eScience for molecular-scale simulations and the eMinerals project.
Salje, E K H; Artacho, E; Austen, K F; Bruin, R P; Calleja, M; Chappell, H F; Chiang, G-T; Dove, M T; Frame, I; Goodwin, A L; Kleese van Dam, K; Marmier, A; Parker, S C; Pruneda, J M; Todorov, I T; Trachenko, K; Tyer, R P; Walker, A M; White, T O H
2009-03-13
We review the work carried out within the eMinerals project to develop eScience solutions that facilitate a new generation of molecular-scale simulation work. Technological developments include integration of compute and data systems, developing of collaborative frameworks and new researcher-friendly tools for grid job submission, XML data representation, information delivery, metadata harvesting and metadata management. A number of diverse science applications will illustrate how these tools are being used for large parameter-sweep studies, an emerging type of study for which the integration of computing, data and collaboration is essential.
Student leadership in small group science inquiry
NASA Astrophysics Data System (ADS)
Oliveira, Alandeom W.; Boz, Umit; Broadwell, George A.; Sadler, Troy D.
2014-09-01
Background: Science educators have sought to structure collaborative inquiry learning through the assignment of static group roles. This structural approach to student grouping oversimplifies the complexities of peer collaboration and overlooks the highly dynamic nature of group activity. Purpose: This study addresses this issue of oversimplification of group dynamics by examining the social leadership structures that emerge in small student groups during science inquiry. Sample: Two small student groups investigating the burning of a candle under a jar participated in this study. Design and method: We used a mixed-method research approach that combined computational discourse analysis (computational quantification of social aspects of small group discussions) with microethnography (qualitative, in-depth examination of group discussions). Results: While in one group social leadership was decentralized (i.e., students shared control over topics and tasks), the second group was dominated by a male student (centralized social leadership). Further, decentralized social leadership was found to be paralleled by higher levels of student cognitive engagement. Conclusions: It is argued that computational discourse analysis can provide science educators with a powerful means of developing pedagogical models of collaborative science learning that take into account the emergent nature of group structures and highly fluid nature of student collaboration.
ERIC Educational Resources Information Center
Martinez, Alina; Neishi, Kristen; Parsad, Amanda; Whittaker, Karla; Epstein, Carter
2012-01-01
Students in science and engineering (S&E) are preparing for careers in fields where international partnerships are increasingly important to advancing knowledge and discoveries. It has been over a decade since the National Science Board (NSB) highlighted the importance of international collaboration and called for increased government…
Preschool children's Collaborative Science Learning Scaffolded by Tablets
NASA Astrophysics Data System (ADS)
Fridberg, Marie; Thulin, Susanne; Redfors, Andreas
2017-06-01
This paper reports on a project aiming to extend the current understanding of how emerging technologies, i.e. tablets, can be used in preschools to support collaborative learning of real-life science phenomena. The potential of tablets to support collaborative inquiry-based science learning and reflective thinking in preschool is investigated through the analysis of teacher-led activities on science, including children making timelapse photography and Slowmation movies. A qualitative analysis of verbal communication during different learning contexts gives rise to a number of categories that distinguish and identify different themes of the discussion. In this study, groups of children work with phase changes of water. We report enhanced and focused reasoning about this science phenomenon in situations where timelapse movies are used to stimulate recall. Furthermore, we show that children communicate in a more advanced manner about the phenomenon, and they focus more readily on problem solving when active in experimentation or Slowmation producing contexts.
Identifying emerging research collaborations and networks: method development.
Dozier, Ann M; Martina, Camille A; O'Dell, Nicole L; Fogg, Thomas T; Lurie, Stephen J; Rubinstein, Eric P; Pearson, Thomas A
2014-03-01
Clinical and translational research is a multidisciplinary, collaborative team process. To evaluate this process, we developed a method to document emerging research networks and collaborations in our medical center to describe their productivity and viability over time. Using an e-mail survey, sent to 1,620 clinical and basic science full- and part-time faculty members, respondents identified their research collaborators. Initial analyses, using Pajek software, assessed the feasibility of using social network analysis (SNA) methods with these data. Nearly 400 respondents identified 1,594 collaborators across 28 medical center departments resulting in 309 networks with 5 or more collaborators. This low-burden approach yielded a rich data set useful for evaluation using SNA to: (a) assess networks at several levels of the organization, including intrapersonal (individuals), interpersonal (social), organizational/institutional leadership (tenure and promotion), and physical/environmental (spatial proximity) and (b) link with other data to assess the evolution of these networks.
Supporting Emerging Disciplines with e-Communities: Needs and Benefits
Butler, Brian S; Schleyer, Titus K; Weiss, Patricia M; Wang, Xiaoqing; Thyvalikakath, Thankam P; Hatala, Courtney L; Naderi, Reza A
2008-01-01
Background Science has developed from a solitary pursuit into a team-based collaborative activity and, more recently, into a multidisciplinary research enterprise. The increasingly collaborative character of science, mandated by complex research questions and problems that require many competencies, requires that researchers lower the barriers to the creation of collaborative networks of experts, such as communities of practice (CoPs). Objectives The aim was to assess the information needs of prospective members of a CoP in an emerging field, dental informatics, and to evaluate their expectations of an e-community in order to design a suitable electronic infrastructure. Methods A Web-based survey instrument was designed and administered to 2768 members of the target audience. Benefit expectations were analyzed for their relationship to (1) the respondents’ willingness to participate in the CoP and (2) their involvement in funded research. Two raters coded the respondents’ answers regarding expected benefits using a 14-category coding scheme (Kappa = 0.834). Results The 256 respondents (11.1% response rate) preferred electronic resources over traditional print material to satisfy their information needs. The most frequently expected benefits from participation in the CoP were general information (85% of respondents), peer networking (31.1%), and identification of potential collaborators and/or research opportunities (23.2%). Conclusions The competitive social-information environment in which CoPs are embedded presents both threats to sustainability and opportunities for greater integration and impact. CoP planners seeking to support the development of emerging biomedical science disciplines should blend information resources, social search and filtering, and visibility mechanisms to provide a portfolio of social and information benefits. Assessing benefit expectations and alternatives provides useful information for CoP planners seeking to prioritize community infrastructure development and encourage participation. PMID:18653443
NASA Astrophysics Data System (ADS)
Cak, A. D.; Vigdor, L. J.; Vorosmarty, C. J.; Giebel, B. M.; Santistevan, C.; Chasteau, C.
2017-12-01
Tackling emergent, societally-relevant problems in the environmental sciences is hardly confined to a single research discipline, but rather requires collaborations that bridge diverse domains and perspectives. While new technologies (e.g., Skype) can in theory unite otherwise geographically distributed participation in collaborative research, physical distance nevertheless raises the bar on intellectual dialogue. Such barriers may reveal perceptions of or real differences across disciplines, reflecting particular traditions in their histories and academic cultures. Individual disciplines are self-defined by their scientific, epistemologic, methodologic, or philosophical traditions (e.g., difficulties in understanding processes occurring at different scales, insufficient research funding for interdisciplinary work), or cultural and discursive hurdles (e.g., navigating a new field's jargon). Coupled with these challenges is a considerable deficiency in educating the next generation of scientists to help them develop a sufficient comfort level with thinking critically across multiple disciplinary domains and conceptual frameworks. To address these issues, the City University of New York (CUNY), the largest public urban university in the U.S., made a significant investment in advancing cross-disciplinary research and education, culminating in the opening of the CUNY Advanced Science Research Center (ASRC) in New York City (NYC) in late 2014. We report here on our experiences incubating new collaborative efforts to address environmental science-related research as it is interwoven with the ASRC's five research initiatives (Environmental Sciences, Neuroscience, Structural Biology, Photonics, and Nanoscience). We describe the ASRC's overall structure and function as both a stand-alone interdisciplinary center and one that collaborates more broadly with CUNY's network of twenty-four campuses distributed across NYC's five boroughs. We identify challenges we have faced so far, particularly in attempting to overcome traditional scientific, discursive, and cultural barriers, and how we are addressing them. We also describe several outreach and educational programming efforts designed to promote cross-disciplinarity, including informal science education.
ERIC Educational Resources Information Center
Olin, Anette; Ingerman, Åke
2016-01-01
This study concerns teaching and learning development in science through collaboration between science teachers and researchers. At the core was the ambition to integrate research outcomes of science education--here "didactic models"--with teaching practice, aligned with professional development. The phase where the collaboration moves…
NASA Astrophysics Data System (ADS)
Borne, K. D.
2009-12-01
The emergence of e-Science over the past decade as a paradigm for Internet-based science was an inevitable evolution of science that built upon the web protocols and access patterns that were prevalent at that time, including Web Services, XML-based information exchange, machine-to-machine communication, service registries, the Grid, and distributed data. We now see a major shift in web behavior patterns to social networks, user-provided content (e.g., tags and annotations), ubiquitous devices, user-centric experiences, and user-led activities. The inevitable accrual of these social networking patterns and protocols by scientists and science projects leads to U-Science as a new paradigm for online scientific research (i.e., ubiquitous, user-led, untethered, You-centered science). U-Science applications include components from semantic e-science (ontologies, taxonomies, folksonomies, tagging, annotations, and classification systems), which is much more than Web 2.0-based science (Wikis, blogs, and online environments like Second Life). Among the best examples of U-Science are Citizen Science projects, including Galaxy Zoo, Stardust@Home, Project Budburst, Volksdata, CoCoRaHS (the Community Collaborative Rain, Hail and Snow network), and projects utilizing Volunteer Geographic Information (VGI). There are also scientist-led projects for scientists that engage a wider community in building knowledge through user-provided content. Among the semantic-based U-Science projects for scientists are those that specifically enable user-based annotation of scientific results in databases. These include the Heliophysics Knowledgebase, BioDAS, WikiProteins, The Entity Describer, and eventually AstroDAS. Such collaborative tagging of scientific data addresses several petascale data challenges for scientists: how to find the most relevant data, how to reuse those data, how to integrate data from multiple sources, how to mine and discover new knowledge in large databases, how to represent and encode the new knowledge, and how to curate the discovered knowledge. This talk will address the emergence of U-Science as a type of Semantic e-Science, and will explore challenges, implementations, and results. Semantic e-Science and U-Science applications and concepts will be discussed within the context of one particular implementation (AstroDAS: Astronomy Distributed Annotation System) and its applicability to petascale science projects such as the LSST (Large Synoptic Survey Telescope), coming online within the next few years.
NASA Astrophysics Data System (ADS)
Buck, Gayle A.
1998-12-01
The science teacher educators at a midwestern university set a goal to establish a collaborative relationship between themselves and representatives from the College of Arts & Sciences for the purpose of developing a middle childhood science education program. The coming together of these two faculties provided a unique opportunity to explore the issues and experiences that emerge as such a collaborative relationship is formed. In order to gain a holistic perspective of the collaboration, a phenomenological case study design and methods were utilized. The study took a qualitative approach to allow the experiences and issues to emerge in a naturalistic manner. The question, 'What are the issues and experiences that emerge as science teacher educators and science faculty attempt to form a collaborative relationship for the purpose of developing a middle childhood science teacher program?' was answered by gathering a wealth of data. These data were collected by means of semi-structured interviews, observations and written document reviews. An overall picture was painted of the case by means of heuristic, phenomenological, and issues analyses. The researcher followed Moustakas' Phases of Heuristic Research to answer the questions 'What does science mean to me?' and 'What are my beliefs about the issues guiding this case?' prior to completing the phenomenological analysis. The phenomenological analysis followed Moustakas' 'Modification of the Van Kaam Methods of Analysis of Phenomenological Data'. This inquiry showed that the participants in this study came to the collaboration for many different reasons and ideas about the purpose for such a relationship. The participants also had very different ideas about how such a relationship should be conducted. These differences combined to create some issues that affected the development of curriculum and instruction. The issues involved the lack of (a) mutual respect for the work of the partners, (b) understanding about the roles and responsibilities of the partners, (c) a clear and understandable goal, and (d) time to collaborate. If not addressed, these are the issues that may prohibit the establishment of a successful collaboration, thus affecting the development of a top quality middle childhood science teacher education program.
A Subject Librarian's Guide to Collaborating on E-Science Projects
ERIC Educational Resources Information Center
Garritano, Jeremy R.; Carlson, Jake R.
2009-01-01
For liaison or subject librarians, entering into the emerging area of providing researchers with data services or partnering with them on cyberinfrastructure projects can be a daunting task. This article will provide some advice as to what to expect and how providing data services can be folded into other liaison duties. New skills for librarians…
Custovic, Adnan; Ainsworth, John; Arshad, Hasan; Bishop, Christopher; Buchan, Iain; Cullinan, Paul; Devereux, Graham; Henderson, John; Holloway, John; Roberts, Graham; Turner, Steve; Woodcock, Ashley; Simpson, Angela
2015-01-01
We created Asthma e-Lab, a secure web-based research environment to support consistent recording, description and sharing of data, computational/statistical methods and emerging findings across the five UK birth cohorts. The e-Lab serves as a data repository for our unified dataset and provides the computational resources and a scientific social network to support collaborative research. All activities are transparent, and emerging findings are shared via the e-Lab, linked to explanations of analytical methods, thus enabling knowledge transfer. eLab facilitates the iterative interdisciplinary dialogue between clinicians, statisticians, computer scientists, mathematicians, geneticists and basic scientists, capturing collective thought behind the interpretations of findings. PMID:25805205
Mapping a research agenda for the science of team science
Falk-Krzesinski, Holly J; Contractor, Noshir; Fiore, Stephen M; Hall, Kara L; Kane, Cathleen; Keyton, Joann; Klein, Julie Thompson; Spring, Bonnie; Stokols, Daniel; Trochim, William
2012-01-01
An increase in cross-disciplinary, collaborative team science initiatives over the last few decades has spurred interest by multiple stakeholder groups in empirical research on scientific teams, giving rise to an emergent field referred to as the science of team science (SciTS). This study employed a collaborative team science concept-mapping evaluation methodology to develop a comprehensive research agenda for the SciTS field. Its integrative mixed-methods approach combined group process with statistical analysis to derive a conceptual framework that identifies research areas of team science and their relative importance to the emerging SciTS field. The findings from this concept-mapping project constitute a lever for moving SciTS forward at theoretical, empirical, and translational levels. PMID:23223093
NASA Astrophysics Data System (ADS)
Bang, Eunjin
This two-year study explored changes in practices and the emerging identities of beginning secondary science teachers who participated in an online science specific mentoring program. Fourteen beginning secondary science teachers and six experienced secondary science teachers were selected for the study. As a mixed methods study, data were gathered quantitatively and qualitatively. A hierarchical linear modeling was used in order to depict the changes in inquiry-based science practices as a result of content-focused online mentoring program. Qualitative data were collected via monthly semi-structured interviews, pre, post, and follow-up yearly semi-structured interviews, and finally online written dialogues of beginning secondary science teachers and their e-mentors. A mixed method was used that utilized the results of quantitative data, Items for Inquiry-Based Practice (IBP) scores, helped for selecting cases for qualitative analysis. Results indicated that there were no significant differences in IBP scores among the fourteen beginning secondary science teachers; however, three groups were detected: increasing use, no change, and decreasing use in inquiry-based practices. Porsha, who made increasing use, showed four emerging identities throughout two years: watchful-imitator, seeker, collaborator, and junior-leader. Nora, who made no change, showed only two emerging identities: imitator and seeker. Netty, who made decreasing use, showed also two emerging identities: lonely-follower and feeder. Different identities detected in online dialogue, namely Porsha as a whistleblower, Nora as a watchful-imitator, and Netty as a watchful-feeder. The corresponding responses of three beginning secondary science teachers' e-mentors were defender, provider, listener, pusher and umpire. This study provides not only an in-depth picture of the contemporary science education community of practice but also suggest a roadmap to design an effective induction program.
Creatiing a Collaborative Research Network for Scientists
NASA Astrophysics Data System (ADS)
Gunn, W.
2012-12-01
This abstract proposes a discussion of how professional science communication and scientific cooperation can become more efficient through the use of modern social network technology, using the example of Mendeley. Mendeley is a research workflow and collaboration tool which crowdsources real-time research trend information and semantic annotations of research papers in a central data store, thereby creating a "social research network" that is emergent from the research data added to the platform. We describe how Mendeley's model can overcome barriers for collaboration by turning research papers into social objects, making academic data publicly available via an open API, and promoting more efficient collaboration. Central to the success of Mendeley has been the creation of a tool that works for the researcher without the requirement of being part of an explicit social network. Mendeley automatically extracts metadata from research papers, and allows a researcher to annotate, tag and organize their research collection. The tool integrates with the paper writing workflow and provides advanced collaboration options, thus significantly improving researchers' productivity. By anonymously aggregating usage data, Mendeley enables the emergence of social metrics and real-time usage stats on top of the articles' abstract metadata. In this way a social network of collaborators, and people genuinely interested in content, emerges. By building this research network around the article as the social object, a social layer of direct relevance to academia emerges. As science, particularly Earth sciences with their large shared resources, become more and more global, the management and coordination of research is more and more dependent on technology to support these distributed collaborations.
ERIC Educational Resources Information Center
Peters, Michael A.
2006-01-01
This article charts the rise of global science and a global science infrastructure as part of the emerging international knowledge system exemplifying a geography of knowledge and the importance of new info-communications networks. The article theorises the rise of global science, which still strongly reflects a Western bias and is highly…
Sun, Xiaoling; Kaur, Jasleen; Milojević, Staša; Flammini, Alessandro; Menczer, Filippo
2013-01-01
The birth and decline of disciplines are critical to science and society. How do scientific disciplines emerge? No quantitative model to date allows us to validate competing theories on the different roles of endogenous processes, such as social collaborations, and exogenous events, such as scientific discoveries. Here we propose an agent-based model in which the evolution of disciplines is guided mainly by social interactions among agents representing scientists. Disciplines emerge from splitting and merging of social communities in a collaboration network. We find that this social model can account for a number of stylized facts about the relationships between disciplines, scholars, and publications. These results provide strong quantitative support for the key role of social interactions in shaping the dynamics of science. While several "science of science" theories exist, this is the first account for the emergence of disciplines that is validated on the basis of empirical data.
NASA Astrophysics Data System (ADS)
Sun, Xiaoling; Kaur, Jasleen; Milojević, Staša; Flammini, Alessandro; Menczer, Filippo
2013-01-01
The birth and decline of disciplines are critical to science and society. How do scientific disciplines emerge? No quantitative model to date allows us to validate competing theories on the different roles of endogenous processes, such as social collaborations, and exogenous events, such as scientific discoveries. Here we propose an agent-based model in which the evolution of disciplines is guided mainly by social interactions among agents representing scientists. Disciplines emerge from splitting and merging of social communities in a collaboration network. We find that this social model can account for a number of stylized facts about the relationships between disciplines, scholars, and publications. These results provide strong quantitative support for the key role of social interactions in shaping the dynamics of science. While several ``science of science'' theories exist, this is the first account for the emergence of disciplines that is validated on the basis of empirical data.
International Symposium on Grids and Clouds (ISGC) 2017
NASA Astrophysics Data System (ADS)
2017-03-01
The International Symposium on Grids and Clouds (ISGC) 2017 will be held at Academia Sinica in Taipei, Taiwan from 5-10 March 2017, with co- located events and workshops. The main theme of ISGC 2017 is "Global Challenges: From Open Data to Open Science". The unprecedented progress in ICT has transformed the way education is conducted and research is carried out. The emerging global e-Infrastructure, championed by global science communities such as High Energy Physics, Astronomy, and Bio- medicine, must permeate into other sciences. Many areas, such as climate change, disaster mitigation, and human sustainability and well-being, represent global challenges where collaboration over e-Infrastructure will presumably help resolve the common problems of the people who are impacted. Access to global e-Infrastructure helps also the less globally organized, long-tail sciences, with their own collaboration challenges. Open data are not only a political phenomenon serving government transparency; they also create an opportunity to eliminate access barriers to all scientific data, specifically data from global sciences and regional data that concern natural phenomena and people. In this regard, the purpose of open data is to improve sciences, accelerating specifically those that may benefit people. Nevertheless, to eliminate barriers to open data is itself a daunting task and the barriers to individuals, institutions and big collaborations are manifold. Open science is a step beyond open data, where the tools and understanding of scientific data must be made available to whoever is interested to participate in such scientific research. The promotion of open science may change the academic tradition practiced over the past few hundred years. This change of dynamics may contribute to the resolution of common challenges of human sustainability where the current pace of scientific progress is not sufficiently fast. ISGC 2017 created a face-to-face venue where individual communities and national representatives can present and share their contributions to the global puzzle and contribute thus to the solution of global challenges.
CosmoQuest Collaborative: Galvanizing a Dynamic Professional Learning Network
NASA Astrophysics Data System (ADS)
Cobb, Whitney; Bracey, Georgia; Buxner, Sanlyn; Gay, Pamela L.; Noel-Storr, Jacob; CosmoQuest Team
2016-10-01
The CosmoQuest Collaboration offers in-depth experiences to diverse audiences around the nation and the world through pioneering citizen science in a virtual research facility. An endeavor between universities, research institutes, and NASA centers, CosmoQuest brings together scientists, educators, researchers, programmers—and citizens of all ages—to explore and make sense of our solar system and beyond. Leveraging human networks to expand NASA science, scaffolded by an educational framework that inspires lifelong learners, CosmoQuest engages citizens in analyzing and interpreting real NASA data, inspiring questions and defining problems.The QuestionLinda Darling-Hammond calls for professional development to be: "focused on the learning and teaching of specific curriculum content [i.e. NGSS disciplinary core ideas]; organized around real problems of practice [i.e. NGSS science and engineering practices] … [and] connected to teachers' collaborative work in professional learning community...." (2012) In light of that, what is the unique role CosmoQuest's virtual research facility can offer NASA STEM education?A Few AnswersThe CosmoQuest Collaboration actively engages scientists in education, and educators (and learners) in science. CosmoQuest uses social channels to empower and expand NASA's learning community through a variety of media, including science and education-focused hangouts, virtual star parties, and social media. In addition to creating its own supportive, standards-aligned materials, CosmoQuest offers a hub for excellent resources and materials throughout NASA and the larger astronomy community.In support of CosmoQuest citizen science opportunities, CQ initiatives (Learning Space, S-ROSES, IDEASS, Educator Zone) will be leveraged and shared through the CQPLN. CosmoQuest can be present and alive in the awareness its growing learning community.Finally, to make the CosmoQuest PLN truly relevant, it aims to encourage partnerships between scientists and educators, and offer "just-in-time" opportunities to support constituents exploring emerging NASA STEM education, from diverse educators to the curious learner of any age.
Sun, Xiaoling; Kaur, Jasleen; Milojević, Staša; Flammini, Alessandro; Menczer, Filippo
2013-01-01
The birth and decline of disciplines are critical to science and society. How do scientific disciplines emerge? No quantitative model to date allows us to validate competing theories on the different roles of endogenous processes, such as social collaborations, and exogenous events, such as scientific discoveries. Here we propose an agent-based model in which the evolution of disciplines is guided mainly by social interactions among agents representing scientists. Disciplines emerge from splitting and merging of social communities in a collaboration network. We find that this social model can account for a number of stylized facts about the relationships between disciplines, scholars, and publications. These results provide strong quantitative support for the key role of social interactions in shaping the dynamics of science. While several “science of science” theories exist, this is the first account for the emergence of disciplines that is validated on the basis of empirical data. PMID:23323212
Social Science Collaboration with Environmental Health.
Hoover, Elizabeth; Renauld, Mia; Edelstein, Michael R; Brown, Phil
2015-11-01
Social science research has been central in documenting and analyzing community discovery of environmental exposure and consequential processes. Collaboration with environmental health science through team projects has advanced and improved our understanding of environmental health and justice. We sought to identify diverse methods and topics in which social scientists have expanded environmental health understandings at multiple levels, to examine how transdisciplinary environmental health research fosters better science, and to learn how these partnerships have been able to flourish because of the support from National Institute of Environmental Health Sciences (NIEHS). We analyzed various types of social science research to investigate how social science contributes to environmental health. We also examined NIEHS programs that foster social science. In addition, we developed a case study of a community-based participation research project in Akwesasne in order to demonstrate how social science has enhanced environmental health science. Social science has informed environmental health science through ethnographic studies of contaminated communities, analysis of spatial distribution of environmental injustice, psychological experience of contamination, social construction of risk and risk perception, and social impacts of disasters. Social science-environmental health team science has altered the way scientists traditionally explore exposure by pressing for cumulative exposure approaches and providing research data for policy applications. A transdisciplinary approach for environmental health practice has emerged that engages the social sciences to paint a full picture of the consequences of contamination so that policy makers, regulators, public health officials, and other stakeholders can better ameliorate impacts and prevent future exposure. Hoover E, Renauld M, Edelstein MR, Brown P. 2015. Social science collaboration with environmental health. Environ Health Perspect 123:1100-1106; http://dx.doi.org/10.1289/ehp.1409283.
Social Science Collaboration with Environmental Health
Hoover, Elizabeth; Renauld, Mia; Edelstein, Michael R.
2015-01-01
Background Social science research has been central in documenting and analyzing community discovery of environmental exposure and consequential processes. Collaboration with environmental health science through team projects has advanced and improved our understanding of environmental health and justice. Objective We sought to identify diverse methods and topics in which social scientists have expanded environmental health understandings at multiple levels, to examine how transdisciplinary environmental health research fosters better science, and to learn how these partnerships have been able to flourish because of the support from National Institute of Environmental Health Sciences (NIEHS). Methods We analyzed various types of social science research to investigate how social science contributes to environmental health. We also examined NIEHS programs that foster social science. In addition, we developed a case study of a community-based participation research project in Akwesasne in order to demonstrate how social science has enhanced environmental health science. Results Social science has informed environmental health science through ethnographic studies of contaminated communities, analysis of spatial distribution of environmental injustice, psychological experience of contamination, social construction of risk and risk perception, and social impacts of disasters. Social science–environmental health team science has altered the way scientists traditionally explore exposure by pressing for cumulative exposure approaches and providing research data for policy applications. Conclusions A transdisciplinary approach for environmental health practice has emerged that engages the social sciences to paint a full picture of the consequences of contamination so that policy makers, regulators, public health officials, and other stakeholders can better ameliorate impacts and prevent future exposure. Citation Hoover E, Renauld M, Edelstein MR, Brown P. 2015. Social science collaboration with environmental health. Environ Health Perspect 123:1100–1106; http://dx.doi.org/10.1289/ehp.1409283 PMID:25966491
Interlocal collaboration on energy efficiency, sustainability and climate change issues
NASA Astrophysics Data System (ADS)
Chen, Ssu-Hsien
Interlocal energy collaboration builds upon network structures among local policy actors dealing with energy, climate change and sustainability issues. Collaboration efforts overcome institutional collective action (ICA) dilemmas, and cope with the problems spanning jurisdictional boundaries, externalities, and free-rider problems. Interlocal energy collaboration emerges as the agreements in greenhouse gas (GHG) emission reduction, pollution control, land use, purchasing, retrofits, transportation, and so forth. Cities work collaboratively through contractual mechanisms (i.e. formal/informal agreements) and collective mechanisms (i.e. regional partnerships or membership organizations) on a variety of energy issues. What factors facilitate interlocal energy collaboration? To what extent is collaboration through interlocal contractual mechanisms different from collective mechanisms? This dissertation tries to answer these questions by examining: city goal priority on energy related issues as well as other ICA explanatory factors. Research data are drawn mainly from the 2010 national survey "Implementation of energy efficiency and sustainability program" supported by National Science Foundation and the IBM Endowment for the Business of Government. The research results show that city emphasis on common pool resource, scale economies and externality issues significantly affect individual selection of tools for energy collaboration. When expected transaction costs are extremely high or low, the contractual mechanism of informal agreement is more likely to be selected to preserve most local autonomy and flexibility; otherwise, written and formal tools for collaboration are preferred to impose constraints on individual behavior and reduce the risks of defection.
NASA Astrophysics Data System (ADS)
Allison, M. L.; Gurney, R. J.
2015-12-01
An e-infrastructure that supports data-intensive, multidisciplinary research is needed to accelerate the pace of science to address 21st century global change challenges. Data discovery, access, sharing and interoperability collectively form core elements of an emerging shared vision of e-infrastructure for scientific discovery. The pace and breadth of change in information management across the data lifecycle means that no one country or institution can unilaterally provide the leadership and resources required to use data and information effectively, or needed to support a coordinated, global e-infrastructure. An 18-month long process involving ~120 experts in domain, computer, and social sciences from more than a dozen countries resulted in a formal set of recommendations to the Belmont Forum collaboration of national science funding agencies and others on what they are best suited to implement for development of an e-infrastructure in support of global change research, including: adoption of data principles that promote a global, interoperable e-infrastructure establishment of information and data officers for coordination of global data management and e-infrastructure efforts promotion of effective data planning determination of best practices development of a cross-disciplinary training curriculum on data management and curation The Belmont Forum is ideally poised to play a vital and transformative leadership role in establishing a sustained human and technical international data e-infrastructure to support global change research. The international collaborative process that went into forming these recommendations is contributing to national governments and funding agencies and international bodies working together to execute them.
Flipse, Steven M; van der Sanden, Maarten C A; Osseweijer, Patricia
2014-03-01
Policy makers call upon researchers from the natural and social sciences to collaborate for the responsible development and deployment of innovations. Collaborations are projected to enhance both the technical quality of innovations, and the extent to which relevant social and ethical considerations are integrated into their development. This could make these innovations more socially robust and responsible, particularly in new and emerging scientific and technological fields, such as synthetic biology and nanotechnology. Some researchers from both fields have embarked on collaborative research activities, using various Technology Assessment approaches and Socio-Technical Integration Research activities such as Midstream Modulation. Still, practical experience of collaborations in industry is limited, while much may be expected from industry in terms of socially responsible innovation development. Experience in and guidelines on how to set up and manage such collaborations are not easily available. Having carried out various collaborative research activities in industry ourselves, we aim to share in this paper our experiences in setting up and working in such collaborations. We highlight the possibilities and boundaries in setting up and managing collaborations, and discuss how we have experienced the emergence of 'collaborative spaces.' Hopefully our findings can facilitate and encourage others to set up collaborative research endeavours.
Advancing the Science of Community-Level Interventions
Beehler, Sarah; Deutsch, Charles; Green, Lawrence W.; Hawe, Penelope; McLeroy, Kenneth; Miller, Robin Lin; Rapkin, Bruce D.; Schensul, Jean J.; Schulz, Amy J.; Trimble, Joseph E.
2011-01-01
Community interventions are complex social processes that need to move beyond single interventions and outcomes at individual levels of short-term change. A scientific paradigm is emerging that supports collaborative, multilevel, culturally situated community interventions aimed at creating sustainable community-level impact. This paradigm is rooted in a deep history of ecological and collaborative thinking across public health, psychology, anthropology, and other fields of social science. The new paradigm makes a number of primary assertions that affect conceptualization of health issues, intervention design, and intervention evaluation. To elaborate the paradigm and advance the science of community intervention, we offer suggestions for promoting a scientific agenda, developing collaborations among professionals and communities, and examining the culture of science. PMID:21680923
The International Symposium on Grids and Clouds
NASA Astrophysics Data System (ADS)
The International Symposium on Grids and Clouds (ISGC) 2012 will be held at Academia Sinica in Taipei from 26 February to 2 March 2012, with co-located events and workshops. The conference is hosted by the Academia Sinica Grid Computing Centre (ASGC). 2012 is the decennium anniversary of the ISGC which over the last decade has tracked the convergence, collaboration and innovation of individual researchers across the Asia Pacific region to a coherent community. With the continuous support and dedication from the delegates, ISGC has provided the primary international distributed computing platform where distinguished researchers and collaboration partners from around the world share their knowledge and experiences. The last decade has seen the wide-scale emergence of e-Infrastructure as a critical asset for the modern e-Scientist. The emergence of large-scale research infrastructures and instruments that has produced a torrent of electronic data is forcing a generational change in the scientific process and the mechanisms used to analyse the resulting data deluge. No longer can the processing of these vast amounts of data and production of relevant scientific results be undertaken by a single scientist. Virtual Research Communities that span organisations around the world, through an integrated digital infrastructure that connects the trust and administrative domains of multiple resource providers, have become critical in supporting these analyses. Topics covered in ISGC 2012 include: High Energy Physics, Biomedicine & Life Sciences, Earth Science, Environmental Changes and Natural Disaster Mitigation, Humanities & Social Sciences, Operations & Management, Middleware & Interoperability, Security and Networking, Infrastructure Clouds & Virtualisation, Business Models & Sustainability, Data Management, Distributed Volunteer & Desktop Grid Computing, High Throughput Computing, and High Performance, Manycore & GPU Computing.
NASA Astrophysics Data System (ADS)
Olin, Anette; Ingerman, Åke
2016-10-01
This study concerns teaching and learning development in science through collaboration between science teachers and researchers. At the core was the ambition to integrate research outcomes of science education—here `didactic models'—with teaching practice, aligned with professional development. The phase where the collaboration moves from initial establishment towards a stable practice is investigated. The study aims to identifying features of formation and exploring consequences for the character of contact between research and teaching. Specific questions are "What may be identified as actions and arrangements impacting the quality and continuation of the emerging practice?" and "What and in what ways may support teacher growth?" The analysis draws on practice architectures as a theoretical framework and specifically investigates the initial meetings as a practice-node for a new practice, empirically drawing on documented reflections on science teaching, primarily from meetings and communication. The results take the form of an analytical-narrative account of meetings that focused planning, enactment and reflection on teaching regarding the human body. We identify enabling actions such as collaborative work with concrete material from the classroom and arrangements such as the regular meetings and that the collaborative group had a core of shared competence—in science teaching and learning. Constraining were actions such as introducing research results with weak connection to practical action in the school practice and arrangements such as differences between school and university practice architectures and the general `oppression' of teachers' classroom practice. The discussion includes reflections on researchers' roles and on a research and practice base for school development.
e-Science and data management resources on the Web.
Gore, Sally A
2011-01-01
The way research is conducted has changed over time, from simple experiments to computer modeling and simulation, from individuals working in isolated laboratories to global networks of researchers collaborating on a single topic. Often, this new paradigm results in the generation of staggering amounts of data. The intensive use of data and the existence of networks of researchers characterize e-Science. The role of libraries and librarians in e-Science has been a topic of interest for some time now. This column looks at tools, resources, and projects that demonstrate successful collaborations between libraries and researchers in e-Science.
Nursing Needs Big Data and Big Data Needs Nursing.
Brennan, Patricia Flatley; Bakken, Suzanne
2015-09-01
Contemporary big data initiatives in health care will benefit from greater integration with nursing science and nursing practice; in turn, nursing science and nursing practice has much to gain from the data science initiatives. Big data arises secondary to scholarly inquiry (e.g., -omics) and everyday observations like cardiac flow sensors or Twitter feeds. Data science methods that are emerging ensure that these data be leveraged to improve patient care. Big data encompasses data that exceed human comprehension, that exist at a volume unmanageable by standard computer systems, that arrive at a velocity not under the control of the investigator and possess a level of imprecision not found in traditional inquiry. Data science methods are emerging to manage and gain insights from big data. The primary methods included investigation of emerging federal big data initiatives, and exploration of exemplars from nursing informatics research to benchmark where nursing is already poised to participate in the big data revolution. We provide observations and reflections on experiences in the emerging big data initiatives. Existing approaches to large data set analysis provide a necessary but not sufficient foundation for nursing to participate in the big data revolution. Nursing's Social Policy Statement guides a principled, ethical perspective on big data and data science. There are implications for basic and advanced practice clinical nurses in practice, for the nurse scientist who collaborates with data scientists, and for the nurse data scientist. Big data and data science has the potential to provide greater richness in understanding patient phenomena and in tailoring interventional strategies that are personalized to the patient. © 2015 Sigma Theta Tau International.
NASA Astrophysics Data System (ADS)
Allison, M. Lee; Davis, Rowena
2016-04-01
An e-infrastructure that supports data-intensive, multidisciplinary research is needed to accelerate the pace of science to address 21st century global change challenges. Data discovery, access, sharing and interoperability collectively form core elements of an emerging shared vision of e-infrastructure for scientific discovery. The pace and breadth of change in information management across the data lifecycle means that no one country or institution can unilaterally provide the leadership and resources required to use data and information effectively, or needed to support a coordinated, global e-infrastructure. An 18-month long process involving ~120 experts in domain, computer, and social sciences from more than a dozen countries resulted in a formal set of recommendations that were adopted in fall, 2015 by the Belmont Forum collaboration of national science funding agencies and international bodies on what they are best suited to implement for development of an e-infrastructure in support of global change research, including: • adoption of data principles that promote a global, interoperable e-infrastructure, that can be enforced • establishment of information and data officers for coordination of global data management and e-infrastructure efforts • promotion of effective data planning and stewardship • determination of international and community best practices for adoption • development of a cross-disciplinary training curriculum on data management and curation The implementation plan is being executed under four internationally-coordinated Action Themes towards a globally organized, internationally relevant e-infrastructure and data management capability drawn from existing components, protocols, and standards. The Belmont Forum anticipates opportunities to fund additional projects to fill key gaps and to integrate best practices into an e-infrastructure to support their programs but that can also be scaled up and deployed more widely. Background The Belmont Forum is a global consortium established in 2009 to build on the work of the International Group of Funding Agencies for Global Change Research toward furthering collaborative efforts to deliver knowledge needed for action to avoid and adapt to detrimental environmental change, including extreme hazardous events.
Leveraging e-Science infrastructure for electrochemical research.
Peachey, Tom; Mashkina, Elena; Lee, Chong-Yong; Enticott, Colin; Abramson, David; Bond, Alan M; Elton, Darrell; Gavaghan, David J; Stevenson, Gareth P; Kennedy, Gareth F
2011-08-28
As in many scientific disciplines, modern chemistry involves a mix of experimentation and computer-supported theory. Historically, these skills have been provided by different groups, and range from traditional 'wet' laboratory science to advanced numerical simulation. Increasingly, progress is made by global collaborations, in which new theory may be developed in one part of the world and applied and tested in the laboratory elsewhere. e-Science, or cyber-infrastructure, underpins such collaborations by providing a unified platform for accessing scientific instruments, computers and data archives, and collaboration tools. In this paper we discuss the application of advanced e-Science software tools to electrochemistry research performed in three different laboratories--two at Monash University in Australia and one at the University of Oxford in the UK. We show that software tools that were originally developed for a range of application domains can be applied to electrochemical problems, in particular Fourier voltammetry. Moreover, we show that, by replacing ad-hoc manual processes with e-Science tools, we obtain more accurate solutions automatically.
History of Science and History of Philologies.
Daston, Lorraine; Most, Glenn W
2015-06-01
While both the sciences and the humanities, as currently defined, may be too heterogeneous to be encompassed within a unified historical framework, there is good reason to believe that the history of science and the history of philologies both have much to gain by joining forces. This collaboration has already yielded striking results in the case of the history of science and humanist learning in early modern Europe. This essay argues that first, philology and at least some of the sciences (e.g., astronomy) remained intertwined in consequential ways well into the modern period in Western cultures; and second, widening the scope of inquiry to include other philological traditions in non-Western cultures offers rich possibilities for a comparative history of learned practices. The focus on practices is key; by shifting the emphasis from what is studied to how it is studied, deep commonalities emerge among disciplines--and intellectual traditions--now classified as disparate.
Materials Data Science: Current Status and Future Outlook
NASA Astrophysics Data System (ADS)
Kalidindi, Surya R.; De Graef, Marc
2015-07-01
The field of materials science and engineering is on the cusp of a digital data revolution. After reviewing the nature of data science and Big Data, we discuss the features of materials data that distinguish them from data in other fields. We introduce the concept of process-structure-property (PSP) linkages and illustrate how the determination of PSPs is one of the main objectives of materials data science. Then we review a selection of materials databases, as well as important aspects of materials data management, such as storage hardware, archiving strategies, and data access strategies. We introduce the emerging field of materials data analytics, which focuses on data-driven approaches to extract and curate materials knowledge from available data sets. The critical need for materials e-collaboration platforms is highlighted, and we conclude the article with a number of suggestions regarding the near-term future of the materials data science field.
Authorship Guidance in a Federal Research Laboratory: A Case Study
As science has become more specialized and collaborative, a need has emerged for research organizations to develop authorship guidance that can be shared and discussed with potential collaborators. We present the guidance developed for a United States (U.S.) federal research labo...
NASA Astrophysics Data System (ADS)
Smith, Denise A.; Bartolone, L.; Eisenhamer, B.; Lawton, B. L.; Schultz, G. R.; Peticolas, L.; Schwerin, T.; Shipp, S.; Astrophysics E/PO Community, NASA; NASA Astrophysics Forum Team
2013-06-01
Advancing scientific literacy and strengthening the Nation’s future workforce through stimulating, informative, and effective learning experiences are core principles of the NASA Science Mission Directorate (SMD) education and public outreach (E/PO) program. To support and coordinate its E/PO community in offering a coherent suite of activities and experiences that effectively meet the needs of the education community, NASA SMD has created four Science Education and Public Outreach Forums (Astrophysics, Planetary Science, Heliophysics, Earth Science). Forum activities include: professional development to raise awareness of the existing body of best practices and educational research; analysis and cataloging of SMD-funded education materials with respect to AAAS Benchmarks for Science Literacy; Working Groups that assemble needs assessment and best practices data relevant to Higher Education, K-12 Formal Education, and Informal Science Education audiences; and community collaborations that enable SMD E/PO community members to develop new partnerships and to learn and share successful strategies and techniques. This presentation will highlight examples of Forum and community-based activities related to astronomy education and teacher professional development, within the context of the principles articulated within the NRC Framework for K-12 Science Education and the Next Generation Science Standards. Among these are an emerging community of practice for K-12 educators and online teacher professional development and resources that incorporate misconception research and authentic experiences with NASA Astrophysics data.
ERIC Educational Resources Information Center
Ucan, Serkan; Webb, Mary
2015-01-01
Students' ability to regulate their learning is considered important for the quality of collaborative inquiry learning. However, there is still limited understanding about how students engage in social forms of regulation processes and what roles these regulatory processes may play during collaborative learning. The purpose of this study was to…
stability Science & Innovation Collaboration Careers Community Environment Science & Innovation . Provide a safe, secure, and effective stockpile Protect against the nuclear threat Counter emerging excellence STRATEGY We will create a modern workplace that is environmentally responsible, safe, and secure
ERIC Educational Resources Information Center
Mohammadi, Aeen; Asadzandi, Shadi; Malgard, Shiva
2017-01-01
Partnership is one of the mechanisms of scientific development, and scientific collaboration or co-authorship is considered a key element in the progress of science. This study is a survey with a scientometric approach focusing on the field of e-learning products over 10 years. In an Advanced Search of the Web of Science, the following search…
Collaborative Graduate Education across Multiple Campuses
ERIC Educational Resources Information Center
Thompson, J. R.; Hess, G. R.; Bowman, T. A.; Magnusdottir, H.; Stubbs-Gipson, C. E.; Groom, M.; Miller, J. R.; Steelman, T. A.; Stokes, D. L.
2009-01-01
Multi-institutional approaches to graduate education continue to emerge as a way to better prepare students for collaborative work. In this article, we describe a graduate course designed to investigate application of conservation biology principles by local land use planners. "Where is Conservation Science in Local Planning?" was…
Hooked on Science: How an Ohio Teacher is Training Students to Be Linked in to Forensics
ERIC Educational Resources Information Center
Technology & Learning, 2008
2008-01-01
This article features Ohio teacher Carol Fleck's use of videoconferencing in teaching Contemporary BioScience and Genetics. Fleck, who says her initial vision for the class was "science without classroom walls," covers such topics as emerging diseases, bioterrorism, and forensic science. Collaboration between schools is a key part of the…
Virtual Research Environments for Natural Hazard Modelling
NASA Astrophysics Data System (ADS)
Napier, Hazel; Aldridge, Tim
2017-04-01
The Natural Hazards Partnership (NHP) is a group of 17 collaborating public sector organisations providing a mechanism for co-ordinated advice to government and agencies responsible for civil contingency and emergency response during natural hazard events. The NHP has set up a Hazard Impact Model (HIM) group tasked with modelling the impact of a range of UK hazards with the aim of delivery of consistent hazard and impact information. The HIM group consists of 7 partners initially concentrating on modelling the socio-economic impact of 3 key hazards - surface water flooding, land instability and high winds. HIM group partners share scientific expertise and data within their specific areas of interest including hydrological modelling, meteorology, engineering geology, GIS, data delivery, and modelling of socio-economic impacts. Activity within the NHP relies on effective collaboration between partners distributed across the UK. The NHP are acting as a use case study for a new Virtual Research Environment (VRE) being developed by the EVER-EST project (European Virtual Environment for Research - Earth Science Themes: a solution). The VRE is allowing the NHP to explore novel ways of cooperation including improved capabilities for e-collaboration, e-research, automation of processes and e-learning. Collaboration tools are complemented by the adoption of Research Objects, semantically rich aggregations of resources enabling the creation of uniquely identified digital artefacts resulting in reusable science and research. Application of the Research Object concept to HIM development facilitates collaboration, by encapsulating scientific knowledge in a shareable format that can be easily shared and used by partners working on the same model but within their areas of expertise. This paper describes the application of the VRE to the NHP use case study. It outlines the challenges associated with distributed partnership working and how they are being addressed in the VRE. A case study is included focussing on the application of Research Objects to development work for the surface water flooding hazard impact model, a key achievement for the HIM group.
