Science.gov

Sample records for emerging disinfection by-products

  1. The formation and control of emerging disinfection by-products of health concern.

    PubMed

    Krasner, Stuart W

    2009-10-13

    When drinking water treatment plants disinfect water, a wide range of disinfection by-products (DBPs) of health and regulatory concern are formed. Recent studies have identified emerging DBPs (e.g. iodinated trihalomethanes (THMs) and acids, haloacetonitriles, halonitromethanes (HNMs), haloacetaldehydes, nitrosamines) that may be more toxic than some of the regulated ones (e.g. chlorine- and bromine-containing THMs and haloacetic acids). Some of these emerging DBPs are associated with impaired drinking water supplies (e.g. impacted by treated wastewater, algae, iodide). In some cases, alternative primary or secondary disinfectants to chlorine (e.g. chloramines, chlorine dioxide, ozone, ultraviolet) that minimize the formation of some of the regulated DBPs may increase the formation of some of the emerging by-products. However, optimization of the various treatment processes and disinfection scenarios can allow plants to control to varying degrees the formation of regulated and emerging DBPs. For example, pre-disinfection with chlorine, chlorine dioxide or ozone can destroy precursors for N-nitrosodimethylamine, which is a chloramine by-product, whereas pre-oxidation with chlorine or ozone can oxidize iodide to iodate and minimize iodinated DBP formation during post-chloramination. Although pre-ozonation may increase the formation of trihaloacetaldehydes or selected HNMs during post-chlorination or chloramination, biofiltration may reduce the formation potential of these by-products.

  2. Emerging Disinfection By-Products and Other Emerging Environmental Contaminants: What's New

    EPA Science Inventory

    Drinking water disinfection by-products (DBPs) have been associated with adverse human health effects, including bladder cancer, early term miscarriage, and birth defects. While it is vitally important to kill harmful pathogens in water, it is also important to minimize harmful ...

  3. EMERGING DISINFECTION BY-PRODUCTS OF TOXICOLOGICAL INTEREST: RESULTS OF A NATIONWIDE OCCURRENCE STUDY

    EPA Science Inventory

    The Safe Drinking Water Act and Amendments requires that EPA address disinfection by-products (DBPs) in drinking water. DBPs are formed when a disinfectant (such as chlorine) reacts with organic matter and/or bromide naturally present in source waters. Drinking water disinfecti...

  4. DISINFECTION BY-PRODUCTS AND OTHER EMERGING CONTAMINANTS IN DRINKING WATER

    EPA Science Inventory

    Although drinking water disinfection by-products (DBPs) have been studied for the last 30 years, significant, new concerns have arisen. These concerns include adverse reproductive and developmental effects recently observed in human populations, concerns that the types of cancer...

  5. DISINFECTION BY-PRODUCTS OF EMERGING CONCERN: RESULTS OF A U.S. NATIONWIDE OCCURRENCE STUDY

    EPA Science Inventory

    Drinking water disinfection by-products (DBPs) are of concern because some epidemiologic studies have shown that some DBPs are associated with cancer or adverse reproductive/developmental effects in human populations and other studies have shown that certain DBPs cause similar he...

  6. OCCURRENCE, GENOTOXICITY, AND CARCINOGENICITY OF EMERGING DISINFECTION BY-PRODUCTS IN DRINKING WATER: A REVIEW AND ROADMAP FOR RESEARCH

    EPA Science Inventory

    Occurrence, Genotoxicity, and Carcinogenicity of Emerging Disinfection By-products in Drinking Water: A Review and Roadmap for Research
    Summary of Paper
    What is study?
    This is the first review of the 30 year's research effort on the occurrence, genotoxicity,...

  7. OCCURRENCE, GENOTOXICITY, AND CARCINOGENICITY OF EMERGING DISINFECTION BY-PRODUCTS IN DRINKING WATER: A REVIEW AND ROADMAP FOR RESEARCH

    EPA Science Inventory

    Disinfection by-products (DBPs) are formed when disinfectants (chlorine, ozone, chlorine dioxide, or chloramines) react with naturally occurring organic matter, anthropogenic contaminants, bromide, and iodide during the production of drinking water. Here we review 30 years of re...

  8. Nitrogen enriched dissolved organic matter (DOM) isolates and their affinity to form emerging disinfection by-products.

    PubMed

    Dotson, A; Westerhoff, P; Krasner, S W

    2009-01-01

    Increased contributions from wastewater discharges and algal activity in drinking water supplies can lead to elevated levels of dissolved organic nitrogen (DON), which can increase the likelihood for the formation of emerging nitrogenous disinfection by-products (N-DBPs) of health concern. Dissolved organic matter (DOM) isolated from five waters, using a newly developed DOM isolation method specific to DON fractionation, produced thirty-four isolates of suitable mass. Each isolate was treated with free chlorine or chloramines under formation potential conditions. The DBP yields were determined for three halogenated DBPs (trichloromethane, dichloroacetonitrile, and trichloronitromethane) and one non-halogenated DBP (N-nitrosodimethylamine [NDMA]). Halogenated DBP yields were greater during the application of free chlorine, however chloramination produced significant levels of halogenated N-DBPs for some isolates. NDMA was only observed to form from selected nitrogen-enriched isolates (DOC/DON ratio < 20 mg/mg), especially those isolated from treated wastewater. Other results indicated that nitrogen-enriched DOM resulted in increased yields of the other N-DBPs studied.

  9. Occurrence and exposures to disinfectants and disinfection by-products

    SciTech Connect

    Cumming, R.B.; Jolley, R.L.

    1992-01-01

    Disinfection by-products are associated with all chemical disinfectants. The concentration and toxic nature of the disinfection byproducts (DBPs) is a direct function of the chemical nature of the disinfectant itself and/or of the chemical reactions of the disinfectant with reaction substrates in the water, especially organic constituents. A principal advantage of biological and physical water treatment processes, such as filtration, is the lack of chemical reactions producing disinfectant-related DBPs. The use of the highest quality source water available is important for minimization of DBP formation. In lieu of such high quality water, improvement of water quality by removal of DBP precursors through filtration or other means before application of chemical disinfectants is important. Most, if not all, water treatment experts are aware of these simplistic axioms. In view of the increasing knowledge being developed concerning DBPs including the identification of new'' DBPs, prudence dictates minimization of DBP formation. Wholesome drinking water is perhaps the biggest economic bargain available to consumers. The cost-effectiveness of water quality improvement should be evaluated with that in mind.

  10. Occurrence and exposures to disinfectants and disinfection by-products

    SciTech Connect

    Cumming, R.B.; Jolley, R.L.

    1992-12-31

    Disinfection by-products are associated with all chemical disinfectants. The concentration and toxic nature of the disinfection byproducts (DBPs) is a direct function of the chemical nature of the disinfectant itself and/or of the chemical reactions of the disinfectant with reaction substrates in the water, especially organic constituents. A principal advantage of biological and physical water treatment processes, such as filtration, is the lack of chemical reactions producing disinfectant-related DBPs. The use of the highest quality source water available is important for minimization of DBP formation. In lieu of such high quality water, improvement of water quality by removal of DBP precursors through filtration or other means before application of chemical disinfectants is important. Most, if not all, water treatment experts are aware of these simplistic axioms. In view of the increasing knowledge being developed concerning DBPs including the identification of ``new`` DBPs, prudence dictates minimization of DBP formation. Wholesome drinking water is perhaps the biggest economic bargain available to consumers. The cost-effectiveness of water quality improvement should be evaluated with that in mind.

  11. Innovative method for prioritizing emerging disinfection by-products (DBPs) in drinking water on the basis of their potential impact on public health.

    PubMed

    Hebert, Armelle; Forestier, Delphine; Lenes, Dorothée; Benanou, David; Jacob, Severine; Arfi, Catherine; Lambolez, Lucie; Levi, Yves

    2010-05-01

    Providing microbiologically safe drinking water is a major public health issue. However, chemical disinfection can produce unintended health hazards involving disinfection by-products (DBPs). In an attempt to clarify the potential public health concerns associated with emerging disinfection by-products (EDBPs), this study was intended to help to identify those suspected of posing potential related health effects. In view of the ever-growing list of EDBPs in drinking water and the lack of consensus about them, we have developed an innovative prioritization method that would allow us to address this issue. We first set up an exhaustive database including all the current published data relating to EDBPs in drinking water (toxicity, occurrence, epidemiology and international or local guidelines/regulations). We then developed a ranking method intended to prioritize the EDBPs. This method, which was based on a calculation matrix with different coefficients, was applied to the data regarding their potential contribution to the health risk assessment process. This procedure allowed us to identify and rank three different groups of EDBPs: Group I, consisting of the most critical EDBPs with regard to their potential health effects, has moderate occurrence but the highest toxicity. Group II has moderate to elevated occurrence and is associated with relevant toxicity, and Group III has very low occurrence and unknown or little toxicity. The EDBPs identified as posing the greatest potential risk using this method were as follows: NDMA and other nitrosamines, MX and other halofuranones, chlorate, formaldehyde and acetaldehyde, 2,4,6-trichlorophenol and pentachlorophenol, hydrazine, and two unregulated halomethanes, dichloromethane and tetrachloromethane. Our approach allowed us to define the EDBPs that it is most important to monitor in order to assess population exposure and related public health issues, and thus to improve drinking water treatment and distribution. It is also

  12. Studies on Disinfection By-Products and Drinking Water

    USGS Publications Warehouse

    Rostad, Colleen E.

    2007-01-01

    Drinking water is disinfected with chemicals to remove pathogens, such as Giardia and Cryptosproridium, and prevent waterborne diseases such as cholera and typhoid. During disinfection, by-products are formed at trace concentrations. Because some of these by-products are suspected carcinogens, drinking water utilities must maintain the effectiveness of the disinfection process while minimizing the formation of by-products.

  13. Formation and Occurrence of Disinfection By-Products

    EPA Science Inventory

    Disinfection by-products (DBPs) are formed when disinfectants such as chlorine, ozone, chlorine dioxide, or chloramines react with naturally occurring organic matter, anthropogenic contaminants, bromide, and iodide during the production of drinking water. There is concern about D...

  14. Health effects of drinking water disinfectants and disinfection by-products

    SciTech Connect

    Condie, L.W.; Bercz, J.P.

    1986-01-01

    This paper summarizes toxicological studies conducted with drinking water disinfectants. Toxicological effects, which are associated with the disinfectants themselves as well as with the by-products formed when disinfectants react with organic material present in water, are considered. The health impact of chemical reactions occurring between residual disinfectants and nutrients in the gastrointestinal tract is also discussed. 40 references, 5 tables.

  15. Treatment of disinfection by-product precursors.

    PubMed

    Bond, T; Goslan, E H; Parsons, S A; Jefferson, B

    2011-01-01

    Formation of harmful disinfection by-products (DBPs), of which trihalomethanes (THMs) and haloacetic acids (HAAs) are the major groups, can be controlled by removal of natural organic matter (NOM) before disinfection. In the literature, removal of precursors is variable, even with the same treatment. The treatment of DBP precursors and NOM was examined with the intention of outlining precursor removal strategies for various water types. Freundlich adsorption parameters and hydroxyl rate constants were collated from the literature to link treatability by activated carbon and advanced oxidation processes (AOPs), respectively, to physico-chemical properties. Whereas hydroxyl rate constants did not correlate meaningfully with any property, a moderate correlation was found between Freundlich parameters and log K(ow), indicating activated carbon will preferentially adsorb hydrophobic NOM. Humic components of NOM are effectively removed by coagulation, and, where they are the principal precursor source, coagulation may be sufficient to control DBPs. Where humic species remaining post-coagulation retain significant DBP formation potential (DBPFP), activated carbon is deemed a suitable process selection. Anion exchange is an effective treatment for transphilic species, known for high carboxylic acid functionality, and consequently is recommended for carboxylic acid precursors. Amino acids have been linked to HAA formation and are important constituents of algal organic matter. Amino acids are predicted to be effectively removed by biotreatment and nanofiltration. Carbohydrates have been found to reach 50% of NOM in river waters. If the carbohydrates were to pose a barrier to successful DBP control, additional treatment stages such as nanofiltration are likely to be required to reduce their occurrence.

  16. Genotoxicity of Disinfection By-products: Comparison to Carcinogenicity

    EPA Science Inventory

    Disinfection by-products (DBPs) can be formed when water is disinfected by various agents such as chlorine, ozone, or chloramines. Among the >600 DBPs identified in drinking water, 11 are regulated by the U.S. Environmental Protection Agency, and another ~70 DBPs that occur at s...

  17. EPIDEMIOLOGIC STUDIES OF DISINFECTANTS AND DISINFECTANT BY-PRODUCTS

    EPA Science Inventory

    This article provides a review of the epidemiologic evidence for human health effects that may be associated with the disinfection of drinking water. An epidemiologic study attempts to link human health effects with exposure to a specific agent (e.g., DBCM), agents (e.g., THMs or...

  18. IDENTIFICATION OF NEW DISINFECTION BY-PRODUCTS IN DRINKING WATER

    EPA Science Inventory

    Due to concern over the potential adverse health effects of trihalomethanes (THMs) and other chlorinated by-products in chlorinated drinking water, alternative disinfectants are being explored. Ozone, chlorine dioxide, and chloramine are popular alternatives, as they produce low...

  19. Mutagenic activity of disinfection by-products.

    PubMed Central

    Cognet, L; Courtois, Y; Mallevialle, J

    1986-01-01

    Data on raw water quality, disinfection treatment practices, and the resulting mutagenic properties of the treated water were compiled from pilot- and full-scale treatment experiments to evaluate that parameter which might produce variability in the results of a mutagenic study. Analysis of the data and comparison of treatment practices indicated that the measured mutagenic activity is strongly related to the characteristics of the organic matter in the raw water, the methodology used to sample and detect mutagens, the scale of the study both in terms of treatment flow and period of study, and the point at which and the conditions under which oxidants are added during treatment. Conclusions regarding disinfection systems in full-scale water treatment plants include the following: When raw water is pretreated and high concentrations of organics are present in the raw water, both ozonation and chlorination increased mutagenic activity. However, no significant difference in mutagenicity was found between the two oxidants. Both in the case of a nitrified groundwater and a clarified surface water, the mutagenic activity of the water after ozonation was related to its mutagenic activity before ozonation. With ozonation, mutagenic activity decreased after granular activated carbon (GAC) filtration. Thus, when GAC filtration follows ozone disinfection, early addition of oxidants may not be deleterious to the finished water quality. When chlorine or chlorine dioxide is added after GAC filtration, chlorine dioxide was found to produce a less mutagenic water than chlorine. Although these conclusions suggest means of controlling mutagenic activity during treatment, it must be stressed that the measurement of mutagenicity is a presumptive index of contamination level. PMID:3816721

  20. Mutagenic activity of disinfection by-products

    SciTech Connect

    Cognet, L.; Courtois, Y.; Mallevialle, J.

    1986-11-01

    Data on raw water quality, disinfection treatment practices, and the resulting mutagenic properties of the treated water were compiled from pilot- and full-scale treatment experiments to evaluate that parameter which might produce variability in the results of a mutagenic study. Analysis of the data and comparison of treatment practices indicated that the measured mutagenic activity is strongly related to the characteristics of the organic matter in the raw water, the methodology used to sample and detect mutagens, the scale of the study both in terms of treatment flow and period of study, and the point at which and the conditions under which oxidants are added during treatment. Conclusions regarding disinfection systems in full-scale water treatment plants include the following: When raw water is pretreated and high concentrations of organics are present in the raw water, both ozonation and chlorination increased mutagenic activity. However, no significant difference in mutagenicity was found between the two oxidants. Both in the case of a nitrified groundwater and a clarified surface water, the mutagenic activity of the water after ozonation was related to its mutagenic activity before ozonation. With ozonation, mutagenic activity decreased after granular activated carbon (GAC) filtration. Thus, when GAC filtration follows ozone disinfection, early addition of oxidants may not be deleterious to the finished water quality. When chlorine or chlorine dioxide is added after GAC filtration, chlorine dioxide was found to produce a less mutagenic water than chlorine. Although these conclusions suggest means of controlling mutagenic activity during treatment, it must be stressed that the measurement of mutagenicity is a presumptive index of contamination level.

  1. [Disinfection by-products reduction of combined disinfection by chlorine and monochloramines in distribution system].

    PubMed

    Liu, Jing; Chen, Chao; Zhang, Xiao-Jian

    2009-09-15

    Halogen disinfection by-products of four chlorined disinfection processes with long contact time in distribution system was compared in the work. These four disinfection processes are free chlorine, monochloramines, free chlorine disinfection in clearwelles while chloramines in distribution system, sequential chlorination disinfection with short-term free chlorine plus chloramines. According to the research, free chlorine generates most trihalomethanes (THMs) and haloacetic acids (HAAs) both in clearwells and distribution system, while monochloramines barely yield halogen DBPs. Free chlorine disinfection in clearwelles while chloramines in distribution system could reduce 9.6% of THMs and 42% of HAAs in 24 h contact time of distribution system compared with free chlorine. But free chlorine has contacted with water for 2 h in this process, halogen DBPs have been yielded substantially. Process of sequential chlorination disinfection could control DBPs more effectively due to keeping a short contact time of free chlorine and water. 48% of THMs and 72% of HAAs are reduced in 24h compared with free chlorine. In conclusion, sequential chlorination disinfection is a more effective disinfection process for controlling DBPs and water safety.

  2. DISINFECTION BY-PRODUCT CONTROL THROUGH BIOLOGICAL FILTRATION

    EPA Science Inventory

    Disinfection by-product (DBP) control through biofiltration is defined as the removal of DBP precursor mateterial (PM) by bacteria attached to the filte nedia. The PM consists of dissolved organic matter (DOM) and is utilized by the filter bacteria as a substrate for cell mainten...

  3. OCCURRENCE OF A NEW GENERATION OF DISINFECTION BY-PRODUCTS

    EPA Science Inventory

    A survey of disinfection by-product (DBP) occurrence in the United States was conducted at 12 drinking water treatment plants. In addition to currently regulated DBPs, more than 50 DBPs that rated a high priority for potential toxicity were studied. These priority DBPs included...

  4. Carcinogenicity of Disinfection By-products and Research Needs

    EPA Science Inventory

    A review by S.D. Richardson et al. (Mutat. Res. 636:178, 2007) presents the first analysis of the 30-year literature on the genotoxicity, carcinogenicity, and occurrence of 87 disinfection by-products (DBPs) identified in drinking water. Of these, 11 are regulated by the U.S. EP...

  5. THE UPTAKE OF WATER DISINFECTION BY-PRODUCTS INTO FOODS DURING HOME PROCESSING

    EPA Science Inventory

    A variety of organic compounds in tap water are produced as a result of disinfection process. Use of chlorine-containing chemicals for disinfection produces many disinfection by-products (DBPs) including trihalomethanes, haloacetonitriles and haloacetic acid. Ozonation with secon...

  6. Disinfection by-product formation during seawater desalination: A review.

    PubMed

    Kim, Daekyun; Amy, Gary L; Karanfil, Tanju

    2015-09-15

    Due to increased freshwater demand across the globe, seawater desalination has become the technology of choice in augmenting water supplies in many parts of the world. The use of chemical disinfection is necessary in desalination plants for pre-treatment to control both biofouling as well as the post-disinfection of desalinated water. Although chlorine is the most commonly used disinfectant in desalination plants, its reaction with organic matter produces various disinfection by-products (DBPs) (e.g., trihalomethanes [THMs], haloacetic acids [HAAs], and haloacetonitriles [HANs]), and some DBPs are regulated in many countries due to their potential risks to public health. To reduce the formation of chlorinated DBPs, alternative oxidants (disinfectants) such as chloramines, chlorine dioxide, and ozone can be considered, but they also produce other types of DBPs. In addition, due to high levels of bromide and iodide concentrations in seawater, highly cytotoxic and genotoxic DBP species (i.e., brominated and iodinated DBPs) may form in distribution systems, especially when desalinated water is blended with other source waters having higher levels of organic matter. This article reviews the knowledge accumulated in the last few decades on DBP formation during seawater desalination, and summarizes in detail, the occurrence of DBPs in various thermal and membrane plants involving different desalination processes. The review also identifies the current challenges and future research needs for controlling DBP formation in seawater desalination plants and to reduce the potential toxicity of desalinated water.

  7. Neural tube defects and drinking water disinfection by-products.

    PubMed

    Klotz, J B; Pyrch, L A

    1999-07-01

    We conducted a population-based case control study of neural tube defects and drinking water contaminants, specifically, disinfection by-products. We used public monitoring records concurrent with the first month of gestation to assess exposure. The prevalence odds ratios (PORs) for the highest tertile of total trihalomethanes compared with the lowest was 1.6 (95% confidence interval [CI] = 0.9-2.70). Surface water source was also associated with neural tube defects (POR = 1.5; 95% CI = 0.9-2.5). Sensitivity analyses restricted to isolated neural tube defect cases and mothers with known residence at conception yielded stronger associations [total trihalomethanes, POR = 2.1 (95% CI = 1.1-4.0); surface water, POR = 1.7 (95% CI = 0.9-3.2)]. Other major groups of disinfection by-products (haloacetic acids and haloacetonitriles) showed little relation to these defects.

  8. Mutagenicity and disinfection by-products in surface drinking water disinfected with peracetic acid.

    PubMed

    Monarca, Silvano; Richardson, Susan D; Feretti, Donatella; Grottolo, Mario; Thruston, Alfred D; Zani, Claudia; Navazio, Giancarlo; Ragazzo, Patrizia; Zerbini, Ilaria; Alberti, Adriana

    2002-02-01

    The aims of this research were to study the influence of peracetic acid (PAA) on the formation of mutagens in surface waters used for human consumption and to assess its potential application for the disinfection of drinking water. The results obtained using PAA were compared to those found with sodium hypochlorite (NaClO) and chlorine dioxide (ClO2). The Ames test, root anaphase aberration assay, and root/micronuclei assay in Allium cepa and Tradescantia/micronuclei test were used to evaluate the mutagenicity of disinfected samples. Microbiological tests were also performed, and disinfection by-products (DBPs) were identified using gas chromatography/mass spectrometry (GC/MS). A slight bacterial mutagenicity was found in raw lake and river water, and similar activity was detected in disinfected samples. A plant test revealed genotoxicity in raw river water, and microbiological analysis showed that PAA has bactericidal activity but lower than that of the other disinfectants. The DBPs produced by PAA were mainly carboxylic acids, which are not recognized as mutagenic, whereas the waters treated with the other disinfectants showed the presence of mutagenic/carcinogenic halogenated DBPs. However, additional experiments should be performed with higher concentrations of PAA and using water with higher organic carbon content to better evaluate this disinfectant.

  9. Detection of regulated disinfection by-products in cheeses.

    PubMed

    Cardador, Maria Jose; Gallego, Mercedes; Cabezas, Lourdes; Fernández-Salguero, Jose

    2016-08-01

    Cheese can contain regulated disinfection by-products (DBPs), mainly through contact with brine solutions prepared in disinfected water or sanitisers used to clean all contact surfaces, such as processing equipment and tanks. This study has focused on the possible presence of up to 10 trihalomethanes (THMs) and 13 haloacetic acids (HAAs) in a wide range of European cheeses. The study shows that 2 THMs, (in particular trichloromethane) and 3 HAAs (in particular dichloroacetic acid) can be found at μg/kg levels in the 56 cheeses analysed. Of the two types of DBPs, HAAs were generally present at higher concentrations, due to their hydrophilic and non-volatile nature. Despite their different nature (THMs are lipophilic), both of them have an affinity for fatty cheeses, increasing their concentrations as the percentage of water decreased because the DBPs were concentrated in the aqueous phase of the cheeses.

  10. Minimization of the formation of disinfection by-products.

    PubMed

    Badawy, Mohamed I; Gad-Allah, Tarek A; Ali, Mohamed E M; Yoon, Yeoman

    2012-09-01

    The drinking water industry is required to minimize DBPs levels while ensuring adequate disinfection. In this study, efficient and appropriate treatment scheme for the reduction of disinfection by-product (DBPs) formation in drinking water containing natural organic matter has been established. This was carried out by the investigation of different treatment schemes consisting of enhanced coagulation, sedimentation, disinfection by using chlorine dioxide/ozone, filtration by sand filter, or granular activated carbon (GAC). Bench scale treatment schemes were applied on actual samples from different selected sites to identify the best conditions for the treatment of water. Samples were collected from effluent of each step in the treatment train in order to analyze pH, UV absorbance at 254 nm (UVA(254)), specific UV absorbance at 254 nm (SUVA(254)), dissolved organic carbon (DOC), haloacetic acids (HAAs) and trihalomethanes (THMs). The obtained results indicated that using pre-ozonation/enhanced coagulation/activated carbon filtration treatment train appears to be the most effective method for reducing DBPs precursors in drinking water treatment.

  11. DRINKING WATER DISINFECTION BY-PRODUCTS: WHAT IS KNOWN

    EPA Science Inventory

    Chlorine, ozone, chlorine dioxide, and chloramine are currently the major disinfectants being used to disinfect drinking water. Although the alternative disinfectants (ozone, chlorine dioxide, and chloramine) are increasing in popularity in the United States, chlorine is still us...

  12. Integrated Disinfection By-Products Mixtures Research: Concentration by Reverse Osmosis Membrane Techniques of Disinfection By-Products from Water Disinfected by Chlorination and Ozonation/Postchlorination

    EPA Science Inventory

    To conduct the health-effect studies described in subsequent articles in this series, concentrated aqueous mixtures of disinfection by-products were required for the two water treatment trains described in the preceding article (Miltner et al., 2008). To accomplish this, the fini...

  13. Chemical measures of similarity among disinfection by-product mixtures.

    PubMed

    Bull, Richard J; Rice, Glenn; Teuschler, Linda; Feder, Paul

    2009-01-01

    There are few measures that can be used to distinguish among mixtures of disinfection by-products (DBPs) produced in the chlorination or chloramination of drinking water. Objective measures of similarities among DBP mixtures would greatly simplify judgments about the risk that may be associated with exposure to DBPs in a given water supply. Major by-products of chlorination/chloramination include the trihalomethanes (THMs) and haloacetic acids (HAAs), which are routinely measured for compliance to regulations. A key question is whether measurement of similar amounts of these DBPs is indicative of the myriad other DBPs that are known to be produced. This article utilized data from a survey of 35 utilities in the United States that included several additional parameters, including members of the haloacetonitrile, trihaloacetaldehyde, and halopropanone classes. Based upon the distribution of bromine in the THM class, the concentrations of unmeasured brominated and bromochlorinated compounds could be determined. This allowed determination of whether measures of the THM and/or HAA classes reflected the amounts of these less abundant classes. Variations in relative yields among DBP classes were observed with water source type and with whether chlorine or chloramine was used as the disinfectant. However, most of the variability was attributable to geographic location. The relative abundance of brominated by-products also varied among water sources. Recent documentation that potent by-products, such as nitrosamines, are selectively produced in particular water systems and preferentially with chloramination indicates that more measures of individual DBP are needed to evaluate similarity among DBPs mixtures.

  14. MULTISPECTRAL IDENTIFICATION OF CHLORINE DIOXIDE DISINFECTION BY-PRODUCTS IN DRINKING WATER

    EPA Science Inventory

    This paper discusses the identification of organic disinfection by-products (DBPs) at a pilot plant in Evansville, Indiana, that uses chlorine dioxide as a primary disinfectant. nconventional multispectral identification techniques (gas chromatography combined with high and low r...

  15. IDENTIFICATION OF CHLORINE DIOXIDE AND CHLORAMINE DRINKING WATER DISINFECTION BY-PRODUCTS

    EPA Science Inventory

    Due to concern over the potential adverse health effects of trihalomethanes (THMs) and other chlorinated by-products in chlorinated drinking water, alternative disinfection methods are being explored. Chlorine dioxide and chloramine are two popular alternative disinfectants, with...

  16. RESEARCH PLAN FOR MICROBIAL PATHOGENS AND DISINFECTION BY-PRODUCTS IN DRINKING WATER

    EPA Science Inventory

    This research plan was developed to describe research needed to support EPA's development of drinking water regulations concerning disinfectants, disinfection by-products (DBPs) and microbial pathogens, focusing on key scientific and technical information needed. The research pl...

  17. QUENCHING OF CHLORINATION DISINFECTION BY-PRODUCT FORMATION IN DRINKING WATER BY HYDROGEN PEROXIDE. (R825362)

    EPA Science Inventory

    Reactions between chlorine disinfectants, dissolved organic matter, and other chemicals in water form a series of disinfection by-products (DBPs), including trihalomethanes (THMs) and haloacetic acids (HAAs), that are toxic and subject to increasingly stringent regulations. Th...

  18. Emergency Disinfection of Drinking Water

    MedlinePlus

    ... water service has been interrupted – like a hurricane, flood, or water pipe breakage – local authorities may recommend ... disinfect and test the well water after the flood. Contact your state or local health department for ...

  19. THE TOXICOLOGY OF COMPLEX MIXTURES OF DISINFECTION BY-PRODUCTS

    EPA Science Inventory

    Chemical disinfection of water is a major public health advance that has decreased dramatically water-borne disease. Chemical disinfectants react with naturally occurring organic and inorganic matter in water to produce a wide variety of disinfection byproducts (DBPs). DBP num...

  20. A Toxicological Perspective on Disinfection ByProducts

    EPA Science Inventory

    Disinfection of water is essential for reduction of microbes harmful to human health and chemical disinfection is considered one of the major public health triumphs of the 20th Century. An unintended consequence of disinfection with oxidizing chemicals is formation of disinfectio...

  1. MAMMALIAN CELL CYTOTOXICITY AND GENOTOXICITY OF NEW DRINKING WATER DISINFECTION BY-PRODUCTS

    EPA Science Inventory

    The disinfection of drinking water continues to protect the public health against acute disease. Drinking water disinfection by-products (DBPs) are formed by the reaction of a disinfectant with naturally occurring organic matter. Many DBPs are genotoxic and are implicated as huma...

  2. Influence of ultrasound enhancement on chlorine dioxide consumption and disinfection by-products formation for secondary effluents disinfection.

    PubMed

    Zhou, Xiaoqin; Zhao, Junyuan; Li, Zifu; Lan, Juanru; Li, Yajie; Yang, Xin; Wang, Dongling

    2016-01-01

    Chlorine dioxide (ClO2) has been promoted as an alternative disinfectant because of its high disinfection efficiency and less formation of organic disinfection by-products (DBPs). However, particle-associated microorganisms could be protected during the disinfection process, which decreases the disinfection efficiency or increases the required dosage. Besides, the formation of inorganic disinfection by-products is a significant concern in environment health. Ultrasound (US)-combined disinfection methods are becoming increasingly attractive because they are efficient and environmentally friendly. In this study, US was introduced as an enhancement method to identify its influence on ClO2 demand reduction and to minimize the production of potential DBPs for secondary effluents disinfection. Fecal coliform was used as an indicator, and DBPs, including trichloromethane (TCM), dichloroacetic acid (DCAA), trichloroacetic acid (TCAA), chlorite (ClO2(-)), and chlorate (ClO3(-)), were analyzed to observe the potential DBPs formation. Results show that US pretreatment could reduce half of ClO2 dosage compared with ClO2 disinfection alone for the same disinfection efficiency, and that an input power density of 2.64 kJ/L pretreatment with the 1.5mg/L ClO2 was enough to meet the discharge requirement in China (i.e., fecal coliform below 1000 CFU/L for Class 1A) for secondary effluent disinfection, and the ClO2(-) concentration in the disinfection effluent was only 1.37 mg/L at the same time. Furthermore, the different effects of US on the two processes (US as pretreatment and simultaneous US/ClO2 disinfection) were also analyzed, including deagglomerating, cell damage, and synergistic disinfection as well as degasing/sonolysis. It was proved that the production of TCM, DCAA, and TCAA was insignificantly influenced with the introduction of US, but US pretreatment did reduce the production of ClO2(-) and ClO3(-) effectually. In general, US pretreatment could be a better option for

  3. A MULTIPLE-PURPOSE DESIGN APPROACH TO THE EVALUATION OF RISKS FROM COMPLEX MIXTURES OF DISINFECTION BY-PRODUCTS

    EPA Science Inventory

    Drinking water disinfection has effectively eliminated much of the morbidity and mortality associated with waterborne infectious diseases in the United States. Various disinfection processes, however, produce certain types and amounts of disinfection by-products (DBPs), including...

  4. DEVELOPMENTAL CONSEQUENCES OF EXPOSURE TO DISINFECTION BY-PRODUCTS IN ANIMAL MODELS

    EPA Science Inventory

    Developmental consequences of exposure to disinfection by-products in animal models
    Sid Hunter, Michael Narotsky, James Andrews
    Reproductive Toxicology Division, NHEERL, ORD, US EPA, RTP, NC, 27711

    Disinfection by-products (DBPs) are formed by the reaction of disinf...

  5. The Next Generation of Disinfection By-Products

    EPA Science Inventory

    The disinfection of drinking water has been rightly hailed as a public health triumph of the 20th century. Millions of people worldwide receive quality drinking water every day from their public water systems. However, chemical disinfection has also produced an unintended health ...

  6. The Next Generation of Drinking Water Disinfection By-Products

    EPA Science Inventory

    The disinfection of drinking water has been rightly hailed as a public health triumph of the 20th century. Millions of people worldwide receive quality drinking water every day from their public water systems. However, chemical disinfection has also produced an unintended healt...

  7. Disinfection By-Products: Formation and Occurrence in Drinking Water

    EPA Science Inventory

    The disinfection of drinking water has been rightly hailed as a public health triumph of the twentieth century. Millions of people worldwide receive quality drinking water every day from their public water systems. However, chemical disinfection has also produced an unintended he...

  8. DISINFECTION BY-PRODUCT FORMATION BY ALTERNATIVE DISINFECTANTS AND REMOVAL BY GRANULAR ACTIVATED CARBON

    EPA Science Inventory

    The effects of the use of the alternative disinfectants on the formation of halogenated disinfection by–products (DBPs) including total organic halide, trihalomethanes, haloacetic acids, haloacetonitriles, haloketones, chloral hydrate, and chloropicrin, were examined along ...

  9. The Integrated Disinfection By-Product Mixtures Project (“4-Lab Study”): An Overview

    EPA Science Inventory

    The intended result of chemical disinfection of drinking water is reduction of microbial contamination and a concomitant decrease in waterborne disease. The formation of a myriad of disinfection by-products (DBPs) is an unintended consequence. DBPs are present in water as high...

  10. OCCURRENCE OF IODO-ACID AND IODO-THM DISINFECTION BY-PRODUCTS IN DRINKING WATER

    EPA Science Inventory

    As part of a recent Nationwide Disinfection By-product (DBP) Occurrence Study, iodo-acids were identified for the first time as DBPs in drinking water disinfected with chloramines. The iodo-acids identified included iodoacetic acid, bromoiodoacetic acid, (E)-3-bromo-3-iodo- prope...

  11. OCCURRENCE AND TOXICITY OF IODO-ACID DISINFECTION BY-PRODUCTS IN CHLORAMINATED DRINKING WATER

    EPA Science Inventory

    As part of a recent Nationwide Disinfection By-Product (DBP) Occurrence Study, iodo-acids were identified for the first time as DBPs in drinking water disinfected with chloramines. The iodo-acids identified included iodoacetic acid (IAA), bromoiodoacetic acid, (E)-3-bromo-3-iodo...

  12. OCCURRENCE AND TOXICITY OF IODINATED DISINFECTION BY-PRODUCTS IN DRINKING WATER

    EPA Science Inventory

    As part of a recent Nationwide Disinfection By-Product (DBP) Occurrence Study, iodo-acids were identified for the first time as DBPs in drinking water disinfected with chloramines. The iodo-acids identified included iodoacetic acid, bromoiodoacetic acid, (E)-3-bromo-3-iodo-prope...

  13. DISINFECTION BY-PRODUCT FORMATION AND CONTROL BY OZONATION AND BIOTREATMENT

    EPA Science Inventory

    There is increasing interest in using ozone in water treatment because it is a strong disinfectant and is able to oxidize the precursors of some disinfection by-products (DBPs). However, ozonation itself produces DBPs, like aldehydes and ketones, and increases the concentration ...

  14. CONTROL OF MICROBIAL CONTAMINANTS AND DISINFECTION BY-PRODUCTS IN DRINKING WATER: COST AND PERFORMANCE

    EPA Science Inventory

    The U.S. Environmental Protection Agency (U.S. EPA) is in the process of developing a sophisticated regulatory strategy in an attempt to balance the risks associated with disinfectants and disinfection by-products (D/DBP) in drinking water. A major aspect of this strategy is the...

  15. Disinfection By-Products and Drinking Water Treatment

    EPA Science Inventory

    The disinfection of drinking water has been rightly hailed as a public health triumph of the 20th century. Before its widespread use, millions of people died from waterborne diseases. Now, people in developed nations receive quality drinking water every day from their public wa...

  16. IDENTIFICATION OF CHLORINE DIOXIDE DRINKING WATER DISINFECTION BY-PRODUCTS FORMED AT HIGH BROMIDE LEVELS

    EPA Science Inventory

    Due to concern over the potential adverse health effects of trihalomethanes (THMs), haloacetic acids, and other chlorinated by-products in chlorinated drinking water, alternative disinfection methods are being explored. Chlorine dioxide is a popular alternative, with over 500 dri...

  17. IDENTIFICATION OF NEW DRINKING WATER DISINFECTION BY-PRODUCTS FROM OZONE, CHLORINE DIOXIDE, CHLORAMINE, AND CHLORINE

    EPA Science Inventory

    Due to concern over the potential adverse health effects of trihalomethanes (THMs) and other chlorinated by-products in chlorinated drinking water, alternative disinfection methods are being explored. Ozone, chlorine dioxide, and chloramine are currently popular alternatives to ...

  18. DETERMINATION OF NEWLY IDENTIFIED DISINFECTION BY-PRODUCTS IN DRINKING WATER

    EPA Science Inventory

    The Metropolitan Water District of Southern California (MWDSC) is investigating the occurrence of 39 newly identified disinfection by-products (DBPs)-which were not included in the Information Collection Rule (ICR)-in drinking waters. Halomethanes (HMs), haloacetonitriles (HANs),...

  19. Evaluation of techniques for control of disinfection by-products: a pilot study.

    PubMed

    Nnadi, Fidelia N; Hernandez, Migdalia; Fulkerson, Mark

    2004-01-01

    The purpose of this study was to evaluate the effects of various treatment processes as they relate to the development of disinfection by-products (DBPs). At an existing municipal water supply, several tests were performed, including: air-stripping, potassium permanganate (KMnO4) addition, pH adjustment, evaluation of corrosion control inhibitors, final disinfection, and granular activated carbon (CAC) filtration. Several HAAs were shown to increase at higher pH. The use of air stripping greatly reduced the required amount of chlorine disinfectant. Air stripping, permanganate addition, and chloramination reduced DBPs below 20 microg/L. Stiles-Kem 7840 addition effectively controlled lead and copper concentrations in the distribution system. The use of chloramination its a secondary disinfectant is recommended to meet stage 1 of the disinfection by-product rule.

  20. Health effects of disinfection by-products in chlorinated swimming pools.

    PubMed

    Florentin, Arnaud; Hautemanière, Alexis; Hartemann, Philippe

    2011-11-01

    Increased attendance at swimming pools is correlated with higher input of organic and minerals pollutants introduced by swimmers in the swimming pool water. In most swimming pools, microbiological control is performed by disinfection with the addition of chlorine. Chlorine is now well-known to lead to the formation of many disinfection by-products (DBPs) including trihalomethanes and chloramines. The hypothesis of a link between the presence of eye and skin irritation syndromes in swimmers and contact with swimming pool water treated with chlorine was initially proposed by Mood (1953). During recent decades many epidemiological studies have described the importance of DBPs generated with natural or imported organic matter present in water. Many of these DBPs are suspected to be toxic or even carcinogenic. Trihalomethanes and haloacetic acid families are the most studied but others DBPs, like chloral hydrate, haloacetonitriles, N-nitrosodimethylamine and the bromate ion, are emerging compounds of interest. Epidemiological data about the risk of cancer are still controversial. However, numerous publications highlight a toxic risk especially the risk of allergy and respiratory symptoms for babies and elite swimmers. The few publications dedicated to risk assessment do not suggest increased risk, other than for elite swimmers. These publications are likely to underestimate the risk associated with DBPs because of the lack of data in the literature precludes the calculation of risk associated with certain compounds or certain pathways. Thus for regulations, the need to take into account the risks associated with disinfection by-products is now important without forgetting the need of the control of microbiological hazards in swimming pools.

  1. Bioanalytical and chemical assessment of the disinfection by-product formation potential: role of organic matter.

    PubMed

    Farré, Maria José; Day, Sophie; Neale, Peta A; Stalter, Daniel; Tang, Janet Y M; Escher, Beate I

    2013-09-15

    Disinfection by-products (DBP) formed from natural organic matter and disinfectants like chlorine and chloramine may cause adverse health effects. Here, we evaluate how the quantity and quality of natural organic matter and other precursors influence the formation of DBPs during chlorination and chloramination using a comprehensive approach including chemical analysis of regulated and emerging DBPs, total organic halogen quantification, organic matter characterisation and bioanalytical tools. In vitro bioassays allow us to assess the hazard potential of DBPs early in the chain of cellular events, when the DBPs react with their molecular target(s) and activate stress response and defence mechanisms. Given the reactive properties of known DBPs, a suite of bioassays targeting reactive modes of toxic action including genotoxicity and sensitive early warning endpoints such as protein damage and oxidative stress were evaluated in addition to cytotoxicity. Coagulated surface water was collected from three different drinking water treatment plants, along with reverse osmosis permeate from a desalination plant, and DBP formation potential was assessed after chlorination and chloramination. While effects were low or below the limit of detection before disinfection, the observed effects and DBP levels increased after disinfection and were generally higher after chlorination than after chloramination, indicating that chlorination forms higher concentrations of DBPs or more potent DBPs in the studied waters. Bacterial cytotoxicity, assessed using the bioluminescence inhibition assay, and induction of the oxidative stress response were the most sensitive endpoints, followed by genotoxicity. Source waters with higher dissolved organic carbon levels induced increased DBP formation and caused greater effects in the endpoints related to DNA damage repair, glutathione conjugation/protein damage and the Nrf2 oxidative stress response pathway after disinfection. Fractionation studies

  2. Genotoxicity of the disinfection by-products resulting from peracetic acid- or hypochlorite-disinfected sewage wastewater.

    PubMed

    Crebelli, R; Conti, L; Monarca, S; Feretti, D; Zerbini, I; Zani, C; Veschetti, E; Cutilli, D; Ottaviani, M

    2005-03-01

    Wastewater disinfection is routinely carried out to prevent the spread of human pathogens present in wastewater effluents. To this aim, chemical and physical treatments are applied to the effluents before their emission in water bodies. In this study, the influence of two widely used disinfectants, peracetic acid (PAA) and sodium hypochlorite (NaClO), on the formation of mutagenic by-products was investigated. Wastewater samples were collected before and after disinfection, in winter and in summer, at a pilot plant installed in a municipal wastewater-treatment plant. Samples were adsorbed using silica C18 cartridges and the concentrates were tested for mutagenicity in the Salmonella typhimurium reversion test with strains TA98 and TA100. Non-concentrated water samples were tested with two plant genotoxicity assays (the Allium cepa root anaphase aberration test and the Tradescantia/micronucleus test). Mutagenicity assays in bacteria and in Tradescantia showed borderline mutagenicity in some of the wastewater samples, independent of the disinfection procedure applied. Negative results were obtained in the A. cepa anaphase aberration test. These results indicate that, in the conditions applied, wastewater disinfection with PAA and NaClO does not lead to the formation of significant amounts of genotoxic by-products.

  3. Chlorate as an inorganic disinfection by product in swimming pools.

    PubMed

    Erdinger, L; Kirsch, F; Sonntag, H G

    1999-06-01

    Chlorate and chlorite concentrations were determined in water samples taken from 33 swimming pools. In the pools under investigation, disinfection of the water is carried out either by gaseous chlorine (n = 14) or hypochlorite solution in conjunction with flocculation and sand filtration. A number of the pools also use ozone treatment to augment the disinfection process. Chlorite was not detectable in any of the samples (detection limit 1 mg/l). High concentrations of chlorate were detected in samples from a number of the pools; in one case as high as 40 mg/l. Higher chlorate concentrations were found to be associated with those pools using hypochlorite solution as a disinfecting agent. In contrast, relatively low chlorate concentrations were found in pools treated with gaseous chlorine. In order to elucidate any relationship between the chlorate content of pool water and that of the respective hypochlorite stock solution, chlorate and bromate concentrations were determined in the hypochlorite stock solutions of nine pools. Bromate concentration in the stock solutions were not found to exceed 1.2 g/l, chlorate was measured in concentrations of up to 44.5 g/l. The additional use of ozone as part of the water purification process appears to have no significant influence on chlorate concentration. Chlorate has no bactericidal properties and does not interfere with the measurement of certain parameters relevant to hygiene in swimming pools such as free and combined chlorine, pH or redox potential. At present, the effects of high chlorate concentrations in swimming pool water are unclear. Our initial investigations indicate that chlorate has no cytotoxic (Neutral-Red assay) or irritating properties (HET-CAM assay). However, both chlorate and chlorite are known to interfere with the haematopoetic system. In Germany, the MCL for chlorite in drinking water is 0.2 mg/l. It is therefore strongly recommended that measures should be taken to reduce chlorate concentrations in

  4. Mammalian Cell Cytotoxicity and Genotoxicity of the Haloacetic Acids, A Major Class of Drinking Water Disinfection By-Products

    EPA Science Inventory

    The haloacetic acids (HAAs) are disinfection by-products (DBPs) that are formed during the disinfection of drinking water, wastewaters and recreational pool waters. Currently, five HAAs [bromoacetic acid (BAA), dibromoacetic acid (DBAA), chloroacetic acid (CAA), dichloroacetic ac...

  5. Removal of estrogens through water disinfection processes and formation of by-products.

    PubMed

    Pereira, Renata Oliveira; Postigo, Cristina; de Alda, Miren López; Daniel, Luiz Antonio; Barceló, Damià

    2011-02-01

    Estrogens constitute a recognized group of environmental emerging contaminants which have been proven to induce estrogenic effects in aquatic organisms exposed to them. Low removal efficiency in wastewater treatment plants results in the presence of this type of contaminants in surface waters and also even in finished drinking water. This manuscript reviews the environmental occurrence of natural (estrone, estradiol and estriol) and synthetic (ethynyl estradiol) estrogens in different water matrices (waste, surface, ground and drinking water), and their removal mainly via chemical oxidative processes. Oxidative treatments have been observed to be very efficient in eliminating estrogens present in water; however, disinfection by-products (DBPs) are generated during the process. Characterization of these DBPs is essential to assess the risk that drinking water may potentially pose to human health since these DBPs may also have endocrine disrupting properties. This manuscript reviews the DBPs generated during oxidative processes identified so far in the literature and the estrogenicity generated by the characterized DBPs and/or by the applied disinfection technology.

  6. The formation of disinfection by-products in water treated with chlorine dioxide.

    PubMed

    Chang, C Y; Hsieh, Y H; Hsu, S S; Hu, P Y; Wang, K H

    2000-12-01

    In this study, chlorine dioxide (ClO(2)) was used as an alternative disinfection agent with humic acid as the organic precursor in a natural aquatic environment. The major topics in this investigation consisted of the disinfection efficiency of ClO(2), the formation of disinfection by-products (DBPs), and the operating conditions. The results indicated that the pH value (pH 5-9) did not affect the efficiency of disinfection while the concentration of organic precursors did. The primary DBPs formed were trihalomethanes (THMs) and haloacetic acids (HAAs). The distribution of the individual species was a function of the bromide content. The higher the ClO(2) dosage, the lower the amount of DBPs produced. The amount of DBPs increased with reaction time, with chlorite ions as the primary inorganic by-product.

  7. IDENTIFICATION OF NEW DRINKING WATER DISINFECTION BY-PRODUCTS FORMED IN THE PRESENCE OF BROMIDE

    EPA Science Inventory

    Using a combination of mass spectrometry and infrared spectroscopy, disinfection by-products (DBPs) were identified in ozonated drinking water containing elevated bromide levels, and in ozonated water treated with secondary chlorine or chloramine. Only one brominated by-product-d...

  8. [Formation of Disinfection By-Products During Chlor(am)ination of Danjiangkou Reservoir Water and Comparison of Disinfection Processes].

    PubMed

    Zhang, Min-sheng; Xu, Bin; Zhang, Tian-yang; Cheng, Tuo; Xia, Sheng-ji; Chu, Wen-hai

    2015-09-01

    This study discussed the formation of volatile carbonaceous disinfection by-products (DBPs) and nitrogenous DBPs during chlor(am) ination of Danjingkou Reservoir water which was the source of the Middle Route Project of South-to-North Water Diversion Project. The effects of disinfection methods, disinfectant dosage, reaction time, pH values and bromide ion concentration were investigated. And the disinfection parameters were optimized. Four DBPs, including chloroform (CF), bromodichloromethane (BDCM), dichloroacetonitrile(DCAN) and trichloronitromethane(TCNM), were observed during the chlorination. But only CF and TCNM were detected during the chloramination of water. The disinfection by-product (DBP) concentration from chlorination is 7. 5 times higher than that from chloramination, and the yield of DBPs from short time chlorination then chloramination is in between the first two methods. All kinds of DBPs detected increased with the dosage of increasing chlorine, but the increases slowed down when the dosage was higher than 2 mg . L -1. The formation of CF varied a little as the dosage of chloramine increasing. TCNM was detected when the chloramine dosage was greater than 2 mg . L -1. As reaction time going on, chlorine decayed much faster than chloramine, while DBP formation under chlorination was faster than that of chloramination. THM produced by chlorine increased with the increasing pH, while chloramination showed no obvious changes. As the bromide ion increasing, the species of DBPs transformed from chlorinated DBPs to brominated ones, and the total yield of DBPs increased during both chlorination and chloramination, but the former one was obviously more than that of the latter one. In order to reduce the risk of DBP formation, the chloramination is suggested in the treatment of water from Danjiangkou Reservoir. And if chlorination is applied, the disinfectant dosage should be controlled seriously.

  9. The organic precursors affecting the formation of disinfection by-products with chlorine dioxide.

    PubMed

    Chang, C Y; Hsieh, Y H; Lin, Y M; Hu, P Y; Liu, C C; Wang, K H

    2001-08-01

    The object of this research was to study the formation of disinfection by-products by using chlorine dioxide (ClO2) as a disinfectant reacting with different properties of organic substance in natural aquatic environment. The adsorbent resin (XAD-4, XAD-7) was used to divide the organic matters in raw water into three groups. The influence of the function groups on structure, reaction tendency, and formation of disinfection by-products generated by the reaction of these organic substances with chlorine dioxide was explored. The experimental results show that the three different organic groups formed using adsorbent resin were hydrophobic substance, hydrophilic acid, and non-acid hydrophilics in proportions of 43%, 41%, and 16%, respectively. Within the raw water in our study, the hydrophilic substance had a higher distribution proportion than that described in general articles and journals, which indicates that this water was contaminated with pollution from human beings. The exploration of the reactivity of the three different organic substances with chlorine dioxide shows that the unit consumption of disinfection agent per unit organic matters (represented by ClO2/DOC) is in the following sequence hydrophobic substance > hydrophilic substance > non-acid hydrophilics. It indicated that larger molecular organic precursors had larger consumption of disinfectant. We also discovered that after the reaction of the three different organic substances with chlorine dioxide, the largest amount of disinfection by-products were generated by the non-acid hydrophilics.

  10. Formation and modeling of disinfection by-products in drinking water of six cities in China.

    PubMed

    Ye, Bixiong; Wang, Wuyi; Yang, Linsheng; Wei, Jianrong; E, Xueli

    2011-05-01

    Water quality parameters including TOC, UV(254), pH, chlorine dosage, bromide concentration and disinfection by-products were measured in water samples from 41 water treatment plants of six selected cities in China. Chloroform, bromodichloromethane, dibromochloromethane, dichloroacetic acid and trichloroacetic acid were the major disinfection by-products in the drinking water of China. Bromoform and dibromoacetic acid were also detected in many water samples. Higher concentrations of trihalomethanes and haloacetic acids were measured in summer compared to winter. The geographical variations in DBPs showed that TTHM levels were higher in Zhengzhou and Tianjin than other selected cities. And the HAA5 levels were highest in Changsha and Tianjin. The modeling procedure that predicts disinfection by-products formation was studied and developed using artificial neural networks. The performance of the artificial neural networks model was excellent (r > 0.84).

  11. Spatial and temporal evaluations of disinfection by-products in drinking water distribution systems in Beijing, China.

    PubMed

    Wei, Jianrong; Ye, Bixiong; Wang, Wuyi; Yang, Linsheng; Tao, Jing; Hang, Zhiyu

    2010-09-15

    Disinfection by-products were determined in 15 water treatment plants in Beijing City. The effects of different water sources (surface water source, mixture water source and ground water source), seasonal variation and spatial variation were examined. Trihalomethanes and haloacetic acids were the major disinfection by-products found in all treated water samples, which accounted for 42.6% and 38.1% of all disinfection by-products respectively. Other disinfection by-products including haloacetonitriles, chloral hydrate, haloketones and chloropicrin were usually detected in treated water samples but at lower concentrations. The levels of disinfection by-products in drinking water varied with different water sources and followed the order: surface water source > mixture water source > ground water source. High spatial and seasonal variation of disinfection by-products in the drinking water of Beijing was shown as a result.

  12. MUTAGENICITY AND DISINFECTION BY-PRODUCTS IN SURFACE DRINKING WATER DISINFECTED WITH PERACETIC ACID

    EPA Science Inventory

    The aims of this research were to study the influence of peracetic acid (PAA) on the formation of mutagens in surface waters used for human consumption and to assess its potential application for the disinfection of drinking water. The results obtained using PAA were compared to ...

  13. Risk assessment on disinfection by-products of drinking water of different water sources and disinfection processes.

    PubMed

    Wang, Wuyi; Ye, Bixiong; Yang, Linsheng; Li, Yonghua; Wang, Yonghua

    2007-02-01

    The occurrences of trihalomethanes (THMs) and haloacetics (HAAs) in the water supply in Beijing and Canada were investigated. The concentrations of THMs and HAAs in Beijing and Canada were below the maximum contaminant levels specified by the USEPA and WHO standards. The multi-pathway risk assessment (assessed through oral ingestion, dermal absorption and inhalation exposure to drinking water) was used to assess the cancer risk and the hazard index of THMs and HAAs from fifteen waterworks in Beijing, China and three treatment plants using different disinfection processes in Canada. Residents in Beijing and residents who were served by three treatment plants using different disinfection processes in Canada had a higher risk of cancer through oral ingestion than through the other two pathways. The cancer risk resulted from disinfection by-products (DBPs) was 8.50E-05(for males), 9.25E-05(for females) in Beijing, China, while it was 1.18E-04, 1.44E-04 in Canada. The risk was higher when water treatment plants used surface water source than when they used ground water source and mixture water source in Beijing. The risk showed different changes in three treatment plants using different disinfection processes in Canada. The lifetime cancer risk for THMs followed the order: Plant 2>Plant 1>Plant 3. And, the lifetime cancer risk for HAAs was: Plant 1>Plant 2>Plant 3.

  14. THE EFFECTS OF COMBINED OZONATION AND FILTRATION ON DISINFECTION BY-PRODUCT FORMATION. (R830908)

    EPA Science Inventory

    The effects of combined ozonation and membrane filtration on the removal of the natural organic matter (NOM) and the formation of disinfection by-products (DBPs) were investigated. Ozonation/filtration resulted in a reduction of up to 50% in the dissolved organic carbon (DOC) ...

  15. NEUROTOXICOLOGICAL EVALUATION OF TWO DISINFECTION BY-PRODUCTS, BROMODICHLOROMETHANE AND DIBROMOACETONITRILE, IN RATS.

    EPA Science Inventory

    The Safe Drinking Water Act requires that the U.S. EPA consider noncancer endpoints for the assessment of adverse human health effects of disinfection by-products (DBPs). As an extension of our studies in which we demonstrated neurotoxicity at relatively low levels of dibromo- an...

  16. HALONITROMETHANE DRINKING WATER DISINFECTION BY-PRODUCTS: CHEMICAL CHARACTERIZATION AND MAMMALIAN CELL CYTOTOXICITY AND GENOTOXICITY

    EPA Science Inventory

    Halonitromethanes are drinking water disinfection by-products that have recently received a high priority for health effects research from the U.S. Environmental Protection Agency. Our purpose was to identify and synthesize where necessary the mixed halonitromethanes and to deter...

  17. SOLID PHASE MICROEXTRACTION FOR TRACE LEVEL ANALYSIS OF DISINFECTION BY-PRODUCTS

    EPA Science Inventory

    This presentation focuses on the development of a solid-phase microextraction (SPME)-gas chromatography (GC)/ion trap mass spectrometry (MS) method for the analysis of semivolatile disinfection by-products (DBPs) in drinking water in the low ug/L range. These DBPs were selected ...

  18. INCREASED APOPTOSIS IN ORGANOGENESIS-STAGED MOUSE EMBRYOS INDUCED BY DISINFECTION BY-PRODUCTS

    EPA Science Inventory

    Increased apoptosis in organogenesis-staged mouse embryos induced by disinfection by-products. Sid Hunter1,2, Ellen Rogers1 and Keith Ward2, 1 Developmental Biology Branch, Reproductive Toxicology Division, NHEERL, US EPA, RTP, NC; 2 Curriculum in Toxicology, UNC Chapel Hill, Cha...

  19. ANIMAL MODELS FOR STUDYING MISCARRIAGE: ILLUSTRATION WITH STUDY OF DRINKING WATER DISINFECTION BY-PRODUCTS

    EPA Science Inventory

    Animal models for studying miscarriage: Illustration with study of drinking water disinfection by-products
    Authors & affiliations:
    Narotsky1, M.G. and S. Bielmeier Laffan2.
    1Reproductive Toxicology Division, NHEERL, ORD, U.S. Environmental Protection Agency, Research Tri...

  20. Assessing the Toxicities of Regulated and Unregulated Disinfection By-products in Normal Human Colon Cells.

    EPA Science Inventory

    The presence of over six hundred disinfection by-products (DBPs) and less than half of the total organic halides present in finished water has created a need for short-term in vitro assays to address toxicities that might be associated with human exposure. . We are using a normal...

  1. Genotoxic Effects in Swimmers Exposed to Disinfection By-products in Indoor Swimming Pool

    EPA Science Inventory

    BACKGROUND: Exposure to disinfection by-products (DBPs) in drinking water has been associated with cancer risk, and a recent study found an increased bladder cancer risk among subjects attending swimming pools. OBJECTIVES: To evaluate whether swimming in pools is associated with ...

  2. SURVEY OF HALONITROMETHANES AND IODOMETHANES: DISINFECTION BY-PRODUCTS IN DRINKING WATER

    EPA Science Inventory

    This project involves the study of two classes of chemicals, halonitromethanes and iodomethanes, which have been found to be drinking water disinfection by-products (DBPs). Both have been predicted to have toxicity. In toxicity screening tests, bromonitromethanes have been shown ...

  3. DETERMINATION OF NEW CARBONYL-CONTAINING DISINFECTION BY-PRODUCTS IN DRINKING WATER

    EPA Science Inventory

    Only a subset of all disinfection by-products were targeted for an intense occurrence study during the Information Collection Rule. Among 50 additional compounds selected for study because of their potential for significant toxicity, a group of carbonyl-containing compounds is be...

  4. DISINFECTION BY-PRODUCTS OF HEALTH CONCERN IN DRINKING WATER: RESULTS OF A NATIONWIDE OCCURRENCE STUDY

    EPA Science Inventory

    Drinking water disinfection by-products (DBPs) are of concern because some epidemiologic studies have shown that some DBPs are associated with cancer or adverse reproductive/developmental effects in human populations, and other studies have shown that certain DBPs cause similar h...

  5. Nanodetection of the disinfection by-products on GC-MS techniques

    NASA Astrophysics Data System (ADS)

    Ristoiu, Dumitru; Haydee, Melinda; Ristoiu, Tania

    2009-01-01

    Exposures to disinfection by-products (DBPs) in residential drinking water occur through multiple routes and vary across the population because of differences in the amount and ways people use water. Municipal water in the Romania is disinfected, with chlorine being the most common disinfectant agent. Disinfection of water, in additional to having the benefit of destroying microbes that can transmit diseases, has the drawback of producing a series of compounds known as disinfection by-products (DBPs). Chlorination produces many compounds containing chlorine and/or bromine, some of which have been shown to be carcinogenic, mutagenic, and/or teratogenic in animal studies. The most abundant class of DBPs that result from chlorination of drinking water are trihalomethanes (THMs) - chloroform (CHCl3), dichlorobromomethane (CHCl2Br), dibromochloromethane (CHBr2Cl) and bromoform (CHBr3). The most predominant THM species was CHCl3 and it highest concentration was 85•106 ng/m3. The others THMs compounds concentration were lower, between 65•104 ng/m3 and 12•106 ng/m3. THMs compounds were analyzed on gas chromatography coupled with mass spectrometer detector (GC-MS) and head space technique (HS) was used for all analysis.

  6. [Degradation Kinetics and Formation of Disinfection By-products During Linuron Chlorination in Drinking Water].

    PubMed

    Ling, Xiao; Hu, Chen-yan; Cheng, Ming; Gu, Jian

    2015-05-01

    Chlorination degradation of linuron was studied using the common disinfectant sodium hypochlorite, the effects of chlorine dosage, pH value, bromine ion concentrationand temperature were systematically investigated, and the formation characteristics of disinfection by-products (DBPs) during the chlorination reaction was analyzed. The results showed that the chlorination degradation kinetics of linuron by sodium hypochlorite could be well described by the second-order kinetic model. Moreover, pH values had a great impact on the degradation reaction, and the rate constant reached the maximum level at pH 7, and the base elementary reaction rate constants of HOCl and OCl- with linuron were 4.84 x 10(2) L · (mol · h)(-1) and 3.80 x 10(2) L · (mol · h)(-1), respectively. The reaction rate decreased with the addition of bromide ion and increased with increasing temperature. Furthermore, many kinds of disinfection by- products were produced during the chlorination degradation of linuron, including CF, DCAN, TCNM and halogen acetone. Under conditions of different solution pH and different bromide ion concentrations, there would be significant difference in the types and concentrations of disinfection by-products.

