Science.gov

Sample records for emerging disinfection by-products

  1. Emerging Disinfection By-Products and Other Emerging Environmental Contaminants: What’s New

    EPA Science Inventory

    This presentation will cover new research and concerns regarding drinking water disinfection by-products (DBPs) and other emerging environmental contaminants, such as perfluorooctanoic acid (PFOA), pharmaceuticals, perchlorate, benzotriazoles, fuel additives (e.g., ethylene dibro...

  2. The formation and control of emerging disinfection by-products of health concern.

    PubMed

    Krasner, Stuart W

    2009-10-13

    When drinking water treatment plants disinfect water, a wide range of disinfection by-products (DBPs) of health and regulatory concern are formed. Recent studies have identified emerging DBPs (e.g. iodinated trihalomethanes (THMs) and acids, haloacetonitriles, halonitromethanes (HNMs), haloacetaldehydes, nitrosamines) that may be more toxic than some of the regulated ones (e.g. chlorine- and bromine-containing THMs and haloacetic acids). Some of these emerging DBPs are associated with impaired drinking water supplies (e.g. impacted by treated wastewater, algae, iodide). In some cases, alternative primary or secondary disinfectants to chlorine (e.g. chloramines, chlorine dioxide, ozone, ultraviolet) that minimize the formation of some of the regulated DBPs may increase the formation of some of the emerging by-products. However, optimization of the various treatment processes and disinfection scenarios can allow plants to control to varying degrees the formation of regulated and emerging DBPs. For example, pre-disinfection with chlorine, chlorine dioxide or ozone can destroy precursors for N-nitrosodimethylamine, which is a chloramine by-product, whereas pre-oxidation with chlorine or ozone can oxidize iodide to iodate and minimize iodinated DBP formation during post-chloramination. Although pre-ozonation may increase the formation of trihaloacetaldehydes or selected HNMs during post-chlorination or chloramination, biofiltration may reduce the formation potential of these by-products.

  3. Emerging Disinfection By-Products and Other Emerging Environmental Contaminants: What's New

    EPA Science Inventory

    Drinking water disinfection by-products (DBPs) have been associated with adverse human health effects, including bladder cancer, early term miscarriage, and birth defects. While it is vitally important to kill harmful pathogens in water, it is also important to minimize harmful ...

  4. Emerging Disinfection By-Products and Other Emerging Environmental Contaminants: What's New

    EPA Science Inventory

    Drinking water disinfection by-products (DBPs) have been associated with adverse human health effects, including bladder cancer, early term miscarriage, and birth defects. While it is vitally important to kill harmful pathogens in water, it is also important to minimize harmful ...

  5. EMERGING DISINFECTION BY-PRODUCTS OF TOXICOLOGICAL INTEREST: RESULTS OF A NATIONWIDE OCCURRENCE STUDY

    EPA Science Inventory

    The Safe Drinking Water Act and Amendments requires that EPA address disinfection by-products (DBPs) in drinking water. DBPs are formed when a disinfectant (such as chlorine) reacts with organic matter and/or bromide naturally present in source waters. Drinking water disinfecti...

  6. EMERGING DISINFECTION BY-PRODUCTS OF TOXICOLOGICAL INTEREST: RESULTS OF A NATIONWIDE OCCURRENCE STUDY

    EPA Science Inventory

    The Safe Drinking Water Act and Amendments requires that EPA address disinfection by-products (DBPs) in drinking water. DBPs are formed when a disinfectant (such as chlorine) reacts with organic matter and/or bromide naturally present in source waters. Drinking water disinfecti...

  7. DISINFECTION BY-PRODUCTS AND OTHER EMERGING CONTAMINANTS IN DRINKING WATER

    EPA Science Inventory

    Although drinking water disinfection by-products (DBPs) have been studied for the last 30 years, significant, new concerns have arisen. These concerns include adverse reproductive and developmental effects recently observed in human populations, concerns that the types of cancer...

  8. DISINFECTION BY-PRODUCTS AND OTHER EMERGING CONTAMINANTS IN DRINKING WATER

    EPA Science Inventory

    Although drinking water disinfection by-products (DBPs) have been studied for the last 30 years, significant, new concerns have arisen. These concerns include adverse reproductive and developmental effects recently observed in human populations, concerns that the types of cancer...

  9. DISINFECTION BY-PRODUCTS OF EMERGING CONCERN: RESULTS OF A U.S. NATIONWIDE OCCURRENCE STUDY

    EPA Science Inventory

    Drinking water disinfection by-products (DBPs) are of concern because some epidemiologic studies have shown that some DBPs are associated with cancer or adverse reproductive/developmental effects in human populations and other studies have shown that certain DBPs cause similar he...

  10. DISINFECTION BY-PRODUCTS OF EMERGING CONCERN: RESULTS OF A U.S. NATIONWIDE OCCURRENCE STUDY

    EPA Science Inventory

    Drinking water disinfection by-products (DBPs) are of concern because some epidemiologic studies have shown that some DBPs are associated with cancer or adverse reproductive/developmental effects in human populations and other studies have shown that certain DBPs cause similar he...

  11. OCCURRENCE, GENOTOXICITY, AND CARCINOGENICITY OF EMERGING DISINFECTION BY-PRODUCTS IN DRINKING WATER: A REVIEW AND ROADMAP FOR RESEARCH

    EPA Science Inventory

    Occurrence, Genotoxicity, and Carcinogenicity of Emerging Disinfection By-products in Drinking Water: A Review and Roadmap for Research
    Summary of Paper
    What is study?
    This is the first review of the 30 year's research effort on the occurrence, genotoxicity,...

  12. Analysis, Occurrence and Toxicity of Haloacetaldehydes in Drinking Waters: Iodacetaldehyde as an Emerging Disinfection ByProduct.

    EPA Science Inventory

    Chlorinated and brominated haloacetaldehydes (HALs) are consideredthe 3rd largest class of disinfection by-products (DBPs) by weight. The iodinatedHAL, iodoacetaldehyde, has been recently reported as an emerging DBP infinished drinking waters. Overall, iodinated DBPs, e.g., iodoa...

  13. OCCURRENCE, GENOTOXICITY, AND CARCINOGENICITY OF EMERGING DISINFECTION BY-PRODUCTS IN DRINKING WATER: A REVIEW AND ROADMAP FOR RESEARCH

    EPA Science Inventory

    Occurrence, Genotoxicity, and Carcinogenicity of Emerging Disinfection By-products in Drinking Water: A Review and Roadmap for Research
    Summary of Paper
    What is study?
    This is the first review of the 30 year's research effort on the occurrence, genotoxicity,...

  14. OCCURRENCE, GENOTOXICITY, AND CARCINOGENICITY OF EMERGING DISINFECTION BY-PRODUCTS IN DRINKING WATER: A REVIEW AND ROADMAP FOR RESEARCH

    EPA Science Inventory

    Disinfection by-products (DBPs) are formed when disinfectants (chlorine, ozone, chlorine dioxide, or chloramines) react with naturally occurring organic matter, anthropogenic contaminants, bromide, and iodide during the production of drinking water. Here we review 30 years of re...

  15. OCCURRENCE, GENOTOXICITY, AND CARCINOGENICITY OF EMERGING DISINFECTION BY-PRODUCTS IN DRINKING WATER: A REVIEW AND ROADMAP FOR RESEARCH

    EPA Science Inventory

    Disinfection by-products (DBPs) are formed when disinfectants (chlorine, ozone, chlorine dioxide, or chloramines) react with naturally occurring organic matter, anthropogenic contaminants, bromide, and iodide during the production of drinking water. Here we review 30 years of re...

  16. Occurrence, Synthesis and Mammalian Cell Cytotoxicity and Genotoxicity of Haloacetamides: An Emerging Class of Nitrogenous Drinking Water Disinfection By-Products

    EPA Science Inventory

    The haloacetamides, a class of emerging nitrogenous drinking water disinfection by-products (DBPs), were analyzed for their chronic cytotoxicity and for the induction of genomic DNA damage in Chinese hamster ovary cells.

  17. Nitrogen enriched dissolved organic matter (DOM) isolates and their affinity to form emerging disinfection by-products.

    PubMed

    Dotson, A; Westerhoff, P; Krasner, S W

    2009-01-01

    Increased contributions from wastewater discharges and algal activity in drinking water supplies can lead to elevated levels of dissolved organic nitrogen (DON), which can increase the likelihood for the formation of emerging nitrogenous disinfection by-products (N-DBPs) of health concern. Dissolved organic matter (DOM) isolated from five waters, using a newly developed DOM isolation method specific to DON fractionation, produced thirty-four isolates of suitable mass. Each isolate was treated with free chlorine or chloramines under formation potential conditions. The DBP yields were determined for three halogenated DBPs (trichloromethane, dichloroacetonitrile, and trichloronitromethane) and one non-halogenated DBP (N-nitrosodimethylamine [NDMA]). Halogenated DBP yields were greater during the application of free chlorine, however chloramination produced significant levels of halogenated N-DBPs for some isolates. NDMA was only observed to form from selected nitrogen-enriched isolates (DOC/DON ratio < 20 mg/mg), especially those isolated from treated wastewater. Other results indicated that nitrogen-enriched DOM resulted in increased yields of the other N-DBPs studied.

  18. Occurrence and exposures to disinfectants and disinfection by-products

    SciTech Connect

    Cumming, R.B.; Jolley, R.L.

    1992-01-01

    Disinfection by-products are associated with all chemical disinfectants. The concentration and toxic nature of the disinfection byproducts (DBPs) is a direct function of the chemical nature of the disinfectant itself and/or of the chemical reactions of the disinfectant with reaction substrates in the water, especially organic constituents. A principal advantage of biological and physical water treatment processes, such as filtration, is the lack of chemical reactions producing disinfectant-related DBPs. The use of the highest quality source water available is important for minimization of DBP formation. In lieu of such high quality water, improvement of water quality by removal of DBP precursors through filtration or other means before application of chemical disinfectants is important. Most, if not all, water treatment experts are aware of these simplistic axioms. In view of the increasing knowledge being developed concerning DBPs including the identification of new'' DBPs, prudence dictates minimization of DBP formation. Wholesome drinking water is perhaps the biggest economic bargain available to consumers. The cost-effectiveness of water quality improvement should be evaluated with that in mind.

  19. Occurrence and exposures to disinfectants and disinfection by-products

    SciTech Connect

    Cumming, R.B.; Jolley, R.L.

    1992-12-31

    Disinfection by-products are associated with all chemical disinfectants. The concentration and toxic nature of the disinfection byproducts (DBPs) is a direct function of the chemical nature of the disinfectant itself and/or of the chemical reactions of the disinfectant with reaction substrates in the water, especially organic constituents. A principal advantage of biological and physical water treatment processes, such as filtration, is the lack of chemical reactions producing disinfectant-related DBPs. The use of the highest quality source water available is important for minimization of DBP formation. In lieu of such high quality water, improvement of water quality by removal of DBP precursors through filtration or other means before application of chemical disinfectants is important. Most, if not all, water treatment experts are aware of these simplistic axioms. In view of the increasing knowledge being developed concerning DBPs including the identification of ``new`` DBPs, prudence dictates minimization of DBP formation. Wholesome drinking water is perhaps the biggest economic bargain available to consumers. The cost-effectiveness of water quality improvement should be evaluated with that in mind.

  20. Innovative method for prioritizing emerging disinfection by-products (DBPs) in drinking water on the basis of their potential impact on public health.

    PubMed

    Hebert, Armelle; Forestier, Delphine; Lenes, Dorothée; Benanou, David; Jacob, Severine; Arfi, Catherine; Lambolez, Lucie; Levi, Yves

    2010-05-01

    Providing microbiologically safe drinking water is a major public health issue. However, chemical disinfection can produce unintended health hazards involving disinfection by-products (DBPs). In an attempt to clarify the potential public health concerns associated with emerging disinfection by-products (EDBPs), this study was intended to help to identify those suspected of posing potential related health effects. In view of the ever-growing list of EDBPs in drinking water and the lack of consensus about them, we have developed an innovative prioritization method that would allow us to address this issue. We first set up an exhaustive database including all the current published data relating to EDBPs in drinking water (toxicity, occurrence, epidemiology and international or local guidelines/regulations). We then developed a ranking method intended to prioritize the EDBPs. This method, which was based on a calculation matrix with different coefficients, was applied to the data regarding their potential contribution to the health risk assessment process. This procedure allowed us to identify and rank three different groups of EDBPs: Group I, consisting of the most critical EDBPs with regard to their potential health effects, has moderate occurrence but the highest toxicity. Group II has moderate to elevated occurrence and is associated with relevant toxicity, and Group III has very low occurrence and unknown or little toxicity. The EDBPs identified as posing the greatest potential risk using this method were as follows: NDMA and other nitrosamines, MX and other halofuranones, chlorate, formaldehyde and acetaldehyde, 2,4,6-trichlorophenol and pentachlorophenol, hydrazine, and two unregulated halomethanes, dichloromethane and tetrachloromethane. Our approach allowed us to define the EDBPs that it is most important to monitor in order to assess population exposure and related public health issues, and thus to improve drinking water treatment and distribution. It is also

  1. Studies on Disinfection By-Products and Drinking Water

    USGS Publications Warehouse

    Rostad, Colleen E.

    2007-01-01

    Drinking water is disinfected with chemicals to remove pathogens, such as Giardia and Cryptosproridium, and prevent waterborne diseases such as cholera and typhoid. During disinfection, by-products are formed at trace concentrations. Because some of these by-products are suspected carcinogens, drinking water utilities must maintain the effectiveness of the disinfection process while minimizing the formation of by-products.

  2. Emergency Disinfection of Drinking Water

    EPA Pesticide Factsheets

    How to boil and disinfect water to kill most disease-causing microorganisms during emergency situations where regular water service has been interrupted and local authorities recommend using only bottled water, boiled water, or disinfected water.

  3. Formation and Occurrence of Disinfection By-Products

    EPA Science Inventory

    Disinfection by-products (DBPs) are formed when disinfectants such as chlorine, ozone, chlorine dioxide, or chloramines react with naturally occurring organic matter, anthropogenic contaminants, bromide, and iodide during the production of drinking water. There is concern about D...

  4. Formation and Occurrence of Disinfection By-Products

    EPA Science Inventory

    Disinfection by-products (DBPs) are formed when disinfectants such as chlorine, ozone, chlorine dioxide, or chloramines react with naturally occurring organic matter, anthropogenic contaminants, bromide, and iodide during the production of drinking water. There is concern about D...

  5. Health effects of drinking water disinfectants and disinfection by-products

    SciTech Connect

    Condie, L.W.; Bercz, J.P.

    1986-01-01

    This paper summarizes toxicological studies conducted with drinking water disinfectants. Toxicological effects, which are associated with the disinfectants themselves as well as with the by-products formed when disinfectants react with organic material present in water, are considered. The health impact of chemical reactions occurring between residual disinfectants and nutrients in the gastrointestinal tract is also discussed. 40 references, 5 tables.

  6. Treatment of disinfection by-product precursors.

    PubMed

    Bond, T; Goslan, E H; Parsons, S A; Jefferson, B

    2011-01-01

    Formation of harmful disinfection by-products (DBPs), of which trihalomethanes (THMs) and haloacetic acids (HAAs) are the major groups, can be controlled by removal of natural organic matter (NOM) before disinfection. In the literature, removal of precursors is variable, even with the same treatment. The treatment of DBP precursors and NOM was examined with the intention of outlining precursor removal strategies for various water types. Freundlich adsorption parameters and hydroxyl rate constants were collated from the literature to link treatability by activated carbon and advanced oxidation processes (AOPs), respectively, to physico-chemical properties. Whereas hydroxyl rate constants did not correlate meaningfully with any property, a moderate correlation was found between Freundlich parameters and log K(ow), indicating activated carbon will preferentially adsorb hydrophobic NOM. Humic components of NOM are effectively removed by coagulation, and, where they are the principal precursor source, coagulation may be sufficient to control DBPs. Where humic species remaining post-coagulation retain significant DBP formation potential (DBPFP), activated carbon is deemed a suitable process selection. Anion exchange is an effective treatment for transphilic species, known for high carboxylic acid functionality, and consequently is recommended for carboxylic acid precursors. Amino acids have been linked to HAA formation and are important constituents of algal organic matter. Amino acids are predicted to be effectively removed by biotreatment and nanofiltration. Carbohydrates have been found to reach 50% of NOM in river waters. If the carbohydrates were to pose a barrier to successful DBP control, additional treatment stages such as nanofiltration are likely to be required to reduce their occurrence.

  7. Status report on analytical methods to support the disinfectant/disinfection by-products regulation

    SciTech Connect

    Not Available

    1992-08-01

    The U.S. EPA is developng national regulations to control disinfectants and disinfection by-products in public drinking water supplies. Twelve disinfectants and disinfection by-products are identified for possible regulation under this rule. The document summarizes the analytical methods that EPA intends to propose as compliance monitoring methods. A discussion of surrogate measurements that are being considered for inclusion in the regulation is also provided.

  8. Genotoxicity of Disinfection By-products: Comparison to Carcinogenicity

    EPA Science Inventory

    Disinfection by-products (DBPs) can be formed when water is disinfected by various agents such as chlorine, ozone, or chloramines. Among the >600 DBPs identified in drinking water, 11 are regulated by the U.S. Environmental Protection Agency, and another ~70 DBPs that occur at s...

  9. Genotoxicity of Disinfection By-products: Comparison to Carcinogenicity

    EPA Science Inventory

    Disinfection by-products (DBPs) can be formed when water is disinfected by various agents such as chlorine, ozone, or chloramines. Among the >600 DBPs identified in drinking water, 11 are regulated by the U.S. Environmental Protection Agency, and another ~70 DBPs that occur at s...

  10. IDENTIFICATION OF NEW DISINFECTION BY-PRODUCTS IN DRINKING WATER

    EPA Science Inventory

    Due to concern over the potential adverse health effects of trihalomethanes (THMs) and other chlorinated by-products in chlorinated drinking water, alternative disinfectants are being explored. Ozone, chlorine dioxide, and chloramine are popular alternatives, as they produce low...

  11. IDENTIFICATION OF NEW DISINFECTION BY-PRODUCTS IN DRINKING WATER

    EPA Science Inventory

    Due to concern over the potential adverse health effects of trihalomethanes (THMs) and other chlorinated by-products in chlorinated drinking water, alternative disinfectants are being explored. Ozone, chlorine dioxide, and chloramine are popular alternatives, as they produce low...

  12. EPIDEMIOLOGIC STUDIES OF DISINFECTANTS AND DISINFECTANT BY-PRODUCTS

    EPA Science Inventory

    This article provides a review of the epidemiologic evidence for human health effects that may be associated with the disinfection of drinking water. An epidemiologic study attempts to link human health effects with exposure to a specific agent (e.g., DBCM), agents (e.g., THMs or...

  13. Mutagenic activity of disinfection by-products

    SciTech Connect

    Cognet, L.; Courtois, Y.; Mallevialle, J.

    1986-11-01

    Data on raw water quality, disinfection treatment practices, and the resulting mutagenic properties of the treated water were compiled from pilot- and full-scale treatment experiments to evaluate that parameter which might produce variability in the results of a mutagenic study. Analysis of the data and comparison of treatment practices indicated that the measured mutagenic activity is strongly related to the characteristics of the organic matter in the raw water, the methodology used to sample and detect mutagens, the scale of the study both in terms of treatment flow and period of study, and the point at which and the conditions under which oxidants are added during treatment. Conclusions regarding disinfection systems in full-scale water treatment plants include the following: When raw water is pretreated and high concentrations of organics are present in the raw water, both ozonation and chlorination increased mutagenic activity. However, no significant difference in mutagenicity was found between the two oxidants. Both in the case of a nitrified groundwater and a clarified surface water, the mutagenic activity of the water after ozonation was related to its mutagenic activity before ozonation. With ozonation, mutagenic activity decreased after granular activated carbon (GAC) filtration. Thus, when GAC filtration follows ozone disinfection, early addition of oxidants may not be deleterious to the finished water quality. When chlorine or chlorine dioxide is added after GAC filtration, chlorine dioxide was found to produce a less mutagenic water than chlorine. Although these conclusions suggest means of controlling mutagenic activity during treatment, it must be stressed that the measurement of mutagenicity is a presumptive index of contamination level.

  14. Mutagenic activity of disinfection by-products.

    PubMed Central

    Cognet, L; Courtois, Y; Mallevialle, J

    1986-01-01

    Data on raw water quality, disinfection treatment practices, and the resulting mutagenic properties of the treated water were compiled from pilot- and full-scale treatment experiments to evaluate that parameter which might produce variability in the results of a mutagenic study. Analysis of the data and comparison of treatment practices indicated that the measured mutagenic activity is strongly related to the characteristics of the organic matter in the raw water, the methodology used to sample and detect mutagens, the scale of the study both in terms of treatment flow and period of study, and the point at which and the conditions under which oxidants are added during treatment. Conclusions regarding disinfection systems in full-scale water treatment plants include the following: When raw water is pretreated and high concentrations of organics are present in the raw water, both ozonation and chlorination increased mutagenic activity. However, no significant difference in mutagenicity was found between the two oxidants. Both in the case of a nitrified groundwater and a clarified surface water, the mutagenic activity of the water after ozonation was related to its mutagenic activity before ozonation. With ozonation, mutagenic activity decreased after granular activated carbon (GAC) filtration. Thus, when GAC filtration follows ozone disinfection, early addition of oxidants may not be deleterious to the finished water quality. When chlorine or chlorine dioxide is added after GAC filtration, chlorine dioxide was found to produce a less mutagenic water than chlorine. Although these conclusions suggest means of controlling mutagenic activity during treatment, it must be stressed that the measurement of mutagenicity is a presumptive index of contamination level. PMID:3816721

  15. Possible monitoring requirements for the disinfectants and disinfection by-products (D/DBP) regulations

    SciTech Connect

    Not Available

    1993-01-01

    The monitoring requirements presented in the report were developed by EPA before a negotiated Disinfectants and Disinfection By-Products (D/DBP) rule was considered. The framework described herein may be substantially changed as a result of the negotiated rulemaking process. The document is useful to consider in developing various monitoring options during the negotiated rulemaking process.

  16. Carcinogenicity of Disinfection By-products and Research Needs

    EPA Science Inventory

    A review by S.D. Richardson et al. (Mutat. Res. 636:178, 2007) presents the first analysis of the 30-year literature on the genotoxicity, carcinogenicity, and occurrence of 87 disinfection by-products (DBPs) identified in drinking water. Of these, 11 are regulated by the U.S. EP...

  17. DISINFECTION BY-PRODUCT CONTROL THROUGH BIOLOGICAL FILTRATION

    EPA Science Inventory

    Disinfection by-product (DBP) control through biofiltration is defined as the removal of DBP precursor mateterial (PM) by bacteria attached to the filte nedia. The PM consists of dissolved organic matter (DOM) and is utilized by the filter bacteria as a substrate for cell mainten...

  18. Carcinogenicity of Disinfection By-products and Research Needs

    EPA Science Inventory

    A review by S.D. Richardson et al. (Mutat. Res. 636:178, 2007) presents the first analysis of the 30-year literature on the genotoxicity, carcinogenicity, and occurrence of 87 disinfection by-products (DBPs) identified in drinking water. Of these, 11 are regulated by the U.S. EP...

  19. OCCURRENCE OF A NEW GENERATION OF DISINFECTION BY-PRODUCTS

    EPA Science Inventory

    A survey of disinfection by-product (DBP) occurrence in the United States was conducted at 12 drinking water treatment plants. In addition to currently regulated DBPs, more than 50 DBPs that rated a high priority for potential toxicity were studied. These priority DBPs included...

  20. OCCURRENCE OF A NEW GENERATION OF DISINFECTION BY-PRODUCTS

    EPA Science Inventory

    A survey of disinfection by-product (DBP) occurrence in the United States was conducted at 12 drinking water treatment plants. In addition to currently regulated DBPs, more than 50 DBPs that rated a high priority for potential toxicity were studied. These priority DBPs included...

  1. DISINFECTION BY-PRODUCT CONTROL THROUGH BIOLOGICAL FILTRATION

    EPA Science Inventory

    Disinfection by-product (DBP) control through biofiltration is defined as the removal of DBP precursor mateterial (PM) by bacteria attached to the filte nedia. The PM consists of dissolved organic matter (DOM) and is utilized by the filter bacteria as a substrate for cell mainten...

  2. [Disinfection by-products reduction of combined disinfection by chlorine and monochloramines in distribution system].

    PubMed

    Liu, Jing; Chen, Chao; Zhang, Xiao-Jian

    2009-09-15

    Halogen disinfection by-products of four chlorined disinfection processes with long contact time in distribution system was compared in the work. These four disinfection processes are free chlorine, monochloramines, free chlorine disinfection in clearwelles while chloramines in distribution system, sequential chlorination disinfection with short-term free chlorine plus chloramines. According to the research, free chlorine generates most trihalomethanes (THMs) and haloacetic acids (HAAs) both in clearwells and distribution system, while monochloramines barely yield halogen DBPs. Free chlorine disinfection in clearwelles while chloramines in distribution system could reduce 9.6% of THMs and 42% of HAAs in 24 h contact time of distribution system compared with free chlorine. But free chlorine has contacted with water for 2 h in this process, halogen DBPs have been yielded substantially. Process of sequential chlorination disinfection could control DBPs more effectively due to keeping a short contact time of free chlorine and water. 48% of THMs and 72% of HAAs are reduced in 24h compared with free chlorine. In conclusion, sequential chlorination disinfection is a more effective disinfection process for controlling DBPs and water safety.

  3. THE UPTAKE OF WATER DISINFECTION BY-PRODUCTS INTO FOODS DURING HOME PROCESSING

    EPA Science Inventory

    A variety of organic compounds in tap water are produced as a result of disinfection process. Use of chlorine-containing chemicals for disinfection produces many disinfection by-products (DBPs) including trihalomethanes, haloacetonitriles and haloacetic acid. Ozonation with secon...

  4. THE UPTAKE OF WATER DISINFECTION BY-PRODUCTS INTO FOODS DURING HOME PROCESSING

    EPA Science Inventory

    A variety of organic compounds in tap water are produced as a result of disinfection process. Use of chlorine-containing chemicals for disinfection produces many disinfection by-products (DBPs) including trihalomethanes, haloacetonitriles and haloacetic acid. Ozonation with secon...

  5. Disinfection by-product formation during seawater desalination: A review.

    PubMed

    Kim, Daekyun; Amy, Gary L; Karanfil, Tanju

    2015-09-15

    Due to increased freshwater demand across the globe, seawater desalination has become the technology of choice in augmenting water supplies in many parts of the world. The use of chemical disinfection is necessary in desalination plants for pre-treatment to control both biofouling as well as the post-disinfection of desalinated water. Although chlorine is the most commonly used disinfectant in desalination plants, its reaction with organic matter produces various disinfection by-products (DBPs) (e.g., trihalomethanes [THMs], haloacetic acids [HAAs], and haloacetonitriles [HANs]), and some DBPs are regulated in many countries due to their potential risks to public health. To reduce the formation of chlorinated DBPs, alternative oxidants (disinfectants) such as chloramines, chlorine dioxide, and ozone can be considered, but they also produce other types of DBPs. In addition, due to high levels of bromide and iodide concentrations in seawater, highly cytotoxic and genotoxic DBP species (i.e., brominated and iodinated DBPs) may form in distribution systems, especially when desalinated water is blended with other source waters having higher levels of organic matter. This article reviews the knowledge accumulated in the last few decades on DBP formation during seawater desalination, and summarizes in detail, the occurrence of DBPs in various thermal and membrane plants involving different desalination processes. The review also identifies the current challenges and future research needs for controlling DBP formation in seawater desalination plants and to reduce the potential toxicity of desalinated water. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Neural tube defects and drinking water disinfection by-products.

    PubMed

    Klotz, J B; Pyrch, L A

    1999-07-01

    We conducted a population-based case control study of neural tube defects and drinking water contaminants, specifically, disinfection by-products. We used public monitoring records concurrent with the first month of gestation to assess exposure. The prevalence odds ratios (PORs) for the highest tertile of total trihalomethanes compared with the lowest was 1.6 (95% confidence interval [CI] = 0.9-2.70). Surface water source was also associated with neural tube defects (POR = 1.5; 95% CI = 0.9-2.5). Sensitivity analyses restricted to isolated neural tube defect cases and mothers with known residence at conception yielded stronger associations [total trihalomethanes, POR = 2.1 (95% CI = 1.1-4.0); surface water, POR = 1.7 (95% CI = 0.9-3.2)]. Other major groups of disinfection by-products (haloacetic acids and haloacetonitriles) showed little relation to these defects.

  7. Mutagenicity and disinfection by-products in surface drinking water disinfected with peracetic acid.

    PubMed

    Monarca, Silvano; Richardson, Susan D; Feretti, Donatella; Grottolo, Mario; Thruston, Alfred D; Zani, Claudia; Navazio, Giancarlo; Ragazzo, Patrizia; Zerbini, Ilaria; Alberti, Adriana

    2002-02-01

    The aims of this research were to study the influence of peracetic acid (PAA) on the formation of mutagens in surface waters used for human consumption and to assess its potential application for the disinfection of drinking water. The results obtained using PAA were compared to those found with sodium hypochlorite (NaClO) and chlorine dioxide (ClO2). The Ames test, root anaphase aberration assay, and root/micronuclei assay in Allium cepa and Tradescantia/micronuclei test were used to evaluate the mutagenicity of disinfected samples. Microbiological tests were also performed, and disinfection by-products (DBPs) were identified using gas chromatography/mass spectrometry (GC/MS). A slight bacterial mutagenicity was found in raw lake and river water, and similar activity was detected in disinfected samples. A plant test revealed genotoxicity in raw river water, and microbiological analysis showed that PAA has bactericidal activity but lower than that of the other disinfectants. The DBPs produced by PAA were mainly carboxylic acids, which are not recognized as mutagenic, whereas the waters treated with the other disinfectants showed the presence of mutagenic/carcinogenic halogenated DBPs. However, additional experiments should be performed with higher concentrations of PAA and using water with higher organic carbon content to better evaluate this disinfectant.

  8. Drinking water and health: Disinfectants and disinfectant by-products. Volume 7

    SciTech Connect

    Not Available

    1987-01-01

    Studies of the toxicity of the by-products of disinfectants have focused on the trihalomethanes (THMs), which are formed during chlorination and for which considerable data on carcinogenicity have been developed. The level of total THMs in finished drinking water, currently regulated at 100 micrograms/L, should be reduced. Noting that chloroform is the principal THM produced by chlorination, the subcommittee found this level to be unsupportable on the basis of the risk values for chloroform developed in this review. Other, non-volatile by-products of chlorination may be important in contributing mutagenic properties to drinking water, especially when the natural water being treated contains high levels of organic matter. Short-term animal skin tests, although not conclusive, provide indications that organic concentrates from chlorinated water are tumorigenic under some experimental conditions. Unfortunately, many by-products of chlorination and other disinfection practices have not been identified. Consequently, the risks of ingesting cannot be quantified at present, but are potentially high enough to warrant continued efforts to analyze them. The use of alternative methods of drinking water disinfection is increasing, largely due to health and regulatory concerns about trihalomethanes. Thus, the nature and toxicity of the by-products of some other widely used water treatments (chloramination, ozonation, and chlorine dioxide) are also evaluated in the report to the extent allowed by available data. The subcommittee calculated quantitative risk assessment for disinfectants or their by-products when there was sufficient data.

  9. Detection of regulated disinfection by-products in cheeses.

    PubMed

    Cardador, Maria Jose; Gallego, Mercedes; Cabezas, Lourdes; Fernández-Salguero, Jose

    2016-08-01

    Cheese can contain regulated disinfection by-products (DBPs), mainly through contact with brine solutions prepared in disinfected water or sanitisers used to clean all contact surfaces, such as processing equipment and tanks. This study has focused on the possible presence of up to 10 trihalomethanes (THMs) and 13 haloacetic acids (HAAs) in a wide range of European cheeses. The study shows that 2 THMs, (in particular trichloromethane) and 3 HAAs (in particular dichloroacetic acid) can be found at μg/kg levels in the 56 cheeses analysed. Of the two types of DBPs, HAAs were generally present at higher concentrations, due to their hydrophilic and non-volatile nature. Despite their different nature (THMs are lipophilic), both of them have an affinity for fatty cheeses, increasing their concentrations as the percentage of water decreased because the DBPs were concentrated in the aqueous phase of the cheeses.

  10. Origin of disinfection by-products in cheese.

    PubMed

    Cardador, Maria Jose; Gallego, Mercedes; Prados, Francisco; Fernández-Salguero, José

    2017-06-01

    The disinfection of water, equipment and surfaces in a cheese factory is one of the factors that can originate disinfection by-products (DBPs) in cheese. This research has focused on studying cheese factories in order to evaluate the individual contribution of each step of the cheese-making process that can contribute to the presence of DBPs in cheese. Ten factories were selected according to their salting processes (brine or dry salting). Each factory was monitored by the collection of six representative samples (factory water supply, brine solution, milk, whey, curd and cheese) in which the concentrations of up to eight chemicals were detected. The study shows that contact with brine solutions containing significant levels of DBPs is the main source of these chemicals in cheese. A minor factor is the pasteurised milk used in their manufacture.

  11. Minimization of the formation of disinfection by-products.

    PubMed

    Badawy, Mohamed I; Gad-Allah, Tarek A; Ali, Mohamed E M; Yoon, Yeoman

    2012-09-01

    The drinking water industry is required to minimize DBPs levels while ensuring adequate disinfection. In this study, efficient and appropriate treatment scheme for the reduction of disinfection by-product (DBPs) formation in drinking water containing natural organic matter has been established. This was carried out by the investigation of different treatment schemes consisting of enhanced coagulation, sedimentation, disinfection by using chlorine dioxide/ozone, filtration by sand filter, or granular activated carbon (GAC). Bench scale treatment schemes were applied on actual samples from different selected sites to identify the best conditions for the treatment of water. Samples were collected from effluent of each step in the treatment train in order to analyze pH, UV absorbance at 254 nm (UVA(254)), specific UV absorbance at 254 nm (SUVA(254)), dissolved organic carbon (DOC), haloacetic acids (HAAs) and trihalomethanes (THMs). The obtained results indicated that using pre-ozonation/enhanced coagulation/activated carbon filtration treatment train appears to be the most effective method for reducing DBPs precursors in drinking water treatment.

  12. NTP taps disinfection by-products for study.

    PubMed Central

    Booker, S M

    2000-01-01

    The use of chlorination to purify water supplies is considered one of the most important public health advances of the twentieth century. Following the 1908 introduction of widespread water chlorination, once-common diseases such as cholera, dysentery, and typhoid fever were practically eliminated. However, the chlorination cure-all proved to have a caveat: disinfection by-products (DBPs), which result from the reaction between the chlorine added during chlorination and organic material such as leaves and sediment in the source water. In the mid-1970s, certain DBPs were found to cause adverse health effects including cancer in laboratory animals. PMID:10656863

  13. DRINKING WATER DISINFECTION BY-PRODUCTS: WHAT IS KNOWN

    EPA Science Inventory

    Chlorine, ozone, chlorine dioxide, and chloramine are currently the major disinfectants being used to disinfect drinking water. Although the alternative disinfectants (ozone, chlorine dioxide, and chloramine) are increasing in popularity in the United States, chlorine is still us...

  14. DRINKING WATER DISINFECTION BY-PRODUCTS: WHAT IS KNOWN

    EPA Science Inventory

    Chlorine, ozone, chlorine dioxide, and chloramine are currently the major disinfectants being used to disinfect drinking water. Although the alternative disinfectants (ozone, chlorine dioxide, and chloramine) are increasing in popularity in the United States, chlorine is still us...

  15. Integrated Disinfection By-Products Mixtures Research: Concentration by Reverse Osmosis Membrane Techniques of Disinfection By-Products from Water Disinfected by Chlorination and Ozonation/Postchlorination

    EPA Science Inventory

    To conduct the health-effect studies described in subsequent articles in this series, concentrated aqueous mixtures of disinfection by-products were required for the two water treatment trains described in the preceding article (Miltner et al., 2008). To accomplish this, the fini...

  16. Integrated Disinfection By-Products Mixtures Research: Concentration by Reverse Osmosis Membrane Techniques of Disinfection By-Products from Water Disinfected by Chlorination and Ozonation/Postchlorination

    EPA Science Inventory

    To conduct the health-effect studies described in subsequent articles in this series, concentrated aqueous mixtures of disinfection by-products were required for the two water treatment trains described in the preceding article (Miltner et al., 2008). To accomplish this, the fini...

  17. Chemical measures of similarity among disinfection by-product mixtures.

    PubMed

    Bull, Richard J; Rice, Glenn; Teuschler, Linda; Feder, Paul

    2009-01-01

    There are few measures that can be used to distinguish among mixtures of disinfection by-products (DBPs) produced in the chlorination or chloramination of drinking water. Objective measures of similarities among DBP mixtures would greatly simplify judgments about the risk that may be associated with exposure to DBPs in a given water supply. Major by-products of chlorination/chloramination include the trihalomethanes (THMs) and haloacetic acids (HAAs), which are routinely measured for compliance to regulations. A key question is whether measurement of similar amounts of these DBPs is indicative of the myriad other DBPs that are known to be produced. This article utilized data from a survey of 35 utilities in the United States that included several additional parameters, including members of the haloacetonitrile, trihaloacetaldehyde, and halopropanone classes. Based upon the distribution of bromine in the THM class, the concentrations of unmeasured brominated and bromochlorinated compounds could be determined. This allowed determination of whether measures of the THM and/or HAA classes reflected the amounts of these less abundant classes. Variations in relative yields among DBP classes were observed with water source type and with whether chlorine or chloramine was used as the disinfectant. However, most of the variability was attributable to geographic location. The relative abundance of brominated by-products also varied among water sources. Recent documentation that potent by-products, such as nitrosamines, are selectively produced in particular water systems and preferentially with chloramination indicates that more measures of individual DBP are needed to evaluate similarity among DBPs mixtures.

  18. RESEARCH PLAN FOR MICROBIAL PATHOGENS AND DISINFECTION BY-PRODUCTS IN DRINKING WATER

    EPA Science Inventory

    This research plan was developed to describe research needed to support EPA's development of drinking water regulations concerning disinfectants, disinfection by-products (DBPs) and microbial pathogens, focusing on key scientific and technical information needed. The research pl...

  19. QUENCHING OF CHLORINATION DISINFECTION BY-PRODUCT FORMATION IN DRINKING WATER BY HYDROGEN PEROXIDE. (R825362)

    EPA Science Inventory

    Reactions between chlorine disinfectants, dissolved organic matter, and other chemicals in water form a series of disinfection by-products (DBPs), including trihalomethanes (THMs) and haloacetic acids (HAAs), that are toxic and subject to increasingly stringent regulations. Th...

  20. QUENCHING OF CHLORINATION DISINFECTION BY-PRODUCT FORMATION IN DRINKING WATER BY HYDROGEN PEROXIDE. (R825362)

    EPA Science Inventory

    Reactions between chlorine disinfectants, dissolved organic matter, and other chemicals in water form a series of disinfection by-products (DBPs), including trihalomethanes (THMs) and haloacetic acids (HAAs), that are toxic and subject to increasingly stringent regulations. Th...

  1. IDENTIFICATION OF CHLORINE DIOXIDE AND CHLORAMINE DRINKING WATER DISINFECTION BY-PRODUCTS

    EPA Science Inventory

    Due to concern over the potential adverse health effects of trihalomethanes (THMs) and other chlorinated by-products in chlorinated drinking water, alternative disinfection methods are being explored. Chlorine dioxide and chloramine are two popular alternative disinfectants, with...

  2. RESEARCH PLAN FOR MICROBIAL PATHOGENS AND DISINFECTION BY-PRODUCTS IN DRINKING WATER

    EPA Science Inventory

    This research plan was developed to describe research needed to support EPA's development of drinking water regulations concerning disinfectants, disinfection by-products (DBPs) and microbial pathogens, focusing on key scientific and technical information needed. The research pl...

  3. IDENTIFICATION OF CHLORINE DIOXIDE AND CHLORAMINE DRINKING WATER DISINFECTION BY-PRODUCTS

    EPA Science Inventory

    Due to concern over the potential adverse health effects of trihalomethanes (THMs) and other chlorinated by-products in chlorinated drinking water, alternative disinfection methods are being explored. Chlorine dioxide and chloramine are two popular alternative disinfectants, with...

  4. MULTISPECTRAL IDENTIFICATION OF CHLORINE DIOXIDE DISINFECTION BY-PRODUCTS IN DRINKING WATER

    EPA Science Inventory

    This paper discusses the identification of organic disinfection by-products (DBPs) at a pilot plant in Evansville, Indiana, that uses chlorine dioxide as a primary disinfectant. nconventional multispectral identification techniques (gas chromatography combined with high and low r...

  5. MULTISPECTRAL IDENTIFICATION OF CHLORINE DIOXIDE DISINFECTION BY-PRODUCTS IN DRINKING WATER

    EPA Science Inventory

    This paper discusses the identification of organic disinfection by-products (DBPs) at a pilot plant in Evansville, Indiana, that uses chlorine dioxide as a primary disinfectant. nconventional multispectral identification techniques (gas chromatography combined with high and low r...

  6. Status report on development of regulations for disinfectants and disinfection by-products

    SciTech Connect

    Not Available

    1991-06-01

    The purpose of this document is to indicate the status of regulation development for the disinfectants (Ds) and disinfection by-products (DBPs) and to solicit feedback from the public. Previously, EPA made available to the public a strawman rule (October 1989) and a conceptual framework for developing these regulations (December 1990). This document reflects EPA's current thinking on how the criteria for the D/DBP regulations are evolving. The document consists of four sections: (1) overview of anticipated general requirements of the rule and major issues, (2) fact sheet on the status of pertinent analytical methods, (3) fact sheet on the status of health effects information, and (4) draft compliance monitoring requirements.

  7. An insight of disinfection by-product (DBP) formation by alternative disinfectants for swimming pool disinfection under tropical conditions.

    PubMed

    Yang, Linyan; Schmalz, Christina; Zhou, Jin; Zwiener, Christian; Chang, Victor W-C; Ge, Liya; Wan, Man Pun

    2016-09-15

    Sodium hypochlorite (NaClO) is the most commonly used disinfectant in pool treatment system. Outdoor pools usually suffer from the strong sunlight irradiation which degrades the free chlorine rapidly. In addition, more pools start to adopt the recirculation of swimming pool water, which intensifies the disinfection by-product (DBP) accumulation issue. Given these potential drawbacks of using NaClO in the tropical environment, two alternative organic-based disinfectants, trichloroisocyanuric acid (TCCA, C3Cl3N3O3) and bromochlorodimethylhydantoin (BCDMH, C5H6BrClN2O2), were investigated and compared to NaClO in terms of their self-degradation and the formation of DBPs, including trihalomethanes (THMs) and haloacetic acids (HAAs), under simulated tropical climate conditions. The result reveals that halogen stabilizer, TCCA, had the advantages of slower free chlorine degradation and lower DBP concentration compared to NaClO, which makes it a good alternative disinfectant. BCDMH was not recommended mainly due to the highly reactive disinfecting ingredient, hypobromous acid (HBrO), which fails to sustain the continuous disinfection requirement. Total disinfectant dosage was the main factor that affects residual chlorine/bromine and THM/HAA formation regardless of different disinfectant dosing methods, e.g. shock dosing (one-time spiking) in the beginning, and continuous dosing during the whole experimental period. Two-stage second-order-kinetic-based models demonstrate a good correlation between the measured and predicted data for chlorine decay (R(2) ≥ 0.95), THM (R(2) ≥ 0.99) and HAA (R(2) ≥ 0.83) formation. Higher temperature was found to enhance the DBP formation due to the temperature dependence of reaction rates. Thus, temperature control of pools, especially for those preferring higher temperatures (e.g. hydrotherapy and spa), should take both bather comfort and DBP formation potential into consideration. It is also observed that chlorine competition

  8. A Toxicological Perspective on Disinfection ByProducts

    EPA Science Inventory

    Disinfection of water is essential for reduction of microbes harmful to human health and chemical disinfection is considered one of the major public health triumphs of the 20th Century. An unintended consequence of disinfection with oxidizing chemicals is formation of disinfectio...

  9. THE TOXICOLOGY OF COMPLEX MIXTURES OF DISINFECTION BY-PRODUCTS

    EPA Science Inventory

    Chemical disinfection of water is a major public health advance that has decreased dramatically water-borne disease. Chemical disinfectants react with naturally occurring organic and inorganic matter in water to produce a wide variety of disinfection byproducts (DBPs). DBP num...

  10. THE TOXICOLOGY OF COMPLEX MIXTURES OF DISINFECTION BY-PRODUCTS

    EPA Science Inventory

    Chemical disinfection of water is a major public health advance that has decreased dramatically water-borne disease. Chemical disinfectants react with naturally occurring organic and inorganic matter in water to produce a wide variety of disinfection byproducts (DBPs). DBP num...

  11. A Toxicological Perspective on Disinfection ByProducts

    EPA Science Inventory

    Disinfection of water is essential for reduction of microbes harmful to human health and chemical disinfection is considered one of the major public health triumphs of the 20th Century. An unintended consequence of disinfection with oxidizing chemicals is formation of disinfectio...

  12. MAMMALIAN CELL CYTOTOXICITY AND GENOTOXICITY OF NEW DRINKING WATER DISINFECTION BY-PRODUCTS

    EPA Science Inventory

    The disinfection of drinking water continues to protect the public health against acute disease. Drinking water disinfection by-products (DBPs) are formed by the reaction of a disinfectant with naturally occurring organic matter. Many DBPs are genotoxic and are implicated as huma...

  13. MAMMALIAN CELL CYTOTOXICITY AND GENOTOXICITY OF NEW DRINKING WATER DISINFECTION BY-PRODUCTS

    EPA Science Inventory

    The disinfection of drinking water continues to protect the public health against acute disease. Drinking water disinfection by-products (DBPs) are formed by the reaction of a disinfectant with naturally occurring organic matter. Many DBPs are genotoxic and are implicated as huma...

  14. Influence of ultrasound enhancement on chlorine dioxide consumption and disinfection by-products formation for secondary effluents disinfection.

    PubMed

    Zhou, Xiaoqin; Zhao, Junyuan; Li, Zifu; Lan, Juanru; Li, Yajie; Yang, Xin; Wang, Dongling

    2016-01-01

    Chlorine dioxide (ClO2) has been promoted as an alternative disinfectant because of its high disinfection efficiency and less formation of organic disinfection by-products (DBPs). However, particle-associated microorganisms could be protected during the disinfection process, which decreases the disinfection efficiency or increases the required dosage. Besides, the formation of inorganic disinfection by-products is a significant concern in environment health. Ultrasound (US)-combined disinfection methods are becoming increasingly attractive because they are efficient and environmentally friendly. In this study, US was introduced as an enhancement method to identify its influence on ClO2 demand reduction and to minimize the production of potential DBPs for secondary effluents disinfection. Fecal coliform was used as an indicator, and DBPs, including trichloromethane (TCM), dichloroacetic acid (DCAA), trichloroacetic acid (TCAA), chlorite (ClO2(-)), and chlorate (ClO3(-)), were analyzed to observe the potential DBPs formation. Results show that US pretreatment could reduce half of ClO2 dosage compared with ClO2 disinfection alone for the same disinfection efficiency, and that an input power density of 2.64 kJ/L pretreatment with the 1.5mg/L ClO2 was enough to meet the discharge requirement in China (i.e., fecal coliform below 1000 CFU/L for Class 1A) for secondary effluent disinfection, and the ClO2(-) concentration in the disinfection effluent was only 1.37 mg/L at the same time. Furthermore, the different effects of US on the two processes (US as pretreatment and simultaneous US/ClO2 disinfection) were also analyzed, including deagglomerating, cell damage, and synergistic disinfection as well as degasing/sonolysis. It was proved that the production of TCM, DCAA, and TCAA was insignificantly influenced with the introduction of US, but US pretreatment did reduce the production of ClO2(-) and ClO3(-) effectually. In general, US pretreatment could be a better option for

  15. A MULTIPLE-PURPOSE DESIGN APPROACH TO THE EVALUATION OF RISKS FROM COMPLEX MIXTURES OF DISINFECTION BY-PRODUCTS

    EPA Science Inventory

    Drinking water disinfection has effectively eliminated much of the morbidity and mortality associated with waterborne infectious diseases in the United States. Various disinfection processes, however, produce certain types and amounts of disinfection by-products (DBPs), including...

  16. A MULTIPLE-PURPOSE DESIGN APPROACH TO THE EVALUATION OF RISKS FROM COMPLEX MIXTURES OF DISINFECTION BY-PRODUCTS

    EPA Science Inventory

    Drinking water disinfection has effectively eliminated much of the morbidity and mortality associated with waterborne infectious diseases in the United States. Various disinfection processes, however, produce certain types and amounts of disinfection by-products (DBPs), including...

  17. DEVELOPMENTAL CONSEQUENCES OF EXPOSURE TO DISINFECTION BY-PRODUCTS IN ANIMAL MODELS

    EPA Science Inventory

    Developmental consequences of exposure to disinfection by-products in animal models
    Sid Hunter, Michael Narotsky, James Andrews
    Reproductive Toxicology Division, NHEERL, ORD, US EPA, RTP, NC, 27711

    Disinfection by-products (DBPs) are formed by the reaction of disinf...

  18. DEVELOPMENTAL CONSEQUENCES OF EXPOSURE TO DISINFECTION BY-PRODUCTS IN ANIMAL MODELS

    EPA Science Inventory

    Developmental consequences of exposure to disinfection by-products in animal models
    Sid Hunter, Michael Narotsky, James Andrews
    Reproductive Toxicology Division, NHEERL, ORD, US EPA, RTP, NC, 27711

    Disinfection by-products (DBPs) are formed by the reaction of disinf...

  19. Technologies and costs for control of disinfection by-products: Executive summary

    SciTech Connect

    Not Available

    1992-11-01

    The document characterizes the feasibility of treatment for disinfection by-products control and estimates the costs for treatment alternatives that can then be used by utilities to meet national regulations. Treatment criteria are developed through the use of a water treatment simulation model for parameters critical to disinfection by-products control.

  20. Drinking water disinfection by-products and time to pregnancy.

    PubMed

    MacLehose, Richard F; Savitz, David A; Herring, Amy H; Hartmann, Katherine E; Singer, Philip C; Weinberg, Howard S

    2008-05-01

    Laboratory evidence suggests tap water disinfection by-products (DBPs) could have an effect very early in pregnancy, typically before clinical detectability. Undetected early losses would be expected to increase the reported number of cycles to clinical pregnancy. We investigated the association between specific DBPs (trihalomethanes, haloacetic acids, brominated-trihalomethanes, brominated-haloacetic acids, total organic halides, and bromodichloromethane) and time to pregnancy among women who enrolled in a study of drinking water and reproductive outcomes. We quantified exposure to DBPs through concentrations in tap water, quantity ingested through drinking, quantity inhaled or absorbed while showering or bathing, and total integrated exposure. The effect of DBPs on time to pregnancy was estimated using a discrete time hazard model. Overall, we found no evidence of an increased time to pregnancy among women who were exposed to higher levels of DBPs. A modestly decreased time to pregnancy (ie, increased fecundability) was seen among those exposed to the highest level of ingested DBPs, but not for tap water concentration, the amount absorbed while showering or bathing, or the integrated exposure. Our findings extend those of a recently published study suggesting a lack of association between DBPs and pregnancy loss.

  1. The Next Generation of Disinfection By-Products

    EPA Science Inventory

    The disinfection of drinking water has been rightly hailed as a public health triumph of the 20th century. Millions of people worldwide receive quality drinking water every day from their public water systems. However, chemical disinfection has also produced an unintended health ...

  2. Disinfection By-Products: Formation and Occurrence in Drinking Water

    EPA Science Inventory

    The disinfection of drinking water has been rightly hailed as a public health triumph of the twentieth century. Millions of people worldwide receive quality drinking water every day from their public water systems. However, chemical disinfection has also produced an unintended he...

  3. The Next Generation of Drinking Water Disinfection By-Products

    EPA Science Inventory

    The disinfection of drinking water has been rightly hailed as a public health triumph of the 20th century. Millions of people worldwide receive quality drinking water every day from their public water systems. However, chemical disinfection has also produced an unintended healt...

  4. The Next Generation of Disinfection By-Products

    EPA Science Inventory

    The disinfection of drinking water has been rightly hailed as a public health triumph of the 20th century. Millions of people worldwide receive quality drinking water every day from their public water systems. However, chemical disinfection has also produced an unintended health ...

  5. IDENTIFICATION OF DISINFECTION BY-PRODUCTS IN SWIMMING POOL WATER

    EPA Science Inventory

    In order to kill harmful pathogens, swimming pool water is treated with a disinfectant, such as chlorine or ozone. One of the most commonly used disinfectants is stabilized chlorine (typically trichloro-S-triazinetrione). Trichloro-S-triazinetrione reacts in water to form one m...

  6. Disinfection By-Products: Formation and Occurrence in Drinking Water

    EPA Science Inventory

    The disinfection of drinking water has been rightly hailed as a public health triumph of the twentieth century. Millions of people worldwide receive quality drinking water every day from their public water systems. However, chemical disinfection has also produced an unintended he...

  7. The Next Generation of Drinking Water Disinfection By-Products

    EPA Science Inventory

    The disinfection of drinking water has been rightly hailed as a public health triumph of the 20th century. Millions of people worldwide receive quality drinking water every day from their public water systems. However, chemical disinfection has also produced an unintended healt...

  8. Integrated disinfection by-products research: assessing reproductive and developmental risks posed by complex disinfection by-product mixtures.

    PubMed

    Rice, Glenn; Teuschler, Linda K; Speth, Thomas F; Richardson, Susan D; Miltner, Richard J; Schenck, Kathleen M; Gennings, Chris; Hunter, E Sidney; Narotsky, Michael G; Simmons, Jane Ellen

    2008-01-01

    This article presents a toxicologically-based risk assessment strategy for identifying the individual components or fractions of a complex mixture that are associated with its toxicity. The strategy relies on conventional component-based mixtures risk approaches such as dose addition, response addition, and analyses of interactions. Developmental toxicity data from two drinking-water concentrates containing disinfection by-products (DBP) mixtures were used to illustrate the strategy. The results of this study showed that future studies of DBP concentrates using the Chernoff-Kavlock bioassay need to consider evaluating DBP that are concentrated more than 130-fold and using a rat strain that is more sensitive to chemically-induced pregnancy loss than Sprague-Dawley rats. The results support the planned experimental design of a multigeneration reproductive and developmental study of DBP concentrates. Finally, this article discusses the need for a systematic evaluation of DBP concentrates obtained from multiple source waters and treatment types. The development of such a database could be useful in evaluating whether a specific DBP concentrate is sufficiently similar to tested combinations of source waters and treatment alternatives so that health risks for the former may be estimated using data on the latter.

  9. Experimental disinfection by-product formation potential following rainfall events.

    PubMed

    Delpla, Ianis; Rodriguez, Manuel J

    2016-11-01

    Spring rainfall events can have deleterious impacts on raw and drinking water quality for water treatment plants that use surface waters. This study compares the influence of land use and climate on DBP precursors in two catchments supplying the region around the City of Québec, Canada, and assesses the variability of Disinfection By-Product (DBP) concentration and speciation following rainfall events. DBPs (trihalomethanes (THMs) and haloacetic acids (HAAs)) and their precursors in raw waters (pH, turbidity, specific ultraviolet absorbance (SUVA), total and dissolved organic carbon, bromides and chlorine dose) were monitored. Various experimental chlorination tests, DBP formation potential (DBPFP) and Simulated Distribution Systems (SDS), were also performed. Differences in pre-rainfall (baseflow) water quality were noted according to the different watershed land uses. Raw water quality patterns showed modifications between baseflow and rainfall periods, with a degradation of raw water quality according to turbidity and SUVA in both water sources. Rainfall events were also shown to alter organic matter reactivity with an increase in THM formation potential for both sites. A less noticeable impact on HAA formation potential was observed. However, no clear differences in DBPFP tests were observed between the sites. SDS tests showed that rainfall events lead to considerable rises in organic carbon reactivity of filtered waters, even after primary treatment, with a 2-fold increase in THM and HAA concentrations following rainfall for waters representing the end of one main distribution system (20 h contact time). These increases are linked mainly to a rise in non-brominated DBPs such as chloroform, trichloroacetic acid and dichloroacetic acid. This study confirms the importance of strictly controlling OM levels during drinking water treatment to ensure safe drinking water quality throughout the distribution system. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. DISINFECTION BY-PRODUCT FORMATION BY ALTERNATIVE DISINFECTANTS AND REMOVAL BY GRANULAR ACTIVATED CARBON

    EPA Science Inventory

    The effects of the use of the alternative disinfectants on the formation of halogenated disinfection by–products (DBPs) including total organic halide, trihalomethanes, haloacetic acids, haloacetonitriles, haloketones, chloral hydrate, and chloropicrin, were examined along ...

  11. DISINFECTION BY-PRODUCT FORMATION AND CONTROL BY OZONATION AND BIOTREATMENT

    EPA Science Inventory

    There is increasing interest in using ozone in water treatment because it is a strong disinfectant and is able to oxidize the precursors of some disinfection by-products (DBPs). However, ozonation itself produces DBPs, like aldehydes and ketones, and increases the concentration ...

  12. DISINFECTION BY-PRODUCT FORMATION AND CONTROL BY OZONATION AND BIOTREATMENT

    EPA Science Inventory

    There is increasing interest in using ozone in water treatment because it is a strong disinfectant and is able to oxidize the precursors of some disinfection by-products (DBPs). However, ozonation itself produces DBPs, like aldehydes and ketones, and increases the concentration ...

  13. OCCURRENCE AND TOXICITY OF IODINATED DISINFECTION BY-PRODUCTS IN DRINKING WATER

    EPA Science Inventory

    As part of a recent Nationwide Disinfection By-Product (DBP) Occurrence Study, iodo-acids were identified for the first time as DBPs in drinking water disinfected with chloramines. The iodo-acids identified included iodoacetic acid, bromoiodoacetic acid, (E)-3-bromo-3-iodo-prope...

  14. OCCURRENCE OF IODO-ACID AND IODO-THM DISINFECTION BY-PRODUCTS IN DRINKING WATER

    EPA Science Inventory

    As part of a recent Nationwide Disinfection By-product (DBP) Occurrence Study, iodo-acids were identified for the first time as DBPs in drinking water disinfected with chloramines. The iodo-acids identified included iodoacetic acid, bromoiodoacetic acid, (E)-3-bromo-3-iodo- prope...

  15. The Integrated Disinfection By-Product Mixtures Project (“4-Lab Study”): An Overview

    EPA Science Inventory

    The intended result of chemical disinfection of drinking water is reduction of microbial contamination and a concomitant decrease in waterborne disease. The formation of a myriad of disinfection by-products (DBPs) is an unintended consequence. DBPs are present in water as high...

  16. OCCURRENCE AND TOXICITY OF IODO-ACID DISINFECTION BY-PRODUCTS IN CHLORAMINATED DRINKING WATER

    EPA Science Inventory

    As part of a recent Nationwide Disinfection By-Product (DBP) Occurrence Study, iodo-acids were identified for the first time as DBPs in drinking water disinfected with chloramines. The iodo-acids identified included iodoacetic acid (IAA), bromoiodoacetic acid, (E)-3-bromo-3-iodo...

