System (ADS)
Rocha, Darío
2011-09-01
SABI 2009 was the XVII Biennial Congress of the Argentinean Bioengineering Society (SABI - www.sabi.org.ar), celebrated along with the VI Clinical Engineering Conference. It took place in Rosario, the second city of Argentina, located on the west bank of the Paraná, one of the world's most important rivers. This city, with its 150 year history and one million inhabitants, is characterized by a strong enterprising spirit. It is the agroindustrial leader of Argentina, with cereal ports recognized to be among the most active in the world, and its cereal stock exchange competes with Chicago's in international cereal pricing. Demographically Rosario presents a European profile, and there are seven national and private higher level universities in the area. SABI 2009 was the first time the Congress was celebrated in Rosario. Usually the Congress is organized by the Bioengineering Society in cooperation with a university with an undergraduate program, which Rosario lacks. To meet the needs of this exceptional case, a young local institution was asked to coordinate the Congress, the Rosario Technological Center (www.polotecnologico.net). This organization gathers together around 100 companies that produce technology, with a large number focused on IT, but those focused on biotechnology also stand out. The Center is also integrated with relevant public and government bodies. Traditionally, bioengineering has been related to human health applications, with less emphasis on applications significant to agrotechnology, an area in which Rosario is growing as an economic force. In order to address this oversight, the Congress formulated its main goals for integrating and synergizing bioengineering and biotechnology, particularly bioengineering and agrotechnology. This initiative has produced promising results. The importance of the Congress was reflected in the high number of participants - including researchers, professionals and students - from abroad, with participants from at least 12 different countries. In the three days of planned activities, more than 800 participants were registered and over 2000 people visited the associated expo. Several symposia and thematic meetings were held simultaneously. Around 207 works were presented, each evaluated by two referees, and 181 presentations were finally accepted. The organizers of the Congress proposed that the 14 best works be published in the Journal of Physics Conference Series. A few of the speakers deserve a special mention: James Lin, PhD, USA, Wireless noninvasive sensing and physiological signatures and vital signs; Luis Kun, PhD, USA, Biomedical Engineering and Global Health Transformation: A vision of opportunities and challenges; Mario Munich, PhD, USA, Avances en Robótica y Aplicaciones en Salud (Advances in robotics and health applications); Jose Folgueras, PhD, Cuba, Generación de productos de alto valor agregado a través del conocimiento (Generating products adding value through knowledge); Daniel Goroso, PhD, Brazil, Avanço e tecnología en Medicina Física y Rehabilitación (Advances in technology in physical medicine and rehab); Adolfo Spangenberg, PhD, Brazil, Telemedicine and Health - New perspectivas in development countries; Francisco Rojo Pérez, PhD, Spain, Propiedades del Comportamiento Mecánico y la rotura de la aorta humana (Properties of mechanical behaviour and rupture of the human aorta); and Eduardo de Forteza, PhD, Argentina, La fusión del humanismo médico y la tecnología (Fusion between medical humanism and technology), among others. We would like to thank the institutions, universities, government bodies, and private enterprises that supported and facilitated this Congress, and the members of the Organizing Commitee: Eng David Astegiano (Science and Technology State Minister), Eng Carlos Cerruti (Past President of the Rosario Tecnology Center), Eng Viviana Rotger (Past President of SABI) and MSc Guillermo Civetta (Manager of RTP). The members of the executive committee also deserve special recognition. They have made up for their lack of experience with their great effort and dedication, achieving a level of excellence: Melina Rua, Cecilia Rocha, Noelia Vergonzi, Guillermo Civetta, Ricardo Montico, Ariel Olmos, Guillermo Chavez, Marcos Vaccani, and others. Finally we thank all the presenters, speakers, exhibitors, partners and everyone who contributed to this successful Congress. The next gathering will be held in the internationally known city of Mar del Plata on 28-30 September 2011. It will undoubtedly be a continuation of this notable event which has been held annually for 30 years. Ing Darío RochaSABI and Polo Tecnologico Rosario Committees Member
Surface Plasmon Resonance: A Versatile Technique for Biosensor Applications
Nguyen, Hoang Hiep; Park, Jeho; Kang, Sebyung; Kim, Moonil
2015-01-01
Surface plasmon resonance (SPR) is a label-free detection method which has emerged during the last two decades as a suitable and reliable platform in clinical analysis for biomolecular interactions. The technique makes it possible to measure interactions in real-time with high sensitivity and without the need of labels. This review article discusses a wide range of applications in optical-based sensors using either surface plasmon resonance (SPR) or surface plasmon resonance imaging (SPRI). Here we summarize the principles, provide examples, and illustrate the utility of SPR and SPRI through example applications from the biomedical, proteomics, genomics and bioengineering fields. In addition, SPR signal amplification strategies and surface functionalization are covered in the review. PMID:25951336
Kuo, Kuan-Chih; Lin, Ruei-Zeng; Tien, Han-Wen; Wu, Pei-Yun; Li, Yen-Cheng; Melero-Martin, Juan M; Chen, Ying-Chieh
2015-11-01
Tissue engineering promises to restore or replace diseased or damaged tissue by creating functional and transplantable artificial tissues. The development of artificial tissues with large dimensions that exceed the diffusion limitation will require nutrients and oxygen to be delivered via perfusion instead of diffusion alone over a short time period. One approach to perfusion is to vascularize engineered tissues, creating a de novo three-dimensional (3D) microvascular network within the tissue construct. This significantly shortens the time of in vivo anastomosis, perfusion and graft integration with the host. In this study, we aimed to develop injectable allogeneic collagen-phenolic hydroxyl (collagen-Ph) hydrogels that are capable of controlling a wide range of physicochemical properties, including stiffness, water absorption and degradability. We tested whether collagen-Ph hydrogels could support the formation of vascularized engineered tissue graft by human blood-derived endothelial colony-forming cells (ECFCs) and bone marrow-derived mesenchymal stem cells (MSC) in vivo. First, we studied the growth of adherent ECFCs and MSCs on or in the hydrogels. To examine the potential formation of functional vascular networks in vivo, a liquid pre-polymer solution of collagen-Ph containing human ECFCs and MSCs, horseradish peroxidase and hydrogen peroxide was injected into the subcutaneous space or abdominal muscle defect of an immunodeficient mouse before gelation, to form a 3D cell-laden polymerized construct. These results showed that extensive human ECFC-lined vascular networks can be generated within 7 days, the engineered vascular density inside collagen-Ph hydrogel constructs can be manipulated through refinable mechanical properties and proteolytic degradability, and these networks can form functional anastomoses with the existing vasculature to further support the survival of host muscle tissues. Finally, optimized conditions of the cell-laden collagen-Ph hydrogel resulted in not only improving the long-term differentiation of transplanted MSCs into mineralized osteoblasts, but the collagen-Ph hydrogel also improved an increased of adipocytes within the vascularized bioengineered tissue in a mouse after 1 month of implantation. We reported a method for preparing autologous extracellular matrix scaffolds, murine collagen-Ph hydrogels, and demonstrated its suitability for use in supporting human progenitor cell-based formation of 3D vascular networks in vitro and in vivo. Results showed extensive human vascular networks can be generated within 7 days, engineered vascular density inside collagen-Ph constructs can be manipulated through refinable mechanical properties and proteolytic degradability, and these networks can form functional anastomoses with existing vasculature to further support the survival of host muscle tissues. Moreover, optimized conditions of cell-laden collagen-Ph hydrogel resulted in not only improving the long-term differentiation of transplanted MSCs into mineralized osteoblasts, but the collagen-Ph hydrogel also improved an increased of adipocytes within the vascularized bioengineered tissue in a mouse. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Cavaillé, Paul; Ducasse, Léon; Breton, Vincent; Dommanget, Fanny; Tabacchi, Eric; Evette, André
2015-03-15
Erosion control is a major issue in the Prealps region since piedmont is subject to both intense flood hazards and anthropic pressure. Riverbank protections may have major impacts on local ecosystem functioning and ecological corridor continuity. This study aimed to estimate the effects of the types of riverbank protection technique (from pure riprap to pure bioengineering) on the taxonomic and ecological composition of plant communities in comparison with unmanaged riverbanks as the referential system. Thirty-eight embankments were sampled in the foothills of the French and Swiss Alps. Four distinct riverbank techniques were analyzed and natural young willow stands were chosen as the referential system. At each site, vegetation was sampled along three transects from the waterline to the top of the riverbank. Plant communities were characterized using biological group composition (growth forms and life history, life strategies and distribution in space and time) and functional diversity indices (MFAD, FDc and wFDc). We identified 177 distinct plant species on 38 sites. Higher species richness levels were observed on bioengineered banks (from an average of 12 species recorded on ripraps to 27 species recorded on bioengineered banks) strongly dominated by Salicaceae species, especially for fascine and cribwall banks. Functional analyses of plant communities highlighted significant differences among bank types (p-value: 0.001) for all selected biological groups. Competitive - ruderal strategy, rooting shoots, stems or leaves that lie down or break off, and unisexual - dioecious, as well as pioneer plants and low shrubs (<4 m tall) distinguished bioengineered bank types. Functional diversity indices confirmed these differences among bank types (MFAD: p-value: 0.002; FDc: p-value: 0.003; wFDc: p-value: 0.005). Riprap always showed the lowest levels on functional diversity indices, fascine and cribwall banks were at the medium level and finally mixed and natural banks the highest level. These results confirm the low ecological potential of purely hard engineering techniques and highlight the similarity of bioengineered techniques and unmanaged riverbanks. Copyright © 2014 Elsevier Ltd. All rights reserved.
Bioengineered human IAS reconstructs with functional and molecular properties similar to intact IAS
Singh, Jagmohan
2012-01-01
Because of its critical importance in rectoanal incontinence, we determined the feasibility to reconstruct internal anal sphincter (IAS) from human IAS smooth muscle cells (SMCs) with functional and molecular attributes similar to the intact sphincter. The reconstructs were developed using SMCs from the circular smooth muscle layer of the human IAS, grown in smooth muscle differentiation media under sterile conditions in Sylgard-coated tissue culture plates with central Sylgard posts. The basal tone in the reconstructs and its changes were recorded following 0 Ca2+, KCl, bethanechol, isoproterenol, protein kinase C (PKC) activator phorbol 12,13-dibutyrate, and Rho kinase (ROCK) and PKC inhibitors Y-27632 and Gö-6850, respectively. Western blot (WB), immunofluorescence (IF), and immunocytochemical (IC) analyses were also performed. The reconstructs developed spontaneous tone (0.68 ± 0.26 mN). Bethanechol (a muscarinic agonist) and K+ depolarization produced contraction, whereas isoproterenol (β-adrenoceptor agonist) and Y-27632 produced a concentration-dependent decrease in the tone. Maximal decrease in basal tone with Y-27632 and Gö-6850 (each 10−5 M) was 80.45 ± 3.29 and 17.76 ± 3.50%, respectively. WB data with the IAS constructs′ SMCs revealed higher levels of RhoA/ROCK, protein kinase C-potentiated inhibitor or inhibitory phosphoprotein for myosin phosphatase (CPI-17), phospho-CPI-17, MYPT1, and 20-kDa myosin light chain vs. rectal smooth muscle. WB, IF, and IC studies of original SMCs and redispersed from the reconstructs for the relative distribution of different signal transduction proteins confirmed the feasibility of reconstruction of IAS with functional properties similar to intact IAS and demonstrated the development of myogenic tone with critical dependence on RhoA/ROCK. We conclude that it is feasible to bioengineer IAS constructs using human IAS SMCs that behave like intact IAS. PMID:22790596
Clinical engineering in Romania. The coming of age.
Naianu, B P; Negoescu, R
Biomedical engineering (BME) includes clinical engineering and bioengineering. Bioengineering is academically oriented towards theory and research in biology using the methods of exact sciences such as maths and physics, while clinical engineering (CE) has a rather practical orientation focusing on the general management of clinic/hospital equipment and providing aid to the medical staff in the use of advanced technologies for diagnosis and therapy purposes. The Romanian physiological community has been closely involved in the growth of BME that has now come of age in this country. Radu Vrâncianu's great intuition in opening the door to this science and its practical application in an institution created by Daniel Danielopolu definitely represented a good chance for Romanian public health. Recently, both clinical engineering and medical bioengineering have been introduced into the Romanian Classification of Occupations.
Jastrzebska, Katarzyna; Florczak, Anna; Kucharczyk, Kamil; Lin, Yinnan; Wang, Qin; Mackiewicz, Andrzej; Kaplan, David L; Dams-Kozlowska, Hanna
2018-02-01
Analysis of the properties and chemotherapeutics delivery potential of spheres made of bioengineered spider silks MS1 and MS2. MS1 and MS2 derived from Nephila clavipes dragline silks - MaSp1 and MaSp2, respectively - formed spheres that were compared in terms of physicochemical properties, cytotoxicity and loading/release of chemotherapeutics. MS2 spheres were more dispersed, smaller, of solid core, of higher beta-sheet structure content, and of opposite (negative) charge than MS1 spheres. Preloaded MS2 showed greater applicability for mitoxantrone, while postloaded for etoposide delivery compared with MS1 spheres. However, MS1 spheres were a better choice for doxorubicin delivery than MS2. Bioengineered silks can be tailored to develop a system with optimal drug loading and release properties.
Suitability of soil bioengineering techniques in Central America: a case study in Nicaragua
NASA Astrophysics Data System (ADS)
Petrone, A.; Preti, F.
2008-02-01
In the last few years "D. I. A. F." (Department of Agriculture and Forestry Engineering of Florence University), has been testing the effectiveness of Soil Bio-Engineering techniques in Central America. The focus of the present study was to find out which native plants were most suited for soil bio-engineering purposes, particularly in the realization of riverbank protection. Furthermore, we have also been aiming at economic efficiency. In the context of sustainable watershed management, these techniques seem to be appropriate, especially in underdeveloped countries. Concerning the plants to be used, we considered three native species, Gliricidia Sepium, Cordia dentata and Jatropha curcas, to be appropriate for this type of work. Economically speaking, the low cost of such interventions in underdeveloped countries, has been shown by the construction of riverbank protection using vegetated crib-walls in Nicaragua.
Sustaining the success of medical device innovation.
Fearis, Paul J; Craft, Brandon
2016-11-01
Paul Fearis is CEO of Clinvue, Brandon Craft is COO of Clinvue. Clinvue is medical device innovation consultancy specializing in Insight Informed Innovation in the medical industry. Paul and Brandon are also lecturers in innovation for the 'Center for Bioengineering, Innovation & Design' Masters course in Bioengineering Innovation & Design at the Johns Hopkins University, and guest lecturers at Rice University and Virginia Tech. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Duran, E. N.; Lewis, G. W.; Feldstein, C.; Corday, E.; Meerbaum, S.; Lang, T.
1973-01-01
The results of a technology transfer of a miniature unidirectional stress transducer, developed for experimental stress analysis in the aerospace field, to applications in bioengineering are reported. By modification of the basic design and innovations in attachment techniques, the transducer was successfully used in vivo on the myocardium of large dogs to record the change in contractile force due to coronary occlusion, reperfusion, and intervention.
Update on Renal Replacement Therapy: Implantable Artificial Devices and Bioengineered Organs.
Attanasio, Chiara; Latancia, Marcela T; Otterbein, Leo E; Netti, Paolo A
2016-08-01
Recent advances in the fields of artificial organs and regenerative medicine are now joining forces in the areas of organ transplantation and bioengineering to solve continued challenges for patients with end-stage renal disease. The waiting lists for those needing a transplant continue to exceed demand. Dialysis, while effective, brings different challenges, including quality of life and susceptibility to infection. Unfortunately, the majority of research outputs are far from delivering satisfactory solutions. Current efforts are focused on providing a self-standing device able to recapitulate kidney function. In this review, we focus on two remarkable innovations that may offer significant clinical impact in the field of renal replacement therapy: the implantable artificial renal assist device (RAD) and the transplantable bioengineered kidney. The artificial RAD strategy utilizes micromachining techniques to fabricate a biohybrid system able to mimic renal morphology and function. The current trend in kidney bioengineering exploits the structure of the native organ to produce a kidney that is ready to be transplanted. Although these two systems stem from different technological approaches, they are both designed to be implantable, long lasting, and free standing to allow patients with kidney failure to be autonomous. However, for both of them, there are relevant issues that must be addressed before translation into clinical use and these are discussed in this review.
Su, Haifeng; Jiang, Juan; Lu, Qiuli; Zhao, Zhao; Xie, Tian; Zhao, Hai; Wang, Maolin
2015-02-07
Early trials have demonstrated great potential for the use of duckweed (family Lemnaceae) as the next generation of energy plants for the production of biofuels. Achieving this technological advance demands research to develop novel bioengineering microorganisms that can ferment duckweed feedstock to produce higher alcohols. In this study, we used relevant genes to transfer five metabolic pathways of isoleucine, leucine and valine from the yeast Saccharomyces cerevisiae into the bioengineered microorganism Corynebacterium crenatum. Experimental results showed that the bioengineered strain was able to produce 1026.61 mg/L of 2-methyl-1-butanol by fermenting glucose, compared to 981.79 mg/L from the acid hydrolysates of duckweed. The highest isobutanol yields achieved were 1264.63 mg/L from glucose and 1154.83 mg/L from duckweed, and the corresponding highest yields of 3-methyl-1-butanol were 748.35 and 684.79 mg/L. Our findings demonstrate the feasibility of using bioengineered C. crenatum as a platform to construct a bacterial strain that is capable of producing higher alcohols. We have also shown the promise of using duckweed as the basis for developing higher alcohols, illustrating that this group of plants represents an ideal fermentation substrate that can be considered the next generation of alternative energy feedstocks.
Dye, Briana R; Dedhia, Priya H; Miller, Alyssa J; Nagy, Melinda S; White, Eric S; Shea, Lonnie D; Spence, Jason R
2016-09-28
Human pluripotent stem cell (hPSC) derived tissues often remain developmentally immature in vitro, and become more adult-like in their structure, cellular diversity and function following transplantation into immunocompromised mice. Previously we have demonstrated that hPSC-derived human lung organoids (HLOs) resembled human fetal lung tissue in vitro (Dye et al., 2015). Here we show that HLOs required a bioartificial microporous poly(lactide-co-glycolide) (PLG) scaffold niche for successful engraftment, long-term survival, and maturation of lung epithelium in vivo. Analysis of scaffold-grown transplanted tissue showed airway-like tissue with enhanced epithelial structure and organization compared to HLOs grown in vitro. By further comparing in vitro and in vivo grown HLOs with fetal and adult human lung tissue, we found that in vivo transplanted HLOs had improved cellular differentiation of secretory lineages that is reflective of differences between fetal and adult tissue, resulting in airway-like structures that were remarkably similar to the native adult human lung.
Li, Yi; Wu, Qiong; Wang, Yujia; Li, Li; Chen, Fei; Shi, Yujun; Bao, Ji; Bu, Hong
2017-01-01
An individualized, tissue-engineered liver suitable for transplanting into a patient with liver disease would be of great benefit to the patient and the healthcare system. The tissue-engineered liver would possess the functions of the original healthy organ. Two fields of study, (i) using decellularized tissue as cell scaffolding, and (ii) stem cell differentiation into functional cells, are coming together to make this concept feasible. The decellularized liver scaffolds (DLS) can interact with cells to promote cell differentiation and signal transduction and three-dimensional (3D) stem cell aggregations can maintain the phenotypes and improve functions of stem cells after differentiation by undergoing cell-cell contact. Although the effects of DLS and stem cell aggregation culture have been intensively studied, few observations about the interaction between the two have been achieved. We established a method that combines the use of decellularized liver scaffolds and aggregation culture of MSCs (3D-DLS) and explored the effects of the two on hepatic differentiation of human umbilical cord mesenchymal stem cells (hUC-MSCs) in bioengineered hepatic tissue. A higher percentage of albumin-producing cells, higher levels of liver-specific transcripts, higher urea cycle-related transcripts, and lower levels of stem cell-specific transcripts were observed in the 3D-DLS group when compared to that of hUC-MSCs in monolayer culture (2D), aggregation culture (3D), monolayer on DLS culture (2D-DLS). The gene arrays also indicated that 3D-DLS induced the differentiation from the hUC-MSC phenotype to the PHH phenotype. Liver-specific proteins albumin, CK-18, and glycogen storage were highly positive in the 3D-DLS group. Albumin secretion and ammonia conversion to urea were more effective with a higher cell survival rate in the 3D-DLS group for 14 days. This DLS and aggregation combination culture system provides a novel method to improve hepatic differentiation, maintain phenotype of hepatocyte-like cells and sustain survival for 14 days in vitro. This is a promising strategy to use to construct bioengineered hepatic tissue. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Method for determining gene knockouts
Maranas, Costas D [Port Matilda, PA; Burgard, Anthony R [State College, PA; Pharkya, Priti [State College, PA
2011-09-27
A method for determining candidates for gene deletions and additions using a model of a metabolic network associated with an organism, the model includes a plurality of metabolic reactions defining metabolite relationships, the method includes selecting a bioengineering objective for the organism, selecting at least one cellular objective, forming an optimization problem that couples the at least one cellular objective with the bioengineering objective, and solving the optimization problem to yield at least one candidate.
Method for determining gene knockouts
Maranas, Costa D; Burgard, Anthony R; Pharkya, Priti
2013-06-04
A method for determining candidates for gene deletions and additions using a model of a metabolic network associated with an organism, the model includes a plurality of metabolic reactions defining metabolite relationships, the method includes selecting a bioengineering objective for the organism, selecting at least one cellular objective, forming an optimization problem that couples the at least one cellular objective with the bioengineering objective, and solving the optimization problem to yield at least one candidate.
Exploiting Self-organization in Bioengineered Systems: A Computational Approach.
Davis, Delin; Doloman, Anna; Podgorski, Gregory J; Vargis, Elizabeth; Flann, Nicholas S
2017-01-01
The productivity of bioengineered cell factories is limited by inefficiencies in nutrient delivery and waste and product removal. Current solution approaches explore changes in the physical configurations of the bioreactors. This work investigates the possibilities of exploiting self-organizing vascular networks to support producer cells within the factory. A computational model simulates de novo vascular development of endothelial-like cells and the resultant network functioning to deliver nutrients and extract product and waste from the cell culture. Microbial factories with vascular networks are evaluated for their scalability, robustness, and productivity compared to the cell factories without a vascular network. Initial studies demonstrate that at least an order of magnitude increase in production is possible, the system can be scaled up, and the self-organization of an efficient vascular network is robust. The work suggests that bioengineered multicellularity may offer efficiency improvements difficult to achieve with physical engineering approaches.
History of bioengineering techniques for erosion control in rivers in Western Europe.
Evette, Andre; Labonne, Sophie; Rey, Freddy; Liebault, Frederic; Jancke, Oliver; Girel, Jacky
2009-06-01
Living plants have been used for a very long time throughout the world in structures against soil erosion, as traces have been found dating back to the first century BC. Widely practiced in Western Europe during the eighteenth and nineteenth centuries, bioengineering was somewhat abandoned in the middle of the twentieth century, before seeing a resurgence in recent times. Based on an extensive bibliography, this article examines the different forms of bioengineering techniques used in the past to manage rivers and riverbanks, mainly in Europe. We compare techniques using living material according to their strength of protection against erosion. Many techniques are described, both singly and in combination, ranging from tree planting or sowing seeds on riverbanks to dams made of fascine or wattle fences. The recent appearance of new materials has led to the development of new techniques, associated with an evolution in the perception of riverbanks.
Synthetic and systems biology for microbial production of commodity chemicals.
Chubukov, Victor; Mukhopadhyay, Aindrila; Petzold, Christopher J; Keasling, Jay D; Martín, Héctor García
2016-01-01
The combination of synthetic and systems biology is a powerful framework to study fundamental questions in biology and produce chemicals of immediate practical application such as biofuels, polymers, or therapeutics. However, we cannot yet engineer biological systems as easily and precisely as we engineer physical systems. In this review, we describe the path from the choice of target molecule to scaling production up to commercial volumes. We present and explain some of the current challenges and gaps in our knowledge that must be overcome in order to bring our bioengineering capabilities to the level of other engineering disciplines. Challenges start at molecule selection, where a difficult balance between economic potential and biological feasibility must be struck. Pathway design and construction have recently been revolutionized by next-generation sequencing and exponentially improving DNA synthesis capabilities. Although pathway optimization can be significantly aided by enzyme expression characterization through proteomics, choosing optimal relative protein expression levels for maximum production is still the subject of heuristic, non-systematic approaches. Toxic metabolic intermediates and proteins can significantly affect production, and dynamic pathway regulation emerges as a powerful but yet immature tool to prevent it. Host engineering arises as a much needed complement to pathway engineering for high bioproduct yields; and systems biology approaches such as stoichiometric modeling or growth coupling strategies are required. A final, and often underestimated, challenge is the successful scale up of processes to commercial volumes. Sustained efforts in improving reproducibility and predictability are needed for further development of bioengineering.
Synthetic and systems biology for microbial production of commodity chemicals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chubukov, Victor; Mukhopadhyay, Aindrila; Petzold, Christopher J.
The combination of synthetic and systems biology is a powerful framework to study fundamental questions in biology and produce chemicals of immediate practical application such as biofuels, polymers, or therapeutics. However, we cannot yet engineer biological systems as easily and precisely as we engineer physical systems. In this review, we describe the path from the choice of target molecule to scaling production up to commercial volumes. We present and explain some of the current challenges and gaps in our knowledge that must be overcome in order to bring our bioengineering capabilities to the level of other engineering disciplines. Challenges startmore » at molecule selection, where a difficult balance between economic potential and biological feasibility must be struck. Pathway design and construction have recently been revolutionized by next-generation sequencing and exponentially improving DNA synthesis capabilities. Although pathway optimization can be significantly aided by enzyme expression characterization through proteomics, choosing optimal relative protein expression levels for maximum production is still the subject of heuristic, non-systematic approaches. Toxic metabolic intermediates and proteins can significantly affect production, and dynamic pathway regulation emerges as a powerful but yet immature tool to prevent it. Host engineering arises as a much needed complement to pathway engineering for high bioproduct yields; and systems biology approaches such as stoichiometric modeling or growth coupling strategies are required. A final, and often underestimated, challenge is the successful scale up of processes to commercial volumes. Sustained efforts in improving reproducibility and predictability are needed for further development of bioengineering.« less
Synthetic and systems biology for microbial production of commodity chemicals
Chubukov, Victor; Mukhopadhyay, Aindrila; Petzold, Christopher J.; ...
2016-04-07
The combination of synthetic and systems biology is a powerful framework to study fundamental questions in biology and produce chemicals of immediate practical application such as biofuels, polymers, or therapeutics. However, we cannot yet engineer biological systems as easily and precisely as we engineer physical systems. In this review, we describe the path from the choice of target molecule to scaling production up to commercial volumes. We present and explain some of the current challenges and gaps in our knowledge that must be overcome in order to bring our bioengineering capabilities to the level of other engineering disciplines. Challenges startmore » at molecule selection, where a difficult balance between economic potential and biological feasibility must be struck. Pathway design and construction have recently been revolutionized by next-generation sequencing and exponentially improving DNA synthesis capabilities. Although pathway optimization can be significantly aided by enzyme expression characterization through proteomics, choosing optimal relative protein expression levels for maximum production is still the subject of heuristic, non-systematic approaches. Toxic metabolic intermediates and proteins can significantly affect production, and dynamic pathway regulation emerges as a powerful but yet immature tool to prevent it. Host engineering arises as a much needed complement to pathway engineering for high bioproduct yields; and systems biology approaches such as stoichiometric modeling or growth coupling strategies are required. A final, and often underestimated, challenge is the successful scale up of processes to commercial volumes. Sustained efforts in improving reproducibility and predictability are needed for further development of bioengineering.« less
Industry and Government Perspective in Influenza Control
Slater, Eve E.
2004-01-01
We have had recent reminders of the threats posed by naturally occurring and bioengineered pandemic respiratory infections. It is estimated that if a pandemic infection were to arise anywhere in the world, such an infection would become widespread within 3 months and would have its maximum effect within 6 months. At present, the fastest that a vaccine effective against a new combination of antigens can be developed, purified, and produced is 9–12 months, not counting time for mass production. The current rate at which the production of influenza vaccines can be accelerated is limited by the fact that production is carried out in eggs. Therefore, there is urgent need for cell-based vaccine technologies. These are under way in several centers, yet attainment of a safe product remains several years away. Furthermore, there is need for public and private investment in manufacturing surge capacity and/or dedicated National Institutes of Health facilities to enable accelerated production. We must support efforts to shorten development time by developing and approving subunit antigens and immunogens that anticipate the most virulent viral mutations. Surveillance sites and their electronic interconnections must be expanded. Another component still lacking is funding for laboratories with high throughput screening and strong informatics capabilities to enable the fingerprinting and cataloguing of all known specimens of influenza and other pathogenic organisms for rapid identification of emerging or bioengineered pathogens. In all these efforts, we look to the federal government and to the biomedical research community in both public and private sectors. PMID:15061626
Tissue Engineering Using Transfected Growth-Factor Genes
NASA Technical Reports Server (NTRS)
Madry, Henning; Langer, Robert S.; Freed, Lisa E.; Trippel, Stephen; Vunjak-Novakovic, Gordana
2005-01-01
A method of growing bioengineered tissues includes, as a major component, the use of mammalian cells that have been transfected with genes for secretion of regulator and growth-factor substances. In a typical application, one either seeds the cells onto an artificial matrix made of a synthetic or natural biocompatible material, or else one cultures the cells until they secrete a desired amount of an extracellular matrix. If such a bioengineered tissue construct is to be used for surgical replacement of injured tissue, then the cells should preferably be the patient s own cells or, if not, at least cells matched to the patient s cells according to a human-leucocyteantigen (HLA) test. The bioengineered tissue construct is typically implanted in the patient's injured natural tissue, wherein the growth-factor genes enhance metabolic functions that promote the in vitro development of functional tissue constructs and their integration with native tissues. If the matrix is biodegradable, then one of the results of metabolism could be absorption of the matrix and replacement of the matrix with tissue formed at least partly by the transfected cells. The method was developed for articular chondrocytes but can (at least in principle) be extended to a variety of cell types and biocompatible matrix materials, including ones that have been exploited in prior tissue-engineering methods. Examples of cell types include chondrocytes, hepatocytes, islet cells, nerve cells, muscle cells, other organ cells, bone- and cartilage-forming cells, epithelial and endothelial cells, connective- tissue stem cells, mesodermal stem cells, and cells of the liver and the pancreas. Cells can be obtained from cell-line cultures, biopsies, and tissue banks. Genes, molecules, or nucleic acids that secrete factors that influence the growth of cells, the production of extracellular matrix material, and other cell functions can be inserted in cells by any of a variety of standard transfection techniques.