Forest science in the South - 2002
Southern Research Station USDA Forest Service
2003-01-01
Forest Science in the South includes the Southern Station's accomplishments, emerging research priorities, and products - journal articles, books, Station publications, presentations, and Web postings. This report details budget allocations, highlights collaborative research, includes a directory of research units and experimental forests, and summarizes...
Forest science in the South - 2004
Southern Research Station USDA Forest Service
2005-01-01
Forest Science in the South includes the Southern Station's accomplishments, emerging research priorities, and products - journal articles, books, Station publications, presentations, and Web postings. This report details budget allocations, highlights collaborative research, includes a directory of research units and experimental forests, and summarizes...
The Multicultural Science Framework: Research on Innovative Two-Way Immersion Science Classrooms.
ERIC Educational Resources Information Center
Hadi-Tabassum, Samina
2000-01-01
Reviews the different approaches to multicultural science teaching that have emerged in the past decade, focusing on the Spanish-English two-way immersion classroom, which meets the needs of Spanish speakers learning English and introduces students to the idea of collaboration across languages and cultures. Two urban two-way immersion classrooms…
Forest science in the South - 2001
Southern Research Station USDA Forest Service
2002-01-01
This publication synthesizes the Southern Research Station's major accomplishments and research products during the period from October 2000 through September 2001, FY 01. Forest Science in the South presents emerging research priorities and highlights research work units and experimental forests, including collaborative research and budget...
Collaborative Lesson Hook Design in Science Teacher Education: Advancing Professional Practice
ERIC Educational Resources Information Center
McCauley, Veronica; Davison, Kevin; Byrne, Corinna
2015-01-01
This article documents the process of collaboratively developing lesson hook e-resources for science teachers to establish a community of inquiry and to strengthen the pedagogy of science teaching. The authors aim to illustrate how the development and application of strategic hooks can bridge situational interest and personal interest so that…
Engaging Scientists in NASA Education and Public Outreach: Informal Science Education and Outreach
NASA Astrophysics Data System (ADS)
Lawton, Brandon L.; Smith, D. A.; Bartolone, L.; Meinke, B. K.; Discovery Guides Collaborative, Universe; Collaborative, NASAScience4Girls; SEPOF Informal Education Working Group; E/PO Community, SMD
2014-01-01
The NASA Science Education and Public Outreach Forums support the NASA Science Mission Directorate (SMD) and its education and public outreach (E/PO) community through a coordinated effort to enhance the coherence and efficiency of SMD-funded E/PO programs. The Forums foster collaboration between scientists with content expertise and educators with pedagogy expertise. We present opportunities for the astronomy community to participate in collaborations supporting the NASA SMD efforts in the Informal Science Education and Outreach communities. Members of the Informal Science Education and Outreach communities include museum/science center/planetarium professionals, librarians, park rangers, amateur astronomers, and other out-of-school-time educators. The Forums’ efforts for the Informal Science Education and Outreach communities include a literature review, appraisal of informal educators’ needs, coordination of audience-based NASA resources and opportunities, and professional development. Learn how to join in our collaborative efforts to reach the informal science education and outreach communities based upon mutual needs and interests.
Information Infrastructure, Information Environments, and Long-Term Collaboration
NASA Astrophysics Data System (ADS)
Baker, K. S.; Pennington, D. D.
2009-12-01
Information infrastructure that supports collaborative science is a complex system of people, organizational arrangements, and tools that require co-management. Contemporary studies are exploring how to establish and characterize effective collaborative information environments. Collaboration depends on the flow of information across the human and technical system components through mechanisms that create linkages, both conceptual and technical. This transcends the need for requirements solicitation and usability studies, highlighting synergistic interactions between humans and technology that can lead to emergence of group level cognitive properties. We consider the ramifications of placing priority on establishing new metaphors and new types of learning environments located near-to-data-origin for the field sciences. In addition to changes in terms of participant engagement, there are implications in terms of innovative contributions to the design of information systems and data exchange. While data integration occurs in the minds of individual participants, it may be facilitated by collaborative thinking and community infrastructure. Existing learning frameworks - from Maslow’s hierarchy of needs to organizational learning - require modification and extension if effective approaches to decentralized information management and systems design are to emerge. Case studies relating to data integration include ecological community projects: development of cross-disciplinary conceptual maps and of a community unit registry.
ERIC Educational Resources Information Center
Durksen, Tracy L.; Martin, Andrew J.; Burns, Emma C.; Ginns, Paul; Williamson, Derek; Kiss, Julia
2017-01-01
Museums promote co-learning through the construction of a social community, one that involves personal, physical, and sociocultural contexts. As researchers and museum educators, we report some of our contextual reflections and recommendations that emerged from our collaborative learning experience of conducting research in a medical science…
Gil, Yolanda; Michel, Felix; Ratnakar, Varun; Read, Jordan S.; Hauder, Matheus; Duffy, Christopher; Hanson, Paul C.; Dugan, Hilary
2015-01-01
The Web was originally developed to support collaboration in science. Although scientists benefit from many forms of collaboration on the Web (e.g., blogs, wikis, forums, code sharing, etc.), most collaborative projects are coordinated over email, phone calls, and in-person meetings. Our goal is to develop a collaborative infrastructure for scientists to work on complex science questions that require multi-disciplinary contributions to gather and analyze data, that cannot occur without significant coordination to synthesize findings, and that grow organically to accommodate new contributors as needed as the work evolves over time. Our approach is to develop an organic data science framework based on a task-centered organization of the collaboration, includes principles from social sciences for successful on-line communities, and exposes an open science process. Our approach is implemented as an extension of a semantic wiki platform, and captures formal representations of task decomposition structures, relations between tasks and users, and other properties of tasks, data, and other relevant science objects. All these entities are captured through the semantic wiki user interface, represented as semantic web objects, and exported as linked data.
NASA Astrophysics Data System (ADS)
Ucan, Serkan; Webb, Mary
2015-10-01
Students' ability to regulate their learning is considered important for the quality of collaborative inquiry learning. However, there is still limited understanding about how students engage in social forms of regulation processes and what roles these regulatory processes may play during collaborative learning. The purpose of this study was to identify when and how co- and shared regulation of metacognitive, emotional and motivational processes emerge and function during collaborative inquiry learning in science. Two groups of three students (aged 12) from a private primary school in Turkey were videotaped during collaborative inquiry activities in a naturalistic classroom setting over a seven-week period, and the transcripts were analysed in order to identify their use of regulation processes. Moreover, this was combined with the analysis of stimulated-recall interviews with the student groups. Results indicated that co- and shared regulation processes were often initiated by particular events and played a crucial role in the success of students' collaborative inquiry learning. Co-regulation of metacognitive processes had the function of stimulating students to reflect upon and clarify their thinking, as well as facilitating the construction of new scientific understanding. Shared regulation of metacognitive processes helped students to build a shared understanding of the task, clarify and justify their shared perspective, and sustain the ongoing knowledge co-construction. Moreover, the use of shared emotional and motivational regulation was identified as important for sustaining reciprocal interactions and creating a positive socio-emotional atmosphere within the groups. In addition, the findings revealed links between the positive quality of group interactions and the emergence of co- and shared regulation of metacognitive processes. This study highlights the importance of fostering students' acquisition and use of regulation processes during collaborative inquiry learning.
Reaching Across the Hemispheres with Science, Language, Arts and Technology
NASA Astrophysics Data System (ADS)
Sparrow, E. B.; Zicus, S.; Miller, A.; Baird, A.; Page, G.
2009-12-01
Twelve Alaskan elementary and middle school classes (grades 3-8) partnered with twelve Australian middle school classes, with each pair using web-based strategies to develop a collaborative ice-mystery fictional book incorporating authentic polar science. Three professional development workshops were held, bringing together educators and polar scientists in two IPY education outreach projects. The Alaska workshop provided an opportunity to bring together the North American teachers for lessons on arctic and antarctic science and an earth system science program Seasons and Biomes measurement protocols, as well as methods in collaborative e-writing and art in Ice e-Mysteries: Global Student Polar e-books project. Teachers worked with University of Alaska Fairbanks (UAF) and Australian scientists to become familiar with Arctic science research, science artifacts and resources available at UAF and the University of Alaska Museum of the North. In Australia, teachers received a similar project training through the Tasmania Museum and Art Gallery (TMAG) Center for Learning and Discovery on Antarctic science and the University of Tasmania. The long-distance collaboration was accomplished through Skype, emails and a TMAG supported website. A year later, Northern Hemisphere and Southern Hemisphere teacher partners met in a joint workshop in Tasmania, to share their experiences, do project assessments and propose activities for future collaborations. The Australian teachers received training on Seasons and Biomes scientific measurements and the Alaskan teachers, on Tasmanian vegetation, fauna and indigenous culture, Antarctic and Southern ocean studies. This innovative project produced twelve e-polar books written and illustrated by students; heightened scientific literacy about the polar regions and the earth system; increased awareness of the environment and indigenous cultures; stronger connections to the scientific community; and lasting friendships. It also resulted in an effective integration of science across the curriculum. The teacher partners are continuing their collaboration across the hemispheres.
Application Architecture of Avian Influenza Research Collaboration Network in Korea e-Science
NASA Astrophysics Data System (ADS)
Choi, Hoon; Lee, Junehawk
In the pursuit of globalization of the AI e-Science environment, KISTI is fostering to extend the AI research community to the AI research institutes of neighboring countries and to share the AI e-Science environment with them in the near future. In this paper we introduce the application architecture of AI research collaboration network (AIRCoN). AIRCoN is a global e-Science environment for AI research conducted by KISTI. It consists of AI virus sequence information sharing system for sufficing data requirement of research community, integrated analysis environment for analyzing the mutation pattern of AI viruses and their risks, epidemic modeling and simulation environment for establishing national effective readiness strategy against AI pandemics, and knowledge portal for sharing expertise of epidemic study and unpublished research results with community members.
Urgenson, Lauren S; Ryan, Clare M; Halpern, Charles B; Bakker, Jonathan D; Belote, R Travis; Franklin, Jerry F; Haugo, Ryan D; Nelson, Cara R; Waltz, Amy E M
2017-02-01
Collaborative approaches to natural resource management are becoming increasingly common on public lands. Negotiating a shared vision for desired conditions is a fundamental task of collaboration and serves as a foundation for developing management objectives and monitoring strategies. We explore the complex socio-ecological processes involved in developing a shared vision for collaborative restoration of fire-adapted forest landscapes. To understand participant perspectives and experiences, we analyzed interviews with 86 respondents from six collaboratives in the western U.S., part of the Collaborative Forest Landscape Restoration Program established to encourage collaborative, science-based restoration on U.S. Forest Service lands. Although forest landscapes and group characteristics vary considerably, collaboratives faced common challenges to developing a shared vision for desired conditions. Three broad categories of challenges emerged: meeting multiple objectives, collaborative capacity and trust, and integrating ecological science and social values in decision-making. Collaborative groups also used common strategies to address these challenges, including some that addressed multiple challenges. These included use of issue-based recommendations, field visits, and landscape-level analysis; obtaining support from local agency leadership, engaging facilitators, and working in smaller groups (sub-groups); and science engagement. Increased understanding of the challenges to, and strategies for, developing a shared vision of desired conditions is critical if other collaboratives are to learn from these efforts.
NASA Astrophysics Data System (ADS)
Urgenson, Lauren S.; Ryan, Clare M.; Halpern, Charles B.; Bakker, Jonathan D.; Belote, R. Travis; Franklin, Jerry F.; Haugo, Ryan D.; Nelson, Cara R.; Waltz, Amy E. M.
2017-02-01
Collaborative approaches to natural resource management are becoming increasingly common on public lands. Negotiating a shared vision for desired conditions is a fundamental task of collaboration and serves as a foundation for developing management objectives and monitoring strategies. We explore the complex socio-ecological processes involved in developing a shared vision for collaborative restoration of fire-adapted forest landscapes. To understand participant perspectives and experiences, we analyzed interviews with 86 respondents from six collaboratives in the western U.S., part of the Collaborative Forest Landscape Restoration Program established to encourage collaborative, science-based restoration on U.S. Forest Service lands. Although forest landscapes and group characteristics vary considerably, collaboratives faced common challenges to developing a shared vision for desired conditions. Three broad categories of challenges emerged: meeting multiple objectives, collaborative capacity and trust, and integrating ecological science and social values in decision-making. Collaborative groups also used common strategies to address these challenges, including some that addressed multiple challenges. These included use of issue-based recommendations, field visits, and landscape-level analysis; obtaining support from local agency leadership, engaging facilitators, and working in smaller groups (sub-groups); and science engagement. Increased understanding of the challenges to, and strategies for, developing a shared vision of desired conditions is critical if other collaboratives are to learn from these efforts.
Anatomy of funded research in science
Ma, Athen; Mondragón, Raúl J.; Latora, Vito
2015-01-01
Seeking research funding is an essential part of academic life. Funded projects are primarily collaborative in nature through internal and external partnerships, but what role does funding play in the formulation of these partnerships? Here, by examining over 43,000 scientific projects funded over the past three decades by one of the major government research agencies in the world, we characterize how the funding landscape has changed and its impacts on the underlying collaboration networks across different scales. We observed rising inequality in the distribution of funding and that its effect was most noticeable at the institutional level—the leading universities diversified their collaborations and increasingly became the knowledge brokers in the collaboration network. Furthermore, it emerged that these leading universities formed a rich club (i.e., a cohesive core through their close ties) and this reliance among them seemed to be a determining factor for their research success, with the elites in the core overattracting resources but also rewarding in terms of both research breadth and depth. Our results reveal how collaboration networks organize in response to external driving forces, which can have major ramifications on future research strategy and government policy. PMID:26504240
The Science DMZ: A Network Design Pattern for Data-Intensive Science
Dart, Eli; Rotman, Lauren; Tierney, Brian; ...
2014-01-01
The ever-increasing scale of scientific data has become a significant challenge for researchers that rely on networks to interact with remote computing systems and transfer results to collaborators worldwide. Despite the availability of high-capacity connections, scientists struggle with inadequate cyberinfrastructure that cripples data transfer performance, and impedes scientific progress. The Science DMZ paradigm comprises a proven set of network design patterns that collectively address these problems for scientists. We explain the Science DMZ model, including network architecture, system configuration, cybersecurity, and performance tools, that creates an optimized network environment for science. We describe use cases from universities, supercomputing centers andmore » research laboratories, highlighting the effectiveness of the Science DMZ model in diverse operational settings. In all, the Science DMZ model is a solid platform that supports any science workflow, and flexibly accommodates emerging network technologies. As a result, the Science DMZ vastly improves collaboration, accelerating scientific discovery.« less
The John Wesley Powell Center for Analysis and Synthesis
Baron, Jill S.; Goldhaber, Martin
2011-01-01
The Powell Center provides an environment for cross-disciplinary scientific collaboration. The Center expands U.S. Geological Survey earth system science synthesis research activities by fostering the innovation that results from accumulated knowledge, constructive errors, and the "information spillover" that emerges from collaborative settings. Working Groups at the Powell Center use existing data to produce new knowledge..
ERIC Educational Resources Information Center
Sa, Creso M.; Oleksiyenko, Anatoly
2011-01-01
Organized research units--also known as centers, institutes, and laboratories--are increasingly prominent in the university. This paper examines how ORUs emerge to promote global agendas and international collaborations in an academic health center in North America. The roles these units play in helping researchers work across institutional and…
ERIC Educational Resources Information Center
Tanski, Anne E.; Bobick, Sandra; Mosley-Turner, Katherine; Garofalo, Giovanni
2016-01-01
Given biotechnology's emergence as a major competitor in the Pittsburgh region, critically linking education to industry through the Community College of Allegheny County's Biotechnology Workforce Collaborative (BWC) provided a well-trained workforce. The collaborative also sought to increase the number of women in the sciences, specifically…
Co-Creation and Open Innovation: Systematic Literature Review
ERIC Educational Resources Information Center
Ramírez, María-Soledad; García-Peñalvo, Francisco-José
2018-01-01
Open science, as a common good, opens possibilities for the development of nations, through innovations and collaborative constructions, which help to democratize knowledge. Advances in this area are still emerging, and the open science, co-creation of knowledge and open innovation triangle, is presented as an opportunity to generate an original…
NASA Astrophysics Data System (ADS)
Niebur, S. M.; Singer, K.; Gardner-Vandy, K.
2012-08-01
Fifty-one interviews with women in planetary science are now available as an e-mentoring and teaching resource on WomeninPlanetaryScience.com. Each scientist was nominated and interviewed by a fellow member of the planetary science community, and each gladly shared her advice for advancement in the field. Women in Planetary Science was founded in 2008 to connect communities of current and prospective scientists, to promote proposal and award opportunities, and to stimulate discussion in the planetary science community at large. Regular articles, or posts, by nearly a dozen collaborators highlight a range of current issues for women in this field. These articles are promoted by collaborators on Twitter, Facebook, and Google+ and shared again by the collaborators' contacts, reaching a significantly wider audience. The group's latest project, on Pinterest, is a crowd-sourced photo gallery of more than 350 inspiring women in planetary science; each photo links to the scientist's CV. The interviews, the essays, and the photo gallery are available online as resources for prospective scientists, planetary scientists, parents, and educators.
Collaborative workbench for cyberinfrastructure to accelerate science algorithm development
NASA Astrophysics Data System (ADS)
Ramachandran, R.; Maskey, M.; Kuo, K.; Lynnes, C.
2013-12-01
There are significant untapped resources for information and knowledge creation within the Earth Science community in the form of data, algorithms, services, analysis workflows or scripts, and the related knowledge about these resources. Despite the huge growth in social networking and collaboration platforms, these resources often reside on an investigator's workstation or laboratory and are rarely shared. A major reason for this is that there are very few scientific collaboration platforms, and those that exist typically require the use of a new set of analysis tools and paradigms to leverage the shared infrastructure. As a result, adoption of these collaborative platforms for science research is inhibited by the high cost to an individual scientist of switching from his or her own familiar environment and set of tools to a new environment and tool set. This presentation will describe an ongoing project developing an Earth Science Collaborative Workbench (CWB). The CWB approach will eliminate this barrier by augmenting a scientist's current research environment and tool set to allow him or her to easily share diverse data and algorithms. The CWB will leverage evolving technologies such as commodity computing and social networking to design an architecture for scalable collaboration that will support the emerging vision of an Earth Science Collaboratory. The CWB is being implemented on the robust and open source Eclipse framework and will be compatible with widely used scientific analysis tools such as IDL. The myScience Catalog built into CWB will capture and track metadata and provenance about data and algorithms for the researchers in a non-intrusive manner with minimal overhead. Seamless interfaces to multiple Cloud services will support sharing algorithms, data, and analysis results, as well as access to storage and computer resources. A Community Catalog will track the use of shared science artifacts and manage collaborations among researchers.
Intergenerational groups and emerging science: How can museums facilitate learning?
NASA Astrophysics Data System (ADS)
Holm, Jessica
New research in science and technology is emerging today at a faster pace than ever, and staying informed can be challenging for the public, especially families with younger children. Museums are already a resource to promote science literacy, and museum educators are trained to make all kinds of scientific ideas accessible to a variety of audiences. Unfortunately, because emerging science is fast-paced and ever-changing, many museums -- especially smaller institutions -- do not have the staff or budgetary resources to present this research to a wide audience. This study surveyed current literature in museum education and science learning, and current museum professionals from a range of institutions, to create a gallery guide that is flexible and easy to update for a museum, and that provides a fun and educational tool for family visitors. The study also includes a protocol to assist museum educators in collaborating with the researchers providing the science content.
Herron, Jennifer; Kaneshiro, Kellie
2017-01-01
This article describes the planning and development of a 3D printing makerspace at an academic health sciences library. At the start of 2015, a new library Technology Team was formed consisting of a team leader, an emerging technologies librarian, and a library systems analyst. One of the critical steps in the development of the proposal and with the planning of this project was collaborating and partnering with different departments and units outside the library. These connections helped shape the design of the makerspace.
DIY eBooks: collaborative publishing made easy
NASA Astrophysics Data System (ADS)
Battle, Steve; Vitali, Fabio; Di Iorio, Angelo; Bernius, Matthew; Henderson, Tona; Choudhury, Manu
2010-02-01
Print is undergoing a revolution as significant as the invention of the printing press. The emergence of ePaper is a major disruption for the printing industry; defining a new medium with the potential to redefine publishing in a way that is as different to today's Web, as the Web is to traditional print. In this new eBook ecosystem we don't just see users as consumers of eBooks, but as active prosumers able to collaboratively create, customize and publish their own eBooks. We describe a transclusive, collaborative publishing framework for the web.
NASA Astrophysics Data System (ADS)
Robertson, Amy Michelle
This is a study of a collaboration between multiple stakeholders in science education for the purpose of creating educational field trip experiences. The collaboration involves four major facets of science education: formal education at the elementary and university levels, informal education, and educational research. The primary participants in the collaboration include two elementary school teachers, a scientist from a local university, an informal educator from an environmental education site, and the researcher acting as a participant observer. The coming together of these different sides of science education provided a unique opportunity to explore the issues and experiences that emerged as such a partnership was formed and developed. Strongly influenced by action research, this study is a qualitative case study. The data was collected by means of observation, semi-structured interviews, and written document review, in order to provide both a descriptive and an interpretive account of this collaboration. The final analysis integrates a description of the participants' experiences as evidenced in the data with the issues that arose from these experiences. The evolution of the collaborators' roles was examined, as was the development of shared vision. In this study, there were several factors that significantly affected the progress towards a shared vision and a successful collaboration. These factors include time, communication, understanding others' perspectives, dedication and ownership, as well as the collaborative environment. Each collaborator benefited both professionally and personally from their participation in the collaboration. In addition, the students gained cognitively, affectively, and socially from the educational experiences created through the collaboration. Steps, such as working towards communication and understanding others' perspectives, should continue to be taken to ensure the collaboration continues beyond the term of the current key participants.
ERIC Educational Resources Information Center
Martinez, Alina; Epstein, Carter; Parsad, Amanda; Whittaker, Karla
2012-01-01
Over a decade ago, the National Science Board (NSB) highlighted the importance of international collaboration in its call for increased government commitment to promoting international science and engineering (S&E) research and education. The NSB also identified the National Science Foundation (NSF) as having an important leadership role in…
Service-Learning and Emergent Communities of Practice: A Teacher Education Case Study
ERIC Educational Resources Information Center
Kaschak, Jennifer Cutsforth; Letwinsky, Karim Medico
2015-01-01
This study investigates the unexpected emergence of a community of practice in a middle level mathematics and science methods course. The authors describe how preservice teacher participation in a collaborative, project-based service-learning experience resulted in the formation of a community of practice characterized by teamwork, meaningful…
China’s S&T Emergence: A Proposal for U.S. DOD-China Collaboration in Fundamental Research
2008-03-01
U.S. National Science Foundation points out the rise of S&T capability in Asia.3 Within Asia, China is rapidly becoming a major player in S&T...3 National Science Foundation , Division of Science Resources Statistics, “Asia’s Rising Science and Technology Strength: Comparative...example, the National Science Foundation awarded the University of California Santa Barbara (UCSB) a $1.5 million grant to establish a research and
Scientist-Educator Partnerships: the Cornerstone of Astrophysics E/PO
NASA Astrophysics Data System (ADS)
Meinke, Bonnie K.; Smith, Denise A.; Lawton, Brandon; Eisenhamer, Bonnie; Jirdeh, Hussein
2015-11-01
For nearly two decades, NASA has partnered scientists and educators by embedding Education and Public Outreach (E/PO) programs and funding in its science missions and research activities. This enables scientist and educators to work side-by-side in translating cutting-edge NASA science and technology for classrooms, museums, and public venues.The Office of Public Outreach at the Space Telescope Science Institute (STScI) is uniquely poised to foster collaboration between scientists with content expertise and educators with pedagogy expertise. As home to both Hubble Space Telescope and the future James Webb Space Telescope, STScI leverages the expertise of its scientists to create partnerships with its collocated Education Team to translate cutting-edge NASA science into new and effective learning tools. In addition, STScI is home of the NASA Science Mission Directorate (SMD) Astrophysics Science E/PO Forum, which facilitates connections both within the SMD E/PO community and beyond to scientists and educators across all NASA Astrophysics missions. These collaborations strengthen partnerships, build best practices, and enhance coherence for NASA SMD-funded E/PO missions and programs.We will present examples of astronomers’ engagement in our E/PO efforts, such as NASA Science4Girls.
Art-Science-Technology collaboration through immersive, interactive 3D visualization
NASA Astrophysics Data System (ADS)
Kellogg, L. H.
2014-12-01
At the W. M. Keck Center for Active Visualization in Earth Sciences (KeckCAVES), a group of geoscientists and computer scientists collaborate to develop and use of interactive, immersive, 3D visualization technology to view, manipulate, and interpret data for scientific research. The visual impact of immersion in a CAVE environment can be extremely compelling, and from the outset KeckCAVES scientists have collaborated with artists to bring this technology to creative works, including theater and dance performance, installations, and gamification. The first full-fledged collaboration designed and produced a performance called "Collapse: Suddenly falling down", choreographed by Della Davidson, which investigated the human and cultural response to natural and man-made disasters. Scientific data (lidar scans of disaster sites, such as landslides and mine collapses) were fully integrated into the performance by the Sideshow Physical Theatre. This presentation will discuss both the technological and creative characteristics of, and lessons learned from the collaboration. Many parallels between the artistic and scientific process emerged. We observed that both artists and scientists set out to investigate a topic, solve a problem, or answer a question. Refining that question or problem is an essential part of both the creative and scientific workflow. Both artists and scientists seek understanding (in this case understanding of natural disasters). Differences also emerged; the group noted that the scientists sought clarity (including but not limited to quantitative measurements) as a means to understanding, while the artists embraced ambiguity, also as a means to understanding. Subsequent art-science-technology collaborations have responded to evolving technology for visualization and include gamification as a means to explore data, and use of augmented reality for informal learning in museum settings.
Learning by Creating and Exchanging Objects: The SCY Experience
ERIC Educational Resources Information Center
De Jong, Ton; Van Joolingen, Wouter R.; Giemza, Adam; Girault, Isabelle; Hoppe, Ulrich; Kindermann, Jorg; Kluge, Anders; Lazonder, Ard W.; Vold, Vibeke; Weinberger, Armin; Weinbrenner, Stefan; Wichmann, Astrid; Anjewierden, Anjo; Bodin, Marjolaine; Bollen, Lars; D'Ham, Cedric; Dolonen, Jan; Engler, Jan; Geraedts, Caspar; Grosskreutz, Henrik; Hovardas, Tasos; Julien, Rachel; Lechner, Judith; Ludvigsen, Sten; Matteman, Yuri; Meistadt, Oyvind; Naess, Bjorge; Ney, Muriel; Pedaste, Margus; Perritano, Anthony; Rinket, Marieke; Von Schlanbusch, Henrik; Sarapuu, Tago; Schulz, Florian; Sikken, Jakob; Slotta, Jim; Toussaint, Jeremy; Verkade, Alex; Wajeman, Claire; Wasson, Barbara; Zacharia, Zacharias C.; Van Der Zanden, Martine
2010-01-01
Science Created by You (SCY) is a project on learning in science and technology domains. SCY uses a pedagogical approach that centres around products, called "emerging learning objects" (ELOs) that are created by students. Students work individually and collaboratively in SCY-Lab (the general SCY learning environment) on "missions" that are guided…
NASA Astrophysics Data System (ADS)
Robinson, E.; Meyer, C. B.; Benedict, K. K.
2013-12-01
A critical part of effective Earth science data and information system interoperability involves collaboration across geographically and temporally distributed communities. The Federation of Earth Science Information Partners (ESIP) is a broad-based, distributed community of science, data and information technology practitioners from across science domains, economic sectors and the data lifecycle. ESIP's open, participatory structure provides a melting pot for coordinating around common areas of interest, experimenting on innovative ideas and capturing and finding best practices and lessons learned from across the network. Since much of ESIP's work is distributed, the Foundation for Earth Science was established as a non-profit home for its supportive collaboration infrastructure. The infrastructure leverages the Internet and recent advances in collaboration web services. ESIP provides neutral space for self-governed groups to emerge around common Earth science data and information issues, ebbing and flowing as the need for them arises. As a group emerges, the Foundation quickly equips the virtual workgroup with a set of ';commodity services'. These services include: web meeting technology (Webex), a wiki and an email listserv. WebEx allows the group to work synchronously, dynamically viewing and discussing shared information in real time. The wiki is the group's primary workspace and over time creates organizational memory. The listserv provides an inclusive way to email the group and archive all messages for future reference. These three services lower the startup barrier for collaboration and enable automatic content preservation to allow for future work. While many of ESIP's consensus-building activities are discussion-based, the Foundation supports an ESIP testbed environment for exploring and evaluating prototype standards, services, protocols, and best practices. After community review of testbed proposals, the Foundation provides small seed funding and a toolbox of collaborative development resources including Amazon Web Services to quickly spin-up the testbed instance and a GitHub account for maintaining testbed project code enabling reuse. Recently, the Foundation supported development of the ESIP Commons (http://commons.esipfed.org), a Drupal-based knowledge repository for non-traditional publications to preserve community products and outcomes like white papers, posters and proceedings. The ESIP Commons adds additional structured metadata, provides attribution to contributors and allows those unfamiliar with ESIP a straightforward way to find information. The success of ESIP Federation activities is difficult to measure. The ESIP Commons is a step toward quantifying sponsor return on investment and is one dataset used in network map analysis of the ESIP community network, another success metric. Over the last 15 years, ESIP has continually grown and attracted experts in the Earth science data and informatics field becoming a primary locus of research and development on the application and evolution of Earth science data standards and conventions. As funding agencies push toward a more collaborative approach, the lessons learned from ESIP and the collaboration services themselves are a crucial component of supporting science research.
Is a Universal Science of Complexity Conceivable?
NASA Astrophysics Data System (ADS)
West, Geoffrey B.
Over the past quarter of a century, terms like complex adaptive system, the science of complexity, emergent behavior, self-organization, and adaptive dynamics have entered the literature, reflecting the rapid growth in collaborative, trans-disciplinary research on fundamental problems in complex systems ranging across the entire spectrum of science from the origin and dynamics of organisms and ecosystems to financial markets, corporate dynamics, urbanization and the human brain...
Strategies for effective collaborative manuscript development in interdisciplinary science teams
Oliver, Samantha K.; Fergus, C. Emi; Skaff, Nicholas K.; Wagner, Tyler; Tan, Pang-Ning; Cheruvelil, Kendra Spence; Soranno, Patricia A.
2018-01-01
Science is increasingly being conducted in large, interdisciplinary teams. As team size increases, challenges can arise during manuscript development, where achieving one team goal (e.g., inclusivity) may be in direct conflict with other goals (e.g., efficiency). Here, we present strategies for effective collaborative manuscript development that draw from our experiences in an interdisciplinary science team writing collaborative manuscripts for six years. These strategies are rooted in six guiding principles that were important to our team: to create a transparent, inclusive, and accountable research team that promotes and protects team members who have less power to influence decision‐making while fostering creativity and productivity. To help alleviate the conflicts that can arise in collaborative manuscript development, we present the following strategies: understand your team composition, create an authorship policy and discuss authorship early and often, openly announce manuscript ideas, identify and communicate the type of manuscript and lead author management style, and document and describe authorship contributions. These strategies can help reduce the probability of group conflict, uphold individual and team values, achieve fair authorship practices, and increase science productivity.
EarthScope Education and Outreach: Accomplishments and Emerging Opportunities
NASA Astrophysics Data System (ADS)
Robinson, S.; Ellins, K. K.; Semken, S. C.; Arrowsmith, R.
2014-12-01
EarthScope's Education and Outreach (E&O) program aims to increase public awareness of Earth science and enhance geoscience education at the K-12 and college level. The program is distinctive among major geoscience programs in two ways. First, planning for education and public engagement occurred in tandem with planning for the science mission. Second, the NSF EarthScope program includes funding support for education and outreach. In this presentation, we highlight key examples of the program's accomplishments and identify emerging E&O opportunities. E&O efforts have been collaboratively led by the EarthScope National Office (ESNO), IRIS, UNAVCO, the EarthScope Education and Outreach Subcommittee (EEOSC) and PI-driven EarthScope projects. Efforts by the EEOSC, guided by an EarthScope Education and Outreach Implementation Plan that is periodically updated, focus EarthScope E&O. EarthScope demonstrated early success in engaging undergraduate students (and teachers) in its mission through their involvement in siting USArray across the contiguous U.S. Funded E&O programs such as TOTLE, Illinois EarthScope, CEETEP (for K-12), InTeGrate and GETSI (for undergraduates) foster use of freely available EarthScope data and research findings. The Next Generation Science Standards, which stress science and engineering practices, offer an opportunity for alignment with existing EarthScope K-12 educational resources, and the EEOSC recommends focusing efforts on this task. The EEOSC recognizes the rapidly growing use of mobile smart devices by the public and in formal classrooms, which bring new opportunities to connect with the public and students. This will capitalize on EarthScope's already prominent social media presence, an effort that developed to accomplish one of the primary goals of the EarthScope E&O Implementation Plan to "Create a high-profile public identity for EarthScope" and to "Promote science literacy and understanding of EarthScope among all audiences through informal education venues" Leveraging ESNO, IRIS, and UNAVCO resources has exceeded the capabilities of any single entity, thereby amplifying the impact of EarthScope's education and outreach effort.
NASA Astrophysics Data System (ADS)
Fuselier, Linda; Murphy, Claudia; Bender, Anita; Creel Falcón, Kandace
2015-01-01
Background and purpose:The purpose of this exploratory case study is to describe how scholars negotiated disciplinary divides to develop and communicate to their students an understanding of the basic features of scientific knowledge. Our goals were to examine boundary crossing in interdisciplinary collaboration and to assess the efficacy of adding science content to an introductory Women's Studies course. Sample:We studied a collaboration between faculty in Biology and Women's Studies and evaluated science modules in a Women's Studies course at a regional four-year university in the Midwestern USA. The study included 186 student participants over three semesters and four faculty from Philosophy, Women's Studies and Biology. Design and method:Women's Studies and Biology faculty collaborated to design and implement science content learning modules that included the case of women and science in an introductory Women's Studies course. Qualitative data collected from faculty participants in the form of peer debrief sessions and narrative reflections were used to examine the process of interdisciplinary collaboration. Students exposed to curriculum changes were administered pre- and post-lesson surveys to evaluate their understanding of issues faced by women in science careers, the nature of science, and interest in science studies. Data from collaborators, student journal reflections, and pre-/post-lesson surveys were considered together in an evaluation of how knowledge of science was understood and taught in a Women's Studies course over a longitudinal study of three semesters. Results:We found evidence of discipline-based challenges to interdisciplinarity and disciplinary boundary crossing among collaborators. Three themes emerged from our collaboration: challenges posed by disciplinary differences, creation of a space for interdisciplinary work, and evidence of boundary crossing. Student participants exhibited more prior knowledge of Women's Studies content than nature of science but showed learning in the areas of scientific literacy and the understanding of issues related to women in science careers. Student understanding of science content was enhanced by the participation of a woman scientist in the learning module. Conclusion:This case study illustrates how creating an inclusive space for interdisciplinary collaboration led to successful curriculum transformation and academic boundary crossing by faculty participants. Success is evident in the legacy of interdisciplinarity in the curriculum and learning gains by students. Use of a feminist science studies framework was successful at helping students learn about the influence of values on science and the tentative nature of scientific conclusions. It was less successful in teaching the distinction between science and other ways of knowing and the conception that science is an evidence-based approach to understanding the natural world. This study highlights the importance of interdisciplinary teams of faculty members collaborating to help students learn about science by modeling that there are multiple ways of knowing.
Demography and Public Health Emergency Preparedness: Making the Connection
Katz, Rebecca
2009-01-01
The tools and techniques of population sciences are extremely relevant to the discipline of public health emergency preparedness: protecting and securing the population’s health requires information about that population. While related fields such as security studies have successfully integrated demographic tools into their research and literature, the theoretical and practical connection between the methods of demography and the practice of public health emergency preparedness is weak. This article suggests the need to further the interdisciplinary use of demography by examining the need for a systematic use of population science techniques in public health emergency preparedness. Ultimately, we demonstrate how public health emergency preparedness can incorporate demography to develop more effective preparedness plans. Important policy implications emerge: demographers and preparedness experts need to collaborate more formally in order to facilitate community resilience and mitigate the consequences of public health emergencies. PMID:20694030
NASA Astrophysics Data System (ADS)
Meinke, Bonnie K.; Smith, Denise A.; Bleacher, Lora; Hauck, Karin; Soeffing, Cassie; NASA SMD E/PO Community
2015-01-01
The NASA Astrophysics Science Education and Public Outreach Forum (SEPOF) coordinates the work of individual NASA Science Mission Directorate (SMD) Astrophysics EPO projects and their teams to bring the NASA science education resources and expertise to libraries nationwide. The Astrophysics Forum assists scientists and educators with becoming involved in SMD E/PO (which is uniquely poised to foster collaboration between scientists with content expertise and educators with pedagogy expertise) and makes SMD E/PO resources and expertise accessible to the science and education communities. The NASA Science4Girls and Their Families initiative partners NASA science education programs with public libraries to provide NASA-themed hands-on education activities for girls and their families. As such, the initiative engages girls in all four NASA science discipline areas (Astrophysics, Earth Science, Planetary Science, and Heliophysics), which enables audiences to experience the full range of NASA science topics and the different career skills each requires. The events focus on engaging this particular underserved and underrepresented audience in Science, Technology, Engineering, and Mathematics (STEM) via use of research-based best practices, collaborations with libraries, partnerships with local and national organizations, and remote engagement of audiences.
ERIC Educational Resources Information Center
Charli-Joseph, Lakshmi; Escalante, Ana E.; Eakin, Hallie; Solares, Ma. José; Mazari-Hiriart, Marisa; Nation, Marcia; Gómez-Priego, Paola; Pérez-Tejada, César A. Domínguez; Bojórquez-Tapia, Luis A.
2016-01-01
Purpose: The authors describe the challenges and opportunities associated with developing an interdisciplinary sustainability programme in an emerging economy and illustrate how these are addressed through the approach taken for the development of the first postgraduate programme (MSc and PhD) in sustainability science at the National Autonomous…
USDA-ARS?s Scientific Manuscript database
As one of the newest federal programs to emerge in response to climate change, the U.S. Department of Agriculture (USDA) Climate Hubs were established to assist farmers, ranchers and forest landowners in their adaptation and mitigation efforts under a changing climate. The Hubs’ mission is to delive...
Progress toward a Semantic eScience Framework; building on advanced cyberinfrastructure
NASA Astrophysics Data System (ADS)
McGuinness, D. L.; Fox, P. A.; West, P.; Rozell, E.; Zednik, S.; Chang, C.
2010-12-01
The configurable and extensible semantic eScience framework (SESF) has begun development and implementation of several semantic application components. Extensions and improvements to several ontologies have been made based on distinct interdisciplinary use cases ranging from solar physics, to biologicl and chemical oceanography. Importantly, these semantic representations mediate access to a diverse set of existing and emerging cyberinfrastructure. Among the advances are the population of triple stores with web accessible query services. A triple store is akin to a relational data store where the basic stored unit is a subject-predicate-object tuple. Access via a query is provided by the W3 Recommendation language specification SPARQL. Upon this middle tier of semantic cyberinfrastructure, we have developed several forms of semantic faceted search, including provenance-awareness. We report on the rapid advances in semantic technologies and tools and how we are sustaining the software path for the required technical advances as well as the ontology improvements and increased functionality of the semantic applications including how they are integrated into web-based portals (e.g. Drupal) and web services. Lastly, we indicate future work direction and opportunities for collaboration.
NASA Astrophysics Data System (ADS)
Bartolone, Lindsay; Nelson, Andi; Smith, Denise A.; NASA SMD Astrophysics E/PO Community
2015-01-01
The NASA Astrophysics Science Education and Public Outreach Forum (SEPOF) coordinates the work of NASA Science Mission Directorate (SMD) Astrophysics EPO projects. These teams work together to capitalize on the cutting-edge discoveries of NASA Astrophysics missions to support educators in Science, Technology, Engineering, and Math (STEM) and to enable youth to engage in doing STEM inside and outside of school. The Astrophysics Forum assists scientists and educators with becoming involved in SMD E/PO, which is uniquely poised to foster collaboration between scientists with content expertise and educators with pedagogy expertise, and makes SMD E/PO resources and expertise accessible to the science and education communities. Informal educators participated in a recent nationally-distributed survey from the NASA SMD SEPOF Informal Education Working Group. The results show the preferences of staff from museums, parks, public libraries, community/afterschool centers, and others with regard to professional development and material resources. The results of the survey will be presented during this session.In addition, we present opportunities for the astronomy community to participate in collaborations supporting the NASA SMD efforts in K-12 Formal Education, Informal Science Education, and Outreach. These efforts focus on enhancing instruction, as well as youth and public engagement, in STEM via use of research-based best practices, collaborations with libraries, partnerships with local and national organizations, and remote engagement of audiences. The Forums' efforts for the Formal, Informal Science Education and Outreach communities include a literature review, appraisal of informal educators' needs, coordination of audience-based NASA resources and opportunities, professional development, plus support with the Next Generation Science Standards. Learn how to join in our collaborative efforts to support the K-12 Formal Education community and to reach the informal science education and outreach communities based upon mutual needs and interests.
Interprofessional Practice and Education in Health Care: Their Relevance to School Psychology
ERIC Educational Resources Information Center
Margison, Judith A.; Shore, Bruce M.
2009-01-01
Calls for increased collaborative practices in school psychology parallel similar advances in the realm of health care. This article overviews the concepts associated with collaborative practice in school psychology and in health care (e.g., interaction, teamwork, and collaboration) and discusses how the literature emerging from interprofessional…
Engaging Scientists in Meaningful E/PO: NASA Science4Girls and Their Families
NASA Astrophysics Data System (ADS)
Meinke, B. K.; Smith, D. A.; Bleacher, L.; Hauck, K.; Soeffing, C.
2014-12-01
The NASA Science Mission Directorate (SMD) Science Education and Public Outreach Forums coordinate the participation of SMD education and public outreach (EPO) programs in Women's History Month through the NASA Science4Girls and Their Families initiative. The initiative partners NASA science education programs with public libraries to provide NASA-themed hands-on education activities for girls and their families. These NASA science education programs are mission- and grant-based E/PO programs are uniquely poised to foster collaboration between scientists with content expertise and educators with pedagogy expertise. As such, the initiative engages girls in all four NASA science discipline areas (Astrophysics, Earth Science, Planetary Science, and Heliophysics), which enables audiences to experience the full range of NASA science topics and the different career skills each requires. The events focus on engaging underserved and underrepresented audiences in Science, Technology, Engineering, and Mathematics (STEM) via use of research-based best practices, collaborations with libraries, partnerships with local and national organizations, and remote engagement of audiences.
Competitive Science: Is Competition Ruining Science?
Casadevall, Arturo
2015-01-01
Science has always been a competitive undertaking. Despite recognition of the benefits of cooperation and team science, reduced availability of funding and jobs has made science more competitive than ever. Here we consider the benefits of competition in providing incentives to scientists and the adverse effects of competition on resource sharing, research integrity, and creativity. The history of science shows that transformative discoveries often occur in the absence of competition, which only emerges once fields are established and goals are defined. Measures to encourage collaboration and ameliorate competition in the scientific enterprise are discussed. PMID:25605760
Supporting the Emergence of Dental Informatics with an Online Community
Spallek, H.; Irwin, J. Y.; Schleyer, T.; Butler, B. S.; Weiss, P. M.
2008-01-01
Dental Informatics (DI) is the application of computer and information science to improve dental practice, research, education, and program administration. As an emerging field, dental informatics faces many challenges and barriers to establishing itself as a full-fledged discipline; these include the small number of geographically dispersed DI researchers as well as the lack of DI professional societies and DI-specific journals. E-communities have the potential to overcome these obstacles by bringing researchers together at a resources hub and giving them the ability to share information, discuss topics, and find collaborators. In this paper, we discuss our assessment of the information needs of individuals interested in DI and discuss their expectations for an e-community so that we can design an optimal electronic infrastructure for the Dental Informatics Online Community (DIOC). The 256 survey respondents indicated they prefer electronic resources over traditional print material to satisfy their information needs. The most frequently expected benefits from participation in the DIOC were general information (85% of respondents), peer networking (31.1%), and identification of potential collaborators and/or research opportunities (23.2%). We are currently building the DIOC electronic infrastructure: a searchable publication archive and the learning center have been created, and the people directory is underway. Readers are encouraged to access the DIOC Website at www.dentalinformatics.com and initiate a discussion with the authors of this paper. PMID:18271498
Editorial of the PCCP themed issue on "Solvation Science".
Morgenstern, Karina; Marx, Dominik; Havenith, Martina; Muhler, Martin
2015-04-07
The present special issue presents exciting experimental and theoretical results in the topic of "Solvation Science", a topic that emerges from physical, theoretical, and industrial chemistry, and is also of interest to a multitude of neighboring fields, such as inorganic and organic chemistry, biochemistry, physics and engineering. We hope that the articles will be highly useful for researchers who would like to enter this newly emerging area, and that it is a valuable source for the nucleation of new ideas and collaborations to better understand the active role of the solvent in reactions.