  17. OCCURRENCE AND TOXICITY OF IODINATED DISINFECTION BY-PRODUCTS IN DRINKING WATER

    EPA Science Inventory

    As part of a recent Nationwide Disinfection By-Product (DBP) Occurrence Study, iodo-acids were identified for the first time as DBPs in drinking water disinfected with chloramines. The iodo-acids identified included iodoacetic acid, bromoiodoacetic acid, (E)-3-bromo-3-iodo-prope...

  18. The Integrated Disinfection By-Product Mixtures Project (“4-Lab Study”): An Overview

    EPA Science Inventory

    The intended result of chemical disinfection of drinking water is reduction of microbial contamination and a concomitant decrease in waterborne disease. The formation of a myriad of disinfection by-products (DBPs) is an unintended consequence. DBPs are present in water as high...

  19. OCCURRENCE OF IODO-ACID AND IODO-THM DISINFECTION BY-PRODUCTS IN DRINKING WATER

    EPA Science Inventory

    As part of a recent Nationwide Disinfection By-product (DBP) Occurrence Study, iodo-acids were identified for the first time as DBPs in drinking water disinfected with chloramines. The iodo-acids identified included iodoacetic acid, bromoiodoacetic acid, (E)-3-bromo-3-iodo- prope...

  20. CONTROL OF MICROBIAL CONTAMINANTS AND DISINFECTION BY-PRODUCTS (DBPS): COST AND PERFORMANCE

    EPA Science Inventory

    The USEPA is in the process of developing a sophisticated regulatory strategy in an attempt to balance the complex trade-offs in risks associated with controlling disinfectants and disinfection by-products (D/DBPs) in drinking water. EPA first attempted to control DBPs in 1974, w...

  1. CONTROL OF MICROBIAL CONTAMINANTS AND DISINFECTION BY-PRODUCTS IN DRINKING WATER: COST AND PERFORMANCE

    EPA Science Inventory

    The U.S. Environmental Protection Agency (U.S. EPA) is in the process of developing a sophisticated regulatory strategy in an attempt to balance the risks associated with disinfectants and disinfection by-products (D/DBP) in drinking water. A major aspect of this strategy is the...

  2. Enhancement effects of ultrasound on secondary wastewater effluent disinfection by sodium hypochlorite and disinfection by-products analysis.

    PubMed

    Zhou, Xiaoqin; Zhao, Junyuan; Li, Zifu; Song, Jianing; Li, Xueying; Yang, Xin; Wang, Dongling

    2016-03-01

    Since fecal coliforms was introduced as a standard indicator of pollutants in effluents of municipal wastewater treatment plants in China in 2003, chlorine had been widely used in many wastewater treatment plants. However, concerns about the disinfection by-products (DBPs) of chlorine have been increasing. One of the effective way to reduce the production of DBPs is to reduce the effective chlorine dosage by improving the utilization rate of disinfectant. Ultrasound (US) is proved to be effective in wastewater treatment for its multiple chemical and physical effects produced by cavitation, which could favor the disinfection process accordingly. For the purpose of improving disinfection efficiency with the help of US, following points are addressed in the current study: (1) investigate the enhancement effects of US on the disinfection efficiency of sodium hypochlorite (NaClO) for real secondary effluents of municipal wastewater treatment plants; (2) evaluate the possibility of using US specific energy consumption (kJ/L) as an parameter for disinfection efficiency evaluation; and (3) quantify the reduction in chlorine-DBPs through US application. Results demonstrated that sonication could reduce two-thirds (US pretreatment) or one-third (simultaneous US and NaClO disinfection) of the required concentrations of NaClO (available chlorine) for 4 log reduction of fecal coliforms, which could meet the Class 1A (fecal coliforms less than 1000 CFU/L) discharge standard of China. In addition, US pretreatment with NaClO disinfection performed better enhancement in disinfection efficiency compared with simultaneous US and NaClO disinfection. Furthermore, analysis on DBPs showed that US application as pretreatment could obviously reduce the contents of trichloromethane (TCM) and trichloroacetic acid (TCAA) by more than 85% and 50%, respectively, compared with NaClO disinfection alone for the same disinfection efficiency. Meanwhile, the experimental results also showed that the

  3. Disinfection By-Products and Drinking Water Treatment

    EPA Science Inventory

    The disinfection of drinking water has been rightly hailed as a public health triumph of the 20th century. Before its widespread use, millions of people died from waterborne diseases. Now, people in developed nations receive quality drinking water every day from their public wa...

  4. Technologies and costs for control of disinfection by-products

    SciTech Connect

    Not Available

    1992-12-01

    The purpose of the document is to characterize the feasibility of treatment for DBP control and to estimate costs for treatment alternatives that can then be used by utilities to meet national regulations. Treatment criteria were developed through the use of a Water Treatment Plant (WTP) simulation model for parameters critical to disinfection and DBP control.

  5. Disinfection By-Products and Drinking Water Treatment

    EPA Science Inventory

    The disinfection of drinking water has been rightly hailed as a public health triumph of the 20th century. Before its widespread use, millions of people died from waterborne diseases. Now, people in developed nations receive quality drinking water every day from their public wa...

  6. IDENTIFICATION OF CHLORINE DIOXIDE DRINKING WATER DISINFECTION BY-PRODUCTS FORMED AT HIGH BROMIDE LEVELS

    EPA Science Inventory

    Due to concern over the potential adverse health effects of trihalomethanes (THMs), haloacetic acids, and other chlorinated by-products in chlorinated drinking water, alternative disinfection methods are being explored. Chlorine dioxide is a popular alternative, with over 500 dri...

  7. DETERMINATION OF NEWLY IDENTIFIED DISINFECTION BY-PRODUCTS IN DRINKING WATER

    EPA Science Inventory

    The Metropolitan Water District of Southern California (MWDSC) is investigating the occurrence of 39 newly identified disinfection by-products (DBPs)-which were not included in the Information Collection Rule (ICR)-in drinking waters. Halomethanes (HMs), haloacetonitriles (HANs),...

  8. IDENTIFICATION OF CHLORINE DIOXIDE DRINKING WATER DISINFECTION BY-PRODUCTS FORMED AT HIGH BROMIDE LEVELS

    EPA Science Inventory

    Due to concern over the potential adverse health effects of trihalomethanes (THMs), haloacetic acids, and other chlorinated by-products in chlorinated drinking water, alternative disinfection methods are being explored. Chlorine dioxide is a popular alternative, with over 500 dri...

  9. IDENTIFICATION OF NEW DRINKING WATER DISINFECTION BY-PRODUCTS FROM OZONE, CHLORINE DIOXIDE, CHLORAMINE, AND CHLORINE

    EPA Science Inventory

    Due to concern over the potential adverse health effects of trihalomethanes (THMs) and other chlorinated by-products in chlorinated drinking water, alternative disinfection methods are being explored. Ozone, chlorine dioxide, and chloramine are currently popular alternatives to ...

  10. IDENTIFICATION OF NEW DRINKING WATER DISINFECTION BY-PRODUCTS FROM OZONE, CHLORINE DIOXIDE, CHLORAMINE, AND CHLORINE

    EPA Science Inventory

    Due to concern over the potential adverse health effects of trihalomethanes (THMs) and other chlorinated by-products in chlorinated drinking water, alternative disinfection methods are being explored. Ozone, chlorine dioxide, and chloramine are currently popular alternatives to ...

  11. DETERMINATION OF NEWLY IDENTIFIED DISINFECTION BY-PRODUCTS IN DRINKING WATER

    EPA Science Inventory

    The Metropolitan Water District of Southern California (MWDSC) is investigating the occurrence of 39 newly identified disinfection by-products (DBPs)-which were not included in the Information Collection Rule (ICR)-in drinking waters. Halomethanes (HMs), haloacetonitriles (HANs),...

  12. Evaluation of techniques for control of disinfection by-products: a pilot study.

    PubMed

    Nnadi, Fidelia N; Hernandez, Migdalia; Fulkerson, Mark

    2004-01-01

    The purpose of this study was to evaluate the effects of various treatment processes as they relate to the development of disinfection by-products (DBPs). At an existing municipal water supply, several tests were performed, including: air-stripping, potassium permanganate (KMnO4) addition, pH adjustment, evaluation of corrosion control inhibitors, final disinfection, and granular activated carbon (CAC) filtration. Several HAAs were shown to increase at higher pH. The use of air stripping greatly reduced the required amount of chlorine disinfectant. Air stripping, permanganate addition, and chloramination reduced DBPs below 20 microg/L. Stiles-Kem 7840 addition effectively controlled lead and copper concentrations in the distribution system. The use of chloramination its a secondary disinfectant is recommended to meet stage 1 of the disinfection by-product rule.

  13. Health effects of disinfection by-products in chlorinated swimming pools.

    PubMed

    Florentin, Arnaud; Hautemanière, Alexis; Hartemann, Philippe

    2011-11-01

    Increased attendance at swimming pools is correlated with higher input of organic and minerals pollutants introduced by swimmers in the swimming pool water. In most swimming pools, microbiological control is performed by disinfection with the addition of chlorine. Chlorine is now well-known to lead to the formation of many disinfection by-products (DBPs) including trihalomethanes and chloramines. The hypothesis of a link between the presence of eye and skin irritation syndromes in swimmers and contact with swimming pool water treated with chlorine was initially proposed by Mood (1953). During recent decades many epidemiological studies have described the importance of DBPs generated with natural or imported organic matter present in water. Many of these DBPs are suspected to be toxic or even carcinogenic. Trihalomethanes and haloacetic acid families are the most studied but others DBPs, like chloral hydrate, haloacetonitriles, N-nitrosodimethylamine and the bromate ion, are emerging compounds of interest. Epidemiological data about the risk of cancer are still controversial. However, numerous publications highlight a toxic risk especially the risk of allergy and respiratory symptoms for babies and elite swimmers. The few publications dedicated to risk assessment do not suggest increased risk, other than for elite swimmers. These publications are likely to underestimate the risk associated with DBPs because of the lack of data in the literature precludes the calculation of risk associated with certain compounds or certain pathways. Thus for regulations, the need to take into account the risks associated with disinfection by-products is now important without forgetting the need of the control of microbiological hazards in swimming pools.

  14. Chlorate as an inorganic disinfection by product in swimming pools.

    PubMed

    Erdinger, L; Kirsch, F; Sonntag, H G

    1999-06-01

    Chlorate and chlorite concentrations were determined in water samples taken from 33 swimming pools. In the pools under investigation, disinfection of the water is carried out either by gaseous chlorine (n = 14) or hypochlorite solution in conjunction with flocculation and sand filtration. A number of the pools also use ozone treatment to augment the disinfection process. Chlorite was not detectable in any of the samples (detection limit 1 mg/l). High concentrations of chlorate were detected in samples from a number of the pools; in one case as high as 40 mg/l. Higher chlorate concentrations were found to be associated with those pools using hypochlorite solution as a disinfecting agent. In contrast, relatively low chlorate concentrations were found in pools treated with gaseous chlorine. In order to elucidate any relationship between the chlorate content of pool water and that of the respective hypochlorite stock solution, chlorate and bromate concentrations were determined in the hypochlorite stock solutions of nine pools. Bromate concentration in the stock solutions were not found to exceed 1.2 g/l, chlorate was measured in concentrations of up to 44.5 g/l. The additional use of ozone as part of the water purification process appears to have no significant influence on chlorate concentration. Chlorate has no bactericidal properties and does not interfere with the measurement of certain parameters relevant to hygiene in swimming pools such as free and combined chlorine, pH or redox potential. At present, the effects of high chlorate concentrations in swimming pool water are unclear. Our initial investigations indicate that chlorate has no cytotoxic (Neutral-Red assay) or irritating properties (HET-CAM assay). However, both chlorate and chlorite are known to interfere with the haematopoetic system. In Germany, the MCL for chlorite in drinking water is 0.2 mg/l. It is therefore strongly recommended that measures should be taken to reduce chlorate concentrations in

  15. Bioanalytical and chemical assessment of the disinfection by-product formation potential: role of organic matter.

    PubMed

    Farré, Maria José; Day, Sophie; Neale, Peta A; Stalter, Daniel; Tang, Janet Y M; Escher, Beate I

    2013-09-15

    Disinfection by-products (DBP) formed from natural organic matter and disinfectants like chlorine and chloramine may cause adverse health effects. Here, we evaluate how the quantity and quality of natural organic matter and other precursors influence the formation of DBPs during chlorination and chloramination using a comprehensive approach including chemical analysis of regulated and emerging DBPs, total organic halogen quantification, organic matter characterisation and bioanalytical tools. In vitro bioassays allow us to assess the hazard potential of DBPs early in the chain of cellular events, when the DBPs react with their molecular target(s) and activate stress response and defence mechanisms. Given the reactive properties of known DBPs, a suite of bioassays targeting reactive modes of toxic action including genotoxicity and sensitive early warning endpoints such as protein damage and oxidative stress were evaluated in addition to cytotoxicity. Coagulated surface water was collected from three different drinking water treatment plants, along with reverse osmosis permeate from a desalination plant, and DBP formation potential was assessed after chlorination and chloramination. While effects were low or below the limit of detection before disinfection, the observed effects and DBP levels increased after disinfection and were generally higher after chlorination than after chloramination, indicating that chlorination forms higher concentrations of DBPs or more potent DBPs in the studied waters. Bacterial cytotoxicity, assessed using the bioluminescence inhibition assay, and induction of the oxidative stress response were the most sensitive endpoints, followed by genotoxicity. Source waters with higher dissolved organic carbon levels induced increased DBP formation and caused greater effects in the endpoints related to DNA damage repair, glutathione conjugation/protein damage and the Nrf2 oxidative stress response pathway after disinfection. Fractionation studies

  16. Genotoxicity of the disinfection by-products resulting from peracetic acid- or hypochlorite-disinfected sewage wastewater.

    PubMed

    Crebelli, R; Conti, L; Monarca, S; Feretti, D; Zerbini, I; Zani, C; Veschetti, E; Cutilli, D; Ottaviani, M

    2005-03-01

    Wastewater disinfection is routinely carried out to prevent the spread of human pathogens present in wastewater effluents. To this aim, chemical and physical treatments are applied to the effluents before their emission in water bodies. In this study, the influence of two widely used disinfectants, peracetic acid (PAA) and sodium hypochlorite (NaClO), on the formation of mutagenic by-products was investigated. Wastewater samples were collected before and after disinfection, in winter and in summer, at a pilot plant installed in a municipal wastewater-treatment plant. Samples were adsorbed using silica C18 cartridges and the concentrates were tested for mutagenicity in the Salmonella typhimurium reversion test with strains TA98 and TA100. Non-concentrated water samples were tested with two plant genotoxicity assays (the Allium cepa root anaphase aberration test and the Tradescantia/micronucleus test). Mutagenicity assays in bacteria and in Tradescantia showed borderline mutagenicity in some of the wastewater samples, independent of the disinfection procedure applied. Negative results were obtained in the A. cepa anaphase aberration test. These results indicate that, in the conditions applied, wastewater disinfection with PAA and NaClO does not lead to the formation of significant amounts of genotoxic by-products.

  17. Mammalian Cell Cytotoxicity and Genotoxicity of the Haloacetic Acids, A Major Class of Drinking Water Disinfection By-Products

    EPA Science Inventory

    The haloacetic acids (HAAs) are disinfection by-products (DBPs) that are formed during the disinfection of drinking water, wastewaters and recreational pool waters. Currently, five HAAs [bromoacetic acid (BAA), dibromoacetic acid (DBAA), chloroacetic acid (CAA), dichloroacetic ac...

  18. Mammalian Cell Cytotoxicity and Genotoxicity of the Haloacetic Acids, A Major Class of Drinking Water Disinfection By-Products

    EPA Science Inventory

    The haloacetic acids (HAAs) are disinfection by-products (DBPs) that are formed during the disinfection of drinking water, wastewaters and recreational pool waters. Currently, five HAAs [bromoacetic acid (BAA), dibromoacetic acid (DBAA), chloroacetic acid (CAA), dichloroacetic ac...

  19. Occurrence assessment for disinfectants and disinfection by-products (phase 6A) in public drinking water. Final report

    SciTech Connect

    Not Available

    1992-08-03

    The EPA Office of Ground Water and Drinking Water is developing national primary drinking water regulations for disinfectant and disinfection by-product contaminants. Thirteen contaminants are being considered to be regulated under Phase 6. These contaminants, referred to as Phase 6a, are the subject of the report. The information is important for setting the Maximum Contaminant Level Goal for a contaminant. The exposure information also is used to estimate the baseline health impact assessment of current levels and for evaluation of the health benefits of the regulatory alternatives.

  20. Removal of estrogens through water disinfection processes and formation of by-products.

    PubMed

    Pereira, Renata Oliveira; Postigo, Cristina; de Alda, Miren López; Daniel, Luiz Antonio; Barceló, Damià

    2011-02-01

    Estrogens constitute a recognized group of environmental emerging contaminants which have been proven to induce estrogenic effects in aquatic organisms exposed to them. Low removal efficiency in wastewater treatment plants results in the presence of this type of contaminants in surface waters and also even in finished drinking water. This manuscript reviews the environmental occurrence of natural (estrone, estradiol and estriol) and synthetic (ethynyl estradiol) estrogens in different water matrices (waste, surface, ground and drinking water), and their removal mainly via chemical oxidative processes. Oxidative treatments have been observed to be very efficient in eliminating estrogens present in water; however, disinfection by-products (DBPs) are generated during the process. Characterization of these DBPs is essential to assess the risk that drinking water may potentially pose to human health since these DBPs may also have endocrine disrupting properties. This manuscript reviews the DBPs generated during oxidative processes identified so far in the literature and the estrogenicity generated by the characterized DBPs and/or by the applied disinfection technology.

  1. The formation of disinfection by-products in water treated with chlorine dioxide.

    PubMed

    Chang, C Y; Hsieh, Y H; Hsu, S S; Hu, P Y; Wang, K H

    2000-12-01

    In this study, chlorine dioxide (ClO(2)) was used as an alternative disinfection agent with humic acid as the organic precursor in a natural aquatic environment. The major topics in this investigation consisted of the disinfection efficiency of ClO(2), the formation of disinfection by-products (DBPs), and the operating conditions. The results indicated that the pH value (pH 5-9) did not affect the efficiency of disinfection while the concentration of organic precursors did. The primary DBPs formed were trihalomethanes (THMs) and haloacetic acids (HAAs). The distribution of the individual species was a function of the bromide content. The higher the ClO(2) dosage, the lower the amount of DBPs produced. The amount of DBPs increased with reaction time, with chlorite ions as the primary inorganic by-product.

  2. IDENTIFICATION OF NEW DRINKING WATER DISINFECTION BY-PRODUCTS FORMED IN THE PRESENCE OF BROMIDE

    EPA Science Inventory

    Using a combination of mass spectrometry and infrared spectroscopy, disinfection by-products (DBPs) were identified in ozonated drinking water containing elevated bromide levels, and in ozonated water treated with secondary chlorine or chloramine. Only one brominated by-product-d...

  3. IDENTIFICATION OF NEW DRINKING WATER DISINFECTION BY-PRODUCTS FORMED IN THE PRESENCE OF BROMIDE

    EPA Science Inventory

    Using a combination of mass spectrometry and infrared spectroscopy, disinfection by-products (DBPs) were identified in ozonated drinking water containing elevated bromide levels, and in ozonated water treated with secondary chlorine or chloramine. Only one brominated by-product-d...

  4. Status report on the development of draft MCLGs for disinfectants and by-products

    SciTech Connect

    Not Available

    1992-10-01

    The Maximum Contaminant level goals (MCLG) are set at concentration levels at which no known or anticipated adverse health effects occur, allowing for an adequate margin of safety. Establishment of an MCLG for each specific contaminant depends on the evidence of carcinogenicity from drinking water exposure or the Agency's oral reference dose based on noncarcinogenic data. The report discusses the status of the development of draft MCLG5 for disinfectants and disinfection by-products.

  5. The organic precursors affecting the formation of disinfection by-products with chlorine dioxide.

    PubMed

    Chang, C Y; Hsieh, Y H; Lin, Y M; Hu, P Y; Liu, C C; Wang, K H

    2001-08-01

    The object of this research was to study the formation of disinfection by-products by using chlorine dioxide (ClO2) as a disinfectant reacting with different properties of organic substance in natural aquatic environment. The adsorbent resin (XAD-4, XAD-7) was used to divide the organic matters in raw water into three groups. The influence of the function groups on structure, reaction tendency, and formation of disinfection by-products generated by the reaction of these organic substances with chlorine dioxide was explored. The experimental results show that the three different organic groups formed using adsorbent resin were hydrophobic substance, hydrophilic acid, and non-acid hydrophilics in proportions of 43%, 41%, and 16%, respectively. Within the raw water in our study, the hydrophilic substance had a higher distribution proportion than that described in general articles and journals, which indicates that this water was contaminated with pollution from human beings. The exploration of the reactivity of the three different organic substances with chlorine dioxide shows that the unit consumption of disinfection agent per unit organic matters (represented by ClO2/DOC) is in the following sequence hydrophobic substance > hydrophilic substance > non-acid hydrophilics. It indicated that larger molecular organic precursors had larger consumption of disinfectant. We also discovered that after the reaction of the three different organic substances with chlorine dioxide, the largest amount of disinfection by-products were generated by the non-acid hydrophilics.

  6. [Formation of Disinfection By-Products During Chlor(am)ination of Danjiangkou Reservoir Water and Comparison of Disinfection Processes].

    PubMed

    Zhang, Min-sheng; Xu, Bin; Zhang, Tian-yang; Cheng, Tuo; Xia, Sheng-ji; Chu, Wen-hai

    2015-09-01

    This study discussed the formation of volatile carbonaceous disinfection by-products (DBPs) and nitrogenous DBPs during chlor(am) ination of Danjingkou Reservoir water which was the source of the Middle Route Project of South-to-North Water Diversion Project. The effects of disinfection methods, disinfectant dosage, reaction time, pH values and bromide ion concentration were investigated. And the disinfection parameters were optimized. Four DBPs, including chloroform (CF), bromodichloromethane (BDCM), dichloroacetonitrile(DCAN) and trichloronitromethane(TCNM), were observed during the chlorination. But only CF and TCNM were detected during the chloramination of water. The disinfection by-product (DBP) concentration from chlorination is 7. 5 times higher than that from chloramination, and the yield of DBPs from short time chlorination then chloramination is in between the first two methods. All kinds of DBPs detected increased with the dosage of increasing chlorine, but the increases slowed down when the dosage was higher than 2 mg . L -1. The formation of CF varied a little as the dosage of chloramine increasing. TCNM was detected when the chloramine dosage was greater than 2 mg . L -1. As reaction time going on, chlorine decayed much faster than chloramine, while DBP formation under chlorination was faster than that of chloramination. THM produced by chlorine increased with the increasing pH, while chloramination showed no obvious changes. As the bromide ion increasing, the species of DBPs transformed from chlorinated DBPs to brominated ones, and the total yield of DBPs increased during both chlorination and chloramination, but the former one was obviously more than that of the latter one. In order to reduce the risk of DBP formation, the chloramination is suggested in the treatment of water from Danjiangkou Reservoir. And if chlorination is applied, the disinfectant dosage should be controlled seriously.

  7. Formation and modeling of disinfection by-products in drinking water of six cities in China.

    PubMed

    Ye, Bixiong; Wang, Wuyi; Yang, Linsheng; Wei, Jianrong; E, Xueli

    2011-05-01

    Water quality parameters including TOC, UV(254), pH, chlorine dosage, bromide concentration and disinfection by-products were measured in water samples from 41 water treatment plants of six selected cities in China. Chloroform, bromodichloromethane, dibromochloromethane, dichloroacetic acid and trichloroacetic acid were the major disinfection by-products in the drinking water of China. Bromoform and dibromoacetic acid were also detected in many water samples. Higher concentrations of trihalomethanes and haloacetic acids were measured in summer compared to winter. The geographical variations in DBPs showed that TTHM levels were higher in Zhengzhou and Tianjin than other selected cities. And the HAA5 levels were highest in Changsha and Tianjin. The modeling procedure that predicts disinfection by-products formation was studied and developed using artificial neural networks. The performance of the artificial neural networks model was excellent (r > 0.84).

  8. Spatial and temporal evaluations of disinfection by-products in drinking water distribution systems in Beijing, China.

    PubMed

    Wei, Jianrong; Ye, Bixiong; Wang, Wuyi; Yang, Linsheng; Tao, Jing; Hang, Zhiyu

    2010-09-15

    Disinfection by-products were determined in 15 water treatment plants in Beijing City. The effects of different water sources (surface water source, mixture water source and ground water source), seasonal variation and spatial variation were examined. Trihalomethanes and haloacetic acids were the major disinfection by-products found in all treated water samples, which accounted for 42.6% and 38.1% of all disinfection by-products respectively. Other disinfection by-products including haloacetonitriles, chloral hydrate, haloketones and chloropicrin were usually detected in treated water samples but at lower concentrations. The levels of disinfection by-products in drinking water varied with different water sources and followed the order: surface water source > mixture water source > ground water source. High spatial and seasonal variation of disinfection by-products in the drinking water of Beijing was shown as a result.

  9. MUTAGENICITY AND DISINFECTION BY-PRODUCTS IN SURFACE DRINKING WATER DISINFECTED WITH PERACETIC ACID

    EPA Science Inventory

    The aims of this research were to study the influence of peracetic acid (PAA) on the formation of mutagens in surface waters used for human consumption and to assess its potential application for the disinfection of drinking water. The results obtained using PAA were compared to ...

  10. MUTAGENICITY AND DISINFECTION BY-PRODUCTS IN SURFACE DRINKING WATER DISINFECTED WITH PERACETIC ACID

    EPA Science Inventory

    The aims of this research were to study the influence of peracetic acid (PAA) on the formation of mutagens in surface waters used for human consumption and to assess its potential application for the disinfection of drinking water. The results obtained using PAA were compared to ...

  11. Occurrence and formation of disinfection by-products in the swimming pool environment: A critical review.

    PubMed

    Carter, Rhys A A; Joll, Cynthia A

    2017-08-01

    Disinfection of water for human use is essential to protect against microbial disease; however, disinfection also leads to formation of disinfection by-products (DBPs), some of which are of health concern. From a chemical perspective, swimming pools are a complex matrix, with continual addition of a wide range of natural and anthropogenic chemicals via filling waters, disinfectant addition, pharmaceuticals and personal care products and human body excretions. Natural organic matter, trace amounts of DBPs and chlorine or chloramines may be introduced by the filling water, which is commonly disinfected distributed drinking water. Chlorine and/or bromine is continually introduced via the addition of chemical disinfectants to the pool. Human body excretions (sweat, urine and saliva) and pharmaceuticals and personal care products (sunscreens, cosmetics, hair products and lotions) are introduced by swimmers. High addition of disinfectant leads to a high formation of DBPs from reaction of some of the chemicals with the disinfectant. Swimming pool air is also of concern as volatile DBPs partition into the air above the pool. The presence of bromine leads to the formation of a wide range of bromo- and bromo/chloro-DBPs, and Br-DBPs are more toxic than their chlorinated analogues. This is particularly important for seawater-filled pools or pools using a bromine-based disinfectant. This review summarises chemical contaminants and DBPs in swimming pool waters, as well as in the air above pools. Factors that have been found to affect DBP formation in pools are discussed. The impact of the swimming pool environment on human health is reviewed. Copyright © 2017. Published by Elsevier B.V.

  12. Risk assessment on disinfection by-products of drinking water of different water sources and disinfection processes.

    PubMed

    Wang, Wuyi; Ye, Bixiong; Yang, Linsheng; Li, Yonghua; Wang, Yonghua

    2007-02-01

    The occurrences of trihalomethanes (THMs) and haloacetics (HAAs) in the water supply in Beijing and Canada were investigated. The concentrations of THMs and HAAs in Beijing and Canada were below the maximum contaminant levels specified by the USEPA and WHO standards. The multi-pathway risk assessment (assessed through oral ingestion, dermal absorption and inhalation exposure to drinking water) was used to assess the cancer risk and the hazard index of THMs and HAAs from fifteen waterworks in Beijing, China and three treatment plants using different disinfection processes in Canada. Residents in Beijing and residents who were served by three treatment plants using different disinfection processes in Canada had a higher risk of cancer through oral ingestion than through the other two pathways. The cancer risk resulted from disinfection by-products (DBPs) was 8.50E-05(for males), 9.25E-05(for females) in Beijing, China, while it was 1.18E-04, 1.44E-04 in Canada. The risk was higher when water treatment plants used surface water source than when they used ground water source and mixture water source in Beijing. The risk showed different changes in three treatment plants using different disinfection processes in Canada. The lifetime cancer risk for THMs followed the order: Plant 2>Plant 1>Plant 3. And, the lifetime cancer risk for HAAs was: Plant 1>Plant 2>Plant 3.

  13. DISINFECTION BY-PRODUCTS OF HEALTH CONCERN IN DRINKING WATER: RESULTS OF A NATIONWIDE OCCURRENCE STUDY

    EPA Science Inventory

    Drinking water disinfection by-products (DBPs) are of concern because some epidemiologic studies have shown that some DBPs are associated with cancer or adverse reproductive/developmental effects in human populations, and other studies have shown that certain DBPs cause similar h...

  14. Genotoxic Effects in Swimmers Exposed to Disinfection By-products in Indoor Swimming Pool

    EPA Science Inventory

    BACKGROUND: Exposure to disinfection by-products (DBPs) in drinking water has been associated with cancer risk, and a recent study found an increased bladder cancer risk among subjects attending swimming pools. OBJECTIVES: To evaluate whether swimming in pools is associated with ...

  15. DETERMINATION OF NEW CARBONYL-CONTAINING DISINFECTION BY-PRODUCTS IN DRINKING WATER

    EPA Science Inventory

    Only a subset of all disinfection by-products were targeted for an intense occurrence study during the Information Collection Rule. Among 50 additional compounds selected for study because of their potential for significant toxicity, a group of carbonyl-containing compounds is be...

  16. DISINFECTION BY-PRODUCTS OF HEALTH CONCERN IN DRINKING WATER: RESULTS OF A NATIONWIDE OCCURRENCE STUDY

    EPA Science Inventory

    Drinking water disinfection by-products (DBPs) are of concern because some epidemiologic studies have shown that some DBPs are associated with cancer or adverse reproductive/developmental effects in human populations, and other studies have shown that certain DBPs cause similar h...

  17. NEUROTOXICOLOGICAL EVALUATION OF TWO DISINFECTION BY-PRODUCTS, BROMODICHLOROMETHANE AND DIBROMOACETONITRILE, IN RATS.

    EPA Science Inventory

    The Safe Drinking Water Act requires that the U.S. EPA consider noncancer endpoints for the assessment of adverse human health effects of disinfection by-products (DBPs). As an extension of our studies in which we demonstrated neurotoxicity at relatively low levels of dibromo- an...

  18. ANIMAL MODELS FOR STUDYING MISCARRIAGE: ILLUSTRATION WITH STUDY OF DRINKING WATER DISINFECTION BY-PRODUCTS

    EPA Science Inventory

    Animal models for studying miscarriage: Illustration with study of drinking water disinfection by-products
    Authors & affiliations:
    Narotsky1, M.G. and S. Bielmeier Laffan2.
    1Reproductive Toxicology Division, NHEERL, ORD, U.S. Environmental Protection Agency, Research Tri...

  19. Assessing the Toxicities of Regulated and Unregulated Disinfection By-products in Normal Human Colon Cells.

    EPA Science Inventory

    The presence of over six hundred disinfection by-products (DBPs) and less than half of the total organic halides present in finished water has created a need for short-term in vitro assays to address toxicities that might be associated with human exposure. . We are using a normal...

  20. HALONITROMETHANE DRINKING WATER DISINFECTION BY-PRODUCTS: CHEMICAL CHARACTERIZATION AND MAMMALIAN CELL CYTOTOXICITY AND GENOTOXICITY

    EPA Science Inventory

    Halonitromethanes are drinking water disinfection by-products that have recently received a high priority for health effects research from the U.S. Environmental Protection Agency. Our purpose was to identify and synthesize where necessary the mixed halonitromethanes and to deter...

  1. Genotoxic Effects in Swimmers Exposed to Disinfection By-products in Indoor Swimming Pool

    EPA Science Inventory

    BACKGROUND: Exposure to disinfection by-products (DBPs) in drinking water has been associated with cancer risk, and a recent study found an increased bladder cancer risk among subjects attending swimming pools. OBJECTIVES: To evaluate whether swimming in pools is associated with ...

  2. THE EFFECTS OF COMBINED OZONATION AND FILTRATION ON DISINFECTION BY-PRODUCT FORMATION. (R830908)

    EPA Science Inventory

    The effects of combined ozonation and membrane filtration on the removal of the natural organic matter (NOM) and the formation of disinfection by-products (DBPs) were investigated. Ozonation/filtration resulted in a reduction of up to 50% in the dissolved organic carbon (DOC) ...

  3. THE EFFECTS OF COMBINED OZONATION AND FILTRATION ON DISINFECTION BY-PRODUCT FORMATION. (R830908)

    EPA Science Inventory

    The effects of combined ozonation and membrane filtration on the removal of the natural organic matter (NOM) and the formation of disinfection by-products (DBPs) were investigated. Ozonation/filtration resulted in a reduction of up to 50% in the dissolved organic carbon (DOC) ...

  4. THE NEXT GENERATION OF DRINKING WATER DISINFECTION BY-PRODUCTS AND HEALTH ISSUES

    EPA Science Inventory

    Drinking water disinfection by-products (DBPs) are of concern because some epidemiologic studies have shown that some DBPs are associated with cancer or adverse reproductive/developmental effects in human populations, and other studies have shown that certain DBPs cause similar h...

  5. SOLID PHASE MICROEXTRACTION FOR TRACE LEVEL ANALYSIS OF DISINFECTION BY-PRODUCTS

    EPA Science Inventory

    This presentation focuses on the development of a solid-phase microextraction (SPME)-gas chromatography (GC)/ion trap mass spectrometry (MS) method for the analysis of semivolatile disinfection by-products (DBPs) in drinking water in the low ug/L range. These DBPs were selected ...

  6. INCREASED APOPTOSIS IN ORGANOGENESIS-STAGED MOUSE EMBRYOS INDUCED BY DISINFECTION BY-PRODUCTS

    EPA Science Inventory

    Increased apoptosis in organogenesis-staged mouse embryos induced by disinfection by-products. Sid Hunter1,2, Ellen Rogers1 and Keith Ward2, 1 Developmental Biology Branch, Reproductive Toxicology Division, NHEERL, US EPA, RTP, NC; 2 Curriculum in Toxicology, UNC Chapel Hill, Cha...

  7. Assessing the Toxicities of Regulated and Unregulated Disinfection By-products in Normal Human Colon Cells.

    EPA Science Inventory

    The presence of over six hundred disinfection by-products (DBPs) and less than half of the total organic halides present in finished water has created a need for short-term in vitro assays to address toxicities that might be associated with human exposure. . We are using a normal...

  8. HALONITROMETHANE DRINKING WATER DISINFECTION BY-PRODUCTS: CHEMICAL CHARACTERIZATION AND MAMMALIAN CELL CYTOTOXICITY AND GENOTOXICITY

    EPA Science Inventory

    Halonitromethanes are drinking water disinfection by-products that have recently received a high priority for health effects research from the U.S. Environmental Protection Agency. Our purpose was to identify and synthesize where necessary the mixed halonitromethanes and to deter...

  9. INCREASED APOPTOSIS IN ORGANOGENESIS-STAGED MOUSE EMBRYOS INDUCED BY DISINFECTION BY-PRODUCTS

    EPA Science Inventory

    Increased apoptosis in organogenesis-staged mouse embryos induced by disinfection by-products. Sid Hunter1,2, Ellen Rogers1 and Keith Ward2, 1 Developmental Biology Branch, Reproductive Toxicology Division, NHEERL, US EPA, RTP, NC; 2 Curriculum in Toxicology, UNC Chapel Hill, Cha...

  10. NEUROTOXICOLOGICAL EVALUATION OF TWO DISINFECTION BY-PRODUCTS, BROMODICHLOROMETHANE AND DIBROMOACETONITRILE, IN RATS.

    EPA Science Inventory

    The Safe Drinking Water Act requires that the U.S. EPA consider noncancer endpoints for the assessment of adverse human health effects of disinfection by-products (DBPs). As an extension of our studies in which we demonstrated neurotoxicity at relatively low levels of dibromo- an...

  11. ANIMAL MODELS FOR STUDYING MISCARRIAGE: ILLUSTRATION WITH STUDY OF DRINKING WATER DISINFECTION BY-PRODUCTS

    EPA Science Inventory

    Animal models for studying miscarriage: Illustration with study of drinking water disinfection by-products
    Authors & affiliations:
    Narotsky1, M.G. and S. Bielmeier Laffan2.
    1Reproductive Toxicology Division, NHEERL, ORD, U.S. Environmental Protection Agency, Research Tri...

  12. SURVEY OF HALONITROMETHANES AND IODOMETHANES: DISINFECTION BY-PRODUCTS IN DRINKING WATER

    EPA Science Inventory

    This project involves the study of two classes of chemicals, halonitromethanes and iodomethanes, which have been found to be drinking water disinfection by-products (DBPs). Both have been predicted to have toxicity. In toxicity screening tests, bromonitromethanes have been shown ...

  13. Simulation of compliance choices for the disinfection by-products regulatory impact analysis

    SciTech Connect

    Gelderloos, A.B.; Harrington, G.W.; Owen, D.M.; Regli, S.; Schaefer, J.K.

    1992-01-01

    The U.S. EPA is in the process of developing regulations designed to limit the concentrations of disinfectants and their by-products in drinking water systems. The objective of regulatory analysis is to determine the potential impacts of implementing different regulatory options. This paper describes one aspect of this analysis.

  14. Seasonal evaluation of disinfection by-products throughout two full-scale drinking water treatment plants.

    PubMed

    Zhong, Xin; Cui, Chongwei; Yu, Shuili

    2017-07-01

    Carbonyl compounds can occur alpha-hydrogens or beta-diketones substitution reactions with disinfectants contributed to halogenated by-products formation. The objective of this research was to study the occurrence and fate of carbonyl compounds as ozonation by-products at two full-scale drinking water treatment plants (DWTPs) using different disinfectants for one year. The quality of the raw water used in both plants was varied according to the season. The higher carbonyl compounds concentrations were found in raw water in spring. Up to 15 (as the sum of both DWTPs) of the 24 carbonyl compounds selected for this work were found after disinfection. The dominant carbonyl compounds were formaldehyde, glyoxal, methyl-glyoxal, fumaric, benzoic, protocatechuic and 3-hydroxybenzoic acid at both DWTPs. In the following steps in each treatment plant, the concentration patterns of these carbonyl compounds differed depending on the type of disinfectant applied. Benzaldehyde was the only aromatic aldehyde detected after oxidation with ozone in spring. As compared with DWTP 1, five new carbonyl compounds were formed (crotonaldehyde, benzaldehyde, formic, oxalic and malonic acid) disinfection by ozone, and the levels of the carbonyl compounds increased. In addition, pre-ozonation (PO) and main ozonation (OZ) increased the levels of carbonyl compounds, however coagulation/flocculation (CF), sand filtration (SF) and granular activated carbon filtration (GAC) decreased the levels of carbonyl compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. The role of phytoplankton as pre-cursors for disinfection by-product formation upon chlorination.

    PubMed

    Tomlinson, Adam; Drikas, Mary; Brookes, Justin D

    2016-10-01

    Water quality remains one of the greatest concerns with regards to human health. Advances in science and technology have resulted in highly efficient water treatment plants, significantly reducing diseases related to waterborne pathogenic microorganisms. While disinfection is critical to mitigate pathogen risk to humans, the reactions between the disinfectant and dissolved organic compounds can lead to the formation of chemical contaminants called disinfection by-products (DBPs). DBPs have been related to numerous health issues including birth defects and cancer. The formation of disinfection by-products occurs due to the reaction of oxidants and natural organic matter. DBP precursors are derived from anthropogenic sources including pharmaceuticals and chemical waste, the breakdown of vegetation from external catchment sources (allochthonous) and internally derived sources including phytoplankton (autochthonous). Current literature focuses on the contribution of allochthonous sources towards the formation of DBPs, however, the recalcitrant nature of hydrophilic phytoplankton derived organic matter indicates that autochthonous derived organic carbon can significantly contribute to total DBP concentrations. The contribution of phytoplankton to the formation of DBPs is also influenced by cellular exudation rates, chemical composition, environmental conditions and the physical and chemical conditions of the solution upon disinfection. Formation of DBPs is further influenced by the presence of cyanobacteria phyla due to their notoriety for forming dense blooms. Management of DBP formation can potentially be improved by reducing cyanobacteria as well as DBP precursors derived from other phytoplankton. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Nanodetection of the disinfection by-products on GC-MS techniques

    NASA Astrophysics Data System (ADS)

    Ristoiu, Dumitru; Haydee, Melinda; Ristoiu, Tania

    2009-01-01

    Exposures to disinfection by-products (DBPs) in residential drinking water occur through multiple routes and vary across the population because of differences in the amount and ways people use water. Municipal water in the Romania is disinfected, with chlorine being the most common disinfectant agent. Disinfection of water, in additional to having the benefit of destroying microbes that can transmit diseases, has the drawback of producing a series of compounds known as disinfection by-products (DBPs). Chlorination produces many compounds containing chlorine and/or bromine, some of which have been shown to be carcinogenic, mutagenic, and/or teratogenic in animal studies. The most abundant class of DBPs that result from chlorination of drinking water are trihalomethanes (THMs) - chloroform (CHCl3), dichlorobromomethane (CHCl2Br), dibromochloromethane (CHBr2Cl) and bromoform (CHBr3). The most predominant THM species was CHCl3 and it highest concentration was 85•106 ng/m3. The others THMs compounds concentration were lower, between 65•104 ng/m3 and 12•106 ng/m3. THMs compounds were analyzed on gas chromatography coupled with mass spectrometer detector (GC-MS) and head space technique (HS) was used for all analysis.

  17. [Degradation Kinetics and Formation of Disinfection By-products During Linuron Chlorination in Drinking Water].

    PubMed

    Ling, Xiao; Hu, Chen-yan; Cheng, Ming; Gu, Jian

    2015-05-01

    Chlorination degradation of linuron was studied using the common disinfectant sodium hypochlorite, the effects of chlorine dosage, pH value, bromine ion concentrationand temperature were systematically investigated, and the formation characteristics of disinfection by-products (DBPs) during the chlorination reaction was analyzed. The results showed that the chlorination degradation kinetics of linuron by sodium hypochlorite could be well described by the second-order kinetic model. Moreover, pH values had a great impact on the degradation reaction, and the rate constant reached the maximum level at pH 7, and the base elementary reaction rate constants of HOCl and OCl- with linuron were 4.84 x 10(2) L · (mol · h)(-1) and 3.80 x 10(2) L · (mol · h)(-1), respectively. The reaction rate decreased with the addition of bromide ion and increased with increasing temperature. Furthermore, many kinds of disinfection by- products were produced during the chlorination degradation of linuron, including CF, DCAN, TCNM and halogen acetone. Under conditions of different solution pH and different bromide ion concentrations, there would be significant difference in the types and concentrations of disinfection by-products.

  18. Disinfection aboard cruise liners and naval units: formation of disinfection by-products using chlorine dioxide in different qualities of drinking water.

    PubMed

    Ufermann, Petra; Petersen, Hauke; Exner, Martin

    2011-12-01

    The world-wide deployment of cruise liners and naval units has caused an increased need for the disinfection of drinking water. The main cause for this is the unknown quality of drinking water in foreign harbours--besides the formation of bio-films due to the climatically disadvantageous conditions in the operational area. Water conduits on board are currently disinfected with calcium hypochlorite in case of microbiological contamination. Chemical and physical analyses after disinfection with calcium hypochlorite have shown that organic by-products consisting of trihalomethanes develop in considerable amounts during disinfection. Furthermore, the method is susceptible to handling errors and thus often leads to insufficient disinfection results. Hitherto, the use of other disinfection methods allowed by government regulations, especially chlorine dioxide, is not widely spread. Unlike disinfection with calcium hypochlorite, chlorine dioxide does not lead to the formation of trihalomethanes. Typical disinfection by-products (DBP) are the anions chlorite and chlorate, which are formed in oxidative processes. The formation conditions of these anions have not yet been elucidated. For this reason, the probability of the generation of inorganic by-products after disinfection with chlorine dioxide has been determined, and their occurrence in drinking water on board has been examined with respect to a possible correlation between water quality and the formation of chlorate and chlorite. Therefore, a chromatographic method was developed and validated in order to determine the periodical development of chlorate and chlorite from chorine dioxide in purified water at different pH-values as well as in actual drinking water samples from water conduits on board. The formation of the by-products chlorite and chlorate after disinfection with chlorine dioxide is influenced neither by pH-value nor by chemical properties of the disinfected water. Considering the examined conditions

  19. Drinking Water Disinfection by In-line Electrolysis: Product and Inorganic By-Product Formation

    NASA Astrophysics Data System (ADS)

    Bergmann, M. E. Henry

    This section covers peculiarities of so-called in-line electrolysis when drinking water is electrolysed to produce disinfection species killing microorganisms. Mainly mixed oxide electrodes (MIO) based on IrO2 and/or RuO2 coatings and boron-doped diamond electrodes were used in the studies. Artificial and real drinking water systems were electrolysed in continuous and discontinuous operating mode, varying water composition, current density and electrode materials. Results show, besides the ability of producing active chlorine, risks of inorganic disinfection by-products (DBPs) such as chlorate, perchlorate, nitrite, ammonium, chloramines, hydrogen peroxide and others. DBPs are responsible for analysis errors using DPD method for active chlorine measurements. Geometry may influence by-product yield. As a conclusion, the necessity of developing test routines for practical cell applications must be underlined.

  20. Formation of disinfection by-products: effect of temperature and kinetic modeling.

    PubMed

    Zhang, Xiao-lu; Yang, Hong-wei; Wang, Xiao-mao; Fu, Jing; Xie, Yuefeng F

    2013-01-01

    The temperature of drinking water fluctuates naturally in water distribution systems as well as often deliberately heated for household or public uses. In this study, the temperature effect on the formation of disinfection by-products (DBPs) was investigated by monitoring the temporal variations of twenty-one DBPs during the chlorination of a humic precursors-containing water at different temperatures. It was found that chloroform, DCAA, TCAA, DCAN and CH were detected at the considerable level of tens of μg L(-1). The three regulated DBPs (chloroform, DCAA and TCAA) were found increasing with both contact time and water temperature, while the five typical emerging DBPs (DCAN, CH, TCNM 1,1-DCPN and 1,1,1-TCPN) revealed the significant auto-decomposition in addition to the initial growth in the first few hours. Increasing water temperature could enhance the formation rates of all the eight detected DBPs and the decomposition rates of the five emerging DBPs. Further, a kinetic model was developed for the simulation of DBP formation. The validity and universality of the model were verified by its excellent correlation with the detected values of each DBP species at various temperatures. The formation rates of 1,1-DCPN and 1,1,1-TCPN, and the decomposition rate of 1,1,1-TCPN were faster as compared to the other DBPs. And the formation reaction activation energies of CH, DCAN and 1,1-DCPN were relatively large, indicating that their occurrence levels in the finished water were more susceptible to temperature variations.

  1. Formation of nitrogenous disinfection by-products in 10 chlorinated and chloraminated drinking water supply systems.

    PubMed

    Liew, Deborah; Linge, Kathryn L; Joll, Cynthia A

    2016-09-01

    The presence of nitrogenous disinfection by-products (N-DBPs) in drinking water supplies is a public health concern, particularly since some N-DBPs have been reported to be more toxic than the regulated trihalomethanes and haloacetic acids. In this paper, a comprehensive evaluation of the presence of N-DBPs in 10 drinking water supply systems in Western Australia is presented. A suite of 28 N-DBPs, including N-nitrosamines, haloacetonitriles (HANs), haloacetamides (HAAms) and halonitromethanes (HNMs), were measured and evaluated for relationships with bulk parameters in the waters before disinfection. A number of N-DBPs were frequently detected in disinfected waters, although at generally low concentrations (<10 ng/L for N-nitrosamines and <10 μg/L for other N-DBPs) and below health guideline values where they exist. While there were no clear relationships between N-DBP formation and organic nitrogen in the pre-disinfection water, N-DBP concentrations were significantly correlated with dissolved organic carbon (DOC) and ammonia, and these, in addition to high bromide in one of the waters, led to elevated concentrations of brominated HANs (26.6 μg/L of dibromoacetonitrile). There were significant differences in the occurrence of all classes of N-DBPs between chlorinated and chloraminated waters, except for HNMs, which were detected at relatively low concentrations in both water types. Trends observed in one large distribution system suggest that N-DBPs can continue to form or degrade within distribution systems, and redosing of disinfectant may cause further by-product formation.

  2. In vitro toxicity and genotoxicity assessment of disinfection by-products, organic N-chloramines.

    PubMed

    Laingam, S; Froscio, S M; Bull, R J; Humpage, A R

    2012-03-01

    Disinfection by-products (DBPs) are of concern to both water industries and health authorities. Although several classes of DBPs have been studied, and there are regulated safe levels in disinfected water for some, a large portion of DBPs are not characterized, and need further investigation. Organic N-chloramines are a group of DBPs, which can be formed during common disinfection processes such as chlorination and chloramination, but little is known in terms of their toxicological significance if consumed in drinking water. Only a few in vitro studies using bacterial assays have reported some genotoxic potential of organic N-chloramines, largely in the context of inflammatory processes in the body rather than exposure through drinking water. In this study, we investigated 16 organic N-chloramines produced by chlorination of model amino acids and amines. It was found that within the drinking water-relevant micromolar concentration range, four compounds were both cytotoxic and genotoxic to mammalian cells. A small reduction of cellular GSH was also observed in the treatment with these four compounds, but not of a magnitude to account for the cytotoxicity and genotoxicity. The results presented in this study demonstrate that some organic N-chloramines, at low concentrations that might be present in disinfected water, can be harmful to mammalian cells.

  3. The occurrence of disinfection by-products in the drinking water of Athens, Greece.

    PubMed

    Golfinopoulos, Spyros K; Nikolaou, Anastasia D; Lekkas, Themistokles D

    2003-01-01

    Application of chlorination for the disinfection of drinking water results in the formation of a wide range of organic compounds, called disinfection by-products (DBPs), which occur due to the reaction of chlorine with natural organic materials. The occurrence of DBPs was studied in samples from four drinking-water treatment plants (WTPs) and from the distribution network of Athens, Greece. Twenty-four compounds, which belong to different categories of DBPs, were monitored, including trihalomethanes (THMs), haloacetic acids (HAAs), haloacetonitriles (HANs), haloketones (HAKs), chloral hydrate (CH) and chloropicrin (CP). Sampling was performed monthly for a period of two years, from three different points at each WTP and from eight points atthe distribution network. Samples were analyzed by GC-ECD methods, which included pretreatment with liquid-liquid extraction for volatile DBPs and acidic methanol esterification for HAAs. The results of the analyses have shown the presence of disinfection by-products belonging to all categories studied in all water samples collected after prechlorination. The major categories of DBPs detected were THMs and HAAs, while the other volatile DBPs occurred at lower concentrations. The concentrations of DBPs did not in any case exceed the maximum contaminant levels (MCL) set by USEPA and WHO. However, monitoring these compounds needs to be continued, because their levels could increase due to changes in the quality of water entering the water treatment plants. Reduction of the concentrations of DBPs could be achieved by optimization of the chlorination conditions, taking into account the effect of time. Moreover, research on alternative disinfection methods (e.g. ozone, chlorine dioxide, chloramines) and their by-products should be conducted to evaluate their applicability in the case of the drinking water of Greece.

  4. ORD'S FOUR LAB STUDY: TOXICOLOGICAL AND CHEMICAL EVALUATION OF COMPLEX MIXTURES OF DRINKING WATER DISINFECTION BY-PRODUCTS

    EPA Science Inventory

    Disinfectants used in the production of drinking water react with naturally occurring organic and inorganic material in the source water to produce disinfection by-products (DBPs). Humans are exposed daily to a complex mixture of DBPs via oral, dermal, and inhalation routes. To ...

  5. OCCURRENCE OF IODO-ACID AND IODO-THM DISINFECTION BY-PRODUCTS IN CHLORAMINATED DRINKING WATER

    EPA Science Inventory

    As part of a recent Nationwide Disinfection By-Product (DBP) Occurrence Study, iodo-acids were identified for the first time as DBPs in drinking water disinfected with chloramines. The iodo-acids identified included iodoacetic acid, bromoiodoacetic acid, (E)-3-bromo-3-iodo-prope...

  6. ORD'S FOUR LAB STUDY: TOXICOLOGICAL AND CHEMICAL EVALUATION OF COMPLEX MIXTURES OF DRINKING WATER DISINFECTION BY-PRODUCTS

    EPA Science Inventory

    Disinfectants used in the production of drinking water react with naturally occurring organic and inorganic material in the source water to produce disinfection by-products (DBPs). Humans are exposed daily to a complex mixture of DBPs via oral, dermal, and inhalation routes. To ...

  7. A NATIONWIDE DRINKING WATER DISINFECTION BY-PRODUCT OCCURRENCE STUDY - IDENTIFICATION OF NEW AND TOXICOLOGICALLY SIGNIFICANT COMPOUNDS WITH MASS SPECTROMETRY

    EPA Science Inventory

    Drinking water disinfection by-products (DBPs) are formed when disinfectants, such as chlorine, react with natural organic matter and bromide present in the water. Chloroform was the first DBP identified in drinking water (in 1974), and was subsequently shown (along with other t...

  8. OCCURRENCE OF IODO-ACID AND IODO-THM DISINFECTION BY-PRODUCTS IN CHLORAMINATED DRINKING WATER

    EPA Science Inventory

    As part of a recent Nationwide Disinfection By-Product (DBP) Occurrence Study, iodo-acids were identified for the first time as DBPs in drinking water disinfected with chloramines. The iodo-acids identified included iodoacetic acid, bromoiodoacetic acid, (E)-3-bromo-3-iodo-prope...

  9. THE ROLE OF GC-MS AND LC-MS IN THE DISCOVERY OF DRINKING WATER DISINFECTION BY-PRODUCTS

    EPA Science Inventory

    Gas chromatography-mass spectrometry (GC-MS) has played a pivotal role in the discovery of disinfection by-products (DBPs) in drinking water. DBPs are formed when disinfectants, such as chlorine, ozone, chlorine dioxide or chloramine, react with natural organic matter in the wate...

  10. THE ROLE OF GC/MS AND LC/MS IN THE DISCOVERY OF DRINKING WATER DISINFECTION BY-PRODUCTS

    EPA Science Inventory

    Gas chromatography/mass spectrometry (GC/MS) has played a pivotal role in the discovery of disinfection by-products (DBPs) in drinking water. DBPs are formed when disinfectants, such as chlorine, ozone, chlorine dioxide, or chloramine, react with natural organic matter in the ...

  11. DOES MICRO LC/MS OFFER ADVANTAGES OVER CONVENTIONAL LC/MS IN IDENTIFYING DISINFECTION BY-PRODUCTS

    EPA Science Inventory

    Lower maximum contaminant levels (MCLs) of disinfection by-products were set for drinking water municipalities by the Stage 1 DBP Rule in November, 1998. With these new regulations, additional water treatment plants are expected to choose alternative disinfectants to chlorine. Al...

  12. DOES MICRO LC/MS OFFER ADVANTAGES OVER CONVENTIONAL LC/MS IN IDENTIFYING DISINFECTION BY-PRODUCTS

    EPA Science Inventory

    Lower maximum contaminant levels (MCLs) of disinfection by-products were set for drinking water municipalities by the Stage 1 DBP Rule in November, 1998. With these new regulations, additional water treatment plants are expected to choose alternative disinfectants to chlorine. Al...

  13. Effect of magnetic ion exchange and ozonation on disinfection by-product formation.

    PubMed

    Kingsbury, Ryan S; Singer, Philip C

    2013-03-01

    The purpose of this research was to investigate the performance of treatment with magnetic ion exchange (MIEX) resin followed by ozonation in achieving disinfection goals while controlling bromate and chlorinated disinfection by-product (DBP) formation. Three water samples were collected from raw water supplies impacted by the San Francisco Bay Delta to represent the varying levels of bromide and total organic carbon (TOC) that occur throughout the year. A fourth water was prepared by spiking bromide into a portion of one of the samples. Samples of each water were pre-treated with alum or virgin MIEX resin, and the raw and treated waters were subsequently ozonated under semi-batch conditions to assess the impact of treatment on ozone demand, ozone exposure for disinfection ("CT"), and bromate formation. Finally, aliquots of raw, coagulated, resin-treated, and ozonated waters were chlorinated in order to measure trihalomethane formation potential (THMFP). In the waters studied, MIEX resin removed 41-68% of raw water TOC, compared to 12-44% for alum. MIEX resin also reduced the bromide concentration by 20-50%. The removal of TOC by alum and MIEX resin significantly reduced the ozone demand of all waters studied, resulting in higher dissolved ozone concentrations and CT values for a given amount of ozone transferred into solution. For a given level of disinfection (CT), the amount of bromate produced by ozonation of MIEX-treated waters was similar to or slightly less than that of raw water and significantly less than that of alum-treated water. MIEX resin removed 39-85% of THMFP compared to 16-56% removal by alum. Ozonation reduced THMFP by 35-45% in all cases. This work indicates that in bromide-rich waters in which ozone disinfection is used, MIEX resin is a more appropriate treatment than alum for the removal of organic carbon, as it achieves superior TOC and THM precursor removal and decreases the production of bromate from ozone.

  14. Chlorination and chloramination of tetracycline antibiotics: disinfection by-products formation and influential factors.

    PubMed

    Zhou, Shiqing; Shao, Yisheng; Gao, Naiyun; Zhu, Shumin; Ma, Yan; Deng, Jing

    2014-09-01

    Formation of disinfection by-products (DBPs) from chlorination and chloramination of tetracycline antibiotics (TCs) was comprehensively investigated. It was demonstrated that a connection existed between the transformation of TCs and the formation of chloroform (CHCl3), carbon tetrachloride (CCl4), dichloroacetonitrile (DCAN) and dichloroacetone (DCAce). Factors evaluated included chlorine (Cl2) and chloramine(NH2Cl) dosage, reaction time, solution pH and disinfection modes. Increased Cl2/NH2Cl dosage and reaction time improved the formation of CHCl3 and DCAce. Formation of DCAN followed an increasing and then decreasing pattern with increasing Cl2 dosage and prolonged reaction time. pH affected DBPs formation differently, with CHCl3 and DCAN decreasing in chlorination, and having maximum concentrations at pH 7 in chloramination. The total concentrations of DBPs obeyed the following order: chlorination>chloramination>pre-chlorination (0.5h)>pre-chlorination (1h)>pre-chlorination (2h).

  15. Gestational and lactational effects in rats of sodium, sulfate, and concentrated disinfection by-products in drinking water

    EPA Science Inventory

    Epidemiological and animal toxicity studies have raised concerns regarding possible adverse health effects of disinfection by-products (DBPs) in drinking water (DW). Because many DBPs are unidentified, we sought to evaluate DW concentrates. In preparation for a multigenerational ...