Roointan, Amir; Morowvat, Mohammad Hossein
The rising potential for CRISPR-Cas-mediated genome editing has revolutionized our strategies in basic and practical bioengineering research. It provides a predictable and precise method for genome modification in a robust and reproducible fashion. Emergence of systems biotechnology and synthetic biology approaches coupled with CRISPR-Cas technology could change the future of cell factories to possess some new features which have not been found naturally. We have discussed the possibility and versatile potentials of CRISPR-Cas technology for metabolic engineering of a recombinant host for heterologous protein production. We describe the mechanisms involved in this metabolic engineering approach and present the diverse features of its application in biotechnology and protein production.
NASA Astrophysics Data System (ADS)
Borja, P.; Vanacker, V.; Alvarado, D.; Govers, G.
2012-04-01
A better insight in the processes controlling sediment generation, transport and deposition in badlands is necessary to enhance restoration of degraded soils through eco-engineering techniques. In this study, we evaluate the effect of different bio-engineering measures on soil and slope stability. Five micro-catchments (of 0.2 to 5 ha) were selected within a 3 km2 area in the lower part of the Loreto catchment (Southern Ecuadorian Andes). The micro-catchments differ only by land cover and degree of implementation of soil and water conservation measures. Bio-engineering techniques were used to construct dikes made of fascines of wooden sticks and earth-filled tires in active gully beds, where they are most efficient to reduce water and sediment transport. The experimental design consists of three micro-catchments within highly degraded lands: (DI) micro-catchment with bio-engineering measures concentrated in the active gully beds, (DF) with reforestation of Eucalyptus trees, and (DT) reference situation without any conservation measures. Two micro-catchments were monitored in agricultural lands with (AI) and without (AT) bio-engineering measures in the active gully beds. All catchments were equipped with San Dimas flumes to measure water flow, and sediment traps to monitor sediment export. In the (active) gully beds, various parameters related to gully stability (soil water content, bed elevation, vegetation cover, sedimentation/erosion) were monitored at weekly intervals. First results show that bio-engineering techniques are efficient to stabilize active gully beds through a reduction of the rapid concentration of excess rainfall and the sediment production and transfer. Fascines made of wooden sticks are far more efficient than earth-filled tires. Sediment deposition behind dikes is strongly dependent on precedent rainfall events, and the slope and vegetation cover of the gully floor. The sediment deposited facilitates colonization of the gully floor by native grass and shrub species. Analyses of soil samples indicates that the soil moisture is significantly higher (and the bulk density lower) in the deposition zones within restored gullies compared to the reference situation. During rainfall events, the infiltration in the deposition zones becomes important. The increase in water availability in the gully floor permits grass seeds to germinate and shoot rapidly, which strongly enhances gully stabilization.
Traditional engineering in the biological century: the biotraditional engineer.
Friedman, M H
2001-12-01
The increasing importance of life science in all engineering is prompting departments in the traditional engineering disciplines to offer life science as part of their curricula. Students who take advantage of this opportunity--"biotraditional engineers"--will be well positioned for careers in their discipline and in related areas of bioengineering. The founder engineering societies, such as the Bioengineering Division of ASME, are responding to this trend by broadening their scope and working increasingly across interdisciplinary borders.
How to teach artificial organs.
Zapanta, Conrad M; Borovetz, Harvey S; Lysaght, Michael J; Manning, Keefe B
2011-01-01
Artificial organs education is often an overlooked field for many bioengineering and biomedical engineering students. The purpose of this article is to describe three different approaches to teaching artificial organs. This article can serve as a reference for those who wish to offer a similar course at their own institutions or incorporate these ideas into existing courses. Artificial organ classes typically fulfill several ABET (Accreditation Board for Engineering and Technology) criteria, including those specific to bioengineering and biomedical engineering programs.
Bioengineered Hydrogel to Inhibit Post-Traumatic Central Nervous System Scarring
2016-10-01
AWARD NUMBER: W81XWH-14-1-0586 TITLE: Bioengineered Hydrogel to Inhibit Post-Traumatic Central Nervous System Scarring PRINCIPAL...Hydrogel to Inhibit Post-Traumatic Central Nervous System Scarring 5a. CONTRACT NUMBER W81XWH-14-1-0586 5b. GRANT NUMBER W81XWH- 14-1-0586 5c...barriers that prevent the optimal delivery of biologics and cells to the injured nervous system . A significant problem is the formation of scar tissue
NASA Astrophysics Data System (ADS)
Rey, F.; Labonne, S.; Mathys, N.; Puëch, C.; Jardin, J. L.
2009-04-01
On marly eroded terrains of the French Southern Alps, many researches are undertaken in order to better understand the role of vegetation and bioengineering works on erosion and sedimentation control. These researches in particular made it possible to develop tools of ecological engineering bound for the practitioners in order to conceive operations for mitigation of damage related to soil erosion. In particular they are methods of diagnosis and strategies for action with bioengineering techniques. These tools must make it possible to guide the choice of the gullies to be rehabilitated and that of the types of works of vegetalisation to be used, in particular via the establishment and the use of a gully typology. Before passing to phases of real use of these tools through expertise, as this is today considered on the scale of the large catchment area of the Durance in France (4000 km²), it appeared convenient to carry out a life-size test of application of these tools. This test was carried out on the marly catchment of Francon (73 ha), which belongs to the experimental complex of Draix (04), labellized Observatoire of Research in Environment (ORE) and of which the objectives are to improve knowledge on the formation of floods and bedload transport in small mountainous marly catchments. On this basin, 30 gullies, representing a total surface area of approximately 20 ha, were thus identified like "ecologically suitable for rehabilitation", i.e. on which it appeared possible and convenient to install bioengineering works. This test thus made it possible to check the relevance of the tools proposed to apply an action with bioengineering. An ecological operation of rehabilitation of this basin, carried out jointly with the French ‘Office National des Forêts (ONF)', was then carried out in April 2008 in accordance with the test results. It consisted of the construction of 672 bioengineering works, namely of "brush layers and brush mats of cuttings on deadwood microdams", implementing in particular the use of 25.000 cuttings of willows (Salix purpurea and S. incana). Beyond its role of validation of former results, this device is used as experimental site in order to improve the effectiveness of the bioengineering works for the sustainable retention of sediment, in particular by checking their resistance (damage on the works) and their performance (resprout and survival of the cuttings, sediment trapping) during extreme climatic disturbances. In particular, it must make it possible to study the effects of changing of spatial scales, still badly perceived, by observing if the effectiveness of local actions with bioengineering (inside small gullies of 1 ha) indeed reflects the reduction of sediment yield at the exit of larger catchments (about the km²). For this, measurements are made on 363 works in 26 gullies. The first results (2008) especially reveal: i/ a very good resistance of the works: 19 % of the works are partially damaged on less than 1/3 of their surface area, the highest rainfall intensity being 28 mm/h during 1 h; ii/ a total rate of cutting resprout of 97% (99% for S. purpurea and 94% for S. incana), the total precipitation of 2008 being 803 mm; iii/ an average trapping of 0,1 m3 of sediment per work, the latter yet still little filled. Lastly, this catchment area will also serve as "demonstration site" with the attention of the practitioners, managers and decision makers of the actions of erosion and sedimentation control.
Campbell, Sarah
2015-01-01
Mark Sagar is changing the way we look at computers by giving them faces?disconcertingly realistic human faces. Sagar first gained widespread recognition for his pioneering work in rendering faces for Hollywood movies, including Avatar and King Kong. With a Ph.D. degree in bioengineering and two Academy Awards under his belt, Sagar now directs a research lab at the University of Auckland, New Zealand, a combinatorial hub where artificial intelligence (AI), neuroscience, computer science, philosophy, and cognitive psychology intersect in creating interactive, intelligent technologies.
Habka, Dany; Mann, David; Landes, Ronald; Soto-Gutierrez, Alejandro
2015-01-01
During the past 20 years liver transplantation has become the definitive treatment for most severe types of liver failure and hepatocellular carcinoma, in both children and adults. In the U.S., roughly 16,000 individuals are on the liver transplant waiting list. Only 38% of them will receive a transplant due to the organ shortage. This paper explores another option: bioengineering an autologous liver graft. We developed a 20-year model projecting future demand for liver transplants, along with costs based on current technology. We compared these cost projections against projected costs to bioengineer autologous liver grafts. The model was divided into: 1) the epidemiology model forecasting the number of wait-listed patients, operated patients and postoperative patients; and 2) the treatment model forecasting costs (pre-transplant-related costs; transplant (admission)-related costs; and 10-year post-transplant-related costs) during the simulation period. The patient population was categorized using the Model for End-Stage Liver Disease score. The number of patients on the waiting list was projected to increase 23% over 20 years while the weighted average treatment costs in the pre-liver transplantation phase were forecast to increase 83% in Year 20. Projected demand for livers will increase 10% in 10 years and 23% in 20 years. Total costs of liver transplantation are forecast to increase 33% in 10 years and 81% in 20 years. By comparison, the projected cost to bioengineer autologous liver grafts is $9.7M based on current catalog prices for iPS-derived liver cells. The model projects a persistent increase in need and cost of donor livers over the next 20 years that’s constrained by a limited supply of donor livers. The number of patients who die while on the waiting list will reflect this ever-growing disparity. Currently, bioengineering autologous liver grafts is cost prohibitive. However, costs will decline rapidly with the introduction of new manufacturing strategies and economies of scale. PMID:26177505
NASA Astrophysics Data System (ADS)
Rey, Freddy; Labonne, Sophie; Dangla, Laure; Lavandier, Géraud
2014-05-01
In the Southern French Alps under a mountainous and Mediterranean climate, bioengineering structures installed in gully bottoms of highly weathered marly catchments aim at trapping a part of the eroded materials in order to reduce suspended sediment in the water system. They are made of brush layers and brush mats of cuttings on deadwood microdams. Purple and white Willows (Salix purpurea and S. incana) are used as they proved their efficiency to survive in such environment and efficiently trap marly sediment, but only in gullies with surface area less than 1 ha. Extrapolating their use to larger gullies could allow increasing the impact of such operations for reduction of sediment yield at the scale of large catchments. To this view, bioengineering structures have been built in spring and autumn 2010 in large eroded marly gullies with surface areas between 1 and 3 ha, in the Roubines and Fontaugier catchments (Southern Alps, France). 165 bioengineering structures (150 in spring and 15 in autumn) were built in 10 experimental gullies. After 3 observation years for each modality (2010 to 2012, and 2011 to 2013, respectively), the results revealed that 2/3 of the structures well resisted to damages due to concentrated flows. However, they were generally filled of sediment very rapidly, thus killing a large number of cuttings, particularly in the brush mats in gullies with surface area comprised between 2 and 3 ha. Therefore it has been proved that cuttings survival is possible in gullies with surface area less than 3 ha. In the French Southern Alps, bioengineering strategies have been improved by adding gullies of 1 to 3 ha in restoration plans. For gullies with surface area superior to 2 ha, it is recommended to first install the brush layers, and 1 to 2 years later the brush mats.
Finite Element analyses of soil bioengineered slopes
NASA Astrophysics Data System (ADS)
Tamagnini, Roberto; Switala, Barbara Maria; Sudan Acharya, Madhu; Wu, Wei; Graf, Frank; Auer, Michael; te Kamp, Lothar
2014-05-01
Soil Bioengineering methods are not only effective from an economical point of view, but they are also interesting as fully ecological solutions. The presented project is aimed to define a numerical model which includes the impact of vegetation on slope stability, considering both mechanical and hydrological effects. In this project, a constitutive model has been developed that accounts for the multi-phase nature of the soil, namely the partly saturated condition and it also includes the effects of a biological component. The constitutive equation is implemented in the Finite Element (FE) software Comes-Geo with an implicit integration scheme that accounts for the collapse of the soils structure due to wetting. The mathematical formulation of the constitutive equations is introduced by means of thermodynamics and it simulates the growth of the biological system during the time. The numerical code is then applied in the analysis of an ideal rainfall induced landslide. The slope is analyzed for vegetated and non-vegetated conditions. The final results allow to quantitatively assessing the impact of vegetation on slope stability. This allows drawing conclusions and choosing whenever it is worthful to use soil bioengineering methods in slope stabilization instead of traditional approaches. The application of the FE methods show some advantages with respect to the commonly used limit equilibrium analyses, because it can account for the real coupled strain-diffusion nature of the problem. The mechanical strength of roots is in fact influenced by the stress evolution into the slope. Moreover, FE method does not need a pre-definition of any failure surface. FE method can also be used in monitoring the progressive failure of the soil bio-engineered system as it calculates the amount of displacements and strains of the model slope. The preliminary study results show that the formulated equations can be useful for analysis and evaluation of different soil bio-engineering methods of slope stabilization.
Habka, Dany; Mann, David; Landes, Ronald; Soto-Gutierrez, Alejandro
2015-01-01
During the past 20 years liver transplantation has become the definitive treatment for most severe types of liver failure and hepatocellular carcinoma, in both children and adults. In the U.S., roughly 16,000 individuals are on the liver transplant waiting list. Only 38% of them will receive a transplant due to the organ shortage. This paper explores another option: bioengineering an autologous liver graft. We developed a 20-year model projecting future demand for liver transplants, along with costs based on current technology. We compared these cost projections against projected costs to bioengineer autologous liver grafts. The model was divided into: 1) the epidemiology model forecasting the number of wait-listed patients, operated patients and postoperative patients; and 2) the treatment model forecasting costs (pre-transplant-related costs; transplant (admission)-related costs; and 10-year post-transplant-related costs) during the simulation period. The patient population was categorized using the Model for End-Stage Liver Disease score. The number of patients on the waiting list was projected to increase 23% over 20 years while the weighted average treatment costs in the pre-liver transplantation phase were forecast to increase 83% in Year 20. Projected demand for livers will increase 10% in 10 years and 23% in 20 years. Total costs of liver transplantation are forecast to increase 33% in 10 years and 81% in 20 years. By comparison, the projected cost to bioengineer autologous liver grafts is $9.7M based on current catalog prices for iPS-derived liver cells. The model projects a persistent increase in need and cost of donor livers over the next 20 years that's constrained by a limited supply of donor livers. The number of patients who die while on the waiting list will reflect this ever-growing disparity. Currently, bioengineering autologous liver grafts is cost prohibitive. However, costs will decline rapidly with the introduction of new manufacturing strategies and economies of scale.
Recent advances in lineage differentiation from stem cells: hurdles and opportunities?
Terryn, Joke; Tricot, Tine; Gajjar, Madhavsai; Verfaillie, Catherine
2018-01-01
Pluripotent stem cells have the property of long-term self-renewal and the potential to give rise to descendants of the three germ layers and hence all mature cells in the human body. Therefore, they hold the promise of offering insight not only into human development but also for human disease modeling and regenerative medicine. However, the generation of mature differentiated cells that closely resemble their in vivo counterparts remains challenging. Recent advances in single-cell transcriptomics and computational modeling of gene regulatory networks are revealing a better understanding of lineage commitment and are driving modern genome editing approaches. Additional modification of the chemical microenvironment, as well as the use of bioengineering tools to recreate the cellular, extracellular matrix, and physical characteristics of the niche wherein progenitors and mature cells reside, is now being used to further improve the maturation and functionality of stem cell progeny. PMID:29552337
2012-01-31
assembles to form a thermostable. 3-dimensionaI supramolecular hydrogel that has aldo-keto reductase ( AKR ) activity. This is again accomplished... AKR activity, AdhD from Pyrococcus furiosus2*. The monomers are able to self-assemble into a bioactive enzymatic hydrogel that is stable to...temperatures in excess of 60 °C. AdhD is a member of the AKR superfamily that catalyzes the oxidation of secondary alcohols under basic conditions (optimum pH
Hirose, Yuu; Fujisawa, Takatomo; Ohtsubo, Yoshiyuki; Katayama, Mitsunori; Misawa, Naomi; Wakazuki, Sachiko; Shimura, Yohei; Nakamura, Yasukazu; Kawachi, Masanobu; Yoshikawa, Hirofumi; Eki, Toshihiko; Kanesaki, Yu
2016-01-20
To explore the diverse photoreceptors of cyanobacteria, we isolated Nostoc sp. strain NIES-3756 from soil at Mimomi-Park, Chiba, Japan, and determined its complete genome sequence. The Genome consists of one chromosome and two plasmids (total 6,987,571 bp containing no gaps). The NIES-3756 strain carries 7 phytochrome and 12 cyanobacteriochrome genes, which will facilitate the studies of phytochrome-based bioengineering. Copyright © 2015. Published by Elsevier B.V.
[CRISPR/Cas system for genome editing in pluripotent stem cells].
Vasil'eva, E A; Melino, D; Barlev, N A
2015-01-01
Genome editing systems based on site-specific nucleases became very popular for genome editing in modern bioengineering. Human pluripotent stem cells provide a unique platform for genes function study, disease modeling, and drugs testing. Consequently, technology for fast, accurate and well controlled genome manipulation is required. CRISPR/Cas (clustered regularly interspaced short palindromic repeat/CRISPR-associated) system could be employed for these purposes. This system is based on site-specific programmable nuclease Cas9. Numerous advantages of the CRISPR/Cas system and its successful application to human stem cells provide wide opportunities for genome therapy and regeneration medicine. In this publication, we describe and compare the main genome editing systems based on site-specific programmable nucleases and discuss opportunities and perspectives of the CRISPR/Cas system for application to pluripotent stem cells.
Profile of prospective bioengineering students at National University of San Juan
NASA Astrophysics Data System (ADS)
Lopez, N.; Puzzella, A.; Zabala, A.; Demartini, H.; Alborch, A.; Cabrera, L.
2007-11-01
The low percentage of students (43 % of applicants) that passed the entrance exams for the bioengineering career at the National University of San Juan in 2007, plus the historical situation of desertion in first year (about 50%), motivated the application of a diagnostic test to prospective students of this career. The aim of this test was to obtain information about the competences acquired by students to solve problems in different contexts using basic mathematical tools, reading comprehension skills to understand texts, graphs and tables. Although this test was sat by the entire population of applicants of the current school year, only the results belonging to bioengineering students are the ones presented for the purpose of this work. However, students of other disciplines of the school of engineering also have similar problems. From the analysis of the answers to the different items, it can be observed that there are serious difficulties in the development of basic capacities to successfully take the courses of this career.
Bioengineering Solutions for Manufacturing Challenges in CAR T Cells
Piscopo, Nicole J.; Mueller, Katherine P.; Das, Amritava; Hematti, Peiman; Murphy, William L.; Palecek, Sean P.; Capitini, Christian M.
2017-01-01
The next generation of therapeutic products to be approved for the clinic is anticipated to be cell therapies, termed “living drugs” for their capacity to dynamically and temporally respond to changes during their production ex vivo and after their administration in vivo. Genetically engineered chimeric antigen receptor (CAR) T cells have rapidly developed into powerful tools to harness the power of immune system manipulation against cancer. Regulatory agencies are beginning to approve CAR T cell therapies due to their striking efficacy in treating some hematological malignancies. However, the engineering and manufacturing of such cells remains a challenge for widespread adoption of this technology. Bioengineering approaches including biomaterials, synthetic biology, metabolic engineering, process control and automation, and in vitro disease modeling could offer promising methods to overcome some of these challenges. Here, we describe the manufacturing process of CAR T cells, highlighting potential roles for bioengineers to partner with biologists and clinicians to advance the manufacture of these complex cellular products under rigorous regulatory and quality control. PMID:28840981
Crossing kingdoms: Using decellularized plants as perfusable tissue engineering scaffolds.
Gershlak, Joshua R; Hernandez, Sarah; Fontana, Gianluca; Perreault, Luke R; Hansen, Katrina J; Larson, Sara A; Binder, Bernard Y K; Dolivo, David M; Yang, Tianhong; Dominko, Tanja; Rolle, Marsha W; Weathers, Pamela J; Medina-Bolivar, Fabricio; Cramer, Carole L; Murphy, William L; Gaudette, Glenn R
2017-05-01
Despite significant advances in the fabrication of bioengineered scaffolds for tissue engineering, delivery of nutrients in complex engineered human tissues remains a challenge. By taking advantage of the similarities in the vascular structure of plant and animal tissues, we developed decellularized plant tissue as a prevascularized scaffold for tissue engineering applications. Perfusion-based decellularization was modified for different plant species, providing different geometries of scaffolding. After decellularization, plant scaffolds remained patent and able to transport microparticles. Plant scaffolds were recellularized with human endothelial cells that colonized the inner surfaces of plant vasculature. Human mesenchymal stem cells and human pluripotent stem cell derived cardiomyocytes adhered to the outer surfaces of plant scaffolds. Cardiomyocytes demonstrated contractile function and calcium handling capabilities over the course of 21 days. These data demonstrate the potential of decellularized plants as scaffolds for tissue engineering, which could ultimately provide a cost-efficient, "green" technology for regenerating large volume vascularized tissue mass. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Dye, Briana R; Dedhia, Priya H; Miller, Alyssa J; Nagy, Melinda S; White, Eric S; Shea, Lonnie D; Spence, Jason R
2016-01-01
Human pluripotent stem cell (hPSC) derived tissues often remain developmentally immature in vitro, and become more adult-like in their structure, cellular diversity and function following transplantation into immunocompromised mice. Previously we have demonstrated that hPSC-derived human lung organoids (HLOs) resembled human fetal lung tissue in vitro (Dye et al., 2015). Here we show that HLOs required a bioartificial microporous poly(lactide-co-glycolide) (PLG) scaffold niche for successful engraftment, long-term survival, and maturation of lung epithelium in vivo. Analysis of scaffold-grown transplanted tissue showed airway-like tissue with enhanced epithelial structure and organization compared to HLOs grown in vitro. By further comparing in vitro and in vivo grown HLOs with fetal and adult human lung tissue, we found that in vivo transplanted HLOs had improved cellular differentiation of secretory lineages that is reflective of differences between fetal and adult tissue, resulting in airway-like structures that were remarkably similar to the native adult human lung. DOI: http://dx.doi.org/10.7554/eLife.19732.001 PMID:27677847
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biver, Emmanuel, E-mail: ebiver@yahoo.fr; Department of Rheumatology, Lille University Hospital, Roger Salengro Hospital, 59037 Lille cedex; Service of Bone Diseases, Department of Internal Medicine Specialties, University Hospital of Geneva, CH-1211 Geneva 14
2012-11-02
Highlights: Black-Right-Pointing-Pointer FGF modulates BMPs pathway in HMSCs by down-regulating BMP/BMPR expression. Black-Right-Pointing-Pointer This effect is mediated by ERK and JNK MAPKs pathways. Black-Right-Pointing-Pointer Crosstalk between FGF and BMPs must be taken into account in skeletal bioengineering. Black-Right-Pointing-Pointer It must also be considered in the use of recombinant BMPs in orthopedic and spine surgeries. -- Abstract: Understanding the interactions between growth factors and bone morphogenic proteins (BMPs) signaling remains a crucial issue to optimize the use of human mesenchymal stem cells (HMSCs) and BMPs in therapeutic perspectives and bone tissue engineering. BMPs are potent inducers of osteoblastic differentiation. They exertmore » their actions via BMP receptors (BMPR), including BMPR1A, BMPR1B and BMPR2. Fibroblast growth factor 2 (FGF2) is expressed by cells of the osteoblastic lineage, increases their proliferation and is secreted during the healing process of fractures or in surgery bone sites. We hypothesized that FGF2 might influence HMSC osteoblastic differentiation by modulating expressions of BMPs and their receptors. BMP2, BMP4, BMPR1A and mainly BMPR1B expressions were up-regulated during this differentiation. FGF2 inhibited HMSCs osteoblastic differentiation and the up-regulation of BMPs and BMPR. This effect was prevented by inhibiting the ERK or JNK mitogen-activated protein kinases which are known to be activated by FGF2. These data provide a mechanism explaining the inhibitory effect of FGF2 on osteoblastic differentiation of HMSCs. These crosstalks between growth and osteogenic factors should be considered in the use of recombinant BMPs in therapeutic purpose of fracture repair or skeletal bioengineering.« less
Biomedical Applications of Untethered Mobile Milli/Microrobots
Sitti, Metin; Ceylan, Hakan; Hu, Wenqi; Giltinan, Joshua; Turan, Mehmet; Yim, Sehyuk; Diller, Eric
2016-01-01
Untethered robots miniaturized to the length scale of millimeter and below attract growing attention for the prospect of transforming many aspects of health care and bioengineering. As the robot size goes down to the order of a single cell, previously inaccessible body sites would become available for high-resolution in situ and in vivo manipulations. This unprecedented direct access would enable an extensive range of minimally invasive medical operations. Here, we provide a comprehensive review of the current advances in biome dical untethered mobile milli/microrobots. We put a special emphasis on the potential impacts of biomedical microrobots in the near future. Finally, we discuss the existing challenges and emerging concepts associated with designing such a miniaturized robot for operation inside a biological environment for biomedical applications. PMID:27746484
Materials Manufactured from 3D Printed Synthetic Biology Arrays
NASA Technical Reports Server (NTRS)
Gentry, Diana; Micks, Ashley
2013-01-01
Many complex, biologically-derived materials have extremely useful properties (think wood or silk), but are unsuitable for space-related applications due to production, manufacturing, or processing limitations. Large-scale ecosystem-based production, such as raising and harvesting trees for wood, is impractical in a self-contained habitat such as a space station or potential Mars colony. Manufacturing requirements, such as the specialized equipment needed to harvest and process cotton, add too much upmass for current launch technology. Cells in nature are already highly specialized for making complex biological materials on a micro scale. We envision combining these strengths with the recently emergent technologies of synthetic biology and 3D printing to create 3D-structured arrays of cells that are bioengineered to secrete different materials in a specified three-dimensional pattern.
The role of biomaterials in the treatment of meniscal tears
Brown, Robert J.
2017-01-01
Extensive investigations over the recent decades have established the anatomical, biomechanical and functional importance of the meniscus in the knee joint. As a functioning part of the joint, it serves to prevent the deterioration of articular cartilage and subsequent osteoarthritis. To this end, meniscus repair and regeneration is of particular interest from the biomaterial, bioengineering and orthopaedic research community. Even though meniscal research is previously of a considerable volume, the research community with evolving material science, biology and medical advances are all pushing toward emerging novel solutions and approaches to the successful treatment of meniscal difficulties. This review presents a tactical evaluation of the latest biomaterials, experiments to simulate meniscal tears and the state-of-the-art materials and strategies currently used to treat tears. PMID:29158995
System for the Management of Trauma and Emergency Surgery in Space
NASA Technical Reports Server (NTRS)
Houtchens, B.
1984-01-01
The need to develop a systems approach to the management of trauma and other major clinical medical events in space along with appropriate development and evaluation of surgical techniques and required hardware was investigated. A prototype zero gravity surgical module was constructed and tested aboard a KC-135 aircraft during parabolic arc zero G flight. To insure parity of quality care to that available on Earth, it was recommended that a clinical medical and bioengineering advisory committee define and help develop the necessary components of the clinical medical care system for the space station and lunar base. Key components of the system are aerospace surgical training, medical equipment development, including support hardware and software, rapid access to a network of specialty expertise, and continued research and development.
Designer human tissue: coming to a lab near you.
Hay, David C; O'Farrelly, Cliona
2018-07-05
Human pluripotent stem cells (PSCs) offer a scalable alternative to primary and transformed human tissue. PSCs include human embryonic stem cells, derived from the inner cell mass of blastocysts unsuitable for human implantation; and induced PSCs, generated by the reprogramming of somatic cells. Both cell types display the ability to self-renew and retain pluripotency, promising an unlimited supply of human somatic cells for biomedical application. A distinct advantage of using PSCs is the ability to select for genetic background, promising personalized modelling of human biology 'in a dish' or immune-matched cell-based therapies for the clinic. This special issue will guide the reader through stem cell self-renewal, pluripotency and differentiation. The first articles focus on improving cell fidelity, understanding the innate immune system and the importance of materials chemistry, biofabrication and bioengineering. These are followed by articles that focus on industrial application, commercialization and label-free assessment of tissue formation. The special issue concludes with an article discussing human liver cell-based therapies past, present and future.This article is part of the theme issue 'Designer human tissue: coming to a lab near you'. © 2018 The Authors.