  7. Disinfection aboard cruise liners and naval units: formation of disinfection by-products using chlorine dioxide in different qualities of drinking water.

    PubMed

    Ufermann, Petra; Petersen, Hauke; Exner, Martin

    2011-12-01

    The world-wide deployment of cruise liners and naval units has caused an increased need for the disinfection of drinking water. The main cause for this is the unknown quality of drinking water in foreign harbours--besides the formation of bio-films due to the climatically disadvantageous conditions in the operational area. Water conduits on board are currently disinfected with calcium hypochlorite in case of microbiological contamination. Chemical and physical analyses after disinfection with calcium hypochlorite have shown that organic by-products consisting of trihalomethanes develop in considerable amounts during disinfection. Furthermore, the method is susceptible to handling errors and thus often leads to insufficient disinfection results. Hitherto, the use of other disinfection methods allowed by government regulations, especially chlorine dioxide, is not widely spread. Unlike disinfection with calcium hypochlorite, chlorine dioxide does not lead to the formation of trihalomethanes. Typical disinfection by-products (DBP) are the anions chlorite and chlorate, which are formed in oxidative processes. The formation conditions of these anions have not yet been elucidated. For this reason, the probability of the generation of inorganic by-products after disinfection with chlorine dioxide has been determined, and their occurrence in drinking water on board has been examined with respect to a possible correlation between water quality and the formation of chlorate and chlorite. Therefore, a chromatographic method was developed and validated in order to determine the periodical development of chlorate and chlorite from chorine dioxide in purified water at different pH-values as well as in actual drinking water samples from water conduits on board. The formation of the by-products chlorite and chlorate after disinfection with chlorine dioxide is influenced neither by pH-value nor by chemical properties of the disinfected water. Considering the examined conditions

  8. Drinking Water Disinfection by In-line Electrolysis: Product and Inorganic By-Product Formation

    NASA Astrophysics Data System (ADS)

    Bergmann, M. E. Henry

    This section covers peculiarities of so-called in-line electrolysis when drinking water is electrolysed to produce disinfection species killing microorganisms. Mainly mixed oxide electrodes (MIO) based on IrO2 and/or RuO2 coatings and boron-doped diamond electrodes were used in the studies. Artificial and real drinking water systems were electrolysed in continuous and discontinuous operating mode, varying water composition, current density and electrode materials. Results show, besides the ability of producing active chlorine, risks of inorganic disinfection by-products (DBPs) such as chlorate, perchlorate, nitrite, ammonium, chloramines, hydrogen peroxide and others. DBPs are responsible for analysis errors using DPD method for active chlorine measurements. Geometry may influence by-product yield. As a conclusion, the necessity of developing test routines for practical cell applications must be underlined.

  9. Formation of disinfection by-products: effect of temperature and kinetic modeling.

    PubMed

    Zhang, Xiao-lu; Yang, Hong-wei; Wang, Xiao-mao; Fu, Jing; Xie, Yuefeng F

    2013-01-01

    The temperature of drinking water fluctuates naturally in water distribution systems as well as often deliberately heated for household or public uses. In this study, the temperature effect on the formation of disinfection by-products (DBPs) was investigated by monitoring the temporal variations of twenty-one DBPs during the chlorination of a humic precursors-containing water at different temperatures. It was found that chloroform, DCAA, TCAA, DCAN and CH were detected at the considerable level of tens of μg L(-1). The three regulated DBPs (chloroform, DCAA and TCAA) were found increasing with both contact time and water temperature, while the five typical emerging DBPs (DCAN, CH, TCNM 1,1-DCPN and 1,1,1-TCPN) revealed the significant auto-decomposition in addition to the initial growth in the first few hours. Increasing water temperature could enhance the formation rates of all the eight detected DBPs and the decomposition rates of the five emerging DBPs. Further, a kinetic model was developed for the simulation of DBP formation. The validity and universality of the model were verified by its excellent correlation with the detected values of each DBP species at various temperatures. The formation rates of 1,1-DCPN and 1,1,1-TCPN, and the decomposition rate of 1,1,1-TCPN were faster as compared to the other DBPs. And the formation reaction activation energies of CH, DCAN and 1,1-DCPN were relatively large, indicating that their occurrence levels in the finished water were more susceptible to temperature variations.

  10. Formation of nitrogenous disinfection by-products in 10 chlorinated and chloraminated drinking water supply systems.

    PubMed

    Liew, Deborah; Linge, Kathryn L; Joll, Cynthia A

    2016-09-01

    The presence of nitrogenous disinfection by-products (N-DBPs) in drinking water supplies is a public health concern, particularly since some N-DBPs have been reported to be more toxic than the regulated trihalomethanes and haloacetic acids. In this paper, a comprehensive evaluation of the presence of N-DBPs in 10 drinking water supply systems in Western Australia is presented. A suite of 28 N-DBPs, including N-nitrosamines, haloacetonitriles (HANs), haloacetamides (HAAms) and halonitromethanes (HNMs), were measured and evaluated for relationships with bulk parameters in the waters before disinfection. A number of N-DBPs were frequently detected in disinfected waters, although at generally low concentrations (<10 ng/L for N-nitrosamines and <10 μg/L for other N-DBPs) and below health guideline values where they exist. While there were no clear relationships between N-DBP formation and organic nitrogen in the pre-disinfection water, N-DBP concentrations were significantly correlated with dissolved organic carbon (DOC) and ammonia, and these, in addition to high bromide in one of the waters, led to elevated concentrations of brominated HANs (26.6 μg/L of dibromoacetonitrile). There were significant differences in the occurrence of all classes of N-DBPs between chlorinated and chloraminated waters, except for HNMs, which were detected at relatively low concentrations in both water types. Trends observed in one large distribution system suggest that N-DBPs can continue to form or degrade within distribution systems, and redosing of disinfectant may cause further by-product formation.

  11. In vitro toxicity and genotoxicity assessment of disinfection by-products, organic N-chloramines.

    PubMed

    Laingam, S; Froscio, S M; Bull, R J; Humpage, A R

    2012-03-01

    Disinfection by-products (DBPs) are of concern to both water industries and health authorities. Although several classes of DBPs have been studied, and there are regulated safe levels in disinfected water for some, a large portion of DBPs are not characterized, and need further investigation. Organic N-chloramines are a group of DBPs, which can be formed during common disinfection processes such as chlorination and chloramination, but little is known in terms of their toxicological significance if consumed in drinking water. Only a few in vitro studies using bacterial assays have reported some genotoxic potential of organic N-chloramines, largely in the context of inflammatory processes in the body rather than exposure through drinking water. In this study, we investigated 16 organic N-chloramines produced by chlorination of model amino acids and amines. It was found that within the drinking water-relevant micromolar concentration range, four compounds were both cytotoxic and genotoxic to mammalian cells. A small reduction of cellular GSH was also observed in the treatment with these four compounds, but not of a magnitude to account for the cytotoxicity and genotoxicity. The results presented in this study demonstrate that some organic N-chloramines, at low concentrations that might be present in disinfected water, can be harmful to mammalian cells.

  12. The occurrence of disinfection by-products in the drinking water of Athens, Greece.

    PubMed

    Golfinopoulos, Spyros K; Nikolaou, Anastasia D; Lekkas, Themistokles D

    2003-01-01

    Application of chlorination for the disinfection of drinking water results in the formation of a wide range of organic compounds, called disinfection by-products (DBPs), which occur due to the reaction of chlorine with natural organic materials. The occurrence of DBPs was studied in samples from four drinking-water treatment plants (WTPs) and from the distribution network of Athens, Greece. Twenty-four compounds, which belong to different categories of DBPs, were monitored, including trihalomethanes (THMs), haloacetic acids (HAAs), haloacetonitriles (HANs), haloketones (HAKs), chloral hydrate (CH) and chloropicrin (CP). Sampling was performed monthly for a period of two years, from three different points at each WTP and from eight points atthe distribution network. Samples were analyzed by GC-ECD methods, which included pretreatment with liquid-liquid extraction for volatile DBPs and acidic methanol esterification for HAAs. The results of the analyses have shown the presence of disinfection by-products belonging to all categories studied in all water samples collected after prechlorination. The major categories of DBPs detected were THMs and HAAs, while the other volatile DBPs occurred at lower concentrations. The concentrations of DBPs did not in any case exceed the maximum contaminant levels (MCL) set by USEPA and WHO. However, monitoring these compounds needs to be continued, because their levels could increase due to changes in the quality of water entering the water treatment plants. Reduction of the concentrations of DBPs could be achieved by optimization of the chlorination conditions, taking into account the effect of time. Moreover, research on alternative disinfection methods (e.g. ozone, chlorine dioxide, chloramines) and their by-products should be conducted to evaluate their applicability in the case of the drinking water of Greece.

  13. A NATIONWIDE DRINKING WATER DISINFECTION BY-PRODUCT OCCURRENCE STUDY - IDENTIFICATION OF NEW AND TOXICOLOGICALLY SIGNIFICANT COMPOUNDS WITH MASS SPECTROMETRY

    EPA Science Inventory

    Drinking water disinfection by-products (DBPs) are formed when disinfectants, such as chlorine, react with natural organic matter and bromide present in the water. Chloroform was the first DBP identified in drinking water (in 1974), and was subsequently shown (along with other t...

  14. OCCURRENCE OF IODO-ACID AND IODO-THM DISINFECTION BY-PRODUCTS IN CHLORAMINATED DRINKING WATER

    EPA Science Inventory

    As part of a recent Nationwide Disinfection By-Product (DBP) Occurrence Study, iodo-acids were identified for the first time as DBPs in drinking water disinfected with chloramines. The iodo-acids identified included iodoacetic acid, bromoiodoacetic acid, (E)-3-bromo-3-iodo-prope...

  15. ORD'S FOUR LAB STUDY: TOXICOLOGICAL AND CHEMICAL EVALUATION OF COMPLEX MIXTURES OF DRINKING WATER DISINFECTION BY-PRODUCTS

    EPA Science Inventory

    Disinfectants used in the production of drinking water react with naturally occurring organic and inorganic material in the source water to produce disinfection by-products (DBPs). Humans are exposed daily to a complex mixture of DBPs via oral, dermal, and inhalation routes. To ...

  16. THE ROLE OF GC-MS AND LC-MS IN THE DISCOVERY OF DRINKING WATER DISINFECTION BY-PRODUCTS

    EPA Science Inventory

    Gas chromatography-mass spectrometry (GC-MS) has played a pivotal role in the discovery of disinfection by-products (DBPs) in drinking water. DBPs are formed when disinfectants, such as chlorine, ozone, chlorine dioxide or chloramine, react with natural organic matter in the wate...

  17. THE ROLE OF GC/MS AND LC/MS IN THE DISCOVERY OF DRINKING WATER DISINFECTION BY-PRODUCTS

    EPA Science Inventory

    Gas chromatography/mass spectrometry (GC/MS) has played a pivotal role in the discovery of disinfection by-products (DBPs) in drinking water. DBPs are formed when disinfectants, such as chlorine, ozone, chlorine dioxide, or chloramine, react with natural organic matter in the ...

  18. DOES MICRO LC/MS OFFER ADVANTAGES OVER CONVENTIONAL LC/MS IN IDENTIFYING DISINFECTION BY-PRODUCTS

    EPA Science Inventory

    Lower maximum contaminant levels (MCLs) of disinfection by-products were set for drinking water municipalities by the Stage 1 DBP Rule in November, 1998. With these new regulations, additional water treatment plants are expected to choose alternative disinfectants to chlorine. Al...

  19. Effect of magnetic ion exchange and ozonation on disinfection by-product formation.

    PubMed

    Kingsbury, Ryan S; Singer, Philip C

    2013-03-01

    The purpose of this research was to investigate the performance of treatment with magnetic ion exchange (MIEX) resin followed by ozonation in achieving disinfection goals while controlling bromate and chlorinated disinfection by-product (DBP) formation. Three water samples were collected from raw water supplies impacted by the San Francisco Bay Delta to represent the varying levels of bromide and total organic carbon (TOC) that occur throughout the year. A fourth water was prepared by spiking bromide into a portion of one of the samples. Samples of each water were pre-treated with alum or virgin MIEX resin, and the raw and treated waters were subsequently ozonated under semi-batch conditions to assess the impact of treatment on ozone demand, ozone exposure for disinfection ("CT"), and bromate formation. Finally, aliquots of raw, coagulated, resin-treated, and ozonated waters were chlorinated in order to measure trihalomethane formation potential (THMFP). In the waters studied, MIEX resin removed 41-68% of raw water TOC, compared to 12-44% for alum. MIEX resin also reduced the bromide concentration by 20-50%. The removal of TOC by alum and MIEX resin significantly reduced the ozone demand of all waters studied, resulting in higher dissolved ozone concentrations and CT values for a given amount of ozone transferred into solution. For a given level of disinfection (CT), the amount of bromate produced by ozonation of MIEX-treated waters was similar to or slightly less than that of raw water and significantly less than that of alum-treated water. MIEX resin removed 39-85% of THMFP compared to 16-56% removal by alum. Ozonation reduced THMFP by 35-45% in all cases. This work indicates that in bromide-rich waters in which ozone disinfection is used, MIEX resin is a more appropriate treatment than alum for the removal of organic carbon, as it achieves superior TOC and THM precursor removal and decreases the production of bromate from ozone.

  20. Chlorination and chloramination of tetracycline antibiotics: disinfection by-products formation and influential factors.

    PubMed

    Zhou, Shiqing; Shao, Yisheng; Gao, Naiyun; Zhu, Shumin; Ma, Yan; Deng, Jing

    2014-09-01

    Formation of disinfection by-products (DBPs) from chlorination and chloramination of tetracycline antibiotics (TCs) was comprehensively investigated. It was demonstrated that a connection existed between the transformation of TCs and the formation of chloroform (CHCl3), carbon tetrachloride (CCl4), dichloroacetonitrile (DCAN) and dichloroacetone (DCAce). Factors evaluated included chlorine (Cl2) and chloramine(NH2Cl) dosage, reaction time, solution pH and disinfection modes. Increased Cl2/NH2Cl dosage and reaction time improved the formation of CHCl3 and DCAce. Formation of DCAN followed an increasing and then decreasing pattern with increasing Cl2 dosage and prolonged reaction time. pH affected DBPs formation differently, with CHCl3 and DCAN decreasing in chlorination, and having maximum concentrations at pH 7 in chloramination. The total concentrations of DBPs obeyed the following order: chlorination>chloramination>pre-chlorination (0.5h)>pre-chlorination (1h)>pre-chlorination (2h).

  1. CHRONIC EXPOSURE TO DIBROMOACETIC ACID, A WATER DISINFECTION BY-PRODUCT, DIMINISHES PRIMORDIAL FOLLICLES IN THE RABBIT

    EPA Science Inventory

    Exposure to dibromoacetic acid (DBA), a commonly occurring water disinfection by-product, has detrimental effects on spermatogenesis and fertility in rats and rabbits. Despite indications of important reproductive consequences of DBA exposure in males, reproductive sequelae follo...

  2. Gestational and lactational effects in rats of sodium, sulfate, and concentrated disinfection by-products in drinking water

    EPA Science Inventory

    Epidemiological and animal toxicity studies have raised concerns regarding possible adverse health effects of disinfection by-products (DBPs) in drinking water (DW). Because many DBPs are unidentified, we sought to evaluate DW concentrates. In preparation for a multigenerational ...

  3. Human cell toxicogenomic analysis of bromoacetic acid: a regulated drinking water disinfection by-product.

    PubMed

    Muellner, Mark G; Attene-Ramos, Matias S; Hudson, Matthew E; Wagner, Elizabeth D; Plewa, Michael J

    2010-04-01

    The disinfection of drinking water is a major achievement in protecting the public health. However, current disinfection methods also generate disinfection by-products (DBPs). Many DBPs are cytotoxic, genotoxic, teratogenic, and carcinogenic and represent an important class of environmentally hazardous chemicals that may carry long-term human health implications. The objective of this research was to integrate in vitro toxicology with focused toxicogenomic analysis of the regulated DBP, bromoacetic acid (BAA) and to evaluate modulation of gene expression involved in DNA damage/repair and toxic responses, with nontransformed human cells. We generated transcriptome profiles for 168 genes with 30 min and 4 hr exposure times that did not induce acute cytotoxicity. Using qRT-PCR gene arrays, the levels of 25 transcripts were modulated to a statistically significant degree in response to a 30 min treatment with BAA (16 transcripts upregulated and nine downregulated). The largest changes were observed for RAD9A and BRCA1. The majority of the altered transcript profiles are genes involved in DNA repair, especially the repair of double strand DNA breaks, and in cell cycle regulation. With 4 hr of treatment the expression of 28 genes was modulated (12 upregulated and 16 downregulated); the largest fold changes were in HMOX1 and FMO1. This work represents the first nontransformed human cell toxicogenomic study with a regulated drinking water disinfection by-product. These data implicate double strand DNA breaks as a feature of BAA exposure. Future toxicogenomic studies of DBPs will further strengthen our limited knowledge in this growing area of drinking water research.

  4. Integrated Disinfection By-Products Mixtures Research: Disinfection of Drinking Waters by Chlorination and Ozonation/Postchlorination Treatment Scenarios

    EPA Science Inventory

    This article describes disinfection of the same source water by two commonly used disinfection treatment scenarios for purposes of subsequent concentration, chemical analysis, and toxicological evaluation. Accompanying articles in this issue of the Journal of Toxicology and Envir...

  5. Developmental Toxicity of Drinking Water Disinfection By-Products to Embryos of the African Clawed Frog (Xenopus laevis)

    DTIC Science & Technology

    2005-06-10

    developmental toxicity tests with embryos of the South African clawed frog Xenopus laevis used to evaluate four individual DWDB; bromodichloromethane...SUBJECT TERMS Developmental toxicity; FETAX; water disinfection by-products; frogs ; Xenopus laevis; embryo malformations; embryo mortality...Disinfection By-Products to Embryos of the African Clawed Frog (Xenopus laevis) L. M. Brennan,1 M. W. Toussaint,1 D. M. Kumsher,1 W. E. Dennis,’ A. B

  6. Carcinogenicity of by-products of disinfection in mouse and rat liver

    SciTech Connect

    Herren-Freund, S.L.; Pereira, M.A.

    1986-11-01

    By-products of disinfection were tested for initiating and/or promoting activity in rat liver by using the rat liver foci bioassay. The assay uses an increased incidence of ..gamma..-glutamyltranspeptidase-positive foci (GGT foci) as an indicator of carcinogenicity. The by-products of disinfection, including chloramine, halogenated humic acids, halogenated ethanes, halogenated acetonitriles, halogenated methanes, halogenated ethylene, and N-Cl piperidine, did not initiate GGT foci, which would indicate that they are not capable of initiating carcinogenesis. Chloroform and halogenated benzenes were tested in this assay for their ability to promote the occurrence of GGT foci and tumors initiated by diethylnitrosamine (DENA). Chloroform either had no effect or inhibited the occurrence of GGT foci when administered subsequent to a single dose of DENA. However, when the chloroform was administered in drinking water concurrently with weekly doses of DENA, it enhanced the formation of liver tumors. Of 20 halogenated benzenes tested, only 1,2,4,5-tetrachlorobenzene and hexachlorobenzene promoted the occurrence of DENA-initiated GGT foci. Thus in rat liver, the tested by-products of drinking water disinfection did not demonstrate tumor-initiating activity, although a few appeared to possess tumor-promoting activity. Chloroform was also tested for tumor-promoting activity in 15-days-old Swiss mice initiated with ethylnitrosourea (ENU). ENU at 5 and 20 ..mu..g/g caused a dose-dependent increase in liver tumors. In male mice, chloroform inhibited both spontaneous and ENU-induced liver tumors. When administered in the drinking water, chloroform inhibited, whereas phenobarbital promoted, hepatocarcinogenesis in mice.

  7. Socioeconomic status and exposure to disinfection by-products in drinking water in Spain

    PubMed Central

    2011-01-01

    Background Disinfection by-products in drinking water are chemical contaminants that have been associated with cancer and other adverse effects. Exposure occurs from consumption of tap water, inhalation and dermal absorption. Methods We determined the relationship between socioeconomic status and exposure to disinfection by-products in 1271 controls from a multicentric bladder cancer case-control study in Spain. Information on lifetime drinking water sources, swimming pool attendance, showering-bathing practices, and socioeconomic status (education, income) was collected through personal interviews. Results The most highly educated subjects consumed less tap water (57%) and more bottled water (33%) than illiterate subjects (69% and 17% respectively, p-value = 0.003). These differences became wider in recent time periods. The time spent bathing or showering was positively correlated with attained educational level (p < 0.001). Swimming pool attendance was more frequent among highly educated subjects compared to the illiterate (odds ratio = 3.4; 95% confidence interval 1.6-7.3). Conclusions The most highly educated subjects were less exposed to chlorination by-products through ingestion but more exposed through dermal contact and inhalation in pools and showers/baths. Health risk perceptions and economic capacity may affect patterns of water consumption that can result in differences in exposure to water contaminants. PMID:21410938

  8. Assessment of air and water contamination by disinfection by-products at 41 indoor swimming pools.

    PubMed

    Tardif, Robert; Catto, Cyril; Haddad, Sami; Simard, Sabrina; Rodriguez, Manuel

    2016-07-01

    This study was aimed at assessing the profiles (occurrence and speciation) of disinfection by-product (DBP) contamination in air and water of a group of 41 public indoor swimming pools in Québec (Canada). The contaminants measured in the water included the traditional DBPs [i.e., four trihalomethanes (THMs), six haloacetic acids (HAAs)] but also several emergent DBPs [i.e., halonitriles, halonitromethanes, haloketones and nitrosodimethylamine (NDMA)]. Those measured in the air comprised THMs and chloramines (CAMs). Overall, extremely variable DBP levels were found from one pool to another (both quantitatively and in terms of speciation). For instance, in water, among the four THMs, chloroform was usually the most abundant compound (37.9±25.7µg/L). Nevertheless, the sum of the three other brominated THMs represented more than 25% of total THMs at almost half the facilities visited (19 cases). In 13 of them, the levels of brominated THMs (66±24.2µg/L) even greatly outweighed the levels of chloroform (15.2±6.31µg/L). Much higher levels of HAAs (294.8±157.6µg/L) were observed, with a consistent preponderance of brominated HAAs in the swimming pools with more brominated THMs. NDMA levels which were measured in a subset of 8 pools ranged between 2.8ng/L and 105ng/L. With respect to air, chloroform was still the most abundant THM globally (119.4±74.2µg/m(3)) but significant levels of brominated THMs were also observed in various cases, particularly in the previously evoked group of 13 swimming pools with preponderant levels of brominated THMs in water. CAM levels (0.23±0.15mg/m(3)) varied highly, ranging from not detected to 0.56mg/m(3). Overall, the levels were generally relatively high compared to current guidelines or reference values from several countries, and they point to a relatively atypical presence of brominated compounds, and to significant levels of emergent DBPs for which health risk is less documented.

  9. Evidence of arsenic release promoted by disinfection by-products within drinking-water distribution systems.

    PubMed

    Andra, Syam S; Makris, Konstantinos C; Botsaris, George; Charisiadis, Pantelis; Kalyvas, Harris; Costa, Costas N

    2014-02-15

    Changes in disinfectant type could trigger a cascade of reactions releasing pipe-anchored metals/metalloids into finished water. However, the effect of pre-formed disinfection by-products on the release of sorbed contaminants (arsenic-As in particular) from drinking water distribution system pipe scales remains unexplored. A bench-scale study using a factorial experimental design was performed to evaluate the independent and interaction effects of trihalomethanes (TTHM) and haloacetic acids (HAA) on arsenic (As) release from either scales-only or scale-biofilm conglomerates (SBC) both anchored on asbestos/cement pipe coupons. A model biofilm (Pseudomonas aeruginosa) was allowed to grow on select pipe coupons prior experimentation. Either TTHM or HAA individual dosing did not promote As release from either scales only or SBC, detecting <6 μg AsL(-1) in finished water. In the case of scales-only coupons, the combination of the highest spike level of TTHM and HAA significantly (p<0.001) increased dissolved and total As concentrations to levels up to 16 and 95 μg L(-1), respectively. Similar treatments in the presence of biofilm (SBC) resulted in significant (p<0.001) increase in dissolved and total recoverable As up to 20 and 47 μg L(-1), respectively, exceeding the regulatory As limit. Whether or not, our laboratory-based results truly represent mechanisms operating in disinfected finished water in pipe networks remains to be investigated in the field.

  10. New chlorinated amphetamine-type-stimulants disinfection-by-products formed during drinking water treatment.

    PubMed

    Huerta-Fontela, Maria; Pineda, Oriol; Ventura, Francesc; Galceran, Maria Teresa

    2012-06-15

    Previous studies have demonstrated high removal rates of amphetamine-type-stimulants (ATSs) through conventional drinking water treatments; however the behaviour of these compounds through disinfection steps and their transformation into disinfection-by-products (DBPs) is still unknown. In this work, for the first time, the reactivity of some ATSs such as amphetamine, methamphetamine, 3,4-methylenedioxyamphetamine (MDA), 3,4-methylenedioxymethamphetamine (MDMA) and 3,4-methylenedioxyethylamphetamine (MDEA) with chlorine has been investigated under simulated and real drinking water treatment conditions in order to evaluate their ability to give rise to transformation products. Two new DBPs from these illicit drugs have been found. A common chlorinated-by-product (3-chlorobenzo)-1,3-dioxole, was identified for both MDA and MDEA while for MDMA, 3-chlorocatechol was found. The presence of these DBPs in water samples collected through drinking water treatment was studied in order to evaluate their formation under real conditions. Both compounds were generated through treatment from raw river water samples containing ATSs at concentration levels ranging from 1 to 15 ng/L for MDA and from 2.3 to 78 ng/L for MDMA. One of them, (3-chlorobenzo)-1,3-dioxole, found after the first chlorination step, was eliminated after ozone and GAC treatment while the MDMA DBP mainly generated after the postchlorination step, showed to be recalcitrant and it was found in final treated waters at concentrations ranging from 0.5 to 5.8 ng/L.

  11. Effect of chlorine dioxide on cyanobacterial cell integrity, toxin degradation and disinfection by-product formation.

    PubMed

    Zhou, Shiqing; Shao, Yisheng; Gao, Naiyun; Li, Lei; Deng, Jing; Zhu, Mingqiu; Zhu, Shumin

    2014-06-01

    Bench scale tests were conducted to study the effect of chlorine dioxide (ClO2) oxidation on cell integrity, toxin degradation and disinfection by-product formation of Microcystis aeruginosa. The simulated cyanobacterial suspension was prepared at a concentration of 1.0×10(6)cells/mL and the cell integrity was measured with flow cytometry. Results indicated that ClO2 can inhibit the photosynthetic capacity of M. aeruginosa cells and almost no integral cells were left after oxidation at a ClO2 dose of 1.0mg/L. The total toxin was degraded more rapidly with the ClO2 dosage increasing from 0.1mg/L to 1.0mg/L. Moreover, the damage on cell structure after oxidation resulted in released intracellular organic matter, which contributed to the formation of trihalomethanes (THMs) and haloacetic acids (HAAs) as disinfection by-products. Therefore, the use of ClO2 as an oxidant for treating algal-rich water should be carefully considered.

  12. The removal of estrogenic activity with UV/chlorine technology and identification of novel estrogenic disinfection by-products.

    PubMed

    Li, Man; Xu, Bi; Liungai, Zhiqi; Hu, Hong-Ying; Chen, Chao; Qiao, Juan; Lu, Yun

    2016-04-15

    As a recently developed disinfection technology, ultraviolet (UV)/chlorine treatment has received much attention. Many studies have evaluated its effects on pathogen inactivation, contaminant removal, and formation of disinfection by-products (DBPs), but its potential for environmental estrogen removal and estrogenic DBP generation, which can also be a risk to both ecosystem and human health, have not been evaluated. In this study, UV/chlorine treatment resulted in a greater removal of estrogenic activity in synthetic effluent samples containing 17β-estradiol (E2) than did UV or chlorine treatment alone regardless of the water quality. For both the UV/chlorine and chlorine treatments, there was significant interference from NH3-N, although the UV/chlorine treatment was less affected. Estrogen receptor based affinity chromatography was used to isolate the specific estrogenic DBPs, and a novel product, with high estrogenic activity compared to E2, Δ9(11)-dehydro-estradiol, was identified. It was generated by all three treatments, and might be previously mistakenly recognized as estrone (E1). This study demonstrated that UV/chlorine is a better treatment for the removal of 17β-estradiol than chlorine and UV alone. The new identified estrogenic DBP, Δ9(11)-dehydro-estradiol, which can be isolated by affinity chromatography, could be an emerging concern in the future.

  13. Modern approaches to the analysis of disinfection by-products in drinking water.

    PubMed

    Weinberg, Howard S

    2009-10-13

    The discovery and study of disinfection by-products (DBPs) of health and regulatory concern in drinking water have often been hampered by the lack of appropriate analytical methods, but, with the new tools and expertise now available to the drinking water industry, there is an opportunity to plug a major gap in our knowledge of the nature and identity of these chemicals. The challenge is that less than half of the halogenated by-products resulting from the chlorination of drinking water have been identified, and even less is known about those produced in waters treated with ozone, chloramines or chlorine dioxide. For the DBPs that have been identified, very little or no occurrence data exist for the unregulated chemicals to document how often a particular DBP is formed and in what quantity. The elucidation of the nature and identity of these by-products is hindered by two complicating factors. The first is the inherent aqueous solubility of many of these compounds, which renders their efficient extraction from water difficult to achieve. The second is the lack of established identity of specific potential by-products, which complicates targeted analytical approaches. This paper reviews existing and new methodologies that attempt to overcome some of these challenges.

  14. Bioanalytical and chemical evaluation of disinfection by-products in swimming pool water.

    PubMed

    Yeh, Ruby Y L; Farré, Maria José; Stalter, Daniel; Tang, Janet Y M; Molendijk, Jeffrey; Escher, Beate I

    2014-08-01

    Pool water disinfection is vital to prevent microbial pathogens. However, potentially hazardous disinfection by-products (DBP) are formed from the reaction between disinfectants and organic/inorganic precursors. The aim of this study was to evaluate the presence of DBPs in various swimming pool types in Brisbane, Australia, including outdoor, indoor and baby pools, and the dynamics after a complete water renewal. Chemical analysis of 36 regulated and commonly found DBPs and total adsorbable organic halogens as well as in vitro bioassays targeting cytotoxicity, oxidative stress and genotoxicity were used to evaluate swimming pool water quality. Dichloroacetic acid and trichloroacetic acid dominated in the pool water samples with higher levels (up to 2600 μg/L) than the health guideline values set by the Australian Drinking Water Guidelines (100 μg/L). Chlorinated DBPs occurred at higher concentrations compared to tap water, while brominated DBPs decreased gradually with increasing pool water age. Biological effects were expressed as chloroacetic acid equivalent concentrations and compared to predicted effects from chemical analysis and biological characterisation of haloacetic acids. The quantified haloacetic acids explained 35-118% of the absorbable organic halogens but less than 4% of the observed non-specific toxicity (cytotoxicity), and less than 1% of the observed oxidative stress response and genotoxicity. While the DBP concentrations in Australian pools found in this study are not likely to cause any adverse health effect, they are higher than in other countries and could be reduced by better hygiene of pool users, such as thorough showering prior to entering the pool and avoiding urination during swimming.

  15. Predictive model for disinfection by-product in Alexandria drinking water, northern west of Egypt.

    PubMed

    Abdullah, Ali M; Hussona, Salah El-dien

    2013-10-01

    Chlorine has been utilized in the early stages of water treatment processes as disinfectant. Disinfection for drinking water reduces the risk of pathogenic infection but may pose a chemical threat to human health due to disinfection residues and their by-products (DBP) when the organic and inorganic precursors are present in water. In the last two decades, many modeling attempts have been made to predict the occurrence of DBP in drinking water. Models have been developed based on data generated in laboratory-scale and field-scale investigations. The objective of this paper is to develop a predictive model for DBP formation in the Alexandria governorate located at the northern west of Egypt based on field-scale investigations as well as laboratory-controlled experimentations. The present study showed that the correlation coefficient between trihalomethanes (THM) predicted and THM measured was R (2)=0.88 and the minimum deviation percentage between THM predicted and THM measured was 0.8 %, the maximum deviation percentage was 89.3 %, and the average deviation was 17.8 %, while the correlation coefficient between dichloroacetic acid (DCAA) predicted and DCAA measured was R (2)=0.98 and the minimum deviation percentage between DCAA predicted and DCAA measured was 1.3 %, the maximum deviation percentage was 47.2 %, and the average deviation was 16.6 %. In addition, the correlation coefficient between trichloroacetic acid (TCAA) predicted and TCAA measured was R (2)=0.98 and the minimum deviation percentage between TCAA predicted and TCAA measured was 4.9 %, the maximum deviation percentage was 43.0 %, and the average deviation was 16.0 %.

  16. Detection of genotoxic effects of drinking water disinfection by-products using Vicia faba bioassay.

    PubMed

    Hu, Yu; Tan, Li; Zhang, Shao-Hui; Zuo, Yu-Ting; Han, Xue; Liu, Na; Lu, Wen-Qing; Liu, Ai-Lin

    2017-01-01

    Plant-based bioassays have gained wide use among the toxicological and/or ecotoxicological assessment procedures because of their simplicity, sensitivity, low cost, and reliability. The present study describes the use of Vicia faba (V. faba) micronucleus (MN) test and V. faba comet assay in the evaluation of the genotoxic potential of disinfection by-products (DBPs) commonly found in chlorine-disinfected drinking water. Five haloacetic acids and three halogenated acetonitriles were chosen as representatives of DBPs in this study because they are of potentially great public health risk. Results of the MN test indicated that monochloroacetic acid (MCA), monobromoacetic acid (MBA), dichloroacetic acid (DCA), dibromoacetic acid (DBA), trichloroacetic acid (TCA), and trichloroacetonitrile (TCAN) caused a statistically significant increase in MN frequency in V. faba root tip cells. However, no genotoxic response was observed for dichloroacetonitrile (DCAN) and dibromoacetonitrile (DBAN). Results of the comet assay showed that all tested DBPs induced a statistically significant increase in genomic DNA damage to V. faba root tip cells. On considering the capacity to detect genomic damage of a different nature, we suggest that a combination of V. faba MN test and V. faba comet assay is a useful tool for the detection of genotoxic effects of DBPs. It is worthy of assessing the feasibility of using V. faba comet assay combined with V. faba MN test to screen for the genotoxic activity of chlorinated drinking water in future work.

  17. Genotoxic evaluation of the non-halogenated disinfection by-products nitrosodimethylamine and nitrosodiethylamine.

    PubMed

    Liviac, D; Creus, A; Marcos, R

    2011-01-30

    Disinfection by-products (DBPs) are chemicals that are produced as a result of chlorine being added to water for disinfection. As well as the halogenated DBPs, N-nitrosamines have recently been identified as DBPs, especially when amines and ammonia ions are present in raw water. In this work, the genotoxicity of two nitrosamines, namely nitrosodimethylamine (NDMA) and nitrosodiethylamine (NDEA), has been studied in cultured human cells. To evaluate their genotoxic potential two assays were used, the comet assay and the micronucleus test. The comet assay measures the induction of single and double-strand breaks, and also reveals the induced oxidative DNA damage by using endoIII and FPG enzymes. Chromosomal damage was evaluated by means of the cytokinesis-blocked micronucleus test. The results of the comet assay show that both compounds are slightly genotoxic but only at high concentrations, NDEA being more effective than NDMA. Enzyme treatments revealed that only NDEA was able to produce increased levels of oxidized bases, mainly in purine sites. The results obtained in the micronucleus assay, which measures the capacity of the tested agents to induce clastogenic and/or aneugenic effects, are negative for both of the nitrosamines evaluated, either using TK6 cells or human peripheral blood lymphocytes. Taking into account the very high concentrations needed to produce DNA damage, our data suggest a low, if existent, genotoxic risk associated with the presence of these compounds in drinking water.

  18. Volatile disinfection by-product analysis from chlorinated indoor swimming pools.

    PubMed

    Weaver, William A; Li, Jing; Wen, Yuli; Johnston, Jessica; Blatchley, Michael R; Blatchley, Ernest R

    2009-07-01

    Chlorination of indoor swimming pools is practiced for disinfection and oxidation of reduced compounds that are introduced to water by swimmers. However, there is growing concern associated with formation for chlorinated disinfection by-products (DBPs) in these settings. Volatile DBPs are of particular concern because they may promote respiratory ailments and other adverse health effects among swimmers and patrons of indoor pool facilities. To examine the scope of this issue, water samples were collected from 11 pools over a 6month period and analyzed for free chlorine and their volatile DBP content. Eleven volatile DBPs were identified: monochloramine (NH(2)Cl), dichloramine (NHCl(2)), trichloramine (NCl(3)), chloroform (CHCl(3)), bromoform (CHBr(3)), dichlorobromomethane (CHBrCl(2)), dibromochloromethane (CHBr(2)Cl), cyanogen chloride (CNCl), cyanogen bromide (CNBr), dichloroacetonitrile (CNCHCl(2)), and dichloromethylamine (CH(3)NCl(2)). Of these 11 DBPs, 10 were identified as regularly occurring, with CHBrCl(2) only appearing sporadically. Pool water samples were analyzed for residual chlorine compounds using the DPD colorimetric method and by membrane introduction mass spectrometry (MIMS). These two methods were chosen as complementary measures of residual chlorine, and to allow for comparisons between the methods. The DPD method was demonstrated to consistently overestimate inorganic chloramine content in swimming pools. Pairwise correlations among the measured volatile DBPs allowed identification of dichloromethylamine and dichloroacetonitrile as potential swimming pool water quality indicator compounds.

  19. Disinfection by-products effect on swimmers oxidative stress and respiratory damage.

    PubMed

    Llana-Belloch, Salvador; Priego Quesada, Jose Ignacio; Pérez-Soriano, Pedro; Lucas-Cuevas, Ángel G; Salvador-Pascual, Andrea; Olaso-González, Gloria; Moliner-Martinez, Yolanda; Verdú-Andres, Jorge; Campins-Falco, Pilar; Gómez-Cabrera, M Carmen

    2016-08-01

    Disinfection by-products (DBPs) are generated through the reaction of chlorine with organic and inorganic matter in indoor swimming pools. Different DBPs are present in indoor swimming pools. This study evaluated the effects of different chlorinated formations in oxidative stress and lung damage in 20 swimmers after 40 min of aerobic swimming in 3 indoor pools with different characteristics. Biological samples were collected to measure lung damage (serum-surfactant-associated proteins A and B), oxidative stress parameters (plasma protein carbonylation and malondialdehyde, and whole-blood glutathione oxidation), and swimming exertion values (blood lactate) before and after exercise. Free chlorine and combined chlorine in water, and chlorine in air samples were determined in all the swimming pools. Chlorination as disinfection treatment led to the formation of chloramines in water samples, mainly mono- and dichloramine. However, free chlorine was the predominate species in ultraviolet-treated swimming pool. Levels of total chlorine increased as a function of the swimming activity in chlorinated swimming pools. The lower quality of the installation resulted in a higher content of total chlorine, especially in air samples, and therefore a higher exposure of the swimmer to DBPs. However, the concentration level of chlorinated DBPs did not result in significant variation in serum-surfactant-associated proteins A and oxidative stress parameters in swimmers. In conclusion, the quality of the installation affected the DBPs concentration; however, it did not lead to lung epithelial damage and oxidative stress parameters in swimmers.

  20. Formation of disinfection by-products in the ultraviolet/chlorine advanced oxidation process.

    PubMed

    Wang, Ding; Bolton, James R; Andrews, Susan A; Hofmann, Ron

    2015-06-15

    Disinfection by-product (DBP) formation may be a concern when applying ultraviolet light and free chlorine (UV/chlorine) as an advanced oxidation process (AOP) for drinking water treatment, due to typically large chlorine doses (e.g. 5-10 mg L(-1) as free chlorine). A potential mitigating factor is the low chlorine contact times for this AOP treatment (e.g. seconds). Full-scale and pilot-scale test results showed minimal trihalomethane (THM) and haloacetic acid (HAA) formation during UV/chlorine treatment, while dichloroacetonitrile (DCAN) and bromochloroacetonitrile (BCAN) were produced rapidly. Adsorbable organic halide (AOX) formation was significant when applying the UV/chlorine process in water that had not been previously chlorinated, while little additional formation was observed in prechlorinated water. Chlorine photolysis led to chlorate and bromate formation, equivalent to approximately 2-17% and 0.01-0.05% of the photolyzed chlorine, respectively. No perchlorate or chlorite formation was observed. During simulated secondary disinfection of AOP-treated water, DBP formation potential for THMs, HAAs, HANs, and AOX was observed to increase approximately to the same extent as was observed for pretreatment using the more common AOP of UV combined with hydrogen peroxide (UV/H2O2).

  1. Carbonaceous and nitrogenous disinfection by-product formation from algal organic matter.

    PubMed

    Goslan, Emma H; Seigle, Céline; Purcell, Diane; Henderson, Rita; Parsons, Simon A; Jefferson, Bruce; Judd, Simon J

    2017-03-01

    Seasonal algal blooms in drinking water sources release intracellular and extracellular algal organic matter (AOM) in significant concentrations into the water. This organic matter provides precursors for disinfection by-products (DBPs) formed when the water is subsequently chlorinated at the final disinfection stage of the potable water treatment process. This paper presents results of AOM characterisation from five algal species (three cyanobacteria, one diatom and one green) alongside the measurement of the DBP formation potential from the AOM of six algal species (an additional diatom). The character was explored in terms of hydrophilicity, charge and protein and carbohydrate content. 18 DBPs were measured following chlorination of the AOM samples: the four trihalomethanes (THMs), nine haloacetic acids (HAAs), four haloacetonitriles (HANs) and one halonitromethane (HNM). The AOM was found to be mainly hydrophilic (52 and 81%) in nature. Yields of up to 92.4 μg mg(-1) C carbonaceous DBPs were measured, with few consistent trends between DBP formation propensity and either the specific ultraviolet absorbance (SUVA) or the chemical characteristics. The AOM from diatomaceous algae formed significant amounts of nitrogenous DBPs (up to 1.7 μg mg(-1) C). The weak trends in DBPFP may be attributable to the hydrophilic nature of AOM, which also makes it more challenging to remove by conventional water treatment processes.

  2. Tracking disinfection by-products and arsenic removal during various drinking water treatment trains.

    PubMed

    Tubić, Aleksandra; Dalmacija, Bozo; Agbaba, Jasmina; Ivancev-Tumbas, Ivana; Klasnja, Mile; Dalmacija, Milena

    2010-01-01

    In the central Banat region (Northern Serbia), groundwater is used as a drinking water source. Raw water originates from a 40-80 m and 100-150 m deep layer. It contains a high amount of natural organic matter (DOC = 9.17+/-0.87 mg C/L) with a trihalomethanes formation potential of 448+/-88.2 microg/L and a haloacetic acid formation potential of 174+/-68.9 microg/L. A high amount of arsenic (86.0+/-3.4 microg/L) is also found in this water. This study used a pilot-scale system to investigate the possibilities of combining polyaluminium chloride and ferrous-chloride to remove disinfection by-products precursors and arsenic by coagulation. Two treatment trains with different pre-treatment steps were investigated (ozone vs. H2O2/O3). For the final water polishing, filtration with granulated activated carbon (GAC) was applied. Both investigated treatment lines achieved a satisfactory chemical water quality. Simulation of disinfection conditions was performed and the contents of trihalomethanes and haloacetic acids measured, to investigate whether the chemical quality of the water remained satisfactory over a 48 hour period.

  3. Effects of thermal treatment on halogenated disinfection by-products in drinking water.

    PubMed

    Wu, W W; Benjamin, M M; Korshin, G V

    2001-10-01

    The influence of heating or boiling on the formation and behavior of disinfection by-products (DBPs) was investigated in DBP-spiked reagent water, municipal tap water, and synthetic water containing chlorinated aquatic humic substances. Thermal cleavage of larger halogenated species leads to both formation of smaller chlorinated molecules (including THMs and HAAs) and dechlorination of organics. In parallel with their formation from larger molecules, THMs can be volatilized, and this latter process dominates the change in their concentration when water is boiled. HAAs are not volatile, but they can be destroyed by chemical reactions at elevated temperatures, with the net effect being loss of trihalogenated HAAs and either formation or loss of less chlorinated HAAs. Although other identifiable DBPs can be generated at slightly elevated temperatures, in most cases their concentrations decline dramatically when the solution is heated.

  4. [Advances of study on assessing exposure to disinfection by-products in drinking water].

    PubMed

    Ye, Bixiong; Wang, Wuyi

    2009-07-01

    DBP exposure assessment issues were addressed. The basic definition to exposure assessment was introduced. Recommended ideal set of drinking water quality parameters to collect for each water treatment plant and specific disinfection by-products to be considered for future studies to adequately characterize DBP exposure were sum up. Previous studies and shortcoming of DBP exposure assessment were discussed and considered. Two examples of DBP exposure assessment were used to explain the progress and method of assessment in detail. Various disciplines to develop better approaches for measuring DBP exposure and greater collaboration of epidemiologists with water utilities and regulators should be encouraged in order to make regulatory monitoring data more useful for epidemiologic studies.

  5. Control of disinfection by-products in canned vegetables caused by water used in their processing.

    PubMed

    Cardador, Maria Jose; Gallego, Mercedes

    2017-01-01

    Canned vegetables come into contact with sanitizers and/or treated water in industry during several steps (namely washing, sanitising, blanching and filling with sauces or brine solutions) and therefore they can contain disinfection by-products - DBPs). This study focused on the occurrence of trihalomethanes (THMs) and haloacetic acids (HAAs) in a wide variety of canned vegetables (75 samples). For each vegetable, the edible solid and liquid phases of the package were separated and analysed individually. DBPs can be present in both solid (up to eight species) and liquid (up to 11 species) phases, their levels being higher in liquid ones. Volatile THMs predominate in the edible solid phase (up to four species), while HAAs do so in the liquid phase (up to five species) according to their ionic and non-volatile nature. The lowest concentrations of DBPs were found in tomatoes because they were often preserved in their own juice, without water.

  6. [Study advance and control measure on disinfection by-products in drinking water].

    PubMed

    Wei, Jianrong; Wang, Zhengang

    2004-01-01

    The related studies on the chemistry, toxicology, epidemiology, distribution level, hygienic standard or maximum contaminant level and control measure were summarized. The results showed that a lot of disinfection by-products (DBPs) formed during chlorination and trihaloromethanes (THMs) and haloacetic acids (HAAs) were the two major groups of found in drinking water. From the present knowledge and health effects, the DBPs of most interest are THMs, HAAs, bromate and chlorite. The hygienic standard or maximum contaminant level of drinking water have been revised or supplemented. In order to decrease the chemical risk due to DBPs without compromising microbiological quality, the monitor parameters have been increased and maximum contaminant levels of the parameters have been controlled strictly.

  7. Water purification systems: a comparative analysis based on the occurrence of disinfection by-products.

    PubMed

    Gibbons, J; Laha, S

    1999-09-01

    Trihalomethanes (THMs) are halogenated hydrocarbons, and are by-products of the chlorination of drinking water. Most THMs are formed in drinking water when chlorine reacts with naturally occurring organic substances such as decomposing plant and animal materials. Risks for certain types of cancer are now being correlated with the presence of disinfection by-products (DBPs). The present research uses gas chromatography to analyze the presence and levels of THMs in drinking water samples from a variety of sources. These include (1) municipal drinking water from two south Florida counties; (2) two brands of bottled water; (3) untreated residential well water; and (4) municipal tap water passed through additional water purification systems. The results are summarized in a tabular format, and the compliance of each water with existing US EPA-mandated standards is examined. General conclusions from this study are that all the waters tested complied with federal regulations regarding THM levels, properly functioning home filtration units may be quite effective in further reducing DBP concentrations and, as expected, non-chlorinated waters such as bottled water and residential well water contain lower THM levels.

  8. Exposure estimates to disinfection by-products of chlorinated drinking water.

    PubMed

    Weisel, C P; Kim, H; Haltmeier, P; Klotz, J B

    1999-02-01

    Exposure to disinfection by-products (DBPs) of drinking water is multiroute and occurs in households serviced by municipal water treatment facilities that disinfect the water as a necessary step to halt the spread of waterborne infectious diseases. Biomarkers of the two most abundant groups of DBPs of chlorination, exhaled breath levels of trihalomethanes (THMs) and urinary levels of two haloacetic acids, were compared to exposure estimates calculated from in-home tap water concentrations and responses to a questionnaire related to water usage. Background THM breath concentrations were uniformly low. Strong relationships were identified between the THM breath concentrations collected after a shower and both the THM water concentration and the THM exposure from a shower, after adjusting for the postshower delay time in collecting the breath sample. Urinary haloacetic acid excretion rates were not correlated to water concentrations. Urinary trichloroacetic acid excretion rates were correlated with ingestion exposure, and that correlation was stronger in a subset of individuals who consumed beverages primarily within their home where the concentration measurements were made. No correlation was observed between an average 48-hr exposure estimate and the urinary dichloroacetic acid excretion rate, presumably because of its short biological half-life. Valid biomarkers were identified for DBP exposures, but the time between the exposure and sample collection should be considered to account for different metabolic rates among the DBPs. Further, using water concentration as an exposure estimate can introduce misclassification of exposure for DBPs whose primary route is ingestion due to the great variability in the amount of water ingested across a population.

  9. Exposure estimates to disinfection by-products of chlorinated drinking water.

    PubMed Central

    Weisel, C P; Kim, H; Haltmeier, P; Klotz, J B

    1999-01-01

    Exposure to disinfection by-products (DBPs) of drinking water is multiroute and occurs in households serviced by municipal water treatment facilities that disinfect the water as a necessary step to halt the spread of waterborne infectious diseases. Biomarkers of the two most abundant groups of DBPs of chlorination, exhaled breath levels of trihalomethanes (THMs) and urinary levels of two haloacetic acids, were compared to exposure estimates calculated from in-home tap water concentrations and responses to a questionnaire related to water usage. Background THM breath concentrations were uniformly low. Strong relationships were identified between the THM breath concentrations collected after a shower and both the THM water concentration and the THM exposure from a shower, after adjusting for the postshower delay time in collecting the breath sample. Urinary haloacetic acid excretion rates were not correlated to water concentrations. Urinary trichloroacetic acid excretion rates were correlated with ingestion exposure, and that correlation was stronger in a subset of individuals who consumed beverages primarily within their home where the concentration measurements were made. No correlation was observed between an average 48-hr exposure estimate and the urinary dichloroacetic acid excretion rate, presumably because of its short biological half-life. Valid biomarkers were identified for DBP exposures, but the time between the exposure and sample collection should be considered to account for different metabolic rates among the DBPs. Further, using water concentration as an exposure estimate can introduce misclassification of exposure for DBPs whose primary route is ingestion due to the great variability in the amount of water ingested across a population. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:9924004

  10. Effect of ozonation and UV irradiation with direct filtration on disinfection and disinfection by-product precursors in drinking water treatment.

    PubMed

    Amirsardari, Y; Yu, Q; Willams, P

    2001-09-01

    Pilot plant studies were conducted to evaluate the effect of pre-ozonation and ultraviolet irradiation on disinfection, disinfection by-product precursors and water quality in a direct filtration water treatment system. Disinfection parameters including total coliforms, faecal coliforms and heterotrophic plate count were investigated. Total organic carbon (TOC), trihalomethanes (THMs), total organic halides (TOX), filtered water turbidity and colour were also evaluated. It was found that advanced pre-oxidation processes (ozonation and UV irradiation) significantly increase the level of disinfection of raw water. Removal of total trihalomethanes and total organic halides precursors improved with ozonation and UV irradiation, compared to no oxidation treatment in direct filtration and/or in conventional water treatment. All coliforms (total and faecal) were completely destroyed by ozonation alone, and also with ozonation in conjunction with UV irradiation. However, the heterotrophic plate count was not significantly reduced at an ozone residual concentration of 0.1 mg l(-1). This suggests that disinfection efficiency is strongly influenced by competition reactions of organic and inorganic compounds with ozone. Precursors of total trihalomethanes and total organic halides were reduced by 90% and 98%, respectively, with advanced pre-oxidation processes. Water quality parameters were improved by the pre-ozonation and UV irradiation treatment system.

  11. Combining Mass Spectrometry and Toxicology for a Multi-Country European Epidemiologic Study on Drinking Water Disinfection By-Products

    EPA Science Inventory

    The HiWATE (Health Impacts of long-term exposure to disinfection by-products in drinking WATEr) project is the first systematic analysis that combines the epidemiology on adverse pregnancy outcomes with analytical chemistry and analytical biology in the European Union. This study...

  12. Combining Mass Spectrometry and Toxicology for a Multi-Country European Epidemiologic Study on Drinking Water Disinfection By-Products.

    EPA Science Inventory

    The HiWATE (Health Impacts of long-term exposure to disinfection by-products in drinking WATEr) project is the first systematic analysis that combines the epidemiology on adverse pregnancy outcomes with analytical chemistry and analytical biology in the European Union. This study...

  13. THE CARCINOGENIC RESPONSE TO A MIXTURE OF DRINKING WATER DISINFECTION BY-PRODUCTS (DBP) WAS LESS THAN ADDITIVE

    EPA Science Inventory

    THE CARCINOGENIC RESPONSE TO A MIXTURE OF DRINKING WATER DISINFECTION BY -PRODUCTS (DBP) W AS LESS THAN ADDITIVE.

    Current default risk assessments for chemical mixtures assume additivity of carcinogenic effects but this may under or over represent the actual biological res...

  14. The healthy men study: an evaluation of exposure to disinfection by-products in tap water and sperm quality

    EPA Science Inventory

    BACKGROUND: Chlorination of drinking water generates disinfection by-products (DBPs), which have been shown to disrupt spermatogenesis in rodents at high doses, suggesting that DBPs could pose a reproductive risk to men. In this study we assessed DBP exposure and testicular toxic...

  15. THE COMBINED CARCINOGENIC RISK FOR EXPOSURE TO MIXTURES OF DRINKING WATER DISINFECTION BY-PRODUCTS MAY BE LESS THAN ADDITIVE

    EPA Science Inventory

    The Combined Carcinogenic Risk for Exposure to Mixtures of Drinking Water Disinfection By-Products May be Less Than Additive

    Risk assessment methods for chemical mixtures in drinking water are not well defined. Current default risk assessments for chemical mixtures assume...

  16. Changes in Markers of Genotoxicity in Relation to Exposure to Disinfection By-Products in Swimming Pools

    EPA Science Inventory

    Exposure to disinfection by-products (DBPs) has been associated with cancer risk, but the mechanisms of action are poorly understood. A recent study found increased bladder cancer risk among subjects attending swimming pools, where uptake of DBPs, such as trihalomethanes (THMs) c...

  17. ASSESSING EXPOSURE IN EPIDEMIOLOGIC STUDIES TO DISINFECTION BY-PRODUCTS IN DRINKING WATER: REPORT FROM AN INTERNATIONAL WORKSHOP

    EPA Science Inventory

    The inability to accurately assess exposure has been one of the major shortcomings of epidemiologic studies of disinfection by-products (DBPs) in drinking water. A number of contributing factors include: (1) limited information on the identity, occurrence, toxicity and pharmacok...

  18. RENAL CARCINOGENICITY OF INDIVIDUAL AND A MIXTURE OF DRINKING WATER DISINFECTION BY-PRODUCTS (DBP) IN EKER RATS

    EPA Science Inventory

    RENAL CARCINOGENICITY OF INDIVIDUAL AND A MIXTURE OF DRINKING / WATER DISINFECTION BY -PRODUCTS (DBP) IN EKER RATS.

    Eker rats develop hereditary renal cell carcinoma secondary to a germline mutation in the tuberous sclerosis 2 tumor suppressor gene, and are highly suscepti...

  19. DISINFECTION BY-PRODUCTS OF HEALTH CONCERN IN DRINKING WATER: RESULTS OF A U.S. NATIONWIDE OCCURRENCE STUDY

    EPA Science Inventory

    Drinking water disinfection by-products (DBPs) are of concern because some epidemiologic studies have shown that some DBPs are associated with cancer or adverse reproductive/developmental effects in human populations, and other studies have shown that certain DBPs cause similar h...

  20. APPLICATION OF SOLID PHASE MICROEXTRACTION GC/MS TO THE CHARACTERIZATION OF HYDROPHILIC DISINFECTION BY-PRODUCTS IN WATER

    EPA Science Inventory

    The U.S. Environmental Protection Agency has given high priority to research aimed at developing methods to extract hydrophilic disinfection by-products (DBPs) from drinking water. Public water supplies are treated with a variety of chemicals aimed at reducing or eliminating inf...

  1. Cumulative toxicity of an environmentally relevant mixture of nine regulated disinfection by-products in a multigenerational rat reproductive bioassay

    EPA Science Inventory

    CUMULATIVE TOXICITY OF AN ENVIRONMENTALLY RELEVANT MIXTURE OF NINE REGULATED DISINFECTION BY-PRODUCTS IN A MULTIGENERATIONAL RAT REPRODUCTIVE BIOASSAY J E Simmons, GR. Klinefelter, JM Goldman, AB DeAngelo, DS Best, A McDonald, LF Strader, AS Murr, JD Suarez, MH George, ES Hunte...

  2. THE OCCURRENCE OF DISINFECTION BY-PRODUCTS OF HEALTH CONCERN IN DRINKING WATER: RESULTS OF A NATIONWIDE DBP OCCURRENCE STUDY

    EPA Science Inventory

    The motivation for this Nationwide Disinfection By-product (DBP) Occurrence Study was two-fold: First, more than 500 DBPs have been reported in the literature, yet there is almost no quantitative occurrence information for most. As a result, there is significant uncertainty ove...

  3. Significance of pH on the Cytotoxic Potential of the Water Disinfection By-Product Iodoacetic Acid

    EPA Science Inventory

    Significance of pH on the Cytotoxic Potential of the Water Disinfection By-Product Iodoacetic Acid Vicki Richardson1, Susan D. Richardson2, Mary Moyer3, Jane Ellen Simmons1, and Anthony DeAngelo1, 1U.S. Environmental Protection Agency, Research Triangle Park, NC, 2University of...

  4. Reproductive toxicity of a mixture of regulated drinking-water disinfection by-products in a multigenerational rat bioassay

    EPA Science Inventory

    BACKGROUND:Trihalomethanes (THMs) and haloaretic acids (HAAs) are regulated disinfection by-products (DBPs); their joint reproductive toxicity in drinking water is unknown.OBJECTIVE: We aimed to evaluate a drinking water mixture of the four regulated THMs and five regulated HAAs ...

  5. TOXICITY-BASED IDENTIFICATION OF DRINKING WATER DISINFECTION BY-PRODUCTS USING ESI-MS AND ESI-MS/MS

    EPA Science Inventory

    The goal of this research is to use a bio-assay directed approach to focus identification work on the most toxicologically important disinfection by-products. To this end, drinking water is being collected from full-scale treatment plants that use chlorine, ozone, chlorine dioxi...

  6. TOXICITY-BASED IDENTIFICATION OF DRINKING WATER DISINFECTION BY-PRODUCTS USING LC/MS AND LC/MS/MS

    EPA Science Inventory

    The goal of this research is to use a bio-assay directed approach to focus identification work on the most toxicologically important disinfection by-products. To this end, drinking water is being collected from full-scale treatment plants that use chlorine, ozone, chlorine dioxi...

  7. IDENTIFICATION OF PROTEINS INVOLVED IN TESTICULAR TOXICITY INDUCED BY HALOACID BY-PRODUCTS OF DRINKING WATER DISINFECTION

    EPA Science Inventory

    Dibromoacetic acid (DBA), a prevalent disinfection by-product in drinking water, perturbs spermiogenesis in adult rats suggesting that Sertoli-germ cell communication is compromised. When isolated seminiferous tubules from rats exposed to DBA in vivo were cultured, quantitative a...

  8. EPIDEMIOLOGIC EVALUATION OF THE POTENTIAL ASSOCIATION BETWEEN EXPOSURE TO DRINKING WATER DISINFECTION BY-PRODUCTS (DBP) AND SEMEN QUALITY

    EPA Science Inventory

    Epidemiologic Evaluation of the Potential Association between Exposure to Drinking Water Disinfection By-Products and Semen Quality
    *Morris, R; +Olshan, A; +Lansdell, L; *Jeffay, S; *Strader, L; *Klinefelter, G; *Perreault, S.

    * U.S. EPA/ORD/NHEERL/RTD/GEEBB, Research ...

  9. Developmental toxicity of mixtures: the water disinfection by-products dichloro-, dibromo- and bromochloro acetic acid in rat embryo culture

    EPA Science Inventory

    The chlorination of drinking water results in production of numerous disinfection by-products (DBPs). One of the important classes of DBPs is the haloacetic acids. We have previously shown that the haloacetic acids (HAs), dichloro (DCA), dibromo (DBA) and bromochloro (BCA) acetic...

  10. Use of Normal Human Colon Cells to Assess Toxicities of Unregulated Disinfection By-products and Mixtures

    EPA Science Inventory

    The discovery of chlorination and chloramination by-products other than the regulated trihalomethanes and haloacetic acids has created a need for short-term in vitro assays to address toxicities that might be associated with human exposure. Approximately 600 disinfection by-produ...

  11. Formation of known and unknown disinfection by-products from natural organic matter fractions during chlorination, chloramination, and ozonation.

    PubMed

    Li, Chunmei; Wang, Donghong; Xu, Xiong; Wang, Zijian

    2017-06-01

    Natural organic matter (NOM) is the main precursor of disinfection by-products (DBPs) formed during drinking water treatment processes. Previous studies of the relationships between DBP formation and NOM fractionation have mainly been focused on currently regulated DBPs and a few certain emerging DBPs. In this work, the Suwannee River NOM solution was fractionated into groups with different hydrophobicities using DAX-8 resins, and volatile and semi-volatile DBPs formed during the chlorination, chloramination and ozonation of the NOM fractions were examined by a nontargeted screening of comprehensive two-dimensional gas chromatography-quadrupole mass spectrometry procedure. The results showed that a total of 302 DBPs representing nine chemical classes were detected, of which 266 were possibly newly detected, based on library searching with NIST 08 library (using similarity and reverse values of at least 600 and 700, respectively) and linear retention indices. The characterization of DBP precursors suggests that hydrophobic (HPO) NOM contains the major fraction of precursor for the formation of nitrogenous DBPs (contributing about 60% of the total nitrogenous DBPs) during all three disinfection processes. Much larger amounts of heterocyclic DBPs were formed from the HPO fraction than from the hydrophilic fraction during chlorination. During chloramination and ozonation, 5-15 times more ketones were formed from the hydrophilic fraction than from the HPO fraction. During ozonation, more than twice the amounts of esters and alcohols were formed from the hydrophilic fraction than from the HPO fraction. Three-dimensional excitation-emission matrix spectra suggest that similar to the formation of regulated DBPs, humic acid-like substances are probably the precursors of halogen-containing DBPs. Relatively higher nitrogenous DBPs formation from the HPO fraction might be because of the existence of protein-like materials.