NASA Astrophysics Data System (ADS)
Plumlee, G. S.
2015-12-01
I have been fortunate to be able to follow a varied career path from economic geology, to environmental geochemistry, to geochemistry and human health, to environmental disasters. I have been privileged to collaborate with many exceptional scientists from across and well beyond the earth sciences (e.g., public heath, engineering, economics, emergency response, microbiology). Much of this transdisciplinary work has intriguing links back to economic geology/geochemistry. Geological characteristics of different ore deposit types predictably influence the environmental and health impacts of mining, and so can help anticipate and prevent adverse impacts before they occur. Geologic maps showing potential for natural occurrences of asbestos or erionite are analogous to permissive tract maps used for mineral-resource assessments, and can be correlated with epidemiological data to help understand whether living on or near such rocks poses a risk for developing asbestos-related diseases. Mineral particles that are taken up by the human body along inhalation or incidental ingestion exposure routes are "weathered" by reactions with diverse body fluids that differ greatly in composition between and along the different exposure routes. These in vivo chemical reactions (e.g., dissolution, alteration, metal complexation, oxidation/reduction, reprecipitation) are in ways analogous to processes of ore deposit formation and weathering, and some can be shown (in collaboration with toxicologists) to play a role in toxicity. Concepts of ore petrography and paragenesis can be applied to interpret (in collaboration with pathologists) the origin, physiological implications, and toxicity effects of mineral matter in human tissue samples obtained by biopsy, transplant or autopsy. Some disaster materials can originate from mining- or mineral-processing sources, and methods originally developed to study ore deposits or mining-environmental issues can also be applied to understand many disaster materials. These examples illustrate an appropriate core role for earth scientists in transdisciplinary research: applying our expertise and toolkits to help understand topics well beyond earth sciences, but doing so in collaboration with experts from disciplines that traditionally examine those topics.
From darwin to the census of marine life: marine biology as big science.
Vermeulen, Niki
2013-01-01
With the development of the Human Genome Project, a heated debate emerged on biology becoming 'big science'. However, biology already has a long tradition of collaboration, as natural historians were part of the first collective scientific efforts: exploring the variety of life on earth. Such mappings of life still continue today, and if field biology is gradually becoming an important subject of studies into big science, research into life in the world's oceans is not taken into account yet. This paper therefore explores marine biology as big science, presenting the historical development of marine research towards the international 'Census of Marine Life' (CoML) making an inventory of life in the world's oceans. Discussing various aspects of collaboration--including size, internationalisation, research practice, technological developments, application, and public communication--I will ask if CoML still resembles traditional collaborations to collect life. While showing both continuity and change, I will argue that marine biology is a form of natural history: a specific way of working together in biology that has transformed substantially in interaction with recent developments in the life sciences and society. As a result, the paper does not only give an overview of transformations towards large scale research in marine biology, but also shines a new light on big biology, suggesting new ways to deepen the understanding of collaboration in the life sciences by distinguishing between different 'collective ways of knowing'.
Lee, E. Sally; McDonald, David W.; Anderson, Nicholas; Tarczy-Hornoch, Peter
2008-01-01
Due to its complex nature, modern biomedical research has become increasingly interdisciplinary and collaborative in nature. Although a necessity, interdisciplinary biomedical collaboration is difficult. There is, however, a growing body of literature on the study and fostering of collaboration in fields such as computer supported cooperative work (CSCW) and information science (IS). These studies of collaboration provide insight into how to potentially alleviate the difficulties of interdisciplinary collaborative research. We, therefore, undertook a cross cutting study of science and engineering collaboratories to identify emergent themes. We review many relevant collaboratory concepts: (a) general collaboratory concepts across many domains: communication, common workspace and coordination, and data sharing and management, (b) specific collaboratory concepts of particular biomedical relevance: data integration and analysis, security structure, metadata and data provenance, and interoperability and data standards, (c) environmental factors that support collaboratories: administrative and management structure, technical support, and available funding as critical environmental factors, and (d) future considerations for biomedical collaboration: appropriate training and long-term planning. In our opinion, the collaboratory concepts we discuss can guide planning and design of future collaborative infrastructure by biomedical informatics researchers to alleviate some of the difficulties of interdisciplinary biomedical collaboration. PMID:18706852
Experiments in interdisciplinarity: Responsible research and innovation and the public good
Åm, Heidrun
2018-01-01
In Europe, responsible research and innovation (RRI) has emerged as a science policy measure that demands the early integration of a broad range of social actors and perspectives into research and development (R&D). More collaboration of the social sciences and humanities (SSH) with science and engineering appears within this policy framework as a crucial element that will enable better technological development. However, RRI is new to both natural scientists and SSH scholars, and interdisciplinary collaborations are challenging for many reasons. In this paper, we discuss these challenges while suggesting that what RRI can be in a particular project is not a given but remains an empirical question. Natural scientists and SSH scholars need to coresearch RRI in an experimental mode. PMID:29579043
Experiments in interdisciplinarity: Responsible research and innovation and the public good.
Delgado, Ana; Åm, Heidrun
2018-03-01
In Europe, responsible research and innovation (RRI) has emerged as a science policy measure that demands the early integration of a broad range of social actors and perspectives into research and development (R&D). More collaboration of the social sciences and humanities (SSH) with science and engineering appears within this policy framework as a crucial element that will enable better technological development. However, RRI is new to both natural scientists and SSH scholars, and interdisciplinary collaborations are challenging for many reasons. In this paper, we discuss these challenges while suggesting that what RRI can be in a particular project is not a given but remains an empirical question. Natural scientists and SSH scholars need to coresearch RRI in an experimental mode.
Talkoot Portals: Discover, Tag, Share, and Reuse Collaborative Science Workflows
NASA Astrophysics Data System (ADS)
Wilson, B. D.; Ramachandran, R.; Lynnes, C.
2009-05-01
A small but growing number of scientists are beginning to harness Web 2.0 technologies, such as wikis, blogs, and social tagging, as a transformative way of doing science. These technologies provide researchers easy mechanisms to critique, suggest and share ideas, data and algorithms. At the same time, large suites of algorithms for science analysis are being made available as remotely-invokable Web Services, which can be chained together to create analysis workflows. This provides the research community an unprecedented opportunity to collaborate by sharing their workflows with one another, reproducing and analyzing research results, and leveraging colleagues' expertise to expedite the process of scientific discovery. However, wikis and similar technologies are limited to text, static images and hyperlinks, providing little support for collaborative data analysis. A team of information technology and Earth science researchers from multiple institutions have come together to improve community collaboration in science analysis by developing a customizable "software appliance" to build collaborative portals for Earth Science services and analysis workflows. The critical requirement is that researchers (not just information technologists) be able to build collaborative sites around service workflows within a few hours. We envision online communities coming together, much like Finnish "talkoot" (a barn raising), to build a shared research space. Talkoot extends a freely available, open source content management framework with a series of modules specific to Earth Science for registering, creating, managing, discovering, tagging and sharing Earth Science web services and workflows for science data processing, analysis and visualization. Users will be able to author a "science story" in shareable web notebooks, including plots or animations, backed up by an executable workflow that directly reproduces the science analysis. New services and workflows of interest will be discoverable using tag search, and advertised using "service casts" and "interest casts" (Atom feeds). Multiple science workflow systems will be plugged into the system, with initial support for UAH's Mining Workflow Composer and the open-source Active BPEL engine, and JPL's SciFlo engine and the VizFlow visual programming interface. With the ability to share and execute analysis workflows, Talkoot portals can be used to do collaborative science in addition to communicate ideas and results. It will be useful for different science domains, mission teams, research projects and organizations. Thus, it will help to solve the "sociological" problem of bringing together disparate groups of researchers, and the technical problem of advertising, discovering, developing, documenting, and maintaining inter-agency science workflows. The presentation will discuss the goals of and barriers to Science 2.0, the social web technologies employed in the Talkoot software appliance (e.g. CMS, social tagging, personal presence, advertising by feeds, etc.), illustrate the resulting collaborative capabilities, and show early prototypes of the web interfaces (e.g. embedded workflows).
NASA Astrophysics Data System (ADS)
Hong, Zuway-R.
2010-10-01
This study investigated the effects of a collaborative science intervention on high achieving students' learning anxiety and attitudes toward science. Thirty-seven eighth-grade high achieving students (16 boys and 21 girls) were selected as an experimental group who joined a 20-week collaborative science intervention, which integrated and utilized an innovative teaching strategy. Fifty-eight eighth-grade high achieving students were selected as the comparison group. The Secondary School Student Questionnaire was conducted to measure all participants' learning anxiety and attitudes toward science. In addition, 12 target students from the experimental group (i.e., six active and six passive students) were recruited for weekly classroom observations and follow-up interviews during the intervention. Both quantitative and qualitative findings revealed that experimental group students experienced significant impact as seen through increased attitudes and decreased anxiety of learning science. Implications for practice and research are provided.
ERIC Educational Resources Information Center
McLaughlin, Cheryl A.; Broo, Jennifer; MacFadden, Bruce J.; Moran, Sean
2016-01-01
One major emphasis of reform initiatives in science education is the importance of extended inquiry experiences for students through authentic collaborations with scientists. As such, unique partnerships have started to emerge between science and education in an ongoing effort to capture the interest and imaginations of students as they make sense…
USGS Science Data Catalog - Open Data Advances or Declines
NASA Astrophysics Data System (ADS)
Frame, M. T.; Hutchison, V.; Zolly, L.; Wheeler, B.; Latysh, N.; Devarakonda, R.; Palanisamy, G.; Shrestha, B.
2014-12-01
The recent Office of Science and Technology Policy (OSTP) White House Open Data Policies (2013) have required Federal agencies to establish formal catalogues of their science data holdings and make these data easily available on Web sites, portals, and applications. As an organization, the USGS has historically excelled at making its data holdings freely available on its various Web sites (i.e., National, Scientific Programs, or local Science Center). In response to these requirements, the USGS Core Science Analytics, Synthesis, and Libraries program, in collaboration with DOE's Oak Ridge National Laboratory (ORNL) Mercury Consortium (funded by NASA, USGS, and DOE), and a number of other USGS organizations, established the Science Data Catalog (http://data.usgs.gov) cyberinfrastructure, content management processes/tools, and supporting policies. The USGS Science Data Catalog led the charge at USGS to improve the robustness of existing/future metadata collections; streamline and develop sustainable publishing to external aggregators (i.e., data.gov); and provide leadership to the U.S. Department of Interior in emerging Open Data policies, techniques, and systems. The session will discuss the current successes, challenges, and movement toward meeting these Open Data policies for USGS scientific data holdings. A retrospective look at the last year of implementation of these efforts within USGS will occur to determine whether these Open Data Policies are improving data access or limiting data availability. To learn more about the USGS Science Data Catalog, visit us at http://data.usgs.gov/info/about.html
Engaging Scientists in NASA Education and Public Outreach: K - 12 Formal Education
NASA Astrophysics Data System (ADS)
Bartolone, Lindsay; Smith, D. A.; Eisenhamer, B.; Lawton, B. L.; Universe Professional Development Collaborative, Multiwavelength; NASA Data Collaborative, Use of; SEPOF K-12 Formal Education Working Group; E/PO Community, SMD
2014-01-01
The NASA Science Education and Public Outreach Forums support the NASA Science Mission Directorate (SMD) and its education and public outreach (E/PO) community through a coordinated effort to enhance the coherence and efficiency of SMD-funded E/PO programs. The Forums foster collaboration between scientists with content expertise and educators with pedagogy expertise. We present opportunities for the astronomy community to participate in collaborations supporting the NASA SMD efforts in the K - 12 Formal Education community. Members of the K - 12 Formal Education community include classroom educators, homeschool educators, students, and curriculum developers. The Forums’ efforts for the K - 12 Formal Education community include a literature review, appraisal of educators’ needs, coordination of audience-based NASA resources and opportunities, professional development, and support with the Next Generation Science Standards. Learn how to join in our collaborative efforts to support the K - 12 Formal Education community based upon mutual needs and interests.
Luo, Jingyuan; Matthews, Kirstin R. W.
2013-01-01
Science and engineering research has becoming an increasingly international phenomenon. Traditional bibliometric studies have not captured the evolution of collaborative partnerships between countries, particularly in emerging technologies such as stem cell science, in which an immense amount of investment has been made in the past decade. Analyzing over 2,800 articles from the top journals that include stem cell research in their publications, this study demonstrates the globalization of stem cell science. From 2000 to 2010, international collaborations increased from 20.9% to 36% of all stem cell publications analyzed. The United States remains the most prolific and the most dominant country in the field in terms of publications in high impact journals. But Asian countries, particularly China are steadily gaining ground. Exhibiting the largest relative growth, the percent of Chinese-authored stem cell papers grew more than ten-fold, while the percent of Chinese-authored international papers increased over seven times from 2000 to 2010. And while the percent of total stem cell publications exhibited modest growth for European countries, the percent of international publications increased more substantially, particularly in the United Kingdom. Overall, the data indicated that traditional networks of collaboration extant in 2000 still predominate in stem cell science. Although more nations are becoming involved in international collaborations and undertaking stem cell research, many of these efforts, with the exception of those in certain Asian countries, have yet to translate into publications in high impact journals. PMID:24069210
Luo, Jingyuan; Matthews, Kirstin R W
2013-01-01
Science and engineering research has becoming an increasingly international phenomenon. Traditional bibliometric studies have not captured the evolution of collaborative partnerships between countries, particularly in emerging technologies such as stem cell science, in which an immense amount of investment has been made in the past decade. Analyzing over 2,800 articles from the top journals that include stem cell research in their publications, this study demonstrates the globalization of stem cell science. From 2000 to 2010, international collaborations increased from 20.9% to 36% of all stem cell publications analyzed. The United States remains the most prolific and the most dominant country in the field in terms of publications in high impact journals. But Asian countries, particularly China are steadily gaining ground. Exhibiting the largest relative growth, the percent of Chinese-authored stem cell papers grew more than ten-fold, while the percent of Chinese-authored international papers increased over seven times from 2000 to 2010. And while the percent of total stem cell publications exhibited modest growth for European countries, the percent of international publications increased more substantially, particularly in the United Kingdom. Overall, the data indicated that traditional networks of collaboration extant in 2000 still predominate in stem cell science. Although more nations are becoming involved in international collaborations and undertaking stem cell research, many of these efforts, with the exception of those in certain Asian countries, have yet to translate into publications in high impact journals.
Collaborative Science with Indigenous Knowledge for Climate Solutions: Why, How, and with Whom?
NASA Astrophysics Data System (ADS)
Maldonado, J.; Lazrus, H.; Gough, B.
2017-12-01
The inherent complexity of climate change requires diverse perspectives to understand and respond to its impacts. The Rising Voices: Collaborative Science with Indigenous Knowledge for Climate Solutions (Rising Voices) program represents a growing network of engaged Indigenous and non-Indigenous scientists committed to cross-cultural and collaborative research and activities to understand and mitigate the impacts of extreme weather and climate change. Five annual Rising Voices workshops have occurred since 2013, engaging hundreds of participants from across Tribal communities, the United States, and internationally over the years. Housed at the National Center for Atmospheric Research, Rising Voices aims to expand how diversity is understood in atmospheric science, to include intellectual diversity stemming from distinct cultural backgrounds. It envisions collaborative research that brings together Indigenous knowledges and science with Western climate and weather sciences in a respectful and inclusive manner to achieve culturally relevant and scientifically robust climate and weather adaptation solutions. The premise of the program and the research and collaborations it produces is that there is an opportunity cost to not involving diverse knowledge systems and observations from varied cultural backgrounds in addressing climate change. We cannot afford that cost given the challenges ahead. This poster presents some of the protocols, methods, challenges, and outcomes of cross-cultural research between Western and Indigenous scientists and communities from across the United States. It also presents some of the recommendations that have emerged from Rising Voices workshops over the past five years.
NASA Astrophysics Data System (ADS)
Lesinski-Roscoe, Rachel A.
This qualitative study sought to gain an understanding of science teachers' perceptions of reform and their role in implementing reform and science-based literacy practices in the classroom, as well as gain an understanding of science teachers' knowledge of disciplinary literacy as the implied framework of reform (i.e., the Next Generation Science Standards). Four focal participants from a suburban, middle-class high school district comprised of two high schools participated in semi-structured interviews, observations, and a stimulated recall task and interview. Data analysis revealed some of the Discourse memberships in which participants claimed membership and the tensions that resulted from those memberships. From this data, a theory emerged of the role of third space in navigating these tensions, and a model for developing a third space is presented, which literacy professionals can reference when working to develop collaborative relationships with science teachers in order to scaffold science-specific literacy practices for student engagement. The information in this study prompts future research regarding the ability of science teachers and literacy professionals to navigate Discourses in a Field Code Changed third space using a disciplinary literacy approach to developing curriculum in order to apprentice students into the discipline of science and develop a citizenry of scientifically literate individuals.
Architectural Aspects of Grid Computing and its Global Prospects for E-Science Community
NASA Astrophysics Data System (ADS)
Ahmad, Mushtaq
2008-05-01
The paper reviews the imminent Architectural Aspects of Grid Computing for e-Science community for scientific research and business/commercial collaboration beyond physical boundaries. Grid Computing provides all the needed facilities; hardware, software, communication interfaces, high speed internet, safe authentication and secure environment for collaboration of research projects around the globe. It provides highly fast compute engine for those scientific and engineering research projects and business/commercial applications which are heavily compute intensive and/or require humongous amounts of data. It also makes possible the use of very advanced methodologies, simulation models, expert systems and treasure of knowledge available around the globe under the umbrella of knowledge sharing. Thus it makes possible one of the dreams of global village for the benefit of e-Science community across the globe.
Competitive science: is competition ruining science?
Fang, Ferric C; Casadevall, Arturo
2015-04-01
Science has always been a competitive undertaking. Despite recognition of the benefits of cooperation and team science, reduced availability of funding and jobs has made science more competitive than ever. Here we consider the benefits of competition in providing incentives to scientists and the adverse effects of competition on resource sharing, research integrity, and creativity. The history of science shows that transformative discoveries often occur in the absence of competition, which only emerges once fields are established and goals are defined. Measures to encourage collaboration and ameliorate competition in the scientific enterprise are discussed. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Building A Collaborative And Distributed E&O Program For EarthScope
NASA Astrophysics Data System (ADS)
Hall-Wallace, M. K.; Boyd, T.; Richard, G.; Ellins, K.; Meertens, C.; Semken, S.; Taber, J.; Benthien, M.; Wald, L.; Marvinney, R.
2003-12-01
EarthScope's education and outreach (E&O) mission is to ensure that the EarthScope experiment creates as its legacy a public more knowledgeable and understanding of the scientific and societal contributions made by the EarthScope experiment and Earth science. It will fulfill this commitment by developing and disseminating programs and products that utilize the data, models, technology and discoveries of EarthScope. The EarthScope Education and Outreach Network (EON), consisting of local EON alliances, the EarthScope facilities, partner organizations and a coordinating office, will facilitate this E&O mission. The local EON alliances, which will vary in size and purpose to respond quickly and to meet the specific needs in a region, will carry out the bulk of the effort. Thus, EarthScope EON can provide customized services that engage culturally, economically and geographically diverse audiences at the national and local scales. The EarthScope facilities and research community will provide access to data, models, and visualization tools for educational purposes. Partnerships with other national and local science education and outreach programs at colleges, universities, research facilities and professional societies within the EarthScope community as well as relevant programs at museums and parks, state geologic surveys and emergency management agencies, and K-12 schools are critical to EON's success. These partnerships will allow EON to use existing resources, networks and expertise to gear up quickly and efficiently. As EON develops, it will reciprocate by contributing new resources and expertise to the partnerships that help improve public understanding of Earth systems overall and promote effective application of EarthScope discoveries. In this presentation, we will outline major programs and products envisioned for EarthScope, plans for evaluating those programs locally and nationally, and mechanisms for collaborating with existing E&O programs.
Talkoot Portals: Discover, Tag, Share, and Reuse Collaborative Science Workflows (Invited)
NASA Astrophysics Data System (ADS)
Wilson, B. D.; Ramachandran, R.; Lynnes, C.
2009-12-01
A small but growing number of scientists are beginning to harness Web 2.0 technologies, such as wikis, blogs, and social tagging, as a transformative way of doing science. These technologies provide researchers easy mechanisms to critique, suggest and share ideas, data and algorithms. At the same time, large suites of algorithms for science analysis are being made available as remotely-invokable Web Services, which can be chained together to create analysis workflows. This provides the research community an unprecedented opportunity to collaborate by sharing their workflows with one another, reproducing and analyzing research results, and leveraging colleagues’ expertise to expedite the process of scientific discovery. However, wikis and similar technologies are limited to text, static images and hyperlinks, providing little support for collaborative data analysis. A team of information technology and Earth science researchers from multiple institutions have come together to improve community collaboration in science analysis by developing a customizable “software appliance” to build collaborative portals for Earth Science services and analysis workflows. The critical requirement is that researchers (not just information technologists) be able to build collaborative sites around service workflows within a few hours. We envision online communities coming together, much like Finnish “talkoot” (a barn raising), to build a shared research space. Talkoot extends a freely available, open source content management framework with a series of modules specific to Earth Science for registering, creating, managing, discovering, tagging and sharing Earth Science web services and workflows for science data processing, analysis and visualization. Users will be able to author a “science story” in shareable web notebooks, including plots or animations, backed up by an executable workflow that directly reproduces the science analysis. New services and workflows of interest will be discoverable using tag search, and advertised using “service casts” and “interest casts” (Atom feeds). Multiple science workflow systems will be plugged into the system, with initial support for UAH’s Mining Workflow Composer and the open-source Active BPEL engine, and JPL’s SciFlo engine and the VizFlow visual programming interface. With the ability to share and execute analysis workflows, Talkoot portals can be used to do collaborative science in addition to communicate ideas and results. It will be useful for different science domains, mission teams, research projects and organizations. Thus, it will help to solve the “sociological” problem of bringing together disparate groups of researchers, and the technical problem of advertising, discovering, developing, documenting, and maintaining inter-agency science workflows. The presentation will discuss the goals of and barriers to Science 2.0, the social web technologies employed in the Talkoot software appliance (e.g. CMS, social tagging, personal presence, advertising by feeds, etc.), illustrate the resulting collaborative capabilities, and show early prototypes of the web interfaces (e.g. embedded workflows).
Dynamics of co-authorship and productivity across different fields of scientific research.
Parish, Austin J; Boyack, Kevin W; Ioannidis, John P A
2018-01-01
We aimed to assess which factors correlate with collaborative behavior and whether such behavior associates with scientific impact (citations and becoming a principal investigator). We used the R index which is defined for each author as log(Np)/log(I1), where I1 is the number of co-authors who appear in at least I1 papers written by that author and Np are his/her total papers. Higher R means lower collaborative behavior, i.e. not working much with others, or not collaborating repeatedly with the same co-authors. Across 249,054 researchers who had published ≥30 papers in 2000-2015 but had not published anything before 2000, R varied across scientific fields. Lower values of R (more collaboration) were seen in physics, medicine, infectious disease and brain sciences and higher values of R were seen for social science, computer science and engineering. Among the 9,314 most productive researchers already reaching Np ≥ 30 and I1 ≥ 4 by the end of 2006, R mostly remained stable for most fields from 2006 to 2015 with small increases seen in physics, chemistry, and medicine. Both US-based authorship and male gender were associated with higher values of R (lower collaboration), although the effect was small. Lower values of R (more collaboration) were associated with higher citation impact (h-index), and the effect was stronger in certain fields (physics, medicine, engineering, health sciences) than in others (brain sciences, computer science, infectious disease, chemistry). Finally, for a subset of 400 U.S. researchers in medicine, infectious disease and brain sciences, higher R (lower collaboration) was associated with a higher chance of being a principal investigator by 2016. Our analysis maps the patterns and evolution of collaborative behavior across scientific disciplines.
Using multimedia and peer assessment to promote collaborative e-learning
NASA Astrophysics Data System (ADS)
Barra, Enrique; Aguirre Herrera, Sandra; Ygnacio Pastor Caño, Jose; Quemada Vives, Juan
2014-04-01
Collaborative e-learning is increasingly appealing as a pedagogical approach that can positively affect student learning. We propose a didactical model that integrates multimedia with collaborative tools and peer assessment to foster collaborative e-learning. In this paper, we explain it and present the results of its application to the "International Seminars on Materials Science" online course. The proposed didactical model consists of five educational activities. In the first three, students review the multimedia resources proposed by the teacher in collaboration with their classmates. Then, in the last two activities, they create their own multimedia resources and assess those created by their classmates. These activities foster communication and collaboration among students and their ability to use and create multimedia resources. Our purpose is to encourage the creativity, motivation, and dynamism of the learning process for both teachers and students.
Does Collocation Inform the Impact of Collaboration?
Lee, Kyungjoon; Brownstein, John S.; Mills, Richard G.; Kohane, Isaac S.
2010-01-01
Background It has been shown that large interdisciplinary teams working across geography are more likely to be impactful. We asked whether the physical proximity of collaborators remained a strong predictor of the scientific impact of their research as measured by citations of the resulting publications. Methodology/Principal Findings Articles published by Harvard investigators from 1993 to 2003 with at least two authors were identified in the domain of biomedical science. Each collaboration was geocoded to the precise three-dimensional location of its authors. Physical distances between any two coauthors were calculated and associated with corresponding citations. Relationship between distance of coauthors and citations for four author relationships (first-last, first-middle, last-middle, and middle-middle) were investigated at different spatial scales. At all sizes of collaborations (from two authors to dozens of authors), geographical proximity between first and last author is highly informative of impact at the microscale (i.e. within building) and beyond. The mean citation for first-last author relationship decreased as the distance between them increased in less than one km range as well as in the three categorized ranges (in the same building, same city, or different city). Such a trend was not seen in other three author relationships. Conclusions/Significance Despite the positive impact of emerging communication technologies on scientific research, our results provide striking evidence for the role of physical proximity as a predictor of the impact of collaborations. PMID:21179507
Towards Semantic e-Science for Traditional Chinese Medicine
Chen, Huajun; Mao, Yuxin; Zheng, Xiaoqing; Cui, Meng; Feng, Yi; Deng, Shuiguang; Yin, Aining; Zhou, Chunying; Tang, Jinming; Jiang, Xiaohong; Wu, Zhaohui
2007-01-01
Background Recent advances in Web and information technologies with the increasing decentralization of organizational structures have resulted in massive amounts of information resources and domain-specific services in Traditional Chinese Medicine. The massive volume and diversity of information and services available have made it difficult to achieve seamless and interoperable e-Science for knowledge-intensive disciplines like TCM. Therefore, information integration and service coordination are two major challenges in e-Science for TCM. We still lack sophisticated approaches to integrate scientific data and services for TCM e-Science. Results We present a comprehensive approach to build dynamic and extendable e-Science applications for knowledge-intensive disciplines like TCM based on semantic and knowledge-based techniques. The semantic e-Science infrastructure for TCM supports large-scale database integration and service coordination in a virtual organization. We use domain ontologies to integrate TCM database resources and services in a semantic cyberspace and deliver a semantically superior experience including browsing, searching, querying and knowledge discovering to users. We have developed a collection of semantic-based toolkits to facilitate TCM scientists and researchers in information sharing and collaborative research. Conclusion Semantic and knowledge-based techniques are suitable to knowledge-intensive disciplines like TCM. It's possible to build on-demand e-Science system for TCM based on existing semantic and knowledge-based techniques. The presented approach in the paper integrates heterogeneous distributed TCM databases and services, and provides scientists with semantically superior experience to support collaborative research in TCM discipline. PMID:17493289
Ho, Kendall; Marsden, Julian; Jarvis-Selinger, Sandra; Novak Lauscher, Helen; Kamal, Noreen; Stenstrom, Rob; Sweet, David; Goldman, Ran D; Innes, Grant
2012-07-12
Emergency medicine departments within several organizations are now advocating the adoption of early intervention guidelines for patients with the signs and symptoms of sepsis. This proposed research will lead to a comprehensive understanding of how diverse emergency department (ED) sites across British Columbia (BC), Canada, engage in a quality improvement collaborative to lead to improvements in time-based process measures and clinical outcomes for septic patients in EDs. To address the challenge of sepsis management, in 2007, the BC Ministry of Health began working with emergency health professionals, including health administrators, to establish a provincial ED collaborative: Evidence to Excellence (E2E). The E2E initiative employs the Institute for Healthcare Improvement (IHI) model and is supported by a Web-based community of practice (CoP) in emergency medicine. It aims to (1) support clinicians in accessing and applying evidence to clinical practice in emergency medicine, (2) support system change and clinical process improvement, and (3) develop resources and strategies to facilitate knowledge translation and process improvement. Improving sepsis management is one of the central foci of the E2E initiative. The primary purpose of our research is to investigate whether the application of sepsis management protocols leads to improved time-based process measures and clinical outcomes for patients presenting to EDs with sepsis. Also, we seek to investigate the implementation of sepsis protocols among different EDs. For example: (1) How can sepsis protocols be harmonized among different EDs? (2) What are health professionals' perspectives on interprofessional collaboration with various EDs? and (3) What are the factors affecting the level of success among EDs? Lastly, working in collaboration with the BC Ministry of Health as our policy-maker partner, the research will investigate how the demonstrated efficacy of this research can be applied on a provincial and national level to establish a template for policy makers from other jurisdictions to translate knowledge into action for EDs. This research study will employ the IHI model for improvement, incorporate the principles of participatory action research, and use the E2E online CoP to engage ED practitioners (eg, physicians, nurses, and administrators, exchanging ideas, engaging in discussions, sharing resources, and amalgamating knowledge) from across BC to (1) share the evidence of early intervention in sepsis, (2) adapt the evidence to their patterns of practice, (3) develop a common set of orders for implementing the sepsis pathway, and (4) agree on common indicators to measure clinical outcomes. Our hypothesis is that combining the social networking ability of an electronic CoP and its inherent knowledge translation capacity with the structured project management of the IHI model will result in widespread and sustained improvement in the emergency and overall care of patients with severe sepsis presenting to EDs throughout BC.
Grethe, Jeffrey S; Baru, Chaitan; Gupta, Amarnath; James, Mark; Ludaescher, Bertram; Martone, Maryann E; Papadopoulos, Philip M; Peltier, Steven T; Rajasekar, Arcot; Santini, Simone; Zaslavsky, Ilya N; Ellisman, Mark H
2005-01-01
Through support from the National Institutes of Health's National Center for Research Resources, the Biomedical Informatics Research Network (BIRN) is pioneering the use of advanced cyberinfrastructure for medical research. By synchronizing developments in advanced wide area networking, distributed computing, distributed database federation, and other emerging capabilities of e-science, the BIRN has created a collaborative environment that is paving the way for biomedical research and clinical information management. The BIRN Coordinating Center (BIRN-CC) is orchestrating the development and deployment of key infrastructure components for immediate and long-range support of biomedical and clinical research being pursued by domain scientists in three neuroimaging test beds.
Using immersive media and digital technology to communicate Earth Science
NASA Astrophysics Data System (ADS)
Kapur, Ravi
2016-04-01
A number of technologies in digital media and interactivity have rapidly advanced and are now converging to enable rich, multi-sensoral experiences which create opportunities for both digital art and science communication. Techniques used in full-dome film-making can now be deployed in virtual reality experiences; gaming technologies can be utilised to explore real data sets; and collaborative interactivity enable new forms of public artwork. This session will explore these converging trends through a number of emerging and forthcoming projects dealing with Earth science, climate change and planetary science.
Emergence: A Planetarium and Art Gallery Collaboration Between Artist, Astronomer, and Musician
NASA Astrophysics Data System (ADS)
Beaver, J.; Waller, J. B.; Turner, M.
2011-09-01
We describe an unusual planetarium program and art gallery exhibition that premiered in Menasha, Wisconsin. Emergence combines fine art and improvisational music with astronomy and physics. The authors, Judith Baker Waller, John Beaver, and Matt Turner, are, respectively, artist, astronomer, and musician. All three acted as partners in planning and executing the final production. The overall goal of Emergence is to use art, music, and natural science each as a point of departure to learn about the others, and to explore the interaction between humans and the natural world and the differences and commonalities between art, science, and music. Of particular interest, the planetarium portion includes techniques that are, so far as we know, unique. Each night the show is different, the details chosen randomly, but always according to the same theoretical scheme. Various elements are parameterized, the show varying with time according to subroutines that dictate the overall pacing and look, but with details always chosen randomly according to prearranged probabilities. We believe that some of these techniques could be of interest to others who wish to explore the unique possibilities of the planetarium as educational performance space. We argue that this provides a useful format for collaborations between artist and scientist, as scientific content can be delivered in a way that is consistent with the concerns of the artist. We describe some of the approaches taken toward these ends in Emergence, and some of the lessons learned about the process of collaboration between a scientist, a visual artist and a performing artist.
Collaboration Portals for NASA's Airborne Field Campaigns
NASA Astrophysics Data System (ADS)
Conover, H.; Kulkarni, A.; Garrett, M.; Goodman, M.; Petersen, W. A.; Drewry, M.; Hardin, D. M.; He, M.
2011-12-01
The University of Alabama in Huntsville (UAH), in collaboration with the Global Hydrology Resource Center, a NASA Earth Science Data Center, has provided information management for a number of NASA Airborne Field campaigns, both hurricane science investigations and satellite instrument validation. Effective field campaign management requires communication and coordination tools, including utilities for personnel to upload and share flight plans, weather forecasts, a variety of mission reports, preliminary science data, and personal photos. Beginning with the Genesis and Rapid Intensification Processes (GRIP) hurricane field campaign in 2010, we have provided these capabilities via a Drupal-based collaboration portal. This portal was reused and modified for the Midlatitude Continental Convective Clouds Experiment (MC3E), part of the Global Precipitation Measurement mission ground validation program. An end goal of these development efforts is the creation of a Drupal profile for field campaign management. This presentation will discuss experiences with Drupal in developing and using these collaboration portals. Topics will include Drupal modules used, advantages and disadvantages of working with Drupal in this context, and how the science teams used the portals in comparison with other communication and collaboration tools.
Collaboration Portals for NASA's Airborne Field Campaigns
NASA Technical Reports Server (NTRS)
Conover, Helen; Kulkami, Ajinkya; Garrett, Michele; Goodman, Michael; Peterson, Walter Arthur; Drewry, Marilyn; Hardin, Danny M.; He, Matt
2011-01-01
The University of Alabama in Huntsville (UAH), in collaboration with the Global Hydrology Resource Center, a NASA Earth Science Data Center, has provided information management for a number of NASA Airborne Field campaigns, both hurricane science investigations and satellite instrument validation. Effective field campaign management requires communication and coordination tools, including utilities for personnel to upload and share flight plans, weather forecasts, a variety of mission reports, preliminary science data, and personal photos. Beginning with the Genesis and Rapid Intensification Processes (GRIP) hurricane field campaign in 2010, we have provided these capabilities via a Drupal-based collaboration portal. This portal was reused and modified for the Midlatitude Continental Convective Clouds Experiment (MC3E), part of the Global Precipitation Measurement mission ground validation program. An end goal of these development efforts is the creation of a Drupal profile for field campaign management. This presentation will discuss experiences with Drupal in developing and using these collaboration portals. Topics will include Drupal modules used, advantages and disadvantages of working with Drupal in this context, and how the science teams used the portals in comparison with other communication and collaboration tools.
NASA Astrophysics Data System (ADS)
Sharma, Mangala; Smith, D.; Mendez, B.; Shipp, S.; Schwerin, T.; Stockman, S.; Cooper, L.
2010-03-01
The AAS-HEAD community has a rich history of involvement in education and public outreach (E/PO). HEAD members have been using NASA science and educational resources to engage and educate youth and adults nationwide in science, technology, engineering, and mathematics topics. Four new Science Education and Public Outreach Forums ("Forums") funded by NASA Science Mission Directorate (SMD) are working in partnership with the research and education community to ensure that current and future SMD-funded E/PO activities form a seamless whole, with easy entry points for scientists, engineers, faculty, students, K-12 formal and informal science educators, general public, and E/PO professionals alike. These Forums support the astrophysics, heliophysics, planetary and Earth science divisions of NASA SMD in three core areas: 1) E/PO community engagement and development to facilitate clear paths of involvement for scientists, engineers and others interested - or potentially interested - in participating in SMD-funded E/PO activities. Collaborations with science professionals are vital for infusing current, accurate SMD mission and research findings into educational products and activities. Forum activities will yield readily accessible information on effective E/PO strategies, resources, and expertise; context for individual E/PO activities; and opportunities for collaboration. 2) A rigorous analysis of SMD-funded E/PO products and activities to help understand how the existing collection supports education standards and audience needs and to identify areas of opportunity for new materials and activities. K-12 formal, informal, and higher education products and activities are included in this analysis. 3) Finally, to address E/PO-related systemic issues and coordinate related activities across the four SMD science divisions. By supporting the NASA E/PO community and facilitating coordination of E/PO activities within and across disciplines, the SMD-Forum partnerships will lead to more effective, sustainable, and efficient utilization of NASA science discoveries and learning experiences.
Mapping the Growing Discipline of Dissemination and Implementation Science in Health
Norton, Wynne E.; Lungeanu, Alina; Chambers, David A.; Contractor, Noshir
2017-01-01
Background The field of dissemination and implementation (D&I) research in health has grown considerably in the past decade. Despite the potential for advancing the science, limited research has focused on mapping the field. Methods We administered an online survey to individuals in the D&I field to assess participants’ demographics and expertise, as well as engagement with journals and conferences, publications, and grants. A combined roster–nomination method was used to collect data on participants’ advice networks and collaboration networks; participants’ motivations for choosing collaborators was also assessed. Frequency and descriptive statistics were used to characterize the overall sample; network metrics were used to characterize both networks. Among a sub-sample of respondents who were researchers, regression analyses identified predictors of two metrics of academic performance (i.e., publications and funded grants). Results A total of 421 individuals completed the survey, representing a 30.75% response rate of eligible individuals. Most participants were White (n = 343), female (n = 284, 67.4%), and identified as a researcher (n = 340, 81%). Both the advice and the collaboration networks displayed characteristics of a small world network. The most important motivations for selecting collaborators were aligned with advancing the science (i.e., prior collaborators, strong reputation, and good collaborators) rather than relying on human proclivities for homophily, proximity, and friendship. Among a sub-sample of 295 researchers, expertise (individual predictor), status (advice network), and connectedness (collaboration network) were significant predictors of both metrics of academic performance. Conclusions Network-based interventions can enhance collaboration and productivity; future research is needed to leverage these data to advance the field. PMID:29249842
Mapping the Growing Discipline of Dissemination and Implementation Science in Health.
Norton, Wynne E; Lungeanu, Alina; Chambers, David A; Contractor, Noshir
2017-09-01
The field of dissemination and implementation (D&I) research in health has grown considerably in the past decade. Despite the potential for advancing the science, limited research has focused on mapping the field. We administered an online survey to individuals in the D&I field to assess participants' demographics and expertise, as well as engagement with journals and conferences, publications, and grants. A combined roster-nomination method was used to collect data on participants' advice networks and collaboration networks; participants' motivations for choosing collaborators was also assessed. Frequency and descriptive statistics were used to characterize the overall sample; network metrics were used to characterize both networks. Among a sub-sample of respondents who were researchers, regression analyses identified predictors of two metrics of academic performance (i.e., publications and funded grants). A total of 421 individuals completed the survey, representing a 30.75% response rate of eligible individuals. Most participants were White (n = 343), female (n = 284, 67.4%), and identified as a researcher (n = 340, 81%). Both the advice and the collaboration networks displayed characteristics of a small world network. The most important motivations for selecting collaborators were aligned with advancing the science (i.e., prior collaborators, strong reputation, and good collaborators) rather than relying on human proclivities for homophily, proximity, and friendship. Among a sub-sample of 295 researchers, expertise (individual predictor), status (advice network), and connectedness (collaboration network) were significant predictors of both metrics of academic performance. Network-based interventions can enhance collaboration and productivity; future research is needed to leverage these data to advance the field.
2008-03-01
respect to various key attributes. Although the principles of low-end and new market disruption play the most significant role in the fluid and...crucial role in the emergence of breakthrough and game changing ideas. By examining these key elements with regard to industry innovation, a base...that help define the key characteristics of an innovative culture: strong customer focus, collaboration, effective processes , creative people
NASA Technical Reports Server (NTRS)
Ross, M. D.
2001-01-01
Safety of astronauts during long-term space exploration is a priority for NASA. This paper describes efforts to produce Earth-based models for providing expert medical advice when unforeseen medical emergencies occur on spacecraft. These models are Virtual Collaborative Clinics that reach into remote sites using telecommunications and emerging stereo-imaging and sensor technologies. c 2001. Elsevier Science Ltd. All rights reserved.
Ready for the Future: Assessing the Collaborative Capacity of State Emergency Management Agencies
2013-03-01
Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503. 1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE March 2013...Preparedness) SEOC State Emergency Operations Center xiv SFI Strategic Foresight Initiative SPSS Statistical Package for the Social Sciences UASI... management discipline and to define the core capabilities to meet those needs. The Strategic Foresight Initiative (SFI) resulted in a vision document
Cheng, Eddie W L; Chu, Samuel K W
2016-08-01
Given the increasing use of web technology for teaching and learning, this study developed and examined an extended version of the theory of planned behaviour (TPB) model, which explained students' intention to collaborate online for their group projects. Results indicated that past experience predicted the three antecedents of intention, while past behaviour was predictive of subjective norm and perceived behavioural control. Moreover, the three antecedents (attitude towards e-collaboration, subjective norm and perceived behavioural control) were found to significantly predict e-collaborative intention. This study explored the use of the "remember" type of awareness (i.e. past experience) and evaluated the value of the "know" type of awareness (i.e. past behaviour) in the TPB model. © 2015 International Union of Psychological Science.
NASA Astrophysics Data System (ADS)
Siry, Christina
2013-12-01
Beginning with the assumption that young children are capable of producing unprecedented knowledges about science phenomena, this paper explores the complexities of children's inquiries within open-ended investigations. I ask two central questions: (1) how can we (teachers, researchers, and children themselves) use and build upon children's explorations in science in practice? and (2) what pedagogical approaches can position children as experts on their experiences to facilitate children's sense of ownership in the process of learning science? Six vignettes from a Kindergarten classroom are analyzed to elaborate the central claim of this work, which is that when children are engaged in collaborative open-ended activities, science emerges from their interactions. Open-ended structures allowed for teachers and children to facilitate further investigations collaboratively, and participatory structures mediated children's representations and explanations of their investigations. Evidence of children's interactions is used to illustrate the complexities of children's explorations, and pedagogical approaches that create the spaces for children to create knowledge are highlighted.
NASA Astrophysics Data System (ADS)
Smith, Denise A.; Peticolas, L.; Schwerin, T.; Shipp, S.
2014-01-01
The NASA Science Mission Directorate (SMD) Education and Public Outreach (E/PO) program provides a direct return on the public’s investment in NASA’s science missions and research programs through a comprehensive suite of educational resources and opportunities for students, educators, and the public. Four Science Education and Public Outreach Forums work with SMD-funded missions, research programs, and grantees to organize individual E/PO activities into a coordinated, effective, and efficient nationwide effort, with easy entry points for scientists, educators, and the public. We outline the Forums’ role in 1) facilitating communication and collaboration among SMD E/PO programs, scientists, and educators; 2) supporting utilization of best practices and educational research; 3) creating clear paths of involvement for scientists interested in SMD E/PO; and, 4) enabling efficient and effective use of NASA content and education products. Our work includes a cross-Forum collaboration to inventory existing SMD education materials; identify and analyze gaps; and interconnect and organize materials in an accessible manner for multiple audiences. The result is NASAWavelength.org, a one-stop-shop for all NASA SMD education products, including tools to help users identify resources based upon their needs and national education standards. The Forums have also collaborated with the SMD E/PO community to provide a central point of access to metrics, evaluation findings, and impacts for SMD-funded E/PO programs (http://smdepo.org/page/5324). We also present opportunities for the astronomy community to participate in collaborations supporting NASA SMD efforts in the K - 12 Formal Education, Informal Education and Outreach, Higher Education and Research Scientist communities. See Bartolone et al., Lawton et al., Meinke et al., and Buxner et al. (this conference), respectively, to learn about Forum resources and opportunities specific to each of these communities.
Bird, Colin L; Frey, Jeremy G
2013-08-21
Recently, a number of organisations have called for open access to scientific information and especially to the data obtained from publicly funded research, among which the Royal Society report and the European Commission press release are particularly notable. It has long been accepted that building research on the foundations laid by other scientists is both effective and efficient. Regrettably, some disciplines, chemistry being one, have been slow to recognise the value of sharing and have thus been reluctant to curate their data and information in preparation for exchanging it. The very significant increases in both the volume and the complexity of the datasets produced has encouraged the expansion of e-Research, and stimulated the development of methodologies for managing, organising, and analysing "big data". We review the evolution of cheminformatics, the amalgam of chemistry, computer science, and information technology, and assess the wider e-Science and e-Research perspective. Chemical information does matter, as do matters of communicating data and collaborating with data. For chemistry, unique identifiers, structure representations, and property descriptors are essential to the activities of sharing and exchange. Open science entails the sharing of more than mere facts: for example, the publication of negative outcomes can facilitate better understanding of which synthetic routes to choose, an aspiration of the Dial-a-Molecule Grand Challenge. The protagonists of open notebook science go even further and exchange their thoughts and plans. We consider the concepts of preservation, curation, provenance, discovery, and access in the context of the research lifecycle, and then focus on the role of metadata, particularly the ontologies on which the emerging chemical Semantic Web will depend. Among our conclusions, we present our choice of the "grand challenges" for the preservation and sharing of chemical information.