Toni, Roberto; Casa, Claudia Della; Spaletta, Giulia; Marchetti, Giacomo; Mazzoni, Perseo; Bodria, Monica; Ravera, Simone; Dallatana, Davide; Castorina, Sergio; Riccioli, Vincenzo; Castorina, Emilio Giovanni; Antoci, Salvatore; Campanile, Enrico; Raise, Gabriella; Scalise, Gabriella; Rossi, Raffaella; Rossio, Raffaella; Ugolotti, Giorgio; Ugolottio, Giorgio; Martorella, Andrew; Roti, Elio; Rot, Elio; Sgallari, Fiorella; Pinchera, Aldo
2007-01-01
A new concept for ex situ endocrine organ bioengineering is presented, focused on the realization of a human bioartificial thyroid gland. It is based on the theoretical assumption and experimental evidence that symmetries in geometrical coordinates of the thyroid tissue remain invariant with respect to developmental, physiological or pathophysiological transformations occuring in the gland architecture. This topological arrangement is dependent upon physical connections established between cells, cell adhesion molecules and extracellular matrix, leading to the view that the thyroid parenchyma behaves like a deformable "putty", moulded onto an elastic stromal/vascular scaffold (SVS) dictating the final morphology of the gland. In particular, we have raised the idea that the geometry of the SVS per se provides pivotal epigenetic information to address the genetically-programmed, thyrocyte and endothelial/vascular proliferation and differentiation towards a functionally mature gland, making organ form a pre-requirementfor organ function. A number of experimental approaches are explored to obtain a reliable replica of a human thyroid SVS, and an informatic simulation is designed based on fractal growth of the thyroid intraparenchymal arterial tree. Various tissue-compatible and degradable synthetic or biomimetic polymers are discussed to act as a template of the thyroid SVS, onto which to co-seed autologous human thyrocyte (TPC) and endothelial/vascular (EVPC) progenitor cells. Harvest and expansion of both TPC and EVPC in primary culture are considered, with specific attention to the selection of normal thyrocytes growing at a satisfactory rate to colonize the synthetic matrix. In addition, both in vitro and in vivo techniques to authenticate TPC and EVPC lineage differentiation are reviewed, including immunocytochemistry, reverse trascriptase-polymerase chain reaction, flow cytomery and proteomics. Finally, analysis of viability of the thyroid construct following implantation in animal hosts is proposed, with the intent to obtain a bioartificial thyroid gland morphologically and functionally adequate for transplantation. We believe that the biotechnological scenario proposed herein may provide a template to construct other, more complex and clinically-relevant bioartificial endocrine organs ex situ, such as human pancreatic islets and the liver, and perhaps a new approach to brain bioengineering.
2012-10-08
differentiation of co- cultured cells in vivo and in vitro. We first utilized a co- culture of fluorescently labeled endothelial cells (ECs) and muscle...of 10T1/2 cells as pericytes (PCs) to the culture of MPCs and ECs can result in the stabilization of bioengineered vessels [10]. In the current study...Burlingame, CA). 2.2. Cell culture 2.2.1. MPC, EC, PC isolation and culture Green fluorescent protein (GFP)-labeled muscle progenitor cells (GFPþ MPCs
Ford Carleton, Penny; Parrish, John A.; Collins, John M.; Crocker, J. Benjamin; Dixon, Ronald F.; Edgman-Levitan, Susan; Lewandrowski, Kent B.; Stahl, James E.; Klapperich, Catherine; Cabodi, Mario; Gaydos, Charlotte A.; Rompalo, Anne M.; Manabe, Yukari; Wang, Tza-Huei; Rothman, Richard; Geddes, Chris D.; Widdice, Lea; Jackman, Joany; Mathura, Rishi A.; Lash, Tiffani Bailey
2016-01-01
To advance the development of point-of-care technology (POCT), the National Institute of Biomedical Imaging and Bioengineering established the POCT Research Network (POCTRN), comprised of Centers that emphasize multidisciplinary partnerships and close facilitation to move technologies from an early stage of development into clinical testing and patient use. This paper describes the POCTRN and the three currently funded Centers as examples of academic-based organizations that support collaborations across disciplines, institutions, and geographic regions to successfully drive innovative solutions from concept to patient care. PMID:27730014
Grand challenges in bioengineered nanorobotics for cancer therapy.
Lenaghan, Scott C; Wang, Yongzhong; Xi, Ning; Fukuda, Toshio; Tarn, Tzyhjong; Hamel, William R; Zhang, Mingjun
2013-03-01
One of the grand challenges currently facing engineering, life sciences, and medicine is the development of fully functional nanorobots capable of sensing, decision making, and actuation. These nanorobots may aid in cancer therapy, site-specific drug delivery, circulating diagnostics, advanced surgery, and tissue repair. In this paper, we will discuss, from a bioinspired perspective, the challenges currently facing nanorobotics, including core design, propulsion and power generation, sensing, actuation, control, decision making, and system integration. Using strategies inspired from microorganisms, we will discuss a potential bioengineered nanorobot for cancer therapy.
Malecki, Marek; LaVanne, Christine; Alhambra, Dominique; Dodivenaka, Chaitanya; Nagel, Sarah; Malecki, Raf
2014-01-01
Introduction The worst possible complication of using stem cells for regenerative therapy is iatrogenic cancerogenesis. The ultimate goal of our work is to develop a self-triggering feedback mechanism aimed at causing death of all stem cells, which resist directed differentiation, keep proliferating, and can grow into tumors. Specific aim The specific aim was threefold: (1) to genetically engineer the DNA constructs for the human, recombinant DNASE1, DNASE1L3, DNASE2, DFFB controlled by POLA promoter; (2) to bioengineer anti-SSEA-4 antibody guided vectors delivering transgenes to human undifferentiated and proliferating pluripotent stem cells; (3) to cause death of proliferating and directed differentiation resisting stem cells by transgenic expression of the human recombinant the DNases (hrDNases). Methods The DNA constructs for the human, recombinant DNASE1, DNASE1L3, DNASE2, DFFB controlled by POLA promoter were genetically engineered. The vectors targeting specifically SSEA-4 expressing stem cells were bioengineered. The healthy volunteers’ bone marrow mononuclear cells (BMMCs) were induced into human, autologous, pluripotent stem cells with non-integrating plasmids. Directed differentiation of the induced stem cells into endothelial cells was accomplished with EGF and BMP. The anti-SSEA 4 antibodies’ guided DNA vectors delivered the transgenes for the human recombinant DNases’ into proliferating stem cells. Results Differentiation of the pluripotent induced stem cells into the endothelial cells was verified by highlighting formation of tight and adherens junctions through transgenic expression of recombinant fluorescent fusion proteins: VE cadherin, claudin, zona occludens 1, and catenin. Proliferation of the stem cells was determined through highlighting transgenic expression of recombinant fluorescent proteins controlled by POLA promoter, while also reporting expression of the transgenes for the hrDNases. Expression of the transgenes for the DNases resulted in complete collapse of the chromatin architecture and degradation of the proliferating cells’ genomic DNA. The proliferating stem cells, but not the differentiating ones, were effectively induced to die. Conclusion Herein, we describe attaining the proof-of-concept for the strategy, whereby transgenic expression of the genetically engineered human recombinant DNases in proliferating and directed differentiation resisting stem cells leads to their death. This novel strategy reduces the risk of iatrogenic neoplasms in stem cell therapy. PMID:25045589
Tissue Engineering and Regenerative Medicine 2015: A Year in Review.
Wobma, Holly; Vunjak-Novakovic, Gordana
2016-04-01
This may be the most exciting time ever for the field of tissue engineering and regenerative medicine (TERM). After decades of progress, it has matured, integrated, and diversified into entirely new areas, and it is starting to make the pivotal shift toward translation. The most exciting science and applications continue to emerge at the boundaries of disciplines, through increasingly effective interactions between stem cell biologists, bioengineers, clinicians, and the commercial sector. In this "Year in Review," we highlight some of the major advances reported over the last year (Summer 2014-Fall 2015). Using a methodology similar to that established in previous years, we identified four areas that generated major progress in the field: (i) pluripotent stem cells, (ii) microtissue platforms for drug testing and disease modeling, (iii) tissue models of cancer, and (iv) whole organ engineering. For each area, we used some of the most impactful articles to illustrate the important concepts and results that advanced the state of the art of TERM. We conclude with reflections on emerging areas and perspectives for future development in the field.
Emerging Roles for Extracellular Vesicles in Tissue Engineering and Regenerative Medicine
Lamichhane, Tek N.; Sokic, Sonja; Schardt, John S.; Raiker, Rahul S.; Lin, Jennifer W.
2015-01-01
Extracellular vesicles (EVs)—comprising a heterogeneous population of cell-derived lipid vesicles including exosomes, microvesicles, and others—have recently emerged as both mediators of intercellular information transfer in numerous biological systems and vehicles for drug delivery. In both roles, EVs have immense potential to impact tissue engineering and regenerative medicine applications. For example, the therapeutic effects of several progenitor and stem cell-based therapies have been attributed primarily to EVs secreted by these cells, and EVs have been recently reported to play direct roles in injury-induced tissue regeneration processes in multiple physiological systems. In addition, EVs have been utilized for targeted drug delivery in regenerative applications and possess unique potential to be harnessed as patient-derived drug delivery vehicles for personalized medicine. This review discusses EVs in the context of tissue repair and regeneration, including their utilization as drug carriers and their crucial role in cell-based therapies. Furthermore, the article highlights the growing need for bioengineers to understand, consider, and ultimately design and specifically control the activity of EVs to maximize the efficacy of tissue engineering and regenerative therapies. PMID:24957510
Tissue Engineering and Regenerative Medicine 2015: A Year in Review
Wobma, Holly
2016-01-01
This may be the most exciting time ever for the field of tissue engineering and regenerative medicine (TERM). After decades of progress, it has matured, integrated, and diversified into entirely new areas, and it is starting to make the pivotal shift toward translation. The most exciting science and applications continue to emerge at the boundaries of disciplines, through increasingly effective interactions between stem cell biologists, bioengineers, clinicians, and the commercial sector. In this “Year in Review,” we highlight some of the major advances reported over the last year (Summer 2014–Fall 2015). Using a methodology similar to that established in previous years, we identified four areas that generated major progress in the field: (i) pluripotent stem cells, (ii) microtissue platforms for drug testing and disease modeling, (iii) tissue models of cancer, and (iv) whole organ engineering. For each area, we used some of the most impactful articles to illustrate the important concepts and results that advanced the state of the art of TERM. We conclude with reflections on emerging areas and perspectives for future development in the field. PMID:26714410
Proof of concept of a new autologous skin substitute for the treatment of deep wounds in dogs.
Ramió-Lluch, L; Cerrato, S; Brazis, P; Rabanal, R M; Fondevila, D; Puigdemont, A
2017-12-01
Autologous skin grafts are effective for the repair of large skin wounds, but the availability of large amounts of skin is often limited. Through bioengineering, several autologous skin substitutes have been developed for use in human clinical practice. However, few skin substitutes are available for use in animals. The aim of this study was to develop and assess an engineered autologous skin substitute for the treatment of deep wounds in veterinary medicine. Canine keratinocytes and fibroblasts were isolated after double enzyme digestion from 8mm punch biopsies from four healthy Beagle dogs. Skin substitutes were constructed on a fibrin-based matrix and grafting capacity was assessed by xenografting in six athymic mice. Bioengineered autologous skin was assessed clinically in two dogs with large deep skin wounds. The canine skin construct was ready for use within 12-14days after the initial biopsy specimens were obtained. Grafting capacity in this model was confirmed by successful grafting of the construct in athymic mice. In both dogs, grafts were established and permanent epithelialisation occurred. Histological studies confirmed successful grafting. This full thickness skin substitute developed for the management of large skin defects in dogs appears to be a safe and useful tool for clinical veterinary practice. Further studies are needed to validate its efficacy for the treatment of deep wounds. Copyright © 2017 Elsevier Ltd. All rights reserved.
Bioengineering approaches to controlled protein delivery.
Kobsa, Serge; Saltzman, W Mark
2008-05-01
Proteins are of crucial importance in all biologic organisms, in terms of both structure and function. Their deficits play central roles in many pathologic states, and their potential as powerful therapeutic agents has been widely recognized. Many issues, however, exist in delivery of biologically active proteins to target tissues and organs. Recent advances in biomedical engineering have lead to development of advanced techniques for controlled delivery of peptides and proteins, paving the way for their efficient use in treating human injury and disease. With a particular emphasis on most recent advances, this review discusses currently available techniques for controlled delivery of proteins and considers future research directions.
River restoration and biocoenoses improvement in two streams renaturated using bioengeneering.
NASA Astrophysics Data System (ADS)
Leoni, B.; Forasacco, E.; Dobner, R.; Cotta Ramusino, M.
2003-04-01
The Bioengineering is a constructive discipline having its own technical, ecological and environmental friendly scopes, by using living materials. The aim of this study is to assess the river restoration efficiency of Bioengineering. The basic goals of many management-concepts are the integrity of the river habitat, self-regulation and self-regeneration, the preservation of intact resources, to recreate the uniqueness, diversity and beauty of natural river landscape. From an ecological point of view the richness, diversity and age composition of the populations developing after restoration as a result of habitat improvement reveal the degree to which comprehensive concepts were applied (Jungwirth et al., 1995). The following results summarised an investigation on streams Boesio and Rancina in Valcuvia, (Varese, Northern Italy). These streams are characterised by human impacts like water pollution, river engineering and river bioengineering (palificata doppia viva). The samples of macrobenthic fauna were collected between August 2000 and July 2001 in 4 stations for each stream, where the 3rd station of Boesio and Rancina streams is characterised by bioengeneering measure, using a Surber sampler (0.125 m2, mesh size 0.45 mm). The zoobenthic communities of these pre-alpine streams are characterised by low richness and diversity and few families and genera were predominant. In Rancina stream, Ephemeroptera (genus Baetis), Trichoptera (families Hydropsychidae, Limnephilidae and Rhyacophilidae) and Diptera (families Chironomidae and Simuliidae) are present throughout the year with significant densities. The faunal composition of Boesio stream is similar. It differs, only, from stream Rancina to costant presence of Plecoptera with genus Leuctra. To evaluate the restoration of environmental quality two indices were applied: Indice Biotico Esteso (I.B.E.- Ghetti, 1995); Indice di Funzionalità Fluviale (I.F.F.- Siligardi, 2000). The E.B.I. scores of Boesio stream indicate that stations 1 and 2 are in good condition (Ecological status classification: II): therefore the level of diversity and abundance of macrobenthic taxa is slightly outside the range associated with the normal conditions and the most of the sensitive taxa of the type specific communities are present. The stations 3 and 4 are in moderate condition (Ecological status classification: III): the level of diversity and abundance of invertebrate taxa is moderately outside the normal condition range, the taxa indicative of pollution are present and many of the sensitive taxa of the type specific communities are absent. In the Rancina stream in all of the 4 stations the ecological status is indicated like moderate (Ecological status classification: III): there is a predominance of taxa more resistant at pollution and at changes in other biological components of the stream. The I.F.F. show that in Boesio stream the right shore score is moderate-good and the left shore score is moderate-poor. Differently, the Rancina stream presents the right shore with a value poor and the left shore with a wide gradient between good and poor-bad. In conclusion, we can affirm the low efficiency of Bioengineering to restore the Boesio and Rancina streams, because we cannot observe the habitat and aquatic biocoenoses improvement. An explication could be that the conversions are restricted to morphological measures, which are carried out on a small way of banks. Whereas, the restoration using the Bioengineering requires taking the entire catchment area into consideration.
NASA Astrophysics Data System (ADS)
Petrone, A.; Preti, F.
2009-04-01
The use of Soil Bio-Engineering techniques in Developing countries is a relevant issue for Disaster mitigation, environmental restoration and poverty reduction. Research on authochtonal plants suitable for this kind of works and on economic efficiency is essential for the divulgation of this Discipline. The present paper is focused on this two issues related to the realization of various typologies of Soil Bio-engineering works in the Humid tropic of Nicaragua. In the area of Río Blanco, located in the Department of Matagalpa, Soil bio-engineering installations were built in several sites. The particular structures built were: drainages with live fascine mattress, a live palisade, a vegetated live crib wall for riverbank protection, a vegetative covering made of a metallic net and biotextile coupled with a live palisade made of bamboo. In order to evaluate the suitability of the various plants used in the works, monitorings were performed, one in the live palisade alongside an unpaved road and the other on the live crib wall along a riverbank, collecting survival rate and morphological parameters data. Concerning the economic efficiency we proceed to a financial analysis of the works and once the unit price was obtained, we converted the amount in EPP Dollars (Equal Purchasing Power) in order to compare the Nicaraguan context with the Italian one. Among the used species we found that Madero negro (Gliricidia sepium) and Roble macuelizo (Tabebuia rosea) are adequate for Soil-bioengineering measure on slopes while Helequeme (Erythrina fusca) reported a successful behaviour only in the crib wall for riverbank protection. In the comparison of the costs in Nicaragua and in Italy, the unit price reduction for the central American country ranges between 1.5 times (for the vegetative covering) and almost 4 times (for the fascine mattress) if it's used the EPP dollar exchange rate. Thus, a conclusion can be reached with regard to hydrological-risk mitigating actions performed on a basin scale and through naturalistic techniques: not only are they technically attainable, even in hardship areas (by maximizing the contribution of the local labor force and minimizing the use of mechanical equipment), but they are also economically sustainable.
Soil bio-engineering for risk mitigation and environmental restoration in a humid tropical area
NASA Astrophysics Data System (ADS)
Petrone, A.; Preti, F.
2009-07-01
The use of soil bio-engineering techniques in developing countries is a relevant issue for disaster mitigation, environmental restoration and poverty reduction. Research on authochtonal plants suitable for this kind of works and on economic efficiency is essential for the divulgation of such techniques. The present paper is focused on this two issues related to the realization of various typologies of soil bio-engineering works in the humid tropic of Nicaragua. In the area of Río Blanco, located in the Department of Matagalpa, soil bio-engineering installations were built in several sites. The particular structures built were: drainages with live fascine mattress, a live palisade, a vegetated live crib wall for riverbank protection, a vegetative covering made of a metallic net and biotextile coupled with a live palisade made of bamboo. In order to evaluate the suitability of the various plants used in the works, monitorings were performed, one in the live palisade alongside an unpaved road and the other on the live crib wall along a riverbank, collecting survival rate and morphological parameters data. Concerning the economic efficiency we proceed to a financial analysis of the works and once the unit price was obtained, we converted the amount in EPP Dollars (Equal Purchasing Power) in order to compare the Nicaraguan context with the Italian one. Among the used species we found that Madero negro (Gliricidia sepium) and Roble macuelizo (Tabebuia rosea) are adequate for soil-bioengineering measure on slopes while Helequeme (Erythrina fusca) reported a successful behaviour only in the crib wall for riverbank protection. In the comparison of the costs in Nicaragua and in Italy, the unit price reduction for the Central American country ranges between 1.5 times (for the vegetative covering) and almost 4 times (for the fascine mattress) if it's used the EPP dollar exchange rate. Conclusions are reached with regard to hydrological-risk mitigating actions performed on a basin scale and through naturalistic (live) interventions: not only are they socially and technically attainable, even in hardship areas (by maximizing the contribution of the local labor force and minimizing the use of mechanical equipment), but they are also economically sustainable.
Soil bioengineering for risk mitigation and environmental restoration in a humid tropical area
NASA Astrophysics Data System (ADS)
Petrone, A.; Preti, F.
2010-02-01
The use of soil bio-engineering techniques in developing countries is a relevant issue for disaster mitigation, environmental restoration and poverty reduction. Research on the autochthonal plants suitable for these kinds of interventions and on the economic efficiency of the interventions is essential for the dissemination of such techniques. The present paper is focused on these two issues as related to the realization of various typologies of soil bioengineering works in the humid tropics of Nicaragua. In the area of Río Blanco, located in the Department of Matagalpa, soil bioengineering installations were built in several sites. The particular structures built were: drainages with live fascine mattress, a live palisade, a vegetated live crib wall for riverbank protection, a vegetative covering made of a metallic net and biotextile coupled with a live palisade made of bamboo. In order to evaluate the suitability of the various plants used in these works, monitoring was performed, one on the live palisade alongside an unpaved road and the other on the live crib wall along a riverbank, by collecting data on survival rate and morphological parameters. Concerning economic efficiency, we proceeded to a financial analysis of the works. Once the unit price was obtained, we converted the amount into EPP Dollars (Equal Purchasing Power) in order to compare the Nicaraguan context with the European one. Among the species used we found that Gliricidia sepium (local common name: Madero negro) and Tabebuia rosea (local common name: Roble macuelizo) are adequate for soil bioengineering measures on slopes, while Erythrina fusca (local common name: Helequeme) resulted in successful behaviour only in the crib wall for riverbank protection. In comparing costs in Nicaragua and in Italy, the unit price reduction for Nicaragua ranges from 1.5 times (for the vegetative covering) to almost 4 times (for the fascine mattress), using the EPP dollar exchange rate. Our conclusions with regard to hydrological-risk mitigating actions performed on a basin scale and through naturalistic (live) interventions are that they are not only socially and technically possible, even in hardship areas (by maximizing the contribution of the local labour force and minimizing the use of mechanical equipment), but also economically sustainable.
Clinical application of microencapsulated islets: actual prospectives on progress and challenges.
Calafiore, Riccardo; Basta, Giuseppe
2014-04-01
After 25 years of intense pre-clinical work on microencapsulated intraperitoneal islet grafts into non-immunosuppressed diabetic recipients, the application of this procedure to patients with type 1 diabetes mellitus has been a significant step forward. This result, achieved in a few centers worldwide, underlies the safety of biopolymers used for microencapsulation. Without this advance, no permission for human application of microcapsules would have ever been obtained after years of purification technologies applied to the raw alginates. To improve safety of the encapsulated islet graft system, renewed efforts on the capsules' bioengineering, as well as on insulin-producing cells within the capsular membranes, are in progress. It is hoped that advances in these two critical aspects of the cell encapsulation technology will result in wider human application of this system. Copyright © 2013 Elsevier B.V. All rights reserved.
Revascularization of decellularized lung scaffolds: principles and progress
Stabler, Collin T.; Lecht, Shimon; Mondrinos, Mark J.; Goulart, Ernesto; Lazarovici, Philip
2015-01-01
There is a clear unmet clinical need for novel biotechnology-based therapeutic approaches to lung repair and/or replacement, such as tissue engineering of whole bioengineered lungs. Recent studies have demonstrated the feasibility of decellularizing the whole organ by removal of all its cellular components, thus leaving behind the extracellular matrix as a complex three-dimensional (3D) biomimetic scaffold. Implantation of decellularized lung scaffolds (DLS), which were recellularized with patient-specific lung (progenitor) cells, is deemed the ultimate alternative to lung transplantation. Preclinical studies demonstrated that, upon implantation in rodent models, bioengineered lungs that were recellularized with airway and vascular cells were capable of gas exchange for up to 14 days. However, the long-term applicability of this concept is thwarted in part by the failure of current approaches to reconstruct a physiologically functional, quiescent endothelium lining the entire vascular tree of reseeded lung scaffolds, as inferred from the occurrence of hemorrhage into the airway compartment and thrombosis in the vasculature in vivo. In this review, we explore the idea that successful whole lung bioengineering will critically depend on 1) preserving and/or reestablishing the integrity of the subendothelial basement membrane, especially of the ultrathin respiratory membrane separating airways and capillaries, during and following decellularization and 2) restoring vascular physiological functionality including the barrier function and quiescence of the endothelial lining following reseeding of the vascular compartment. We posit that physiological reconstitution of the pulmonary vascular tree in its entirety will significantly promote the clinical translation of the next generation of bioengineered whole lungs. PMID:26408553
One device, one equation: the simplest way to objectively evaluate psoriasis severity.
Choi, Jae Woo; Kim, Bo Ri; Choi, Chong Won; Youn, Sang Woong
2015-02-01
The erythema, scale and thickness of psoriasis lesions could be converted to bioengineering parameters. An objective psoriasis severity assessment is advantageous in terms of accuracy and reproducibility over conventional severity assessment. We aimed to formulate an objective psoriasis severity index with a single bioengineering device that can possibly substitute the conventional subjective Psoriasis Severity Index. A linear regression analysis was performed to derive the formula with the subjective Psoriasis Severity Index as the dependent variable and various bioengineering parameters determined from 157 psoriasis lesions as independent variables. The construct validity of the objective Psoriasis Severity Index was evaluated with an additional 30 psoriasis lesions through a Pearson correlation analysis. The formula is composed of hue and brightness, which are sufficiently obtainable with a Colorimeter alone. A very strong positive correlation was found between the objective and subjective psoriasis severity indexes. The objective Psoriasis Severity Index is a novel, practical and valid assessment method that can substitute the conventional one. Combined with subjective area assessment, it could further replace the Psoriasis Area and Severity Index which is currently most popular. © 2014 Japanese Dermatological Association.
A classification of the mechanisms producing pathological tissue changes.
Grippo, John O; Oh, Daniel S
2013-05-01
The objectives are to present a classification of mechanisms which can produce pathological changes in body tissues and fluids, as well as to clarify and define the term biocorrosion, which has had a singular use in engineering. Considering the emerging field of biomedical engineering, it is essential to use precise definitions in the lexicons of engineering, bioengineering and related sciences such as medicine, dentistry and veterinary medicine. The mechanisms of stress, friction and biocorrosion and their pathological effects on tissues are described. Biocorrosion refers to the chemical, biochemical and electrochemical changes by degradation or induced growth of living body tissues and fluids. Various agents which can affect living tissues causing biocorrosion are enumerated which support the necessity and justify the use of this encompassing and more precise definition of biocorrosion. A distinction is made between the mechanisms of corrosion and biocorrosion.
Cataldo, Vicente F; López, Javiera; Cárcamo, Martín; Agosin, Eduardo
2016-07-01
Apocarotenoids are natural compounds derived from the oxidative cleavage of carotenoids. Particularly, C13-apocarotenoids are volatile compounds that contribute to the aromas of different flowers and fruits and are highly valued by the Flavor and Fragrance industry. So far, the chemical synthesis of these terpenoids has dominated the industry. Nonetheless, the increasing consumer demand for more natural and sustainable processes raises an interesting opportunity for bio-production alternatives. In this regard, enzymatic biocatalysis and metabolically engineered microorganisms emerge as attractive biotechnological options. The present review summarizes promising bioengineering approaches with regard to chemical production methods for the synthesis of two families of C13-apocarotenoids: ionones/dihydroionones and damascones/damascenone. We discuss each method and its applicability, with a thorough comparative analysis for ionones, focusing on the production process, regulatory aspects, and sustainability.
Should bioengineering graduates seek employment in the defense industry?
Johnson, Arthur T
2014-01-01
They say that the difference between a mechanical engineer and a civil engineer is that the mechanical engineer develops weapons whereas a civil engineer designs targets. The implication is that some engineers are involved with building peaceful infrastructure whereas others contribute to destruction. This brings to mind the question: what is the proper role for engineers in the creation of weapons and defenses against them? In particular, should engineers specializing in biology or medicine be involved in the defense industry? After all, bioengineers are supposed to be builders or healers rather than warriors or destroyers.
Delaney, Alexander M; Adams, Christopher F; Fernandes, Alinda R; Al-Shakli, Arwa F; Sen, Jon; Carwardine, Darren R; Granger, Nicolas; Chari, Divya M
2017-06-29
Olfactory ensheathing cells (OECs) promote axonal regeneration and improve locomotor function when transplanted into the injured spinal cord. A recent clinical trial demonstrated improved motor function in domestic dogs with spinal injury following autologous OEC transplantation. Their utility in canines offers promise for human translation, as dogs are comparable to humans in terms of clinical management and genetic/environmental variation. Moreover, the autologous, minimally invasive derivation of OECs makes them viable for human spinal injury investigation. Genetic engineering of transplant populations may augment their therapeutic potential, but relies heavily on viral methods which have several drawbacks for clinical translation. We present here the first proof that magnetic particles deployed with applied magnetic fields and advanced DNA minicircle vectors can safely bioengineer OECs to secrete a key neurotrophic factor, with an efficiency approaching that of viral vectors. We suggest that our alternative approach offers high translational potential for the delivery of augmented clinical cell therapies.
Montecinos, Viviana P; Morales, Claudio H; Fischer, Thomas H; Burns, Sarah; San Francisco, Ignacio F; Godoy, Alejandro S; Smith, Gary J
2015-01-01
Androgen deprivation therapy (ADT) provides palliation for most patients with advanced prostate cancer (CaP); however, greater than 80% subsequently fail ADT. ADT has been indicated to induce an acute but transient destabilization of the prostate vasculature in animal models and humans. Human re-hydrated lyophilized platelets (hRL-P) were investigated as a prototype for therapeutic agents designed to target selectively the tumour-associated vasculature in CaP. The ability of hRL-P to bind the perturbed endothelial cells was tested using thrombin- and ADP-activated human umbilical vein endothelial cells (HUVEC), as well as primary xenografts of human prostate tissue undergoing acute vascular involution in response to ADT. hRL-P adhered to activated HUVEC in a dose-responsive manner. Systemically administered hRL-P, and hRL-P loaded with super-paramagnetic iron oxide (SPIO) nanoparticles, selectively targeted the ADT-damaged human microvasculature in primary xenografts of human prostate tissue. This study demonstrated that hRL-P pre-loaded with chemo-therapeutics or nanoparticles could provide a new paradigm for therapeutic modalities to prevent the rebound/increase in prostate vasculature after ADT, inhibiting the transition to castration-recurrent growth. PMID:25736582
NASA Technical Reports Server (NTRS)
Goodwin, Thomas J.; McCarthy, M.; Lin, Y-H.; Deatly, A. M.
2008-01-01
In vitro three-dimensional (3D) human lung epithelio-mesenchymal tissue-like assemblies (3D hLEM TLAs) from this point forward referred to as TLAs were engineered in Rotating Wall Vessel (RWV) technology to mimic the characteristics of in vivo tissues thus providing a tool to study human respiratory viruses and host cell interactions. The TLAs were bioengineered onto collagen-coated cyclodextran microcarriers using primary human mesenchymal bronchial-tracheal cells (HBTC) as the foundation matrix and an adult human bronchial epithelial immortalized cell line (BEAS-2B) as the overlying component. The resulting TLAs share significant characteristics with in vivo human respiratory epithelium including polarization, tight junctions, desmosomes, and microvilli. The presence of tissue-like differentiation markers including villin, keratins, and specific lung epithelium markers, as well as the production of tissue mucin, further confirm these TLAs differentiated into tissues functionally similar to in vivo tissues. Increasing virus titers for human respiratory syncytial virus (wtRSVA2) and the detection of membrane bound glycoproteins over time confirm productive infection with the virus. Therefore, we assert TLAs mimic aspects of the human respiratory epithelium and provide a unique capability to study the interactions of respiratory viruses and their primary target tissue independent of the host s immune system.