  12. Disinfection By-Product Exposures and the Risk of Specific Cardiac Birth Defects

    PubMed Central

    Wright, J. Michael; Evans, Amanda; Kaufman, John A.; Rivera-Núñez, Zorimar; Narotsky, Michael G.

    2016-01-01

    Background: Epidemiological studies suggest that women exposed to disinfection by-products (DBPs) have an increased risk of delivering babies with cardiovascular defects (CVDs). Objective: We examined nine CVDs in relation to categorical DBP exposures including bromoform, chloroform, dibromochloromethane (DBCM), bromodichloromethane (BDCM), monobromoacetic acid (MBAA), dichloroacetic acid (DCAA), trichloroacetic acid (TCAA), and summary DBP measures (HAA5, THMBr, THM4, and DBP9). Methods: We calculated adjusted odds ratios (aORs) in a case–control study of birth defects in Massachusetts with complete quarterly 1999–2004 trihalomethane (THM) and haloacetic acid (HAA) data. We randomly matched 10 controls each to 904 CVD cases based on week of conception. Weight-averaged aggregate first-trimester DBP exposures were assigned to individuals based on residence at birth. Results: We detected associations for tetralogy of Fallot and the upper exposure categories for TCAA, DCAA, and HAA5 (aOR range, 3.34–6.51) including positive exposure–response relationships for DCAA and HAA5. aORs consistent in magnitude were detected between atrial septal defects and bromoform (aOR = 1.56; 95% CI: 1.01, 2.43), as well as DBCM, chloroform, and THM4 (aOR range, 1.26–1.67). Ventricular septal defects (VSDs) were associated with the highest bromoform (aOR = 1.85; 95% CI: 1.20, 2.83), MBAA (aOR = 1.81; 95% CI: 0.85, 3.84), and DBCM (aOR = 1.54; 95% CI: 1.00, 2.37) exposure categories. Conclusions: To our knowledge, this is the first birth defect study to develop multi-DBP adjusted regression models as well as the first CVD study to evaluate HAA exposures and the second to evaluate bromoform exposures. Our findings, therefore, inform exposure specificity for the consistent associations previously reported between THM4 and CVDs including VSDs. Citation: Wright JM, Evans A, Kaufman JA, Rivera-Núñez Z, Narotsky MG. 2017. Disinfection by-product exposures and the risk of specific

  13. Integrated disinfection by-products mixtures research: assessment of developmental toxicity in Sprague-Dawley rats exposed to concentrates of water disinfected by chlorination and ozonation/postchlorination.

    PubMed

    Narotsky, Michael G; Best, Deborah S; Rogers, Ellen H; McDonald, Anthony; Sey, Yusupha M; Simmons, Jane Ellen

    2008-01-01

    Epidemiological and animal toxicity studies have raised concerns regarding possible adverse health effects of disinfection by-products (DBPs) found in drinking water. The classes and concentrations of DBPs are influenced by the choice of disinfection process (e.g., chlorination, ozonation) as well as source water characteristics (e.g., pH, total organic carbon, bromide content). Disinfected waters were found to contain more than 500 compounds, many of which remain unidentified. Therefore, a "whole-mixture" approach was used to evaluate the toxic potential of alternative disinfection scenarios. An in vivo developmental toxicity screen was used to evaluate the adverse developmental effects of the complex mixtures produced by two different disinfection processes. Water was obtained from East Fork Lake, Ohio; spiked with iodide and bromide; and disinfected either by chlorination or by ozonation/postchlorination, producing finished drinking water suitable for human consumption. These waters were concentrated approximately 130-fold by reverse osmosis membrane techniques. To the extent possible, volatile DBPs lost in the concentration process were spiked back into the concentrates. These concentrates were then provided as drinking water to Sprague-Dawley rats on gestation days 6-16; controls received boiled, distilled, deionized water. The dams (19-20 per group) were allowed to deliver and their litters were examined on postnatal days (PD) 1 and 6. All dams delivered normally, with parturition occurring significantly earlier in the ozonation/postchlorination group. However, no effects on prenatal survival, postnatal survival, or pup weight were evident. Skeletal examination of the PD-6 pups also revealed no treatment effects. Thus, approximately 130-fold higher concentrates of both ozonated/postchlorinated and chlorinated water appeared to exert no adverse developmental effects in this study.

  14. OXIDATIVE DNA DAMAGE AND REPAIR IN RATS TREATED WITH POTASSIUM BROMATE AND A MIXTUE OF DRINKING WATER DISINFECTION BY-PRODUCTS

    EPA Science Inventory

    Oxidative DNA Damage and Repair in Rats Treated with Potassium Bromate and a Mixture of Drinking Water Disinfection By-Products

    Public drinking water treated with chemical disint'ectants contains a complex mixture of disinfection by-products (D BPs). There is a need for m...

  15. OXIDATIVE DNA DAMAGE FROM POTASSIUM BROMATE EXPOSURE IN LONG-EVANS RATS IS NOT ENHANCED BY A MIXTURE OF DRINKING WATER DISINFECTION BY-PRODUCTS

    EPA Science Inventory

    Public drinking water treated with chemical disinfectants contains a complex mixture of disinfection by-products (DBPs) for which the relative toxicity of the mixtures needs to be characterized to accurately assess risk. Potassium bromate (KBrO3) is a by-product from ozonation of...

  16. Formation of N-nitrosodimethylamine (NDMA) from reaction of monochloramine: a new disinfection by-product.

    PubMed

    Choi, Junghoon; Valentine, Richard L

    2002-02-01

    Studies have been conducted specifically to investigate the hypothesis that N-nitrosodimethylamine (NDMA) can be produced by reactions involving monochloramine. Experiments were conducted using dimethylamine (DMA) as a model precursor. NDMA was formed from the reaction between DMA and monochloramine indicating that it should be considered a potential disinfection by-product. The formation of NDMA increased with increased monochloramine concentration and showed maximum in yield when DMA was varied at fixed monochloramine concentrations. The mass spectra of the NDMA formed from DMA and 15N isotope labeled monochloramine (15NH2Cl) showed that the source of one of the nitrogen atoms in the nitroso group in NDMA was from monochloramine. Addition of 0.05 and 0.5 mM of preformed monochloramine to a secondarily treated wastewater at pH 7.2 also resulted in the formation of 3.6 and 111 ng/L of NDMA, respectively, showing that this is indeed an environmentally relevant NDMA formation pathway. The proposed NDMA formation mechanism consists of (i) the formation of 1,1-dimethylhydrazine (UDMH) intermediate from the reaction of DMA with monochloramine followed by, (ii) the oxidation of UDMH by monochloramine to NDMA, and (iii) the reversible chlorine transfer reaction between monochloramine and DMA which is parallel to (i). We conclude that reactions involving monochloramine in addition to classical nitrosation reactions are potentially important pathways for NDMA formation.

  17. Neurotoxicological evaluation of two disinfection by-products, bromodichloromethane and dibromoacetonitrile, in rats.

    PubMed

    Moser, Virginia C; Phillips, Pamela M; McDaniel, Katherine L; Sills, Robert C

    2007-02-12

    The Safe Drinking Water Act requires that the U.S. EPA consider noncancer endpoints for the assessment of adverse human health effects of disinfection by-products (DBPs). As an extension of our studies in which we demonstrated neurotoxicity at relatively low levels of dibromo- and dichloroacetic acids, we examined the potential neurotoxicity of other classes of DBPs. Bromodichloromethane (BDCM) and dibromoacetonitrile (DBAN) were administered to male and female F-344 rats via drinking water for 6 months. During exposure, rats were tested for neurobehavioral effects using a functional observational battery and motor activity, followed by perfusion fixation for neuropathological evaluation at the end of exposure. Calculating for chemical loss, fluid consumption, and body weight, average intakes were approximately: 9, 27, and 72mg/(kgday) BDCM, and 5, 12, and 29mg/(kgday) DBAN. Fluid consumption was decreased in most treatment groups, but body weight gain was altered only at the high concentrations. There were few neurobehavioral changes, and these were not considered toxicologically relevant. Of the general observations, there was only minimally decreased body tone in DBAN-treated high-dose males. Treatment-related neuropathological findings were not observed. Lowered fluid consumption was the most sensitive and consistent endpoint in the present studies. Thus, unlike the haloacetic acids, neurotoxicity may not be a concern for toxicity of halomethanes or haloacetonitriles.

  18. Formation of disinfection by-products after pre-oxidation with chlorine dioxide or ferrate.

    PubMed

    Yang, Xin; Guo, Wanhong; Zhang, Xing; Chen, Feng; Ye, Tingjin; Liu, Wei

    2013-10-01

    The effect of pre-oxidation with chlorine dioxide (ClO2) or ferrate (Fe(VI)) on the formation of disinfection by-products (DBPs) during chlorination or chloramination was tested with natural waters from 12 sources (9 surface waters, 1 groundwater, and 2 wastewater effluents). DBPs investigated included trihalomethanes (THM), chloral hydrate (CH), haloketones (HK), haloacetonitriles (HAN) and trichloronitromethane (TCNM), chlorite and chlorate. Chlorite and chlorate were found in the ClO2-treated waters. Application of 1 mg/L ClO2 ahead of chlorination reduced the formation potential for THM by up to 45% and the formation of HK, HAN and TCNM in most of the samples. The CH formation results were mixed. The formation of CH and HK was enhanced with low doses of Fe(VI) (1 mg/L as Fe), but was greatly reduced at higher doses (20 mg/L Fe). Fe(VI) reduced the formation of THM, HAN and TCNM in most of the samples. Reduced potential for the formation of NDMA was observed in most of the samples after both ClO2 and Fe(VI) pre-oxidation.

  19. Simultaneous determination of inorganic disinfection by-products and the seven standard anions by ion chromatography.

    PubMed

    Schminke, G; Seubert, A

    2000-08-25

    For the first time, an ion chromatographic method for the simultaneous determination of the disinfection by-products bromate, chlorite, chlorate, and the so-called seven standard anions, fluoride, chloride, nitrite, sulfate, bromide, nitrate and orthophosphate is presented. The separation of the ten anions was carried out using a laboratory-made high-capacity anion-exchanger. The high capacity anion-exchanger allowed the direct injection of large sample volumes without any sample pretreatment, even in the case of hard water samples. For quantification of fluoride, chloride, nitrite, sulfate, bromide, nitrate, orthophosphate and chlorate, a conductivity detection method was applied after chemical suppression. The post-column reaction, based on chlorpromazine, was optimized for the determination of chlorite and bromate. The method detection limit for bromate measured in deionized water is 100 ng/l and for chlorite, it is 700 ng/l. In hard drinking water, the method's detection limits are 700 ng/l (bromate) and 3.5 microg/l (chlorite). The method's detection limits for the other eight anions, determined by conductivity detection, are between 100 microg/l (nitrite) and 1.6 mg/l (chlorate).

  20. Mammalian cell DNA damage and repair kinetics of monohaloacetic acid drinking water disinfection by-products.

    PubMed

    Komaki, Yukako; Pals, Justin; Wagner, Elizabeth D; Mariñas, Benito J; Plewa, Michael J

    2009-11-01

    Haloacetic acids (HAAs) are the second most common class of chlorinated water disinfection by-products (DBPs). The single cell gel electrophoresis genotoxicity assay using Chinese hamster ovary (CHO) cells was modified to include liquid holding recovery time to measure genomic DNA damage and repair kinetics of three monoHAAs: chloroacetic acid (CAA), bromoacetic acid (BAA), and iodoacetic acid (IAA). The rank order of genotoxic potency was IAA > BAA > CAA from previous research. The concentration of each HAA was chosen to generate approximately the same level of genotoxic damage. No cytotoxicity was expressed during the 24 h liquid holding period. Nuclei from CHO cells treated with BAA showed the lowest rate of DNA repair (t(50) = 296 min) compared to that of CAA or IAA (t(50) = 134 and 84 min, respectively). The different rates of genomic repair expressed by IAA or CAA versus BAA suggest that different distributions of DNA lesions are induced. The use of DNA repair coupled with genomic technologies may lead to the understanding of the biological and genetic mechanisms involved in toxic responses induced by DBPs.

  1. Impacts of drinking water pretreatments on the formation of nitrogenous disinfection by-products.

    PubMed

    Chu, Wenhai; Gao, Naiyun; Deng, Yang; Templeton, Michael R; Yin, Daqiang

    2011-12-01

    The formation of disinfection by-products (DBPs), including both nitrogenous DBPs (N-DBPs) and carbonaceous DBPs (C-DBPs), was investigated by analyzing chlorinated water samples following the application of three pretreatment processes: (i) powdered activated carbon (PAC) adsorption; (ii) KMnO(4) oxidation and (iii) biological contact oxidation (BCO), coupled with conventional water treatment processes. PAC adsorption can remove effectively the precursors of chloroform (42.7%), dichloroacetonitrile (28.6%), dichloroacetamide (DCAcAm) (27.2%) and trichloronitromethane (35.7%), which were higher than that pretreated by KMnO(4) oxidation and/or BCO process. The removal efficiency of dissolved organic carbon by BCO process (76.5%)--was superior to that by PAC adsorption (69.9%) and KMnO(4) oxidation (61.4%). However, BCO increased the dissolved organic nitrogen (DON) concentration which caused more N-DBPs to be formed during subsequent chlorination. Soluble microbial products including numerous DON compounds were produced in the BCO process and were observed to play an essential role in the formation of DCAcAm in particular.

  2. The epidemiology and possible mechanisms of disinfection by-products in drinking water.

    PubMed

    Nieuwenhuijsen, Mark J; Grellier, James; Smith, Rachel; Iszatt, Nina; Bennett, James; Best, Nicky; Toledano, Mireille

    2009-10-13

    This paper summarizes the epidemiological evidence for adverse health effects associated with disinfection by-products (DBPs) in drinking water and describes the potential mechanism of action. There appears to be good epidemiological evidence for a relationship between exposure to DBPs, as measured by trihalomethanes (THMs), in drinking water and bladder cancer, but the evidence for other cancers including colorectal cancer is inconclusive and inconsistent. There appears to be some evidence for an association between exposure to DBPs, specifically THMs, and little for gestational age/intrauterine growth retardation and, to a lesser extent, pre-term delivery, but evidence for relationships with other outcomes such as low birth weight, stillbirth, congenital anomalies and semen quality is inconclusive and inconsistent. Major limitations in exposure assessment, small sample sizes and potential biases may account for the inconclusive and inconsistent results in epidemiological studies. Moreover, most studies have focused on total THMs as the exposure metric, whereas other DBPs appear to be more toxic than the THMs, albeit generally occurring at lower levels in the water. The mechanisms through which DBPs may cause adverse health effects including cancer and adverse reproductive effects have not been well investigated. Several mechanisms have been suggested, including genotoxicity, oxidative stress, disruption of folate metabolism, disruption of the synthesis and/or secretion of placental syncytiotrophoblast-derived chorionic gonadotropin and lowering of testosterone levels, but further work is required in this area.

  3. Disinfection by-products in filter backwash water: implications to water quality in recycle designs.

    PubMed

    McCormick, N J; Porter, M; Walsh, M E

    2010-08-01

    The overall purpose of this research was to investigate disinfection by-product (DBP) concentrations and formation potential in filter backwash water (FBWW) and evaluate at bench-scale the potential impact of untreated FBWW recycle on water quality in conventional drinking water treatment. Two chlorinated organic compound groups of DBPs currently regulated in North America were evaluated, specifically trihalomethanes (THMs) and haloacetic acids (HAAs). FBWW samples were collected from four conventional filtration water treatment plants (WTP) in Nova Scotia, Canada, in three separate sampling and plant audit campaigns. THM and HAA formation potential tests demonstrated that the particulate organic material contained within FBWW is available for reaction with chlorine to form DBPs. The results of the study found higher concentrations of TTHMs and HAA9s in FBWW samples from two of the plants that target a higher free chlorine residual in the wash water used to clean the filters (e.g., clearwell) compared to the other two plants that target a lower clear well free chlorine residual concentration. Bench-scale experiments showed that FBWW storage time and conditions can impact TTHM concentrations in these waste streams, suggesting that optimization opportunities exist to reduce TTHM concentrations in FBWW recycle streams prior to blending with raw water. However, mass balance calculations demonstrated that FBWW recycle practice by blending 10% untreated FBWW with raw water prior to coagulation did not impact DBP concentrations introduced to the rapid mix stage of a plant's treatment train.

  4. A feasibility study of cumulative risk assessment methods for drinking water disinfection by-product mixtures.

    PubMed

    Teuschler, Linda K; Rice, Glenn E; Wilkes, Charles R; Lipscomb, John C; Power, Fred W

    Humans are exposed daily to complex mixtures of chemicals, including drinking water disinfection by-products (DBPs) via oral, dermal, and inhalation routes. Some positive epidemiological and toxicological studies suggest reproductive and developmental effects and cancer are associated with consumption of chlorinated drinking water. Thus, the U.S. Environmental Protection Agency (EPA) conducted research to examine the feasibility of evaluating simultaneous exposures to multiple DBPs via all three exposure routes. A cumulative risk assessment approach was developed for DBP mixtures by combining exposure modeling and physiologically based pharmacokinetic modeling results with a new mixtures risk assessment method, the cumulative relative potency factors (CRPF) approach. Internal doses were estimated for an adult female and an adult male, each of reproductive age, and for a child (age 6 yr) inclusive of oral, dermal, and inhalation exposures. Estimates of the daily internal doses were made for 13 major DBPs, accounting for activity patterns that affect the amount of human contact time with drinking water (e.g., tap water consumed, time spent showering), building characteristics (e.g., household air volumes), and physicochemical properties of the DBPs (e.g., inhalation rates, skin permeability rates, blood: air partition coefficients). A novel cumulative risk assessment method, the CRPF approach, is advanced that integrates the principles of dose addition and response addition to produce multiple-route, chemical mixture risk estimates using total absorbed doses. Research needs to improve this approach are presented.

  5. Occurrence, profiling and prioritization of halogenated disinfection by-products in drinking water of China.

    PubMed

    Ding, Huanhuan; Meng, Liping; Zhang, Haifeng; Yu, Jianwei; An, Wei; Hu, Jianying; Yang, Min

    2013-07-01

    The occurrence of 28 disinfection by-products (DBPs), which were divided into 5 groups, in 70 drinking water treatment plants in 31 cities across China was investigated, and the toxic potency of each DBP group was calculated using mammalian cell toxicity data from previous studies for profiling. Of the 28 DBPs, 21 were detected with an average frequency of detection of 50%. Trihalomethanes (THM4) and haloacetic acids (HAAs) were the most predominant species, whose median concentration levels were at 10.53 and 10.95 μg L(-1), respectively. Two of four iodinated trihalomethanes (I-THMs) were detected, and the concentration of the I-THMs ranged from under the detection limit to 5.58 μg L(-1). The total concentration of haloacetonitriles (HANs) in different water samples ranged from under the limit of detection to 39.20 μg L(-1), with a median concentration of 1.11 μg L(-1). Two of four halonitromethanes (HNMs) were detected, and the maximum concentrations of chloronitromethane (CNM) and trichloronitromethane (TCNM) were 0.96 and 0.28 μg L(-1), respectively. HANs were found to be the most potent DBP group in terms of cytotoxicity, and HANs and HAAs had the same level of genotoxic potency. These results indicate that although at a low concentration level, the toxic potency of the unregulated HANs in drinking water may not be neglected.

  6. Precursors of nitrogenous disinfection by-products in drinking water--a critical review and analysis.

    PubMed

    Bond, Tom; Templeton, Michael R; Graham, Nigel

    2012-10-15

    In recent years research into the formation of nitrogenous disinfection by-products (N-DBPs) in drinking water - including N-nitrosodimethylamine (NDMA), the haloacetonitriles (HANs), haloacetamides (HAcAms), cyanogen halides (CNX) and halonitromethanes (HNMs) - has proliferated. This is partly due to their high reported toxicity of N-DBPs. In this review paper information about the formation yields of N-DBPs from model precursors, and about environmental precursor occurrence, has been employed to assess the amount of N-DBP formation that is attributable to known precursors. It was calculated that for HANs and HAcAms, the concentrations of known precursors - mainly free amino acids are insufficient to account for the observed concentrations of these N-DBP groups. However, at least in some waters, a significant proportion of CNX and NDMA formation can be explained by known precursors. Identified N-DBP precursors tend to be of low molecular weight and low electrostatic charge relative to bulk natural organic matter (NOM). This makes them recalcitrant to removal by water treatment processes, notably coagulation, as confirmed by a number of bench-scale studies. However, amino acids have been found to be easier to remove during water treatment than would be suggested by the known molecular properties of the individual free amino acids.

  7. Removing of Disinfection By-Product Precursors from Surface Water by Using Magnetic Graphene Oxide.

    PubMed

    Liu, Zhongmou; Wang, Xianze; Luo, Zhen; Huo, Mingxin; Wu, Jinghui; Huo, Hongliang; Yang, Wu

    2015-01-01

    The magnetic graphene oxide (MGO) was successfully synthesised by the in situ chemical co-precipitation method with Fe3+, Fe2+ and graphene oxide (GO) in laboratory and, was used as an adsorbent for disinfection by-product (DBP) precursors removing from four natural surface water samples. The results indicate that various DBPs formation significantly decreased by 7-19% to 78-98% for the four samples after MGO treatment and, the treatment process was rapidly reached equilibrium within 20 minutes. The DBP precursors removal efficiency decreased with the increasing pH value from 4 to 10. Hydrophobic compounds (humic acid and fulvic acid) are more sensitive to MGO, whereas hydrophilic and nitrogenous compounds (aromatic proteins) are more insensitive. MGO could be regenerated by using 20% (v/v) ethanol and, the DBP precursors removal efficiency can stay stable after five cycles. These results indicate that MGO can be utilized as a promising adsorbent for the removal of DBP precursors from natural surface water.

  8. Control of disinfection by-product formation using ozone-based advanced oxidation processes.

    PubMed

    Chen, Kuan-Chung; Wang, Yu-Hsiang

    2012-01-01

    The effects of ozone dosage, water temperature and catalyst addition in an ozonation-fluidized bed reactor (O3/FBR) on treated water quality and on the control of chlorinated and ozonated disinfection by-products (DBPs) were investigated. A biofiltration column was used to evaluate its removal efficiency on biodegradable organic matter and to reduce DBP formation. The Dong-Gang River, polluted by agricultural and domestic wastewater in Pingtung, Taiwan, was used as the water source. The treated water quality in terms of dissolved organic carbon (DOC), biodegradable DOC, ultraviolet absorbance at 254 nm (UV254) and specific UV absorbance (SUVA) improved with increasing ozone and catalyst dosages. Catalytic ozonation was more effective than ozonation alone at reducing the formation of DBPs at a given dosage. Experimental results show that water temperature had little effect on the treated water quality with the O3/FBR system used in this study (p > 0.05). The combination of O3/FBR and the biofiltration process effectively decreased the amount ofDBP precursors. The concentration of total trihalomethanes (TTHMs) was less than the maximum contaminant level (MCL) requirement, which is 80 microg/L, for all treated waters and the concentration of five haloacetic acids (HAA5) fell below 60 microg/L with an ozone dosage higher than 2.5 mg/L.

  9. Removal of disinfection by-product precursors with ozone-UV advanced oxidation process.

    PubMed

    Chin, A; Bérubé, P R

    2005-05-01

    The efficacy of using ozone (O3), ultraviolet irradiation (UV) and the combined O3-UV advanced oxidation process (AOP) to remove 2 classes of disinfection by-product (DBP) precursors from raw surface water samples have been evaluated and compared. In particular, trihalomethane and haloacetic acids formation potentials were measured. Laboratory batch scale experiments were carried out as a function of ozone and UV dosage in order to study the removal kinetics. It is concluded that the combined O3-UV AOP is more effective than either the ozone or UV treatment alone. Ozone-UV AOP is capable of mineralizing up to 50% of the total organic carbon from the raw source water at an ozone dose of 0.62+/-0.019 mg O3/mL and a UV dose of 1.61 W s/cm2. In addition, O3-UV AOP can reduce trihalomethane formation potential by roughly 80% and haloacetic acids formation potential by roughly 70% at the same ozone and UV dosage.

  10. Multiple linear regression modeling of disinfection by-products formation in Istanbul drinking water reservoirs.

    PubMed

    Uyak, Vedat; Ozdemir, Kadir; Toroz, Ismail

    2007-06-01

    Oxidation of raw water with chlorine results in formation of trihalomethanes (THM) and haloacetic acids (HAA). Factors affecting their concentrations have been found to be organic matter type and concentration, pH, temperature, chlorine dose, contact time and bromide concentration, but the mechanisms of their formation are still under investigation. Within this scope, chlorination experiments have been conducted with water reservoirs from Terkos, Buyukcekmece and Omerli lakes, Istanbul, with different water quality regarding bromide concentration and organic matter content. The factors studied were pH, contact time, chlorine dose, and specific ultraviolet absorbance (SUVA). The determination of disinfection by-products (DBP) was carried out by gas chromatography techniques. Statistical analysis of the results was focused on the development of multiple regression models for predicting the concentrations of total THM and total HAA based on the use of pH, contact time, chlorine dose, and SUVA. The developed models provided satisfactory estimations of the concentrations of the DBP and the model regression coefficients of THM and HAA are 0.88 and 0.61, respectively. Further, the Durbin-Watson values confirm the reliability of the two models. The results indicate that under these experimental conditions which indicate the variations of pH, chlorine dosages, contact time, and SUVA values, the formation of THM and HAA in water can be described by the multiple linear regression technique.

  11. Monohaloacetic acid drinking water disinfection by-products inhibit follicle growth and steroidogenesis in mouse ovarian antral follicles in vitro.

    PubMed

    Jeong, Clara H; Gao, Liying; Dettro, Tyler; Wagner, Elizabeth D; Ricke, William A; Plewa, Michael J; Flaws, Jodi A

    2016-07-01

    Water disinfection greatly reduced the incidence of waterborne diseases, but the reaction between disinfectants and natural organic matter in water leads to the formation of drinking water disinfection by-products (DBPs). DBPs have been shown to be toxic, but their effects on the ovary are not well defined. This study tested the hypothesis that monohalogenated DBPs (chloroacetic acid, CAA; bromoacetic acid, BAA; iodoacetic acid, IAA) inhibit antral follicle growth and steroidogenesis in mouse ovarian follicles. Antral follicles were isolated and cultured with either vehicle or DBPs (0.25-1.00mM of CAA; 2-15μM of BAA or IAA) for 48 and 96h. Follicle growth was measured every 24h and the media were analyzed for estradiol levels at 96h. Exposure to DBPs significantly inhibited antral follicle growth and reduced estradiol levels compared to controls. These data demonstrate that DBP exposure caused ovarian toxicity in vitro.

  12. Mammalian cell cytotoxicity and genotoxicity analysis of drinking water disinfection by-products.

    PubMed

    Plewa, Michael J; Kargalioglu, Yahya; Vankerk, Danielle; Minear, Roger A; Wagner, Elizabeth D

    2002-01-01

    Cytotoxicity and genotoxicity assays were used to analyze drinking water disinfection by-products (DBPs) in Chinese hamster ovary (CHO) AS52 cells. The DBPs were chosen because they are common in drinking water, resulting from conventional disinfection using chlorination and chloramination. Data were also available to compare these results with cytotoxicity and mutagenicity studies in Salmonella typhimurium. The rank order in decreasing chronic cytotoxicity measured in a microplate-based assay was bromoacetic acid (BA) > 3-chloro-4-(dichloromethyl)-5-hydroxy-2[5H]-furanone (MX) > dibromoacetic acid (DBA) > chloroacetic acid (CA) > KBrO(3) > tribromoacetic acid (TBA) > EMS (ethylmethanesulfonate, positive control) > dichloroacetic acid (DCA) > trichloroacetic acid (TCA). The induction of DNA strand breaks by these agents was measured by alkaline single-cell gel electrophoresis (SCGE, comet assay) and the rank order in decreasing genotoxicity was BA > MX > CA > DBA > TBA > EMS > KBrO(3), while DCA and TCA were refractory. BA was more cytotoxic (31x) and genotoxic (14x) than MX in CHO cells. BA was over 400x more genotoxic than potassium bromate. The brominated haloacetic acids (HAAs) were more cytotoxic and genotoxic than their chlorinated analogs. The HAAs expressed a statistically significant inverse relationship in CHO cell cytotoxicity and genotoxicity as a function of increased numbers of halogen atoms per molecule. A quantitative comparison was conducted with results from a previous study with cytotoxicity and mutagenicity in S. typhimurium. There was no correlation between chronic CHO cell and bacterial cell cytotoxicity. DBP-induced CHO cell cytotoxicity was not related to mutagenic potency in S. typhimurium. Cytotoxicity in CHO cells was statistically significant and highly correlated to CHO cell genotoxicity. Finally, we determined that the DBP genotoxic potency in CHO cells and the mutagenic potency in S. typhimurium were not related. This suggests that

  13. Genotoxicity analysis of two halonitromethanes, a novel group of disinfection by-products (DBPs), in human cells treated in vitro

    SciTech Connect

    Liviac, Danae; Creus, Amadeu; Marcos, Ricard

    2009-04-15

    Halonitromethanes (HNMs) constitute an emerging class of disinfection by-products (DBPs) produced when chlorine and/or ozone are used for water treatment. The HNMs are structurally similar to halomethanes, but have a nitro-group in place of hydrogen bonded to the central carbon atom. Since little information exists on the genotoxic potential of HNMs, a study has been carried out with two HNM compounds, namely trichloronitromethane (TCNM) and bromonitromethane (BNM) by using human cells. Primary damage induction has been measured with the Comet assay, which is used to determine both the repair kinetics of the induced damage and the proportion of induced oxidative damage. In addition, the fixed DNA damage has been evaluated by using the micronucleus (MN) assay. The results obtained indicate that both compounds are genotoxic, inducing high levels of DNA breaks in the Comet assay, and that this DNA damage repairs well over time. In addition, oxidized bases constitute a high proportion of DNA-induced damage (50-75%). Contrarily, no positive effects were observed in the frequency of micronucleus, which measures both clastogenic and aneugenic effects, neither using TK6 cells nor peripheral blood lymphocytes. This lack of fixed genetic damage would minimize the potential mutagenic risk associated with HNMs exposure.

  14. Genotoxic Effects in Swimmers Exposed to Disinfection By-products in Indoor Swimming Pools

    PubMed Central

    Kogevinas, Manolis; Villanueva, Cristina M.; Font-Ribera, Laia; Liviac, Danae; Bustamante, Mariona; Espinoza, Felicidad; Nieuwenhuijsen, Mark J.; Espinosa, Aina; Fernandez, Pilar; DeMarini, David M.; Grimalt, Joan O.; Grummt, Tamara; Marcos, Ricard

    2010-01-01

    Background Exposure to disinfection by-products (DBPs) in drinking water has been associated with cancer risk. A recent study (Villanueva et al. 2007; Am J Epidemiol 165:148–156) found an increased bladder cancer risk among subjects attending swimming pools relative to those not attending. Objectives We evaluated adults who swam in chlorinated pools to determine whether exposure to DBPs in pool water is associated with biomarkers of genotoxicity. Methods We collected blood, urine, and exhaled air samples from 49 nonsmoking adult volunteers before and after they swam for 40 min in an indoor chlorinated pool. We estimated associations between the concentrations of four trihalomethanes (THMs) in exhaled breath and changes in micronuclei (MN) and DNA damage (comet assay) in peripheral blood lymphocytes before and 1 hr after swimming; urine mutagenicity (Ames assay) before and 2 hr after swimming; and MN in exfoliated urothelial cells before and 2 weeks after swimming. We also estimated associations and interactions with polymorphisms in genes related to DNA repair or to DBP metabolism. Results After swimming, the total concentration of the four THMs in exhaled breath was seven times higher than before swimming. The change in the frequency of micronucleated lymphocytes after swimming increased in association with higher exhaled concentrations of the brominated THMs (p = 0.03 for bromodichloromethane, p = 0.05 for chlorodibromomethane, p = 0.01 for bromoform) but not chloroform. Swimming was not associated with DNA damage detectable by the comet assay. Urine mutagenicity increased significantly after swimming, in association with the higher concentration of exhaled bromoform (p = 0.004). We found no significant associations with changes in micronucleated urothelial cells. Conclusions Our findings support potential genotoxic effects of exposure to DBPs from swimming pools. The positive health effects gained by swimming could be increased by reducing the potential health

  15. Fate of disinfection by-products in groundwater during aquifer storage and recovery with reclaimed water

    NASA Astrophysics Data System (ADS)

    Pavelic, Paul; Nicholson, Brenton C.; Dillon, Peter J.; Barry, Karen E.

    2005-05-01

    Knowledge on the behaviour of disinfection by-products (DBPs) during aquifer storage and recovery (ASR) is limited even though this can be an important consideration where recovered waters are used for potable purposes. A reclaimed water ASR trial in an anoxic aquifer in South Australia has provided some of the first quantitative information at field-scale on the fate and transport of trihalomethanes (THMs) and haloacetic acids (HAAs). The results revealed that THM half-lives varied from <1 to 65 days, with persistence of chloroform being highest and bromoform lowest. HAA attenuation was rapid (<1 day). Rates of THM attenuation were shown to be highly dependent on the geochemical environment as evidenced by the 2-5 fold reduction in half-lives at the ASR well which became methanogenic during the storage phase of the trial, as compared to an observation well situated 4 m away, which remained nitrate-reducing. These findings agree with previous laboratory-based studies which also show persistence declining with increased bromination of THMs and reducing redox conditions. Modelling suggests that the chlorinated injectant has sufficient residual chlorine and natural organic matter for substantial increases in THMs to occur within the aquifer, however this is masked in some of the field observations due to concurrent attenuation, particularly for the more rapidly attenuated brominated compounds. The model is based on data taken from water distribution systems and may not be representative for ASR since bromide and ammonia concentrations in the injected water and the possible role of organic carbon in the aquifer were not taken into consideration. During the storage phase DBP formation potentials were reduced as a result of the removal of precursor material despite an increase in the THM formation potential per unit weight of total organic carbon. This suggests that water quality improvements with respect to THMs and HAAs can be achieved through ASR in anoxic aquifers.

  16. Fate of disinfection by-products in groundwater during aquifer storage and recovery with reclaimed water

    NASA Astrophysics Data System (ADS)

    Pavelic, Paul; Nicholson, Brenton C.; Dillon, Peter J.; Barry, Karen E.

    2005-03-01

    Knowledge on the behaviour of disinfection by-products (DBPs) during aquifer storage and recovery (ASR) is limited even though this can be an important consideration where recovered waters are used for potable purposes. A reclaimed water ASR trial in an anoxic aquifer in South Australia has provided some of the first quantitative information at field-scale on the fate and transport of trihalomethanes (THMs) and haloacetic acids (HAAs). The results revealed that THM half-lives varied from <1 to 65 days, with persistence of chloroform being highest and bromoform lowest. HAA attenuation was rapid (<1 day). Rates of THM attenuation were shown to be highly dependent on the geochemical environment as evidenced by the 2-5 fold reduction in half-lives at the ASR well which became methanogenic during the storage phase of the trial, as compared to an observation well situated 4 m away, which remained nitrate-reducing. These findings agree with previous laboratory-based studies which also show persistence declining with increased bromination of THMs and reducing redox conditions. Modelling suggests that the chlorinated injectant has sufficient residual chlorine and natural organic matter for substantial increases in THMs to occur within the aquifer, however this is masked in some of the field observations due to concurrent attenuation, particularly for the more rapidly attenuated brominated compounds. The model is based on data taken from water distribution systems and may not be representative for ASR since bromide and ammonia concentrations in the injected water and the possible role of organic carbon in the aquifer were not taken into consideration. During the storage phase DBP formation potentials were reduced as a result of the removal of precursor material despite an increase in the THM formation potential per unit weight of total organic carbon. This suggests that water quality improvements with respect to THMs and HAAs can be achieved through ASR in anoxic aquifers.

  17. Fate of disinfection by-products in groundwater during aquifer storage and recovery with reclaimed water.

    PubMed

    Pavelic, Paul; Nicholson, Brenton C; Dillon, Peter J; Barry, Karen E

    2005-03-01

    Knowledge on the behaviour of disinfection by-products (DBPs) during aquifer storage and recovery (ASR) is limited even though this can be an important consideration where recovered waters are used for potable purposes. A reclaimed water ASR trial in an anoxic aquifer in South Australia has provided some of the first quantitative information at field-scale on the fate and transport of trihalomethanes (THMs) and haloacetic acids (HAAs). The results revealed that THM half-lives varied from <1 to 65 days, with persistence of chloroform being highest and bromoform lowest. HAA attenuation was rapid (<1 day). Rates of THM attenuation were shown to be highly dependent on the geochemical environment as evidenced by the 2-5 fold reduction in half-lives at the ASR well which became methanogenic during the storage phase of the trial, as compared to an observation well situated 4 m away, which remained nitrate-reducing. These findings agree with previous laboratory-based studies which also show persistence declining with increased bromination of THMs and reducing redox conditions. Modelling suggests that the chlorinated injectant has sufficient residual chlorine and natural organic matter for substantial increases in THMs to occur within the aquifer, however this is masked in some of the field observations due to concurrent attenuation, particularly for the more rapidly attenuated brominated compounds. The model is based on data taken from water distribution systems and may not be representative for ASR since bromide and ammonia concentrations in the injected water and the possible role of organic carbon in the aquifer were not taken into consideration. During the storage phase DBP formation potentials were reduced as a result of the removal of precursor material despite an increase in the THM formation potential per unit weight of total organic carbon. This suggests that water quality improvements with respect to THMs and HAAs can be achieved through ASR in anoxic aquifers.

  18. Fate of disinfection by-products in groundwater during aquifer storage and recovery with reclaimed water.

    PubMed

    Pavelic, Paul; Nicholson, Brenton C; Dillon, Peter J; Barry, Karen E

    2005-05-01

    Knowledge on the behaviour of disinfection by-products (DBPs) during aquifer storage and recovery (ASR) is limited even though this can be an important consideration where recovered waters are used for potable purposes. A reclaimed water ASR trial in an anoxic aquifer in South Australia has provided some of the first quantitative information at field-scale on the fate and transport of trihalomethanes (THMs) and haloacetic acids (HAAs). The results revealed that THM half-lives varied from <1 to 65 days, with persistence of chloroform being highest and bromoform lowest. HAA attenuation was rapid (<1 day). Rates of THM attenuation were shown to be highly dependent on the geochemical environment as evidenced by the 2-5 fold reduction in half-lives at the ASR well which became methanogenic during the storage phase of the trial, as compared to an observation well situated 4 m away, which remained nitrate-reducing. These findings agree with previous laboratory-based studies which also show persistence declining with increased bromination of THMs and reducing redox conditions. Modelling suggests that the chlorinated injectant has sufficient residual chlorine and natural organic matter for substantial increases in THMs to occur within the aquifer, however this is masked in some of the field observations due to concurrent attenuation, particularly for the more rapidly attenuated brominated compounds. The model is based on data taken from water distribution systems and may not be representative for ASR since bromide and ammonia concentrations in the injected water and the possible role of organic carbon in the aquifer were not taken into consideration. During the storage phase DBP formation potentials were reduced as a result of the removal of precursor material despite an increase in the THM formation potential per unit weight of total organic carbon. This suggests that water quality improvements with respect to THMs and HAAs can be achieved through ASR in anoxic aquifers.

  19. Fingerprinting the reactive toxicity pathways of 50 drinking water disinfection by-products.

    PubMed

    Stalter, Daniel; O'Malley, Elissa; von Gunten, Urs; Escher, Beate I

    2016-03-15

    A set of nine in vitro cellular bioassays indicative of different stages of the cellular toxicity pathway was applied to 50 disinfection by-products (DBPs) to obtain a better understanding of the commonalities and differences in the molecular mechanisms of reactive toxicity of DBPs. An Eschericia coli test battery revealed reactivity towards proteins/peptides for 64% of the compounds. 98% activated the NRf2-mediated oxidative stress response and 68% induced an adaptive stress response to genotoxic effects as indicated by the activation of the tumor suppressor protein p53. All DBPs reactive towards DNA in the E. coli assay and activating p53 also induced oxidative stress, confirming earlier studies that the latter could trigger DBP's carcinogenicity. The energy of the lowest unoccupied molecular orbital ELUMO as reactivity descriptor was linearly correlated with oxidative stress induction for trihalomethanes (r(2)=0.98) and haloacetamides (r(2)=0.58), indicating that potency of these DBPs is connected to electrophilicity. However, the descriptive power was poor for haloacetic acids (HAAs) and haloacetonitriles (r(2) (<) 0.06). For HAAs, we additionally accounted for speciation by including the acidity constant with ELUMO in a two-parameter multiple linear regression model. This increased r(2) to >0.80, indicating that HAAs' potency is connected to both, electrophilicity and speciation. Based on the activation of oxidative stress response and the soft electrophilic character of most tested DBPs we hypothesize that indirect genotoxicity-e.g., through oxidative stress induction and/or enzyme inhibition-is more plausible than direct DNA damage for most investigated DBPs. The results provide not only a mechanistic understanding of the cellular effects of DBPs but the effect concentrations may also serve to evaluate mixture effects of DBPs in water samples.

  20. [Formation of disinfection by-products: temperature effect and kinetic modeling].

    PubMed

    Zhang, Xiao-Lu; Yang, Hong-Wei; Wang, Xiao-Mao; Fu, Jing; Xie, Yue-Feng

    2012-11-01

    Water temperature has significant effects on the disinfection by-product (DBP) formation and concentration in many water utilities and distribution systems. To study the temperature effect on the DBP concentration, the uniform formation condition (UFC) test was referred in testing the formation concentration of DBPs [including (trihalomethanes) THMs and (haloacetic acids) HAAs] at different temperatures during chlorination of the humic acid (HA) solution. A kinetic model was consequently proposed to predict DBP concentration during chlorination. Results show that for the three detected DBPs, including chloroform (CHCl3), dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA), increasing temperature could considerably enhance both the DBP formation rates and the maximum DBP concentrations, where the maximum concentrations increase exponentially with the water temperature (R2 > 0.90). By using the data-processing software Origin, the detected DBP values were fitted using the proposed first order kinetic model, and the result showed a strong correlation for each DBP at various temperatures (R > 0.94). The apparent reaction rate constant k was also derived for each DBP. In order to quantify the temperature effect on DBP formation, the Arrhenius Equation was employed to calculate the apparent reaction activation energy for each DBP-22.3, 25.5 and 40.8 kJ x mol(-1) for CHCl3, DCAA and TCAA, respectively. By comparing the model predicted and the detected DBP values at 20 and 30 degrees C, the model showed a strong performance in predicting DBP formation concentrations, which indicated the reliability and validity of this proposed kinetic model.

  1. Does KMnO4 preoxidation reduce the genotoxicity of disinfection by-products?

    PubMed

    Chang, Yangyang; Bai, Yaohui; Qu, Jiuhui

    2016-11-01

    Potassium permanganate (KMnO4) preoxidation is capable of affecting the formation of disinfection by-products (DBPs). However, few studies have focused on the toxicity of DBPs after KMnO4 preoxidation, which is an important index to evaluate alternative treatment processes. Herein genotoxicity (SOS/umu test) was used to clarify the impact of KMnO4 preoxidation on the chlorination byproducts produced from two representative precursors, tyrosine (Tyr) and 2-hydroxy-4-methoxybenzophenone-5-sulfonic acid (BP-4), and their mixture. Results revealed that although KMnO4 could not oxidize BP-4, after chlorination KMnO4 could oxidize the chlorination byproducts of BP-4 and thus decrease the genotoxicity production. For Tyr, KMnO4 preoxidation could increase or decrease the genotoxicity of DBPs, depending on the KMnO4 dose. The optimal initial molar ratio of KMnO4 to Tyr was confirmed to be 1:1. It has been proved that both the oxidation of Tyr by KMnO4 and manganese dioxide (MnO2, the reduction product of KMnO4) and the oxidation of chlorination byproducts by MnO2 can decrease the genotoxicity production of chlorinated Tyr. Remarkably, during chlorination, the competition of manganese(II) oxidation with organic oxidation can result in less chlorine reacting with organics, to induce an increase in genotoxicity. This is the main cause for the increase in genotoxicity of chlorinated Tyr after KMnO4 preoxidation. Additionally, the genotoxicity of the chlorinated mixture was shifted from being higher than the sum of individual genotoxicities of the chlorinated precursors to being lower than their sum with increasing KMnO4 dosage, due to the combined effects between the preoxidation-chlorination products from the two compounds.

  2. Secondary formation of disinfection by-products by UV treatment of swimming pool water.

    PubMed

    Spiliotopoulou, Aikaterini; Hansen, Kamilla M S; Andersen, Henrik R

    2015-07-01

    Formation of disinfection by-products (DBPs) during experimental UV treatment of pool water has previously been reported with little concurrence between laboratory studies, field studies and research groups. In the current study, changes in concentration of seven out of eleven investigated volatile DBPs were observed in experiments using medium pressure UV treatment, with and without chlorine and after post-UV chlorination. Results showed that post-UV chlorine consumption increased, dose-dependently, with UV treatment dose. A clear absence of trihalomethane formation by UV and UV with chlorine was observed, while small yet statistically significant increases in dichloroacetonitrile and dichloropropanone concentrations were detected. Results indicate that post-UV chlorination clearly induced secondary formation of several DBPs. However, the formation of total trihalomethanes was no greater than what could be replicated by performing the DBP formation assay with higher chlorine concentrations to simulate extended chlorination. Post-UV chlorination of water from a swimming pool that continuously uses UV treatment to control combined chlorine could not induce secondary formation for most DBPs. Concurrence for induction of trihalomethanes was identified between post-UV chlorination treatments and simulated extended chlorination time treatment. Trihalomethanes could not be induced by UV treatment of water from a continuously UV treated pool. This indicates that literature reports of experimentally induced trihalomethane formation by UV may be a result of kinetic increase in formation by UV. However, this does not imply that higher trihalomethane concentrations would occur in pools that apply continuous UV treatment. The bromine fraction of halogens in formed trihalomethanes increased with UV dose. This indicates that UV removes bromine atoms from larger molecules that participate in trihalomethane production during post-UV chlorination. Additionally, no significant

  3. Effect of ozone on algal organic matters as precursors for disinfection by-products production.

    PubMed

    Zhang, Qiang; Liu, Bin; Liu, Yan

    2014-08-01

    The effect of ozone dose on algae (Microcystic aeruginosa), algal extracellular organic matters (EOM), humic acids (HA) and four model compounds: bovine serum albumin (BSA), starch, deoxyribonucleic acid (DNA) and fish oil as precursors for disinfection by-products (DBPs) production was investigated. Algae showed the highest DBPs formation (71.8 microg mg-1 total organic carbon (TOC)) than other samples. Only BSA showed lower chloroform yield (5.9 microg mg-1 TOC) than haloacetic acids, HAAs (11.2 microg mg-1 TOC). Algae, EOM, starch, DNA, fish oil and HA all showed higher chloroform yields (46.1, 23.8, 8.9, 37.1, 44.0 and 33.7 microg mg-1 TOC, respectively) than HAAs (25.7, 20.2, 6.3, 10.0, 13.1 and 18.4 microg mg-1 TOC, respectively). Pre-ozonation increased DBPs, especially chloroform, formation from algae and DNA significantly. With the increase in ozone doses, DBPs yields of algae and DNA increased 19.0 and 34.5 microg mg-1 TOC, chloroform yields of algae and DNA increased 15.3 and 30.4 microg mg-1 TOC, respectively. However, pre-ozonation decreased DBPs formation from starch, fish oil and HA, and the corresponding decrease amount was 2.4, 26.9 and 9.5 microg mg-1 TOC, respectively. There are no regular change trends of DBPs formation from EOM and BSA with the increase in ozone doses.

  4. HUMAN EXPOSURE TO WATER DISINFECTION BY-PRODUCTS VIA FOODS AND BEVERAGES

    EPA Science Inventory

    The ingestion of tap water is a major route of exposure to water disinfection byproducts (DBPs), including haloacetonitriles, haloketones, and haloacetic acids. A potentially significant alternate route of exposure is through the consumption of beverages prepared with tap water ...

  5. ANALYTICAL METHODS FOR WATER DISINFECTION BY-PRODUCTS IN FOODS AND BEVERAGES

    EPA Science Inventory

    The determination of exposure to drinking water disinfection byproducts (DBPs) requires an understanding of how drinking waters come into contact with the human through multiple pathways. The most significant pathway is the ingestion of drinking water. However, ingestion can oc...

  6. Chemistry, Toxicity and Health Risk Assessment of Drinking Water Disinfection ByProducts

    EPA Science Inventory

    Disinfection byproducts (DBPs) are formed by the reaction of oxidizing chemicals (such as chlorine, ozone and chloramines) used to control waterborne pathogens with natural organic material and other substances in water. DBP mixture composition varies as a function of geographic ...

  7. IDENTIFICATION OF DRINKING WATER DISINFECTION BY-PRODUCTS FROM OZONE, CHLORINE DIOXIDE, CHLORAMINE, AND CHLORINE

    EPA Science Inventory

    Many drinking water treatment plants are currently using alternative disinfectants to treat drinking water, with ozone, chlorine dioxide, and chloramine being the most popular. However, compared to chlorine, which has been much more widely studied, there is little information abo...

  8. GC/MS IDENTIFICATION OF DRINKING WATER DISINFECTION BY-PRODUCTS FROM MILWAUKEE'S NEW OZONATION PLANTS

    EPA Science Inventory

    The Milwaukee Water Works recently added ozonation disinfection facilities to their municipal drinking water treatment. Coupling ozone treatment with biologically active filtration (BAF) was seen as a logical step to enhance multiple water quality objectives (an effective barrier...

  9. Comparison of inclined plate sedimentation and dissolved air flotation for the minimisation of subsequent nitrogenous disinfection by-product formation.

    PubMed

    Chu, Wen-Hai; Gao, Nai-Yun; Templeton, Michael R; Yin, Da-Qiang

    2011-04-01

    The formation of disinfection by-products (DBPs), including both nitrogenous disinfection by-products (N-DBPs) and carbonaceous disinfection by-products (C-DBPs), was investigated upon chlorination of water samples following two treatment processes: (i) coagulation-inclined plate sedimentation (IPS)-filtration and (ii) coagulation-dissolved air flotation (DAF)-filtration. The removal of algae, dissolved organic nitrogen (DON), dissolved organic carbon (DOC) and UV(254) by coagulation-DAF-filtration was superior to coagulation-IPS-filtration. On average, 53%, 53% and 31% of DOC, DON and UV(254) were removed by coagulation-DAF-filtration process, which were higher than 47%, 31% and 27% of that by coagulation-IPS-filtration process. Additionally, coagulation-IPS-filtration performed less well at removing the low molecular weight organics than coagulation-DAF-filtration process. The concentrations of chloroform, dichloroacetamide (DCAcAm) and dichloroacetonitrile (DCAN) formed during chlorination after coagulation-DAF-filtration reached their maximum values of 13, 1.5 and 4.7μgL(-1), respectively, and were lower than those after coagulation-IPS-filtration with the maximum detected levels of 17, 2.9 and 6.3μgL(-1). However, the trichloronitromethane (TCNM) concentration after the two processes was similar, suggesting that DON may have less of a contribution to TCNM formation than DCAcAm and DCAN.

  10. Removal of disinfection by-products in raw water using a biological powder-activated carbon system.

    PubMed

    Lou, Jie C; Tseng, Wei B; Wu, Ming C; Han, Jia Y; Chen, Bi H

    2012-01-01

    This study investigates the removal efficiency of disinfection by-products (DBPs) in raw water at a water treatment plant using a biological powder-activated carbon system (BPACS). The presence of an excessive amount of DBPs has a large impact on the water quality of drinking water treated from the purification process. This study collected rapidly filtered water from an advanced water treatment plant for use in experiments on raw water. The removal efficiency of the trihalomethane formation potential (THMFP) and haloacetic acids formation potential (HAAFP) was studied under various hydraulic retention times and under organic DOC loadings. The results showed that the BPACS lowered the average concentration of dissolved organic carbon (DOC), UV(254) and the SUVA value (equivalent to UV(254)/DOC) in raw water. The system efficiently removed the THMFP and HAAFP during the treatment of the three primary organic carbon items. These results highlight the importance of the BPACS for efficiently treating disinfection by-products. These discoveries provide important information on biological degradation behaviors that can remove excessive amounts of disinfection by-products from drinking water.

  11. Mammalian cell cytotoxicity and genotoxicity of the haloacetic acids, a major class of drinking water disinfection by-products.

    PubMed

    Plewa, Michael J; Simmons, Jane Ellen; Richardson, Susan D; Wagner, Elizabeth D

    2010-01-01

    The haloacetic acids (HAAs) are disinfection by-products (DBPs) that are formed during the disinfection of drinking water, wastewaters and recreational pool waters. Currently, five HAAs [bromoacetic acid (BAA), dibromoacetic acid (DBAA), chloroacetic acid (CAA), dichloroacetic acid (DCAA), and trichloroacetic acid (TCAA); designated as HAA5] are regulated by the U.S. EPA, at a maximum contaminant level of 60 μg/L for the sum of BAA, DBAA, CAA, DCAA, and TCAA. We present a comparative systematic analysis of chronic cytotoxicity and acute genomic DNA damaging capacity of 12 individual HAAs in mammalian cells. In addition to the HAA5, we analyzed iodoacetic acid (IAA), diiodoacetic acid (DiAA), bromoiodoacetic acid (BIAA), tribromoacetic acid (TBAA), chlorodibromoacetic acid (CDBAA), bromodichloroacetic acid (BDCAA), and bromochloroacetic acid (BCAA). Their rank order of chronic cytotoxicity in Chinese hamster ovary cells was IAA > BAA > TBAA > CDBAA > DIAA > DBAA > BDCAA > BCAA > CAA > BIAA > TCAA > DCAA. The rank order for genotoxicity was IAA > BAA > CAA > DBAA > DIAA > TBAA > BCAA > BIAA > CDBAA. DCAA, TCAA, and BDCAA were not genotoxic. The trend for both cytotoxicity and genotoxicity is iodinated HAAs > brominated HAAs > chlorinated HAAs. The use of alternative disinfectants other than chlorine generates new DBPs and alters their distribution. Systematic, comparative, in vitro toxicological data provides the water supply community with information to consider when employing alternatives to chlorine disinfection. In addition, these data aid in prioritizing DBPs and their related compounds for future in vivo toxicological studies and risk assessment.

  12. Occurrence of regulated and non-regulated disinfection by-products in small drinking water systems.

    PubMed

    Guilherme, Stéphanie; Rodriguez, Manuel J

    2014-12-01

    The occurrence of regulated and non-regulated disinfection by-products (DBPs) was investigated in the drinking water of small systems in two provinces in Canada, Newfoundland and Labrador (NL) and Quebec (QC), through an intensive sampling program. Sixteen DBPs were studied: four trihalomethanes (THMs), five haloacetic acids (HAAs), four haloacetonitriles (HANs), one halonitromethane, chloropikrin (CPK) and two haloketones (HKs). Average measured concentrations of these compounds were much higher than those reported in the literature for medium and large systems. The measured average value for THMs was 75 μg L(-1) (Stdv=69μgL(-1)); HAAs, 77 μg L(-1) (Stdv=75 μg L(-1)); HANs, 2.5 μg L(-1) (Stdv=1.8 μg L(-1)); CPK, 0.4 μg L(-1) (Stdv=0.3 μg L(-1)) and HKs, 6.0 μg L(-1) (Stdv=4.5 μg L(-1)). The gap (some 10 times difference) between the average levels of regulated DBPs (THMs, HAAs) and non-regulated DBPs (HANs, CPK and HKs) is comparable to that observed in large systems where the occurrence of the same compounds has been reported. Generally, investigated DBPs followed a comparable seasonal evolution during the year: they decreased between the fall and winter and then increased to eventually reach a maximum in late summer. This trend was less observable in NL than in QC. However, observed seasonal fluctuations of DBPs were less considerable than those observed in medium and large systems located in similar temperate environments reported in the literature. Spatial variations from the plant to the extremities were high and comparable to those observed in large systems, which is surprising, considering the smaller size of distribution networks supplying small communities. Generally speaking, the results support the premise that problems associated with implementing treatment that removes DBP precursors in water submitted to chlorination can increase population exposure to these contaminants in small systems.

  13. A comparison of disinfection by-products formation during sequential or simultaneous disinfection of surface waters with chlorine dioxide and chlor(am)ine.

    PubMed

    Shi, Yanwei; Ling, Wencui; Qiang, Zhimin

    2013-01-01

    The effect of chlorine dioxide (ClO2) oxidation on the formation of disinfection by-products (DBPs) during sequential (ClO2 pre-oxidation for 30 min) and simultaneous disinfection processes with free chlorine (FC) or monochloramine (MCA) was investigated. The formation of DBPs from synthetic humic acid (HA) water and three natural surface waters containing low bromide levels (11-27 microg/L) was comparatively examined in the FC-based (single FC, sequential ClO2-FC, and simultaneous ClO2/FC) and MCA-based (single MCA, ClO2-MCA, and ClO2/MCA) disinfection processes. The results showed that much more DBPs were formed from the synthetic HA water than from the three natural surface waters with comparative levels of dissolved organic carbon. In the FC-based processes, ClO2 oxidation could reduce trihalomethanes (THMs) by 27-35% and haloacetic acids (HAAs) by 14-22% in the three natural surface waters, but increased THMs by 19% and HAAs by 31% in the synthetic HA water after an FC contact time of 48 h. In the MCA-based processes, similar trends were observed although DBPs were produced at a much lower level. There was an insignificant difference in DBPs formation between the sequential and simultaneous processes. The presence of a high level of bromide (320 microg/L) remarkably promoted the DBPs formation in the FC-based processes. Therefore, the simultaneous disinfection process of ClO2/MCA is recommended particularly for waters with a high bromide level.

  14. What’s in the Pool? A Comprehensive Identification of Disinfection By-Products and Assessment of Mutagenicity of Chlorinated and Brominated Swimming Pool Water

    EPA Science Inventory

    Swimming pool disinfectants and disinfection by-products (DBPs) have been linked to human health effects, including asthma and bladder cancer, but no studies have provided a comprehensive identification of DBPs in pool water and related those DBPs to the mutagenicity of pool wate...

  15. What's in The Pool? A Comprehensive Identification Of Disinfection By-Products and Assessment of Mutagenicity of Chlorinated and Brominated Swimming Pool Water

    EPA Science Inventory

    Swimming pool disinfectants and disinfection by-products (DBPs) have been linked to human health effects, including asthma and bladder cancer, but no studies have provided a comprehensive identification of DBPs in the water and related that to mutagenicity. We performed a compreh...

  16. DEVELOPMENT OF A NOVEL METHOD FOR ANALYSIS OF TRANSCRIPTIONAL CHANGES IN TRANSITIONAL EPITHELIUM FROM URINARY BLADDERS OF RATS EXPOSED TO DRINKING WATER DISINFECTION BY-PRODUCTS

    EPA Science Inventory


    Development of a Novel Method for Analysis of Transcriptional Changes in Transitional Epithelium from Urinary Bladders of Rats Exposed to Drinking Water Disinfection By- products.

    Epidemiologic studies in human populations that drink chemically disinfected drinking wa...

  17. EFFECTS OF 20 WEEK EXPOSURES IN FEMALE SPRAGUE-DAWLEY (S-D) RATS TO THE DRINKING WATER DISINFECTION BY-PRODUCT DIBROMOACETIC ACID

    EPA Science Inventory

    Effects of 20 week exposures in female Sprague-Dawley (S-D) rats to the drinking water disinfection by-product dibromoacetic acid. A S Murr and J M Goldman, Endocrinol. Br., RTD, NHEERL, ORD, US EPA, Res. Tri. Pk, NC. Sponsor: Audrey Cummings

    The drinking water disinfect...

  18. EFFECTS OF 20 WEEK EXPOSURES IN FEMALE SPRAGUE-DAWLEY (S-D) RATS TO DIBROMOACETIC ACID, A DRINKING WATER DISINFECTANT BY-PRODUCT

    EPA Science Inventory

    Effects of 20 week exposures in female Sprague-Dawley (S-D) rats to the drinking water disinfection by-product dibromoacetic acid. A S Murr and J M Goldman, Endocrinol. Br., RTD, NHEERL, ORD, US EPA, Res. Tri. Pk, NC. Sponsor: Audrey Cummings

    The drinking water disinfect...

  19. IODO-ACID DISINFECTION BY-PRODUCTS IN DRINKING WATER: DOES LC/ESI-MS/MS OFFER AN ADVANTAGE OVER GC/NCI-MS?

    EPA Science Inventory

    As part of a recent Nationwide Disinfection By-Product (DBP) Occurrence Study, iodo-acids were identified for the first time as DBPs in drinking water disinfected with chloramines. The iodo-acids identified included iodoacetic acid, bromoiodoacetic acid, (E)-3-bromo-3-iodo-prope...

  20. Genotoxic and clastogenic effects of monohaloacetic acid drinking water disinfection by-products in primary human lymphocytes.