Aerospace, Chemical and Material Sciences
2012-03-05
Origami , ASDR&E COI Materials, Joint AFOSR/RX/RH Center of Excellence at Georgia Tech on Bio Materials Rice professor’s nanotube theory confirmed...Jason’s Study) • (Schmisseur invited expert and our newest AIAA Fellow!!!) • AFOSR-NSF collaborative agreement & Origami Initiative • (collaborative
Transformative Professional Development: Inquiry-Based College Science Teaching Institutes
ERIC Educational Resources Information Center
Zhao, Ningfeng; Witzig, Stephen B.; Weaver, Jan C.; Adams, John E.; Schmidt, Frank
2012-01-01
Two Summer Institutes funded by the National Science Foundation were held for current and future college science faculty. The overall goal was to promote learning and practice of inquiry-based college science teaching. We developed a collaborative and active learning format for participants that involved all phases of the 5E learning cycle of…
Duda, Kenneth A.; Abrams, Michael
2007-01-01
Satellite images have been extremely useful in a variety of emergency response activities, including hurricane disasters. This article discusses the collaborative efforts of the U.S. Geological Survey (USGS), the Joint United States-Japan Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Science Team, and the National Aeronautics and Space Administration (NASA) in responding to crisis situations by tasking the ASTER instrument and rapidly providing information to initial responders. Insight is provided on the characteristics of the ASTER systems, and specific details are presented regarding Hurricane Katrina support.
NASA Astrophysics Data System (ADS)
Lawton, Brandon L.; Smith, D. A.; SMD Astrophysics E/PO Community, NASA
2013-01-01
The NASA Science Education and Public Outreach Forums support the NASA Science Mission Directorate (SMD) and its education and public outreach (E/PO) community in enhancing the coherence, efficiency, and effectiveness of SMD-funded E/PO programs. As a part of this effort, the Astrophysics Forum is coordinating a collaborative project among the NASA SMD astrophysics missions and E/PO programs to create a broader impact for the use of real NASA data in classrooms. Among NASA's major education goals is the training of students in the Science, Technology, Engineering, and Math (STEM) disciplines. The use of real data, from some of the most sophisticated observatories in the world, provide educators an authentic opportunity to teach students basic science process skills, inquiry, and real-world applications of the STEM subjects. The goal of this NASA SMD astrophysics community collaboration is to find a way to maximize the reach of existing real data products produced by E/PO professionals working with NASA E/PO grants and missions in ways that enhance the teaching of the STEM subjects. We present an initial result of our collaboration: defining levels of basic science process skills that lie at the heart of authentic scientific research and national education standards (AAAS Benchmarks) and examples of NASA data products that align with those levels. Our results are the beginning of a larger goal of utilizing the new NASA education resource catalog, NASA Wavelength, for the creation of progressions that tie NASA education resources together. We aim to create an informational sampler that illustrates how an educator can use the NASA Wavelength resource catalog to connect NASA real-data resources that meet the educational goals of their class.
NASA Astrophysics Data System (ADS)
Lawton, Brandon L.; Smith, Denise A.; Meinke, Bonnie K.; Bartolone, Lindsay; Manning, Jim; Schultz, Gregory R.; NASA Astrophysics E/PO Community
2016-01-01
For the past six years, NASA's Science Mission Directorate (SMD) has coordinated the work of its mission- and program-embedded education and public outreach (E/PO) efforts through four forums representing its four science divisions. The Astrophysics Forum, as the others, has built on SMD's long-standing principle of partnering scientists and educators and embedding E/PO in its missions to encourage and coordinate collaborative efforts to make the most efficient and effective use of NASA resources, personnel, data and discoveries in leveraged ways, in support of the nation's science education. Three priorities established early in the Forum's period of activity were to collaboratively enhance professional development for formal and informal educators, develop key themes & resources centered on astrophysics topics, and broaden the reach of astrophysics E/PO to traditionally underserved audiences in STEM subjects. This presentation will highlight some of the achievements of the Astrophysics E/PO community and Forum in these priority areas. This work constitutes an ongoing legacy--a firm foundation on which the new structure of NASA SMD education efforts will go forward.
NASA Astrophysics Data System (ADS)
Tobin, Kenneth
2012-03-01
I have been involved in research on collaborative activities for improving the quality of teaching and learning high school science. Initially the collaborative activities we researched involved the uses of coteaching and cogenerative dialogue in urban middle and high schools in Philadelphia and New York (currently I have active research sites in New York and Brisbane, Australia). The research not only transformed practices but also produced theories that informed the development of additional collaborative activities and served as interventions for research and creation of heuristics for professional development programs and teacher certification courses. The presentation describes a collage of collaborative approaches to teaching and learning science, including coteaching, cogenerative dialogue, radical listening, critical reflection, and mindful action. For each activity in the collage I provide theoretical frameworks and empirical support, ongoing research, and priorities for the road ahead. I also address methodologies used in the research, illustrating how teachers and students collaborated as researchers in multilevel investigations of teaching and learning and learning to teach that included ethnography, video analysis, and sophisticated analyses of the voice, facial expression of emotion, eye gaze, and movement of the body during classroom interactions. I trace the evolution of studies of face-to-face interactions in science classes to the current focus on emotions and physiological aspects of teaching and learning (e.g., pulse rate, pulse strength, breathing patterns) that relate to science participation and achievement.
From Darwin to the Census of Marine Life: Marine Biology as Big Science
Vermeulen, Niki
2013-01-01
With the development of the Human Genome Project, a heated debate emerged on biology becoming ‘big science’. However, biology already has a long tradition of collaboration, as natural historians were part of the first collective scientific efforts: exploring the variety of life on earth. Such mappings of life still continue today, and if field biology is gradually becoming an important subject of studies into big science, research into life in the world's oceans is not taken into account yet. This paper therefore explores marine biology as big science, presenting the historical development of marine research towards the international ‘Census of Marine Life’ (CoML) making an inventory of life in the world's oceans. Discussing various aspects of collaboration – including size, internationalisation, research practice, technological developments, application, and public communication – I will ask if CoML still resembles traditional collaborations to collect life. While showing both continuity and change, I will argue that marine biology is a form of natural history: a specific way of working together in biology that has transformed substantially in interaction with recent developments in the life sciences and society. As a result, the paper does not only give an overview of transformations towards large scale research in marine biology, but also shines a new light on big biology, suggesting new ways to deepen the understanding of collaboration in the life sciences by distinguishing between different ‘collective ways of knowing’. PMID:23342119
NASA Astrophysics Data System (ADS)
Siry, Christina A.
This study explores the use of coteaching and cogenerative dialogue in pre-service elementary teacher education, and the ways in which collaborating to share responsibility for learning and teaching can afford the development of solidarity and new teachers' identity transformations. Specifically, the research detailed in this dissertation focuses on learning to teach science in a field-based methods course taught partially on a college campus and partially in an urban elementary school. I used critical ethnography guided by the theoretical frameworks of cultural sociology and the sociology of emotions. The lens of phenomenology provided the contextual aspects of the individual experience, and design experiment was utilized as the research unfolded, affording continual redesign of the work. Issues of identity and group membership are central to this research, and I have explored connections between the emergence of solidarity within a group of teachers and the individual identity transformations supported through a collective sense of belonging. A key component of this study was an analysis of the co-responsibility nurtured through coteaching and cogenerative dialogue, and thus the dialectical relationship between the individual and the collective is critical to this research. At the individual level, I examined identity development, and individual participation in a field-based methods course. At the collective level, I considered the ways that participants form collective identities and group solidarity. Two of the chapters of my dissertation are coauthored with students, as I have sought to dismantle teacher-student hierarchies and replace them with complex relationships supported through polysemic and polyphonic approaches to research. In examining identity and solidarity as they emerged from this approach, I make the following contributions to science teacher education; (1) identify resources and practices in elementary science teaching that surface in a collaborative field-based framework, (2) investigate identity transformations that occur among participants in a collaborative field-based framework and (3) explore the ways in which this approach helped pre-service teachers and myself develop a sense of community. By fulfilling these connected goals, this research draws implications for teacher education programs and provides insights towards creating collaborative approaches to teacher education courses.
Keshmiri, Fatemeh; Rezai, Mahdi; Mosaddegh, Reza; Moradi, Kamran; Hafezimoghadam, Peyman; Zare, Mohammad Amin; Tavakoli, Nader; Cheraghi, Mohammad Ali; Shirazi, Mandana
2017-05-01
This study aimed to assess the effectiveness of an interprofessional education model (IPE) based on the transtheoretical model to improve the participants' interprofessional collaborative practice. The study was conducted in Iran using a controlled before-and-after study design. The participants (n = 91) were the residents of emergency medicine and nurses of the emergency units from two teaching hospitals affiliated to Iran University of Medical Sciences. The participants in the intervention group (n = 40) were 22 residents and 18 nurses. The control group (n = 51) consisted of 20 residents and 31 nurses. The participants were classified based on their stage of readiness to change. The interventions were two-day workshops for each stage (i.e., attitude and intention). We used the Interprofessional Collaborator Assessment Rubric (ICAR) to assess the effectiveness of the developed model. The interprofessional collaboration of the participants in the intervention and control groups was assessed at four time points before and after the intervention in the real emergency unit environment. Student's t-test and repeated measures analysis of variance (RM-ANOVA) were used to analyse the data. We used partial eta-squared (η 2 ) for effect size calculations. The mean values of ICAR scores in the intervention and control groups were 95.63 ± 19.14 and 89.19 ± 16.11 before the intervention. The mean values of ICAR scores at 3 months after the intervention were 99.82 ± 22.32 and 88.29 ± 16.87 in the intervention and control groups, respectively. After 6 months, the mean values of ICAR scores of the intervention and control groups were 98.6 ± 23.40 and 87.98 ± 16.01, respectively. The results showed that the intervention had a medium educational effect size (partial η 2 = 0.06) on performance of the participants. Our results showed that an IPE model that is tailored to the learners' stage of readiness to change improves interprofessional collaboration in the participants. The developed model could be applied for improving interprofessional collaborative performance in other IPE programmes.
Center of Excellence in Space Data and Information Sciences
NASA Technical Reports Server (NTRS)
1998-01-01
This report summarizes the range of computer science-related activities undertaken by CESDIS for NASA in the twelve months from July 1, 1997 through June 30, 1998. These activities address issues related to accessing, processing, and analyzing data from space observing systems through collaborative efforts with university, industry, and NASA space and Earth scientists. The sections of this report which follow, detail the activities undertaken by the members of each of the CESDIS branches. This includes contributions from university faculty members and graduate students as well as CESDIS employees. Phone numbers and e-mail addresses appear in Appendix E (CESDIS Personnel and Associates) to facilitate interactions and new collaborations.
NASA Astrophysics Data System (ADS)
Reuter, Jamie M.
The recent decades have seen an increased focus on improving early science education. Goals include helping young children learn about pertinent concepts in science, and fostering early scientific reasoning and inquiry skills (e.g., NRC 2007, 2012, 2015). However, there is still much to learn about what constitutes appropriate frameworks that blend science education with developmentally appropriate learning environments. An important goal for the construction of early science is a better understanding of appropriate learning experiences and expectations for preschool children. This dissertation examines some of these concerns by focusing on three dimensions of science learning in the preschool classroom: (1) the learner; (2) instructional tools and pedagogy; and (3) the social context of learning with peers. In terms of the learner, the dissertation examines some dimensions of preschool children's scientific reasoning skills in the context of potentially relevant, developing general reasoning abilities. As young children undergo rapid cognitive changes during the preschool years, it is important to explore how these may influence scientific thinking. Two features of cognitive functioning have been carefully studied: (1) the demonstration of an epistemic awareness through an emerging theory of mind, and (2) the rapid improvement in executive functioning capacity. Both continue to develop through childhood and adolescence, but changes in early childhood are especially striking and have been neglected as regards their potential role in scientific thinking. The question is whether such skills relate to young children's capacity for scientific thinking. Another goal was to determine whether simple physics diagrams serve as effective instructional tools in supporting preschool children's scientific thinking. Specifically, in activities involving predicting and checking in scientific contexts, the question is whether such diagrams facilitate children's ability to accurately recall initial predictions, as well as discriminate between the outcome of a scientific manipulation and their original predictions (i.e., to determine whether one's predictions were confirmed). Finally, this dissertation also explores the social context of learning science with peers in the preschool classroom. Due to little prior research in this area, it is currently unclear whether and how preschool children may benefit from working with peers on science activities in the classroom. This work aims to examine preschoolers' collaboration on a science learning activity, as well as the developmental function for such collaborative skills over the preschool years.
NASA Astrophysics Data System (ADS)
Hey, Tony
2002-08-01
After defining what is meant by the term 'e-Science', this talk will survey the activity on e-Science and Grids in Europe. The two largest initiatives in Europe are the European Commission's portfolio of Grid projects and the UK e-Science program. The EU under its R Framework Program are funding nearly twenty Grid projects in a wide variety of application areas. These projects are in varying stages of maturity and this talk will focus on a subset that have most significant progress. These include the EU DataGrid project led by CERN and two projects - EuroGrid and Grip - that evolved from the German national Unicore project. A summary of the other EU Grid projects will be included. The UK e-Science initiative is a 180M program entirely focused on e-Science applications requiring resource sharing, a virtual organization and a Grid infrastructure. The UK program is unique for three reasons: (1) the program covers all areas of science and engineering; (2) all of the funding is devoted to Grid application and middleware development and not to funding major hardware platforms; and (3) there is an explicit connection with industry to produce robust and secure industrial-strength versions of Grid middleware that could be used in business-critical applications. A part of the funding, around 50M, but requiring an additional 'matching' $30M from industry in collaborative projects, forms the UK e-Science 'Core Program'. It is the responsibility of the Core Program to identify and support a set of generic middleware requirements that have emerged from a requirements analysis of the e-Science application projects. This has led to a much more data-centric vision for 'the Grid' in the UK in which access to HPC facilities forms only one element. More important for the UK projects are issues such as enabling access and federation of scientific data held in files, relational databases and other archives. Automatic annotation of data generated by high throughput experiments with XML-based metadata is seen as a key step towards developing higher-level Grid services for information retrieval and knowledge discovery. The talk will conclude with a survey of other Grid initiatives across Europe and look at possible future European projects.
Science and the city: A visual journey towards a critical place based science education
NASA Astrophysics Data System (ADS)
Ibrahim, Sheliza
The inclusion of societal and environmental considerations during the teaching and learning of science and technology has been a central focus among science educators for many decades. Major initiatives in science and technology curriculum advocate for science, technology, society and environment (STSE). Yet, it is surprising that despite these longstanding discussions, it is only recently that a handful of researchers have turned to students' 'places' (and the literature of place based education) to serve as a source of teaching and learning in science education. In my study, I explore three issues evident in place based science education. First, it seems that past scholarship focused on place-based projects which explore issues usually proposed by government initiatives, university affiliation, or community organizations. Second, some of the studies fail to pay extended attention to the collaborative and intergenerational agency that occurs between researcher, teacher, student, and community member dynamics, nor does it share the participatory action research process in order to understand how teacher practice, student learning, and researcher/local collaborations might help pedagogy emerge. The third issue is that past place-based projects, rarely if ever, return to the projects to remember the collaborative efforts and question what aspects sustained after they were complete. To address these issues, I propose a critical place based science education (CPBSE) model. I describe a participatory action research project that develops and explores the CPBSE model. The data were gathered collaboratively among teachers, researchers, and students over 3 years (2006-2008), via digital video ethnography, photographs, and written reflections. The data were analysed using a case study approach and the constant comparative method. I discuss the implications for its practice in the field of STSE and place based education. I conclude that an effective pedagogical model of CPBSE comprises of three stages: critical visualizing, investigating, remembering, by sharing Science and the City (a case study that connects science to place using visual imagery).
Davies, Gail F; Greenhough, Beth J; Hobson-West, Pru; Kirk, Robert G W; Applebee, Ken; Bellingan, Laura C; Berdoy, Manuel; Buller, Henry; Cassaday, Helen J; Davies, Keith; Diefenbacher, Daniela; Druglitrø, Tone; Escobar, Maria Paula; Friese, Carrie; Herrmann, Kathrin; Hinterberger, Amy; Jarrett, Wendy J; Jayne, Kimberley; Johnson, Adam M; Johnson, Elizabeth R; Konold, Timm; Leach, Matthew C; Leonelli, Sabina; Lewis, David I; Lilley, Elliot J; Longridge, Emma R; McLeod, Carmen M; Miele, Mara; Nelson, Nicole C; Ormandy, Elisabeth H; Pallett, Helen; Poort, Lonneke; Pound, Pandora; Ramsden, Edmund; Roe, Emma; Scalway, Helen; Schrader, Astrid; Scotton, Chris J; Scudamore, Cheryl L; Smith, Jane A; Whitfield, Lucy; Wolfensohn, Sarah
2016-01-01
Improving laboratory animal science and welfare requires both new scientific research and insights from research in the humanities and social sciences. Whilst scientific research provides evidence to replace, reduce and refine procedures involving laboratory animals (the '3Rs'), work in the humanities and social sciences can help understand the social, economic and cultural processes that enhance or impede humane ways of knowing and working with laboratory animals. However, communication across these disciplinary perspectives is currently limited, and they design research programmes, generate results, engage users, and seek to influence policy in different ways. To facilitate dialogue and future research at this interface, we convened an interdisciplinary group of 45 life scientists, social scientists, humanities scholars, non-governmental organisations and policy-makers to generate a collaborative research agenda. This drew on methods employed by other agenda-setting exercises in science policy, using a collaborative and deliberative approach for the identification of research priorities. Participants were recruited from across the community, invited to submit research questions and vote on their priorities. They then met at an interactive workshop in the UK, discussed all 136 questions submitted, and collectively defined the 30 most important issues for the group. The output is a collaborative future agenda for research in the humanities and social sciences on laboratory animal science and welfare. The questions indicate a demand for new research in the humanities and social sciences to inform emerging discussions and priorities on the governance and practice of laboratory animal research, including on issues around: international harmonisation, openness and public engagement, 'cultures of care', harm-benefit analysis and the future of the 3Rs. The process outlined below underlines the value of interdisciplinary exchange for improving communication across different research cultures and identifies ways of enhancing the effectiveness of future research at the interface between the humanities, social sciences, science and science policy.
Davies, Gail F.; Greenhough, Beth J; Hobson-West, Pru; Kirk, Robert G. W.; Applebee, Ken; Bellingan, Laura C.; Berdoy, Manuel; Buller, Henry; Cassaday, Helen J.; Davies, Keith; Diefenbacher, Daniela; Druglitrø, Tone; Escobar, Maria Paula; Friese, Carrie; Herrmann, Kathrin; Hinterberger, Amy; Jarrett, Wendy J.; Jayne, Kimberley; Johnson, Adam M.; Johnson, Elizabeth R.; Konold, Timm; Leach, Matthew C.; Leonelli, Sabina; Lewis, David I.; Lilley, Elliot J.; Longridge, Emma R.; McLeod, Carmen M.; Miele, Mara; Nelson, Nicole C.; Ormandy, Elisabeth H.; Pallett, Helen; Poort, Lonneke; Pound, Pandora; Ramsden, Edmund; Roe, Emma; Scalway, Helen; Schrader, Astrid; Scotton, Chris J.; Scudamore, Cheryl L.; Smith, Jane A.; Whitfield, Lucy; Wolfensohn, Sarah
2016-01-01
Improving laboratory animal science and welfare requires both new scientific research and insights from research in the humanities and social sciences. Whilst scientific research provides evidence to replace, reduce and refine procedures involving laboratory animals (the ‘3Rs’), work in the humanities and social sciences can help understand the social, economic and cultural processes that enhance or impede humane ways of knowing and working with laboratory animals. However, communication across these disciplinary perspectives is currently limited, and they design research programmes, generate results, engage users, and seek to influence policy in different ways. To facilitate dialogue and future research at this interface, we convened an interdisciplinary group of 45 life scientists, social scientists, humanities scholars, non-governmental organisations and policy-makers to generate a collaborative research agenda. This drew on methods employed by other agenda-setting exercises in science policy, using a collaborative and deliberative approach for the identification of research priorities. Participants were recruited from across the community, invited to submit research questions and vote on their priorities. They then met at an interactive workshop in the UK, discussed all 136 questions submitted, and collectively defined the 30 most important issues for the group. The output is a collaborative future agenda for research in the humanities and social sciences on laboratory animal science and welfare. The questions indicate a demand for new research in the humanities and social sciences to inform emerging discussions and priorities on the governance and practice of laboratory animal research, including on issues around: international harmonisation, openness and public engagement, ‘cultures of care’, harm-benefit analysis and the future of the 3Rs. The process outlined below underlines the value of interdisciplinary exchange for improving communication across different research cultures and identifies ways of enhancing the effectiveness of future research at the interface between the humanities, social sciences, science and science policy. PMID:27428071
Nanotechnology research: applications in nutritional sciences.
Srinivas, Pothur R; Philbert, Martin; Vu, Tania Q; Huang, Qingrong; Kokini, Josef L; Saltos, Etta; Saos, Etta; Chen, Hongda; Peterson, Charles M; Friedl, Karl E; McDade-Ngutter, Crystal; Hubbard, Van; Starke-Reed, Pamela; Miller, Nancy; Betz, Joseph M; Dwyer, Johanna; Milner, John; Ross, Sharon A
2010-01-01
The tantalizing potential of nanotechnology is to fabricate and combine nanoscale approaches and building blocks to make useful tools and, ultimately, interventions for medical science, including nutritional science, at the scale of approximately 1-100 nm. In the past few years, tools and techniques that facilitate studies and interventions in the nanoscale range have become widely available and have drawn widespread attention. Recently, investigators in the food and nutrition sciences have been applying the tools of nanotechnology in their research. The Experimental Biology 2009 symposium entitled "Nanotechnology Research: Applications in Nutritional Sciences" was organized to highlight emerging applications of nanotechnology to the food and nutrition sciences, as well as to suggest ways for further integration of these emerging technologies into nutrition research. Speakers focused on topics that included the problems and possibilities of introducing nanoparticles in clinical or nutrition settings, nanotechnology applications for increasing bioavailability of bioactive food components in new food products, nanotechnology opportunities in food science, as well as emerging safety and regulatory issues in this area, and the basic research applications such as the use of quantum dots to visualize cellular processes and protein-protein interactions. The session highlighted several emerging areas of potential utility in nutrition research. Nutrition scientists are encouraged to leverage ongoing efforts in nanomedicine through collaborations. These efforts could facilitate exploration of previously inaccessible cellular compartments and intracellular pathways and thus uncover strategies for new prevention and therapeutic modalities.
2016-09-07
and the University of Southern California through have been collaborating on a proposal led by Florida International University’s School of Computing...security. We will develop an action plan to identify needs, assess vulnerabilities and address disruptive technologies that could clearly provide a ...Institute of Technology and his Bachelor of Science degree in Aerospace Engineering, Polytechnic University of New York. Mr. Hurtado is a member of the
[Research activities in Kobe-Indonesia Collaborative Research Centers].
Utsumi, Takako; Hayashi, Yoshitake; Hotta, Hak
2013-01-01
Kobe-Indonesia Collaborative Research Center was established in Institute of Tropical Disease (ITD), Airlangga University, Surabaya, Indonesia in 2007 under the program of ''Founding Research Centers for Emerging and Reemerging Infectious Diseases'' supported by the Ministry of Education, Culture, Sports, Science and Technology, Japan, and then it has been under the Japan Initiative for Global Research Network on Infectious Diseases (J-GRID) since 2010. Japanese researchers have been stationed at ITD, conducting joint researches on influenza, viral hepatitis, dengue and infectious diarrhea. Also, another Japanese researcher has been stationed at Faculty of Medicine, University of Indonesia, Jakarta, carrying out joint researches on'' Identification of anti-hepatitis C virus (HCV) substances and development of HCV and dengue vaccines'' in collaboration with University of Indonesia and Airlangga University through the Science and Technology Research Partnership for Sustainable Development (SATREPS) supported by the Japan Science and Technology Agency (JST) and Japan International Cooperation Agency (JICA) since 2009. In this article, we briefly introduce the background history of Kobe University Research Center in Indonesia, and discuss the research themes and outcomes of J-GRID and SATREPS activities.
A Collaborative Decision Environment for UAV Operations
NASA Technical Reports Server (NTRS)
D'Ortenzio, Matthew V.; Enomoto, Francis Y.; Johan, Sandra L.
2005-01-01
NASA is developing Intelligent Mission Management (IMM) technology for science missions employing long endurance unmanned aerial vehicles (UAV's). The IMM groundbased component is the Collaborative Decision Environment (CDE), a ground system that provides the Mission/Science team with situational awareness, collaboration, and decisionmaking tools. The CDE is used for pre-flight planning, mission monitoring, and visualization of acquired data. It integrates external data products used for planning and executing a mission, such as weather, satellite data products, and topographic maps by leveraging established and emerging Open Geospatial Consortium (OGC) standards to acquire external data products via the Internet, and an industry standard geographic information system (GIs) toolkit for visualization As a Science/Mission team may be geographically dispersed, the CDE is capable of providing access to remote users across wide area networks using Web Services technology. A prototype CDE is being developed for an instrument checkout flight on a manned aircraft in the fall of 2005, in preparation for a full deployment in support of the US Forest Service and NASA Ames Western States Fire Mission in 2006.
Creating Time: Social Collaboration in Music Improvisation.
Walton, Ashley E; Washburn, Auriel; Langland-Hassan, Peter; Chemero, Anthony; Kloos, Heidi; Richardson, Michael J
2018-01-01
Musical collaboration emerges from the complex interaction of environmental and informational constraints, including those of the instruments and the performance context. Music improvisation in particular is more like everyday interaction in that dynamics emerge spontaneously without a rehearsed score or script. We examined how the structure of the musical context affords and shapes interactions between improvising musicians. Six pairs of professional piano players improvised with two different backing tracks while we recorded both the music produced and the movements of their heads, left arms, and right arms. The backing tracks varied in rhythmic and harmonic information, from a chord progression to a continuous drone. Differences in movement coordination and playing behavior were evaluated using the mathematical tools of complex dynamical systems, with the aim of uncovering the multiscale dynamics that characterize musical collaboration. Collectively, the findings indicated that each backing track afforded the emergence of different patterns of coordination with respect to how the musicians played together, how they moved together, as well as their experience collaborating with each other. Additionally, listeners' experiences of the music when rating audio recordings of the improvised performances were related to the way the musicians coordinated both their playing behavior and their bodily movements. Accordingly, the study revealed how complex dynamical systems methods (namely recurrence analysis) can capture the turn-taking dynamics that characterized both the social exchange of the music improvisation and the sounds of collaboration more generally. The study also demonstrated how musical improvisation provides a way of understanding how social interaction emerges from the structure of the behavioral task context. Copyright © 2017 Cognitive Science Society, Inc.
Uses of the Drupal CMS Collaborative Framework in the Woods Hole Scientific Community (Invited)
NASA Astrophysics Data System (ADS)
Maffei, A. R.; Chandler, C. L.; Work, T. T.; Shorthouse, D.; Furfey, J.; Miller, H.
2010-12-01
Organizations that comprise the Woods Hole scientific community (Woods Hole Oceanographic Institution, Marine Biological Laboratory, USGS Woods Hole Coastal and Marine Science Center, Woods Hole Research Center, NOAA NMFS Northeast Fisheries Science Center, SEA Education Association) have a long history of collaborative activity regarding computing, computer network and information technologies that support common, inter-disciplinary science needs. Over the past several years there has been growing interest in the use of the Drupal Content Management System (CMS) playing a variety of roles in support of research projects resident at several of these organizations. Many of these projects are part of science programs that are national and international in scope. Here we survey the current uses of Drupal within the Woods Hole scientific community and examine reasons it has been adopted. The promise of emerging semantic features in the Drupal framework is examined and projections of how pre-existing Drupal-based websites might benefit are made. Closer examination of Drupal software design exposes it as more than simply a content management system. The flexibility of its architecture; the power of its taxonomy module; the care taken in nurturing the open-source developer community that surrounds it (including organized and often well-attended code sprints); the ability to bind emerging software technologies as Drupal modules; the careful selection process used in adopting core functionality; multi-site hosting and cross-site deployment of updates and a recent trend towards development of use-case inspired Drupal distributions casts Drupal as a general-purpose application deployment framework. Recent work in the semantic arena casts Drupal as an emerging RDF framework as well. Examples of roles played by Drupal-based websites within the Woods Hole scientific community that will be discussed include: science data metadata database, organization main website, biological taxonomy development, bibliographic database, physical media data archive inventory manager, disaster-response website development framework, science project task management, science conference planning, and spreadsheet-to-database converter.
Young children's emergent science competencies in family and school contexts: A case study
NASA Astrophysics Data System (ADS)
Andrews, Kathryn Jean
To address the lack of research in early science learning and on young children's informal science experiences, this 6-month long case study investigated an 8-year-old boy's emergent science competencies and his science experiences in family and school contexts. The four research questions used to guide this investigation were: (1) What are Nathan's emergent science competencies? (2) What are Nathan's science experiences in a family context? How does family learning contribute to his emergent science competencies? (3) What are Nathan's science experiences in school? How does school learning contribute to his emergent science competencies? (4) What is the role of parents and teachers in fostering emergent science competencies? My intensive 6-month fieldwork generated multiple data sources including field notes of 12 classroom observations, one parent interview, eight child interviews, one classroom teacher interview, and observation of eight family produced videos. In addition, I collected a parent journal including 38 entries of the child's how and why questions, a child digital photo journal including 15 entries of when Nathan saw or participated in science, and 25 various documents of work completed in the classroom. First, I analyzed data through an on-going and recursive process. Then, I applied several cycles of open coding to compare and contrast science learning between home and school, establish clear links between research questions and data, and form categories. Finally, I applied a cycle of holistic coding to categorized data that eventually culminated into themes. As a method of quality control, I shared my interpretations with the family and classroom teacher throughout the study. Findings revealed, Nathan's pre-scientific views of science were fluid and playful, he saw differences between the science he did at home and that he did in school, but he was able to articulate a relatively complex understanding of scientists' collaborative efforts. Nathan's emergent science competencies were a result of his experiences both in the home and classroom. His science experiences at home often involved engaging in conversation with his parents about the world around him and was driven by the things he was interested in or wondered about. He enjoyed daily family activities like cooking, playing, and building models with his dad. These experiences contributed to his naive conceptions of science. By contrast, his science experiences in school were also collaborative but less facilitated by Mrs. Young. His wide range of experiences at home and in the classroom illustrated that doing, learning, knowing, and demonstrating knowledge are intertwined and not easily distinguished from each other. Nathan's emergent science competencies were fueled by a child-environment loop. The child-environment loop is a concept that captures the reciprocal nature between a child's curiosities and his or her environment. As his curiosities were met, new questions and activity were produced. As a result, Nathan's activity continually influenced the environment in which his emergent science competencies emerged. Likewise, the changing environment contributed to new curiosities, interest, and science competencies. Findings extend current research of informal science learning by illustrating how family learning contributed to a child's naive scientific views through the development of non-spontaneous concepts. Findings also extend current research by illustrating how a child with a solid foundation of spontaneous concepts might be unable to further develop non-spontaneous concepts in a classroom where learning took a similar form (working with others and talking about ideas) as learning in the classroom was less mediated. Main implications of this project include a call for research and practice to more aggressively contribute to a learning progressions approach to provide a map of educational opportunities that neither under- or overestimate children's ability. Curriculum ought to view naive science conceptions developed in family learning as a necessary element in the learning continuum rather than a deficit in science knowledge to contend with during the development of non-spontaneous concepts in classroom learning to achieve this goal. Finally, to extract meaningful experiences from inquiry-based science learning, teachers need to incorporate students' naive science conceptions by explicitly connecting everyday family learning to science through disciplinary engagement where inquiry is mediated.
Review article: Critical Care Airway Management eLearning modules.
Doshi, Deepak; McCarthy, Sally; Mowatt, Elizabeth; Cahill, Angela; Peirce, Bronwyn; Hawking, Geoff; Osborne, Ruth; Hibble, Belinda; Ebbs, Katharine
2017-11-16
The Australasian College for Emergency Medicine (ACEM) has recently launched the Critical Care Airway Management eLearning modules to support emergency medicine trainees in developing their airway management skills in the ED. A team of emergency physicians and trainees worked collaboratively to develop the eLearning resources ensuring extensive stakeholder consultation. A comprehensive resource manual was written to provide learners with knowledge that underpins the modules. ACEM provided project coordination as well as administrative and technical team support to the production. Although specifically developed with early ACEM trainees in mind, it is envisaged the resources will be useful for all emergency clinicians. The project was funded by the Australian Commonwealth Department of Health. © 2017 Australasian College for Emergency Medicine and Australasian Society for Emergency Medicine.
The U.S. Environmental Protection Agency's (EPA's) Offices of Research and Devevlopment and Solid Waste and Emergency Response continue to collaborate on providing technical assistance and support to EPA regional offices, other federal agencies, state regulators, and other intere...
Moving the Science of Team Science Forward: Collaboration and Creativity
Hall, Kara L.; Feng, Annie X.; Moser, Richard P.; Stokols, Daniel; Taylor, Brandie K.
2012-01-01
Teams of scientists representing diverse disciplines are often brought together for purposes of better understanding and, ultimately, resolving urgent public health and environmental problems. Likewise, the emerging field of the science of team science draws on diverse disciplinary perspectives to better understand and enhance the processes and outcomes of scientific collaboration. In this supplement to the American Journal of Preventive Medicine, leading scholars in the nascent field of team science have come together with a common goal of advancing the field with new models, methods, and measures. This summary article highlights key themes reflected in the supplement and identifies several promising directions for future research organized around the following broad challenges: (1) operationalizing cross-disciplinary team science and training more clearly; (2) conceptualizing the multiple dimensions of readiness for team science; (3) ensuring the sustainability of transdisciplinary team science; (4) developing more effective models and strategies for training transdisciplinary scientists; (5) creating and validating improved models, methods, and measures for evaluating team science; and (6) fostering transdisciplinary cross-sector partnerships. A call to action is made to leaders from the research, funding, and practice sectors to embrace strategies of creativity and innovation in a collective effort to move the field forward, which may not only advance the science of team science but, ultimately, public health science and practice. PMID:18619406
NASA Astrophysics Data System (ADS)
Maskey, Manil; Ramachandran, Rahul; Kuo, Kwo-Sen
2015-04-01
The Collaborative WorkBench (CWB) has been successfully developed to support collaborative science algorithm development. It incorporates many features that enable and enhance science collaboration, including the support for both asynchronous and synchronous modes of interactions in collaborations. With the former, members in a team can share a full range of research artifacts, e.g. data, code, visualizations, and even virtual machine images. With the latter, they can engage in dynamic interactions such as notification, instant messaging, file exchange, and, most notably, collaborative programming. CWB also implements behind-the-scene provenance capture as well as version control to relieve scientists of these chores. Furthermore, it has achieved a seamless integration between researchers' local compute environments and those of the Cloud. CWB has also been successfully extended to support instrument verification and validation. Adopted by almost every researcher, the current practice of downloading data to local compute resources for analysis results in much duplication and inefficiency. CWB leverages Cloud infrastructure to provide a central location for data used by an entire science team, thereby eliminating much of this duplication and waste. Furthermore, use of CWB in concert with this same Cloud infrastructure enables co-located analysis with data where opportunities of data-parallelism can be better exploited, thereby further improving efficiency. With its collaboration-enabling features apposite to steps throughout the scientific process, we expect CWB to fundamentally transform research collaboration and realize maximum science productivity.
Collaboration technology and space science
NASA Technical Reports Server (NTRS)
Leiner, Barry M.; Brown, R. L.; Haines, R. F.
1990-01-01
A summary of available collaboration technologies and their applications to space science is presented as well as investigations into remote coaching paradigms and the role of a specific collaboration tool for distributed task coordination in supporting such teleoperations. The applicability and effectiveness of different communication media and tools in supporting remote coaching are investigated. One investigation concerns a distributed check-list, a computer-based tool that allows a group of people, e.g., onboard crew, ground based investigator, and mission control, to synchronize their actions while providing full flexibility for the flight crew to set the pace and remain on their operational schedule. This autonomy is shown to contribute to morale and productivity.
NASA Astrophysics Data System (ADS)
Wiggins, H. V.; Myers, B.
2015-12-01
The Study of Environmental Arctic Change (SEARCH) is a U.S. program with a mission to provide a foundation of Arctic change science through collaboration with the research community, funding agencies, and other stakeholders. To achieve this mission, SEARCH: Generates and synthesizes research findings and promotes Arctic science and scientific discovery across disciplines and among agencies. Identifies emerging issues in Arctic environmental change. Provides scientific information to Arctic stakeholders, policy-makers, and the public to help them understand and respond to arctic environmental change. Facilitates research activities across local-to-global scales, with an emphasis on addressing needs of decision-makers. Collaborates with national and international science programs integral to SEARCH goals. This poster presentation will present SEARCH activities and plans, highlighting those focused on providing information for decision-makers. http://www.arcus.org/search
NASA Astrophysics Data System (ADS)
Hammond, Lorie
2001-11-01
This article describes a unique and ongoing collaboration involving a team of bilingual/multicultural teacher-educators, preservice teachers, teachers, students, and community members in an urban California elementary school. According to the model this team employed, children, teachers, and student teachers gather community funds of knowledge about the science to be studied in a classroom, then incorporate this knowledge by using parents as experts and by creating community books. In this model community-generated materials parallel and complement standards-based curricula, although science topics that have natural significance in particular communities are used as a starting point. Using critical ethnography as a framework, the article focuses on a particular experience - the building of a Mien-American garden house - to show how, by drawing on participants' funds of knowledge, a new kind of multiscience can emerge, one accessible to all collaborating members and responsive to school standards.
Networks in cognitive science.
Baronchelli, Andrea; Ferrer-i-Cancho, Ramon; Pastor-Satorras, Romualdo; Chater, Nick; Christiansen, Morten H
2013-07-01
Networks of interconnected nodes have long played a key role in Cognitive Science, from artificial neural networks to spreading activation models of semantic memory. Recently, however, a new Network Science has been developed, providing insights into the emergence of global, system-scale properties in contexts as diverse as the Internet, metabolic reactions, and collaborations among scientists. Today, the inclusion of network theory into Cognitive Sciences, and the expansion of complex-systems science, promises to significantly change the way in which the organization and dynamics of cognitive and behavioral processes are understood. In this paper, we review recent contributions of network theory at different levels and domains within the Cognitive Sciences. Copyright © 2013 Elsevier Ltd. All rights reserved.
The emergence of cognitive hearing science.
Arlinger, Stig; Lunner, Thomas; Lyxell, Björn; Pichora-Fuller, M Kathleen
2009-10-01
Cognitive Hearing Science or Auditory Cognitive Science is an emerging field of interdisciplinary research concerning the interactions between hearing and cognition. It follows a trend over the last half century for interdisciplinary fields to develop, beginning with Neuroscience, then Cognitive Science, then Cognitive Neuroscience, and then Cognitive Vision Science. A common theme is that an interdisciplinary approach is necessary to understand complex human behaviors, to develop technologies incorporating knowledge of these behaviors, and to find solutions for individuals with impairments that undermine typical behaviors. Accordingly, researchers in traditional academic disciplines, such as Psychology, Physiology, Linguistics, Philosophy, Anthropology, and Sociology benefit from collaborations with each other, and with researchers in Computer Science and Engineering working on the design of technologies, and with health professionals working with individuals who have impairments. The factors that triggered the emergence of Cognitive Hearing Science include the maturation of the component disciplines of Hearing Science and Cognitive Science, new opportunities to use complex digital signal-processing to design technologies suited to performance in challenging everyday environments, and increasing social imperatives to help people whose communication problems span hearing and cognition. Cognitive Hearing Science is illustrated in research on three general topics: (1) language processing in challenging listening conditions; (2) use of auditory communication technologies or the visual modality to boost performance; (3) changes in performance with development, aging, and rehabilitative training. Future directions for modeling and the translation of research into practice are suggested.
Citizen Science in Planetary Sciences: Intersection of Scientific Research and Amateur Networks
NASA Astrophysics Data System (ADS)
Yanamandra-Fisher, Padma A.
2014-11-01
The Pro-Am Collaborative Astronomy (PACA) project evolved from the observational campaign of C/2012 S1 or C/ISON in 2013. Following the success of the professional-amateur astronomer collaboration in scientific research via social media, it is now implemented in other comet observing campaigns. While PACA identifies a consistent collaborative approach to pro-am collaborations, given the volume of data generated for each campaign, new ways of rapid data analysis, mining access and storage are needed. Several interesting results emerged from the synergistic inclusion of both social media and amateur astronomers:(1) the establishment of a network of astronomers and related professionals, that canbe galvanized into action on short notice to support observing campaigns;(2) assist in various science investigations pertinent to the campaign;(3) provide an alert-sounding mechanism should the need arise;(4) immediate outreach and dissemination of results via our media/blogger members;(5) provide a forum for discussions between the imagers and modelers to helpstrategize the observing campaign for maximum benefit.In 2014, two new comet observing campaigns involving pro-am collaborations have been initiated: (1) C/2013 A1 (C/SidingSpring) and (2) 67P/Churyumov-Gerasimenko (CG), target for ESA/Rosetta mission. The evolving need for individual customized observing campaigns has been incorporated into the evolution of PACA portal that currently is focused on comets: from supporting observing campaigns of current comets, legacy data, historical comets; interconnected with social media and a set of shareable documents addressing observational strategies; consistent standards for data; data access, use, and storage, to align with the needs of professional observers. The integration of science, observations by professional and amateur astronomers, and various social media provides a dynamic and evolving collaborative partnership between professional and amateur astronomers. The empowerment of amateur astronomers vis-à-vis their partnerships with the professional scientists creates a new demographic of data scientists, enabling citizen science of the integrated data from both the professional and amateur communities.
The Role of Semantics in Open-World, Integrative, Collaborative Science Data Platforms
NASA Astrophysics Data System (ADS)
Fox, Peter; Chen, Yanning; Wang, Han; West, Patrick; Erickson, John; Ma, Marshall
2014-05-01
As collaborative science spreads into more and more Earth and space science fields, both participants and funders are expressing stronger needs for highly functional data and information capabilities. Characteristics include a) easy to use, b) highly integrated, c) leverage investments, d) accommodate rapid technical change, and e) do not incur undue expense or time to build or maintain - these are not a small set of requirements. Based on our accumulated experience over the last ~ decade and several key technical approaches, we adapt, extend, and integrate several open source applications and frameworks to handle major portions of functionality for these platforms. This includes: an object-type repository, collaboration tools, identity management, all within a portal managing diverse content and applications. In this contribution, we present our methods and results of information models, adaptation, integration and evolution of a networked data science architecture based on several open source technologies (Drupal, VIVO, the Comprehensive Knowledge Archive Network; CKAN, and the Global Handle System; GHS). In particular we present the Deep Carbon Observatory - a platform for international science collaboration. We present and discuss key functional and non-functional attributes, and discuss the general applicability of the platform.
ERIC Educational Resources Information Center
Olson, Mark D.; Lewis, Melinda; Rappe, Paula; Hartley, Sandra
2015-01-01
A pilot study depicting a collaborative learning experience involving students in the helping professions (i.e., social work and paramedic) is presented, whereby students put discipline-specific practice behaviors into action in a training exercise using standardized clients (SCs). Real world scenarios commonly encountered in emergency response…
NASA Astrophysics Data System (ADS)
Shipp, S.; Nelson, B.; Stockman, S.; Weir, H.; Carter, B.; Bleacher, L.
2008-07-01
Libraries are vibrant learning places, seeking partners in science programming. LPI's Explore! program offers a model for public engagement in lunar exploration in libraries, as shown by materials created collaboratively with the LRO E/PO team.
NASA Astrophysics Data System (ADS)
Dalton, Heather; Shipp, S.; Boonstra, D.; Shupla, C.; CoBabe-Ammann, E.; LaConte, K.; Ristvey, J.; Wessen, A.; Zimmerman-Bachman, R.; Science E/PO Community, Planetary
2010-10-01
Between October 2010 and August 2012 - across a Martian year - a large number of Science Mission Directorate's (SMD) planetary missions will pass milestones (e.g., EPOXI, Stardust-NExT, MESSENGER, Dawn, Juno, GRAIL, and Mars Science Laboratory), with many other missions continuing to explore (e.g., Lunar Reconnaissance Orbiter, Mars Odyssey, Mars Exploration Rovers, Mars Reconnaissance Orbiter, Mars Express, Cassini, New Horizons, and Voyager). This Year of the Solar System (YSS) offers the Planetary Science Education and Public Outreach (E/PO) community an opportunity to collaborate with each other and the science community. Based on audience needs from formal and informal educators, YSS is structured to have monthly thematic topics that are driven by mission milestones, as well as observing opportunities. YSS will connect to ongoing and planned events nationwide. A website for YSS is in development and will be hosted off of the existing JPL Solar System website (http://solarsystem.nasa.gov/index.cfm). Once live, scientists, educators, and E/PO professionals will have a place to interact and collaborate. YSS will tie to NASA's Big Questions in Planetary Science - how did the Sun's family of planets and minor bodies originate and how have they evolved? - how did life begin and evolve on Earth, is it elsewhere, and what characteristics of the solar system lead to the origins of life? The thematic topics are broad in order to encompass many missions and planetary bodies each month, as well as address the Big Questions. YSS will kick off in October with the theme "Solar System Components and Scale” and a national event involving building solar system scale models across the country. Scientists are encouraged to contact schools, museums, planetaria, etc. in their communities to give presentations, provide science content, and collaborate on educational materials and events related to YSS.