NASA Technical Reports Server (NTRS)
Goodwin, T. J.; McCarthy, M.; Lin, Y-H
2006-01-01
In vitro three-dimensional (3D) human broncho-epithelial (HBE) tissue-like assemblies (3D HBE TLAs) from this point forward referred to as TLAs were engineered in Rotating Wall Vessel (RWV) technology to mimic the characteristics of in vivo tissues thus providing a tool to study human respiratory viruses and host cell interactions. The TLAs were bioengineered onto collagen-coated cyclodextran microcarriers using primary human mesenchymal bronchial-tracheal cells (HBTC) as the foundation matrix and an adult human bronchial epithelial immortalized cell line (BEAS-2B) as the overlying component. The resulting TLAs share significant characteristics with in vivo human respiratory epithelium including polarization, tight junctions, desmosomes, and microvilli. The presence of tissue-like differentiation markers including villin, keratins, and specific lung epithelium markers, as well as the production of tissue mucin, further confirm these TLAs differentiated into tissues functionally similar to in vivo tissues. Increasing virus titers for human respiratory syncytial virus (wtRSVA2) and parainfluenza virus type 3 (wtPIV3 JS) and the detection of membrane bound glycoproteins over time confirm productive infections with both viruses. Therefore, TLAs mimic aspects of the human respiratory epithelium and provide a unique capability to study the interactions of respiratory viruses and their primary target tissue independent of the host's immune system.
Cantore, Stefania; Crincoli, Vito; Boccaccio, Antonio; Uva, Antonio Emmanuele; Fiorentino, Michele; Monno, Giuseppe; Bollero, Patrizio; Derla, Chiara; Fabiano, Francesca; Ballini, Andrea; Santacroce, Luigi
2018-04-22
New sources of stem cells in adult organisms are constantly emerging. Postnatal Mesenchymal Stem Cells (MSCs), are the most promising support to perform an effective regenerative medicine: such cells have the ability to differentiate into several lineages, such as osteoblasts and chondroblasts, providing novel strategies to improve different complex treatments, during bone regeneration. 3D-printed biomaterials can be designed with geometry aimed to induce stem cells to differentiate towards specific lineage. The interaction between stem cells easy to isolate and engineered 3D-printed scaffolds can translate the tissue bio-engineering into bone regenerative surgery. For those reasons, to better identify the complexity represented by the activities and responses of MSCs requires the advance of new target therapies which are not current in endocrine, metabolic and immune disorders and yet to be developed. This topical review briefly focuses on the new approaches of translational medicine with the use of MSCs and scaffolds engineered with the aid of 3D-printing technology, highlights the osteogenic functions then addressing their applications across the breadth of regenerative medicine. The application of bone constructs consisting of engineered scaffold and MSCs as well as the aspects related to the optimal scaffold geometry that favours the best MSCs differentiation and the improvement of concepts as "sensing surface" were also discussed. Regenerative surgery is largely growing in the field of translational medicine. The use of new sources of MSCs and the improvement of new concepts of bio-engineered scaffolds will certainly be the next step of customized medicine. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
NASA Astrophysics Data System (ADS)
Teixeira Guerra, A. J.; Rodrigues Bezerra, J. F.; da Mota Lima, L. D.; Silva Mendonça, J. K.; Vieira Souza, U. D.; Teixeira Guerra, T.
2009-04-01
The aim of this paper is to assess the stages of rehabilitation of a degraded site by erosion, in Salina/Sacavém district, São Luís City, considering geomorphologic characteristics and soil bioengineering techniques. This technique has been applied in different situations to rehabilitate degraded areas, with positive results from the use of biodegradable materials (e.g. vegetal fibres, wooden stakes and re-vegetation). These techniques stabilize the soil at low cost and improve the environment. Bioengineering involves the planned and strategic application of selected materials, involving biodegradable materials, often in combination with 'hard engineering' structures constructed from stone, concrete and steel. The settlement of São Luís was established in 1612 and has evolved in distinct phases. Rapid urban growth was associated with industrialization in the second half of the 18th Century. Rapid population and urban growth has intensified problems, compounded by poor planning and improper soil use. São Luís, like many other Brazilian cities, has experienced rapid population growth in recent decades, which has created a series of socio-economic and environmental problems, including accelerated soil erosion. Sacavém is one of these communities where natural and human factors contribute to the severe gully erosion. The local lithology is mainly Tertiary sandstones and, to a lesser extent, shales, argillites and siltstones, all of which belong to the Barreiras Formation. Weathering on these rocks produces erodible soils, including lithosols, latosols, concretionary red/yellow clay soils and concretionary plinthosols. Thus, erodible soils and regolith are subject to high erosion rates, especially on steeper slopes subject to additional human interventions. Furthermore, although regional slopes are quite gentle, there is localized high relative relief. Sacavém vegetation, in the gullied area, consists of brushwood. Secondary mixed forest and brushwood are the dominant vegetal cover adjacent to the urban gullies. The local climate is humid tropical, with average annual temperatures of 26°C, reaching higher values in October to December and lower from April to June. Rainfall distribution throughout the year is irregular, marked by two very distinct seasons (rainy and dry). The highly seasonal erosive rains incise a complex series of soil erosion landforms, mainly gullies in this area. The following procedures have been carried out: fieldwork with monitoring of gully head erosion; Environmental Education Program; handcraft workshop regarding the prodution of geotextiles from Buriti fiber. The rehabilitation of this degraded site, follows these stages: 1. Acquisition of equipment and materials; 2. Contracting workers; 3. Reshaping selected gully walls; 4. Adding organic palm materials to the topsoil and ~30 kg of grass seeds; 5. Application of geotextile anchored on the ground by using wooden stakes; 6. Maintenance work with photographic records; 7. Photo comparison to measure the vegetal cover percentage, with the aid of geoprocessing software. Some of the gully walls presented steep slopes, around 90 degrees, and therefore, it was necessary to reshape them for the application of soil bioengineering techniques. It was selected a sample area of 2.000 m2 to be rehabilitated. The knowledge of soil and geomorphological characteristics was essential to understand surface runoff, considering the direction of water flows. Due to the difficulties in diverting the flows, which would require more extensive engineering works, the channel was maintained, and the base of the slopes was strengthened to support the flows. In the upper part of this area, which had ~8° slope angle, contour lines were surveyed and barriers of wooden stakes were used to retard runoff velocity from adjacent vegetated slopes. Some slopes in this part had a 45° slope angle, due to the local topography. However, this angle is considered too steep for the application of palm-mats. In some parts of gully, work was completed to reshape the gullies and construct the ~12 m high terraces using the gully material. Tractor work was impeded, because on the second terrace the tractor had difficulty in working, because of the high sand content, which made the slope unstable. These terraces are crossed by a flow convergence area, which was formed by men inserting sand bags, decomposing palm leaves and grass seeds, to form a vegetated channel after grass growth. Key-words: Rehabilitation, gully, geotextile, soil bioengineering.
NASA Astrophysics Data System (ADS)
Watt, Cortney A.; Scrosati, Ricardo A.
2013-05-01
Canopy-forming bioengineer species are commonly assumed to increase local species richness and diversity. We tested this notion by investigating the effects of fucoid seaweed canopies on understory communities along rocky intertidal elevation gradients in Atlantic Canada. Such gradients exhibit increasing thermal extremes and variation from low to high elevations, and are broadly used in stress gradient studies. A manipulative experiment created canopy and no-canopy treatments at the low, middle, and high intertidal zones, eliminating all species (except fucoid canopies) from replicate quadrats. After recolonization, overall richness and diversity (considering all primary producers and consumers) were higher under canopies than uncovered by canopies at the high and middle zones, but no effects occurred at the low zone. Similarly, species composition was affected by canopies at the high and middle zones, but not at the low zone. A mensurative study that surveyed the full range of canopy cover (0-100%) using nearly five times more quadrats from pristine areas yielded the same results: richness and diversity increased with canopy cover at the high and middle zones (approaching stabilization toward high cover values), but no effects occurred at the low zone. Lack of canopy effects at low elevations is related to mild habitat conditions, which canopies are unable to modify, while positive effects at higher elevations relate to the capacity of canopies to ameliorate harsh conditions. This is the first time that a combined experimental and mensurative approach shows that the same bioengineer species affect overall species richness, diversity, and composition differently along a stress gradient. Overall, protecting canopy-forming bioengineers to preserve local biodiversity should be most effective in stressful environments.
NASA Astrophysics Data System (ADS)
Petrone, Alessandro; Preti, Federico
2013-04-01
In recent decades the institutions responsible for land management and civil protection have showed a great interest in relation to the use of more environmentally friendly techniques to mitigate the risk of landslides and floods. Soil bioengineering has responded to this need and several research groups are carrying out experimentations using the techniques of this discipline in the countries in the developing world. The Deistaf from University of Florence has concentrated its activities in this area over the past decade promoting the use of the techniques of Soil bioengineering in Latin America through the implementation of training and experimentation programmes. Numerous works have been completed both in riverbanks and on slopes in Nicaragua, Guatemala, Ecuador and Colombia. It was decided to make a census of interventions in Latin America from different institutions that may be related to Soil bioengineering in order to obtain an overview of the state of the art in the specific context taking into account also environmental and socio-economic issues. Taking advantage of its network of contacts, DEISTAF has collected dozens of sheets that describe interventions. These sheets describe, among other fields focused on the environment in which the work has been carried out, the materials and techniques used, and the impact of the intervention. In the sheets we present also the monitoring that has been realized for some of these works in the months of October and November 2012; we include the identification of the current condition and functionality of the intervention and, in the case of the presence of some damages, the formulation of instructions to fix them as well as the economic quantification of the repairs to be carried out.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishida, Kentaro; Murofushi, Mayumi; Nakao, Kazuhisa
2011-02-18
Research highlights: {yields} Bioengineered teeth regulated the contact area of epithelium and mesenchyme. {yields} The crown width is regulated by the contact area of the epithelium and mesenchyme. {yields} This regulation is associated with cell proliferation and Sonic hedgehog expression. {yields} The cusp number is correlated with the crown width of the bioengineered tooth. {yields} Cell proliferation and Shh expression areas regulate the tooth morphogenesis. -- Abstract: Ectodermal organs, such as the tooth, salivary gland, hair, and mammary gland, develop through reciprocal epithelial-mesenchymal interactions. Tooth morphologies are defined by the crown width and tooth length (macro-morphologies), and by the numbermore » and locations of the cusp and roots (micro-morphologies). In our current study, we report that the crown width of a bioengineered molar tooth, which was reconstructed using dissociated epithelial and mesenchymal cells via an organ germ method, can be regulated by the contact area between epithelial and mesenchymal cell layers. We further show that this is associated with cell proliferation and Sonic hedgehog (Shh) expression in the inner enamel epithelium after the germ stage has formed a secondary enamel knot. We also demonstrate that the cusp number is significantly correlated with the crown width of the bioengineered tooth. These findings suggest that the tooth micro-morphology, i.e. the cusp formation, is regulated after the tooth width, or macro-morphology, is determined. These findings also suggest that the spatiotemporal patterning of cell proliferation and the Shh expression areas in the epithelium regulate the crown width and cusp formation of the developing tooth.« less
Molecular Genetics of Supernumerary Tooth Formation
Wang, Xiu-Ping; Fan, Jiabing
2011-01-01
Summary Despite advances in the knowledge of tooth morphogenesis and differentiation, relatively little is known about the aetiology and molecular mechanisms underlying supernumerary tooth formation. A small number of supernumerary teeth may be a common developmental dental anomaly, while multiple supernumerary teeth usually have a genetic component and they are sometimes thought to represent a partial third dentition in humans. Mice, which are commonly used for studying tooth development, only exhibit one dentition, with very few mouse models exhibiting supernumerary teeth similar to those in humans. Inactivation of Apc or forced activation of Wnt/β(catenin signalling results in multiple supernumerary tooth formation in both humans and in mice, but the key genes in these pathways are not very clear. Analysis of other model systems with continuous tooth replacement or secondary tooth formation, such as fish, snake, lizard, and ferret, is providing insights into the molecular and cellular mechanisms underlying succesional tooth development, and will assist in the studies on supernumerary tooth formation in humans. This information, together with the advances in stem cell biology and tissue engineering, will pave ways for the tooth regeneration and tooth bioengineering. PMID:21309064
Computational study of aggregation mechanism in human lysozyme[D67H
Patel, Dharmeshkumar
2017-01-01
Aggregation of proteins is an undesired phenomena that affects both human health and bioengineered products such as therapeutic proteins. Finding preventative measures could be facilitated by a molecular-level understanding of dimer formation, which is the first step in aggregation. Here we present a molecular dynamics (MD) study of dimer formation propensity in human lysozyme and its D67H variant. Because the latter protein aggregates while the former does not, they offer an ideal system for testing the feasibility of the proposed MD approach which comprises three stages: i) partially unfolded conformers involved in dimer formation are generated via high-temperature MD simulations, ii) potential dimer structures are searched using docking and refined with MD, iii) free energy calculations are performed to find the most stable dimer structure. Our results provide a detailed explanation for how a single mutation (D67H) turns human lysozyme from non-aggregating to an aggregating protein. Conversely, the proposed method can be used to identify the residues causing aggregation in a protein, which can be mutated to prevent it. PMID:28467454
Di Buduo, Christian A.; Wray, Lindsay S.; Tozzi, Lorenzo; Malara, Alessandro; Chen, Ying; Ghezzi, Chiara E.; Smoot, Daniel; Sfara, Carla; Antonelli, Antonella; Spedden, Elise; Bruni, Giovanna; Staii, Cristian; De Marco, Luigi; Magnani, Mauro; Kaplan, David L.
2015-01-01
We present a programmable bioengineered 3-dimensional silk-based bone marrow niche tissue system that successfully mimics the physiology of human bone marrow environment allowing us to manufacture functional human platelets ex vivo. Using stem/progenitor cells, megakaryocyte function and platelet generation were recorded in response to variations in extracellular matrix components, surface topography, stiffness, coculture with endothelial cells, and shear forces. Millions of human platelets were produced and showed to be functional based on multiple activation tests. Using adult hematopoietic progenitor cells our system demonstrated the ability to reproduce key steps of thrombopoiesis, including alterations observed in diseased states. A critical feature of the system is the use of natural silk protein biomaterial allowing us to leverage its biocompatibility, nonthrombogenic features, programmable mechanical properties, and surface binding of cytokines, extracellular matrix components, and endothelial-derived proteins. This in turn offers new opportunities for the study of blood component production ex vivo and provides a superior tissue system for the study of pathologic mechanisms of human platelet production. PMID:25575540
NASA Astrophysics Data System (ADS)
Dasari Shareena, Thabitha P.; McShan, Danielle; Dasmahapatra, Asok K.; Tchounwou, Paul B.
2018-07-01
Graphene-based nanomaterials (GBNs) have attracted increasing interests of the scientific community due to their unique physicochemical properties and their applications in biotechnology, biomedicine, bioengineering, disease diagnosis and therapy. Although a large amount of researches have been conducted on these novel nanomaterials, limited comprehensive reviews are published on their biomedical applications and potential environmental and human health effects. The present research aimed at addressing this knowledge gap by examining and discussing: (1) the history, synthesis, structural properties and recent developments of GBNs for biomedical applications; (2) GBNs uses as therapeutics, drug/gene delivery and antibacterial materials; (3) GBNs applications in tissue engineering and in research as biosensors and bioimaging materials; and (4) GBNs potential environmental effects and human health risks. It also discussed the perspectives and challenges associated with the biomedical applications of GBNs.[Figure not available: see fulltext.
STS-40 crew trains in JSC's SLS mockup located in Bldg 36
1987-03-10
STS-40 Payload Specialist Millie Hughes-Fulford along with backup payload specialist Robert Ward Phillips familiarize themselves with Spacelab Life Sciences 1 (SLS-1) equipment. The two scientists are in JSC's Life Sciences Project Division (LSPD) SLS mockup located in the Bioengineering and Test Support Facility Bldg 36. Hughes-Fulford, in the center aisle, pulls equipment from an overhead stowage locker while Phillips, in the foreground, experiments with the baroreflex neck pressure chamber at Rack 11. The baroreflex collar will be used in conjuction with Experiment No. 022, Influence of Weightlessness Upon Human Autonomic Cardiovascular Control. Behind Phillips in the center aisle are body mass measurement device (BMMD) (foreground) and the stowed bicycle ergometer.
Stewart, Charles; Vickery, Christopher R; Burkart, Michael D; Noel, Joseph P
2013-06-01
Type III plant polyketide synthases (PKSs) biosynthesize a dazzling array of polyphenolic products that serve important roles in both plant and human health. Recent advances in structural characterization of these enzymes and new tools from the field of chemical biology have facilitated exquisite probing of plant PKS iterative catalysis. These tools have also been used to exploit type III PKSs as biocatalysts to generate new chemicals. Going forward, chemical, structural and biochemical analyses will provide an atomic resolution understanding of plant PKSs and will serve as a springboard for bioengineering and scalable production of valuable molecules in vitro, by fermentation and in planta. Copyright © 2013 Elsevier Ltd. All rights reserved.
Metagenomics and novel gene discovery
Culligan, Eamonn P; Sleator, Roy D; Marchesi, Julian R; Hill, Colin
2014-01-01
Metagenomics provides a means of assessing the total genetic pool of all the microbes in a particular environment, in a culture-independent manner. It has revealed unprecedented diversity in microbial community composition, which is further reflected in the encoded functional diversity of the genomes, a large proportion of which consists of novel genes. Herein, we review both sequence-based and functional metagenomic methods to uncover novel genes and outline some of the associated problems of each type of approach, as well as potential solutions. Furthermore, we discuss the potential for metagenomic biotherapeutic discovery, with a particular focus on the human gut microbiome and finally, we outline how the discovery of novel genes may be used to create bioengineered probiotics. PMID:24317337
Weichert, Stefan; Jennewein, Stefan; Hüfner, Eric; Weiss, Christel; Borkowski, Julia; Putze, Johannes; Schroten, Horst
2013-10-01
Human milk oligosaccharides help to prevent infectious diseases in breastfed infants. Larger scale testing, particularly in animal models and human clinical studies, is still limited due to shortened availability of more complex oligosaccharides. The purpose of this study was to evaluate 2'-fucosyllactose (2'-FL) and 3-fucosyllactose (3-FL) synthesized by whole-cell biocatalysis for their biological activity in vitro. Therefore, we have tested these oligosaccharides for their inhibitory potential of pathogen adhesion in two different human epithelial cell lines. 2'-FL could inhibit adhesion of Campylobacter jejuni, enteropathogenic Escherichia coli, Salmonella enterica serovar fyris, and Pseudomonas aeruginosa to the intestinal human cell line Caco-2 (reduction of 26%, 18%, 12%, and 17%, respectively), as could be shown for 3-FL (enteropathogenic E coli 29%, P aeruginosa 26%). Furthermore, adherence of P aeruginosa to the human respiratory epithelial cell line A549 was significantly inhibited by 2'-FL and 3-FL (reduction of 24% and 23%, respectively). These results confirm the biological and functional activity of biotechnologically synthesized human milk oligosaccharides. Mass-tailored human milk oligosaccharides could be used in the future to supplement infant formula ingredients or as preventatives to reduce the impact of infectious diseases. © 2013 Elsevier Inc. All rights reserved.
Caralt, M; Uzarski, J S; Iacob, S; Obergfell, K P; Berg, N; Bijonowski, B M; Kiefer, K M; Ward, H H; Wandinger-Ness, A; Miller, W M; Zhang, Z J; Abecassis, M M; Wertheim, J A
2015-01-01
The ability to generate patient-specific cells through induced pluripotent stem cell (iPSC) technology has encouraged development of three-dimensional extracellular matrix (ECM) scaffolds as bioactive substrates for cell differentiation with the long-range goal of bioengineering organs for transplantation. Perfusion decellularization uses the vasculature to remove resident cells, leaving an intact ECM template wherein new cells grow; however, a rigorous evaluative framework assessing ECM structural and biochemical quality is lacking. To address this, we developed histologic scoring systems to quantify fundamental characteristics of decellularized rodent kidneys: ECM structure (tubules, vessels, glomeruli) and cell removal. We also assessed growth factor retention--indicating matrix biofunctionality. These scoring systems evaluated three strategies developed to decellularize kidneys (1% Triton X-100, 1% Triton X-100/0.1% sodium dodecyl sulfate (SDS) and 0.02% Trypsin-0.05% EGTA/1% Triton X-100). Triton and Triton/SDS preserved renal microarchitecture and retained matrix-bound basic fibroblast growth factor and vascular endothelial growth factor. Trypsin caused structural deterioration and growth factor loss. Triton/SDS-decellularized scaffolds maintained 3 h of leak-free blood flow in a rodent transplantation model and supported repopulation with human iPSC-derived endothelial cells and tubular epithelial cells ex vivo. Taken together, we identify an optimal Triton/SDS-based decellularization strategy that produces a biomatrix that may ultimately serve as a rodent model for kidney bioengineering. © Copyright 2014 The American Society of Transplantation and the American Society of Transplant Surgeons.
Leonardo da Vinci: engineer, bioengineer, anatomist, and artist.
West, John B
2017-03-01
Leonardo da Vinci (1452-1519) enjoys a reputation as one of the most talented people of all time in the history of science and the arts. However, little attention has been given to his contributions to physiology. One of his main interests was engineering, and he was fascinated by structural problems and the flow patterns of liquids. He also produced a large number of ingenious designs for warfare and a variety of highly original flying machines. But of particular interest to us are his contributions to bioengineering and how he used his knowledge of basic physical principles to throw light on physiological function. For example, he produced new insights into the mechanics of breathing including the action of the ribs and diaphragm. He was the first person to understand the different roles of the internal and external intercostal muscles. He had novel ideas about the airways including the mode of airflow in them. He also worked on the cardiovascular system and had a special interest in the pulmonary circulation. But, interestingly, he was not able to completely divorce his views from those of Galen, in that although he could not see pores in the interventricular septum of the heart, one of his drawings included them. Leonardo was a talented anatomist who made many striking drawings of the human body. Finally, his reputation for many people is based on his paintings including the Mona Lisa that apparently attracts more viewers than any other painting in the world. Copyright © 2017 the American Physiological Society.
Incorporation of the HIV-1 microbicide cyanovirin-N in a food product
Li, Ming; Patton, Dorothy L.; Cosgrove-Sweeney, Yvonne; Ratner, Deena; Rohan, Lisa C.; Cole, Alexander M.; Tarwater, Patrick M.; Gupta, Phalguni; Ramratnam, Bharat
2012-01-01
An urgent need exists for HIV-1 microbicides. Here, we describe the in vivo testing of lactic acid bacteria bioengineered to secrete cyanovirin-N. We fed pigtail macaques a yogurt formulation that used bioengineered strains as a starter culture. Cyanovirin-N expression could be detected in the rectal vault during and immediately after feeding. Ex vivo viral challenge of rectal tissue biopsies revealed that peak viral burden was significantly lower in tissue obtained from experimental animals compared to control animals. Formulation of candidate compounds in lactic acid bacteria and their oral administration appears to be a feasible strategy for mucosal delivery of microbicides. PMID:21926631
Bioengineered Chimeric Spider Silk-Uranium Binding Proteins
Krishnaji, Sreevidhya Tarakkad; Kaplan, David L.
2014-01-01
Heavy metals constitute a source of environmental pollution. Here, novel functional hybrid biomaterials for specific interactions with heavy metals are designed by bioengineering consensus sequence repeats from spider silk of Nephila clavipes with repeats of a uranium peptide recognition motif from a mutated 33-residue of calmodulin protein from Paramecium tetraurelia. The self-assembly features of the silk to control nanoscale organic/inorganic material interfaces provides new biomaterials for uranium recovery. With subsequent enzymatic digestion of the silk to concentrate the sequestered metals, options can be envisaged to use these new chimeric protein systems in environmental engineering, including to remediate environments contaminated by uranium. PMID:23212989
Bioengineering of Artificial Lymphoid Organs.
Nosenko, M A; Drutskaya, M S; Moisenovich, M M; Nedospasov, S A
2016-01-01
This review addresses the issue of bioengineering of artificial lymphoid organs.Progress in this field may help to better understand the nature of the structure-function relations that exist in immune organs. Artifical lymphoid organs may also be advantageous in the therapy or correction of immunodefficiencies, autoimmune diseases, and cancer. The structural organization, development, and function of lymphoid tissue are analyzed with a focus on the role of intercellular contacts and on the cytokine signaling pathways regulating these processes. We describe various polymeric materials, as scaffolds, for artificial tissue engineering. Finally, published studies in which artificial lymphoid organs were generated are reviewed and possible future directions in the field are discussed.
Bioengineering of Artificial Lymphoid Organs
Nosenko, M. A.; Drutskaya, M. S.; Moisenovich, M. M.; Nedospasov, S. A.
2016-01-01
This review addresses the issue of bioengineering of artificial lymphoid organs.Progress in this field may help to better understand the nature of the structure-function relations that exist in immune organs. Artifical lymphoid organs may also be advantageous in the therapy or correction of immunodefficiencies, autoimmune diseases, and cancer. The structural organization, development, and function of lymphoid tissue are analyzed with a focus on the role of intercellular contacts and on the cytokine signaling pathways regulating these processes. We describe various polymeric materials, as scaffolds, for artificial tissue engineering. Finally, published studies in which artificial lymphoid organs were generated are reviewed and possible future directions in the field are discussed. PMID:27437136
Induced pluripotent stem cells for regenerative medicine.
Hirschi, Karen K; Li, Song; Roy, Krishnendu
2014-07-11
With the discovery of induced pluripotent stem (iPS) cells, it is now possible to convert differentiated somatic cells into multipotent stem cells that have the capacity to generate all cell types of adult tissues. Thus, there is a wide variety of applications for this technology, including regenerative medicine, in vitro disease modeling, and drug screening/discovery. Although biological and biochemical techniques have been well established for cell reprogramming, bioengineering technologies offer novel tools for the reprogramming, expansion, isolation, and differentiation of iPS cells. In this article, we review these bioengineering approaches for the derivation and manipulation of iPS cells and focus on their relevance to regenerative medicine.
Injectable Self-Healing Hydrogel with Antimicrobial and Antifouling Properties.
Li, Lin; Yan, Bin; Yang, Jingqi; Huang, Weijuan; Chen, Lingyun; Zeng, Hongbo
2017-03-22
Microbial adhesion, biofilm formation and associated microbial infection are common challenges faced by implanted biomaterials (e.g., hydrogels) in bioengineering applications. In this work, an injectable self-healing hydrogel with antimicrobial and antifouling properties was prepared through self-assembly of an ABA triblock copolymer employing catechol functionalized polyethylene glycol (PEG) as A block and poly{[2-(methacryloyloxy)-ethyl] trimethylammonium iodide}(PMETA) as B block. This hydrogel exhibits excellent thermosensitivity, and can effectively inhibit the growth of E. coli (>99.8% killing efficiency) and prevent cell attachment. It can also heal autonomously from repeated damage, through mussel-inspired catechol-mediated hydrogen bonding and aromatic interactions, exhibiting great potential in bioengineering applications.
A specialized bioengineering ion beam line
NASA Astrophysics Data System (ADS)
Yu, L. D.; Sangyuenyongpipat, S.; Sriprom, C.; Thongleurm, C.; Suwanksum, R.; Tondee, N.; Prakrajang, K.; Vilaithong, T.; Brown, I. G.; Wiedemann, H.
2007-04-01
A specialized bioengineering ion beam line has recently been completed at Chiang Mai University to meet rapidly growing needs of research and application development in low-energy ion beam biotechnology. This beam line possesses special features: vertical main beam line, low-energy (30 keV) ion beams, double swerve of the beam, a fast pumped target chamber, and an in-situ atomic force microscope (AFM) system chamber. The whole beam line is situated in a bioclean environment, occupying two stories. The quality of the ion beam has been studied. It has proved that this beam line has significantly contributed to our research work on low-energy ion beam biotechnology.
Multiscale assembly for tissue engineering and regenerative medicine
Inci, Fatih; Tasoglu, Savas; Erkmen, Burcu; Demirci, Utkan
2015-01-01
Our understanding of cell biology and its integration with materials science has led to technological innovations in the bioengineering of tissue-mimicking grafts that can be utilized in clinical and pharmaceutical applications. Bio-engineering of native-like multiscale building blocks provides refined control over the cellular microenvironment, thus enabling functional tissues. In this review, we focus on assembling building blocks from the biomolecular level to the millimeter scale. We also provide an overview of techniques for assembling molecules, cells, spheroids, and microgels and achieving bottom-up tissue engineering. Additionally, we discuss driving mechanisms for self- and guided assembly to create micro-to-macro scale tissue structures. PMID:25796488
[Application of fluid mechanics and simulation: urinary tract and ureteral catheters.
Gómez-Blanco, J C; Martínez-Reina, J; Cruz, D; Blas Pagador, J; Sánchez-Margallo, F M; Soria, F
2016-10-01
The mechanics of urine during its transport from the renal pelvis to the bladder is of great interest for urologists. The knowledge of the different physical variables and their interrelationship, both in physiologic movements and pathologies, will help a better diagnosis and treatment. The objective of this chapter is to show the physics principles and their most relevant basic relations in urine transport, and to bring them over the clinical world. For that, we explain the movement of urine during peristalsis, ureteral obstruction and in a ureter with a stent. This explanation is based in two tools used in bioengineering: the theoretical analysis through the Theory of concontinuous media and Ffluid mechanics and computational simulation that offers a practical solution for each scenario. Moreover, we review other contributions of bioengineering to the field of Urology, such as physical simulation or additive and subtractive manufacturing techniques. Finally, we list the current limitations for these tools and the technological development lines with more future projection. In this chapter we aim to help urologists to understand some important concepts of bioengineering, promoting multidisciplinary cooperation to offer complementary tools that help in diagnosis and treatment of diseases.