    PubMed

    Escobar-Hoyos, Luisa F; Hoyos-Giraldo, Luz Stella; Londoño-Velasco, Elizabeth; Reyes-Carvajal, Ingrid; Saavedra-Trujillo, Diana; Carvajal-Varona, Silvio; Sánchez-Gómez, Adalberto; Wagner, Elizabeth D; Plewa, Michael J

    2013-06-15

    The haloacetic acids (HAAs) are the second-most prevalent class of drinking water disinfection by-products formed by chemical disinfectants. Previous studies have determined DNA damage and repair of HAA-induced lesions in mammalian and human cell lines; however, little is known of the genomic DNA and chromosome damage induced by these compounds in primary human cells. The aim of this study was to evaluate the genotoxic and clastogenic effects of the monoHAA disinfection by-products in primary human lymphocytes. All monoHAAs were genotoxic in primary human lymphocytes, the rank order of genotoxicity and cytotoxicity was IAA > BAA > CAA. After 6 h of repair time, only 50% of the DNA damage (maximum decrease in DNA damage) was repaired compared to the control. This demonstrates that primary human lymphocytes are less efficient in repairing the induced damage by monoHAAs than previous studies with mammalian cell lines. In addition, the monoHAAs induced an increase in the chromosome aberration frequency as a measurement of the clastogenic effect of these compounds. These results coupled with genomic technologies in primary human cells and other mammalian non-cancerous cell lines may lead to the identification of biomarkers that may be employed in feedback loops to aid water chemists and engineers in the overall goal of producing safer drinking water.

  1. Factors affecting the formation of nitrogenous disinfection by-products during chlorination of aspartic acid in drinking water.

    PubMed

    Chen, Wei; Liu, Zhigang; Tao, Hui; Xu, Hang; Gu, Yanmei; Chen, Zhaolin; Yu, Jingjing

    2017-01-01

    The formation of emerging nitrogenous disinfection by-products (N-DBPs) from the chlorination of aspartic acid (Asp) was investigated. The yield of dichloroacetonitrile (DCAN) was higher than other N-DBPs, such as dichloroacetamide(DCAcAm) and chloropicrin (TCNM) during the chlorination of Asp. The formation of DCAN, DCAcAm, and TCNM all showed a trend of first increasing and then decreasing during the chlorination of Asp with increasing contact time. The dosage of chlorine had an impact on the formation of DCAN, DCAcAm, and TCNM. The highest yields of DCAN and DCAcAm appeared when the Cl2/Asp molar ratio was about 20, the yield of TCNM increased with increasing the Cl2/Asp molar ratio from 5 to 30 and TCNM was not produced when the ratio was less than 5. Cyanogen chloride (CNCl) was detected when the Cl2/Asp molar ratio was lower than 5. N-DBPs formation was influenced by pH. DCAN formation increased with increasing pH from 5 to 6 and then decreased with increasing pH from 6 to 9, but DCAcAm and TCNM increased with increasing pH from 5 to 8 and then decreased. Higher temperatures reduced the formation of DCAN and DCAcAm, but increased TCNM formation. DCAN and DCAcAm formation decreased, and relatively stable TCNM formation increased, with increasing free chlorine contact time during chloramination. N-nitrosodimethylamine (NDMA) was produced during chloramination of Asp and increased with prolonged chloramination contact time. The presence of bromide ions enhanced the yields of haloacetonitriles and shifted N-DBPs to more brominated species.

  2. Mass Spectrometry Identification of Toxicologically Important Drinking Water Disinfection By-Products

    EPA Science Inventory

    The disinfection of drinking water has been rightly hailed as a public health triumph of the 20th century. Before its widespread use, millions of people died from waterborne diseases. Now, people in developed nations receive quality drinking water every day from their public wate...

  3. Formation of Toxic Iodinated Disinfection By-Products from Compounds Used in Medical Imaging

    EPA Science Inventory

    Iodinated X-ray contrast media (ICM) were investigated as a source of iodine in the formation of iodo-trihalomethane (iodo-THM) and iodo-acid disinfection byproducts (DBPs), both of which are highly genotoxic and/or cytotoxic in mammalian cells. ICM are widely used at medical cen...

  4. FATE OF DISINFECTION BY-PRODUCT PRECURSORS DURING RIVERBANK FILTRATION AT THREE MIDWEST UTILITIES

    EPA Science Inventory

    A 3-year project is underway to evaluate riverbank filtration systems along three major US rivers. A principal aspects of the study involved monitoring a suite or organic, inorganic, and microbiological water quality parameters, with emphasis on disinfection byproduct formation p...

  5. REPRODUCTIVE AND DEVELOPMENTAL TOXICITY ASSOCIATED WITH DISINFECTION BY-PRODUCTS OF DRINKING WATER

    EPA Science Inventory

    Over the past decade many toxicologic studies have addressed the potential for disinfection byproducts of drinking water to elicit alterations on the reproductive system and fetal development.
    The types and designs of these studies vary considerably, but in general they can ...

  6. ANALYTICAL METHODS FOR WATER DISINFECTION BY-PRODUCTS IN FOODS AND BEVERAGES

    EPA Science Inventory

    The determination of exposure to drinking water disinfection byproducts (DBPs) requires an understanding of how drinking water comes in contact with humans through multiple pathways. In order to facilitate the investigation of human exposure to DBPs via foods and beverages, analy...

  7. MEMBRANE EXTRACTION GC/MS FOR THE ANALYSIS OF DISINFECTION BY-PRODUCTS

    EPA Science Inventory

    For many years, public water supplies in the U.S.have been treated with a variety of chemicals aimed at reducing or eliminating infectious diseases. Chlorine is the most common disinfectant used to combat waterborne microbial diseases; however, the use of ozone, chlorine dioxid...

  8. TREATMENT OF LONG-EVANS RATS WITH A DEFINED MIXTURE OF DRINKING WATER DISINFECTION BY-PRODUCTS IMPACTS INTESTINAL MICROBIAL METABOLISM.

    EPA Science Inventory

    Water treatment results in the production of numerous halogenated disinfection by-products (DBPs), and has been associated with human colorectal cancer. Because the intestinal microbiota can bioactivate promutagens and procarcinogens, several studies have been done to examine the...

  9. INFLUENCE OF THE DRINKING WATER DISINFECTION BY-PRODUCT DIBROMOACETIC ACID ON RAT ESTROUS CYCLICITY AND OVARIAN FOLLICULAR STEROID RELEASE IN VITRO

    EPA Science Inventory

    The drinking water disinfection by-product, dibromoacetic acid (DBA) has been reported to affect gonadal functions in the male rat. However, there is little information regarding its influence on female reproductive activity. Consequently, the present study investigated the eff...

  10. Developmental Toxicity Evaluations of Whole Mixtures of Disinfection By-products using Concentrated Drinking Water in Rats: Gestational and Lactational Effects of Sulfate and Sodium

    EPA Science Inventory

    A developmental toxicity bioassay was used in three experiments to evaluate drinking water concentrates for suitability in multigenerational studies. First, chlorinated water was concentrated 135 fold by reverse osmosis; select lost disinfection by-products were spiked back. Co...

  11. Developmental Toxicity Evaluations of Whole Mixtures of Disinfection By-products using Concentrated Drinking Water in Rats: Gestational and Lactational Effects of Sulfate and Sodium*

    EPA Science Inventory

    A developmental toxicity bioassay was used in three experiments to evaluate drinking water concentrates for suitability in multigenerational studies. First, chlorinated water was concentrated 135 fold by reverse osmosis; select lost disinfection by-products were spiked back. Conc...

  12. Reduction of disinfection by-product precursors in reservoir water by coagulation and ultrafiltration.

    PubMed

    Wang, Feng; Gao, Baoyu; Ma, Defang; Yue, Qinyan; Li, Ruihua; Wang, Qianwen

    2016-11-01

    In this study, reservoir water intended for drinking water supply was treated by (i) ultrafiltration (UF) (ii) coagulation (CW) (iii) coagulation combined with ultrafiltration (CW-UF). To probe the influences of three treatment processes on disinfection byproduct (DBP) precursors in source water, the changes of dissolved organic matter (DOM) amounts and physicochemical properties, and disinfection byproduct (DBP) formation characteristics during chlorine disinfection were investigated. Both carbonaceous DBP (C-DBP) and nitrogenous DBP (N-DBP) formation and speciation were analyzed. The influence of chlorine dose, contact time on DBP formation and speciation were also studied to optimize the disinfection conditions to minimize the DBP formation. Compared with UF and CW alone, CW-UF improved the dissolved organic carbon (DOC) removal from about 20 % to 59 %. The three-dimensional excitation and emission matrix (3DEEM) fluorescence spectroscopy analysis showed that CW-UF had high removal efficiency in microbial products (Region IV), fulvic acid-like (Region III) and humic acid-like (Region V). The total C-DBP was determined by the formation of trihalomethanes and trichloromethane was the most abundant species (40 %). The most abundant N-DBP species was dichloroacetonitrile (32.5 %), followed by trichloroactetonitrile. CW-UF effectively reduced the risk of DBPs in drinking water supply by reducing 30.8 % and 16.9 % DBPs formation potential compared with UF and CW alone. Increasing contact time improved the yields of both C-DBPs and N-DBPs. Chlorine dosage had slight influence on DBP yield in this study.

  13. Biostability and disinfectant by-product formation in drinking water blended with UF-treated filter backwash water.

    PubMed

    Walsh, M E; Gagnon, G A; Alam, Z; Andrews, R C

    2008-04-01

    The overall objective of this study was to investigate the impact of blending membrane-treated water treatment plant (WTP) residuals with plant-filtered water on finished water quality in terms of biostability and disinfectant by-product (DBP) formation. Filter backwash water (FBWW) was treated with a pilot-scale ultrafiltration (UF) membrane to produce permeate that was blended with plant-finished water. The batch studies involved storing samples for a specified time with a disinfectant residual to simulate residence time in the distribution system. Both chlorinated and non-chlorinated FBWW streams were evaluated, and the experimental design incorporated free chlorine, monochloramine, and chlorine dioxide in parallel to a model system that did not receive a disinfectant dose. The results of the study found that blending 10% UF-treated FBWW with plant-filtered water did not have an impact on water biostability as monitored with heterotrophic plate counts (HPCs) or DBP concentrations as monitored by TTHM and HAA5 concentrations. However, the presence of preformed THM and HAA species found in chlorinated FBWW streams may result in higher levels of initial DBP concentrations in blended water matrices, and could have a significant impact on finished water quality in terms of meeting specific DBP guidelines or regulations.

  14. Assessing regulatory violations of disinfection by-products in water distribution networks using a non-compliance potential index.

    PubMed

    Islam, Nilufar; Sadiq, Rehan; Rodriguez, Manuel J; Legay, Christelle

    2016-05-01

    Inactivating pathogens is essential to eradicate waterborne diseases. However, disinfection forms undesirable disinfection by-products (DBPs) in the presence of natural organic matter. Many regulations and guidelines exist to limit DBP exposure for eliminating possible health impacts such as bladder cancer, reproductive effects, and child development effects. In this paper, an index named non-compliance potential (NCP) index is proposed to evaluate regulatory violations by DBPs. The index can serve to evaluate water quality in distribution networks using the Bayesian Belief Network (BBN). BBN is a graphical model to represent contributing variables and their probabilistic relationships. Total trihalomethanes (TTHM), haloacetic acids (HAA5), and free residual chlorine (FRC) are selected as the variables to predict the NCP index. A methodology has been proposed to implement the index using either monitored data, empirical model results (e.g., multiple linear regression), and disinfectant kinetics through EPANET simulations. The index's usefulness is demonstrated through two case studies on municipal distribution systems using both full-scale monitoring and modeled data. The proposed approach can be implemented for data-sparse conditions, making it especially useful for smaller municipal drinking water systems.

  15. Evaluation on the generative mechanism and biological toxicity of microcystin-LR disinfection by-products formed by chlorination.

    PubMed

    Zong, Wansong; Sun, Feng; Sun, Xiaojing

    2013-05-15

    To control the environmental risk of microcystin-LR disinfection by-products (MCLR-DBPs), we evaluated their generative mechanisms and biological toxicity by mass spectrometry technology and protein phosphatase inhibition assay. Subject to chlorination, MCLR was totally transformed within 45 min and generated 5 types of MCLR-DBPs with the chemical formulas of C34H54N10O12, C49H76N10O14Cl2, C49H77N10O15Cl, C49H75N10O13Cl, and C49H76N10O14. Isomers for each MCLR-DBP type were identified and separated (products 1-9), indicating that the conjugated diene in Adda residue was a major target site of disinfection. Though, subsequent toxicity test showed the toxicity of MCLR-DBPs on protein phosphatase 1 decreased with the extending of disinfection by and large, these DBPs still possessed certain biological toxicity (especially for product 5). Combined with quantitative analysis, we thought the secondary pollution of MCLR-DBPs in drinking water also deserved further attention. This study offers valid technique support for MCLR-DBPs identification, contributes to a comprehensive cognition on their hazard, and thus has great significance to prevent and control the environmental risk induced by microcystins and their DBPs.

  16. The study of interrelationship between raw water quality parameters, chlorine demand and the formation of disinfection by-products

    NASA Astrophysics Data System (ADS)

    Abdullah, Md. Pauzi; Yee, Lim Fang; Ata, Sadia; Abdullah, Abass; Ishak, Basar; Abidin, Khairul Nidzham Zainal

    Disinfection is the most crucial process in the treatment of drinking water supply and is the final barrier against bacteriological impurities in drinking water. Chlorine is the primary disinfectant used in the drinking water treatment process throughout Malaysia. However, the occurrence of various disinfection by-products such as trihalomethanes (THM) and haloacetic acids created a major issue on the potential health hazards which may pose adverse health effects in both human and animals. To simulate real water treatment conditions and to represent the conditions inherent in a tropical country, this study was performed at an urbanized water treatment plant with a daily production of about 549,000 m 3 of treated water. The purpose of this work is to examine the relationship between the water quality parameters in the raw water with chlorine demand and the formation of disinfection by-products. This study also investigated the possibility of the statistical model applications for the prediction of chlorine demand and the THM formation. Two models were developed to estimate the chlorine demand and the THM formation. For the statistical evaluation, correlation and simple linear regression analysis were conducted using SPSS. The results of Kolmogorov-Smirnov test for the estimation of goodness-of-fit of the dependent variables of the models to the normal distribution showed that all the dependent variables followed the normal distribution at significance level of 0.05. Good linear correlations were observed between the independent parameters and formation of THM and the chlorine demand. This study also revealed that ammonia and the specific ultraviolet absorbent (SUVA) were the function of chlorine consumption in the treatment process. Chlorine dosage and SUVA increase the yield of THM. Chlorine demand and THM formation was moderately sensitive, but significant to the pH. The level of significance ( α) for the statistical tests and the inclusion of a variable in the

  17. Mutagenic activity associated with by-products of drinking water disinfection by chlorine, chlorine dioxide, ozone and UV-irradiation.

    PubMed Central

    Zoeteman, B C; Hrubec, J; de Greef, E; Kool, H J

    1982-01-01

    A retrospective epidemiological study in The Netherlands showed a statistical association between chlorination by-products in drinking water and cancer of the esophagus and stomach for males. A pilot-plant study with alternative disinfectants was carried out with stored water of the Rivers Rhine and Meuse. It was demonstrated that the increase of direct acting mutagens after treatment with chlorine dioxide is similar to the effect of chlorination. Ozonation of Rhine water reduced the mutagenic activity for Salmonella typhimurium TA 98 both with and without metabolic activation. UV alone hardly affects the mutagenicity of the stored river water for S. typh. TA 98. In all studies, practically no mutagenic activity for S. typh. TA 100 was found. Although remarkable changes in the concentration of individual organic compounds are reported, the identity of the mutagens detected is yet unclear. Compounds of possible interest due to their removal by ozonation are 1,3,3-trimethyloxindole, dicyclopentadiene and several alkylquinolines. Compounds which might be responsible for the increased mutagenicity after chlorination are two brominated acetonitriles and tri(2-chlorethyl) phosphate. Furthermore, the concentration procedure with adsorption on XAD resin and the subsequent elution step may have affected the results. It is proposed to focus further research more on the less volatile by-products of disinfection than on the trihalomethanes. PMID:7151762

  18. Nano-silver in drinking water and drinking water sources: stability and influences on disinfection by-product formation.

    PubMed

    Tugulea, A-M; Bérubé, D; Giddings, M; Lemieux, F; Hnatiw, J; Priem, J; Avramescu, M-L

    2014-10-01

    Nano-silver is increasingly used in consumer products from washing machines and refrigerators to devices marketed for the disinfection of drinking water or recreational water. The nano-silver in these products may be released, ending up in surface water bodies which may be used as drinking water sources. Little information is available about the stability of the nano-silver in sources of drinking water, its fate during drinking water disinfection processes, and its interaction with disinfection agents and disinfection by-products (DBPs). This study aims to investigate the stability of nano-silver in drinking water sources and in the finished drinking water when chlorine and chloramines are used for disinfection and to observe changes in the composition of DBPs formed when nano-silver is present in the source water. A dispersion of nano-silver particles (10 nm; PVP-coated) was used to spike untreated Ottawa River water, treated Ottawa River water, organic-free water, and a groundwater at concentrations of 5 mg/L. The diluted dispersions were kept under stirred and non-stirred conditions for up to 9 months and analyzed weekly using UV absorption to assess the stability of the nano-silver particles. In a separate experiment, Ottawa River water containing nano-silver particles (at 0.1 and 1 mg/L concentration, respectively) was disinfected by adding sodium hypochlorite (a chlorinating agent) in sufficient amounts to maintain a free chlorine residual of approximately 0.4 mg/L after 24 h. The disinfected drinking water was then quenched with ascorbic acid and analyzed for 34 neutral DBPs (trihalomethanes, haloacetonitriles, haloacetaldehydes, 1,1 dichloro-2-propanone, 1,1,1 trichloro-2-propanone, chloropicrin, and cyanogen chloride). The results were compared to the profile of DBPs obtained under the same conditions in the absence of nano-silver and in the presence of an equivalent concentration of Ag(+) ions (as AgNO3). The stability of the nano-silver dispersions in

  19. Use of household bleach for emergency disinfection of drinking water.

    PubMed

    Elmaksoud, Sherif Abd; Patel, Nikita; Maxwell, Sherri L; Sifuentes, Laura Y; Gerba, Charles P

    2014-05-01

    Household bleach is typically used as a disinfectant for water in times of emergencies and by those engaging in recreational activities such as camping or rafting. The Centers for Disease Control and Prevention recommend a concentration of free chlorine of 1 mg/L for 30 minutes, or about 0.75 mL (1/8 teaspoon) of household bleach per gallon of water. The goal of the study described in this article was to assess two household bleach products to kill waterborne bacteria and viruses using the test procedures in the U.S. Environmental Protection Agency's Guide Standard and Protocol for Testing Microbiological Purifiers. Bleach was found to meet these requirements in waters of low turbidity and organic matter. While the test bacterium was reduced by six logs in high turbid and organic-laden waters, the test viruses were reduced only by one-half to one log. In such waters greater chlorine doses or contact times are needed to achieve greater reduction of viruses.

  20. Biological efficacy and toxic effect of emergency water disinfection process based on advanced oxidation technology.

    PubMed

    Tian, Yiping; Yuan, Xiaoli; Xu, Shujing; Li, Rihong; Zhou, Xinying; Zhang, Zhitao

    2015-12-01

    An innovative and removable water treatment system consisted of strong electric field discharge and hydrodynamic cavitation based on advanced oxidation technologies was developed for reactive free radicals producing and waterborne pathogens eliminating in the present study. The biological efficacy and toxic effects of this advanced oxidation system were evaluated during water disinfection treatments. Bench tests were carried out with synthetic microbial-contaminated water, as well as source water in rainy season from a reservoir of Dalian city (Liaoning Province, China). Results showed that high inactivation efficiency of Escherichia coli (>5 log) could be obtained for synthetic contaminated water at a low concentration (0.5-0.7 mg L(-1)) of total oxidants in 3-10 s. The numbers of wild total bacteria (108 × 10(3) CFU mL(-1)) and total coliforms (260 × 10(2) MPN 100 mL(-1)) in source water greatly reduced to 50 and 0 CFU mL(-1) respectively after treated by the advanced oxidation system, which meet the microbiological standards of drinking water, and especially that the inactivation efficiency of total coliforms could reach 100%. Meanwhile, source water qualities were greatly improved during the disinfection processes. The values of UV254 in particular were significantly reduced (60-80%) by reactive free radicals. Moreover, the concentrations of possible disinfection by-products (formaldehyde and bromide) in treated water were lower than detection limits, indicating that there was no harmful effect on water after the treatments. These investigations are helpful for the ecotoxicological studies of advanced oxidation system in the treatments of chemical polluted water or waste water. The findings of this work suggest that the developed water treatment system is ideal in the acute phases of emergencies, which also could offer additional advantages over a wide range of applications in water pollution control.

  1. Assessment of disinfection by-products in drinking water in Korea.

    PubMed

    Shin, D; Chung, Y; Choi, Y; Kim, J; Park, Y; Kum, H

    1999-01-01

    The main purpose of applying the chlorination process during water treatment is for disinfection. Research results, however, indicate that disinfection byproducts (DBPs) including trihalomethanes (THMs), haloacetic acids (HAAs), haloacetonitriles (HANs), haloketones (HKs), and chloropicrin (CP) can be produced by the chlorination process. Some of these DBPs are known to be potential human carcinogens. This 3-year project is designed to establish a standard analysis procedure for DBPs in drinking water of this country and investigate the distribution and sources of specific DBPs. The occurrence level of DBPs in drinking water was below 50 micrograms/l in most cases. THMs in plant effluent accounted for 60% of all DBPs measured, whereas HAAs accounted for 20%, HANs 12%, HKs 5% and CP 3%. Chloroform was found to be the major THMs compound (77%), followed by bromodichloromethane (BDCM, 18%) and bromoform (BF, 3%). The concentration of DBPs formed in distribution systems increased from those detected in plant effluent. Comparison of humic acid and sewage as precursors for THMs formation showed that humic acid was the major THMs precursor. Results would play an important role in exposure assessment as a part of the risk assessment process, and would give basic information for establishment of DBPs reduction and management procedures.

  2. Disinfection.

    ERIC Educational Resources Information Center

    Gould, J. P.; Haas, C. N.

    1978-01-01

    Presents a literature review of wastewater disinfection for 1978. This review covers areas such as: (1) mechanisms of inactivation of negative microorganisms by chlorine and ozone; and (2) the effects of various treatment on over-all water quality. A list of 61 references is also presented. (HM)

  3. Dissolved Organic Carbon and Disinfection By-Product Precursor Release from Managed Peat Soils

    USGS Publications Warehouse

    Fleck, J.A.; Bossio, D.A.; Fujii, R.

    2004-01-01

    A wetland restoration demonstration project examined the effects of a permanently flooded wetland on subsidence of peat soils. The project, started in 1997, was done on Twitchell Island, in the Sacramento-San Joaquin Delta of California. Conversion of agricultural land to a wetland has changed many of the biogeochemical processes controlling dissolved organic carbon (DOC) release from the peat soils, relative to the previous land use. Dissolved organic C in delta waters is a concern because it reacts with chlorine, added as a disinfectant in municipal drinking waters, to form carcinogenic disinfection byproducts (DBPs), including trihalomethanes (THMs) and haloacetic acids (HAAs). This study explores the effects of peat soil biogeochemistry on DOC and DBP release under agricultural and wetland management. Results indicate that organic matter source, extent of soil organic matter decomposition, and decomposition pathways all are factors in THM formation. The results show that historical management practices dominate the release of DOC and THM precursors. However, within-site differences indicate that recent management decisions can contribute to changes in DOC quality and THM precursor formation. Not all aromatic forms of carbon are highly reactive and certain environmental conditions produce the specific carbon structures that form THMs. Both HAA and THM precursors are elevated in the DOC released under wetland conditions. The findings of this study emphasize the need to further investigate the roles of organic matter sources, microbial decomposition pathways, and decomposition status of soil organic matter in the release of DOC and DBP precursors from delta soils under varying land-use practices.

  4. Evaluating Evidence for Association of Human Bladder Cancer with Drinking-Water Chlorination Disinfection By-Products.

    PubMed

    Hrudey, Steve E; Backer, Lorraine C; Humpage, Andrew R; Krasner, Stuart W; Michaud, Dominique S; Moore, Lee E; Singer, Philip C; Stanford, Benjamin D

    2015-01-01

    Exposure to chlorination disinfection by-products (CxDBPs) is prevalent in populations using chlorination-based methods to disinfect public water supplies. Multifaceted research has been directed for decades to identify, characterize, and understand the toxicology of these compounds, control and minimize their formation, and conduct epidemiologic studies related to exposure. Urinary bladder cancer has been the health risk most consistently associated with CxDBPs in epidemiologic studies. An international workshop was held to (1) discuss the qualitative strengths and limitations that inform the association between bladder cancer and CxDBPs in the context of possible causation, (2) identify knowledge gaps for this topic in relation to chlorine/chloramine-based disinfection practice(s) in the United States, and (3) assess the evidence for informing risk management. Epidemiological evidence linking exposures to CxDBPs in drinking water to human bladder cancer risk provides insight into causality. However, because of imprecise, inaccurate, or incomplete estimation of CxDBPs levels in epidemiologic studies, translation from hazard identification directly to risk management and regulatory policy for CxDBPs can be challenging. Quantitative risk estimates derived from toxicological risk assessment for CxDBPs currently cannot be reconciled with those from epidemiologic studies, notwithstanding the complexities involved, making regulatory interpretation difficult. Evidence presented here has both strengths and limitations that require additional studies to resolve and improve the understanding of exposure response relationships. Replication of epidemiologic findings in independent populations with further elaboration of exposure assessment is needed to strengthen the knowledge base needed to better inform effective regulatory approaches.

  5. Evaluating Evidence for Association of Human Bladder Cancer with Drinking-Water Chlorination Disinfection By-Products

    PubMed Central

    Hrudey, Steve E.; Backer, Lorraine C.; Humpage, Andrew R.; Krasner, Stuart W.; Michaud, Dominique S.; Moore, Lee E.; Singer, Philip C.; Stanford, Benjamin D.

    2015-01-01

    Exposure to chlorination disinfection by-products (CxDBPs) is prevalent in populations using chlorination-based methods to disinfect public water supplies. Multifaceted research has been directed for decades to identify, characterize, and understand the toxicology of these compounds, control and minimize their formation, and conduct epidemiologic studies related to exposure. Urinary bladder cancer has been the health risk most consistently associated with CxDBPs in epidemiologic studies. An international workshop was held to (1) discuss the qualitative strengths and limitations that inform the association between bladder cancer and CxDBPs in the context of possible causation, (2) identify knowledge gaps for this topic in relation to chlorine/chloramine-based disinfection practice(s) in the United States, and (3) assess the evidence for informing risk management. Epidemiological evidence linking exposures to CxDBPs in drinking water to human bladder cancer risk provides insight into causality. However, because of imprecise, inaccurate, or incomplete estimation of CxDBPs levels in epidemiologic studies, translation from hazard identification directly to risk management and regulatory policy for CxDBPs can be challenging. Quantitative risk estimates derived from toxicological risk assessment for CxDBPs currently cannot be reconciled with those from epidemiologic studies, notwithstanding the complexities involved, making regulatory interpretation difficult. Evidence presented here has both strengths and limitations that require additional studies to resolve and improve the understanding of exposure response relationships. Replication of epidemiologic findings in independent populations with further elaboration of exposure assessment is needed to strengthen the knowledge base needed to better inform effective regulatory approaches. PMID:26309063

  6. POWDERED ACTIVATED CARBON FROM NORTH DAKOTA LIGNITE: AN OPTION FOR DISINFECTION BY-PRODUCT CONTROL IN WATER TREATMENT PLANTS

    SciTech Connect

    Daniel J. Stepan; Thomas A. Moe; Melanie D. Hetland; Margaret L. Laumb

    2001-06-01

    New federal drinking water regulations have been promulgated to restrict the levels of disinfection by-products (DBPs) in finished public water supplies. DBPs are suspected carcinogens and are formed when organic material is partially oxidized by disinfectants commonly used in the water treatment industry. Additional federal mandates are expected in the near future that will further affect public water suppliers with respect to DBPs. Powdered activated carbon (PAC) has traditionally been used by the water treatment industry for the removal of compounds contributing to taste and odor problems. PAC also has the potential to remove naturally occurring organic matter (NOM) from raw waters prior to disinfection, thus controlling the formation of regulated DBPs. Many small water systems are currently using PAC for taste and odor control and have the potential to use PAC for controlling DBPs. This project, a cooperative effort between the Energy & Environmental Research Center (EERC), the Grand Forks Water Treatment Plant, and the University of North Dakota Department of Civil Engineering, consists of several interrelated tasks. The objective of the research was to evaluate a cost-effective PAC produced from North Dakota lignite for removing NOM from water and reducing trihalomethane formation potential. The research approach was to develop a statistically valid testing protocol that can be used to compare dose-response relationships between North Dakota lignite-derived PAC and commercially available PAC products. A statistical analysis was performed to determine whether significant correlations exist between operating conditions, water properties, PAC properties, and dose-response behavior. Pertinent physical and chemical properties were also measured for each of the waters and each of the PACs.

  7. Photodegradation kinetics of iopamidol by UV irradiation and enhanced formation of iodinated disinfection by-products in sequential oxidation processes.

    PubMed

    Tian, Fu-Xiang; Xu, Bin; Lin, Yi-Li; Hu, Chen-Yan; Zhang, Tian-Yang; Gao, Nai-Yun

    2014-07-01

    The photochemical degradation of iopamidol with low-pressure UV lamps and the formation of iodinated disinfection by-products (I-DBPs) during sequential oxidation processes including chlorine, monochloramine and chlorine dioxide were investigated in this study. Iopamidol can be effectively decomposed by UV irradiation with pseudo-first order reaction kinetics. The evaluated quantum yield was found to be 0.03318 mol einstein(-1). Results showed that iopamidol degradation rate was significantly increased by higher UV intensity and lower initial iopamidol concentration. However, the effect of solution pH was negligible. Degradation of iopamidol by UV photolysis was subjected to deiodination and hydroxylation mechanisms. The main degradation products including -OH substitutes and iodide were identified by UPLC-ESI-MS and UPLC-UV, respectively. Increasing the intensity of UV irradiation promoted the release of iodide. Destruction pathways of iopamidol photolysis were proposed. Enhanced formation of I-DBPs were observed after iopamidol photolysis followed by disinfection processes including chlorine, monochloramine and chlorine dioxide. With the increase of UV fluence, I-DBPs formation were significantly promoted.

  8. Characterization of iodinated disinfection by-products in chlorinated and chloraminated waters using Orbitrap based gas chromatography-mass spectrometry.

    PubMed

    Postigo, Cristina; Cojocariu, Cristian I; Richardson, Susan D; Silcock, Paul J; Barcelo, Damia

    2016-05-01

    Recent developments in gas chromatography (GC)-mass spectrometry (MS) have opened up the possibility to use the high resolution-accurate mass (HRAM) Orbitrap mass analyzer to further characterize the volatile and semivolatile fractions of environmental samples. This work describes the utilization of GC Orbitrap MS technology to characterize iodine-containing disinfection by-products (iodo-DBPs) in chlorinated and chloraminated DBP mixture concentrates. These DBP mixtures were generated in lab-scale disinfection reactions using Llobregat river water and solutions containing Nordic Lake natural organic matter (NOM). The DBPs generated were concentrated using XAD resins, and extracts obtained were analyzed in full scan mode with the GC Orbitrap MS. Integration of high resolution accurate mass information and fragment rationalization allowed the characterization of up to 11 different iodo-DBPs in the water extracts analyzed, including one new iodo-DBP reported for the first time. Overall, formation of iodo-DBPs was enhanced during chloramination reactions. As expected, NOM characteristics and iodide and bromide content of the tested waters affected the amount and type of iodo-DBPs generated.

  9. Assessing exposure in epidemiologic studies to disinfection by-products in drinking water: report from an international workshop.

    PubMed Central

    Arbuckle, Tye E; Hrudey, Steve E; Krasner, Stuart W; Nuckols, Jay R; Richardson, Susan D; Singer, Philip; Mendola, Pauline; Dodds, Linda; Weisel, Clifford; Ashley, David L; Froese, Kenneth L; Pegram, Rex A; Schultz, Irvin R; Reif, John; Bachand, Annette M; Benoit, Frank M; Lynberg, Michele; Poole, Charles; Waller, Kirsten

    2002-01-01

    The inability to accurately assess exposure has been one of the major shortcomings of epidemiologic studies of disinfection by-products (DBPs) in drinking water. A number of contributing factors include a) limited information on the identity, occurrence, toxicity, and pharmacokinetics of the many DBPs that can be formed from chlorine, chloramine, ozone, and chlorine dioxide disinfection; b) the complex chemical interrelationships between DBPs and other parameters within a municipal water distribution system; and c) difficulties obtaining accurate and reliable information on personal activity and water consumption patterns. In May 2000, an international workshop was held to bring together various disciplines to develop better approaches for measuring DBP exposure for epidemiologic studies. The workshop reached consensus about the clear need to involve relevant disciplines (e.g., chemists, engineers, toxicologists, biostatisticians and epidemiologists) as partners in developing epidemiologic studies of DBPs in drinking water. The workshop concluded that greater collaboration of epidemiologists with water utilities and regulators should be encouraged in order to make regulatory monitoring data more useful for epidemiologic studies. Similarly, exposure classification categories in epidemiologic studies should be chosen to make results useful for regulatory or policy decision making. PMID:11834463

  10. Formation of toxic iodinated disinfection by-products from compounds used in medical imaging.

    PubMed

    Duirk, Stephen E; Lindell, Cristal; Cornelison, Christopher C; Kormos, Jennifer; Ternes, Thomas A; Attene-Ramos, Matias; Osiol, Jennifer; Wagner, Elizabeth D; Plewa, Michael J; Richardson, Susan D

    2011-08-15

    Iodinated X-ray contrast media (ICM) were investigated as a source of iodine in the formation of iodo-trihalomethane (iodo-THM) and iodo-acid disinfection byproducts (DBPs), both of which are highly genotoxic and/or cytotoxic in mammalian cells. ICM are widely used at medical centers to enable imaging of soft tissues (e.g., organs, veins, blood vessels) and are designed to be inert substances, with 95% eliminated in urine and feces unmetabolized within 24 h. ICM are not well removed in wastewater treatment plants, such that they have been found at elevated concentrations in rivers and streams (up to 100 μg/L). Naturally occurring iodide in source waters is believed to be a primary source of iodine in the formation of iodo-DBPs, but a previous 23-city iodo-DBP occurrence study also revealed appreciable levels of iodo-DBPs in some drinking waters that had very low or no detectable iodide in their source waters. When 10 of the original 23 cities' source waters were resampled, four ICM were found--iopamidol, iopromide, iohexol, and diatrizoate--with iopamidol most frequently detected, in 6 of the 10 plants sampled, with concentrations up to 2700 ng/L. Subsequent controlled laboratory reactions of iopamidol with aqueous chlorine and monochloramine in the absence of natural organic matter (NOM) produced only trace levels of iodo-DBPs; however, when reacted in real source waters (containing NOM), chlorine and monochloramine produced significant levels of iodo-THMs and iodo-acids, up to 212 nM for dichloroiodomethane and 3.0 nM for iodoacetic acid, respectively, for chlorination. The pH behavior was different for chlorine and monochloramine, such that iodo-DBP concentrations maximized at higher pH (8.5) for chlorine, but at lower pH (6.5) for monochloramine. Extracts from chloraminated source waters with and without iopamidol, as well as from chlorinated source waters with iopamidol, were the most cytotoxic samples in mammalian cells. Source waters with iopamidol but no

  11. [Formation Mechanism of the Disinfection By-product 1, 1-Dichloroacetone in Drinking Water].

    PubMed

    Ding, Chun-sheng; Meng, Zhuang; Xu, Yang-yang; Miao, Jia

    2015-05-01

    A novel method using methyl tertiary butyl ether (MTBE) as extractant and 1,2-dibromopropane as internal standard for the determination of the disinfection by-producs 1,1-dichloroacetone (DCAce) by gas chromatography mass spectrometry (GC-MS) was described. The formation process of DCAce and its influencing factors were discussed with L-leucine as the precursor during the chloramination process. The results indicated that the DCAce production increased with the increase of chloramine dosage when the chloramine addition was in the range of 5-30 mg · L(-1). The DCAce amount produced under alkaline condition was higher than those produced under the neutral and acidic conditions, and the DCAce amount reduced with the increase of pH value. Temperature was another important factor that affected the DCAce formation from methylamine especially in the range of 15-35°C , and the higher the temperature, the more the DCAce produced. The formation process of DCAce from L-leucine by chloramine consisted of a series of complicated reactions, including substitution, oxidation, bond breaking, amino diazotization, reduction and so on, and eventually DCAce was formed.

  12. Comparison of the disinfection by-product formation potential of treated waters exposed to chlorine and monochloramine.

    PubMed

    Bougeard, Cynthia M M; Goslan, Emma H; Jefferson, Bruce; Parsons, Simon A

    2010-02-01

    The formation of disinfection by-products (DBPs) from chlorination and monochloramination of treated drinking waters was determined. Samples were collected after treatment at 11 water treatment works but before exposure to chlorine or monochloramine. Formation potential tests were carried out to determine the DBPs formed by chlorination and monochloramination. DBPs measured were trihalomethanes (THMs), haloacetic acids (HAAs), halonitromethanes (HNMs), haloacetonitriles (HANs), haloaldehydes (HAs), haloketones (HKs) and iodo-THMs (i-THMs). All waters had the potential to form significant levels of all the DBPs measured. Compared to chlorine, monochloramination generally resulted in lower concentrations of DBPs with the exception of 1,1-dichloropropanone. The concentrations of THMs correlated well with the HAAs formed. The impact of bromine on the speciation of the DBPs was determined. The literature findings that higher bromide levels lead to higher concentrations of brominated DBPS were confirmed.

  13. Characterization and disinfection by-product formation potential of natural organic matter in surface and ground waters from Northern Florida

    USGS Publications Warehouse

    Rostad, C.E.; Leenheer, J.A.; Katz, B.; Martin, B.S.; Noyes, T.I.

    2000-01-01

    Streamwaters in northern Florida have large concentrations of natural organic matter (NOM), and commonly flow directly into the ground water system through karst features, such as sinkholes. In this study NOM from northern Florida stream and ground waters was fractionated, the fractions characterized by infrared (IR) and nuclear magnetic resonance (NMR), and then chlorinated to investigate their disinfection by-product (DBP) formation potential (FP). As the NOM character changed (as quantified by changes in NOM distribution in various fractions, such as hydrophilic acids or hydrophobic neutrals) due to migration through the aquifer, the total organic halide (TOX)-FP and trihalomethane (THM)-FP yield of each of these fractions varied also. In surface waters, the greatest DBP yields were produced by the colloid fraction. In ground waters, DBP yield of the hydrophobic acid fraction (the greatest in terms of mass) decreased during infiltration.

  14. Formation of iodinated disinfection by-products during oxidation of iodide-containing water with potassium permanganate.

    PubMed

    Ye, Tao; Xu, Bin; Lin, Yi-Li; Hu, Chen-Yan; Xia, Sheng-Ji; Lin, Lin; Mwakagenda, Seleli Andrew; Gao, Nai-Yun

    2012-11-30

    This study shows that iodinated disinfection by-products (I-DBPs) including iodoform (IF), iodoacetic acid (IAA) and triiodoacetic acid (TIAA) can be produced when iodide-containing waters are in contact with potassium permanganate. IF was found as the major I-DBP species during the oxidation. Iodide was oxidized to HOI, I(2) and I(3)(-), consequently, which led to the formation of iodinated organic compounds. I-DBPs varied with reaction time, solution pH, initial concentrations of iodide and potassium permanganate. Yields of IF, IAA and TIAA increased with reaction time and considerable I-DBPs were formed within 12 h. Peak IF yields were found at circumneutral pH range. However, formation of IAA and TIAA was favored under acidic conditions. Molar ratio of iodide to potassium permanganate showed significant influence on formation of IF, IAA and TIAA. The formation of IF, IAA and TIAA also depended on the characteristics of the waters.

  15. Formation of hazardous inorganic by-products during electrolysis of seawater as a disinfection process for desalination.

    PubMed

    Oh, Byung Soo; Oh, Sang Guen; Hwang, Youn Young; Yu, Hye-Weon; Kang, Joon-Wun; Kim, In S

    2010-11-01

    From our previous study, an electrochemical process was determined to be a promising tool for disinfection in a seawater desalination system, but an investigation on the production of several hazardous by-products is still required. In this study, a more intensive exploration of the formation patterns of perchlorate and bromate during the electrolysis of seawater was conducted. In addition, the rejection efficiencies of the targeted by-products by membrane processes (microfiltration and seawater reverse osmosis) were investigated to uncover the concentrations remaining in the final product from a membrane-based seawater desalination system for the production of drinking water. On the electrolysis of seawater, perchlorate did not provoke any problem due to the low concentrations formed, but bromate was produced at a much higher level, resulting in critical limitation in the application of the electrochemical process to the desalination of seawater. Even though the formed bromate was rejected via microfiltration and reverse osmosis during the 1st and 2nd passes, the residual concentration was a few orders of magnitude higher than the USEPA regulation. Consequently, it was concluded that the application of the electrochemical process to seawater desalination cannot be recommended without the control of bromate.

  16. Short-term spatial and temporal variability of disinfection by-product occurrence in small drinking water systems.

    PubMed

    Guilherme, Stéphanie; Rodriguez, Manuel J

    2015-06-15

    Disinfection by-products (DBPs) constitute a large family of compounds. Trihalomethanes and haloacetic acids are regulated in various countries, but most DBPs are not. Monitoring DBPs can be delicate, especially for small systems, because various factors influence their formation and speciation. Short-term variations of DBPs can be important and particularly difficult for small systems to handle because they require robust treatment and operation processes. According to our knowledge, for the first time, our study covers the short-term variability of regulated and non-regulated DBP occurrence in small systems in the summer. An intensive sampling program was carried out in six small systems in Canada. Systems in the provinces of Newfoundland and Labrador and Quebec were sampled daily at the water treatment plant and at six different locations along the distribution system. Five DBP families were studied: trihalomethanes, haloacetic acids, haloacetonitriles, halonitromethanes and haloketones. Results show that there were considerable variations in DBP levels from week to week during the month of study and even from day to day within the week. On a daily basis, DBP levels can fluctuate by 22% to 96%. Likewise, the large number of sampling locations served to observe DBP variations along the distribution system. Observations revealed some degradation and decomposition of non-regulated DBPs never before studied in small systems that are associated with the difficulty these systems experience in maintaining adequate levels of residual disinfectant. Finally, this study reveals that the short term temporal variability of DBPs is also influenced by spatial location along the distribution system. In the short term, DBP levels can fluctuate by 23% at the beginning of the system, compared to 40% at the end. Thus, spatial and temporal variations of DBPs in the short term may make it difficult to select representative locations and periods for DBP monitoring purposes in small

  17. CARCINOGENICITY OF INDIVIDUAL AND A MIXTURE OF DRINKING WATER DISINFECTION BY-PRODUCTS IN A RAT MODEL OF HEREDITARY RENAL CELL CARCINOMA

    EPA Science Inventory

    Carcinogenicity of Individual and a Mixture of Drinking Water Disinfection By-Products in a Rat Model of Hereditary Renal Cell Carcinoma

    Eker rats develop hereditary renal cell carcinoma secondary to a germline mutation in the tuberous sclerosis 2 (Tsc2) gene and are ligh...

  18. TWENTY WEEK EXPOSURES TO THE DRINKING WATER DISINFECTION BY-PRODUCT DIBROMOACETIC ACID: REPRODUCTIVE CYCLICITY AND STEROID CONCENTRATIONS IN THE FEMALE SPRAGUE-DAWLEY RAT

    EPA Science Inventory

    Abstract
    Elevated gavage exposures to the drinking water disinfection by-product dibromoacetic acid (DBA) have been found to disrupt estrous cyclicity in the rat and induce increases in estradiol concentrations in both cycling (day of estrus) and ovariectomized/estradiol-impla...

  19. Meeting in Canada: Chlorinated vs. Chloraminated Drinking Water: Toxicity-Based Identification of Disinfection By-Products Using ESI-MS and ESI-MS/MS

    EPA Science Inventory

    Drinking water disinfection by-products (DBPs) are of concern because epidemiologic studies have shown that they are associated with bladder cancer and adverse reproductive/developmental effects in human populations. There is almost no information on high molecular weight DBPs (>...

  20. MEETING IN CHINA: CHLORINATED VS. CHLORAMINATED DRINKING WATER: TOXICITY-BASED IDENTIFICATION OF DISINFECTION BY-PRODUCTS USING ESI-MS AND ESI-MS/MS

    EPA Science Inventory

    Drinking water disinfection by-products (DBPs) are of concern because epidemiologic studies have shown that they are associated with bladder cancer and adverse reproductive/developmental effects in human populations, and some cause cancer in laboratory animals. As a result, the U...

  1. DISRUPTION IN RAT ESTROUS CYCLICITY BY THE DRINKING WATER DISINFECTANT BY-PRODUCT DIBROMOACETIC ACID: RELATIONSHIP TO A SUPPRESSION ON ESTRADIOL METABOLISM?

    EPA Science Inventory

    Disruption in Rat Estrous Cyclicity by the Drinking Water Disinfectant By-Product Dibromoacetic Acid: Relationship to A Suppression on Estradiol Metabolism?

    Ashley S. Murr and Jerome M. Goldman, Endocrinology Branch, Reproductive Toxicology Division National Health and En...

  2. MODERATING INFLUENCE OF THE DRINKING WATER DISINFECTION BY-PRODUCT DIBROMOACETIC ACID ON A DITHIOCARBAMATE-INDUCED SUPPRESSION OF THE LUTEINIZING HORMONE SURGE IN FEMALE RATS.

    EPA Science Inventory

    The disinfection by-product dibromoacetic acid (DBA) has been found in female rats to increase circulating concentrations of both estradiol (E2) and estrone (E1). This effect is apparently due, at least in part, to a suppression in hepatic catabolism. The present study investigat...

  3. CHLORINATED VS. CHLORAMINATED DRINKING WATER: TOXICITY-BASED IDENTIFICATION OF DISINFECTION BY-PRODUCTS USING ESI-MS AND ESI-MS/MS

    EPA Science Inventory

    Drinking water disinfection by-products (DBPs) are of concern because some epidemiologic studies have shown that some DBPs are associated with cancer or adverse reproductive/developmental effects in human populations, and other studies have shown that certain DBPs cause similar h...

  4. PROBING REACTIVITY OF DISSOLVED ORGANIC MATTER FOR DISINFECTION BY-PRODUCT FORMATION USING XAD-8 RESIN ADSORPTION AND ULTRAFILTRATION FRACTIONATION. (R828045)

    EPA Science Inventory

    The disinfection by-product (DBP) reactivity (yield and speciation upon reaction with chlorine) of dissolved organic matter (DOM) isolated from two surface waters was investigated. The source waters, each having significantly different specific ultraviolet absorbance (SUVA

  5. Assessment of reproductive effects on complex mixtures of disinfection by-products in a multigenerational rat bioassay of drinking water concentrates

    EPA Science Inventory

    To address concerns raised by epidemiology studies, we conducted a multigenerational reproductive toxicity study in rats using a “whole” mixture of drinking water disinfection by-products (DBPs). Raw water was concentrated ~130 fold, chlorinated, and provided as drinking water to...

  6. Assessment of Reproductive Effects of Complex Mixtures of Disinfection By-Products in a Multi-Generational Rat Bioassay of Drinking Water Concentrates - Monterey

    EPA Science Inventory

    To address concerns raised by epidemiology studies, we conducted a multigenerational reproductive toxicity study in rats using a “whole” mixture of drinking water disinfection by-products (DBPs). Raw water was concentrated ~130 fold, chlorinated, and provided as drinking water to...

  7. Comparison of formation of disinfection by-products by chlorination and ozonation of wastewater effluents and their toxicity to Daphnia magna.

    PubMed

    Park, Keun-Young; Choi, Su-Young; Lee, Seung-Hoon; Kweon, Ji-Hyang; Song, Ji-Hyeon

    2016-08-01

    This study compared the two most frequently used disinfectants (i.e., chlorine and ozone) to understand their efficiency in wastewater effluents and the ecotoxicity of disinfection by-products created during chlorination and ozonation. Four trihalomethanes (THMs) and nine haloacetic acids (HAAs) were measured from a chlorine-disinfected sample and two aldehydes (i.e., formaldehydes and acetaldehydes) were analyzed after ozonation. Chlorination was effective for total coliform removal with Ct value in the range of 30-60 mg-min/L. Over 1.6 mg/L of ozone dose and 0.5 min of the contact time presented sufficient disinfection efficiency. The concentration of THMs increased with longer contact time (24 h), but that of HAAs showed little change with contact time. The measured concentration of formaldehyde at the ozone dose of 1.6 mg/L and the contact time of 9 min showed the greatest value in this study, approximately 330 μg L(-1), from which the corresponding ecotoxicity was determined using an indicator species, Daphnia magna. The ecotoxicity results were consistent with the toxicological features judged by occurrence, genotoxicity, and carcinogenicity. Both the disinfection efficiency as well as the DBP formation potential should therefore be considered to avoid harmful impacts on aquatic environments when a disinfection method is used for wastewater effluents.

  8. Reproductive Toxicity of a Mixture of Regulated Drinking-Water Disinfection By-Products in a Multigenerational Rat Bioassay

    PubMed Central

    Klinefelter, Gary R.; Goldman, Jerome M.; DeAngelo, Anthony B.; Best, Deborah S.; McDonald, Anthony; Strader, Lillian F.; Murr, Ashley S.; Suarez, Juan D.; George, Michael H.; Hunter, E. Sidney; Simmons, Jane Ellen

    2015-01-01

    Background Trihalomethanes (THMs) and haloacetic acids (HAAs) are regulated disinfection by-products (DBPs); their joint reproductive toxicity in drinking water is unknown. Objective We aimed to evaluate a drinking water mixture of the four regulated THMs and five regulated HAAs in a multigenerational reproductive toxicity bioassay. Methods Sprague-Dawley rats were exposed (parental, F1, and F2 generations) from gestation day 0 of the parental generation to postnatal day (PND) 6 of the F2 generation to a realistically proportioned mixture of THMs and HAAs at 0, 500×, 1,000×, or 2,000× of the U.S. Environmental Protection Agency’s maximum contaminant levels (MCLs). Results Maternal water consumption was reduced at ≥ 1,000×; body weights were reduced at 2,000×. Prenatal and postnatal survival were unaffected. F1 pup weights were unaffected at birth but reduced at 2,000× on PND6 and at ≥ 1,000× on PND21. Postweaning F1 body weights were reduced at 2,000×, and water consumption was reduced at ≥ 500×. Males at 2,000× had a small but significantly increased incidence of retained nipples and compromised sperm motility. Onset of puberty was delayed at 1,000× and 2,000×. F1 estrous cycles and fertility were unaffected, and F2 litters showed no effects on pup weight or survival. Histologically, P0 (parental) dams had nephropathy and adrenal cortical pathology at 2,000×. Conclusions A mixture of regulated DBPs at up to 2,000× the MCLs had no adverse effects on fertility, pregnancy maintenance, prenatal survival, postnatal survival, or birth weights. Delayed puberty at ≥ 1,000× may have been secondary to reduced water consumption. Male nipple retention and compromised sperm motility at 2,000× may have been secondary to reduced body weights. Citation Narotsky MG, Klinefelter GR, Goldman JM, DeAngelo AB, Best DS, McDonald A, Strader LF, Murr AS, Suarez JD, George MH, Hunter ES III, Simmons JE. 2015. Reproductive toxicity of a mixture of regulated

  9. Disinfection by-product formation following chlorination of drinking water: artificial neural network models and changes in speciation with treatment.

    PubMed

    Kulkarni, Pranav; Chellam, Shankararaman

    2010-09-01

    Artificial neural network (ANN) models were developed to predict disinfection by-product (DBP) formation during municipal drinking water treatment using the Information Collection Rule Treatment Studies database complied by the United States Environmental Protection Agency. The formation of trihalomethanes (THMs), haloacetic acids (HAAs), and total organic halide (TOX) upon chlorination of untreated water, and after conventional treatment, granular activated carbon treatment, and nanofiltration were quantified using ANNs. Highly accurate predictions of DBP concentrations were possible using physically meaningful water quality parameters as ANN inputs including dissolved organic carbon (DOC) concentration, ultraviolet absorbance at 254nm and one cm path length (UV(254)), bromide ion concentration (Br(-)), chlorine dose, chlorination pH, contact time, and reaction temperature. This highlights the ability of ANNs to closely capture the highly complex and non-linear relationships underlying DBP formation. Accurate simulations suggest the potential use of ANNs for process control and optimization, comparison of treatment alternatives for DBP control prior to piloting, and even to reduce the number of experiments to evaluate water quality variations when operating conditions are changed. Changes in THM and HAA speciation and bromine substitution patterns following treatment are also discussed.

  10. Human health risk assessment of chlorinated disinfection by-products in drinking water using a probabilistic approach.

    PubMed

    Hamidin, Nasrul; Yu, Qiming Jimmy; Connell, Des W

    2008-07-01

    The presence of chlorinated disinfection by-products (DBPs) in drinking water is a public health issue, due to their possible adverse health effects on humans. To gauge the risk of chlorinated DBPs on human health, a risk assessment of chloroform (trichloromethane (TCM)), bromodichloromethane (BDCM), dibromochloromethane (DBCM), bromoform (tribromomethane (TBM)), dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA) in drinking water was carried out using probabilistic techniques. Literature data on exposure concentrations from more than 15 different countries and adverse health effects on test animals as well as human epidemiological studies were used. The risk assessment showed no overlap between the highest human exposure dose (EXP(D)) and the lowest human equivalent dose (HED) from animal test data, for TCM, BDCM, DBCM, TBM, DCAA and TCAA. All the HED values were approximately 10(4)-10(5) times higher than the 95th percentiles of EXP(D). However, from the human epidemiology data, there was a positive overlap between the highest EXP(D) and the lifetime average daily doses (LADD(H)) for TCM, BDCM, DCAA and TCAA. This suggests that there are possible adverse health risks such as a small increased incidence of cancers in males and developmental effects on infants. However, the epidemiological data comprised several risk factors and exposure classification levels which may affect the overall results.

  11. Seasonal variations in the household exposures of Korean housewives to volatile tap water disinfection by-products.

    PubMed

    Kim, Hekap

    2008-09-15

    This study was conducted to compare housewives' winter and summer exposures to volatile disinfection by-products (DBPs) in chlorinated tap water. A total of 60 households were visited for this purpose: 27 in winter and 33 in summer. Each subject was given a questionnaire regarding general tap water use, household ventilation time, and activities related to water use. Tap water, household air, and exhaled breath samples were also collected during the visits. All of the subjects answered that they consumed tap water after either thermal treatment or purification through filtration systems. A longer ventilation time in winter than in summer resulted in a higher inhalation exposure for housewives during that season. Estimated chronic daily intakes calculated for winter and summer showed that in winter, the greatest risk at home is inhalation exposure while resting at home, whereas in summer, it is showering. In both seasons, the ingestion route can be discounted, because tap water is processed before consumption, eliminating the volatile DBPs. From this study, it is evident that the inhalation of household air while resting at home cannot be ignored in risk assessment. Moreover, the fact that water is normally boiled or filtered before use should also be considered.

  12. Disinfection by-product formation and mitigation strategies in point-of-use chlorination with sodium dichloroisocyanurate in Tanzania.

    PubMed

    Lantagne, Daniele S; Cardinali, Fred; Blount, Ben C

    2010-07-01

    Almost a billion persons lack access to improved drinking water, and diarrheal diseases cause an estimated 1.87 million deaths per year. Sodium dichloroisocyanurate (NaDCC) tablets are widely recommended for household water treatment to reduce diarrhea. Because NaDCC is directly added to untreated water sources, concerns have been raised about the potential health impact of disinfection by-products. This study investigated trihalomethane (THM) production in water from six sources used for drinking (0.6-888.5 nephelometric turbidity units) near Arusha, Tanzania. No sample collected at 1, 8, and 24 hours after NaDCC addition exceeded the World Health Organization guideline values for either individual or total THMs. Ceramic filtration, sand filtration, cloth filtration, and settling and decanting were not effective mitigation strategies to reduce THM formation. Chlorine residual and THM formation were not significantly different in NaDCC and sodium hypochlorite treatment. Household chlorination of turbid and non-turbid waters did not create THM concentrations that exceeded health risk guidelines.

  13. The effect of different boiling and filtering devices on the concentration of disinfection by-products in tap water.

    PubMed

    Carrasco-Turigas, Glòria; Villanueva, Cristina M; Goñi, Fernando; Rantakokko, Panu; Nieuwenhuijsen, Mark J

    2013-01-01

    Disinfection by-products (DBPs) are ubiquitous contaminants in tap drinking water with the potential to produce adverse health effects. Filtering and boiling tap water can lead to changes in the DBP concentrations and modify the exposure through ingestion. Changes in the concentration of 4 individual trihalomethanes (THM4) (chloroform (TCM), bromodichloromethane (BDCM), dibromochloromethane (DBCM), and bromoform (TBM)), MX, and bromate were tested when boiling and filtering high bromine-containing tap water from Barcelona. For filtering, we used a pitcher-type filter and a household reverse osmosis filter; for boiling, an electric kettle, a saucepan, and a microwave were used. Samples were taken before and after each treatment to determine the change in the DBP concentration. pH, conductivity, and free/total chlorine were also measured. A large decrease of THM4 (from 48% to 97%) and MX concentrations was observed for all experiments. Bromine-containing trihalomethanes were mostly eliminated when filtering while chloroform when boiling. There was a large decrease in the concentration of bromate with reverse osmosis, but there was a little effect in the other experiments. These findings suggest that the exposure to THM4 and MX through ingestion is reduced when using these household appliances, while the decrease of bromate is device dependent. This needs to be considered in the exposure assessment of the epidemiological studies.

  14. The Effect of Different Boiling and Filtering Devices on the Concentration of Disinfection By-Products in Tap Water

    PubMed Central

    Carrasco-Turigas, Glòria; Villanueva, Cristina M.; Goñi, Fernando; Rantakokko, Panu; Nieuwenhuijsen, Mark J.

    2013-01-01

    Disinfection by-products (DBPs) are ubiquitous contaminants in tap drinking water with the potential to produce adverse health effects. Filtering and boiling tap water can lead to changes in the DBP concentrations and modify the exposure through ingestion. Changes in the concentration of 4 individual trihalomethanes (THM4) (chloroform (TCM), bromodichloromethane (BDCM), dibromochloromethane (DBCM), and bromoform (TBM)), MX, and bromate were tested when boiling and filtering high bromine-containing tap water from Barcelona. For filtering, we used a pitcher-type filter and a household reverse osmosis filter; for boiling, an electric kettle, a saucepan, and a microwave were used. Samples were taken before and after each treatment to determine the change in the DBP concentration. pH, conductivity, and free/total chlorine were also measured. A large decrease of THM4 (from 48% to 97%) and MX concentrations was observed for all experiments. Bromine-containing trihalomethanes were mostly eliminated when filtering while chloroform when boiling. There was a large decrease in the concentration of bromate with reverse osmosis, but there was a little effect in the other experiments. These findings suggest that the exposure to THM4 and MX through ingestion is reduced when using these household appliances, while the decrease of bromate is device dependent. This needs to be considered in the exposure assessment of the epidemiological studies. PMID:23476675

  15. Validation of urinary trichloroacetic acid as a biomarker of exposure to drinking water disinfection by-products.

    PubMed

    Zhang, Weiping; Gabos, Stephan; Schopflocher, Donald; Li, Xing-Fang; Gati, Wendy P; Hrudey, Steve E

    2009-09-01

    Disinfection by-products (DBPs) in drinking water represent a public health issue and a challenge for epidemiology to provide evidence towards the causation of various hypothesized health effects. Validation of a biomarker of exposure to DBPs is a strategy to achieve progress which has been advocated. The objective of this study was to validate urinary trichloroacetic acid (TCAA) excretion as a biomarker of exposure to DBPs in an experimental exposure cohort. A total of 52 healthy women participated in the study. Participants consumed supplied tap water for 15 d and provided urine and blood samples for TCAA measurements. The findings revealed that (1) background levels of TCAA in urine and blood were readily detectable, (2) TCAA levels in blood and urine increased with increased amounts of TCAA ingested, (3) the correlations between measurements of TCAA ingestion and urinary excretion were modest (r=0.66, p<0.001) based on one days' sampling and high (r=0.77-0.83, p<0.001) based on two to four days' sampling, (4) the correlations between measurements of TCAA ingestion and blood TCAA concentration were high (r=0.80, p<0.001) and (5) multiple days' urinary TCAA measures improved the prediction of TCAA ingestion through urinary TCAA excretion. TCAA can be a valid biomarker of exposure for DBPs in drinking water.

  16. Pyruvate remediation of cell stress and genotoxicity induced by haloacetic acid drinking water disinfection by-products.

    PubMed

    Dad, Azra; Jeong, Clara H; Pals, Justin A; Wagner, Elizabeth D; Plewa, Michael J

    2013-10-01

    Monohaloacetic acids (monoHAAs) are a major class of drinking water disinfection by-products (DBPs) and are cytotoxic, genotoxic, mutagenic, and teratogenic. We propose a model of toxic action based on monoHAA-mediated inhibition of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as a target cytosolic enzyme. This model predicts that GAPDH inhibition by the monoHAAs will lead to a severe reduction of cellular ATP levels and repress the generation of pyruvate. A loss of pyruvate will lead to mitochondrial stress and genomic DNA damage. We found a concentration-dependent reduction of ATP in Chinese hamster ovary cells after monoHAA treatment. ATP reduction per pmol monoHAA followed the pattern of iodoacetic acid (IAA) > bromoacetic acid (BAA) > chloroacetic acid (CAA), which is the pattern of potency observed with many toxicological endpoints. Exogenous supplementation with pyruvate enhanced ATP levels and attenuated monoHAA-induced genomic DNA damage as measured with single cell gel electrophoresis. These data were highly correlated with the SN 2 alkylating potentials of the monoHAAs and with the induction of toxicity. The results from this study strongly support the hypothesis that GAPDH inhibition and the possible subsequent generation of reactive oxygen species is linked with the cytotoxicity, genotoxicity, teratogenicity, and neurotoxicity of these DBPs.