Engaging Scientists in NASA Education and Public Outreach: Higher Education
NASA Astrophysics Data System (ADS)
Meinke, Bonnie K.; Smith, D. A.; Schultz, G. R.; Lawton, B. L.; Bianchi, L.; Blair, W. P.; Buxner, S.; SEPOF Higher Education Working Group; E/PO Community, SMD
2014-01-01
The NASA Science Education and Public Outreach Forums support the NASA Science Mission Directorate (SMD) and its education and public outreach (E/PO) community through a coordinated effort to enhance the coherence and efficiency of SMD-funded E/PO programs. The Forums foster collaboration between scientists with content expertise and educators with pedagogy expertise. We present opportunities for the astronomy community to participate in collaborations supporting the NASA SMD efforts in the Higher Education community. Members of the Higher Education community include instructors, faculty, and students at community colleges and four-year colleges/universities. The Forums’ efforts for the Higher Education community include a literature review, appraisal of instructors’ needs, coordination of audience-based NASA resources and opportunities, and classroom support materials. Learn how to join in our collaborative efforts to support the Higher Education community based upon mutual needs and interests.
NASA Astrophysics Data System (ADS)
Dashoush, Nermeen
This dissertation reports on an ethnographic study to examine and detail emerging practices in a community of practice comprised of an elementary teacher and a scientist (microbiologist). The study was conducted in order to design a model for professional development. It also aimed to contribute to the limited research involving elementary educators and their work with scientists. Furthermore, extra attention was given to understanding how both the elementary teacher and the scientist benefitted from their participation in the community of practice created from working together in teaching and learning science as a form of professional development. This was in accordance with a community of practice framework, which details that a healthy community is one without a perception of hierarchy among members (Wenger, 1998). The elementary teacher and scientist as participants collaborated in the creation of a science unit for an afterschool program. A wide variety of data was collected, including: interviews, transcribed meetings, and online journals from both participants. The data was coded for reoccurring themes surrounding practices and shifts in perception about science teaching and learning that emerged from this community of practice as professional development. The findings have implications for practices that could be used as a foundational structure in future collaborations involving elementary teachers and scientists for elementary science professional development.
Vogel, Amanda L; Stipelman, Brooke A; Hall, Kara L; Nebeling, Linda; Stokols, Daniel; Spruijt-Metz, Donna
2014-01-01
The National Cancer Institute has been a leader in supporting transdisciplinary (TD) team science. From 2005-2010, the NCI supported Transdisciplinary Research on Energetic and Cancer I (TREC I), a center initiative fostering the TD integration of social, behavioral, and biological sciences to examine the relationships among obesity, nutrition, physical activity and cancer. In the final year of TREC I, we conducted qualitative in-depth-interviews with 31 participating investigators and trainees to learn more about their experiences with TD team science, including challenges, facilitating factors, strategies for success, and impacts. Five main challenges emerged: (1) limited published guidance for how to engage in TD team science, when TREC I was implemented; (2) conceptual and scientific challenges inherent to efforts to achieve TD integration; (3) discipline-based differences in values, terminology, methods, and work styles; (4) project management challenges involved in TD team science; and (5) traditional incentive and reward systems that do not recognize or reward TD team science. Four main facilitating factors and strategies for success emerged: (1) beneficial attitudes and beliefs about TD research and team science; (2) effective team processes; (3) brokering and bridge-building activities by individuals holding particular roles in a research center; and (4) funding initiative characteristics that support TD team science. Broad impacts of participating in TD team science in the context of TREC I included: (1) new positive attitudes about TD research and team science; (2) new boundary-crossing collaborations; (3) scientific advances related to research approaches, findings, and dissemination; (4) institutional culture change and resource creation in support of TD team science; and (5) career advancement. Funding agencies, academic institutions, and scholarly journals can help to foster TD team science through funding opportunities, institutional policies on extra-departmental and cross-school collaboration, promotion and tenure policies, and publishing opportunities for TD research. PMID:25554748
Nanotechnology Research: Applications in Nutritional Sciences12
Srinivas, Pothur R.; Philbert, Martin; Vu, Tania Q.; Huang, Qingrong; Kokini, Josef L.; Saos, Etta; Chen, Hongda; Peterson, Charles M.; Friedl, Karl E.; McDade-Ngutter, Crystal; Hubbard, Van; Starke-Reed, Pamela; Miller, Nancy; Betz, Joseph M.; Dwyer, Johanna; Milner, John; Ross, Sharon A.
2010-01-01
The tantalizing potential of nanotechnology is to fabricate and combine nanoscale approaches and building blocks to make useful tools and, ultimately, interventions for medical science, including nutritional science, at the scale of ∼1–100 nm. In the past few years, tools and techniques that facilitate studies and interventions in the nanoscale range have become widely available and have drawn widespread attention. Recently, investigators in the food and nutrition sciences have been applying the tools of nanotechnology in their research. The Experimental Biology 2009 symposium entitled “Nanotechnology Research: Applications in Nutritional Sciences” was organized to highlight emerging applications of nanotechnology to the food and nutrition sciences, as well as to suggest ways for further integration of these emerging technologies into nutrition research. Speakers focused on topics that included the problems and possibilities of introducing nanoparticles in clinical or nutrition settings, nanotechnology applications for increasing bioavailability of bioactive food components in new food products, nanotechnology opportunities in food science, as well as emerging safety and regulatory issues in this area, and the basic research applications such as the use of quantum dots to visualize cellular processes and protein-protein interactions. The session highlighted several emerging areas of potential utility in nutrition research. Nutrition scientists are encouraged to leverage ongoing efforts in nanomedicine through collaborations. These efforts could facilitate exploration of previously inaccessible cellular compartments and intracellular pathways and thus uncover strategies for new prevention and therapeutic modalities. PMID:19939997
NASA Astrophysics Data System (ADS)
Smith, Denise A.; Mendez, B.; Shipp, S.; Schwerin, T.; Stockman, S.; Cooper, L. P.; Sharma, M.
2010-01-01
Scientists, engineers, educators, and public outreach professionals have a rich history of creatively using NASA's pioneering scientific discoveries and technology to engage and educate youth and adults nationwide in core science, technology, engineering, and mathematics topics. We introduce four new Science Education and Public Outreach Forums that will work in partnership with the community and NASA's Science Mission Directorate (SMD) to ensure that current and future SMD-funded education and public outreach (E/PO) activities form a seamless whole, with easy entry points for general public, students, K-12 formal and informal science educators, faculty, scientists, engineers, and E/PO professionals alike. The new Science Education and Public Outreach Forums support the astrophysics, heliophysics, planetary and Earth science divisions of NASA SMD in three core areas: 1) E/PO community engagement and development activities will provide clear paths of involvement for scientists and engineers interested - or potentially interested - in participating in SMD-funded E/PO activities. Collaborations with scientists and engineers are vital for infusing current, accurate SMD mission and research findings into educational products and activities. Forum activities will also yield readily accessible information on effective E/PO strategies, resources, and expertise; context for individual E/PO activities; and opportunities for collaboration. 2) A rigorous analysis of SMD-funded K-12 formal, informal, and higher education products and activities will help the community and SMD to understand how the existing collection supports education standards and audience needs, and to strategically identify areas of opportunity for new materials and activities. 3) Finally, a newly convened Coordinating Committee will work across the four SMD science divisions to address systemic issues and integrate related activities. By supporting the NASA E/PO community and facilitating coordination of E/PO activities, the NASA-SEPOF partnerships will lead to more effective, sustainable, and efficient utilization of NASA science discoveries and learning experiences.
The Electronic Encyclopedia of Earthquakes
NASA Astrophysics Data System (ADS)
Benthien, M.; Marquis, J.; Jordan, T.
2003-12-01
The Electronic Encyclopedia of Earthquakes is a collaborative project of the Southern California Earthquake Center (SCEC), the Consortia of Universities for Research in Earthquake Engineering (CUREE) and the Incorporated Research Institutions for Seismology (IRIS). This digital library organizes earthquake information online as a partner with the NSF-funded National Science, Technology, Engineering and Mathematics (STEM) Digital Library (NSDL) and the Digital Library for Earth System Education (DLESE). When complete, information and resources for over 500 Earth science and engineering topics will be included, with connections to curricular materials useful for teaching Earth Science, engineering, physics and mathematics. Although conceived primarily as an educational resource, the Encyclopedia is also a valuable portal to anyone seeking up-to-date earthquake information and authoritative technical sources. "E3" is a unique collaboration among earthquake scientists and engineers to articulate and document a common knowledge base with a shared terminology and conceptual framework. It is a platform for cross-training scientists and engineers in these complementary fields and will provide a basis for sustained communication and resource-building between major education and outreach activities. For example, the E3 collaborating organizations have leadership roles in the two largest earthquake engineering and earth science projects ever sponsored by NSF: the George E. Brown Network for Earthquake Engineering Simulation (CUREE) and the EarthScope Project (IRIS and SCEC). The E3 vocabulary and definitions are also being connected to a formal ontology under development by the SCEC/ITR project for knowledge management within the SCEC Collaboratory. The E3 development system is now fully operational, 165 entries are in the pipeline, and the development teams are capable of producing 20 new, fully reviewed encyclopedia entries each month. Over the next two years teams will complete 450 entries, which will populate the E3 collection to a level that fully spans earthquake science and engineering. Scientists, engineers, and educators who have suggestions for content to be included in the Encyclopedia can visit www.earthquake.info now to complete the "Suggest a Web Page" form.
A Grid Infrastructure for Supporting Space-based Science Operations
NASA Technical Reports Server (NTRS)
Bradford, Robert N.; Redman, Sandra H.; McNair, Ann R. (Technical Monitor)
2002-01-01
Emerging technologies for computational grid infrastructures have the potential for revolutionizing the way computers are used in all aspects of our lives. Computational grids are currently being implemented to provide a large-scale, dynamic, and secure research and engineering environments based on standards and next-generation reusable software, enabling greater science and engineering productivity through shared resources and distributed computing for less cost than traditional architectures. Combined with the emerging technologies of high-performance networks, grids provide researchers, scientists and engineers the first real opportunity for an effective distributed collaborative environment with access to resources such as computational and storage systems, instruments, and software tools and services for the most computationally challenging applications.
From global bioethics to ethical governance of biomedical research collaborations.
Wahlberg, Ayo; Rehmann-Sutter, Christoph; Sleeboom-Faulkner, Margaret; Lu, Guangxiu; Döring, Ole; Cong, Yali; Laska-Formejster, Alicja; He, Jing; Chen, Haidan; Gottweis, Herbert; Rose, Nikolas
2013-12-01
One of the features of advanced life sciences research in recent years has been its internationalisation, with countries such as China and South Korea considered 'emerging biotech' locations. As a result, cross-continental collaborations are becoming common generating moves towards ethical and legal standardisation under the rubric of 'global bioethics'. Such a 'global', 'Western' or 'universal' bioethics has in turn been critiqued as an imposition upon resource-poor, non-Western or local medical settings. In this article, we propose that a different tack is necessary if we are to come to grips with the ethical challenges that inter-continental biomedical research collaborations generate. In particular we ask how national systems of ethical governance of life science research might cope with increasingly global research collaborations with a focus on Sino-European collaboration. We propose four 'spheres' - deliberation, regulation, oversight and interaction - as a helpful way to conceptualise national systems of ethical governance. Using a workshop-based mapping methodology (workshops held in Beijing, Shanghai, Changsha, Xian, Shenzen and London) we identified three specific ethical challenges arising from cross-continental research collaborations: (1) ambiguity as to which regulations are applicable; (2) lack of ethical review capacity not only among ethical review board members but also collaborating scientists; (3) already complex, researcher-research subject interaction is further complicated when many nationalities are involved. Copyright © 2013 Elsevier Ltd. All rights reserved.
Undergraduate-driven interventions to increase representation in science classrooms
NASA Astrophysics Data System (ADS)
Freilich, M.; Aluthge, D.; Bryant, R. M.; Knox, B.; McAdams, J.; Plummer, A.; Schlottman, N.; Stanley, Z.; Suglia, E.; Watson-Daniels, J.
2014-12-01
Recognizing that racial, ethnic, and gender underrepresentation in science classrooms persists despite intervention programs and institutional commitments to diversity, a group of undergraduates from a variety of backgrounds and academic disciplines came together for a group independent study to (a) study the theoretical foundations of the current practice of science and of programs meant to increase diversity, (b) utilize the experiences of course participants and our peers to better understand the drivers of underrepresentation, and (c) design and implement interventions at Brown University. We will present on individual and small group projects designed by course members in collaboration with faculty. The projects emerged from an exploration of literature in history, philosophy, and sociology of science, as well as an examination of anthropological and psychological studies. We also evaluated the effectiveness of top-down and bottom-up approaches that have already been attempted in developing our projects. They focus on the specific problems faced by underrepresented minorities, women, LGBTQ+ people, and well-represented minorities. We will share experiences of faculty-student collaboration and engaged scholarship focused on representation in science and discuss student-designed interventions.
Opportunities for joint FPL and VTT research.
Theodore Wegner
2010-01-01
Openness, collaboration and sharing of information in developing the basic underlying, precompetitive science and technology for areas of emerging importance to the forest products sectors of the US and Finland are expected to provide synergistic benefits and allow for more creative problem solving. There appear to be a number of common interests with respect to...
AgShare Open Knowledge: Improving Rural Communities through University Student Action Research
ERIC Educational Resources Information Center
Geith, Christine; Vignare, Karen
2013-01-01
The aim of AgShare is to create a scalable and sustainable collaboration of existing organizations for African publishing, localizing, and sharing of science-based teaching and learning materials that fill critical resource gaps in African MSc agriculture curriculum. Shared innovative practices are emerging through the AgShare projects, not only…
ERIC Educational Resources Information Center
Marty, Paul F.
1999-01-01
Examines the sociotechnological impact of introducing advanced information technology into the Spurlock Museum, a museum of world history and culture at the University of Illinois. Addresses implementation of such methodologies as computer-supported cooperative work and computer-mediated communication in the museum environment. Emphasizes the…
Ozmen, Ozgur; Yilmaz, Levent; Smith, Jeffrey
2016-02-09
Emerging cyber-infrastructure tools are enabling scientists to transparently co-develop, share, and communicate about real-time diverse forms of knowledge artifacts. In these environments, communication preferences of scientists are posited as an important factor affecting innovation capacity and robustness of social and knowledge network structures. Scientific knowledge creation in such communities is called global participatory science (GPS). Recently, using agent-based modeling and collective action theory as a basis, a complex adaptive social communication network model (CollectiveInnoSim) is implemented. This work leverages CollectiveInnoSim implementing communication preferences of scientists. Social network metrics and knowledge production patterns are used as proxy metrics to infer innovationmore » potential of emergent knowledge and collaboration networks. The objective is to present the underlying communication dynamics of GPS in a form of computational model and delineate the impacts of various communication preferences of scientists on innovation potential of the collaboration network. Ultimately, the insight gained can help policy-makers to design GPS environments and promote innovation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ozmen, Ozgur; Yilmaz, Levent; Smith, Jeffrey
Emerging cyber-infrastructure tools are enabling scientists to transparently co-develop, share, and communicate about real-time diverse forms of knowledge artifacts. In these environments, communication preferences of scientists are posited as an important factor affecting innovation capacity and robustness of social and knowledge network structures. Scientific knowledge creation in such communities is called global participatory science (GPS). Recently, using agent-based modeling and collective action theory as a basis, a complex adaptive social communication network model (CollectiveInnoSim) is implemented. This work leverages CollectiveInnoSim implementing communication preferences of scientists. Social network metrics and knowledge production patterns are used as proxy metrics to infer innovationmore » potential of emergent knowledge and collaboration networks. The objective is to present the underlying communication dynamics of GPS in a form of computational model and delineate the impacts of various communication preferences of scientists on innovation potential of the collaboration network. Ultimately, the insight gained can help policy-makers to design GPS environments and promote innovation.« less
Strategies for collaboration in the interdisciplinary field of emerging zoonotic diseases.
Anholt, R M; Stephen, C; Copes, R
2012-06-01
The integration of the veterinary, medical and environmental sciences necessary to predict, prevent or respond to emerging zoonotic diseases requires effective collaboration and exchange of knowledge across these disciplines. There has been no research into how to connect and integrate these professions in the pursuit of a common task. We conducted a literature search looking at the experiences and wisdom resulting from collaborations built in health partnerships, health research knowledge transfer and exchange, business knowledge management and systems design engineering to identify key attributes of successful interdisciplinary (ID) collaboration. This was followed by a workshop with 16 experts experienced in ID collaboration including physicians, veterinarians and biologists from private practice, academia and government agencies. The workshop participants shared their perspectives on the facilitators and barriers to ID collaboration. Our results found that the elements that can support or impede ID collaboration can be categorized as follows: the characteristics of the people, the degree to which the task is a shared goal, the policies, practices and resources of the workplace, how information technology is used and the evaluation of the results. Above all, personal relationships built on trust and respect are needed to best assemble the disciplinary strength of the professions. The challenge of meeting collaborators outside the boundaries of one's discipline or jurisdiction may be met by an independent third party, an ID knowledge broker. The broker would know where the knowledge could be found, would facilitate introductions and would help to build effective ID teams. © 2012 Blackwell Verlag GmbH.
Science and Technology Diplomacy with Cuba
NASA Astrophysics Data System (ADS)
Colon, Frances
President Obama's announcement of U. S. policy change toward Cuba and increased freedom of interaction with the Cuban people opens unprecedented and long-awaited opportunities for the scientific and engineering communities in the U. S. and in Cuba to establish and expand collaborative efforts that will greatly advance U.S. and Cuba science and technology agendas. New rules for export of donated-only items for scientific use will bring researchers closer to the level of their professional peers around the world. Increasing Cubans' access to information will result in greater interactions between scientific communities and enable the sharing of ideas and discoveries that can fuel entrepreneurship on the island. The scientific community has expressed an extraordinary level of interest in the wide range of scientific opportunities that the new policy presents, in collaborating with their Cuban counterparts, and in supporting the development of scientific capacity in Cuba. In response to numerous expressions of interest and inquiries from the scientific community, the Office of the Science and Technology Adviser to the Secretary of State (STAS) has engaged in public outreach to inform the U.S. science and technology community of the implications of the new policy for collaborative research, emerging scientific opportunities, and the standing limitations for engagement with the people of Cuba.
Brokering Capabilities for EarthCube - supporting Multi-disciplinary Earth Science Research
NASA Astrophysics Data System (ADS)
Jodha Khalsa, Siri; Pearlman, Jay; Nativi, Stefano; Browdy, Steve; Parsons, Mark; Duerr, Ruth; Pearlman, Francoise
2013-04-01
The goal of NSF's EarthCube is to create a sustainable infrastructure that enables the sharing of all geosciences data, information, and knowledge in an open, transparent and inclusive manner. Brokering of data and improvements in discovery and access are a key to data exchange and promotion of collaboration across the geosciences. In this presentation we describe an evolutionary process of infrastructure and interoperability development focused on participation of existing science research infrastructures and augmenting them for improved access. All geosciences communities already have, to a greater or lesser degree, elements of an information infrastructure in place. These elements include resources such as data archives, catalogs, and portals as well as vocabularies, data models, protocols, best practices and other community conventions. What is necessary now is a process for levering these diverse infrastructure elements into an overall infrastructure that provides easy discovery, access and utilization of resources across disciplinary boundaries. Brokers connect disparate systems with only minimal burdens upon those systems, and enable the infrastructure to adjust to new technical developments and scientific requirements as they emerge. Robust cyberinfrastructure will arise only when social, organizational, and cultural issues are resolved in tandem with the creation of technology-based services. This is a governance issue, but is facilitated by infrastructure capabilities that can impact the uptake of new interdisciplinary collaborations and exchange. Thus brokering must address both the cyberinfrastructure and computer technology requirements and also the social issues to allow improved cross-domain collaborations. This is best done through use-case-driven requirements and agile, iterative development methods. It is important to start by solving real (not hypothetical) information access and use problems via small pilot projects that develop capabilities targeted to specific communities. Brokering, as a critical capability for connecting systems, evolves over time through more connections and increased functionality. This adaptive process allows for continual evaluation as to how well science-driven use cases are being met. There is a near term, and possibly unique, opportunity through EarthCube and European e-Infrastructure projects to increase the impact and interconnectivity of projects. In the developments described in this presentation, brokering has been demonstrated to be an essential part of a robust, adaptive technical infrastructure and demonstration and user scenarios can address of both the governance and detailed implementation paths forward. The EarthCube Brokering roadmap proposes the expansion of brokering pilots into fully operational prototypes that work with the broader science and informatics communities to answer these questions, connect existing and emerging systems, and evolve the EarthCube infrastructure.
Yetisen, Ali K; Davis, Joe; Coskun, Ahmet F; Church, George M; Yun, Seok Hyun
2015-12-01
Bioart is a creative practice that adapts scientific methods and draws inspiration from the philosophical, societal, and environmental implications of recombinant genetics, molecular biology, and biotechnology. Some bioartists foster inter- disciplinary relationships that blur distinctions between art and science. Others emphasize critical responses to emerging trends in the life sciences. Since bioart can be combined with realistic views of scientific developments, it may help inform the public about science. Artistic responses to biotechnology also integrate cultural commentary resembling political activism. Art is not only about ‘responses’, however. Bioart can also initiate new science and engineer- ing concepts, foster openness to collaboration and increasing scientific literacy, and help to form the basis of artists’ future relationships with the communities of biology and the life sciences.
OpenWorm: an open-science approach to modeling Caenorhabditis elegans.
Szigeti, Balázs; Gleeson, Padraig; Vella, Michael; Khayrulin, Sergey; Palyanov, Andrey; Hokanson, Jim; Currie, Michael; Cantarelli, Matteo; Idili, Giovanni; Larson, Stephen
2014-01-01
OpenWorm is an international collaboration with the aim of understanding how the behavior of Caenorhabditis elegans (C. elegans) emerges from its underlying physiological processes. The project has developed a modular simulation engine to create computational models of the worm. The modularity of the engine makes it possible to easily modify the model, incorporate new experimental data and test hypotheses. The modeling framework incorporates both biophysical neuronal simulations and a novel fluid-dynamics-based soft-tissue simulation for physical environment-body interactions. The project's open-science approach is aimed at overcoming the difficulties of integrative modeling within a traditional academic environment. In this article the rationale is presented for creating the OpenWorm collaboration, the tools and resources developed thus far are outlined and the unique challenges associated with the project are discussed.
It Takes a Village. Collaborative Outer Planet Missions
NASA Technical Reports Server (NTRS)
Rymer, A. M.; Turtle, E. P.; Hofstadter, M. D.; Simon, A. A.; Hospodarsky, G. B.
2017-01-01
A mission to one or both of our local Ice Giants (Uranus and Neptune) emerged as a high priority in the most recent Planetary Science Decadal Survey and was also specifically mentioned supportively in the Heliophysics Decadal Survey. In 2016, NASA convened a science definition team to study ice giant mission concepts in more detail. Uranus and Neptune represent the last remaining planetary type in our Solar System to have a dedicated orbiting mission. The case for a Uranus mission has been made eloquently in the Decadal Surveys. Here we summarize some of the major drivers that lead to enthusiastic support for an Ice Giant mission in general, and use the example of a Uranus Mission concept to illustrate opportunities such a mission might provide for cross-division collaboration and cost-sharing.
Emerging Issues in Education: Policy Implications for the Schools.
ERIC Educational Resources Information Center
Bruno, James E., Ed.
Contents of this volume, one product of a collaboration between the Carnegie Corporation and Rand initiated in July 1969, include the following papers: "Emerging Issues in Education . . .," J. E. Bruno; "Societal Foundations for Change: Educational Alternatives for the Future," W. Harman: "Constitutional Aspects of Equality of Educational…
NASA Astrophysics Data System (ADS)
Lebak, Kimberly
2015-12-01
This case study examines the complex relationship between beliefs, practice, and change related to inquiry-based instruction of one science teacher teaching in a high-poverty urban school. This study explores how video-supported collaboration with peers can provide the catalyst for change. Transcribed collaborative dialogue sessions, written self-reflections, and videotapes of lessons were used to identify and isolate the belief systems that were critical to the teacher's decision making. The Interconnected Model of Professional Growth was then used to trace the trajectories of change of the individual belief systems. Analysis of the data revealed the relationship between beliefs and practices was complex in which initially espoused beliefs were often inconsistent with enacted practice and some beliefs emerged as more salient than others for influencing practice. Furthermore, this research indicates change in both beliefs and practice was an interactive process mediated by collaborative and self-reflection through participation in the video-supported process.
Bond, William F; Hui, Joshua; Fernandez, Rosemarie
2018-02-01
Over the past decade, emergency medicine (EM) took a lead role in healthcare simulation in part due to its demands for successful interprofessional and multidisciplinary collaboration, along with educational needs in a diverse array of cognitive and procedural skills. Simulation-based methodologies have the capacity to support training and research platforms that model micro-, meso-, and macrosystems of healthcare. To fully capitalize on the potential of simulation-based research to improve emergency healthcare delivery will require the application of rigorous methods from engineering, social science, and basic science disciplines. The Academic Emergency Medicine (AEM) Consensus Conference "Catalyzing System Change Through Healthcare Simulation: Systems, Competency, and Outcome" was conceived to foster discussion among experts in EM, engineering, and social sciences, focusing on key barriers and opportunities in simulation-based research. This executive summary describes the overall rationale for the conference, conference planning, and consensus-building approaches and outlines the focus of the eight breakout sessions. The consensus outcomes from each breakout session are summarized in proceedings papers published in this issue of Academic Emergency Medicine. Each paper provides an overview of methodologic and knowledge gaps in simulation research and identifies future research targets aimed at improving the safety and quality of healthcare. © 2017 by the Society for Academic Emergency Medicine.
Social Networking Adapted for Distributed Scientific Collaboration
NASA Technical Reports Server (NTRS)
Karimabadi, Homa
2012-01-01
Share is a social networking site with novel, specially designed feature sets to enable simultaneous remote collaboration and sharing of large data sets among scientists. The site will include not only the standard features found on popular consumer-oriented social networking sites such as Facebook and Myspace, but also a number of powerful tools to extend its functionality to a science collaboration site. A Virtual Observatory is a promising technology for making data accessible from various missions and instruments through a Web browser. Sci-Share augments services provided by Virtual Observatories by enabling distributed collaboration and sharing of downloaded and/or processed data among scientists. This will, in turn, increase science returns from NASA missions. Sci-Share also enables better utilization of NASA s high-performance computing resources by providing an easy and central mechanism to access and share large files on users space or those saved on mass storage. The most common means of remote scientific collaboration today remains the trio of e-mail for electronic communication, FTP for file sharing, and personalized Web sites for dissemination of papers and research results. Each of these tools has well-known limitations. Sci-Share transforms the social networking paradigm into a scientific collaboration environment by offering powerful tools for cooperative discourse and digital content sharing. Sci-Share differentiates itself by serving as an online repository for users digital content with the following unique features: a) Sharing of any file type, any size, from anywhere; b) Creation of projects and groups for controlled sharing; c) Module for sharing files on HPC (High Performance Computing) sites; d) Universal accessibility of staged files as embedded links on other sites (e.g. Facebook) and tools (e.g. e-mail); e) Drag-and-drop transfer of large files, replacing awkward e-mail attachments (and file size limitations); f) Enterprise-level data and messaging encryption; and g) Easy-to-use intuitive workflow.
Biology, politics, and the emerging science of human nature.
Fowler, James H; Schreiber, Darren
2008-11-07
In the past 50 years, biologists have learned a tremendous amount about human brain function and its genetic basis. At the same time, political scientists have been intensively studying the effect of the social and institutional environment on mass political attitudes and behaviors. However, these separate fields of inquiry are subject to inherent limitations that may only be resolved through collaboration across disciplines. We describe recent advances and argue that biologists and political scientists must work together to advance a new science of human nature.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-04
... DEPARTMENT OF HOMELAND SECURITY [Docket No. DHS-2011-0077] Agency Information Collection Activities: Submission for Review; Information Collection Request for the Department of Homeland Security (DHS), Science and Technology, External S&T Collaboration Site (E-STCS) AGENCY: Science and Technology...
Iles, Alastair; Mulvihill, Martin J
2012-06-05
Sustainable solutions to our nation's material and energy needs must consider environmental, health, and social impacts while developing new technologies. Building a framework to support interdisciplinary interactions and incorporate sustainability goals into the research and development process will benefit green chemistry and other sciences. This paper explores the contributions that diverse disciplines can provide to the design of greener technologies. These interactions have the potential to create technologies that simultaneously minimize environmental and health impacts by drawing on the combined expertise of students and faculty in chemical sciences, engineering, environmental health, social sciences, public policy, and business.
Web-Based Integrated Research Environment for Aerodynamic Analyses and Design
NASA Astrophysics Data System (ADS)
Ahn, Jae Wan; Kim, Jin-Ho; Kim, Chongam; Cho, Jung-Hyun; Hur, Cinyoung; Kim, Yoonhee; Kang, Sang-Hyun; Kim, Byungsoo; Moon, Jong Bae; Cho, Kum Won
e-AIRS[1,2], an abbreviation of ‘e-Science Aerospace Integrated Research System,' is a virtual organization designed to support aerodynamic flow analyses in aerospace engineering using the e-Science environment. As the first step toward a virtual aerospace engineering organization, e-AIRS intends to give a full support of aerodynamic research process. Currently, e-AIRS can handle both the computational and experimental aerodynamic research on the e-Science infrastructure. In detail, users can conduct a full CFD (Computational Fluid Dynamics) research process, request wind tunnel experiment, perform comparative analysis between computational prediction and experimental measurement, and finally, collaborate with other researchers using the web portal. The present paper describes those services and the internal architecture of the e-AIRS system.
Expanding NASA Science Cooperation with New Partners
NASA Astrophysics Data System (ADS)
Allen, Marc; Bress, Kent
Expanding NASA Science Cooperation with New Partners When NASA was created in 1958, it was given a goal of "cooperation by the United States with other nations and groups of nations in work done pursuant to this Act and in the peaceful application of the results." As science has become increasingly globalized during the past 50 years, NASA and its many partners in space and Earth science research have benefited enormously from pooling ideas, skills, and resources for joint undertakings. The discoveries made have powerfully advanced public awareness of science and its importance all over the world. Today, the U.S. Administra-tion is encouraging NASA to expand its cooperation with new and emerging partners. NASA space and Earth science cooperation is founded on scientist-to-scientist research collaboration. Space missions are very costly and technically challenging, but there are many other important areas for international cooperation. Areas ripe for expansion with new partners include space data sharing, scientist-to-scientist collaborative research, international research program plan-ning and coordination, Earth applications for societal benefit, ground-based measurements for Earth system science, and education and public outreach. This presentation lays out NASA's general principles for international science cooperation, briefly describes each of these opportu-nity areas, and suggests avenues for initiating new cooperative relationships.
Improving Communication Skills in Early Career Scientists
NASA Astrophysics Data System (ADS)
Saia, S. M.
2013-12-01
The AGU fall meeting is a time for scientists to share what we have been hard at work on for the past year, to share our trials and tribulations, and of course, to share our science (we hope inspirational). In addition to sharing, the AGU fall meeting is also about collaboration as it brings old and new colleagues together from diverse communities across the planet. By sharing our ideas and findings, we build new relationships with the potential to cross boundaries and solve complex and pressing environmental issues. With ever emerging and intensifying water scarcity, extreme weather, and water quality issues across the plant, it is especially important that scientists like us share our ideas and work together to put these ideas into action. My vision of the future of water sciences embraces this fact. I believe that better training is needed to help early career scientists, like myself, build connections within and outside of our fields. First and foremost, more advanced training in effective storytelling concepts and themes may improve our ability to provide context for our research. Second, training in the production of video for internet-based media (e.g. YouTube) may help us bring our research to audiences in a more personalized way. Third, opportunities to practice presenting at highly visible public events such as the AGU fall meeting, will serve to prepare early career scientists for a variety of audiences. We hope this session, ';Water Sciences Pop-Ups', will provide the first steps to encourage and train early career scientists as they share and collaborate with scientists and non-scientists around the world.
COLLABORATING WITH THE COMMUNITY: THE EXTRA-TERRITORIAL TRANSLATIONAL RESEARCH TEAM.
Kotarba, Joseph A; Croisant, Sharon A; Elferink, Cornelis; Scott, Lauren E
2014-12-05
The purpose of the present study is to suggest a revision of the team science concept to the more inclusive extra-territorial research team (ETRT). Translational thinking is largely marked by the perception of the team as a thing-like structure at the center of the scientific activity. Collaboration accordingly involves bringing external others (e.g., scientists, community members, and clinicians) into the team through limited or dependent participation. We suggest that a promising and innovative way to see the team is as an idea : a schema for assembling and managing relationships among otherwise disparate individuals with vested interests in the problem at hand. Thus, the ETRT can be seen as a process as well as an object . We provide a case study derived from a qualitative analysis of the impact of the logic of translational science on a team assessment of environmental health following an off-coast oil disaster. The ETRT in question displayed the following principles of constructive relationship management: a high sense of adventure given the quick pace and timeliness given the relevance of the oil spill to all team members; regular meetings in the community to avoid the appearance of academic hegemony; open access by lay as well as institutional scientists; integration of emergency management coordinators into the group; and the languages of public health, environmental pharmacology/toxicology and coastal culture seamlessly interwoven in discussion. The ETRT model is an appropriate strategy for mobilizing and integrating the knowledge and skills needed for comprehensive science and service responses, especially during crisis.
COLLABORATING WITH THE COMMUNITY: THE EXTRA-TERRITORIAL TRANSLATIONAL RESEARCH TEAM
Kotarba, Joseph A.; Croisant, Sharon A.; Elferink, Cornelis; Scott, Lauren E.
2014-01-01
The purpose of the present study is to suggest a revision of the team science concept to the more inclusive extra-territorial research team (ETRT). Translational thinking is largely marked by the perception of the team as a thing-like structure at the center of the scientific activity. Collaboration accordingly involves bringing external others (e.g., scientists, community members, and clinicians) into the team through limited or dependent participation. We suggest that a promising and innovative way to see the team is as an idea: a schema for assembling and managing relationships among otherwise disparate individuals with vested interests in the problem at hand. Thus, the ETRT can be seen as a process as well as an object. We provide a case study derived from a qualitative analysis of the impact of the logic of translational science on a team assessment of environmental health following an off-coast oil disaster. The ETRT in question displayed the following principles of constructive relationship management: a high sense of adventure given the quick pace and timeliness given the relevance of the oil spill to all team members; regular meetings in the community to avoid the appearance of academic hegemony; open access by lay as well as institutional scientists; integration of emergency management coordinators into the group; and the languages of public health, environmental pharmacology/toxicology and coastal culture seamlessly interwoven in discussion. The ETRT model is an appropriate strategy for mobilizing and integrating the knowledge and skills needed for comprehensive science and service responses, especially during crisis. PMID:25635262
NASA Earth Science Education Collaborative
NASA Astrophysics Data System (ADS)
Schwerin, T. G.; Callery, S.; Chambers, L. H.; Riebeek Kohl, H.; Taylor, J.; Martin, A. M.; Ferrell, T.
2016-12-01
The NASA Earth Science Education Collaborative (NESEC) is led by the Institute for Global Environmental Strategies with partners at three NASA Earth science Centers: Goddard Space Flight Center, Jet Propulsion Laboratory, and Langley Research Center. This cross-organization team enables the project to draw from the diverse skills, strengths, and expertise of each partner to develop fresh and innovative approaches for building pathways between NASA's Earth-related STEM assets to large, diverse audiences in order to enhance STEM teaching, learning and opportunities for learners throughout their lifetimes. These STEM assets include subject matter experts (scientists, engineers, and education specialists), science and engineering content, and authentic participatory and experiential opportunities. Specific project activities include authentic STEM experiences through NASA Earth science themed field campaigns and citizen science as part of international GLOBE program (for elementary and secondary school audiences) and GLOBE Observer (non-school audiences of all ages); direct connections to learners through innovative collaborations with partners like Odyssey of the Mind, an international creative problem-solving and design competition; and organizing thematic core content and strategically working with external partners and collaborators to adapt and disseminate core content to support the needs of education audiences (e.g., libraries and maker spaces, student research projects, etc.). A scaffolded evaluation is being conducted that 1) assesses processes and implementation, 2) answers formative evaluation questions in order to continuously improve the project; 3) monitors progress and 4) measures outcomes.
The Birth of a Field and the Rebirth of the Laboratory School
ERIC Educational Resources Information Center
Schwartz, Marc; Gerlach, Jeanne
2011-01-01
We describe the emergence of a new field, "Mind Brain and Education", dedicated to the science of learning, as well as the roles researchers, policy makers, and educators need to play in developing this collaborative effort. The article highlights the challenges that MBE faces and the strategy researchers and educators in Texas are…
Cycles of Research and Application in Education: Learning Pathways for Energy Concepts
ERIC Educational Resources Information Center
Dawson, Theo L.; Stein, Zachary
2008-01-01
We begin this article by situating a methodology called "developmental maieutics" in the emerging field of mind, brain, and education. Then, we describe aspects of a project in which we collaborated with a group of physical science teachers to design developmentally informed activities and assessments for a unit on energy. Pen-and-paper…
Combining Efforts to Encourage Student Research in Collaborative Quantitative Fields
ERIC Educational Resources Information Center
Nadolski, Jeremy; Smith, Lee Ann
2010-01-01
As technology and science advance, the boundary between the disciplines begins to blur, emphasizing that it is now, more than ever, a requirement to have a solid background in multiple fields to fully understand emerging scientific advances. As faculty, we need to equip our undergraduate students not only with an introduction to these modern…
A Tool Supporting Collaborative Data Analytics Workflow Design and Management
NASA Astrophysics Data System (ADS)
Zhang, J.; Bao, Q.; Lee, T. J.
2016-12-01
Collaborative experiment design could significantly enhance the sharing and adoption of the data analytics algorithms and models emerged in Earth science. Existing data-oriented workflow tools, however, are not suitable to support collaborative design of such a workflow, to name a few, to support real-time co-design; to track how a workflow evolves over time based on changing designs contributed by multiple Earth scientists; and to capture and retrieve collaboration knowledge on workflow design (discussions that lead to a design). To address the aforementioned challenges, we have designed and developed a technique supporting collaborative data-oriented workflow composition and management, as a key component toward supporting big data collaboration through the Internet. Reproducibility and scalability are two major targets demanding fundamental infrastructural support. One outcome of the project os a software tool, supporting an elastic number of groups of Earth scientists to collaboratively design and compose data analytics workflows through the Internet. Instead of recreating the wheel, we have extended an existing workflow tool VisTrails into an online collaborative environment as a proof of concept.
ERIC Educational Resources Information Center
Mizohata, Sachie; Jadoul, Raynald
2013-01-01
This paper focuses on three main subjects: (1) monitoring quality of life (QoL) in old age; (2) international and interdisciplinary collaboration for QoL research; and (3) computer-based technology and infrastructure assisting (1) and (2). This type of computer-supported cooperative work in the social sciences has been termed eHumanities or…
Knowledge management is new competitive edge.
Johnson, D E
1998-07-01
Managing knowledge is emerging as the latest business strategy to get ahead of the competition. In the process of developing knowledge management systems, executives are increasing their awareness and understanding of organizational dynamics, collaboration, corporate learning and knowledge management technology. But Donald E.L. Johnson writes that health care executives must buy into and understand collaboration and corporate learning before they tackle knowledge management.
ERIC Educational Resources Information Center
Cheng, Eddie W. L.; Chu, Samuel K. W.; Ma, Carol S. M.
2016-01-01
With the emergence of web technologies, students can conduct their group projects via virtual platforms, which enable online collaboration. However, students' lack of intention to use web technologies for conducting group work has recently been highlighted. Based on the theory of planned behaviour (TPB), this paper developed and examined an…
NASA Astrophysics Data System (ADS)
Good, L. H.; Erickson, A.
2016-02-01
Academic learning and research experiences alone cannot prepare our emerging ocean leaders to take on the challenges facing our oceans. Developing solutions that incorporate environmental and ocean sciences necessitates an interdisciplinary approach, requiring emerging leaders to be able to work in collaborative knowledge to action systems, rather than on micro-discipline islands. Professional and informal learning experiences can enhance graduate marine education by helping learners gain the communication, collaboration, and innovative problem-solving skills necessary for them to interact with peers at the interface of science and policy. These rich experiences can also provide case-based and hands-on opportunities for graduate learners to explore real-world examples of ocean science, policy, and management in action. However, academic programs are often limited in their capacity to offer such experiences as a part of a traditional curriculum. Rather than expecting learners to rely on their academic training, one approach is to encourage and support graduates to seek professional development beyond their university's walls, and think more holistically about their learning as it relates to their career interests. During this session we discuss current thinking around the professional learning needs of emerging ocean leaders, what this means for academic epistemologies, and examine initial evaluation outcomes from activities in our cross-campus consortium model in Monterey Bay, California. This innovative model includes seven regional academic institutions working together to develop an interdisciplinary ocean community and increase access to professional development opportunities to better prepare regional ocean-interested graduate students and early career researchers as future leaders.
Space agencies' scientific roadmaps need harmonisation and reegular re-assessment
NASA Astrophysics Data System (ADS)
Worms, Jean-Claude; Culhane, J. Leonard; Walter, Nicolas; Swings, Jean-Pierre; Detsis, Emmanouil
The need to consider international collaboration in the exploration of space has been recognised since the dawn of the space age in 1957. Since then, international collaboration has been the main operational working mode amongst space scientists the world over, setting aside national pre-eminence and other political arguments. COSPAR itself was created as a tool for scientists to maintain the dialogue at the time of the cold war. Similarly the inherent constraints of the field (cost, complexity, time span) have led space agencies to try and coordinate their efforts. As a result many - if not all - of the key space science missions since the 60’s have been collaborative by nature. Different collaboration models have existed with varying success, and the corresponding lessons learned have been assessed through various fora and reports. For various reasons whose scope has broadened since that time (use of space in other domains such as Earth observation, telecommunication and navigation; emergence of commercial space activities; increased public appeal and capacity to motivate the young generation to engage into related careers), the importance of international collaboration in space has never faltered and coordination among spacefaring nations has become the norm. However programme harmonisation is often found to be lacking, and duplication of efforts sometimes happens due to different planning and decision procedures, programmatic timelines or budgetary constraints. Previous studies, in particular by the European ESSC-ESF, with input from the US NAS-SSB, advocated the need to establish a coordinating body involving major space agencies to address these coordination issues in a systematic and harmonious way. Since then and in line with this recommendation, the International Space Exploration Coordination Group (ISECG) of 14 space agencies was created in 2007 and published a first roadmap to advance a “Global Exploration Strategy”. ISECG is non-binding though and recent examples of lack of coordination in international planning probably indicate that this should be brought to a higher, more systematic level of coordination. Even more recently, discussions i.e. at the ISECG level, have led this forum to envisage setting up a Science Working Group to inform ISECG on ways to better coordinate the “…interaction between the exploration community…” (i.e. agencies) and the “…scientific community”. Following the recommendations by ESSC-ESF, the need for a rational and systematic approach to the harmonisation of agencies’ scientific roadmaps should be undertaken on a regular basis (ideally on an annual basis), through an inter-agency scientific collaboration working group, which would include agency executives but also scientific membership chosen after appropriate consultation. The ISECG Science Working Group could serve as an embryo to this inter-agency body. The presentation will offer prospects for the establishment of such a body and suggestions on its operating mode.
Mentoring the Next Generation of Science Gateway Developers and Users
NASA Astrophysics Data System (ADS)
Hayden, L. B.; Jackson-Ward, F.
2016-12-01
The Science Gateway Institute (SGW-I) for the Democratization and Acceleration of Science was a SI2-SSE Collaborative Research conceptualization award funded by NSF in 2012. From 2012 through 2015, we engaged interested members of the science and engineering community in a planning process for a Science Gateway Community Institute (SGCI). Science Gateways provide Web interfaces to some of the most sophisticated cyberinfrastructure resources. They interact with remotely executing science applications on supercomputers, they connect to remote scientific data collections, instruments and sensor streams, and support large collaborations. Gateways allow scientists to concentrate on the most challenging science problems while underlying components such as computing architectures and interfaces to data collection changes. The goal of our institute was to provide coordinating activities across the National Science Foundation, eventually providing services more broadly to projects funded by other agencies. SGW-I has succeeded in identifying two underrepresented communities of future gateway designers and users. The Association of Computer and Information Science/Engineering Departments at Minority Institutions (ADMI) was identified as a source of future gateway designers. The National Organization for the Professional Advancement of Black Chemists and Chemical Engineers (NOBCChE) was identified as a community of future science gateway users. SGW-I efforts to engage NOBCChE and ADMI faculty and students in SGW-I are now woven into the workforce development component of SGCI. SGCI (ScienceGateways.org ) is a collaboration of six universities, led by San Diego Supercomputer Center. The workforce development component is led by Elizabeth City State University (ECSU). ECSU efforts focus is on: Produce a model of engagement; Integration of research into education; and Mentoring of students while aggressively addressing diversity. This paper documents the outcome of the SGW-I conceptualization project and describes the extensive Workforce Development effort going forward into the 5-year SGCI project recently funded by NSF.