Orthodontics at a Pivotal Point of Transformation
Mao, Jeremy J.
2014-01-01
The profession of orthodontics is projected to face a multitude of challenges. Do cyclic forces accelerate the rate of tooth movement and hence the speed of orthodontic treatment? Would bioengineered cementum and dentine be a solution to root resorption? What would orthodontics be like when bioengineered periodontal ligament and alveolar bone become clinical practice, or one day, entire teeth are bioengineered? Would it be possible to selectively differentiate stem cells into osteoblasts or osteoclasts by either static or cyclic forces? What is the new demand on orthodontic expertise with increasingly automated appliances? What will be the impact of the next generation of dental implants or rapid prototyped crowns on orthodontics? A century ago, Edward Angle’s practice of fixed appliances, along with other seminal contributions, such as functional appliances, established the profession of orthodontics. Today, the biophysical principles of orthodontics remain largely unchanged from Angle’s era, despite incremental refinements of brackets and wires. The paucity of fundamental innovations in orthodontics for decades presents intrinsic risks for the profession. This review will identify challenges for contemporary orthodontics and delineate strategies for the profession to evolve in an era of unprecedented scientific and technological advances, and serve as a call to action for the orthodontic profession. PMID:25018618
Medical ultrasound education for bioengineers
NASA Astrophysics Data System (ADS)
Vaezy, Shahram
2005-04-01
The widespread adoption of ultrasound technologies in medicine has necessitated the development of educational programs to address the growing demand for trained expertise in both academia and industry. The demand has been especially great in the field of therapeutic ultrasound that has experienced a significant level of research and development activities in the past decade. The applications cover a wide range including cancer treatment, hemorrhage control, cardiac ablation, gene therapy, and cosmetic surgery. A comprehensive educational program in ultrasound is well suited for bioengineering departments at colleges and universities. Our educational program for students in Bioengineering at the University of Washington includes a year-long coursework covering theory and practice of ultrasound, conducting research projects, attending and presenting at weekly seminars on literature survey, presentations at scientific meetings, and attending specialized workshops offered by various institutions for specific topics. An important aspect of this training is its multi-disciplinary approach, encompassing science, engineering, and medicine. The students are required to build teams with expertise in these disciplines. Our experience shows that these students are well prepared for careers in academia, conducting cutting edge research, as well as industry, being involved in the transformation of research end-products to commercially viable technology.
Regenerative endodontics as a tissue engineering approach: past, current and future.
Malhotra, Neeraj; Mala, Kundabala
2012-12-01
With the reported startling statistics of high incidence of tooth decay and tooth loss, the current interest is focused on the development of alternate dental tissue replacement therapies. This has led to the application of dental tissue engineering as a clinically relevant method for the regeneration of dental tissues and generation of bioengineered whole tooth. Although, tissue engineering approach requires the three main key elements of stem cells, scaffold and morphogens, a conductive environment (fourth element) is equally important for successful engineering of any tissue and/or organ. The applications of this science has evolved continuously in dentistry, beginning from the application of Ca(OH)(2) in vital pulp therapy to the development of a fully functional bioengineered tooth (mice). Thus, with advances in basic research, recent reports and studies have shown successful application of tissue engineering in the field of dentistry. However, certain practical obstacles are yet to be overcome before dental tissue regeneration can be applied as evidence-based approach in clinics. The article highlights on the past achievements, current developments and future prospects of tissue engineering and regenerative therapy in the field of endodontics and bioengineered teeth (bioteeth). © 2012 The Authors. Australian Endodontic Journal © 2012 Australian Society of Endodontology.
NASA Astrophysics Data System (ADS)
Rey, Freddy; Labonne, Sophie; Dangla, Laure; Lavandier, Géraud
2014-05-01
In the Southern French Alps under a mountainous and Mediterranean climate, a current strategy of bioengineering is developed for trapping sediment in marly gullies with surface area less than 1 ha. It is based on the use of structures in the form of brush layers and brush mats of cuttings on deadwood microdams. Purple and white Willows (Salix purpurea and S. incana) are recommended here as they proved their efficiency to resprout and survive in such environment. However, these species installed in Southern gullies did not survive in previous experiments, due to the too harsh conditions of solar radiation and drought. We thus decided to test other species, namely black Poplar (Populus nigra) and Tamaris (Tamarix gallica), which proved their resistance to drought conditions in other experiments. To this view, bioengineering structures have been built in 2010 in eroded marly gullies in the Roubines and Fontaugier catchments (Southern Alps, France). We tested two installation modalities: one in spring and a second in autumn. Seventy-eight bioengineering structures (50 in spring and 28 in autumn), among which 32 made with Poplar cuttings and 28 with Tamaris cuttings, as well as 11 structures with purple Willow and 7 with white Willow as controls, were built in 6 experimental gullies. After 3 observation years for each modality (2010 to 2012, and 2011 to 2013, respectively), results first revealed that Willow species succeeded in surviving in gullies in Southern aspect (76 % for the cuttings installed in spring and 52 % for those installed in autumn), which is in contradiction with previous results. Second, Poplar showed a good ability to survive (62 % for the cuttings installed in spring and 33 % for those installed in autumn). Tamaris obtained the worst score with 26 % and 38 % of survival for the cuttings installed in spring and autumn, respectively. Globally, excepted for Tamaris, survival rates were better for the cuttings installed in spring. The bioengineering strategy has therefore been improved by incorporating cuttings of poplar species on the bioengineering structures, whatever the aspect of the gully but specifically on the Southern ones. Tamaris is not recommended as for it. Final recommendation is to preferably install cuttings in spring instead of autumn.
Kuo, Kuan-Chih; Lin, Ruei-Zeng; Tien, Han-Wen; Wu, Pei-Yun; Li, Yen-Cheng; Melero-Martin, Juan M.; Chen, Ying-Chieh
2015-01-01
Tissue engineering promises to restore or replace diseased or damaged tissue by creating functional and transplantable artificial tissues. The development of artificial tissues with large dimensions that exceed the diffusion limitation will require nutrients and oxygen to be delivered via perfusion instead of diffusion alone over a short time period. One approach to perfusion is to vascularize engineered tissues, creating a de novo three-dimensional (3D) microvascular network within the tissue construct. This significantly shortens the time of in vivo anastomosis, perfusion and graft integration with the host. In this study, we aimed to develop injectable allogeneic collagen-phenolic hydroxyl (collagen-Ph) hydrogels that are capable of controlling a wide range of physicochemical properties, including stiffness, water absorption and degradability. We tested whether collagen-Ph hydrogels could support the formation of vascularized engineered tissue graft by human blood-derived endothelial colony-forming cells (ECFCs) and bone marrow-derived mesenchymal stem cells (MSC) in vivo. First, we studied the growth of adherent ECFCs and MSCs on or in the hydrogels. To examine the potential formation of functional vascular networks in vivo, a liquid pre-polymer solution of collagen-Ph containing human ECFCs and MSCs, horseradish peroxidase and hydrogen peroxide was injected into the subcutaneous space or abdominal muscle defect of an immunodeficient mouse before gelation, to form a 3D cell-laden polymerized construct. These results showed that extensive human ECFC-lined vascular networks can be generated within 7 days, the engineered vascular density inside collagen-Ph hydrogel constructs can be manipulated through refinable mechanical properties and proteolytic degradability, and these networks can form functional anastomoses with the existing vasculature to further support the survival of host muscle tissues. Finally, optimized conditions of the cell-laden collagen-Ph hydrogel resulted in not only improving the long-term differentiation of transplanted MSCs into mineralized osteoblasts, but the collagen-Ph hydrogel also improved an increased of adipocytes within the vascularized bioengineered tissue in a mouse after 1 month of implantation. PMID:26348142
Jinu, U; Gomathi, M; Saiqa, I; Geetha, N; Benelli, G; Venkatachalam, P
2017-04-01
This research focused on green engineering and characterization of silver (PcAgNPs) and copper nanoparticles (PcCuNPs) using Prosopis cineraria (Pc) leaf extract prepared by using microwave irradiation. We studied their enhanced antimicrobial activity on human pathogens as well as cytotoxicity on breast cancer cells (MCF-7). Biofabricated silver and copper nanoparticles exhibited UV-Visible absorbance peaks at 420 nm and 575 nm, confirming the bioreduction and stabilization of nanoparticles. Nanoparticles were characterized by FTIR, XRD, FESEM, and EDX analysis. FTIR results indicated the presence of alcohols, alkanes, aromatics, phenols, ethers, benzene, amines and amides that were possibly involved in the reduction and capping of silver and copper ions. XRD analysis was performed to confirm the crystalline nature of the silver and copper nanoparticles. FESEM analysis suggested that the nanoparticles were hexagonal or spherical in shape with size ranging from 20 to 44.49 nm and 18.9-32.09 nm for AgNPs and CuNPs, respectively. EDX analysis confirmed the presence of silver and copper elemental signals in the nanoparticles. The bioengineered silver and copper nanohybrids showed enhanced antimicrobial activity against Gram-positive and Gram-negative MDR human pathogens. MTT assay results indicated that CuNPs show potential cytotoxic effect followed by AgNPs against MCF-7 cancer cell line. IC 50 were 65.27 μg/ml, 37.02 μg/ml and 197.3 μg/ml for PcAgNPs, PcCuNPs and P. cineraria leaf extracts, respectively, treated MCF-7 cells. The present investigation highlighted an effective protocol for microwave-assisted synthesis of biomolecule-loaded silver and copper nanoparticles with enhanced antibacterial and anticancer activity. Results strongly suggested that bioengineered AgNPs and CuNPs could be used as potential tools against microbial pathogens and cancer cells. Copyright © 2017 Elsevier Ltd. All rights reserved.
Bioengineering methods employed in the study of wound healing of sulphur mustard burns.
Graham, John S; Schomacker, Kevin T; Glatter, Robert D; Briscoe, Crystal M; Braue, Ernest H; Squibb, Katherine S
2002-02-01
Sulphur mustard (SM) is a potent incapacitating chemical warfare agent that remains a threat to war fighters and civilians worldwide. SM lesions may require weeks or months to heal, depending upon their severity. This study was undertaken to find a treatment regimen that promotes speedier healing of deep cutaneous SM burns in a weanling pig model. The principal objective of the study was to compare four treatment regimens and establish which achieved the shortest healing time. Twelve Yorkshire Cross weanling pigs were exposed to SM liquid for 2h, generating six large deep dermal/full thickness burns on the ventrum of each animal. Three additional animals served as sham-exposed controls. Surgical intervention occurred at 48 h postexposure. Treatments included: (i) full-thickness debridement of the burns with a computer controlled, raster scanned continuous wave CO2 laser followed by autologous split-thickness skin grafting; (ii) full-thickness sharp surgical tangential excision followed by skin grafting, the 'Gold Standard' used in human deep dermal/full-thickness thermal burns management; (iii) partial-thickness laser ablation with no grafting; and (iv) partial-thickness sharp surgical excision with no grafting. Several non-invasive bioengineering methods were used to monitor the progress of wound healing throughout a 36-day healing period: reflectance colourimetry, evaporimetry, laser Doppler perfusion imaging and ballistometry. Bioengineering methods indicated that laser debridement followed by autologous split-thickness skin grafting was as efficacious in improving the wound healing of deep SM burns in weanling swine as the 'Gold Standard.' Regardless of the method of debridement, barrier function, skin colour and mechanical properties returned to near-normal levels within 15 days of treatment in the grafted sites. Regardless of surgical approach, blood flux levels remained approximately 50-60% of normal tissue throughout the 36-day postsurgical observation period. Mid-dermal debridement by sharp surgical tangential excision or laser ablation without the use of skin grafts did not produce as good a result as those attained through the use of grafts, but was better than no surgical treatment of the wounds. Bioengineering methods were useful in evaluating multiple characteristics during wound healing: (i) reflectance colourimetry for skin colour, (ii) evaporimetry to measure transepidermal water loss as an indicator of barrier function, (iii) laser Doppler perfusion imaging to assess cutaneous blood flow, and (iv) ballistometry to measure the mechanical properties of skin hardness and elasticity. Perhaps the most useful method was evaporimetry, as a restored barrier function was the best indicator of healed wounds. The use of reflectance colourimetry and ballistometry will continue in future wound healing studies for their contributions in judging cosmetic and functional outcomes. While useful, laser Doppler perfusion imaging was found to be rather time consuming. This methodology will be limited in the future to burn depth estimation prior to treatment, and for evaluation of pharmaceuticals specifically designed to improve or sustain blood flow into damaged areas.
Engineering epithelial-stromal interactions in vitro for toxicology assessment.
Belair, David G; Abbott, Barbara D
2017-05-01
Crosstalk between epithelial and stromal cells drives the morphogenesis of ectodermal organs during development and promotes normal mature adult epithelial tissue homeostasis. Epithelial-stromal interactions (ESIs) have historically been examined using mammalian models and ex vivo tissue recombination. Although these approaches have elucidated signaling mechanisms underlying embryonic morphogenesis processes and adult mammalian epithelial tissue function, they are limited by the availability of tissue, low throughput, and human developmental or physiological relevance. In this review, we describe how bioengineered ESIs, using either human stem cells or co-cultures of human primary epithelial and stromal cells, have enabled the development of human in vitro epithelial tissue models that recapitulate the architecture, phenotype, and function of adult human epithelial tissues. We discuss how the strategies used to engineer mature epithelial tissue models in vitro could be extrapolated to instruct the design of organotypic culture models that can recapitulate the structure of embryonic ectodermal tissues and enable the in vitro assessment of events critical to organ/tissue morphogenesis. Given the importance of ESIs towards normal epithelial tissue development and function, such models present a unique opportunity for toxicological screening assays to incorporate ESIs to assess the impact of chemicals on mature and developing epidermal tissues. Published by Elsevier B.V.
Engineering epithelial-stromal interactions in vitro for toxicology assessment
Belair, David G.; Abbott, Barbara D.
2018-01-01
Crosstalk between epithelial and stromal cells drives the morphogenesis of ectodermal organs during development and promotes normal mature adult epithelial tissue homeostasis. Epithelial-stromal interactions (ESIs) have historically been examined using mammalian models and ex vivo tissue recombination. Although these approaches have elucidated signaling mechanisms underlying embryonic morphogenesis processes and adult mammalian epithelial tissue function, they are limited by the availability of tissue, low throughput, and human developmental or physiological relevance. In this review, we describe how bioengineered ESIs, using either human stem cells or co-cultures of human primary epithelial and stromal cells, have enabled the development of human in vitro epithelial tissue models that recapitulate the architecture, phenotype, and function of adult human epithelial tissues. We discuss how the strategies used to engineer mature epithelial tissue models in vitro could be extrapolated to instruct the design of organotypic culture models that can recapitulate the structure of embryonic ectodermal tissues and enable the in vitro assessment of events critical to organ/tissue morphogenesis. Given the importance of ESIs towards normal epithelial tissue development and function, such models present a unique opportunity for toxicological screening assays to incorporate ESIs to assess the impact of chemicals on mature and developing epidermal tissues. PMID:28285100
Li, Yi-Chen; Zhang, Yu Shrike; Akpek, Ali; Shin, Su Ryon; Khademhosseini, Ali
2016-12-02
Four-dimensional (4D) bioprinting, encompassing a wide range of disciplines including bioengineering, materials science, chemistry, and computer sciences, is emerging as the next-generation biofabrication technology. By utilizing stimuli-responsive materials and advanced three-dimensional (3D) bioprinting strategies, 4D bioprinting aims to create dynamic 3D patterned biological structures that can transform their shapes or behavior under various stimuli. In this review, we highlight the potential use of various stimuli-responsive materials for 4D printing and their extension into biofabrication. We first discuss the state of the art and limitations associated with current 3D printing modalities and their transition into the inclusion of the additional time dimension. We then suggest the potential use of different stimuli-responsive biomaterials as the bioink that may achieve 4D bioprinting where transformation of fabricated biological constructs can be realized. We finally conclude with future perspectives.
2016 New Horizons Lecture: Beyond Imaging-Radiology of Tomorrow.
Hricak, Hedvig
2018-03-01
This article is based on the New Horizons lecture delivered at the 2016 Radiological Society of North America Annual Meeting. It addresses looming changes for radiology, many of which stem from the disruptive effects of the Fourth Industrial Revolution. This is an emerging era of unprecedented rapid innovation marked by the integration of diverse disciplines and technologies, including data science, machine learning, and artificial intelligence-technologies that narrow the gap between man and machine. Technologic advances and the convergence of life sciences, physical sciences, and bioengineering are creating extraordinary opportunities in diagnostic radiology, image-guided therapy, targeted radionuclide therapy, and radiology informatics, including radiologic image analysis. This article uses the example of oncology to make the case that, if members in the field of radiology continue to be innovative and continuously reinvent themselves, radiology can play an ever-increasing role in both precision medicine and value-driven health care. © RSNA, 2018.
Manipulating biological agents and cells in micro-scale volumes for applications in medicine
Tasoglu, Savas; Gurkan, Umut Atakan; Wang, ShuQi
2013-01-01
Recent technological advances provide new tools to manipulate cells and biological agents in micro/nano-liter volumes. With precise control over small volumes, the cell microenvironment and other biological agents can be bioengineered; interactions between cells and external stimuli can be monitored; and the fundamental mechanisms such as cancer metastasis and stem cell differentiation can be elucidated. Technological advances based on the principles of electrical, magnetic, chemical, optical, acoustic, and mechanical forces lead to novel applications in point-of-care diagnostics, regenerative medicine, in vitro drug testing, cryopreservation, and cell isolation/purification. In this review, we first focus on the underlying mechanisms of emerging examples for cell manipulation in small volumes targeting applications such as tissue engineering. Then, we illustrate how these mechanisms impact the aforementioned biomedical applications, discuss the associated challenges, and provide perspectives for further development. PMID:23575660
Morone, Giovanni; Paolucci, Stefano; Cherubini, Andrea; De Angelis, Domenico; Venturiero, Vincenzo; Coiro, Paola; Iosa, Marco
2017-01-01
In this review, we give a brief outline of robot-mediated gait training for stroke patients, as an important emerging field in rehabilitation. Technological innovations are allowing rehabilitation to move toward more integrated processes, with improved efficiency and less long-term impairments. In particular, robot-mediated neurorehabilitation is a rapidly advancing field, which uses robotic systems to define new methods for treating neurological injuries, especially stroke. The use of robots in gait training can enhance rehabilitation, but it needs to be used according to well-defined neuroscientific principles. The field of robot-mediated neurorehabilitation brings challenges to both bioengineering and clinical practice. This article reviews the state of the art (including commercially available systems) and perspectives of robotics in poststroke rehabilitation for walking recovery. A critical revision, including the problems at stake regarding robotic clinical use, is also presented.
Innovating With Rehabilitation Technology in the Real World: Promises, Potentials, and Perspectives.
Chua, Karen Sui Geok; Kuah, Christopher Wee Keong
2017-10-01
In this article, we discuss robotic-assisted therapy as an emerging and significant field of clinical rehabilitation and its value proposition for innovating rehabilitation clinical practice. Attempts to achieve integration among clinicians' practices and bioengineers' machines often generate new challenges and controversies. To date, the literature is indicative of a sizeable number and variety of robotic devices in the field of clinical rehabilitation, some are commercially available; however, large-scale clinical outcomes are less positive than expected. The following main themes related to integrating rehabilitation technology in real-world clinical practice will be discussed: the application of current evidence-based practice and knowledge in relation to treatment in the rehabilitation clinic, perspectives from rehabilitation professionals using robotic-aided therapy with regard to challenges, and strategies for problem solving. Lastly, we present innovation philosophies with regard to sustainability of clinical rehabilitation technologies.
[Distance learning using internet in the field of bioengineering].
Ciobanu, O
2003-01-01
The Leonardo da Vinci training programme supports innovative transnational initiatives for promoting the knowledge, aptitudes and skills necessary for successful integration into working life. Biomedical engineering is an emerging interdisciplinary field that contributes to understand, define and solve problems in biomedical technology within industrial and health service contexts. Paper presents a Leonardo da Vinci pilot-project called Web-based learning and training in the field of biomedical and design engineering (WEBD). This project has started on 2001. The WEBD project proposes to use advanced learning technologies to provide education in the www. Project uses interactive 3D graphics and virtual reality tools. The WEBD distance training permits users to experience and interact with a life-like model or environment, in safety and at convenient times, while providing a degree of control over the simulation that is usually not possible in the real-life situation.
Morone, Giovanni; Paolucci, Stefano; Cherubini, Andrea; De Angelis, Domenico; Venturiero, Vincenzo; Coiro, Paola; Iosa, Marco
2017-01-01
In this review, we give a brief outline of robot-mediated gait training for stroke patients, as an important emerging field in rehabilitation. Technological innovations are allowing rehabilitation to move toward more integrated processes, with improved efficiency and less long-term impairments. In particular, robot-mediated neurorehabilitation is a rapidly advancing field, which uses robotic systems to define new methods for treating neurological injuries, especially stroke. The use of robots in gait training can enhance rehabilitation, but it needs to be used according to well-defined neuroscientific principles. The field of robot-mediated neurorehabilitation brings challenges to both bioengineering and clinical practice. This article reviews the state of the art (including commercially available systems) and perspectives of robotics in poststroke rehabilitation for walking recovery. A critical revision, including the problems at stake regarding robotic clinical use, is also presented. PMID:28553117
Innovating With Rehabilitation Technology in the Real World
Chua, Karen Sui Geok; Kuah, Christopher Wee Keong
2017-01-01
Abstract In this article, we discuss robotic-assisted therapy as an emerging and significant field of clinical rehabilitation and its value proposition for innovating rehabilitation clinical practice. Attempts to achieve integration among clinicians' practices and bioengineers' machines often generate new challenges and controversies. To date, the literature is indicative of a sizeable number and variety of robotic devices in the field of clinical rehabilitation, some are commercially available; however, large-scale clinical outcomes are less positive than expected. The following main themes related to integrating rehabilitation technology in real-world clinical practice will be discussed: the application of current evidence-based practice and knowledge in relation to treatment in the rehabilitation clinic, perspectives from rehabilitation professionals using robotic-aided therapy with regard to challenges, and strategies for problem solving. Lastly, we present innovation philosophies with regard to sustainability of clinical rehabilitation technologies. PMID:28708632
Anti-Cancer Drug Validation: the Contribution of Tissue Engineered Models.
Carvalho, Mariana R; Lima, Daniela; Reis, Rui L; Oliveira, Joaquim M; Correlo, Vitor M
2017-06-01
Drug toxicity frequently goes concealed until clinical trials stage, which is the most challenging, dangerous and expensive stage of drug development. Both the cultures of cancer cells in traditional 2D assays and animal studies have limitations that cannot ever be unraveled by improvements in drug-testing protocols. A new generation of bioengineered tumors is now emerging in response to these limitations, with potential to transform drug screening by providing predictive models of tumors within their tissue context, for studies of drug safety and efficacy. Considering the NCI60, a panel of 60 cancer cell lines representative of 9 different cancer types: leukemia, lung, colorectal, central nervous system (CNS), melanoma, ovarian, renal, prostate and breast, we propose to review current "state of art" on the 9 cancer types specifically addressing the 3D tissue models that have been developed and used in drug discovery processes as an alternative to complement their study.
Concise Review: Kidney Generation with Human Pluripotent Stem Cells.
Morizane, Ryuji; Miyoshi, Tomoya; Bonventre, Joseph V
2017-11-01
Chronic kidney disease (CKD) is a worldwide health care problem, resulting in increased cardiovascular mortality and often leading to end-stage kidney disease, where patients require kidney replacement therapies such as hemodialysis or kidney transplantation. Loss of functional nephrons contributes to the progression of CKD, which can be attenuated but not reversed due to inability to generate new nephrons in human adult kidneys. Human pluripotent stem cells (hPSCs), by virtue of their unlimited self-renewal and ability to differentiate into cells of all three embryonic germ layers, are attractive sources for kidney regenerative therapies. Recent advances in stem cell biology have identified key signals necessary to maintain stemness of human nephron progenitor cells (NPCs) in vitro, and led to establishment of protocols to generate NPCs and nephron epithelial cells from human fetal kidneys and hPSCs. Effective production of large amounts of human NPCs and kidney organoids will facilitate elucidation of developmental and pathobiological pathways, kidney disease modeling and drug screening as well as kidney regenerative therapies. We summarize the recent studies to induce NPCs and kidney cells from hPSCs, studies of NPC expansion from mouse and human embryonic kidneys, and discuss possible approaches in vivo to regenerate kidneys with cell therapies and the development of bioengineered kidneys. Stem Cells 2017;35:2209-2217. © 2017 AlphaMed Press.
Bioengineering and Stem Cell Technology in the Treatment of Congenital Heart Disease
Bosman, Alexis; Edel, Michael J.; Blue, Gillian; Dilley, Rodney J.; Harvey, Richard P.; Winlaw, David S.
2015-01-01
Congenital heart disease places a significant burden on the individual, family and community despite significant advances in our understanding of aetiology and treatment. Early research in ischaemic heart disease has paved the way for stem cell technology and bioengineering, which promises to improve both structural and functional aspects of disease. Stem cell therapy has demonstrated significant improvements in cardiac function in adults with ischaemic heart disease. This finding, together with promising case studies in the paediatric setting, demonstrates the potential for this treatment in congenital heart disease. Furthermore, induced pluripotent stems cell technology, provides a unique opportunity to address aetiological, as well as therapeutic, aspects of disease. PMID:26239354
Perspectives on MEMS in bioengineering: a novel capacitive position microsensor.
Pedrocchi, A; Hoen, S; Ferrigno, G; Pedotti, A
2000-01-01
We describe a novel capacitive position sensor using micromachining to achieve high sensitivity and large range of motion. These sensors require a new theoretical framework to describe and optimize their performance. Employing a complete description of the electrical fields, the sensor should deviate from the standard geometries used for capacitive sensors. By this optimization, the sensor gains a twofold increase in sensitivity. Results on a PC board 10x model imply that the micromachined sensor should achieve a sensitivity of less than 10 nm over 500-micron range of travel. Some bioengineering applications are addressed, including positioning of micromirrors for laser surgery and dose control for implantable drug delivery systems.
NASA Astrophysics Data System (ADS)
Lam, Patricia; Gulati, Neetu M.; Stewart, Phoebe L.; Keri, Ruth A.; Steinmetz, Nicole F.
2016-03-01
The 2014 Ebola epidemic is the largest to date. There is no cure or treatment for this deadly disease; therefore there is an urgent need to develop new diagnostics to accurately detect Ebola. Current RT-PCR assays lack sensitive and reliable positive controls. To address this critical need, we devised a bio-inspired positive control for use in RT-PCR diagnostics: we encapsulated scrambled Ebola RNA sequences inside of tobacco mosaic virus to create a biomimicry that is non-infectious, but stable, and could therefore serve as a positive control in Ebola diagnostic assays. Here, we report the bioengineering and validation of this probe.
... Dementias Epilepsy Parkinson's Disease Spinal Cord Injury Traumatic Brain Injury Focus On Tools & Topics Bioengineering Neural Interfaces Biomarkers Health Disparities Stem Cell Trans-Agency Activities ...
Berry, Roberta M; Borenstein, Jason; Butera, Robert J
2013-06-01
This manuscript describes a pilot study in ethics education employing a problem-based learning approach to the study of novel, complex, ethically fraught, unavoidably public, and unavoidably divisive policy problems, called "fractious problems," in bioscience and biotechnology. Diverse graduate and professional students from four US institutions and disciplines spanning science, engineering, humanities, social science, law, and medicine analyzed fractious problems employing "navigational skills" tailored to the distinctive features of these problems. The students presented their results to policymakers, stakeholders, experts, and members of the public. This approach may provide a model for educating future bioscientists and bioengineers so that they can meaningfully contribute to the social understanding and resolution of challenging policy problems generated by their work.
Valentinuzzi, Max E
2017-01-01
Medical science developed in tandem with the evolution of biological species and their associated diseases. Because of the close interaction between humans and other animals, even those in the wild, taking care of the former also means caring for the latter. Several scientific forerunners delved into animals' anatomical and physiological secrets in their quest to better understand animal biology and functions, thereby laying the foundation for animal medicine. Here, I briefly explore the long and complex road that led to the current state of veterinary science and provide a few examples of its present standing. (Contributions from the ancient world and eastern countries are not considered, as they represent a different area of interest.).
Petrof, Gabriela; Abdul-Wahab, Alya; McGrath, John A.
2014-01-01
Harnessing the regenerative capacity of keratinocytes and fibroblasts from human skin has created new opportunities to develop cell-based therapies for patients. Cultured cells and bioengineered skin products are being used to treat patients with inherited and acquired skin disorders associated with defective skin, and further clinical trials of new products are in progress. The capacity of extracutaneous sources of cells such as bone marrow is also being investigated for its plasticity in regenerating skin, and new strategies, such as the derivation of inducible pluripotent stem cells, also hold great promise for future cell therapies in dermatology. This article reviews some of the preclinical and clinical studies and future directions relating to cell therapy in dermatology, particularly for inherited skin diseases associated with fragile skin and poor wound healing. PMID:24890834
Bioengineering Technology to Control River Soil Erosion using Vetiver (Vetiveria Zizaniodes)
NASA Astrophysics Data System (ADS)
Sriwati, M.; Pallu, S.; Selintung, M.; Lopa, R.