  17. Degradation of carbamazepine by UV/chlorine advanced oxidation process and formation of disinfection by-products.

    PubMed

    Zhou, Shiqing; Xia, Ying; Li, Ting; Yao, Tian; Shi, Zhou; Zhu, Shumin; Gao, Naiyun

    2016-08-01

    Pharmaceuticals in water are commonly found and are not efficiently removed by current treatment processes. Degradation of antiepileptic drug carbamazepine (CBZ) by UV/chlorine advanced oxidation process was systematically investigated in this study. The results showed that the UV/chlorine process was more effective at degrading CBZ than either UV or chlorination alone. The CBZ degradation followed pseudo-first order reaction kinetics, and the degradation rate constants (kobs) were affected by the chlorine dose, solution pH, and natural organic matter concentration to different degrees. Degradation of CBZ greatly increased with increasing chlorine dose and decreasing solution pH during the UV/chlorine process. Additionally, the presence of natural organic matter in the solution inhibited the degradation of CBZ. UV photolysis, chlorination, and reactive species (hydroxyl radical •OH and chlorine atoms •Cl) were identified as responsible for CBZ degradation in the UV/chlorine process. Finally, a degradation pathway for CBZ in the UV/chlorine process was proposed and the formation potentials of carbonaceous and nitrogenous disinfection by-products were evaluated. Enhanced formation of trichloroacetic acid, dichloroacetonitrile, and trichloronitromethane precursors should be considered when applying UV/chlorine advanced oxidation process to drinking water.

  18. Application of effect-directed analysis to identify mutagenic nitrogenous disinfection by-products of advanced oxidation drinking water treatment.

    PubMed

    Vughs, D; Baken, K A; Kolkman, A; Martijn, A J; de Voogt, P

    2016-07-22

    Advanced oxidation processes are important barriers for organic micropollutants in (drinking) water treatment. It is however known that medium pressure UV/H2O2 treatment may lead to mutagenicity in the Ames test, which is no longer present after granulated activated carbon (GAC) filtration. Many nitrogen-containing disinfection by-products (N-DBPs) result from the reaction of photolysis products of nitrate with (photolysis products of) natural organic material (NOM) during medium pressure UV treatment of water. Identification of the N-DBPs and the application of effect-directed analysis to combine chemical screening results with biological activity would provide more insight into the relation of specific N-DBPs with the observed mutagenicity and was the subject of this study. To this end, fractions of medium pressure UV-treated and untreated water extracts were prepared using preparative HPLC and tested using the Ames fluctuation test. In addition, high-resolution mass spectrometry was performed on all fractions to assess the presence of N-DBPs. Based on toxicity data and read across analysis, we could identify five N-DBPs that are potentially genotoxic and were present in relatively high concentrations in the fractions in which mutagenicity was observed. The results of this study offer opportunities to further evaluate the identity and potential health concern of N-DBPs formed during advanced oxidation UV drinking water treatment.

  19. Behavior of non-regulated disinfection by-products in water following multiple chlorination points during treatment.

    PubMed

    Marcoux, Alain; Pelletier, Geneviève; Legay, Christelle; Bouchard, Christian; Rodriguez, Manuel J

    2017-02-18

    In this study, the behavior of regulated (trihalomethanes-THMs, haloacetic acids-HAAs) and non-regulated (haloacetonitriles-HANs, haloketones-HKs, chloropicrin-CPK) disinfection by-products (DBPs) was investigated during treatment and distribution in a municipal drinking water system that adds chlorine at multiple points within the water treatment plant (WTP). Three to eight locations in the WTP and four locations in the distribution network were sampled weekly for DBP measurements during the warmest period of the year. The results show that most DBPs found in the study area are formed during treatment, not distribution. However, the DBP species studied behave differently during treatment and distribution. Moreover, the location where DBP concentration is the highest in the distribution network differs among species of the same family, especially HAAs and HKs, and between the sampling campaigns. As a result, the relevance of using the sum of the concentrations of the species of the same DBP family to select sampling sites for DBP monitoring is questionable. This study illustrates the difficulties that drinking water supply managers must face to control and monitor the presence of DBPs.

  20. Considerations for improving the accuracy of exposure to disinfection by-products by ingestion in epidemiologic studies.

    PubMed

    Weinberg, Howard S; Pereira, Vanessa R P J; Singer, Philip C; Savitz, David A

    2006-01-15

    Disinfection by-product (DBP) exposure characterization studies are often based on the analysis of a limited number of samples collected from a distribution system (DS) in which DBP levels are variable over time and space. A compositing technique was developed to simplify the sample collection procedures for integrating over temporal variations in DBPs measured in terms of trihalomethanes (THMs), haloacetic acids (HAAs), and total organic halogen (TOX). Over the course of 5 days analysis, the single composited sample was within 94-100% of the average THM concentration in all grab samples, 92-105% of HAAs, and 130% of the TOX concentration. Additionally, temporal variability factors such as timing of sample collection and the handling of tap water prior to consumption were found to influence DBP levels in consumers' drinking water. Included in our study of home water use are the effects of boiling which removed up to 98% of THMs and point of use (POU) devices which all showed DBP removal but differed depending on the device used. These factors should be taken into consideration in DBP exposure characterization for epidemiologic studies.

  1. Concentrations and correlations of disinfection by-products in municipal drinking water from an exposure assessment perspective.

    PubMed

    Villanueva, Cristina M; Castaño-Vinyals, Gemma; Moreno, Víctor; Carrasco-Turigas, Glòria; Aragonés, Nuria; Boldo, Elena; Ardanaz, Eva; Toledo, Estefanía; Altzibar, Jone M; Zaldua, Itziar; Azpiroz, Lourdes; Goñi, Fernando; Tardón, Adonina; Molina, Antonio J; Martín, Vicente; López-Rojo, Concepción; Jiménez-Moleón, José J; Capelo, Rocío; Gómez-Acebo, Inés; Peiró, Rosana; Ripoll, Mónica; Gracia-Lavedan, Esther; Nieuwenhujsen, Mark J; Rantakokko, Panu; Goslan, Emma H; Pollán, Marina; Kogevinas, Manolis

    2012-04-01

    Although disinfection by-products (DBPs) occur in complex mixtures, studies evaluating health risks have been focused in few chemicals. In the framework of an epidemiological study on cancer in 11 Spanish provinces, we describe the concentration of four trihalomethanes (THMs), nine haloacetic acids (HAA), 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone (MX), four haloacetonitries, two haloketones, chloropicrin and chloral hydrate and estimate correlations. A total of 233 tap water samples were collected in 2010. Principal component analyses were conducted to reduce dimensionality of DBPs. Overall median (range) level of THMs and HAAs was 26.4 (0.8-98.1) and 26.4 (0.9-86.9) μg/l, respectively (N=217). MX analysed in a subset (N=36) showed a median (range) concentration of 16.7 (0.8-54.1)ng/l. Haloacetonitries, haloketones, chloropicrin and chloral hydrate were analysed in a subset (N=16), showing levels from unquantifiable (<1 μg/l) to 5.5 μg/l (dibromoacetonitrile). Spearman rank correlation coefficients between DBPs varied between species and across areas, being highest between dibromochloromethane and dibromochloroacetic acid (r(s)=0.87). Principal component analyses of 13 DBPs (4 THMs, 9 HAAs) led 3 components explaining more than 80% of variance. In conclusion, THMs and HAAs have limited value as predictors of other DBPs on a generalised basis. Principal component analysis provides a complementary tool to address the complex nature of the mixture.

  2. Monitoring of chlorination disinfection by-products and their associated health risks in drinking water of Pakistan.

    PubMed

    Abbas, Sidra; Hashmi, Imran; Rehman, Muhammad Saif Ur; Qazi, Ishtiaq A; Awan, Mohammad A; Nasir, Habib

    2015-03-01

    This study reports the baseline data of chlorination disinfection by-products such as trihalomethanes (THMs) and their associated health risks in the water distribution network of Islamabad and Rawalpindi, Pakistan. THM monitoring was carried out at 30 different sampling sites across the twin cities for 6 months. The average concentration of total trihalomethanes (TTHMs) and chloroform ranged between 575 and 595 μg/L which exceeded the permissible US (80 μg/L) and EU (100 μg/L) limits. Chloroform was one of the major contributors to the TTHMs concentration (>85%). The occurrence of THMs was found in the following order: chloroform, bromodichloromethane > dibromochloromethane > bromoform. Lifetime cancer risk assessment of THMs for both males and females was carried out using prediction models via different exposure routes (ingestion, inhalation, and dermal). Total lifetime cancer risk assessment for different exposure routes (ingestion, inhalation, and skin) was carried out. The highest cancer risk expected from THMs seems to be from the inhalation route followed by ingestion and dermal contacts. The average lifetime cancer risk for males and females was found to be 0.51 × 10⁻³ and 1.22 × 10⁻³, respectively. The expected number of cancer risks per year could reach two to three cases for each city.

  3. DOC, Color and Disinfection By-Product Precursor Dynamics along an Urbanization Gradient, Croton Water Supply System, New York, USA

    NASA Astrophysics Data System (ADS)

    Hassett, J. M.; Mitchell, M. J.; Burns, D. A.; Heisig, P. M.

    2005-05-01

    Hydrologic processes in suburban watersheds and their effects on water quality warrant investigation. Biweekly and storm samples were collected and analyzed for base cations, selected anions, and DOC over a one-year period at the outlet of three small (37 - 55 ha) watersheds (one forested, two with different degrees of suburban development) in the Croton Watershed, southeastern New York. Less frequent sampling for Pt/Co color and disinfection by-product precursors (DBPs) were also conducted. Median baseflow concentrations (>3 days since rainfall) of DOC were similar, ranging from 2.1 to 1.8 to 1.7 mg L -1 for the most urbanized to the forested watershed, respectively. On a unit area load basis (kg ha-1 yr-1), the range was from 8.9 to 6.4 to 5.1, again from most urbanized to forested watershed. All three watersheds showed similar storm responses, with evidence for a flushing mechanism in that DOC concentration increased with increasing discharge. Pt/Co color and DBPs (determined as both total trihalomethane and total haloacetic acid formation potentials) showed similar storm behavior, although the range of response was greater than observed for DOC, suggesting a labile DOC fraction was mobilized during storm events. The more urbanized watersheds tended to favor brominated over chlorinated forms of DBPs; the reasons for this are unclear.

  4. Removal of soluble microbial products as the precursors of disinfection by-products in drinking water supplies.

    PubMed

    Liu, Jin-Lin; Li, Xiao-Yan

    2015-01-01

    Water pollution worsens the problem of disinfection by-products (DBPs) in drinking water supply. Biodegradation of wastewater organics produces soluble microbial products (SMPs), which can be important DBP precursors. In this laboratory study, a number of enhanced water treatment methods for DBP control, including enhanced coagulation, ozonation, and activated carbon adsorption, were evaluated for their effectiveness in treating SMP-containing water for the DBP reduction purpose. The results show that enhanced coagulation with alum could remove SMPs only marginally and decrease the DBP formation potential (DBPFP) of the water by less than 20%. Although ozone could cause destruction of SMPs in water, the overall DBPFP of the water did not decrease but increased after ozonation. In contrast, adsorption by granular activated carbon could remove the SMP organics from water by more than 60% and reduce the DBPFP by more than 70%. It is apparent that enhanced coagulation and ozonation are not suitable for the removal of SMPs as DBP precursors from polluted water, although enhanced coagulation has been commonly used to reduce the DBP formation caused by natural organic matter. In comparison, activated carbon adsorption is shown as a more effective means to remove the SMP content from water and hence to control the wastewater-derived DBP problem in water supply.

  5. Chlorinated and nitrogenous disinfection by-product formation from ozonation and post-chlorination of natural organic matter surrogates.

    PubMed

    Bond, Tom; Templeton, Michael R; Rifai, Omar; Ali, Hussain; Graham, Nigel J D

    2014-09-01

    Ozonation before chlorination is associated with enhanced formation of chloropicrin, a halonitromethane disinfection by-product (DBP), during drinking water treatment. In order to elucidate reasons for this, five natural organic matter (NOM) surrogates were treated using both chlorination and ozonation-chlorination under controlled laboratory conditions. Selected surrogates comprised two phenolic compounds, two free amino acids and one dipeptide; these were resorcinol, 3-aminophenol, L-aspartic acid, β-alanine and ala-ala, respectively. Quantified DBPs included chloropicrin, chloroform, dichloroacetonitrile and trichloroacetonitrile. Relative to chlorination alone, increases in the formation of chloropicrin from ozonation-chlorination varied from 138% for 3-aminophenol to 3740% for ala-ala for the four amine surrogates. This indicates that ozone is more effective than chlorine in mediating a rate-limiting oxidation step in chloropicrin formation, most plausibly involving conversion of an amine group to a nitro group. While both hydrophilic and hydrophobic surrogates acted as chloropicrin precursors, ala-ala was the most reactive precursor following ozonation-chlorination. Since peptides are far commoner in drinking water sources than free amino acids, further research into chemical oxidation of these species by ozone and chlorine is recommended. In contrast, oxidation with ozone prior to chlorination reduced chloroform formation moderately for the two phenolic compounds.

  6. Formation potentials of bromate and brominated disinfection by-products in bromide-containing water by ozonation.

    PubMed

    Lin, Tao; Wu, Shouke; Chen, Wei

    2014-12-01

    The ozonation involved in drinking water treatment raises issues of water quality security when the raw water contains bromide (Br(-)). Br(-) ions may be converted to bromate (BrO3 (-)) during ozonation and some brominated disinfection by-products (Br-DBPs) in the following chlorination. In this study, the effects of ozone (O3) dosage, contact time, pH, and Br(-) and ammonia (NH3-N) concentrations on the formation of BrO3 (-) and Br-DBPs have been investigated. The results show that decreasing the initial Br(-) concentration is an effective means of controlling the formation of BrO3 (-). When the concentration of Br(-) was lower than 100 μg/L, by keeping the ratio of O3 dosage to dissolved organic carbon (DOC) concentration at less than 1, BrO3 (-) production was effectively suppressed. The concentration of BrO3 (-) steadily increased with increasing O3 dosage at high Br(-) concentration (>900 μg/L). Additionally, a longer ozonation time increased the concentrations of BrO3 (-) and total organic bromine (TOBr), while it had less impact on the formation potentials of brominated trihalomethanes (Br-THMFP) and haloacetic acids (Br-HAAFP). Higher pH value and the presence of ammonia may lead to an increase in the formation potential of BrO3 (-) and Br-DBPs.

  7. Ozone-biological activated carbon integrated treatment for removal of precursors of halogenated nitrogenous disinfection by-products.

    PubMed

    Chu, Wenhai; Gao, Naiyun; Yin, Daqiang; Deng, Yang; Templeton, Michael R

    2012-03-01

    Pilot-scale tests were performed to reduce the formation of several nitrogenous and carbonaceous disinfection by-products (DBPs) with an integrated ozone and biological activated carbon (O(3)-BAC) treatment process following conventional water treatment processes (coagulation-sedimentation-filtration). Relative to the conventional processes alone, O(3)-BAC significantly improved the removal of turbidity, dissolved organic carbon, UV(254), NH(4)(+) and dissolved organic nitrogen from 98-99%, 58-72%, 31-53%, 16-93% and 35-74%, respectively, and enhanced the removal efficiency of the precursors for the measured DBPs. The conventional process was almost ineffective in removing the precursors of trichloronitromethane (TCNM) and dichloroacetamide (DCAcAm). Ozonation could not substantially reduce the formation of DCAcAm, and actually increased the formation potential of TCNM; it chemically altered the molecular structures of the precursors and increased the biodegradability of N-containing organic compounds. Consequently, the subsequent BAC filtration substantially reduced the formation of the both TCNM and DCAcAm, thus highlighting a synergistic effect of O(3) and BAC. Additionally, O(3)-BAC was effective at controlling the formation of the total organic halogen, which can be considered as an indicator of the formation of unidentified DBPs.

  8. Monitoring trihalomethanes and nitrogenous disinfection by-products in blending desalinated waters using solid-phase microextraction and gas chromatography.

    PubMed

    González-Hernández, Providencia; Hernández-Padrón, Manuel; Pino, Verónica; Afonso, Ana M; Ayala, Juan H

    2017-04-01

    A simple and efficient method has been developed for the extraction and determination of 16 common volatile halogenated disinfection by-products (DBPs) (four trihalomethanes, six haloacetonitriles, and six halonitromethanes) in blending desalinated waters, using headspace solid-phase microextraction and gas chromatography with flame ionization detector (HS-SPME/GC-FID). After the optimization using factorial designs of the HS-SPME parameters (optimum: carboxen/polydimethylsiloxane such as fiber, extraction time of 60 min at 30°C, pH 7, addition of 40% (w/v) of sodium chloride, and desorption time of 2 min at 250°C), quantification limits ranged from 3.03 to 40.8 µg L(-1), and relative standard deviation (inter-day) were lower than 9.7% for all the target DBPs. Adequate relative recoveries (with the exception of chloronitromethane) were obtained even when spiking waters at low levels (25 µg L(-1)), with values between 83.1% and 119% for ultrapure water, and between 87.4% and 115% for blending desalinated waters, supporting in this way the applicability of the method. The influence of various dechlorinating agents on the stability of 16 DBPs in water was evaluated, with ammonium chloride being the most suitable inhibitor of residual chlorine and carrying out the analytical determination of DBPs within 48 h after sampling. Different blending desalinated water samples collected in the South of Tenerife Island (Spain) were successfully analyzed.

  9. [Formation and Variation of Brominated Disinfection By-products in A Combined Ultrafiltration and Reverse Osmosis Process for Seawater Desalination].

    PubMed

    Yang, Zhe; Sun, Ying-xue; Shi, Na; Hu, Hong-ying

    2015-10-01

    The characteristics of dissolved organic matter (DOM) and brominated disinfection by-products ( Br-DBPs ) during a seawater desalination ultrafiltration (UF) combined reverse osmosis (RO) process were studied. The seawater contained high level of bromide ion (45.6-50.9 mg x L(-1)) and aromatic compounds with specific ultraviolet absorbance ( SUVA) of 3.6-6.0 L x (mg x m)(-1). The tryptophan-like aromatic protein, fulvic acid-like and soluble microbial by-product-like were the main fluorescent DOM in the seawater. After pre-chlorination of the seawater, the concentrations of DBPs was significantly increased in the influent of UF, which was dominantly the Br-DBPs. Bromoform (CHBr3) accounted for 70.48% - 91.50% of total trihalomethanes (THMs), dibromoacetic acid (Br2CHCO2H) occupied 81.14% - 100% of total haloacetic acids (HAAs) and dibromoacetonitrile (C2HBr2N) occupied 83.77% - 87.45% of total haloacetonitriles ( HANs). The removal efficiency of THMs, HAAs and HANs by the UF membrane was 36.63% - 40.39%, 73.83% - 95.38% and 100%, respectively. The RO membrane could completely remove the HAAs, while a little of the THMs was penetrated. The antiestrogenic activity in the seawater was 0.35 - 0.44 mg x L(-1), which was increased 32% - 69% after the pre-chlorination. The DBPs and other bio-toxic organics which formed during the UF-RO process were finally concentrated in the UF concentrate and RO concentrate.

  10. The Power of Four (the 4-Lab Study): ORD’s Integrated Disinfection By-Products Mixtures Research Project

    EPA Science Inventory

    Chemical disinfection of water, a major public health triumph of the 20th century, has resulted in dramatic decreases in morbidity and mortality from water-borne disease. The intended result of chemical disinfection of drinking water is reduction of microbial contamination; the u...

  11. Development of Normal Human Colonocyte Cultures to Identify the Carcinogenic Potential of Priorty Disinfection By-products

    EPA Science Inventory

    Epidemiological studies have linked the consumption of disinfected surface waters to an increased risk of colorectal cancer. Of the approximately >600 disinfection byproducts (DBPs) identified, the US EPA regulates 11 DBPs for an increased risk of cancer. An in-depth mechanism-...

  12. Evaluating the similarity of complex drinking-water disinfection by-product mixtures: overview of the issues.

    PubMed

    Rice, Glenn E; Teuschler, Linda K; Bull, Richard J; Simmons, Jane E; Feder, Paul I

    2009-01-01

    Humans are exposed daily to complex mixtures of environmental chemical contaminants, which arise as releases from sources such as engineering procedures, degradation processes, and emissions from mobile or stationary sources. When dose-response data are available for the actual environmental mixture to which individuals are exposed (i.e., the mixture of concern), these data provide the best information for dose-response assessment of the mixture. When suitable data on the mixture itself are not available, surrogate data might be used from a sufficiently similar mixture or a group of similar mixtures. Consequently, the determination of whether the mixture of concern is "sufficiently similar" to a tested mixture or a group of tested mixtures is central to the use of whole mixture methods. This article provides an overview for a series of companion articles whose purpose is to develop a set of biostatistical, chemical, and toxicological criteria and approaches for evaluating the similarity of drinking-water disinfection by-product (DBPs) complex mixtures. Together, the five articles in this series serve as a case study whose techniques will be relevant to assessing similarity for other classes of complex mixtures of environmental chemicals. Schenck et al. (2009) describe the chemistry and mutagenicity of a set of DBP mixtures concentrated from five different drinking-water treatment plants. Bull et al. (2009a, 2009b) describe how the variables that impact the formation of DBP affect the chemical composition and, subsequently, the expected toxicity of the mixture. Feder et al. (2009a, 2009b) evaluate the similarity of DBP mixture concentrates by applying two biostatistical approaches, principal components analysis, and a nonparametric "bootstrap" analysis. Important factors for determining sufficient similarity of DBP mixtures found in this research include disinfectant used; source water characteristics, including the concentrations of bromide and total organic carbon

  13. Assessing the human health impacts of exposure to disinfection by-products--a critical review of concepts and methods.

    PubMed

    Grellier, James; Rushton, Lesley; Briggs, David J; Nieuwenhuijsen, Mark J

    2015-05-01

    Understanding the public health implications of chemical contamination of drinking water is important for societies and their decision-makers. The possible population health impacts associated with exposure to disinfection by-products (DBPs) are of particular interest due to their potential carcinogenicity and their widespread occurrence as a result of treatments employed to control waterborne infectious disease. We searched the literature for studies that have attempted quantitatively to assess population health impacts and health risks associated with exposure to DBPs in drinking water. We summarised and evaluated these assessments in terms of their objectives, methods, treatment of uncertainties, and interpretation and communication of results. In total we identified 40 studies matching our search criteria. The vast majority of studies presented estimates of generic cancer and non-cancer risks based on toxicological data and methods that were designed with regulatory, health-protective purposes in mind, and therefore presented imprecise and biased estimates of health impacts. Many studies insufficiently addressed the numerous challenges to DBP risk assessment, failing to evaluate the evidence for a causal relationship, not appropriately addressing the complex nature of DBP occurrence as a mixture of chemicals, not adequately characterising exposure in space and time, not defining specific health outcomes, not accounting for characteristics of target populations, and not balancing potential risks of DBPs against the health benefits related with drinking water disinfection. Uncertainties were often poorly explained or insufficiently accounted for, and important limitations of data and methods frequently not discussed. Grave conceptual and methodological limitations in study design, as well as erroneous use of available dose-response data, seriously impede the extent to which many of these assessments contribute to understanding the public health implications of

  14. Analysis and occurrence of odorous disinfection by-products from chlorination of amino acids in three different drinking water treatment plants and corresponding distribution networks.

    PubMed

    Brosillon, Stephan; Lemasle, Marguerite; Renault, Emilie; Tozza, Dominique; Heim, Veronique; Laplanche, Alain

    2009-11-01

    Previous studies have established that odorous and stable chloraldimines are formed during amino acid chlorination in drinking water treatment. In order to identify at low level (10(-8) M) the presence of these odorous disinfection by-products in drinking water matrixes an analytical method was developed by using head space apparatus (HS) combined with a sorbent trap system linked to a GC with a mass spectrometer detector (HS/Trap/GC/MS). The analyses were carried out in three different drinking water supplies from the Paris area, during the four seasons. Free amino acids were monitored at the inlet of the plant. The odorous disinfection by-products were analyzed at the outlet of each drinking water treatment plant and the different distribution networks were connected to the corresponding plant. The results confirmed that the odorous chloraldimines are produced during chlorination of free amino acids in three different matrixes in different seasons throughout the year (N-chloroisobutaldimine; N-chloromethyl-2-butaldimine; N-chloromethyl-3-butaldimine (6-10 nM). The analytical method (HS/Trap/GC/MS) used to monitor odorous disinfection by-products appeared to be adapted for the detection of these by-products at nM level.

  15. Seasonal evaluation of the presence of 46 disinfection by-products throughout a drinking water treatment plant.

    PubMed

    Serrano, Maria; Montesinos, Isabel; Cardador, M J; Silva, Manuel; Gallego, Mercedes

    2015-06-01

    In this work, we studied a total of 46 regulated and non-regulated disinfection by-products (DBPs) including 10 trihalomethanes (THMs), 13 haloacetic acids (HAAs), 6 halonitromethanes (HNMs), 6 haloacetonitriles (HANs) and 11 aldehydes at different points in a drinking water treatment plant (DWTP) and its distribution network. Determining an increased number of compounds and using accurate, sensitive analytical methodologies for new DBPs can be useful to overcome some challenges encountered in the comprehensive assessment of the quality and safety of drinking water. This paper provides a detailed picture of the spatial and seasonal variability of DBP concentrations from raw water to distribution network. Samples were collected on a monthly basis at seven different points in the four seasons of a year to acquire robust data for DBPs and supplementary quality-related water parameters. Only 5 aldehydes and 2 HAAs were found in raw water. Chlorine dioxide caused the formation of 3 new aldehydes (benzaldehyde included), 5 HAAs and chloroform. The concentrations of DBPs present in raw water were up to 6 times higher in the warmer seasons (spring and summer). The sedimentation process further increased their concentrations and caused the formation of three new ones. Sand filtration substantially removed aldehydes and HAAs (15-50%), but increased the levels of THMs, HNMs and HANs by up to 70%. Chloramination raised the levels of 8 aldehydes and 7 HAAs; also, it caused the formation of monoiodoacetic acid, dibromochloromethane, dichloroiodomethane and bromochloroacetonitrile. Therefore, this treatment increases the levels of existing DBPs and leads to the formation of new ones to a greater extent than does chlorine dioxide. Except for 5 aldehydes, the 23 DBPs encountered at the DWTP exit were found at increased concentrations in the warmer seasons (HAAs by about 50% and THMs by 350%).

  16. Monitoring of some disinfection by-products in drinking water treatment plants of El-Beheira Governorate, Egypt

    NASA Astrophysics Data System (ADS)

    Ibrahim, Hesham Z.; Abu-Shanab, Mahmoud A.

    2013-12-01

    Two water treatment plants (Edfina and Kom-Hamada) in El-Beheira Governorate were selected to monitor disinfection by-products (DBPs) concentrations. A 12-month monitoring program from October 2011 to September 2012 was established for measuring some DBPs and some water quality parameters such as temperature, pH, turbidity, total organic carbon (TOC), ammonia and bromide. The concentrations of DBPs were determined by gas chromatography with ECD (GC-ECD). Trihalomethanes (THMs) and chloral hydrate (CH) were commonly seen in all samples collected from Plant 1 (Edfina) and Plant 2 (Kom-Hamada). THMs mean concentrations ranged from 34.5 to 64.6 μg/L and from 28.2 to 52.8 μg/L for Plant 1 and Plant 2. CH mean concentrations ranged from 3.3 to 6.76 μg/L and from 2.8 to 3.9 μg/L for Plant 1 and Plant 2, respectively. Dichloroacetonitrile (DCAN) mean concentrations ranged from 1.1 to 2.0 μg/L and from 1.2 to 2.1 μg/L for Plant 1 and Plant 2, respectively. Chloropicrin (CP) was detected in Plant 1 only with mean concentration ranging from 0.91 to 1.1 μg/L. Trichloroacetonitrile (TCAN) and dibromoacetonitrile (DBAN) were below the limit of quantification (LOQ) in all samples. Higher concentrations of THMs were measured in summer and spring as compared to winter. DBPs concentrations were higher in Plant 1 than in Plant 2. The DBPs levels in all samples collected from Edfina and Kom-Hamada were generally below the guideline values set by the Egyptian Health Minister in 2007.

  17. Human health risk analysis from disinfection by-products (DBPs) in drinking and bathing water of some Indian cities

    PubMed Central

    2014-01-01

    Background Human health risk assessment from exposure to disinfection by-products (DBPs) during drinking and bathing water vary from country to country as per life expectancy, body mass index, water consumption pattern and individual concentration of DBPs component, etc. Methods Present study considered average direct water intake per person for adult males and females as 4 & 3 L/day, respectively as per Indian literature for risk evaluation from another component of pollutant. While other important factor like average life expectancy, body weight & body surface area for male and female were considered 64 & 67 years, 51.9 & 45.4 Kg and 1.54 & 1.38 m2 respectively as per Indian Council of Medical Research and WHO report. The corresponding lifetime cancer risk of the formed THMs to human beings was estimated by the USEPA and IRIS method as per Indian population. Results The total cancer risk reached 8.99 E-04 and 8.92 E-04 for males and females, respectively, the highest risk from THMs seems to be from the inhalation route followed by ingestion and dermal contacts. Conclusions The multipath way evaluations of lifetime cancer risks for THMs exposure through ingestion, dermal absorption, and inhalation exposure were examined at the highest degree of danger. Results reveals that water containing THMs of the selected water treatment plant of the eastern part of India was unsafe in terms of risk evaluation through inhalation and ingestion, while dermal route of risk was found very close to permissible limit of USEPA. Sensitivity analysis shows that every input parameter is sole responsible for total risk potential, whereas exposure duration playing important role for estimation of total risk. PMID:24872885

  18. Spatio-temporal variability of non-regulated disinfection by-products within a drinking water distribution network.

    PubMed

    Mercier Shanks, Catherine; Sérodes, Jean-Baptiste; Rodriguez, Manuel J

    2013-06-01

    The non-regulated disinfection by-products (NrDBP) targeted in this study include four haloacetonitriles (trichloroacetonitrile (TCAN); dichloroacetonitrile (DCAN); bromochloroacetonitrile (BCAN) and dibromoacetonitrile (DBAN)); one halonitromethane (trichloronitromethane, better known under the name chloropicrin (CPK)); and two haloketones (1,1-dichloro-2-propanone (11DCPone) and 1,1,1-trichloro-2-propanone (111TCPone)). This study provides a detailed picture of the spatial and temporal variability of these NrDBP concentrations throughout a drinking water distribution system located in a region with major seasonal climate variations. The results obtained show that the concentrations of the investigated NrDBPs varied significantly according to time and location. The average concentrations of TCAN, DCAN, CKP and 111TCPone were significantly higher in summer. Surprisingly, the average concentrations of 11DCPone were significantly higher in winter. For BCAN and DBAN, the average concentrations observed in winter were higher, but not in a statistically significant way. On the other hand, the four HANs, CPK and 111TCPone generally had spatial profiles involving an increase of the concentrations along the network according to increasing water residence times, whereas 11DCPone overall had a profile where concentrations increased at the beginning of the network, followed by a drop in the concentrations towards the ends of the network. In spite of certain disparities in the individual spatio-temporal variation profiles, strong correlations were generally observed between NrDBPs, and trihalomethanes (THMs) and haloacetic acids (HAAs). Therefore, THMs and HAAs could be good statistical indicators of the presence of NrDBPs in the drinking water of the system under study.

  19. Formation of iodinated disinfection by-products during oxidation of iodide-containing waters with chlorine dioxide.

    PubMed

    Ye, Tao; Xu, Bin; Lin, Yi-Li; Hu, Chen-Yan; Lin, Lin; Zhang, Tian-Yang; Gao, Nai-Yun

    2013-06-01

    This study was to explore the formation of iodinated disinfection by-products (I-DBPs), including iodoform (CHI3), iodoacetic acid (IAA) and triiodoacetic acid (TIAA), when iodide-containing artificial synthesized waters and raw waters are in contact with chlorine dioxide (ClO2). Among the investigated I-DBPs, CHI3 was the major species during ClO2 oxidation in artificial synthesized waters. Impact factors were evaluated, including the concentrations of ClO2, iodide (I(-)), dissolved organic carbon (DOC) and pH. Formation of CHI3, IAA and TIAA followed an increasing and then decreasing pattern with increased ClO2 or DOC concentration. I-DBPs yield was significantly affected by solution pH. High concentrations of I-DBPs were generated under circumneutral conditions with the maximum formation at pH 8. The increase of I(-) concentration can increase I-DBPs yields, but the increment was suppressed when I(-) concentration was higher than 50 μM. When 100 μg/L I(-)and ClO2 (7.5-44.4 μM) were spiked to the raw water samples from Yangshupu and Minhang drinking water treatment plant, certain amounts of CHI3 and IAA were found under pH 7 and the concentrations were strongly correlated with ClO2 dosage and water qualities, however, no TIAA was detected. Finally, we investigated I-DBPs formation of 18 model compounds, including 4 carboxylic acids, 5 phenols and 8 amino acids, treating with ClO2 when I(-) was present. Results showed that most of these model compounds could form a considerable amount of I-DBPs, especially for propanoic acid, butanoic acid, resorcinol, hydroquinone, alanine, glutamic acid, phenylalanine and serine.

  20. Disinfection by-products of chlorine dioxide (chlorite, chlorate, and trihalomethanes): Occurrence in drinking water in Qatar.

    PubMed

    Al-Otoum, Fatima; Al-Ghouti, Mohammad A; Ahmed, Talaat A; Abu-Dieyeh, Mohammed; Ali, Mohammed

    2016-12-01

    The occurrence of chlorine dioxide (ClO2) disinfection by-products (DBPs) in drinking water, namely, chlorite, chlorate, and trihalomethanes (THMs), was investigated. Two-hundred-ninety-four drinking water samples were collected from seven desalination plants (DPs), four reservoirs (R), and eight mosques (M) distributed within various locations in southern and northern Qatar. The ClO2 concentration levels ranged from 0.38 to <0.02 mg L(-1), with mean values of 0.17, 0.12, and 0.04 mg L(-1) for the DPs, Rs, and Ms, respectively. The chlorite levels varied from 13 μg L(-1) to 440 μg L(-1), with median values varying from 13 to 230 μg L(-1), 77-320 μg L(-1), and 85-440 μg L(-1) for the DPs, Rs, and Ms, respectively. The chlorate levels varied from 11 μg L(-1) to 280 μg L(-1), with mean values varying from 36 to 280 μg L(-1), 11-200 μg L(-1), and 11-150 μg L(-1) in the DPs, Rs, and Ms, respectively. The average concentration of THMs was 5 μg L(-1), and the maximum value reached 77 μg L(-1) However, all of the DBP concentrations fell within the range of the regulatory limits set by GSO 149/2009, the World Health Organization (WHO), and Kahramaa (KM).

  1. Prediction of the developmental toxicity hazard potential of halogenated drinking water disinfection by-products tested by the in vitro hydra assay

    SciTech Connect

    Fu, L.J.; Johnson, E.M.; Newman, L.M. )

    1990-06-01

    A series of seven randomly selected potential halogenated water disinfection by-products were evaluated in vitro by the hydra assay to determine their developmental toxicity hazard potential. For six of the chemicals tested by this assay (dibromoacetonitrile; trichloroacetonitrile; 2-chlorophenol; 2,4,6-trichlorophenol; trichloroacetic acid; dichloroacetone) it was predicted that they would be generally equally toxic to both adult and embryonic mammals when studied by means of standard developmental toxicity teratology tests. However, the potential water disinfection by-product chloroacetic acid (CA) was determined to be over eight times more toxic to the embryonic developmental portion of the assay than it was to the adults. Because of this potential selectivity, CA is a high-priority item for developmental toxicity tests in pregnant mammals to confirm or refute its apparent unique developmental hazard potential and/or to establish a NOAEL by the route of most likely human exposure.

  2. HYDROGEN ABSTRACTION AND DECOMPOSITION OF BROMOPICRIN AND OTHER TRIHALOGENATED DISINFECTION BY-PRODUCTS BY GC/MS

    EPA Science Inventory

    Tribromonitromethane (bromopicrin), dibromochlorani-tromethane, bromodichloronitromethane, and trichloroni-tromethane (chloropicrin) have been identified as drinking water disinfection byproducts (DBPs). They are thermally unstable and decompose under commonly used injection port...

  3. Factors affecting the formation of disinfection by-products during chlorination and chloramination of secondary effluent for the production of high quality recycled water.

    PubMed

    Doederer, Katrin; Gernjak, Wolfgang; Weinberg, Howard S; Farré, Maria José

    2014-01-01

    During the production of high quality recycled water by reverse osmosis membrane filtration secondary effluent must be disinfected to limit biofouling on the membrane surface. Advanced Water Treatment Plants in South East Queensland, Australia use disinfectant contact times ranging from 30 min up to 24 h. Disinfectants such as chlorine and chloramines react with effluent organic matter to generate disinfection by-products (DBPs) which could be potentially hazardous to human health if the water is destined for supplementing public water supplies. In this context, secondary effluents are of concern because of their high total organic carbon content which can act as DBP precursors. Also, effluent organic matter may form different DBPs to those formed from natural organic matter during conventional drinking water treatment, either in quantity, identity or simply in the abundance of different DBPs relative to each other. It cannot be assumed per se with certainty that DBP formation will be affected in the same way by operational changes as in drinking water production. Response surface modelling has been employed in this study at the bench scale to investigate the effect of reaction time (0-24 h), pH (5.5-8.5), temperature (23-35 °C), disinfection strategy (chlorine vs chloramines used prior to membrane treatment) and the interaction between these different parameters on DBP formation during disinfection of secondary effluent. The concentration of halogenated DBPs formed during the first 24 h of reaction with the different disinfectants followed the order chlorination > in line-formed monochloramine > pre-formed monochloramine. Contact time with chlorine was the major influencing factor on DBP formation during chlorination, except for the bromine-containing trihalomethanes and dibromoacetonitrile for which pH was more significant. Chlorination at high pH led to an increased formation of chloral hydrate, trichloronitromethane, dibromoacetonitrile and the four

  4. Powdered activated carbon coupled with enhanced coagulation for natural organic matter removal and disinfection by-product control: application in a Western Australian water treatment plant.

    PubMed

    Kristiana, Ina; Joll, Cynthia; Heitz, Anna

    2011-04-01

    The removal of organic precursors of disinfection by-products (DBPs), i.e. natural organic matter (NOM), prior to disinfection and distribution is considered as the most effective approach to minimise the formation of DBPs. This study investigated the impact of the addition of powdered activated carbon (PAC) to an enhanced coagulation treatment process at an existing water treatment plant on the efficiency of NOM removal, the disinfection behaviour of the treated water, and the water quality in the distribution system. This is the first comprehensive assessment of the efficacy of plant-scale application of PAC combined with enhanced coagulation on an Australian source water. As a result of the PAC addition, the removal of NOM improved by 70%, which led to a significant reduction (80-95%) in the formation of DBPs. The water quality in the distribution system also improved, indicated by lower concentrations of DBPs in the distribution system and better maintenance of disinfectant residual at the extremities of the distribution system. The efficacy of the PAC treatment for NOM removal was shown to be a function of the characteristics of the NOM and the quality of the source water, as well as the PAC dose. PAC treatment did not have the capacity to remove bromide ion, resulting in the formation of more brominated DBPs. Since brominated DBPs have been found to be more toxic than their chlorinated analogues, their preferential formation upon PAC addition must be considered, especially in source waters containing high concentrations of bromide.

  5. Examination of disinfection by-product (DBP) formation in source waters: a study using log-transformed differential spectra.

    PubMed

    Yan, Mingquan; Korshin, Gregory V; Chang, Hyun-Shik

    2014-03-01

    Formation of disinfection by-products (DBPs) in ten drinking source waters located in the United States was examined in this study. DBP generation was interpreted in the context of halogenation-induced changes of log-transformed absorbance spectra of dissolved organic matter (DOM) present in the waters. This approach allows probing the behavior of relatively minor structures that can be highly sensitive towards any process of interest, notably DOM halogenation. This concept was applied to examine effects of chlorination time on the kinetics of chlorine consumption and release of several DBP groups such as total trihalomethanes (THM4, including CHCl3, CHCl2Br, CHClBr2 and CHBr3), haloacetic acids (HAA9, including MCAA, MBAA, DCAA, TCAA, BCAA, DBAA, BDCAA, DBCAA and TBAA), haloacetonitriles (THAN4, including TCAN, DCAN, BCAN and DBAN), haloketones (HK2, including DCP and TCP), chloral hydrate (CH) and chloropicrin (CPN). Two alternative parameters, namely the differential logarithm of DOM absorbance at 350 nm (DLnA350) and change of the spectral slope in the range of wavelengths 325-375 nm (DSlope325-375) were introduced to quantify individual DBP species formed and Cl2 consumption. DLnA350 and DSlope325-375, especially DLnA350 were determined to be more reliable than differential absorbance at 272 nm that was utilized in prior applications of differential spectroscopy to characterize DBP formation. Strong linear relationships between DLnA350 values and concentrations of major groups of and individual DBP species (e.g. THM4, HAA9, HAN4 and CPN were found to exist (mostly, R(2) > 0.95) and the intercept of these correlations with the y-axis was near zero for the examined water sources. Correlations between DLnA350 values and concentrations of CH and HK2 were also strong but they were nonlinear. The slope of the correlations between the concentrations of major groups of DBP species vs -DLnA350 were also well correlated with SUVA254 and LnA350 for all the examined

  6. Epidemiological approaches in the investigation of environmental causes of cancer: the case of dioxins and water disinfection by-products.

    PubMed

    Kogevinas, Manolis

    2011-04-05

    I will refer in this paper to difficulties in research in environmental causes of cancer using as examples research on dioxins and on drinking water disinfection by-products (DBPs) that have created considerable controversy in the scientific and wider community. Dioxins are highly toxic chemicals that are animal carcinogens. For many years, evaluation of the carcinogenicity of dioxins in humans was based on case-control or registry based studies. The development of methods to measure dioxins in blood indicated that these studies suffered from extreme exposure misclassification. The conduct of large cohort studies of workers with widely contrasted exposures together with the use of biomarkers and models for exposure assessment, led to convincing evidence on the carcinogenicity of dioxins in humans. The high toxicity of a few dioxin congeners, the availability of a scheme to characterize the toxicity of a mixture of dioxins and related compounds and the long half-life of these compounds facilitated epidemiological research. Contrary to dioxins, trihalomethanes (THMs) and most of the hundreds of DBPs in drinking water are chemicals of low toxicity. For more than 15 years, the main evidence on the carcinogenicity of DBPs was through ecological or death certificate studies. More recent studies based on individual assessment confirmed increases in bladder cancer risk. However even those studies ignored the toxicological evidence on the importance of routes of exposure to DBPs other than ingestion and, probably, underestimated the risk. Persistence of weak study designs together with delays in advanced exposure assessment models led to delays in confirming early evidence on the carcinogenicity of DBPs. The evaluation of only a few chemicals when exposure is to a complex mixture remains a major problem in exposure assessment for DBPs. The success of epidemiological studies in identifying increased risks lies primarily on the wide contrast of exposure to DBPs in the general

  7. Epidemiological approaches in the investigation of environmental causes of cancer: the case of dioxins and water disinfection by-products

    PubMed Central

    2011-01-01

    I will refer in this paper to difficulties in research in environmental causes of cancer using as examples research on dioxins and on drinking water disinfection by-products (DBPs) that have created considerable controversy in the scientific and wider community. Dioxins are highly toxic chemicals that are animal carcinogens. For many years, evaluation of the carcinogenicity of dioxins in humans was based on case-control or registry based studies. The development of methods to measure dioxins in blood indicated that these studies suffered from extreme exposure misclassification. The conduct of large cohort studies of workers with widely contrasted exposures together with the use of biomarkers and models for exposure assessment, led to convincing evidence on the carcinogenicity of dioxins in humans. The high toxicity of a few dioxin congeners, the availability of a scheme to characterize the toxicity of a mixture of dioxins and related compounds and the long half-life of these compounds facilitated epidemiological research. Contrary to dioxins, trihalomethanes (THMs) and most of the hundreds of DBPs in drinking water are chemicals of low toxicity. For more than 15 years, the main evidence on the carcinogenicity of DBPs was through ecological or death certificate studies. More recent studies based on individual assessment confirmed increases in bladder cancer risk. However even those studies ignored the toxicological evidence on the importance of routes of exposure to DBPs other than ingestion and, probably, underestimated the risk. Persistence of weak study designs together with delays in advanced exposure assessment models led to delays in confirming early evidence on the carcinogenicity of DBPs. The evaluation of only a few chemicals when exposure is to a complex mixture remains a major problem in exposure assessment for DBPs. The success of epidemiological studies in identifying increased risks lies primarily on the wide contrast of exposure to DBPs in the general

  8. Headspace-free setup of in vitro bioassays for the evaluation of volatile disinfection by-products.

    PubMed

    Stalter, Daniel; Dutt, Mriga; Escher, Beate I

    2013-11-18

    The conventional setup of in vitro bioassays in microplates does not prevent the loss of volatile compounds, which hampers the toxicological characterization of waterborne volatile disinfection by-products (DBPs). To minimize the loss of volatile test chemicals, we adapted four in vitro bioassays to a headspace-free setup using eight volatile organic compounds (four trihalomethanes, 1,1-dichloroethene, bromoethane, and two haloacetonitriles) that cover a wide range of air-water partition coefficients. The nominal effect concentrations of the test chemicals decreased by up to three orders of magnitude when the conventional setup was changed to a headspace-free setup for the bacterial cytotoxicity assay using bioluminescence inhibition of Vibrio fischeri. The increase of apparent sensitivity correlated significantly with the air-water partition coefficient. Purge and trap GC/MS analysis revealed a reduced loss of dosed volatile compounds in the headspace free setup (78-130% of nominal concentration) compared to a substantial loss in the conventional set up (2-13% of the nominal concentration). The experimental effect concentrations converged with the headspace-free setup to the effect concentrations predicted by a QSAR model, confirming the suitability of the headspace-free approach to minimize the loss of volatile test chemicals. The analogue headspace-free design of the bacterial bioassays for genotoxicity (umuC assay) and mutagenicity (Ames fluctuation assay) increased the number of compounds detected as genotoxic or mutagenic from one to four and zero to two, respectively. In a bioassay with a mammalian cell line applied for detecting the induction of the Nrf-2-mediated oxidative stress response (AREc32 assay), the headspace-free setup improved the apparent sensitivity by less than one order of magnitude, presumably due to the retaining effect of the serum components in the medium, which is also reflected in the reduced aqueous concentrations of compounds. This

  9. What’s in the Pool? A Comprehensive Identification of Disinfection By-products and Assessment of Mutagenicity of Chlorinated and Brominated Swimming Pool Water

    PubMed Central

    Richardson, Susan D.; DeMarini, David M.; Kogevinas, Manolis; Fernandez, Pilar; Marco, Esther; Lourencetti, Carolina; Ballesté, Clara; Heederik, Dick; Meliefste, Kees; McKague, A. Bruce; Marcos, Ricard; Font-Ribera, Laia; Grimalt, Joan O.; Villanueva, Cristina M.

    2010-01-01

    Background Swimming pool disinfectants and disinfection by-products (DBPs) have been linked to human health effects, including asthma and bladder cancer, but no studies have provided a comprehensive identification of DBPs in the water and related that to mutagenicity. Objectives We performed a comprehensive identification of DBPs and disinfectant species in waters from public swimming pools in Barcelona, Catalonia, Spain, that disinfect with either chlorine or bromine and we determined the mutagenicity of the waters to compare with the analytical results. Methods We used gas chromatography/mass spectrometry (GC/MS) to measure trihalomethanes in water, GC with electron capture detection for air, low- and high-resolution GC/MS to comprehensively identify DBPs, photometry to measure disinfectant species (free chlorine, monochloroamine, dichloramine, and trichloramine) in the waters, and an ion chromatography method to measure trichloramine in air. We assessed mutagenicity with the Salmonella mutagenicity assay. Results We identified > 100 DBPs, including many nitrogen-containing DBPs that were likely formed from nitrogen-containing precursors from human inputs, such as urine, sweat, and skin cells. Many DBPs were new and have not been reported previously in either swimming pool or drinking waters. Bromoform levels were greater in brominated than in chlorinated pool waters, but we also identified many brominated DBPs in the chlorinated waters. The pool waters were mutagenic at levels similar to that of drinking water (~ 1,200 revertants/L-equivalents in strain TA100–S9 mix). Conclusions This study identified many new DBPs not identified previously in swimming pool or drinking water and found that swimming pool waters are as mutagenic as typical drinking waters. PMID:20833605

  10. Reactivity of vinca alkaloids during water chlorination processes: Identification of their disinfection by-products by high-resolution quadrupole-Orbitrap mass spectrometry.

    PubMed

    Negreira, Noelia; Regueiro, Jorge; López de Alda, Miren; Barceló, Damià

    2016-02-15

    Concerns about the presence of anticancer drugs in the environment are rapidly increasing mainly due to their growing use in the developed countries and their known cytotoxic effects. Vinca alkaloids are widely used in cancer therapy; however, very scarce information is available on their occurrence, environmental fate and toxicological effects on aquatic organisms. Even less attention has been paid to their potential transformation products, which can exert higher toxicity than the parent compounds. Thus, in the present work, the reactivity of vincristine, vinblastine, vinorelbine and its metabolite 4-O-deacetyl vinorelbine during water chlorination processes has been investigated for the first time. Under the studied chlorination conditions, vincristine was fairly stable whereas vinblastine, vinorelbine and 4-O-deacetyl vinorelbine were quickly degraded. A total of sixty-five disinfection by-products were tentatively identified by ultra-high performance liquid chromatography coupled to high-resolution hybrid quadrupole-Orbitrap tandem mass spectrometry. Among them, twenty by-products corresponded to mono-chlorinated compounds, eight to di-chlorinated compounds and two to tri-chlorinated compounds, which may be of major environmental concern. Other disinfection by-products involved hydroxylation and oxidation reactions. Although the structures of these by-products could not be positively confirmed due to lack of commercial standards, their chemical formulas and product ions can be added to databases, which will allow their screening in future monitoring studies.

  11. OCCURRENCE OF IODO-ACID AND IODO-THM DISINFECTION BY-PRODUCTS IN CHLORAMINATED DRINKING WATER

    EPA Science Inventory

    Iodo-acids were recently identified for the first time as DBPs in drinking water disinfected with chloramines. The iodo-acids identified included iodoacetic acid (IAA), bromoiodoacetic acid, (E)-3-bromo-3-iodo-propenoic acid, (Z)-3-bromo-3-iodo-propenoic acid, and (E)-2-iodo-3...

  12. Determination of odour threshold concentrations and dose-response relations in water of several minor disinfection by-products: aldehydes and alkyl nitriles.

    PubMed

    Fabrellas, C; Matia, L; Ventura, F

    2004-01-01

    The odour threshold concentrations (OTCs) levels of aldehydes and alkyl nitriles, two groups of disinfection by-products of water treatment, have been studied in order to know if some of these compounds can be associated with off-flavour events. For aldehydes, as a result of the values obtained, which are in the low microg/L range, it is possible that they are related to these events. This is not the case for the other group, alkyl nitriles, with very high OTC values.

  13. The use of ozonation and catalytic ozonation combined with ultrafiltration for the control of natural organic matter (NOM) and disinfection by-products (DBPs) in drinking water

    NASA Astrophysics Data System (ADS)

    Karnik, Bhavana Sushilkumar

    Commercially available titania membranes, with a molecular weight cut-off of 15, 5, 1 kD were used in a ozonation/membrane system that was fed with water from Lake Lansing. The effects of ozonation on permeate flux recovery and membrane fouling was investigated. In addition the effects of ozonation/membrane filtration hybrid process on the removal of the natural organic matter (NOM) and the formation of disinfection by-products (DBPS) were monitored. The commercial membrane (CeRAM Inside, Tami North America, St. Laurent, Quebec, Canada) was coated with iron oxide nanoparticles (4--6 nm in diameter) using a layer-by-layer technique and sintered in air for 30 minutes. Surface characterization was carried out using electron microscopy techniques and atomic force microscopy, to study the changes in structure and surface morphology of the membranes. The removal and survival of bacteria in the process was also evaluated using fluorescence microscopy and microbial assays. Finally the surface catalytic reaction was investigated to propose the mechanism responsible for the improved performance of the hybrid process. The permeate flux through a titania coated ceramic membrane was significantly affected by ozonation. A minimum threshold ozone concentration (2.5 g/m 3) could achieve complete recovery of permeate flux after fouling. Ozonation/filtration decreased the concentration of chlorinated disinfection by-products up to 80%. With catalyst coated membranes, the concentration of dissolved organic carbon was reduced by >85% and the concentrations of disinfection by-products decreased by up to 90%. Furthermore with the coated membrane, the concentrations of ozonation by-products in the permeate were reduced by >50% as compared to that obtained with the uncoated membranes, thus reducing the risk of potential regrowth of bacteria in the distribution system. Application of the hybrid process lead to greater than 7 log removal of bacteria. Surface characterization showed that

  14. Use of mechanism-based structure-activity relationships analysis in carcinogenic potential ranking for drinking water disinfection by-products.

    PubMed Central

    Woo, Yin-Tak; Lai, David; McLain, Jennifer L; Manibusan, Mary Ko; Dellarco, Vicki

    2002-01-01

    Disinfection by-products (DBPs) are formed when disinfectants such as chlorine, chloramine, and ozone react with organic and inorganic matter in water. The observations that some DBPs such as trihalomethanes (THMs), di-/trichloroacetic acids, and 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone (MX) are carcinogenic in animal studies have raised public concern over the possible adverse health effects of DBPs. To date, several hundred DBPs have been identified. To prioritize research efforts, an in-depth, mechanism-based structure-activity relationship analysis, supplemented by extensive literature search for genotoxicity and other data, was conducted for ranking the carcinogenic potential of DBPs that met the following criteria: a) detected in actual drinking water samples, b) have insufficient cancer bioassay data for risk assessment, and c) have structural features/alerts or short-term predictive assays indicative of carcinogenic potential. A semiquantitative concern rating scale of low, marginal, low-moderate, moderate, high-moderate, and high was used along with delineation of scientific rationale. Of the 209 DBPs analyzed, 20 were of priority concern with a moderate or high-moderate rating. Of these, four were structural analogs of MX and five were haloalkanes that presumably will be controlled by existing and future THM regulations. The other eleven DBPs, which included halonitriles (6), haloketones (2), haloaldehyde (1), halonitroalkane (1), and dialdehyde (1), are suitable priority candidates for future carcinogenicity testing and/or mechanistic studies. PMID:11834465

  15. Effects of ozone pretreatment on the formation of disinfection by-products and its associated bromine substitution factors upon chlorination/chloramination of Tai Lake water.

    PubMed

    Wang, Fangyuan; Ruan, Mengyong; Lin, Hongjun; Zhang, Yu; Hong, Huachang; Zhou, Xiaoling

    2014-03-15

    This study investigated the effects of preozonation on disinfection by-products (DBPs) formation during chlorination and chloramination of the water collected from Tai Lake. Results showed that the high ozone dose (0.6-1.0 mg O₃/mg DOC) pretreatment reduced the yields of trihaloacetic acids (reduced 62-63% in chlorination), dihaloacetonitriles (reduced 53-55% and 14-26% in chlorination and chloramination, respectively) and trihaomethanes (reduced 19% in chloramination), but markedly increased the formation of halonitromethanes (increased 4.7-5.6 times in chlorination and 2.1-2.7 times in chloramination), haloketones (increased 4.8-7.1 times in chlorination and 2.5-2.9 times in chloramination) and dihaloacetic acids (increased 1.5-2.4 times in chlorination and 0.3-0.6 times in chloramination). Thus the high ozone dose pretreatment should be avoided during chlorination/chloramination of Tai Lake water. Also, chloramination (with and without preozonation) produced much lower DBPs yields as compared with chlorination (with and without preozonation), indicating that chloramine was a better choice to control the DBPs yields. Further analysis also revealed that the bromine substitution factors (BSFs) of DBPs varied with disinfection mode. In chlorinamination, the BSFs generally showed a decrease trend with the ozone dose, yet in chlorination, the BSFs mostly exhibited first an increase and then a decrease trend. Moreover, the BSFs of DBPs in chloramination (with or without preozonation) were dominantly lower than those in chlorination (with or without preozonation).

  16. Characterization of organic matter and disinfection by-products in membrane backwash water from drinking water treatment.

    PubMed

    Zhang, Lingling; Gu, Ping; Zhong, Zijie; Yang, Dong; He, Wenjie; Han, Hongda

    2009-09-15

    Two pilot-scale membrane plants were set up to produce drinking water, and membrane backwash water was discharged during the production process. This work studied the characteristics of dissolved organic matter (DOM) in membrane backwash water from submerged microfiltration (MBWS) and pressurized ultrafiltration (MBWP) both of which are coupled with the pre-coagulation process. The results showed that the two waters had similar molecular weight (MW) distributions. Dissolved organic carbon (DOC) and trihalomethane formation potential (THMFP) in MBWS and MBWP were both mainly distributed in MW>30 kDa and MW<1 kDa, and UV(254) was mainly in MW<1 kDa. For Luan River water (LRW, the raw water for the two pilot-scale membrane plants in this study), organic matter enriched in membrane backwash water was mainly in sizes of MW>30 kDa. In addition, organic matter with MW>10 kDa was higher in MBWP than in MBWS. The quality of membrane backwash water was influenced by the changes in LRW quality during different periods. The quality of membrane backwash water was worse in alga-laden period than in normal period and organic matter concentrations in MW<1 kDa increased significantly in this period. The small size DOM in membrane backwash water was more reactive to form trihalomethanes (THMs) in the disinfection process. The variability of specific UV absorbance and THMFP/DOC was consistent in membrane backwash water.

  17. The removal process of 2,2-dichloroacetamide (DCAcAm), a new disinfection by-product, in drinking water treatment process and its toxicity on zebrafish.

    PubMed

    Lin, Tao; Zhou, Dongju; Yu, Shilin; Chen, Wei

    2016-09-01

    The removal process of 2,2-dichloroacetamide (DCAcAm), a new disinfection by-product (DBP) in conventional drinking water treatment plant (C-DWTP) and advanced DWTP (ADWTP) was studied with newly maximum formation potential (MFP) process. It was demonstrated that the advanced treatment displayed greater removal efficiency towards DCAcAm formation potential (MFP) than the conventional treatment. The hydrophilic natural organic matter and natural organic matter with molecular weight <1 kDa or >10 kDa leaded to more DCAcAm formation, and the aromatic protein was inferred as one part of DCAcAm precursor. DCAcAm was found to cause delayed development and malformation to zebrafish embryos at embryonic growth stage. Compared with heart toxicity, it caused a significant neuron toxicity. It also could cause the acute DNA damage to adult zebrafish, which should be extremely cautioned.

  18. Assessing spatial fluctuations, temporal variability, and measurement error in estimated levels of disinfection by-products in tap water: implications for exposure assessment

    PubMed Central

    Symanski, E; Savitz, D; Singer, P

    2004-01-01

    Aims: To assess spatial fluctuations, temporal variability, and errors due to sampling and analysis in levels of disinfection by-products in routine monitoring tap water samples and in water samples collected in households within the same distribution system for an exposure assessment study. Methods: Mixed effects models were applied to quantify seasonal effects and the degree to which trihalomethane (THM) levels vary among households or locations relative to variation over time within seasons for any given location. In a separate analysis, the proportion of total variation due to measurement error arising from sampling and analysis was also quantified. Results: THM levels were higher in the summer relative to other seasons. Differences in the relative magnitude of the intra- and inter-household components of variation were observed between the two sets of THM measurements, with a greater proportion of the variation due to differences within seasons for the routine monitoring data and a greater proportion of the variation due to differences across locations for the exposure assessment study data. Such differences likely arose due to differences in the strategies used to select sites for sampling and in the time periods over which the data were collected. With the exception of bromodichloromethane, measurement errors due to sampling and analysis contributed a small proportion of the total variation in THM levels. Conclusions: The utility of routine monitoring data in assigning exposure in epidemiological studies is limited because such data may not represent the magnitude of spatial variability in levels of disinfection by-products across the distribution system. Measurement error contributes a relatively small proportion to the total variation in THM levels, which suggests that gathering a greater number of samples over time with fewer replicates collected at each sampling location is more efficient and would likely yield improved estimates of household exposure

  19. STRAIN COMPARISON IN PREGNANT RATS OF ENDOCRINE RESPONSE TO BROMODICHLOROMETHANE: A DRINKING WATER DISINFECTION BY-PRODUCT

    EPA Science Inventory

    Bromodichloromethane (BDCM), a trihalomethane, is a by-product of the chlorination of drinking water. In an epidemiological study, consumption of drinking water with high levels of BDCM was associated with an increased risk of spontaneous abortion in pregnant women (Waller et al....

  20. Algal toxicity of the alternative disinfectants performic acid (PFA), peracetic acid (PAA), chlorine dioxide (ClO2) and their by-products hydrogen peroxide (H2O2) and chlorite (ClO2(-)).

    PubMed

    Chhetri, Ravi Kumar; Baun, Anders; Andersen, Henrik Rasmus

    2016-12-01

    Environmental effect evaluation of disinfection of combined sewer overflow events with alternative chemical disinfectants requires that the environmental toxicity of the disinfectants and the main by-products of their use are known. Many disinfectants degrade quickly in water which should be included in the evaluation of both their toxicity as determined in standardized tests and their possible negative effect in the water environment. Here we evaluated according to the standardized ISO 8692 test the toxicity towards the green microalgae, Pseudokirchneriella subcapitata, of three disinfectants: performic acid (PFA), peracetic acid (PAA) and chlorine dioxide (ClO2) as well as two by-products of their use: hydrogen peroxide (H2O2) and chlorite. All of the five chemicals investigated showed clear toxicity to the algae with well-defined dose response curves. The EC50 values ranged from 0.16 to 2.9mg/L based on nominal concentrations leading to the labeling of the chemicals as either toxic or very toxic. The five investigated chemicals decreased in toxicity in the order chlorine dioxide, performic acid, peracetic acid, chlorite and hydrogen peroxide. The stability of the chemicals increased in the same order as the toxicity decrease. This indicates that even though ClO2 has the highest environmental hazard potential, it may still be suitable as an alternative disinfectant due to its rapid degradation in water.

  1. Do Iodine Contrast Media Compounds Used for Medical Imaging Contribute to the Formation of Iodinated Disinfection By-Products in Drinking Water?

    EPA Science Inventory

    Iodinated disinfection byproducts (DBPs) have recently gained attention due to their cyto- and genotoxicity and increased formation in drinking water treated with chloramine, which has become an increasingly popular disinfectant in the United States. One of these—iodoacetic acid...

  2. [Formation of disinfection by-products by Microcystis aeruginosa intracellular organic matter: comparison between chlorination and bromination].