  16. CHRONIC EXPOSURE TO DIBROMOACETIC ACID, A WATER DISINFECTION BY-PRODUCT, DIMINISHES PRIMORDIAL FOLLICLES IN THE RABBIT

    EPA Science Inventory

    Exposure to dibromoacetic acid (DBA), a commonly occurring water disinfection by-product, has detrimental effects on spermatogenesis and fertility in rats and rabbits. Despite indications of important reproductive consequences of DBA exposure in males, reproductive sequelae follo...

  17. MUTAGENICITY IN SALMONELLA OF HALONITROMETHANES: A RECENTLY RECOGNIZED CLASS OF DISINFECTION BY-PRODUCTS IN DRINKING WATER

    EPA Science Inventory

    Halonitromethanes (HNMs) are a recently identified class of disinfection by-products in drinking water. They include chloronitromethane (CHN), dichloronitromethane (DCNM), trichloronitromethane (TCNM), bromonitromethane (BNM), dibromonitromethane (DBNM), tribromonitromethane (TBN...

  18. CHRONIC EXPOSURE TO DIBROMOACETIC ACID, A WATER DISINFECTION BY-PRODUCT, DIMINISHES PRIMORDIAL FOLLICLES IN THE RABBIT

    EPA Science Inventory

    Exposure to dibromoacetic acid (DBA), a commonly occurring water disinfection by-product, has detrimental effects on spermatogenesis and fertility in rats and rabbits. Despite indications of important reproductive consequences of DBA exposure in males, reproductive sequelae follo...

  19. Gestational and lactational effects in rats of sodium, sulfate, and concentrated disinfection by-products in drinking water

    EPA Science Inventory

    Epidemiological and animal toxicity studies have raised concerns regarding possible adverse health effects of disinfection by-products (DBPs) in drinking water (DW). Because many DBPs are unidentified, we sought to evaluate DW concentrates. In preparation for a multigenerational ...

  20. GESTATIONAL AND LACTATIONAL EFFECTS IN RATS OF SODIUM, SULFATE, AND CONCENTRATED DISINFECTION BY-PRODUCTS IN DRINKING WATER

    EPA Science Inventory

    Epidemiological and animal toxicity studies have raised concerns regarding possible adverse health effects of disinfection by-products (DBPs) in drinking water (DW). Because many DBPs are unidentified, we sought to evaluate DW concentrates. In preparation for a multigenerational ...

  1. Human cell toxicogenomic analysis of bromoacetic acid: a regulated drinking water disinfection by-product.

    PubMed

    Muellner, Mark G; Attene-Ramos, Matias S; Hudson, Matthew E; Wagner, Elizabeth D; Plewa, Michael J

    2010-04-01

    The disinfection of drinking water is a major achievement in protecting the public health. However, current disinfection methods also generate disinfection by-products (DBPs). Many DBPs are cytotoxic, genotoxic, teratogenic, and carcinogenic and represent an important class of environmentally hazardous chemicals that may carry long-term human health implications. The objective of this research was to integrate in vitro toxicology with focused toxicogenomic analysis of the regulated DBP, bromoacetic acid (BAA) and to evaluate modulation of gene expression involved in DNA damage/repair and toxic responses, with nontransformed human cells. We generated transcriptome profiles for 168 genes with 30 min and 4 hr exposure times that did not induce acute cytotoxicity. Using qRT-PCR gene arrays, the levels of 25 transcripts were modulated to a statistically significant degree in response to a 30 min treatment with BAA (16 transcripts upregulated and nine downregulated). The largest changes were observed for RAD9A and BRCA1. The majority of the altered transcript profiles are genes involved in DNA repair, especially the repair of double strand DNA breaks, and in cell cycle regulation. With 4 hr of treatment the expression of 28 genes was modulated (12 upregulated and 16 downregulated); the largest fold changes were in HMOX1 and FMO1. This work represents the first nontransformed human cell toxicogenomic study with a regulated drinking water disinfection by-product. These data implicate double strand DNA breaks as a feature of BAA exposure. Future toxicogenomic studies of DBPs will further strengthen our limited knowledge in this growing area of drinking water research.

  2. Developmental Toxicity of Drinking Water Disinfection By-Products to Embryos of the African Clawed Frog (Xenopus laevis)

    DTIC Science & Technology

    2005-06-10

    developmental toxicity tests with embryos of the South African clawed frog Xenopus laevis used to evaluate four individual DWDB; bromodichloromethane...SUBJECT TERMS Developmental toxicity; FETAX; water disinfection by-products; frogs ; Xenopus laevis; embryo malformations; embryo mortality...Disinfection By-Products to Embryos of the African Clawed Frog (Xenopus laevis) L. M. Brennan,1 M. W. Toussaint,1 D. M. Kumsher,1 W. E. Dennis,’ A. B

  3. Integrated Disinfection By-Products Mixtures Research: Disinfection of Drinking Waters by Chlorination and Ozonation/Postchlorination Treatment Scenarios

    EPA Science Inventory

    This article describes disinfection of the same source water by two commonly used disinfection treatment scenarios for purposes of subsequent concentration, chemical analysis, and toxicological evaluation. Accompanying articles in this issue of the Journal of Toxicology and Envir...

  4. Integrated Disinfection By-Products Mixtures Research: Disinfection of Drinking Waters by Chlorination and Ozonation/Postchlorination Treatment Scenarios

    EPA Science Inventory

    This article describes disinfection of the same source water by two commonly used disinfection treatment scenarios for purposes of subsequent concentration, chemical analysis, and toxicological evaluation. Accompanying articles in this issue of the Journal of Toxicology and Envir...

  5. Carcinogenicity of by-products of disinfection in mouse and rat liver

    SciTech Connect

    Herren-Freund, S.L.; Pereira, M.A.

    1986-11-01

    By-products of disinfection were tested for initiating and/or promoting activity in rat liver by using the rat liver foci bioassay. The assay uses an increased incidence of ..gamma..-glutamyltranspeptidase-positive foci (GGT foci) as an indicator of carcinogenicity. The by-products of disinfection, including chloramine, halogenated humic acids, halogenated ethanes, halogenated acetonitriles, halogenated methanes, halogenated ethylene, and N-Cl piperidine, did not initiate GGT foci, which would indicate that they are not capable of initiating carcinogenesis. Chloroform and halogenated benzenes were tested in this assay for their ability to promote the occurrence of GGT foci and tumors initiated by diethylnitrosamine (DENA). Chloroform either had no effect or inhibited the occurrence of GGT foci when administered subsequent to a single dose of DENA. However, when the chloroform was administered in drinking water concurrently with weekly doses of DENA, it enhanced the formation of liver tumors. Of 20 halogenated benzenes tested, only 1,2,4,5-tetrachlorobenzene and hexachlorobenzene promoted the occurrence of DENA-initiated GGT foci. Thus in rat liver, the tested by-products of drinking water disinfection did not demonstrate tumor-initiating activity, although a few appeared to possess tumor-promoting activity. Chloroform was also tested for tumor-promoting activity in 15-days-old Swiss mice initiated with ethylnitrosourea (ENU). ENU at 5 and 20 ..mu..g/g caused a dose-dependent increase in liver tumors. In male mice, chloroform inhibited both spontaneous and ENU-induced liver tumors. When administered in the drinking water, chloroform inhibited, whereas phenobarbital promoted, hepatocarcinogenesis in mice.

  6. Socioeconomic status and exposure to disinfection by-products in drinking water in Spain

    PubMed Central

    2011-01-01

    Background Disinfection by-products in drinking water are chemical contaminants that have been associated with cancer and other adverse effects. Exposure occurs from consumption of tap water, inhalation and dermal absorption. Methods We determined the relationship between socioeconomic status and exposure to disinfection by-products in 1271 controls from a multicentric bladder cancer case-control study in Spain. Information on lifetime drinking water sources, swimming pool attendance, showering-bathing practices, and socioeconomic status (education, income) was collected through personal interviews. Results The most highly educated subjects consumed less tap water (57%) and more bottled water (33%) than illiterate subjects (69% and 17% respectively, p-value = 0.003). These differences became wider in recent time periods. The time spent bathing or showering was positively correlated with attained educational level (p < 0.001). Swimming pool attendance was more frequent among highly educated subjects compared to the illiterate (odds ratio = 3.4; 95% confidence interval 1.6-7.3). Conclusions The most highly educated subjects were less exposed to chlorination by-products through ingestion but more exposed through dermal contact and inhalation in pools and showers/baths. Health risk perceptions and economic capacity may affect patterns of water consumption that can result in differences in exposure to water contaminants. PMID:21410938

  7. Socioeconomic status and exposure to disinfection by-products in drinking water in Spain.

    PubMed

    Castaño-Vinyals, Gemma; Cantor, Kenneth P; Villanueva, Cristina M; Tardon, Adonina; Garcia-Closas, Reina; Serra, Consol; Carrato, Alfredo; Malats, Núria; Rothman, Nathaniel; Silverman, Debra; Kogevinas, Manolis

    2011-03-16

    Disinfection by-products in drinking water are chemical contaminants that have been associated with cancer and other adverse effects. Exposure occurs from consumption of tap water, inhalation and dermal absorption. We determined the relationship between socioeconomic status and exposure to disinfection by-products in 1271 controls from a multicentric bladder cancer case-control study in Spain. Information on lifetime drinking water sources, swimming pool attendance, showering-bathing practices, and socioeconomic status (education, income) was collected through personal interviews. The most highly educated subjects consumed less tap water (57%) and more bottled water (33%) than illiterate subjects (69% and 17% respectively, p-value = 0.003). These differences became wider in recent time periods. The time spent bathing or showering was positively correlated with attained educational level (p < 0.001). Swimming pool attendance was more frequent among highly educated subjects compared to the illiterate (odds ratio = 3.4; 95% confidence interval 1.6-7.3). The most highly educated subjects were less exposed to chlorination by-products through ingestion but more exposed through dermal contact and inhalation in pools and showers/baths. Health risk perceptions and economic capacity may affect patterns of water consumption that can result in differences in exposure to water contaminants.

  8. Effect of drinking water disinfection by-products in human peripheral blood lymphocytes and sperm.

    PubMed

    Ali, Aftab; Kurzawa-Zegota, Malgorzata; Najafzadeh, Mojgan; Gopalan, Rajendran C; Plewa, Michael J; Anderson, Diana

    2014-12-01

    Drinking water disinfection by-products (DBPs) are generated by the chemical disinfection of water and may pose hazards to public health. Two major classes of DBPs are found in finished drinking water: haloacetic acids (HAAs) and trihalomethanes (THMs). HAAs are formed following disinfection with chlorine, which reacts with iodide and bromide in the water. Previously the HAAs were shown to be cytotoxic, genotoxic, mutagenic, teratogenic and carcinogenic. To determine the effect of HAAs in human somatic and germ cells and whether oxidative stress is involved in genotoxic action. In the present study both somatic and germ cells have been examined as peripheral blood lymphocytes and sperm. The effects of three HAA compounds: iodoacetic acid (IAA), bromoacetic acid (BAA) and chloroacetic acid (CAA) were investigated. After determining appropriate concentration responses, oxygen radical involvement with the antioxidants, butylated hydroxanisole (BHA) and the enzyme catalase, were investigated in the single cell gel electrophoresis (Comet) assay under alkaline conditions, >pH 13 and the micronucleus assay. In the Comet assay, BHA and catalase were able to reduce DNA damage in each cell type compared to HAA alone. In the micronucleus assay, micronuclei (MNi) were found in peripheral lymphocytes exposed to all three HAAs and catalase and BHA were in general, able to reduce MNi induction, suggesting oxygen radicals play a role in both assays. These observations are of concern to public health since both human somatic and germ cells show similar genotoxic responses. Copyright © 2014. Published by Elsevier B.V.

  9. Occurrence and control of nitrogenous disinfection by-products in drinking water--a review.

    PubMed

    Bond, Tom; Huang, Jin; Templeton, Michael R; Graham, Nigel

    2011-10-01

    The presence of nitrogenous disinfection by-products (N-DBPs), including nitrosamines, cyanogen halides, haloacetonitriles, haloacetamides and halonitromethanes, in drinking water is of concern due to their high genotoxicity and cytotoxicity compared with regulated DBPs. Occurrence of N-DBPs is likely to increase if water sources become impacted by wastewater and algae. Moreover, a shift from chlorination to chloramination, an option for water providers wanting to reduce regulated DBPs such as trihalomethanes (THMs) and haloacetic acids (HAAs), can also increase certain N-DBPs. This paper provides a critical review of the occurrence and control of N-DBPs. Data collated from surveys undertaken in the United States and Scotland were used to calculate that the sum of analysed halonitromethanes represented 3-4% of the mass of THMs on a median basis; with Pearson product moment correlation coefficients of 0.78 and 0.83 between formation of dihaloacetonitriles and that of THMs and HAAs respectively. The impact of water treatment processes on N-DBP formation is complex and variable. While coagulation and filtration are of moderate efficacy for the removal of N-DBP precursors, such as amino acids and amines, biofiltration, if used prior to disinfection, is particularly successful at removing cyanogen halide precursors. Oxidation before final disinfection can increase halonitromethane formation and decrease N-nitrosodimethylamine, and chloramination is likely to increase cyanogen halides and NDMA relative to chlorination. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Analysis of potential trade-offs in regulation of disinfection by-products

    SciTech Connect

    Cromwell, J.E.; Zhang, X.; Regli, S.; Macler, B.

    1992-11-01

    Executive Order 12291 requires the preparation of a Regulatory Impact Analysis (RIA) on all new major federal regulations. The goal of an RIA is to develop and organize information on benefits, costs, and economic impacts so as to clarify trade-offs among alternative regulatory options. This paper outlines explicit methodology for assessing the technical potential for risk-risk tradeoffs. The strategies used to cope with complexities and uncertainties in developing the Disinfection By-Products Regulatory Analysis Model are explained. Results are presented and discussed in light of uncertainties, and in light of the analytical requirements for regulatory impact analysis.

  11. Assessment of air and water contamination by disinfection by-products at 41 indoor swimming pools.

    PubMed

    Tardif, Robert; Catto, Cyril; Haddad, Sami; Simard, Sabrina; Rodriguez, Manuel

    2016-07-01

    This study was aimed at assessing the profiles (occurrence and speciation) of disinfection by-product (DBP) contamination in air and water of a group of 41 public indoor swimming pools in Québec (Canada). The contaminants measured in the water included the traditional DBPs [i.e., four trihalomethanes (THMs), six haloacetic acids (HAAs)] but also several emergent DBPs [i.e., halonitriles, halonitromethanes, haloketones and nitrosodimethylamine (NDMA)]. Those measured in the air comprised THMs and chloramines (CAMs). Overall, extremely variable DBP levels were found from one pool to another (both quantitatively and in terms of speciation). For instance, in water, among the four THMs, chloroform was usually the most abundant compound (37.9±25.7µg/L). Nevertheless, the sum of the three other brominated THMs represented more than 25% of total THMs at almost half the facilities visited (19 cases). In 13 of them, the levels of brominated THMs (66±24.2µg/L) even greatly outweighed the levels of chloroform (15.2±6.31µg/L). Much higher levels of HAAs (294.8±157.6µg/L) were observed, with a consistent preponderance of brominated HAAs in the swimming pools with more brominated THMs. NDMA levels which were measured in a subset of 8 pools ranged between 2.8ng/L and 105ng/L. With respect to air, chloroform was still the most abundant THM globally (119.4±74.2µg/m(3)) but significant levels of brominated THMs were also observed in various cases, particularly in the previously evoked group of 13 swimming pools with preponderant levels of brominated THMs in water. CAM levels (0.23±0.15mg/m(3)) varied highly, ranging from not detected to 0.56mg/m(3). Overall, the levels were generally relatively high compared to current guidelines or reference values from several countries, and they point to a relatively atypical presence of brominated compounds, and to significant levels of emergent DBPs for which health risk is less documented. Copyright © 2016 Elsevier Inc. All rights

  12. New chlorinated amphetamine-type-stimulants disinfection-by-products formed during drinking water treatment.

    PubMed

    Huerta-Fontela, Maria; Pineda, Oriol; Ventura, Francesc; Galceran, Maria Teresa

    2012-06-15

    Previous studies have demonstrated high removal rates of amphetamine-type-stimulants (ATSs) through conventional drinking water treatments; however the behaviour of these compounds through disinfection steps and their transformation into disinfection-by-products (DBPs) is still unknown. In this work, for the first time, the reactivity of some ATSs such as amphetamine, methamphetamine, 3,4-methylenedioxyamphetamine (MDA), 3,4-methylenedioxymethamphetamine (MDMA) and 3,4-methylenedioxyethylamphetamine (MDEA) with chlorine has been investigated under simulated and real drinking water treatment conditions in order to evaluate their ability to give rise to transformation products. Two new DBPs from these illicit drugs have been found. A common chlorinated-by-product (3-chlorobenzo)-1,3-dioxole, was identified for both MDA and MDEA while for MDMA, 3-chlorocatechol was found. The presence of these DBPs in water samples collected through drinking water treatment was studied in order to evaluate their formation under real conditions. Both compounds were generated through treatment from raw river water samples containing ATSs at concentration levels ranging from 1 to 15 ng/L for MDA and from 2.3 to 78 ng/L for MDMA. One of them, (3-chlorobenzo)-1,3-dioxole, found after the first chlorination step, was eliminated after ozone and GAC treatment while the MDMA DBP mainly generated after the postchlorination step, showed to be recalcitrant and it was found in final treated waters at concentrations ranging from 0.5 to 5.8 ng/L.

  13. Effect of chlorine dioxide on cyanobacterial cell integrity, toxin degradation and disinfection by-product formation.

    PubMed

    Zhou, Shiqing; Shao, Yisheng; Gao, Naiyun; Li, Lei; Deng, Jing; Zhu, Mingqiu; Zhu, Shumin

    2014-06-01

    Bench scale tests were conducted to study the effect of chlorine dioxide (ClO2) oxidation on cell integrity, toxin degradation and disinfection by-product formation of Microcystis aeruginosa. The simulated cyanobacterial suspension was prepared at a concentration of 1.0×10(6)cells/mL and the cell integrity was measured with flow cytometry. Results indicated that ClO2 can inhibit the photosynthetic capacity of M. aeruginosa cells and almost no integral cells were left after oxidation at a ClO2 dose of 1.0mg/L. The total toxin was degraded more rapidly with the ClO2 dosage increasing from 0.1mg/L to 1.0mg/L. Moreover, the damage on cell structure after oxidation resulted in released intracellular organic matter, which contributed to the formation of trihalomethanes (THMs) and haloacetic acids (HAAs) as disinfection by-products. Therefore, the use of ClO2 as an oxidant for treating algal-rich water should be carefully considered.

  14. The removal of estrogenic activity with UV/chlorine technology and identification of novel estrogenic disinfection by-products.

    PubMed

    Li, Man; Xu, Bi; Liungai, Zhiqi; Hu, Hong-Ying; Chen, Chao; Qiao, Juan; Lu, Yun

    2016-04-15

    As a recently developed disinfection technology, ultraviolet (UV)/chlorine treatment has received much attention. Many studies have evaluated its effects on pathogen inactivation, contaminant removal, and formation of disinfection by-products (DBPs), but its potential for environmental estrogen removal and estrogenic DBP generation, which can also be a risk to both ecosystem and human health, have not been evaluated. In this study, UV/chlorine treatment resulted in a greater removal of estrogenic activity in synthetic effluent samples containing 17β-estradiol (E2) than did UV or chlorine treatment alone regardless of the water quality. For both the UV/chlorine and chlorine treatments, there was significant interference from NH3-N, although the UV/chlorine treatment was less affected. Estrogen receptor based affinity chromatography was used to isolate the specific estrogenic DBPs, and a novel product, with high estrogenic activity compared to E2, Δ9(11)-dehydro-estradiol, was identified. It was generated by all three treatments, and might be previously mistakenly recognized as estrone (E1). This study demonstrated that UV/chlorine is a better treatment for the removal of 17β-estradiol than chlorine and UV alone. The new identified estrogenic DBP, Δ9(11)-dehydro-estradiol, which can be isolated by affinity chromatography, could be an emerging concern in the future.

  15. Modern approaches to the analysis of disinfection by-products in drinking water.

    PubMed

    Weinberg, Howard S

    2009-10-13

    The discovery and study of disinfection by-products (DBPs) of health and regulatory concern in drinking water have often been hampered by the lack of appropriate analytical methods, but, with the new tools and expertise now available to the drinking water industry, there is an opportunity to plug a major gap in our knowledge of the nature and identity of these chemicals. The challenge is that less than half of the halogenated by-products resulting from the chlorination of drinking water have been identified, and even less is known about those produced in waters treated with ozone, chloramines or chlorine dioxide. For the DBPs that have been identified, very little or no occurrence data exist for the unregulated chemicals to document how often a particular DBP is formed and in what quantity. The elucidation of the nature and identity of these by-products is hindered by two complicating factors. The first is the inherent aqueous solubility of many of these compounds, which renders their efficient extraction from water difficult to achieve. The second is the lack of established identity of specific potential by-products, which complicates targeted analytical approaches. This paper reviews existing and new methodologies that attempt to overcome some of these challenges.

  16. Evidence of arsenic release promoted by disinfection by-products within drinking-water distribution systems.

    PubMed

    Andra, Syam S; Makris, Konstantinos C; Botsaris, George; Charisiadis, Pantelis; Kalyvas, Harris; Costa, Costas N

    2014-02-15

    Changes in disinfectant type could trigger a cascade of reactions releasing pipe-anchored metals/metalloids into finished water. However, the effect of pre-formed disinfection by-products on the release of sorbed contaminants (arsenic-As in particular) from drinking water distribution system pipe scales remains unexplored. A bench-scale study using a factorial experimental design was performed to evaluate the independent and interaction effects of trihalomethanes (TTHM) and haloacetic acids (HAA) on arsenic (As) release from either scales-only or scale-biofilm conglomerates (SBC) both anchored on asbestos/cement pipe coupons. A model biofilm (Pseudomonas aeruginosa) was allowed to grow on select pipe coupons prior experimentation. Either TTHM or HAA individual dosing did not promote As release from either scales only or SBC, detecting <6 μg AsL(-1) in finished water. In the case of scales-only coupons, the combination of the highest spike level of TTHM and HAA significantly (p<0.001) increased dissolved and total As concentrations to levels up to 16 and 95 μg L(-1), respectively. Similar treatments in the presence of biofilm (SBC) resulted in significant (p<0.001) increase in dissolved and total recoverable As up to 20 and 47 μg L(-1), respectively, exceeding the regulatory As limit. Whether or not, our laboratory-based results truly represent mechanisms operating in disinfected finished water in pipe networks remains to be investigated in the field. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Predictive model for disinfection by-product in Alexandria drinking water, northern west of Egypt.

    PubMed

    Abdullah, Ali M; Hussona, Salah El-dien

    2013-10-01

    Chlorine has been utilized in the early stages of water treatment processes as disinfectant. Disinfection for drinking water reduces the risk of pathogenic infection but may pose a chemical threat to human health due to disinfection residues and their by-products (DBP) when the organic and inorganic precursors are present in water. In the last two decades, many modeling attempts have been made to predict the occurrence of DBP in drinking water. Models have been developed based on data generated in laboratory-scale and field-scale investigations. The objective of this paper is to develop a predictive model for DBP formation in the Alexandria governorate located at the northern west of Egypt based on field-scale investigations as well as laboratory-controlled experimentations. The present study showed that the correlation coefficient between trihalomethanes (THM) predicted and THM measured was R (2)=0.88 and the minimum deviation percentage between THM predicted and THM measured was 0.8 %, the maximum deviation percentage was 89.3 %, and the average deviation was 17.8 %, while the correlation coefficient between dichloroacetic acid (DCAA) predicted and DCAA measured was R (2)=0.98 and the minimum deviation percentage between DCAA predicted and DCAA measured was 1.3 %, the maximum deviation percentage was 47.2 %, and the average deviation was 16.6 %. In addition, the correlation coefficient between trichloroacetic acid (TCAA) predicted and TCAA measured was R (2)=0.98 and the minimum deviation percentage between TCAA predicted and TCAA measured was 4.9 %, the maximum deviation percentage was 43.0 %, and the average deviation was 16.0 %.

  18. Bioanalytical and chemical evaluation of disinfection by-products in swimming pool water.

    PubMed

    Yeh, Ruby Y L; Farré, Maria José; Stalter, Daniel; Tang, Janet Y M; Molendijk, Jeffrey; Escher, Beate I

    2014-08-01

    Pool water disinfection is vital to prevent microbial pathogens. However, potentially hazardous disinfection by-products (DBP) are formed from the reaction between disinfectants and organic/inorganic precursors. The aim of this study was to evaluate the presence of DBPs in various swimming pool types in Brisbane, Australia, including outdoor, indoor and baby pools, and the dynamics after a complete water renewal. Chemical analysis of 36 regulated and commonly found DBPs and total adsorbable organic halogens as well as in vitro bioassays targeting cytotoxicity, oxidative stress and genotoxicity were used to evaluate swimming pool water quality. Dichloroacetic acid and trichloroacetic acid dominated in the pool water samples with higher levels (up to 2600 μg/L) than the health guideline values set by the Australian Drinking Water Guidelines (100 μg/L). Chlorinated DBPs occurred at higher concentrations compared to tap water, while brominated DBPs decreased gradually with increasing pool water age. Biological effects were expressed as chloroacetic acid equivalent concentrations and compared to predicted effects from chemical analysis and biological characterisation of haloacetic acids. The quantified haloacetic acids explained 35-118% of the absorbable organic halogens but less than 4% of the observed non-specific toxicity (cytotoxicity), and less than 1% of the observed oxidative stress response and genotoxicity. While the DBP concentrations in Australian pools found in this study are not likely to cause any adverse health effect, they are higher than in other countries and could be reduced by better hygiene of pool users, such as thorough showering prior to entering the pool and avoiding urination during swimming. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Detection of genotoxic effects of drinking water disinfection by-products using Vicia faba bioassay.

    PubMed

    Hu, Yu; Tan, Li; Zhang, Shao-Hui; Zuo, Yu-Ting; Han, Xue; Liu, Na; Lu, Wen-Qing; Liu, Ai-Lin

    2017-01-01

    Plant-based bioassays have gained wide use among the toxicological and/or ecotoxicological assessment procedures because of their simplicity, sensitivity, low cost, and reliability. The present study describes the use of Vicia faba (V. faba) micronucleus (MN) test and V. faba comet assay in the evaluation of the genotoxic potential of disinfection by-products (DBPs) commonly found in chlorine-disinfected drinking water. Five haloacetic acids and three halogenated acetonitriles were chosen as representatives of DBPs in this study because they are of potentially great public health risk. Results of the MN test indicated that monochloroacetic acid (MCA), monobromoacetic acid (MBA), dichloroacetic acid (DCA), dibromoacetic acid (DBA), trichloroacetic acid (TCA), and trichloroacetonitrile (TCAN) caused a statistically significant increase in MN frequency in V. faba root tip cells. However, no genotoxic response was observed for dichloroacetonitrile (DCAN) and dibromoacetonitrile (DBAN). Results of the comet assay showed that all tested DBPs induced a statistically significant increase in genomic DNA damage to V. faba root tip cells. On considering the capacity to detect genomic damage of a different nature, we suggest that a combination of V. faba MN test and V. faba comet assay is a useful tool for the detection of genotoxic effects of DBPs. It is worthy of assessing the feasibility of using V. faba comet assay combined with V. faba MN test to screen for the genotoxic activity of chlorinated drinking water in future work.

  20. Tracking disinfection by-products and arsenic removal during various drinking water treatment trains.

    PubMed

    Tubić, Aleksandra; Dalmacija, Bozo; Agbaba, Jasmina; Ivancev-Tumbas, Ivana; Klasnja, Mile; Dalmacija, Milena

    2010-01-01

    In the central Banat region (Northern Serbia), groundwater is used as a drinking water source. Raw water originates from a 40-80 m and 100-150 m deep layer. It contains a high amount of natural organic matter (DOC = 9.17+/-0.87 mg C/L) with a trihalomethanes formation potential of 448+/-88.2 microg/L and a haloacetic acid formation potential of 174+/-68.9 microg/L. A high amount of arsenic (86.0+/-3.4 microg/L) is also found in this water. This study used a pilot-scale system to investigate the possibilities of combining polyaluminium chloride and ferrous-chloride to remove disinfection by-products precursors and arsenic by coagulation. Two treatment trains with different pre-treatment steps were investigated (ozone vs. H2O2/O3). For the final water polishing, filtration with granulated activated carbon (GAC) was applied. Both investigated treatment lines achieved a satisfactory chemical water quality. Simulation of disinfection conditions was performed and the contents of trihalomethanes and haloacetic acids measured, to investigate whether the chemical quality of the water remained satisfactory over a 48 hour period.

  1. Formation of disinfection by-products in the ultraviolet/chlorine advanced oxidation process.

    PubMed

    Wang, Ding; Bolton, James R; Andrews, Susan A; Hofmann, Ron

    2015-06-15

    Disinfection by-product (DBP) formation may be a concern when applying ultraviolet light and free chlorine (UV/chlorine) as an advanced oxidation process (AOP) for drinking water treatment, due to typically large chlorine doses (e.g. 5-10 mg L(-1) as free chlorine). A potential mitigating factor is the low chlorine contact times for this AOP treatment (e.g. seconds). Full-scale and pilot-scale test results showed minimal trihalomethane (THM) and haloacetic acid (HAA) formation during UV/chlorine treatment, while dichloroacetonitrile (DCAN) and bromochloroacetonitrile (BCAN) were produced rapidly. Adsorbable organic halide (AOX) formation was significant when applying the UV/chlorine process in water that had not been previously chlorinated, while little additional formation was observed in prechlorinated water. Chlorine photolysis led to chlorate and bromate formation, equivalent to approximately 2-17% and 0.01-0.05% of the photolyzed chlorine, respectively. No perchlorate or chlorite formation was observed. During simulated secondary disinfection of AOP-treated water, DBP formation potential for THMs, HAAs, HANs, and AOX was observed to increase approximately to the same extent as was observed for pretreatment using the more common AOP of UV combined with hydrogen peroxide (UV/H2O2).

  2. Effect of water chemistry on disinfection by-product formation in the complex surface water system.

    PubMed

    Hao, Rongjie; Zhang, Yan; Du, Tingting; Yang, Li; Adeleye, Adeyemi S; Li, Yao

    2017-04-01

    The relationship between the disinfection by-products (DBPs) formed with chlorination and chloramination techniques and the water chemistry of Haihe River was compared. Samples were collected at 28 different points within the mainstream and tributaries of the river. The DBPs investigated include trihalomethanes (THMs), haloacetic acids (HAAs), haloacetonitriles (HANs), haloketones (HKs), and trichloronitromethane. THMs formed when the samples were chlorinated mostly exceeded 100 and 600 μg/L in the mainstream and tributaries and in the estuary, respectively. A similar trend was obtained for HAAs whose concentrations exceeded 150 μg/L in almost all samples. The amounts of DBPs formed when the samples were chloraminated were much lower than when chlorination was used. The concentrations and species of THMs and HAAs in samples collected from sites near the estuary were different from those in samples collected from the mainstream, which may be due to high concentrations of Cl(-) and Br(-). Although natural organic matter is the major cause of DBP formation during water disinfection, this study shows that other water chemistry factors such as salt composition and concentrations may also considerably affect the formation of DBPs in natural aquatic systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Disinfection by-products effect on swimmers oxidative stress and respiratory damage.

    PubMed

    Llana-Belloch, Salvador; Priego Quesada, Jose Ignacio; Pérez-Soriano, Pedro; Lucas-Cuevas, Ángel G; Salvador-Pascual, Andrea; Olaso-González, Gloria; Moliner-Martinez, Yolanda; Verdú-Andres, Jorge; Campins-Falco, Pilar; Gómez-Cabrera, M Carmen

    2016-08-01

    Disinfection by-products (DBPs) are generated through the reaction of chlorine with organic and inorganic matter in indoor swimming pools. Different DBPs are present in indoor swimming pools. This study evaluated the effects of different chlorinated formations in oxidative stress and lung damage in 20 swimmers after 40 min of aerobic swimming in 3 indoor pools with different characteristics. Biological samples were collected to measure lung damage (serum-surfactant-associated proteins A and B), oxidative stress parameters (plasma protein carbonylation and malondialdehyde, and whole-blood glutathione oxidation), and swimming exertion values (blood lactate) before and after exercise. Free chlorine and combined chlorine in water, and chlorine in air samples were determined in all the swimming pools. Chlorination as disinfection treatment led to the formation of chloramines in water samples, mainly mono- and dichloramine. However, free chlorine was the predominate species in ultraviolet-treated swimming pool. Levels of total chlorine increased as a function of the swimming activity in chlorinated swimming pools. The lower quality of the installation resulted in a higher content of total chlorine, especially in air samples, and therefore a higher exposure of the swimmer to DBPs. However, the concentration level of chlorinated DBPs did not result in significant variation in serum-surfactant-associated proteins A and oxidative stress parameters in swimmers. In conclusion, the quality of the installation affected the DBPs concentration; however, it did not lead to lung epithelial damage and oxidative stress parameters in swimmers.

  4. Volatile disinfection by-product analysis from chlorinated indoor swimming pools.

    PubMed

    Weaver, William A; Li, Jing; Wen, Yuli; Johnston, Jessica; Blatchley, Michael R; Blatchley, Ernest R

    2009-07-01

    Chlorination of indoor swimming pools is practiced for disinfection and oxidation of reduced compounds that are introduced to water by swimmers. However, there is growing concern associated with formation for chlorinated disinfection by-products (DBPs) in these settings. Volatile DBPs are of particular concern because they may promote respiratory ailments and other adverse health effects among swimmers and patrons of indoor pool facilities. To examine the scope of this issue, water samples were collected from 11 pools over a 6month period and analyzed for free chlorine and their volatile DBP content. Eleven volatile DBPs were identified: monochloramine (NH(2)Cl), dichloramine (NHCl(2)), trichloramine (NCl(3)), chloroform (CHCl(3)), bromoform (CHBr(3)), dichlorobromomethane (CHBrCl(2)), dibromochloromethane (CHBr(2)Cl), cyanogen chloride (CNCl), cyanogen bromide (CNBr), dichloroacetonitrile (CNCHCl(2)), and dichloromethylamine (CH(3)NCl(2)). Of these 11 DBPs, 10 were identified as regularly occurring, with CHBrCl(2) only appearing sporadically. Pool water samples were analyzed for residual chlorine compounds using the DPD colorimetric method and by membrane introduction mass spectrometry (MIMS). These two methods were chosen as complementary measures of residual chlorine, and to allow for comparisons between the methods. The DPD method was demonstrated to consistently overestimate inorganic chloramine content in swimming pools. Pairwise correlations among the measured volatile DBPs allowed identification of dichloromethylamine and dichloroacetonitrile as potential swimming pool water quality indicator compounds.

  5. Genotoxic evaluation of the non-halogenated disinfection by-products nitrosodimethylamine and nitrosodiethylamine.

    PubMed

    Liviac, D; Creus, A; Marcos, R

    2011-01-30

    Disinfection by-products (DBPs) are chemicals that are produced as a result of chlorine being added to water for disinfection. As well as the halogenated DBPs, N-nitrosamines have recently been identified as DBPs, especially when amines and ammonia ions are present in raw water. In this work, the genotoxicity of two nitrosamines, namely nitrosodimethylamine (NDMA) and nitrosodiethylamine (NDEA), has been studied in cultured human cells. To evaluate their genotoxic potential two assays were used, the comet assay and the micronucleus test. The comet assay measures the induction of single and double-strand breaks, and also reveals the induced oxidative DNA damage by using endoIII and FPG enzymes. Chromosomal damage was evaluated by means of the cytokinesis-blocked micronucleus test. The results of the comet assay show that both compounds are slightly genotoxic but only at high concentrations, NDEA being more effective than NDMA. Enzyme treatments revealed that only NDEA was able to produce increased levels of oxidized bases, mainly in purine sites. The results obtained in the micronucleus assay, which measures the capacity of the tested agents to induce clastogenic and/or aneugenic effects, are negative for both of the nitrosamines evaluated, either using TK6 cells or human peripheral blood lymphocytes. Taking into account the very high concentrations needed to produce DNA damage, our data suggest a low, if existent, genotoxic risk associated with the presence of these compounds in drinking water.

  6. Carbonaceous and nitrogenous disinfection by-product formation from algal organic matter.

    PubMed

    Goslan, Emma H; Seigle, Céline; Purcell, Diane; Henderson, Rita; Parsons, Simon A; Jefferson, Bruce; Judd, Simon J

    2017-03-01

    Seasonal algal blooms in drinking water sources release intracellular and extracellular algal organic matter (AOM) in significant concentrations into the water. This organic matter provides precursors for disinfection by-products (DBPs) formed when the water is subsequently chlorinated at the final disinfection stage of the potable water treatment process. This paper presents results of AOM characterisation from five algal species (three cyanobacteria, one diatom and one green) alongside the measurement of the DBP formation potential from the AOM of six algal species (an additional diatom). The character was explored in terms of hydrophilicity, charge and protein and carbohydrate content. 18 DBPs were measured following chlorination of the AOM samples: the four trihalomethanes (THMs), nine haloacetic acids (HAAs), four haloacetonitriles (HANs) and one halonitromethane (HNM). The AOM was found to be mainly hydrophilic (52 and 81%) in nature. Yields of up to 92.4 μg mg(-1) C carbonaceous DBPs were measured, with few consistent trends between DBP formation propensity and either the specific ultraviolet absorbance (SUVA) or the chemical characteristics. The AOM from diatomaceous algae formed significant amounts of nitrogenous DBPs (up to 1.7 μg mg(-1) C). The weak trends in DBPFP may be attributable to the hydrophilic nature of AOM, which also makes it more challenging to remove by conventional water treatment processes.

  7. [Advances of study on assessing exposure to disinfection by-products in drinking water].

    PubMed

    Ye, Bixiong; Wang, Wuyi

    2009-07-01

    DBP exposure assessment issues were addressed. The basic definition to exposure assessment was introduced. Recommended ideal set of drinking water quality parameters to collect for each water treatment plant and specific disinfection by-products to be considered for future studies to adequately characterize DBP exposure were sum up. Previous studies and shortcoming of DBP exposure assessment were discussed and considered. Two examples of DBP exposure assessment were used to explain the progress and method of assessment in detail. Various disciplines to develop better approaches for measuring DBP exposure and greater collaboration of epidemiologists with water utilities and regulators should be encouraged in order to make regulatory monitoring data more useful for epidemiologic studies.

  8. [Study advance and control measure on disinfection by-products in drinking water].

    PubMed

    Wei, Jianrong; Wang, Zhengang

    2004-01-01

    The related studies on the chemistry, toxicology, epidemiology, distribution level, hygienic standard or maximum contaminant level and control measure were summarized. The results showed that a lot of disinfection by-products (DBPs) formed during chlorination and trihaloromethanes (THMs) and haloacetic acids (HAAs) were the two major groups of found in drinking water. From the present knowledge and health effects, the DBPs of most interest are THMs, HAAs, bromate and chlorite. The hygienic standard or maximum contaminant level of drinking water have been revised or supplemented. In order to decrease the chemical risk due to DBPs without compromising microbiological quality, the monitor parameters have been increased and maximum contaminant levels of the parameters have been controlled strictly.

  9. Control of disinfection by-products in canned vegetables caused by water used in their processing.

    PubMed

    Cardador, Maria Jose; Gallego, Mercedes

    2017-01-01

    Canned vegetables come into contact with sanitizers and/or treated water in industry during several steps (namely washing, sanitising, blanching and filling with sauces or brine solutions) and therefore they can contain disinfection by-products - DBPs). This study focused on the occurrence of trihalomethanes (THMs) and haloacetic acids (HAAs) in a wide variety of canned vegetables (75 samples). For each vegetable, the edible solid and liquid phases of the package were separated and analysed individually. DBPs can be present in both solid (up to eight species) and liquid (up to 11 species) phases, their levels being higher in liquid ones. Volatile THMs predominate in the edible solid phase (up to four species), while HAAs do so in the liquid phase (up to five species) according to their ionic and non-volatile nature. The lowest concentrations of DBPs were found in tomatoes because they were often preserved in their own juice, without water.

  10. Effects of thermal treatment on halogenated disinfection by-products in drinking water.

    PubMed

    Wu, W W; Benjamin, M M; Korshin, G V

    2001-10-01

    The influence of heating or boiling on the formation and behavior of disinfection by-products (DBPs) was investigated in DBP-spiked reagent water, municipal tap water, and synthetic water containing chlorinated aquatic humic substances. Thermal cleavage of larger halogenated species leads to both formation of smaller chlorinated molecules (including THMs and HAAs) and dechlorination of organics. In parallel with their formation from larger molecules, THMs can be volatilized, and this latter process dominates the change in their concentration when water is boiled. HAAs are not volatile, but they can be destroyed by chemical reactions at elevated temperatures, with the net effect being loss of trihalogenated HAAs and either formation or loss of less chlorinated HAAs. Although other identifiable DBPs can be generated at slightly elevated temperatures, in most cases their concentrations decline dramatically when the solution is heated.

  11. Chlorination Disinfection By-Products in Drinking Water and Congenital Anomalies: Review and Meta-Analyses

    PubMed Central

    Nieuwenhuijsen, Mark J.; Martinez, David; Grellier, James; Bennett, James; Best, Nicky; Iszatt, Nina; Vrijheid, Martine; Toledano, Mireille B.

    2009-01-01

    Objectives The aim of this study was to review epidemiologic evidence, provide summary risk estimates of the association between exposure to chlorination disinfection by-products (DBPs) and congenital anomalies, and provide recommendations for future studies. Data sources and extraction We included all published epidemiologic studies that evaluated a relationship between an index of DBP exposure (treatment, water source, DBP measurements, and both DBP measurements and personal characteristics) and risk of congenital anomalies. When three or more studies examined the same exposure index and congenital anomaly, we conducted a meta-analysis to obtain a summary risk estimate comparing the highest exposure group with the lowest exposure group. When five or more studies examined total trihalomethane (TTHM) exposure and a specific congenital anomaly, we conducted a meta-analysis to obtain exposure–response risk estimates per 10 μg/L TTHM. Data synthesis For all congenital anomalies combined, the meta-analysis gave a statistically significant excess risk for high versus low exposure to water chlorination or TTHM [17%; 95% confidence interval (CI), 3–34] based on a small number of studies. The meta-analysis also suggested a statistically significant excess risk for ventricular septal defects (58%; 95% CI, 21–107), but this was based on only three studies, and there was little evidence of an exposure–response relationship. We observed no statistically significant relationships in the other meta-analyses. We found little evidence for publication bias, except for urinary tract defects and cleft lip and palate. Conclusion Although some individual studies have suggested an association between chlorination disinfection by-products and congenital anomalies, meta-analyses of all currently available studies demonstrate little evidence of such an association. PMID:20019896

  12. Reproductive and developmental effects of disinfection by-products in drinking water.

    PubMed Central

    Reif, J S; Hatch, M C; Bracken, M; Holmes, L B; Schwetz, B A; Singer, P C

    1996-01-01

    Recent epidemiologic studies have reported associations between the consumption of chlorinated drinking water and reproductive and developmental effects. Here we review the available epidemiologic data, assess the hazard potential posed by exposure to disinfection by-products, identify critical data gaps, and offer recommendations for further research. The epidemiologic evidence supporting associations between exposure to water disinfection by-products (DBPs) and adverse pregnancy outcomes is sparse, and positive findings should be interpreted cautiously. The methods used during the early stages of research in this area have been diverse. Variability in exposure assessment and endpoints makes it difficult to synthesize or combine the available data. Exposure misclassification and unmeasured confounding may have lead to bias in risk estimation. Future studies of reproductive outcome and exposure to chlorinated water should use improved methods for exposure assessment to 1) assure selection of appropriate exposure markers, 2) assess seasonal and annual fluctuations in DBPs, 3) assess variability within the distribution system, and 4) assess exposure through multiple routes such as bathing and showering, as well as consumption. Population-based studies should be conducted to evaluate male and female fertility, conception delay, growth retardation, and specific birth defects. The reproductive and developmental effects of exposure to DBPs could be efficiently explored in ongoing investigations by incorporating valid exposure markers and relevant questionnaire information. Future studies should make use of naturally occurring variability in the concentrations of DBPs and may incorporate biomarkers of exposure and effect in their design. Epidemiologic investigations should be conducted in parallel with laboratory-based and animal studies in a coordinated, multidisciplinary approach. PMID:8930546

  13. Water purification systems: a comparative analysis based on the occurrence of disinfection by-products.

    PubMed

    Gibbons, J; Laha, S

    1999-09-01

    Trihalomethanes (THMs) are halogenated hydrocarbons, and are by-products of the chlorination of drinking water. Most THMs are formed in drinking water when chlorine reacts with naturally occurring organic substances such as decomposing plant and animal materials. Risks for certain types of cancer are now being correlated with the presence of disinfection by-products (DBPs). The present research uses gas chromatography to analyze the presence and levels of THMs in drinking water samples from a variety of sources. These include (1) municipal drinking water from two south Florida counties; (2) two brands of bottled water; (3) untreated residential well water; and (4) municipal tap water passed through additional water purification systems. The results are summarized in a tabular format, and the compliance of each water with existing US EPA-mandated standards is examined. General conclusions from this study are that all the waters tested complied with federal regulations regarding THM levels, properly functioning home filtration units may be quite effective in further reducing DBP concentrations and, as expected, non-chlorinated waters such as bottled water and residential well water contain lower THM levels.

  14. Exposure estimates to disinfection by-products of chlorinated drinking water.

    PubMed

    Weisel, C P; Kim, H; Haltmeier, P; Klotz, J B

    1999-02-01

    Exposure to disinfection by-products (DBPs) of drinking water is multiroute and occurs in households serviced by municipal water treatment facilities that disinfect the water as a necessary step to halt the spread of waterborne infectious diseases. Biomarkers of the two most abundant groups of DBPs of chlorination, exhaled breath levels of trihalomethanes (THMs) and urinary levels of two haloacetic acids, were compared to exposure estimates calculated from in-home tap water concentrations and responses to a questionnaire related to water usage. Background THM breath concentrations were uniformly low. Strong relationships were identified between the THM breath concentrations collected after a shower and both the THM water concentration and the THM exposure from a shower, after adjusting for the postshower delay time in collecting the breath sample. Urinary haloacetic acid excretion rates were not correlated to water concentrations. Urinary trichloroacetic acid excretion rates were correlated with ingestion exposure, and that correlation was stronger in a subset of individuals who consumed beverages primarily within their home where the concentration measurements were made. No correlation was observed between an average 48-hr exposure estimate and the urinary dichloroacetic acid excretion rate, presumably because of its short biological half-life. Valid biomarkers were identified for DBP exposures, but the time between the exposure and sample collection should be considered to account for different metabolic rates among the DBPs. Further, using water concentration as an exposure estimate can introduce misclassification of exposure for DBPs whose primary route is ingestion due to the great variability in the amount of water ingested across a population.

  15. Exposure estimates to disinfection by-products of chlorinated drinking water.

    PubMed Central

    Weisel, C P; Kim, H; Haltmeier, P; Klotz, J B

    1999-01-01

    Exposure to disinfection by-products (DBPs) of drinking water is multiroute and occurs in households serviced by municipal water treatment facilities that disinfect the water as a necessary step to halt the spread of waterborne infectious diseases. Biomarkers of the two most abundant groups of DBPs of chlorination, exhaled breath levels of trihalomethanes (THMs) and urinary levels of two haloacetic acids, were compared to exposure estimates calculated from in-home tap water concentrations and responses to a questionnaire related to water usage. Background THM breath concentrations were uniformly low. Strong relationships were identified between the THM breath concentrations collected after a shower and both the THM water concentration and the THM exposure from a shower, after adjusting for the postshower delay time in collecting the breath sample. Urinary haloacetic acid excretion rates were not correlated to water concentrations. Urinary trichloroacetic acid excretion rates were correlated with ingestion exposure, and that correlation was stronger in a subset of individuals who consumed beverages primarily within their home where the concentration measurements were made. No correlation was observed between an average 48-hr exposure estimate and the urinary dichloroacetic acid excretion rate, presumably because of its short biological half-life. Valid biomarkers were identified for DBP exposures, but the time between the exposure and sample collection should be considered to account for different metabolic rates among the DBPs. Further, using water concentration as an exposure estimate can introduce misclassification of exposure for DBPs whose primary route is ingestion due to the great variability in the amount of water ingested across a population. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:9924004

  16. Photochemical and bacterial transformations of disinfection by-product precursors in water.

    PubMed

    Chow, Alex T; Díaz, Francisco J; Wong, Kin-Hang; O'Geen, Anthony T; Dahlgren, Randy A; Wong, Po-Keung

    2013-09-01

    In situ grab sampling from source waters and water extraction from source materials are common methods for determining disinfection by-product (DBP) formation potential (FP) of water samples or reactivity of dissolved organic matter (DOM) in forming DBPs during chlorination. However, DOM, as the main DBP precursor, collected using these techniques may not represent the DOM reacting with disinfectants due to biogeochemical alterations during water conveyance to drinking water treatment facilities. In this study, we exposed leachates from fresh litter and associated decomposed duff to natural sunlight or K-12 for 14 d and evaluated the changes, if any, on the propensity to form trihalomethane (THM), haloacetonitrile (HAN), and chloral hydrate (CHD) during chlorination. Sunlight treatment did not significantly change dissolved organic carbon (DOC) concentration but caused a 24 to 43% decrease in the specific ultraviolet absorbance (SUVA) at 254 nm, indicating that UV-active chromophores were transformed or degraded. There were significant increases ( < 0.05) in specific HAN formation potential (HAN-FP) and specific CHD formation potential (CHD-FP) (i.e., HAN and CHD formation potentials per unit carbon), but no change in specific THM formation potential (THM-FP) after sunlight exposure. In contrast, bacterial treatment did not show any significant effect on SUVA, specific chlorine demand, or any specific DBP-FPs, although bacterial colony counts suggested DOM in leachates was utilized for bacterial growth. Results of this study confirmed that the reactivity of DOM in forming DBPs could be different after biogeochemical processes compared with its source materials. For this study, photochemical reactions had a greater effect on DBP-FPs than did microbial degradation. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  17. Identification of endocrine active disinfection by-products (DBPs) that bind to the androgen receptor.

    PubMed

    Holmes, Breanne E; Smeester, Lisa; Fry, Rebecca C; Weinberg, Howard S

    2017-11-01

    The formation of disinfection by-products (DBPs) in drinking water occurs when chemical disinfectants such as chlorine and chloramine react with natural organic matter and anthropogenic pollutants. Some DBPs have been linked to bladder cancer and infertility; however, the underlying mechanism of action is unknown. One possibility is disruption of the endocrine system, with DBPs binding to the androgen receptor and subsequently altering gene expression. Using the androgen receptor-binding assay and in silico molecular docking, the binding affinity of 21 suspected and known DBPs were tested individually at concentrations over the range 0.1 nM-2 mM. 14 DBPs were found to bind at IC50 values ranging from 1.86 mM for 2,3-dichloropropionamide to 13.5 μM for 3,4,5,6-tetrachloro-benzoquinone as compared to the positive control, 4-n-nonylphenol which bound at 31.6 μM. Since DBPs are present in drinking waters as mixtures, the question of how IC50 values for individual DBPs might be affected by the presence of other chemicals is addressed. Seven of the chemicals with the strongest binding affinities and one chemical with no binding affinity were tested in binary mixtures with 4-n-nonylphenol, a known androgenic chemical found in some surface waters. In these binary mixtures, concentration additive binding was observed. While typical levels of individual androgenic DBPs in drinking water are below their measured IC50 values, their combined binding abilities in mixtures could be a source of androgen disruption. Copyright © 2017. Published by Elsevier Ltd.

  18. Effect of ozonation and UV irradiation with direct filtration on disinfection and disinfection by-product precursors in drinking water treatment.

    PubMed

    Amirsardari, Y; Yu, Q; Willams, P

    2001-09-01

    Pilot plant studies were conducted to evaluate the effect of pre-ozonation and ultraviolet irradiation on disinfection, disinfection by-product precursors and water quality in a direct filtration water treatment system. Disinfection parameters including total coliforms, faecal coliforms and heterotrophic plate count were investigated. Total organic carbon (TOC), trihalomethanes (THMs), total organic halides (TOX), filtered water turbidity and colour were also evaluated. It was found that advanced pre-oxidation processes (ozonation and UV irradiation) significantly increase the level of disinfection of raw water. Removal of total trihalomethanes and total organic halides precursors improved with ozonation and UV irradiation, compared to no oxidation treatment in direct filtration and/or in conventional water treatment. All coliforms (total and faecal) were completely destroyed by ozonation alone, and also with ozonation in conjunction with UV irradiation. However, the heterotrophic plate count was not significantly reduced at an ozone residual concentration of 0.1 mg l(-1). This suggests that disinfection efficiency is strongly influenced by competition reactions of organic and inorganic compounds with ozone. Precursors of total trihalomethanes and total organic halides were reduced by 90% and 98%, respectively, with advanced pre-oxidation processes. Water quality parameters were improved by the pre-ozonation and UV irradiation treatment system.

  19. DISINFECTION BY-PRODUCTS OF HEALTH CONCERN IN DRINKING WATER: RESULTS OF A U.S. NATIONWIDE OCCURRENCE STUDY

    EPA Science Inventory

    Drinking water disinfection by-products (DBPs) are of concern because some epidemiologic studies have shown that some DBPs are associated with cancer or adverse reproductive/developmental effects in human populations, and other studies have shown that certain DBPs cause similar h...

  20. Combining Mass Spectrometry and Toxicology for a Multi-Country European Epidemiologic Study on Drinking Water Disinfection By-Products

    EPA Science Inventory

    The HiWATE (Health Impacts of long-term exposure to disinfection by-products in drinking WATEr) project is the first systematic analysis that combines the epidemiology on adverse pregnancy outcomes with analytical chemistry and analytical biology in the European Union. This study...

  1. Combining Mass Spectrometry and Toxicology for a Multi-Country European Epidemiologic Study on Drinking Water Disinfection By-Products.

    EPA Science Inventory

    The HiWATE (Health Impacts of long-term exposure to disinfection by-products in drinking WATEr) project is the first systematic analysis that combines the epidemiology on adverse pregnancy outcomes with analytical chemistry and analytical biology in the European Union. This study...

  2. EPIDEMIOLOGIC EVALUATION OF THE POTENTIAL ASSOCIATION BETWEEN EXPOSURE TO DRINKING WATER DISINFECTION BY-PRODUCTS (DBP) AND SEMEN QUALITY

    EPA Science Inventory

    Epidemiologic Evaluation of the Potential Association between Exposure to Drinking Water Disinfection By-Products and Semen Quality
    *Morris, R; +Olshan, A; +Lansdell, L; *Jeffay, S; *Strader, L; *Klinefelter, G; *Perreault, S.

    * U.S. EPA/ORD/NHEERL/RTD/GEEBB, Research ...

  3. IDENTIFICATION OF PROTEINS INVOLVED IN TESTICULAR TOXICITY INDUCED BY HALOACID BY-PRODUCTS OF DRINKING WATER DISINFECTION

    EPA Science Inventory

    Dibromoacetic acid (DBA), a prevalent disinfection by-product in drinking water, perturbs spermiogenesis in adult rats suggesting that Sertoli-germ cell communication is compromised. When isolated seminiferous tubules from rats exposed to DBA in vivo were cultured, quantitative a...

  4. RENAL CARCINOGENICITY OF INDIVIDUAL AND A MIXTURE OF DRINKING WATER DISINFECTION BY-PRODUCTS (DBP) IN EKER RATS

    EPA Science Inventory

    RENAL CARCINOGENICITY OF INDIVIDUAL AND A MIXTURE OF DRINKING / WATER DISINFECTION BY -PRODUCTS (DBP) IN EKER RATS.

    Eker rats develop hereditary renal cell carcinoma secondary to a germline mutation in the tuberous sclerosis 2 tumor suppressor gene, and are highly suscepti...

  5. Combining Mass Spectrometry and Toxicology for a Multi-Country European Epidemiologic Study on Drinking Water Disinfection By-Products.

    EPA Science Inventory

    The HiWATE (Health Impacts of long-term exposure to disinfection by-products in drinking WATEr) project is the first systematic analysis that combines the epidemiology on adverse pregnancy outcomes with analytical chemistry and analytical biology in the European Union. This study...

  6. Combining Mass Spectrometry and Toxicology for a Multi-Country European Epidemiologic Study on Drinking Water Disinfection By-Products

    EPA Science Inventory

    The HiWATE (Health Impacts of long-term exposure to disinfection by-products in drinking WATEr) project is the first systematic analysis that combines the epidemiology on adverse pregnancy outcomes with analytical chemistry and analytical biology in the European Union. This study...

  7. Use of Normal Human Colon Cells to Assess Toxicities of Unregulated Disinfection By-products and Mixtures

    EPA Science Inventory

    The discovery of chlorination and chloramination by-products other than the regulated trihalomethanes and haloacetic acids has created a need for short-term in vitro assays to address toxicities that might be associated with human exposure. Approximately 600 disinfection by-produ...

  8. Developmental toxicity of mixtures: the water disinfection by-products dichloro-, dibromo- and bromochloro acetic acid in rat embryo culture

    EPA Science Inventory

    The chlorination of drinking water results in production of numerous disinfection by-products (DBPs). One of the important classes of DBPs is the haloacetic acids. We have previously shown that the haloacetic acids (HAs), dichloro (DCA), dibromo (DBA) and bromochloro (BCA) acetic...

  9. THE OCCURRENCE OF DISINFECTION BY-PRODUCTS OF HEALTH CONCERN IN DRINKING WATER: RESULTS OF A NATIONWIDE DBP OCCURRENCE STUDY

    EPA Science Inventory

    The motivation for this Nationwide Disinfection By-product (DBP) Occurrence Study was two-fold: First, more than 500 DBPs have been reported in the literature, yet there is almost no quantitative occurrence information for most. As a result, there is significant uncertainty ove...

  10. The healthy men study: an evaluation of exposure to disinfection by-products in tap water and sperm quality

    EPA Science Inventory

    BACKGROUND: Chlorination of drinking water generates disinfection by-products (DBPs), which have been shown to disrupt spermatogenesis in rodents at high doses, suggesting that DBPs could pose a reproductive risk to men. In this study we assessed DBP exposure and testicular toxic...

  11. EPIDEMIOLOGIC EVALUATION OF THE POTENTIAL ASSOCIATION BETWEEN EXPOSURE TO DRINKING WATER DISINFECTION BY-PRODUCTS (DBP) AND SEMEN QUALITY

    EPA Science Inventory

    Epidemiologic Evaluation of the Potential Association between Exposure to Drinking Water Disinfection By-Products and Semen Quality
    *Morris, R; +Olshan, A; +Lansdell, L; *Jeffay, S; *Strader, L; *Klinefelter, G; *Perreault, S.

    * U.S. EPA/ORD/NHEERL/RTD/GEEBB, Research ...

  12. Significance of pH on the Cytotoxic Potential of the Water Disinfection By-Product Iodoacetic Acid

    EPA Science Inventory

    Significance of pH on the Cytotoxic Potential of the Water Disinfection By-Product Iodoacetic Acid Vicki Richardson1, Susan D. Richardson2, Mary Moyer3, Jane Ellen Simmons1, and Anthony DeAngelo1, 1U.S. Environmental Protection Agency, Research Triangle Park, NC, 2University of...