2018-04-01
Erosion is the action of surface processes (such as water flow or wind) that removes soil, rock or dissolved material from one location on the earth’s crust, and then transport it away to another location. Bioengineering is an attempt to maximise the use of vegetation components along riverbanks to cope with landslides and erosion of river cliffs and another riverbank damage. This study aims to analyze the bioengineering of Vetiver as a surface layer for soil erosion control using slope of 100, 200, and 300. This study is conducted with 3 variations of rain intensity (I), at 103 mm/hour, 107 mm/hour, and 130 mm/hour by using rainfall simulator tool. In addition, the USLE (Universal Soil Loss Equation) method is used in order to measure the rate of soil erosion. In this study, there are few USLE model parameters were used such as rainfall erosivity factor, soil erodibility factor, length-loss slope and stepness factor, cover management factor, and support practise factor. The results demonstrated that average of reduction of erosion rate using Vetiver, under 3 various rainfalls, namely rainfall intensity 103 mm/hr had reduced 84.971%, rainfall intensity 107 mm/hr had reduced 86.583 %, rainfall intensity 130 mm/hr had reduced 65.851%.
Chee, Marcus Jenn Yang; Lycett, Grantley W; Khoo, Teng-Jin; Chin, Chiew Foan
2017-01-01
Production of vanillin by bioengineering has gained popularity due to consumer demand toward vanillin produced by biological systems. Natural vanillin from vanilla beans is very expensive to produce compared to its synthetic counterpart. Current bioengineering works mainly involve microbial biotechnology. Therefore, alternative means to the current approaches are constantly being explored. This work describes the use of vanillin synthase (VpVAN), to bioconvert ferulic acid to vanillin in a plant system. The VpVAN enzyme had been shown to directly convert ferulic acid and its glucoside into vanillin and its glucoside, respectively. As the ferulic acid precursor and vanillin were found to be the intermediates in the phenylpropanoid biosynthetic pathway of Capsicum species, this work serves as a proof-of-concept for vanillin production using Capsicum frutescens (C. frutescens or hot chili pepper). The cells of C. frutescens were genetically transformed with a codon optimized VpVAN gene via biolistics. Transformed explants were selected and regenerated into callus. Successful integration of the gene cassette into the plant genome was confirmed by polymerase chain reaction. High-performance liquid chromatography was used to quantify the phenolic compounds detected in the callus tissues. The vanillin content of transformed calli was 0.057% compared to 0.0003% in untransformed calli.
Goh, Saik-Kia; Bertera, Suzanne; Olsen, Phillip; Candiello, Joe; Halfter, Willi; Uechi, Guy; Balasubramani, Manimalha; Johnson, Scott; Sicari, Brian; Kollar, Elizabeth; Badylak, Stephen F.; Banerjee, Ipsita
2013-01-01
Approximately 285 million people worldwide suffer from diabetes, with insulin supplementation as the most common treatment measure. Regenerative medicine approaches such as a bioengineered pancreas has been proposed as potential therapeutic alternatives. A bioengineered pancreas will benefit from the development of a bioscaffold that supports and enhances cellular function and tissue development. Perfusion-decellularized organs are a likely candidate for use in such scaffolds since they mimic compositional, architectural and biomechanical nature of a native organ. In this study, we investigate perfusion-decellularization of whole pancreas and the feasibility to recellularize the whole pancreas scaffold with pancreatic cell types. Our result demonstrates that perfusion-decellularization of whole pancreas effectively removes cellular and nuclear material while retaining intricate three-dimensional microarchitecture with perfusable vasculature and ductal network and crucial extracellular matrix (ECM) components. To mimic pancreatic cell composition, we recellularized the whole pancreas scaffold with acinar and beta cell lines and cultured up to 5 days. Our result shows successful cellular engraftment within the decellularized pancreas, and the resulting graft gave rise to strong up-regulation of insulin gene expression. These findings support biological utility of whole pancreas ECM as a biomaterials scaffold for supporting and enhancing pancreatic cell functionality and represent a step toward bioengineered pancreas using regenerative medicine approaches. PMID:23787110
Carroll, Thomas J.; Cleaver, Ondine; Gossett, Daniel R.; Hoshizaki, Deborah K.; Hubbell, Jeffrey A.; Humphreys, Benjamin D.; Jain, Sanjay; Jensen, Jan; Kaplan, David L.; Kesselman, Carl; Ketchum, Christian J.; Little, Melissa H.; McMahon, Andrew P.; Shankland, Stuart J.; Spence, Jason R.; Valerius, M. Todd; Wertheim, Jason A.; Wessely, Oliver; Zheng, Ying; Drummond, Iain A.
2017-01-01
(Re)Building a Kidney is a National Institute of Diabetes and Digestive and Kidney Diseases-led consortium to optimize approaches for the isolation, expansion, and differentiation of appropriate kidney cell types and the integration of these cells into complex structures that replicate human kidney function. The ultimate goals of the consortium are two-fold: to develop and implement strategies for in vitro engineering of replacement kidney tissue, and to devise strategies to stimulate regeneration of nephrons in situ to restore failing kidney function. Projects within the consortium will answer fundamental questions regarding human gene expression in the developing kidney, essential signaling crosstalk between distinct cell types of the developing kidney, how to derive the many cell types of the kidney through directed differentiation of human pluripotent stem cells, which bioengineering or scaffolding strategies have the most potential for kidney tissue formation, and basic parameters of the regenerative response to injury. As these projects progress, the consortium will incorporate systematic investigations in physiologic function of in vitro and in vivo differentiated kidney tissue, strategies for engraftment in experimental animals, and development of therapeutic approaches to activate innate reparative responses. PMID:28096308
A patterned recombinant human IgM guides neurite outgrowth of CNS neurons
Xu, Xiaohua; Wittenberg, Nathan J.; Jordan, Luke R.; Kumar, Shailabh; Watzlawik, Jens O.; Warrington, Arthur E.; Oh, Sang-Hyun; Rodriguez, Moses
2013-01-01
Matrix molecules convey biochemical and physical guiding signals to neurons in the central nervous system (CNS) and shape the trajectory of neuronal fibers that constitute neural networks. We have developed recombinant human IgMs that bind to epitopes on neural cells, with the aim of treating neurological diseases. Here we test the hypothesis that recombinant human IgMs (rHIgM) can guide neurite outgrowth of CNS neurons. Microcontact printing was employed to pattern rHIgM12 and rHIgM22, antibodies that were bioengineered to have variable regions capable of binding to neurons or oligodendrocytes, respectively. rHIgM12 promoted neuronal attachment and guided outgrowth of neurites from hippocampal neurons. Processes from spinal neurons followed grid patterns of rHIgM12 and formed a physical network. Comparison between rHIgM12 and rHIgM22 suggested the biochemistry that facilitates anchoring the neuronal surfaces is a prerequisite for the function of IgM, and spatial properties cooperate in guiding the assembly of neuronal networks. PMID:23881231
Enzymatic modification of phospholipids for functional applications and human nutrition.
Guo, Zheng; Vikbjerg, Anders F; Xu, Xuebing
2005-05-01
Rapid progress in biochemistry of phospholipids and evolution of modern bioengineering has brought forth a number of novel concepts and technical advancements in the modification of phospholipids for industrial applications and human nutrition. Highlights cover preparation of novel phospholipid analogs based on the latest understanding of pivotal role of phospholipids in manifold biological processes, exploration of remarkable application potentials of phospholipids in meliorating human health, as well as development of new chemical and biotechnological approaches applied to the modification of phospholipids. This work reviews the natural occurrence and structural characteristics of phospholipids, their updated knowledge on manifold biological and nutritional functions, traditional and novel physical and chemical approaches to modify phospholipids as well as their applications to obtain novel phospholipids, and brief introduction of the efforts focusing on de novo syntheses of phospholipids. Special attention is given to the summary of molecular structural characteristics and catalytic properties of multiple phospholipases, which helps to interpret experimental phenomena and to improve reaction design. This will of course provide fundamental bases also for the development of enzymatic technology to produce structured or modified phospholipids.
Therapeutic potential of dental stem cells
Chalisserry, Elna Paul; Nam, Seung Yun; Park, Sang Hyug; Anil, Sukumaran
2017-01-01
Stem cell biology has become an important field in regenerative medicine and tissue engineering therapy since the discovery and characterization of mesenchymal stem cells. Stem cell populations have also been isolated from human dental tissues, including dental pulp stem cells, stem cells from human exfoliated deciduous teeth, stem cells from apical papilla, dental follicle progenitor cells, and periodontal ligament stem cells. Dental stem cells are relatively easily obtainable and exhibit high plasticity and multipotential capabilities. The dental stem cells represent a gold standard for neural-crest-derived bone reconstruction in humans and can be used for the repair of body defects in low-risk autologous therapeutic strategies. The bioengineering technologies developed for tooth regeneration will make substantial contributions to understand the developmental process and will encourage future organ replacement by regenerative therapies in a wide variety of organs such as the liver, kidney, and heart. The concept of developing tooth banking and preservation of dental stem cells is promising. Further research in the area has the potential to herald a new dawn in effective treatment of notoriously difficult diseases which could prove highly beneficial to mankind in the long run. PMID:28616151
Hu, Jianwen; Han, Jizhong; Li, Haoran; Zhang, Xian; Liu, Lan Lan; Chen, Fei; Zeng, Bin
2018-01-01
Mammalian cells, e.g., CHO, BHK, HEK293, HT-1080, and NS0 cells, represent important manufacturing platforms in bioengineering. They are widely used for the production of recombinant therapeutic proteins, vaccines, anticancer agents, and other clinically relevant drugs. HEK293 (human embryonic kidney 293) cells and their derived cell lines provide an attractive heterologous system for the development of recombinant proteins or adenovirus productions, not least due to their human-like posttranslational modification of protein molecules to provide the desired biological activity. Secondly, they also exhibit high transfection efficiency yielding high-quality recombinant proteins. They are easy to maintain and express with high fidelity membrane proteins, such as ion channels and transporters, and thus are attractive for structural biology and electrophysiology studies. In this article, we review the literature on HEK293 cells regarding their origins but also stress their advancements into the different cell lines engineered and discuss some significant aspects which make them versatile systems for biopharmaceutical manufacturing, drug screening, structural biology research, and electrophysiology applications. © 2018 S. Karger AG, Basel.
Bosetti, M; Boccafoschi, F; Calarco, A; Leigheb, M; Gatti, S; Piffanelli, V; Peluso, G; Cannas, M
2008-01-01
The aim of this study was to design a functional bio-engineered material to be used as scaffold for autologous mesenchymal stem cells in ligament tissue engineering. Polyelectrolyte modified HEMA hydrogel (HEMA-co-METAC), applied as coating on silk fibroin fibres, has been formulated in order to take advantage of the biocompatibility of the polyelectrolyte by increasing its mechanical properties with silk fibres. Human bone marrow mesenchymal stem cells behaviour on such reinforced polyelectrolyte has been studied by evaluating cell morphology, cell number, attachment, spreading and proliferation together with collagen matrix production and its mRNA expression. Silk fibroin fibres matrices with HEMA-co-METAC coating exhibited acceptable mechanical behaviour compared to the natural ligament, good human mesenchymal stem cell adhesion and with mRNA expression studies higher levels of collagen types I and III expression when compared to control cells on polystyrene. These data indicate high expression of mRNA for proteins responsible for the functional characteristics of the ligaments and suggest a potential for use of this biomaterial in ligament tissue-engineering applications.
Wagner, Darcy E.; Bonvillain, Ryan W.; Jensen, Todd J.; Girard, Eric D.; Bunnell, Bruce A.; Finck, Christine M.; Hoffman, Andrew M.; Weiss, Daniel J.
2013-01-01
For patients with end-stage lung diseases, lung transplantation is the only available therapeutic option. However, the number of suitable donor lungs is insufficient and lung transplants are complicated by significant graft failure and complications of immunosuppressive regimens. An alternative to classic organ replacement is desperately needed. Engineering of bioartificial organs using either natural or synthetic scaffolds is an exciting new potential option for generation of functional pulmonary tissue for human clinical application. Natural organ scaffolds can be generated by decellularization of native tissues; these acellular scaffolds retain the native organ ultrastructure and can be seeded with autologous cells toward the goal of regenerating functional tissues. Several decellularization strategies have been employed for lung, however, there is no consensus on the optimal approach. A variety of cell types have been investigated as potential candidates for effective recellularization of acellular lung scaffolds. Candidate cells that might be best utilized are those which can be easily and reproducibly isolated, expanded in vitro, seeded onto decellularized matrices, induced to differentiate into pulmonary lineage cells, and which survive to functional maturity. Whole lung cell suspensions, endogenous progenitor cells, embryonic and adult stem cells, and induced pluripotent stem (iPS) cells have been investigated for their applicability to repopulate acellular lung matrices. Ideally, patient-derived autologous cells would be used for lung recellularization as they have the potential to reduce the need for post-transplant immunosuppression. Several studies have performed transplantation of rudimentary bioengineered lung scaffolds in animal models with limited, short-term functionality but much further study is needed. PMID:23614471
Jeltsch, Albert
2018-01-01
Genome targeting of restriction enzymes and DNA methyltransferases has many important applications including genome and epigenome editing. 15–20 years ago, my group was involved in the development of approaches for programmable genome targeting, aiming to connect enzymes with an oligodeoxynucleotide (ODN), which could form a sequence-specific triple helix at the genomic target site. Importantly, the target site of such enzyme-ODN conjugate could be varied simply by altering the ODN sequence promising great applicative values. However, this approach was facing many problems including the preparation and purification of the enzyme-ODN conjugates, their efficient delivery into cells, slow kinetics of triple helix formation and the requirement of a poly-purine target site sequence. Hence, for several years genome and epigenome editing approaches mainly were based on Zinc fingers and TAL proteins as targeting devices. More recently, CRISPR/Cas systems were discovered, which use a bound RNA for genome targeting that forms an RNA/DNA duplex with one DNA strand of the target site. These systems combine all potential advantages of the once imagined enzyme-ODN conjugates and avoid all main disadvantageous. Consequently, the application of CRISPR/Cas in genome and epigenome editing has exploded in recent years. We can draw two important conclusions from this example of research history. First, evolution still is the better bioengineer than humans and, whenever tested in parallel, natural solutions outcompete engineered ones. Second, CRISPR/Cas system were discovered in pure, curiosity driven, basic research, highlighting that it is basic, bottom-up research paving the way for fundamental innovation. PMID:29434619
Code of Federal Regulations, 2010 CFR
2010-01-01
..., fungi, rickettsiae, or protozoa), or infectious substance, or any naturally occurring, bioengineered, or... (including, but not limited to, bacteria, viruses, fungi, rickettsiae, or protozoa), or infectious substances...
Code of Federal Regulations, 2012 CFR
2012-01-01
..., fungi, rickettsiae, or protozoa), or infectious substance, or any naturally occurring, bioengineered, or... (including, but not limited to, bacteria, viruses, fungi, rickettsiae, or protozoa), or infectious substances...
Code of Federal Regulations, 2011 CFR
2011-01-01
..., fungi, rickettsiae, or protozoa), or infectious substance, or any naturally occurring, bioengineered, or... (including, but not limited to, bacteria, viruses, fungi, rickettsiae, or protozoa), or infectious substances...
Some questions of space bioengineering
NASA Technical Reports Server (NTRS)
Nyiri, L. K.
1977-01-01
Zero-gravity offers selective effect on growth and metabolic activity unicellular organisms as well as unique opportunities in purification of organic compounds. These make it possible to consider the biosynthesis and recovery of certain metabolites economically feasible in space. Design, construction and operation of systems for the above mentioned purposes requires interdisciplinary actions within the scope of a new discipline: space bioengineering. The problems and perspectives of this discipline particularly in the application of bioreactor-recovery systems in space to manufacture metabolites of high economic and scientific value. Special attention is paid to pivotal factors such as various mass transport phenomena, contamination control, automatic control of optimum environment and synchronization of the operation of the biological (biosynthesis) and the physiochemical (recovery-purification) systems.
Fabrication of micro-alginate gel tubes utilizing micro-gelatin fibers
NASA Astrophysics Data System (ADS)
Sakaguchi, Katsuhisa; Arai, Takafumi; Shimizu, Tatsuya; Umezu, Shinjiro
2017-05-01
Tissues engineered utilizing biofabrication techniques have recently been the focus of much attention, because these bioengineered tissues have great potential to improve the quality of life of patients with various hard-to-treat diseases. Most tissues contain micro-tubular structures including blood vessels, lymphatic vessels, and bile canaliculus. Therefore, we bioengineered a micro diameter tube using alginate gel to coat the core gelatin gel. Micro-gelatin fibers were fabricated by the coacervation method and then coated with a very thin alginate gel layer by dipping. A micro diameter alginate tube was produced by dissolving the core gelatin gel. Consequently, these procedures led to the formation of micro-alginate gel tubes of various shapes and sizes. This biofabrication technique should contribute to tissue engineering research fields.
Development of a compact permanent magnet helicon plasma source for ion beam bioengineering.
Kerdtongmee, P; Srinoum, D; Nisoa, M
2011-10-01
A compact helicon plasma source was developed as a millimeter-sized ion source for ion beam bioengineering. By employing a stacked arrangement of annular-shaped permanent magnets, a uniform axial magnetic flux density up to 2.8 kG was obtained. A cost effective 118 MHz RF generator was built for adjusting forward output power from 0 to 40 W. The load impedance and matching network were then analyzed. A single loop antenna and circuit matching elements were placed on a compact printed circuit board for 50 Ω impedance matching. A plasma density up to 1.1 × 10(12) cm(-3) in the 10 mm diameter tube under the magnetic flux density was achieved with 35 W applied RF power.
Development of a compact permanent magnet helicon plasma source for ion beam bioengineering
NASA Astrophysics Data System (ADS)
Kerdtongmee, P.; Srinoum, D.; Nisoa, M.
2011-10-01
A compact helicon plasma source was developed as a millimeter-sized ion source for ion beam bioengineering. By employing a stacked arrangement of annular-shaped permanent magnets, a uniform axial magnetic flux density up to 2.8 kG was obtained. A cost effective 118 MHz RF generator was built for adjusting forward output power from 0 to 40 W. The load impedance and matching network were then analyzed. A single loop antenna and circuit matching elements were placed on a compact printed circuit board for 50 Ω impedance matching. A plasma density up to 1.1 × 1012 cm-3 in the 10 mm diameter tube under the magnetic flux density was achieved with 35 W applied RF power.
The potential of 3D printing in urological research and patient care.
Colaco, Marc; Igel, Daniel A; Atala, Anthony
2018-04-01
3D printing is an evolving technology that enables the creation of unique organic and inorganic structures with high precision. In urology, the technology has demonstrated potential uses in both patient and clinician education as well as in clinical practice. The four major techniques used for 3D printing are inkjet printing, extrusion printing, laser sintering, and stereolithography. Each of these techniques can be applied to the production of models for education and surgical planning, prosthetic construction, and tissue bioengineering. Bioengineering is potentially the most important application of 3D printing, as the ability to produce functional organic constructs might, in the future, enable urologists to replicate and replace abnormal tissues with neo-organs, improving patient survival and quality of life.
Veraitch, Ophelia; Mabuchi, Yo; Matsuzaki, Yumi; Sasaki, Takashi; Okuno, Hironobu; Tsukashima, Aki; Amagai, Masayuki; Okano, Hideyuki; Ohyama, Manabu
2017-01-01
The dermal papilla (DP) is a specialised mesenchymal component of the hair follicle (HF) that plays key roles in HF morphogenesis and regeneration. Current technical difficulties in preparing trichogenic human DP cells could be overcome by the use of highly proliferative and plastic human induced pluripotent stem cells (hiPSCs). In this study, hiPSCs were differentiated into induced mesenchymal cells (iMCs) with a bone marrow stromal cell phenotype. A highly proliferative and plastic LNGFR(+)THY-1(+) subset of iMCs was subsequently programmed using retinoic acid and DP cell activating culture medium to acquire DP properties. The resultant cells (induced DP-substituting cells [iDPSCs]) exhibited up-regulated DP markers, interacted with human keratinocytes to up-regulate HF related genes, and when co-grafted with human keratinocytes in vivo gave rise to fibre structures with a hair cuticle-like coat resembling the hair shaft, as confirmed by scanning electron microscope analysis. Furthermore, iDPSCs responded to the clinically used hair growth reagent, minoxidil sulfate, to up-regulate DP genes, further supporting that they were capable of, at least in part, reproducing DP properties. Thus, LNGFR(+)THY-1(+) iMCs may provide material for HF bioengineering and drug screening for hair diseases. PMID:28220862
Polymeric membranes modulate human keratinocyte differentiation in specific epidermal layers.
Salerno, Simona; Morelli, Sabrina; Giordano, Francesca; Gordano, Amalia; Bartolo, Loredana De
2016-10-01
In vitro models of human bioengineered skin substitutes are an alternative to animal experimentation for testing the effects and toxicity of drugs, cosmetics and pollutants. For the first time specific and distinct human epidermal strata were engineered by using membranes and keratinocytes. To this purpose, biodegradable membranes of chitosan (CHT), polycaprolactone (PCL) and a polymeric blend of CHT-PCL were prepared by phase-inversion technique and characterized in order to evaluate their morphological, physico-chemical and mechanical properties. The capability of membranes to modulate keratinocyte differentiation inducing specific interactions in epidermal membrane systems was investigated. The overall results demonstrated that the membrane properties strongly influence the cell morpho-functional behaviour of human keratinocytes, modulating their terminal differentiation, with the creation of specific epidermal strata or a fully proliferative epidermal multilayer system. In particular, human keratinocytes adhered on CHT and CHT-PCL membranes, forming the structure of the epidermal top layers, such as the corneum and granulosum strata, characterized by withdrawal or reduction from the cell cycle and cell proliferation. On the PCL membrane, keratinocytes developed an epidermal basal lamina, with high proliferating cells that stratified and migrated over time to form a complete differentiating epidermal multilayer system. Copyright © 2016 Elsevier B.V. All rights reserved.
Li, S; Oreffo, ROC; Sengers, BG; Tare, RS
2014-01-01
Significant oxygen gradients occur within tissue engineered cartilaginous constructs. Although oxygen tension is an important limiting parameter in the development of new cartilage matrix, its precise role in matrix formation by chondrocytes remains controversial, primarily due to discrepancies in the experimental setup applied in different studies. In this study, the specific effects of oxygen tension on the synthesis of cartilaginous matrix by human articular chondrocytes were studied using a combined experimental-computational approach in a “scaffold-free” 3D pellet culture model. Key parameters including cellular oxygen uptake rate were determined experimentally and used in conjunction with a mathematical model to estimate oxygen tension profiles in 21-day cartilaginous pellets. A threshold oxygen tension (pO2 ≈ 8% atmospheric pressure) for human articular chondrocytes was estimated from these inferred oxygen profiles and histological analysis of pellet sections. Human articular chondrocytes that experienced oxygen tension below this threshold demonstrated enhanced proteoglycan deposition. Conversely, oxygen tension higher than the threshold favored collagen synthesis. This study has demonstrated a close relationship between oxygen tension and matrix synthesis by human articular chondrocytes in a “scaffold-free” 3D pellet culture model, providing valuable insight into the understanding and optimization of cartilage bioengineering approaches. Biotechnol. Bioeng. 2014;111: 1876–1885. PMID:24668194
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loots, G G; Ovcharenko, I; Collette, N
2007-02-26
Generating the sequence of the human genome represents a colossal achievement for science and mankind. The technical use for the human genome project information holds great promise to cure disease, prevent bioterror threats, as well as to learn about human origins. Yet converting the sequence data into biological meaningful information has not been immediately obvious, and we are still in the preliminary stages of understanding how the genome is organized, what are the functional building blocks and how do these sequences mediate complex biological processes. The overarching goal of this program was to develop novel methods and high throughput strategiesmore » for determining the functions of ''anonymous'' human genes that are evolutionarily deeply conserved in other vertebrates. We coupled analytical tool development and computational predictions regarding gene function with novel high throughput experimental strategies and tested biological predictions in the laboratory. The tools required for comparative genomic data-mining are fundamentally the same whether they are applied to scientific studies of related microbes or the search for functions of novel human genes. For this reason the tools, conceptual framework and the coupled informatics-experimental biology paradigm we developed in this LDRD has many potential scientific applications relevant to LLNL multidisciplinary research in bio-defense, bioengineering, bionanosciences and microbial and environmental genomics.« less
Survey of American food trends and the growing obesity epidemic.
Shao, Qin; Chin, Khew-Voon
2011-06-01
The rapid rise in the incidence of obesity has emerged as one of the most pressing global public health issues in recent years. The underlying etiological causes of obesity, whether behavioral, environmental, genetic, or a combination of several of them, have not been completely elucidated. The obesity epidemic has been attributed to the ready availability, abundance, and overconsumption of high-energy content food. We determined here by Pearson's correlation the relationship between food type consumption and rising obesity using the loss-adjusted food availability data from the United States Department of Agriculture (USDA) Economic Research Services (ERS) as well as the obesity prevalence data from the Behavioral Risk Factor Surveillance System (BRFSS) and the National Health and Nutrition Examination Survey (NHANES) at the Centers for Disease Control and Prevention (CDC). Our analysis showed that total calorie intake and consumption of high fructose corn syrup (HFCS) did not correlate with rising obesity trends. Intake of other major food types, including chicken, dairy fats, salad and cooking oils, and cheese also did not correlate with obesity trends. However, our results surprisingly revealed that consumption of corn products correlated with rising obesity and was independent of gender and race/ethnicity among population dynamics in the U.S. Therefore, we were able to demonstrate a novel link between the consumption of corn products and rising obesity trends that has not been previously attributed to the obesity epidemic. This correlation coincides with the introduction of bioengineered corns into the human food chain, thus raising a new hypothesis that should be tested in molecular and animal models of obesity.
Survey of American food trends and the growing obesity epidemic
Shao, Qin
2011-01-01
The rapid rise in the incidence of obesity has emerged as one of the most pressing global public health issues in recent years. The underlying etiological causes of obesity, whether behavioral, environmental, genetic, or a combination of several of them, have not been completely elucidated. The obesity epidemic has been attributed to the ready availability, abundance, and overconsumption of high-energy content food. We determined here by Pearson's correlation the relationship between food type consumption and rising obesity using the loss-adjusted food availability data from the United States Department of Agriculture (USDA) Economic Research Services (ERS) as well as the obesity prevalence data from the Behavioral Risk Factor Surveillance System (BRFSS) and the National Health and Nutrition Examination Survey (NHANES) at the Centers for Disease Control and Prevention (CDC). Our analysis showed that total calorie intake and consumption of high fructose corn syrup (HFCS) did not correlate with rising obesity trends. Intake of other major food types, including chicken, dairy fats, salad and cooking oils, and cheese also did not correlate with obesity trends. However, our results surprisingly revealed that consumption of corn products correlated with rising obesity and was independent of gender and race/ethnicity among population dynamics in the U.S. Therefore, we were able to demonstrate a novel link between the consumption of corn products and rising obesity trends that has not been previously attributed to the obesity epidemic. This correlation coincides with the introduction of bioengineered corns into the human food chain, thus raising a new hypothesis that should be tested in molecular and animal models of obesity. PMID:21779530
New Directions for Biomedical Engineering
ERIC Educational Resources Information Center
Plonsey, Robert
1973-01-01
Discusses the definition of "biomedical engineering" and the development of educational programs in the field. Includes detailed descriptions of the roles of bioengineers, medical engineers, and chemical engineers. (CC)
A linear-encoding model explains the variability of the target morphology in regeneration
Lobo, Daniel; Solano, Mauricio; Bubenik, George A.; Levin, Michael
2014-01-01
A fundamental assumption of today's molecular genetics paradigm is that complex morphology emerges from the combined activity of low-level processes involving proteins and nucleic acids. An inherent characteristic of such nonlinear encodings is the difficulty of creating the genetic and epigenetic information that will produce a given self-assembling complex morphology. This ‘inverse problem’ is vital not only for understanding the evolution, development and regeneration of bodyplans, but also for synthetic biology efforts that seek to engineer biological shapes. Importantly, the regenerative mechanisms in deer antlers, planarian worms and fiddler crabs can solve an inverse problem: their target morphology can be altered specifically and stably by injuries in particular locations. Here, we discuss the class of models that use pre-specified morphological goal states and propose the existence of a linear encoding of the target morphology, making the inverse problem easy for these organisms to solve. Indeed, many model organisms such as Drosophila, hydra and Xenopus also develop according to nonlinear encodings producing linear encodings of their final morphologies. We propose the development of testable models of regeneration regulation that combine emergence with a top-down specification of shape by linear encodings of target morphology, driving transformative applications in biomedicine and synthetic bioengineering. PMID:24402915
Analytical monitoring of soil bioengineering structures in the Tuscan Emilian Apennines of Italy
NASA Astrophysics Data System (ADS)
Selli, Lavinia; Guastini, Enrico
2014-05-01
Soil bioengineering has been an appropriate solution to deal with erosion problems and shallow landslides in the North Apennines, Italy. The objective of our research was a check about critical aspects of soil bioengineering works. We monitored the works that have been carried out in the Tuscan Emilian Apennines by testing the suitability of different plant species and analyzed in detail timber structures of wooden crib walls. Plant species were mainly Salix alba and Salix purpurea that gave good sprouting and survival rates. However, showed some issues in growing on dry and sunny Apennine lands, where other shrubs like Spanish Broom, blackthorn, cornel-tree and Eglantine would be more indicated. The localized analysis on wooden elements has been led gathering parts from the poles and obtaining samples in order to determine their density. The hypothetical initial density of the wood used in the structure has been estimated, then calculating the residual density. This analysis allows us to determine the general condition of the wood, highlighting the structures in worst condition (the one in Pianaccio show a residual density close to 70%, instead of 90% as found on other structures) and those whose degraded wood has undergone the greatest damage (Pianaccio here too, with 50%, followed by Campoferrario - 60% - and by Pian di Favale with 85%, a rather good value for the most degraded wood in the structure).