    PubMed

    Tian, Chuan; Guo, Ting-Ting; Liu, Rui-Ping; Jefferson, William; Liu, Hui-Juan; Qu, Jiu-Hui

    2013-11-01

    In order to illustrate the effects of released algal organic matter in cyanobacteria blooms on raw water quality and water treatment process, intracellular organic matter (IOM) of Microcystis aeruginosa, which is the dominant species in cyanobacteria blooms, was chosen as a precursor and characterized. In addition, the transformation of IOM and the formation of disinfection byproducts were evaluated at different pH of 6.5, 7.1 and 8.4 after chlorination or bromination, with subsequent correlation analysis. The results indicated that IOM was primarily composed of macromolecular matter, i. e. , the species with relative molecular weight of > 30 x 10(3), constituting 68.8% of dissolved organic carbon (DOC). Fluorescence excitation-emission matrix indicated that IOM was mainly composed of aromatic protein-like matter with an intensity of 92.6 AU x L x mg(-1). After reaction with chlorine or bromine, the intensity of aromatic protein-like peaks decreased sharply by 76.6% - 93.3%, and its reduction correlated well with the formation of trihalomethane (THMs, R2 = 0.81) and haloacetic acid (HAAs, R2 = 0.77). The formation of THMs and HAAs increased with the increase in pH. Compared with chlorine, bromine formed more THMs and HAAs, and tended to form highly halogenated HAAs. However, with increasing pH, the reactivity with IOM between chlorine and bromine was closer, i.e, k(OBr-IOM)/k(OCl-(IOM) < k(HOBr-IOM/k(HOCl-IOM).

  3. Discharges of produced waters from oil and gas extraction via wastewater treatment plants are sources of disinfection by-products to receiving streams

    USGS Publications Warehouse

    Hladik, Michelle; Focazio, Michael J.; Engle, Mark

    2014-01-01

    Fluids co-produced with oil and gas production (produced waters) are often brines that contain elevated concentrations of bromide. Bromide is an important precursor of several toxic disinfection by-products (DBPs) and the treatment of produced water may lead to more brominated DBPs. To determine if wastewater treatment plants that accept produced waters discharge greater amounts of brominated DBPs, water samples were collected in Pennsylvania from four sites along a large river including an upstream site, a site below a publicly owned wastewater treatment plant (POTW) outfall (does not accept produced water), a site below an oil and gas commercial wastewater treatment plant (CWT) outfall, and downstream of the POTW and CWT. Of 29 DBPs analyzed, the site at the POTW outfall had the highest number detected (six) ranging in concentration from 0.01 to 0.09 μg L− 1 with a similar mixture of DBPs that have been detected at POTW outfalls elsewhere in the United States. The DBP profile at the CWT outfall was much different, although only two DBPs, dibromochloronitromethane (DBCNM) and chloroform, were detected, DBCNM was found at relatively high concentrations (up to 8.5 μg L− 1). The water at the CWT outfall also had a mixture of inorganic and organic precursors including elevated concentrations of bromide (75 mg L− 1) and other organic DBP precursors (phenol at 15 μg L− 1). To corroborate these DBP results, samples were collected in Pennsylvania from additional POTW and CWT outfalls that accept produced waters. The additional CWT also had high concentrations of DBCNM (3.1 μg L− 1) while the POTWs that accept produced waters had elevated numbers (up to 15) and concentrations of DBPs, especially brominated and iodinated THMs (up to 12 μg L− 1 total THM concentration). Therefore, produced water brines that have been disinfected are potential sources of DBPs along with DBP precursors to streams wherever these wastewaters are discharged.

  4. Discharges of produced waters from oil and gas extraction via wastewater treatment plants are sources of disinfection by-products to receiving streams.

    PubMed

    Hladik, Michelle L; Focazio, Michael J; Engle, Mark

    2014-01-01

    Fluids co-produced with oil and gas production (produced waters) are often brines that contain elevated concentrations of bromide. Bromide is an important precursor of several toxic disinfection by-products (DBPs) and the treatment of produced water may lead to more brominated DBPs. To determine if wastewater treatment plants that accept produced waters discharge greater amounts of brominated DBPs, water samples were collected in Pennsylvania from four sites along a large river including an upstream site, a site below a publicly owned wastewater treatment plant (POTW) outfall (does not accept produced water), a site below an oil and gas commercial wastewater treatment plant (CWT) outfall, and downstream of the POTW and CWT. Of 29 DBPs analyzed, the site at the POTW outfall had the highest number detected (six) ranging in concentration from 0.01 to 0.09 μg L(-1) with a similar mixture of DBPs that have been detected at POTW outfalls elsewhere in the United States. The DBP profile at the CWT outfall was much different, although only two DBPs, dibromochloronitromethane (DBCNM) and chloroform, were detected, DBCNM was found at relatively high concentrations (up to 8.5 μg L(-1)). The water at the CWT outfall also had a mixture of inorganic and organic precursors including elevated concentrations of bromide (75 mg L(-1)) and other organic DBP precursors (phenol at 15 μg L(-1)). To corroborate these DBP results, samples were collected in Pennsylvania from additional POTW and CWT outfalls that accept produced waters. The additional CWT also had high concentrations of DBCNM (3.1 μg L(-1)) while the POTWs that accept produced waters had elevated numbers (up to 15) and concentrations of DBPs, especially brominated and iodinated THMs (up to 12 μg L(-1) total THM concentration). Therefore, produced water brines that have been disinfected are potential sources of DBPs along with DBP precursors to streams wherever these wastewaters are discharged.

  5. Optical monitoring of Disinfection By-product Precursors with Fluorescence Excitation-Emission Mapping (F-EEM): Practical Application Issues for Drinking, Waste and Reuse Water Industry

    NASA Astrophysics Data System (ADS)

    Gilmore, A. M.

    2012-12-01

    Drinking water, wastewater and reuse plants must deal with regulations associated with bacterial contamination and halogen disinfection procedures that can generate harmful disinfection by-products (DBPs) including trihalomethanes (THMs), haloacetic acids (HOAAs) and other compounds. The natural fluorescent chromophoric dissolved organic matter (CDOM) is regulated as the major DBP precursor. This study outlines the advantages and current limitations associated with optical monitoring of water treatment processes using tcontemporary Fluorescence Excitation-Emission Mapping (F-EEM). The F-EEM method coupled with practical peak indexing and multi-variate analyses is potentially superior in terms of cost, speed and sensitivity over conventional total organic carbon (TOC) meters and specific UV-absorbance (SUVA) measurements. Hence there is strong interest in developing revised environmental regulations around the F-EEM technique instruments which can incidentally simultaneously measure the SUVA and DOC parameters. Importantly, the F-EEM technique, compared to the single-point TOC and SUVA signals can resolve CDOM classes distinguishing those that strongly cause DBPs. The F-EEM DBP prediction method can be applied to surface water sources to evaluate DBP potential as a function of the point sources and reservoir depth profiles. It can also be applied in-line to rapidly adjust DOC removal processes including sedimentation-flocculation, microfiltration, reverse-osmosis, and ozonation. Limitations and interferences for F-EEMs are discussed including those common to SUVA and TOC in contrast to the advantages including that F-EEMs are less prone to interferences from inorganic carbon and metal contaminations and require little if any chemical preparation. In conclusion, the F-EEM method is discussed in terms of not only the DBP problem but also as a means of predicting (concurrent to DBP monitoring) organic membrane fouling in water-reuse and desalination plants.

  6. INDUCTION OF TRANSTITIONAL CELL HYPERPLASIA IN THE URINARY BLADDER AND ABERRANT CRYPT FOCI IN THE COLON OF RATS TREATED WITH INDIVIDUAL AND A MIXTURE OF DRINKING WATER DISINFECTION BY-PRODUCTS

    EPA Science Inventory

    ABSTRACT

    Cancer of the urinary bladder and colon are significant human health concerns. Epidemiological studies have suggested a correlation between these cancers and the chronic consumption of drinking water containing disinfection by-products (DBPs). The present study...

  7. OFFICE OF RESEARCH AND DEVELOPMENT'S FOUR LAB STUDY: TOXICOLOGICCAL AND CHEMICAL EVALUATION OF COMPLEX MIXTURES OF DISINFECTION BY-PRODUCTS (DBPS) AND QUALITY ASSURANCE ACTIVITIES FOR A LARGE U. S. EPA MULTILABORATORY STUDY

    EPA Science Inventory

    Office of Research and Development's Four Lab Study: Toxicological and Chemical Evaluation of Complex Mixtures of Disinfection By-Products (DBPs), and Quality Assurance Activities for a Large U.S. EPA Multilaboratoty Study

    Thomas J. Hughes, Project and QA Manager, Expe...

  8. Efficacy of surface disinfectant cleaners against emerging highly resistant gram-negative bacteria

    PubMed Central

    2014-01-01

    Background Worldwide, the emergence of multidrug-resistant gram-negative bacteria is a clinical problem. Surface disinfectant cleaners (SDCs) that are effective against these bacteria are needed for use in high risk areas around patients and on multi-touch surfaces. We determined the efficacy of several SDCs against clinically relevant bacterial species with and without common types of multidrug resistance. Methods Bacteria species used were ATCC strains; clinical isolates classified as antibiotic-susceptible; and multi-resistant clinical isolates from Klebsiella oxytoca, Klebsiella pneumoniae, and Serratia marcescens (all OXA-48 and KPC-2); Acinetobacter baumannii (OXA-23); Pseudomonas aeruginosa (VIM-1); and Achromobacter xylosoxidans (ATCC strain). Experiments were carried out according to EN 13727:2012 in quadruplicate under dirty conditions. The five evaluated SDCs were based on alcohol and an amphoteric substance (AAS), an oxygen-releaser (OR), surface-active substances (SAS), or surface-active-substances plus aldehydes (SASA; two formulations). Bactericidal concentrations of SDCs were determined at two different contact times. Efficacy was defined as a log10 ≥ 5 reduction in bacterial cell count. Results SDCs based on AAS, OR, and SAS were effective against all six species irrespective of the degree of multi-resistance. The SASA formulations were effective against the bacteria irrespective of degree of multi-resistance except for one of the four P. aeruginosa isolates (VIM-1). We found no general correlation between SDC efficacy and degree of antibiotic resistance. Conclusions SDCs were generally effective against gram-negative bacteria with and without multidrug resistance. SDCs are therefore suitable for surface disinfection in the immediate proximity of patients. Single bacterial isolates, however, might have reduced susceptibility to selected biocidal agents. PMID:24885029

  9. Influence of Natural Organic Matter (NOM) Character on the Distribution of Chlorinated and Chloraminated Disinfection By-Products (DBPs) at Rand Water

    NASA Astrophysics Data System (ADS)

    Marais, Savia S.; Ncube, Esper J.; Haarhoff, Johannes; Msagati, Titus AM; Mamba, Bhekie B.; Nkambule, Thabo I.

    2016-04-01

    Certain disinfection by-products (DBPs) are likely human carcinogens or present mutagenic effects while many DBPs are unidentified. Considering the possibility of DBPs being harmful to human health and the fact that trihalomethanes (THMs) are the only regulated DBP in the South African National Standard (SANS:241) for drinking water, special interest in the precursors to these DBPs' formation is created. It is essential to understand the reactivity and character of the precursors responsible for the formation of DBPs in order to enhance precursor removal strategies during the treatment of drinking water. In this study the character of NOM within surface water and the subsequent distribution of THMs formed in the drinking water from Rand Waters' full scale treatment plant were investigated. Molecular size distribution (MSD) of NOM within the surface water was determined by high performance size exclusion chromatography (HPSEC). Specific ultraviolet absorbance (SUVA) and UV254 measurements formed part of the NOM character study as they provide an indication of the aromaticity of organic matter. The four THMs; bromoform, chloroform, dibromochloromethane (DBCM) and bromodichloromethane (BDCM)were measured by gas chromatography. The sum of these four THMs was expressed as total trihalomethane (TTHM). On average the chloroform constituted 76.2% of the total TTHM, BDCM 22.5% while DBCM and bromoform measured below the detection limit. THM speciation after chlorination and chloramination concentrations increased in the sequence bromoform < DBCM < BDCM < chloroform. Results of the MSD showed a significant correlation between NOM of high molecular size (peak I) and TTHM formation specifically during the summer months (R2= 0.971, p < 0.05). High molecular weight (HMW) NOM also related well to chloroform formation (R2 = 0.963, p < 0.05) however, the formation of BDCM was not due to HWM fraction as indicated by weak regression coefficient. A positive correlation existed between

  10. Potential carcinogenic hazards of non-regulated disinfection by-products: haloquinones, halo-cyclopentene and cyclohexene derivatives, N-halamines, halonitriles, and heterocyclic amines.

    PubMed

    Bull, Richard J; Reckhow, David A; Li, Xingfang; Humpage, Andrew R; Joll, Cynthia; Hrudey, Steve E

    2011-08-15

    Drinking water disinfectants react with natural organic material (NOM) present in source waters used for drinking water to produce a wide variety of by-products. Several hundred disinfections by-products (DBPs) have been identified, but none have been identified with sufficient carcinogenic potency to account for the cancer risks projected from epidemiological studies. In a search for DBPs that might fill this risk gap, the present study projected reactions of chlorine and chloramine that could occur with substructures present in NOM to produce novel by-products. A review of toxicological data on related compounds, supplemented by use of a quantitative structure toxicity relationship (QSTR) program TOPKAT®) identified chemicals with a high probability of being chronically toxic and/or carcinogenic among 489 established and novel DBPs. Classes of DBPs that were specifically examined were haloquinones (HQs), related halo-cyclopentene and cyclohexene (HCP&H) derivatives, halonitriles (HNs), organic N-chloramines (NCls), haloacetamides (HAMs), and nitrosamines (NAs). A review of toxicological data available for quinones suggested that HQs and HCP&H derivatives appeared likely to be of health concern and were predicted to have chronic lowest observed adverse effect levels (LOAELs) in the low μg/kg day range. Several HQs were predicted to be carcinogenic. Some have now been identified in drinking water. The broader class of HNs was explored by considering current toxicological data on haloacetonitriles and extending this to halopropionitriles. 2,2-dichloropropionitrile has been identified in drinking water at low concentrations, as well as the more widely recognized haloacetonitriles. The occurrence of HAMs has been previously documented. The very limited toxicological data on HAMs suggests that this class would have toxicological potencies similar to the dihaloacetic acids. Organic N-halamines are also known to be produced in drinking water treatment and have

  11. The adsorptive removal of disinfection by-product precursors in a high-SUVA water using iron oxide-coated pumice and volcanic slag particles.

    PubMed

    Kaplan Bekaroglu, S S; Yigit, N O; Karanfil, T; Kitis, M

    2010-11-15

    The main objective of this work was to study the effectiveness of iron oxide-coated pumice and volcanic slag particles in removing disinfection by-product (DBP) precursors from a raw drinking water source with high specific UV absorbance (SUVA(254)) value. Iron oxide coating of particles significantly increased dissolved organic carbon (DOC) uptakes and decreased DBP formation after chlorination compared to uncoated particles. pH values close to neutral levels during adsorption and chlorination provided DOC, trihalomethane and haloacetic acid reductions around 60-75% employing 6 g/L coated particle dosage. Higher degree of DOC and DBP reductions (>85%) were obtained with increasing particle dose. The uptake of bromide by iron oxide surfaces was negligible and increasing bromide concentrations (up to 550 μg/L) did not negatively impact the DOC uptake. However, due to competition between natural organic matter (NOM) and bicarbonate for the iron oxide surfaces, increasing bicarbonate alkalinity levels reduced DOC uptakes. Overall, the results indicated that the iron oxide-coated pumice/slag particles are effective adsorbents to remove NOM and control DBP formation in waters with relatively high DOC and SUVA(254) levels. However, they may not be effective for waters with alkalinity levels above 250 mg CaCO(3)/L.

  12. Disinfection by-product formation and mitigation strategies in point-of-use chlorination of turbid and non-turbid waters in western Kenya.

    PubMed

    Lantagne, D S; Blount, B C; Cardinali, F; Quick, R

    2008-03-01

    Over 1.1 billion people in the world lack access to improved drinking water. Diarrheal and other waterborne diseases cause an estimated 2.2 million deaths per year. The Safe Water System (SWS) is a proven household water treatment intervention that reduces diarrheal disease incidence in users in developing countries. Because the SWS recommends the addition of sodium hypochlorite to unfiltered water sources, concerns have been raised about the potential long-term health effects of disinfection by-products to SWS users. This study investigated the production of trihalomethanes (THMs) in water treated with sodium hypochlorite from six sources used for drinking water in western Kenya. The turbidity values of these sources ranged from 4.23 NTU to 305 NTU. THM concentrations were analysed at 1, 8, and 24 hours after addition of sodium hypochlorite. No sample exceeded the World Health Organization (WHO) guideline values for any of the four THMs: chloroform, bromodichloromethane, dibromochloromethane, or bromoform. In addition, no sample exceeded the WHO additive total THM guideline value. These results clearly show that point-of-use chlorination of a variety of realistic source waters used for drinking did not lead to THM concentrations that pose a significant health risk to SWS users.

  13. Strategies for the removal of halides from drinking water sources, and their applicability in disinfection by-product minimisation: a critical review.

    PubMed

    Watson, K; Farré, M J; Knight, N

    2012-11-15

    The presence of bromide (Br(-)) and iodide (I(-)) in source waters leads to the formation of brominated and iodinated disinfection by-products (DBPs), which are often more toxic than their chlorinated analogues. The increasing scarcity of water resources in Australia is leading to use of impaired and alternative water supplies with high bromide and iodide levels, which may result in the production of more brominated and iodinated DBPs. This review aims to provide a summary of research into bromide and iodide removal from drinking water sources. Bromide and iodide removal techniques have been broadly classified into three categories, namely; membrane, electrochemical and adsorptive techniques. Reverse osmosis, nanofiltration and electrodialysis membrane techniques are reviewed. The electrochemical techniques discussed are electrolysis, capacitive deionization and membrane capacitive deionization. Studies on bromide and iodide removal using adsorptive techniques including; layered double hydroxides, impregnated activated carbons, carbon aerogels, ion exchange resins, aluminium coagulation and soils are also assessed. Halide removal techniques have been compared, and areas for future research have been identified.

  14. Terminating pre-ozonation prior to biological activated carbon filtration results in increased formation of nitrogenous disinfection by-products upon subsequent chlorination.

    PubMed

    Chu, Wenhai; Li, Changjun; Gao, Naiyun; Templeton, Michael R; Zhang, Yanshen

    2015-02-01

    Previous research demonstrated that ozone dosed before biological activated carbon (BAC) filtration reduces the formation of disinfection by-products (DBPs) upon subsequent chlorination. The current work aimed to evaluate the impact of terminating this pre-ozonation on the ability of the BAC to remove the precursors of N-DBPs. More N-DBP precursors passed into the post-BAC water when the pre-ozonation was terminated, resulting in greater formation of N-DBPs when the water was subsequently chlorinated, compared to a parallel BAC filter when the pre-ozonation was run continuously. Moreover, the N-DBP formation potential was significantly increased in the effluent of the BAC filter after terminating pre-ozonation, compared with the influent of the BAC filter (i.e. the effluent from the sand filter). Therefore, while selectively switching pre-ozonation on/off may have cost and other operational benefits for water suppliers, these should be weighed against the increased formation of N-DBPs and potential associated health risks.

  15. Removal of Disinfection By-Products from Contaminated Water Using a Synthetic Goethite Catalyst via Catalytic Ozonation and a Biofiltration System·

    PubMed Central

    Wang, Yu-Hsiang; Chen, Kuan-Chung

    2014-01-01

    The effects of synthetic goethite (α-FeOOH) used as the catalyst in catalytic ozonation for the degradation of disinfection by-product (DBP) precursors are investigated. A biofiltration column applied following the catalytic ozonation process is used to evaluate the efficiency of removing DBP precursors via biotreatment. Ozone can rapidly react with aromatic compounds and oxidize organic compounds, resulting in a decrease in the fluorescence intensity of dissolved organic matter (DOM). In addition, catalytic ozonation can break down large organic molecules, which causes a blue shift in the emission-excitation matrix spectra. Water treated with catalytic ozonation is composed of low-molecular structures, including soluble microbial products (SMPs) and other aromatic proteins (APs). The DOM in SMPs and APs is removed by subsequent biofiltration. Catalytic ozonation has a higher removal efficiency for dissolved organic carbon and higher ultraviolet absorbance at 254 nm compared to those of ozonation without a catalyst. The use of catalytic ozonation and subsequent biofiltration leads to a lower DBP formation potential during chlorination compared to that obtained using ozonation and catalytic ozonation alone. Regarding DBP species during chlorination, the bromine incorporation factor (BIF) of trihalomethanes and haloacetic acids increases with increasing catalyst dosage in catalytic ozonation. Moreover, the highest BIF is obtained for catalytic ozonation and subsequent biofiltration. PMID:25211774

  16. Predictive models for water sources with high susceptibility for bromine-containing disinfection by-product formation: implications for water treatment.

    PubMed

    Watson, Kalinda; Farré, Maria José; Birt, James; McGree, James; Knight, Nicole

    2015-02-01

    This study examines a matrix of synthetic water samples designed to include conditions that favour brominated disinfection by-product (Br-DBP) formation, in order to provide predictive models suitable for high Br-DBP forming waters such as salinity-impacted waters. Br-DBPs are known to be more toxic than their chlorinated analogues, in general, and their formation may be favoured by routine water treatment practices such as coagulation/flocculation under specific conditions; therefore, circumstances surrounding their formation must be understood. The chosen factors were bromide concentration, mineral alkalinity, bromide to dissolved organic carbon (Br/DOC) ratio and Suwannee River natural organic matter concentration. The relationships between these parameters and DBP formation were evaluated by response surface modelling of data generated using a face-centred central composite experimental design. Predictive models for ten brominated and/or chlorinated DBPs are presented, as well as models for total trihalomethanes (tTHMs) and total dihaloacetonitriles (tDHANs), and bromide substitution factors for the THMs and DHANs classes. The relationships described revealed that increasing alkalinity and increasing Br/DOC ratio were associated with increasing bromination of THMs and DHANs, suggesting that DOC lowering treatment methods that do not also remove bromide such as enhanced coagulation may create optimal conditions for Br-DBP formation in waters in which bromide is present.

  17. Genotoxicity of drinking water disinfection by-products (bromoform and chloroform) by using both Allium anaphase-telophase and comet tests.

    PubMed

    Khallef, Messaouda; Liman, Recep; Konuk, Muhsin; Ciğerci, İbrahim Hakkı; Benouareth, Djameleddine; Tabet, Mouna; Abda, Ahlem

    2015-03-01

    Genotoxic effects of bromoform and chloroform, disinfection by-products of the chlorination of drinking water, were examined by using mitotic index (MI), mitotic phase, chromosome aberrations (CAs) and comet assay on root meristematic cells of Allium cepa. Different concentrations of bromoform (25, 50, 75 and 100 μg/mL) and chloroform (25, 50, 100 and 200 μg/mL) were introduced to onion tuber roots. Distilled water was used as a negative control and methyl methansulfonate (MMS-10 μg/mL) as positive control. All obtained data were subjected to statistical analyses by using SPSS 15.0 for Windows software. For comparison purposes, Duncan multiple range tests by using one-way analysis of variance were employed and p < 0.05 was accepted as significant value. Exposure of both chemicals (except 25 μg/mL applications of bromoform) significantly decreased MI. Bromoform and chloroform (except 25 μg/mL applications) increased total CAs in Allium anaphase-telophase test. A significant increase in DNA damage was also observed at all concentrations of both bromoform and chloroform examined by comet assay. The damages were higher than that of positive control especially at 75-100 μg/mL for bromoform and 100-200 μg/mL for chloroform.

  18. Occurrence and spatial and temporal variations of disinfection by-products in the water and air of two indoor swimming pools.

    PubMed

    Catto, Cyril; Sabrina, Simard; Ginette, Charest-Tardif; Manuel, Rodriguez; Robert, Tardif

    2012-08-01

    In order to improve disinfection by-product (DBP) exposure assessment, this study was designed to document both water and air levels of these chemical contaminants in two indoor swimming pools and to analyze their within-day and day-to-day variations in both of them. Intensive sampling was carried out during two one-week campaigns to measure trihalomethanes (THMs) and chloramines (CAMs) in water and air, and haloacetic acids (HAAs) in water several times daily. Water samples were systematically collected at three locations in each pool and air samples were collected at various heights around the pool and in other rooms (e.g., changing room) in the buildings. In addition, the ability of various models to predict air concentrations from water was tested using this database. No clear trends, but actual variations of contamination levels, appeared for both water and air according to the sampling locations and times. Likewise, the available models resulted in realistic but imprecise estimates of air contamination levels from water. This study supports the recommendation that suitable minimal air and water sampling should be carried out in swimming pools to assess exposure to DBPs.

  19. [Presence of disinfection by-products (DBPs) and other halogenated compounds in drinking water samples collected in the areas of Modena and Parma].

    PubMed

    Fantuzzi, G; Sansebastiano, G; Righi, E; Predieri, G; Cesari, C; Zoni, R; Veronesi, L; Saglia, S; Aggazzotti, G

    2003-01-01

    The Authors report data about the presence of Disinfection By-Products (DBPs) and other halogenated compounds in drinking water samples collected in the areas of Modena and Parma (20 water supplies). Trihalomethanes, chlorite and chlorate (only in water samples treated with chlorine dioxide), and halogenated compounds were investigated. On the whole, trihalomethanes were evidenced in the 85% of the samples (n. 285) at low levels, while chlorite and chlorate were present in the 67% and 63% of the treated samples with chlorine dioxide (257 samples). Chlorite mean and median values were 225.70 microg/l and 136.75 microg/l respectively, ranging from 20 to 2000 microg/l. Chlorate concentrations were lower than chlorite: the mean value was 102.93 mg/l, while median level was 50 microg/l (range: 20-1500 microg/l). The high concentrations of chlorite and the wide range of values within each municipality plant in Modena and Parma suggest to investigate further in order to evaluate the human exposure in drinking water thoroughly.

  20. Progressive Increase in Disinfection By-products and Mutagenicity from Source to Tap to Swimming Pool and Spa Water: Impact of Human Use

    EPA Science Inventory

    Pools and spas are enjoyed throughout the world for exercise and relaxation. However, there are no previous studies on mutagenicity of disinfected spa (hot tub) waters or comprehensive identification of disinfection byproducts (DBPs) formed in spas. Using 28 water samples from ...

  1. Sources of Dissolved Organic Carbon and Disinfection By-Product Precursors to the McKenzie River: Use of absorbance and fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Kraus, T. E.; Anderson, C.; Morgenstern, K.; Downing, B. D.; Bergamaschi, B. A.

    2009-12-01

    Dissolved organic matter (DOM) is a constituent of concern with respect to drinking water quality because it reacts upon chlorination to form disinfection byproducts (DBPs). The amount of DBPs that form is a function of both the amount and type of DOM undergoing treatment. Currently, the EPA regulates two classes of DBPs - trihalomethanes and haloacetic acids. This study was initiated to determine the main sources of NOM and disinfection by-product (DBP) precursors to the McKenzie River which is the sole water source for approximately 200,000 people in Eugene, Oregon (USA). Water samples collected from upstream, reservoir, tributary inputs and mainstem sites were analyzed for dissolved organic carbon (DOC) concentration and DBP formation potential. In addition, absorbance and fluorescence properties were determined to provide insight into DOC quality and assess whether these measurements can serve as useful proxies for DOC concentration and trihalomethane and haloacetic acid formation potentials (THMFP and HAAFP, respectively). Overall, raw water concentrations of DOC (<2 mg/L) and distribution system trihalomethanes (10-30 μg/L) and haloacetic acids (10-35 μg/L) were well below EPA regulations. The main sources of DOC to the McKenzie River were terrestrial watershed inputs entering the watershed via upstream sources. Downstream tributaries contained greater concentrations of DOC which had higher propensity to form DBPs, however because these inflows comprise less than 5% of mainstem flows, DBP precursor loads from these sources have a minimal effect on drinking water quality. Water exiting two flood control reservoirs from upstream tributaries, Cougar and Blue River, also had higher DOC concentrations than the upstream site, however qualitative data did not support a significant source from in situ algal production. Due to the interference in absorbance likely due to the presence of iron in downstream tributaries, absorbance was not as strong of a predictor of

  2. Twenty-week exposures to the drinking water disinfection by-product dibromoacetic acid: reproductive cyclicity and steroid concentrations in the female Sprague-Dawley rat.

    PubMed

    Murr, Ashley S; Goldman, Jerome M

    2005-01-01

    Elevated gavage exposures to the drinking water disinfection by-product dibromoacetic acid (DBA) have been found to disrupt estrous cyclicity in the rat and induce increases in estradiol concentrations in both cycling (day of estrus) and ovariectomized/estradiol-implanted females. The present study was designed to investigate both effects in Sprague-Dawley rats following an extended 20-week treatment with lower dosages of DBA administered in the drinking water (calculated mean intake concentrations of 5, 16, and 33 mg/kg/d). No treatment-related effects on cyclicity were present, although elevations in serum estradiol on the day of vaginal estrus were noted in regularly cycling rats when assessed at the 3rd and 11th weeks of exposure. By the 19th week, this effect was no longer present in cycling animals, but its absence was attributable to a marked increase in control estradiol concentrations, which may be associated with endocrine alterations that precede a disruption in estrous cyclicity in middle-aged females. In the 20th week, diestrous estrone levels were elevated at all dosages without effects on serum androstenedione or progesterone. Uterine and pituitary weights were unchanged at this time, although there were modest increases in liver weights at the two highest dosages. A small number of rats in persistent estrus (PE) did show a general increase in pituitary weight associated with DBA exposure, possibly reflecting an added layering of treatment on the PE-associated rise in estradiol normally seen in these females. The results indicate that increases in circulating estradiol from drinking water exposures to DBA were not linked to a premature disruption of estrous cyclicity in this moderately estrogen-sensitive rat strain.

  3. [Exposure to water disinfection by-products and adverse pregnancy outcomes: results of a case-control study carried out in Modena (Italy)].

    PubMed

    Righi, E; Fantuzzi, G; Montanari, M; Bargellini, A; Predieri, G; Aggazzotti, G

    2003-01-01

    Chlorination By Products (CBPs) in drinking water have been associated with an increased risk of adverse pregnancy outcomes, such as small term birth (STB) and preterm delivery. Up to date epidemiological evidence is weakened by a generally inaccurate exposure assessment, often at an ecological level: in this study the exposure is evaluated at the individual level. A case control study with incident cases was performed in Modena between October 1999-September 2000. 332 subjects were enrolled: 93 preterm births (26th-37th week of pregnancy), 73 STB (from 38th week, and weight less than the lowest 10th percentile) and 166 controls. Exposure was assessed both by applying a questionnaire on personal habits and by personal water sampling directly at subjects' home. THMs were analysed in all samples, chlorite and chlorate in water samples treated with chlorine dioxide. Subjects usually drinking tap water were few (5.2%): most of them were living in areas supplied by water treated with chlorine dioxide (87%). Levels of THMs were low (mean: 0.73 microgram/l), while chlorite and chlorate concentrations were relatively high (mean: 217.8 microgram/l for chlorites and 95.2 microgram/l for chlorates). Preterm birth did not show any significant association with CBPs, while STB appeared significantly associated, after adjusting for many potential confounders, with CBPs induced by chlorine dioxide treatment, especially with levels of chlorate higher than 200 microgram/l (OR: 4.7; 95%CI: 1.15-19.72). The association between STB and chlorate must be investigated further as the number of water utilities applying chlorine dioxide as disinfection treatment is increasing.

  4. Influence of the drinking water disinfection by-product dibromoacetic acid on rat estrous cyclicity and ovarian follicular steroid release in vitro.

    PubMed

    Balchak, S K; Hedge, J M; Murr, A S; Mole, M L; Goldman, J M

    2000-01-01

    The drinking water disinfection by-product, dibromoacetic acid (DBA) has been reported to affect gonadal functions in the male rat. However, there is little information regarding the influence of DBA on female reproductive activity. Consequently, the present study investigated the effects of DBA on estrous cyclicity and the impact in vitro of DBA on ovarian follicular steroid secretion. Regularly cycling animals were dosed with DBA (0 to 270 mg/kg/day) for 14 days and estrous cyclicity was monitored during treatment and for an additional 2-week posttreatment interval. A dose-related alteration in cyclicity was observed at 90 and 270 mg/kg/day, which persisted through the posttreatment monitoring in the high dose group. An in vitro exposure of preovulatory follicles to DBA was then used to assess the influence of DBA on steroid release. To select a concentration for use, a single oral exposure to 270 mg/kg was administered, and the mean blood levels were determined over a 5-h interval. For this in vitro work, pairs of preovulatory follicles from PMSG-primed immature rats were exposed to 0 or 50 microg/mL DBA over a 24-h period and evaluated for estradiol and progesterone release under baseline and hCG-stimulated conditions. The influence of tumor necrosis factor (TNFalpha) exposures under these conditions was also determined. In the nonstimulated condition, DBA was found to increase the release of estradiol, but had no detectable effect in response to hCG. Progesterone, however, showed marked suppression under hCG stimulation following exposure to DBA, while nonstimulated secretion was unaffected. TNFalpha by itself also suppressed stimulated progesterone release, but had no additional effect in combination with DBA. The data suggest that one factor in the disruption in estrous cyclicity could be an alteration in steroid production, which was characterized by separate effects on both estradiol and progesterone secretion.

  5. Developmental toxicity evaluations of whole mixtures of disinfection by-products using concentrated drinking water in rats: gestational and lactational effects of sulfate and sodium.

    PubMed

    Narotsky, Michael G; Pressman, Jonathan G; Miltner, Richard J; Speth, Thomas F; Teuschler, Linda K; Rice, Glenn E; Richardson, Susan D; Best, Deborah S; McDonald, Anthony; Hunter, E Sidney; Simmons, Jane Ellen

    2012-06-01

    A developmental toxicity bioassay was used in three experiments to evaluate water concentrates for suitability in multigenerational studies. First, chlorinated water was concentrated 135-fold by reverse osmosis; select lost disinfection by-products were spiked back. Concentrate was provided as drinking water to Sprague-Dawley and F344 rats from gestation day 6 to postnatal day 6. Maternal serum levels of luteinizing hormone on gestation day 10 were unaffected by treatment for both strains. Treated dams had increased water consumption, and increased incidences of polyuria, diarrhea, and (in Sprague-Dawley rats) red perinasal staining. Pup weights were reduced. An increased incidence of eye defects was seen in F344 litters. Chemical analysis of the concentrate revealed high sodium (6.6 g/l) and sulfate (10.4 g/l) levels. To confirm that these chemicals caused polyuria and osmotic diarrhea, respectively, Na₂SO₄ (5-20 g/l) or NaCl (16.5 g/l) was provided to rats in drinking water. Water consumption was increased at 5- and 10-g Na₂SO₄/l and with NaCl. Pup weights were reduced at 20-g Na₂SO₄/l. Dose-related incidences and severity of polyuria and diarrhea occurred in Na₂SO₄-treated rats; perinasal staining was seen at 20 g/l. NaCl caused polyuria and perinasal staining, but not diarrhea. Subsequently, water was concentrated ∼120-fold and sulfate levels were reduced by barium hydroxide before chlorination, yielding lower sodium (≤1.5 g/l) and sulfate (≤2.1 g/l) levels. Treatment resulted in increased water consumption, but pup weight and survival were unaffected. There were no treatment-related clinical findings, indicating that mixtures produced by the second method are suitable for multigenerational testing.

  6. Comparative cytotoxic and genotoxic potential of 13 drinking water disinfection by-products using a microplate-based cytotoxicity assay and a developed SOS/umu assay.

    PubMed

    Zhang, Shao-Hui; Miao, Dong-Yue; Tan, Li; Liu, Ai-Lin; Lu, Wen-Qing

    2016-01-01

    The implications of disinfection by-products (DBPs) present in drinking water are of public health concern because of their potential mutagenic, carcinogenic and other toxic effects on humans. In this study, we selected 13 main DBPs found in drinking water to quantitatively analyse their cytotoxicity and genotoxicity using a microplate-based cytotoxicity assay and a developed SOS/umu assay in Salmonella typhimurium TA1535/pSK1002. With the developed SOS/umu test, eight DBPs: 3-chloro-4-(dichloromethyl)-5-hydroxy-2[5H]-fura3-chloro-4-(dichloromethyl)-5-hydroxy-2-[5H]-furanone (MX), dibromoacetonitrile (DBN), iodoacetic acid (IA), bromochloroacetonitrile (BCN), bromoacetic acid (BA), trichloroacetonitrile (TCN), dibromoacetic acid (DBA) and dichloroacetic acid (DCA) were significantly genotoxic to S. typhimurium. Three DBPs: chloroacetic acid (CA), trichloroacetic acid (TCA) and dichloroacetonitrile (DCN) were weakly genotoxic, whereas the remaining DBPs: chloroacetonitrile (CN) and chloral hydrate (CH) were negative. The rank order in decreasing genotoxicity was as follows: MX > DBN > IA > BCN > BA > TCN > DBA > DCA > CA, TCA, DCN > CN, CH. MX was approximately 370 000 times more genotoxic than DCA. In the microplate-based cytotoxicity assay, cytotoxic potencies of the 13 DBPs were compared and ranked in decreasing order as follows: MX > IA > DBN > BCN > BA > TCN > DCN > CA > DCA > DBA > CN > TCA > CH. MX was approximately 19 200 times more cytotoxic than CH. A statistically significant correlation was found between cytotoxicity and genotoxicity of the 13 DBPs in S. typhimurium. Results suggest that microplate-based cytotoxicity assay and the developed SOS/umu assay are feasible tools for analysing the cytotoxicity and genotoxicity of DBPs, particularly for comparing their toxic intensities quantitatively.

  7. The effect of UV/H2O2 treatment on disinfection by-product formation potential under simulated distribution system conditions.

    PubMed

    Metz, D H; Meyer, M; Dotson, A; Beerendonk, E; Dionysiou, D D

    2011-07-01

    Advanced oxidation with ultraviolet light and hydrogen peroxide (UV/H(2)O(2)) produces hydroxyl radicals that have the potential to degrade a wide-range of organic micro-pollutants in water. Yet, when this technology is used to reduce target contaminants, natural organic matter can be altered. This study evaluated disinfection by-product (DBP) precursor formation for UV/H(2)O(2) while reducing trace organic contaminants in natural water (>90% for target pharmaceuticals, pesticides and taste and odor producing compounds and 80% atrazine degradation). A year-long UV/H(2)O(2) pilot study was conducted to evaluate DBP precursor formation with varying water quality. The UV pilot reactors were operated to consistently achieve 80% atrazine degradation, allowing comparison of low pressure (LP) and medium pressure (MP) lamp technologies for DBP precursor formation. Two process waters of differing quality were used as pilot influent, i.e., before and after granular activated carbon adsorption. DBP precursors increased under most of the conditions studied. Regulated trihalomethane formation potential increased through the UV/H(2)O(2) reactors from 20 to 118%, depending on temperature and water quality. When Post-GAC water served as reactor influent, less DBPs were produced in comparison to conventionally treated water. Haloacetic acid (HAA5) increased when conventionally treated water served as UV/H(2)O(2) pilot influent, but only increased slightly (MP lamp) when GAC treated water served as pilot influent. No difference in 3-day simulated distribution system DBP concentration was observed between LP and MP UV reactors when 80% atrazine degradation was targeted.

  8. Oral administration of potassium bromate, a major water disinfection by-product, induces oxidative stress and impairs the antioxidant power of rat blood.

    PubMed

    Ahmad, Mir Kaisar; Mahmood, Riaz

    2012-05-01

    Potassium bromate (KBrO(3)) is a widely used food additive, a water disinfection by-product and a known nephrotoxic agent. The effect of KBrO(3) on rat blood, especially on the anti-oxidant defense system, was studied in this work. Animals were given a single oral dose of KBrO(3) (100 mg/kg body weight) and sacrificed 12, 24, 48, 96 and 168 h after this treatment. Blood was collected from the animals and separated into plasma and erythrocytes. KBrO(3) administration resulted in increased lipid peroxidation, protein oxidation, hydrogen peroxide levels and decreased the reduced glutathione content indicating the induction of oxidative stress in blood. Methemoglobin levels and methemoglobin reductase activity were significantly increased while the total anti-oxidant power was greatly reduced upon KBrO(3) treatment. Nitric oxide levels were enhanced while vitamin C concentration decreased in KBrO(3) treated animals. The activities of major anti-oxidant enzymes were also altered upon KBrO(3) treatment. The maximum changes in all these parameters were 48 h after the administration of KBrO(3) and then recovery took place. These results show for the first time that KBrO(3) induces oxidative stress in blood and impairs the anti-oxidant defense system. Thus impairment in the anti-oxidant power and alterations in the activities of major anti-oxidant enzymes may play an important role in mediating the toxic effects of KBrO(3) in the rat blood. The study of such biochemical events in blood will help elucidate the molecular mechanism of action of KBrO(3) and also for devising methods to overcome its toxic effects.

  9. Emerging Implications of Balancing Disinfection and Primary Treatment as an Element in CSO Control: Model Requirements

    EPA Science Inventory

    This paper describes early results and directions arising from ongoing research into factors that affect the preferred balance between primary treatment and disinfection in a conventional wastewater treatment plant during periods of wet weather overflow. Despite the fact that na...

  10. DIBROMOACETIC ACID, A PREVALENT BY-PRODUCT OF DRINKING WATER DISINFECTION, COMPROMISES THE SYNTHESIS OF SPECIFIC SEMINFEROUS TUBULE PROTEINS FOLLOWING BOTH IN VIVO AND IN VITRO EXPOSURES

    EPA Science Inventory

    ABSTRACT
    Dibromoacetic acid(DBA) is a byproduct of drinking water disinfection that alters spermatogenesis in adult male rats. To identify a mechanism by which DBA alters spermatogenesis, seminiferous tubules representing specific groups of spermatogenic stages were expos...

  11. CHANGES IN THE CECAL MICROBIAL METABOLISM OF RATS INDUCED BY INDIVIDUAL AND A MIXTURE OF DRINKING WATER DISINFECTION BY-PRODUCTS

    EPA Science Inventory

    ABSTRACT

    Water treatment results in the production of numerous halogenated disinfection byproducts (DBPs), and has been associated with human colorectal cancer. Because the intestinal microbiota can bioactivate xenobiotics, several studies have been done to examine the eff...

  12. Component-Based and Whole-Mixture Techniques for Addressing the Toxicity Of Drinking-Water Disinfection By-Product Mixtures

    EPA Science Inventory

    To conduct the health-effect studies described in subsequent articles, concentrated aqueous mixtures of disinfection byproducts were required for the two separate treatment trains described in the preceding article. To accomplish this, the finished drinking waters from each trea...

  13. Polymorphisms in GSTT1, GSTZ1, and CYP2E1, Disinfection By-products, and Risk of Bladder Cancer in Spain

    PubMed Central

    Cantor, Kenneth P.; Villanueva, Cristina M.; Silverman, Debra T.; Figueroa, Jonine D.; Real, Francisco X.; Garcia-Closas, Monserrat; Malats, Nuria; Chanock, Stephen; Yeager, Meredith; Tardon, Adonina; Garcia-Closas, Reina; Serra, Consol; Carrato, Alfredo; Castaño-Vinyals, Gemma; Samanic, Claudine; Rothman, Nathaniel; Kogevinas, Manolis

    2010-01-01

    Background Bladder cancer has been linked with long-term exposure to disinfection by-products (DBPs) in drinking water. Objectives In this study we investigated the combined influence of DBP exposure and polymorphisms in glutathione S-transferase (GSTT1, GSTZ1) and cytochrome P450 (CYP2E1) genes in the metabolic pathways of selected by-products on bladder cancer in a hospital-based case–control study in Spain. Methods Average exposures to trihalomethanes (THMs; a surrogate for DBPs) from 15 years of age were estimated for each subject based on residential history and information on municipal water sources among 680 cases and 714 controls. We estimated effects of THMs and GSTT1, GSTZ1, and CYP2E1 polymorphisms on bladder cancer using adjusted logistic regression models with and without interaction terms. Results THM exposure was positively associated with bladder cancer: adjusted odds ratios (ORs) and 95% confidence intervals (CIs) were 1.2 (0.8–1.8), 1.8 (1.1–2.9), and 1.8 (0.9–3.5) for THM quartiles 2, 3, and 4, respectively, relative to quartile 1. Associations between THMs and bladder cancer were stronger among subjects who were GSTT1 +/+ or +/− versus GSTT1 null (pinteraction = 0.021), GSTZ1 rs1046428 CT/TT versus CC (pinteraction = 0.018), or CYP2E1 rs2031920 CC versus CT/TT (pinteraction = 0.035). Among the 195 cases and 192 controls with high-risk forms of GSTT1 and GSTZ1, the ORs for quartiles 2, 3, and 4 of THMs were 1.5 (0.7–3.5), 3.4 (1.4–8.2), and 5.9 (1.8–19.0), respectively. Conclusions Polymorphisms in key metabolizing enzymes modified DBP-associated bladder cancer risk. The consistency of these findings with experimental observations of GSTT1, GSTZ1, and CYP2E1 activity strengthens the hypothesis that DBPs cause bladder cancer and suggests possible mechanisms as well as the classes of compounds likely to be implicated. PMID:20675267

  14. Environmental and urinary markers of prenatal exposure to drinking water disinfection by-products, fetal growth, and duration of gestation in the PELAGIE birth cohort (Brittany, France, 2002-2006).

    PubMed

    Costet, Nathalie; Garlantézec, Ronan; Monfort, Christine; Rouget, Florence; Gagnière, Bertrand; Chevrier, Cécile; Cordier, Sylvaine

    2012-02-15

    Although prenatal exposure to water disinfection by-products does not appear to affect the duration of gestation, its impact on fetal growth remains an open question. The authors studied the associations between prenatal exposure to disinfection by-products and fetal growth restriction (FGR) and preterm birth in the PELAGIE cohort, a French birth cohort comprising 3,421 pregnant women recruited between 2002 and 2006. Exposure was assessed by estimating levels of trihalomethanes (THMs) in tap water during pregnancy and maternal water use and by measuring maternal urinary levels of trichloroacetic acid (TCAA) during early pregnancy in a nested case-control design that compared 174 FGR cases, 114 preterm births, and 399 controls. Higher uptake of THMs (especially brominated THMs) was associated with a higher risk of FGR. Women with TCAA detected in their urine (>0.01 mg/L) had a higher risk of FGR than those with TCAA levels below the detection limit (adjusted odds ratio = 1.8, 95% confidence interval: 0.9, 3.7) and had an odds ratio for preterm birth below 1 (adjusted odds ratio = 0.8, 95% confidence interval: 0.3, 2.6). Results from this prospective study, the first to use a biomarker of disinfection by-product exposure, suggest that prenatal exposure affects fetal growth, but the causal agent or agents remain to be identified.

  15. 2008 Meeting in Germany: Emerging Environmental Contaminants and Current Issues

    EPA Science Inventory

    This presentation will discuss emerging environmental contaminants that are currently of concern to the U.S. EPA and to other agencies. Emerging contaminants include drinking water disinfection by-products (DBPs), perfluorinated chemicals, pharmaceuticals, flame retardants, benzo...

  16. Uptake of chlorination disinfection by-products; a review and a discussion of its implications for exposure assessment in epidemiological studies.

    PubMed

    Nieuwenhuijsen, M J; Toledano, M B; Elliott, P

    2000-01-01

    We have reviewed the relevant issues in the exposure assessment of disinfection by-products (DBPs) of chlorination for epidemiological and health risk assessment. Various DBPs can be detected in drinking water and swimming pools, and the reported levels show a considerable range, but were generally below the current health standard for total trihalomethanes (TTHMs) (100 microg/l). Relatively little information is available on the correlation between the various DBPs in drinking water and in swimming pools. Chloroform was generally, but not always, the most predominant DBP. In epidemiological studies, TTHM levels have been used as an indicator for total DBP load, even though TTHM levels do not always correlate well with individual DPBs. Factors such as residence time, temperature, pH, organic content, including humic and fulvic acid and bromide levels affect the composition and levels of DBPs. Although there are biomarkers of DBPs, mainly for chloroform and more recently for the other volatile trihalomethanes (THMs) and the nonvolatile haloacetic acids (HAAs) such as trichloroacetic acid (TCAA) and dichloroacetic acid (DCAA), they have not been used in epidemiological studies. The THMs have been measured in exhaled breath and serum, while the HAAs have been measured in urine. These biomarkers have been useful to estimate the actual uptake of the DBPs and the relative contribution of various exposure routes. Physiologically based pharmacokinetic (PBPK) models exist for, e.g. chloroform, but their main target organs are the kidney and liver and they have not been used in epidemiological studies. Tap water ingestion, showering, bathing, swimming, boiling water and dishwashing are all activities that have been associated with the uptake of DBPs, and considerable variation in these activities has been observed between people. No studies have reported on the correlation between human uptake of DBPs and water-zone mean estimates, but various studies found a good

  17. How can emerging disinfection technologies gain a foothold in the current culture of hospitals?

    PubMed

    St Clair, David

    2014-01-01

    In the United States, more than 90% of hospitals still use only the traditional "spray and wipe" disinfection methods initiated over a century ago to protect patients from their environment; international adoption of new methods is even lower. Innovative approaches like whole room disinfection find an inhospitable reception in spite of clearly superior reductions in health care-acquired infections. Much of the resistance is due to a lack of true accountability for patient safety in hospital organizations and to perverse incentive structures in historical reimbursement policies. But all of that may change in the coming years as hospitals and doctors become more responsible for the health outcomes of their patients.

  18. Formation of disinfection byproducts in a recirculating mariculture system: emerging concerns.

    PubMed

    Qiang, Zhimin; Zhang, Haiting; Dong, Huiyu; Adams, Craig; Luan, Gang; Wang, Lei

    2015-02-01

    Disinfection is commonly employed in recirculating mariculture systems (RMS) to control animal diseases and improve seawater quality; however, little is known about the occurrence of disinfection byproducts (DBPs) formed in such RMS. Beijing Aquarium is a typical RMS with artificially prepared seawater and mainly adopts a decentralized treatment strategy for different animal tanks, including sand filtration, foam fractionation, and disinfection (O3, UV, and O3/ClO2). This study reveals that the adopted disinfection processes were highly effective in controlling marine heterotrophic bacteria; however, some concerns were raised on the formation of various kinds of DBPs, including secondary oxidants, inorganic oxyanions, and hazardous organic species. Free chlorine and free bromine were generated from ozonation at health-relevant concentrations. High concentrations of BrO3(-) and ClO3(-) were formed in mammal tanks, which exceeded the USEPA-regulated maximum contaminant level (MCL) for drinking water by 19-25 and 52-54 times, respectively. Extremely high concentrations of NO3(-) were detected in mammal tanks, which considerably exceeded the MCL regulated by the Sea Water Quality Standard of China for the mariculture industry (Class II) by about 1100 times. Undoubtedly, the presence of various DBPs poses serious health threats to aquarium animals. To solve these problems, potential control measures for DBPs are proposed.

  19. Immunocytochemistry and Image Analysis of Beta-Catenin Redistribution in Normal Human Colon Cell Cultures Treated with Disinfection By-Products.

    EPA Science Inventory

    Epidemiological studies have shown an association between the consumption of chlorinated drinking water and increased risk for colon cancer. In vivo studies proved that rodents exposed to chlorination disinfection byproducts (DBPs) developed aberrant crypt foci (ACF) in t...

  20. ANALYSIS OF PRENEOPLASTIC AND NEOPLASTIC RENAL LESIONS IN TSC2 MUTANT LONG-EVANS (EKER) RATS FOLLOWING EXPOSURE TO A MIXTURE OF DRINKING WATER DISINFECTION BY-PRODUCTS

    EPA Science Inventory

    Abstract

    Disinfection of surface water for human consumption results in the generation of a complex mixture of chemicals in potable water. Cancer risk assessment methodology assumes additivity of carcinogenic effects in the regulation of mixtures. A rodent model of ...

  1. ALTERATION OF ESTROUS CYCLICITY BY THE DRINKING WATER DISINFECTION BY-PRODUCT DIBROMOACETIC ACID: RELATIONSHIP TO AN EFFECT ON ESTRADIOL METABOLISM?

    EPA Science Inventory

    A number of chemicals formed by disinfection of municipal drinking water have been suspected to cause reproductive alterations in humans and test animals. One class of these chemicals, the haloacetic acids, have been reported to alter a number of rat testicular endpoints, includ...

  2. INTERRELATIONSHIPS AMONG EPIGENETIC MECHANISMS FOR RISK ASSESSMENT OF DICHLOROACETIC ACID, A DRINKING WATER BY-PRODUCT OF THE CHLORINE DISINFECTION PROCESS

    EPA Science Inventory

    The reauthorization of The Safe Drinking Water Act of 1996 requires the EPA to develop a priority list of chemicals that are present in drinking water and to conduct research into the modes and mechanisms of action by which they produce adverse effects. The disinfection by-produc...

  3. Potential for formation of disinfection by-products from storage of chlorinated surface water in the Basalt aquifer near Fallon, Nevada

    USGS Publications Warehouse

    Fram, Miranda S.; Maurer, Douglas K.; Lico, Michael S.

    2005-01-01

    Increased pumpage from a basalt aquifer near Fallon, Nevada, has caused its water levels to decline and has induced changes in the quality of water pumped from the basalt. The aquifer is the sole source of water for municipal supply to the city of Fallon, the Naval Air Station Fallon, and the Fallon Paiute-Shoshone Tribe. These changes may be mitigated by storage of surface water in the basalt for subsequent use. Because chlorination of the surface water may be required for storage, the U.S. Geological Survey, in cooperation with the Fallon Paiute-Shoshone Tribe, made laboratory tests using laboratory carbon-organic-free water, surface-water, ground-water, and basaltic-rock samples to determine the potential for formation of disinfection by-products. Experiments with water samples only (no rock and no chlorine) indicated no change in dissolved-organic-carbon (DOC) concentrations over a 20-day reaction period; whereas, all experiments using rock, water, and no chlorine indicated an increase in DOC concentrations. The greatest increase in DOC concentrations for all three water samples occurred in experiments with the rock samples from outcrops on Rattlesnake Hill. Experiments with water only and chlorine yielded a total trihalomethane (THM) concentration of 97.4 ?g/L for the ground-water sample and 347 ?g/L for the surface-water sample. Experiments with mixtures of water, rocks, and chlorine indicated that reactions with the rock consumed chlorine and released significant amounts of organic carbon from the rock, increasing the DOC concentration in the water. The organic carbon in the rocks likely is associated with the secondary clay minerals that line vesicles and fractures in the rocks. THM concentrations were greatest, from 335 to 909 ?g/L, for surface water equilibrated with rock samples from Rattlesnake Hill. However, the concentration of chlorine required to produce these high THM concentrations ranged from 18 to 84 mg/L. The results of the experiments suggest

  4. Impact of pre-ozonation on disinfection by-product formation and speciation from chlor(am)ination of algal organic matter of Microcystis aeruginosa.

    PubMed

    Zhu, Mingqiu; Gao, Naiyun; Chu, Wenhai; Zhou, Shiqing; Zhang, Zhengde; Xu, Yaqun; Dai, Qi

    2015-10-01

    The increasing use of algal-impacted source waters is increasing concerns over exposure to disinfection byproducts (DBPs) in drinking water disinfection, due to the higher concentrations of DBP precursors in these waters. The impact of pre-ozonation on the formation and speciation of DBPs during subsequent chlorination and chloramination of algal organic matter (AOM), including extracellular organic matter (EOM) and intracellular organic matter (IOM), was investigated. During subsequent chlorination, ozonation pretreatment reduced the formation of haloacetonitriles from EOM, but increased the yields of trihalomethanes, dihaloacetic acid and trichloronitromethane from both EOM and IOM. While in chloramination, pre-ozonation remarkably enhanced the yields of several carbonaceous DBPs from IOM, and significantly minimized the nitrogenous DBP precursors. Also, the yield of 1,1-dichloro-2-propanone from IOM was decreased by 24.0% after pre-ozonation during chloramination. Both increases and decreases in the bromine substitution factors (BSF) of AOM were observed with ozone pretreatment at the low bromide level (50μg/L). However, pre-ozonation played little impact on the bromide substitution in DBPs at the high bromide level (500μg/L). This information was used to guide the design and practical operation of pre-ozonation in drinking water treatment plants using algae-rich waters.

  5. Minimizing the Risk of Disease Transmission in Emergency Settings: Novel In Situ Physico-Chemical Disinfection of Pathogen-Laden Hospital Wastewaters

    PubMed Central

    Sozzi, Emanuele; Fabre, Kerline; Fesselet, Jean-François; Ebdon, James E.; Taylor, Huw

    2015-01-01

    The operation of a health care facility, such as a cholera or Ebola treatment center in an emergency setting, results in the production of pathogen-laden wastewaters that may potentially lead to onward transmission of the disease. The research presented here evaluated the design and operation of a novel treatment system, successfully used by Médecins Sans Frontières in Haiti to disinfect CTC wastewaters in situ, eliminating the need for road haulage and disposal of the waste to a poorly-managed hazardous waste facility, thereby providing an effective barrier to disease transmission through a novel but simple sanitary intervention. The physico-chemical protocols eventually successfully treated over 600 m3 of wastewater, achieving coagulation/flocculation and disinfection by exposure to high pH (Protocol A) and low pH (Protocol B) environments, using thermotolerant coliforms as a disinfection efficacy index. In Protocol A, the addition of hydrated lime resulted in wastewater disinfection and coagulation/flocculation of suspended solids. In Protocol B, disinfection was achieved by the addition of hydrochloric acid, followed by pH neutralization and coagulation/flocculation of suspended solids using aluminum sulfate. Removal rates achieved were: COD >99%; suspended solids >90%; turbidity >90% and thermotolerant coliforms >99.9%. The proposed approach is the first known successful attempt to disinfect wastewater in a disease outbreak setting without resorting to the alternative, untested, approach of ‘super chlorination’ which, it has been suggested, may not consistently achieve adequate disinfection. A basic analysis of costs demonstrated a significant saving in reagent costs compared with the less reliable approach of super-chlorination. The proposed approach to in situ sanitation in cholera treatment centers and other disease outbreak settings represents a timely response to a UN call for onsite disinfection of wastewaters generated in such emergencies, and the

  6. Sources and characteristics of organic matter in the Clackamas River, Oregon, related to the formation of disinfection by-products in treated drinking water

    USGS Publications Warehouse

    Carpenter, Kurt D.; Kraus, Tamara E.C.; Goldman, Jami H.; Saraceno, John Franco; Downing, Bryan D.; Bergamaschi, Brian A.; McGhee, Gordon; Triplett, Tracy

    2013-01-01

    This study characterized the amount and quality of organic matter in the Clackamas River, Oregon, to gain an understanding of sources that contribute to the formation of chlorinated and brominated disinfection by-products (DBPs), focusing on regulated DBPs in treated drinking water from two direct-filtration treatment plants that together serve approximately 100,000 customers. The central hypothesis guiding this study was that natural organic matter leaching out of the forested watershed, in-stream growth of benthic algae, and phytoplankton blooms in the reservoirs contribute different and varying proportions of organic carbon to the river. Differences in the amount and composition of carbon derived from each source affects the types and concentrations of DBP precursors entering the treatment plants and, as a result, yield varying DBP concentrations and species in finished water. The two classes of DBPs analyzed in this study-trihalomethanes (THMs) and haloacetic acids (HAAs)-form from precursors within the dissolved and particulate pools of organic matter present in source water. The five principal objectives of the study were to (1) describe the seasonal quantity and character of organic matter in the Clackamas River; (2) relate the amount and composition of organic matter to the formation of DBPs; (3) evaluate sources of DBP precursors in the watershed; (4) assess the use of optical measurements, including in-situ fluorescence, for estimating dissolved organic carbon (DOC) concentrations and DBP formation; and (5) assess the removal of DBP precursors during treatment by conducting treatability "jar-test" experiments at one of the treatment plants. Data collection consisted of (1) monthly sampling of source and finished water at two drinking-water treatment plants; (2) event-based sampling in the mainstem, tributaries, and North Fork Reservoir; and (3) in-situ continuous monitoring of fluorescent dissolved organic matter (FDOM), turbidity, chlorophyll-a, and

  7. Source Water Management for Disinfection By-Product Control using New York City's Operations Support Tool and On-Line Monitoring

    NASA Astrophysics Data System (ADS)

    Weiss, W. J.; Becker, W.; Schindler, S.

    2012-12-01

    The United States Environmental Protection Agency's 2006 Stage 2 Disinfectant / Disinfection Byproduct Rule (DBPR) for finished drinking waters is intended to reduce overall DBP levels by limiting the levels of total trihalomethanes (TTHM) and five of the haloacetic acids (HAA5). Under Stage 2, maximum contaminant levels (MCLs), 80 μg/L for TTHM and 60 μg/L for HAA5, are based on a locational running annual average for individual sites instead of as the system-wide quarterly running annual average of the Stage 1 DBPR. This means compliance will have to be met at sampling locations of peak TTHM and HAA5 concentrations rather than an average across the entire system. Compliance monitoring under the Stage 2 DBPR began on April 1, 2012. The New York City (NYC) Department of Environmental Protection (DEP) began evaluating potential impacts of the Stage 2 DBPR on NYC's unfiltered water supply in 2002 by monitoring TTHM and HAA5 levels at various locations throughout the distribution system. Initial monitoring indicated that HAA5 levels could be of concern in the future, with the potential to intermittently violate the Stage 2 DBPR at specific locations, particularly those with high water age. Because of the uncertainty regarding the long-term prospect for compliance, DEP evaluated alternatives to ensure compliance, including operational changes (reducing chlorine dose, changing flow configurations to minimize water age, altering pH, altering source water withdrawals); changing the residual disinfectant from free chlorine to chloramines; and engineered treatment alternatives. This paper will discuss the potential for using DEP's Operations Support Tool (OST) and enhanced reservoir monitoring to support optimization of source water withdrawals to minimize finished water DBP levels. The OST is a state-of-the-art decision support system (DSS) to provide computational and predictive support for water supply operations and planning. It incorporates a water supply system

  8. The emerging potential of by-products as platforms for drug delivery systems.

    PubMed

    Joanitti, Graziella A; Silva, Luciano P

    2014-05-01

    Natural resources are widely used as raw materials by industries. In most cases, abundant byproducts with low economic interest are also generated from agro-industrial supply chains. There are several examples for the rational use of agro-industrial byproducts in the nanobiotechnology field aiming for the development of novel products and high value added processes. Such raw materials include carapaces, pelages, blood, bagasses, and straws. Molecules from such materials (e.g. chitosan, cellulose, and albumin) are used as scaffolds of unprecedented novel nanostructure. Research efforts comprising a combination of sustainability, nanobiotechnology, and nanomedicine have emerged. One major area in nano-biotechnological research of agro-industrial byproducts is represented by the field of drug delivery systems (DDS). Among the main advantages of agro-industrial byproducts used as drug carriers are their abundance; low price; high biocompatibility; good biodegradability; moderate bioresorbability, associated with reduced systemic toxicity or even no toxicity; and often bioactivity. The goal of these efforts includes not only the possibility to characterize and manipulate matter on the nanoscale, but also to develop sustainable products and processes, including the development of platforms for drug delivery aiming for the treatment of pathologies such as cancer and diabetes. Indeed, there is great hope that the use of agro-industrial byproducts in nanobiotechnology will increase not only agricultural and livestock productivity, but will also contribute to other areas such as the development of DDS with new properties and low production costs; and sustainable environmental management due to the reuse of industrial discharged byproducts. This review will compile current findings on the use of byproducts as building blocks for modern drug carrier systems, emphasizing the challenges and promising applications.