  13. THE CARCINOGENIC RESPONSE TO A MIXTURE OF DRINKING WATER DISINFECTION BY-PRODUCTS (DBP) WAS LESS THAN ADDITIVE

    EPA Science Inventory

    THE CARCINOGENIC RESPONSE TO A MIXTURE OF DRINKING WATER DISINFECTION BY -PRODUCTS (DBP) W AS LESS THAN ADDITIVE.

    Current default risk assessments for chemical mixtures assume additivity of carcinogenic effects but this may under or over represent the actual biological res...

  14. Reproductive toxicity of a mixture of regulated drinking-water disinfection by-products in a multigenerational rat bioassay

    EPA Science Inventory

    BACKGROUND:Trihalomethanes (THMs) and haloaretic acids (HAAs) are regulated disinfection by-products (DBPs); their joint reproductive toxicity in drinking water is unknown.OBJECTIVE: We aimed to evaluate a drinking water mixture of the four regulated THMs and five regulated HAAs ...

  15. TOXICITY-BASED IDENTIFICATION OF DRINKING WATER DISINFECTION BY-PRODUCTS USING ESI-MS AND ESI-MS/MS

    EPA Science Inventory

    The goal of this research is to use a bio-assay directed approach to focus identification work on the most toxicologically important disinfection by-products. To this end, drinking water is being collected from full-scale treatment plants that use chlorine, ozone, chlorine dioxi...

  16. TOXICITY-BASED IDENTIFICATION OF DRINKING WATER DISINFECTION BY-PRODUCTS USING LC/MS AND LC/MS/MS

    EPA Science Inventory

    The goal of this research is to use a bio-assay directed approach to focus identification work on the most toxicologically important disinfection by-products. To this end, drinking water is being collected from full-scale treatment plants that use chlorine, ozone, chlorine dioxi...

  17. INVESTIGATIONS INTO THE GC/MS DECOMPOSITION OF TRIBROMONITROMETHANE IN DRINKING WATER DISINFECTION BY-PRODUCT ANALYSIS

    EPA Science Inventory

    Tribromonitromethane (bromopicrin) has been found to be a disinfection by-product (DBP) in
    chlorinated1 and ozonated2 drinking water, and is structurally similar to dibromonitromethane,
    which has been indicated through structural analysis to be a possible carcinogen. Bromop...

  18. Reproductive toxicity of a mixture of regulated drinking-water disinfection by-products in a multigenerational rat bioassay

    EPA Science Inventory

    BACKGROUND:Trihalomethanes (THMs) and haloaretic acids (HAAs) are regulated disinfection by-products (DBPs); their joint reproductive toxicity in drinking water is unknown.OBJECTIVE: We aimed to evaluate a drinking water mixture of the four regulated THMs and five regulated HAAs ...

  19. THE COMBINED CARCINOGENIC RISK FOR EXPOSURE TO MIXTURES OF DRINKING WATER DISINFECTION BY-PRODUCTS MAY BE LESS THAN ADDITIVE

    EPA Science Inventory

    The Combined Carcinogenic Risk for Exposure to Mixtures of Drinking Water Disinfection By-Products May be Less Than Additive

    Risk assessment methods for chemical mixtures in drinking water are not well defined. Current default risk assessments for chemical mixtures assume...

  20. Changes in Markers of Genotoxicity in Relation to Exposure to Disinfection By-Products in Swimming Pools

    EPA Science Inventory

    Exposure to disinfection by-products (DBPs) has been associated with cancer risk, but the mechanisms of action are poorly understood. A recent study found increased bladder cancer risk among subjects attending swimming pools, where uptake of DBPs, such as trihalomethanes (THMs) c...

  1. ASSESSING EXPOSURE IN EPIDEMIOLOGIC STUDIES TO DISINFECTION BY-PRODUCTS IN DRINKING WATER: REPORT FROM AN INTERNATIONAL WORKSHOP

    EPA Science Inventory

    The inability to accurately assess exposure has been one of the major shortcomings of epidemiologic studies of disinfection by-products (DBPs) in drinking water. A number of contributing factors include: (1) limited information on the identity, occurrence, toxicity and pharmacok...

  2. DISINFECTION BY-PRODUCTS OF HEALTH CONCERN IN DRINKING WATER: RESULTS OF A U.S. NATIONWIDE OCCURRENCE STUDY

    EPA Science Inventory

    Drinking water disinfection by-products (DBPs) are of concern because some epidemiologic studies have shown that some DBPs are associated with cancer or adverse reproductive/developmental effects in human populations, and other studies have shown that certain DBPs cause similar h...

  3. APPLICATION OF SOLID PHASE MICROEXTRACTION GC/MS TO THE CHARACTERIZATION OF HYDROPHILIC DISINFECTION BY-PRODUCTS IN WATER

    EPA Science Inventory

    The U.S. Environmental Protection Agency has given high priority to research aimed at developing methods to extract hydrophilic disinfection by-products (DBPs) from drinking water. Public water supplies are treated with a variety of chemicals aimed at reducing or eliminating inf...

  4. THE OCCURRENCE OF DISINFECTION BY-PRODUCTS OF HEALTH CONCERN IN DRINKING WATER: RESULTS OF A NATIONWIDE DBP OCCURRENCE STUDY

    EPA Science Inventory

    The motivation for this Nationwide Disinfection By-product (DBP) Occurrence Study was two-fold: First, more than 500 DBPs have been reported in the literature, yet there is almost no quantitative occurrence information for most. As a result, there is significant uncertainty ove...

  5. THE CARCINOGENIC RESPONSE TO A MIXTURE OF DRINKING WATER DISINFECTION BY-PRODUCTS (DBP) WAS LESS THAN ADDITIVE

    EPA Science Inventory

    THE CARCINOGENIC RESPONSE TO A MIXTURE OF DRINKING WATER DISINFECTION BY -PRODUCTS (DBP) W AS LESS THAN ADDITIVE.

    Current default risk assessments for chemical mixtures assume additivity of carcinogenic effects but this may under or over represent the actual biological res...

  6. Significance of pH on the Cytotoxic Potential of the Water Disinfection By-Product Iodoacetic Acid

    EPA Science Inventory

    Significance of pH on the Cytotoxic Potential of the Water Disinfection By-Product Iodoacetic Acid Vicki Richardson1, Susan D. Richardson2, Mary Moyer3, Jane Ellen Simmons1, and Anthony DeAngelo1, 1U.S. Environmental Protection Agency, Research Triangle Park, NC, 2University of...

  7. RENAL CARCINOGENICITY OF INDIVIDUAL AND A MIXTURE OF DRINKING WATER DISINFECTION BY-PRODUCTS (DBP) IN EKER RATS

    EPA Science Inventory

    RENAL CARCINOGENICITY OF INDIVIDUAL AND A MIXTURE OF DRINKING / WATER DISINFECTION BY -PRODUCTS (DBP) IN EKER RATS.

    Eker rats develop hereditary renal cell carcinoma secondary to a germline mutation in the tuberous sclerosis 2 tumor suppressor gene, and are highly suscepti...

  8. Use of Normal Human Colon Cells to Assess Toxicities of Unregulated Disinfection By-products and Mixtures

    EPA Science Inventory

    The discovery of chlorination and chloramination by-products other than the regulated trihalomethanes and haloacetic acids has created a need for short-term in vitro assays to address toxicities that might be associated with human exposure. Approximately 600 disinfection by-produ...

  9. The healthy men study: an evaluation of exposure to disinfection by-products in tap water and sperm quality

    EPA Science Inventory

    BACKGROUND: Chlorination of drinking water generates disinfection by-products (DBPs), which have been shown to disrupt spermatogenesis in rodents at high doses, suggesting that DBPs could pose a reproductive risk to men. In this study we assessed DBP exposure and testicular toxic...

  10. Cumulative toxicity of an environmentally relevant mixture of nine regulated disinfection by-products in a multigenerational rat reproductive bioassay

    EPA Science Inventory

    CUMULATIVE TOXICITY OF AN ENVIRONMENTALLY RELEVANT MIXTURE OF NINE REGULATED DISINFECTION BY-PRODUCTS IN A MULTIGENERATIONAL RAT REPRODUCTIVE BIOASSAY J E Simmons, GR. Klinefelter, JM Goldman, AB DeAngelo, DS Best, A McDonald, LF Strader, AS Murr, JD Suarez, MH George, ES Hunte...

  11. Cumulative toxicity of an environmentally relevant mixture of nine regulated disinfection by-products in a multigenerational rat reproductive bioassay

    EPA Science Inventory

    CUMULATIVE TOXICITY OF AN ENVIRONMENTALLY RELEVANT MIXTURE OF NINE REGULATED DISINFECTION BY-PRODUCTS IN A MULTIGENERATIONAL RAT REPRODUCTIVE BIOASSAY J E Simmons, GR. Klinefelter, JM Goldman, AB DeAngelo, DS Best, A McDonald, LF Strader, AS Murr, JD Suarez, MH George, ES Hunte...

  12. IDENTIFICATION OF PROTEINS INVOLVED IN TESTICULAR TOXICITY INDUCED BY HALOACID BY-PRODUCTS OF DRINKING WATER DISINFECTION

    EPA Science Inventory

    Dibromoacetic acid (DBA), a prevalent disinfection by-product in drinking water, perturbs spermiogenesis in adult rats suggesting that Sertoli-germ cell communication is compromised. When isolated seminiferous tubules from rats exposed to DBA in vivo were cultured, quantitative a...

  13. Developmental toxicity of mixtures: the water disinfection by-products dichloro-, dibromo- and bromochloro acetic acid in rat embryo culture

    EPA Science Inventory

    The chlorination of drinking water results in production of numerous disinfection by-products (DBPs). One of the important classes of DBPs is the haloacetic acids. We have previously shown that the haloacetic acids (HAs), dichloro (DCA), dibromo (DBA) and bromochloro (BCA) acetic...

  14. THE COMBINED CARCINOGENIC RISK FOR EXPOSURE TO MIXTURES OF DRINKING WATER DISINFECTION BY-PRODUCTS MAY BE LESS THAN ADDITIVE

    EPA Science Inventory

    The Combined Carcinogenic Risk for Exposure to Mixtures of Drinking Water Disinfection By-Products May be Less Than Additive

    Risk assessment methods for chemical mixtures in drinking water are not well defined. Current default risk assessments for chemical mixtures assume...

  15. Formation of known and unknown disinfection by-products from natural organic matter fractions during chlorination, chloramination, and ozonation.

    PubMed

    Li, Chunmei; Wang, Donghong; Xu, Xiong; Wang, Zijian

    2017-06-01

    Natural organic matter (NOM) is the main precursor of disinfection by-products (DBPs) formed during drinking water treatment processes. Previous studies of the relationships between DBP formation and NOM fractionation have mainly been focused on currently regulated DBPs and a few certain emerging DBPs. In this work, the Suwannee River NOM solution was fractionated into groups with different hydrophobicities using DAX-8 resins, and volatile and semi-volatile DBPs formed during the chlorination, chloramination and ozonation of the NOM fractions were examined by a nontargeted screening of comprehensive two-dimensional gas chromatography-quadrupole mass spectrometry procedure. The results showed that a total of 302 DBPs representing nine chemical classes were detected, of which 266 were possibly newly detected, based on library searching with NIST 08 library (using similarity and reverse values of at least 600 and 700, respectively) and linear retention indices. The characterization of DBP precursors suggests that hydrophobic (HPO) NOM contains the major fraction of precursor for the formation of nitrogenous DBPs (contributing about 60% of the total nitrogenous DBPs) during all three disinfection processes. Much larger amounts of heterocyclic DBPs were formed from the HPO fraction than from the hydrophilic fraction during chlorination. During chloramination and ozonation, 5-15 times more ketones were formed from the hydrophilic fraction than from the HPO fraction. During ozonation, more than twice the amounts of esters and alcohols were formed from the hydrophilic fraction than from the HPO fraction. Three-dimensional excitation-emission matrix spectra suggest that similar to the formation of regulated DBPs, humic acid-like substances are probably the precursors of halogen-containing DBPs. Relatively higher nitrogenous DBPs formation from the HPO fraction might be because of the existence of protein-like materials.

  16. Disinfection By-Product Exposures and the Risk of Specific Cardiac Birth Defects

    PubMed Central

    Wright, J. Michael; Evans, Amanda; Kaufman, John A.; Rivera-Núñez, Zorimar; Narotsky, Michael G.

    2016-01-01

    Background: Epidemiological studies suggest that women exposed to disinfection by-products (DBPs) have an increased risk of delivering babies with cardiovascular defects (CVDs). Objective: We examined nine CVDs in relation to categorical DBP exposures including bromoform, chloroform, dibromochloromethane (DBCM), bromodichloromethane (BDCM), monobromoacetic acid (MBAA), dichloroacetic acid (DCAA), trichloroacetic acid (TCAA), and summary DBP measures (HAA5, THMBr, THM4, and DBP9). Methods: We calculated adjusted odds ratios (aORs) in a case–control study of birth defects in Massachusetts with complete quarterly 1999–2004 trihalomethane (THM) and haloacetic acid (HAA) data. We randomly matched 10 controls each to 904 CVD cases based on week of conception. Weight-averaged aggregate first-trimester DBP exposures were assigned to individuals based on residence at birth. Results: We detected associations for tetralogy of Fallot and the upper exposure categories for TCAA, DCAA, and HAA5 (aOR range, 3.34–6.51) including positive exposure–response relationships for DCAA and HAA5. aORs consistent in magnitude were detected between atrial septal defects and bromoform (aOR = 1.56; 95% CI: 1.01, 2.43), as well as DBCM, chloroform, and THM4 (aOR range, 1.26–1.67). Ventricular septal defects (VSDs) were associated with the highest bromoform (aOR = 1.85; 95% CI: 1.20, 2.83), MBAA (aOR = 1.81; 95% CI: 0.85, 3.84), and DBCM (aOR = 1.54; 95% CI: 1.00, 2.37) exposure categories. Conclusions: To our knowledge, this is the first birth defect study to develop multi-DBP adjusted regression models as well as the first CVD study to evaluate HAA exposures and the second to evaluate bromoform exposures. Our findings, therefore, inform exposure specificity for the consistent associations previously reported between THM4 and CVDs including VSDs. Citation: Wright JM, Evans A, Kaufman JA, Rivera-Núñez Z, Narotsky MG. 2017. Disinfection by-product exposures and the risk of specific

  17. OXIDATIVE DNA DAMAGE AND REPAIR IN RATS TREATED WITH POTASSIUM BROMATE AND A MIXTUE OF DRINKING WATER DISINFECTION BY-PRODUCTS

    EPA Science Inventory

    Oxidative DNA Damage and Repair in Rats Treated with Potassium Bromate and a Mixture of Drinking Water Disinfection By-Products

    Public drinking water treated with chemical disint'ectants contains a complex mixture of disinfection by-products (D BPs). There is a need for m...

  18. OXIDATIVE DNA DAMAGE FROM POTASSIUM BROMATE EXPOSURE IN LONG-EVANS RATS IS NOT ENHANCED BY A MIXTURE OF DRINKING WATER DISINFECTION BY-PRODUCTS

    EPA Science Inventory

    Public drinking water treated with chemical disinfectants contains a complex mixture of disinfection by-products (DBPs) for which the relative toxicity of the mixtures needs to be characterized to accurately assess risk. Potassium bromate (KBrO3) is a by-product from ozonation of...

  19. MUTAGENICITY IN SALMONELLA AND DNA DAMAGE IN THE CHO/COMET ASSAY INDUCED BY NITROHALOMETHANES, A NOVEL CLASS OF DRINKING WATER DISINFECTION BY-PRODUCTS

    EPA Science Inventory

    Mutagenicity in Salmonella and DNA Damage in the CHO/Comet Assay Induced by Nitrohalomethanes, a Novel Class of Drinking Water Disinfection By-Products.

    Halomethanes are a class of drinking water disinfection by-products (DBPs) whose genotoxicity has been studied extensi...

  20. OXIDATIVE DNA DAMAGE FROM POTASSIUM BROMATE EXPOSURE IN LONG-EVANS RATS IS NOT ENHANCED BY A MIXTURE OF DRINKING WATER DISINFECTION BY-PRODUCTS

    EPA Science Inventory

    Public drinking water treated with chemical disinfectants contains a complex mixture of disinfection by-products (DBPs) for which the relative toxicity of the mixtures needs to be characterized to accurately assess risk. Potassium bromate (KBrO3) is a by-product from ozonation of...

  1. Integrated disinfection by-products mixtures research: assessment of developmental toxicity in Sprague-Dawley rats exposed to concentrates of water disinfected by chlorination and ozonation/postchlorination.

    PubMed

    Narotsky, Michael G; Best, Deborah S; Rogers, Ellen H; McDonald, Anthony; Sey, Yusupha M; Simmons, Jane Ellen

    2008-01-01

    Epidemiological and animal toxicity studies have raised concerns regarding possible adverse health effects of disinfection by-products (DBPs) found in drinking water. The classes and concentrations of DBPs are influenced by the choice of disinfection process (e.g., chlorination, ozonation) as well as source water characteristics (e.g., pH, total organic carbon, bromide content). Disinfected waters were found to contain more than 500 compounds, many of which remain unidentified. Therefore, a "whole-mixture" approach was used to evaluate the toxic potential of alternative disinfection scenarios. An in vivo developmental toxicity screen was used to evaluate the adverse developmental effects of the complex mixtures produced by two different disinfection processes. Water was obtained from East Fork Lake, Ohio; spiked with iodide and bromide; and disinfected either by chlorination or by ozonation/postchlorination, producing finished drinking water suitable for human consumption. These waters were concentrated approximately 130-fold by reverse osmosis membrane techniques. To the extent possible, volatile DBPs lost in the concentration process were spiked back into the concentrates. These concentrates were then provided as drinking water to Sprague-Dawley rats on gestation days 6-16; controls received boiled, distilled, deionized water. The dams (19-20 per group) were allowed to deliver and their litters were examined on postnatal days (PD) 1 and 6. All dams delivered normally, with parturition occurring significantly earlier in the ozonation/postchlorination group. However, no effects on prenatal survival, postnatal survival, or pup weight were evident. Skeletal examination of the PD-6 pups also revealed no treatment effects. Thus, approximately 130-fold higher concentrates of both ozonated/postchlorinated and chlorinated water appeared to exert no adverse developmental effects in this study.

  2. Control of disinfection by-product formation using ozone-based advanced oxidation processes.

    PubMed

    Chen, Kuan-Chung; Wang, Yu-Hsiang

    2012-01-01

    The effects of ozone dosage, water temperature and catalyst addition in an ozonation-fluidized bed reactor (O3/FBR) on treated water quality and on the control of chlorinated and ozonated disinfection by-products (DBPs) were investigated. A biofiltration column was used to evaluate its removal efficiency on biodegradable organic matter and to reduce DBP formation. The Dong-Gang River, polluted by agricultural and domestic wastewater in Pingtung, Taiwan, was used as the water source. The treated water quality in terms of dissolved organic carbon (DOC), biodegradable DOC, ultraviolet absorbance at 254 nm (UV254) and specific UV absorbance (SUVA) improved with increasing ozone and catalyst dosages. Catalytic ozonation was more effective than ozonation alone at reducing the formation of DBPs at a given dosage. Experimental results show that water temperature had little effect on the treated water quality with the O3/FBR system used in this study (p > 0.05). The combination of O3/FBR and the biofiltration process effectively decreased the amount ofDBP precursors. The concentration of total trihalomethanes (TTHMs) was less than the maximum contaminant level (MCL) requirement, which is 80 microg/L, for all treated waters and the concentration of five haloacetic acids (HAA5) fell below 60 microg/L with an ozone dosage higher than 2.5 mg/L.

  3. Removal of disinfection by-product precursors with ozone-UV advanced oxidation process.

    PubMed

    Chin, A; Bérubé, P R

    2005-05-01

    The efficacy of using ozone (O3), ultraviolet irradiation (UV) and the combined O3-UV advanced oxidation process (AOP) to remove 2 classes of disinfection by-product (DBP) precursors from raw surface water samples have been evaluated and compared. In particular, trihalomethane and haloacetic acids formation potentials were measured. Laboratory batch scale experiments were carried out as a function of ozone and UV dosage in order to study the removal kinetics. It is concluded that the combined O3-UV AOP is more effective than either the ozone or UV treatment alone. Ozone-UV AOP is capable of mineralizing up to 50% of the total organic carbon from the raw source water at an ozone dose of 0.62+/-0.019 mg O3/mL and a UV dose of 1.61 W s/cm2. In addition, O3-UV AOP can reduce trihalomethane formation potential by roughly 80% and haloacetic acids formation potential by roughly 70% at the same ozone and UV dosage.

  4. A feasibility study of cumulative risk assessment methods for drinking water disinfection by-product mixtures.

    PubMed

    Teuschler, Linda K; Rice, Glenn E; Wilkes, Charles R; Lipscomb, John C; Power, Fred W

    Humans are exposed daily to complex mixtures of chemicals, including drinking water disinfection by-products (DBPs) via oral, dermal, and inhalation routes. Some positive epidemiological and toxicological studies suggest reproductive and developmental effects and cancer are associated with consumption of chlorinated drinking water. Thus, the U.S. Environmental Protection Agency (EPA) conducted research to examine the feasibility of evaluating simultaneous exposures to multiple DBPs via all three exposure routes. A cumulative risk assessment approach was developed for DBP mixtures by combining exposure modeling and physiologically based pharmacokinetic modeling results with a new mixtures risk assessment method, the cumulative relative potency factors (CRPF) approach. Internal doses were estimated for an adult female and an adult male, each of reproductive age, and for a child (age 6 yr) inclusive of oral, dermal, and inhalation exposures. Estimates of the daily internal doses were made for 13 major DBPs, accounting for activity patterns that affect the amount of human contact time with drinking water (e.g., tap water consumed, time spent showering), building characteristics (e.g., household air volumes), and physicochemical properties of the DBPs (e.g., inhalation rates, skin permeability rates, blood: air partition coefficients). A novel cumulative risk assessment method, the CRPF approach, is advanced that integrates the principles of dose addition and response addition to produce multiple-route, chemical mixture risk estimates using total absorbed doses. Research needs to improve this approach are presented.

  5. Precursors of nitrogenous disinfection by-products in drinking water--a critical review and analysis.

    PubMed

    Bond, Tom; Templeton, Michael R; Graham, Nigel

    2012-10-15

    In recent years research into the formation of nitrogenous disinfection by-products (N-DBPs) in drinking water - including N-nitrosodimethylamine (NDMA), the haloacetonitriles (HANs), haloacetamides (HAcAms), cyanogen halides (CNX) and halonitromethanes (HNMs) - has proliferated. This is partly due to their high reported toxicity of N-DBPs. In this review paper information about the formation yields of N-DBPs from model precursors, and about environmental precursor occurrence, has been employed to assess the amount of N-DBP formation that is attributable to known precursors. It was calculated that for HANs and HAcAms, the concentrations of known precursors - mainly free amino acids are insufficient to account for the observed concentrations of these N-DBP groups. However, at least in some waters, a significant proportion of CNX and NDMA formation can be explained by known precursors. Identified N-DBP precursors tend to be of low molecular weight and low electrostatic charge relative to bulk natural organic matter (NOM). This makes them recalcitrant to removal by water treatment processes, notably coagulation, as confirmed by a number of bench-scale studies. However, amino acids have been found to be easier to remove during water treatment than would be suggested by the known molecular properties of the individual free amino acids.

  6. Removing of Disinfection By-Product Precursors from Surface Water by Using Magnetic Graphene Oxide.

    PubMed

    Liu, Zhongmou; Wang, Xianze; Luo, Zhen; Huo, Mingxin; Wu, Jinghui; Huo, Hongliang; Yang, Wu

    2015-01-01

    The magnetic graphene oxide (MGO) was successfully synthesised by the in situ chemical co-precipitation method with Fe3+, Fe2+ and graphene oxide (GO) in laboratory and, was used as an adsorbent for disinfection by-product (DBP) precursors removing from four natural surface water samples. The results indicate that various DBPs formation significantly decreased by 7-19% to 78-98% for the four samples after MGO treatment and, the treatment process was rapidly reached equilibrium within 20 minutes. The DBP precursors removal efficiency decreased with the increasing pH value from 4 to 10. Hydrophobic compounds (humic acid and fulvic acid) are more sensitive to MGO, whereas hydrophilic and nitrogenous compounds (aromatic proteins) are more insensitive. MGO could be regenerated by using 20% (v/v) ethanol and, the DBP precursors removal efficiency can stay stable after five cycles. These results indicate that MGO can be utilized as a promising adsorbent for the removal of DBP precursors from natural surface water.

  7. Neurotoxicological evaluation of two disinfection by-products, bromodichloromethane and dibromoacetonitrile, in rats.

    PubMed

    Moser, Virginia C; Phillips, Pamela M; McDaniel, Katherine L; Sills, Robert C

    2007-02-12

    The Safe Drinking Water Act requires that the U.S. EPA consider noncancer endpoints for the assessment of adverse human health effects of disinfection by-products (DBPs). As an extension of our studies in which we demonstrated neurotoxicity at relatively low levels of dibromo- and dichloroacetic acids, we examined the potential neurotoxicity of other classes of DBPs. Bromodichloromethane (BDCM) and dibromoacetonitrile (DBAN) were administered to male and female F-344 rats via drinking water for 6 months. During exposure, rats were tested for neurobehavioral effects using a functional observational battery and motor activity, followed by perfusion fixation for neuropathological evaluation at the end of exposure. Calculating for chemical loss, fluid consumption, and body weight, average intakes were approximately: 9, 27, and 72mg/(kgday) BDCM, and 5, 12, and 29mg/(kgday) DBAN. Fluid consumption was decreased in most treatment groups, but body weight gain was altered only at the high concentrations. There were few neurobehavioral changes, and these were not considered toxicologically relevant. Of the general observations, there was only minimally decreased body tone in DBAN-treated high-dose males. Treatment-related neuropathological findings were not observed. Lowered fluid consumption was the most sensitive and consistent endpoint in the present studies. Thus, unlike the haloacetic acids, neurotoxicity may not be a concern for toxicity of halomethanes or haloacetonitriles.

  8. Impacts of drinking water pretreatments on the formation of nitrogenous disinfection by-products.

    PubMed

    Chu, Wenhai; Gao, Naiyun; Deng, Yang; Templeton, Michael R; Yin, Daqiang

    2011-12-01

    The formation of disinfection by-products (DBPs), including both nitrogenous DBPs (N-DBPs) and carbonaceous DBPs (C-DBPs), was investigated by analyzing chlorinated water samples following the application of three pretreatment processes: (i) powdered activated carbon (PAC) adsorption; (ii) KMnO(4) oxidation and (iii) biological contact oxidation (BCO), coupled with conventional water treatment processes. PAC adsorption can remove effectively the precursors of chloroform (42.7%), dichloroacetonitrile (28.6%), dichloroacetamide (DCAcAm) (27.2%) and trichloronitromethane (35.7%), which were higher than that pretreated by KMnO(4) oxidation and/or BCO process. The removal efficiency of dissolved organic carbon by BCO process (76.5%)--was superior to that by PAC adsorption (69.9%) and KMnO(4) oxidation (61.4%). However, BCO increased the dissolved organic nitrogen (DON) concentration which caused more N-DBPs to be formed during subsequent chlorination. Soluble microbial products including numerous DON compounds were produced in the BCO process and were observed to play an essential role in the formation of DCAcAm in particular.

  9. Occurrence, profiling and prioritization of halogenated disinfection by-products in drinking water of China.

    PubMed

    Ding, Huanhuan; Meng, Liping; Zhang, Haifeng; Yu, Jianwei; An, Wei; Hu, Jianying; Yang, Min

    2013-07-01

    The occurrence of 28 disinfection by-products (DBPs), which were divided into 5 groups, in 70 drinking water treatment plants in 31 cities across China was investigated, and the toxic potency of each DBP group was calculated using mammalian cell toxicity data from previous studies for profiling. Of the 28 DBPs, 21 were detected with an average frequency of detection of 50%. Trihalomethanes (THM4) and haloacetic acids (HAAs) were the most predominant species, whose median concentration levels were at 10.53 and 10.95 μg L(-1), respectively. Two of four iodinated trihalomethanes (I-THMs) were detected, and the concentration of the I-THMs ranged from under the detection limit to 5.58 μg L(-1). The total concentration of haloacetonitriles (HANs) in different water samples ranged from under the limit of detection to 39.20 μg L(-1), with a median concentration of 1.11 μg L(-1). Two of four halonitromethanes (HNMs) were detected, and the maximum concentrations of chloronitromethane (CNM) and trichloronitromethane (TCNM) were 0.96 and 0.28 μg L(-1), respectively. HANs were found to be the most potent DBP group in terms of cytotoxicity, and HANs and HAAs had the same level of genotoxic potency. These results indicate that although at a low concentration level, the toxic potency of the unregulated HANs in drinking water may not be neglected.

  10. Formation of N-nitrosodimethylamine (NDMA) from reaction of monochloramine: a new disinfection by-product.

    PubMed

    Choi, Junghoon; Valentine, Richard L

    2002-02-01

    Studies have been conducted specifically to investigate the hypothesis that N-nitrosodimethylamine (NDMA) can be produced by reactions involving monochloramine. Experiments were conducted using dimethylamine (DMA) as a model precursor. NDMA was formed from the reaction between DMA and monochloramine indicating that it should be considered a potential disinfection by-product. The formation of NDMA increased with increased monochloramine concentration and showed maximum in yield when DMA was varied at fixed monochloramine concentrations. The mass spectra of the NDMA formed from DMA and 15N isotope labeled monochloramine (15NH2Cl) showed that the source of one of the nitrogen atoms in the nitroso group in NDMA was from monochloramine. Addition of 0.05 and 0.5 mM of preformed monochloramine to a secondarily treated wastewater at pH 7.2 also resulted in the formation of 3.6 and 111 ng/L of NDMA, respectively, showing that this is indeed an environmentally relevant NDMA formation pathway. The proposed NDMA formation mechanism consists of (i) the formation of 1,1-dimethylhydrazine (UDMH) intermediate from the reaction of DMA with monochloramine followed by, (ii) the oxidation of UDMH by monochloramine to NDMA, and (iii) the reversible chlorine transfer reaction between monochloramine and DMA which is parallel to (i). We conclude that reactions involving monochloramine in addition to classical nitrosation reactions are potentially important pathways for NDMA formation.

  11. Impact of groundwater surface storage on chlorination and disinfection by-product formation.

    PubMed

    Padhi, R K; Satpathy, K K; Subramanian, S

    2015-09-01

    The change in water quality arising from the open storage of groundwater (GW) and its impact on chlorination and chlorination by-product formation were investigated. Water quality descriptors, such as temperature, pH, chlorophyll, and dissolved oxygen contents of GW undergo substantial alteration when stored in a reservoir. Dissolved organic content (DOC) measured in the two water sources studied, i.e., GW and open reservoir water (RW), varied from 0.41 mg/L to 0.95 mg/L and 0.93 mg/L to 2.53 mg/L, respectively. Although DOC demonstrated wide variation, UV absorbance at 254 nm (UVA254) values for GW (0.022-0.067) and RW (0.037-0.077) did not display reciprocal variations. The chlorine demand (CD) of RW was always higher than that of GW for the corresponding sampling period. Average trihalomethane (THM) formation for RW was 50-80% higher compared to GW and thus poses an enhanced health risk. Appreciable amounts of bromide present in these water sources (0.15-0.26 mg/L in GW and 0.17-0.65 mg/L in RW) have resulted in the non-selective distribution of the four THM species. The formation of more toxic brominated THM due to chlorination of these near-coast drinking water sources must be regarded as a decisive factor for the choice of water disinfection regime.

  12. Impact of chitosan and polyacrylamide on formation of carbonaceous and nitrogenous disinfection by-products.

    PubMed

    Li, Zhao; Chen, Ting; Cui, Fuyi; Xie, Yuefeng; Xu, Wenqing

    2017-07-01

    Coagulation is one of the most commonly used practices in water treatment to remove natural organic matter, which can serve as precursors for disinfection by-products (DBPs). Furthermore, some coagulant aids, particularly amine-based polymers, could foster the formation of both carbonaceous and nitrogenous DBPs (C-DBPs and N-DBPs, respectively). In this study, we evaluated the formation potentials of 11 C-DBPs and N-DBPs during chloramination when two coagulant aids, chitosan and polyacrylamide (PAM), were used under typical water treatment conditions. Our results suggest that both chitosan and PAM promote the formation of N-DBPs, while neither affects the formation of C-DBPs. We further investigated a potential method to mitigate the formation of N-DBPs. Methyl iodide (MeI), an alkylating agent, was effective at reducing the formation of N-DBPs by converting amine to quaternary ammonium groups in chitosan. (1)H-NMR results confirmed that the quaternarization reaction did take place. This study reports that chitosan, a natural coagulant, and PAM contribute to the formation of toxic DBPs. More importantly, it provides a preventative strategy for curbing the formation of DBPs through chemical structural modification. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Formation of disinfection by-products after pre-oxidation with chlorine dioxide or ferrate.

    PubMed

    Yang, Xin; Guo, Wanhong; Zhang, Xing; Chen, Feng; Ye, Tingjin; Liu, Wei

    2013-10-01

    The effect of pre-oxidation with chlorine dioxide (ClO2) or ferrate (Fe(VI)) on the formation of disinfection by-products (DBPs) during chlorination or chloramination was tested with natural waters from 12 sources (9 surface waters, 1 groundwater, and 2 wastewater effluents). DBPs investigated included trihalomethanes (THM), chloral hydrate (CH), haloketones (HK), haloacetonitriles (HAN) and trichloronitromethane (TCNM), chlorite and chlorate. Chlorite and chlorate were found in the ClO2-treated waters. Application of 1 mg/L ClO2 ahead of chlorination reduced the formation potential for THM by up to 45% and the formation of HK, HAN and TCNM in most of the samples. The CH formation results were mixed. The formation of CH and HK was enhanced with low doses of Fe(VI) (1 mg/L as Fe), but was greatly reduced at higher doses (20 mg/L Fe). Fe(VI) reduced the formation of THM, HAN and TCNM in most of the samples. Reduced potential for the formation of NDMA was observed in most of the samples after both ClO2 and Fe(VI) pre-oxidation.

  14. Exposure to drinking water disinfection by-products and pregnancy loss.

    PubMed

    Savitz, David A; Singer, Philip C; Herring, Amy H; Hartmann, Katherine E; Weinberg, Howard S; Makarushka, Christina

    2006-12-01

    Previous research has suggested that exposure to elevated levels of drinking water disinfection by-products (DBPs) may cause pregnancy loss. In 2000-2004, the authors conducted a study in three US locations of varying DBP levels and evaluated 2,409 women in early pregnancy to assess their tap water DBP concentrations, water use, other risk factors, and pregnancy outcome. Tap water concentrations were measured in the distribution system weekly or biweekly. The authors considered DBP concentration and ingested amount and, for trihalomethanes only, bathing/showering and integrated exposure that included ingestion. On the basis of 258 pregnancy losses, they did not find an increased risk of pregnancy loss in relation to trihalomethane, haloacetic acid, or total organic halide concentrations; ingested amounts; or total exposure. In contrast to a previous study, pregnancy loss was not associated with high personal trihalomethane exposure (> or =75 micro g/liter and > or =5 glasses of water/day) (odds ratio = 1.1, 95% confidence interval: 0.7, 1.7). Sporadic elevations in risk were found across DBPs, most notably for ingested total organic halide (odds ratio = 1.5, 95% confidence interval: 1.0, 2.2 for the highest exposure quintile). These results provide some assurance that drinking water DBPs in the range commonly encountered in the United States do not affect fetal survival.

  15. Removing of Disinfection By-Product Precursors from Surface Water by Using Magnetic Graphene Oxide

    PubMed Central

    Liu, Zhongmou; Wang, Xianze; Luo, Zhen; Huo, Mingxin; Wu, Jinghui

    2015-01-01

    The magnetic graphene oxide (MGO) was successfully synthesised by the in situ chemical co-precipitation method with Fe3+, Fe2+ and graphene oxide (GO) in laboratory and, was used as an adsorbent for disinfection by-product (DBP) precursors removing from four natural surface water samples. The results indicate that various DBPs formation significantly decreased by 7–19% to 78–98% for the four samples after MGO treatment and, the treatment process was rapidly reached equilibrium within 20 minutes. The DBP precursors removal efficiency decreased with the increasing pH value from 4 to 10. Hydrophobic compounds (humic acid and fulvic acid) are more sensitive to MGO, whereas hydrophilic and nitrogenous compounds (aromatic proteins) are more insensitive. MGO could be regenerated by using 20% (v/v) ethanol and, the DBP precursors removal efficiency can stay stable after five cycles. These results indicate that MGO can be utilized as a promising adsorbent for the removal of DBP precursors from natural surface water. PMID:26623652

  16. Effects of tap water processing on the concentration of disinfection by-products.

    PubMed

    Rahman, M D Bayzidur; Driscoll, Tim; Clements, Mark; Armstrong, Bruce K; Cowie, Christine T

    2011-09-01

    This study examined the effects on disinfection by-product (DBP) concentrations of common household methods for processing drinking water. We investigated the effects of refrigerator storage, jug filtering, boiling in an electric kettle, and supply from an instant boiling water unit, with or without filtering, on four species of trihalomethanes (THMs) and nine species of haloacetic acids (HAAs) in water ready for consumption in Sydney, Australia. Water samples were processed in such a way as to simulate real life conditions for drinking filtered water or hot water drinks prepared from tap water drawn from public water supply systems. There was a large reduction in total THMs in kettle-boiled water, instant boiled water, jug-filtered water and instant boiled-filtered water (reductions of 85.8, 93.5, 92.6 and 87.8% of their concentration in tap water respectively). Refrigerator storage did not appear to have a consequential effect on THMs or HAAs. Jug-filtering and instant boiling and filtering resulted in large decreases (77-94%) in all species of HAAs in tap water. This study suggests that different methods of processing tap water can change DBP concentration to an extent that would have a meaningful impact on exposure assessment in epidemiological studies.

  17. Simultaneous determination of inorganic disinfection by-products and the seven standard anions by ion chromatography.

    PubMed

    Schminke, G; Seubert, A

    2000-08-25

    For the first time, an ion chromatographic method for the simultaneous determination of the disinfection by-products bromate, chlorite, chlorate, and the so-called seven standard anions, fluoride, chloride, nitrite, sulfate, bromide, nitrate and orthophosphate is presented. The separation of the ten anions was carried out using a laboratory-made high-capacity anion-exchanger. The high capacity anion-exchanger allowed the direct injection of large sample volumes without any sample pretreatment, even in the case of hard water samples. For quantification of fluoride, chloride, nitrite, sulfate, bromide, nitrate, orthophosphate and chlorate, a conductivity detection method was applied after chemical suppression. The post-column reaction, based on chlorpromazine, was optimized for the determination of chlorite and bromate. The method detection limit for bromate measured in deionized water is 100 ng/l and for chlorite, it is 700 ng/l. In hard drinking water, the method's detection limits are 700 ng/l (bromate) and 3.5 microg/l (chlorite). The method's detection limits for the other eight anions, determined by conductivity detection, are between 100 microg/l (nitrite) and 1.6 mg/l (chlorate).

  18. The epidemiology and possible mechanisms of disinfection by-products in drinking water.

    PubMed

    Nieuwenhuijsen, Mark J; Grellier, James; Smith, Rachel; Iszatt, Nina; Bennett, James; Best, Nicky; Toledano, Mireille

    2009-10-13

    This paper summarizes the epidemiological evidence for adverse health effects associated with disinfection by-products (DBPs) in drinking water and describes the potential mechanism of action. There appears to be good epidemiological evidence for a relationship between exposure to DBPs, as measured by trihalomethanes (THMs), in drinking water and bladder cancer, but the evidence for other cancers including colorectal cancer is inconclusive and inconsistent. There appears to be some evidence for an association between exposure to DBPs, specifically THMs, and little for gestational age/intrauterine growth retardation and, to a lesser extent, pre-term delivery, but evidence for relationships with other outcomes such as low birth weight, stillbirth, congenital anomalies and semen quality is inconclusive and inconsistent. Major limitations in exposure assessment, small sample sizes and potential biases may account for the inconclusive and inconsistent results in epidemiological studies. Moreover, most studies have focused on total THMs as the exposure metric, whereas other DBPs appear to be more toxic than the THMs, albeit generally occurring at lower levels in the water. The mechanisms through which DBPs may cause adverse health effects including cancer and adverse reproductive effects have not been well investigated. Several mechanisms have been suggested, including genotoxicity, oxidative stress, disruption of folate metabolism, disruption of the synthesis and/or secretion of placental syncytiotrophoblast-derived chorionic gonadotropin and lowering of testosterone levels, but further work is required in this area.

  19. Mammalian cell DNA damage and repair kinetics of monohaloacetic acid drinking water disinfection by-products.

    PubMed

    Komaki, Yukako; Pals, Justin; Wagner, Elizabeth D; Mariñas, Benito J; Plewa, Michael J

    2009-11-01

    Haloacetic acids (HAAs) are the second most common class of chlorinated water disinfection by-products (DBPs). The single cell gel electrophoresis genotoxicity assay using Chinese hamster ovary (CHO) cells was modified to include liquid holding recovery time to measure genomic DNA damage and repair kinetics of three monoHAAs: chloroacetic acid (CAA), bromoacetic acid (BAA), and iodoacetic acid (IAA). The rank order of genotoxic potency was IAA > BAA > CAA from previous research. The concentration of each HAA was chosen to generate approximately the same level of genotoxic damage. No cytotoxicity was expressed during the 24 h liquid holding period. Nuclei from CHO cells treated with BAA showed the lowest rate of DNA repair (t(50) = 296 min) compared to that of CAA or IAA (t(50) = 134 and 84 min, respectively). The different rates of genomic repair expressed by IAA or CAA versus BAA suggest that different distributions of DNA lesions are induced. The use of DNA repair coupled with genomic technologies may lead to the understanding of the biological and genetic mechanisms involved in toxic responses induced by DBPs.

  20. Multiple linear regression modeling of disinfection by-products formation in Istanbul drinking water reservoirs.

    PubMed

    Uyak, Vedat; Ozdemir, Kadir; Toroz, Ismail

    2007-06-01

    Oxidation of raw water with chlorine results in formation of trihalomethanes (THM) and haloacetic acids (HAA). Factors affecting their concentrations have been found to be organic matter type and concentration, pH, temperature, chlorine dose, contact time and bromide concentration, but the mechanisms of their formation are still under investigation. Within this scope, chlorination experiments have been conducted with water reservoirs from Terkos, Buyukcekmece and Omerli lakes, Istanbul, with different water quality regarding bromide concentration and organic matter content. The factors studied were pH, contact time, chlorine dose, and specific ultraviolet absorbance (SUVA). The determination of disinfection by-products (DBP) was carried out by gas chromatography techniques. Statistical analysis of the results was focused on the development of multiple regression models for predicting the concentrations of total THM and total HAA based on the use of pH, contact time, chlorine dose, and SUVA. The developed models provided satisfactory estimations of the concentrations of the DBP and the model regression coefficients of THM and HAA are 0.88 and 0.61, respectively. Further, the Durbin-Watson values confirm the reliability of the two models. The results indicate that under these experimental conditions which indicate the variations of pH, chlorine dosages, contact time, and SUVA values, the formation of THM and HAA in water can be described by the multiple linear regression technique.

  1. Disinfection by-products in filter backwash water: implications to water quality in recycle designs.

    PubMed

    McCormick, N J; Porter, M; Walsh, M E

    2010-08-01

    The overall purpose of this research was to investigate disinfection by-product (DBP) concentrations and formation potential in filter backwash water (FBWW) and evaluate at bench-scale the potential impact of untreated FBWW recycle on water quality in conventional drinking water treatment. Two chlorinated organic compound groups of DBPs currently regulated in North America were evaluated, specifically trihalomethanes (THMs) and haloacetic acids (HAAs). FBWW samples were collected from four conventional filtration water treatment plants (WTP) in Nova Scotia, Canada, in three separate sampling and plant audit campaigns. THM and HAA formation potential tests demonstrated that the particulate organic material contained within FBWW is available for reaction with chlorine to form DBPs. The results of the study found higher concentrations of TTHMs and HAA9s in FBWW samples from two of the plants that target a higher free chlorine residual in the wash water used to clean the filters (e.g., clearwell) compared to the other two plants that target a lower clear well free chlorine residual concentration. Bench-scale experiments showed that FBWW storage time and conditions can impact TTHM concentrations in these waste streams, suggesting that optimization opportunities exist to reduce TTHM concentrations in FBWW recycle streams prior to blending with raw water. However, mass balance calculations demonstrated that FBWW recycle practice by blending 10% untreated FBWW with raw water prior to coagulation did not impact DBP concentrations introduced to the rapid mix stage of a plant's treatment train.

  2. Monohaloacetic acid drinking water disinfection by-products inhibit follicle growth and steroidogenesis in mouse ovarian antral follicles in vitro

    PubMed Central

    Jeong, Clara H.; Gao, Liying; Dettro, Tyler; Wagner, Elizabeth D.; Ricke, William A.; Plewa, Michael J.; Flaws, Jodi A.

    2016-01-01

    Water disinfection greatly reduced the incidence of waterborne diseases, but the reaction between disinfectants and natural organic matter in water leads to the formation of drinking water disinfection by-products (DBPs). DBPs have been shown to be toxic, but their effects on the ovary are not well defined. This study tested the hypothesis that monohalogenated DBPs (chloroacetic acid, CAA; bromoacetic acid, BAA; iodoacetic acid, IAA) inhibit antral follicle growth and steroidogenesis in mouse ovarian follicles. Antral follicles were isolated and cultured with either vehicle or DBPs (0.25–1.00 mM of CAA; 2–15 µM of BAA or IAA) for 48 and 96 h. Follicle growth was measured every 24 h and the media were analyzed for estradiol levels at 96 h. Exposure to DBPs significantly inhibited antral follicle growth and reduced estradiol levels compared to controls. These data demonstrate that DBP exposure caused ovarian toxicity in vitro. PMID:27151372

  3. Monohaloacetic acid drinking water disinfection by-products inhibit follicle growth and steroidogenesis in mouse ovarian antral follicles in vitro.

    PubMed

    Jeong, Clara H; Gao, Liying; Dettro, Tyler; Wagner, Elizabeth D; Ricke, William A; Plewa, Michael J; Flaws, Jodi A

    2016-07-01

    Water disinfection greatly reduced the incidence of waterborne diseases, but the reaction between disinfectants and natural organic matter in water leads to the formation of drinking water disinfection by-products (DBPs). DBPs have been shown to be toxic, but their effects on the ovary are not well defined. This study tested the hypothesis that monohalogenated DBPs (chloroacetic acid, CAA; bromoacetic acid, BAA; iodoacetic acid, IAA) inhibit antral follicle growth and steroidogenesis in mouse ovarian follicles. Antral follicles were isolated and cultured with either vehicle or DBPs (0.25-1.00mM of CAA; 2-15μM of BAA or IAA) for 48 and 96h. Follicle growth was measured every 24h and the media were analyzed for estradiol levels at 96h. Exposure to DBPs significantly inhibited antral follicle growth and reduced estradiol levels compared to controls. These data demonstrate that DBP exposure caused ovarian toxicity in vitro.

  4. Exopolymeric substances from drinking water biofilms: Dynamics of production and relation with disinfection by products.

    PubMed

    Lemus Pérez, M F; Rodríguez Susa, M

    2017-06-01

    Exopolymeric substances (EPS) as an external matrix of biofilm could react with disinfectants in drinking water networks forming disinfection by-products (DBP). Based on an experimental setup using two chlorine conditions-biofilm 1 (2.6 ± 0.8 mgCl/L) and biofilm 2 (0.7 ± 0.2 mg Cl/L)-samples of biofilms were recovered during 9 campaigns and EPS were extracted. Analyses of SUVA, fluorescence and amino acid (AA) content were carried out on the EPS to observe variation over time and correlations with DBP formation potential (DBPfp) after chlorination. SUVA values were under 2 L/mgC*m showing that both EPS were hydrophilic. Slightly higher SUVA in biofilm 2 with low variation over time was observed. Fluorescence showed that aromatic proteins and fulvic like substances were the principal components and increased in biofilm 1 over time. AA decreased with time, and higher values of alanine, threonine, proline and isoleucine were observed in biofilm 2. Based on general associations, the SUVA of biofilm 2 correlated well with chloroform (CF) (r = 0.80). Generally, in both biofilms, tryptophan-like substances were negatively correlated with DBP while humic acid-like substances correlated positively, but with low indexes (r = 0.3-0.6). Correlations of data from individual sampling increased the indices (r over 0.8), suggesting a temporal influence of other factors on DBPfp such as inorganics, filtered water and the structural composition of EPS. In biofilm 1, Br-haloacetic acids (Br-HAA), dibromoacetonitrile and bromochloro acetonitrile were inversely associated with arginine and valine, as were di and trichloropropanone to arginine. On the contrary, in biofilm 2, the following amino acids correlated positively with DBP: alanine with Br-HAA, alanine with CF, alanine with N-DBP (chloropicrin, di and tri-chloro acetonitrile), and valine with CF. As this is the first report about the relation between temporal variation of EPS and DBPfp of biofilms in two different

  5. Mammalian cell cytotoxicity and genotoxicity analysis of drinking water disinfection by-products.

    PubMed

    Plewa, Michael J; Kargalioglu, Yahya; Vankerk, Danielle; Minear, Roger A; Wagner, Elizabeth D

    2002-01-01

    Cytotoxicity and genotoxicity assays were used to analyze drinking water disinfection by-products (DBPs) in Chinese hamster ovary (CHO) AS52 cells. The DBPs were chosen because they are common in drinking water, resulting from conventional disinfection using chlorination and chloramination. Data were also available to compare these results with cytotoxicity and mutagenicity studies in Salmonella typhimurium. The rank order in decreasing chronic cytotoxicity measured in a microplate-based assay was bromoacetic acid (BA) > 3-chloro-4-(dichloromethyl)-5-hydroxy-2[5H]-furanone (MX) > dibromoacetic acid (DBA) > chloroacetic acid (CA) > KBrO(3) > tribromoacetic acid (TBA) > EMS (ethylmethanesulfonate, positive control) > dichloroacetic acid (DCA) > trichloroacetic acid (TCA). The induction of DNA strand breaks by these agents was measured by alkaline single-cell gel electrophoresis (SCGE, comet assay) and the rank order in decreasing genotoxicity was BA > MX > CA > DBA > TBA > EMS > KBrO(3), while DCA and TCA were refractory. BA was more cytotoxic (31x) and genotoxic (14x) than MX in CHO cells. BA was over 400x more genotoxic than potassium bromate. The brominated haloacetic acids (HAAs) were more cytotoxic and genotoxic than their chlorinated analogs. The HAAs expressed a statistically significant inverse relationship in CHO cell cytotoxicity and genotoxicity as a function of increased numbers of halogen atoms per molecule. A quantitative comparison was conducted with results from a previous study with cytotoxicity and mutagenicity in S. typhimurium. There was no correlation between chronic CHO cell and bacterial cell cytotoxicity. DBP-induced CHO cell cytotoxicity was not related to mutagenic potency in S. typhimurium. Cytotoxicity in CHO cells was statistically significant and highly correlated to CHO cell genotoxicity. Finally, we determined that the DBP genotoxic potency in CHO cells and the mutagenic potency in S. typhimurium were not related. This suggests that

  6. Quantifying the formation of nitrogen-containing disinfection by-products in chlorinated water using absorbance and fluorescence indexes.

    PubMed

    Roccaro, P; Vagliasindi, F G A; Korshin, G V

    2011-01-01

    Among known but unregulated disinfection by-products (DBPs), several nitrogenous species (N-DBPs) have been found in drinking waters. While concentrations of N-DBP are much lower than those of trihalomethanes (THMs) and haloacetic acids (HAAs), their potential toxicity is higher. In this study the relationships between the formation of N-DBPs and the changes in NOM caused by the chlorination of raw Ancipa water quantified by the use of differential absorbance and fluorescence indexes were investigated. Very strong relationships were found between selected N-DBPs (i.e. trichloronitromethane and dichloroacetonitrile) and the proposed spectroscopic indexes that were previously developed to quantify the changes in natural organic matter (NOM) during chlorination at varying reaction conditions (chlorine dose, reaction time and temperature) and the generation of DBPs. Obtained results clearly indicate that the changes in NOM absorbance and fluorescence are fundamental descriptors of the formation of both commonly controlled halogenated DBPs and N-DBPs. This approach may be suitable for real time monitoring of emerging N-DBPs and for studying their formation pathways.

  7. Genotoxicity analysis of two halonitromethanes, a novel group of disinfection by-products (DBPs), in human cells treated in vitro

    SciTech Connect

    Liviac, Danae; Creus, Amadeu; Marcos, Ricard

    2009-04-15

    Halonitromethanes (HNMs) constitute an emerging class of disinfection by-products (DBPs) produced when chlorine and/or ozone are used for water treatment. The HNMs are structurally similar to halomethanes, but have a nitro-group in place of hydrogen bonded to the central carbon atom. Since little information exists on the genotoxic potential of HNMs, a study has been carried out with two HNM compounds, namely trichloronitromethane (TCNM) and bromonitromethane (BNM) by using human cells. Primary damage induction has been measured with the Comet assay, which is used to determine both the repair kinetics of the induced damage and the proportion of induced oxidative damage. In addition, the fixed DNA damage has been evaluated by using the micronucleus (MN) assay. The results obtained indicate that both compounds are genotoxic, inducing high levels of DNA breaks in the Comet assay, and that this DNA damage repairs well over time. In addition, oxidized bases constitute a high proportion of DNA-induced damage (50-75%). Contrarily, no positive effects were observed in the frequency of micronucleus, which measures both clastogenic and aneugenic effects, neither using TK6 cells nor peripheral blood lymphocytes. This lack of fixed genetic damage would minimize the potential mutagenic risk associated with HNMs exposure.

  8. Effect of ozone on algal organic matters as precursors for disinfection by-products production.

    PubMed

    Zhang, Qiang; Liu, Bin; Liu, Yan

    2014-08-01

    The effect of ozone dose on algae (Microcystic aeruginosa), algal extracellular organic matters (EOM), humic acids (HA) and four model compounds: bovine serum albumin (BSA), starch, deoxyribonucleic acid (DNA) and fish oil as precursors for disinfection by-products (DBPs) production was investigated. Algae showed the highest DBPs formation (71.8 microg mg-1 total organic carbon (TOC)) than other samples. Only BSA showed lower chloroform yield (5.9 microg mg-1 TOC) than haloacetic acids, HAAs (11.2 microg mg-1 TOC). Algae, EOM, starch, DNA, fish oil and HA all showed higher chloroform yields (46.1, 23.8, 8.9, 37.1, 44.0 and 33.7 microg mg-1 TOC, respectively) than HAAs (25.7, 20.2, 6.3, 10.0, 13.1 and 18.4 microg mg-1 TOC, respectively). Pre-ozonation increased DBPs, especially chloroform, formation from algae and DNA significantly. With the increase in ozone doses, DBPs yields of algae and DNA increased 19.0 and 34.5 microg mg-1 TOC, chloroform yields of algae and DNA increased 15.3 and 30.4 microg mg-1 TOC, respectively. However, pre-ozonation decreased DBPs formation from starch, fish oil and HA, and the corresponding decrease amount was 2.4, 26.9 and 9.5 microg mg-1 TOC, respectively. There are no regular change trends of DBPs formation from EOM and BSA with the increase in ozone doses.

  9. [Formation of disinfection by-products: temperature effect and kinetic modeling].

    PubMed

    Zhang, Xiao-Lu; Yang, Hong-Wei; Wang, Xiao-Mao; Fu, Jing; Xie, Yue-Feng

    2012-11-01

    Water temperature has significant effects on the disinfection by-product (DBP) formation and concentration in many water utilities and distribution systems. To study the temperature effect on the DBP concentration, the uniform formation condition (UFC) test was referred in testing the formation concentration of DBPs [including (trihalomethanes) THMs and (haloacetic acids) HAAs] at different temperatures during chlorination of the humic acid (HA) solution. A kinetic model was consequently proposed to predict DBP concentration during chlorination. Results show that for the three detected DBPs, including chloroform (CHCl3), dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA), increasing temperature could considerably enhance both the DBP formation rates and the maximum DBP concentrations, where the maximum concentrations increase exponentially with the water temperature (R2 > 0.90). By using the data-processing software Origin, the detected DBP values were fitted using the proposed first order kinetic model, and the result showed a strong correlation for each DBP at various temperatures (R > 0.94). The apparent reaction rate constant k was also derived for each DBP. In order to quantify the temperature effect on DBP formation, the Arrhenius Equation was employed to calculate the apparent reaction activation energy for each DBP-22.3, 25.5 and 40.8 kJ x mol(-1) for CHCl3, DCAA and TCAA, respectively. By comparing the model predicted and the detected DBP values at 20 and 30 degrees C, the model showed a strong performance in predicting DBP formation concentrations, which indicated the reliability and validity of this proposed kinetic model.

  10. Environmental and personal determinants of the uptake of disinfection by-products during swimming.

    PubMed

    Font-Ribera, Laia; Kogevinas, Manolis; Schmalz, Christina; Zwiener, Christian; Marco, Esther; Grimalt, Joan O; Liu, Jiaqi; Zhang, Xiangru; Mitch, William; Critelli, Rossana; Naccarati, Alessio; Heederik, Dick; Spithoven, Jack; Arjona, Lourdes; de Bont, Jeroen; Gracia-Lavedan, Esther; Villanueva, Cristina M

    2016-08-01

    Trihalomethanes (THMs) in exhaled breath and trichloroacetic acid (TCAA) in urine are internal dose biomarkers of exposure to disinfection by-products (DBPs) in swimming pools. We assessed how these biomarkers reflect the levels of a battery of DBPs in pool water and trichloramine in air, and evaluated personal determinants. A total of 116 adults swam during 40min in a chlorinated indoor pool. We measured chloroform, bromodichloromethane, dibromochloromethane and bromoform in exhaled breath and TCAA in urine before and after swimming, trichloramine in air and several DBPs in water. Personal determinants included sex, age, body mass index (BMI), distance swum, energy expenditure, heart rate and 12 polymorphisms in GSTT1, GSTZ1 and CYP2E1 genes. Median level of exhaled total THMs and creatinine adjusted urine TCAA increased from 0.5 to 14.4µg/m(3) and from 2.5 to 5.8µmol/mol after swimming, respectively. The increase in exhaled brominated THMs was correlated with brominated THMs, haloacetic acids, haloacetonitriles, haloketones, chloramines, total organic carbon and total organic halogen in water and trichloramine in air. Such correlations were not detected for exhaled chloroform, total THMs or urine TCAA. Exhaled THM increased more in men, urine TCAA increased more in women, and both were affected by exercise intensity. Genetic variants were associated with differential increases in exposure biomarkers. Our findings suggest that, although affected by sex, physical activity and polymorphisms in key metabolizing enzymes, brominated THMs in exhaled breath could be used as a non-invasive DBP exposure biomarker in swimming pools with bromide-containing source waters. This warrants confirmation with new studies. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Fingerprinting the reactive toxicity pathways of 50 drinking water disinfection by-products.