Kelly, Kimberly A.; Hollingsworth, Michael A.; Brand, Randall E.; Liu, Christina H.; Singh, Vikesh K.; Srivastava, Sudhir; Wasan, Ajay D.; Yadav, Dhiraj; Andersen, Dana K.
2015-01-01
A workshop sponsored by the National Institute of Diabetes and Digestive and Kidney Diseases and the National Institute of Biomedical Imaging and Bioengineering focused on research gaps and opportunities in the development of new biomarkers of pancreatic disease. The session was held on July 22, 2015, and structured into six sessions: 1) introduction and overview, 2) keynote address, 3) new approaches to the diagnosis of chronic pancreatitis, 4) biomarkers of pain and inflammation, 5) new approaches to the detection of pancreatic cancer, and 6) shed exosomes, shed cells, and shed proteins. Recent advances in the fields of pancreatic imaging, functional markers of pancreatic disease, proteomics, molecular and cellular imaging, and detection of circulating cancer cells and exosomes were reviewed. Knowledge gaps and research needs were highlighted. The development of new methods for the non-invasive determination of pancreatic pathology, the use of cellular markers of pancreatic function, inflammation, pain, and malignancy, and the refinement of methods to identify cells and cellular constituents of pancreatic cancer were discussed. The further refinement of sophisticated technical methods, and the need for clinical studies to validate these new approaches in large-scale studies of patients at risk for the development of pancreatic disease was repeatedly emphasized. PMID:26465948
Biology: An Important Agricultural Engineering Mechanism
ERIC Educational Resources Information Center
Henderson, S. M.
1974-01-01
Describes the field of bioengineering with particular emphasis on agricultural engineering, and presents the results of a survey of schools that combine biology and engineering in their curricula. (JR)
Mukhey, Dev; Phillips, James B; Daniels, Julie T; Kureshi, Alvena K
2018-02-01
The architecture of the human corneal stroma consists of a highly organized extracellular matrix (ECM) interspersed with keratocytes. Their progenitor cells; corneal stromal stem cells (CSSC) are located at the periphery, in the limbal stroma. A highly organized corneal ECM is critical for effective transmission of light but this structure may be compromised during injury or disease, resulting in loss of vision. Re-creating normal organization in engineered tissue equivalents for transplantation often involves lengthy culture times that are inappropriate for clinical use or utilisation of synthetic substrates that bring complications such as corneal melting. CSSC have great therapeutic potential owing to their ability to reorganize a disorganized matrix, restoring transparency in scarred corneas. We examined CSSC contractile behavior to assess whether this property could be exploited to rapidly generate cell and ECM organization in Real Architecture For 3D Tissues (RAFT) tissue equivalents (TE) for transplantation. Free-floating collagen gels were characterized to assess contractile behavior of CSSC and establish optimum cell density and culture times. To mediate cell and collagen organization, tethered collagen gels seeded with CSSC were cultured and subsequently stabilized with the RAFT process. We demonstrated rapid creation of biomimetic RAFT TE with tunable structural properties. These displayed three distinct regions of varying degrees of cellular and collagen organization. Interestingly, increased organization coincided with a dramatic loss of PAX6 expression in CSSC, indicating rapid differentiation into keratocytes. The organized RAFT TE system could be a useful bioengineering tool to rapidly create an organized ECM while simultaneously controlling cell phenotype. For the first time, we have demonstrated that human CSSC exhibit the phenomenon of cellular self-alignment in tethered collagen gels. We found this mediated rapid co-alignment of collagen fibrils and thus subsequently exploited this property in vitro to improve the architecture of engineered RAFT tissue equivalents of the corneal stroma. Existing techniques are extremely lengthy and carry significant risk and cost for GMP manufacture. This rapid and tunable technique takes just 8 h of culture and is therefore ideal for clinical manufacture, creating biomimetic tissue equivalents with both cellular and ECM organization. Thus, cellular self-alignment can be a useful bioengineering tool for the development of organized tissue equivalents in a variety of applications. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Bioelectric memory: modeling resting potential bistability in amphibian embryos and mammalian cells.
Law, Robert; Levin, Michael
2015-10-15
Bioelectric gradients among all cells, not just within excitable nerve and muscle, play instructive roles in developmental and regenerative pattern formation. Plasma membrane resting potential gradients regulate cell behaviors by regulating downstream transcriptional and epigenetic events. Unlike neurons, which fire rapidly and typically return to the same polarized state, developmental bioelectric signaling involves many cell types stably maintaining various levels of resting potential during morphogenetic events. It is important to begin to quantitatively model the stability of bioelectric states in cells, to understand computation and pattern maintenance during regeneration and remodeling. To facilitate the analysis of endogenous bioelectric signaling and the exploitation of voltage-based cellular controls in synthetic bioengineering applications, we sought to understand the conditions under which somatic cells can stably maintain distinct resting potential values (a type of state memory). Using the Channelpedia ion channel database, we generated an array of amphibian oocyte and mammalian membrane models for voltage evolution. These models were analyzed and searched, by simulation, for a simple dynamical property, multistability, which forms a type of voltage memory. We find that typical mammalian models and amphibian oocyte models exhibit bistability when expressing different ion channel subsets, with either persistent sodium or inward-rectifying potassium, respectively, playing a facilitative role in bistable memory formation. We illustrate this difference using fast sodium channel dynamics for which a comprehensive theory exists, where the same model exhibits bistability under mammalian conditions but not amphibian conditions. In amphibians, potassium channels from the Kv1.x and Kv2.x families tend to disrupt this bistable memory formation. We also identify some common principles under which physiological memory emerges, which suggest specific strategies for implementing memories in bioengineering contexts. Our results reveal conditions under which cells can stably maintain one of several resting voltage potential values. These models suggest testable predictions for experiments in developmental bioelectricity, and illustrate how cells can be used as versatile physiological memory elements in synthetic biology, and unconventional computation contexts.
Ashjian, Peter; Elbarbary, Amir; Zuk, Patricia; DeUgarte, Daniel A; Benhaim, Prosper; Marcu, Laura; Hedrick, Marc H
2004-01-01
The clinical implantation of bioengineered tissues requires an in situ nondestructive evaluation of the quality of tissue constructs developed in vitro before transplantation. Time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) is demonstrated here to noninvasively monitor the formation of osteogenic extracellular matrix (ECM) produced by putative stem cells (PLA cells) derived from human adipose tissue. We show that this optical spectroscopy technique can assess the relative expression of collagens (types I, III, IV, and V) within newly forming osteogenic ECM. The results are consistent with those obtained by conventional histochemical techniques (immunofluorescence and Western blot) and demonstrate that TR-LIFS is a potential tool for monitoring the expression of distinct collagen types and the formation of collagen cross-links in intact tissue constructs.
Dimensions and geometry of the temporomandibular joint and masseter muscles.
Zurowski, R; Gosek, M; Aleksandrowicz, R
1976-01-01
The bio-engineering team presents its suggestion of a method for the measurement of the temporomandibular joint and masseter muscles in order to determine the parameters necessary for exact sciences and indispensable for unified and objective cognitive studies. Ten formalin-fixed human cadavers served for the studies. The preparations were prepared by the modified method of anatomical procedure. Linear and angular measurements of temporomandibular joint and masseter muscles were carried out with the use of the three-dimensional Cartesian system of OXYZ coordinates in relation to frontal, sagittal and horizontal planes. The physiological cross-sections of the masseter, temporal, lateral and medial pterygoid muscles were also determined. The collected data make it possible to develop a mathematical three-dimensioned model of the osseo-articulo-muscular system of the mastication organ.
Raising the social yield of research: challenge facing biotechnology.
Grimaud, J A
2001-12-01
The biological revolution is the latest in a series of scientific revolutions that have ushered in a new era in physics, chemistry, industry, and composite materials. The latest instruments of life - bioengineering for and by the living - challenge mankind with a number of fundamental questions, while offering an unprecedented series of opportunities. Alternative biotechnologies, biological agriculture for the environment, genomics applied to preventive medicine, genetic engineering are just a few of the benefits mankind may reap from bioengineering. Modern society demands more knowledge, and it is up to public authorities to invest in outreach programs to make public the latest scientific activities and findings. In the case of biotechnologies, it is particularly true that the product of research is not complete until its benefits are returned to society.
Bioengineering towards self-assembly of particulate vaccines.
Rehm, Bernd H A
2017-12-01
There is an unmet demand for safe and efficient vaccines for prevention of various infectious diseases. Subunit vaccines comprise selected pathogen specific antigens are a safe alternative to whole organism vaccines. However they often lack immunogenicity. Natural and synthetic self-assembling polymers and proteins will be reviewed in view their use to encapsulate and/or display antigens to serve as immunogenic antigen carriers for induction of protective immunity. Recent advances made in in vivo assembly of antigen-displaying polyester inclusions will be a focus. Particulate vaccines are inherently immunogenic due to enhanced uptake by antigen presenting cells which process antigens mediating adaptive immune responses. Bioengineering approaches enable the design of tailor-made particulate vaccines to fine tune immune responses towards protective immunity. Copyright © 2017 Elsevier Ltd. All rights reserved.
Didactic tools for understanding respiratory physiology
NASA Astrophysics Data System (ADS)
Donnelly Kehoe, P.; Bratovich, C.; Perrone, Ms; Mendez Castells, L.
2007-11-01
The challenges in Bioengineering are not only the application of engineering knowledge to the measurement of physiological variables, but also the simulation of biological systems. Experience has shown that the physiology of the respiratory system involves a set of concepts that cannot be effectively taught without the help of a group of didactic tools that contribute to the measurement of characteristic specific variables and to the simulation of the system itself. This article describes a series of tools designed to optimize the teaching of the respiratory system, including the use of spirometers and software developed entirely by undergraduate Bioengineering students from Universidad Nacional de Entre Rios (UNER). The impact these resources have caused on the understanding of the topic and how each of them has facilitated the interpretation of the concepts by the students is also discussed.
NASA Astrophysics Data System (ADS)
Rizvi, Imran; Bulin, Anne-Laure; Anbil, Sriram R.; Briars, Emma A.; Vecchio, Daniela; Celli, Jonathan P.; Broekgaarden, Mans; Hasan, Tayyaba
2017-02-01
Targeting the molecular and cellular cues that influence treatment resistance in tumors is critical to effectively treating unresponsive populations of stubborn disease. The informed design of mechanism-based combinations is emerging as increasingly important to targeting resistance and improving the efficacy of conventional treatments, while minimizing toxicity. Photodynamic therapy (PDT) has been shown to synergize with conventional agents and to overcome the evasion pathways that cause resistance. Increasing evidence shows that PDT-based combinations cooperate mechanistically with, and improve the therapeutic index of, traditional chemotherapies. These and other findings emphasize the importance of including PDT as part of comprehensive treatment plans for cancer, particularly in complex disease sites. Identifying effective combinations requires a multi-faceted approach that includes the development of bioengineered cancer models and corresponding image analysis tools. The molecular and phenotypic basis of verteporfin-mediated PDT-based enhancement of chemotherapeutic efficacy and predictability in complex 3D models for ovarian cancer will be presented.
Rapid prototyping for biomedical engineering: current capabilities and challenges.
Lantada, Andrés Díaz; Morgado, Pilar Lafont
2012-01-01
A new set of manufacturing technologies has emerged in the past decades to address market requirements in a customized way and to provide support for research tasks that require prototypes. These new techniques and technologies are usually referred to as rapid prototyping and manufacturing technologies, and they allow prototypes to be produced in a wide range of materials with remarkable precision in a couple of hours. Although they have been rapidly incorporated into product development methodologies, they are still under development, and their applications in bioengineering are continuously evolving. Rapid prototyping and manufacturing technologies can be of assistance in every stage of the development process of novel biodevices, to address various problems that can arise in the devices' interactions with biological systems and the fact that the design decisions must be tested carefully. This review focuses on the main fields of application for rapid prototyping in biomedical engineering and health sciences, as well as on the most remarkable challenges and research trends.
Mattick, Carolyn S; Landis, Amy E; Allenby, Braden R; Genovese, Nicholas J
2015-10-06
Cultured, or in vitro, meat consists of edible biomass grown from animal stem cells in a factory, or carnery. In the coming decades, in vitro biomass cultivation could enable the production of meat without the need to raise livestock. Using an anticipatory life cycle analysis framework, the study described herein examines the environmental implications of this emerging technology and compares the results with published impacts of beef, pork, poultry, and another speculative analysis of cultured biomass. While uncertainty ranges are large, the findings suggest that in vitro biomass cultivation could require smaller quantities of agricultural inputs and land than livestock; however, those benefits could come at the expense of more intensive energy use as biological functions such as digestion and nutrient circulation are replaced by industrial equivalents. From this perspective, large-scale cultivation of in vitro meat and other bioengineered products could represent a new phase of industrialization with inherently complex and challenging trade-offs.
Reflections on the Last 25 Years of the American Otological Society and Thoughts on its Future.
Welling, D Bradley; Jackler, Robert K
2018-04-01
To review contributions of the American Otological Society (AOS) over the most recent quarter century (1993-2018) and to comment on possible future evolution of the field during the quarter century to come. Retrospective review of selected topics from the AOS transactions, distinguished lectureships over the past 25 years, and selective reflection by the authors. Speculation on potential advances of the next quarter century derived from emerging topics in the current literature and foreseeable trends in science and technology are also proffered for consideration (and possible future ridicule). Integration of multiple disciplines including bioengineering, medical imaging, genetics, molecular biology, physics, and evidence based medicine have substantially benefitted the practice of otology over the past quarter century. The impact of the contributions of members of the AOS in these developments cannot be over estimated. Further scientific advancement will certainly accelerate change in the practice of otologic surgery and medicine over the coming decade in ways that will be marvelous to behold.
Microvalve-based bioprinting - process, bio-inks and applications.
Ng, Wei Long; Lee, Jia Min; Yeong, Wai Yee; Win Naing, May
2017-03-28
Bioprinting is an emerging research field that has attracted tremendous attention for various applications; it offers a highly automated, advanced manufacturing platform for the fabrication of complex bioengineered constructs. Different bio-inks comprising multiple types of printable biomaterials and cells are utilized during the bioprinting process to improve the homology to native tissues and/or organs in a highly reproducible manner. This paper, presenting a first-time comprehensive yet succinct review of microvalve-based bioprinting, provides an in-depth analysis and comparison of different drop-on-demand bioprinting systems and highlights the important considerations for microvalve-based bioprinting systems. This review paper reports a detailed analysis of its printing process, bio-ink properties and cellular components on the printing outcomes. Lastly, this review highlights the significance of drop-on-demand bioprinting for various applications such as high-throughput screening, fundamental cell biology research, in situ bioprinting and fabrication of in vitro tissue constructs and also presents future directions to transform the microvalve-based bioprinting technology into imperative tools for tissue engineering and regenerative medicine.
The Trajectories of Saccadic Eye Movements.
ERIC Educational Resources Information Center
Bahill, A. Terry; Stark, Lawrence
1979-01-01
Investigates the trajectories of saccadic eye movements, the control signals of the eye, and nature of the mechanisms that generate them, using the techniques of bioengineering in collecting the data. (GA)
78 FR 30319 - Center for Scientific Review; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-22
... Committee: Bioengineering Sciences & Technologies Integrated Review Group; Gene and Drug Delivery Systems..., [email protected] . (Catalogue of Federal Domestic Assistance Program Nos. 93.306, Comparative Medicine...
78 FR 64514 - Center for Scientific Review; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-29
...: Psycho/Neuropathology, Lifespan Development, and Science, Education. Date: November 13, 2013. Time: 8:00... Scientific Review Special Emphasis Panel; Bioengineering Sciences and Technologies: AREA Review. Date...
Manpower development for the biomedical industry space.
Goh, James C H
2013-01-01
The Biomedical Sciences (BMS) Cluster is one of four key pillars of the Singapore economy. The Singapore Government has injected research funding for basic and translational research to attract companies to carry out their commercial R&D activities. To further intensify the R&D efforts, the National Research Foundation (NRF) was set up to coordinate the research activities of different agencies within the larger national framework and to fund strategic R&D initiatives. In recent years, funding agencies began to focus on support of translational and clinical research, particularly those with potential for commercialization. Translational research is beginning to have traction, in particular research funding for the development of innovation medical devices. Therefore, the Biomedical Sciences sector is projected to grow which means that there is a need to invest in human capital development to achieve sustainable growth. In support of this, education and training programs to strengthen the manpower capabilities for the Biomedical Sciences industry have been developed. In recent years, undergraduate and graduate degree courses in biomedical engineering/bioengineering have been developing at a rapid rate. The goal is to train students with skills to understand complex issues of biomedicine and to develop and implement of advanced technological applications to these problems. There are a variety of career opportunities open to graduates in biomedical engineering, however regardless of the type of career choices, students must not only focus on achieving good grades. They have to develop their marketability to employers through internships, overseas exchange programs, and involvement in leadership-type activities. Furthermore, curriculum has to be developed with biomedical innovation in mind and ensure relevance to the industry. The objective of this paper is to present the NUS Bioengineering undergraduate program in relation to manpower development for the biomedical industry in Singapore.
Recent development and biomedical applications of self-healing hydrogels.
Wang, Yinan; Adokoh, Christian K; Narain, Ravin
2018-01-01
Hydrogels are of special importance, owing to their high-water content and various applications in biomedical and bio-engineering research. Self-healing properties is a common phenomenon in living organisms. Their endowed property of being able to self-repair after physical/chemical/mechanical damage to fully or partially its original properties demonstrates their prospective therapeutic applications. Due to complicated preparation and selection of suitable materials, the application of many host-guest supramolecular polymeric hydrogels are so limited. Thus, the design and construction of self-repairing material are highly desirable for effectively increase in the lifetime of a functional material. However, recent advances in the field of materials science and bioengineering and nanotechnology have led to the design of biologically relevant self-healing hydrogels for therapeutic applications. This review focuses on the recent development of self-healing hydrogels for biomedical application. Areas covered: The strategies of making self-healing hydrogels and their healing mechanisms are discussed. The significance of self-healing hydrogel for biomedical application is also highlighted in areas such as 3D/4D printing, cell/drug delivery, as well as soft actuators. Expert opinion: Materials that have the ability to self-repair damage and regain the desired mechanical properties, have been found to be excellent candidate materials for a range of biomedical uses especially if their unique characteristics are similar to that of soft-tissues. Self-healing hydrogels have been synthesized and shown to exhibit similar characteristics as human tissues, however, significant improvement is required in the fabrication process from inexpensive and nontoxic/non-hazardous materials and techniques, and, in addition, further fine-tuning of the self-healing properties are needed for specific biomedical uses.
Tasic-Kostov, M Z; Reichl, S; Lukic, M Z; Jaksic, I N; Savic, S D
2011-11-01
Moisturizing creams are the most prescribed products in dermatology, essential in maintaining healthy skin as well as in the topical treatment of some diseases. The irritation potential of commonly used emulsifiers and moisturizing ingredients, but also their mutual interactions, could affect the functionality and safety of those dermopharmaceutics. The aim of this study was to promote moisturizing alkyl polyglucoside (APG)-based emulsion as vehicle for lactobionic acid (LA), advantageous representative of the alphahydroxyacids (AHAs)-multifunctional moisturizers, assessing the safety for use (in vitro acute skin irritation test using cytotoxicity assay compared with in vivo data obtained using skin bioengineering methods) and in vivo moisturizing capacity (bioengineering of the skin). In order to investigate possible interactions between APG mild natural emulsifier-based emulsion and LA, a deeper insight into the colloidal structure of the placebo and the emulsion with LA was given using polarization and transmission electron microscopy, rheology, thermal and texture analysis. This study showed that APG-based emulsions could be promoted as safe cosmetic/dermopharmaceutical vehicles and carriers for extremely acidic and hygroscopic AHA class of actives (specifically LA); prospective safety for human use of both APG and LA with the correlation between in vivo and in vitro findings was shown. However, it was revealed that LA strongly influenced the colloidal structure of the emulsion based on APGs and promoted the formation of lamellar structures which reflects onto the mode of water distribution within the cream. The advantageous skin hydrating potential of LA-containing emulsion vs. placebo was unlikely to be achieved, pointing that emulsions stabilized by lamellar liquid crystalline structures probably are not satisfying carriers for highly hygroscopic actives in order to reach the full moisturizing potential. Safe and effective use on dry skin is presumed.
78 FR 35943 - Center for Scientific Review; Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-14
... personal privacy. Name of Committee: Bioengineering Sciences & Technologies Integrated Review Group... Domestic Assistance Program Nos. 93.306, Comparative Medicine; 93.333, Clinical Research, 93.306, 93.333...
77 FR 24972 - National Institute of Biomedical Imaging and Bioengineering Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-26
... consideration of personal qualifications and performance, and the competence of individual investigators, the... and evaluate personal qualifications and performance, and competence of individual investigators...
75 FR 74069 - Center for Scientific Review; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-30
...: Bioengineering Sciences & Technologies Integrated Review Group Modeling and Analysis of Biological Systems Study... of Federal Domestic Assistance Program Nos. 93.306, Comparative Medicine; 93.333, Clinical Research...
76 FR 10382 - Center for Scientific Review; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-24
... Biomedicine and Agriculture: Infectious Diseases, Immunology and the Circulatory System. Date: March 21, 2011... Committee: Center for Scientific Review Special Emphasis Panel; Bioengineering Special Topics. Date: March...
Environmental Toxin Screening Using Human-Derived 3D Bioengineered Liver and Cardiac Organoids.
Forsythe, Steven D; Devarasetty, Mahesh; Shupe, Thomas; Bishop, Colin; Atala, Anthony; Soker, Shay; Skardal, Aleksander
2018-01-01
Environmental toxins, such as lead and other heavy metals, pesticides, and other compounds, represent a significant health concern within the USA and around the world. Even in the twenty-first century, a plethora of cities and towns in the U.S. have suffered from exposures to lead in drinking water or other heavy metals in food or the earth, while there is a high possibility of further places to suffer such exposures in the near future. We employed bioengineered 3D human liver and cardiac organoids to screen a panel of environmental toxins (lead, mercury, thallium, and glyphosate), and charted the response of the organoids to these compounds. Liver and cardiac organoids were exposed to lead (10 µM-10 mM), mercury (200 nM-200 µM), thallium (10 nM-10 µM), or glyphosate (25 µM-25 mM) for a duration of 48 h. The impacts of toxin exposure were then assessed by LIVE/DEAD viability and cytotoxicity staining, measuring ATP activity and determining IC50 values, and determining changes in cardiac organoid beating activity. As expected, all of the toxins induced toxicity in the organoids. Both ATP and LIVE/DEAD assays showed toxicity in both liver and cardiac organoids. In particular, thallium was the most toxic, with IC50 values of 13.5 and 1.35 µM in liver and cardiac organoids, respectively. Conversely, glyphosate was the least toxic of the four compounds, with IC50 values of 10.53 and 10.85 mM in liver and cardiac organoids, respectively. Additionally, toxins had a negative influence on cardiac organoid beating activity as well. Thallium resulting in the most significant decreases in beating rate, followed by mercury, then glyphosate, and finally, lead. These results suggest that the 3D organoids have significant utility to be deployed in additional toxicity screening applications, and future development of treatments to mitigate exposures. 3D organoids have significant utility to be deployed in additional toxicity screening applications, such as future development of treatments to mitigate exposures, drug screening, and environmental toxin detection.
In Vitro Tissue-Engineered Skeletal Muscle Models for Studying Muscle Physiology and Disease.
Khodabukus, Alastair; Prabhu, Neel; Wang, Jason; Bursac, Nenad
2018-04-25
Healthy skeletal muscle possesses the extraordinary ability to regenerate in response to small-scale injuries; however, this self-repair capacity becomes overwhelmed with aging, genetic myopathies, and large muscle loss. The failure of small animal models to accurately replicate human muscle disease, injury and to predict clinically-relevant drug responses has driven the development of high fidelity in vitro skeletal muscle models. Herein, the progress made and challenges ahead in engineering biomimetic human skeletal muscle tissues that can recapitulate muscle development, genetic diseases, regeneration, and drug response is discussed. Bioengineering approaches used to improve engineered muscle structure and function as well as the functionality of satellite cells to allow modeling muscle regeneration in vitro are also highlighted. Next, a historical overview on the generation of skeletal muscle cells and tissues from human pluripotent stem cells, and a discussion on the potential of these approaches to model and treat genetic diseases such as Duchenne muscular dystrophy, is provided. Finally, the need to integrate multiorgan microphysiological systems to generate improved drug discovery technologies with the potential to complement or supersede current preclinical animal models of muscle disease is described. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bio-engineering inslulin-secreting cells from embryonic stem cells: a review of progress.
Roche, E; Sepulcre, M P; Enseñat-Waser, R; Maestre, I; Reig, J A; Soria, B
2003-07-01
According to the Edmonton protocol, human islet transplantation can result in insulin independency for periods longer than 3 years. However, this therapy for type 1 diabetes is limited by the scarcity of cadaveric donors. Owing to the ability of embryonic stem cells to expand in vitro and differentiate into a variety of cell types, research has focused on ways to manipulate these cells to overcome this problem. It has been demonstrated that mouse embryonic stem cells can differentiate into insulin-containing cells, restoring normoglycaemia in diabetic mice. To this end, mouse embryonic stem cells were transfected with a DNA construct that provides resistance to neomycin under the control of the regulatory regions of the human insulin gene. However, this protocol has a very low efficiency, needing improvements for this technology to be transferred to human stem cells. Optimum protocols will be instrumental in the production of an unlimited source of cells that synthesise, store and release insulin in a physiological manner. The review focuses on the alternative source of tissue offered by embryonic stem cells for regenerative medicine in diabetes and some key points that should be considered in order for a definitive protocol for in vitro differentiation to be established.
Rehabilitation and the Veterans' Administration
NASA Technical Reports Server (NTRS)
Meister, F.
1974-01-01
The Veteran's Administration health care system provides prosthetic and sensory aids for the rehabilitation of neurologically handicapped veterans. Research and development centers include prosthetic clinic teams, orthopedic shops, restoration clinics, bioengineering services, orthotics, etc.
A Program for Clinical Care in Physical Trauma--Combat Surgery and Bioengineering.
and energy exchange; Bone composition and fractures; Computer technology in intensive care; Manitol toxicity; Liver blood flow transplantation; Infections and immunology--Candida infection and Pseudomonas immunity. (Author)
77 FR 25036 - Hispanic-Serving Agricultural Colleges and Universities (HSACU) Certification Process
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-27
..., Agricultural Power Machinery Operation 01.0205, Agricultural Mechanics and Equipment/Machine Technology 01.0299... Education 14.0301, Agricultural/Biological Engineering and Bioengineering 19.0501, Foods, Nutrition, and...
The Future of Asthma Monitoring | NIH MedlinePlus the Magazine
... Institute of Biomedical Imaging and Bioengineering (NIBIB) uses biosensors to gather data about environmental and other factors involved in childhood asthma. Biosensors are devices that detect and measure biochemical changes ...
78 FR 25752 - National Institute of Biomedical Imaging and Bioengineering; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-02
..., Two Democracy Plaza, 951, 6707 Democracy Boulevard, Bethesda, MD 20892, (Virtual Meeting). Contact..., Two Democracy Plaza, Suite 920, 6707 Democracy Boulevard, Bethesda, MD 20892, (Virtual Meeting...
78 FR 37557 - National Institute of Biomedical Imaging and Bioengineering; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-21
... (Virtual Meeting). Contact Person: Ruth Grossman, DDS, Scientific Review Officer, National Institute of... Plaza, Suite 920, 6707 Democracy Boulevard, Bethesda, MD 20892 (Virtual Meeting). Contact Person: Ruth...
78 FR 24763 - National Institute of Biomedical Imaging and Bioengineering; Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-26
... consideration of personal qualifications and performance, and the competence of individual investigators, the... performance, and competence of individual investigators. Place: National Institutes of Health, Lawton Chiles...
A Multidisciplinary Course in Bioengineering.
ERIC Educational Resources Information Center
Bienkowski, Paul R.; And Others
1989-01-01
Outlines a graduate course, "Microbial Systems Analysis," for students in chemical and environmental engineering or engineering mechanics, as well as microbiology, ecology and biotechnology. Describes the objectives, structure and laboratory experiments for the course. (YP)
77 FR 74675 - National Institute of Biomedical Imaging and Bioengineering; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-17
... Person: Ruth Grossman, DDS, Scientific Review Officer, National Institute of Biomedical Imaging and... Person: Ruth Grossman, DDS, Scientific Review Officer, National Institute of Biomedical Imaging and...
78 FR 3903 - National Institute of Biomedical Imaging and Bioengineering; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-17
... Hilton Hotel Tarrytown, 455 South Broadway, Tarrytown, NY 10591. Contact Person: Ruth Grossman, DDS.... Contact Person: Ruth Grossman, DDS, Scientific Review Officer, National Institute of Biomedical Imaging...
77 FR 38845 - National Institute of Biomedical Imaging and Bioengineering; Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-29
... Health, Two Democracy Plaza, 6707 Democracy Boulevard, Bethesda, MD 20892, (Virtual Meeting). Contact Person: Ruixia Zhou, Ph.D., Scientific Review Officer, 6707 Democracy Boulevard, Democracy Two Building...
78 FR 64229 - Center for Scientific Review; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-28
... Committee: AIDS and Related Research Integrated Review Group; AIDS Molecular and Cellular Biology Study...; Fellowships: Cell Biology, Developmental Biology and Bioengineering. Date: November 18-19, 2013. Time: 10:00 a...
78 FR 10186 - Center For Scientific Review; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-13
... Committee: Center for Scientific Review Special Emphasis Panel; RFA: EY 13-001 Basic Behavioral Research on... Panel; Fellowships: Cell Biology, Developmental Biology and Bioengineering. Date: March 7, 2013. Time: 8...