Subbe, Christian P; Kellett, John; Barach, Paul; Chaloner, Catriona; Cleaver, Hayley; Cooksley, Tim; Korsten, Erik; Croke, Eilish; Davis, Elinor; De Bie, Ashley Jr; Durham, Lesley; Hancock, Chris; Hartin, Jilian; Savijn, Tracy; Welch, John
2017-05-08
'Failure to rescue' of hospitalized patients with deteriorating physiology on general wards is caused by a complex array of organisational, technical and cultural failures including a lack of standardized team and individual expected responses and actions. The aim of this study using a learning collaborative method was to develop consensus recomendations on the utility and effectiveness of checklists as training and operational tools to assist in improving the skills of general ward staff on the effective rescue of patients with abnormal physiology. A scoping study of the literature was followed by a multi-institutional and multi-disciplinary international learning collaborative. We sought to achieve a consensus on procedures and clinical simulation technology to determine the requirements, develop and test a safe using a checklist template that is rapidly accessible to assist in emergency management of common events for general ward use. Safety considerations about deteriorating patients were agreed upon and summarized. A consensus was achieved among an international group of experts on currently available checklist formats performing poorly in simulation testing as first responders in general ward clinical crises. The Crisis Checklist Collaborative ratified a consensus template for a general ward checklist that provides a list of issues for first responders to address (i.e. 'Check In'), a list of prompts regarding common omissions (i.e. 'Stop & Think'), and, a list of items required for the safe "handover" of patients that remain on the general ward (i.e. 'Check Out'). Simulation usability assessment of the template demonstrated feasibility for clinical management of deteriorating patients. Emergency checklists custom-designed for general ward patients have the potential to guide the treatment speed and reliability of responses for emergency management of patients with abnormal physiology while minimizing the risk of adverse events. Interventional trials are needed.
NASA Astrophysics Data System (ADS)
Yanamandra-Fisher, Padma A.
2015-08-01
The Pro-Am Collaborative Astronomy (PACA) project promotes and supports the professional-amateur astronomer collaboration in scientific research via social media and has been implemented in several comet observing campaigns. In 2014, two comet observing campaigns involving pro-am collaborations were initiated: (1) C/2013 A1 (C/SidingSpring) and (2) 67P/Churyumov-Gerasimenko (CG), target for ESA/Rosetta mission. The evolving need for individual customized observing campaigns has been incorporated into the evolution of The PACA Project that currently is focused on comets: from supporting observing campaigns of current comets, legacy data, historical comets; interconnected with social media and a set of shareable documents addressing observational strategies; consistent standards for data; data access, use, and storage, to align with the needs of professional observers in the era of astronmical big data. The empowerment of amateur astronomers vis-à-vis their partnerships with the professional scientists creates a new demographic of data scientists, enabling citizen science of the integrated data from both the professional and amateur communities.While PACA identifies a consistent collaborative approach to pro-am collaborations, given the volume of data generated for each campaign, new ways of rapid data analysis, mining access and storage are needed. Several interesting results emerged from the synergistic inclusion of both social media and amateur astronomers. The PACA Project is expanding to include pro-am collaborations on other solar system objects; allow for immersive outreach and include various types of astronomical communities, ranging from individuals, to astronmical societies and telescopic networks. Enabling citizen science research in the era of astronomical big data is a challenge which requires innovative approaches and integration of professional and amateur astronomers with data scientists and some examples of recent projects will be highlighted.
NASA Astrophysics Data System (ADS)
Riddick, Andrew; Glaves, Helen; Marelli, Fulvio; Albani, Mirko; Tona, Calogera; Marketakis, Yannis; Tzitzikas, Yannis; Guarino, Raffaele; Giaretta, David; Di Giammatteo, Ugo
2013-04-01
The capability for long term preservation of earth science data is a key requirement to support on-going research and collaboration within and between many earth science disciplines. A number of critically important current research directions (e.g. understanding climate change, and ensuring sustainability of natural resources) rely on the preservation of data often collected over several decades in a form in which it can be accessed and used easily. Another key driver for strategic long term data preservation is that key research challenges (such as those described above) frequently require cross disciplinary research utilising raw and interpreted data from a number of earth science disciplines. Effective data preservation strategies can support this requirement for interoperability and collaboration, and thereby stimulate scientific innovation. The SCIDIP-ES project (EC FP7 grant agreement no. 283401) seeks to address these and other data preservation challenges by developing a Europe wide infrastructure for long term data preservation comprising appropriate software tools and infrastructure services to enable and promote long term preservation of earth science data. Because we define preservation in terms of continued usability of the digitally encoded information, the generic infrastructure services will allow a wide variety of data to be made usable by researchers from many different domains. This approach promotes international collaboration between researchers and will enable the cost for long-term usability across disciplines to be shared supporting the creation of strong business cases for the long term support of that data. This paper will describe our progress to date, including the results of community engagement and user consultation exercises designed to specify and scope the required tools and services. Our user engagement methodology, ensuring that we are capturing the views of a representative sample of institutional users, will be described. Key results of an in-depth user requirements exercise, and also the conclusions from a survey of existing technologies and policies for earth science data preservation involving almost five hundred respondents across Europe and beyond will also be outlined. A key aim of the project will also be to create harmonised data preservation and access policies for earth science data in Europe, taking into account the requirements of relevant earth science data users and archive providers across Europe, and liaising appropriately with other European data integration and e-infrastructure projects to ensure a collaborative strategy.
Recommendations for the role of social science research in One Health.
Lapinski, Maria Knight; Funk, Julie A; Moccia, Lauren T
2015-03-01
The social environment has changed rapidly as technology has facilitated communication among individuals and groups in ways not imagined 20 years ago. Communication technology increasingly plays a role in decision-making about health and environmental behaviors and is being leveraged to influence that process. But at its root is the fundamental need to understand human cognition, communication, and behavior. The concept of 'One Health' has emerged as a framework for interdisciplinary work that cuts across human, animal, and ecosystem health in recognition of their interdependence and the value of an integrated perspective. Yet, the science of communication, information studies, social psychology, and other social sciences have remained marginalized in this emergence. Based on an interdisciplinary collaboration, this paper reports on a nascent conceptual framework for the role of social science in 'One Health' issues and identifies a series of recommendations for research directions that bear additional scrutiny and development. Copyright © 2014 Elsevier Ltd. All rights reserved.
2012-01-01
Background Clinical translational medicine (CTM) is an emerging area comprising multidisciplinary research from basic science to medical applications and entails a close collaboration among hospital, academia and industry. Findings This Session focused discussing on new models for project development and promotion in translational medicine. The conference stimulated the scientific and commercial communication of project development between academies and companies, shared the advanced knowledge and expertise of clinical applications, and created the environment for collaborations. Conclusions Although strategic collaborations between corporate and academic institutions have resulted in a state of resurgence in the market, new cooperation models still need time to tell whether they will improve the translational medicine process. PMID:23369198
SQL is Dead; Long-live SQL: Relational Database Technology in Science Contexts
NASA Astrophysics Data System (ADS)
Howe, B.; Halperin, D.
2014-12-01
Relational databases are often perceived as a poor fit in science contexts: Rigid schemas, poor support for complex analytics, unpredictable performance, significant maintenance and tuning requirements --- these idiosyncrasies often make databases unattractive in science contexts characterized by heterogeneous data sources, complex analysis tasks, rapidly changing requirements, and limited IT budgets. In this talk, I'll argue that although the value proposition of typical relational database systems are weak in science, the core ideas that power relational databases have become incredibly prolific in open source science software, and are emerging as a universal abstraction for both big data and small data. In addition, I'll talk about two open source systems we are building to "jailbreak" the core technology of relational databases and adapt them for use in science. The first is SQLShare, a Database-as-a-Service system supporting collaborative data analysis and exchange by reducing database use to an Upload-Query-Share workflow with no installation, schema design, or configuration required. The second is Myria, a service that supports much larger scale data, complex analytics, and supports multiple back end systems. Finally, I'll describe some of the ways our collaborators in oceanography, astronomy, biology, fisheries science, and more are using these systems to replace script-based workflows for reasons of performance, flexibility, and convenience.
Trends in clinical reproductive medicine research: 10 years of growth.
Aleixandre-Benavent, Rafael; Simon, Carlos; Fauser, Bart C J M
2015-07-01
To study the most important metrics of publication in the field of reproductive medicine over the decade 2003-2012 to aid in discerning the clinical, social, and epidemiologic implications of this relatively new but rapidly emerging area in medical sciences. Bibliometric analysis of most-cited publications from Web of Science databases. Not applicable. None. None. Most productive and frequently cited investigators, institutions, and countries and specific areas of research, scientific collaborations, and comparison of the growth of reproductive medicine research compared with other areas of medical investigation such as obstetrics and gynecology and related science categories. We found that 90 investigators with more than 1,000 citations had jointly published 4,010 articles. A continued rise in the impact factor of reproductive medicine journals was seen. The number of publications in reproductive medicine grew more rapidly compared with other science categories. Presently 22% of highly cited articles in reproductive medicine research are published in journals belonging to science categories outside reproductive medicine. The most-cited study groups are situated in the Netherlands, Belgium, Spain, the United States, and the United Kingdom, and collaborative studies have been increasing. Reproductive medicine research and subsequent clinical development have attained scientific growth and maturity. High-quality research is increasingly being published in high-impact journals. The increase in (inter)national collaborations seems to be key to the field's success. Copyright © 2015 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Semken, S. C.; Arrowsmith, R.; Fouch, M. J.; Garnero, E. J.; Taylor, W. L.; Bohon, W.; Pacheco, H. A.; Schwab, P.; Baumback, D.; Pettis, L.; Colunga, J.; Robinson, S.; Dick, C.
2012-12-01
The EarthScope Program (www.earthscope.org) funded by the National Science Foundation fosters interdisciplinary exploration of the geologic structure and evolution of the North American continent by means of seismology, geodesy, magnetotellurics, in-situ fault-zone sampling, geochronology, and high-resolution topographic measurements. EarthScope scientific data and findings are transforming the study of Earth structure and processes throughout the planet. These data enhance the understanding and mitigation of hazards and inform environmental and economic applications of geoscience. The EarthScope Program also offers significant resources and opportunities for education and outreach (E&O) in the Earth system sciences. The EarthScope National Office (ESNO) at Arizona State University serves all EarthScope stakeholders, including researchers, educators, students, and the general public. ESNO continues to actively support and promote E&O with programmatic activities such as a regularly updated presence on the web and social media, newsletters, biannual national conferences, workshops for E&O providers and informal educators (interpreters), collaborative interaction with other Earth science organizations, continuing education for researchers, promotion of place-based education, and support for regional K-12 teacher professional-development programs led by EarthScope stakeholders. EarthScope E&O, coordinated by ESNO, leads the compilation and dissemination of the data, findings, and legacy of the epic EarthScope Program. In this presentation we offer updated reports and outcomes from ESNO E&O activities, including web and social-media upgrades, the Earth Science E&O Provider Summit for partnering organizations, the Central Appalachian Interpretive Workshop for informal Earth science educators, the U.S. Science and Engineering Fair, and collaborative efforts with partner organizations. The EarthScope National Office is supported by the National Science Foundation under grants EAR-1101100 and EAR-1216301. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.
Holve, Erin
2016-01-01
"Open science" includes a variety of approaches to facilitate greater access to data and the information produced by processes of scientific inquiry. Recently, the health sciences community has been grappling with the issue of potential pathways and models to achieve the goals of open science-namely, to create and rapidly share reproducible health research. eGEMs' continued dedication to and milestones regarding the publication of innovative, useful, and timely research to help contribute to the push towards open science is discussed, as well as the EDM Forum's new data sharing platform, CIELO. Although strides have been made, there is still more work to be done to help health sciences community truly embrace open science.
Materials science tetrahedron--a useful tool for pharmaceutical research and development.
Sun, Changquan Calvin
2009-05-01
The concept of materials science tetrahedron (MST) concisely depicts the inter-dependent relationship among the structure, properties, performance, and processing of a drug. Similar to its role in traditional materials science, MST encompasses the development in the emerging field of pharmaceutical materials science and forms a scientific foundation to the design and development of new drug products. Examples are given to demonstrate the applicability of MST to both pharmaceutical research and product development. It is proposed that a systematic implementation of MST can expedite the transformation of pharmaceutical product development from an art to a science. By following the principle of MST, integration of research among different laboratories can be attained. The pharmaceutical science community as a whole can conduct more efficient, collaborative, and coherent research.
Collective Properties of Neural Systems and Their Relation to Other Physical Models
1988-08-05
been computed explicitly. This has been achieved algorithmically by utilizing methods introduced earlier. It should be emphasized that in addition to...Research Institute for Mathematical Sciences. K’oto Universin. K roto 606. .apan and E. BAROUCH Department of Mathematics and Computer Sciene. Clarkon...Mathematics and Computer Science, Clarkson University, where this work was collaborated. References I. IBabu, S. V. and Barouch E., An exact soIlution for the
NASA Astrophysics Data System (ADS)
Martini, Mariana
This investigation was framed within the science education reform, which proposes to change the way science is taught and promotes the implementation of inquiry-based teaching approaches. The implementation of inquiry science teaching represents a move away from traditional didactic teaching styles, a transition that requires change in the assumptions underlying the philosophy of traditional science instruction. Another theme in the reform literature is the establishment of collaboration between teachers and researchers or scientists as a way to implement reform practices. Situated within this reform climate, this research aimed to investigate science education at an elementary school with a history of implementing reform ideas in the areas of language arts and fine arts. I employed an ethnographic methodology to examine the nature of a teacher-researcher relationship in the context of the school's culture and teachers' practices. The findings indicate that change was not pervasive. Reform ideas were implemented only in the areas of language arts and fine arts. Situated within a district that promoted an accountability climate, the school disregarded science education and opposed the use of constructivist-based pedagogies, and did not have a strong science program. Since science was not tested, teachers spent little (if any) time teaching science. All participants firmly perceived the existence of several barriers to the implementation of inquiry: (a) lack of time: teachers spent excessive time to prepare students for tests, (b) nature of science teaching: materials and set preparation, (c) lack of content knowledge, (d) lack of pedagogical content knowledge, and (e) lack of opportunities to develop professional knowledge. In spite of the barriers, the school had two assets: an outdoor facility and two enthusiastic teachers who were lead science teachers, in spite of the their lack of content and pedagogical science knowledge. Collaboration between the researcher and each teacher was developmental. Defining who we are and how we approach the work ahead played an important part in the relationship. It took time to build trust and change the modus operandi from a cooperation to a collaboration project. Despite the constraints faced, collaboration had a positive effect on us.
Experiments using Semantic Web technologies to connect IUGONET, ESPAS and GFZ ISDC data portals
NASA Astrophysics Data System (ADS)
Ritschel, Bernd; Borchert, Friederike; Kneitschel, Gregor; Neher, Günther; Schildbach, Susanne; Iyemori, Toshihiko; Koyama, Yukinobu; Yatagai, Akiyo; Hori, Tomoaki; Hapgood, Mike; Belehaki, Anna; Galkin, Ivan; King, Todd
2016-11-01
E-science on the Web plays an important role and offers the most advanced technology for the integration of data systems. It also makes available data for the research of more and more complex aspects of the system earth and beyond. The great number of e-science projects founded by the European Union (EU), university-driven Japanese efforts in the field of data services and institutional anchored developments for the enhancement of a sustainable data management in Germany are proof of the relevance and acceptance of e-science or cyberspace-based applications as a significant tool for successful scientific work. The collaboration activities related to near-earth space science data systems and first results in the field of information science between the EU-funded project ESPAS, the Japanese IUGONET project and the GFZ ISDC-based research and development activities are the focus of this paper. The main objective of the collaboration is the use of a Semantic Web approach for the mashup of the project related and so far inoperable data systems. Both the development and use of mapped and/or merged geo and space science controlled vocabularies and the connection of entities in ontology-based domain data model are addressed. The developed controlled vocabularies for the description of geo and space science data and related context information as well as the domain ontologies itself with their domain and cross-domain relationships will be published in Linked Open Data.[Figure not available: see fulltext.
Collaborative online projects for English language learners in science
NASA Astrophysics Data System (ADS)
Terrazas-Arellanes, Fatima E.; Knox, Carolyn; Rivas, Carmen
2013-12-01
This paper summarizes how collaborative online projects (COPs) are used to facilitate science content-area learning for English Learners of Hispanic origin. This is a Mexico-USA partnership project funded by the National Science Foundation. A COP is a 10-week thematic science unit, completely online, and bilingual (Spanish and English) designed to provide collaborative learning experiences with culturally and linguistically relevant science instruction in an interactive and multimodal learning environment. Units are integrated with explicit instructional lessons that include: (a) hands-on and laboratory activities, (b) interactive materials and interactive games with immediate feedback, (c) animated video tutorials, (d) discussion forums where students exchange scientific learning across classrooms in the USA and in Mexico, and (e) summative and formative assessments. Thematic units have been aligned to U.S. National Science Education Standards and are under current revisions for alignment to the Common Core State Standards. Training materials for the teachers have been integrated into the project website to facilitate self-paced and independent learning. Preliminary findings of our pre-experimental study with a sample of 53 students (81 % ELs), distributed across three different groups, resulted in a 21 % statistically significant points increase from pretest to posttest assessments of science content learning, t( 52) = 11.07, p = .000.
Native America: American Indian Geoscientists & Earth System Science Leaders
NASA Astrophysics Data System (ADS)
Bolman, J. R.
2011-12-01
We are living in a definite time of change. Distinct changes are being experienced in our most sacred and natural environments. This is especially true on Native lands across the Americas. Native people have lived for millennia in distinct and unique ways. The knowledge of balancing the needs of people with the needs of our natural environments is paramount in all Tribal societies. These changes have accelerated the momentum to ensure the future of American Indian Geoscientists and Earth Systems Science Leaders. The presentation will bring to prominence the unique recruitment and mentoring necessary to achieve success that emerged through working with Tribal people. The presentation will highlight: 1) past and present philosophies on recruitment and mentoring of Native/Tribal students in geoscience and earth systems science; 2) current Native leadership and research development; 3) unique collaborations "bridging" Native people across geographic areas (International) in developing educational/research experiences which integrate the distinctive geoscience and earth systems science knowledge of Tribal peoples throughout the Americas. The presentation will highlight currently funded projects and initiatives as well as success stories of emerging Native geoscientists and earth systems science leaders.
The Preparedness Web: Utilizing Regional Collaborative Networks for Homeland Security Preparedness
2007-09-01
Hughes’ conflict strategies could then be used to develop methodologies for improved conflict management . 45 D. ORGANIZATIONAL CHANGE Emergency...has training in place to develop collaborative skills (e.g., conflict management , team process skills). * 2.3 (0.7) * 4 point scale; 1...included (a) knowledge of other agencies’ capabilities, (b) communication, (c) inter-agency trust and respect, and (d) conflict management . Further
Mapping the hinterland: Data issues in open science.
Grand, Ann; Wilkinson, Clare; Bultitude, Karen; Winfield, Alan F T
2016-01-01
Open science is a practice in which the scientific process is shared completely and in real time. It offers the potential to support information flow, collaboration and dialogue among professional and non-professional participants. Using semi-structured interviews and case studies, this research investigated the relationship between open science and public engagement. This article concentrates on three particular areas of concern that emerged: first, how to effectively contextualise and narrate information to render it accessible, as opposed to simply available; second, concerns about data quantity and quality; and third, concerns about the skills required for effective contextualisation, mapping and interpretation of information. © The Author(s) 2014.
Behavioural science at work for Canada: National Research Council laboratories.
Veitch, Jennifer A
2007-03-01
The National Research Council is Canada's principal research and development agency. Its 20 institutes are structured to address interdisciplinary problems for industrial sectors, and to provide the necessary scientific infrastructure, such as the national science library. Behavioural scientists are active in five institutes: Biological Sciences, Biodiagnostics, Aerospace, Information Technology, and Construction. Research topics include basic cellular neuroscience, brain function, human factors in the cockpit, human-computer interaction, emergency evacuation, and indoor environment effects on occupants. Working in collaboration with NRC colleagues and with researchers from universities and industry, NRC behavioural scientists develop knowledge, designs, and applications that put technology to work for people, designed with people in mind.
Mapping the hinterland: Data issues in open science
Grand, Ann; Wilkinson, Clare; Bultitude, Karen; Winfield, Alan F. T.
2016-01-01
Open science is a practice in which the scientific process is shared completely and in real time. It offers the potential to support information flow, collaboration and dialogue among professional and non-professional participants. Using semi-structured interviews and case studies, this research investigated the relationship between open science and public engagement. This article concentrates on three particular areas of concern that emerged: first, how to effectively contextualise and narrate information to render it accessible, as opposed to simply available; second, concerns about data quantity and quality; and third, concerns about the skills required for effective contextualisation, mapping and interpretation of information. PMID:24769860
Creating Healthy and Just Bioregions
Pezzoli, Keith; Leiter, Robert A.
2017-01-01
Dramatic changes taking place locally, regionally, globally, demand that we rethink strategies to improve public health, especially in disadvantaged communities where the cumulative impacts of toxicant exposure and other environmental and social stressors are most damaging. The emergent field of sustainability science, including a new bioregionalism for the 21st Century, is giving rise to promising place-based (territorially rooted) approaches. Embedded in this bioregional approach is an Integrated Planning Framework that enables people to map and develop plans and strategies that cut across various scales (e.g., from regional to citywide to neighborhood scale) and various topical areas (e.g., urban land use planning, water resource planning, food systems planning and “green infrastructure” planning) with the specific intent of reducing the impacts of toxicants to public health and the natural environment. This paper describes a case of bioregionally inspired Integrated Planning in San Diego, California (USA). The paper highlights food-water-energy linkages and the importance of “rooted” community-university partnerships and knowledge-action collaboratives in creating healthy and just bioregions. PMID:26812849
Assessing the continuum of applications and societal benefits of US CLIVAR science
NASA Astrophysics Data System (ADS)
Ray, A. J.; Garfin, G. M.
2015-12-01
The new US CLIVAR strategic plan seeks to address the challenges of communicating the climate knowledge generated through its activities and to collaborate with the research and operational communities that may use this knowledge for managing climate risks. This presentation provides results of an overview in progress of the continuum of potential applications of climate science organized and coordinated through US CLIVAR. We define applications more broadly than simply ready for operations or direct use, and find that there are several stages in a continuum of readiness for communication and collaboration with communities that use climate information. These stages include: 1) advancing scientific understanding to a readiness for the next research steps aimed at predictable signals; 2) application of understanding climate phenomena in collaboration with a boundary organization, such as NOAA RISAs DOI Climate Science Centers, and USDA Climate Hubs, to understand how predictable signals may be translated into useable products; 3) use of knowledge in risk framing for a decision process, or in a science synthesis, such as the National Climate Assessment, and 4) transitioning new science knowledge into operational products (e.g. R2O), such as intraseasonal climate prediction. In addition, US CLIVAR has sponsored efforts to build science-to-decisions capacity, e.g., the Postdocs Applying Climate Expertise (PACE) program, in its 7th cohort, which has embedded climate experts into decision-making institutions. We will spotlight accomplishments of US CLIVAR science that are ripe for application in communities that are managing climate risks -- such as drought outlooks, MJO forecasting, extremes, and ocean conditions -- for agricultural production, water use, and marine ecosystems. We will use these examples to demonstrate the usefulness of an "applications continuum framework" identifying pathways from research to applications.
ERIC Educational Resources Information Center
Arum, Richard; Roksa, Josipa
2008-01-01
This research emerged from the Social Science Research Council's collaborative partnership with the Pathways for College Network, with technical assistance in data collection provided by the Council for Aid to Education. The project has followed over 2,300 students at 24 institutions over time to examine what factors are associated with learning…
Advancing pharmacometrics and systems pharmacology.
Waldman, S A; Terzic, A
2012-11-01
Pharmacometrics and systems pharmacology are emerging as principal quantitative sciences within drug development and experimental therapeutics. In recognition of the importance of pharmacometrics and systems pharmacology to the discipline of clinical pharmacology, the American Society for Clinical Pharmacology and Therapeutics (ASCPT), in collaboration with Nature Publishing Group and Clinical Pharmacology & Therapeutics, has established CPT: Pharmacometrics & Systems Pharmacology to inform the field and shape the discipline.
Collaboratively Exploring the Use of a Video Case-Based Book as a Professional Development Tool
ERIC Educational Resources Information Center
Smithenry, Dennis W.; Prouty, Jessica; Capobianco, Brenda M.
2013-01-01
Although the literature contains many examples of extensive professional development (PD) programs, most science teachers experience only a few hours of PD each year. To address this reality, alternative PD delivery tools need to be examined. Since the mid-1990s, video cases have emerged as a flexible form of PD where in-service teachers can…
Ardalan, Ali; Balikuddembe, Joseph Kimuli; Ingrassia, Pier Luigi; Carenzo, Luca; Della Corte, Francesco; Akbarisari, Ali; Djalali, Ahmadreza
2015-07-13
Disaster education needs innovative educational methods to be more effective compared to traditional approaches. This can be done by using virtual simulation method. This article presents an experience about using virtual simulation methods to teach health professional on disaster medicine in Iran. The workshop on the "Application of New Technologies in Disaster Management Simulation" was held in Tehran in January 2015. It was co-organized by the Disaster and Emergency Health Academy of Tehran University of Medical Sciences and Emergency and the Research Center in Disaster Medicine and Computer Science applied to Medicine (CRIMEDIM), Università del Piemonte Orientale. Different simulators were used by the participants, who were from the health system and other relevant fields, both inside and outside Iran. As a result of the workshop, all the concerned stakeholders are called on to support this new initiative of incorporating virtual training and exercise simulation in the field of disaster medicine, so that its professionals are endowed with field-based and practical skills in Iran and elsewhere. Virtual simulation technology is recommended to be used in education of disaster management. This requires capacity building of instructors, and provision of technologies. International collaboration can facilitate this process.
E-Learning in Science and Technology via a Common Learning Platform in a Lifelong Learning Project
ERIC Educational Resources Information Center
Priem, Freddy; De Craemer, Renaat; Calu, Johan; Pedreschi, Fran; Zimmer, Thomas; Saighi, Sylvain; Lilja, Jarmo
2011-01-01
This three-year Virtual Measurements Environment curriculum development project for higher education within the Lifelong Learning Programme of the European Union is the result of intense collaboration among four institutions, teaching applied sciences and technology. It aims to apply the principles and possibilities of evolved distance and…
The Integration of Environmental Education in Science Materials by Using "MOTORIC" Learning Model
ERIC Educational Resources Information Center
Sukarjita, I. Wayan; Ardi, Muhammad; Rachman, Abdul; Supu, Amiruddin; Dirawan, Gufran Darma
2015-01-01
The research of the integration of Environmental Education in science subject matter by application of "MOTORIC" Learning models has carried out on Junior High School Kupang Nusa Tenggara Timur Indonesia. "MOTORIC" learning model is an Environmental Education (EE) learning model that collaborate three learning approach i.e.…
The science of team science: overview of the field and introduction to the supplement.
Stokols, Daniel; Hall, Kara L; Taylor, Brandie K; Moser, Richard P
2008-08-01
The science of team science encompasses an amalgam of conceptual and methodologic strategies aimed at understanding and enhancing the outcomes of large-scale collaborative research and training programs. This field has emerged rapidly in recent years, largely in response to growing concerns about the cost effectiveness of public- and private-sector investments in team-based science and training initiatives. The distinctive boundaries and substantive concerns of this field, however, have remained difficult to discern. An important challenge for the field is to characterize the science of team science more clearly in terms of its major theoretical, methodologic, and translational concerns. The articles in this supplement address this challenge, especially in the context of designing, implementing, and evaluating cross-disciplinary research initiatives. This introductory article summarizes the major goals and organizing themes of the supplement, draws links between the constituent articles, and identifies new areas of study within the science of team science.
Exploring multiliteracies, student voice, and scientific practices in two elementary classrooms
NASA Astrophysics Data System (ADS)
Allison, Elizabeth Rowland
This study explored the voices of children in a changing world with evolving needs and new opportunities. The workplaces of rapidly moving capitalist societies value creativity, collaboration, and critical thinking skills which are of growing importance and manifesting themselves in modern K-12 science classroom cultures (Gee, 2000; New London Group, 2000). This study explored issues of multiliteracies and student voice set within the context of teaching and learning in 4th and 5th grade science classrooms. The purpose of the study was to ascertain what and how multiliteracies and scientific practices (NGSS Lead States, 2013c) are implemented, explore how multiliteracies influence students' voices, and investigate teacher and student perceptions of multiliteracies, student voice, and scientific practices. Grounded in a constructivist framework, a multiple case study was employed in two elementary classrooms. Through observations, student focus groups and interviews, and teacher interviews, a detailed narrative was created to describe a range of multiliteracies, student voice, and scientific practices that occurred with the science classroom context. Using grounded theory analysis, data were coded and analyzed to reveal emergent themes. Data analysis revealed that these two classrooms were enriched with multiliteracies that serve metaphorically as breeding grounds for student voice. In the modern classroom, defined as a space where information is instantly accessible through the Internet, multiliteracies can be developed through inquiry-based, collaborative, and technology-rich experiences. Scientific literacy, cultivated through student communication and collaboration, is arguably a multiliteracy that has not been considered in the literature, and should be, as an integral component of overall individual literacy in the 21st century. Findings revealed four themes. Three themes suggest that teachers address several modes of multiliteracies in science, but identify barriers to integrating multiliteracies and scientific practices into science teaching. The issues include time, increased standards accountability, and lack of comfort with effective integration of technology. The fourth theme revealed that students have the ability to shape and define their learning while supporting other voices through collaborative science experiences.
NASA Astrophysics Data System (ADS)
Schielack, J. F.; Herbert, B. E.
2004-12-01
The ITS Center for Teaching and Learning (http://its.tamu.edu) is a five-year NSF-funded collaborative effort to engage scientists, educational researchers, and educators in the use of information technology to enhance science teaching and learning at Grades 7 - 16. The ITS program combines graduate courses in science and science education leadership for both science and education graduate students with professional development experiences for classroom teachers. The design of the ITS professional development experience is based upon the assumption that science and mathematics teaching and learning will be improved when they become more connected to the authentic science research done in field settings or laboratories. The effective use of information technology to support inquiry in science classrooms has been shown to help achieve this objective. In particular, the professional development for teachers centers around support for implementing educational research in their own classrooms on the impacts of using information technology to promote authentic science experiences for their students. As a design study that is "working toward a greater understanding of the "learning ecology," the research related to the creation and refinement of the ITS Center's collaborative environment for integrating professional development for faculty, graduate students, and classroom teachers is contributing information about an important setting not often included in the descriptions of professional development, a setting that incorporates distributed expertise and resulting distributed growth in the various categories of participants: scientists, science graduate students, education researchers, science education graduate students, and master teachers. Design-based research is an emerging paradigm for the study of learning in context through the systematic design and study of instructional strategies and tools. In this presentation, we will discuss the results of the formative evaluation process that has moved the ITS Center's collaborative environment for professional development through the iterative process from Phase I (the planned program designed in-house) to Phase II (the experimental program being tested in-house). Phase II highlighted learning experiences over two summers focused on the exploration of environmentally-related science, technology, engineering or mathematics (STEM) topics through the use of modeling, visualization and complex data sets to explore authentic scientific questions that can be integrated within the 7-16 curriculum.
High school students as science researchers: Opportunities and challenges
NASA Astrophysics Data System (ADS)
Smith, W. R.; Grannas, A. M.
2007-12-01
Today's K-12 students will be the scientists and engineers who bring currently emerging technologies to fruition. Existing research endeavors will be continued and expanded upon in the future only if these students are adequately prepared. High school-university collaborations provide an effective means of recruiting and training the next generation of scientists and engineers. Here, we describe our successful high school-university collaboration in the context of other models. We have developed an authentic inquiry-oriented environmental chemistry research program involving high school students as researchers. The impetus behind the development of this project was twofold. First, participation in authentic research may give some of our students the experience and drive to enter technical studies after high school. One specific goal was to develop a program to recruit underrepresented minorities into university STEM (science, technology, engineering, and mathematics) programs. Second, inquiry-oriented lessons have been shown to be highly effective in developing scientific literacy among the general population of students. This collaboration involves the use of local resources and equipment available to most high schools and could serve as a model for developing high school- university partnerships.
NASA Astrophysics Data System (ADS)
2001-05-01
LINKS WITH PRIMARY SCIENCE SAD Physics; PHYSICS RESEARCH In a hurry...; PHYSICS COMMUNITY Scottish Stirling Meeting; PHYSICS AT CONGRESS Global warming forecasts rise in skin cancer; EVENTS 2001 SET week; E-MAIL DISCUSSIONS Learning in science; STUDENT ACTIVITY Paperclip Physics; CURRICULUM DEVELOPMENT Perspectives on Science; AWARDS Award for causing chaos; PHYSICS AT CONGRESS Physics and public heath: Do electrical power lines cause cancer? HIGHER EDUCATION First-year course development; INTERSCHOOL COLLABORATION Monitoring geomagnetic storms; CURRICULUM DEVELOPMENT UK course goes international; PHYSICS IN SCIENCE YEAR Website launched
NIH Roundtable on Opportunities to Advance Research on Neurologic and Psychiatric Emergencies.
D'Onofrio, Gail; Jauch, Edward; Jagoda, Andrew; Allen, Michael H; Anglin, Deirdre; Barsan, William G; Berger, Rachel P; Bobrow, Bentley J; Boudreaux, Edwin D; Bushnell, Cheryl; Chan, Yu-Feng; Currier, Glenn; Eggly, Susan; Ichord, Rebecca; Larkin, Gregory L; Laskowitz, Daniel; Neumar, Robert W; Newman-Toker, David E; Quinn, James; Shear, Katherine; Todd, Knox H; Zatzick, Douglas
2010-11-01
The Institute of Medicine Committee on the Future of Emergency Care in the United States Health System (2003) identified a need to enhance the research base for emergency care. As a result, a National Institutes of Health (NIH) Task Force on Research in Emergency Medicine was formed to enhance NIH support for emergency care research. Members of the NIH Task Force and academic leaders in emergency care participated in 3 Roundtable discussions to prioritize current opportunities for enhancing and conducting emergency care research. We identify key research questions essential to advancing the science of emergency care and discuss the barriers and strategies to advance research by exploring the collaboration between NIH and the emergency care community. Experts from emergency medicine, neurology, psychiatry, and public health assembled to review critical areas in need of investigation, current gaps in knowledge, barriers, and opportunities. Neurologic emergencies included cerebral resuscitation, pain, stroke, syncope, traumatic brain injury, and pregnancy. Mental health topics included suicide, agitation and delirium, substances, posttraumatic stress, violence, and bereavement. Presentations and group discussion firmly established the need for translational research to bring basic science concepts into the clinical arena. A coordinated continuum of the health care system that ensures rapid identification and stabilization and extends through discharge is necessary to maximize overall patient outcomes. There is a paucity of well-designed, focused research on diagnostic testing, clinical decisionmaking, and treatments in the emergency setting. Barriers include the limited number of experienced researchers in emergency medicine, limited dedicated research funding, and difficulties of conducting research in chaotic emergency environments stressed by crowding and limited resources. Several themes emerged during the course of the roundtable discussion, including the need for development of (1) a research infrastructure for the rapid identification, consent, and tracking of research subjects that incorporates innovative informatics technologies, essential for future research; (2) diagnostic strategies and tools necessary to understand key populations and the process of medical decisionmaking, including the investigation of the pathobiology of symptoms and symptom-oriented therapies; (3) collaborative research networks to provide unique opportunities to form partnerships, leverage patient cohorts and clinical and financial resources, and share data; (4) formal research training programs integral for creating new knowledge and advancing the science and practice of emergency medicine; and (5) recognition that emergency care is part of an integrated system from emergency medical services dispatch to discharge. The NIH Roundtable "Opportunities to Advance Research on Neurological and Psychiatric Emergencies" created a framework to guide future emergency medicine-based research initiatives. Emergency departments provide the portal of access to the health care system for most patients with acute neurologic and psychiatric illness. Emergency physicians and colleagues are primed to investigate neurologic and psychiatric emergencies that will directly improve the delivery of care and patient outcomes. Copyright © 2010. Published by Mosby, Inc.
NASA Astrophysics Data System (ADS)
Rousi, A. M.; Branch, B. D.; Kong, N.; Fosmire, M.
2013-12-01
In their Finnish National Spatial Strategy 2010-2015 the Finland's Ministry of Agriculture and Forestry delineated e.g. that spatial data skills should support citizens everyday activities and facilitate decision-making and participation of citizens. Studies also predict that open data, particularly open spatial data, would create, when fully realizing their potential, a 15% increase into the turnovers of Finnish private sector companies. Finnish libraries have a long tradition of serving at the heart of Finnish information society. However, with the emerging possibilities of educating their users on open spatial data a very few initiatives have been made. The National Survey of Finland opened its data in 2012. Finnish technology university libraries, such as Aalto University Library, are open environments for all citizens, and seem suitable of being the first thriving entities in educating citizens on open geospatial data. There are however many obstacles to overcome, such as lack of knowledge about policies, lack of understanding of geospatial data services and insufficient know-how of GIS software among the personnel. This framework examines the benefits derived from an international collaboration between Purdue University Libraries and Aalto University Library to create local strategies in implementing open spatial data education initiatives in Aalto University Library's context. The results of this international collaboration are explicated for the benefit of the field as a whole.
Emerging eHealth Directions in the Philippines.
Fernandez-Marcelo, P G; Ho, B L; Faustorilla, J F; Evangelista, A L; Pedrena, M; Marcelo, A
2012-01-01
This paper aims to provide an overview of research and education initiatives in the Philippines. Moreover, it outlines the various agencies and organizations that spearhead the eHealth projects. The researchers utilized internet-based review of literature, key informant interviews and proceedings from two eHealth conferences among Filipino researchers in 2011 organized by the authors. eHealth capacities in the areas of research, education and service have progressed dramatically in the last four decades as a result of improved access to information and communication technology. The National Unified Health Research Agenda initiatives have been led largely by higher educational institutions and organizations specializing in eHealth. Educational reforms have been seen with the establishment of the Masters of Science in Health Informatics, infusion of Nursing Informatics into the nursing undergraduate curriculum and offering of short courses on eHealth. Service- oriented organizations and innovations have also been formulated to meet the needs of the practitioners as information and communication technologies are embedded into the healthcare delivery system. Experts, researchers, practitioners and enthusiasts have successfully promoted awareness and uplifted the standards in the practice of eHealth in research, education and service. However, three main areas of improvement need to be given priority: (1) Policy and standards creation, (2) capability building and (3) multi-sectoral collaborations.
Mentoring a new science teacher in reform-based ways: A focus on inquiry
NASA Astrophysics Data System (ADS)
Schomer, Scott D.
The processes, understandings, and uses of inquiry are identified by the National Science Education Standards (National Research Council, 1996) as a key component of science instruction. Currently, there are few examples in the literature demonstrating how teachers go about co-constructing inquiry-based activities and how mentors can promote the use of reform-based practices by novices. The purpose of this interpretive case study was to investigate how a mentor and her protege collaboratively developed, implemented and assessed three inquiry-based experiences. The questions that guided this research were: (1) How does the mentor assist protege growth in the development, implementation and assessment of inquiry-based experiences for secondary science students? (2) How are the protege's perceptions of inquiry influenced by her participation in developing, implementing and assessing inquiry-based experiences for secondary science students? The co-construction of the inquiry activities and the facilitation provided by the mentor represented Lev Vygotsky's (1978) social construction of information as the mentor guided the protege beyond her cognitive zone of proximal development. The participants in this study were a veteran science teacher who was obtaining her mentor certification, or Teacher Support Specialist, and her protege who was a science teacher in the induction phase of her career. Data were collected through in-depth, semi-structured interviews, tape recordings of planning sessions, researcher field notes, and email reflections during the co-construction process. Inductive analysis of the data led to the identification of common categories and subsequent findings, which reflected what the mentor and protege discussed about inquiry and the process of collaboration. The six themes that emerged from this study led to several implications that are significant for science teacher preparation and the mentoring community. The teachers indicated tools, such as the "Essential Features and Variations of Inquiry" table, were helpful for planning and assessing inquiry-based experiences. Examination of findings revealed how the process of purposefully collaborating on the development of inquiry-based lessons fostered a more student-centered approach to teaching and learning by the protege. Therefore, having new teachers continue to collaborate with reform-minded mentors beyond their first year of teaching may help new teachers develop inquiry-based pedagogies.
Building a Shared Understanding of Phenology
NASA Astrophysics Data System (ADS)
Rosemartin, A.; Posthumus, E.; Gerst, K.
2017-12-01
The USA National Phenology Network (USA-NPN) seeks to advance the science of phenology and support the use of phenology information in decision-making. We envision that natural resource, human health, recreation and land-use decisions, in the context of a variable and changing climate, will be supported by USA-NPN products and tools. To achieve this vision we developed a logic model, breaking down the necessary inputs (e.g., IT infrastructure), participants, activities and the short- to long-term goals (e.g., use of phenological information in adaptive management). Here we compare the ongoing activities and outcomes of three recent collaborations to our logic model, in order to improve the model and inform future collaborations. At Midway Atoll National Wildlife Refuge, resource managers use the USA-NPN's phenology monitoring program to pinpoint the minimum number of days between initial growth and seed set in an invasive species. The data output and calendar visualizations that USA-NPN provides are sufficient to identify the appropriate treatment window. In contrast to a direct relationship with a natural resource manager using USA-NPN tools and products, some collaborations require substantive iterative work between partners. USA-NPN and National Park Service staff, along with academic researchers, assessed advancement in the timing of spring, and delivered the work in a format appropriate for park managers. Lastly, collaborations with indigenous communities reveal a requirement to reconsider the relationship between Western science and indigenous knowledge systems, as well as address ethical considerations and develop trust, before Western science can be meaningfully incorporated into decision-making. While the USA-NPN is a boundary organization, working in between federal agencies, states and universities, and is mandated to support decision-making, we still face challenges in generating usable science. We share lessons learned based on our experience with diverse and evolving partnerships.
Translational Medicine is developing in China: a new venue for collaboration.
Wang, Xiangdong; Wang, Ena; Marincola, Francesco M
2011-01-04
Translational Medicine is an emerging area comprising multidisciplinary Research from basic sciences to medical applications well summarized by the Bench-to-Beside concept; this entails close collaboration between clinicians and basic scientists across institutes. We further clarified that Translational Medicine should be regarded as a two-way road: Bench-to-Bedside and Bedside-to-Bench, to complement testing of novel therapeutic strategies in humans with feedback understanding of how they respond to them. It is, therefore, critical and important to define and promote Translational Medicine among clinicians, basic Researchers, biotechnologists, politicians, ethicists, sociologists, investors and coordinate these efforts among different Countries, fostering aspects germane only to this type of Research such as, as recently discussed, biotechnology entrepreneurship. Translational Medicine as an inter-disciplinary science is developing rapidly and widely and, in this article, we will place a special emphasis on China.
Optimal response to attacks on the open science grids.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Altunay, M.; Leyffer, S.; Linderoth, J. T.
2011-01-01
Cybersecurity is a growing concern, especially in open grids, where attack propagation is easy because of prevalent collaborations among thousands of users and hundreds of institutions. The collaboration rules that typically govern large science experiments as well as social networks of scientists span across the institutional security boundaries. A common concern is that the increased openness may allow malicious attackers to spread more readily around the grid. We consider how to optimally respond to attacks in open grid environments. To show how and why attacks spread more readily around the grid, we first discuss how collaborations manifest themselves in themore » grids and form the collaboration network graph, and how this collaboration network graph affects the security threat levels of grid participants. We present two mixed-integer program (MIP) models to find the optimal response to attacks in open grid environments, and also calculate the threat level associated with each grid participant. Given an attack scenario, our optimal response model aims to minimize the threat levels at unaffected participants while maximizing the uninterrupted scientific production (continuing collaborations). By adopting some of the collaboration rules (e.g., suspending a collaboration or shutting down a site), the model finds optimal response to subvert an attack scenario.« less
NASA’s Universe of Learning: Girls STEAM Ahead
NASA Astrophysics Data System (ADS)
Marcucci, Emma; Meinke, Bonnie K.; Smith, Denise A.; Ryer, Holly; Slivinski, Carolyn; Kenney, Jessica; Arcand, Kimberly K.; Cominsky, Lynn R.; Girls STEAM Ahead with NASA Team
2017-10-01
NASA Science Mission Directorate’s Universe of Learning (UoL) program enables scientists and engineers to more effectively engage with learners of all ages. The Girls STEAM Ahead with NASA education program within UoL, expands upon the former program, NASA Science4Girls and Their Families, in celebration of National Women’s History Month. The initiative partners the NASA’s Universe of Learning science education program resources with public libraries to provide NASA-themed activities for girls and their families, including hands-on activities for engaging girls, complementary exhibits, and professional development for library partner staff. The science-institute-embedded partners in NASA’s UoL are uniquely poised to foster collaboration between scientists with content expertise and educators with pedagogy expertise. The thematic topics related to NASA Astrophysics enable audiences to experience the full range of NASA scientific and technical disciplines and the different career skills each requires. The events focus on engaging underserved and underrepresented audiences in Science, Technology, Engineering, and Mathematics (STEM) via use of research-based best practices, collaborations with libraries, partnerships with local and national organizations (e.g. National Girls Collaborative Project or NGCP), and remote engagement of audiences. This presentation will provide an overview of the program progress related to engaging girls and their families in NASA-based science programming.