    PubMed

    Stalter, Daniel; O'Malley, Elissa; von Gunten, Urs; Escher, Beate I

    2016-03-15

    A set of nine in vitro cellular bioassays indicative of different stages of the cellular toxicity pathway was applied to 50 disinfection by-products (DBPs) to obtain a better understanding of the commonalities and differences in the molecular mechanisms of reactive toxicity of DBPs. An Eschericia coli test battery revealed reactivity towards proteins/peptides for 64% of the compounds. 98% activated the NRf2-mediated oxidative stress response and 68% induced an adaptive stress response to genotoxic effects as indicated by the activation of the tumor suppressor protein p53. All DBPs reactive towards DNA in the E. coli assay and activating p53 also induced oxidative stress, confirming earlier studies that the latter could trigger DBP's carcinogenicity. The energy of the lowest unoccupied molecular orbital ELUMO as reactivity descriptor was linearly correlated with oxidative stress induction for trihalomethanes (r(2)=0.98) and haloacetamides (r(2)=0.58), indicating that potency of these DBPs is connected to electrophilicity. However, the descriptive power was poor for haloacetic acids (HAAs) and haloacetonitriles (r(2) (<) 0.06). For HAAs, we additionally accounted for speciation by including the acidity constant with ELUMO in a two-parameter multiple linear regression model. This increased r(2) to >0.80, indicating that HAAs' potency is connected to both, electrophilicity and speciation. Based on the activation of oxidative stress response and the soft electrophilic character of most tested DBPs we hypothesize that indirect genotoxicity-e.g., through oxidative stress induction and/or enzyme inhibition-is more plausible than direct DNA damage for most investigated DBPs. The results provide not only a mechanistic understanding of the cellular effects of DBPs but the effect concentrations may also serve to evaluate mixture effects of DBPs in water samples.

  12. Secondary formation of disinfection by-products by UV treatment of swimming pool water.

    PubMed

    Spiliotopoulou, Aikaterini; Hansen, Kamilla M S; Andersen, Henrik R

    2015-07-01

    Formation of disinfection by-products (DBPs) during experimental UV treatment of pool water has previously been reported with little concurrence between laboratory studies, field studies and research groups. In the current study, changes in concentration of seven out of eleven investigated volatile DBPs were observed in experiments using medium pressure UV treatment, with and without chlorine and after post-UV chlorination. Results showed that post-UV chlorine consumption increased, dose-dependently, with UV treatment dose. A clear absence of trihalomethane formation by UV and UV with chlorine was observed, while small yet statistically significant increases in dichloroacetonitrile and dichloropropanone concentrations were detected. Results indicate that post-UV chlorination clearly induced secondary formation of several DBPs. However, the formation of total trihalomethanes was no greater than what could be replicated by performing the DBP formation assay with higher chlorine concentrations to simulate extended chlorination. Post-UV chlorination of water from a swimming pool that continuously uses UV treatment to control combined chlorine could not induce secondary formation for most DBPs. Concurrence for induction of trihalomethanes was identified between post-UV chlorination treatments and simulated extended chlorination time treatment. Trihalomethanes could not be induced by UV treatment of water from a continuously UV treated pool. This indicates that literature reports of experimentally induced trihalomethane formation by UV may be a result of kinetic increase in formation by UV. However, this does not imply that higher trihalomethane concentrations would occur in pools that apply continuous UV treatment. The bromine fraction of halogens in formed trihalomethanes increased with UV dose. This indicates that UV removes bromine atoms from larger molecules that participate in trihalomethane production during post-UV chlorination. Additionally, no significant

  13. The effect of disinfection by-products and mutagenic activity on birth weight and gestational duration.

    PubMed Central

    Wright, J Michael; Schwartz, Joel; Dockery, Douglas W

    2004-01-01

    Epidemiologic studies of disinfection by-products have traditionally focused on total trihalomethane (TTHM) concentration as a surrogate for maternal exposure during pregnancy. We used birth certificate data on 196,000 infants to examine the effect of third-trimester exposures on various indices of fetal development. We examined the effect of town-average concentrations of TTHM and additional exposure metrics in relation to mean birth weight, mean gestational age, small for gestational age (SGA) infancy, and preterm delivery. Trihalomethane data (TTHM, chloroform, and bromodichloromethane) from 1995-1998 were available for 109 towns in Massachusetts. Data from 1997-1998 on haloacetic acid (total haloacetic acids, dichloroacetic acid, and trichloroacetic acid), 3-chloro-4-(dichloromethyl)-5- hydroxy-2(5H)-furanone (MX), and mutagenicity were available for a limited number of towns. We observed reductions in mean birth weight (12-18 g) for maternal trihalomethane exposures > the 90th percentile compared with those < the 50th percentile. Birth weight reductions were detected for chloroform exposures > 20 microg/L and TTHM exposures > 40 microg/L. Elevated trihalomethanes were associated with increases in gestational duration and a reduced risk of preterm delivery. We found evidence of an exposure-response effect of trihalomethanes on risk of SGA, with odds ratios (ORs) ranging from 1.09 to 1.23 for bromodichloromethane exposures > 5 microg/L. Elevated mutagenic activity was associated with SGA [OR = 1.25; 95% confidence interval (CI), 1.04 to 1.51] and mean birth weight (-27 g; 95% CI, -54 to -1). Although smaller in magnitude, our findings are consistent with previous studies reporting associations between trihalomethanes and SGA. These data also suggest a relationship between fetal development indices and mutagenic activity independent of exposure to trihalomethanes, haloacetic acids, and MX. PMID:15175183

  14. Fate of disinfection by-products in groundwater during aquifer storage and recovery with reclaimed water.

    PubMed

    Pavelic, Paul; Nicholson, Brenton C; Dillon, Peter J; Barry, Karen E

    2005-03-01

    Knowledge on the behaviour of disinfection by-products (DBPs) during aquifer storage and recovery (ASR) is limited even though this can be an important consideration where recovered waters are used for potable purposes. A reclaimed water ASR trial in an anoxic aquifer in South Australia has provided some of the first quantitative information at field-scale on the fate and transport of trihalomethanes (THMs) and haloacetic acids (HAAs). The results revealed that THM half-lives varied from <1 to 65 days, with persistence of chloroform being highest and bromoform lowest. HAA attenuation was rapid (<1 day). Rates of THM attenuation were shown to be highly dependent on the geochemical environment as evidenced by the 2-5 fold reduction in half-lives at the ASR well which became methanogenic during the storage phase of the trial, as compared to an observation well situated 4 m away, which remained nitrate-reducing. These findings agree with previous laboratory-based studies which also show persistence declining with increased bromination of THMs and reducing redox conditions. Modelling suggests that the chlorinated injectant has sufficient residual chlorine and natural organic matter for substantial increases in THMs to occur within the aquifer, however this is masked in some of the field observations due to concurrent attenuation, particularly for the more rapidly attenuated brominated compounds. The model is based on data taken from water distribution systems and may not be representative for ASR since bromide and ammonia concentrations in the injected water and the possible role of organic carbon in the aquifer were not taken into consideration. During the storage phase DBP formation potentials were reduced as a result of the removal of precursor material despite an increase in the THM formation potential per unit weight of total organic carbon. This suggests that water quality improvements with respect to THMs and HAAs can be achieved through ASR in anoxic aquifers.

  15. Fate of disinfection by-products in groundwater during aquifer storage and recovery with reclaimed water.

    PubMed

    Pavelic, Paul; Nicholson, Brenton C; Dillon, Peter J; Barry, Karen E

    2005-05-01

    Knowledge on the behaviour of disinfection by-products (DBPs) during aquifer storage and recovery (ASR) is limited even though this can be an important consideration where recovered waters are used for potable purposes. A reclaimed water ASR trial in an anoxic aquifer in South Australia has provided some of the first quantitative information at field-scale on the fate and transport of trihalomethanes (THMs) and haloacetic acids (HAAs). The results revealed that THM half-lives varied from <1 to 65 days, with persistence of chloroform being highest and bromoform lowest. HAA attenuation was rapid (<1 day). Rates of THM attenuation were shown to be highly dependent on the geochemical environment as evidenced by the 2-5 fold reduction in half-lives at the ASR well which became methanogenic during the storage phase of the trial, as compared to an observation well situated 4 m away, which remained nitrate-reducing. These findings agree with previous laboratory-based studies which also show persistence declining with increased bromination of THMs and reducing redox conditions. Modelling suggests that the chlorinated injectant has sufficient residual chlorine and natural organic matter for substantial increases in THMs to occur within the aquifer, however this is masked in some of the field observations due to concurrent attenuation, particularly for the more rapidly attenuated brominated compounds. The model is based on data taken from water distribution systems and may not be representative for ASR since bromide and ammonia concentrations in the injected water and the possible role of organic carbon in the aquifer were not taken into consideration. During the storage phase DBP formation potentials were reduced as a result of the removal of precursor material despite an increase in the THM formation potential per unit weight of total organic carbon. This suggests that water quality improvements with respect to THMs and HAAs can be achieved through ASR in anoxic aquifers.

  16. Does KMnO4 preoxidation reduce the genotoxicity of disinfection by-products?

    PubMed

    Chang, Yangyang; Bai, Yaohui; Qu, Jiuhui

    2016-11-01

    Potassium permanganate (KMnO4) preoxidation is capable of affecting the formation of disinfection by-products (DBPs). However, few studies have focused on the toxicity of DBPs after KMnO4 preoxidation, which is an important index to evaluate alternative treatment processes. Herein genotoxicity (SOS/umu test) was used to clarify the impact of KMnO4 preoxidation on the chlorination byproducts produced from two representative precursors, tyrosine (Tyr) and 2-hydroxy-4-methoxybenzophenone-5-sulfonic acid (BP-4), and their mixture. Results revealed that although KMnO4 could not oxidize BP-4, after chlorination KMnO4 could oxidize the chlorination byproducts of BP-4 and thus decrease the genotoxicity production. For Tyr, KMnO4 preoxidation could increase or decrease the genotoxicity of DBPs, depending on the KMnO4 dose. The optimal initial molar ratio of KMnO4 to Tyr was confirmed to be 1:1. It has been proved that both the oxidation of Tyr by KMnO4 and manganese dioxide (MnO2, the reduction product of KMnO4) and the oxidation of chlorination byproducts by MnO2 can decrease the genotoxicity production of chlorinated Tyr. Remarkably, during chlorination, the competition of manganese(II) oxidation with organic oxidation can result in less chlorine reacting with organics, to induce an increase in genotoxicity. This is the main cause for the increase in genotoxicity of chlorinated Tyr after KMnO4 preoxidation. Additionally, the genotoxicity of the chlorinated mixture was shifted from being higher than the sum of individual genotoxicities of the chlorinated precursors to being lower than their sum with increasing KMnO4 dosage, due to the combined effects between the preoxidation-chlorination products from the two compounds.

  17. Genotoxic Effects in Swimmers Exposed to Disinfection By-products in Indoor Swimming Pools

    PubMed Central

    Kogevinas, Manolis; Villanueva, Cristina M.; Font-Ribera, Laia; Liviac, Danae; Bustamante, Mariona; Espinoza, Felicidad; Nieuwenhuijsen, Mark J.; Espinosa, Aina; Fernandez, Pilar; DeMarini, David M.; Grimalt, Joan O.; Grummt, Tamara; Marcos, Ricard

    2010-01-01

    Background Exposure to disinfection by-products (DBPs) in drinking water has been associated with cancer risk. A recent study (Villanueva et al. 2007; Am J Epidemiol 165:148–156) found an increased bladder cancer risk among subjects attending swimming pools relative to those not attending. Objectives We evaluated adults who swam in chlorinated pools to determine whether exposure to DBPs in pool water is associated with biomarkers of genotoxicity. Methods We collected blood, urine, and exhaled air samples from 49 nonsmoking adult volunteers before and after they swam for 40 min in an indoor chlorinated pool. We estimated associations between the concentrations of four trihalomethanes (THMs) in exhaled breath and changes in micronuclei (MN) and DNA damage (comet assay) in peripheral blood lymphocytes before and 1 hr after swimming; urine mutagenicity (Ames assay) before and 2 hr after swimming; and MN in exfoliated urothelial cells before and 2 weeks after swimming. We also estimated associations and interactions with polymorphisms in genes related to DNA repair or to DBP metabolism. Results After swimming, the total concentration of the four THMs in exhaled breath was seven times higher than before swimming. The change in the frequency of micronucleated lymphocytes after swimming increased in association with higher exhaled concentrations of the brominated THMs (p = 0.03 for bromodichloromethane, p = 0.05 for chlorodibromomethane, p = 0.01 for bromoform) but not chloroform. Swimming was not associated with DNA damage detectable by the comet assay. Urine mutagenicity increased significantly after swimming, in association with the higher concentration of exhaled bromoform (p = 0.004). We found no significant associations with changes in micronucleated urothelial cells. Conclusions Our findings support potential genotoxic effects of exposure to DBPs from swimming pools. The positive health effects gained by swimming could be increased by reducing the potential health

  18. Variability of disinfection by-products at a full-scale treatment plant following rainfall events.

    PubMed

    Delpla, Ianis; Rodriguez, Manuel J

    2017-01-01

    The quality of drinking water sources can decrease when contaminants are transported by overland and subsurface flow and discharged into surface waters following rainfall events. Increases in organic contaminants such as road salts and organic matter may occur and potentially modify disinfection by-products (DBPs) concentration and speciation. This study investigated the effects of various spring rainfall events on the quality of treated waters at a large water treatment plant through the implementation of intensive water quality monitoring of raw, filtered and treated waters during different rainfall events. DBPs (four trihalomethanes and six haloacetic acids) and their explanatory variables (pH, turbidity, water temperature, specific ultraviolet absorbance, total and dissolved organic carbon, bromide and chlorine dose) were measured during four rainfall events. The results showed that water quality degrades during and following rainfall, leading to small increases in trihalomethanes (THM4) and haloacetic acids (HAA6) in treated waters. While THM4 and HAA6 levels remained low during the pre-rainfall period (<9 μg/L) for the four sampling campaigns, small increases in THM4 and HAA6 during and after spring rainfall events were observed. During the rainfall and post-rainfall periods, concentration peaks corresponding to 3-fold and 2-fold increases (respectively 27.5 μg/L for THM4 and 12.6 μg/L for HAA6) compared to pre-rainfall levels were also measured. A slight decrease in harmful brominated THM and HAA proportion was also observed following rainfall events. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Fate of disinfection by-products in groundwater during aquifer storage and recovery with reclaimed water

    NASA Astrophysics Data System (ADS)

    Pavelic, Paul; Nicholson, Brenton C.; Dillon, Peter J.; Barry, Karen E.

    2005-05-01

    Knowledge on the behaviour of disinfection by-products (DBPs) during aquifer storage and recovery (ASR) is limited even though this can be an important consideration where recovered waters are used for potable purposes. A reclaimed water ASR trial in an anoxic aquifer in South Australia has provided some of the first quantitative information at field-scale on the fate and transport of trihalomethanes (THMs) and haloacetic acids (HAAs). The results revealed that THM half-lives varied from <1 to 65 days, with persistence of chloroform being highest and bromoform lowest. HAA attenuation was rapid (<1 day). Rates of THM attenuation were shown to be highly dependent on the geochemical environment as evidenced by the 2-5 fold reduction in half-lives at the ASR well which became methanogenic during the storage phase of the trial, as compared to an observation well situated 4 m away, which remained nitrate-reducing. These findings agree with previous laboratory-based studies which also show persistence declining with increased bromination of THMs and reducing redox conditions. Modelling suggests that the chlorinated injectant has sufficient residual chlorine and natural organic matter for substantial increases in THMs to occur within the aquifer, however this is masked in some of the field observations due to concurrent attenuation, particularly for the more rapidly attenuated brominated compounds. The model is based on data taken from water distribution systems and may not be representative for ASR since bromide and ammonia concentrations in the injected water and the possible role of organic carbon in the aquifer were not taken into consideration. During the storage phase DBP formation potentials were reduced as a result of the removal of precursor material despite an increase in the THM formation potential per unit weight of total organic carbon. This suggests that water quality improvements with respect to THMs and HAAs can be achieved through ASR in anoxic aquifers.

  20. Fate of disinfection by-products in groundwater during aquifer storage and recovery with reclaimed water

    NASA Astrophysics Data System (ADS)

    Pavelic, Paul; Nicholson, Brenton C.; Dillon, Peter J.; Barry, Karen E.

    2005-03-01

    Knowledge on the behaviour of disinfection by-products (DBPs) during aquifer storage and recovery (ASR) is limited even though this can be an important consideration where recovered waters are used for potable purposes. A reclaimed water ASR trial in an anoxic aquifer in South Australia has provided some of the first quantitative information at field-scale on the fate and transport of trihalomethanes (THMs) and haloacetic acids (HAAs). The results revealed that THM half-lives varied from <1 to 65 days, with persistence of chloroform being highest and bromoform lowest. HAA attenuation was rapid (<1 day). Rates of THM attenuation were shown to be highly dependent on the geochemical environment as evidenced by the 2-5 fold reduction in half-lives at the ASR well which became methanogenic during the storage phase of the trial, as compared to an observation well situated 4 m away, which remained nitrate-reducing. These findings agree with previous laboratory-based studies which also show persistence declining with increased bromination of THMs and reducing redox conditions. Modelling suggests that the chlorinated injectant has sufficient residual chlorine and natural organic matter for substantial increases in THMs to occur within the aquifer, however this is masked in some of the field observations due to concurrent attenuation, particularly for the more rapidly attenuated brominated compounds. The model is based on data taken from water distribution systems and may not be representative for ASR since bromide and ammonia concentrations in the injected water and the possible role of organic carbon in the aquifer were not taken into consideration. During the storage phase DBP formation potentials were reduced as a result of the removal of precursor material despite an increase in the THM formation potential per unit weight of total organic carbon. This suggests that water quality improvements with respect to THMs and HAAs can be achieved through ASR in anoxic aquifers.

  1. Chemistry, Toxicity and Health Risk Assessment of Drinking Water Disinfection ByProducts

    EPA Science Inventory

    Disinfection byproducts (DBPs) are formed by the reaction of oxidizing chemicals (such as chlorine, ozone and chloramines) used to control waterborne pathogens with natural organic material and other substances in water. DBP mixture composition varies as a function of geographic ...

  2. HUMAN EXPOSURE TO WATER DISINFECTION BY-PRODUCTS VIA FOODS AND BEVERAGES

    EPA Science Inventory

    The ingestion of tap water is a major route of exposure to water disinfection byproducts (DBPs), including haloacetonitriles, haloketones, and haloacetic acids. A potentially significant alternate route of exposure is through the consumption of beverages prepared with tap water ...

  3. ANALYTICAL METHODS FOR WATER DISINFECTION BY-PRODUCTS IN FOODS AND BEVERAGES

    EPA Science Inventory

    The determination of exposure to drinking water disinfection byproducts (DBPs) requires an understanding of how drinking waters come into contact with the human through multiple pathways. The most significant pathway is the ingestion of drinking water. However, ingestion can oc...

  4. ANALYTICAL METHODS FOR WATER DISINFECTION BY-PRODUCTS IN FOODS AND BEVERAGES

    EPA Science Inventory

    The determination of exposure to drinking water disinfection byproducts (DBPs) requires an understanding of how drinking waters come into contact with the human through multiple pathways. The most significant pathway is the ingestion of drinking water. However, ingestion can oc...

  5. HUMAN EXPOSURE TO WATER DISINFECTION BY-PRODUCTS VIA FOODS AND BEVERAGES

    EPA Science Inventory

    The ingestion of tap water is a major route of exposure to water disinfection byproducts (DBPs), including haloacetonitriles, haloketones, and haloacetic acids. A potentially significant alternate route of exposure is through the consumption of beverages prepared with tap water ...

  6. Chemistry, Toxicity and Health Risk Assessment of Drinking Water Disinfection ByProducts

    EPA Science Inventory

    Disinfection byproducts (DBPs) are formed by the reaction of oxidizing chemicals (such as chlorine, ozone and chloramines) used to control waterborne pathogens with natural organic material and other substances in water. DBP mixture composition varies as a function of geographic ...

  7. IDENTIFICATION OF DRINKING WATER DISINFECTION BY-PRODUCTS FROM OZONE, CHLORINE DIOXIDE, CHLORAMINE, AND CHLORINE

    EPA Science Inventory

    Many drinking water treatment plants are currently using alternative disinfectants to treat drinking water, with ozone, chlorine dioxide, and chloramine being the most popular. However, compared to chlorine, which has been much more widely studied, there is little information abo...

  8. GC/MS IDENTIFICATION OF DRINKING WATER DISINFECTION BY-PRODUCTS FROM MILWAUKEE'S NEW OZONATION PLANTS

    EPA Science Inventory

    The Milwaukee Water Works recently added ozonation disinfection facilities to their municipal drinking water treatment. Coupling ozone treatment with biologically active filtration (BAF) was seen as a logical step to enhance multiple water quality objectives (an effective barrier...

  9. IDENTIFICATION OF DRINKING WATER DISINFECTION BY-PRODUCTS FROM OZONE, CHLORINE DIOXIDE, CHLORAMINE, AND CHLORINE

    EPA Science Inventory

    Many drinking water treatment plants are currently using alternative disinfectants to treat drinking water, with ozone, chlorine dioxide, and chloramine being the most popular. However, compared to chlorine, which has been much more widely studied, there is little information abo...

  10. GC/MS IDENTIFICATION OF DRINKING WATER DISINFECTION BY-PRODUCTS FROM MILWAUKEE'S NEW OZONATION PLANTS

    EPA Science Inventory

    The Milwaukee Water Works recently added ozonation disinfection facilities to their municipal drinking water treatment. Coupling ozone treatment with biologically active filtration (BAF) was seen as a logical step to enhance multiple water quality objectives (an effective barrier...

  11. Removal of disinfection by-products in raw water using a biological powder-activated carbon system.

    PubMed

    Lou, Jie C; Tseng, Wei B; Wu, Ming C; Han, Jia Y; Chen, Bi H

    2012-01-01

    This study investigates the removal efficiency of disinfection by-products (DBPs) in raw water at a water treatment plant using a biological powder-activated carbon system (BPACS). The presence of an excessive amount of DBPs has a large impact on the water quality of drinking water treated from the purification process. This study collected rapidly filtered water from an advanced water treatment plant for use in experiments on raw water. The removal efficiency of the trihalomethane formation potential (THMFP) and haloacetic acids formation potential (HAAFP) was studied under various hydraulic retention times and under organic DOC loadings. The results showed that the BPACS lowered the average concentration of dissolved organic carbon (DOC), UV(254) and the SUVA value (equivalent to UV(254)/DOC) in raw water. The system efficiently removed the THMFP and HAAFP during the treatment of the three primary organic carbon items. These results highlight the importance of the BPACS for efficiently treating disinfection by-products. These discoveries provide important information on biological degradation behaviors that can remove excessive amounts of disinfection by-products from drinking water.

  12. Comparison of inclined plate sedimentation and dissolved air flotation for the minimisation of subsequent nitrogenous disinfection by-product formation.

    PubMed

    Chu, Wen-Hai; Gao, Nai-Yun; Templeton, Michael R; Yin, Da-Qiang

    2011-04-01

    The formation of disinfection by-products (DBPs), including both nitrogenous disinfection by-products (N-DBPs) and carbonaceous disinfection by-products (C-DBPs), was investigated upon chlorination of water samples following two treatment processes: (i) coagulation-inclined plate sedimentation (IPS)-filtration and (ii) coagulation-dissolved air flotation (DAF)-filtration. The removal of algae, dissolved organic nitrogen (DON), dissolved organic carbon (DOC) and UV(254) by coagulation-DAF-filtration was superior to coagulation-IPS-filtration. On average, 53%, 53% and 31% of DOC, DON and UV(254) were removed by coagulation-DAF-filtration process, which were higher than 47%, 31% and 27% of that by coagulation-IPS-filtration process. Additionally, coagulation-IPS-filtration performed less well at removing the low molecular weight organics than coagulation-DAF-filtration process. The concentrations of chloroform, dichloroacetamide (DCAcAm) and dichloroacetonitrile (DCAN) formed during chlorination after coagulation-DAF-filtration reached their maximum values of 13, 1.5 and 4.7μgL(-1), respectively, and were lower than those after coagulation-IPS-filtration with the maximum detected levels of 17, 2.9 and 6.3μgL(-1). However, the trichloronitromethane (TCNM) concentration after the two processes was similar, suggesting that DON may have less of a contribution to TCNM formation than DCAcAm and DCAN.

  13. Mammalian cell cytotoxicity and genotoxicity of the haloacetic acids, a major class of drinking water disinfection by-products.

    PubMed

    Plewa, Michael J; Simmons, Jane Ellen; Richardson, Susan D; Wagner, Elizabeth D

    2010-01-01

    The haloacetic acids (HAAs) are disinfection by-products (DBPs) that are formed during the disinfection of drinking water, wastewaters and recreational pool waters. Currently, five HAAs [bromoacetic acid (BAA), dibromoacetic acid (DBAA), chloroacetic acid (CAA), dichloroacetic acid (DCAA), and trichloroacetic acid (TCAA); designated as HAA5] are regulated by the U.S. EPA, at a maximum contaminant level of 60 μg/L for the sum of BAA, DBAA, CAA, DCAA, and TCAA. We present a comparative systematic analysis of chronic cytotoxicity and acute genomic DNA damaging capacity of 12 individual HAAs in mammalian cells. In addition to the HAA5, we analyzed iodoacetic acid (IAA), diiodoacetic acid (DiAA), bromoiodoacetic acid (BIAA), tribromoacetic acid (TBAA), chlorodibromoacetic acid (CDBAA), bromodichloroacetic acid (BDCAA), and bromochloroacetic acid (BCAA). Their rank order of chronic cytotoxicity in Chinese hamster ovary cells was IAA > BAA > TBAA > CDBAA > DIAA > DBAA > BDCAA > BCAA > CAA > BIAA > TCAA > DCAA. The rank order for genotoxicity was IAA > BAA > CAA > DBAA > DIAA > TBAA > BCAA > BIAA > CDBAA. DCAA, TCAA, and BDCAA were not genotoxic. The trend for both cytotoxicity and genotoxicity is iodinated HAAs > brominated HAAs > chlorinated HAAs. The use of alternative disinfectants other than chlorine generates new DBPs and alters their distribution. Systematic, comparative, in vitro toxicological data provides the water supply community with information to consider when employing alternatives to chlorine disinfection. In addition, these data aid in prioritizing DBPs and their related compounds for future in vivo toxicological studies and risk assessment.

  14. Occurrence of regulated and non-regulated disinfection by-products in small drinking water systems.

    PubMed

    Guilherme, Stéphanie; Rodriguez, Manuel J

    2014-12-01

    The occurrence of regulated and non-regulated disinfection by-products (DBPs) was investigated in the drinking water of small systems in two provinces in Canada, Newfoundland and Labrador (NL) and Quebec (QC), through an intensive sampling program. Sixteen DBPs were studied: four trihalomethanes (THMs), five haloacetic acids (HAAs), four haloacetonitriles (HANs), one halonitromethane, chloropikrin (CPK) and two haloketones (HKs). Average measured concentrations of these compounds were much higher than those reported in the literature for medium and large systems. The measured average value for THMs was 75 μg L(-1) (Stdv=69μgL(-1)); HAAs, 77 μg L(-1) (Stdv=75 μg L(-1)); HANs, 2.5 μg L(-1) (Stdv=1.8 μg L(-1)); CPK, 0.4 μg L(-1) (Stdv=0.3 μg L(-1)) and HKs, 6.0 μg L(-1) (Stdv=4.5 μg L(-1)). The gap (some 10 times difference) between the average levels of regulated DBPs (THMs, HAAs) and non-regulated DBPs (HANs, CPK and HKs) is comparable to that observed in large systems where the occurrence of the same compounds has been reported. Generally, investigated DBPs followed a comparable seasonal evolution during the year: they decreased between the fall and winter and then increased to eventually reach a maximum in late summer. This trend was less observable in NL than in QC. However, observed seasonal fluctuations of DBPs were less considerable than those observed in medium and large systems located in similar temperate environments reported in the literature. Spatial variations from the plant to the extremities were high and comparable to those observed in large systems, which is surprising, considering the smaller size of distribution networks supplying small communities. Generally speaking, the results support the premise that problems associated with implementing treatment that removes DBP precursors in water submitted to chlorination can increase population exposure to these contaminants in small systems. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. What’s in the Pool? A Comprehensive Identification of Disinfection By-Products and Assessment of Mutagenicity of Chlorinated and Brominated Swimming Pool Water

    EPA Science Inventory

    Swimming pool disinfectants and disinfection by-products (DBPs) have been linked to human health effects, including asthma and bladder cancer, but no studies have provided a comprehensive identification of DBPs in pool water and related those DBPs to the mutagenicity of pool wate...

  16. What's in The Pool? A Comprehensive Identification Of Disinfection By-Products and Assessment of Mutagenicity of Chlorinated and Brominated Swimming Pool Water

    EPA Science Inventory

    Swimming pool disinfectants and disinfection by-products (DBPs) have been linked to human health effects, including asthma and bladder cancer, but no studies have provided a comprehensive identification of DBPs in the water and related that to mutagenicity. We performed a compreh...

  17. IODO-ACID DISINFECTION BY-PRODUCTS IN DRINKING WATER: DOES LC/ESI-MS/MS OFFER AN ADVANTAGE OVER GC/NCI-MS?

    EPA Science Inventory

    As part of a recent Nationwide Disinfection By-Product (DBP) Occurrence Study, iodo-acids were identified for the first time as DBPs in drinking water disinfected with chloramines. The iodo-acids identified included iodoacetic acid, bromoiodoacetic acid, (E)-3-bromo-3-iodo-prope...

  18. EFFECTS OF 20 WEEK EXPOSURES IN FEMALE SPRAGUE-DAWLEY (S-D) RATS TO THE DRINKING WATER DISINFECTION BY-PRODUCT DIBROMOACETIC ACID

    EPA Science Inventory

    Effects of 20 week exposures in female Sprague-Dawley (S-D) rats to the drinking water disinfection by-product dibromoacetic acid. A S Murr and J M Goldman, Endocrinol. Br., RTD, NHEERL, ORD, US EPA, Res. Tri. Pk, NC. Sponsor: Audrey Cummings

    The drinking water disinfect...

  19. EFFECTS OF 20 WEEK EXPOSURES IN FEMALE SPRAGUE-DAWLEY (S-D) RATS TO DIBROMOACETIC ACID, A DRINKING WATER DISINFECTANT BY-PRODUCT

    EPA Science Inventory

    Effects of 20 week exposures in female Sprague-Dawley (S-D) rats to the drinking water disinfection by-product dibromoacetic acid. A S Murr and J M Goldman, Endocrinol. Br., RTD, NHEERL, ORD, US EPA, Res. Tri. Pk, NC. Sponsor: Audrey Cummings

    The drinking water disinfect...

  20. DEVELOPMENT OF A NOVEL METHOD FOR ANALYSIS OF TRANSCRIPTIONAL CHANGES IN TRANSITIONAL EPITHELIUM FROM URINARY BLADDERS OF RATS EXPOSED TO DRINKING WATER DISINFECTION BY-PRODUCTS

    EPA Science Inventory


    Development of a Novel Method for Analysis of Transcriptional Changes in Transitional Epithelium from Urinary Bladders of Rats Exposed to Drinking Water Disinfection By- products.

    Epidemiologic studies in human populations that drink chemically disinfected drinking wa...

  1. What’s in the Pool? A Comprehensive Identification of Disinfection By-Products and Assessment of Mutagenicity of Chlorinated and Brominated Swimming Pool Water

    EPA Science Inventory

    Swimming pool disinfectants and disinfection by-products (DBPs) have been linked to human health effects, including asthma and bladder cancer, but no studies have provided a comprehensive identification of DBPs in pool water and related those DBPs to the mutagenicity of pool wate...

  2. IODO-ACID DISINFECTION BY-PRODUCTS IN DRINKING WATER: DOES LC/ESI-MS/MS OFFER AN ADVANTAGE OVER GC/NCI-MS?

    EPA Science Inventory

    As part of a recent Nationwide Disinfection By-Product (DBP) Occurrence Study, iodo-acids were identified for the first time as DBPs in drinking water disinfected with chloramines. The iodo-acids identified included iodoacetic acid, bromoiodoacetic acid, (E)-3-bromo-3-iodo-prope...

  3. DEVELOPMENT OF A NOVEL METHOD FOR ANALYSIS OF TRANSCRIPTIONAL CHANGES IN TRANSITIONAL EPITHELIUM FROM URINARY BLADDERS OF RATS EXPOSED TO DRINKING WATER DISINFECTION BY-PRODUCTS

    EPA Science Inventory


    Development of a Novel Method for Analysis of Transcriptional Changes in Transitional Epithelium from Urinary Bladders of Rats Exposed to Drinking Water Disinfection By- products.

    Epidemiologic studies in human populations that drink chemically disinfected drinking wa...

  4. EFFECTS OF 20 WEEK EXPOSURES IN FEMALE SPRAGUE-DAWLEY (S-D) RATS TO THE DRINKING WATER DISINFECTION BY-PRODUCT DIBROMOACETIC ACID

    EPA Science Inventory

    Effects of 20 week exposures in female Sprague-Dawley (S-D) rats to the drinking water disinfection by-product dibromoacetic acid. A S Murr and J M Goldman, Endocrinol. Br., RTD, NHEERL, ORD, US EPA, Res. Tri. Pk, NC. Sponsor: Audrey Cummings

    The drinking water disinfect...

  5. EFFECTS OF 20 WEEK EXPOSURES IN FEMALE SPRAGUE-DAWLEY (S-D) RATS TO DIBROMOACETIC ACID, A DRINKING WATER DISINFECTANT BY-PRODUCT

    EPA Science Inventory

    Effects of 20 week exposures in female Sprague-Dawley (S-D) rats to the drinking water disinfection by-product dibromoacetic acid. A S Murr and J M Goldman, Endocrinol. Br., RTD, NHEERL, ORD, US EPA, Res. Tri. Pk, NC. Sponsor: Audrey Cummings

    The drinking water disinfect...

  6. What's in The Pool? A Comprehensive Identification Of Disinfection By-Products and Assessment of Mutagenicity of Chlorinated and Brominated Swimming Pool Water

    EPA Science Inventory

    Swimming pool disinfectants and disinfection by-products (DBPs) have been linked to human health effects, including asthma and bladder cancer, but no studies have provided a comprehensive identification of DBPs in the water and related that to mutagenicity. We performed a compreh...

  7. A comparison of disinfection by-products formation during sequential or simultaneous disinfection of surface waters with chlorine dioxide and chlor(am)ine.

    PubMed

    Shi, Yanwei; Ling, Wencui; Qiang, Zhimin

    2013-01-01

    The effect of chlorine dioxide (ClO2) oxidation on the formation of disinfection by-products (DBPs) during sequential (ClO2 pre-oxidation for 30 min) and simultaneous disinfection processes with free chlorine (FC) or monochloramine (MCA) was investigated. The formation of DBPs from synthetic humic acid (HA) water and three natural surface waters containing low bromide levels (11-27 microg/L) was comparatively examined in the FC-based (single FC, sequential ClO2-FC, and simultaneous ClO2/FC) and MCA-based (single MCA, ClO2-MCA, and ClO2/MCA) disinfection processes. The results showed that much more DBPs were formed from the synthetic HA water than from the three natural surface waters with comparative levels of dissolved organic carbon. In the FC-based processes, ClO2 oxidation could reduce trihalomethanes (THMs) by 27-35% and haloacetic acids (HAAs) by 14-22% in the three natural surface waters, but increased THMs by 19% and HAAs by 31% in the synthetic HA water after an FC contact time of 48 h. In the MCA-based processes, similar trends were observed although DBPs were produced at a much lower level. There was an insignificant difference in DBPs formation between the sequential and simultaneous processes. The presence of a high level of bromide (320 microg/L) remarkably promoted the DBPs formation in the FC-based processes. Therefore, the simultaneous disinfection process of ClO2/MCA is recommended particularly for waters with a high bromide level.

  8. Genotoxic and clastogenic effects of monohaloacetic acid drinking water disinfection by-products in primary human lymphocytes.

    PubMed

    Escobar-Hoyos, Luisa F; Hoyos-Giraldo, Luz Stella; Londoño-Velasco, Elizabeth; Reyes-Carvajal, Ingrid; Saavedra-Trujillo, Diana; Carvajal-Varona, Silvio; Sánchez-Gómez, Adalberto; Wagner, Elizabeth D; Plewa, Michael J

    2013-06-15

    The haloacetic acids (HAAs) are the second-most prevalent class of drinking water disinfection by-products formed by chemical disinfectants. Previous studies have determined DNA damage and repair of HAA-induced lesions in mammalian and human cell lines; however, little is known of the genomic DNA and chromosome damage induced by these compounds in primary human cells. The aim of this study was to evaluate the genotoxic and clastogenic effects of the monoHAA disinfection by-products in primary human lymphocytes. All monoHAAs were genotoxic in primary human lymphocytes, the rank order of genotoxicity and cytotoxicity was IAA > BAA > CAA. After 6 h of repair time, only 50% of the DNA damage (maximum decrease in DNA damage) was repaired compared to the control. This demonstrates that primary human lymphocytes are less efficient in repairing the induced damage by monoHAAs than previous studies with mammalian cell lines. In addition, the monoHAAs induced an increase in the chromosome aberration frequency as a measurement of the clastogenic effect of these compounds. These results coupled with genomic technologies in primary human cells and other mammalian non-cancerous cell lines may lead to the identification of biomarkers that may be employed in feedback loops to aid water chemists and engineers in the overall goal of producing safer drinking water.

  9. Factors affecting the formation of nitrogenous disinfection by-products during chlorination of aspartic acid in drinking water.

    PubMed

    Chen, Wei; Liu, Zhigang; Tao, Hui; Xu, Hang; Gu, Yanmei; Chen, Zhaolin; Yu, Jingjing

    2017-01-01

    The formation of emerging nitrogenous disinfection by-products (N-DBPs) from the chlorination of aspartic acid (Asp) was investigated. The yield of dichloroacetonitrile (DCAN) was higher than other N-DBPs, such as dichloroacetamide(DCAcAm) and chloropicrin (TCNM) during the chlorination of Asp. The formation of DCAN, DCAcAm, and TCNM all showed a trend of first increasing and then decreasing during the chlorination of Asp with increasing contact time. The dosage of chlorine had an impact on the formation of DCAN, DCAcAm, and TCNM. The highest yields of DCAN and DCAcAm appeared when the Cl2/Asp molar ratio was about 20, the yield of TCNM increased with increasing the Cl2/Asp molar ratio from 5 to 30 and TCNM was not produced when the ratio was less than 5. Cyanogen chloride (CNCl) was detected when the Cl2/Asp molar ratio was lower than 5. N-DBPs formation was influenced by pH. DCAN formation increased with increasing pH from 5 to 6 and then decreased with increasing pH from 6 to 9, but DCAcAm and TCNM increased with increasing pH from 5 to 8 and then decreased. Higher temperatures reduced the formation of DCAN and DCAcAm, but increased TCNM formation. DCAN and DCAcAm formation decreased, and relatively stable TCNM formation increased, with increasing free chlorine contact time during chloramination. N-nitrosodimethylamine (NDMA) was produced during chloramination of Asp and increased with prolonged chloramination contact time. The presence of bromide ions enhanced the yields of haloacetonitriles and shifted N-DBPs to more brominated species.

  10. Concentrations of disinfection by-products in swimming pool following modifications of the water treatment process: An exploratory study.

    PubMed

    Tardif, Robert; Rodriguez, Manuel; Catto, Cyril; Charest-Tardif, Ginette; Simard, Sabrina

    2017-08-01

    The formation and concentration of disinfection by-products (DBPs) in pool water and the ambient air vary according to the type of water treatment process used. This exploratory study was aimed at investigating the short-term impact of modifications of the water treatment process on traditional DBP levels (e.g., trihalomethanes (THMs), chloramines) and emerging DBPs (e.g., Halonitromethanes, Haloketones, NDMA) in swimming pool water and/or air. A sampling program was carried to understand the impact of the following changes made successively to the standard water treatment process: activation of ultraviolet (UV) photoreactor, halt of air stripping with continuation of air extraction from the buffer tank, halt of air stripping and suppression of air extraction from the buffer tank, suppression of the polyaluminium silicate sulfate (PASS) coagulant. UV caused a high increase of Halonitromethanes (8.4 fold), Haloketones (2.1 fold), and THMs in the water (1.7 fold) and, of THMs in the air (1.6 fold) and contributed to reducing the level of chloramines in the air (1.6 fold) and NDMA in the water (2.1 fold). The results highlight the positive impact of air stripping in reducing volatile contaminants. The PASS did not change the presence of DBPs, except for the THMs, which decrease slightly with the use of this coagulant. This study shows that modifications affecting the water treatment process can rapidly produce important and variable impacts on DBP levels in water and air and suggests that implementation of any water treatment process to reduce DBP levels should take into account the specific context of each swimming pool. Copyright © 2017. Published by Elsevier B.V.

  11. Mass Spectrometry Identification of Toxicologically Important Drinking Water Disinfection By-Products

    EPA Science Inventory

    The disinfection of drinking water has been rightly hailed as a public health triumph of the 20th century. Before its widespread use, millions of people died from waterborne diseases. Now, people in developed nations receive quality drinking water every day from their public wate...

  12. MODELING CHLORINE DECAY AND THE FORMATION OF DISINFECTION BY-PRODUCTS (DBPS) IN DRINKING WATER

    EPA Science Inventory

    A major objective of drinking water treatment is to provide microbiologically safe drinking water. The combination of conventional drinking water treatment and disinfection has proved to be one of the major public health advances in modern times. In the US, chlorine is most often...

  13. Formation of Toxic Iodinated Disinfection By-Products from Compounds Used in Medical Imaging

    EPA Science Inventory

    Iodinated X-ray contrast media (ICM) were investigated as a source of iodine in the formation of iodo-trihalomethane (iodo-THM) and iodo-acid disinfection byproducts (DBPs), both of which are highly genotoxic and/or cytotoxic in mammalian cells. ICM are widely used at medical cen...

  14. REPRODUCTIVE AND DEVELOPMENTAL TOXICITY ASSOCIATED WITH DISINFECTION BY-PRODUCTS OF DRINKING WATER

    EPA Science Inventory

    Over the past decade many toxicologic studies have addressed the potential for disinfection byproducts of drinking water to elicit alterations on the reproductive system and fetal development.
    The types and designs of these studies vary considerably, but in general they can ...

  15. FATE OF DISINFECTION BY-PRODUCT PRECURSORS DURING RIVERBANK FILTRATION AT THREE MIDWEST UTILITIES

    EPA Science Inventory

    A 3-year project is underway to evaluate riverbank filtration systems along three major US rivers. A principal aspects of the study involved monitoring a suite or organic, inorganic, and microbiological water quality parameters, with emphasis on disinfection byproduct formation p...

  16. MEMBRANE EXTRACTION GC/MS FOR THE ANALYSIS OF DISINFECTION BY-PRODUCTS

    EPA Science Inventory

    For many years, public water supplies in the U.S.have been treated with a variety of chemicals aimed at reducing or eliminating infectious diseases. Chlorine is the most common disinfectant used to combat waterborne microbial diseases; however, the use of ozone, chlorine dioxid...

  17. Formation of Toxic Iodinated Disinfection By-Products from Compounds Used in Medical Imaging

    EPA Science Inventory

    Iodinated X-ray contrast media (ICM) were investigated as a source of iodine in the formation of iodo-trihalomethane (iodo-THM) and iodo-acid disinfection byproducts (DBPs), both of which are highly genotoxic and/or cytotoxic in mammalian cells. ICM are widely used at medical cen...

  18. FATE OF DISINFECTION BY-PRODUCT PRECURSORS DURING RIVERBANK FILTRATION AT THREE MIDWEST UTILITIES

    EPA Science Inventory

    A 3-year project is underway to evaluate riverbank filtration systems along three major US rivers. A principal aspects of the study involved monitoring a suite or organic, inorganic, and microbiological water quality parameters, with emphasis on disinfection byproduct formation p...

  19. ANALYTICAL METHODS FOR WATER DISINFECTION BY-PRODUCTS IN FOODS AND BEVERAGES

    EPA Science Inventory

    The determination of exposure to drinking water disinfection byproducts (DBPs) requires an understanding of how drinking water comes in contact with humans through multiple pathways. In order to facilitate the investigation of human exposure to DBPs via foods and beverages, analy...

  20. REPRODUCTIVE AND DEVELOPMENTAL TOXICITY ASSOCIATED WITH DISINFECTION BY-PRODUCTS OF DRINKING WATER

    EPA Science Inventory

    Over the past decade many toxicologic studies have addressed the potential for disinfection byproducts of drinking water to elicit alterations on the reproductive system and fetal development.
    The types and designs of these studies vary considerably, but in general they can ...

  1. MEMBRANE EXTRACTION GC/MS FOR THE ANALYSIS OF DISINFECTION BY-PRODUCTS

    EPA Science Inventory

    For many years, public water supplies in the U.S.have been treated with a variety of chemicals aimed at reducing or eliminating infectious diseases. Chlorine is the most common disinfectant used to combat waterborne microbial diseases; however, the use of ozone, chlorine dioxid...

  2. ANALYTICAL METHODS FOR WATER DISINFECTION BY-PRODUCTS IN FOODS AND BEVERAGES

    EPA Science Inventory

    The determination of exposure to drinking water disinfection byproducts (DBPs) requires an understanding of how drinking water comes in contact with humans through multiple pathways. In order to facilitate the investigation of human exposure to DBPs via foods and beverages, analy...

  3. INFLUENCE OF THE DRINKING WATER DISINFECTION BY-PRODUCT DIBROMOACETIC ACID ON RAT ESTROUS CYCLICITY AND OVARIAN FOLLICULAR STEROID RELEASE IN VITRO

    EPA Science Inventory

    The drinking water disinfection by-product, dibromoacetic acid (DBA) has been reported to affect gonadal functions in the male rat. However, there is little information regarding its influence on female reproductive activity. Consequently, the present study investigated the eff...

  4. Developmental Toxicity Evaluations of Whole Mixtures of Disinfection By-products using Concentrated Drinking Water in Rats: Gestational and Lactational Effects of Sulfate and Sodium

    EPA Science Inventory

    A developmental toxicity bioassay was used in three experiments to evaluate drinking water concentrates for suitability in multigenerational studies. First, chlorinated water was concentrated 135 fold by reverse osmosis; select lost disinfection by-products were spiked back. Co...

  5. Developmental Toxicity Evaluations of Whole Mixtures of Disinfection By-products using Concentrated Drinking Water in Rats: Gestational and Lactational Effects of Sulfate and Sodium*

    EPA Science Inventory

    A developmental toxicity bioassay was used in three experiments to evaluate drinking water concentrates for suitability in multigenerational studies. First, chlorinated water was concentrated 135 fold by reverse osmosis; select lost disinfection by-products were spiked back. Conc...

  6. Developmental Toxicity Evaluations of Whole Mixtures of Disinfection By-products using Concentrated Drinking Water in Rats: Gestational and Lactational Effects of Sulfate and Sodium*

    EPA Science Inventory

    A developmental toxicity bioassay was used in three experiments to evaluate drinking water concentrates for suitability in multigenerational studies. First, chlorinated water was concentrated 135 fold by reverse osmosis; select lost disinfection by-products were spiked back. Conc...

  7. Developmental Toxicity Evaluations of Whole Mixtures of Disinfection By-products using Concentrated Drinking Water in Rats: Gestational and Lactational Effects of Sulfate and Sodium

    EPA Science Inventory

    A developmental toxicity bioassay was used in three experiments to evaluate drinking water concentrates for suitability in multigenerational studies. First, chlorinated water was concentrated 135 fold by reverse osmosis; select lost disinfection by-products were spiked back. Co...

  8. TREATMENT OF LONG-EVANS RATS WITH A DEFINED MIXTURE OF DRINKING WATER DISINFECTION BY-PRODUCTS IMPACTS INTESTINAL MICROBIAL METABOLISM.

    EPA Science Inventory

    Water treatment results in the production of numerous halogenated disinfection by-products (DBPs), and has been associated with human colorectal cancer. Because the intestinal microbiota can bioactivate promutagens and procarcinogens, several studies have been done to examine the...

  9. TREATMENT OF LONG-EVANS RATS WITH A DEFINED MIXTURE OF DRINKING WATER DISINFECTION BY-PRODUCTS IMPACTS INTESTINAL MICROBIAL METABOLISM.

    EPA Science Inventory

    Water treatment results in the production of numerous halogenated disinfection by-products (DBPs), and has been associated with human colorectal cancer. Because the intestinal microbiota can bioactivate promutagens and procarcinogens, several studies have been done to examine the...

  10. INFLUENCE OF THE DRINKING WATER DISINFECTION BY-PRODUCT DIBROMOACETIC ACID ON RAT ESTROUS CYCLICITY AND OVARIAN FOLLICULAR STEROID RELEASE IN VITRO

    EPA Science Inventory

    The drinking water disinfection by-product, dibromoacetic acid (DBA) has been reported to affect gonadal functions in the male rat. However, there is little information regarding its influence on female reproductive activity. Consequently, the present study investigated the eff...

  11. Emerging nitrogenous disinfection byproducts: Transformation of the antidiabetic drug metformin during chlorine disinfection of water.

    PubMed

    Armbruster, Dominic; Happel, Oliver; Scheurer, Marco; Harms, Klaus; Schmidt, Torsten C; Brauch, Heinz-Jürgen

    2015-08-01

    As an environmental contaminant of anthropogenic origin metformin is present in the high ng/L- up to the low μg/L-range in most surface waters. Residues of metformin may lead to the formation of disinfection by-products during chlorine disinfection, when these waters are used for drinking water production. Investigations on the underlying chemical processes occurring during treatment of metformin with sodium hypochlorite in aqueous medium led to the discovery of two hitherto unknown transformation products. Both substances were isolated and characterized by HPLC-DAD, GC-MS, HPLC-ESI-TOF, (1)H-NMR and single-crystal X-ray structure determination. The immediate major chlorination product is a cyclic dehydro-1,2,4-triazole-derivate of intense yellow color (Y; C4H6ClN5). It is a solid chlorimine of limited stability. Rapid formation was observed between 10 °C and 30 °C, as well as between pH 3 and pH 11, in both ultrapure and tap water, even at trace quantities of reactants (ng/L-range for metformin, mg/L-range for free chlorine). While Y is degraded within a few hours to days in the presence of light, elevated temperature, organic solvents and matrix constituents within tap water, a secondary degradation product was discovered, which is stable and colorless (C; C4H6ClN3). This chloroorganic nitrile has a low photolysis rate in ambient day light, while being resistant to heat and not readily degraded in the presence of organic solvents or in the tap water matrix. In addition, the formation of ammonia, dimethylamine and N,N-dimethylguanidine was verified by cation exchange chromatography. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Reduction of disinfection by-product precursors in reservoir water by coagulation and ultrafiltration.

    PubMed

    Wang, Feng; Gao, Baoyu; Ma, Defang; Yue, Qinyan; Li, Ruihua; Wang, Qianwen

    2016-11-01

    In this study, reservoir water intended for drinking water supply was treated by (i) ultrafiltration (UF) (ii) coagulation (CW) (iii) coagulation combined with ultrafiltration (CW-UF). To probe the influences of three treatment processes on disinfection byproduct (DBP) precursors in source water, the changes of dissolved organic matter (DOM) amounts and physicochemical properties, and disinfection byproduct (DBP) formation characteristics during chlorine disinfection were investigated. Both carbonaceous DBP (C-DBP) and nitrogenous DBP (N-DBP) formation and speciation were analyzed. The influence of chlorine dose, contact time on DBP formation and speciation were also studied to optimize the disinfection conditions to minimize the DBP formation. Compared with UF and CW alone, CW-UF improved the dissolved organic carbon (DOC) removal from about 20 % to 59 %. The three-dimensional excitation and emission matrix (3DEEM) fluorescence spectroscopy analysis showed that CW-UF had high removal efficiency in microbial products (Region IV), fulvic acid-like (Region III) and humic acid-like (Region V). The total C-DBP was determined by the formation of trihalomethanes and trichloromethane was the most abundant species (40 %). The most abundant N-DBP species was dichloroacetonitrile (32.5 %), followed by trichloroactetonitrile. CW-UF effectively reduced the risk of DBPs in drinking water supply by reducing 30.8 % and 16.9 % DBPs formation potential compared with UF and CW alone. Increasing contact time improved the yields of both C-DBPs and N-DBPs. Chlorine dosage had slight influence on DBP yield in this study.

  13. Assessing regulatory violations of disinfection by-products in water distribution networks using a non-compliance potential index.

    PubMed

    Islam, Nilufar; Sadiq, Rehan; Rodriguez, Manuel J; Legay, Christelle

    2016-05-01

    Inactivating pathogens is essential to eradicate waterborne diseases. However, disinfection forms undesirable disinfection by-products (DBPs) in the presence of natural organic matter. Many regulations and guidelines exist to limit DBP exposure for eliminating possible health impacts such as bladder cancer, reproductive effects, and child development effects. In this paper, an index named non-compliance potential (NCP) index is proposed to evaluate regulatory violations by DBPs. The index can serve to evaluate water quality in distribution networks using the Bayesian Belief Network (BBN). BBN is a graphical model to represent contributing variables and their probabilistic relationships. Total trihalomethanes (TTHM), haloacetic acids (HAA5), and free residual chlorine (FRC) are selected as the variables to predict the NCP index. A methodology has been proposed to implement the index using either monitored data, empirical model results (e.g., multiple linear regression), and disinfectant kinetics through EPANET simulations. The index's usefulness is demonstrated through two case studies on municipal distribution systems using both full-scale monitoring and modeled data. The proposed approach can be implemented for data-sparse conditions, making it especially useful for smaller municipal drinking water systems.

  14. Evaluation on the generative mechanism and biological toxicity of microcystin-LR disinfection by-products formed by chlorination.

    PubMed

    Zong, Wansong; Sun, Feng; Sun, Xiaojing

    2013-05-15

    To control the environmental risk of microcystin-LR disinfection by-products (MCLR-DBPs), we evaluated their generative mechanisms and biological toxicity by mass spectrometry technology and protein phosphatase inhibition assay. Subject to chlorination, MCLR was totally transformed within 45 min and generated 5 types of MCLR-DBPs with the chemical formulas of C34H54N10O12, C49H76N10O14Cl2, C49H77N10O15Cl, C49H75N10O13Cl, and C49H76N10O14. Isomers for each MCLR-DBP type were identified and separated (products 1-9), indicating that the conjugated diene in Adda residue was a major target site of disinfection. Though, subsequent toxicity test showed the toxicity of MCLR-DBPs on protein phosphatase 1 decreased with the extending of disinfection by and large, these DBPs still possessed certain biological toxicity (especially for product 5). Combined with quantitative analysis, we thought the secondary pollution of MCLR-DBPs in drinking water also deserved further attention. This study offers valid technique support for MCLR-DBPs identification, contributes to a comprehensive cognition on their hazard, and thus has great significance to prevent and control the environmental risk induced by microcystins and their DBPs.

  15. Biostability and disinfectant by-product formation in drinking water blended with UF-treated filter backwash water.

    PubMed

    Walsh, M E; Gagnon, G A; Alam, Z; Andrews, R C

    2008-04-01

    The overall objective of this study was to investigate the impact of blending membrane-treated water treatment plant (WTP) residuals with plant-filtered water on finished water quality in terms of biostability and disinfectant by-product (DBP) formation. Filter backwash water (FBWW) was treated with a pilot-scale ultrafiltration (UF) membrane to produce permeate that was blended with plant-finished water. The batch studies involved storing samples for a specified time with a disinfectant residual to simulate residence time in the distribution system. Both chlorinated and non-chlorinated FBWW streams were evaluated, and the experimental design incorporated free chlorine, monochloramine, and chlorine dioxide in parallel to a model system that did not receive a disinfectant dose. The results of the study found that blending 10% UF-treated FBWW with plant-filtered water did not have an impact on water biostability as monitored with heterotrophic plate counts (HPCs) or DBP concentrations as monitored by TTHM and HAA5 concentrations. However, the presence of preformed THM and HAA species found in chlorinated FBWW streams may result in higher levels of initial DBP concentrations in blended water matrices, and could have a significant impact on finished water quality in terms of meeting specific DBP guidelines or regulations.

  16. Simulation of raw water and treatment parameters in support of the disinfection by-products regulatory impact analysis

    SciTech Connect

    Regli, S.; Cromwell, J.; Mosher, J.; Zhang, X.

    1992-06-10

    The U.S. EPA has undertaken an effort to model how the water supply industry may respond to possible rules and how those responses may affect human health risk. The model is referred to as the Disinfection By-Product Regulatory Analysis Model (DBPRAM), The paper is concerned primarily with presenting and discussing the methods, underlying data, assumptions, limitations and results for the first part of the model. This part of the model shows the creation of sets of simulated water supplies that are representative of the conditions currently encountered by public water supplies with respect to certain raw water quality and water treatment characteristics.

  17. The study of interrelationship between raw water quality parameters, chlorine demand and the formation of disinfection by-products

    NASA Astrophysics Data System (ADS)

    Abdullah, Md. Pauzi; Yee, Lim Fang; Ata, Sadia; Abdullah, Abass; Ishak, Basar; Abidin, Khairul Nidzham Zainal

    Disinfection is the most crucial process in the treatment of drinking water supply and is the final barrier against bacteriological impurities in drinking water. Chlorine is the primary disinfectant used in the drinking water treatment process throughout Malaysia. However, the occurrence of various disinfection by-products such as trihalomethanes (THM) and haloacetic acids created a major issue on the potential health hazards which may pose adverse health effects in both human and animals. To simulate real water treatment conditions and to represent the conditions inherent in a tropical country, this study was performed at an urbanized water treatment plant with a daily production of about 549,000 m 3 of treated water. The purpose of this work is to examine the relationship between the water quality parameters in the raw water with chlorine demand and the formation of disinfection by-products. This study also investigated the possibility of the statistical model applications for the prediction of chlorine demand and the THM formation. Two models were developed to estimate the chlorine demand and the THM formation. For the statistical evaluation, correlation and simple linear regression analysis were conducted using SPSS. The results of Kolmogorov-Smirnov test for the estimation of goodness-of-fit of the dependent variables of the models to the normal distribution showed that all the dependent variables followed the normal distribution at significance level of 0.05. Good linear correlations were observed between the independent parameters and formation of THM and the chlorine demand. This study also revealed that ammonia and the specific ultraviolet absorbent (SUVA) were the function of chlorine consumption in the treatment process. Chlorine dosage and SUVA increase the yield of THM. Chlorine demand and THM formation was moderately sensitive, but significant to the pH. The level of significance ( α) for the statistical tests and the inclusion of a variable in the

  18. Mutagenic activity associated with by-products of drinking water disinfection by chlorine, chlorine dioxide, ozone and UV-irradiation.