  9. Recent advances in drinking water disinfection: successes and challenges.

    PubMed

    Ngwenya, Nonhlanhla; Ncube, Esper J; Parsons, James

    2013-01-01

    Drinking water is the most important single source of human exposure to gastroenteric diseases, mainly as a result of the ingestion of microbial contaminated water. Waterborne microbial agents that pose a health risk to humans include enteropathogenic bacteria, viruses, and protozoa. Therefore, properly assessing whether these hazardous agents enter drinking water supplies, and if they do, whether they are disinfected adequately, are undoubtedly aspects critical to protecting public health. As new pathogens emerge, monitoring for relevant indicator microorganisms (e.g., process microbial indicators, fecal indicators, and index and model organisms) is crucial to ensuring drinking water safety. Another crucially important step to maintaining public health is implementing Water Safety Plans (WSPs), as is recommended by the current WHO Guidelines for Drinking Water Quality. Good WSPs include creating health-based targets that aim to reduce microbial risks and adverse health effects to which a population is exposed through drinking water. The use of disinfectants to inactivate microbial pathogens in drinking water has played a central role in reducing the incidence of waterborne diseases and is considered to be among the most successful interventions for preserving and promoting public health. Chlorine-based disinfectants are the most commonly used disinfectants and are cheap and easy to use. Free chlorine is an effective disinfectant for bacteria and viruses; however, it is not always effective against C. parvum and G. lamblia. Another limitation of using chlorination is that it produces disinfection by-products (DBPs), which pose potential health risks of their own. Currently, most drinking water regulations aggressively address DBP problems in public water distribution systems. The DBPs of most concern include the trihalomethanes (THMs), the haloacetic acids (HAAs), bromate, and chlorite. However, in the latest edition of the WHO Guidelines for Drinking Water Quality

  10. The occurrence of disinfection by-products in municipal drinking water in China's Pearl River Delta and a multipathway cancer risk assessment.

    PubMed

    Gan, Wenhui; Guo, Wanhong; Mo, Jianmin; He, Yisen; Liu, Yongjian; Liu, Wei; Liang, Yongmei; Yang, Xin

    2013-03-01

    Disinfection byproducts were measured in the finished drinking water from ten water treatment plants in three Chinese cities - Guangzhou, Foshan and Zhuhai. A total of 155 water samples were collected in 2011 and 2012. The median (range) of trihalomethane (THM) and haloacetic acid (HAA) levels were 17.7 (0.7-62.7) μg/L and 8.6 (0.3-81.3) μg/L, respectively. Chloroform, dichloroacetic acid and trichloroacetic acid were the dominant species observed in Guangzhou and Foshan water, while brominated THMs predominated in water from Zhuhai. Haloacetonitriles, haloketones, chloral hydrate and trichloronitromethane were usually detected at levels ranging from unquantifiable (<0.2μg/L) to 12.2μg/L (choral hydrate). THMs and HAAs showed clear seasonal variations with the total concentrations higher in winter than in summer. Correlations among DBP levels varied, with the strongest linear correlation observed between chloroform and chloral hydrate levels (R(2)=0.77). The risk of cancer from ingestion, inhalation and dermal contact exposure to THMs was estimated. CHCl2Br contributed the highest percentage of the cancer risk from ingestion pathway and CHCl3 contributed the highest of cancer risk from inhalation pathway.

  11. Disinfection of tertiary wastewater effluent prior to river discharge using peracetic acid; treatment efficiency and results on by-products formed in full scale tests.

    PubMed

    Pedersen, Per Overgaard; Brodersen, Erling; Cecil, David

    2013-01-01

    This is an investigation of chemical disinfection, with peracetic acid (PAA), in a tertiary sand filter at a full scale activated sludge plant with nitrification/denitrification and P-removal. The reduction efficiency of Escherichia coli and intestinal enterococci in the sand filter is reported. E. coli log reductions of between 0.4 and 2.2 were found with contact times from 6 to 37 min and with dosing from 0 to 4.8 mg L(-1). The average log reduction was 1.3. The decomposition products, bromophenols, chlorophenols and formaldehyde and residual H2O2 were measured before and after the sand filter. The residual H2O2 concentration in the effluent was critical at short contact times and high dosages of PAA due to the discharge limit of 25 μg L(-1). The other three products could not be detected at 0.1 μg L(-1) levels. The chemical cost of PAA dosing is estimated to be 0.039 US$ m(-3) treated wastewater.

  12. The toxicity of a new disinfection by-product, 2,2-dichloroacetamide (DCAcAm), on adult zebrafish (Danio rerio) and its occurrence in the chlorinated drinking water.

    PubMed

    Yu, Shilin; Lin, Tao; Chen, Wei; Tao, Hui

    2015-11-01

    The detection method of 2,2-dichloroacetamide (DCAcAm), a new disinfection by-product (DBP) in chlorinated drinking water, was established using a gas chromatograph coupled with a micro-electron capture detector. The chlorinated water samples were taken from ten drinking water treatment plants around Yangtze River or Taihu Lake in China. The concentration of DCAcAm was detected ranging from 0.5 to 1.8μg/L in the waterworks around Yangtze River, and 1.5-2.6μg/L around Taihu Lake. The toxicity of DCAcAm on adult zebrafish was assessed by investigating the metabolism damage with multiple metabolic biomarkers and the accumulation capability with bio-concentration factor. The results showed that DCAcAm could cause the acute metabolism damage and was easily accumulated in zebrafish, and should be extremely cautioned.

  13. CHARACTERISTICS AND TOXICITY OF THE DRINKING WATER DISINFECTION BY-PRODUCT 3-CHLORO-4(DICHLOROMETHYL)-5-HYDROXY-2[5H]-FURANONE (MX) TO MEDAKA (ORYZIAS LATIPES)

    EPA Science Inventory

    The compound 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone, also known as MX, is a by-product of wood pulp manufacture and a contaminant of chlorinated drinking and sewage water. MX has recently been shown to be carcinogenic to rodents. However, no data exist for its effec...

  14. Kinetic assessment and modeling of an ozonation step for full-scale municipal wastewater treatment: micropollutant oxidation, by-product formation and disinfection.

    PubMed

    Zimmermann, Saskia G; Wittenwiler, Mathias; Hollender, Juliane; Krauss, Martin; Ort, Christoph; Siegrist, Hansruedi; von Gunten, Urs

    2011-01-01

    The kinetics of oxidation and disinfection processes during ozonation in a full-scale reactor treating secondary wastewater effluent were investigated for seven ozone doses ranging from 0.21 to 1.24 g O(3) g(-1) dissolved organic carbon (DOC). Substances reacting fast with ozone, such as diclofenac or carbamazepine (k(P, O3) > 10(4) M(-1) s(-1)), were eliminated within the gas bubble column, except for the lowest ozone dose of 0.21 g O(3) g(-1) DOC. For this low dose, this could be attributed to short-circuiting within the reactor. Substances with lower ozone reactivity (k(P, O3) < 10(4) M(-1) s(-1)) were only fully eliminated for higher ozone doses. The predictions of micropollutant oxidation based on coupling reactor hydraulics with ozone chemistry and reaction kinetics were up to a factor of 2.5 higher than full-scale measurements. Monte Carlo simulations showed that the observed differences were higher than model uncertainties. The overestimation of micropollutant oxidation was attributed to a protection of micropollutants from ozone attack by the interaction with aquatic colloids. Laboratory-scale batch experiments using wastewater from the same full-scale treatment plant could predict the oxidation of slowly-reacting micropollutants on the full-scale level within a factor of 1.5. The Rct value, the experimentally determined ratio of the concentrations of hydroxyl radicals and ozone, was identified as a major contribution to this difference. An increase in the formation of bromate, a potential human carcinogen, was observed with increasing ozone doses. The final concentration for the highest ozone dose of 1.24 g O(3) g(-1) DOC was 7.5 μg L(-1), which is below the drinking water standard of 10 μg L(-1). N-Nitrosodimethylamine (NDMA) formation of up to 15 ng L(-1) was observed in the first compartment of the reactor, followed by a slight elimination during sand filtration. Assimilable organic carbon (AOC) increased up to 740 μg AOC L(-1), with no clear trend

  15. A Summary of Publications on the Development of Mode-of-Action Information and Statistical Tools for Evaluating Health Outcomes from Drinking Water Disinfection By-Product (DBP) Exposures

    EPA Science Inventory

    Chemical contaminants are formed as a consequence of chemical disinfection of public drinking waters. Chemical disinfectants, which are used to kill harmful microorganisms, react with natural organic matter (NOM), bromide, iodide, and other compounds, forming complex mixtures...

  16. Real Time Monitoring of Dissolved Organic Carbon Concentration and Disinfection By-Product Formation Potential in a Surface Water Treatment Plant with Simulaneous UV-VIS Absorbance and Fluorescence Excitation-Emission Mapping

    NASA Astrophysics Data System (ADS)

    Gilmore, A. M.

    2015-12-01

    This study describes a method based on simultaneous absorbance and fluorescence excitation-emission mapping for rapidly and accurately monitoring dissolved organic carbon concentration and disinfection by-product formation potential for surface water sourced drinking water treatment. The method enables real-time monitoring of the Dissolved Organic Carbon (DOC), absorbance at 254 nm (UVA), the Specific UV Absorbance (SUVA) as well as the Simulated Distribution System Trihalomethane (THM) Formation Potential (SDS-THMFP) for the source and treated water among other component parameters. The method primarily involves Parallel Factor Analysis (PARAFAC) decomposition of the high and lower molecular weight humic and fulvic organic component concentrations. The DOC calibration method involves calculating a single slope factor (with the intercept fixed at 0 mg/l) by linear regression for the UVA divided by the ratio of the high and low molecular weight component concentrations. This method thus corrects for the changes in the molecular weight component composition as a function of the source water composition and coagulation treatment effects. The SDS-THMFP calibration involves a multiple linear regression of the DOC, organic component ratio, chlorine residual, pH and alkalinity. Both the DOC and SDS-THMFP correlations over a period of 18 months exhibited adjusted correlation coefficients with r2 > 0.969. The parameters can be reported as a function of compliance rules associated with required % removals of DOC (as a function of alkalinity) and predicted maximum contaminant levels (MCL) of THMs. The single instrument method, which is compatible with continuous flow monitoring or grab sampling, provides a rapid (2-3 minute) and precise indicator of drinking water disinfectant treatability without the need for separate UV photometric and DOC meter measurements or independent THM determinations.

  17. Emerging Implications of Balancing Disinfection and Primary Treatment as an Element in CSO Control: Model Requirements. A presentation.

    EPA Science Inventory

    This paper describes early results and directions arising from ongoing research into factors that affect the preferred balance between primary treatment and disinfection in a conventional wastewater treatment plant during periods of wet weather overflow. Despite the fact that na...

  18. Evaluation of the immunomodulatory effects of the disinfection by-product, sodium chlorite, in female B6C3F1 mice: a drinking water study.

    PubMed

    Karrow, N A; Guo, T L; McCay, J A; Johnson, G W; Brown, R D; Musgrove, D L; Germolec, D R; Luebke, R W; White, K L

    2001-08-01

    Sodium chlorite is an inorganic by-product of chlorine dioxide formed during the chlorination of drinking water. Relatively little is known about the adverse health effects of exposure to sodium chlorite in drinking water. In this study, we evaluated sodium chlorite's immunomodulatory properties using female B6C3F1 mice and a panel of immune assays that were designed to evaluate potential changes in innate and acquired cellular and humoral immune responses. Female B6C3F1 mice were exposed to sodium chlorite in their drinking water (0, 0.1, 1, 5, 15, and 30 mg/L) for 28 days, and then evaluated for immunomodulation. Overall, minimal toxicological and immunological changes were observed after exposure to sodium chlorite. Increases in the percentages of blood reticulocytes, and the relative spleen weights were both observed at different sodium chlorite treatment levels; however, these increases were not dose-dependent. An increasing trend in the number of spleen antibody-forming cells was observed over the range of sodium chlorite concentrations. This increase was not, however, significant at any individual treatment level, and was not reflected by changes in serum IgM levels. A significant increase (26%) in the total number of splenic CD8+ cells was observed in mice treated with 30 mg/L of sodium chlorite, but not at the other concentrations. Splenic mixed leukocyte response and peritoneal macrophage activity were unaffected by sodium chlorite. Lastly, exposure to sodium chlorite did not affect natural killer cell activity, although a decrease in augmented natural killer cell activity (42%) was observed at the lowest sodium chlorite treatment level. These results suggest that sodium chlorite, within the range 0.1-30 mg/L, produces minimal immunotoxicity in mice.

  19. Total Fluid and Water Consumption and the Joint Effect of Exposure to Disinfection By-Products on Risk of Bladder Cancer

    PubMed Central

    Michaud, Dominique S.; Kogevinas, Manolis; Cantor, Kenneth P.; Villanueva, Cristina M.; Garcia-Closas, Monteserrat; Rothman, Nathaniel; Malats, Nuria; Real, Francisco X.; Serra, Consol; Garcia-Closas, Reina; Tardon, Adonina; Carrato, Alfredo; Dosemeci, Mustafa; Silverman, Debra T.

    2007-01-01

    Background Findings on water and total fluid intake and bladder cancer are inconsistent; this may, in part, be due to different levels of carcinogens in drinking water. High levels of arsenic and chlorinated by-products in drinking water have been associated with elevated bladder cancer risk in most studies. A pooled analysis based on six case–control studies observed a positive association between tap water and bladder cancer but none for nontap fluid intake, suggesting that contaminants in tap water may be responsible for the excess risk. Objectives We examined the association between total fluid and water consumption and bladder cancer risk, as well as the interaction between water intake and trihalomethane (THM) exposure, in a large case–control study in Spain. Methods A total of 397 bladder cancer cases and 664 matched controls were available for this analysis. Odds ratios (OR) were estimated using unconditional logistic regression, controlling for potential confounders. Results Total fluid intake was associated with a decrease in bladder cancer risk [OR = 0.62; 95% confidence interval (CI), 0.40–0.95 for highest vs. lowest quintile comparison]. A significant inverse association was observed for water intake (for > 1,399 vs. < 400 mL/day, OR = 0.47; 95% CI, 0.33–0.66; p for trend < 0.0001), but not for other individual beverages. The inverse association between water intake and bladder cancer persisted within each level of THM exposure; we found no statistical interaction (p for interaction = 0.13). Conclusion Findings from this study suggest that water intake is inversely associated with bladder cancer risk, regardless of THM exposure level. PMID:18007986

  20. Prospective power calculations for the Four Lab study of a multigenerational reproductive/developmental toxicity rodent bioassay using a complex mixture of disinfection by-products in the low-response region.

    PubMed

    Dingus, Cheryl A; Teuschler, Linda K; Rice, Glenn E; Simmons, Jane Ellen; Narotsky, Michael G

    2011-10-01

    In complex mixture toxicology, there is growing emphasis on testing environmentally representative doses that improve the relevance of results for health risk assessment, but are typically much lower than those used in traditional toxicology studies. Traditional experimental designs with typical sample sizes may have insufficient statistical power to detect effects caused by environmentally relevant doses. Proper study design, with adequate statistical power, is critical to ensuring that experimental results are useful for environmental health risk assessment. Studies with environmentally realistic complex mixtures have practical constraints on sample concentration factor and sample volume as well as the number of animals that can be accommodated. This article describes methodology for calculation of statistical power for non-independent observations for a multigenerational rodent reproductive/developmental bioassay. The use of the methodology is illustrated using the U.S. EPA's Four Lab study in which rodents were exposed to chlorinated water concentrates containing complex mixtures of drinking water disinfection by-products. Possible experimental designs included two single-block designs and a two-block design. Considering the possible study designs and constraints, a design of two blocks of 100 females with a 40:60 ratio of control:treated animals and a significance level of 0.05 yielded maximum prospective power (~90%) to detect pup weight decreases, while providing the most power to detect increased prenatal loss.

  1. Silver-based Antibacterial Surfaces for Drinking Water Disinfection - An overview

    EPA Science Inventory

    Risks associated with current disinfection techniques, including the formation of disinfection by-products and multi-drug resistant bacterial species, have prompted the exploration of advanced disinfection methods. One such technique employs silver nanoparticles incorporation on ...

  2. Photolysis of model emerging contaminants in ultra-pure water: kinetics, by-products formation and degradation pathways.

    PubMed

    Benitez, F Javier; Acero, Juan L; Real, Francisco J; Roldan, Gloria; Rodriguez, Elena

    2013-02-01

    The photolysis of five frequent emerging contaminants (Benzotriazole, Chlorophene, N,N-diethyl-m-toluamide or DEET, Methylindole, and Nortriptyline HCl) was investigated in ultrapure water under monochromatic ultraviolet radiation at 254 nm and by a combination of UV and hydrogen peroxide. The results revealed that the photolysis rates followed first-order kinetics, with rate constant values depending on the nature of the specific compound, the pH, and the presence or absence of the scavenger tert-butanol. Quantum yields were also determined and values in the range of 53.8 × 10⁻³ - 9.4 × 10⁻³ mol E⁻¹ for Benzotriazole, 525 × 10⁻³ - 469 × 10⁻³ mol E⁻¹ for Chlorophene, 2.8 × 10⁻³ - 0.9 × 10⁻³ mol E⁻¹ for DEET, 108 × 10⁻³ - 165 × 10⁻³ mol E⁻¹ for Methylindole, and 13.8 × 10⁻³ - 15.0 × 10⁻³ mol E⁻¹ for Nortriptyline were obtained. The study also found that the UV/H₂O₂ process enhanced the oxidation rate in comparison to direct photolysis. High-performance liquid chromatography coupled to electrospray ionization quadrupole time-of-flight mass spectrometry (HPLC-ESI-QTOF-MS) technique was applied to the concentrations evaluation and further identification of the parent compounds and their by-products, which allowed the proposal of the degradation pathways for each compound. Finally, in order to assess the aquatic toxicity in the photodegradation of these compounds, the Vibrio fischeri acute toxicity test was used, and the results indicated an initial increase of this parameter in all cases, followed by a decrease in the specific case of Benzotriazole, DEET, Methylindole, and Chlorophene.

  3. DISINFECTION OF EMERGING PATHOGENS

    EPA Science Inventory

    There is a growing awareness of the need to control waterborne microbial pathogens. This presentation will concentate on the role of chemical inactivation, using chlorine, chloramines and ozone as a means of controlling bacterial and protozoan species. Information will be present...

  4. Water-Quality Constituents, Dissolved-Organic-Carbon Fractions, and Disinfection By-Product Formation in Water from Community Water-Supply Wells in New Jersey, 1998-99

    USGS Publications Warehouse

    Hopple, Jessica A.; Barringer, Julia L.; Koleis, Janece

    2007-01-01

    Water samples were collected from 20 community water-supply wells in New Jersey to assess the chemical quality of the water before and after chlorination, to characterize the types of organic carbon present, and to determine the disinfection by-product formation potential. Water from the selected wells previously had been shown to contain concentrations of dissolved organic carbon (DOC) that were greater than 0.2 mg/L. Of the selected wells, five are completed in unconfined (or semi-confined) glacial-sediment aquifers of the Piedmont and Highlands (New England) Physiographic Provinces, five are completed in unconfined bedrock aquifers of the Piedmont Physiographic Province, and ten are completed in unconsolidated sediments of the Coastal Plain Physiographic Province. Four of the ten wells in the Coastal Plain are completed in confined parts of the aquifers; the other six are in unconfined aquifers. One or more volatile organic compounds (VOCs) were detected in untreated water from all of the 16 wells in unconfined aquifers, some at concentrations greater than maximum contaminant levels. Those compounds detected included aliphatic compounds such as trichloroethylene and 1,1,1-trichloroethane, aromatic compounds such as benzene, the trihalomethane compound, chloroform, and the gasoline additive methyl tert-butyl ether (MTBE). Concentrations of sodium and chloride in water from one well in a bedrock aquifer and sulfate in water from another exceeded New Jersey secondary standards for drinking water. The source of the sulfate was geologic materials, but the sodium and chloride probably were derived from human inputs. DOC fractions were separated by passing water samples through XAD resin columns to determine hydrophobic fractions from hydrophilic fractions. Concentrations of hydrophobic acids were slightly lower than those of combined hydrophilic acids, neutral compounds, and low molecular weight compounds in most samples. Water samples from the 20 wells were adjusted

  5. Genotoxic potential of by-products in drinking water in relation to water disinfection: survey of pre-ozonated and post-chlorinated drinking water by Ames-test.

    PubMed

    Sujbert, László; Rácz, Gergely; Szende, Béla; Schröder, Heinz C; G Müller, Werner E; Török, Géza

    2006-02-15

    Mutagenic potential of drinking water samples derived from ranneywells was studied. 100-100 l of untreated (rough) and ozone-treated as well as chlorinated-disinfected water were dropped on and adsorbed by macroreticular resin columns (Serdolit PAD-III and Amberlite XAD-2). The adsorbed material was desorbed by methanol and dichloromethane. After elimination of the solvents by vacuum distillation the adsorbed material was dissolved in dimethylsulfoxide. The mutagenic activity was tested in the Ames-Salmonella/rat liver microsome system. The tester strains were TA-98 and TA-100. The material adsorbed to Serdolit PAD-III from rough and also disinfected water did not induce mutagenicity in case of the TA-98 tester strain, irrespective of activation by liver microsomes. However, the material adsorbed to Amberlite XAD-2 exerted mutagenic effect on the TA-98 tester strain, with and without liver microsome activation, both in case of rough and disinfected water. The TA-100 tester strain showed mutation after, but not without activation, when treated with the material adsorbed by either Serdolit PAD-III or Amberlite XAD-2, in case of rough water. Material derived from disinfected water and adsorbed to Serdolit PAD-III, caused mutation of the TA tester strain also only after activation. The material derived from disinfected water and adsorbed to Amberlite XAD-2 proved to be mutagenic to the TA-100 tester strain both without and after activation. Mutagenic activity was exerted by the amount of concentrates derived from 0.28 to 0.83 l of rough and 0.83-2.5l of disinfected water. The mutagenic activity of drinking water raises the possibility of carcinogenic effect, too. Search for alternative methods of water disinfection may be recommended.

  6. MUTAGENICITY OF DRINKING WATER FOLLOWING DISINFECTION

    EPA Science Inventory

    Many drinking water utilities in the USA are considering alternatives to chlorine for disinfection in order to comply with federal regulations regarding disinfection by-products. An evaluation is thus needed of the potential risks associated with the use of alternative disinfecta...

  7. Environmental health perspectives. Volume 46. Drinking water disinfectants - December 1982

    SciTech Connect

    Lucier, G.W.; Hook, G.E.R.

    1982-01-01

    Among subjects considered are chlorine dioxide, N-chloramines, mutagenic activity by disinfectant reaction products, trihalomethane and behavioral toxicity, and carcinogenic risk estimation. There are 27 papers on these and related topics. The volume stems from a symposium on drinking water disinfectants and disinfectant by-products.

  8. Potential application of high pressure carbon dioxide in treated wastewater and water disinfection: Recent overview and further trends.

    PubMed

    Vo, Huy Thanh; Imai, Tsuyoshi; Ho, Truc Thanh; Dang, Thanh-Loc Thi; Hoang, Son Anh

    2015-10-01

    Recently emerging disadvantages in conventional disinfection have heightened the need for finding a new solution. Developments in the use of high pressure carbon dioxide for food preservation and sterilization have led to a renewed interest in its applicability in wastewater treatment and water disinfection. Pressurized CO2 is one of the most investigated methods of antibacterial treatment and has been used extensively for decades to inhibit pathogens in dried food and liquid products. This study reviews the literature concerning the utility of CO2 as a disinfecting agent, and the pathogen inactivation mechanism of CO2 treatment is evaluated based on all available research. In this paper, it will be argued that the successful application and high effectiveness of CO2 treatment in liquid foods open a potential opportunity for its use in wastewater treatment and water disinfection. The findings from models with different operating conditions (pressure, temperature, microorganism, water content, media …) suggest that most microorganisms are successfully inhibited under CO2 treatment. It will also be shown that the bacterial deaths under CO2 treatment can be explained by many different mechanisms. Moreover, the findings in this study can help to address the recently emerging problems in water disinfection, such as disinfection by-products (resulting from chlorination or ozone treatment).

  9. Research toward integrate management of the emerging viroid disease on tomato through seed health test, disinfectant application and disease resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the last few years, several devastating viroid disease outbreaks were identified on greenhouse tomatoes in North America. These emerging diseases have caused serious concerns to the tomato industry and seed suppliers. Several closely related viroid species, including Potato spindle tuber viroid...

  10. PREDICTING THE FORMATION OF CHLORINATED AND BROMINATED BY-PRODUCTS.

    EPA Science Inventory

    Although disinfection has been and continues to be one of the major public health advances in the 20th century, the disinfectants themselves may react with naturally-occurring materials in treated water to form unintended by-products which may themselves pose risks. This is of p...

  11. CHARACTERISTICS AND TOXICITY OF THE CHLORINATED DRINKING WATER DISINFECTION BY-PRODUCT 3-CHLORO-4-(DICHLOROMETHYL)-5-HYDROXY-2[5H]-FURANONE (MX) TO MEDAKA (ORYZIAS LATIPES)

    EPA Science Inventory

    The compound 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone, also know as MX, is a by-product of wood pulp manufacture and a contaminant of chlorinated drinking and sewage water. MX has recently been shown to be a multi-site carcinogen in rodents. We investigated the acute...

  12. New formaldehyde base disinfectants.

    NASA Technical Reports Server (NTRS)

    Trujillo, R.; Lindell, K. F.

    1973-01-01

    Preparations of formaldehyde in various organic liquids - ethylene glycol, glycerol, and propylene glycol - serve as effective disinfectants towards microbial vegetative cells and spores. This disinfection is a temperature-dependent process and is manifest when these formaldehyde base disinfectants are dissolved in water. The irritating vapors associated with formaldehyde disinfection are not present in either of these new formaldehyde base disinfectants or in aqueous solutions of them.

  13. Susceptibility of Vaccinia Virus to Chemical Disinfectants

    PubMed Central

    de Oliveira, Tércia Moreira Ludolfo; Rehfeld, Izabelle Silva; Coelho Guedes, Maria Isabel Maldonado; Ferreira, Jaqueline Maria Siqueira; Kroon, Erna Geessien; Lobato, Zélia Inês Portela

    2011-01-01

    Vaccinia virus (VACV) is the cause of bovine vaccinia (BV), an emerging zoonotic disease that affects dairy cows and milkers. Some chemical disinfectants have been used on farms affected by BV to disinfect cow teats and milkers' hands. To date, there is no information about the efficacy of disinfectants against VACV. Therefore, this study aimed to assess the virucidal activity of some active disinfectants commonly used in the field. Sodium hypochlorite, quaternary ammonium combined with chlorhexidine, and quaternary ammonium combined with glutaraldehyde were effective in inactivating the virus at all concentrations tested. Iodine and quaternary ammonium as the only active component were partially effective. The presence of bovine feces as organic matter and light decreased the effectiveness of sodium hypochlorite. These results show that an appropriated disinfection and asepsis of teats and hands may be helpful in the control and prevention of BV and other infections with VACV. PMID:21734141

  14. Drowning in Disinfection Byproducts? Swimming Pool Water Quality

    EPA Science Inventory

    Disinfection is mandatory for swimming pools, because transmission of disease by bacteria, virus and protozoa is the most significant health issue. However another issue arises, and care should be taken to minimize the risks from disinfection by-products (DBPs). Public pools are ...

  15. Emerging micropollutant oxidation during disinfection processes using UV-C, UV-C/H2O2, UV-A/TiO2 and UV-A/TiO2/H2O2.

    PubMed

    Pablos, Cristina; Marugán, Javier; van Grieken, Rafael; Serrano, Elena

    2013-03-01

    Regeneration of wastewater treatment plant effluents constitutes a solution to increase the availability of water resources in arid regions. Water reuse legislation imposes an exhaustive control of the microbiological quality of water in the operation of disinfection tertiary treatments. Additionally, recent reports have paid increasing attention to emerging micropollutants with potential biological effects even at trace level concentration. This work focuses on the evaluation of several photochemical technologies as disinfection processes with the aim of simultaneously achieving bacterial inactivation and oxidation of pharmaceuticals as examples of emerging micropollutants typically present in water and widely studied in the literature. UV-C-based processes show a high efficiency to inactivate bacteria. However, the bacterial damages are reversible and only when using H(2)O(2), bacterial reproduction is affected. Moreover, a complete elimination of pharmaceutical compounds was not achieved at the end of the inactivation process. In contrast, UV-A/TiO(2) required a longer irradiation time to inactivate bacteria but pharmaceuticals were completely removed along the process. In addition, its oxidation mechanism, based on hydroxyl radicals (OH), leads to irreversible bacterial damages, not requiring of chemicals to avoid bacterial regrowth. For UV-A/TiO(2)/H(2)O(2) process, the addition of H(2)O(2) improved Escherichia coli inactivation since the cell wall weakening, due to OH attacks, allowed H(2)O(2) to diffuse into the bacteria. However, a total elimination of the pharmaceuticals was not achieved during the inactivation process.

  16. WATER DISINFECTION PRACTICE

    DTIC Science & Technology

    The current review of canteen water disinfection proceeded along three general lines. A summary has been prepared of the information available from...the literature on canteen water disinfection. The current opinions of two outstanding investigators in the field of disinfection have been solicited in

  17. Transformation of pharmaceuticals during oxidation/disinfection processes in drinking water treatment.

    PubMed

    Postigo, Cristina; Richardson, Susan D

    2014-08-30

    Pharmaceuticals are emerging contaminants of concern and are widespread in the environment. While the levels of these substances in finished drinking waters are generally considered too low for human health concern, there are now concerns about their disinfection by-products (DBPs) that can form during drinking water treatment, which in some cases have been proven to be more toxic than the parent compounds. The present manuscript reviews the transformation products of pharmaceuticals generated in water during different disinfection processes, i.e. chlorination, ozonation, chloramination, chlorine dioxide, UV, and UV/hydrogen peroxide, and the main reaction pathways taking place. Most of the findings considered for this review come from controlled laboratory studies involving reactions of pharmaceuticals with these oxidants used in drinking water treatment.

  18. IDENTIFICATION OF NEW OZONE DISINFECTION BY PRODUCTS IN DRINKING WATER

    EPA Science Inventory

    Using a combination of spectral identification techniques-gas chromatography coupled with low- and high-resolution electron-impact mass spectrometry (GC/EI-MS), low- and high-resolution chemical ionization mass spectrometry (GC/CI-MS), and infrared spectroscopy (GC/ IR)-we identi...

  19. Studies of the toxic interactions of disinfection by-products.

    PubMed Central

    Laurie, R D; Bercz, J P; Wessendarp, T K; Condie, L W

    1986-01-01

    A large number and variety of compounds are formed in the process of chlorinating drinking water. The classes of compounds formed include trihalomethanes, haloacetic acids, haloacetonitriles, halophenols, and halopropanones. Many of the compounds have been shown to be toxic and are currently being further evaluated by the U.S. Environmental Protection Agency (EPA). One group of the halopropanones found in chlorinated drinking water is the dichloropropanones. The toxicological properties of this group have not been well characterized. In addition, a number of investigators have shown that ketones potentiate the hepatotoxicity of haloalkanes. We conducted a series of studies to explore both the toxicity of the dichloropropanones and their potential interactions with a well-characterized haloalkane, carbon tetrachloride. A variety of toxicological and biochemical endpoints were used to evaluate the toxicity of the dichloropropanones and their interaction with CCl4, including cytochrome P-450 concentration, reduced glutathione levels, pentane generation, serum enzyme activities, and histopathology. Administration of 1,1-dichloropropanone (DCP) resulted in elevated serum enzymes associated with periportal necrosis. Glutathione levels were reduced by the administration of 1,1-DCP; pentane generation was not increased. When 1,1-DCP was given prior to CCl4, the data were consistent with additivity. Administration of 1,3-DCP did not result in elevated serum enzymes, nor was there histopathologic evidence of necrosis. Glutathione levels and pentane generation in the 1,3-DCP-treated groups were the same as those of controls. Inhibition of the toxicologic effects of CCl4 in a dose-related manner was observed when 1,3-DCP was administered prior to CCl4. PMID:3816723

  20. MECHANISTIC INFORMATION ON DISINFECTION BY-PRODUCTS FOR RISK ASSESSMENT

    EPA Science Inventory

    Colon cancer is the second most common cancer in people from developed countries, and populations exposed t o 50?g/L or more of trihalomethanes for at 1east 35 years have been estimated to be 1.5 times more likely to develop colon cancer. Trihalomethanes are one of the classes ...

  1. DROWNING IN DISINFECTION BY-PRODUCTS? ASSESSING SWIMMING POOL WATER

    EPA Science Inventory

    The development of treated water for swimming pools has made swimming a year round activity, widely enjoyed for leisure as well as exercise. Swimming pools can be found in different kinds and sizes in public areas, hotels and spas, or at private homes. In Germany ~250-300 million...

  2. Degradation of emerging contaminants from water under natural sunlight: The effect of season, pH, humic acids and nitrate and identification of photodegradation by-products.

    PubMed

    Koumaki, Elena; Mamais, Daniel; Noutsopoulos, Constantinos; Nika, Maria-Christina; Bletsou, Anna A; Thomaidis, Nikolaos S; Eftaxias, Alexander; Stratogianni, Georgia

    2015-11-01

    Both photodegradation and hydrolysis of non-steroidal anti-inflammatory drugs (NSAIDs) and endocrine disrupting chemicals (EDCs) were investigated in order to evaluate their photochemical fate in aquatic environment and to assess the effect of season and specific characteristics of water (pH, humic acids and nitrate concentration) on the removal of target EDCs and NSAIDs through photodegradation. An additional objective was the identification of the photodegradation by-products of specific NSAIDs and their dependence on irradiation time. Selected compounds' transformation was investigated under natural sunlight radiation while control experiments were conducted in the dark. As expected, most of compounds' degradation rate decreased with decreasing light intensity between two different experimental periods. Most of the tested compounds exhibited different rates of degradation during direct and indirect photolysis. The degradation rate of the selected compounds increased in the presence of NO3(-) and the photodegradation rate was higher for some compounds in alkaline than in acidic solution. The effect of humic acids' presence in the water depends on the absorbance spectrum of the compound and the produced photosensitizers. More specifically, humic acids act as inner filter toward most of the selected NSAIDs and as photosensitizers toward most of the EDCs. The results of the irradiation experiments in the presence of both humic acids and NO3(-), indicate that the direct photolysis is much more efficient than indirect photochemical processes. Finally, several degradation by-products of ketoprofen and diclofenac were identified in the samples, exposed to sunlight. The dependence of these by-products on radiation time is also demonstrated.

  3. Antimicrobial nanomaterials as water disinfectant: applications, limitations and future perspectives.

    PubMed

    Hossain, Fahim; Perales-Perez, Oscar J; Hwang, Sangchul; Román, Félix

    2014-01-01

    Nanotechnology and its application is one of the rapidly developing sciences. As demand of fresh drinking water is increasing, nanotechnology can contribute noticeable development and improvement to water treatment process. Disinfection process is the last and most important step in water and wastewater treatment process. Some nanomaterials can be used as disinfectants due to their antimicrobial properties and reduce the possibility of harmful disinfection by-products (DBPs) formation during traditional disinfection process. A significant number of research efforts is done or going on to understand the mechanisms and enhance the efficiency of nanomaterials as antimicrobial agents, although it will take more time to understand the full potential of nanomaterials in this field. This review paper focuses on inactivation pathways of benign nanomaterials, their possible and probable application and limitations as disinfectants and future opportunities for their application in water cleaning processes.

  4. Integrated Disinfection By-Products Research: Assessing Reproductive and Developmental Risks Posed by Complex Disinfection By-Product Mixtures

    EPA Science Inventory

    This article presents a toxicologically-based risk assessment strategy for identifying the individual components or fractions of a complex mixture that are associated with its toxicity. The strategy relies on conventional component-based mixtures risk approaches such as dose addi...

  5. Disinfection. [Wastewater treatment

    SciTech Connect

    Haas, C.N.; McCreary, J.J.

    1982-06-01

    Methods of disinfection of wastewater including chlorination, ultraviolet radiation, ozone, and quaternary compounds are reviewed. Various analytical methods to detect residues of the disinfectants are described. The production of inorganic and nonvolatile organic compounds in conventional water treatment processes is reviewed. (KRM)

  6. Equivalency testing of ultraviolet disinfection for wastewater reclamation

    SciTech Connect

    Oppenheimer, J.A.; Jacangelo, J.G.; Laine, J.M.

    1996-11-01

    UV light disinfection was shown to continuously provide microbial inactivation equivalent to chlorine while reducing the formation of known carcinogenic disinfection by-products and the formation of chronic whole effluent toxicity. This was the first study to demonstrate UV`s performance relative to chlorination over an extended timeframe at a full-scale facility treating to meet the most stringent California reclamation standards.

  7. EFFECTS OF CHANGING DISINFECTANTS ON LEAD AND COPPER RELEASE– A REVIEW

    EPA Science Inventory

    More utilities are using chloramines in place of free chlorine for greater residual stability and better compliance with both the Total Coliform Rule (TCR) and more stringent requirements of the Disinfectants/Disinfection By-Products Rule (D/DBPR). However, new information about ...

  8. Bench-Scale Evaluation of Peracetic Acid and Twin Oxide ™ as Disinfectants in Drinking Water

    EPA Science Inventory

    Chlorine is widely used as an inexpensive and potent disinfectant in the United States for drinking water. However, chlorine has the potential for forming carcinogenic and mutagenic disinfection by-products (DBPs). In this study, bench scale experiments were conducted at the U.S...

  9. By-Product Feeds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    By-product feeds are generated from the production of food, fiber, and bio-energy products for human consumption. They include plant feedstuffs such as hulls, stalks, peels, and oil seed meals, and animal by-products such as blood meal, fats, bone meal, or processed organ meats. Some feed by-product...

  10. Biological Treatment of Water Disinfection Byproducts using Biotrickling Filter under Anoxic and Anaerobic Conditions

    EPA Science Inventory

    Major disinfection by-products (DBPs) from the chlorination process of drinking water include trihalomethanes (THMs) and haloacetic acides (HAA5). THMs mainly consist of chloroform, and other harsh chemicals. Prolonged consumptions of drinking water containing high levels of THMs...

  11. [Optimizing surgical hand disinfection].

    PubMed

    Kampf, G; Kramer, A; Rotter, M; Widmer, A

    2006-08-01

    For more than 110 years hands of surgeons have been treated before a surgical procedure in order to reduce the bacterial density. The kind and duration of treatment, however, has changed significantly over time. Recent scientific evidence suggests a few changes with the aim to optimize both the efficacy and the dermal tolerance. Aim of this article is the presentation and discussion of new insights in surgical hand disinfection. A hand wash should be performed before the first disinfection of a day, ideally at least 10 min before the beginning of the disinfection as it has been shown that a 1 min hand wash significantly increases skin hydration for up to 10 min. The application time may be as short as 1.5 min depending on the type of hand rub. Hands and forearms should be kept wet with the hand rub for the recommended application time in any case. A specific rub-in procedure according to EN 12791 has been found to be suitable in order to avoid untreated skin areas. The alcohol-based hand rub should have a proven excellent dermal tolerance in order to ensure appropriate compliance. Considering these elements in clinical practice can have a significant impact to optimize the high quality of surgical hand disinfection for prevention of surgical site infections.

  12. CHLORINE DISINFECTION OF AEROMONAS

    EPA Science Inventory

    The bacterial genus Aeromonas is currently listed on the USEPA's Candidate Contaminant List (CCL). Resistance to chemical disinfection is an essential aspect regarding all microbial groups listed on the CCL. This study was designed to determine the inactivation kinetics of Aeromo...

  13. DRINKING WATER DISINFECTION BYPRODUCTS AND DURATION OF GESTATION

    EPA Science Inventory

    Recent studies of drinking water disinfection by-products (DBPs) suggest high exposure decreases risk of preterm birth. We examined this association with total trihalomethane (TTHM) and five haloacetic acids (HAA5) among 2,041 women in a prospective pregnancy study conducted from...

  14. By Product Synergy Analysis

    DTIC Science & Technology

    2011-03-24

    AFB developed an environmental management system manual; the manual was prepared according to the ISO 14001 standard. The program is focused on...20 Design for Environment ...................................................................................20 ISO 14000 Series... ISO 14000 Framework ..................................................................................21 Figure 6. By Product Flow

  15. Commercial Disinfectants During Disinfection Process Validation: More Failures than Success

    PubMed Central

    Chumber, Sushil Kumar; Khanduri, Uma

    2016-01-01

    Introduction Disinfection process validation is mandatory before introduction of a new disinfectant in hospital services. Commercial disinfection brands often question existing hospital policy claiming greater efficacy and lack of toxicity of their products. Inadvertent inadequate disinfection leads to morbidity, patient’s economic burden, and the risk of mortality. Aim To evaluate commercial disinfectants for high, intermediate and low-level disinfection so as to identify utility for our routine situations. Materials and Methods This laboratory based experiment was conducted at St Stephen Hospital, Delhi during July-September 2013. Twelve commercial disinfectants: Sanidex®, Sanocid®, Cidex®, SekuSept Aktiv®, BIB Forte®, Alprojet W®, Desnet®, Sanihygiene®, Incidin®, D125®, Lonzagard®, and Glutishield® were tested. Time-kill assay (suspension test) was performed against six indicator bacteria (Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Salmonella Typhi, Bacillus cereus, and Mycobacterium fortuitum). Low and high inoculum (final concentrations 1.5X106 and 9X106 cfu/ml) of the first five bacteria while only low level of M. fortuitum was tested. Results Cidex® (2.4% Glutaraldehyde) performed best as high level disinfectant while newer quarternary ammonium compounds (QACs) (Incidin®, D125®, and Lonzagard®) were good at low level disinfection. Sanidex® (0.55% Ortho-pthalaldehyde) though mycobactericidal took 10 minutes for sporicidal activity. Older QAC containing BIB Forte® and Desnet® took 20 minutes to fully inhibit P. aeruginosa. All disinfectants effectively reduced S. Typhi to zero counts within 5 minutes. Conclusion Cidex® is a good high-level disinfectant while newer QACs (Incidin®, D125®, and Lonzagard®) were capable low-level disinfectants. PMID:27656441

  16. Kinetics of inactivation and photoreactivation of Escherichia coli using ultrasound-enhanced UV-C light-emitting diodes disinfection.

    PubMed

    Zhou, Xiaoqin; Li, Zifu; Lan, Juanru; Yan, Yichang; Zhu, Nan

    2017-03-01

    Ultraviolet (UV) disinfection is highly recommended owing to its high disinfection efficiency and disinfection by-products free, and UV Light-Emitting Diodes (UV LEDs) is increasingly becoming an alternative of mercury UV lamps for water disinfection owing to its long lifetime, low input power, and absence of problems on disposal. However, renovation of existing UV lamps faces the challenges for UV disinfection associated with disinfection efficiency and photoreactivation, and modified UV disinfection process is required for practical application. In this study, mathematical rule of disinfection and photoreactivation in a US enhanced UV disinfection system was investigated. UV LED with peak emission at 254nm (UV-C LED) was selected as representative for UV lamps, and a low frequency US was used as pretreatment followed by UV disinfection. The disinfection efficiency of Escherichia coli in deionized water (DI), DI water with kaoline suspension (DIK), and secondary effluent (SE) of municipal wastewater treatment plant were analyzed. Moreover, photoreactivation of E. coli in DIK water within 6h after disinfection was conducted. The experimental results showed that the disinfection efficiencies had good fit with Chick-Watson first-order linear model, and US pretreatment increased the inactivation rate constant for E. coli, which increased from 0.1605 to 0.1887 in the DIK water. Therefore, US pretreatment with UV disinfection have potential to shorten the retention time and reduce the reactor volume. Moreover, the number of photoreactivated E. coli in effluent was reduced under UV-C LED disinfection with US pretreatment compared with that under UV-C LED disinfection alone. The order of maximum percentage of photo-reactivated E. coli was as follows: UV-C LED disinfection alone at 30mJ/cm(2)>UV-C LED disinfection at 25mJ/cm(2) with US pretreatment>UV-C LED disinfection at 30mJ/cm(2) with US pretreatment. The survival ratio versus photoreactivation time showed a good fit

  17. Disinfectants in health care: finding an alternative to chlorine dioxide.

    PubMed

    Keward, Josephine

    Cleanliness of the clinical environment has a direct impact on healthcare-associated infection (HCAI) incidence and there is increasing evidence of its importance with regard to infection prevention and control. While traditional high-level disinfectants have excellent antimicrobial properties, these are typically offset against issues such as corrosiveness, toxicity, cost and user acceptance. Recent years have seen several user-friendly sporicidal disinfectants emerge onto the market. Antimicrobial profile and user acceptance determine the clinical success of any disinfectant. Therefore, product adoption is often a two-stage process with a tabletop evaluation of the appropriate technical data, including efficacy claims, followed by an in-use product evaluation. The first part of this article demonstrates the importance of the clinical environment with respect to HCAI and examines some of the issues around disinfectants used in health care and considerations when selecting a new disinfectant for use. The second part reports the experiences of the Infection Prevention and Control team at Alder Hey Children's Hospital in their assessment and subsequent adoption of a new user-friendly sporicidal disinfectant into clinical practice.

  18. Sanitizers and Disinfectants Guide. Revised

    ERIC Educational Resources Information Center

    Healthy Schools Network, Inc., 2012

    2012-01-01

    Sanitizers and disinfectants can play an important role in protecting public health. They are designed to kill "pests," including infectious germs and other microorganisms such as bacteria, viruses, and fungi. Unfortunately, sanitizers and disinfectants also contain chemicals that are "pesticides." Exposure to persistent toxic…

  19. New Disinfection Agents for Water.

    DTIC Science & Technology

    1985-03-01

    with HTH being the better disinfectant. In similar experiments involving Entamoeba invadens and Giardia Lamblia Compound I was more effective than...different and dependent upon the nature of the organism. Keywords: Water disinfections; N-Chloramines; HTH; Bacteria; Viruses; Protozoa; Giardia lamblia ; Stability in water; 3-Chloro-4,4-dimethy1-2-oxazolidinone; Calcium hypochlorite.

  20. DISINFECTION BYPRODUCTS: THE NEXT GENERATION

    EPA Science Inventory

    Disinfection of drinking water is rightly hailed as a major public health triumph of the 20th Century. Before widespread disinfection of drinking water in the U.S. and Europe, millions of people died from infectious waterborne diseases, such as typhoid and cholera. The microbia...

  1. Disinfection of pumice.

    PubMed

    Setz, J; Heeg, P

    1996-10-01

    Pumice is a potential source of infection for the dental technician and of cross-contamination between different dentures and patients. In this study, the number of microorganisms in two different combinations of pumice and disinfectant was compared with a conventional mixture of pumice and water. The results revealed that under practical conditions the mix of Steribim (pumice containing benzoic acid added by the manufacturer) with water reduced the number of bacteria by 99% compared with a mix of a conventional pumice and water. The addition of an antiseptic product that contained octenidine as active agent to conventional pumice reduced the number of microorganisms by 99.999%.

  2. Solar water disinfection

    SciTech Connect

    Anderson, R.; Collier, R.

    1996-11-01

    Non-potable drinking water is a major problem for much of the world`s population. It has been estimated that from 15 to 20 million children under the age of 5 die from diarrheal conditions brought on by infected drinking water every year. This is equivalent to a fully-loaded DC-10 crashing every ten minutes of every day, 365 days a year. Heat is one of the most effective methods of disinfecting drinking water. Using conventional means of heating water (heating on an open-flamed stove) results in an extremely energy-intensive process. The main obstacle is that for areas of the world where potable water is a problem, fuel supplies are either too expensive, not available, or the source of devastating environmental problems (deforestation). The apparatus described is a solar-powered water disinfection device that can overcome most if not all of the barriers that presently limit technological solutions to drinking water problems. It uses a parabolic trough solar concentrator with a receiver tube that is also a counterflow heat exchanger. The system is totally self-contained utilizing a photovoltaic-powered water pump, and a standard automotive thermostat for water flow control. The system is designed for simplicity, reliability and the incorporation of technology readily accessible in most areas of the world. Experiments at the Florida Solar Energy Center have demonstrated up to 2,500 liters of safe drinking water per day with 28 square meters of solar concentrator.

  3. Dental unit waterlines disinfection using hypochlorous acid-based disinfectant

    PubMed Central

    Shajahan, Irfana Fathima; Kandaswamy, D; Srikanth, Padma; Narayana, L Lakshmi; Selvarajan, R

    2016-01-01

    Objective: The purpose of the study was to investigate the efficacy of a new disinfectant to disinfect the dental unit waterlines. Materials and Methods: New dental unit waterlines were installed in 13 dental chairs, and biofilm was allowed to grow for 10 days. Disinfection treatment procedure was carried out in the 12 units, and one unit was left untreated. The dental unit waterlines were removed and analyzed using the scanning electron microscope (SEM) (TESCAN VEGA3 SBU). Result: On examination, SEM images showed that there was no slime layer or bacterial cells seen in any of the 12 cut sections obtained from the treated dental waterlines which mean that there was no evident of biofilm formation. Untreated dental unit waterlines showed a microbial colonization with continuous filamentous organic matrix. There was significant biofilm formation in the control tube relative to the samples. Conclusion: The tested disinfectant was found to be effective in the removal of biofilm from the dental unit waterlines. PMID:27563184

  4. Assessment of Reproductive and Developmental Toxicity of Mixtures of Regulated Drinking Water Chlorination By-Products in a Multigenerational Rat Bioassay

    EPA Science Inventory

    Epidemiological and animal toxicity studies have raised concerns regarding possible adverse reproductive and developmental effects of disinfection by-products (DBPs) in drinking water. To address these concerns, we provided mixtures of the regulated trihalomethanes (THMs; chlorof...

  5. The Recreational Water Cycle: From Source Water to Tap Water to Spa and Swimming Pool Water: Effects of Disinfectants and Precursors and Implications for Exposure and Toxicity

    EPA Science Inventory

    The current study investigates the effect of different disinfection treatments on the disinfection by-products (DBPs) formed in finished drinking water vs. tap water vs. swimming pool water vs. spa waters. To this end, complete water pathway samples (untreated source waters ->fi...

  6. Disinfection of wastewater with peracetic acid: a review.

    PubMed

    Kitis, Mehmet

    2004-03-01

    Peracetic acid is a strong disinfectant with a wide spectrum of antimicrobial activity. Due to its bactericidal, virucidal, fungicidal, and sporicidal effectiveness as demonstrated in various industries, the use of peracetic acid as a disinfectant for wastewater effluents has been drawing more attention in recent years. The desirable attributes of peracetic acid for wastewater disinfection are the ease of implementing treatment (without the need for expensive capital investment), broad spectrum of activity even in the presence of heterogeneous organic matter, absence of persistent toxic or mutagenic residuals or by-products, no quenching requirement (i.e., no dechlorination), small dependence on pH, short contact time, and effectiveness for primary and secondary effluents. Major disadvantages associated with peracetic acid disinfection are the increases of organic content in the effluent due to acetic acid (AA) and thus in the potential microbial regrowth (acetic acid is already present in the mixture and is also formed after peracetic acid decomposition). Another drawback to the use of peracetic acid is its high cost, which is partly due to limited production capacity worldwide. However, if the demand for peracetic acid increases, especially from the wastewater industry, the future mass production capacity might also be increased, thus lowering the cost. In such a case, in addition to having environmental advantages, peracetic acid may also become cost-competitive with chlorine.

  7. Evaluation of chlorinated by-products in drinking waters of Central Friuli (Italy).

    PubMed

    Goi, Daniele; Tubaro, Franco; Barbone, Fabio; Dolcetti, Giuliano; Bontempelli, Gino

    2005-01-01

    Drinkable water supplied by aqueducts undergoes preliminar potabilization which, in Italy, is mainly accomplished by chlorine addition. The bactericidal action involved in this process is always accompanied by chlorination and oxidation of organic species (mainly humic and fulvic acids) naturally present in treated waters, so that many disinfection by-products (DBPs) are formed, such as trihalomethanes (THMs) and halo-acetic acids (HAA), which can represent a chemical risk for public health. The aim of this study was the monitoring of DBPs in drinking water disinfected by chlorination, supplied by four different aqueducts of Central Friuli (Italy). DBP evaluations were performed in water samples consisting of both input and output of disinfection plants. The results of analytical determinations were worked out to provide the THM and HAA parameters for disinfected waters, while in feeding waters the following different conventional parameters were adopted: (i) trihalomethanes formation potential (THMFP), (ii) halo-acetic acids formation potential (HAAFP) and (iii) UV absorbance at 254 nm (UV254). The quite moderate content of chlorinated products found in all samples considered highlighted the excellent quality of potabilized waters available in Central Friuli. Moreover, our results confirmed that the majority of DBPs formed when chlorine is used for water disinfection consists of THMs, while chlorites and chlorates prevailed when potabilization is accomplished by using chlorine dioxide. Finally, simple UV254 monitoring turned out to be a profitable approach for the determination of chlorinated by-products only when THMs prevail among DBPs.

  8. Translational science in disinfection for regenerative endodontics.

    PubMed

    Diogenes, Anibal R; Ruparel, Nikita B; Teixeira, Fabricio B; Hargreaves, Kenneth M

    2014-04-01

    The endodontic management of permanent immature teeth is fraught with challenges. Although treatment modalities for vital pulp therapy in these teeth provide long-term favorable outcome, the outcomes from the treatment of pulp necrosis and apical periodontitis are significantly less predictable. Immature teeth diagnosed with pulp necrosis have been traditionally treated with apexification or apexogenesis approaches. Unfortunately, these treatments provide little to no benefit in promoting continued root development. Regenerative endodontic procedures have emerged as an important alternative in treating teeth with otherwise questionable long-term prognosis because of thin, fragile dentinal walls and a lack of immunocompetency. These procedures rely heavily on root canal chemical disinfection of the root canal system. Traditionally, irrigants and medicaments have been chosen for their maximum antimicrobial effect without consideration for their effects on stem cells and the dentinal microenvironment. Translational research has been crucial to provide evidence for treatment modifications that aim to increase favorable outcome while steering away from common pitfalls in the currently used protocols. In this review, recent advances learned from translational research related to disinfection in regenerative endodontics are presented and discussed.

  9. Nanomaterial Case Study: Nanoscale Silver in Disinfectant ...

    EPA Pesticide Factsheets

    EPA announced the release of the final report, Nanomaterial Case Study: Nanoscale Silver in Disinfectant Spray. This report represents a case study of engineered nanoscale silver (nano-Ag), focusing on the specific example of nano-Ag as possibly used in disinfectant sprays. This case study is organized around the comprehensive environmental assessment (CEA) framework, which structures available information pertaining to the product life cycle, environmental transport and fate, exposure-dose in receptors (i.e., humans, ecological populations, and the environment), and potential impacts in these receptors. The document does not draw conclusions about potential risks. Instead, it is intended to be used as part of a process to identify what is known and unknown about nano-Ag in a selected application. In turn, the external review draft of the document provided a starting point to identify and prioritize possible research directions to support future assessments of nanomaterials. The information presented in the case study and the questions raised in this document are a foundation for a process to determine priorities among various research topics and directions. After that process has been completed, a final chapter will be added to this document to summarize highlights from preceding chapters and the major research issues that have emerged.

  10. Toxicology of household cleaning products and disinfectants.

    PubMed

    Kore, A M; Kiesche-Nesselrodt, A

    1990-03-01

    Hundreds of different household cleaning products are available in homes, presenting potential hazards to pets. These products are complex mixtures of chemicals that vary widely in their toxic potential. Prevention of toxicoses in companion animals follows the same guidelines as those recommended for children: Keep cleaning products out of the reach of pets, do not leave open containers or solutions of cleaning products unattended where animals may get into them, make sure containers of cleaning products are tightly sealed and properly labeled, and dispose of any cleaning solutions promptly after use. If a companion animal has ingested or spilled a cleaning product or disinfectant on itself, it is very important to assess the potential hazard to the animal promptly. Many products contain warnings regarding the corrosive or irritation potential of the product and instructions on the label for preliminary action in the case of accidental oral, dermal, or ocular exposures in humans. These instructions can generally be followed initially until further information on the product can be obtained, although the recommendations on some product labels may be outdated. In general, the clinical management for toxicoses caused by cleaning products and disinfectants involves the prevention of further contact with the concentrated product through either dilution or bathing; emergency stabilization of the patient if clinical signs are present; instituting specific therapies, if available; and use of general supportive care.

  11. Colonic mucosal pseudolipomatosis: disinfectant colitis?

    PubMed

    Kim, Su Jin; Baek, Il Hyun

    2012-01-01

    Colonic pseudolipomatosis is rare and its pathogenesis is still unclear. A number of mechanisms, including mechanical injury during an endoscopic procedure or chemical injury by disinfectant, seem to contribute to its pathogenesis. In our endoscopy unit, pseudolipomatosis occurred in an epidemic pattern after changing the endoscopic disinfectant from 2% glutaraldehyde to peracetic acid compound to decrease the length of endoscope reprocessing time. We assumed that pseudolipomatosis could be a type of chemical colitis produced by the residual disinfectant solution that remained on the surface or in a channel of the endoscope after reprocessing. The aim of this report was to highlight a series of 12 cases of colonic pseudolipomatosis in order to describe the endoscopic and pathological features and discuss the harmful effect of disinfectants as a possible cause of pseudolipomatosis. To identify the cause of the lesions, we systematically reviewed each patient history and the endoscopic and histological features. From March 2004 to February 2005, 1276 colonoscopies were performed and 12 cases (0.94%) of colonic pseudolipomatosis were diagnosed at the Kangnam Sacred Heart Hospital of Hallym University. The pathogenesis of colonic pseudolipomatosis is not well-known, but our experience indicates the endoscopic disinfectant as the probable cause of pseudolipomatosis rather than either mechanical traumatic injury or intraluminal air pressure-related injury.

  12. Ozone reactions with indoor materials during building disinfection

    NASA Astrophysics Data System (ADS)

    Poppendieck, D.; Hubbard, H.; Ward, M.; Weschler, C.; Corsi, R. L.

    There is scant information related to heterogeneous indoor chemistry at ozone concentrations necessary for the effective disinfection of buildings, i.e., hundreds to thousands of ppm. In the present study, 24 materials were exposed for 16 h to ozone concentrations of 1000-1200 ppm in the inlet streams of test chambers. Initial ozone deposition velocities were similar to those reported in the published literature for much lower ozone concentrations, but decayed rapidly as reaction sites on material surfaces were consumed. For every material, deposition velocities converged to a relatively constant, and typically low, value after approximately 11 h. The four materials with the highest sustained deposition velocities were ceiling tile, office partition, medium density fiberboard and gypsum wallboard backing. Analysis of ozone reaction probabilities indicated that throughout each experiment, and particularly after several hours of disinfection, surface reaction resistance dominated the overall resistance to ozone deposition for nearly all materials. Total building disinfection by-products (all carbonyls) were quantified per unit area of each material for the experimental period. Paper, office partition, and medium density fiberboard each released greater than 38 mg m -2 of by-products.

  13. Disinfection of Human Teeth for Educational Purposes.

    ERIC Educational Resources Information Center

    Tate, William H.; White, Robert S.

    1991-01-01

    A study investigated the efficacy of glutaraldehyde and several other disinfectants for disinfecting teeth to be used for teaching and research, as an alternative to autoclaving for teeth with amalgam restorations. Results indicate that formalin was the only disinfectant that penetrated tooth pulp chambers in effective antimicrobial…

  14. [Drinking water decontamination with isolative sorbent disinfectants].

    PubMed

    Krasnov, M S

    2004-01-01

    Drinking water can be decontaminated with the use of isolative sorbent disinfectants. Consideration of the effectiveness of water disinfectants and the sorptive power of porous materials against bacteria and viruses attested to the favour of iodine and silver-containing disinfectants and their compositions on porous aggressive carriers to be employed in extreme conditions such as on board crewed space vehicles.

  15. Determination of odour threshold concentration ranges for some disinfectants and disinfection by-products for an Australian panel.

    PubMed

    McDonald, S; Lethorn, A; Loi, C; Joll, C; Driessen, H; Heitz, A

    2009-01-01

    Taste-and-odour complaints are a leading cause of consumer dissatisfaction with drinking water. The aim of this study was to determine odour threshold concentration ranges and descriptors, using a Western Australian odour panel, for chlorine, bromine, chlorine added to bromide ions, the four major regulated trihalomethanes (THMs), and combined THMs. An odour panel was established and trained to determine odour threshold concentration ranges for odorous compounds typically found in drinking water at 25 degrees C, using modified flavour profile analysis (FPA) techniques. Bromine and chlorine had the same odour threshold concentration ranges and were both described as having a chlorinous odour by a majority of panellists, but the odour threshold concentration range of bromine expressed in free chlorine equivalents was lower that that of chlorine. It is likely that the free chlorine equivalent residuals measured in many parts of distribution systems in Western Australia are comprised of some portion of bromine and that bromine has the potential to cause chlorinous odours at a lower free chlorine equivalent concentration than chlorine itself. In fact, bromine is the likely cause of any chlorinous odours in Western Australian distributed waters when the free chlorine equivalent concentration is between 0.04 and 0.1 mg L(-1). Odour threshold concentrations for the four individual THMs ranged from 0.06-0.16 mg L(-1), and the odour threshold concentration range was 0.10 + or - 0.09 mg L(-1) when the four THMs were combined (in equal mass concentrations). These concentrations are below the maximum guideline value for total THM concentration in Australia so odours from these compounds may possibly be observed in distributed waters. However, while the presence of THMs may contribute to any sweet/fragrant/floral and chemical/hydrocarbon odours in local drinking waters, the THMs are unlikely to contribute to chlorinous odours.