Using Educative Assessments to Support Science Teaching for Middle School English-language Learners
NASA Astrophysics Data System (ADS)
Buxton, Cory A.; Allexsaht-Snider, Martha; Suriel, Regina; Kayumova, Shakhnoza; Choi, Youn-jeng; Bouton, Bobette; Baker, Melissa
2013-03-01
Grounded in Hallidayan perspectives on academic language, we report on our development of an educative science assessment as one component of the language-rich inquiry science for English-language learners teacher professional learning project for middle school science teachers. The project emphasizes the role of content-area writing to support teachers in diagnosing their students' emergent understandings of science inquiry practices, science content knowledge, and the academic language of science, with a particular focus on the needs of English-language learners. In our current school policy context, writing for meaningful purposes has received decreased attention as teachers struggle to cover large numbers of discrete content standards. Additionally, high-stakes assessments presented in multiple-choice format have become the definitive measure of student science learning, further de-emphasizing the value of academic writing for developing and expressing understanding. To counter these trends, we examine the implementation of educative assessment materials—writing-rich assessments designed to support teachers' instructional decision making. We report on the qualities of our educative assessment that supported teachers in diagnosing their students' emergent understandings, and how teacher-researcher collaborative scoring sessions and interpretation of assessment results led to changes in teachers' instructional decision making to better support students in expressing their scientific understandings. We conclude with implications of this work for theory, research, and practice.
Elliott, Emily R; Reason, Robert D; Coffman, Clark R; Gangloff, Eric J; Raker, Jeffrey R; Powell-Coffman, Jo Anne; Ogilvie, Craig A
2016-01-01
Undergraduate introductory biology courses are changing based on our growing understanding of how students learn and rapid scientific advancement in the biological sciences. At Iowa State University, faculty instructors are transforming a second-semester large-enrollment introductory biology course to include active learning within the lecture setting. To support this change, we set up a faculty learning community (FLC) in which instructors develop new pedagogies, adapt active-learning strategies to large courses, discuss challenges and progress, critique and revise classroom interventions, and share materials. We present data on how the collaborative work of the FLC led to increased implementation of active-learning strategies and a concurrent improvement in student learning. Interestingly, student learning gains correlate with the percentage of classroom time spent in active-learning modes. Furthermore, student attitudes toward learning biology are weakly positively correlated with these learning gains. At our institution, the FLC framework serves as an agent of iterative emergent change, resulting in the creation of a more student-centered course that better supports learning. © 2016 E. R. Elliott et al. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
The Education and Public Outreach Program at the University of Virginia
NASA Astrophysics Data System (ADS)
Murphy, E. M.; Rood, R. T.; Patterson, R. J.
2003-12-01
The Department of Astronomy at the University of Virginia has embarked on an ambitious program to expand their education and public outreach (E/PO) program. The comprehensive program addresses undergraduate education for non-science majors, teacher professional development, outreach programs for local schools, informal science education through collaborations with museums, and outreach through the public night program at McCormick Observatory. This poster presents example programs and their outcomes, including funding and staffing strategies. We believe that this E/PO program could serve as a model for other departments wishing to begin, or expand, an E/PO program. The E/PO program has been supported by funding from the Celerity Foundation, the University of Virginia, and NASA E/PO supplements to Chandra, HST, SIM, and FUSE science programs.
NASA Astrophysics Data System (ADS)
Sutton, M.; Marchetti, A.
2016-02-01
Broader impacts have become a vital component of scientific research projects. A variety of outreach avenues are available to assist scientists in reaching larger audiences, however, the translation of cutting-edge scientific content and concepts can be challenging. Collaborating with educators is a viable option to assist researchers in fulfilling NSF's broader impact requirements. A broader impacts model based on collaborations between a teacher and 28 researchers from 14 institutions will demonstrate successful science outreach and engagement through interactions between teachers, researchers, students, and general audiences. Communication styles (i.e., blogs, social media) and outreach data incorporated by researchers and the teacher will be shared to illustrate the magnitude of the broader impacts achieved with this partnership. Inquiry-based investigations and activities developed to translate the science into the classroom will also be demonstrated, including the use of real scientific data collected during the research cruise. "Finding Microbe Needles in a Haystack of Oceans" provides an understanding of how remote sensing technology is used to locate specific ocean environments (e.g. High Nutrient Low Chlorophyll - HNLC) that support diverse microbial food webs. A board game ("Diatom Adventures©") designed to explore the physiology of microbial organisms and microscopic food webs will also be demonstrated. The tentative nature of science requires a constant vigil to stay abreast of the latest hypotheses and discoveries. Researcher/Teacher collaborations allow each professional to focus on his/her strengths while meeting broader impact requirements. These partnerships encourage lifelong learning as educators observe and work with scientists first-hand and then follow appropriate scope, sequence, and pedagogy to assist various audiences in understanding the innovative technologies being used to explore new scientific frontiers.
Pretorius, I S; Boeke, J D
2018-06-01
Historians of the future may well describe 2018 as the year that the world's first functional synthetic eukaryotic genome became a reality. Without the benefit of hindsight, it might be hard to completely grasp the long-term significance of a breakthrough moment in the history of science like this. The role of synthetic biology in the imminent birth of a budding Saccharomyces cerevisiae yeast cell carrying 16 man-made chromosomes causes the world of science to teeter on the threshold of a future-defining scientific frontier. The genome-engineering tools and technologies currently being developed to produce the ultimate yeast genome will irreversibly connect the dots between our improved understanding of the fundamentals of a complex cell containing its DNA in a specialised nucleus and the application of bioengineered eukaryotes designed for advanced biomanufacturing of beneficial products. By joining up the dots between the findings and learnings from the international Synthetic Yeast Genome project (known as the Yeast 2.0 or Sc2.0 project) and concurrent advancements in biodesign tools and smart data-intensive technologies, a future world powered by a thriving bioeconomy seems realistic. This global project demonstrates how a collaborative network of dot connectors-driven by a tinkerer's indomitable curiosity to understand how things work inside a eukaryotic cell-are using cutting-edge biodesign concepts and synthetic biology tools to advance science and to positively frame human futures (i.e. improved quality of life) in a planetary context (i.e. a sustainable environment). Explorations such as this have a rich history of resulting in unexpected discoveries and unanticipated applications for the benefit of people and planet. However, we must learn from past explorations into controversial futuristic sciences and ensure that researchers at the forefront of an emerging science such as synthetic biology remain connected to all stakeholders' concerns about the biosafety, bioethics and regulatory aspects of their pioneering work. This article presents a shared vision of constructing a synthetic eukaryotic genome in a safe model organism by using novel concepts and advanced technologies. This multidisciplinary and collaborative project is conducted under a sound governance structure that does not only respect the scientific achievements and lessons from the past, but that is also focussed on leading the present and helping to secure a brighter future for all.
Boeke, J D
2018-01-01
Abstract Historians of the future may well describe 2018 as the year that the world's first functional synthetic eukaryotic genome became a reality. Without the benefit of hindsight, it might be hard to completely grasp the long-term significance of a breakthrough moment in the history of science like this. The role of synthetic biology in the imminent birth of a budding Saccharomyces cerevisiae yeast cell carrying 16 man-made chromosomes causes the world of science to teeter on the threshold of a future-defining scientific frontier. The genome-engineering tools and technologies currently being developed to produce the ultimate yeast genome will irreversibly connect the dots between our improved understanding of the fundamentals of a complex cell containing its DNA in a specialised nucleus and the application of bioengineered eukaryotes designed for advanced biomanufacturing of beneficial products. By joining up the dots between the findings and learnings from the international Synthetic Yeast Genome project (known as the Yeast 2.0 or Sc2.0 project) and concurrent advancements in biodesign tools and smart data-intensive technologies, a future world powered by a thriving bioeconomy seems realistic. This global project demonstrates how a collaborative network of dot connectors—driven by a tinkerer's indomitable curiosity to understand how things work inside a eukaryotic cell—are using cutting-edge biodesign concepts and synthetic biology tools to advance science and to positively frame human futures (i.e. improved quality of life) in a planetary context (i.e. a sustainable environment). Explorations such as this have a rich history of resulting in unexpected discoveries and unanticipated applications for the benefit of people and planet. However, we must learn from past explorations into controversial futuristic sciences and ensure that researchers at the forefront of an emerging science such as synthetic biology remain connected to all stakeholders’ concerns about the biosafety, bioethics and regulatory aspects of their pioneering work. This article presents a shared vision of constructing a synthetic eukaryotic genome in a safe model organism by using novel concepts and advanced technologies. This multidisciplinary and collaborative project is conducted under a sound governance structure that does not only respect the scientific achievements and lessons from the past, but that is also focussed on leading the present and helping to secure a brighter future for all. PMID:29648592
NOAA's Big Data Partnership and Applications to Ocean Sciences
NASA Astrophysics Data System (ADS)
Kearns, E. J.
2016-02-01
New opportunities for the distribution of NOAA's oceanographic and other environmental data are being explored through NOAA's Big Data Partnership (BDP) with Amazon Web Services, Google Cloud Platform, IBM, Microsoft Corp. and the Open Cloud Consortium. This partnership was established in April 2015 through Cooperative Research and Development Agreements, and is seeking new, financially self-sustaining collaborations between the Partners and the federal government centered upon NOAA's data and their potential value in the information marketplace. We will discuss emerging opportunities for collaboration among businesses and NOAA, progress in making NOAA's ocean data more widely accessible through the Partnerships, and applications based upon this access to NOAA's data.
Crowdsourcing biomedical research: leveraging communities as innovation engines
Saez-Rodriguez, Julio; Costello, James C.; Friend, Stephen H.; Kellen, Michael R.; Mangravite, Lara; Meyer, Pablo; Norman, Thea; Stolovitzky, Gustavo
2018-01-01
The generation of large-scale biomedical data is creating unprecedented opportunities for basic and translational science. Typically, the data producers perform initial analyses, but it is very likely that the most informative methods may reside with other groups. Crowdsourcing the analysis of complex and massive data has emerged as a framework to find robust methodologies. When the crowdsourcing is done in the form of collaborative scientific competitions, known as Challenges, the validation of the methods is inherently addressed. Challenges also encourage open innovation, create collaborative communities to solve diverse and important biomedical problems, and foster the creation and dissemination of well-curated data repositories. PMID:27418159
Crowdsourcing biomedical research: leveraging communities as innovation engines.
Saez-Rodriguez, Julio; Costello, James C; Friend, Stephen H; Kellen, Michael R; Mangravite, Lara; Meyer, Pablo; Norman, Thea; Stolovitzky, Gustavo
2016-07-15
The generation of large-scale biomedical data is creating unprecedented opportunities for basic and translational science. Typically, the data producers perform initial analyses, but it is very likely that the most informative methods may reside with other groups. Crowdsourcing the analysis of complex and massive data has emerged as a framework to find robust methodologies. When the crowdsourcing is done in the form of collaborative scientific competitions, known as Challenges, the validation of the methods is inherently addressed. Challenges also encourage open innovation, create collaborative communities to solve diverse and important biomedical problems, and foster the creation and dissemination of well-curated data repositories.
NASA Astrophysics Data System (ADS)
Buxner, Sanlyn; Antonellis, J.; Impey, C.; CATS
2010-01-01
Data from a twenty-year investigation into the science literacy of undergraduates (see Impey et al., this meeting) was used to explore responses to questions, derived from policy driven projects (e.g. NSF Science Indicators). Responses from almost 10,000 undergraduate students enrolled in introductory astronomy courses from 1989 to 2009 have been analyzed based on students’ responses to forced-choice and open-ended science literacy questions as well as Likert scale belief questions about science and technology. Science literacy questions were scored based on work by Miller (1998, 2004). In addition, we developed an extensive emergent coding scheme for the four open-ended science questions. Unique results as well as trends in the student data based on subgroups of codes are presented. Responses to belief questions were categorized, using theoretically derived categories, remodeled and confirmed through factor analysis, into five main categories; belief in life on other planets, faith-based beliefs, belief in unscientific phenomena, general attitude toward science and technology, and ethical considerations. Analysis revealed that demographic information explained less than 10% of the overall variance in students’ forced-answer scientific literacy scores. We present how students’ beliefs in these categories relate to their scientific literacy scores. You can help! Stop by our poster and fill out a new survey that will give us important parallel information to help us continue to analyze our valuable data set. We acknowledge the NSF for funding under Award No. 0715517, a CCLI Phase III Grant for the Collaboration of Astronomy Teaching Scholars (CATS) Program.
K. Waring; S. Cushman; A. Eckert; L. Flores-Renteria; H. Lintz; R. Sniezko; C. Still; C. Wehenkel; A. Whipple; M. Wing
2017-01-01
A collaborative team of researchers from the United States and Mexico has begun an exciting new research project funded by The National Science Foundationâs Macrosystems Biology program. The project will study ecological and evolutionary processes affecting the distribution of southwestern white pine (Pinus strobiformis), an important tree species of mixed conifer...
Ezeanolue, Echezona E; Menson, William Nii Ayitey; Patel, Dina; Aarons, Gregory; Olutola, Ayodotun; Obiefune, Michael; Dakum, Patrick; Okonkwo, Prosper; Gobir, Bola; Akinmurele, Timothy; Nwandu, Anthea; Khamofu, Hadiza; Oyeledun, Bolanle; Aina, Muyiwa; Eyo, Andy; Oleribe, Obinna; Ibanga, Ikoedem; Oko, John; Anyaike, Chukwuma; Idoko, John; Aliyu, Muktar H; Sturke, Rachel
2018-02-12
Despite being disproportionately burdened by preventable diseases than more advanced countries, low- and middle-income countries (LMICs) continue to trail behind other parts of the world in the number, quality and impact of scholarly activities by their health researchers. Our strategy at the Nigerian Implementation Science Alliance (NISA) is to utilise innovative platforms that catalyse collaboration, enhance communication between different stakeholders, and promote the uptake of evidence-based interventions in improving healthcare delivery. This article reports on findings from a structured group exercise conducted at the 2016 NISA Conference to identify (1) gaps in developing research capacity and (2) potential strategies to address these gaps. A 1-hour structured group exercise was conducted with 15 groups of 2-9 individuals (n = 94) to brainstorm gaps for implementation, strategies to address gaps and to rank their top 3 in each category. Qualitative thematic analysis was used. First, duplicate responses were merged and analyses identified emerging themes. Each of the gaps and strategies identified were categorised as falling into the purview of policy-makers, researchers, implementing partners or multiple groups. Participating stakeholders identified 98 gaps and 91 strategies related to increasing research capacity in Nigeria. A total of 45 gaps and an equal number of strategies were ranked; 39 gaps and 43 strategies were then analysed, from which 8 recurring themes emerged for gaps (lack of sufficient funding, poor research focus in education, inadequate mentorship and training, inadequate research infrastructure, lack of collaboration between researchers, research-policy dissonance, lack of motivation for research, lack of leadership buy-in for research) and 7 themes emerged for strategies (increased funding for research, improved research education, improved mentorship and training, improved infrastructure for research, increased collaboration between academic/research institutions, greater engagement between researchers and policy-makers, greater leadership buy-in for research). The gaps and strategies identified in this study represent pathways judged to be important in increasing research and implementation science capacity in Nigeria. The inclusion of perspectives and involvement of stakeholders who play different roles in policy, research and implementation activities makes these findings comprehensive, relevant and actionable, not only in Nigeria but in other similar LMICs.
ERIC Educational Resources Information Center
Martinez, Alina; Neishi, Kristen; Parsad, Amanda; Whittaker, Karla; Epstein, Carter
2012-01-01
Students in science and engineering (S&E) are preparing for careers in fields where international partnerships are increasingly important to advancing knowledge and discoveries. It has been over a decade since the National Science Board (NSB) highlighted the importance of international collaboration and called for increased government…
Yusuf, H; Ekperi, L; Groseclose, S; Siegfried, A; Meit, M; Carbone, E
2018-06-01
The objective of our study was to assess whether state and local health staff participated in public health emergency preparedness research activities and what partner organizations they collaborated with on research. This is a cross-sectional study. Data were derived from a 2014 web-based survey of state, territorial, and local health departments conducted by the Centers for Disease Control and Prevention and NORC at the University of Chicago as part of a larger project to assess the public health emergency preparedness and response research priorities of state and local health departments. Overall, 30% of survey respondents indicated that health department staff were involved in public health preparedness and response research-related activities. Thirty-four percent indicated that they were extremely or moderately familiar with emergency preparedness research and literature. Approximately 67% of respondents reported interest in receiving additional information and/or training related to the preparedness research and literature. The most frequently reported partners for collaboration in preparedness research-related activities were schools of public health (34%). Our findings suggest that there is health department interest in learning more about preparedness and response science and that additional efforts are needed to increase health department participation in public health emergency preparedness and response research-related activities. Published by Elsevier Ltd.
e-Science platform for translational biomedical imaging research: running, statistics, and analysis
NASA Astrophysics Data System (ADS)
Wang, Tusheng; Yang, Yuanyuan; Zhang, Kai; Wang, Mingqing; Zhao, Jun; Xu, Lisa; Zhang, Jianguo
2015-03-01
In order to enable multiple disciplines of medical researchers, clinical physicians and biomedical engineers working together in a secured, efficient, and transparent cooperative environment, we had designed an e-Science platform for biomedical imaging research and application cross multiple academic institutions and hospitals in Shanghai and presented this work in SPIE Medical Imaging conference held in San Diego in 2012. In past the two-years, we implemented a biomedical image chain including communication, storage, cooperation and computing based on this e-Science platform. In this presentation, we presented the operating status of this system in supporting biomedical imaging research, analyzed and discussed results of this system in supporting multi-disciplines collaboration cross-multiple institutions.
The most frequently cited adsorption research articles in the Science Citation Index (Expanded).
Fu, Hui-Zhen; Wang, Ming-Huang; Ho, Yuh-Shan
2012-08-01
The 126 most frequently cited articles published in the adsorption field between 1900 and 2011 were identified and characterized using the Science Citation Index (Expanded). The data analyzed cover a range of publication years, journals, Web of Science categories, authors, institutions, countries/territories, life citation cycle curves, and characteristics of frequently cited articles. The 126 most-frequently-cited articles were each cited an average of 1014 times, ranging from 502 to 9922 citations per article from 1918 to 2006; 80% of these articles were published after 1970. Fifty-five journals were represented, led by the Journal of the American Chemical Society, and followed by Science and Nature. Three categories out of the 35 Web of Science categories constituted 60% of the citations. The three categories were: physical chemistry, multidisciplinary chemistry, and multidisciplinary sciences. Thirteen of the authors contributed three or more articles. Harvard University, the Massachusetts Institute of Technology, and the University of Washington led the list of 107 institutions, while the United States led the list of 17 countries/territories, comprising more than half of the articles. Collaboration among the top authors was a frequent occurrence, while inter-institutional collaboration and national collaboration was not obvious among the topmost articles. Moreover, the citation patterns as a function of time varied widely among the topmost articles. As evidenced by citation life cycles, the well known BET and Langmuir isotherms have received considerable attention during the study period, and will probably continue to be popular in the adsorption field. Some emerging hotspots are likely to receive particular attention in the near future; these include the new family of "M41S" materials, pseudo-second-order kinetic models, and the nudged elastic band method. Copyright © 2012 Elsevier Inc. All rights reserved.
Center of Excellence in Space Data and Information Sciences
NASA Technical Reports Server (NTRS)
1997-01-01
This report summarizes the range of computer science-related activities undertaken by CESDIS for NASA in the twelve months from July 1, 1996 through June 30, 1997. These activities address issues related to accessing, processing, and analyzing data from space observing systems through collaborative efforts with university, industry,and NASA space and Earth scientists. The sections of this report which follow, detail the activities undertaken by the members of each of the CESDIS branches. This includes contributions from university faculty members and graduate students as well as CESDIS employees. Phone numbers and e-mail addresses appear in Appendix D (CESDIS Personnel and Associates) to facilitate interactions and new collaborations.
Center of Excellence in Space Data and Information Sciences
NASA Technical Reports Server (NTRS)
Yesha, Yelena
1999-01-01
This report summarizes the range of computer science-related activities undertaken by CESDIS for NASA in the twelve months from July 1, 1998 through June 30, 1999. These activities address issues related to accessing, processing, and analyzing data from space observing systems through collaborative efforts with university, industry, and NASA space and Earth scientists. The sections of this report which follow, detail the activities undertaken by the members of each of the CESDIS branches. This includes contributions from university faculty members and graduate students as well as CESDIS employees. Phone numbers and e-mail addresses appear in Appendix F (CESDIS Personnel and Associates) to facilitate interactions and new collaborations.
Evolution and structure of sustainability science.
Bettencourt, Luís M A; Kaur, Jasleen
2011-12-06
The concepts of sustainable development have experienced extraordinary success since their advent in the 1980s. They are now an integral part of the agenda of governments and corporations, and their goals have become central to the mission of research laboratories and universities worldwide. However, it remains unclear how far the field has progressed as a scientific discipline, especially given its ambitious agenda of integrating theory, applied science, and policy, making it relevant for development globally and generating a new interdisciplinary synthesis across fields. To address these questions, we assembled a corpus of scholarly publications in the field and analyzed its temporal evolution, geographic distribution, disciplinary composition, and collaboration structure. We show that sustainability science has been growing explosively since the late 1980s when foundational publications in the field increased its pull on new authors and intensified their interactions. The field has an unusual geographic footprint combining contributions and connecting through collaboration cities and nations at very different levels of development. Its decomposition into traditional disciplines reveals its emphasis on the management of human, social, and ecological systems seen primarily from an engineering and policy perspective. Finally, we show that the integration of these perspectives has created a new field only in recent years as judged by the emergence of a giant component of scientific collaboration. These developments demonstrate the existence of a growing scientific field of sustainability science as an unusual, inclusive and ubiquitous scientific practice and bode well for its continued impact and longevity.
Evolution and structure of sustainability science
Bettencourt, Luís M. A.; Kaur, Jasleen
2011-01-01
The concepts of sustainable development have experienced extraordinary success since their advent in the 1980s. They are now an integral part of the agenda of governments and corporations, and their goals have become central to the mission of research laboratories and universities worldwide. However, it remains unclear how far the field has progressed as a scientific discipline, especially given its ambitious agenda of integrating theory, applied science, and policy, making it relevant for development globally and generating a new interdisciplinary synthesis across fields. To address these questions, we assembled a corpus of scholarly publications in the field and analyzed its temporal evolution, geographic distribution, disciplinary composition, and collaboration structure. We show that sustainability science has been growing explosively since the late 1980s when foundational publications in the field increased its pull on new authors and intensified their interactions. The field has an unusual geographic footprint combining contributions and connecting through collaboration cities and nations at very different levels of development. Its decomposition into traditional disciplines reveals its emphasis on the management of human, social, and ecological systems seen primarily from an engineering and policy perspective. Finally, we show that the integration of these perspectives has created a new field only in recent years as judged by the emergence of a giant component of scientific collaboration. These developments demonstrate the existence of a growing scientific field of sustainability science as an unusual, inclusive and ubiquitous scientific practice and bode well for its continued impact and longevity. PMID:22114186
NASA Astrophysics Data System (ADS)
Mendez, B. J.; Smith, D.; Shipp, S. S.; Schwerin, T. G.; Stockman, S. A.; Cooper, L. P.; Peticolas, L. M.
2009-12-01
NASA is working with four newly-formed Science Education and Public Outreach Forums (SEPOFs) to increase the overall coherence of the Science Mission Directorate (SMD) Education and Public Outreach (E/PO) program. SEPOFs support the astrophysics, heliophysics, planetary and Earth science divisions of NASA SMD in three core areas: * E/PO Community Engagement and Development * E/PO Product and Project Activity Analysis * Science Education and Public Outreach Forum Coordination Committee Service. SEPOFs are collaborating with NASA and external science and education and outreach communities in E/PO on multiple levels ranging from the mission and non-mission E/PO project activity managers, project activity partners, and scientists and researchers, to front line agents such as naturalists/interpreters, teachers, and higher education faculty, to high level agents such as leadership at state education offices, local schools, higher education institutions, and professional societies. The overall goal for the SEPOFs is increased awareness, knowledge, and understanding of scientists, researchers, engineers, technologists, educators, product developers, and dissemination agents of best practices, existing NASA resources, and community expertise applicable to E/PO. By coordinating and supporting the NASA E/PO Community, the NASA/SEPOF partnerships will lead to more effective, sustainable, and efficient utilization of NASA science discoveries and learning experiences.
Applying Principles from Complex Systems to Studying the Efficacy of CAM Therapies
Nahin, Richard L.; Calabrese, Carlo; Folkman, Susan; Kimbrough, Elizabeth; Shoham, Jacob; Haramati, Aviad
2010-01-01
Abstract In October 2007, a National Center for Complementary and Alternative Medicine (NCCAM)–sponsored workshop, entitled “Applying Principles from Complex Systems to Studying the Efficacy of CAM Therapies,” was held at Georgetown University in Washington, DC. Over a 2-day period, the workshop engaged a small group of experts from the fields of complementary and alternative medicine (CAM) research and complexity science to discuss and examine ways in which complexity science can be applied to CAM research. After didactic presentations and small-group discussions, a number of salient themes and ideas emerged. This paper article describes the workshop program and summarizes these emergent ideas, which are divided into five broad categories: (1) introduction to complexity; (2) challenges to CAM research; (3) applications of complexity science to CAM; (4) CAM as a model of complexity applied to medicine; and (5) future directions. This discusses possible benefits and challenges associated with applying complexity science to CAM research. By providing an introductory framework for this collaboration and exchange, it is hoped that this article may stimulate further inquiry into this largely unexplored area of research. PMID:20715978
Fostering Collaboration Across the U.S. Critical Zone Observatories Network
NASA Astrophysics Data System (ADS)
Sharkey, S.; White, T. S.
2017-12-01
The Critical Zone (CZ) is defined as the permeable layer from the top of the vegetation canopy to the bottom of freely circulating groundwater where rock, soil, water, air and life meet. The study of the CZ is motivated by an overall lack of understanding of the coupled physical, chemical, and biological processes in this zone at differing spatial and temporal scales. Critical Zone Observatories (CZOs), supported by the U.S. National Science Foundation's Geosciences Directorate, are natural laboratories that aim to provide infrastructure, data and models to gain understanding of the evolution and function of the CZ from grain-to-watershed scales. The nine U.S. observatories span a range of climatic, ecologic, geologic, and physiographic environments from California to Puerto Rico, working on site-specific hypotheses and network-scale goals. CZO research infrastructure allows for teams of cross-disciplinary scientists at each site to further CZ science using field and theoretical approaches, education and outreach, and cross-CZO science. Cross-CZO science emerges from a set of common CZ science questions and hypotheses focused on CZ structure and evolution, event-based and continuous fluxes across CZ interfaces, and changes in storage of major CZ reservoirs at the catchment scale. CZO research seeks to understand coupled processes across all timescales using quantitative models parameterized from observations of meteorological variables, streams, and groundwater, and sampling and analyzing landforms, bedrock, soils, and ecosystems. Each observatory strives to apply common infrastructure, protocols and measurements that help quantify the composition and fluxes of energy, water, solutes, sediments, energy, and mass across boundaries of the CZ system through both space and time. This type of approach enables researchers to access and integrate data in a way that allows for the isolation of environmental variables and comparison of processes and responses across environmental gradients. There is opportunity to foster cross-collaborations with existing research infrastructure (i.e. LTER, NEON, international CZOs) to promote cross-site science and expand upon geologic, climatic, ecological, land use and hydrologic gradients required to understand the CZ.
NASA Astrophysics Data System (ADS)
LaValley, M.; Starkweather, S.; Bowden, S.
2017-12-01
The Arctic is changing rapidly as average temperatures rise. As an Arctic nation, the United States is directly affected by these changes. It is imperative that these changes be understood to make effective policy decisions. Since the research needs of the Arctic are large and wide-ranging, most Federal agencies fund some aspect of Arctic research. As a result, the U.S. government regularly works to coordinate Federal Arctic research in order to reduce duplication of effort and costs, and to enhance the research's system perspective. The government's Interagency Arctic Research Policy Committee (IARPC) accomplishes this coordination through its policy-driven five-year Arctic Research Plans and collaboration teams (CTs), which are research topic-oriented teams tasked with implementing the plans. The policies put forth by IARPC thus inform science, however IARPC has been less successful of making these science outcomes part of an iterative decision making process. IARPC's mandate to facilitate coordinated research through information sharing communities can be viewed a prerequisite step in the science-to- decision making process. Research collaborations and the communities of practice facilitated by IARPC allow scientists to connect with a wider community of scientists and stakeholders and, in turn, the larger issues in need of policy solutions. These connections help to create a pathway through which research may increasingly reflect policy goals and inform decisions. IARPC has been growing into a more useful model for the science-to-decision making interface since the publication of its Arctic Research Plan FY2017-2021, and it is useful to evaluate how and why IARPC is progressing in this realm. To understand the challenges facing interagency research collaboration and the progress IARPC has made, the Chukchi Beaufort and Communities CTs, were evaluated as case studies. From the case studies, several recommendations for enhancing collaborations across Federal agencies emerge, including establishing appropriate agency leadership; determining focused and achievable scope of team goals; providing room for bottom-up, community-driven determination of goals; and finally, building relationships and creating an inclusive team environment.
Networking Cyberinfrastructure Resources to Support Global, Cross-disciplinary Science
NASA Astrophysics Data System (ADS)
Lehnert, K.; Ramamurthy, M. K.
2016-12-01
Geosciences are globally connected by nature and the grand challenge problems like climate change, ocean circulations, seasonal predictions, impact of volcanic eruptions, etc. all transcend both disciplinary and geographic boundaries, requiring cross-disciplinary and international partnerships. Cross-disciplinary and international collaborations are also needed to unleash the power of cyber- (or e-) infrastructure (CI) by networking globally distributed, multi-disciplinary data, software, and computing resources to accelerate new scientific insights and discoveries. While the promises of a global and cross-disciplinary CI are exhilarating and real, a range of technical, organizational, and social challenges needs to be overcome in order to achieve alignment and linking of operational data systems, software tools, and computing facilities. New modes of collaboration require agreement on and governance of technical standards and best practices, and funding for necessary modifications. This presentation will contribute the perspective of domain-specific data facilities to the discussion of cross-disciplinary and international collaboration in CI development and deployment, in particular those of IEDA (Interdisciplinary Earth Data Alliance) serving the solid Earth sciences and Unidata serving atmospheric sciences. Both facilities are closely involved with the US NSF EarthCube program that aims to network and augment existing Geoscience CI capabilities "to make disciplinary boundaries permeable, nurture and facilitate knowledge sharing, …, and enhance collaborative pursuit of cross-disciplinary research" (EarthCube Strategic Vision), while also collaborating internationally to network domain-specific and cross-disciplinary CI resources. These collaborations are driven by the substantial benefits to the science community, but create challenges, when operational and funding constraints need to be balanced with adjustments to new joint data curation practices and interoperability standards.
Sturke, Rachel; Harmston, Christine; Simonds, R J; Mofenson, Lynne M; Siberry, George K; Watts, D Heather; McIntyre, James; Anand, Nalini; Guay, Laura; Castor, Delivette; Brouwers, Pim; Nagel, Joan D
2014-11-01
In resource-limited countries, interventions to prevent mother-to-child HIV transmission (PMTCT) have not yet realized their full potential health impact, illustrating the common gap between the scientific proof of an intervention's efficacy and effectiveness and its successful implementation at scale into routine health services. For PMTCT, this gap results, in part, from inadequate adaptation of PMTCT interventions to the realities of the implementation environment, including client and health care worker behaviors and preferences, health care policies and systems, and infrastructure and resource constraints. Elimination of mother-to-child HIV transmission can only be achieved through understanding of key implementation barriers and successful adaptation of scientifically proven interventions to the local environment. Central to such efforts is implementation science (IS), which aims to investigate and address major bottlenecks that impede effective implementation and to test new approaches to identifying, understanding, and overcoming barriers to the adoption, adaptation, integration, scale-up, and sustainability of evidence-based interventions. Advancing IS will require deliberate and strategic efforts to facilitate collaboration, communication, and relationship-building among researchers, implementers, and policy-makers. To speed the translation of effective PMTCT interventions into practice and advance IS more broadly, the US National Institutes of Health, in collaboration with the President's Emergency Plan for AIDS Relief launched the National Institutes of Health/President's Emergency Plan for AIDS Relief PMTCT IS Alliance, comprised of IS researchers, PMTCT program implementers, and policy-makers as an innovative platform for interaction and coordination.
Cultural evolution and emergent group-level traits through social heterosis.
Nonacs, Peter; Kapheim, Karen M
2014-06-01
Smaldino proposes emergent properties of human groups, arising when individuals display both differentiation and organization, constitute a novel unit of cultural selection not addressed by current evolutionary theory. We propose existing theoretical frameworks for maintenance of genetic diversity - social heterosis and social genomes - can similarly explain the appearance and maintenance of human cultural diversity (i.e., group-level traits) and collaborative interdependence.
Visualization and characterization of users in a citizen science project
NASA Astrophysics Data System (ADS)
Morais, Alessandra M. M.; Raddick, Jordan; Coelho dos Santos, Rafael D.
2013-05-01
Recent technological advances allowed the creation and use of internet-based systems where many users can collaborate gathering and sharing information for specific or general purposes: social networks, e-commerce review systems, collaborative knowledge systems, etc. Since most of the data collected in these systems is user-generated, understanding of the motivations and general behavior of users is a very important issue. Of particular interest are citizen science projects, where users without scientific training are asked for collaboration labeling and classifying information (either automatically by giving away idle computer time or manually by actually seeing data and providing information about it). Understanding behavior of users of those types of data collection systems may help increase the involvement of the users, categorize users accordingly to different parameters, facilitate their collaboration with the systems, design better user interfaces, and allow better planning and deployment of similar projects and systems. Behavior of those users could be estimated through analysis of their collaboration track: registers of which user did what and when can be easily and unobtrusively collected in several different ways, the simplest being a log of activities. In this paper we present some results on the visualization and characterization of almost 150.000 users with more than 80.000.000 collaborations with a citizen science project - Galaxy Zoo I, which asked users to classify galaxies' images. Basic visualization techniques are not applicable due to the number of users, so techniques to characterize users' behavior based on feature extraction and clustering are used.
Program for the Increased Participation of Minorities in NASA-Related Research
NASA Technical Reports Server (NTRS)
2003-01-01
The goal of this program is to increase the participation of minorities in NASA related research and "Science for the Nation s Interest". Collaborative research projects will be developed involving NASA-MSFC, National Space Science and Technology Center (NSSTC), other government agencies, industries and minority serving institutions (MSIs). The primary focus for the MSIs will be on Alabama A&M University and Tuskegee University, which are in partnership with the NSSTC. These schools have excellent Ph.D. programs in physics and materials science and engineering, respectively. The first phase of this program will be carried out at Alabama A&M University in the "Research and Development Office" in collaboration with Dr. Dorothy Huston, Vice President of Research and Development. The development assignment will be carried out at the NSSTC with Sandy Coleman/ RS01 and this will primarily involve working with Tuskegee University.A portion of the program will be devoted to identifying and contacting potential funding sources for use in establishing collaborative research projects between NASA-MSFC, other government agencies, NSSTC, industries, and MSIs. These potential funding sources include the National Science Foundation (NSF), National Institute of Health (NIH), Department of Defense (DOD), Army, Navy, and Air Force. Collaborative research projects will be written mostly in the following research areas: a. Cosmic radiation shielding materials b. Advanced propulsion material c. Biomedical materials and biosensors d. In situ resource utilization e. Photonics for NASA applications
NASA Astrophysics Data System (ADS)
Lebofsky, Larry A.; Higgins, M. L.; McCarthy, D. W.; Lebofsky, N. R.
2012-01-01
In 2003, the University of Arizona's (UA) NIRCam E/PO team (NASA James Webb Space Telescope) and the Sahuaro Girl Scout Council began a long-term collaboration to bring astronomy activities and concepts to Girl Scout leaders, staff, and volunteers and, in turn, to their councils and girls, i.e., to train the trainers. Nationally, our goal is to reach leaders in all councils. To date, this program has reached nearly 200 adults from 39 councils nationwide (plus Guam and Korea), bringing together leaders, UA graduate students, and NIRCam scientists and educators to experience Arizona's dark skies. Locally, our goal is to provide Science, Technology, Engineering, and Math (STEM) education to girls of all ages throughout southern Arizona. To accomplish this in astronomy, we have additional ongoing collaborations with the Planetary Science Institute, the National Optical Astronomy Observatory, and, most recently with the Amphitheater School District. One of the programs that we have been recently emphasizing is Family Science and Astronomy Nights. These programs can be run at our local Girl Scout facility or can be incorporated into programs that we are running in local schools. Our near-term goal is to provide a series of interconnected activities that can be done in classrooms, in afterschool programs, as part of the Family Science and Astronomy Nights, or in summer astronomy camps. Our long-term goal is to empower girls ultimately to become leaders who are excited about the night sky and can take lead roles presenting activities and facilitating astronomy nights. Our poster will display a variety of the activities we have refined and developed through this progam: scale models of the Solar System and beyond, classifying Solar System objects, a portable human orrery, observing the night sky with and without telescopes, constellation transformations, and constellation sorting cards.NIRCam E/PO website: http://zeus.as.arizona.edu/ dmccarthy/GSUSA
Hennessey, Morgan; Lee, Brendan; Goldsmith, Timothy; Halvorson, Dave; Hueston, William; McElroy, Kristina; Waters, Katherine
2010-03-01
Since 2006, a collaborative group of egg industry, state, federal, and academia representatives have worked to enhance preparedness in highly pathogenic avian influenza (HPAI) planning. The collaborative group has created a draft egg product movement protocol, which calls for realistic, science-based contingency plans, biosecurity assessments, commodity risk assessments, and real-time reverse transcriptase-PCR testing to support the continuity of egg operations while also preventing and eradicating an HPAI outbreak. The work done by this group serves as an example of how industry, government, and academia can work together to achieve better preparedness in the event of an animal health emergency. In addition, in the event of an HPAI outbreak in domestic poultry, U.S. consumers will be assured that their egg products come from healthy chickens.
NASA Astrophysics Data System (ADS)
Samors, R. J.; Allison, M. L.
2016-12-01
An e-infrastructure that supports data-intensive, multidisciplinary research is being organized under the auspices of the Belmont Forum consortium of national science funding agencies to accelerate the pace of science to address 21st century global change research challenges. The pace and breadth of change in information management across the data lifecycle means that no one country or institution can unilaterally provide the leadership and resources required to use data and information effectively, or needed to support a coordinated, global e-infrastructure. The five action themes adopted by the Belmont Forum: 1. Adopt and make enforceable Data Principles that establish a global, interoperable e-infrastructure. 2. Foster communication, collaboration and coordination between the wider research community and Belmont Forum and its projects through an e-Infrastructure Coordination, Communication, & Collaboration Office. 3. Promote effective data planning and stewardship in all Belmont Forum agency-funded research with a goal to make it enforceable. 4. Determine international and community best practice to inform Belmont Forum research e-infrastructure policy through identification and analysis of cross-disciplinary research case studies. 5. Support the development of a cross-disciplinary training curriculum to expand human capacity in technology and data-intensive analysis methods. The Belmont Forum is ideally poised to play a vital and transformative leadership role in establishing a sustained human and technical international data e-infrastructure to support global change research. In 2016, members of the 23-nation Belmont Forum began a collaborative implementation phase. Four multi-national teams are undertaking Action Themes based on the recommendations above. Tasks include mapping the landscape, identifying and documenting existing data management plans, and scheduling a series of workshops that analyse trans-disciplinary applications of existing Belmont Forum projects to identify best practices and critical gaps that may be uniquely or best addressed by the Belmont Forum funding model. Concurrent work will define challenges in conducting international and interdisciplinary data management implementation plans and identify sources of relevant expertise and knowledge.
NASA Astrophysics Data System (ADS)
Neal, J. G.
2008-12-01
Research libraries provide a set of core services to the scholarly and educational communities. This includes: information acquisition, synthesis, navigation, discovery, dissemination, interpretation, presentation, understanding and archiving. Researchers across the science disciplines and increasingly in multi disciplinary projects are producing massive amounts of data, and they seek the infrastructure, the strategies and the partnerships that will enable rigorous and sustained tools for extraction, distribution, collaboration, application and permanent availability. This paper will address the role of the research library from three perspectives. First, the view of scientific datasets as information assets that would benefit from traditional library collection development practice will be explored. Second, the agenda on e-science developed by the Association of Research Libraries will be outlined with a focus on the need for policy and standards development, for resources assessment and allocation, for new approaches to the preparation of the library professional, and library leadership in campus planning and innovative collaborations for research cyberinfrastructure. And third, the responses to the call for proposals from the National Science Foundation's DataNet program will be analyzed and the role of the research library in these project plans will be summarized as an indicator of the expanding responsibility of the library for research data stewardship.
Collaborative Cloud: A New Model for e-Learning
ERIC Educational Resources Information Center
Liao, Jian; Wang, Minhong; Ran, Weijia; Yang, Stephen J. H.
2014-01-01
The number of learners using e-learning has been increasing at an enormous rate in the past decade due to easy access to higher educational resources via the Internet. On the other hand, the number of teachers in most universities is growing slowly. As a result, instructional problems have emerged due to the lack of sufficient support to learners…
Use of Local Health Department Websites: A Study of E-Government Adoption and Diffusion
ERIC Educational Resources Information Center
Aaltonen, Pamela Massie
2013-01-01
Two distinct but converging activities have the potential to alter the way local public health departments conduct business. These activities are the emergence of e-government and the addition of preparedness as a basic function of the public health system. Preparedness implies timely collaboration with government entities, community partners and…
The Digital Handshake: A Group Contract for Authentic eLearning in Higher Education
ERIC Educational Resources Information Center
Hesterman, Sandra
2016-01-01
An emerging challenge for the Australian higher education sector is the delivery of authentic eLearning to support the collaborative construction of knowledge through the provision of real-life tasks in an online environment. This paper describes research conducted in a fourth-year university course where students from across the nation were…
The PACA Project: When Amateur Astronomers Become Citizen Scientists
NASA Astrophysics Data System (ADS)
Yanamandra-Fisher, P. A.
2014-12-01
The Pro-Am Collaborative Astronomy (PACA) project evolved from the observational campaign of C/2012 S1 or C/ISON in 2013. Following the success of the professional-amateur astronomer collaboration in scientific research via social media, it is now implemented in other comet observing campaigns. While PACA identifies a consistent collaborative approach to pro-am collaborations, given the volume of data generated for each campaign, new ways of rapid data analysis, mining access and storage are needed. Several interesting results emerged from the synergistic inclusion of both social media and amateur astronomers: (1) the establishment of a network of astronomers and related professionals, that can be galvanized into action on short notice to support observing campaigns; (2) assist in various science investigations pertinent to the campaign; (3) provide an alert-sounding mechanism should the need arise; (4) immediate outreach and dissemination of results via our media/blogger members; (5) provide a forum for discussions between the imagers and modelers to help strategize the observing campaign for maximum benefit. In 2014, two new comet observing campaigns involving pro-am collaborations have been initiated: (1) C/2013 A1 (C/SidingSpring) and (2) 67P/Churyumov-Gerasimenko (CG), target for ESA/Rosetta mission. The evolving need for individual customized observing campaigns has been incorporated into the evolution of PACA portal that currently is focused on comets: from supporting observing campaigns of current comets, legacy data, historical comets; interconnected with social media and a set of shareable documents addressing observational strategies; consistent standards for data; data access, use, and storage, to align with the needs of professional observers. The integration of science, observations by professional and amateur astronomers, and various social media provides a dynamic and evolving collaborative partnership between professional and amateur astronomers. The empowerment of amateur astronomers vis-à-vis their partnerships with the professional scientists creates a new demographic of data scientists, enabling citizen science of the integrated data from both the professional and amateur communities.
Meseke, Jamie K; Nafziger, Rita; Meseke, Christopher A
2008-05-01
This pilot study examines the effect collaborative testing has on achievement of students taking a basic science course at a chiropractic college. The grades of 2 cohorts of students taking a basic science course were compared: the control group from the first academic term (n = 73) and the experimental group from the second academic term (n = 41). The control cohort completed weekly quizzes as individuals. The experimental cohort completed the weekly quizzes in small collaborative groups. All unit examinations and the final examination were taken by both cohorts individually. Grades for each cohort were derived from 6 weekly unit quizzes, 3 unit examinations, and a comprehensive final examination. Overall, the experimental group differed from the control group (Wilks' Lambda = 0.318; F(10,103) = 22.052; and P < .001). All quiz scores were significantly higher for the experimental group as compared with the control group. In addition, overall point totals and final course grades also differed significantly. No significant differences, however, were observed in either the first 2 unit examination scores or the final examination scores. These results confirm previous reports that student performance is enhanced by collaborative learning. Collaborative testing provided students with the opportunity to discuss their reasoning and receive immediate feedback from other group members regarding their rationale, which potentially enhanced understanding of course material. Students were encouraged to become more active in the course as group discussions emerged from individual perspectives. The collaborative learning process may enhance critical thinking abilities, which are vital for future chiropractic practitioners.