    PubMed Central

    Zoeteman, B C; Hrubec, J; de Greef, E; Kool, H J

    1982-01-01

    A retrospective epidemiological study in The Netherlands showed a statistical association between chlorination by-products in drinking water and cancer of the esophagus and stomach for males. A pilot-plant study with alternative disinfectants was carried out with stored water of the Rivers Rhine and Meuse. It was demonstrated that the increase of direct acting mutagens after treatment with chlorine dioxide is similar to the effect of chlorination. Ozonation of Rhine water reduced the mutagenic activity for Salmonella typhimurium TA 98 both with and without metabolic activation. UV alone hardly affects the mutagenicity of the stored river water for S. typh. TA 98. In all studies, practically no mutagenic activity for S. typh. TA 100 was found. Although remarkable changes in the concentration of individual organic compounds are reported, the identity of the mutagens detected is yet unclear. Compounds of possible interest due to their removal by ozonation are 1,3,3-trimethyloxindole, dicyclopentadiene and several alkylquinolines. Compounds which might be responsible for the increased mutagenicity after chlorination are two brominated acetonitriles and tri(2-chlorethyl) phosphate. Furthermore, the concentration procedure with adsorption on XAD resin and the subsequent elution step may have affected the results. It is proposed to focus further research more on the less volatile by-products of disinfection than on the trihalomethanes. PMID:7151762

  19. Nano-silver in drinking water and drinking water sources: stability and influences on disinfection by-product formation.

    PubMed

    Tugulea, A-M; Bérubé, D; Giddings, M; Lemieux, F; Hnatiw, J; Priem, J; Avramescu, M-L

    2014-10-01

    Nano-silver is increasingly used in consumer products from washing machines and refrigerators to devices marketed for the disinfection of drinking water or recreational water. The nano-silver in these products may be released, ending up in surface water bodies which may be used as drinking water sources. Little information is available about the stability of the nano-silver in sources of drinking water, its fate during drinking water disinfection processes, and its interaction with disinfection agents and disinfection by-products (DBPs). This study aims to investigate the stability of nano-silver in drinking water sources and in the finished drinking water when chlorine and chloramines are used for disinfection and to observe changes in the composition of DBPs formed when nano-silver is present in the source water. A dispersion of nano-silver particles (10 nm; PVP-coated) was used to spike untreated Ottawa River water, treated Ottawa River water, organic-free water, and a groundwater at concentrations of 5 mg/L. The diluted dispersions were kept under stirred and non-stirred conditions for up to 9 months and analyzed weekly using UV absorption to assess the stability of the nano-silver particles. In a separate experiment, Ottawa River water containing nano-silver particles (at 0.1 and 1 mg/L concentration, respectively) was disinfected by adding sodium hypochlorite (a chlorinating agent) in sufficient amounts to maintain a free chlorine residual of approximately 0.4 mg/L after 24 h. The disinfected drinking water was then quenched with ascorbic acid and analyzed for 34 neutral DBPs (trihalomethanes, haloacetonitriles, haloacetaldehydes, 1,1 dichloro-2-propanone, 1,1,1 trichloro-2-propanone, chloropicrin, and cyanogen chloride). The results were compared to the profile of DBPs obtained under the same conditions in the absence of nano-silver and in the presence of an equivalent concentration of Ag(+) ions (as AgNO3). The stability of the nano-silver dispersions in

  20. Assessment of disinfection by-products in drinking water in Korea.

    PubMed

    Shin, D; Chung, Y; Choi, Y; Kim, J; Park, Y; Kum, H

    1999-01-01

    The main purpose of applying the chlorination process during water treatment is for disinfection. Research results, however, indicate that disinfection byproducts (DBPs) including trihalomethanes (THMs), haloacetic acids (HAAs), haloacetonitriles (HANs), haloketones (HKs), and chloropicrin (CP) can be produced by the chlorination process. Some of these DBPs are known to be potential human carcinogens. This 3-year project is designed to establish a standard analysis procedure for DBPs in drinking water of this country and investigate the distribution and sources of specific DBPs. The occurrence level of DBPs in drinking water was below 50 micrograms/l in most cases. THMs in plant effluent accounted for 60% of all DBPs measured, whereas HAAs accounted for 20%, HANs 12%, HKs 5% and CP 3%. Chloroform was found to be the major THMs compound (77%), followed by bromodichloromethane (BDCM, 18%) and bromoform (BF, 3%). The concentration of DBPs formed in distribution systems increased from those detected in plant effluent. Comparison of humic acid and sewage as precursors for THMs formation showed that humic acid was the major THMs precursor. Results would play an important role in exposure assessment as a part of the risk assessment process, and would give basic information for establishment of DBPs reduction and management procedures.

  1. The impact of iodinated X-ray contrast agents on formation and toxicity of disinfection by-products in drinking water.

    PubMed

    Jeong, Clara H; Machek, Edward J; Shakeri, Morteza; Duirk, Stephen E; Ternes, Thomas A; Richardson, Susan D; Wagner, Elizabeth D; Plewa, Michael J

    2017-08-01

    The presence of iodinated X-ray contrast media (ICM) in source waters is of high concern to public health because of their potential to generate highly toxic disinfection by-products (DBPs). The objective of this study was to determine the impact of ICM in source waters and the type of disinfectant on the overall toxicity of DBP mixtures and to determine which ICM and reaction conditions give rise to toxic by-products. Source waters collected from Akron, OH were treated with five different ICMs, including iopamidol, iopromide, iohexol, diatrizoate and iomeprol, with or without chlorine or chloramine disinfection. The reaction product mixtures were concentrated with XAD resins and the mammalian cell cytotoxicity and genotoxicity of the reaction mixture concentrates was measured. Water containing iopamidol generated an enhanced level of mammalian cell cytotoxicity and genotoxicity after disinfection. While chlorine disinfection with iopamidol resulted in the highest cytotoxicity overall, the relative iopamidol-mediated increase in toxicity was greater when chloramine was used as the disinfectant compared with chlorine. Four other ICMs (iopromide, iohexol, diatrizoate, and iomeprol) expressed some cytotoxicity over the control without any disinfection, and induced higher cytotoxicity when chlorinated. Only iohexol enhanced genotoxicity compared to the chlorinated source water. Copyright © 2017. Published by Elsevier B.V.

  2. Dissolved Organic Carbon and Disinfection By-Product Precursor Release from Managed Peat Soils

    USGS Publications Warehouse

    Fleck, J.A.; Bossio, D.A.; Fujii, R.

    2004-01-01

    A wetland restoration demonstration project examined the effects of a permanently flooded wetland on subsidence of peat soils. The project, started in 1997, was done on Twitchell Island, in the Sacramento-San Joaquin Delta of California. Conversion of agricultural land to a wetland has changed many of the biogeochemical processes controlling dissolved organic carbon (DOC) release from the peat soils, relative to the previous land use. Dissolved organic C in delta waters is a concern because it reacts with chlorine, added as a disinfectant in municipal drinking waters, to form carcinogenic disinfection byproducts (DBPs), including trihalomethanes (THMs) and haloacetic acids (HAAs). This study explores the effects of peat soil biogeochemistry on DOC and DBP release under agricultural and wetland management. Results indicate that organic matter source, extent of soil organic matter decomposition, and decomposition pathways all are factors in THM formation. The results show that historical management practices dominate the release of DOC and THM precursors. However, within-site differences indicate that recent management decisions can contribute to changes in DOC quality and THM precursor formation. Not all aromatic forms of carbon are highly reactive and certain environmental conditions produce the specific carbon structures that form THMs. Both HAA and THM precursors are elevated in the DOC released under wetland conditions. The findings of this study emphasize the need to further investigate the roles of organic matter sources, microbial decomposition pathways, and decomposition status of soil organic matter in the release of DOC and DBP precursors from delta soils under varying land-use practices.

  3. Evaluating Evidence for Association of Human Bladder Cancer with Drinking-Water Chlorination Disinfection By-Products

    PubMed Central

    Hrudey, Steve E.; Backer, Lorraine C.; Humpage, Andrew R.; Krasner, Stuart W.; Michaud, Dominique S.; Moore, Lee E.; Singer, Philip C.; Stanford, Benjamin D.

    2015-01-01

    Exposure to chlorination disinfection by-products (CxDBPs) is prevalent in populations using chlorination-based methods to disinfect public water supplies. Multifaceted research has been directed for decades to identify, characterize, and understand the toxicology of these compounds, control and minimize their formation, and conduct epidemiologic studies related to exposure. Urinary bladder cancer has been the health risk most consistently associated with CxDBPs in epidemiologic studies. An international workshop was held to (1) discuss the qualitative strengths and limitations that inform the association between bladder cancer and CxDBPs in the context of possible causation, (2) identify knowledge gaps for this topic in relation to chlorine/chloramine-based disinfection practice(s) in the United States, and (3) assess the evidence for informing risk management. Epidemiological evidence linking exposures to CxDBPs in drinking water to human bladder cancer risk provides insight into causality. However, because of imprecise, inaccurate, or incomplete estimation of CxDBPs levels in epidemiologic studies, translation from hazard identification directly to risk management and regulatory policy for CxDBPs can be challenging. Quantitative risk estimates derived from toxicological risk assessment for CxDBPs currently cannot be reconciled with those from epidemiologic studies, notwithstanding the complexities involved, making regulatory interpretation difficult. Evidence presented here has both strengths and limitations that require additional studies to resolve and improve the understanding of exposure response relationships. Replication of epidemiologic findings in independent populations with further elaboration of exposure assessment is needed to strengthen the knowledge base needed to better inform effective regulatory approaches. PMID:26309063

  4. Evaluating Evidence for Association of Human Bladder Cancer with Drinking-Water Chlorination Disinfection By-Products.

    PubMed

    Hrudey, Steve E; Backer, Lorraine C; Humpage, Andrew R; Krasner, Stuart W; Michaud, Dominique S; Moore, Lee E; Singer, Philip C; Stanford, Benjamin D

    2015-01-01

    Exposure to chlorination disinfection by-products (CxDBPs) is prevalent in populations using chlorination-based methods to disinfect public water supplies. Multifaceted research has been directed for decades to identify, characterize, and understand the toxicology of these compounds, control and minimize their formation, and conduct epidemiologic studies related to exposure. Urinary bladder cancer has been the health risk most consistently associated with CxDBPs in epidemiologic studies. An international workshop was held to (1) discuss the qualitative strengths and limitations that inform the association between bladder cancer and CxDBPs in the context of possible causation, (2) identify knowledge gaps for this topic in relation to chlorine/chloramine-based disinfection practice(s) in the United States, and (3) assess the evidence for informing risk management. Epidemiological evidence linking exposures to CxDBPs in drinking water to human bladder cancer risk provides insight into causality. However, because of imprecise, inaccurate, or incomplete estimation of CxDBPs levels in epidemiologic studies, translation from hazard identification directly to risk management and regulatory policy for CxDBPs can be challenging. Quantitative risk estimates derived from toxicological risk assessment for CxDBPs currently cannot be reconciled with those from epidemiologic studies, notwithstanding the complexities involved, making regulatory interpretation difficult. Evidence presented here has both strengths and limitations that require additional studies to resolve and improve the understanding of exposure response relationships. Replication of epidemiologic findings in independent populations with further elaboration of exposure assessment is needed to strengthen the knowledge base needed to better inform effective regulatory approaches.

  5. POWDERED ACTIVATED CARBON FROM NORTH DAKOTA LIGNITE: AN OPTION FOR DISINFECTION BY-PRODUCT CONTROL IN WATER TREATMENT PLANTS

    SciTech Connect

    Daniel J. Stepan; Thomas A. Moe; Melanie D. Hetland; Margaret L. Laumb

    2001-06-01

    New federal drinking water regulations have been promulgated to restrict the levels of disinfection by-products (DBPs) in finished public water supplies. DBPs are suspected carcinogens and are formed when organic material is partially oxidized by disinfectants commonly used in the water treatment industry. Additional federal mandates are expected in the near future that will further affect public water suppliers with respect to DBPs. Powdered activated carbon (PAC) has traditionally been used by the water treatment industry for the removal of compounds contributing to taste and odor problems. PAC also has the potential to remove naturally occurring organic matter (NOM) from raw waters prior to disinfection, thus controlling the formation of regulated DBPs. Many small water systems are currently using PAC for taste and odor control and have the potential to use PAC for controlling DBPs. This project, a cooperative effort between the Energy & Environmental Research Center (EERC), the Grand Forks Water Treatment Plant, and the University of North Dakota Department of Civil Engineering, consists of several interrelated tasks. The objective of the research was to evaluate a cost-effective PAC produced from North Dakota lignite for removing NOM from water and reducing trihalomethane formation potential. The research approach was to develop a statistically valid testing protocol that can be used to compare dose-response relationships between North Dakota lignite-derived PAC and commercially available PAC products. A statistical analysis was performed to determine whether significant correlations exist between operating conditions, water properties, PAC properties, and dose-response behavior. Pertinent physical and chemical properties were also measured for each of the waters and each of the PACs.

  6. Drinking Water Disinfection By-products, Genetic Polymorphisms, and Birth Outcomes in a European Mother-Child Cohort Study.

    PubMed

    Kogevinas, Manolis; Bustamante, Mariona; Gracia-Lavedán, Esther; Ballester, Ferran; Cordier, Sylvaine; Costet, Nathalie; Espinosa, Ana; Grazuleviciene, Regina; Danileviciute, Asta; Ibarluzea, Jesus; Karadanelli, Maria; Krasner, Stuart; Patelarou, Evridiki; Stephanou, Euripides; Tardón, Adonina; Toledano, Mireille B; Wright, John; Villanueva, Cristina M; Nieuwenhuijsen, Mark

    2016-11-01

    We examined the association between exposure during pregnancy to trihalomethanes, the most common water disinfection by-products, and birth outcomes in a European cohort study (Health Impacts of Long-Term Exposure to Disinfection By-Products in Drinking Water). We took into account exposure through different water uses, measures of water toxicity, and genetic susceptibility. We enrolled 14,005 mothers (2002-2010) and their children from France, Greece, Lithuania, Spain, and the UK. Information on lifestyle- and water-related activities was recorded. We ascertained residential concentrations of trihalomethanes through regulatory records and ad hoc sampling campaigns and estimated route-specific trihalomethane uptake by trimester and for whole pregnancy. We examined single nucleotide polymorphisms and copy number variants in disinfection by-product metabolizing genes in nested case-control studies. Average levels of trihalomethanes ranged from around 10 μg/L to above the regulatory limits in the EU of 100 μg/L between centers. There was no association between birth weight and total trihalomethane exposure during pregnancy (β = 2.2 g in birth weight per 10 μg/L of trihalomethane, 95% confidence interval = 3.3, 7.6). Birth weight was not associated with exposure through different routes or with specific trihalomethane species. Exposure to trihalomethanes was not associated with low birth weight (odds ratio [OR] per 10 μg/L = 1.02, 95% confidence interval = 0.95, 1.10), small-for-gestational age (OR = 0.99, 0.94, 1.03) and preterm births (OR = 0.98, 0.9, 1.05). We found no gene-environment interactions for mother or child polymorphisms in relation to preterm birth or small-for-gestational age. In this large European study, we found no association between birth outcomes and trihalomethane exposures during pregnancy in the total population or in potentially genetically susceptible subgroups. (See video abstract at http://links.lww.com/EDE/B104.).

  7. Biological efficacy and toxic effect of emergency water disinfection process based on advanced oxidation technology.

    PubMed

    Tian, Yiping; Yuan, Xiaoli; Xu, Shujing; Li, Rihong; Zhou, Xinying; Zhang, Zhitao

    2015-12-01

    An innovative and removable water treatment system consisted of strong electric field discharge and hydrodynamic cavitation based on advanced oxidation technologies was developed for reactive free radicals producing and waterborne pathogens eliminating in the present study. The biological efficacy and toxic effects of this advanced oxidation system were evaluated during water disinfection treatments. Bench tests were carried out with synthetic microbial-contaminated water, as well as source water in rainy season from a reservoir of Dalian city (Liaoning Province, China). Results showed that high inactivation efficiency of Escherichia coli (>5 log) could be obtained for synthetic contaminated water at a low concentration (0.5-0.7 mg L(-1)) of total oxidants in 3-10 s. The numbers of wild total bacteria (108 × 10(3) CFU mL(-1)) and total coliforms (260 × 10(2) MPN 100 mL(-1)) in source water greatly reduced to 50 and 0 CFU mL(-1) respectively after treated by the advanced oxidation system, which meet the microbiological standards of drinking water, and especially that the inactivation efficiency of total coliforms could reach 100%. Meanwhile, source water qualities were greatly improved during the disinfection processes. The values of UV254 in particular were significantly reduced (60-80%) by reactive free radicals. Moreover, the concentrations of possible disinfection by-products (formaldehyde and bromide) in treated water were lower than detection limits, indicating that there was no harmful effect on water after the treatments. These investigations are helpful for the ecotoxicological studies of advanced oxidation system in the treatments of chemical polluted water or waste water. The findings of this work suggest that the developed water treatment system is ideal in the acute phases of emergencies, which also could offer additional advantages over a wide range of applications in water pollution control.

  8. Use of household bleach for emergency disinfection of drinking water.

    PubMed

    Elmaksoud, Sherif Abd; Patel, Nikita; Maxwell, Sherri L; Sifuentes, Laura Y; Gerba, Charles P

    2014-05-01

    Household bleach is typically used as a disinfectant for water in times of emergencies and by those engaging in recreational activities such as camping or rafting. The Centers for Disease Control and Prevention recommend a concentration of free chlorine of 1 mg/L for 30 minutes, or about 0.75 mL (1/8 teaspoon) of household bleach per gallon of water. The goal of the study described in this article was to assess two household bleach products to kill waterborne bacteria and viruses using the test procedures in the U.S. Environmental Protection Agency's Guide Standard and Protocol for Testing Microbiological Purifiers. Bleach was found to meet these requirements in waters of low turbidity and organic matter. While the test bacterium was reduced by six logs in high turbid and organic-laden waters, the test viruses were reduced only by one-half to one log. In such waters greater chlorine doses or contact times are needed to achieve greater reduction of viruses.

  9. Assessing exposure in epidemiologic studies to disinfection by-products in drinking water: report from an international workshop.

    PubMed Central

    Arbuckle, Tye E; Hrudey, Steve E; Krasner, Stuart W; Nuckols, Jay R; Richardson, Susan D; Singer, Philip; Mendola, Pauline; Dodds, Linda; Weisel, Clifford; Ashley, David L; Froese, Kenneth L; Pegram, Rex A; Schultz, Irvin R; Reif, John; Bachand, Annette M; Benoit, Frank M; Lynberg, Michele; Poole, Charles; Waller, Kirsten

    2002-01-01

    The inability to accurately assess exposure has been one of the major shortcomings of epidemiologic studies of disinfection by-products (DBPs) in drinking water. A number of contributing factors include a) limited information on the identity, occurrence, toxicity, and pharmacokinetics of the many DBPs that can be formed from chlorine, chloramine, ozone, and chlorine dioxide disinfection; b) the complex chemical interrelationships between DBPs and other parameters within a municipal water distribution system; and c) difficulties obtaining accurate and reliable information on personal activity and water consumption patterns. In May 2000, an international workshop was held to bring together various disciplines to develop better approaches for measuring DBP exposure for epidemiologic studies. The workshop reached consensus about the clear need to involve relevant disciplines (e.g., chemists, engineers, toxicologists, biostatisticians and epidemiologists) as partners in developing epidemiologic studies of DBPs in drinking water. The workshop concluded that greater collaboration of epidemiologists with water utilities and regulators should be encouraged in order to make regulatory monitoring data more useful for epidemiologic studies. Similarly, exposure classification categories in epidemiologic studies should be chosen to make results useful for regulatory or policy decision making. PMID:11834463

  10. Photodegradation kinetics of iopamidol by UV irradiation and enhanced formation of iodinated disinfection by-products in sequential oxidation processes.

    PubMed

    Tian, Fu-Xiang; Xu, Bin; Lin, Yi-Li; Hu, Chen-Yan; Zhang, Tian-Yang; Gao, Nai-Yun

    2014-07-01

    The photochemical degradation of iopamidol with low-pressure UV lamps and the formation of iodinated disinfection by-products (I-DBPs) during sequential oxidation processes including chlorine, monochloramine and chlorine dioxide were investigated in this study. Iopamidol can be effectively decomposed by UV irradiation with pseudo-first order reaction kinetics. The evaluated quantum yield was found to be 0.03318 mol einstein(-1). Results showed that iopamidol degradation rate was significantly increased by higher UV intensity and lower initial iopamidol concentration. However, the effect of solution pH was negligible. Degradation of iopamidol by UV photolysis was subjected to deiodination and hydroxylation mechanisms. The main degradation products including -OH substitutes and iodide were identified by UPLC-ESI-MS and UPLC-UV, respectively. Increasing the intensity of UV irradiation promoted the release of iodide. Destruction pathways of iopamidol photolysis were proposed. Enhanced formation of I-DBPs were observed after iopamidol photolysis followed by disinfection processes including chlorine, monochloramine and chlorine dioxide. With the increase of UV fluence, I-DBPs formation were significantly promoted.

  11. Characterization of iodinated disinfection by-products in chlorinated and chloraminated waters using Orbitrap based gas chromatography-mass spectrometry.

    PubMed

    Postigo, Cristina; Cojocariu, Cristian I; Richardson, Susan D; Silcock, Paul J; Barcelo, Damia

    2016-05-01

    Recent developments in gas chromatography (GC)-mass spectrometry (MS) have opened up the possibility to use the high resolution-accurate mass (HRAM) Orbitrap mass analyzer to further characterize the volatile and semivolatile fractions of environmental samples. This work describes the utilization of GC Orbitrap MS technology to characterize iodine-containing disinfection by-products (iodo-DBPs) in chlorinated and chloraminated DBP mixture concentrates. These DBP mixtures were generated in lab-scale disinfection reactions using Llobregat river water and solutions containing Nordic Lake natural organic matter (NOM). The DBPs generated were concentrated using XAD resins, and extracts obtained were analyzed in full scan mode with the GC Orbitrap MS. Integration of high resolution accurate mass information and fragment rationalization allowed the characterization of up to 11 different iodo-DBPs in the water extracts analyzed, including one new iodo-DBP reported for the first time. Overall, formation of iodo-DBPs was enhanced during chloramination reactions. As expected, NOM characteristics and iodide and bromide content of the tested waters affected the amount and type of iodo-DBPs generated.

  12. Disinfection.

    ERIC Educational Resources Information Center

    Gould, J. P.; Haas, C. N.

    1978-01-01

    Presents a literature review of wastewater disinfection for 1978. This review covers areas such as: (1) mechanisms of inactivation of negative microorganisms by chlorine and ozone; and (2) the effects of various treatment on over-all water quality. A list of 61 references is also presented. (HM)

  13. Disinfection.

    ERIC Educational Resources Information Center

    Gould, J. P.; Haas, C. N.

    1978-01-01

    Presents a literature review of wastewater disinfection for 1978. This review covers areas such as: (1) mechanisms of inactivation of negative microorganisms by chlorine and ozone; and (2) the effects of various treatment on over-all water quality. A list of 61 references is also presented. (HM)

  14. DISINFECTION

    EPA Science Inventory

    The primary goal of the disinfection process in drinking water treatment is the inactivation of microbial pathogens. These pathogens comprise a diverse group of organisms which serve as the etiological agents of waterborne disease. Included in this group are bacterial, viral and ...

  15. Formation of toxic iodinated disinfection by-products from compounds used in medical imaging.

    PubMed

    Duirk, Stephen E; Lindell, Cristal; Cornelison, Christopher C; Kormos, Jennifer; Ternes, Thomas A; Attene-Ramos, Matias; Osiol, Jennifer; Wagner, Elizabeth D; Plewa, Michael J; Richardson, Susan D

    2011-08-15

    Iodinated X-ray contrast media (ICM) were investigated as a source of iodine in the formation of iodo-trihalomethane (iodo-THM) and iodo-acid disinfection byproducts (DBPs), both of which are highly genotoxic and/or cytotoxic in mammalian cells. ICM are widely used at medical centers to enable imaging of soft tissues (e.g., organs, veins, blood vessels) and are designed to be inert substances, with 95% eliminated in urine and feces unmetabolized within 24 h. ICM are not well removed in wastewater treatment plants, such that they have been found at elevated concentrations in rivers and streams (up to 100 μg/L). Naturally occurring iodide in source waters is believed to be a primary source of iodine in the formation of iodo-DBPs, but a previous 23-city iodo-DBP occurrence study also revealed appreciable levels of iodo-DBPs in some drinking waters that had very low or no detectable iodide in their source waters. When 10 of the original 23 cities' source waters were resampled, four ICM were found--iopamidol, iopromide, iohexol, and diatrizoate--with iopamidol most frequently detected, in 6 of the 10 plants sampled, with concentrations up to 2700 ng/L. Subsequent controlled laboratory reactions of iopamidol with aqueous chlorine and monochloramine in the absence of natural organic matter (NOM) produced only trace levels of iodo-DBPs; however, when reacted in real source waters (containing NOM), chlorine and monochloramine produced significant levels of iodo-THMs and iodo-acids, up to 212 nM for dichloroiodomethane and 3.0 nM for iodoacetic acid, respectively, for chlorination. The pH behavior was different for chlorine and monochloramine, such that iodo-DBP concentrations maximized at higher pH (8.5) for chlorine, but at lower pH (6.5) for monochloramine. Extracts from chloraminated source waters with and without iopamidol, as well as from chlorinated source waters with iopamidol, were the most cytotoxic samples in mammalian cells. Source waters with iopamidol but no

  16. Identification of disinfection by-products in freshwater and seawater swimming pools and evaluation of genotoxicity.

    PubMed

    Manasfi, Tarek; De Méo, Michel; Coulomb, Bruno; Di Giorgio, Carole; Boudenne, Jean-Luc

    2016-03-01

    Exposure to disinfection byproducts (DBPs) in swimming pools has been linked to adverse health effects. Numerous DBPs that occur in swimming pools are genotoxic and carcinogenic. This toxicity is of a greater concern in the case of brominated DBPs that have been shown to have substantially greater toxicities than their chlorinated analogs. In chlorinated seawater swimming pools, brominated DBPs are formed due to the high content of bromide. Nevertheless, very little data is reported about DBP occurrence and mutagenicity of water in these pools. In the present study, three seawater and one freshwater swimming pools located in Southeastern France were investigated to determine qualitatively and quantitatively their DBP contents. An evaluation of the genotoxic properties of water samples of the freshwater pool and a seawater pool was conducted through the Salmonella assay (Ames test). The predominant DBPs identified in the freshwater pool were chlorinated species and included trichloroacetic acid, chloral hydrate, dichloroacetonitrile, 1,1,1-trichloropropanone and chloroform. In the seawater pools, brominated DBPs were the predominant species and included dibromoacetic acid, bromoform and dibromoacetonitile. Bromal hydrate levels were also reported. In both types of pools, haloacetic acids were the most prevalent chemical class among the analyzed DBP classes. The distribution of other DBP classes varied depending on the type of pool. As to genotoxicity, the results of Ames test showed higher mutagenicity in the freshwater pool as a consequence of its considerably higher DBP contents in comparison to the tested seawater pool. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. [Formation Mechanism of the Disinfection By-product 1, 1-Dichloroacetone in Drinking Water].

    PubMed

    Ding, Chun-sheng; Meng, Zhuang; Xu, Yang-yang; Miao, Jia

    2015-05-01

    A novel method using methyl tertiary butyl ether (MTBE) as extractant and 1,2-dibromopropane as internal standard for the determination of the disinfection by-producs 1,1-dichloroacetone (DCAce) by gas chromatography mass spectrometry (GC-MS) was described. The formation process of DCAce and its influencing factors were discussed with L-leucine as the precursor during the chloramination process. The results indicated that the DCAce production increased with the increase of chloramine dosage when the chloramine addition was in the range of 5-30 mg · L(-1). The DCAce amount produced under alkaline condition was higher than those produced under the neutral and acidic conditions, and the DCAce amount reduced with the increase of pH value. Temperature was another important factor that affected the DCAce formation from methylamine especially in the range of 15-35°C , and the higher the temperature, the more the DCAce produced. The formation process of DCAce from L-leucine by chloramine consisted of a series of complicated reactions, including substitution, oxidation, bond breaking, amino diazotization, reduction and so on, and eventually DCAce was formed.

  18. Characterization and disinfection by-product formation potential of natural organic matter in surface and ground waters from Northern Florida

    USGS Publications Warehouse

    Rostad, C.E.; Leenheer, J.A.; Katz, B.; Martin, B.S.; Noyes, T.I.

    2000-01-01

    Streamwaters in northern Florida have large concentrations of natural organic matter (NOM), and commonly flow directly into the ground water system through karst features, such as sinkholes. In this study NOM from northern Florida stream and ground waters was fractionated, the fractions characterized by infrared (IR) and nuclear magnetic resonance (NMR), and then chlorinated to investigate their disinfection by-product (DBP) formation potential (FP). As the NOM character changed (as quantified by changes in NOM distribution in various fractions, such as hydrophilic acids or hydrophobic neutrals) due to migration through the aquifer, the total organic halide (TOX)-FP and trihalomethane (THM)-FP yield of each of these fractions varied also. In surface waters, the greatest DBP yields were produced by the colloid fraction. In ground waters, DBP yield of the hydrophobic acid fraction (the greatest in terms of mass) decreased during infiltration.

  19. A review of oxyhalide disinfection by-products determination in water by ion chromatography and ion chromatography-mass spectrometry.

    PubMed

    Gilchrist, Elizabeth S; Healy, David A; Morris, Virginia N; Glennon, Jeremy D

    2016-10-26

    This paper is a review of ion chromatographic (IC) separations of inorganic oxyhalide disinfection by-products (DBPs) in water and beverages. The review outlines the chemical mechanisms of formation, regulation of maximum allowable levels, chromatographic column selection and speciation. In addition, this review highlights the application of IC coupled to mass spectrometry (MS) for trace and elemental composition analysis of oxyhalides, along with the analytical considerations associated to enable sensitive analysis. Furthermore, a review of literature concerning IC determination of inorganic oxyhalide DBPs in environmental matrices, including water, published since 2005 is presented, with a focus on MS detection, and a discussion on the relative performance of the methods. Finally some prospective areas for future research, including fast, selective, multi-analyte analysis, for this application are highlighted and discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Comparison of the disinfection by-product formation potential of treated waters exposed to chlorine and monochloramine.

    PubMed

    Bougeard, Cynthia M M; Goslan, Emma H; Jefferson, Bruce; Parsons, Simon A

    2010-02-01

    The formation of disinfection by-products (DBPs) from chlorination and monochloramination of treated drinking waters was determined. Samples were collected after treatment at 11 water treatment works but before exposure to chlorine or monochloramine. Formation potential tests were carried out to determine the DBPs formed by chlorination and monochloramination. DBPs measured were trihalomethanes (THMs), haloacetic acids (HAAs), halonitromethanes (HNMs), haloacetonitriles (HANs), haloaldehydes (HAs), haloketones (HKs) and iodo-THMs (i-THMs). All waters had the potential to form significant levels of all the DBPs measured. Compared to chlorine, monochloramination generally resulted in lower concentrations of DBPs with the exception of 1,1-dichloropropanone. The concentrations of THMs correlated well with the HAAs formed. The impact of bromine on the speciation of the DBPs was determined. The literature findings that higher bromide levels lead to higher concentrations of brominated DBPS were confirmed.

  1. Formation of iodinated disinfection by-products during oxidation of iodide-containing water with potassium permanganate.

    PubMed

    Ye, Tao; Xu, Bin; Lin, Yi-Li; Hu, Chen-Yan; Xia, Sheng-Ji; Lin, Lin; Mwakagenda, Seleli Andrew; Gao, Nai-Yun

    2012-11-30

    This study shows that iodinated disinfection by-products (I-DBPs) including iodoform (IF), iodoacetic acid (IAA) and triiodoacetic acid (TIAA) can be produced when iodide-containing waters are in contact with potassium permanganate. IF was found as the major I-DBP species during the oxidation. Iodide was oxidized to HOI, I(2) and I(3)(-), consequently, which led to the formation of iodinated organic compounds. I-DBPs varied with reaction time, solution pH, initial concentrations of iodide and potassium permanganate. Yields of IF, IAA and TIAA increased with reaction time and considerable I-DBPs were formed within 12 h. Peak IF yields were found at circumneutral pH range. However, formation of IAA and TIAA was favored under acidic conditions. Molar ratio of iodide to potassium permanganate showed significant influence on formation of IF, IAA and TIAA. The formation of IF, IAA and TIAA also depended on the characteristics of the waters.

  2. Effect of chlorination on the formation of odorous disinfection by-products.

    PubMed

    Freuze, Ingrid; Brosillon, Stéphan; Laplanche, Alain; Tozza, Dominique; Cavard, Jacques

    2005-07-01

    In order to explain some of the possible origins of an odor episode, which took place in a drinking water supply in the region of Paris (France), the chlorination reaction of some simple amino acids (valine, leucine and phenylalanine) was investigated. In addition to the commonly admitted intermediates and products of this reaction (monochloramines, aldehydes and nitriles), the formation of far less documented products was observed: N-chloroaldimines which proved to present particular properties. These products appeared to remain relatively stable in water, especially at low temperatures, and can be formed under disinfection conditions relevant to those of drinking water treatment (i.e. at high chlorination rates). N-chloroaldimines also present strong swimming pool odors with a floral background, with odor detection thresholds close to 1microgL(-1) and even less. These values were established with a laboratory-made protocol. These products appeared more odorous than the corresponding aldehydes, known for a long time as potent odor causing chemicals and which have previously been involved in some odor problems in the field of drinking water treatment. N-chloroaldimines are consequently products of interest for water treaters and are now suspected to be a source of off-flavor concerns among consumers. We have therefore developed an analytical method (gas chromatography coupled with mass spectrometry) to demonstrate the presence of some of these compounds in water at concentrations close to their odor detection thresholds. Considering the levels of amino acids that can be reached in water, this level of chloroaldimines concentration could be obtained under certain pollution conditions.

  3. Formation of hazardous inorganic by-products during electrolysis of seawater as a disinfection process for desalination.

    PubMed

    Oh, Byung Soo; Oh, Sang Guen; Hwang, Youn Young; Yu, Hye-Weon; Kang, Joon-Wun; Kim, In S

    2010-11-01

    From our previous study, an electrochemical process was determined to be a promising tool for disinfection in a seawater desalination system, but an investigation on the production of several hazardous by-products is still required. In this study, a more intensive exploration of the formation patterns of perchlorate and bromate during the electrolysis of seawater was conducted. In addition, the rejection efficiencies of the targeted by-products by membrane processes (microfiltration and seawater reverse osmosis) were investigated to uncover the concentrations remaining in the final product from a membrane-based seawater desalination system for the production of drinking water. On the electrolysis of seawater, perchlorate did not provoke any problem due to the low concentrations formed, but bromate was produced at a much higher level, resulting in critical limitation in the application of the electrochemical process to the desalination of seawater. Even though the formed bromate was rejected via microfiltration and reverse osmosis during the 1st and 2nd passes, the residual concentration was a few orders of magnitude higher than the USEPA regulation. Consequently, it was concluded that the application of the electrochemical process to seawater desalination cannot be recommended without the control of bromate.

  4. Health impacts of long-term exposure to disinfection by-products in drinking water in Europe: HIWATE.

    PubMed

    Nieuwenhuijsen, Mark J; Smith, Rachel; Golfinopoulos, Spyros; Best, Nicky; Bennett, James; Aggazzotti, Gabriella; Righi, Elena; Fantuzzi, Guglielmina; Bucchini, Luca; Cordier, Sylvaine; Villanueva, Cristina M; Moreno, Victor; La Vecchia, Carlo; Bosetti, Cristina; Vartiainen, Terttu; Rautiu, Radu; Toledano, Mireille; Iszatt, Nina; Grazuleviciene, Regina; Kogevinas, Manolis

    2009-06-01

    There appears to be very good epidemiological evidence for a relationship between chlorination by-products, as measured by trihalomethanes (THMs), in drinking water and bladder cancer, but the evidence for other cancers, including colorectal cancer appears to be inconclusive and inconsistent. There appears to be some evidence for a relationship between chlorination by-products, as measured by THMs, and small for gestational age (SGA)/intrauterine growth retardation (IUGR) and preterm delivery, but evidence for other outcomes such as low birth weight (LBW), stillbirth, congenital anomalies and semen quality appears to be inconclusive and inconsistent.The overall aim of the HIWATE study is to investigate potential human health risks (e.g. bladder and colorectal cancer, premature births, SGA, semen quality, stillbirth, congenital anomalies) associated with long-term exposure to low levels of disinfectants (such as chlorine) and DBPs occurring in water for human consumption and use in the food industry. The study will comprise risk-benefit analyses including quantitative assessments of risk associated with microbial contamination of drinking water versus chemical risk and will compare alternative treatment options. The outcome will be improved risk assessment and better information for risk management. The work is divided into different topics (exposure assessment, epidemiology, risk assessment and management) and studies.

  5. Short-term spatial and temporal variability of disinfection by-product occurrence in small drinking water systems.

    PubMed

    Guilherme, Stéphanie; Rodriguez, Manuel J

    2015-06-15

    Disinfection by-products (DBPs) constitute a large family of compounds. Trihalomethanes and haloacetic acids are regulated in various countries, but most DBPs are not. Monitoring DBPs can be delicate, especially for small systems, because various factors influence their formation and speciation. Short-term variations of DBPs can be important and particularly difficult for small systems to handle because they require robust treatment and operation processes. According to our knowledge, for the first time, our study covers the short-term variability of regulated and non-regulated DBP occurrence in small systems in the summer. An intensive sampling program was carried out in six small systems in Canada. Systems in the provinces of Newfoundland and Labrador and Quebec were sampled daily at the water treatment plant and at six different locations along the distribution system. Five DBP families were studied: trihalomethanes, haloacetic acids, haloacetonitriles, halonitromethanes and haloketones. Results show that there were considerable variations in DBP levels from week to week during the month of study and even from day to day within the week. On a daily basis, DBP levels can fluctuate by 22% to 96%. Likewise, the large number of sampling locations served to observe DBP variations along the distribution system. Observations revealed some degradation and decomposition of non-regulated DBPs never before studied in small systems that are associated with the difficulty these systems experience in maintaining adequate levels of residual disinfectant. Finally, this study reveals that the short term temporal variability of DBPs is also influenced by spatial location along the distribution system. In the short term, DBP levels can fluctuate by 23% at the beginning of the system, compared to 40% at the end. Thus, spatial and temporal variations of DBPs in the short term may make it difficult to select representative locations and periods for DBP monitoring purposes in small

  6. CARCINOGENICITY OF INDIVIDUAL AND A MIXTURE OF DRINKING WATER DISINFECTION BY-PRODUCTS IN A RAT MODEL OF HEREDITARY RENAL CELL CARCINOMA

    EPA Science Inventory

    Carcinogenicity of Individual and a Mixture of Drinking Water Disinfection By-Products in a Rat Model of Hereditary Renal Cell Carcinoma

    Eker rats develop hereditary renal cell carcinoma secondary to a germline mutation in the tuberous sclerosis 2 (Tsc2) gene and are ligh...

  7. Meeting in Canada: Chlorinated vs. Chloraminated Drinking Water: Toxicity-Based Identification of Disinfection By-Products Using ESI-MS and ESI-MS/MS

    EPA Science Inventory

    Drinking water disinfection by-products (DBPs) are of concern because epidemiologic studies have shown that they are associated with bladder cancer and adverse reproductive/developmental effects in human populations. There is almost no information on high molecular weight DBPs (>...

  8. MEETING IN CHINA: CHLORINATED VS. CHLORAMINATED DRINKING WATER: TOXICITY-BASED IDENTIFICATION OF DISINFECTION BY-PRODUCTS USING ESI-MS AND ESI-MS/MS

    EPA Science Inventory

    Drinking water disinfection by-products (DBPs) are of concern because epidemiologic studies have shown that they are associated with bladder cancer and adverse reproductive/developmental effects in human populations, and some cause cancer in laboratory animals. As a result, the U...

  9. CHLORINATED VS. CHLORAMINATED DRINKING WATER: TOXICITY-BASED IDENTIFICATION OF DISINFECTION BY-PRODUCTS USING ESI-MS AND ESI-MS/MS

    EPA Science Inventory

    Drinking water disinfection by-products (DBPs) are of concern because some epidemiologic studies have shown that some DBPs are associated with cancer or adverse reproductive/developmental effects in human populations, and other studies have shown that certain DBPs cause similar h...

  10. Assessment of Reproductive Effects of Complex Mixtures of Disinfection By-Products in a Multi-Generational Rat Bioassay of Drinking Water Concentrates - Monterey

    EPA Science Inventory

    To address concerns raised by epidemiology studies, we conducted a multigenerational reproductive toxicity study in rats using a “whole” mixture of drinking water disinfection by-products (DBPs). Raw water was concentrated ~130 fold, chlorinated, and provided as drinking water to...

  11. Assessment of reproductive effects on complex mixtures of disinfection by-products in a multigenerational rat bioassay of drinking water concentrates

    EPA Science Inventory

    To address concerns raised by epidemiology studies, we conducted a multigenerational reproductive toxicity study in rats using a “whole” mixture of drinking water disinfection by-products (DBPs). Raw water was concentrated ~130 fold, chlorinated, and provided as drinking water to...

  12. CHLORINATED VS. CHLORAMINATED DRINKING WATER: TOXICITY-BASED IDENTIFICATION OF DISINFECTION BY-PRODUCTS USING ESI-MS AND ESI-MS/MS

    EPA Science Inventory

    Drinking water disinfection by-products (DBPs) are of concern because some epidemiologic studies have shown that some DBPs are associated with cancer or adverse reproductive/developmental effects in human populations, and other studies have shown that certain DBPs cause similar h...

  13. TWENTY WEEK EXPOSURES TO THE DRINKING WATER DISINFECTION BY-PRODUCT DIBROMOACETIC ACID: REPRODUCTIVE CYCLICITY AND STEROID CONCENTRATIONS IN THE FEMALE SPRAGUE-DAWLEY RAT

    EPA Science Inventory

    Abstract
    Elevated gavage exposures to the drinking water disinfection by-product dibromoacetic acid (DBA) have been found to disrupt estrous cyclicity in the rat and induce increases in estradiol concentrations in both cycling (day of estrus) and ovariectomized/estradiol-impla...

  14. PROBING REACTIVITY OF DISSOLVED ORGANIC MATTER FOR DISINFECTION BY-PRODUCT FORMATION USING XAD-8 RESIN ADSORPTION AND ULTRAFILTRATION FRACTIONATION. (R828045)

    EPA Science Inventory

    The disinfection by-product (DBP) reactivity (yield and speciation upon reaction with chlorine) of dissolved organic matter (DOM) isolated from two surface waters was investigated. The source waters, each having significantly different specific ultraviolet absorbance (SUVA

  15. CARCINOGENICITY OF INDIVIDUAL AND A MIXTURE OF DRINKING WATER DISINFECTION BY-PRODUCTS IN A RAT MODEL OF HEREDITARY RENAL CELL CARCINOMA

    EPA Science Inventory

    Carcinogenicity of Individual and a Mixture of Drinking Water Disinfection By-Products in a Rat Model of Hereditary Renal Cell Carcinoma

    Eker rats develop hereditary renal cell carcinoma secondary to a germline mutation in the tuberous sclerosis 2 (Tsc2) gene and are ligh...

  16. PROBING REACTIVITY OF DISSOLVED ORGANIC MATTER FOR DISINFECTION BY-PRODUCT FORMATION USING XAD-8 RESIN ADSORPTION AND ULTRAFILTRATION FRACTIONATION. (R828045)

    EPA Science Inventory

    The disinfection by-product (DBP) reactivity (yield and speciation upon reaction with chlorine) of dissolved organic matter (DOM) isolated from two surface waters was investigated. The source waters, each having significantly different specific ultraviolet absorbance (SUVA

  17. MODERATING INFLUENCE OF THE DRINKING WATER DISINFECTION BY-PRODUCT DIBROMOACETIC ACID ON A DITHIOCARBAMATE-INDUCED SUPPRESSION OF THE LUTEINIZING HORMONE SURGE IN FEMALE RATS.

    EPA Science Inventory

    The disinfection by-product dibromoacetic acid (DBA) has been found in female rats to increase circulating concentrations of both estradiol (E2) and estrone (E1). This effect is apparently due, at least in part, to a suppression in hepatic catabolism. The present study investigat...

  18. Meeting in Canada: Chlorinated vs. Chloraminated Drinking Water: Toxicity-Based Identification of Disinfection By-Products Using ESI-MS and ESI-MS/MS

    EPA Science Inventory

    Drinking water disinfection by-products (DBPs) are of concern because epidemiologic studies have shown that they are associated with bladder cancer and adverse reproductive/developmental effects in human populations. There is almost no information on high molecular weight DBPs (>...

  19. MEETING IN CHINA: CHLORINATED VS. CHLORAMINATED DRINKING WATER: TOXICITY-BASED IDENTIFICATION OF DISINFECTION BY-PRODUCTS USING ESI-MS AND ESI-MS/MS

    EPA Science Inventory

    Drinking water disinfection by-products (DBPs) are of concern because epidemiologic studies have shown that they are associated with bladder cancer and adverse reproductive/developmental effects in human populations, and some cause cancer in laboratory animals. As a result, the U...

  20. DISRUPTION IN RAT ESTROUS CYCLICITY BY THE DRINKING WATER DISINFECTANT BY-PRODUCT DIBROMOACETIC ACID: RELATIONSHIP TO A SUPPRESSION ON ESTRADIOL METABOLISM?

    EPA Science Inventory

    Disruption in Rat Estrous Cyclicity by the Drinking Water Disinfectant By-Product Dibromoacetic Acid: Relationship to A Suppression on Estradiol Metabolism?

    Ashley S. Murr and Jerome M. Goldman, Endocrinology Branch, Reproductive Toxicology Division National Health and En...

  1. Assessment of Reproductive Effects of Complex Mixtures of Disinfection By-Products in a Multi-Generational Rat Bioassay of Drinking Water Concentrates - Monterey

    EPA Science Inventory

    To address concerns raised by epidemiology studies, we conducted a multigenerational reproductive toxicity study in rats using a “whole” mixture of drinking water disinfection by-products (DBPs). Raw water was concentrated ~130 fold, chlorinated, and provided as drinking water to...

  2. Assessment of reproductive effects on complex mixtures of disinfection by-products in a multigenerational rat bioassay of drinking water concentrates

    EPA Science Inventory

    To address concerns raised by epidemiology studies, we conducted a multigenerational reproductive toxicity study in rats using a “whole” mixture of drinking water disinfection by-products (DBPs). Raw water was concentrated ~130 fold, chlorinated, and provided as drinking water to...

  3. DISRUPTION IN RAT ESTROUS CYCLICITY BY THE DRINKING WATER DISINFECTANT BY-PRODUCT DIBROMOACETIC ACID: RELATIONSHIP TO A SUPPRESSION ON ESTRADIOL METABOLISM?

    EPA Science Inventory

    Disruption in Rat Estrous Cyclicity by the Drinking Water Disinfectant By-Product Dibromoacetic Acid: Relationship to A Suppression on Estradiol Metabolism?

    Ashley S. Murr and Jerome M. Goldman, Endocrinology Branch, Reproductive Toxicology Division National Health and En...

  4. MODERATING INFLUENCE OF THE DRINKING WATER DISINFECTION BY-PRODUCT DIBROMOACETIC ACID ON A DITHIOCARBAMATE-INDUCED SUPPRESSION OF THE LUTEINIZING HORMONE SURGE IN FEMALE RATS.

    EPA Science Inventory

    The disinfection by-product dibromoacetic acid (DBA) has been found in female rats to increase circulating concentrations of both estradiol (E2) and estrone (E1). This effect is apparently due, at least in part, to a suppression in hepatic catabolism. The present study investigat...

  5. Comparison of formation of disinfection by-products by chlorination and ozonation of wastewater effluents and their toxicity to Daphnia magna.

    PubMed

    Park, Keun-Young; Choi, Su-Young; Lee, Seung-Hoon; Kweon, Ji-Hyang; Song, Ji-Hyeon

    2016-08-01

    This study compared the two most frequently used disinfectants (i.e., chlorine and ozone) to understand their efficiency in wastewater effluents and the ecotoxicity of disinfection by-products created during chlorination and ozonation. Four trihalomethanes (THMs) and nine haloacetic acids (HAAs) were measured from a chlorine-disinfected sample and two aldehydes (i.e., formaldehydes and acetaldehydes) were analyzed after ozonation. Chlorination was effective for total coliform removal with Ct value in the range of 30-60 mg-min/L. Over 1.6 mg/L of ozone dose and 0.5 min of the contact time presented sufficient disinfection efficiency. The concentration of THMs increased with longer contact time (24 h), but that of HAAs showed little change with contact time. The measured concentration of formaldehyde at the ozone dose of 1.6 mg/L and the contact time of 9 min showed the greatest value in this study, approximately 330 μg L(-1), from which the corresponding ecotoxicity was determined using an indicator species, Daphnia magna. The ecotoxicity results were consistent with the toxicological features judged by occurrence, genotoxicity, and carcinogenicity. Both the disinfection efficiency as well as the DBP formation potential should therefore be considered to avoid harmful impacts on aquatic environments when a disinfection method is used for wastewater effluents. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Drinking-Water Disinfection By-products and Semen Quality: A Cross-Sectional Study in China

    PubMed Central

    Zeng, Qiang; Wang, Yi-Xin; Xie, Shao-Hua; Xu, Liang; Chen, Yong-Zhe; Li, Min; Yue, Jing; Li, Yu-Feng; Liu, Ai-Lin

    2014-01-01

    Background: Exposure to disinfection by-products (DBPs) has been demonstrated to impair male reproductive health in animals, but human evidence is limited and inconsistent. Objective: We examined the association between exposure to drinking-water DBPs and semen quality in a Chinese population. Methods: We recruited 2,009 men seeking semen analysis from the Reproductive Center of Tongji Hospital in Wuhan, China, between April 2011 and May 2012. Each man provided a semen sample and a urine sample. Semen samples were analyzed for sperm concentration, sperm motility, and sperm count. As a biomarker of exposure to drinking-water DBPs, trichloroacetic acid (TCAA) was measured in the urine samples. Results: The mean (median) urinary TCAA concentration was 9.58 (7.97) μg/L (interquartile range, 6.01–10.96 μg/L). Compared with men with urine TCAA in the lowest quartile, increased adjusted odds ratios (ORs) were estimated for below-reference sperm concentration in men with TCAA in the second and fourth quartiles (OR = 1.79; 95% CI: 1.19, 2.69 and OR = 1.51; 95% CI: 0.98, 2.31, respectively), for below-reference sperm motility in men with TCAA in the second and third quartiles (OR = 1.46; 95% CI: 1.12, 1.90 and OR = 1.30; 95% CI: 1.00, 1.70, respectively), and for below-reference sperm count in men with TCAA in the second quartile (OR 1.62; 95% CI: 1.04, 2.55). Nonmonotonic associations with TCAA quartiles were also estimated for semen parameters modeled as continuous outcomes, although significant negative associations were estimated for all quartiles above the reference level for sperm motility. Conclusion: Our findings suggest that exposure to drinking-water DBPs may contribute to decreased semen quality in humans. Citation: Zeng Q, Wang YX, Xie SH, Xu L, Chen YZ, Li M, Yue J, Li YF, Liu AL, Lu WQ. 2014. Drinking-water disinfection by-products and semen quality: a cross-sectional study in China. Environ Health Perspect 122:741–746; http://dx.doi.org/10.1289/ehp

  7. Reproductive Toxicity of a Mixture of Regulated Drinking-Water Disinfection By-Products in a Multigenerational Rat Bioassay

    PubMed Central

    Klinefelter, Gary R.; Goldman, Jerome M.; DeAngelo, Anthony B.; Best, Deborah S.; McDonald, Anthony; Strader, Lillian F.; Murr, Ashley S.; Suarez, Juan D.; George, Michael H.; Hunter, E. Sidney; Simmons, Jane Ellen

    2015-01-01

    Background Trihalomethanes (THMs) and haloacetic acids (HAAs) are regulated disinfection by-products (DBPs); their joint reproductive toxicity in drinking water is unknown. Objective We aimed to evaluate a drinking water mixture of the four regulated THMs and five regulated HAAs in a multigenerational reproductive toxicity bioassay. Methods Sprague-Dawley rats were exposed (parental, F1, and F2 generations) from gestation day 0 of the parental generation to postnatal day (PND) 6 of the F2 generation to a realistically proportioned mixture of THMs and HAAs at 0, 500×, 1,000×, or 2,000× of the U.S. Environmental Protection Agency’s maximum contaminant levels (MCLs). Results Maternal water consumption was reduced at ≥ 1,000×; body weights were reduced at 2,000×. Prenatal and postnatal survival were unaffected. F1 pup weights were unaffected at birth but reduced at 2,000× on PND6 and at ≥ 1,000× on PND21. Postweaning F1 body weights were reduced at 2,000×, and water consumption was reduced at ≥ 500×. Males at 2,000× had a small but significantly increased incidence of retained nipples and compromised sperm motility. Onset of puberty was delayed at 1,000× and 2,000×. F1 estrous cycles and fertility were unaffected, and F2 litters showed no effects on pup weight or survival. Histologically, P0 (parental) dams had nephropathy and adrenal cortical pathology at 2,000×. Conclusions A mixture of regulated DBPs at up to 2,000× the MCLs had no adverse effects on fertility, pregnancy maintenance, prenatal survival, postnatal survival, or birth weights. Delayed puberty at ≥ 1,000× may have been secondary to reduced water consumption. Male nipple retention and compromised sperm motility at 2,000× may have been secondary to reduced body weights. Citation Narotsky MG, Klinefelter GR, Goldman JM, DeAngelo AB, Best DS, McDonald A, Strader LF, Murr AS, Suarez JD, George MH, Hunter ES III, Simmons JE. 2015. Reproductive toxicity of a mixture of regulated

  8. Enhanced coagulation with powdered activated carbon or MIEX secondary treatment: a comparison of disinfection by-product formation and precursor removal.

    PubMed

    Watson, Kalinda; Farré, Maria José; Knight, Nicole

    2015-01-01

    The removal of both organic and inorganic disinfection by-product (DBP) precursors prior to disinfection is important in mitigating DBP formation, with halide removal being particularly important in salinity-impacted water sources. A matrix of waters of variable alkalinity, halide concentration and dissolved organic carbon (DOC) concentration were treated with enhanced coagulation (EC) followed by anion exchange (MIEX resin) or powdered activated carbon (PAC) and the subsequent disinfection by-product formation potentials (DBP-FPs) assessed and compared to DBP-FPs for untreated samples. Halide and DOC removal were also monitored for both treatment processes. Bromide and iodide adsorption by MIEX treatment ranged from 0 to 53% and 4-78%, respectively. As expected, EC and PAC treatments did not remove halides. DOC removal by EC/PAC was 70 ± 10%, while EC/MIEX enabled a DOC removal of 66 ± 12%. Despite the halide removals achieved by MIEX, increases in brominated disinfection by-product (Br-DBP) formation were observed relative to untreated samples, when favourable Br:DOC ratios were created by the treatment. However, the increases in formation were less than what was observed for the EC/PAC treated waters, which caused large increases in Br-DBP formation when high Br-DBP-forming water quality conditions occurred. The formation potential of fully chlorinated DBPs decreased after treatment in all cases.

  9. Removal of soluble microbial products as the precursors of disinfection by-products in drinking water supplies.

    PubMed

    Liu, Jin-Lin; Li, Xiao-Yan

    2015-01-01

    Water pollution worsens the problem of disinfection by-products (DBPs) in drinking water supply. Biodegradation of wastewater organics produces soluble microbial products (SMPs), which can be important DBP precursors. In this laboratory study, a number of enhanced water treatment methods for DBP control, including enhanced coagulation, ozonation, and activated carbon adsorption, were evaluated for their effectiveness in treating SMP-containing water for the DBP reduction purpose. The results show that enhanced coagulation with alum could remove SMPs only marginally and decrease the DBP formation potential (DBPFP) of the water by less than 20%. Although ozone could cause destruction of SMPs in water, the overall DBPFP of the water did not decrease but increased after ozonation. In contrast, adsorption by granular activated carbon could remove the SMP organics from water by more than 60% and reduce the DBPFP by more than 70%. It is apparent that enhanced coagulation and ozonation are not suitable for the removal of SMPs as DBP precursors from polluted water, although enhanced coagulation has been commonly used to reduce the DBP formation caused by natural organic matter. In comparison, activated carbon adsorption is shown as a more effective means to remove the SMP content from water and hence to control the wastewater-derived DBP problem in water supply.

  10. Chlorinated and nitrogenous disinfection by-product formation from ozonation and post-chlorination of natural organic matter surrogates.

    PubMed

    Bond, Tom; Templeton, Michael R; Rifai, Omar; Ali, Hussain; Graham, Nigel J D

    2014-09-01

    Ozonation before chlorination is associated with enhanced formation of chloropicrin, a halonitromethane disinfection by-product (DBP), during drinking water treatment. In order to elucidate reasons for this, five natural organic matter (NOM) surrogates were treated using both chlorination and ozonation-chlorination under controlled laboratory conditions. Selected surrogates comprised two phenolic compounds, two free amino acids and one dipeptide; these were resorcinol, 3-aminophenol, L-aspartic acid, β-alanine and ala-ala, respectively. Quantified DBPs included chloropicrin, chloroform, dichloroacetonitrile and trichloroacetonitrile. Relative to chlorination alone, increases in the formation of chloropicrin from ozonation-chlorination varied from 138% for 3-aminophenol to 3740% for ala-ala for the four amine surrogates. This indicates that ozone is more effective than chlorine in mediating a rate-limiting oxidation step in chloropicrin formation, most plausibly involving conversion of an amine group to a nitro group. While both hydrophilic and hydrophobic surrogates acted as chloropicrin precursors, ala-ala was the most reactive precursor following ozonation-chlorination. Since peptides are far commoner in drinking water sources than free amino acids, further research into chemical oxidation of these species by ozone and chlorine is recommended. In contrast, oxidation with ozone prior to chlorination reduced chloroform formation moderately for the two phenolic compounds.

  11. Ozone-biological activated carbon integrated treatment for removal of precursors of halogenated nitrogenous disinfection by-products.

    PubMed

    Chu, Wenhai; Gao, Naiyun; Yin, Daqiang; Deng, Yang; Templeton, Michael R

    2012-03-01

    Pilot-scale tests were performed to reduce the formation of several nitrogenous and carbonaceous disinfection by-products (DBPs) with an integrated ozone and biological activated carbon (O(3)-BAC) treatment process following conventional water treatment processes (coagulation-sedimentation-filtration). Relative to the conventional processes alone, O(3)-BAC significantly improved the removal of turbidity, dissolved organic carbon, UV(254), NH(4)(+) and dissolved organic nitrogen from 98-99%, 58-72%, 31-53%, 16-93% and 35-74%, respectively, and enhanced the removal efficiency of the precursors for the measured DBPs. The conventional process was almost ineffective in removing the precursors of trichloronitromethane (TCNM) and dichloroacetamide (DCAcAm). Ozonation could not substantially reduce the formation of DCAcAm, and actually increased the formation potential of TCNM; it chemically altered the molecular structures of the precursors and increased the biodegradability of N-containing organic compounds. Consequently, the subsequent BAC filtration substantially reduced the formation of the both TCNM and DCAcAm, thus highlighting a synergistic effect of O(3) and BAC. Additionally, O(3)-BAC was effective at controlling the formation of the total organic halogen, which can be considered as an indicator of the formation of unidentified DBPs.

  12. DOC, Color and Disinfection By-Product Precursor Dynamics along an Urbanization Gradient, Croton Water Supply System, New York, USA

    NASA Astrophysics Data System (ADS)

    Hassett, J. M.; Mitchell, M. J.; Burns, D. A.; Heisig, P. M.