Cochlear Implantation, Enhancements, Transhumanism and Posthumanism: Some Human Questions.
Lee, Joseph
2016-02-01
Biomedical engineering technologies such as brain-machine interfaces and neuroprosthetics are advancements which assist human beings in varied ways. There are exciting yet speculative visions of how the neurosciences and bioengineering may influence human nature. However, these could be preparing a possible pathway towards an enhanced and even posthuman future. This article seeks to investigate several ethical themes and wider questions of enhancement, transhumanism and posthumanism. Four themes of interest are: autonomy, identity, futures, and community. Three larger questions can be asked: will everyone be enhanced? Will we be "human" if we are not, one day, transhuman? Should we be enhanced or not? The article proceeds by concentrating on a widespread and sometimes controversial application: the cochlear implant, an auditory prosthesis implanted into Deaf patients. Cochlear implantation and its reception in both the deaf and hearing communities have a distinctive moral discourse, which can offer surprising insights. The paper begins with several points about the enhancement of human beings, transhumanism's reach beyond the human, and posthuman aspirations. Next it focuses on cochlear implants on two sides. Firstly, a shorter consideration of what technologies may do to humans in a transhumanist world. Secondly, a deeper analysis of cochlear implantation's unique socio-political movement, its ethical explanations and cultural experiences linked with pediatric cochlear implantation-and how those wary of being thrust towards posthumanism could marshal such ideas by analogy. As transhumanism approaches, the issues and questions merit continuing intense analysis.
Bioengineering of Artificial Antigen Presenting Cells and Lymphoid Organs
Wang, Chao; Sun, Wujin; Ye, Yanqi; Bomba, Hunter N.; Gu, Zhen
2017-01-01
The immune system protects the body against a wide range of infectious diseases and cancer by leveraging the efficiency of immune cells and lymphoid organs. Over the past decade, immune cell/organ therapies based on the manipulation, infusion, and implantation of autologous or allogeneic immune cells/organs into patients have been widely tested and have made great progress in clinical applications. Despite these advances, therapy with natural immune cells or lymphoid organs is relatively expensive and time-consuming. Alternatively, biomimetic materials and strategies have been applied to develop artificial immune cells and lymphoid organs, which have attracted considerable attentions. In this review, we survey the latest studies on engineering biomimetic materials for immunotherapy, focusing on the perspectives of bioengineering artificial antigen presenting cells and lymphoid organs. The opportunities and challenges of this field are also discussed. PMID:28912891
Bioengineering of Artificial Antigen Presenting Cells and Lymphoid Organs.
Wang, Chao; Sun, Wujin; Ye, Yanqi; Bomba, Hunter N; Gu, Zhen
2017-01-01
The immune system protects the body against a wide range of infectious diseases and cancer by leveraging the efficiency of immune cells and lymphoid organs. Over the past decade, immune cell/organ therapies based on the manipulation, infusion, and implantation of autologous or allogeneic immune cells/organs into patients have been widely tested and have made great progress in clinical applications. Despite these advances, therapy with natural immune cells or lymphoid organs is relatively expensive and time-consuming. Alternatively, biomimetic materials and strategies have been applied to develop artificial immune cells and lymphoid organs, which have attracted considerable attentions. In this review, we survey the latest studies on engineering biomimetic materials for immunotherapy, focusing on the perspectives of bioengineering artificial antigen presenting cells and lymphoid organs. The opportunities and challenges of this field are also discussed.
Goldin, Ilya M; Pinkus, Rosa Lynn; Ashley, Kevin
2015-06-01
Assessment in ethics education faces a challenge. From the perspectives of teachers, students, and third-party evaluators like the Accreditation Board for Engineering and Technology and the National Institutes of Health, assessment of student performance is essential. Because of the complexity of ethical case analysis, however, it is difficult to formulate assessment criteria, and to recognize when students fulfill them. Improvement in students' moral reasoning skills can serve as the focus of assessment. In previous work, Rosa Lynn Pinkus and Claire Gloeckner developed a novel instrument for assessing moral reasoning skills in bioengineering ethics. In this paper, we compare that approach to existing assessment techniques, and evaluate its validity and reliability. We find that it is sensitive to knowledge gain and that independent coders agree on how to apply it.
Bioengineered Systems and Designer Matrices That Recapitulate the Intestinal Stem Cell Niche.
Wang, Yuli; Kim, Raehyun; Hinman, Samuel S; Zwarycz, Bailey; Magness, Scott T; Allbritton, Nancy L
2018-03-01
The relationship between intestinal stem cells (ISCs) and the surrounding niche environment is complex and dynamic. Key factors localized at the base of the crypt are necessary to promote ISC self-renewal and proliferation, to ultimately provide a constant stream of differentiated cells to maintain the epithelial barrier. These factors diminish as epithelial cells divide, migrate away from the crypt base, differentiate into the postmitotic lineages, and end their life span in approximately 7 days when they are sloughed into the intestinal lumen. To facilitate the rapid and complex physiology of ISC-driven epithelial renewal, in vivo gradients of growth factors, extracellular matrix, bacterial products, gases, and stiffness are formed along the crypt-villus axis. New bioengineered tools and platforms are available to recapitulate various gradients and support the stereotypical cellular responses associated with these gradients. Many of these technologies have been paired with primary small intestinal and colonic epithelial cells to re-create select aspects of normal physiology or disease states. These biomimetic platforms are becoming increasingly sophisticated with the rapid discovery of new niche factors and gradients. These advancements are contributing to the development of high-fidelity tissue constructs for basic science applications, drug screening, and personalized medicine applications. Here, we discuss the direct and indirect evidence for many of the important gradients found in vivo and their successful application to date in bioengineered in vitro models, including organ-on-chip and microfluidic culture devices.
Alcaine, S D; Law, K; Ho, S; Kinchla, A J; Sela, D A; Nugen, S R
2016-08-15
Bacteriophage (phage) amplification is an attractive method for the detection of bacteria due to a narrow phage-host specificity, short amplification times, and the phages' ability to differentiate between viable and non-viable bacterial cells. The next step in phage-based bacteria detection is leveraging bioengineered phages to create low-cost, rapid, and easy-to-use detection platforms such as lateral flow assays. Our work establishes the proof-of-concept for the use of bioengineered T7 phage strains to increase the sensitivity of phage amplification-based lateral flow assays. We have demonstrated a greater than 10-fold increase in sensitivity using a phage-based protein reporter, maltose-binding protein, over the detection of replicated T7 phage viron itself, and a greater then 100-fold increase in sensitivity using a phage-based enzymatic reporter, alkaline phosphatase. This increase in sensitivity enabled us to detect 10(3)CFU/mL of Escherichia coli in broth after 7h, and by adding a filter concentration step, the ability to detect a regulatory relevant E. coli concentration of 100CFU/100mL in inoculated river water after 9h, where the current standard requires days for results. The combination of the paper fluidic format with phage-based detection provides a platform for the development of novel diagnostics that are sensitive, rapid, and easy to use. Copyright © 2016 Elsevier B.V. All rights reserved.
Managing bioengineering complexity with AI techniques.
Beal, Jacob; Adler, Aaron; Yaman, Fusun
2016-10-01
Our capabilities for systematic design and engineering of biological systems are rapidly increasing. Effectively engineering such systems, however, requires the synthesis of a rapidly expanding and changing complex body of knowledge, protocols, and methodologies. Many of the problems in managing this complexity, however, appear susceptible to being addressed by artificial intelligence (AI) techniques, i.e., methods enabling computers to represent, acquire, and employ knowledge. Such methods can be employed to automate physical and informational "routine" work and thus better allow humans to focus their attention on the deeper scientific and engineering issues. This paper examines the potential impact of AI on the engineering of biological organisms through the lens of a typical organism engineering workflow. We identify a number of key opportunities for significant impact, as well as challenges that must be overcome. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
78 FR 39740 - National Institute of Biomedical Imaging and Bioengineering; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-02
... William F. Bolger Center, Franklin Building, Conference Room 1, 9600 Newbridge Drive, Potomac, MD 20854...: The William F. Bolger Center, Franklin Building, Conference Room 1, 9600 Newbridge Drive, Potomac, MD...
78 FR 24224 - Center for Scientific Review; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-24
..., 301-435-1033, [email protected] . Name of Committee: Bioengineering Sciences & Technologies... Nos. 93.306, Comparative Medicine; 93.333, Clinical Research, 93.306, 93.333, 93.337, 93.393-93.396...
77 FR 12319 - Center for Scientific Review; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-29
... Review Special Emphasis Panel; Topics in Bioengineering Sciences. Date: March 16, 2012. Time: 11 a.m. to... Related Research Integrated Review Group; AIDS Immunology and Pathogenesis Study Section. Date: March 19...
Adriaens, Peter; Goovaerts, Pierre; Skerlos, Steven; Edwards, Elizabeth; Egli, Thomas
2003-12-01
Recent commercial and residential development have substantially impacted the fluxes and quality of water that recharge the aquifers and discharges to streams, lakes and wetlands and, ultimately, is recycled for potable use. Whereas the contaminant sources may be varied in scope and composition, these issues of urban water sustainability are of public health concern at all levels of economic development worldwide, and require cheap and innovative environmental sensing capabilities and interactive monitoring networks, as well as tailored distributed water treatment technologies. To address this need, a roundtable was organized to explore the potential role of advances in biotechnology and bioengineering to aid in developing causative relationships between spatial and temporal changes in urbanization patterns and groundwater and surface water quality parameters, and to address aspects of socioeconomic constraints in implementing sustainable exploitation of water resources. An interactive framework for quantitative analysis of the coupling between human and natural systems requires integrating information derived from online and offline point measurements with Geographic Information Systems (GIS)-based remote sensing imagery analysis, groundwater-surface water hydrologic fluxes and water quality data to assess the vulnerability of potable water supplies. Spatially referenced data to inform uncertainty-based dynamic models can be used to rank watershed-specific stressors and receptors to guide researchers and policymakers in the development of targeted sensing and monitoring technologies, as well as tailored control measures for risk mitigation of potable water from microbial and chemical environmental contamination. The enabling technologies encompass: (i) distributed sensing approaches for microbial and chemical contamination (e.g. pathogens, endocrine disruptors); (ii) distributed application-specific, and infrastructure-adaptive water treatment systems; (iii) geostatistical integration of monitoring data and GIS layers; and (iv) systems analysis of microbial and chemical proliferation in distribution systems. This operational framework is aimed at technology implementation while maximizing economic and public health benefits. The outcomes of the roundtable will further research agendas in information technology-based monitoring infrastructure development, integration of processes and spatial analysis, as well as in new educational and training platforms for students, practitioners and regulators. The potential for technology diffusion to emerging economies with limited financial resources is substantial.
Nakahara, Taka
2011-07-01
Multipotent mesenchymal stem cells from bone marrow are expected to be a somatic stem cell source for the development of new cell-based therapy in regenerative medicine. However, dental clinicians are unlikely to carry out autologous cell/tissue collection from patients (i.e., marrow aspiration) as a routine procedure in their clinics; hence, the utilization of bone marrow stem cells seems impractical in the dental field. Dental tissues harvested from extracted human teeth are well known to contain highly proliferative and multipotent stem cell compartments and are considered to be an alternative autologous cell source in cell-based medicine. This article provides a short overview of the ongoing studies for the potential application of dental stem cells and suggests the utilization of 2 concepts in future regenerative medicine: (1) dental stem cell-based therapy for hepatic and other systemic diseases and (2) tooth replacement therapy using the bioengineered human whole tooth, called the "test-tube dental implant." Regenerative therapies will bring new insights and benefits to the fields of clinical medicine and dentistry.
Analysis of flour and food samples for cry9C from bioengineered corn.
Orlandi, Palmer A; Lampel, Keith A; South, Paul K; Assar, Samir K; Carter, Laurenda; Levy, Dan D
2002-02-01
StarLink corn is a variety of yellow corn that has been genetically modified by the insertion of an altered cry9C gene into the plant genome. resulting in expression of the insecticidal Cry9C protein. The U.S. Environmental Protection Agency has approved StarLink corn for use in animal feed but not in food intended for human consumption. Therefore, under the U.S. Food, Drug, and Cosmetic Act, any food intended for human consumption in which the presence of StarLink corn is indicated by the presence of either the Cry9C protein or the cry9C gene would be considered adulterated. Extraction and PCR-based methods were used to detect the presence of the cry9C DNA initially in corn flour and corn meal, and then these methods were extended to the analysis of processed corn products, including taco shells, cereals, baby foods, party snacks, and chips, for the presence of this modified genetic material. In a survey of 63 products, the cry9C transgene was detected in 4 taco shells.
Microphysiological Systems (Tissue Chips) and their Utility for Rare Disease Research.
Low, Lucie A; Tagle, Danilo A
2017-01-01
The scientific and technological development of microphysiological systems (MPS) modeling organs-on-chips, or "tissue chips" (TCs), has progressed rapidly over the past decade. Stem cell research and microfluidic concepts have combined to lead to the development of microphysiological platforms representing an ever-expanding list of different human organ systems. In the context of rare diseases, these bioengineered microfluidics platforms hold promise for modeling of disorders and could prove useful in the screening and efficacy testing of existing therapeutics. Additionally, they have the potential for replacing and refining animal use for new drugs and clinical treatments, or could even act as surrogate human systems for testing of new therapeutics in the future, which could be particularly useful in populations of rare disease sufferers. This chapter will discuss the current state of tissue chip research, and challenges facing the field. Additionally, we will discuss how these devices are being used to model basic cellular and molecular phenotypes of rare diseases, holding promise to provide new tools for understanding of disease pathologies and screening and efficacy testing of potential therapeutics for drug discovery.
A bioarchitectonic approach to the modular engineering of metabolism.
Kerfeld, Cheryl A
2017-09-26
Dissociating the complexity of metabolic processes into modules is a shift in focus from the single gene/gene product to functional and evolutionary units spanning the scale of biological organization. When viewing the levels of biological organization through this conceptual lens, modules are found across the continuum: domains within proteins, co-regulated groups of functionally associated genes, operons, metabolic pathways and (sub)cellular compartments. Combining modules as components or subsystems of a larger system typically leads to increased complexity and the emergence of new functions. By virtue of their potential for 'plug and play' into new contexts, modules can be viewed as units of both evolution and engineering. Through consideration of lessons learned from recent efforts to install new metabolic modules into cells and the emerging understanding of the structure, function and assembly of protein-based organelles, bacterial microcompartments, a structural bioengineering approach is described: one that builds from an architectural vocabulary of protein domains. This bioarchitectonic approach to engineering cellular metabolism can be applied to microbial cell factories, used in the programming of members of synthetic microbial communities or used to attain additional levels of metabolic organization in eukaryotic cells for increasing primary productivity and as the foundation of a green economy.This article is part of the themed issue 'Enhancing photosynthesis in crop plants: targets for improvement'. © 2017 The Author(s).
Li, Ronald A; Keung, Wendy; Cashman, Timothy J; Backeris, Peter C; Johnson, Bryce V; Bardot, Evan S; Wong, Andy O T; Chan, Patrick K W; Chan, Camie W Y; Costa, Kevin D
2018-05-01
Tissue engineers and stem cell biologists have made exciting progress toward creating simplified models of human heart muscles or aligned monolayers to help bridge a longstanding gap between experimental animals and clinical trials. However, no existing human in vitro systems provide the direct measures of cardiac performance as a pump. Here, we developed a next-generation in vitro biomimetic model of pumping human heart chamber, and demonstrated its capability for pharmaceutical testing. From human pluripotent stem cell (hPSC)-derived ventricular cardiomyocytes (hvCM) embedded in collagen-based extracellular matrix hydrogel, we engineered a three-dimensional (3D) electro-mechanically coupled, fluid-ejecting miniature human ventricle-like cardiac organoid chamber (hvCOC). Structural characterization showed organized sarcomeres with myofibrillar microstructures. Transcript and RNA-seq analyses revealed upregulation of key Ca 2+ -handling, ion channel, and cardiac-specific proteins in hvCOC compared to lower-order 2D and 3D cultures of the same constituent cells. Clinically-important, physiologically complex contractile parameters such as ejection fraction, developed pressure, and stroke work, as well as electrophysiological properties including action potential and conduction velocity were measured: hvCOC displayed key molecular and physiological characteristics of the native ventricle, and showed expected mechanical and electrophysiological responses to a range of pharmacological interventions (including positive and negative inotropes). We conclude that such "human-heart-in-a-jar" technology could facilitate the drug discovery process by providing human-specific preclinical data during early stage drug development. Copyright © 2018. Published by Elsevier Ltd.
Restoration of the intrinsic properties of human dermal papilla in vitro.
Ohyama, Manabu; Kobayashi, Tetsuro; Sasaki, Takashi; Shimizu, Atsushi; Amagai, Masayuki
2012-09-01
The dermal papilla (DP) plays pivotal roles in hair follicle morphogenesis and cycling. However, characterization and/or propagation of human DPs have been unsatisfactory because of the lack of efficient isolation methods and the loss of innate characteristics in vitro. We hypothesized that culture conditions sustaining the intrinsic molecular signature of the human DP could facilitate expansion of functional DP cells. To test this, we first characterized the global gene expression profile of microdissected, non-cultured human DPs. We performed a 'two-step' microarray analysis to exclude the influence of unwanted contaminants in isolated DPs and successfully identified 118 human DP signature genes, including 38 genes listed in the mouse DP signature. The bioinformatics analysis of the DP gene list revealed that WNT, BMP and FGF signaling pathways were upregulated in intact DPs and addition of 6-bromoindirubin-3'-oxime, recombinant BMP2 and basic FGF to stimulate these respective signaling pathways resulted in maintained expression of in situ DP signature genes in primarily cultured human DP cells. More importantly, the exposure to these stimulants restored normally reduced DP biomarker expression in conventionally cultured DP cells. Cell growth was moderate in the newly developed culture medium. However, rapid DP cell expansion by conventional culture followed by the restoration by defined activators provided a sufficient number of DP cells that demonstrated characteristic DP activities in functional assays. The study reported here revealed previously unreported molecular mechanisms contributing to human DP properties and describes a useful technique for the investigation of human DP biology and hair follicle bioengineering.
76 FR 78284 - Center For Scientific Review; Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-16
... Panel, Member Conflict: Bioengineering Models and Technologies. Date: January 5, 2012. Time: 3 p.m. to 5... Domestic Assistance Program Nos. 93.306, Comparative Medicine; 93.333, Clinical Research, 93.306, 93.333...
Surgery of the Future | NIH MedlinePlus the Magazine
... including tools for imaging the body, biomaterials, and robotics,” says Margot Kern, who led the development of ... Bioengineering (NIBIB) Surgery of the Future website MedlinePlus: Robotic Surgery Summer 2017 Issue: Volume 12 Number 2 ...
... insert that gene into a cell of another plant or animal. ... Bioengineered foods; GMOs; Genetically modified foods ... also be moved from an animal to a plant or vice versa. Another ... organisms, or GMOs. The process to create GE foods is different ...
Pupillometry, a bioengineering overview
NASA Technical Reports Server (NTRS)
Myers, G.; Anchetta, J.; Hannaford, B.; Peng, P.; Sherman, K.; Stark, L.; Sun, F.; Usui, S.
1981-01-01
The pupillary control system is examined using a microprocessor based integrative pupillometer. The real time software functions of the microprocessor include: data collection, stimulus generation and area to diameter conversion. Results of an analysis of linear and nonlinear phenomena are presented.
78 FR 18357 - Center for Scientific Review; Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-26
... personal privacy. Name of Committee: Center for Scientific Review Special Emphasis Panel; Fellowships: Cell Biology, Developmental Biology, and Bioengineering. Date: April 3, 2013. Time: 1:00 p.m. to 2:00 p.m...
Investigating a Bio-Engineered Enzyme.
ERIC Educational Resources Information Center
Bullerwell, Lornie; And Others
1994-01-01
Describes science experiments with the enzyme lactose, which is available commercially as Lactaid and Dairy Ease. Experiments show how the rate of reaction of lactose converted to glucose and galactose is influenced by temperature, pH, and substrate concentration. (PR)
75 FR 22819 - Center for Scientific Review; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-30
...: Topics in Virology. Date: May 17-18, 2010. Time: 9 a.m. to 5 p.m. Agenda: To review and evaluate grant...: Surgical Sciences, Biomedical Imaging and Bioengineering Integrated Review Group; Surgery, Anesthesiology...
Synergizing Engineering and Biology to Treat and Model Skeletal Muscle Injury and Disease
Bursac, Nenad; Juhas, Mark; Rando, Thomas A.
2016-01-01
Although skeletal muscle is one of the most regenerative organs in our body, various genetic defects, alterations in extrinsic signaling, or substantial tissue damage can impair muscle function and the capacity for self-repair. The diversity and complexity of muscle disorders have attracted much interest from both cell biologists and, more recently, bioengineers, leading to concentrated efforts to better understand muscle pathology and develop more efficient therapies. This review describes the biological underpinnings of muscle development, repair, and disease, and discusses recent bioengineering efforts to design and control myomimetic environments, both to study muscle biology and function and to aid in the development of new drug, cell, and gene therapies for muscle disorders. The synergy between engineering-aided biological discovery and biology-inspired engineering solutions will be the path forward for translating laboratory results into clinical practice. PMID:26643021
Epigenetic Regulation: A New Frontier for Biomedical Engineers.
Chen, Zhen; Li, Shuai; Subramaniam, Shankar; Shyy, John Y-J; Chien, Shu
2017-06-21
Gene expression in mammalian cells depends on the epigenetic status of the chromatin, including DNA methylation, histone modifications, promoter-enhancer interactions, and noncoding RNA-mediated regulation. The coordinated actions of these multifaceted regulations determine cell development, cell cycle regulation, cell state and fate, and the ultimate responses in health and disease. Therefore, studies of epigenetic modulations are critical for our understanding of gene regulation mechanisms at the molecular, cellular, tissue, and organ levels. The aim of this review is to provide biomedical engineers with an overview of the principles of epigenetics, methods of study, recent findings in epigenetic regulation in health and disease, and computational and sequencing tools for epigenetics analysis, with an emphasis on the cardiovascular system. This review concludes with the perspectives of the application of bioengineering to advance epigenetics and the utilization of epigenetics to translate bioengineering research into clinical medicine.
The chicken chorioallantoic membrane model in biology, medicine and bioengineering
Nowak-Sliwinska, Patrycja; Segura, Tatiana; Iruela-Arispe, M. Luisa
2015-01-01
The chicken chorioallantoic membrane (CAM) is a simple, highly vascularized extraembryonic membrane, which performs multiple functions during embryonic development, including but not restricted to gas exchange. Over the last two decades, interest in the CAM as a robust experimental platform to study blood vessels has been shared by specialists working in bioengineering, development, morphology, biochemistry, transplant biology, cancer research and drug development. The tissue composition and accessibility of the CAM for experimental manipulation, makes it an attractive preclinical in vivo model for drug screening and / or for studies of vascular growth. In this article we provide a detailed review of the use of the CAM to study vascular biology and response of blood vessels to a variety of agonists. We also present distinct cultivation protocols discussing their advantages and limitations and provide a summarized update on the use of the CAM in vascular imaging, drug delivery, pharmacokinetics and toxicology. PMID:25138280
Striated Muscle Function, Regeneration, and Repair
Shadrin, I.Y.; Khodabukus, A.; Bursac, N.
2016-01-01
As the only striated muscle tissues in the body, skeletal and cardiac muscle share numerous structural and functional characteristics, while exhibiting vastly different size and regenerative potential. Healthy skeletal muscle harbors a robust regenerative response that becomes inadequate after large muscle loss or in degenerative pathologies and aging. In contrast, the mammalian heart loses its regenerative capacity shortly after birth, leaving it susceptible to permanent damage by acute injury or chronic disease. In this review, we compare and contrast the physiology and regenerative potential of native skeletal and cardiac muscles, mechanisms underlying striated muscle dysfunction, and bioengineering strategies to treat muscle disorders. We focus on different sources for cellular therapy, biomaterials to augment the endogenous regenerative response, and progress in engineering and application of mature striated muscle tissues in vitro and in vivo. Finally, we discuss the challenges and perspectives in translating muscle bioengineering strategies to clinical practice. PMID:27271751
Eap, Sandy; Bécavin, Thibault; Keller, Laetitia; Kökten, Tunay; Fioretti, Florence; Weickert, Jean-Luc; Deveaux, Etienne; Benkirane-Jessel, Nadia; Kuchler-Bopp, Sabine
2014-03-01
Current strategies for jaw reconstruction require multiple procedures, to repair the bone defect, to offer sufficient support, and to place the tooth implant. The entire procedure can be painful and time-consuming, and the desired functional repair can be achieved only when both steps are successful. The ability to engineer combined tooth and bone constructs, which would grow in a coordinated fashion with the surrounding tissues, could potentially improve the clinical outcomes and also reduce patient suffering. A unique nanofibrous and active implant for bone-tooth unit regeneration and also the innervation of this bioengineered tooth are demonstrated. A nanofibrous polycaprolactone membrane is functionalized with neural growth factor, along with dental germ, and tooth innervation follows. Such innervation allows complete functionality and tissue homeostasis of the tooth, such as dentinal sensitivity, odontoblast function, masticatory forces, and blood flow. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Jeschke, Marc G; Sadri, Ali-Reza; Belo, Cassandra; Amini-Nik, Saeid
2017-04-01
Due to the poor regenerative capacity of adult mammalian skin, there is a need to develop effective skin substitutes for promoting skin regeneration after a severe wound. However, the complexity of skin biology has made it difficult to enable perfect regeneration of skin. Thus, animal models are being used to test potential skin substitutes. Murine models are valuable but their healing process involves dermal contraction. We have developed a device called a dome that is able to eliminate the contraction effect of rodent skin while simultaneously housing a bioengineered skin graft. The dome comes in two models, which enables researchers to evaluate the cells that contribute in wound healing from neighboring intact tissue during skin healing/regeneration. This protocol simplifies grafting of skin substitutes, eliminates the contraction effect of surrounding skin, and summarizes a simple method for animal surgery for wound healing and skin regeneration studies.
The Hydromechanics of Vegetation for Slope Stabilization
NASA Astrophysics Data System (ADS)
Mulyono, A.; Subardja, A.; Ekasari, I.; Lailati, M.; Sudirja, R.; Ningrum, W.
2018-02-01
Vegetation is one of the alternative technologies in the prevention of shallow landslide prevention that occurs mostly during the rainy season. The application of plant for slope stabilization is known as bioengineering. Knowledge of the vegetative contribution that can be considered in bioengineering was the hydrological and mechanical aspects (hydromechanical). Hydrological effect of the plant on slope stability is to reduce soil water content through transpiration, interception, and evapotranspiration. The mechanical impact of vegetation on slope stability is to stabilize the slope with mechanical reinforcement of soils through roots. Vegetation water consumption varies depending on the age and density, rainfall factors and soil types. Vegetation with high ability to absorb water from the soil and release into the atmosphere through a transpiration process will reduce the pore water stress and increase slope stability, and vegetation with deep root anchoring and strong root binding was potentially more significant to maintain the stability of the slope.
Induced pluripotent stem cells: advances to applications
Nelson, Timothy J; Martinez-Fernandez, Almudena; Yamada, Satsuki; Ikeda, Yasuhiro; Perez-Terzic, Carmen; Terzic, Andre
2010-01-01
Induced pluripotent stem cell (iPS) technology has enriched the armamentarium of regenerative medicine by introducing autologous pluripotent progenitor pools bioengineered from ordinary somatic tissue. Through nuclear reprogramming, patient-specific iPS cells have been derived and validated. Optimizing iPS-based methodology will ensure robust applications across discovery science, offering opportunities for the development of personalized diagnostics and targeted therapeutics. Here, we highlight the process of nuclear reprogramming of somatic tissues that, when forced to ectopically express stemness factors, are converted into bona fide pluripotent stem cells. Bioengineered stem cells acquire the genuine ability to generate replacement tissues for a wide-spectrum of diseased conditions, and have so far demonstrated therapeutic benefit upon transplantation in model systems of sickle cell anemia, Parkinson’s disease, hemophilia A, and ischemic heart disease. The field of regenerative medicine is therefore primed to adopt and incorporate iPS cell-based advancements as a next generation stem cell platforms. PMID:21165156
Bioengineering aspects of inorganic carbon supply to mass algal cultures. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldman, J.C.
1980-06-01
The work included in this report is part of an ongoing study (currently funded by the Solar Energy Research Institute - Subcontract No. XR-9-8144-1) on the inorganic carbon requirements of microalgae under mass culture conditions and covers the period June 1, 1978 through May 31, 1979. It is divided into two parts appended herein. The first part is a literature review on the inorganic carbon chemical system in relation to algal growth requirements, and the second part deals with the kinetics of inorganic carbon-limited growth of two freshwater chlorophytes including the effect of carbon limitation on cellular chemical composition. Additionalmore » experiment research covered under this contract was reported in the Proceedings of the 3rd Annual Biomass Energy Systems Conferences, pp. 25-32, Bioengineering aspects of inorganic carbon supply to mass algal cultures. Report No. SERI/TP-33-285.« less
Xu, Xiaoli; Tang, LiLing
2017-01-01
The living environment of cancer cells is complicated and information-rich. Thus, traditional 2D culture mold in vitro cannot mimic the microenvironment of cancer cells exactly. Currently, bioengineered 3D scaffolds have been developed which can better simulate the microenvironment of tumors and fill the gap between 2D culture and clinical application. In this review, we discuss the scaffold materials used for fabrication techniques, biological behaviors of cancer cells in 3D scaffolds and the scaffold-based drug screening. A major emphasis is placed on the description of scaffold-based epithelial to mesenchymal transition and drug screening in 3D culture. By overcoming the defects of traditional 2D culture, 3D scaffolds culture can provide a simpler, safer and more reliable approach for cancer research. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.