  16. Review of water disinfection techniques

    NASA Technical Reports Server (NTRS)

    Colombo, Gerald V.; Sauer, Richard L.

    1987-01-01

    Throughout the history of manned space flight the supply of potable water to the astronauts has presented unique problems. Of particular concern has been the microbiological quality of the potable water. This has required the development of both preflight water system servicing procedures to disinfect the systems and inflight disinfectant addition and monitoring devices to ensure continuing microbiological control. The disinfectants successfully used to date have been aqueous chlorine or iodine. Because of special system limitations the use of iodine has been the most successful for inflight use and promises to be the agent most likely to be used in the future. Future spacecraft potable, hygiene, and experiment water systems will utilize recycled water. This will present special problems for water quality control. NASA is currently conducting research and development to solve these problems.

  17. [Use of two-points-short-term free chlorine plus chloramines disinfection process in conventional treatments of water supply].

    PubMed

    Liu, Jing; Chen, Chao; Zhang, Xiao-jian; Wang, Yang

    2008-12-01

    Two-points-short-term free chlorine plus chloramines disinfection process was used in conventional treatments of water supply. The process is adding chlorine at the start of filtration and clear well respectively, and then after a few minutes chlorine disinfection in clear well adding ammonia to change the chlorine to chloramines. The point of chlorine dosing move up to the filtration process can decrease disinfection by-product yield and control bio-film growth in filtration process. Compared with adding equal quantity chlorine once, this process reduced 51.6% of THMs and 46.7% of HAAs. HPC result also showed advantage in microorganism controlling.

  18. A membrane filter technique for testing disinfectants.

    PubMed Central

    Prince, J; Deverill, C E; Ayliffe, G A

    1975-01-01

    A membrane filter was used for assessing the surface disinfecting activity of phenolic disinfectants and a chloroxylenol disinfectant. The influence of the type of organism, inoculum size, and hardness of water was investigated. Pseudomonas aeruginosa was chosen for the standardized test. Disinfectant solutions were prepared in water of 300 ppm hardness and applied for two and a half minutes and eight minutes to the bacteria deposited from filtration of 1 ml of a suspension containing 10-6 bacteria. The membrane filter test has certain advantages over many tests, eg, all organisms surviving after treatment can be counted and residual disinfectant is easily removed. PMID:804497

  19. A membrane filter technique for testing disinfectants.

    PubMed

    Prince, J; Deverill, C E; Ayliffe, G A

    1975-01-01

    A membrane filter was used for assessing the surface disinfecting activity of phenolic disinfectants and a chloroxylenol disinfectant. The influence of the type of organism, inoculum size, and hardness of water was investigated. Pseudomonas aeruginosa was chosen for the standardized test. Disinfectant solutions were prepared in water of 300 ppm hardness and applied for two and a half minutes and eight minutes to the bacteria deposited from filtration of 1 ml of a suspension containing 10-6 bacteria. The membrane filter test has certain advantages over many tests, eg, all organisms surviving after treatment can be counted and residual disinfectant is easily removed.

  20. An overview of water disinfection in developing countries and the potential for solar thermal water pasteurization

    SciTech Connect

    Burch, J.; Thomas, K.E.

    1998-01-01

    This study originated within the Solar Buildings Program at the U.S. Department of Energy. Its goal is to assess the potential for solar thermal water disinfection in developing countries. In order to assess solar thermal potential, the alternatives must be clearly understood and compared. The objectives of the study are to: (a) characterize the developing world disinfection needs and market; (b) identify competing technologies, both traditional and emerging; (c) analyze and characterize solar thermal pasteurization; (d) compare technologies on cost-effectiveness and appropriateness; and (e) identify research opportunities. Natural consequences of the study beyond these objectives include a broad knowledge of water disinfection problems and technologies, introduction of solar thermal pasteurization technologies to a broad audience, and general identification of disinfection opportunities for renewable technologies.

  1. Recycled Water Poses Disinfectant Problem

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1973

    1973-01-01

    Discusses the possible health hazards resulting from released nucleic acid of inactivated viruses, chlorinated nonliving organic molecules, and overestimated reliability of waste treatment standards. Suggests the recycle system use a dual disinfectant such as chlorine and ozone in water treatment. (CC)

  2. Postoutbreak disinfection of mobile equipment.

    PubMed

    Alphin, R L; Ciaverelli, C D; Hougentogler, D P; Johnson, K J; Rankin, M K; Benson, E R

    2010-03-01

    Current control strategies for avian influenza virus, exotic Newcastle disease, and other highly contagious poultry diseases include surveillance, quarantine, depopulation, disposal, and decontamination. Skid steer loaders and other mobile equipment are extensively used during depopulation and disposal. Movement of contaminated equipment has been implicated in the spread of disease in previous outbreaks. One approach to equipment decontamination is to power wash the equipment, treat with a liquid disinfectant, change any removable filters, and let it sit idle for several days. In this project, multiple disinfectant strategies were individually evaluated for their effectiveness at inactivating Newcastle disease virus (NDV) on mechanical equipment seeded with the virus. A small gasoline engine was used to simulate typical mechanical equipment. A high titer of LaSota strain, NDV was applied and dried onto a series of metal coupons. The coupons were then placed on both interior and exterior surfaces of the engine. Liquid disinfectants that had been effective in the laboratory were not as effective at disinfecting the engine under field conditions. Indirect thermal fog showed a decrease in overall virus titer or strength. Direct thermal fog was more effective than liquid spray application or indirect thermal fog application.

  3. GLUTATHIONE S-TRANSFERASE THETA 1-1-DEPENDENT METABOLISM OF THE DISINFECTION BYPRODUCT BROMODICHLOROMETHANE

    EPA Science Inventory

    ABSTRACT
    Bromodichloromethane (BDCM), a prevalent drinking water disinfection by-product, was previously shown to be mutagenic in Salmonella expressing glutathione S-transferase (GST) theta 1-1 (GST T1-1). In the present study, in vitro experiments were performed to study the...

  4. The effect of chlorine and combined chlorine/UV treatment on coliphages in drinking water disinfection.

    PubMed

    Zyara, Alyaa M; Torvinen, Eila; Veijalainen, Anna-Maria; Heinonen-Tanski, Helvi

    2016-08-01

    Chlorine disinfection is a globally used method to ensure the safety of drinking water. However, it has not always been successful against viruses and, therefore, it is important to find new methods to disinfect water. Seventeen different coliphages were isolated from the treated municipal wastewater. These coliphages and MS2 were treated with different dosages of chlorine in drinking water, and a combined chlorine/ultraviolet irradiation treatment for the chlorine-resistant coliphages. Chlorine disinfection with 0.3-0.5 mg/L total chlorine (free Cl-dosage 0.12-0.21 mg/L) for 10 min achieved 2.5-5.7 Log10-reductions for 11 sensitive coliphages. The six most resistant coliphages showed no reduction with these chlorine concentrations. MS2 was intermediate in chlorine resistance, and thus it is not a good indicator for viruses in chlorine disinfection. In the combined treatment total chlorine of 0.05-0.25 mg/L (free Cl-dosage 0.02-0.08 mg/L) and ultraviolet irradiation (14-22 mWs/cm(2)) were more effective than chlorine alone, and 3-5 Log10-reductions were achieved for the chlorine-resistant strains. The chlorination efficiency could be increased by higher dosages and longer contact times, but this could increase the formation of disinfection by-products. Therefore, the combination treatment is a recommended disinfection method.

  5. Predicting the disinfection efficiency range in chlorine contact tanks through a CFD-based approach.

    PubMed

    Angeloudis, Athanasios; Stoesser, Thorsten; Falconer, Roger A

    2014-09-01

    In this study three-dimensional computational fluid dynamics (CFD) models, incorporating appropriately selected kinetic models, were developed to simulate the processes of chlorine decay, pathogen inactivation and the formation of potentially carcinogenic by-products in disinfection contact tanks (CTs). Currently, the performance of CT facilities largely relies on Hydraulic Efficiency Indicators (HEIs), extracted from experimentally derived Residence Time Distribution (RTD) curves. This approach has more recently been aided with the application of CFD models, which can be calibrated to predict accurately RTDs, enabling the assessment of disinfection facilities prior to their construction. However, as long as it depends on HEIs, the CT design process does not directly take into consideration the disinfection biochemistry which needs to be optimized. The main objective of this study is to address this issue by refining the modelling practices to simulate some reactive processes of interest, while acknowledging the uneven contact time stemming from the RTD curves. Initially, the hydraulic performances of seven CT design variations were reviewed through available experimental and computational data. In turn, the same design configurations were tested using numerical modelling techniques, featuring kinetic models that enable the quantification of disinfection operational parameters. Results highlight that the optimization of the hydrodynamic conditions facilitates a more uniform disinfectant contact time, which correspond to greater levels of pathogen inactivation and a more controlled by-product accumulation.

  6. Comparison of disinfection byproduct formation from chlorine and alternative disinfectants.

    PubMed

    Hua, Guanghui; Reckhow, David A

    2007-04-01

    Seven diverse natural waters were collected and treated in the laboratory under five oxidation scenarios (chlorine, chloramine, both with and without preozonation, and chlorine dioxide). The impact of these disinfectants on the formation of disinfection byproducts was investigated. Results showed that preozonation decreased the formation of trihalomethanes (THMs), haloacetic acids (HAAs) and total organic halogen (TOX) for most waters during postchlorination. A net increase in THMs, HAAs and TOX was observed for a water of low humic content. Either decreases or increases were observed in dihaloacetic acids and unknown TOX (UTOX) as a result of preozonation when used with chloramination. Chloramines and chlorine dioxide produced a higher percentage of UTOX than free chlorine. They also formed more iodoform and total organic iodine (TOI) than free chlorine in the presence of iodide. Free chlorine produced a much higher level of total organic chlorine (TOCl) and bromine (TOBr) than chloramines and chlorine dioxide in the presence of bromide.

  7. Microbial community degradation of widely used quaternary ammonium disinfectants.

    PubMed

    Oh, Seungdae; Kurt, Zohre; Tsementzi, Despina; Weigand, Michael R; Kim, Minjae; Hatt, Janet K; Tandukar, Madan; Pavlostathis, Spyros G; Spain, Jim C; Konstantinidis, Konstantinos T

    2014-10-01

    Benzalkonium chlorides (BACs) are disinfectants widely used in a variety of clinical and environmental settings to prevent microbial infections, and they are frequently detected in nontarget environments, such as aquatic and engineered biological systems, even at toxic levels. Therefore, microbial degradation of BACs has important ramifications for alleviating disinfectant toxicity in nontarget environments as well as compromising disinfectant efficacy in target environments. However, how natural microbial communities respond to BAC exposure and what genes underlie BAC biodegradation remain elusive. Our previous metagenomic analysis of a river sediment microbial community revealed that BAC exposure selected for a low-diversity community, dominated by several members of the Pseudomonas genus that quickly degraded BACs. To elucidate the genetic determinants of BAC degradation, we conducted time-series metatranscriptomic analysis of this microbial community during a complete feeding cycle with BACs as the sole carbon and energy source under aerobic conditions. Metatranscriptomic profiles revealed a candidate gene for BAC dealkylation, the first step in BAC biodegradation that results in a product 500 times less toxic. Subsequent biochemical assays and isolate characterization verified that the putative amine oxidase gene product was functionally capable of initiating BAC degradation. Our analysis also revealed cooperative interactions among community members to alleviate BAC toxicity, such as the further degradation of BAC dealkylation by-products by organisms not encoding amine oxidase. Collectively, our results advance the understanding of BAC aerobic biodegradation and provide genetic biomarkers to assess the critical first step of this process in nontarget environments.

  8. Disinfecting Filters For Recirculated Air

    NASA Technical Reports Server (NTRS)

    Pilichi, Carmine A.

    1992-01-01

    Simple treatment disinfects air filters by killing bacteria, algae, fungi, mycobacteria, viruses, spores, and any other micro-organisms filters might harbor. Concept applied to reusable stainless-steel wire mesh filters and disposable air filters. Treatment used on filters in air-circulation systems in spacecraft, airplanes, other vehicles, and buildings to help prevent spread of colds, sore throats, and more-serious illnesses.

  9. Micropollutants produced by disinfection of wastewater effluents

    SciTech Connect

    Jolley, R.L.; Cumming, R.B.; Lee, N.E.; Thompson, J.E.; Lewis, L.R.

    1981-01-01

    Recent research conducted with the objective of determining some of the chemical mutagenic characteristics of nonvolatile micropollutants in treated wastewater effluents is summarized. The effluents from nine wastewater plants were examined relative to the chemical effects of the disinfectants chlorine, ozone, and uv light on nonvolatile organic constituents and the formation of mutagenic constituents during disinfection. Results indicate that disinfection by chlorine or ozone can lead to an increase in the number of mutagenic materials in the effluents. (JGB)

  10. Decontamination formulations for disinfection and sterilization

    DOEpatents

    Tucker, Mark D.; Engler, Daniel E.

    2007-09-18

    Aqueous decontamination formulations that neutralize biological pathogens for disinfection and sterilization applications. Examples of suitable applications include disinfection of food processing equipment, disinfection of areas containing livestock, mold remediation, sterilization of medical instruments and direct disinfection of food surfaces, such as beef carcasses. The formulations include at least one reactive compound, bleaching activator, inorganic base, and water. The formulations can be packaged as a two-part kit system, and can have a pH value in the range of 7-8.

  11. Antiviral efficacy of disinfectant solution MRI-1.

    PubMed

    Skinner, G R; Billstrom, M; Randall, S; Buchan, A; Davies, J; Ahmad, A

    1998-01-01

    Disinfectant MRI-1 was prepared by dissolution of non-ionic and ionic detergent in ethanol. The disinfectant inactivated extracellular and intracellular enveloped and non-enveloped viruses including herpes viruses, influenza A and human immunodeficiency disease virus in suspension or on surfaces by pre-exposure or post-exposure to the disinfectant; in addition, cells were disabled as potential hosts for viral infection using concentrations of MRI-1 which were 50-fold less than the operative concentration for disinfection. There was no evidence of in vitro mutagenicity using Salmonella typhimurium or sensitization or other adverse effect in a guinea pig model or in human subjects.

  12. 9 CFR 166.14 - Cleaning and disinfecting.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., fencing, troughs, chutes, floors, walls, and all other parts of the facilities, with a disinfectant..., including all doors, endgates, portable chutes, and similar equipment with a disinfectant prescribed...

  13. 9 CFR 166.14 - Cleaning and disinfecting.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., fencing, troughs, chutes, floors, walls, and all other parts of the facilities, with a disinfectant..., including all doors, endgates, portable chutes, and similar equipment with a disinfectant prescribed...

  14. NANOFILTRATION FOR REMOVAL OF DRINKING WATER DISINFECTION BY-PRODUCT PRCURSORS

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) Environmental Technology Verification (ETV) program evaluates the performance of innovative air, water, pollution prevention and monitoring technologies that have the potential to improve human health and the environment. This techno...

  15. A NONADDITITIVE TUMOR RESPONSE TO A MIXTURE OF DISINFECTION BY-PRODUCTS

    EPA Science Inventory

    Current default risk assessments for chemical mixtures assume additivity of carcinogenic effects, but this may not be consistent with the actual biological response. We used a rodent model of hereditary renal cancer to investigate the carcinogenic response of a mixture of drinkin...

  16. INSTABILITY OF THE WATER DISINFECTION BY-PRODUCT DIBROMOACETONITRILE UNDER PHYSIOLOGICAL CONDITIONS: KINETICS AND PRODUCT CHARACTERIZATION

    EPA Science Inventory

    Dibromoacetonitrile (DBAN) is a prevalent haloacetonitrile formed as a byproduct of water chlorination. DBAN is toxic in vivo and genotoxic in vitro and is a mouse skin tumor initiator. However, little is known about its mechanisms of toxicity or genotoxicity or its stability. Du...

  17. UV/chlorine process for ammonia removal and disinfection by-product reduction: comparison with chlorination.

    PubMed

    Zhang, Xinran; Li, Weiguang; Blatchley, Ernest R; Wang, Xiaoju; Ren, Pengfei

    2015-01-01

    The combined application of UV irradiation at 254 nm and chlorination (UV/chlorine process) was investigated for ammonia removal in water treatment. The UV/chlorine process led to higher ammonia removal with less chlorine demand, as compared to breakpoint chlorination. Chlorination of NH₃ led to NH₂Cl formation in the first step. The photolysis of NH₂Cl and radical- mediated oxidation of ammonia appeared to represent the main pathways for ammonia removal. The trivalent nitrogen of ammonia was oxidized, presumably by reactions with aminyl radicals and chlorine radicals. Measured products included NO₃⁻and NO₂⁻; it is likely that N₂ and N₂O were also generated. In addition, UV irradiation appeared to have altered the reactivity of NOM toward free chlorine. The UV/chlorine process had lower chlorine demand, less C-DBPs (THMs and HAAs), but more HANs than chlorination. These results indicate that the UV/chlorine process could represent an alternative to conventional breakpoint chlorination for ammonia-containing water, with several advantages in terms of simplicity, short reaction time, and reduced chemical dosage.

  18. Occurrence of disinfection by-products in tap water distribution systems and their associated health risk.

    PubMed

    Lee, Jin; Kim, Eun-Sook; Roh, Bang-Sik; Eom, Seog-Won; Zoh, Kyung-Duk

    2013-09-01

    The concentrations of trihalomethanes (THMs), including chloroform, bromodichloromethane, dibromochloromethane, and bromoform, and haloacetic acids (HAAs; monochloroacetic acid, monobromoacetic acid, dibromoacetic acid, dichloroacetic acid, and trichloroacetic acid) were measured in tap waters passing through water distribution systems of six water treatment plants in Seoul, Korea, and their associated health risks from exposure to THMs through ingestion, dermal contact, and inhalation were estimated using a probabilistic approach. The concentration ranges for total THMs and HAA5 were 3.9-53.5 and

  19. SOURCE WATER PROTECTION: ITS ROLE IN CONTROLLING DISINFECTION BY-PRODUCTS (DBPS) AND MICROBIAL CONTAMINANTS

    EPA Science Inventory

    Passage of 1996 Safe Drinking Water Act Amendments (SDWAA) has focused the attention of wter utility managers and public health and regulatory officials on source water protection (SWP) and its role in protecting public water supplies. There is growing awareness that water treatm...

  20. MASS SPECTROMETRY FOR RISK MANAGEMENT OF DRINKING WATER TREATMENT; II. DISINFECTION BY-PRODUCTS: HALOACETIC ACIDS

    EPA Science Inventory

    Risk management of drinking water relies on quality analytical data. Analytical methodology can often be adapted from environmental monitoring sources. However, risk management sometimes presents special analytical challenges because data may be needed from a source for which n...

  1. IDENTIFICATION OF POLAR DRINKING WATER DISINFECTION BY-PRODUCTS USING LIQUID CHROMATOGRAPHY - MASS SPECTROMETRY

    EPA Science Inventory

    A qualitative method using 2,4-dinitrophenylhydrazine (DNPH) derivatization followed by analysis with liquid chromatography (LC)/negative ion-electrospray mass spectrometry (MS) was developed for identifying polar aldehydes and ketones in ozonated drinking water. This method offe...

  2. Determinants of Whether or not Mixtures of Disinfection By-products are Similar

    EPA Science Inventory

    This project summary and its related publications provide information on the development of chemical, toxicological and statistical criteria for determining the sufficient similarity of complex chemical mixtures.

  3. MEASUREMENT AND TOXICITY OF IODO-ACID DISINFECTION BY-PRODUCTS IN CHLORAMINATED DRINKING WATER

    EPA Science Inventory

    The goal of this work was to develop an analytical method to quantify these five iodo-acids (iodoacetic acid, bromoiodoacetic acid, (E)-3-bromo-3-iodo-propenoic acid, (Z)-3-bromo-3-iodo-propenoic acid, and (E)-2-iodo-3-methylbutenedioic acid) in drinking water, measure their oc...

  4. DROWNING IN DISINFECTION BY-PRODUCTS? SWIMMING POOL WATER QUALITY RECONSIDERED.

    EPA Science Inventory

    The development of treated water for swimming pools has made swimming a year ¬round activity, widely enjoyed for leisure as well as exercise. Swimming pools can be found in different kinds and sizes in public areas, hotels and spas, or at private homes. In Germany ~250-300 millio...

  5. ACTIVATED CARBON AND MEMBRANE PROCESSES FOR DISINFECTION BY-PRODUCT (DBP) AND MICROBIAL CONTROL

    EPA Science Inventory

    It is likely that many utilities will be able to meet current and upcoming drinking water regulations for DBPs by implementing one of the following relatively low-cost options: changing coagulation conditions, changing the pont of chlorination, or switching to an alternative disi...

  6. Impact of ozonation and biological treatment on disinfection by-products

    SciTech Connect

    Shukairy, H.M.; Summers, R.S.; Miltner, R.J.

    1994-01-01

    The paper summarizes several recent studies on the impact of ozonation and biological treatment on DBP formation. Ozonation was characterized by the formation of ozonation DBPs such as aldehydes, assimilable organic carbon (AOC), biodegradable dissolved organic carbon (BDOC) and the oxidation of bromide to bromate. The oxidation of the DBP precursor compounds and the effectiveness of biotreatent for the control of DBPs were monitored by the formation potential (FP) for total organic halogen (TOX), total THMs (TTHMs) and total measured haloacetic acid (THAAs). Special attention was also given to the impact of bromide concentration on the speciation of the DBPs. A specific objective of the paper was to compare DBP control by batch biological treatment at the bench-scale to that by a continuous flow sand filter at the pilot-scale.

  7. Spatial and seasonal variability of tap water disinfection by-products within distribution pipe networks.

    PubMed

    Charisiadis, Pantelis; Andra, Syam S; Makris, Konstantinos C; Christophi, Costas A; Skarlatos, Dimitrios; Vamvakousis, Vasilis; Kargaki, Sophia; Stephanou, Euripides G

    2015-02-15

    Gradually-changing shocks associated with potable water quality deficiencies are anticipated for urban drinking-water distribution systems (UDWDS). The impact of structural UDWDS features such as, the number of pipe leaking incidences on the formation of water trihalomethanes (THM) at the geocoded household level has never been studied before. The objectives were to: (i) characterize the distribution of water THM concentrations in households from two district-metered areas (DMAs) with contrasting UDWDS characteristics sampled in two seasons (summer and winter), and (ii) assess the within- and between-household, spatial variability of water THM accounting for UDWDS characteristics (household distance from chlorination tank and service pipe leaking incidences). A total of 383 tap water samples were collected from 193 households located in two DMAs within the UDWDS of Nicosia city, Cyprus, and analyzed for the four THM species. The higher intraclass correlation coefficient (ICC) values for water tribromomethane (TBM) (0.75) followed by trichloromethane (0.42) suggested that the two DMAs differed with respect to these analytes. On the other hand, the low ICC values for total THM levels between the two DMAs suggested a large variance between households. The effect of households nested under each DMA remained significant (p<0.05) for TBM (not for the rest of the THM species) in the multivariate mixed-effect models, even after inclusion of pipe network characteristics. Our results could find use by water utilities in overcoming techno-economic difficulties associated with the large spatiotemporal variability of THM, while accounting for the influence of UDWDS features at points of water use.

  8. Factors influencing disinfection by-products formation in drinking water of six cities in China.

    PubMed

    Ye, Bixiong; Wang, Wuyi; Yang, Linsheng; Wei, Jianrong; E, Xueli

    2009-11-15

    Based on the measured chemical and physical data in drinking water from six cities in China, the factors including total organic carbon (TOC), ultraviolet absorbance at 254 nm (UV(254)), pH, applied chlorine dosage, temperature, concentrations of bromide ion and several chemical elements which possibly affect the formation of trihalomethane (THM) and haloacetic acid (HAA) have been studied. The results showed that: in all factors, TOC and UV(254) have definite correlations with total THM, but have nonsignificant relationships with total HAA. In the studied pH range of 6.5-8.5 for drinking water, the total THM concentration increased with the increasing of pH value, but the total HAA concentration slightly decreased. A low but significant relationship (r=0.26, p<0.01) occurred between total THM and applied chlorine dosage. Similar relationship (r=0.21, p<0.01) was found between total HAA and applied chlorine dosage. When the water temperature was low, the variation of THMs and HAAs was little, but in warmer water, the concentration of THMs and HAAs varied quickly. The extent of bromine incorporation into the DBPs increases with increasing bromide ion concentration. Based on the effect of chemical elements for the DBPs remove effect, the polyferric chloride could be a preferred flocculant agent in waterworks.

  9. [Aspartic Acid Generated in the Process of Chlorination Disinfection By-product Dichloroacetonitrile].

    PubMed

    Ding, Chun-sheng; Li, Nai-jun; Zhang, Tao; Zhang, Meng-qing

    2016-05-15

    In this study, a method was developed for the determination of dichloroacetonitrile (DCAN) in drinking water by liquid- liquid micro-extraction and gas chromatography/mass spectrometry ( LLE-GC/MS), which used 1,2-dibromopropane as the internal standard and methyl tertiary butyl ether (MTBE) as the extractant for high accuracy. The aspartic acid was used as the precursor of the DCAN formation during chlorination and the influencing factors were evaluated. The formation mechanism of DCAN was also discussed. The results showed that the DCAN amount increased with the increase of pH value under the neutral and acidic conditions, however, the amount of DCAN decreased with the increase of pH value under the alkali condition. And the final amount of DCAN under the alkali condition was much less than that under the neutral and acidic conditions. It was also found that the DCAN amount increased with the increase of chlorine addition, while the temperature in the range of 10-30°C had little influence on the DCAN formation. The formation process of the DCAN from aspartic acid by chlorination included seven steps, such as substitution, decarboxylation, oxidation, etc and ultimately formed DCAN.

  10. Integrated Disinfection By-Products Mixtures Research: Results from the Four Lab Study

    EPA Science Inventory

    This study involves collaboration of four national laboratories/centers of the U.S. Environmental Protection Agency (EPA), as well as scientists from universities and water utilities, and is termed the ‘Four Lab Study’. The purpose of this study is to address concerns related to...

  11. Chlorine and ozone disinfection of Encephalitozoon intestinalis spores.

    PubMed

    John, David E; Haas, Charles N; Nwachuku, Nena; Gerba, Charles P

    2005-06-01

    Microsporidia are intracellular eukaryotic parasites which have the potential for zoonotic and environmental, including waterborne, transmission. Encephalitozoon intestinalis is a microsporidian pathogen of humans and animals and has been detected in surface water. It is also on the Contaminant Candidate List of potential emerging waterborne pathogens for the US EPA. We performed disinfection studies using chlorine and ozone on E. intestinalis spores with a cell-culture most-probable-number assay to determine infectivity. Chlorine experiments were performed at 5 degrees C at pH of 6, 7, and 8 with 1mg/L initial chlorine concentrations, while ozone experiments were performed at 5 degrees C and pH 7 with initial ozone doses of 1 and 0.5mg/L, both in buffered water. A derivation of Hom's model for disinfection kinetics under dynamic disinfectant concentrations was used to fit observed data and calculate concentration-time product (C*t) values. Chlorine C*t values varied with pH such that 99% (2-log(10)) C*t ranged from 12.8 at pH 6 to 68.8 at pH 8 (mg min/L). Ozone C*t values were approximately an order of magnitude less at 0.59--0.84 mg min/L, depending on initial concentration.

  12. Ultraviolet (UV) Disinfection for Drinking Water Systems

    EPA Science Inventory

    UV disinfection is an effective process for inactivating many microbial pathogens in water with potential to serve as stand-alone treatment or in combination with other disinfectants. USEPA provided guidance on the validation of UV reactors nearly a decade ago. Since then, lesson...

  13. 40 CFR 141.72 - Disinfection.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... for Giardia lamblia cysts and viruses. If a system uses a disinfectant other than chlorine, the system...) The residual disinfectant concentration in the distribution system, measured as total chlorine, combined chlorine, or chlorine dioxide, as specified in § 141.74 (a)(2) and (b)(6), cannot be...

  14. 40 CFR 141.72 - Disinfection.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... for Giardia lamblia cysts and viruses. If a system uses a disinfectant other than chlorine, the system...) The residual disinfectant concentration in the distribution system, measured as total chlorine, combined chlorine, or chlorine dioxide, as specified in § 141.74 (a)(2) and (b)(6), cannot be...

  15. 40 CFR 141.72 - Disinfection.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... for Giardia lamblia cysts and viruses. If a system uses a disinfectant other than chlorine, the system...) The residual disinfectant concentration in the distribution system, measured as total chlorine, combined chlorine, or chlorine dioxide, as specified in § 141.74 (a)(2) and (b)(6), cannot be...

  16. 40 CFR 141.72 - Disinfection.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... for Giardia lamblia cysts and viruses. If a system uses a disinfectant other than chlorine, the system...) The residual disinfectant concentration in the distribution system, measured as total chlorine, combined chlorine, or chlorine dioxide, as specified in § 141.74 (a)(2) and (b)(6), cannot be...

  17. 9 CFR 71.10 - Permitted disinfectants.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... § 71.10 Permitted disinfectants. (a) Disinfectants permitted for use on cars, boats, and other vehicles... least 4 fluid ounces to 1 gallon of water. (2) Liquefied phenol (U.S.P. strength 87 percent phenol) in the proportion of at least 6 fluid ounces to 1 gallon of water. (3) Chlorinated lime (U.S.P....

  18. 9 CFR 71.10 - Permitted disinfectants.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... § 71.10 Permitted disinfectants. (a) Disinfectants permitted for use on cars, boats, and other vehicles... least 4 fluid ounces to 1 gallon of water. (2) Liquefied phenol (U.S.P. strength 87 percent phenol) in the proportion of at least 6 fluid ounces to 1 gallon of water. (3) Chlorinated lime (U.S.P....

  19. Silver disinfection in water distribution systems

    NASA Astrophysics Data System (ADS)

    Silvestry Rodriguez, Nadia

    Silver was evaluated as disinfectant to maintain water quality in water distribution system. It was used to inhibit growth of two opportunistic bacteria in planktonik form and in biofilm formation in Robbins devices with stainless steel and PVC surfaces. The results of this work show that silver is a potential secondary disinfectant to be used in water distribution systems.

  20. 40 CFR 141.72 - Disinfection.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... PRIMARY DRINKING WATER REGULATIONS Filtration and Disinfection § 141.72 Disinfection. A public water system that uses a surface water source and does not provide filtration treatment must provide the... determines that filtration is required in writing pursuant to § 1412 (b)(7)(C)(iii). A public water...

  1. ULTRAVIOLET DISINFECTION STUDIES WITH CCL LISTED MICROORGANISMS

    EPA Science Inventory

    Resistance to ultraviolet (UV) disinfection is an essential aspect regarding all microbial groups listed on the CCL. The U.S. drinking water industry is interested in including UV light treatment as an amendment to conventional treatment for disinfecting water supplies. UV disi...

  2. Demonstration of 20 pharmaceuticals and personal care products (PPCPs) as nitrosamine precursors during chloramine disinfection.

    PubMed

    Shen, Ruqiao; Andrews, Susan A

    2011-01-01

    The worldwide detection of pharmaceuticals and personal care products (PPCPs) in the aquatic environment and drinking water has been a cause for concern in recent years. The possibility for concurrent formation of nitrosamine DBPs (disinfection by-products) during chloramine disinfection has become another significant concern for delivered drinking water quality because of their potent carcinogenicity. This study demonstrates that a group of PPCPs containing amine groups can serve as nitrosamine precursors during chloramine disinfection. Molar yields higher than 1% are observed for eight pharmaceuticals, with ranitidine showing the strongest potential to form N-nitrosodimethylamine (NDMA). The molar conversion increases with the Cl(2):N mass ratio, suggesting that dichloramine is relevant to the formation of NDMA from these precursors. Although the trace level of PPCPs in the environment suggests that they may not account for the majority of nitrosamine precursors during the disinfection process, this study demonstrates a connection between the transformation of PPCPs and the formation of nitrosamines during chloramine disinfection. This both expands the pool of potential nitrosamine precursors, and provides a possible link between the presence of trace levels of certain PPCPs in drinking water sources and potential adverse health effects.

  3. Performic acid (PFA): tests on an advanced primary effluent show promising disinfection performance.

    PubMed

    Gehr, R; Chen, D; Moreau, M

    2009-01-01

    Performic acid, or PFA (CH(2)O(3)), is a well-known oxidizing agent and disinfectant in the medical field and food industry. It has recently become available on a commercial scale for potential use in wastewater disinfection. This study investigated its application to an advanced primary effluent which is recalcitrant to disinfection by UV and peracetic acid (PAA). Methods were developed for determining PFA concentrations in stock solutions as well as in residual concentrations in the wastewater. Batch and continuous-flow pilot studies showed a correlation between log fecal coliform removals and PFA doses. A PFA dose of approximately 3.4 mg/L and a contact time of 45 minutes could achieve 3-logs removal, and almost total disinfection could be achieved using a dose of 6 mg/L. The by-products of PFA addition are hydrogen peroxide and formic acid (CHOOH), neither of which is considered to be toxic to aquatic fauna at the doses required for disinfection.

  4. Comparison of organic peracids in wastewater treatment: Disinfection, oxidation and corrosion.

    PubMed

    Luukkonen, Tero; Heyninck, Tom; Rämö, Jaakko; Lassi, Ulla

    2015-11-15

    The use of organic peracids in wastewater treatment is attracting increasing interest. The common beneficial features of peracids are effective anti-microbial properties, lack of harmful disinfection by-products and high oxidation power. In this study performic (PFA), peracetic (PAA) and perpropionic acids (PPA) were synthesized and compared in laboratory batch experiments for the inactivation of Escherichia coli and enterococci in tertiary wastewater, oxidation of bisphenol-A and for corrosive properties. Disinfection tests revealed PFA to be a more potent disinfectant than PAA or PPA. 1.5 mg L(-1) dose and 2 min of contact time already resulted in 3.0 log E. coli and 1.2 log enterococci reduction. Operational costs of disinfection were estimated to be 0.0114, 0.0261 and 0.0207 €/m(3) for PFA, PAA and PPA, respectively. Disinfection followed the first order kinetics (Hom model or S-model) with all studied peracids. However, in the bisphenol-A oxidation experiments involving Fenton-like conditions (pH = 3.5, Fe(2+) or Cu(2+) = 0.4 mM) peracids brought no additional improvement to traditionally used and lower cost hydrogen peroxide. Corrosion measurements showed peracids to cause only a negligible corrosion rate (<6 μm year(-1)) on stainless steel 316L while corrosion rates on the carbon steel sample were significantly higher (<500 μm year(-1)).

  5. Hazards with disinfecting agents in renal units!

    PubMed

    Stragier, A

    1992-02-01

    As already described in the April 1991 issue of EDTNA/ERCA Journal (Volume XVII, No. 2), the specific characteristics of various disinfecting agents delineate their respective application areas. Obviously, in a renal unit one needs a large range of disinfecting agents as they are being used for cleaning and disinfection of: water treatment devices; water tanks and distribution systems; single patient units; patient vascular access sites; dialysis connection procedure; dialyser reuse; instruments; floors, etc.... We have been taught never to mix different disinfecting agents as this might reduce their efficiency. However, it had never been hitherto reported that this might be dangerous or even cause an explosion! In this paper, we describe in detail how we were confronted with such an explosion. We further report that similar hazards occurred in other units and present an overview of possible hazards with the most common disinfecting agents. Finally, we emphasize some preventive guidelines to be put forth in renal units.

  6. Sepsis, parenteral vaccination and skin disinfection

    PubMed Central

    Cook, Ian F.

    2016-01-01

    ASBSTRACT Disinfection should be required for all skin penetrative procedures including parenteral administration of vaccines. This review analyses medically attended infectious events following parenteral vaccination in terms of their microbiological aetiology and pathogenesis. Like ‘clean’ surgical site infections, the major pathogens responsible for these events were Staphylococcal species, implicating endogenous con-tamination as a significant source of infection. As 70% isopropyl alcohol swabbing has been shown to effectively disinfect the skin, it would be medico-legally difficult to defend a case of sepsis with the omission of skin disinfection unless the very low risk of this event was adequately explained to the patient and documented prior to vaccination. There was a significant cost-benefit for skin disinfection and cellulitis. Skin disinfection in the context of parenteral vaccination represents a new paradigm of medical practice; the use of a low cost intervention to prevent an event of very low prevalence but of significant cost. PMID:27295449

  7. Surface disinfection: should we do it?

    PubMed

    Rutala, W A; Weber, D J

    2001-08-01

    The effective use of disinfectants constitutes an important factor in preventing hospital-acquired infections. Surfaces are considered non-critical items as they come in contact with intact skin. Use of non-critical items or contact with non-critical surfaces carries little risk of transmitting a pathogen to patients. Thus, the routine use of disinfectants to disinfect hospital floors and other non-critical items is controversial. However, surfaces may potentially contribute to cross-transmission by acquisition of transient hand carriage by health care personnel due to contact with a contaminated surface or by patient contact with contaminated surfaces or medical equipment. This paper reviews the epidemiological and microbiological data regarding the use of disinfectants on non-critical surfaces. It concludes that while non-critical surfaces are uncommonly associated with transmission of infections to patients, one should clean and disinfect surfaces on a regularly scheduled basis.

  8. Comparison of Riboflavin and Toluidine Blue O as Photosensitizers for Photoactivated Disinfection on Endodontic and Periodontal Pathogens In Vitro.

    PubMed

    Nielsen, Henrik Krarup; Garcia, Javier; Væth, Michael; Schlafer, Sebastian

    2015-01-01

    Photoactivated disinfection has a strong local antimicrobial effect. In the field of dentistry it is an emerging adjunct to mechanical debridement during endodontic and periodontal treatment. In the present study, we investigate the effect of photoactivated disinfection using riboflavin as a photosensitizer and blue LED light for activation, and compare it to photoactivated disinfection with the widely used combination of toluidine blue O and red light. Riboflavin is highly biocompatible and can be activated with LED lamps at hand in the dental office. To date, no reports are available on the antimicrobial effect of photoactivated disinfection using riboflavin/blue light on oral microorganisms. Planktonic cultures of eight organisms frequently isolated from periodontal and/or endodontic lesions (Aggregatibacter actinomycetemcomitans, Candida albicans, Enterococcus faecalis, Escherischia coli, Lactobacillus paracasei, Porphyromonas gingivalis, Prevotella intermedia and Propionibacterium acnes) were subjected to photoactivated disinfection with riboflavin/blue light and toluidine blue O/red light, and survival rates were determined by CFU counts. Within the limited irradiation time of one minute, photoactivated disinfection with riboflavin/blue light only resulted in minor reductions in CFU counts, whereas full kills were achieved for all organisms when using toluidine blue O/red light. The black pigmented anaerobes P. gingivalis and P. intermedia were eradicated completely by riboflavin/blue light, but also by blue light treatment alone, suggesting that endogenous chromophores acted as photosensitizers in these bacteria. On the basis of our results, riboflavin cannot be recommended as a photosensitizer used for photoactivated disinfection of periodontal or endodontic infections.

  9. Type of disinfectant in drinking water and patterns of mortality in Massachusetts

    SciTech Connect

    Zierler, S.; Danley, R.A.; Feingold, L.

    1986-11-01

    Chlorination has been the major strategy for disinfection of drinking water in the United States. Concern about the potential health effects of the reaction by-products of chlorine has prompted use of alternative strategies. One such method is chloramination, a treatment process that does not appear to have carcinogenic by-product, but may have less potent biocidal activity than chlorination. The authors examined the patterns of mortality of residents in Massachusetts who died between 1969 and 1983 and lived in communities using drinking water that was disinfected either by chlorine or chloramine. Comparison of type of disinfectant among 51,645 cases of deaths due to selected cancer sites and 214,998 controls who died from cardiovascular, cerebrovascular, or pulmonary disease, or from lymphatic cancer showed small variation in the patterns of mortality. Bladder cancer was moderately associated with residence at death in a chlorinated community in a logistic regression analysis using controls who die from lymphatic cancer. A slight excess of deaths from pneumonia and influenza was observed in communities whose residents drink chloraminated water compared to residents from chlorinated communities, as well as to all Massachusetts residents. These results are intended to be preliminary and crude descriptions of the relationship under study. The serious potential for misclassification of exposure status and errors in death certificate classification of cause of death affect the interpretability of the overall evidence that patterns of mortality are similar according to disinfectant in drinking water.

  10. Trihalomethanes in chlorine and bromine disinfected swimming pools: air-water distributions and human exposure.

    PubMed

    Lourencetti, Carolina; Grimalt, Joan O; Marco, Esther; Fernandez, Pilar; Font-Ribera, Laia; Villanueva, Cristina M; Kogevinas, Manolis

    2012-09-15

    This first study of trihalomethanes (THMs) in swimming pools using bromine agents for water disinfection under real conditions shows that the mixtures of these compounds are largely dominated by bromoform in a similar process as chloroform becomes the dominant THM in pools disinfected with chlorine agents. Bromoform largely predominates in air and water of the pool installations whose concentration changes are linearly correlated. However, the air concentrations of bromoform account for about 6-11% of the expected concentrations according to theoretical partitioning defined by the Henry law. Bromoform in exhaled air of swimmers is correlated with the air concentrations of this disinfectant by-product in the pool building. Comparison of the THM exhaled air concentrations between swimmers and volunteers bathing in the water without swimming or standing in the building outside the water suggest that physical activity enhance exposure to these disinfectant by-products. They also indicate that in swimming pools, besides inhalation, dermal absorption is a relevant route for the incorporation of THMs, particularly those with lower degree of bromination.

  11. 40 CFR 141.172 - Disinfection profiling and benchmarking.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... appropriate, through the entire treatment plant. This system must begin this monitoring not later than April 1...) The temperature of the disinfected water must be measured once per day at each residual disinfectant... disinfected water must be measured once per day at each chlorine residual disinfectant concentration...

  12. 40 CFR 141.172 - Disinfection profiling and benchmarking.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... appropriate, through the entire treatment plant. This system must begin this monitoring not later than April 1...) The temperature of the disinfected water must be measured once per day at each residual disinfectant... disinfected water must be measured once per day at each chlorine residual disinfectant concentration...

  13. 40 CFR 141.172 - Disinfection profiling and benchmarking.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... appropriate, through the entire treatment plant. This system must begin this monitoring not later than April 1...) The temperature of the disinfected water must be measured once per day at each residual disinfectant... disinfected water must be measured once per day at each chlorine residual disinfectant concentration...

  14. 40 CFR 141.172 - Disinfection profiling and benchmarking.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... appropriate, through the entire treatment plant. This system must begin this monitoring not later than April 1...) The temperature of the disinfected water must be measured once per day at each residual disinfectant... disinfected water must be measured once per day at each chlorine residual disinfectant concentration...

  15. 40 CFR 141.172 - Disinfection profiling and benchmarking.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... appropriate, through the entire treatment plant. This system must begin this monitoring not later than April 1...) The temperature of the disinfected water must be measured once per day at each residual disinfectant... disinfected water must be measured once per day at each chlorine residual disinfectant concentration...

  16. Nanomaterial Case Study: Nanoscale Silver in Disinfectant ...

    EPA Pesticide Factsheets

    This draft document presents a case study of engineered nanoscale silver (nano-Ag), focusing on the specific example of nano-Ag as possibly used in disinfectant sprays. This case study is organized around a comprehensive environmental assessment (CEA) framework, which combines a product life-cycle perspective with the risk assessment paradigm. The document does not draw conclusions about potential risks. Instead, it is intended to be used as part of a process to identify what is known and unknown about nano-Ag in a selected application and can be used as a starting point to identify and prioritize possible research directions to support future assessments of nanomaterials. The information presented in the case study and the questions raised in this document are a foundation for a process to determine priorities among various research topics and directions. After that process has been completed, a final chapter will be added to this document to summarize highlights from preceding chapters and the major research issues that have emerged.

  17. Microbial resistance to disinfectants: mechanisms and significance

    SciTech Connect

    Hoff, J.C.; Akin, E.W.

    1986-11-01

    Drinking water disinfection provides the final barrier to transmission of a wide variety of potentially waterborne infectious agents including pathogenic bacteria, viruses, and protozoa. These agents differ greatly in their innate resistance to inactivation by disinfectants, ranging from extremely sensitive bacteria to highly resistant protozoan cysts. The close similarity between microorganism inactivation rates and the kinetics of chemical reactions has long been recognized. Ideally, under carefully controlled conditions, microorganism inactivation rates simulate first-order chemical reaction rates, making it possible to predict the effectiveness of disinfection under specific conditions. In practice, changes in relative resistance and deviations from first-order kinetics are caused by a number of factors, including microbial growth conditions, aggregation, and association with particulate materials. The net effect of all these factors is a reduction in the effectiveness and predictability of disinfection processes. To ensure effective pathogen control, disinfectant concentrations and contact times greater than experimentally determined values may be required. Of the factors causing enhanced disinfection resistance, protection by association with particulate matter is the most significant. Therefore, removal of particulate matter is an important step in increasing the effectiveness of disinfection processes.

  18. Cleanliness of portable medical equipment disinfected by nursing staff.

    PubMed

    Havill, Nancy L; Havill, Heather L; Mangione, Elise; Dumigan, Diane G; Boyce, John M

    2011-09-01

    Increased attention has been focused on disinfection by housekeepers, but few data are available on disinfection of equipment by nurses. We used adenosine triphosphate bioluminescence assays and aerobic cultures to assess the cleanliness of portable medical equipment disinfected by nurses between each patient use. We found that the equipment was not being disinfected as per protocol and that education and feedback to nursing are warranted to improve disinfection of medical equipment.

  19. Occurrence of by-products of strong oxidants reacting with drinking water contaminants--scope of the problem

    SciTech Connect

    Rice, R.G.; Gomez-Taylor, M.

    1986-11-01

    This paper describes results of a detailed literature review of the organic and inorganic by-products that have been identified as being formed in aqueous solution with four of the strong oxidizing/disinfecting agents commonly employed in drinking water treatment. These agents are: chlorine, chlorine dioxide, chloramine, and ozone. Significant findings include the production of similar nonchlorinated organic oxidation products from chlorine, chlorine dioxide, and ozone. In addition, all three chlorinous oxidants/disinfectants can produce chlorinated by-products under certain conditions. The presence of chloronitrile compounds in drinking waters is indicated to arise from reactions of chlorine or chloramine to amine/amide functions in amino acids or proteinaceous materials, followed by dehydrohalogenation. These nitriles could hydrolyze to produce the corresponding chloroacetic acids. It is concluded that to minimize the presence of oxidation by-products in drinking waters, the concentrations of oxidizable organic/inorganic impurities should be lowered before any oxidizing agent is added. 72 references.

  20. Occurrence of by-products of strong oxidants reacting with drinking water contaminants--scope of the problem.

    PubMed

    Rice, R G; Gomez-Taylor, M

    1986-11-01

    This paper describes results of a detailed literature review of the organic and inorganic by-products that have been identified as being formed in aqueous solution with four of the strong oxidizing/disinfecting agents commonly employed in drinking water treatment. These agents are: chlorine, chlorine dioxide, chloramine, and ozone. Significant findings include the production of similar nonchlorinated organic oxidation products from chlorine, chlorine dioxide, and ozone. In addition, all three chlorinous oxidants/disinfectants can produce chlorinated by-products under certain conditions. The presence of chloronitrile compounds in drinking waters is indicated to arise from reactions of chlorine or chloramine to amine/amide functions in amino acids or proteinaceous materials, followed by dehydrohalogenation. These nitriles could hydrolyze to produce the corresponding chloroacetic acids. It is concluded that to minimize the presence of oxidation by-products in drinking waters, the concentrations of oxidizable organic/inorganic impurities should be lowered before any oxidizing agent is added.

  1. [Virucidal activity of disinfectants. Influence of the serum protein upon the virucidal activity of disinfectants].

    PubMed

    Noda, M; Matsuda, S; Kobayashi, M

    2000-08-01

    Five disinfectants were tested for virucidal activity on three DNA viruses and three RNA viruses in the presence or absence of serum protein. Disinfectants of the aldehyde and halogen groups had a virucidal activity on human herpes virus, bovine rhabdo virus, human immunodeficiency virus, human adeno virus, porcine parvo virus, and polio virus. Disinfectants of the invert and amphoteric soap groups, and biganide group had a destructive effect on RNA and DNA viruses possessing an envelope. The presence of serum protein exerted great influence upon the virucidal activity of disinfectants of the invert and amphoteric soap groups.

  2. Disinfection efficacy of organic chloramines.

    PubMed

    Donnermair, Martina M; Blatchley, Ernest R

    2003-04-01

    The disinfection efficacies of model organic chloramines were investigated. Twenty amino acids and two nucleic acid bases were chlorinated separately with sodium hypochlorite at a Cl:N molar ratio of 0.4:1, and were then used to treat an E. coli suspension for 60 min. DPD/FAS titration was carried out to obtain the concentration of the chlorinated nitrogenous organic compounds as a function of time. In addition, membrane introduction mass spectrometry (MIMS) was used to quantify inorganic chloramines (mono-, di-, and trichloramine). The results of these experiments showed that the organic chloramines examined in this research had little or no effect on the viability of E. coli. MIMS analyses demonstrated that there was no quantifiable formation of inorganic chloramines when the organic nitrogen compounds were chlorinated.

  3. 9 CFR 71.10 - Permitted disinfectants.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AGRICULTURE INTERSTATE TRANSPORTATION OF ANIMALS (INCLUDING POULTRY) AND ANIMAL PRODUCTS GENERAL PROVISIONS..., Fungicide, and Rodenticide Act (7 U.S.C. 135 et seq.), with tuberculocidal claims, as disinfectants...

  4. Wastewater Disinfectants: Many Called--Few Chosen

    ERIC Educational Resources Information Center

    Smith, James W.

    1978-01-01

    Gives a comparative study of disinfectants used to rid wastewater of pathogens. Concentrates on the effects of chlorine and ozone, with some mention of ultra-violet irradiation, bromine chloride, and chlorine dioxide. (MA)

  5. A simple device for disinfecting endoscopes.

    PubMed

    Wagenvoort, J H; van Blankenstein, M; Kooyman-Op de Hoek, G; Boks, A L; van Oudenaarde, P H

    1986-01-01

    A method for disinfecting fibreoptic endoscopes with povidone-iodine and a simple cleaning device, consisting of a curved glass pipe and a peristaltic pump is described. If properly employed the system produces satisfactory results.

  6. Disinfection of Burkholderia pseudomallei in potable water.

    PubMed

    Howard, Kay; Inglis, Timothy J J

    2005-03-01

    The effect of chlorine, monochloramine and UV disinfection on the water-borne pathogen Burkholderia pseudomallei was assessed. Persistence of B. pseudomallei was verified by MPN involving a one-step recovery procedure. Chlorine proved the most effective disinfectant with a 99.99% reduction of a 10(6) CFU/mL pure bacterial culture followed by 99.9% reduction by monochloramine and 99% reduction by UV. Co-culture of B. pseudomallei with Acanthamoeba astronyxis was found to greatly enhance survival of B. pseudomallei in the presence of all disinfecting agents tested. For example, when amoebae were present 100 times more monochloramine was required to maintain the disinfectant efficacy. Given the results obtained from these co-culture experiments, more research is needed to investigate the role of amoeba and biofilms in survival of B. pseudomallei in potable water.

  7. ALTERNATIVE DISINFECTION FOR DRINKING WATER TREATMENT

    EPA Science Inventory

    During a one-yr study at Jefferson Parish, La., the chemical, microbiological, and mutagenic effects os using the major drinkgin water disinfectants (chlorine, chlorine dioxide, chloramine, ozone) were evaluated. Tests were performed on samples collected from various treatment s...

  8. ALTERNATIVE DISINFECTANTS FOR DRINKING WATER TREATMENT

    EPA Science Inventory

    During a one-year study at Jefferson Parish, Louisiana the chemical, microbiological, and mutagenic effects of using the major drinking water disinfectants (chlorine, chlorine dioxide, chloramine, ozone) were evaluated. ests were performed on samples collected from various treatm...

  9. Disinfection, sterilization, and antisepsis: An overview.

    PubMed

    Rutala, William A; Weber, David J

    2016-05-02

    All invasive procedures involve contact by a medical device or surgical instrument with a patient's sterile tissue or mucous membranes. The level of disinfection or sterilization is dependent on the intended use of the object: critical (items that contact sterile tissue such as surgical instruments), semicritical (items that contact mucous membrane such as endoscopes), and noncritical (devices that contact only intact skin such as stethoscopes) items require sterilization, high-level disinfection and low-level disinfection, respectively. Cleaning must always precede high-level disinfection and sterilization. Antiseptics are essential to infection prevention as part of a hand hygiene program as well as several other uses such as surgical hand antisepsis and pre-operative skin preparation.

  10. Environmental Cleaning and Disinfecting for MRSA

    MedlinePlus

    ... difference between cleaners, sanitizers, and disinfectants? Cleaners or detergents are products that are used to remove soil, ... germs (like bacteria, viruses, and fungi). Cleaners or detergents work by washing the surface to lift dirt ...

  11. New developments in disinfection and sterilization.

    PubMed

    Wallace, Craig A

    2016-05-02

    A review of regulatory clearances for selected new sterilization and disinfection products for the period January 2012-June 2015 indicates continued leverage of established technologies for steam and low-temperature sterilization, and high-level disinfection. New products in these areas were typically modified and improved versions of existing products, with the exception of a new combination hydrogen peroxide/ozone sterilizer. Development of new low-temperature sterilization technologies to address continued evolution of complex medical devices is expected to continue.

  12. [Elimination of microscopic filamentous fungi with disinfectants].

    PubMed

    Laciaková, A; Laciak, V

    1994-01-01

    The antifungal effectivity of three single-component (Persteril, Septonex, Glutaraldehyd) and of three combined (Persteril+Septonex, Pesteril+Glutaraldehyd, Glutaraldehyd+Septonex) commercially available disinfectants was monitored by the diffuse method on five fen of the microscopic filamentous fungi Aspergillus alternata, Aspergillus niger, Mucor fragillis, Fusarium moniliforme, Penicillium glabrum. The highest antifungal activity was observed in 2% Persteril while 2% Persteril + 1% Septonex were the most effective among the combined disinfectants. M. fragilis was the most resistant strain.

  13. Relationship of drinking water disinfectants to plasma cholesterol and thyroid hormone levels in experimental studies

    SciTech Connect

    Revis, N.W.; McCauley, P.; Bull, R.; Holdsworth, G.

    1986-03-01

    The effects of drinking water containing 2 or 15 ppm chlorine (pH 6.5 and 8.5), chlorine dioxide, and monochloramine on thyroid function and plasma cholesterol were studied because previous investigators have reported cardiovascular abnormalities in experimental animals exposed to chlorinated water. Plasma thyroxine (T4) levels, as compared to controls, were significantly decreased in pigeons fed a normal or high-cholesterol diet and drinking water containing these drinking water disinfectants at a concentration of 15 ppm (the exception was chlorine at pH 6.5) for 3 months. In most of the treatment groups, T4 levels were significantly lower following the exposure to drinking water containing the 2 ppm dose. Increase in plasma cholesterol were frequently observed in the groups with lower T4 levels. This association was most evident in pigeons fed the high-cholesterol diet and exposed to these disinfectants at a dose of 15 ppm. The factor(s) associated with the effect of these disinfectants on plasma T4 and cholesterol is not known. The authors suggest however that these effects are probably mediated by products formed when these disinfectants react with organic matter in the upper gastrointestinal tract.

  14. Genotoxicity of quinolone antibiotics in chlorination disinfection treatment: formation and QSAR simulation.

    PubMed

    Li, Min; Wei, Dongbin; Du, Yuguo

    2016-10-01

    Lots of unexpected disinfection by-products were formed during the chlorination disinfection of contaminated water bodies, leading to a potential threat to human health and ecological safety. In this study, SOS/umu assay was used to trace the genotoxicity variation of 20 quinolone compounds during the chlorination disinfection. Furthermore, two- and three-dimensional quantitative structure-activity relationship models were developed based on the electronic and hydrophobic properties of the quinolones, which were used to quantify the impact of the different structural features of the compounds on their genotoxicity variation. The results revealed that quinolones bearing hydrophilic substituents with less H-bond donors and negative charge at the 1-position of the quinolone ring exhibited a positive correlation with genotoxicity elevation. More notably, the chlorination of quinolones in both ultrapure water and secondary effluent matrices provided comparable levels of genotoxicity, indicating that our research could potentially be used to evaluate the environmental risk of quinolone antibiotics in chlorination disinfection treatment.

  15. [Spanish disinfectants for the 21st century].

    PubMed

    Herruzo Cabrera, R

    2000-01-01

    There are two chemical disinfectants patents from Spain that permit to obtain advantageous products on other disinfectants: Nduopropenide (two iodures of quaternary ammonium) and "Peroxidine" (hydrogen peroxide that active to lactic acid and a surfactant mixture). The first product is used as an antiseptic or disinfectant, but the second, only act as disinfectant. DISINFECTION: It is studied (by germ-carrier methods), the microbicide effect on different microorganisms (Gram positive cocci, Gram negative bacilli, fungus, Mycobacteria and B subtilis spores), comparing these two products with different disinfectants as 2% glutaraldehyde, 1/8 phenate-glutaraldehyde, peracetic acid compounds, 11% oxygen peroxide and 2% sodium hypoclorite. It is obtained that 1/4 Peroxidine in 5 minutes or 1/6 Peroxidine in 10 minutes, are the most effective disinfectant on all microorganisms used (includes the most resistant) since it produces destruction of 4 log-10 of spores and 5 log-10 of Mycobacteria. Moreover, it can destroy, completely, the inoculum of commercial spores, routinely used for sterilization process evaluation, in 20 minutes, when 2% glutaraldehyd needs 3-10 hours. ANTISEPSIE: It is studied the "hygienization" and surgical handwashing with Nduopropenide solution, in comparison with classical washing methods (neutral soap in routinely handwashing and 5% chlorhexidine or 10% iodine-povidone in surgical washing): 1) Nduopropenide and alcohol solution is more effective that routinely handwashing. 2) This product is more effective and persistent, after surgical washing that chlorhexidine or iodine-povidone. Moreover, it does not must be applied with brush. 3) The mixture Nduopropenide and chlorhexidine makes a synergy, then it can be used in hand or skin washing, on heath personnel or patient people, being advantageous on the other products.

  16. Reproductive effects of alternative disinfectants

    SciTech Connect

    Carlton, B.D.; Barlett, P.; Basaran, A.; Colling, K.; Osis, I.; Smith, M.K.

    1986-11-01

    Organohalides formed through the reaction of chlorine and organic compounds in natural and waste waters pose potential health hazards. For this reason, alternative water disinfectants that do not form organohalides are being investigated with great interest. In this laboratory, the authors have examined the reproductive effects of chloramine and chlorine administered by gavage in Long-Evans rats. Animals were treated for a total of 66 to 76 days. Males were treated for 56 days and females for 14 days prior to breeding and throughout the 10-day breeding period. Females were treated throughout gestation and lactation. Following breeding, the males were necropsied and evaluated for sperm parameters and reproductive tract histopathology. Adult females and some pups were necropsied at weaning on postnatal day 21. Other pups were treated postweaning until 28 or 40 days of age. These pups were evaluated for the day of vaginal patency and thyroid hormone levels. No differences were observed between control rats and those rats exposed to up to 5 mg/kg/day chlorine or 10 mg/kg/day chloramine when fertility, viability, litter size, day of eye opening, or day of vaginal patency were evaluated. No alterations in sperm count, sperm direct progressive movement percent motility, or sperm morphology were observed among adult male rats. In addition, male and female reproductive organ weights were comparable to their respective control groups, and no significant histopathologic changes were observed among chlorine- or chloramine-treated male and female rats.

  17. [Comparison of the quality and toxicity of wastewater after chlorine and chlorine dioxide disinfections].

    PubMed

    Wang, Li-sha; Zhang, Tong; Hu, Hong-ying

    2005-11-01

    The effects of chlorine and chlorine dioxide disinfections on quality and toxicity of wastewater were compared. The experiment results showed that chlorine disinfection had no obvious effect on wastewater color, while chlorine dioxide disinfection decreased wastewater color observably. The DOC of wastewater did not change much after chlorine and chlorine dioxide disinfections. Chlorine disinfection significantly increased UV230 of wastewater and chlorine dioxide disinfection slightly decreased UV230 of wastewater. When the disinfectants dosage was 30 mg/L, UV230 increased about 0.7 cm(-1) after chlorine disinfection and decreased about 0.05 cm(-1) after chlorine dioxide disinfection. The acute toxicity of wastewater increased with increasing disinfectants dosage for both chlorine and chlorine dioxide disinfections and the acute toxicity after chlorine disinfection is much stronger than that after chlorine dioxide disinfection. The genotoxicity of wastewater increased slightly after chlorine disinfection and decreased slightly after chlorine dioxide disinfection.

  18. The History And Future Directions Of Biosolids Disinfection

    EPA Science Inventory

    This paper reviews the history of disinfection practices, emphasizing their application to human fecal material and the residuals from wastewater treatment. It discusses development of the current US sewage sludge disinfection regulations and their associated practices; discusse...

  19. The History And Future Directions Of Biosolids Disinfection (Presentation)

    EPA Science Inventory

    This paper reviews the history of disinfection practices, emphasizing their application to human fecal material and the residuals from wastewater treatment. It discusses development of the current US sewage sludge disinfection regulations and their associated practices; discusse...

  20. Basic Information about Chloramines and Drinking Water Disinfection

    EPA Pesticide Factsheets

    Chloramines are disinfectants used to treat drinking water. Chloramines are most commonly formed when ammonia is added to chlorine to treat drinking water. Chloramines provide longer-lasting disinfection as the water moves through pipes to consumers.