    2005-05-01

    Hydrologic processes in suburban watersheds and their effects on water quality warrant investigation. Biweekly and storm samples were collected and analyzed for base cations, selected anions, and DOC over a one-year period at the outlet of three small (37 - 55 ha) watersheds (one forested, two with different degrees of suburban development) in the Croton Watershed, southeastern New York. Less frequent sampling for Pt/Co color and disinfection by-product precursors (DBPs) were also conducted. Median baseflow concentrations (>3 days since rainfall) of DOC were similar, ranging from 2.1 to 1.8 to 1.7 mg L -1 for the most urbanized to the forested watershed, respectively. On a unit area load basis (kg ha-1 yr-1), the range was from 8.9 to 6.4 to 5.1, again from most urbanized to forested watershed. All three watersheds showed similar storm responses, with evidence for a flushing mechanism in that DOC concentration increased with increasing discharge. Pt/Co color and DBPs (determined as both total trihalomethane and total haloacetic acid formation potentials) showed similar storm behavior, although the range of response was greater than observed for DOC, suggesting a labile DOC fraction was mobilized during storm events. The more urbanized watersheds tended to favor brominated over chlorinated forms of DBPs; the reasons for this are unclear.

  13. Pyruvate Remediation of Cell Stress and Genotoxicity Induced by Haloacetic Acid Drinking Water Disinfection By-Products

    PubMed Central

    Dad, Azra; Jeong, Clara H.; Pals, Justin A.; Wagner, Elizabeth D.; Plewa, Michael J.

    2014-01-01

    Monohaloacetic acids (monoHAAs) are a major class of drinking water disinfection by-products (DBPs) and are cytotoxic, genotoxic, mutagenic, and teratogenic. We propose a model of toxic action based on monoHAA-mediated inhibition of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as a target cytosolic enzyme. This model predicts that GAPDH inhibition by the monoHAAs will lead to a severe reduction of cellular ATP levels and repress the generation of pyruvate. A loss of pyruvate will lead to mitochondrial stress and genomic DNA damage. We found a concentration-dependent reduction of ATP in Chinese hamster ovary cells after monoHAA treatment. ATP reduction per pmol monoHAA followed the pattern of iodoacetic acid (IAA) > bromoacetic acid (BAA) >> chloroacetic acid (CAA), which is the pattern of potency observed with many toxicological endpoints. Exogenous supplementation with pyruvate enhanced ATP levels and attenuated monoHAA-induced genomic DNA damage as measured with single cell gel electrophoresis. These data were highly correlated with the SN2 alkylating potentials of the monoHAAs and with the induction of toxicity. The results from this study strongly support the hypothesis that GAPDH inhibition and the possible subsequent generation of reactive oxygen species is linked with the cytotoxicity, genotoxicity, teratogenicity, and neurotoxicity of these DBPs. PMID:23893730

  14. Disinfection by-product formation following chlorination of drinking water: artificial neural network models and changes in speciation with treatment.

    PubMed

    Kulkarni, Pranav; Chellam, Shankararaman

    2010-09-01

    Artificial neural network (ANN) models were developed to predict disinfection by-product (DBP) formation during municipal drinking water treatment using the Information Collection Rule Treatment Studies database complied by the United States Environmental Protection Agency. The formation of trihalomethanes (THMs), haloacetic acids (HAAs), and total organic halide (TOX) upon chlorination of untreated water, and after conventional treatment, granular activated carbon treatment, and nanofiltration were quantified using ANNs. Highly accurate predictions of DBP concentrations were possible using physically meaningful water quality parameters as ANN inputs including dissolved organic carbon (DOC) concentration, ultraviolet absorbance at 254nm and one cm path length (UV(254)), bromide ion concentration (Br(-)), chlorine dose, chlorination pH, contact time, and reaction temperature. This highlights the ability of ANNs to closely capture the highly complex and non-linear relationships underlying DBP formation. Accurate simulations suggest the potential use of ANNs for process control and optimization, comparison of treatment alternatives for DBP control prior to piloting, and even to reduce the number of experiments to evaluate water quality variations when operating conditions are changed. Changes in THM and HAA speciation and bromine substitution patterns following treatment are also discussed.

  15. Monitoring trihalomethanes and nitrogenous disinfection by-products in blending desalinated waters using solid-phase microextraction and gas chromatography.

    PubMed

    González-Hernández, Providencia; Hernández-Padrón, Manuel; Pino, Verónica; Afonso, Ana M; Ayala, Juan H

    2017-04-01

    A simple and efficient method has been developed for the extraction and determination of 16 common volatile halogenated disinfection by-products (DBPs) (four trihalomethanes, six haloacetonitriles, and six halonitromethanes) in blending desalinated waters, using headspace solid-phase microextraction and gas chromatography with flame ionization detector (HS-SPME/GC-FID). After the optimization using factorial designs of the HS-SPME parameters (optimum: carboxen/polydimethylsiloxane such as fiber, extraction time of 60 min at 30°C, pH 7, addition of 40% (w/v) of sodium chloride, and desorption time of 2 min at 250°C), quantification limits ranged from 3.03 to 40.8 µg L(-1), and relative standard deviation (inter-day) were lower than 9.7% for all the target DBPs. Adequate relative recoveries (with the exception of chloronitromethane) were obtained even when spiking waters at low levels (25 µg L(-1)), with values between 83.1% and 119% for ultrapure water, and between 87.4% and 115% for blending desalinated waters, supporting in this way the applicability of the method. The influence of various dechlorinating agents on the stability of 16 DBPs in water was evaluated, with ammonium chloride being the most suitable inhibitor of residual chlorine and carrying out the analytical determination of DBPs within 48 h after sampling. Different blending desalinated water samples collected in the South of Tenerife Island (Spain) were successfully analyzed.

  16. Degradation of carbamazepine by UV/chlorine advanced oxidation process and formation of disinfection by-products.

    PubMed

    Zhou, Shiqing; Xia, Ying; Li, Ting; Yao, Tian; Shi, Zhou; Zhu, Shumin; Gao, Naiyun

    2016-08-01

    Pharmaceuticals in water are commonly found and are not efficiently removed by current treatment processes. Degradation of antiepileptic drug carbamazepine (CBZ) by UV/chlorine advanced oxidation process was systematically investigated in this study. The results showed that the UV/chlorine process was more effective at degrading CBZ than either UV or chlorination alone. The CBZ degradation followed pseudo-first order reaction kinetics, and the degradation rate constants (kobs) were affected by the chlorine dose, solution pH, and natural organic matter concentration to different degrees. Degradation of CBZ greatly increased with increasing chlorine dose and decreasing solution pH during the UV/chlorine process. Additionally, the presence of natural organic matter in the solution inhibited the degradation of CBZ. UV photolysis, chlorination, and reactive species (hydroxyl radical •OH and chlorine atoms •Cl) were identified as responsible for CBZ degradation in the UV/chlorine process. Finally, a degradation pathway for CBZ in the UV/chlorine process was proposed and the formation potentials of carbonaceous and nitrogenous disinfection by-products were evaluated. Enhanced formation of trichloroacetic acid, dichloroacetonitrile, and trichloronitromethane precursors should be considered when applying UV/chlorine advanced oxidation process to drinking water.

  17. Application of effect-directed analysis to identify mutagenic nitrogenous disinfection by-products of advanced oxidation drinking water treatment.

    PubMed

    Vughs, D; Baken, K A; Kolkman, A; Martijn, A J; de Voogt, P

    2016-07-22

    Advanced oxidation processes are important barriers for organic micropollutants in (drinking) water treatment. It is however known that medium pressure UV/H2O2 treatment may lead to mutagenicity in the Ames test, which is no longer present after granulated activated carbon (GAC) filtration. Many nitrogen-containing disinfection by-products (N-DBPs) result from the reaction of photolysis products of nitrate with (photolysis products of) natural organic material (NOM) during medium pressure UV treatment of water. Identification of the N-DBPs and the application of effect-directed analysis to combine chemical screening results with biological activity would provide more insight into the relation of specific N-DBPs with the observed mutagenicity and was the subject of this study. To this end, fractions of medium pressure UV-treated and untreated water extracts were prepared using preparative HPLC and tested using the Ames fluctuation test. In addition, high-resolution mass spectrometry was performed on all fractions to assess the presence of N-DBPs. Based on toxicity data and read across analysis, we could identify five N-DBPs that are potentially genotoxic and were present in relatively high concentrations in the fractions in which mutagenicity was observed. The results of this study offer opportunities to further evaluate the identity and potential health concern of N-DBPs formed during advanced oxidation UV drinking water treatment.

  18. Concentrations and correlations of disinfection by-products in municipal drinking water from an exposure assessment perspective.

    PubMed

    Villanueva, Cristina M; Castaño-Vinyals, Gemma; Moreno, Víctor; Carrasco-Turigas, Glòria; Aragonés, Nuria; Boldo, Elena; Ardanaz, Eva; Toledo, Estefanía; Altzibar, Jone M; Zaldua, Itziar; Azpiroz, Lourdes; Goñi, Fernando; Tardón, Adonina; Molina, Antonio J; Martín, Vicente; López-Rojo, Concepción; Jiménez-Moleón, José J; Capelo, Rocío; Gómez-Acebo, Inés; Peiró, Rosana; Ripoll, Mónica; Gracia-Lavedan, Esther; Nieuwenhujsen, Mark J; Rantakokko, Panu; Goslan, Emma H; Pollán, Marina; Kogevinas, Manolis

    2012-04-01

    Although disinfection by-products (DBPs) occur in complex mixtures, studies evaluating health risks have been focused in few chemicals. In the framework of an epidemiological study on cancer in 11 Spanish provinces, we describe the concentration of four trihalomethanes (THMs), nine haloacetic acids (HAA), 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone (MX), four haloacetonitries, two haloketones, chloropicrin and chloral hydrate and estimate correlations. A total of 233 tap water samples were collected in 2010. Principal component analyses were conducted to reduce dimensionality of DBPs. Overall median (range) level of THMs and HAAs was 26.4 (0.8-98.1) and 26.4 (0.9-86.9) μg/l, respectively (N=217). MX analysed in a subset (N=36) showed a median (range) concentration of 16.7 (0.8-54.1)ng/l. Haloacetonitries, haloketones, chloropicrin and chloral hydrate were analysed in a subset (N=16), showing levels from unquantifiable (<1 μg/l) to 5.5 μg/l (dibromoacetonitrile). Spearman rank correlation coefficients between DBPs varied between species and across areas, being highest between dibromochloromethane and dibromochloroacetic acid (r(s)=0.87). Principal component analyses of 13 DBPs (4 THMs, 9 HAAs) led 3 components explaining more than 80% of variance. In conclusion, THMs and HAAs have limited value as predictors of other DBPs on a generalised basis. Principal component analysis provides a complementary tool to address the complex nature of the mixture.

  19. Monitoring of chlorination disinfection by-products and their associated health risks in drinking water of Pakistan.

    PubMed

    Abbas, Sidra; Hashmi, Imran; Rehman, Muhammad Saif Ur; Qazi, Ishtiaq A; Awan, Mohammad A; Nasir, Habib

    2015-03-01

    This study reports the baseline data of chlorination disinfection by-products such as trihalomethanes (THMs) and their associated health risks in the water distribution network of Islamabad and Rawalpindi, Pakistan. THM monitoring was carried out at 30 different sampling sites across the twin cities for 6 months. The average concentration of total trihalomethanes (TTHMs) and chloroform ranged between 575 and 595 μg/L which exceeded the permissible US (80 μg/L) and EU (100 μg/L) limits. Chloroform was one of the major contributors to the TTHMs concentration (>85%). The occurrence of THMs was found in the following order: chloroform, bromodichloromethane > dibromochloromethane > bromoform. Lifetime cancer risk assessment of THMs for both males and females was carried out using prediction models via different exposure routes (ingestion, inhalation, and dermal). Total lifetime cancer risk assessment for different exposure routes (ingestion, inhalation, and skin) was carried out. The highest cancer risk expected from THMs seems to be from the inhalation route followed by ingestion and dermal contacts. The average lifetime cancer risk for males and females was found to be 0.51 × 10⁻³ and 1.22 × 10⁻³, respectively. The expected number of cancer risks per year could reach two to three cases for each city.

  20. The Effect of Different Boiling and Filtering Devices on the Concentration of Disinfection By-Products in Tap Water

    PubMed Central

    Carrasco-Turigas, Glòria; Villanueva, Cristina M.; Goñi, Fernando; Rantakokko, Panu; Nieuwenhuijsen, Mark J.

    2013-01-01

    Disinfection by-products (DBPs) are ubiquitous contaminants in tap drinking water with the potential to produce adverse health effects. Filtering and boiling tap water can lead to changes in the DBP concentrations and modify the exposure through ingestion. Changes in the concentration of 4 individual trihalomethanes (THM4) (chloroform (TCM), bromodichloromethane (BDCM), dibromochloromethane (DBCM), and bromoform (TBM)), MX, and bromate were tested when boiling and filtering high bromine-containing tap water from Barcelona. For filtering, we used a pitcher-type filter and a household reverse osmosis filter; for boiling, an electric kettle, a saucepan, and a microwave were used. Samples were taken before and after each treatment to determine the change in the DBP concentration. pH, conductivity, and free/total chlorine were also measured. A large decrease of THM4 (from 48% to 97%) and MX concentrations was observed for all experiments. Bromine-containing trihalomethanes were mostly eliminated when filtering while chloroform when boiling. There was a large decrease in the concentration of bromate with reverse osmosis, but there was a little effect in the other experiments. These findings suggest that the exposure to THM4 and MX through ingestion is reduced when using these household appliances, while the decrease of bromate is device dependent. This needs to be considered in the exposure assessment of the epidemiological studies. PMID:23476675

  1. Considerations for improving the accuracy of exposure to disinfection by-products by ingestion in epidemiologic studies.

    PubMed

    Weinberg, Howard S; Pereira, Vanessa R P J; Singer, Philip C; Savitz, David A

    2006-01-15

    Disinfection by-product (DBP) exposure characterization studies are often based on the analysis of a limited number of samples collected from a distribution system (DS) in which DBP levels are variable over time and space. A compositing technique was developed to simplify the sample collection procedures for integrating over temporal variations in DBPs measured in terms of trihalomethanes (THMs), haloacetic acids (HAAs), and total organic halogen (TOX). Over the course of 5 days analysis, the single composited sample was within 94-100% of the average THM concentration in all grab samples, 92-105% of HAAs, and 130% of the TOX concentration. Additionally, temporal variability factors such as timing of sample collection and the handling of tap water prior to consumption were found to influence DBP levels in consumers' drinking water. Included in our study of home water use are the effects of boiling which removed up to 98% of THMs and point of use (POU) devices which all showed DBP removal but differed depending on the device used. These factors should be taken into consideration in DBP exposure characterization for epidemiologic studies.

  2. Seasonal variations in the household exposures of Korean housewives to volatile tap water disinfection by-products.

    PubMed

    Kim, Hekap

    2008-09-15

    This study was conducted to compare housewives' winter and summer exposures to volatile disinfection by-products (DBPs) in chlorinated tap water. A total of 60 households were visited for this purpose: 27 in winter and 33 in summer. Each subject was given a questionnaire regarding general tap water use, household ventilation time, and activities related to water use. Tap water, household air, and exhaled breath samples were also collected during the visits. All of the subjects answered that they consumed tap water after either thermal treatment or purification through filtration systems. A longer ventilation time in winter than in summer resulted in a higher inhalation exposure for housewives during that season. Estimated chronic daily intakes calculated for winter and summer showed that in winter, the greatest risk at home is inhalation exposure while resting at home, whereas in summer, it is showering. In both seasons, the ingestion route can be discounted, because tap water is processed before consumption, eliminating the volatile DBPs. From this study, it is evident that the inhalation of household air while resting at home cannot be ignored in risk assessment. Moreover, the fact that water is normally boiled or filtered before use should also be considered.

  3. The effect of different boiling and filtering devices on the concentration of disinfection by-products in tap water.

    PubMed

    Carrasco-Turigas, Glòria; Villanueva, Cristina M; Goñi, Fernando; Rantakokko, Panu; Nieuwenhuijsen, Mark J

    2013-01-01

    Disinfection by-products (DBPs) are ubiquitous contaminants in tap drinking water with the potential to produce adverse health effects. Filtering and boiling tap water can lead to changes in the DBP concentrations and modify the exposure through ingestion. Changes in the concentration of 4 individual trihalomethanes (THM4) (chloroform (TCM), bromodichloromethane (BDCM), dibromochloromethane (DBCM), and bromoform (TBM)), MX, and bromate were tested when boiling and filtering high bromine-containing tap water from Barcelona. For filtering, we used a pitcher-type filter and a household reverse osmosis filter; for boiling, an electric kettle, a saucepan, and a microwave were used. Samples were taken before and after each treatment to determine the change in the DBP concentration. pH, conductivity, and free/total chlorine were also measured. A large decrease of THM4 (from 48% to 97%) and MX concentrations was observed for all experiments. Bromine-containing trihalomethanes were mostly eliminated when filtering while chloroform when boiling. There was a large decrease in the concentration of bromate with reverse osmosis, but there was a little effect in the other experiments. These findings suggest that the exposure to THM4 and MX through ingestion is reduced when using these household appliances, while the decrease of bromate is device dependent. This needs to be considered in the exposure assessment of the epidemiological studies.

  4. Characterizing chlorine oxidation of dissolved organic matter and disinfection by-product formation with fluorescence spectroscopy and parallel factor analysis

    NASA Astrophysics Data System (ADS)

    Beggs, Katherine M. H.; Summers, R. Scott; McKnight, Diane M.

    2009-12-01

    Relationships between chlorine demand and disinfection by-product (DBP) formation during chlorination and fluorescence of dissolved organic matter (DOM) were developed. Fluorescence excitation and emission (EEM) spectroscopy was employed, and parameters including fluorescence index, redox index, and overall fluorescence intensity (OFI) were correlated to chlorine demand and DBP formation. The EEMs were also analyzed using a well established global parallel factor analysis (PARAFAC) model which resolves the fluorescence signal into 13 components, including quinone-like and protein-like components. Over an 8-day chlorination period the OFI and sum of the 13 PARAFAC loadings decreased by more than 70%. The remaining identified quinone-like compounds within the DOM were shifted to a more oxidized state. Quinone fluorescence was strongly correlated to both reduced fluorescence intensity and to chlorine demand which indicates that fluorescence may be used to track the chlorine oxidation of DOM. Quinone fluorescence was also correlated strongly with both classes of regulated DBPs: total trihalomethanes and haloacetic acids. Quinone-like components were found to be strongly correlated to overall, short-term, and long-term specific DBP formation. The results of this study show that fluorescence is a useful tool in tracking both DOM oxidation and DBP formation during chlorination.

  5. Disinfection by-product formation and mitigation strategies in point-of-use chlorination with sodium dichloroisocyanurate in Tanzania.

    PubMed

    Lantagne, Daniele S; Cardinali, Fred; Blount, Ben C

    2010-07-01

    Almost a billion persons lack access to improved drinking water, and diarrheal diseases cause an estimated 1.87 million deaths per year. Sodium dichloroisocyanurate (NaDCC) tablets are widely recommended for household water treatment to reduce diarrhea. Because NaDCC is directly added to untreated water sources, concerns have been raised about the potential health impact of disinfection by-products. This study investigated trihalomethane (THM) production in water from six sources used for drinking (0.6-888.5 nephelometric turbidity units) near Arusha, Tanzania. No sample collected at 1, 8, and 24 hours after NaDCC addition exceeded the World Health Organization guideline values for either individual or total THMs. Ceramic filtration, sand filtration, cloth filtration, and settling and decanting were not effective mitigation strategies to reduce THM formation. Chlorine residual and THM formation were not significantly different in NaDCC and sodium hypochlorite treatment. Household chlorination of turbid and non-turbid waters did not create THM concentrations that exceeded health risk guidelines.

  6. Validation of urinary trichloroacetic acid as a biomarker of exposure to drinking water disinfection by-products.

    PubMed

    Zhang, Weiping; Gabos, Stephan; Schopflocher, Donald; Li, Xing-Fang; Gati, Wendy P; Hrudey, Steve E

    2009-09-01

    Disinfection by-products (DBPs) in drinking water represent a public health issue and a challenge for epidemiology to provide evidence towards the causation of various hypothesized health effects. Validation of a biomarker of exposure to DBPs is a strategy to achieve progress which has been advocated. The objective of this study was to validate urinary trichloroacetic acid (TCAA) excretion as a biomarker of exposure to DBPs in an experimental exposure cohort. A total of 52 healthy women participated in the study. Participants consumed supplied tap water for 15 d and provided urine and blood samples for TCAA measurements. The findings revealed that (1) background levels of TCAA in urine and blood were readily detectable, (2) TCAA levels in blood and urine increased with increased amounts of TCAA ingested, (3) the correlations between measurements of TCAA ingestion and urinary excretion were modest (r=0.66, p<0.001) based on one days' sampling and high (r=0.77-0.83, p<0.001) based on two to four days' sampling, (4) the correlations between measurements of TCAA ingestion and blood TCAA concentration were high (r=0.80, p<0.001) and (5) multiple days' urinary TCAA measures improved the prediction of TCAA ingestion through urinary TCAA excretion. TCAA can be a valid biomarker of exposure for DBPs in drinking water.

  7. Behavior of non-regulated disinfection by-products in water following multiple chlorination points during treatment.

    PubMed

    Marcoux, Alain; Pelletier, Geneviève; Legay, Christelle; Bouchard, Christian; Rodriguez, Manuel J

    2017-02-18

    In this study, the behavior of regulated (trihalomethanes-THMs, haloacetic acids-HAAs) and non-regulated (haloacetonitriles-HANs, haloketones-HKs, chloropicrin-CPK) disinfection by-products (DBPs) was investigated during treatment and distribution in a municipal drinking water system that adds chlorine at multiple points within the water treatment plant (WTP). Three to eight locations in the WTP and four locations in the distribution network were sampled weekly for DBP measurements during the warmest period of the year. The results show that most DBPs found in the study area are formed during treatment, not distribution. However, the DBP species studied behave differently during treatment and distribution. Moreover, the location where DBP concentration is the highest in the distribution network differs among species of the same family, especially HAAs and HKs, and between the sampling campaigns. As a result, the relevance of using the sum of the concentrations of the species of the same DBP family to select sampling sites for DBP monitoring is questionable. This study illustrates the difficulties that drinking water supply managers must face to control and monitor the presence of DBPs.

  8. Effect of medium-pressure UV-lamp treatment on disinfection by-products in chlorinated seawater swimming pool waters.

    PubMed

    Cheema, Waqas A; Manasfi, Tarek; Kaarsholm, Kamilla M S; Andersen, Henrik R; Boudenne, Jean-Luc

    2017-12-01

    Several brominated disinfection by-products (DBPs) are formed in chlorinated seawater pools, due to the high concentration of bromide in seawater. UV irradiation is increasingly employed in freshwater pools, because UV treatment photodegrades harmful chloramines. However, in freshwater pools it has been reported that post-UV chlorination promotes the formation of other DBPs. To date, UV-based processes have not been investigated for DBPs in seawater pools. In this study, the effects of UV, followed by chlorination, on the concentration of three groups of DBPs were investigated in laboratory batch experiments using a medium-pressure UV lamp. Chlorine consumption increased following post-UV chlorination, most likely because UV irradiation degraded organic matter in the pool samples to more chlorine-reactive organic matter. Haloacetic acid (HAA) concentrations decreased significantly, due to photo-degradation, but the concentrations of trihalomethanes (THMs) and haloacetonitriles (HANs) increased with post-UV chlorination. Bromine incorporation in HAAs was significantly higher in the control samples chlorinated without UV irradiation but decreased significantly with UV treatment. Bromine incorporation was promoted in THM and HAN after UV and chlorine treatment. Overall, the accumulated bromine incorporation level in DBPs remained essentially unchanged in comparison with the control samples. Toxicity estimates increased with single-dose UV and chlorination, mainly due to increased HAN concentrations. However, brominated HANs are known in the literature to degrade following further UV treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Pyruvate remediation of cell stress and genotoxicity induced by haloacetic acid drinking water disinfection by-products.

    PubMed

    Dad, Azra; Jeong, Clara H; Pals, Justin A; Wagner, Elizabeth D; Plewa, Michael J

    2013-10-01

    Monohaloacetic acids (monoHAAs) are a major class of drinking water disinfection by-products (DBPs) and are cytotoxic, genotoxic, mutagenic, and teratogenic. We propose a model of toxic action based on monoHAA-mediated inhibition of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as a target cytosolic enzyme. This model predicts that GAPDH inhibition by the monoHAAs will lead to a severe reduction of cellular ATP levels and repress the generation of pyruvate. A loss of pyruvate will lead to mitochondrial stress and genomic DNA damage. We found a concentration-dependent reduction of ATP in Chinese hamster ovary cells after monoHAA treatment. ATP reduction per pmol monoHAA followed the pattern of iodoacetic acid (IAA) > bromoacetic acid (BAA) > chloroacetic acid (CAA), which is the pattern of potency observed with many toxicological endpoints. Exogenous supplementation with pyruvate enhanced ATP levels and attenuated monoHAA-induced genomic DNA damage as measured with single cell gel electrophoresis. These data were highly correlated with the SN 2 alkylating potentials of the monoHAAs and with the induction of toxicity. The results from this study strongly support the hypothesis that GAPDH inhibition and the possible subsequent generation of reactive oxygen species is linked with the cytotoxicity, genotoxicity, teratogenicity, and neurotoxicity of these DBPs. Copyright © 2013 Wiley Periodicals, Inc.

  10. Investigation of bromide ion effects on disinfection by-products formation and speciation in an Istanbul water supply.

    PubMed

    Uyak, Vedat; Toroz, Ismail

    2007-10-22

    Recent epidemiological studies reported that brominated DBPs may be more carcinogenic than their chlorinated analogs. Thus, this research was designed to investigate the role of bromide ion in the formation and speciation of disinfection by-products (DBPs) during chlorination of Buyukcekmece Lake Water (BLW) in Istanbul. Chlorination of BLW samples was carried out at pH 7.0 with 5 and 12 mg/l chlorine dosages. For each chlorine dosage, six bromide concentrations ranging from 0.05 to 4.0mg/l were added to form a 2 x 6 experimental matrix. In general, increasing bromide concentration gradually shifted trihalomethanes (THMs) and haloacetic acids (HAAs) speciation from chlorinated species to the mixed bromochloro species during chlorination. The halogen substitution ability of HOBr and HOCl during the formation of THMs and HAAs can be estimated through the use of probability theory. It was concluded that, in both halogen substitution for THM and dihalogenated HAA formation, HOBr was found to be 20 times more reactive than HOCl.

  11. Disinfection By-Product Formation and Mitigation Strategies in Point-of-Use Chlorination with Sodium Dichloroisocyanurate in Tanzania

    PubMed Central

    Lantagne, Daniele S.; Cardinali, Fred; Blount, Ben C.

    2010-01-01

    Almost a billion persons lack access to improved drinking water, and diarrheal diseases cause an estimated 1.87 million deaths per year. Sodium dichloroisocyanurate (NaDCC) tablets are widely recommended for household water treatment to reduce diarrhea. Because NaDCC is directly added to untreated water sources, concerns have been raised about the potential health impact of disinfection by-products. This study investigated trihalomethane (THM) production in water from six sources used for drinking (0.6–888.5 nephelometric turbidity units) near Arusha, Tanzania. No sample collected at 1, 8, and 24 hours after NaDCC addition exceeded the World Health Organization guideline values for either individual or total THMs. Ceramic filtration, sand filtration, cloth filtration, and settling and decanting were not effective mitigation strategies to reduce THM formation. Chlorine residual and THM formation were not significantly different in NaDCC and sodium hypochlorite treatment. Household chlorination of turbid and non-turbid waters did not create THM concentrations that exceeded health risk guidelines. PMID:20595492

  12. Human health risk assessment of chlorinated disinfection by-products in drinking water using a probabilistic approach.

    PubMed

    Hamidin, Nasrul; Yu, Qiming Jimmy; Connell, Des W

    2008-07-01

    The presence of chlorinated disinfection by-products (DBPs) in drinking water is a public health issue, due to their possible adverse health effects on humans. To gauge the risk of chlorinated DBPs on human health, a risk assessment of chloroform (trichloromethane (TCM)), bromodichloromethane (BDCM), dibromochloromethane (DBCM), bromoform (tribromomethane (TBM)), dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA) in drinking water was carried out using probabilistic techniques. Literature data on exposure concentrations from more than 15 different countries and adverse health effects on test animals as well as human epidemiological studies were used. The risk assessment showed no overlap between the highest human exposure dose (EXP(D)) and the lowest human equivalent dose (HED) from animal test data, for TCM, BDCM, DBCM, TBM, DCAA and TCAA. All the HED values were approximately 10(4)-10(5) times higher than the 95th percentiles of EXP(D). However, from the human epidemiology data, there was a positive overlap between the highest EXP(D) and the lifetime average daily doses (LADD(H)) for TCM, BDCM, DCAA and TCAA. This suggests that there are possible adverse health risks such as a small increased incidence of cancers in males and developmental effects on infants. However, the epidemiological data comprised several risk factors and exposure classification levels which may affect the overall results.

  13. Formation potentials of bromate and brominated disinfection by-products in bromide-containing water by ozonation.

    PubMed

    Lin, Tao; Wu, Shouke; Chen, Wei

    2014-12-01

    The ozonation involved in drinking water treatment raises issues of water quality security when the raw water contains bromide (Br(-)). Br(-) ions may be converted to bromate (BrO3 (-)) during ozonation and some brominated disinfection by-products (Br-DBPs) in the following chlorination. In this study, the effects of ozone (O3) dosage, contact time, pH, and Br(-) and ammonia (NH3-N) concentrations on the formation of BrO3 (-) and Br-DBPs have been investigated. The results show that decreasing the initial Br(-) concentration is an effective means of controlling the formation of BrO3 (-). When the concentration of Br(-) was lower than 100 μg/L, by keeping the ratio of O3 dosage to dissolved organic carbon (DOC) concentration at less than 1, BrO3 (-) production was effectively suppressed. The concentration of BrO3 (-) steadily increased with increasing O3 dosage at high Br(-) concentration (>900 μg/L). Additionally, a longer ozonation time increased the concentrations of BrO3 (-) and total organic bromine (TOBr), while it had less impact on the formation potentials of brominated trihalomethanes (Br-THMFP) and haloacetic acids (Br-HAAFP). Higher pH value and the presence of ammonia may lead to an increase in the formation potential of BrO3 (-) and Br-DBPs.

  14. [Formation and Variation of Brominated Disinfection By-products in A Combined Ultrafiltration and Reverse Osmosis Process for Seawater Desalination].

    PubMed

    Yang, Zhe; Sun, Ying-xue; Shi, Na; Hu, Hong-ying

    2015-10-01

    The characteristics of dissolved organic matter (DOM) and brominated disinfection by-products ( Br-DBPs ) during a seawater desalination ultrafiltration (UF) combined reverse osmosis (RO) process were studied. The seawater contained high level of bromide ion (45.6-50.9 mg x L(-1)) and aromatic compounds with specific ultraviolet absorbance ( SUVA) of 3.6-6.0 L x (mg x m)(-1). The tryptophan-like aromatic protein, fulvic acid-like and soluble microbial by-product-like were the main fluorescent DOM in the seawater. After pre-chlorination of the seawater, the concentrations of DBPs was significantly increased in the influent of UF, which was dominantly the Br-DBPs. Bromoform (CHBr3) accounted for 70.48% - 91.50% of total trihalomethanes (THMs), dibromoacetic acid (Br2CHCO2H) occupied 81.14% - 100% of total haloacetic acids (HAAs) and dibromoacetonitrile (C2HBr2N) occupied 83.77% - 87.45% of total haloacetonitriles ( HANs). The removal efficiency of THMs, HAAs and HANs by the UF membrane was 36.63% - 40.39%, 73.83% - 95.38% and 100%, respectively. The RO membrane could completely remove the HAAs, while a little of the THMs was penetrated. The antiestrogenic activity in the seawater was 0.35 - 0.44 mg x L(-1), which was increased 32% - 69% after the pre-chlorination. The DBPs and other bio-toxic organics which formed during the UF-RO process were finally concentrated in the UF concentrate and RO concentrate.

  15. The Power of Four (the 4-Lab Study): ORD’s Integrated Disinfection By-Products Mixtures Research Project

    EPA Science Inventory

    Chemical disinfection of water, a major public health triumph of the 20th century, has resulted in dramatic decreases in morbidity and mortality from water-borne disease. The intended result of chemical disinfection of drinking water is reduction of microbial contamination; the u...

  16. Development of Normal Human Colonocyte Cultures to Identify the Carcinogenic Potential of Priorty Disinfection By-products

    EPA Science Inventory

    Epidemiological studies have linked the consumption of disinfected surface waters to an increased risk of colorectal cancer. Of the approximately >600 disinfection byproducts (DBPs) identified, the US EPA regulates 11 DBPs for an increased risk of cancer. An in-depth mechanism-...

  17. Development of Normal Human Colonocyte Cultures to Identify the Carcinogenic Potential of Priorty Disinfection By-products

    EPA Science Inventory

    Epidemiological studies have linked the consumption of disinfected surface waters to an increased risk of colorectal cancer. Of the approximately >600 disinfection byproducts (DBPs) identified, the US EPA regulates 11 DBPs for an increased risk of cancer. An in-depth mechanism-...

  18. The Power of Four (the 4-Lab Study): ORD’s Integrated Disinfection By-Products Mixtures Research Project

    EPA Science Inventory

    Chemical disinfection of water, a major public health triumph of the 20th century, has resulted in dramatic decreases in morbidity and mortality from water-borne disease. The intended result of chemical disinfection of drinking water is reduction of microbial contamination; the u...

  19. Evaluating the similarity of complex drinking-water disinfection by-product mixtures: overview of the issues.

    PubMed

    Rice, Glenn E; Teuschler, Linda K; Bull, Richard J; Simmons, Jane E; Feder, Paul I

    2009-01-01

    Humans are exposed daily to complex mixtures of environmental chemical contaminants, which arise as releases from sources such as engineering procedures, degradation processes, and emissions from mobile or stationary sources. When dose-response data are available for the actual environmental mixture to which individuals are exposed (i.e., the mixture of concern), these data provide the best information for dose-response assessment of the mixture. When suitable data on the mixture itself are not available, surrogate data might be used from a sufficiently similar mixture or a group of similar mixtures. Consequently, the determination of whether the mixture of concern is "sufficiently similar" to a tested mixture or a group of tested mixtures is central to the use of whole mixture methods. This article provides an overview for a series of companion articles whose purpose is to develop a set of biostatistical, chemical, and toxicological criteria and approaches for evaluating the similarity of drinking-water disinfection by-product (DBPs) complex mixtures. Together, the five articles in this series serve as a case study whose techniques will be relevant to assessing similarity for other classes of complex mixtures of environmental chemicals. Schenck et al. (2009) describe the chemistry and mutagenicity of a set of DBP mixtures concentrated from five different drinking-water treatment plants. Bull et al. (2009a, 2009b) describe how the variables that impact the formation of DBP affect the chemical composition and, subsequently, the expected toxicity of the mixture. Feder et al. (2009a, 2009b) evaluate the similarity of DBP mixture concentrates by applying two biostatistical approaches, principal components analysis, and a nonparametric "bootstrap" analysis. Important factors for determining sufficient similarity of DBP mixtures found in this research include disinfectant used; source water characteristics, including the concentrations of bromide and total organic carbon

  20. Assessing the human health impacts of exposure to disinfection by-products--a critical review of concepts and methods.

    PubMed

    Grellier, James; Rushton, Lesley; Briggs, David J; Nieuwenhuijsen, Mark J

    2015-05-01

    Understanding the public health implications of chemical contamination of drinking water is important for societies and their decision-makers. The possible population health impacts associated with exposure to disinfection by-products (DBPs) are of particular interest due to their potential carcinogenicity and their widespread occurrence as a result of treatments employed to control waterborne infectious disease. We searched the literature for studies that have attempted quantitatively to assess population health impacts and health risks associated with exposure to DBPs in drinking water. We summarised and evaluated these assessments in terms of their objectives, methods, treatment of uncertainties, and interpretation and communication of results. In total we identified 40 studies matching our search criteria. The vast majority of studies presented estimates of generic cancer and non-cancer risks based on toxicological data and methods that were designed with regulatory, health-protective purposes in mind, and therefore presented imprecise and biased estimates of health impacts. Many studies insufficiently addressed the numerous challenges to DBP risk assessment, failing to evaluate the evidence for a causal relationship, not appropriately addressing the complex nature of DBP occurrence as a mixture of chemicals, not adequately characterising exposure in space and time, not defining specific health outcomes, not accounting for characteristics of target populations, and not balancing potential risks of DBPs against the health benefits related with drinking water disinfection. Uncertainties were often poorly explained or insufficiently accounted for, and important limitations of data and methods frequently not discussed. Grave conceptual and methodological limitations in study design, as well as erroneous use of available dose-response data, seriously impede the extent to which many of these assessments contribute to understanding the public health implications of

  1. Analysis and occurrence of odorous disinfection by-products from chlorination of amino acids in three different drinking water treatment plants and corresponding distribution networks.

    PubMed

    Brosillon, Stephan; Lemasle, Marguerite; Renault, Emilie; Tozza, Dominique; Heim, Veronique; Laplanche, Alain

    2009-11-01

    Previous studies have established that odorous and stable chloraldimines are formed during amino acid chlorination in drinking water treatment. In order to identify at low level (10(-8) M) the presence of these odorous disinfection by-products in drinking water matrixes an analytical method was developed by using head space apparatus (HS) combined with a sorbent trap system linked to a GC with a mass spectrometer detector (HS/Trap/GC/MS). The analyses were carried out in three different drinking water supplies from the Paris area, during the four seasons. Free amino acids were monitored at the inlet of the plant. The odorous disinfection by-products were analyzed at the outlet of each drinking water treatment plant and the different distribution networks were connected to the corresponding plant. The results confirmed that the odorous chloraldimines are produced during chlorination of free amino acids in three different matrixes in different seasons throughout the year (N-chloroisobutaldimine; N-chloromethyl-2-butaldimine; N-chloromethyl-3-butaldimine (6-10 nM). The analytical method (HS/Trap/GC/MS) used to monitor odorous disinfection by-products appeared to be adapted for the detection of these by-products at nM level.

  2. Seasonal evaluation of the presence of 46 disinfection by-products throughout a drinking water treatment plant.

    PubMed

    Serrano, Maria; Montesinos, Isabel; Cardador, M J; Silva, Manuel; Gallego, Mercedes

    2015-06-01

    In this work, we studied a total of 46 regulated and non-regulated disinfection by-products (DBPs) including 10 trihalomethanes (THMs), 13 haloacetic acids (HAAs), 6 halonitromethanes (HNMs), 6 haloacetonitriles (HANs) and 11 aldehydes at different points in a drinking water treatment plant (DWTP) and its distribution network. Determining an increased number of compounds and using accurate, sensitive analytical methodologies for new DBPs can be useful to overcome some challenges encountered in the comprehensive assessment of the quality and safety of drinking water. This paper provides a detailed picture of the spatial and seasonal variability of DBP concentrations from raw water to distribution network. Samples were collected on a monthly basis at seven different points in the four seasons of a year to acquire robust data for DBPs and supplementary quality-related water parameters. Only 5 aldehydes and 2 HAAs were found in raw water. Chlorine dioxide caused the formation of 3 new aldehydes (benzaldehyde included), 5 HAAs and chloroform. The concentrations of DBPs present in raw water were up to 6 times higher in the warmer seasons (spring and summer). The sedimentation process further increased their concentrations and caused the formation of three new ones. Sand filtration substantially removed aldehydes and HAAs (15-50%), but increased the levels of THMs, HNMs and HANs by up to 70%. Chloramination raised the levels of 8 aldehydes and 7 HAAs; also, it caused the formation of monoiodoacetic acid, dibromochloromethane, dichloroiodomethane and bromochloroacetonitrile. Therefore, this treatment increases the levels of existing DBPs and leads to the formation of new ones to a greater extent than does chlorine dioxide. Except for 5 aldehydes, the 23 DBPs encountered at the DWTP exit were found at increased concentrations in the warmer seasons (HAAs by about 50% and THMs by 350%). Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Spatio-temporal variability of non-regulated disinfection by-products within a drinking water distribution network.

    PubMed

    Mercier Shanks, Catherine; Sérodes, Jean-Baptiste; Rodriguez, Manuel J

    2013-06-01

    The non-regulated disinfection by-products (NrDBP) targeted in this study include four haloacetonitriles (trichloroacetonitrile (TCAN); dichloroacetonitrile (DCAN); bromochloroacetonitrile (BCAN) and dibromoacetonitrile (DBAN)); one halonitromethane (trichloronitromethane, better known under the name chloropicrin (CPK)); and two haloketones (1,1-dichloro-2-propanone (11DCPone) and 1,1,1-trichloro-2-propanone (111TCPone)). This study provides a detailed picture of the spatial and temporal variability of these NrDBP concentrations throughout a drinking water distribution system located in a region with major seasonal climate variations. The results obtained show that the concentrations of the investigated NrDBPs varied significantly according to time and location. The average concentrations of TCAN, DCAN, CKP and 111TCPone were significantly higher in summer. Surprisingly, the average concentrations of 11DCPone were significantly higher in winter. For BCAN and DBAN, the average concentrations observed in winter were higher, but not in a statistically significant way. On the other hand, the four HANs, CPK and 111TCPone generally had spatial profiles involving an increase of the concentrations along the network according to increasing water residence times, whereas 11DCPone overall had a profile where concentrations increased at the beginning of the network, followed by a drop in the concentrations towards the ends of the network. In spite of certain disparities in the individual spatio-temporal variation profiles, strong correlations were generally observed between NrDBPs, and trihalomethanes (THMs) and haloacetic acids (HAAs). Therefore, THMs and HAAs could be good statistical indicators of the presence of NrDBPs in the drinking water of the system under study.

  4. Formation of iodinated disinfection by-products during oxidation of iodide-containing waters with chlorine dioxide.

    PubMed

    Ye, Tao; Xu, Bin; Lin, Yi-Li; Hu, Chen-Yan; Lin, Lin; Zhang, Tian-Yang; Gao, Nai-Yun

    2013-06-01

    This study was to explore the formation of iodinated disinfection by-products (I-DBPs), including iodoform (CHI3), iodoacetic acid (IAA) and triiodoacetic acid (TIAA), when iodide-containing artificial synthesized waters and raw waters are in contact with chlorine dioxide (ClO2). Among the investigated I-DBPs, CHI3 was the major species during ClO2 oxidation in artificial synthesized waters. Impact factors were evaluated, including the concentrations of ClO2, iodide (I(-)), dissolved organic carbon (DOC) and pH. Formation of CHI3, IAA and TIAA followed an increasing and then decreasing pattern with increased ClO2 or DOC concentration. I-DBPs yield was significantly affected by solution pH. High concentrations of I-DBPs were generated under circumneutral conditions with the maximum formation at pH 8. The increase of I(-) concentration can increase I-DBPs yields, but the increment was suppressed when I(-) concentration was higher than 50 μM. When 100 μg/L I(-)and ClO2 (7.5-44.4 μM) were spiked to the raw water samples from Yangshupu and Minhang drinking water treatment plant, certain amounts of CHI3 and IAA were found under pH 7 and the concentrations were strongly correlated with ClO2 dosage and water qualities, however, no TIAA was detected. Finally, we investigated I-DBPs formation of 18 model compounds, including 4 carboxylic acids, 5 phenols and 8 amino acids, treating with ClO2 when I(-) was present. Results showed that most of these model compounds could form a considerable amount of I-DBPs, especially for propanoic acid, butanoic acid, resorcinol, hydroquinone, alanine, glutamic acid, phenylalanine and serine.

  5. The Healthy Men Study: An Evaluation of Exposure to Disinfection By-Products in Tap Water and Sperm Quality

    PubMed Central

    Luben, Thomas J.; Olshan, Andrew F.; Herring, Amy H.; Jeffay, Susan; Strader, Lillian; Buus, Rebecca M.; Chan, Ronna L.; Savitz, David A.; Singer, Philip C.; Weinberg, Howard S.; Perreault, Sally D.

    2007-01-01

    Background Chlorination of drinking water generates disinfection by-products (DBPs), which have been shown to disrupt spermatogenesis in rodents at high doses, suggesting that DBPs could pose a reproductive risk to men. In this study we assessed DBP exposure and testicular toxicity, as evidenced by altered semen quality. Methods We conducted a cohort study to evaluate semen quality in men with well-characterized exposures to DBPs. Participants were 228 presumed fertile men with different DBP profiles. They completed a telephone interview about demographics, health history, water consumption, and other exposures and provided a semen sample. Semen outcomes included sperm concentration and morphology, as well as DNA integrity and chromatin maturity. Exposures to DBPs were evaluated by incorporating data on water consumption and bathing and showering with concentrations measured in tap water. We used multivariable linear regression to assess the relationship between exposure to DBPs and adverse sperm outcomes. Results The mean (median) sperm concentration and sperm count were 114.2 (90.5) million/mL and 362 (265) million, respectively. The mean (median) of the four trihalomethane species (THM4) exposure was 45.7 (65.3) μg/L, and the mean (median) of the nine haloacetic acid species (HAA9) exposure was 30.7 (44.2) μg/L. These sperm parameters were not associated with exposure to these classes of DBPs. For other sperm outcomes, we found no consistent pattern of increased abnormal semen quality with elevated exposure to trihalomethanes (THMs) or haloacetic acids (HAAs). The use of alternate methods for assessing exposure to DBPs and site-specific analyses did not change these results. Conclusions The results of this study do not support an association between exposure to levels of DBPs near or below regulatory limits and adverse sperm outcomes in humans. PMID:17687443

  6. Estimated Effects of Disinfection By-products on Preterm Birth in a Population Served by a Single Water Utility

    PubMed Central

    Lewis, Chad; Suffet, Irwin H.; Hoggatt, Katherine; Ritz, Beate

    2007-01-01

    Objectives We evaluated the association between drinking-water disinfection by-products and preterm births using improved exposure assessment and more appropriate analysis methods than used in prior studies. Methods During 1999–2001, vital record data were obtained for a large, racially diverse population residing in 27 Massachusetts communities that received drinking water from a single public utility. This water system was monitored weekly for total trihalomethanes (TTHM), and it maintained geographically stable total TTHM levels system-wide during the study period. We employed proportional hazards regression to examine the effects of trimester-specific and shorter-term peak exposures to TTHM in drinking water late in pregnancy on preterm births in 37,498 singletons. Results For all women, our data suggested no more than a small increase, if any, in risk for delivering a preterm baby when exposed to ≥ 60 μg/L TTHM during the 4 weeks before birth [hazard ratio (HR) = 1.13; 95% confidence interval (CI), 0.95–1.35]. However, women who depended on a governmental source of payment for prenatal care were at increased risk when exposed at such levels late in gestation (HR = 1.39; 95% CI, 1.06–1.81). In contrast, exposure to high levels of TTHM during the second trimester and high exposure throughout pregnancy resulted in a 15–18% reduction in risk for preterm delivery in our population. Conclusions This finding confirms previous reports of a negative association during the second trimester. Our data also suggested a possible positive association with shorter-term third-trimester TTHM exposure in mothers of lower socioeconomic status. PMID:17384780

  7. Human health risk analysis from disinfection by-products (DBPs) in drinking and bathing water of some Indian cities

    PubMed Central

    2014-01-01

    Background Human health risk assessment from exposure to disinfection by-products (DBPs) during drinking and bathing water vary from country to country as per life expectancy, body mass index, water consumption pattern and individual concentration of DBPs component, etc. Methods Present study considered average direct water intake per person for adult males and females as 4 & 3 L/day, respectively as per Indian literature for risk evaluation from another component of pollutant. While other important factor like average life expectancy, body weight & body surface area for male and female were considered 64 & 67 years, 51.9 & 45.4 Kg and 1.54 & 1.38 m2 respectively as per Indian Council of Medical Research and WHO report. The corresponding lifetime cancer risk of the formed THMs to human beings was estimated by the USEPA and IRIS method as per Indian population. Results The total cancer risk reached 8.99 E-04 and 8.92 E-04 for males and females, respectively, the highest risk from THMs seems to be from the inhalation route followed by ingestion and dermal contacts. Conclusions The multipath way evaluations of lifetime cancer risks for THMs exposure through ingestion, dermal absorption, and inhalation exposure were examined at the highest degree of danger. Results reveals that water containing THMs of the selected water treatment plant of the eastern part of India was unsafe in terms of risk evaluation through inhalation and ingestion, while dermal route of risk was found very close to permissible limit of USEPA. Sensitivity analysis shows that every input parameter is sole responsible for total risk potential, whereas exposure duration playing important role for estimation of total risk. PMID:24872885

  8. Reproductive toxicity of a mixture of regulated drinking-water disinfection by-products in a multigenerational rat bioassay.

    PubMed

    Narotsky, Michael G; Klinefelter, Gary R; Goldman, Jerome M; DeAngelo, Anthony B; Best, Deborah S; McDonald, Anthony; Strader, Lillian F; Murr, Ashley S; Suarez, Juan D; George, Michael H; Hunter, E Sidney; Simmons, Jane Ellen

    2015-06-01

    Trihalomethanes (THMs) and haloacetic acids (HAAs) are regulated disinfection by-products (DBPs); their joint reproductive toxicity in drinking water is unknown. We aimed to evaluate a drinking water mixture of the four regulated THMs and five regulated HAAs in a multigenerational reproductive toxicity bioassay. Sprague-Dawley rats were exposed (parental, F1, and F2 generations) from gestation day 0 of the parental generation to postnatal day (PND) 6 of the F2 generation to a realistically proportioned mixture of THMs and HAAs at 0, 500×, 1,000×, or 2,000× of the U.S. Environmental Protection Agency's maximum contaminant levels (MCLs). Maternal water consumption was reduced at ≥ 1,000×; body weights were reduced at 2,000×. Prenatal and postnatal survival were unaffected. F1 pup weights were unaffected at birth but reduced at 2,000× on PND6 and at ≥ 1,000× on PND21. Postweaning F1 body weights were reduced at 2,000×, and water consumption was reduced at ≥ 500×. Males at 2,000× had a small but significantly increased incidence of retained nipples and compromised sperm motility. Onset of puberty was delayed at 1,000× and 2,000×. F1 estrous cycles and fertility were unaffected, and F2 litters showed no effects on pup weight or survival. Histologically, P0 (parental) dams had nephropathy and adrenal cortical pathology at 2,000×. A mixture of regulated DBPs at up to 2,000× the MCLs had no adverse effects on fertility, pregnancy maintenance, prenatal survival, postnatal survival, or birth weights. Delayed puberty at ≥ 1,000× may have been secondary to reduced water consumption. Male nipple retention and compromised sperm motility at 2,000× may have been secondary to reduced body weights.

  9. Use of urinary trichloroacetic acid as an exposure biomarker of disinfection by-products in cancer studies.

    PubMed

    Salas, Lucas A; Gracia-Lavedan, Esther; Goñi, Fernando; Moreno, Victor; Villanueva, Cristina M

    2014-11-01

    Urinary trichloroacetic acid (TCAA) has been proposed as a valid exposure biomarker for ingested disinfection by-products (DBP) for reproductive studies. However, it has never been used in epidemiologic studies on cancer. We investigate the performance of urinary TCAA as a biomarker of DBP exposure in the framework of an epidemiologic study on cancer. We conducted home visits to collect tap water, first morning void urine, and a 48h fluid intake diary among 120 controls from a case-control study of colorectal cancer in Barcelona, Spain. We measured urine TCAA and creatinine, and 9 haloacetic acids and 4 trihalomethanes (THM) in tap water. Lifetime THM exposure was estimated based on residential history since age 18 plus routine monitoring data. Robust linear regressions were used to estimate mean change in urinary TCAA adjusted by covariates. Among the studied group, mean age was 74 years (range 63-85) and 41 (34%) were females. Mean total tap water consumption was 2.2l/48h (standard error, 0.1l/48h). Geometric mean urine TCAA excretion rate was 17.3pmol/min [95%CI: 14.0-21.3], which increased 2% for a 10% increase in TCAA ingestion and decreased with total tap water consumption (-17%/l), water intake outside home (-32%), plasmatic volume (-64%/l), in smokers (-79%), and in users of non-steroidal anti-inflammatory drugs (-50%). Urinary TCAA levels were not associated with lifetime THM exposure. In conclusion, our findings support that urine TCAA is not a valid biomarker in case-control studies of adult cancer given that advanced age, comorbidites and medication use are prevalent and are determinants of urine TCAA levels, apart from ingested TCAA levels. In addition, low TCAA concentrations in drinking water limit the validity of urine TCAA as an exposure biomarker. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Drinking-water disinfection by-products and semen quality: a cross-sectional study in China.

    PubMed

    Zeng, Qiang; Wang, Yi-Xin; Xie, Shao-Hua; Xu, Liang; Chen, Yong-Zhe; Li, Min; Yue, Jing; Li, Yu-Feng; Liu, Ai-Lin; Lu, Wen-Qing

    2014-07-01

    Exposure to disinfection by-products (DBPs) has been demonstrated to impair male reproductive health in animals, but human evidence is limited and inconsistent. We examined the association between exposure to drinking-water DBPs and semen quality in a Chinese population. We recruited 2,009 men seeking semen analysis from the Reproductive Center of Tongji Hospital in Wuhan, China, between April 2011 and May 2012. Each man provided a semen sample and a urine sample. Semen samples were analyzed for sperm concentration, sperm motility, and sperm count. As a biomarker of exposure to drinking-water DBPs, trichloroacetic acid (TCAA) was measured in the urine samples. The mean (median) urinary TCAA concentration was 9.58 (7.97) μg/L (interquartile range, 6.01-10.96 μg/L). Compared with men with urine TCAA in the lowest quartile, increased adjusted odds ratios (ORs) were estimated for below-reference sperm concentration in men with TCAA in the second and fourth quartiles (OR = 1.79; 95% CI: 1.19, 2.69 and OR = 1.51; 95% CI: 0.98, 2.31, respectively), for below-reference sperm motility in men with TCAA in the second and third quartiles (OR = 1.46; 95% CI: 1.12, 1.90 and OR = 1.30; 95% CI: 1.00, 1.70, respectively), and for below-reference sperm count in men with TCAA in the second quartile (OR 1.62; 95% CI: 1.04, 2.55). Nonmonotonic associations with TCAA quartiles were also estimated for semen parameters modeled as continuous outcomes, although significant negative associations were estimated for all quartiles above the reference level for sperm motility. Our findings suggest that exposure to drinking-water DBPs may contribute to decreased semen quality in humans.

  11. Monitoring of some disinfection by-products in drinking water treatment plants of El-Beheira Governorate, Egypt

    NASA Astrophysics Data System (ADS)

    Ibrahim, Hesham Z.; Abu-Shanab, Mahmoud A.

    2013-12-01

    Two water treatment plants (Edfina and Kom-Hamada) in El-Beheira Governorate were selected to monitor disinfection by-products (DBPs) concentrations. A 12-month monitoring program from October 2011 to September 2012 was established for measuring some DBPs and some water quality parameters such as temperature, pH, turbidity, total organic carbon (TOC), ammonia and bromide. The concentrations of DBPs were determined by gas chromatography with ECD (GC-ECD). Trihalomethanes (THMs) and chloral hydrate (CH) were commonly seen in all samples collected from Plant 1 (Edfina) and Plant 2 (Kom-Hamada). THMs mean concentrations ranged from 34.5 to 64.6 μg/L and from 28.2 to 52.8 μg/L for Plant 1 and Plant 2. CH mean concentrations ranged from 3.3 to 6.76 μg/L and from 2.8 to 3.9 μg/L for Plant 1 and Plant 2, respectively. Dichloroacetonitrile (DCAN) mean concentrations ranged from 1.1 to 2.0 μg/L and from 1.2 to 2.1 μg/L for Plant 1 and Plant 2, respectively. Chloropicrin (CP) was detected in Plant 1 only with mean concentration ranging from 0.91 to 1.1 μg/L. Trichloroacetonitrile (TCAN) and dibromoacetonitrile (DBAN) were below the limit of quantification (LOQ) in all samples. Higher concentrations of THMs were measured in summer and spring as compared to winter. DBPs concentrations were higher in Plant 1 than in Plant 2. The DBPs levels in all samples collected from Edfina and Kom-Hamada were generally below the guideline values set by the Egyptian Health Minister in 2007.

  12. Estimated effects of disinfection by-products on preterm birth in a population served by a single water utility.

    PubMed

    Lewis, Chad; Suffet, Irwin H; Hoggatt, Katherine; Ritz, Beate

    2007-02-01

    We evaluated the association between drinking-water disinfection by-products and preterm births using improved exposure assessment and more appropriate analysis methods than used in prior studies. During 1999-2001, vital record data were obtained for a large, racially diverse population residing in 27 Massachusetts communities that received drinking water from a single public utility. This water system was monitored weekly for total trihalomethanes (TTHM), and it maintained geographically stable total TTHM levels system-wide during the study period. We employed proportional hazards regression to examine the effects of trimester-specific and shorter-term peak exposures to TTHM in drinking water late in pregnancy on preterm births in 37,498 singletons. For all women, our data suggested no more than a small increase, if any, in risk for delivering a preterm baby when exposed to > or = 60 microg/L TTHM during the 4 weeks before birth [hazard ratio (HR) = 1.13; 95% confidence interval (CI), 0.95-1.35]. However, women who depended on a governmental source of payment for prenatal care were at increased risk when exposed at such levels late in gestation (HR = 1.39; 95% CI, 1.06-1.81). In contrast, exposure to high levels of TTHM during the second trimester and high exposure throughout pregnancy resulted in a 15-18% reduction in risk for preterm delivery in our population. This finding confirms previous reports of a negative association during the second trimester. Our data also suggested a possible positive association with shorter-term third-trimester TTHM exposure in mothers of lower socioeconomic status.

  13. Disinfection by-products of chlorine dioxide (chlorite, chlorate, and trihalomethanes): Occurrence in drinking water in Qatar.

    PubMed

    Al-Otoum, Fatima; Al-Ghouti, Mohammad A; Ahmed, Talaat A; Abu-Dieyeh, Mohammed; Ali, Mohammed

    2016-12-01

    The occurrence of chlorine dioxide (ClO2) disinfection by-products (DBPs) in drinking water, namely, chlorite, chlorate, and trihalomethanes (THMs), was investigated. Two-hundred-ninety-four drinking water samples were collected from seven desalination plants (DPs), four reservoirs (R), and eight mosques (M) distributed within various locations in southern and northern Qatar. The ClO2 concentration levels ranged from 0.38 to <0.02 mg L(-1), with mean values of 0.17, 0.12, and 0.04 mg L(-1) for the DPs, Rs, and Ms, respectively. The chlorite levels varied from 13 μg L(-1) to 440 μg L(-1), with median values varying from 13 to 230 μg L(-1), 77-320 μg L(-1), and 85-440 μg L(-1) for the DPs, Rs, and Ms, respectively. The chlorate levels varied from 11 μg L(-1) to 280 μg L(-1), with mean values varying from 36 to 280 μg L(-1), 11-200 μg L(-1), and 11-150 μg L(-1) in the DPs, Rs, and Ms, respectively. The average concentration of THMs was 5 μg L(-1), and the maximum value reached 77 μg L(-1) However, all of the DBP concentrations fell within the range of the regulatory limits set by GSO 149/2009, the World Health Organization (WHO), and Kahramaa (KM).

  14. Prediction of the developmental toxicity hazard potential of halogenated drinking water disinfection by-products tested by the in vitro hydra assay

    SciTech Connect

    Fu, L.J.; Johnson, E.M.; Newman, L.M. )

    1990-06-01

    A series of seven randomly selected potential halogenated water disinfection by-products were evaluated in vitro by the hydra assay to determine their developmental toxicity hazard potential. For six of the chemicals tested by this assay (dibromoacetonitrile; trichloroacetonitrile; 2-chlorophenol; 2,4,6-trichlorophenol; trichloroacetic acid; dichloroacetone) it was predicted that they would be generally equally toxic to both adult and embryonic mammals when studied by means of standard developmental toxicity teratology tests. However, the potential water disinfection by-product chloroacetic acid (CA) was determined to be over eight times more toxic to the embryonic developmental portion of the assay than it was to the adults. Because of this potential selectivity, CA is a high-priority item for developmental toxicity tests in pregnant mammals to confirm or refute its apparent unique developmental hazard potential and/or to establish a NOAEL by the route of most likely human exposure.

  15. HYDROGEN ABSTRACTION AND DECOMPOSITION OF BROMOPICRIN AND OTHER TRIHALOGENATED DISINFECTION BY-PRODUCTS BY GC/MS

    EPA Science Inventory

    Tribromonitromethane (bromopicrin), dibromochlorani-tromethane, bromodichloronitromethane, and trichloroni-tromethane (chloropicrin) have been identified as drinking water disinfection byproducts (DBPs). They are thermally unstable and decompose under commonly used injection port...

  16. HYDROGEN ABSTRACTION AND DECOMPOSITION OF BROMOPICRIN AND OTHER TRIHALOGENATED DISINFECTION BY-PRODUCTS BY GC/MS

    EPA Science Inventory

    Tribromonitromethane (bromopicrin), dibromochlorani-tromethane, bromodichloronitromethane, and trichloroni-tromethane (chloropicrin) have been identified as drinking water disinfection byproducts (DBPs). They are thermally unstable and decompose under commonly used injection port...

  17. Risk of Stillbirth in the Relation to Water Disinfection By-Products: A Population-Based Case-Control Study in Taiwan

    PubMed Central

    Hwang, Bing-Fang; Jaakkola, Jouni J. K.

    2012-01-01

    Background Few epidemiological studies that have assessed the relation between water disinfection by-products (DBPs) and the risk of stillbirth provide inconsistent results. The objective was to assess the relation between exposure to water disinfection by-products and the risk of stillbirth. Methods We conducted a population-based case-control study of 3,289 cases of stillbirth and a random sample of 32,890 control subjects from 396,049 Taiwanese newborns in 2001–2003 using information from the Birth Registry and Waterworks Registry in Taiwan. We compared the risk of stillbirth in four disinfection by-product exposure categories based on the levels of total trihalomethanes (TTHMs) representing high (TTHMs 20+ µg/L), medium (TTHMs 10–19 µg/L), low exposure (TTHMs 5–9 µg/L), and 0–4 µg/L as the reference category. In addition, we conducted a meta-analysis of the results from the present and 5 previous studies focusing on stillbirth. Findings In logistic regression analysis adjusting for gender, maternal age, plurality, conception of season and population density of the municipality where the mother lived during pregnancy, the odds ratio (OR) for stillbirth was 1.10 (95% CI 1.00–1.21) for medium exposure and 1.06 (95% 0.96–1.17) for high exposure compared to reference category. In the meta-analysis, the summary odds ratio for stillbirth (1.11, 95% CI: 1.03, 1.19) was consistently elevated. Conclusions The present study is consistent with the hypothesis that the risk of stillbirth is related to prenatal exposure to disinfection by-products. This finding on stillbirth is consistent with previous epidemiologic studies, which strengthens the weight of evidence. PMID:22457804

  18. Factors affecting the formation of disinfection by-products during chlorination and chloramination of secondary effluent for the production of high quality recycled water.

    PubMed

    Doederer, Katrin; Gernjak, Wolfgang; Weinberg, Howard S; Farré, Maria José

    2014-01-01

    During the production of high quality recycled water by reverse osmosis membrane filtration secondary effluent must be disinfected to limit biofouling on the membrane surface. Advanced Water Treatment Plants in South East Queensland, Australia use disinfectant contact times ranging from 30 min up to 24 h. Disinfectants such as chlorine and chloramines react with effluent organic matter to generate disinfection by-products (DBPs) which could be potentially hazardous to human health if the water is destined for supplementing public water supplies. In this context, secondary effluents are of concern because of their high total organic carbon content which can act as DBP precursors. Also, effluent organic matter may form different DBPs to those formed from natural organic matter during conventional drinking water treatment, either in quantity, identity or simply in the abundance of different DBPs relative to each other. It cannot be assumed per se with certainty that DBP formation will be affected in the same way by operational changes as in drinking water production. Response surface modelling has been employed in this study at the bench scale to investigate the effect of reaction time (0-24 h), pH (5.5-8.5), temperature (23-35 °C), disinfection strategy (chlorine vs chloramines used prior to membrane treatment) and the interaction between these different parameters on DBP formation during disinfection of secondary effluent. The concentration of halogenated DBPs formed during the first 24 h of reaction with the different disinfectants followed the order chlorination > in line-formed monochloramine > pre-formed monochloramine. Contact time with chlorine was the major influencing factor on DBP formation during chlorination, except for the bromine-containing trihalomethanes and dibromoacetonitrile for which pH was more significant. Chlorination at high pH led to an increased formation of chloral hydrate, trichloronitromethane, dibromoacetonitrile and the four

  19. Powdered activated carbon coupled with enhanced coagulation for natural organic matter removal and disinfection by-product control: application in a Western Australian water treatment plant.

    PubMed

    Kristiana, Ina; Joll, Cynthia; Heitz, Anna

    2011-04-01

    The removal of organic precursors of disinfection by-products (DBPs), i.e. natural organic matter (NOM), prior to disinfection and distribution is considered as the most effective approach to minimise the formation of DBPs. This study investigated the impact of the addition of powdered activated carbon (PAC) to an enhanced coagulation treatment process at an existing water treatment plant on the efficiency of NOM removal, the disinfection behaviour of the treated water, and the water quality in the distribution system. This is the first comprehensive assessment of the efficacy of plant-scale application of PAC combined with enhanced coagulation on an Australian source water. As a result of the PAC addition, the removal of NOM improved by 70%, which led to a significant reduction (80-95%) in the formation of DBPs. The water quality in the distribution system also improved, indicated by lower concentrations of DBPs in the distribution system and better maintenance of disinfectant residual at the extremities of the distribution system. The efficacy of the PAC treatment for NOM removal was shown to be a function of the characteristics of the NOM and the quality of the source water, as well as the PAC dose. PAC treatment did not have the capacity to remove bromide ion, resulting in the formation of more brominated DBPs. Since brominated DBPs have been found to be more toxic than their chlorinated analogues, their preferential formation upon PAC addition must be considered, especially in source waters containing high concentrations of bromide.

  20. Examination of disinfection by-product (DBP) formation in source waters: a study using log-transformed differential spectra.

    PubMed

    Yan, Mingquan; Korshin, Gregory V; Chang, Hyun-Shik

    2014-03-01

    Formation of disinfection by-products (DBPs) in ten drinking source waters located in the United States was examined in this study. DBP generation was interpreted in the context of halogenation-induced changes of log-transformed absorbance spectra of dissolved organic matter (DOM) present in the waters. This approach allows probing the behavior of relatively minor structures that can be highly sensitive towards any process of interest, notably DOM halogenation. This concept was applied to examine effects of chlorination time on the kinetics of chlorine consumption and release of several DBP groups such as total trihalomethanes (THM4, including CHCl3, CHCl2Br, CHClBr2 and CHBr3), haloacetic acids (HAA9, including MCAA, MBAA, DCAA, TCAA, BCAA, DBAA, BDCAA, DBCAA and TBAA), haloacetonitriles (THAN4, including TCAN, DCAN, BCAN and DBAN), haloketones (HK2, including DCP and TCP), chloral hydrate (CH) and chloropicrin (CPN). Two alternative parameters, namely the differential logarithm of DOM absorbance at 350 nm (DLnA350) and change of the spectral slope in the range of wavelengths 325-375 nm (DSlope325-375) were introduced to quantify individual DBP species formed and Cl2 consumption. DLnA350 and DSlope325-375, especially DLnA350 were determined to be more reliable than differential absorbance at 272 nm that was utilized in prior applications of differential spectroscopy to characterize DBP formation. Strong linear relationships between DLnA350 values and concentrations of major groups of and individual DBP species (e.g. THM4, HAA9, HAN4 and CPN were found to exist (mostly, R(2) > 0.95) and the intercept of these correlations with the y-axis was near zero for the examined water sources. Correlations between DLnA350 values and concentrations of CH and HK2 were also strong but they were nonlinear. The slope of the correlations between the concentrations of major groups of DBP species vs -DLnA350 were also well correlated with SUVA254 and LnA350 for all the examined

  1. Epidemiological approaches in the investigation of environmental causes of cancer: the case of dioxins and water disinfection by-products

    PubMed Central

    2011-01-01

    I will refer in this paper to difficulties in research in environmental causes of cancer using as examples research on dioxins and on drinking water disinfection by-products (DBPs) that have created considerable controversy in the scientific and wider community. Dioxins are highly toxic chemicals that are animal carcinogens. For many years, evaluation of the carcinogenicity of dioxins in humans was based on case-control or registry based studies. The development of methods to measure dioxins in blood indicated that these studies suffered from extreme exposure misclassification. The conduct of large cohort studies of workers with widely contrasted exposures together with the use of biomarkers and models for exposure assessment, led to convincing evidence on the carcinogenicity of dioxins in humans. The high toxicity of a few dioxin congeners, the availability of a scheme to characterize the toxicity of a mixture of dioxins and related compounds and the long half-life of these compounds facilitated epidemiological research. Contrary to dioxins, trihalomethanes (THMs) and most of the hundreds of DBPs in drinking water are chemicals of low toxicity. For more than 15 years, the main evidence on the carcinogenicity of DBPs was through ecological or death certificate studies. More recent studies based on individual assessment confirmed increases in bladder cancer risk. However even those studies ignored the toxicological evidence on the importance of routes of exposure to DBPs other than ingestion and, probably, underestimated the risk. Persistence of weak study designs together with delays in advanced exposure assessment models led to delays in confirming early evidence on the carcinogenicity of DBPs. The evaluation of only a few chemicals when exposure is to a complex mixture remains a major problem in exposure assessment for DBPs. The success of epidemiological studies in identifying increased risks lies primarily on the wide contrast of exposure to DBPs in the general

  2. Spatial variations in the occurrence of potentially genotoxic disinfection by-products in drinking water distribution systems in China.

    PubMed

    Li, Chunmei; Wang, Donghong; Xu, Xiong; Xu, Meijia; Wang, Zijian

    2017-09-11

    We investigated the occurrence of disinfection by-products (DBPs) with genotoxic potential in plant effluent and distribution water samples from four drinking water treatment plants in two Chinese cities using comprehensive two-dimensional gas chromatography-quadrupole mass spectrometry. We tested the samples for 37 DBPs with genotoxic potential, which we had previously identified and prioritized in water under controlled laboratory conditions. Thirty of these DBPs were found in the water samples at detection frequencies of between 10% and 100%, and at concentrations between 3.90 and 1.77 × 10(3) ng/L. Of the DBPs detected, the concentrations of 1,1,1-trichloropropan-2-one were highest, and ranged from 299 to 1.77 × 10(3) ng/L with an average of 796 ng/L. The concentrations of 6-chloro-2-N-propan-2-yl-1,3,5-triazine-2,4-diamine and 2,6-ditert-butylcyclohexa-2,5-diene-1,4-dione were also much higher, and ranged from 107 to 721 ng/L, and from 152 to 504 ng/L, respectively. Concentrations of 1,1,1-trichloropropan-2-one, 2-chloro-1-phenylethanone, 2,2-dichloro-1-phenylethanone and 6-chloro-2-N-propan-2-yl-1,3,5-triazine-2,4-diamine were highest at or near the treatment plants and decreased with increasing distance from the plants. Patterns in the concentrations of benzaldehyde, 2-phenylpropan-2-ol, and 1-methylnaphthalene differed between plants. The levels of DBPs such as 4-ethylbenzaldehyde, (E)-non-2-enal, and 1-phenylethanone were relatively constant within the distribution systems, even at the furthest sampling points (20 km < d < 30 km). A risk assessment showed that there was no risk to human health. It is, however, important to note that, because of limited availability of toxicity data, only five DBPs were evaluated in this study. The risks to health associated with exposure to the target potentially genotoxic DBPs should not be ignored because of their prolonged existence in drinking water. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Epidemiological approaches in the investigation of environmental causes of cancer: the case of dioxins and water disinfection by-products.

    PubMed

    Kogevinas, Manolis

    2011-04-05

    I will refer in this paper to difficulties in research in environmental causes of cancer using as examples research on dioxins and on drinking water disinfection by-products (DBPs) that have created considerable controversy in the scientific and wider community. Dioxins are highly toxic chemicals that are animal carcinogens. For many years, evaluation of the carcinogenicity of dioxins in humans was based on case-control or registry based studies. The development of methods to measure dioxins in blood indicated that these studies suffered from extreme exposure misclassification. The conduct of large cohort studies of workers with widely contrasted exposures together with the use of biomarkers and models for exposure assessment, led to convincing evidence on the carcinogenicity of dioxins in humans. The high toxicity of a few dioxin congeners, the availability of a scheme to characterize the toxicity of a mixture of dioxins and related compounds and the long half-life of these compounds facilitated epidemiological research. Contrary to dioxins, trihalomethanes (THMs) and most of the hundreds of DBPs in drinking water are chemicals of low toxicity. For more than 15 years, the main evidence on the carcinogenicity of DBPs was through ecological or death certificate studies. More recent studies based on individual assessment confirmed increases in bladder cancer risk. However even those studies ignored the toxicological evidence on the importance of routes of exposure to DBPs other than ingestion and, probably, underestimated the risk. Persistence of weak study designs together with delays in advanced exposure assessment models led to delays in confirming early evidence on the carcinogenicity of DBPs. The evaluation of only a few chemicals when exposure is to a complex mixture remains a major problem in exposure assessment for DBPs. The success of epidemiological studies in identifying increased risks lies primarily on the wide contrast of exposure to DBPs in the general

  4. Prevalence of Ocular, Respiratory and Cutaneous Symptoms in Indoor Swimming Pool Workers and Exposure to Disinfection By-Products (DBPs)

    PubMed Central

    Fantuzzi, Guglielmina; Righi, Elena; Predieri, Guerrino; Giacobazzi, Pierluigi; Mastroianni, Katia; Aggazzotti, Gabriella

    2010-01-01

    The objective of this cross-sectional study was to investigate the prevalence of self-reported respiratory, ocular and cutaneous symptoms in subjects working at indoor swimming pools and to assess the relationship between frequency of declared symptoms and occupational exposure to disinfection by-products (DBPs). Twenty indoor swimming pools in the Emilia Romagna region of Italy were included in the study. Information about the health status of 133 employees was collected using a self-administered questionnaire. Subjects working at swimming pools claimed to frequently experience the following symptoms: cold (65.4%), sneezing (52.6%), red eyes (48.9%) and itchy eyes (44.4%). Only 7.5% claimed to suffer from asthma. Red eyes, runny nose, voice loss and cold symptoms were declared more frequently by pool attendants (lifeguards and trainers) when compared with employees working in other areas of the facility (office, cafe, etc.). Pool attendants experienced generally more verrucas, mycosis, eczema and rash than others workers; however, only the difference in the frequency of self-declared mycosis was statistically significant (p = 0.010). Exposure to DBPs was evaluated using both environmental and biological monitoring. Trihalomethanes (THMs), the main DBPs, were evaluated in alveolar air samples collected from subjects. Swimming pool workers experienced different THM exposure levels: lifeguards and trainers showed the highest mean values of THMs in alveolar air samples (28.5 ± 20.2 μg/m3), while subjects working in cafe areas (17.6 ± 12.1 μg/m3), offices (14.4 ± 12.0 μg/m3) and engine rooms (13.6 ± 4.4 μg/m3) showed lower exposure levels. Employees with THM alveolar air values higher than 21 μg/m3 (median value) experienced higher risks for red eyes (OR 6.2; 95% CI 2.6–14.9), itchy eyes (OR 3.5; 95% CI 1.5–8.0), dyspnea/asthma (OR 5.1; 95% CI 1.0–27.2) and blocked nose (OR 2.2; 95% CI 1.0–4.7) than subjects with less exposure. This study confirms that

  5. Headspace-free setup of in vitro bioassays for the evaluation of volatile disinfection by-products.

    PubMed

    Stalter, Daniel; Dutt, Mriga; Escher, Beate I

    2013-11-18

    The conventional setup of in vitro bioassays in microplates does not prevent the loss of volatile compounds, which hampers the toxicological characterization of waterborne volatile disinfection by-products (DBPs). To minimize the loss of volatile test chemicals, we adapted four in vitro bioassays to a headspace-free setup using eight volatile organic compounds (four trihalomethanes, 1,1-dichloroethene, bromoethane, and two haloacetonitriles) that cover a wide range of air-water partition coefficients. The nominal effect concentrations of the test chemicals decreased by up to three orders of magnitude when the conventional setup was changed to a headspace-free setup for the bacterial cytotoxicity assay using bioluminescence inhibition of Vibrio fischeri. The increase of apparent sensitivity correlated significantly with the air-water partition coefficient. Purge and trap GC/MS analysis revealed a reduced loss of dosed volatile compounds in the headspace free setup (78-130% of nominal concentration) compared to a substantial loss in the conventional set up (2-13% of the nominal concentration). The experimental effect concentrations converged with the headspace-free setup to the effect concentrations predicted by a QSAR model, confirming the suitability of the headspace-free approach to minimize the loss of volatile test chemicals. The analogue headspace-free design of the bacterial bioassays for genotoxicity (umuC assay) and mutagenicity (Ames fluctuation assay) increased the number of compounds detected as genotoxic or mutagenic from one to four and zero to two, respectively. In a bioassay with a mammalian cell line applied for detecting the induction of the Nrf-2-mediated oxidative stress response (AREc32 assay), the headspace-free setup improved the apparent sensitivity by less than one order of magnitude, presumably due to the retaining effect of the serum components in the medium, which is also reflected in the reduced aqueous concentrations of compounds. This

  6. What’s in the Pool? A Comprehensive Identification of Disinfection By-products and Assessment of Mutagenicity of Chlorinated and Brominated Swimming Pool Water

    PubMed Central

    Richardson, Susan D.; DeMarini, David M.; Kogevinas, Manolis; Fernandez, Pilar; Marco, Esther; Lourencetti, Carolina; Ballesté, Clara; Heederik, Dick; Meliefste, Kees; McKague, A. Bruce; Marcos, Ricard; Font-Ribera, Laia; Grimalt, Joan O.; Villanueva, Cristina M.

    2010-01-01

    Background Swimming pool disinfectants and disinfection by-products (DBPs) have been linked to human health effects, including asthma and bladder cancer, but no studies have provided a comprehensive identification of DBPs in the water and related that to mutagenicity. Objectives We performed a comprehensive identification of DBPs and disinfectant species in waters from public swimming pools in Barcelona, Catalonia, Spain, that disinfect with either chlorine or bromine and we determined the mutagenicity of the waters to compare with the analytical results. Methods We used gas chromatography/mass spectrometry (GC/MS) to measure trihalomethanes in water, GC with electron capture detection for air, low- and high-resolution GC/MS to comprehensively identify DBPs, photometry to measure disinfectant species (free chlorine, monochloroamine, dichloramine, and trichloramine) in the waters, and an ion chromatography method to measure trichloramine in air. We assessed mutagenicity with the Salmonella mutagenicity assay. Results We identified > 100 DBPs, including many nitrogen-containing DBPs that were likely formed from nitrogen-containing precursors from human inputs, such as urine, sweat, and skin cells. Many DBPs were new and have not been reported previously in either swimming pool or drinking waters. Bromoform levels were greater in brominated than in chlorinated pool waters, but we also identified many brominated DBPs in the chlorinated waters. The pool waters were mutagenic at levels similar to that of drinking water (~ 1,200 revertants/L-equivalents in strain TA100–S9 mix). Conclusions This study identified many new DBPs not identified previously in swimming pool or drinking water and found that swimming pool waters are as mutagenic as typical drinking waters. PMID:20833605

  7. What's in the pool? A comprehensive identification of disinfection by-products and assessment of mutagenicity of chlorinated and brominated swimming pool water.

    PubMed

    Richardson, Susan D; DeMarini, David M; Kogevinas, Manolis; Fernandez, Pilar; Marco, Esther; Lourencetti, Carolina; Ballesté, Clara; Heederik, Dick; Meliefste, Kees; McKague, A Bruce; Marcos, Ricard; Font-Ribera, Laia; Grimalt, Joan O; Villanueva, Cristina M

    2010-11-01

    Swimming pool disinfectants and disinfection by-products (DBPs) have been linked to human health effects, including asthma and bladder cancer, but no studies have provided a comprehensive identification of DBPs in the water and related that to mutagenicity. We performed a comprehensive identification of DBPs and disinfectant species in waters from public swimming pools in Barcelona, Catalonia, Spain, that disinfect with either chlorine or bromine and we determined the mutagenicity of the waters to compare with the analytical results. We used gas chromatography/mass spectrometry (GC/MS) to measure trihalomethanes in water, GC with electron capture detection for air, low- and high-resolution GC/MS to comprehensively identify DBPs, photometry to measure disinfectant species (free chlorine, monochloroamine, dichloramine, and trichloramine) in the waters, and an ion chromatography method to measure trichloramine in air. We assessed mutagenicity with the Salmonella mutagenicity assay. We identified > 100 DBPs, including many nitrogen-containing DBPs that were likely formed from nitrogen-containing precursors from human inputs, such as urine, sweat, and skin cells. Many DBPs were new and have not been reported previously in either swimming pool or drinking waters. Bromoform levels were greater in brominated than in chlorinated pool waters, but we also identified many brominated DBPs in the chlorinated waters. The pool waters were mutagenic at levels similar to that of drinking water (approximately 1,200 revertants/L-equivalents in strain TA100-S9 mix). This study identified many new DBPs not identified previously in swimming pool or drinking water and found that swimming pool waters are as mutagenic as typical drinking waters.

  8. Reactivity of vinca alkaloids during water chlorination processes: Identification of their disinfection by-products by high-resolution quadrupole-Orbitrap mass spectrometry.

    PubMed

    Negreira, Noelia; Regueiro, Jorge; López de Alda, Miren; Barceló, Damià

    2016-02-15

    Concerns about the presence of anticancer drugs in the environment are rapidly increasing mainly due to their growing use in the developed countries and their known cytotoxic effects. Vinca alkaloids are widely used in cancer therapy; however, very scarce information is available on their occurrence, environmental fate and toxicological effects on aquatic organisms. Even less attention has been paid to their potential transformation products, which can exert higher toxicity than the parent compounds. Thus, in the present work, the reactivity of vincristine, vinblastine, vinorelbine and its metabolite 4-O-deacetyl vinorelbine during water chlorination processes has been investigated for the first time. Under the studied chlorination conditions, vincristine was fairly stable whereas vinblastine, vinorelbine and 4-O-deacetyl vinorelbine were quickly degraded. A total of sixty-five disinfection by-products were tentatively identified by ultra-high performance liquid chromatography coupled to high-resolution hybrid quadrupole-Orbitrap tandem mass spectrometry. Among them, twenty by-products corresponded to mono-chlorinated compounds, eight to di-chlorinated compounds and two to tri-chlorinated compounds, which may be of major environmental concern. Other disinfection by-products involved hydroxylation and oxidation reactions. Although the structures of these by-products could not be positively confirmed due to lack of commercial standards, their chemical formulas and product ions can be added to databases, which will allow their screening in future monitoring studies.

  9. OCCURRENCE OF IODO-ACID AND IODO-THM DISINFECTION BY-PRODUCTS IN CHLORAMINATED DRINKING WATER

    EPA Science Inventory

    Iodo-acids were recently identified for the first time as DBPs in drinking water disinfected with chloramines. The iodo-acids identified included iodoacetic acid (IAA), bromoiodoacetic acid, (E)-3-bromo-3-iodo-propenoic acid, (Z)-3-bromo-3-iodo-propenoic acid, and (E)-2-iodo-3...

  10. OCCURRENCE OF IODO-ACID AND IODO-THM DISINFECTION BY-PRODUCTS IN CHLORAMINATED DRINKING WATER

    EPA Science Inventory

    Iodo-acids were recently identified for the first time as DBPs in drinking water disinfected with chloramines. The iodo-acids identified included iodoacetic acid (IAA), bromoiodoacetic acid, (E)-3-bromo-3-iodo-propenoic acid, (Z)-3-bromo-3-iodo-propenoic acid, and (E)-2-iodo-3...

  11. Set of new draft methods for the analysis of organic disinfection by-products, including 551 and 552. Draft report

    SciTech Connect

    Not Available

    1993-01-01

    The set of documents discusses the new draft methods (EPA method 551, EPA method 552) for the analysis of disinfection byproducts contained in drinking water. The methods use the techniques of liquid/liquid extraction and gas chromatography with electron capture detection.

  12. Disinfection by-products and microbial contamination in the treatment of pool water with granular activated carbon.

    PubMed

    Uhl, W; Hartmann, C

    2005-01-01

    For swimming pools, it is generally agreed that free chlorine levels have to be maintained to guarantee adequate disinfection. Recommended free chlorine levels can vary between 0.3 and 0.6 mg/L in Germany and up to 3 mg/L in other countries. Bathers introduce considerable amounts of organic matter, mainly in the form of such as urine and sweat, into the pool water. As a consequence, disinfection byproducts (DBPs) are formed. Regulations in Germany recommend levels of combined chlorine of less than 0.2 mg/L and levels of trihalomethanes (THMs) of less than 20 microg/L. Haloacetic acids (HAAs), haloacetonitriles (HANs), chloropicrin and chloral hydrate are also detected in considerable amounts. However, these compounds are not regulated yet. Swimming pool staff and swimmers, especially athletes, are primarily exposed to these byproducts by inhalation and/or dermal uptake. In Germany, new regulations for swimming pool water treatment generally require the use of activated carbon. In this project, three different types of granular activated carbon (GAC) (one standard GAC, two catalytic GACs) are compared for their long time behaviour in pool water treatment. In a pilot plant operated with real swimming pool water, production and removal of disinfection byproducts (THMs, HAAs, AOXs), of biodegradable substances (AOC), of bacteria (Pseudomonas aeruginosa, Legionella, coliforms, HPC) as well as the removal of chlorine and chloramines are monitored as function of GAC bed depth. Combined chlorine penetrates deeper in the filter bed than free chlorine does. However, both, free and combined chlorine removal efficiencies decrease over the time of filter operation. The decreases of removal efficiencies are also observed for parameters such as dissolved organic carbon, spectral absorption coefficient, adsorbable organic carbon and most of the disinfection byproducts. However, THMs, especially chloroform are produced in the filter bed. The GAC beds were contaminated microbially

  13. Simultaneous determination of 14 disinfection by-products in meat products using microwave-assisted extraction and static headspace coupled to gas chromatography-mass spectrometry.

    PubMed

    Cardador, Maria Jose; Gallego, Mercedes

    2017-08-04

    This paper described the first analytical method to simultaneously determine 14 disinfection by-products (DBPs) in meat products using microwave-assisted extraction (MAE) and static headspace (SHS) followed by gas chromatography-mass spectrometry (GC-MS). The DBPs included were 4 trihalomethanes, 7 haloacetic acids, 2 haloacetonitriles and trichloronitromethane, which are commonly formed as a consequence of the disinfection process of water. The combination of the MAE and SHS techniques allows meat samples to be analysed in two sequential steps into the same HS vial in spite of the sample's complexity. Detection limits were obtained within the range of 0.06-0.70ng/g, and the average relative standard deviation was 7.4%. Recoveries throughout the whole process were between 86 and 95%. The SHS-GC-MS method was applied to determine DBPs in meat products with different industrial processing which could be contaminated through contact with disinfectants and/or treated water employed in the factory either for washing or for the cooking of meat. Up to 5 DBPs were found at ng/g levels in about 36% of the samples analysed, cooked ham being the most contaminated meat product because of the brine solutions employed in its manufacturing process. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Determination of odour threshold concentrations and dose-response relations in water of several minor disinfection by-products: aldehydes and alkyl nitriles.

    PubMed

    Fabrellas, C; Matia, L; Ventura, F

    2004-01-01

    The odour threshold concentrations (OTCs) levels of aldehydes and alkyl nitriles, two groups of disinfection by-products of water treatment, have been studied in order to know if some of these compounds can be associated with off-flavour events. For aldehydes, as a result of the values obtained, which are in the low microg/L range, it is possible that they are related to these events. This is not the case for the other group, alkyl nitriles, with very high OTC values.

  15. Integrated disinfection by-products mixtures research: comprehensive characterization of water concentrates prepared from chlorinated and ozonated/postchlorinated drinking water.

    PubMed

    Richardson, Susan D; Thruston, Alfred D; Krasner, Stuart W; Weinberg, Howard S; Miltner, Richard J; Schenck, Kathleen M; Narotsky, Michael G; McKague, A Bruce; Simmons, Jane Ellen

    2008-01-01

    This article describes the disinfection by-product (DBP) characterization portion of a series of experiments designed for comprehensive chemical and toxicological evaluation of two drinking-water concentrates containing highly complex mixtures of DBPs. This project, called the Four Lab Study, involved the participation of scientists from four laboratories and centers of the U.S. Environmental Protection Agency (EPA) Office of Research and Development, along with collaborators from the water industry and academia, and addressed toxicologic effects of complex DBP mixtures, with an emphasis on reproductive and developmental effects that are associated with DBP exposures in epidemiologic studies. Complex mixtures of DBPs from two different disinfection schemes (chlorination and ozonation/postchlorination) were concentrated successfully, while maintaining a water matrix suitable for animal studies. An array of chlorinated/brominated/iodinated DBPs was created. The DBPs were relatively stable over the course of the animal experiments, and a significant portion of the halogenated DBPs formed in the drinking water was accounted for through a comprehensive qualitative and quantitative identification approach. DBPs quantified included priority DBPs that are not regulated but have been predicted to produce adverse health effects, as well as those currently regulated in the United States and those targeted during implementation of the Information Collection Rule. New by-products were also reported for the first time. These included previously undetected and unreported bromo- and chloroacids, iodinated compounds, bromo- and iodophenols, and bromoalkyltins.

  16. The use of ozonation and catalytic ozonation combined with ultrafiltration for the control of natural organic matter (NOM) and disinfection by-products (DBPs) in drinking water

    NASA Astrophysics Data System (ADS)

    Karnik, Bhavana Sushilkumar

    Commercially available titania membranes, with a molecular weight cut-off of 15, 5, 1 kD were used in a ozonation/membrane system that was fed with water from Lake Lansing. The effects of ozonation on permeate flux recovery and membrane fouling was investigated. In addition the effects of ozonation/membrane filtration hybrid process on the removal of the natural organic matter (NOM) and the formation of disinfection by-products (DBPS) were monitored. The commercial membrane (CeRAM Inside, Tami North America, St. Laurent, Quebec, Canada) was coated with iron oxide nanoparticles (4--6 nm in diameter) using a layer-by-layer technique and sintered in air for 30 minutes. Surface characterization was carried out using electron microscopy techniques and atomic force microscopy, to study the changes in structure and surface morphology of the membranes. The removal and survival of bacteria in the process was also evaluated using fluorescence microscopy and microbial assays. Finally the surface catalytic reaction was investigated to propose the mechanism responsible for the improved performance of the hybrid process. The permeate flux through a titania coated ceramic membrane was significantly affected by ozonation. A minimum threshold ozone concentration (2.5 g/m 3) could achieve complete recovery of permeate flux after fouling. Ozonation/filtration decreased the concentration of chlorinated disinfection by-products up to 80%. With catalyst coated membranes, the concentration of dissolved organic carbon was reduced by >85% and the concentrations of disinfection by-products decreased by up to 90%. Furthermore with the coated membrane, the concentrations of ozonation by-products in the permeate were reduced by >50% as compared to that obtained with the uncoated membranes, thus reducing the risk of potential regrowth of bacteria in the distribution system. Application of the hybrid process lead to greater than 7 log removal of bacteria. Surface characterization showed that

  17. Reducing illness transmission from disinfected recreational water venues: swimming, diarrhea and the emergence of a new public health concern.

    PubMed

    Castor, Mei Lin; Beach, Michael J

    2004-09-01

    Recreational water-related illnesses are associated with swimming in contaminated water venues. The transmission of diarrheal illness in disinfected settings is influenced by several factors which include: chlorine resistance in waterborne pathogens; poor facility maintenance of disinfectant levels; and lack of healthy swimming habits. Health care providers can help to disseminate healthy swimming messages to their patients and help to prevent and control this emerging public health concern.

  18. Disinfection by-product formation during chlor(am)ination of algal organic matters (AOM) extracted from Microcystis aeruginosa: effect of growth phases, AOM and bromide concentration.

    PubMed

    Chen, Juxiang; Gao, Naiyun; Li, Lei; Zhu, Mingqiu; Yang, Jing; Lu, Xian; Zhang, Yansen

    2017-03-01

    Algae organic matter (AOM), including extracellular organic matter (EOM) and intracellular organic matter (IOM), has caused a series of problems to the water quality, among which formation of disinfection by-products (DBPs) during subsequent chlor(am)ination process was especially serious and concerned. This study characterized physicochemical properties of the EOM and IOM solution extracted from different growth phases of Microcystis aeruginosa and investigated the corresponding formation potential of DBPs during chlor(am)ination process. Besides, the effects of initial concentration of xEOM, IOM, and Br(-) on the yields of disinfection by-product formation potential were studied. The results indicated that the specific UV absorbance (SUVA254) values of IOM and EOM (1.09 and 2.66 L/mg m) were considerably lower than that of natural organic matter (NOM) (4.79 L/mg m). Fluorescence dates showed the soluble microbial by-product was dominant in both EOM and IOM, and the tryptophan was the main component of AOM. From the excitation-emission matrix figure of EOM and IOM, we found that the content of the high molecular weight protein substance in IOM was higher than EOM. During chlorination of EOM and IOM, the yields of four kinds of DBPs followed the order trichloroethene (TCM) > 1,1-DCP > dichloride acetonitrile (DCAN) > trichloronitromethane (TCNM), while the order was TCM > DCAN > TCNM > 1,1-DCP during chloramination process. The bromine substitution factor (BSF) value increased with the increasing of the concentration of Br(-). When the concentration of Br(-) was 500 μg/L, the BSF values of chlorination EOM and IOM were 51.1 and 68.4%, respectively. As the concentration of Br(-) increased, the formation of Cl-DBPs was inhibited and the formation of Br-DBPs was promoted. Graphical abstract ᅟ.

  19. Use of mechanism-based structure-activity relationships analysis in carcinogenic potential ranking for drinking water disinfection by-products.

    PubMed Central

    Woo, Yin-Tak; Lai, David; McLain, Jennifer L; Manibusan, Mary Ko; Dellarco, Vicki

    2002-01-01

    Disinfection by-products (DBPs) are formed when disinfectants such as chlorine, chloramine, and ozone react with organic and inorganic matter in water. The observations that some DBPs such as trihalomethanes (THMs), di-/trichloroacetic acids, and 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone (MX) are carcinogenic in animal studies have raised public concern over the possible adverse health effects of DBPs. To date, several hundred DBPs have been identified. To prioritize research efforts, an in-depth, mechanism-based structure-activity relationship analysis, supplemented by extensive literature search for genotoxicity and other data, was conducted for ranking the carcinogenic potential of DBPs that met the following criteria: a) detected in actual drinking water samples, b) have insufficient cancer bioassay data for risk assessment, and c) have structural features/alerts or short-term predictive assays indicative of carcinogenic potential. A semiquantitative concern rating scale of low, marginal, low-moderate, moderate, high-moderate, and high was used along with delineation of scientific rationale. Of the 209 DBPs analyzed, 20 were of priority concern with a moderate or high-moderate rating. Of these, four were structural analogs of MX and five were haloalkanes that presumably will be controlled by existing and future THM regulations. The other eleven DBPs, which included halonitriles (6), haloketones (2), haloaldehyde (1), halonitroalkane (1), and dialdehyde (1), are suitable priority candidates for future carcinogenicity testing and/or mechanistic studies. PMID:11834465

  20. Effects of ozone pretreatment on the formation of disinfection by-products and its associated bromine substitution factors upon chlorination/chloramination of Tai Lake water.

    PubMed

    Wang, Fangyuan; Ruan, Mengyong; Lin, Hongjun; Zhang, Yu; Hong, Huachang; Zhou, Xiaoling

    2014-03-15

    This study investigated the effects of preozonation on disinfection by-products (DBPs) formation during chlorination and chloramination of the water collected from Tai Lake. Results showed that the high ozone dose (0.6-1.0 mg O₃/mg DOC) pretreatment reduced the yields of trihaloacetic acids (reduced 62-63% in chlorination), dihaloacetonitriles (reduced 53-55% and 14-26% in chlorination and chloramination, respectively) and trihaomethanes (reduced 19% in chloramination), but markedly increased the formation of halonitromethanes (increased 4.7-5.6 times in chlorination and 2.1-2.7 times in chloramination), haloketones (increased 4.8-7.1 times in chlorination and 2.5-2.9 times in chloramination) and dihaloacetic acids (increased 1.5-2.4 times in chlorination and 0.3-0.6 times in chloramination). Thus the high ozone dose pretreatment should be avoided during chlorination/chloramination of Tai Lake water. Also, chloramination (with and without preozonation) produced much lower DBPs yields as compared with chlorination (with and without preozonation), indicating that chloramine was a better choice to control the DBPs yields. Further analysis also revealed that the bromine substitution factors (BSFs) of DBPs varied with disinfection mode. In chlorinamination, the BSFs generally showed a decrease trend with the ozone dose, yet in chlorination, the BSFs mostly exhibited first an increase and then a decrease trend. Moreover, the BSFs of DBPs in chloramination (with or without preozonation) were dominantly lower than those in chlorination (with or without preozonation).

  1. Characterization of organic matter and disinfection by-products in membrane backwash water from drinking water treatment.

    PubMed

    Zhang, Lingling; Gu, Ping; Zhong, Zijie; Yang, Dong; He, Wenjie; Han, Hongda

    2009-09-15

    Two pilot-scale membrane plants were set up to produce drinking water, and membrane backwash water was discharged during the production process. This work studied the characteristics of dissolved organic matter (DOM) in membrane backwash water from submerged microfiltration (MBWS) and pressurized ultrafiltration (MBWP) both of which are coupled with the pre-coagulation process. The results showed that the two waters had similar molecular weight (MW) distributions. Dissolved organic carbon (DOC) and trihalomethane formation potential (THMFP) in MBWS and MBWP were both mainly distributed in MW>30 kDa and MW<1 kDa, and UV(254) was mainly in MW<1 kDa. For Luan River water (LRW, the raw water for the two pilot-scale membrane plants in this study), organic matter enriched in membrane backwash water was mainly in sizes of MW>30 kDa. In addition, organic matter with MW>10 kDa was higher in MBWP than in MBWS. The quality of membrane backwash water was influenced by the changes in LRW quality during different periods. The quality of membrane backwash water was worse in alga-laden period than in normal period and organic matter concentrations in MW<1 kDa increased significantly in this period. The small size DOM in membrane backwash water was more reactive to form trihalomethanes (THMs) in the disinfection process. The variability of specific UV absorbance and THMFP/DOC was consistent in membrane backwash water.

  2. The removal process of 2,2-dichloroacetamide (DCAcAm), a new disinfection by-product, in drinking water treatment process and its toxicity on zebrafish.

    PubMed

    Lin, Tao; Zhou, Dongju; Yu, Shilin; Chen, Wei

    2016-09-01

    The removal process of 2,2-dichloroacetamide (DCAcAm), a new disinfection by-product (DBP) in conventional drinking water treatment plant (C-DWTP) and advanced DWTP (ADWTP) was studied with newly maximum formation potential (MFP) process. It was demonstrated that the advanced treatment displayed greater removal efficiency towards DCAcAm formation potential (MFP) than the conventional treatment. The hydrophilic natural organic matter and natural organic matter with molecular weight <1 kDa or >10 kDa leaded to more DCAcAm formation, and the aromatic protein was inferred as one part of DCAcAm precursor. DCAcAm was found to cause delayed development and malformation to zebrafish embryos at embryonic growth stage. Compared with heart toxicity, it caused a significant neuron toxicity. It also could cause the acute DNA damage to adult zebrafish, which should be extremely cautioned. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Assessing spatial fluctuations, temporal variability, and measurement error in estimated levels of disinfection by-products in tap water: implications for exposure assessment

    PubMed Central

    Symanski, E; Savitz, D; Singer, P

    2004-01-01

    Aims: To assess spatial fluctuations, temporal variability, and errors due to sampling and analysis in levels of disinfection by-products in routine monitoring tap water samples and in water samples collected in households within the same distribution system for an exposure assessment study. Methods: Mixed effects models were applied to quantify seasonal effects and the degree to which trihalomethane (THM) levels vary among households or locations relative to variation over time within seasons for any given location. In a separate analysis, the proportion of total variation due to measurement error arising from sampling and analysis was also quantified. Results: THM levels were higher in the summer relative to other seasons. Differences in the relative magnitude of the intra- and inter-household components of variation were observed between the two sets of THM measurements, with a greater proportion of the variation due to differences within seasons for the routine monitoring data and a greater proportion of the variation due to differences across locations for the exposure assessment study data. Such differences likely arose due to differences in the strategies used to select sites for sampling and in the time periods over which the data were collected. With the exception of bromodichloromethane, measurement errors due to sampling and analysis contributed a small proportion of the total variation in THM levels. Conclusions: The utility of routine monitoring data in assigning exposure in epidemiological studies is limited because such data may not represent the magnitude of spatial variability in levels of disinfection by-products across the distribution system. Measurement error contributes a relatively small proportion to the total variation in THM levels, which suggests that gathering a greater number of samples over time with fewer replicates collected at each sampling location is more efficient and would likely yield improved estimates of household exposure

  4. STRAIN COMPARISON IN PREGNANT RATS OF ENDOCRINE RESPONSE TO BROMODICHLOROMETHANE: A DRINKING WATER DISINFECTION BY-PRODUCT

    EPA Science Inventory

    Bromodichloromethane (BDCM), a trihalomethane, is a by-product of the chlorination of drinking water. In an epidemiological study, consumption of drinking water with high levels of BDCM was associated with an increased risk of spontaneous abortion in pregnant women (Waller et al....

  5. STRAIN COMPARISON IN PREGNANT RATS OF ENDOCRINE RESPONSE TO BROMODICHLOROMETHANE: A DRINKING WATER DISINFECTION BY-PRODUCT

    EPA Science Inventory

    Bromodichloromethane (BDCM), a trihalomethane, is a by-product of the chlorination of drinking water. In an epidemiological study, consumption of drinking water with high levels of BDCM was associated with an increased risk of spontaneous abortion in pregnant women (Waller et al....

  6. [Formation of disinfection by-products by Microcystis aeruginosa intracellular organic matter: comparison between chlorination and bromination].

    PubMed

    Tian, Chuan; Guo, Ting-Ting; Liu, Rui-Ping; Jefferson, William; Liu, Hui-Juan; Qu, Jiu-Hui

    2013-11-01

    In order to illustrate the effects of released algal organic matter in cyanobacteria blooms on raw water quality and water treatment process, intracellular organic matter (IOM) of Microcystis aeruginosa, which is the dominant species in cyanobacteria blooms, was chosen as a precursor and characterized. In addition, the transformation of IOM and the formation of disinfection byproducts were evaluated at different pH of 6.5, 7.1 and 8.4 after chlorination or bromination, with subsequent correlation analysis. The results indicated that IOM was primarily composed of macromolecular matter, i. e. , the species with relative molecular weight of > 30 x 10(3), constituting 68.8% of dissolved organic carbon (DOC). Fluorescence excitation-emission matrix indicated that IOM was mainly composed of aromatic protein-like matter with an intensity of 92.6 AU x L x mg(-1). After reaction with chlorine or bromine, the intensity of aromatic protein-like peaks decreased sharply by 76.6% - 93.3%, and its reduction correlated well with the formation of trihalomethane (THMs, R2 = 0.81) and haloacetic acid (HAAs, R2 = 0.77). The formation of THMs and HAAs increased with the increase in pH. Compared with chlorine, bromine formed more THMs and HAAs, and tended to form highly halogenated HAAs. However, with increasing pH, the reactivity with IOM between chlorine and bromine was closer, i.e, k(OBr-IOM)/k(OCl-(IOM) < k(HOBr-IOM/k(HOCl-IOM).

  7. Algal toxicity of the alternative disinfectants performic acid (PFA), peracetic acid (PAA), chlorine dioxide (ClO2) and their by-products hydrogen peroxide (H2O2) and chlorite (ClO2(-)).

    PubMed

    Chhetri, Ravi Kumar; Baun, Anders; Andersen, Henrik Rasmus

    2016-12-01

    Environmental effect evaluation of disinfection of combined sewer overflow events with alternative chemical disinfectants requires that the environmental toxicity of the disinfectants and the main by-products of their use are known. Many disinfectants degrade quickly in water which should be included in the evaluation of both their toxicity as determined in standardized tests and their possible negative effect in the water environment. Here we evaluated according to the standardized ISO 8692 test the toxicity towards the green microalgae, Pseudokirchneriella subcapitata, of three disinfectants: performic acid (PFA), peracetic acid (PAA) and chlorine dioxide (ClO2) as well as two by-products of their use: hydrogen peroxide (H2O2) and chlorite. All of the five chemicals investigated showed clear toxicity to the algae with well-defined dose response curves. The EC50 values ranged from 0.16 to 2.9mg/L based on nominal concentrations leading to the labeling of the chemicals as either toxic or very toxic. The five investigated chemicals decreased in toxicity in the order chlorine dioxide, performic acid, peracetic acid, chlorite and hydrogen peroxide. The stability of the chemicals increased in the same order as the toxicity decrease. This indicates that even though ClO2 has the highest environmental hazard potential, it may still be suitable as an alternative disinfectant due to its rapid degradation in water.

  8. Do Iodine Contrast Media Compounds Used for Medical Imaging Contribute to the Formation of Iodinated Disinfection By-Products in Drinking Water?

    EPA Science Inventory

    Iodinated disinfection byproducts (DBPs) have recently gained attention due to their cyto- and genotoxicity and increased formation in drinking water treated with chloramine, which has become an increasingly popular disinfectant in the United States. One of these—iodoacetic acid...

  9. Do Iodine Contrast Media Compounds Used for Medical Imaging Contribute to the Formation of Iodinated Disinfection By-Products in Drinking Water?

    EPA Science Inventory

    Iodinated disinfection byproducts (DBPs) have recently gained attention due to their cyto- and genotoxicity and increased formation in drinking water treated with chloramine, which has become an increasingly popular disinfectant in the United States. One of these—iodoacetic acid...

  10. COMPONENT-BASED AND WHOLE-MIXTURE TECHNIQUES FOR ADDRESSING THE TOXICITY OF DRINKING-WATER DISINFECTION BY-PRODUCT MIXTURES

    EPA Science Inventory

    Chemical disinfection of water is of direct public health benefit as it results in decreased waterborne illness. The chemicals used to disinfect water react with naturally occurring organic matter, bromide and iodide in the source water, resulting in the formation of disinfection...

  11. The shadow of dichloroacetonitrile (DCAN), a typical nitrogenous disinfection by-product (N-DBP), in the waterworks and its backwash water reuse.

    PubMed

    Tan, Yiwen; Lin, Tao; Jiang, Fuchun; Dong, Jian; Chen, Wei; Zhou, Dongju

    2017-08-01

    Dichloroacetonitrile (DCAN) is one of nitrogenous disinfection by-products (N-DBPs) with strong cytotoxicity and genotoxicity. In this study, the formation potential (FP) of DCAN was investigated in the samples of six important water sources located in the Yangtze River Delta. The highest formation concentration of DCAN was 9.05 μg/L in the water sample taken from Taihu Lake with the lowest SUVA value. After the NOM fractionation, the conversion rate of hydrophilic fraction to DCAN was found the highest. Subsequently, a waterworks using Taihu Lake as water source was chosen to research the FP variations of DCAN in the treatment process and backwash water. The results showed that, compared to the conventional treatment process, O/biological activated carbon (BAC) process increased the removal efficiency of DCAN from 21.89% to 50.58% by removing aromatic protein and soluble biological by-products as main precursors of DCAN. The DCAN FP in the effluent of BAC filters using old granular activated carbon was higher than that in the influent and the DCAN FP of its backwash water was lower than that in raw water. In the backwash water of sand filters, the DCAN FP higher than raw water required the recycle ratio less than 5% to avoid the accumulation of DCAN. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Oxidative cell damage in Kat-sod assay of oxyhalides as inorganic disinfection by-products and their occurrence by ozonation.

    PubMed

    Ueno, H; Oishi, K; Sayato, Y; Nakamuro, K

    2000-01-01

    Nine oxyhalides as possible inorganic disinfection by-products were tested for oxidative cell damage by Kat-sod assay with E. coli mutant strains deficient in the active oxygen-scavenging enzymes. Chlorine dioxide, chlorite, and iodate were highly cytotoxic, whereas in the presence of cysteine, bromate (BrO3-) and metaperiodate (IO4-) showed more growth inhibition toward the superoxide dismutase-deficient strains than the wild strain. BrO3- also showed oxidative mutagenicity with cysteine or glutathione ethyl ester in S. typhimurium TA 100. To identify oxyhalides formed by ozonation of raw water containing sea water, the occurrence of ozonation by-products of bromide and iodide was investigated. The results indicate that BrO3- is toxicologically one of the most remarkable oxyhalides detectable in drinking water because IO4- was not detected in the ozonated solution of iodide, and the ozonation condition to lower BrO3- is to keep it neutral in the presence of ammonium ion.

  13. Discharges of produced waters from oil and gas extraction via wastewater treatment plants are sources of disinfection by-products to receiving streams.

    PubMed

    Hladik, Michelle L; Focazio, Michael J; Engle, Mark

    2014-01-01

    Fluids co-produced with oil and gas production (produced waters) are often brines that contain elevated concentrations of bromide. Bromide is an important precursor of several toxic disinfection by-products (DBPs) and the treatment of produced water may lead to more brominated DBPs. To determine if wastewater treatment plants that accept produced waters discharge greater amounts of brominated DBPs, water samples were collected in Pennsylvania from four sites along a large river including an upstream site, a site below a publicly owned wastewater treatment plant (POTW) outfall (does not accept produced water), a site below an oil and gas commercial wastewater treatment plant (CWT) outfall, and downstream of the POTW and CWT. Of 29 DBPs analyzed, the site at the POTW outfall had the highest number detected (six) ranging in concentration from 0.01 to 0.09 μg L(-1) with a similar mixture of DBPs that have been detected at POTW outfalls elsewhere in the United States. The DBP profile at the CWT outfall was much different, although only two DBPs, dibromochloronitromethane (DBCNM) and chloroform, were detected, DBCNM was found at relatively high concentrations (up to 8.5 μg L(-1)). The water at the CWT outfall also had a mixture of inorganic and organic precursors including elevated concentrations of bromide (75 mg L(-1)) and other organic DBP precursors (phenol at 15 μg L(-1)). To corroborate these DBP results, samples were collected in Pennsylvania from additional POTW and CWT outfalls that accept produced waters. The additional CWT also had high concentrations of DBCNM (3.1 μg L(-1)) while the POTWs that accept produced waters had elevated numbers (up to 15) and concentrations of DBPs, especially brominated and iodinated THMs (up to 12 μg L(-1) total THM concentration). Therefore, produced water brines that have been disinfected are potential sources of DBPs along with DBP precursors to streams wherever these wastewaters are discharged. © 2013.

  14. Discharges of produced waters from oil and gas extraction via wastewater treatment plants are sources of disinfection by-products to receiving streams

    USGS Publications Warehouse

    Hladik, Michelle; Focazio, Michael J.; Engle, Mark

    2014-01-01

    Fluids co-produced with oil and gas production (produced waters) are often brines that contain elevated concentrations of bromide. Bromide is an important precursor of several toxic disinfection by-products (DBPs) and the treatment of produced water may lead to more brominated DBPs. To determine if wastewater treatment plants that accept produced waters discharge greater amounts of brominated DBPs, water samples were collected in Pennsylvania from four sites along a large river including an upstream site, a site below a publicly owned wastewater treatment plant (POTW) outfall (does not accept produced water), a site below an oil and gas commercial wastewater treatment plant (CWT) outfall, and downstream of the POTW and CWT. Of 29 DBPs analyzed, the site at the POTW outfall had the highest number detected (six) ranging in concentration from 0.01 to 0.09 μg L− 1 with a similar mixture of DBPs that have been detected at POTW outfalls elsewhere in the United States. The DBP profile at the CWT outfall was much different, although only two DBPs, dibromochloronitromethane (DBCNM) and chloroform, were detected, DBCNM was found at relatively high concentrations (up to 8.5 μg L− 1). The water at the CWT outfall also had a mixture of inorganic and organic precursors including elevated concentrations of bromide (75 mg L− 1) and other organic DBP precursors (phenol at 15 μg L− 1). To corroborate these DBP results, samples were collected in Pennsylvania from additional POTW and CWT outfalls that accept produced waters. The additional CWT also had high concentrations of DBCNM (3.1 μg L− 1) while the POTWs that accept produced waters had elevated numbers (up to 15) and concentrations of DBPs, especially brominated and iodinated THMs (up to 12 μg L− 1 total THM concentration). Therefore, produced water brines that have been disinfected are potential sources of DBPs along with DBP precursors to streams wherever these wastewaters are discharged.

  15. Comparing a silver-impregnated activated carbon with an unmodified activated carbon for disinfection by-product minimisation and precursor removal.

    PubMed

    Watson, Kalinda; Farré, Maria José; Knight, Nicole

    2016-01-15

    During disinfection, bromide, iodide and natural organic matter (NOM) in source waters can lead to the formation of brominated and/or iodinated disinfection by-products (DBPs), which are often more toxic than their chlorinated analogues. The objective of this study was to compare the efficiency of a silver-impregnated activated carbon (SIAC) with the equivalent unimpregnated granular activated carbon (GAC) for the removal of bromide, iodide and NOM from a matrix of synthetic waters with variable NOM, halide, and alkalinity concentrations, and to investigate the impact on DBP formation. An enhanced coagulation (EC) pre-treatment was employed prior to sample exposure to either carbon adsorbent. Excellent halide removals were observed by the SIAC treatment across the sample matrix, with iodide concentrations consistently reduced to below the method reporting limit (<2 μg/L) from as high as 25 μg/L, and 95±4% removal of bromide achieved. Bromide removal by unimpregnated GAC was poor, however iodide removal was comparable to that achieved by SIAC. The combination of EC with SIAC treatment removed 77±8% of the dissolved organic carbon (DOC) present, across the sample matrix, which was similar to removals by EC/GAC (67±14%). Combined EC/SIAC treatment reduced both total trihalomethanes (tTHMs) and total dihaloacetonitriles (tDHANs) formation by 97±3%, while also achieving a greater than 74% removal of two chloropropanones and a 92±8% decrease in chloral hydrate (CH), compared to untreated samples, regardless of the sample's starting water quality (bromide, alkalinity and NOM concentration). Combined EC/GAC treatment led to similar DBP removals to EC/SIAC for the fully chlorinated DBPs, however, brominated DBPs were less efficiently removed, or experienced concentration increases. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Optical monitoring of Disinfection By-product Precursors with Fluorescence Excitation-Emission Mapping (F-EEM): Practical Application Issues for Drinking, Waste and Reuse Water Industry

    NASA Astrophysics Data System (ADS)

    Gilmore, A. M.

    2012-12-01

    Drinking water, wastewater and reuse plants must deal with regulations associated with bacterial contamination and halogen disinfection procedures that can generate harmful disinfection by-products (DBPs) including trihalomethanes (THMs), haloacetic acids (HOAAs) and other compounds. The natural fluorescent chromophoric dissolved organic matter (CDOM) is regulated as the major DBP precursor. This study outlines the advantages and current limitations associated with optical monitoring of water treatment processes using tcontemporary Fluorescence Excitation-Emission Mapping (F-EEM). The F-EEM method coupled with practical peak indexing and multi-variate analyses is potentially superior in terms of cost, speed and sensitivity over conventional total organic carbon (TOC) meters and specific UV-absorbance (SUVA) measurements. Hence there is strong interest in developing revised environmental regulations around the F-EEM technique instruments which can incidentally simultaneously measure the SUVA and DOC parameters. Importantly, the F-EEM technique, compared to the single-point TOC and SUVA signals can resolve CDOM classes distinguishing those that strongly cause DBPs. The F-EEM DBP prediction method can be applied to surface water sources to evaluate DBP potential as a function of the point sources and reservoir depth profiles. It can also be applied in-line to rapidly adjust DOC removal processes including sedimentation-flocculation, microfiltration, reverse-osmosis, and ozonation. Limitations and interferences for F-EEMs are discussed including those common to SUVA and TOC in contrast to the advantages including that F-EEMs are less prone to interferences from inorganic carbon and metal contaminations and require little if any chemical preparation. In conclusion, the F-EEM method is discussed in terms of not only the DBP problem but also as a means of predicting (concurrent to DBP monitoring) organic membrane fouling in water-reuse and desalination plants.

  17. Analysis of preneoplastic and neoplastic renal lesions in Tsc2 mutant Long-Evans (Eker) rats following exposure to a mixture of drinking water disinfection by-products.

    PubMed

    McDorman, Kevin S; Hooth, Michelle J; Starr, Thomas B; Wolf, Douglas C

    2003-05-01

    Disinfection of surface water for human consumption results in the generation of a complex mixture of chemicals in potable water. Cancer risk assessment methodology assumes additivity of carcinogenic effects in the regulation of mixtures. A rodent model of hereditary renal cancer was used to investigate the carcinogenic response to a mixture of drinking water disinfection by-products (DBPs). Rats carrying a mutation in the Tsc2 tumor suppressor gene (Eker rats) readily develop renal preneoplastic and neoplastic lesions, and are highly susceptible to the effects of renal carcinogens. Male and female Eker rats were exposed via drinking water to individual or a mixture of DBPs for 4 or 10 months. Potassium bromate, 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone (MX), chloroform, and bromodichloromethane were administered at low concentrations of 0.02, 0.005, 0.4 and 0.07 g/l, respectively, and high concentrations of 0.4, 0.07, 1.8 and 0.7 g/l, respectively. Low and high dose mixture solutions were comprised of all four chemicals at either low concentrations or high concentrations, respectively, Following necropsy, each kidney was examined microscopically for preneoplastic lesions (atypical tubules and hyperplasias) and tumors. While some of the mixture responses observed in male rats did fall within the range expected for an additive response, especially at the high dose, predominantly antagonistic effects on renal lesions were observed in response to the low dose mixture in male rats and the high dose mixture in female rats. These data suggest that current default risk assessments assuming additivity may overstate the cancer risk associated with exposure to mixtures of DBPs at low concentrations. Copyright 2003 Elsevier Science Ireland Ltd.