Science-policy challenges for biodiversity, public health and urbanization: examples from Belgium
NASA Astrophysics Data System (ADS)
Keune, H.; Kretsch, C.; De Blust, G.; Gilbert, M.; Flandroy, L.; Van den Berge, K.; Versteirt, V.; Hartig, T.; De Keersmaecker, L.; Eggermont, H.; Brosens, D.; Dessein, J.; Vanwambeke, S.; Prieur-Richard, A. H.; Wittmer, H.; Van Herzele, A.; Linard, C.; Martens, P.; Mathijs, E.; Simoens, I.; Van Damme, P.; Volckaert, F.; Heyman, P.; Bauler, T.
2013-06-01
Internationally, the importance of a coordinated effort to protect both biodiversity and public health is more and more recognized. These issues are often concentrated or particularly challenging in urban areas, and therefore on-going urbanization worldwide raises particular issues both for the conservation of living natural resources and for population health strategies. These challenges include significant difficulties associated with sustainable management of urban ecosystems, urban development planning, social cohesion and public health. An important element of the challenge is the need to interface between different forms of knowledge and different actors from science and policy. We illustrate this with examples from Belgium, showcasing concrete cases of human-nature interaction. To better tackle these challenges, since 2011, actors in science, policy and the broader Belgian society have launched a number of initiatives to deal in a more integrated manner with combined biodiversity and public health challenges in the face of ongoing urbanization. This emerging community of practice in Belgium exemplifies the importance of interfacing at different levels. (1) Bridges must be built between science and the complex biodiversity/ecosystem-human/public health-urbanization phenomena. (2) Bridges between different professional communities and disciplines are urgently needed. (3) Closer collaboration between science and policy, and between science and societal practice is needed. Moreover, within each of these communities closer collaboration between specialized sections is needed.
NASA Astrophysics Data System (ADS)
Koosimile, Anthony T.; Suping, Shanah M.
2015-09-01
This paper takes the view that the emergence of some trends and practices in science education mirrors the influence of the process of globalisation in Anglophone Sub-Saharan Africa. Through a literature review, an attempt is made to link science education and globalisation by answering the question: 'What influence does globalisation have on science education in countries in Anglophone Sub-Saharan Africa?' The findings of the study show some significant convergence of what is valued in science education in Sub-Saharan Africa in areas such as pedagogy; English language as a medium of instruction; assessment of learning; mobility of students in the region; and in the frameworks for collaborative engagements among stakeholders in Sub-Saharan Africa. The paper concludes with a reflective end-piece calling for more case studies to help scrutinise further the influence of globalisation on science education in Sub-Saharan Africa.
NASA Astrophysics Data System (ADS)
Cooke-Nieves, Natasha Anika
Science education research has consistently shown that elementary teachers have a low self-efficacy and background knowledge to teach science. When they teach science, there is a lack of field experiences and inquiry-based instruction at the elementary level due to limited resources, both material and pedagogical. This study focused on an analysis of a professional development (PD) model designed by the author known as the Collaborative Diagonal Learning Network (CDLN). The purpose of this study was to examine elementary school teacher participants pedagogical content knowledge related to their experiences in a CDLN model. The CDLN model taught formal and informal instruction using a science coach and an informal educational institution. Another purpose for this research included a theoretical analysis of the CDLN model to see if its design enabled teachers to expand their resource knowledge of available science education materials. The four-month-long study used qualitative data obtained during an in-service professional development program facilitated by a science coach and educators from a large natural history museum. Using case study as the research design, four elementary school teachers were asked to evaluate the effectiveness of their science coach and museum educator workshop sessions. During the duration of this study, semi-structured individual/group interviews and open-ended pre/post PD questionnaires were used. Other data sources included researcher field notes from lesson observations, museum field trips, audio-recorded workshop sessions, email correspondence, and teacher-created artifacts. The data were analyzed using a constructivist grounded theory approach. Themes that emerged included increased self-efficacy; increased pedagogical content knowledge; increased knowledge of museum education resources and access; creation of a professional learning community; and increased knowledge of science notebooking. Implications for formal and informal professional development in elementary science reform are offered. It is suggested that researchers investigate collaborative coaching through the lenses of organizational learning network theory, and develop professional learning communities with formal and informal educators; and that professional developers in city school systems and informal science institutions work in concert to produce more effective elementary teachers who not only love science but love teaching it.
An analysis of national collaboration with Spanish researchers abroad in the health sciences.
Aceituno-Aceituno, Pedro; Romero-Martínez, Sonia Janeth; Victor-Ponce, Patricia; García-Núñez, José
2015-11-07
The establishment of scientific collaborations with researchers abroad can be considered a good practice to make appropriate use of their knowledge and to increase the possibilities of them returning to their country. This paper analyses the collaboration between Spanish researchers abroad devoted to health sciences and national science institutions. We used the Fontes' approach to perform a study on this collaboration with Spanish researchers abroad. We measured the level of national and international cooperation, the opportunity provided by the host country to collaborate, the promotion of collaboration by national science institutions, and the types of collaboration. A total of 88 biomedical researchers out of the 268 Spanish scientists who filled up the survey participated in the study. Different data analyses were performed to study the variables selected to measure the scientific collaboration and profile of Spanish researchers abroad. There is a high level of cooperation between Spanish health science researchers abroad and international institutions, which contrasts with the small-scale collaboration with national institutions. Host countries facilitate this collaboration with national and international scientific institutions to a larger extent than the level of collaboration promotion carried out by Spanish institutions. The national collaboration with Spanish researchers abroad in the health sciences is limited. Thus, the practice of making appropriate use of the potential of their expertise should be promoted and the opportunities for Spanish health science researchers to return home should be improved.
NASA Astrophysics Data System (ADS)
Harris, A. T.; Ramachandran, R.; Maskey, M.
2013-12-01
The Exelis-developed IDL and ENVI software are ubiquitous tools in Earth science research environments. The IDL Workbench is used by the Earth science community for programming custom data analysis and visualization modules. ENVI is a software solution for processing and analyzing geospatial imagery that combines support for multiple Earth observation scientific data types (optical, thermal, multi-spectral, hyperspectral, SAR, LiDAR) with advanced image processing and analysis algorithms. The ENVI & IDL Services Engine (ESE) is an Earth science data processing engine that allows researchers to use open standards to rapidly create, publish and deploy advanced Earth science data analytics within any existing enterprise infrastructure. Although powerful in many ways, the tools lack collaborative features out-of-box. Thus, as part of the NASA funded project, Collaborative Workbench to Accelerate Science Algorithm Development, researchers at the University of Alabama in Huntsville and Exelis have developed plugins that allow seamless research collaboration from within IDL workbench. Such additional features within IDL workbench are possible because IDL workbench is built using the Eclipse Rich Client Platform (RCP). RCP applications allow custom plugins to be dropped in for extended functionalities. Specific functionalities of the plugins include creating complex workflows based on IDL application source code, submitting workflows to be executed by ESE in the cloud, and sharing and cloning of workflows among collaborators. All these functionalities are available to scientists without leaving their IDL workbench. Because ESE can interoperate with any middleware, scientific programmers can readily string together IDL processing tasks (or tasks written in other languages like C++, Java or Python) to create complex workflows for deployment within their current enterprise architecture (e.g. ArcGIS Server, GeoServer, Apache ODE or SciFlo from JPL). Using the collaborative IDL Workbench, coupled with ESE for execution in the cloud, asynchronous workflows could be executed in batch mode on large data in the cloud. We envision that a scientist will initially develop a scientific workflow locally on a small set of data. Once tested, the scientist will deploy the workflow to the cloud for execution. Depending on the results, the scientist may share the workflow and results, allowing them to be stored in a community catalog and instantly loaded into the IDL Workbench of other scientists. Thereupon, scientists can clone and modify or execute the workflow with different input parameters. The Collaborative Workbench will provide a platform for collaboration in the cloud, helping Earth scientists solve big-data problems in the Earth and planetary sciences.
Advanced Technologies for Space Life Science Payloads on the International Space Station
NASA Technical Reports Server (NTRS)
Hines, John W.; Connolly, John P. (Technical Monitor)
1997-01-01
SENSORS 2000! (S2K!) is a specialized, high-performance work group organized to provide advanced engineering and technology support for NASA's Life Sciences spaceflight and ground-based research and development programs. In support of these objectives, S2K! manages NASA's Advanced Technology Development Program for Biosensor and Biotelemetry Systems (ATD-B), with particular emphasis on technologies suitable for Gravitational Biology, Human Health and Performance, and Information Technology and Systems Management. A concurrent objective is to apply and transition ATD-B developed technologies to external, non-NASA humanitarian (medical, clinical, surgical, and emergency) situations and to stimulate partnering and leveraging with other government agencies, academia, and the commercial/industrial sectors. A phased long-term program has been implemented to support science disciplines and programs requiring specific biosensor (i.e., biopotential, biophysical, biochemical, and biological) measurements from humans, animals (mainly primates and rodents), and cells under controlled laboratory and simulated microgravity situations. In addition to the technology programs described above, NASA's Life and Microgravity Sciences and Applications Office has initiated a Technology Infusion process to identify and coordinate the utilization and integration of advanced technologies into its International Space Station Facilities. This project has recently identified a series of technologies, tasks, and products which, if implemented, would significantly increase the science return, decrease costs, and provide improved technological capability. This presentation will review the programs described above and discuss opportunities for collaboration, leveraging, and partnering with NASA.
NASA Astrophysics Data System (ADS)
Johnston, William; Ernst, M.; Dart, E.; Tierney, B.
2014-04-01
Today's large-scale science projects involve world-wide collaborations depend on moving massive amounts of data from an instrument to potentially thousands of computing and storage systems at hundreds of collaborating institutions to accomplish their science. This is true for ATLAS and CMS at the LHC, and it is true for the climate sciences, Belle-II at the KEK collider, genome sciences, the SKA radio telescope, and ITER, the international fusion energy experiment. DOE's Office of Science has been collecting science discipline and instrument requirements for network based data management and analysis for more than a decade. As a result of this certain key issues are seen across essentially all science disciplines that rely on the network for significant data transfer, even if the data quantities are modest compared to projects like the LHC experiments. These issues are what this talk will address; to wit: 1. Optical signal transport advances enabling 100 Gb/s circuits that span the globe on optical fiber with each carrying 100 such channels; 2. Network router and switch requirements to support high-speed international data transfer; 3. Data transport (TCP is still the norm) requirements to support high-speed international data transfer (e.g. error-free transmission); 4. Network monitoring and testing techniques and infrastructure to maintain the required error-free operation of the many R&E networks involved in international collaborations; 5. Operating system evolution to support very high-speed network I/O; 6. New network architectures and services in the LAN (campus) and WAN networks to support data-intensive science; 7. Data movement and management techniques and software that can maximize the throughput on the network connections between distributed data handling systems, and; 8. New approaches to widely distributed workflow systems that can support the data movement and analysis required by the science. All of these areas must be addressed to enable large-scale, widely distributed data analysis systems, and the experience of the LHC can be applied to other scientific disciplines. In particular, specific analogies to the SKA will be cited in the talk.
KNMI DataLab experiences in serving data-driven innovations
NASA Astrophysics Data System (ADS)
Noteboom, Jan Willem; Sluiter, Raymond
2016-04-01
Climate change research and innovations in weather forecasting rely more and more on (Big) data. Besides increasing data from traditional sources (such as observation networks, radars and satellites), the use of open data, crowd sourced data and the Internet of Things (IoT) is emerging. To deploy these sources of data optimally in our services and products, KNMI has established a DataLab to serve data-driven innovations in collaboration with public and private sector partners. Big data management, data integration, data analytics including machine learning and data visualization techniques are playing an important role in the DataLab. Cross-domain data-driven innovations that arise from public-private collaborative projects and research programmes can be explored, experimented and/or piloted by the KNMI DataLab. Furthermore, advice can be requested on (Big) data techniques and data sources. In support of collaborative (Big) data science activities, scalable environments are offered with facilities for data integration, data analysis and visualization. In addition, Data Science expertise is provided directly or from a pool of internal and external experts. At the EGU conference, gained experiences and best practices are presented in operating the KNMI DataLab to serve data-driven innovations for weather and climate applications optimally.
Collaboration Across the Sciences: How Can We Improve Our Practice and Prepare the Future?
NASA Astrophysics Data System (ADS)
Grinspoon, D.; Cobabe, E.; Harman, P.; Prather, E. E.
2010-08-01
In the pursuit of scientific knowledge, not only do techniques and instrumentation continually change, the quality of questions being asked also evolves. Age old questions such as "are we alone?" as well as new problems such as global climate change require multi/interdisciplinary perspectives and collaboration, pushing scientists to explore between the specializations. What skills will our students need to function in this emerging paradigm? How should our work as Education and Public Outreach (EPO) practitioners reflect this when so much of the educational landscape is mired in specialized, standardized testing? Are there benefits and tradeoffs in contextualized learning? What are lessons learned so far? Think about it and come share.
The Engagement of Engineers in Education and Public Outreach: Beginning the Conversation
NASA Astrophysics Data System (ADS)
Grier, J.; Buxner, S.; Vezino, B.; Shipp, S. S.
2014-12-01
The Next Generation Science Standards (NGSS) are a new set of K-12 science standards that have been developed through a collaborative, state-led process. Based on the National Research Council (NRC) 'Framework for K-12 Education,' the NGSS are designed to provide all students with a coherent education possessing both robust content and rigorous practice. Within these standards is an enhanced emphasis on the intersection between science and engineering. The focus is not only on asking questions and finding answers (science) but also in identifying and designing solution to problems (engineering.) The NASA SMD (Science Mission Directorate) Education and Public Outreach (E/PO) Forums have been working with space scientists for many years to assist with their engagement in E/PO efforts, thus supporting the needs of previous science standards. In order to properly address the needs of NGSS, this conversation is being expanded to include engineers. Our initial efforts include a series of semi-structured interviews with a dozen engineers involved in different aspects of space science and mission development. We will present the responses from the survey and compare this information to our knowledge base about space scientists, their needs, attitudes, and understandings of E/PO. In addition to a new emphasis on engineering in the NGSS, we also consider engineering habits of mind such as systems thinking, creativity, optimism, collaboration, communication, and attention to ethical considerations as described by an NRC policy document for engineering education. Using the overall results, we will consider strategies, further ideas for investigation, and possible steps for going forward with this important aspect of including engineering in education and outreach programming.
NASA Astrophysics Data System (ADS)
Patchen, Terri; Smithenry, Dennis W.
2015-02-01
Researchers have theorized that integrating authentic science activities into classrooms will help students learn how working scientists collaboratively construct knowledge, but few empirical studies have examined students' experiences with these types of activities. Utilizing data from a comparative, mixed-methods study, we considered how integrating a complex, collaborative participant structure into a secondary school chemistry curriculum shapes students' perceptions of what constitutes "science." We found that the implementation of this participant structure expanded student perceptions of chemistry learning beyond the typical focus on science content knowledge to include the acquisition of collaboration skills. This support for the collaborative construction of knowledge, in addition to the appropriation of scientific content, establishes the conditions for what science educators and scientists say they want: students who can work together to solve science problems. Radical shifts towards such collaborative participant structures are necessary if we are to modify student perceptions of science and science classrooms in ways that are aligned with recent calls for science education reform.
NASA Astrophysics Data System (ADS)
Buxner, S.; Grier, J.; Meinke, B. K.; Schneider, N. M.; Low, R.; Schultz, G. R.; Manning, J. G.; Fraknoi, A.; Gross, N. A.; Shipp, S. S.
2015-12-01
For the past six years, the NASA Science Education and Public Outreach (E/PO) Forums have supported the NASA Science Mission Directorate (SMD) and its E/PO community by enhancing the coherency and efficiency of SMD-funded E/PO programs. The Forums have fostered collaboration and partnerships between scientists with content expertise and educators with pedagogy expertise. As part of this work, in collaboration with the AAS Division of Planetary Sciences, we have interviewed SMD scientists, and more recently engineers, to understand their needs, barriers, attitudes, and understanding of education and outreach work. Respondents told us that they needed additional resources and professional development to support their work in education and outreach, including information about how to get started, ways to improve their communication, and strategies and activities for their teaching and outreach. In response, the Forums have developed and made available a suite of tools to support scientists and engineers in their E/PO efforts. These include "getting started" guides, "tips and tricks" for engaging in E/PO, vetted lists of classroom and outreach activities, and resources for college classrooms. NASA Wavelength (http://nasawavelength.org/), an online repository of SMD funded activities that have been reviewed by both educators and scientists for quality and accuracy, provides a searchable database of resources for teaching as well as ready-made lists by topic and education level, including lists for introductory college classrooms. Additionally, we have also supported scientists at professional conferences through organizing oral and poster sessions, networking activities, E/PO helpdesks, professional development workshops, and support for students and early careers scientists. For more information and to access resources for scientists and engineers, visit http://smdepo.org.
Measurement of the absolute branching fraction of D+ → K̅0 e+νe via K̅0 → π 0 π 0
NASA Astrophysics Data System (ADS)
Ablikim, M.; Achasov, M. N.; Ai, X. C.; Albayrak, O.; Albrecht, M.; Ambrose, D. J.; Amoroso, A.; An, F. F.; An, Q.; Bai, J. Z.; Baldini Ferroli, R.; Ban, Y.; Bennett, D. W.; Bennett, J. V.; Bertani, M.; Bettoni, D.; Bian, J. M.; Bianchi, F.; Boger, E.; Boyko, I.; Briere, R. A.; Cai, H.; Cai, X.; Cakir, O.; Calcaterra, A.; Cao, G. F.; Cetin, S. A.; Chang, J. F.; Chelkov, G.; Chen, G.; Chen, H. S.; Chen, H. Y.; Chen, J. C.; Chen, M. L.; Chen, S.; Chen, S. J.; Chen, X.; Chen, X. R.; Chen, Y. B.; Cheng, H. P.; Chu, X. K.; Cibinetto, G.; Dai, H. L.; Dai, J. P.; Dbeyssi, A.; Dedovich, D.; Deng, Z. Y.; Denig, A.; Denysenko, I.; Destefanis, M.; De Mori, F.; Ding, Y.; Dong, C.; Dong, J.; Dong, L. Y.; Dong, M. Y.; Dou, Z. L.; Du, S. X.; Duan, P. F.; Fan, J. Z.; Fang, J.; Fang, S. S.; Fang, X.; Fang, Y.; Farinelli, R.; Fava, L.; Fedorov, O.; Feldbauer, F.; Felici, G.; Feng, C. Q.; Fioravanti, E.; Fritsch, M.; Fu, C. D.; Gao, Q.; Gao, X. L.; Gao, X. Y.; Gao, Y.; Gao, Z.; Garzia, I.; Goetzen, K.; Gong, L.; Gong, W. X.; Gradl, W.; Greco, M.; Gu, M. H.; Gu, Y. T.; Guan, Y. H.; Guo, A. Q.; Guo, L. B.; Guo, R. P.; Guo, Y.; Guo, Y. P.; Haddadi, Z.; Hafner, A.; Han, S.; Hao, X. Q.; Harris, F. A.; He, K. L.; Held, T.; Heng, Y. K.; Hou, Z. L.; Hu, C.; Hu, H. M.; Hu, J. F.; Hu, T.; Hu, Y.; Huang, G. S.; Huang, J. S.; Huang, X. T.; Huang, X. Z.; Huang, Y.; Huang, Z. L.; Hussain, T.; Ji, Q.; Ji, Q. P.; Ji, X. B.; Ji, X. L.; Jiang, L. W.; Jiang, X. S.; Jiang, X. Y.; Jiao, J. B.; Jiao, Z.; Jin, D. P.; Jin, S.; Johansson, T.; Julin, A.; Kalantar-Nayestanaki, N.; Kang, X. L.; Kang, X. S.; Kavatsyuk, M.; Ke, B. C.; Kiese, P.; Kliemt, R.; Kloss, B.; Kolcu, O. B.; Kopf, B.; Kornicer, M.; Kupsc, A.; Kühn, W.; Lange, J. S.; Lara, M.; Larin, P.; Leng, C.; Li, C.; Li, Cheng; Li, D. M.; Li, F.; Li, F. Y.; Li, G.; Li, H. B.; Li, H. J.; Li, J. C.; Li, Jin; Li, K.; Li, K.; Li, Lei; Li, P. R.; Li, Q. Y.; Li, T.; Li, W. D.; Li, W. G.; Li, X. L.; Li, X. N.; Li, X. Q.; Li, Y. B.; Li, Z. B.; Liang, H.; Liang, Y. F.; Liang, Y. T.; Liao, G. R.; Lin, D. X.; Liu, B.; Liu, B. J.; Liu, C. X.; Liu, D.; Liu, F. H.; Liu, Fang; Liu, Feng; Liu, H. B.; Liu, H. H.; Liu, H. H.; Liu, H. M.; Liu, J.; Liu, J. B.; Liu, J. P.; Liu, J. Y.; Liu, K.; Liu, K. Y.; Liu, L. D.; Liu, P. L.; Liu, Q.; Liu, S. B.; Liu, X.; Liu, Y. B.; Liu, Z. A.; Liu, Zhiqing; Loehner, H.; Lou, X. C.; Lü, H. J.; Lü, J. G.; Lu, Y.; Lu, Y. P.; Luo, C. L.; Luo, M. X.; Luo, T.; Luo, X. L.; Lü, X. R.; Ma, F. C.; Ma, H. L.; Ma, L. L.; Ma, M. M.; Ma, Q. M.; Ma, T.; Ma, X. N.; Ma, X. Y.; Ma, Y. M.; Maas, F. E.; Maggiora, M.; Mao, Y. J.; Mao, Z. P.; Marcello, S.; Messchendorp, J. G.; Min, J.; Min, T. J.; Mitchell, R. E.; Mo, X. H.; Mo, Y. J.; Morales Morales, C.; Muchnoi, N. Yu.; Muramatsu, H.; Nefedov, Y.; Nerling, F.; Nikolaev, I. B.; Ning, Z.; Nisar, S.; Niu, S. L.; Niu, X. Y.; Olsen, S. L.; Ouyang, Q.; Pacetti, S.; Pan, Y.; Patteri, P.; Pelizaeus, M.; Peng, H. P.; Peters, K.; Pettersson, J.; Ping, J. L.; Ping, R. G.; Poling, R.; Prasad, V.; Qi, H. R.; Qi, M.; Qian, S.; Qiao, C. F.; Qin, L. Q.; Qin, N.; Qin, X. S.; Qin, Z. H.; Qiu, J. F.; Rashid, K. H.; Redmer, C. F.; Ripka, M.; Rong, G.; Rosner, Ch.; Ruan, X. D.; Sarantsev, A.; Savrié, M.; Schoenning, K.; Schumann, S.; Shan, W.; Shao, M.; Shen, C. P.; Shen, P. X.; Shen, X. Y.; Sheng, H. Y.; Shi, M.; Song, W. M.; Song, X. Y.; Sosio, S.; Spataro, S.; Sun, G. X.; Sun, J. F.; Sun, S. S.; Sun, X. H.; Sun, Y. J.; Sun, Y. Z.; Sun, Z. J.; Sun, Z. T.; Tang, C. J.; Tang, X.; Tapan, I.; Thorndike, E. H.; Tiemens, M.; Ullrich, M.; Uman, I.; Varner, G. S.; Wang, B.; Wang, B. L.; Wang, D.; Wang, D. Y.; Wang, K.; Wang, L. L.; Wang, L. S.; Wang, M.; Wang, P.; Wang, P. L.; Wang, W.; Wang, W. P.; Wang, X. F.; Wang, Y.; Wang, Y. D.; Wang, Y. F.; Wang, Y. Q.; Wang, Z.; Wang, Z. G.; Wang, Z. H.; Wang, Z. Y.; Wang, Z. Y.; Weber, T.; Wei, D. H.; Weidenkaff, P.; Wen, S. P.; Wiedner, U.; Wolke, M.; Wu, L. H.; Wu, L. J.; Wu, Z.; Xia, L.; Xia, L. G.; Xia, Y.; Xiao, D.; Xiao, H.; Xiao, Z. J.; Xie, Y. G.; Xiu, Q. L.; Xu, G. F.; Xu, J. J.; Xu, L.; Xu, Q. J.; Xu, Q. N.; Xu, X. P.; Yan, L.; Yan, W. B.; Yan, W. C.; Yan, Y. H.; Yang, H. J.; Yang, H. X.; Yang, L.; Yang, Y. X.; Ye, M.; Ye, M. H.; Yin, J. H.; Yu, B. X.; Yu, C. X.; Yu, J. S.; Yuan, C. Z.; Yuan, W. L.; Yuan, Y.; Yuncu, A.; Zafar, A. A.; Zallo, A.; Zeng, Y.; Zeng, Z.; Zhang, B. X.; Zhang, B. Y.; Zhang, C.; Zhang, C. C.; Zhang, D. H.; Zhang, H. H.; Zhang, H. Y.; Zhang, J.; Zhang, J. J.; Zhang, J. L.; Zhang, J. Q.; Zhang, J. W.; Zhang, J. Y.; Zhang, J. Z.; Zhang, K.; Zhang, L.; Zhang, S. Q.; Zhang, X. Y.; Zhang, Y.; Zhang, Y. H.; Zhang, Y. N.; Zhang, Y. T.; Zhang, Yu; Zhang, Z. H.; Zhang, Z. P.; Zhang, Z. Y.; Zhao, G.; Zhao, J. W.; Zhao, J. Y.; Zhao, J. Z.; Zhao, Lei; Zhao, Ling; Zhao, M. G.; Zhao, Q.; Zhao, Q. W.; Zhao, S. J.; Zhao, T. C.; Zhao, Y. B.; Zhao, Z. G.; Zhemchugov, A.; Zheng, B.; Zheng, J. P.; Zheng, W. J.; Zheng, Y. H.; Zhong, B.; Zhou, L.; Zhou, X.; Zhou, X. K.; Zhou, X. R.; Zhou, X. Y.; Zhu, K.; Zhu, K. J.; Zhu, S.; Zhu, S. H.; Zhu, X. L.; Zhu, Y. C.; Zhu, Y. S.; Zhu, Z. A.; Zhuang, J.; Zotti, L.; Zou, B. S.; Zou, J. H.; BESIII Collaboration
2016-11-01
By analyzing 2.93 fb-1 data collected at the center-of-mass energy with the BESIII detector, we measure the absolute branching fraction of the semileptonic decay D+ → K̅0 e+νe to be ℬ(D + → K̅0 e+νe) = (8.59 ± 0.14 ± 0.21)% using , where the first uncertainty is statistical and the second systematic. Our result is consistent with previous measurements within uncertainties.. Supported by National Key Basic Research Program of China (2009CB825204, 2015CB856700), National Natural Science Foundation of China (NSFC) (10935007, 11125525, 11235011, 11305180, 11322544, 11335008, 11425524, 11475123), Chinese Academy of Sciences (CAS) Large-Scale Scientific Facility Program, CAS Center for Excellence in Particle Physics (CCEPP), Collaborative Innovation Center for Particles and Interactions (CICPI), Joint Large-Scale Scientific Facility Funds of NSFC and CAS (11179007, U1232201, U1332201, U1532101), CAS (KJCX2-YW-N29, KJCX2-YW-N45), 100 Talents Program of CAS, National 1000 Talents Program of China, INPAC and Shanghai Key Laboratory for Particle Physics and Cosmology, German Research Foundation DFG (Collaborative Research Center CRC-1044), Istituto Nazionale di Fisica Nucleare, Italy, Koninklijke Nederlandse Akademie van Wetenschappen (KNAW) (530-4CDP03), Ministry of Development of Turkey (DPT2006K-120470), National Natural Science Foundation of China (NSFC) (11405046, U1332103), Russian Foundation for Basic Research (14-07-91152), Swedish Resarch Council, U. S. Department of Energy (DE-FG02-04ER41291, DE-FG02-05ER41374, DE-SC0012069, DESC0010118), U.S. National Science Foundation, University of Groningen (RuG) and Helmholtzzentrum fuer Schwerionenforschung GmbH (GSI), Darmstadt, WCU Program of National Research Foundation of Korea (R32-2008-000-10155-0).
Emergence of Multiplex Communities in Collaboration Networks.
Battiston, Federico; Iacovacci, Jacopo; Nicosia, Vincenzo; Bianconi, Ginestra; Latora, Vito
2016-01-01
Community structures in collaboration networks reflect the natural tendency of individuals to organize their work in groups in order to better achieve common goals. In most of the cases, individuals exploit their connections to introduce themselves to new areas of interests, giving rise to multifaceted collaborations which span different fields. In this paper, we analyse collaborations in science and among movie actors as multiplex networks, where the layers represent respectively research topics and movie genres, and we show that communities indeed coexist and overlap at the different layers of such systems. We then propose a model to grow multiplex networks based on two mechanisms of intra and inter-layer triadic closure which mimic the real processes by which collaborations evolve. We show that our model is able to explain the multiplex community structure observed empirically, and we infer the strength of the two underlying social mechanisms from real-world systems. Being also able to correctly reproduce the values of intra-layer and inter-layer assortativity correlations, the model contributes to a better understanding of the principles driving the evolution of social networks.
NASA Astrophysics Data System (ADS)
Wright, D. J.
2013-12-01
In the early 1990s the author came of age as the technology driving the geographic information system or GIS was beginning to successfully 'handle' geospatial data at a range of scales and formats, and a wide array of information technology products emerged from an expanding GIS industry. However, that small community struggled to reflect the diverse research efforts at play in understanding the deeper issues surrounding geospatial data, and the impediments to that effective use of that data. It was from this need that geographic information science or GIScience arose, to ensure in part that GIS did not fall into the trap of being a technology in search of applications, a one-time, one-off, non-intellectual 'bag of tricks' with no substantive theory underpinning it, and suitable only for a static period of time (e.g., Goodchild, 1992). The community has since debated the issue of "tool versus science' which has also played a role in defining GIS as an actual profession. In turn, GIS has contributed to "methodological versus substantive" questions in science, leading to understandings of how the Earth works versus how the Earth should look. In the author's experience, the multidimensional structuring and scaling data, with integrative and innovative approaches to analyzing, modeling, and developing extensive and spatial data from selected places on land and at sea, have revealed how theory and application are in no way mutually exclusive, and it may often be application that advances theory, rather than vice versa. Increasingly, both the system and science of geographic information have welcomed strong collaborations among computer scientists, information scientists, and domain scientists to solve complex scientific questions. As such, they have paralleled the emergence and acceptance of "data science." And now that we are squarely in an era of regional- to global-scale observation and simulation of the Earth, produce data that are too big, move too fast, and do not fit the structures and processing capacity of conventional database systems, and the author reflects on how the potential of the GIS/GIScience world to contribute to the training and professional advancement of data science.
Motivation of synthesis, with an example on groundwater quality sustainability
NASA Astrophysics Data System (ADS)
Fogg, G. E.; Labolle, E. M.
2007-12-01
Synthesis of ideas and theories from disparate disciplines is necessary for addressing the major problems faced by society. Such integration happens neither via edict nor via lofty declarations of what is needed or what is best. It happens mainly through two mechanisms: limited scope collaborations (e.g., ~2-3 investigators) in which the researchers believe deeply in their need for each other's expertise and much larger scope collaborations driven by the 'big idea.' Perhaps the strongest motivation for broad, effective synthesis is the 'big idea' that is sufficiently important and inspiring to marshal the appropriate collaborative efforts. Examples include the Manhattan Project, the quest for cancer cures, predicting effects of climate change, and groundwater quality sustainability. The latter is posed as an example of a 'big idea' that would potentially unify research efforts in both the sciences and social sciences toward a common, pressing objective.
Strehl, Letícia; Calabró, Luciana; Souza, Diogo Onofre; Amaral, Lívio
2016-01-01
In recent decades, we have observed an intensification of science, technology and innovation activities in Brazil. The increase in production of scientific papers indexed in international databases, however, has not been accompanied by an equivalent increase in the impact of publications. This paper presents a methodology for analyzing production and the impact of certain research areas in Brazil related to two aspects: the origin of the journals (national or foreign) and international collaboration. These two variables were selected for being of particular importance in understanding the context of scientific production and communication in countries with emerging economies. The sample consisted of papers written by Brazilian researchers in 19 subfields of knowledge published from 2002 to 2011, totaling 85,082 papers. To calculate the impact, we adopted a normalized indicator called the relative subfield citedness (Rw) using a window of 5 years to obtain measurements evaluated in 2 different years: 2007 and 2012. The data on papers and citations were collected from the Web of Science database. From the results, we note that most of the subfields have presented, from one quinquennium to another, improved performance in the world production rankings. Regarding publication in national and foreign journals, we observed a trend in the distribution maintenance of production of the subfields based on the origin of the journal. Specifically, for impact, we identified a lower Rw pattern for Brazilian papers when they were published in national journals in all subfields. When Brazilian products are published in foreign journals, we observed a higher impact for those papers, even surpassing the average global impact in some subfields. For international collaboration, we analyzed the percentage of participation of foreign researchers and the connection between collaboration and the impact of papers, especially emphasizing the distinction of hyperauthorship papers in terms of production and impact.
Calabró, Luciana; Souza, Diogo Onofre; Amaral, Lívio
2016-01-01
In recent decades, we have observed an intensification of science, technology and innovation activities in Brazil. The increase in production of scientific papers indexed in international databases, however, has not been accompanied by an equivalent increase in the impact of publications. This paper presents a methodology for analyzing production and the impact of certain research areas in Brazil related to two aspects: the origin of the journals (national or foreign) and international collaboration. These two variables were selected for being of particular importance in understanding the context of scientific production and communication in countries with emerging economies. The sample consisted of papers written by Brazilian researchers in 19 subfields of knowledge published from 2002 to 2011, totaling 85,082 papers. To calculate the impact, we adopted a normalized indicator called the relative subfield citedness (Rw) using a window of 5 years to obtain measurements evaluated in 2 different years: 2007 and 2012. The data on papers and citations were collected from the Web of Science database. From the results, we note that most of the subfields have presented, from one quinquennium to another, improved performance in the world production rankings. Regarding publication in national and foreign journals, we observed a trend in the distribution maintenance of production of the subfields based on the origin of the journal. Specifically, for impact, we identified a lower Rw pattern for Brazilian papers when they were published in national journals in all subfields. When Brazilian products are published in foreign journals, we observed a higher impact for those papers, even surpassing the average global impact in some subfields. For international collaboration, we analyzed the percentage of participation of foreign researchers and the connection between collaboration and the impact of papers, especially emphasizing the distinction of hyperauthorship papers in terms of production and impact. PMID:27171223
Wireless Emergency Alerts (WEA) Cybersecurity Risk Management Strategy for Alert Originators
2014-03-01
formerly known as the Commercial Mobile Alert Service ( CMAS ) RDT&E program, is a collaborative partnership that includes the cellular industry, the...Examples illustrate a STRIDE analysis of the generic mission 1 The CMAS Alerting Pipeline Taxonomy describes in detail a hierarchical classification...SEI-2013-SR-018 | 1 1 Introduction The Wireless Emergency Alerts (WEA) service, formerly known as the Commercial Mobile Alert Service ( CMAS ), is a
Suggestions for Formulating Collaborative Remote Sensing Emergency Plan Based on Case Studies
NASA Astrophysics Data System (ADS)
Liu, B.; Wang, F.; Zheng, X.; Qi, M.
2017-09-01
With the rapid development of the Remote Sensing (RS) technology, Remote Sensing Services for Emergency Monitoring (RSSEM) are playing a more and more important role in the field of emergency management, where the collaborative RS approaches (including such as Space-Air-Ground platforms) can provide the decision-makers a quick access to the detailed, real-time information about the emergencies. However, there are still some problems in the current mechanism of RSSEM, for example, the inappropriate choices of the collaborative RS approaches, the miscellaneous procedures and so on. It is urgent to formulate a collaborative RS emergency plan for regulating the applications of the RS monitoring approaches in order to be well prepared for the emergency management. In our studies, creating a good collaborative RS emergency plan is the main research objective. This paper is divided into four parts. The Part Ⅰ gives a brief introduction about the research background. The Part Ⅱ investigates four case studies to analyze the applications of the RS technologies under the guidance of the available RS related emergency plans, and then points out the existing problems in the mechanism of the RSSEM. The Part Ⅲ proposes our suggestions for formulating the collaborative RS emergency plan to explore the countermeasures of the problems pointed out in the Part Ⅱ. The last part concludes this paper and discusses the future work of the collaborative RS emergency plan.
Design of Scalable and Effective Earth Science Collaboration Tool
NASA Astrophysics Data System (ADS)
Maskey, M.; Ramachandran, R.; Kuo, K. S.; Lynnes, C.; Niamsuwan, N.; Chidambaram, C.
2014-12-01
Collaborative research is growing rapidly. Many tools including IDEs are now beginning to incorporate new collaborative features. Software engineering research has shown the effectiveness of collaborative programming and analysis. In particular, drastic reduction in software development time resulting in reduced cost has been highlighted. Recently, we have witnessed the rise of applications that allow users to share their content. Most of these applications scale such collaboration using cloud technologies. Earth science research needs to adopt collaboration technologies to reduce redundancy, cut cost, expand knowledgebase, and scale research experiments. To address these needs, we developed the Earth science collaboration workbench (CWB). CWB provides researchers with various collaboration features by augmenting their existing analysis tools to minimize learning curve. During the development of the CWB, we understood that Earth science collaboration tasks are varied and we concluded that it is not possible to design a tool that serves all collaboration purposes. We adopted a mix of synchronous and asynchronous sharing methods that can be used to perform collaboration across time and location dimensions. We have used cloud technology for scaling the collaboration. Cloud has been highly utilized and valuable tool for Earth science researchers. Among other usages, cloud is used for sharing research results, Earth science data, and virtual machine images; allowing CWB to create and maintain research environments and networks to enhance collaboration between researchers. Furthermore, collaborative versioning tool, Git, is integrated into CWB for versioning of science artifacts. In this paper, we present our experience in designing and implementing the CWB. We will also discuss the integration of collaborative code development use cases for data search and discovery using NASA DAAC and simulation of satellite observations using NASA Earth Observing System Simulation Suite (NEOS3).
ERIC Educational Resources Information Center
Rupley, William H.; Paige, David D.; Rasinski, Timothy V.; Slough, Scott W.
2015-01-01
Pavio's Dual-Coding Theory (1991) and Mayer's Multimedia Principal (2000) form the foundation for proposing a multi-coding theory centered around Multi-Touch Tablets and the newest generation of e-textbooks to scaffold struggling readers in reading and learning from science textbooks. Using E. O. Wilson's "Life on Earth: An Introduction"…
Disseminating NASA-based science through NASA's Universe of Learning: Girls STEAM Ahead
NASA Astrophysics Data System (ADS)
Marcucci, E.; Meinke, B. K.; Smith, D. A.; Ryer, H.; Slivinski, C.; Kenney, J.; Arcand, K.; Cominsky, L.
2017-12-01
The Girls STEAM Ahead with NASA (GSAWN) initiative partners the NASA's Universe of Learning (UoL) resources with public libraries to provide NASA-themed activities for girls and their families. The program expands upon the legacy program, NASA Science4Girls and Their Families, in celebration of National Women's History Month. Program resources include hands-on activities for engaging girls, such as coding experiences and use of remote telescopes, complementary exhibits, and professional development for library partner staff. The science-institute-embedded partners in NASA's UoL are uniquely poised to foster collaboration between scientists with content expertise and educators with pedagogy expertise. The thematic topics related to NASA Astrophysics enable audiences to experience the full range of NASA scientific and technical disciplines and the different career skills each requires. For example, an activity may focus on understanding exoplanets, methods of their detection, and characteristics that can be determined remotely. The events focus on engaging underserved and underrepresented audiences in Science, Technology, Engineering, and Mathematics (STEM) via use of research-based best practices, collaborations with libraries, partnerships with local and national organizations (e.g. National Girls Collaborative Project or NGCP), and remote engagement of audiences. NASA's UoL collaborated with another NASA STEM Activation partner, NASA@ My Library, to announce GSAWN to their extensive STAR_Net network of libraries. This partnership between NASA SMD-funded Science learning and literacy teams has included NASA@ My Library hosting a professional development webinar featuring a GSAWN activity, a newsletter and blog post about the program, and plans for future exhibit development. This presentation will provide an overview of the program's progress to engage girls and their families through the development and dissemination of NASA-based science programming.
Marine Science in Southern Wales.
1980-11-05
George Deacon, founder and formerly head of the UK Institute of Oceanographic Sciences, and Sir Alister Hardy, professor emeritus from Oxford University... head up the new oceandraphy program at its inception. Undergraduate teaching began in 1968 with 30 students, and the first gradu- ates in oceanography...Wales. Zoology Prof. E.W. Knight-Jones collaborates with his wife, Phyllis, in the study of the nervous systems, behavior, and embryology of enteropneusta
2010-04-25
NASA Administrator Charles Bolden, left, and U.S. Environmental Protection Agency (EPA) Administrator Lisa P. Jackson, right, sign a Memorandum of Agreement (MOA) to promote collaboration between the two agencies for cooperation in environmental and Earth sciences and environmental management applications as students from the Howard University Middle School of Mathematics and Science look on, Monday, April 26, 2010, at the school in Washington. Photo Credit: (NASA/Paul E. Alers)
2010-04-25
NASA Administrator Charles Bolden, foreground, speaks with Howard University students after he and and U.S. Environmental Protection Agency (EPA) Administrator Lisa P. Jackson, right, signed a Memorandum of Agreement (MOA) to promote collaboration between the two agencies for cooperation in environmental and Earth sciences and environmental management applications at the Howard University Middle School of Mathematics and Science, Monday, April 26, 2010, in Washington. Photo Credit: (NASA/Paul E. Alers)
Assessing Research Collaboration through Co-Authorship Network Analysis
ERIC Educational Resources Information Center
Fagan, Jesse; Eddens, Katherine S.; Dolly, Jennifer; Vanderford, Nathan L.; Weiss, Heidi; Levens, Justin S.
2018-01-01
Interdisciplinary research collaboration is needed to perform transformative science and accelerate innovation. The Science of Team Science strives to investigate, evaluate, and foster team science, including institutional policies that may promote or hinder collaborative interdisciplinary research and the resources and infrastructure needed to…
Towards a Conceptual Design of a Cross-Domain Integrative Information System for the Geosciences
NASA Astrophysics Data System (ADS)
Zaslavsky, I.; Richard, S. M.; Valentine, D. W.; Malik, T.; Gupta, A.
2013-12-01
As geoscientists increasingly focus on studying processes that span multiple research domains, there is an increased need for cross-domain interoperability solutions that can scale to the entire geosciences, bridging information and knowledge systems, models, software tools, as well as connecting researchers and organization. Creating a community-driven cyberinfrastructure (CI) to address the grand challenges of integrative Earth science research and education is the focus of EarthCube, a new research initiative of the U.S. National Science Foundation. We are approaching EarthCube design as a complex socio-technical system of systems, in which communication between various domain subsystems, people and organizations enables more comprehensive, data-intensive research designs and knowledge sharing. In particular, we focus on integrating 'traditional' layered CI components - including information sources, catalogs, vocabularies, services, analysis and modeling tools - with CI components supporting scholarly communication, self-organization and social networking (e.g. research profiles, Q&A systems, annotations), in a manner that follows and enhances existing patterns of data, information and knowledge exchange within and across geoscience domains. We describe an initial architecture design focused on enabling the CI to (a) provide an environment for scientifically sound information and software discovery and reuse; (b) evolve by factoring in the impact of maturing movements like linked data, 'big data', and social collaborations, as well as experience from work on large information systems in other domains; (c) handle the ever increasing volume, complexity and diversity of geoscience information; (d) incorporate new information and analytical requirements, tools, and techniques, and emerging types of earth observations and models; (e) accommodate different ideas and approaches to research and data stewardship; (f) be responsive to the existing and anticipated needs of researchers and organizations representing both established and emerging CI users; and (g) make best use of NSF's current investment in the geoscience CI. The presentation will focus on the challenges and methodology of EarthCube CI design, in particular on supporting social engagement and interaction between geoscientists and computer scientists as a core function of EarthCube architecture. This capability must include mechanisms to not only locate and integrate available geoscience resources, but also engage individuals and projects, research products and publications, and enable efficient communication across many EarthCube stakeholders leading to long-term institutional alignment and trusted collaborations.
Conservation of biodiversity through taxonomy, data publication, and collaborative infrastructures.
Costello, Mark J; Vanhoorne, Bart; Appeltans, Ward
2015-08-01
Taxonomy is the foundation of biodiversity science because it furthers discovery of new species. Globally, there have never been so many people involved in naming species new to science. The number of new marine species described per decade has never been greater. Nevertheless, it is estimated that tens of thousands of marine species, and hundreds of thousands of terrestrial species, are yet to be discovered; many of which may already be in specimen collections. However, naming species is only a first step in documenting knowledge about their biology, biogeography, and ecology. Considering the threats to biodiversity, new knowledge of existing species and discovery of undescribed species and their subsequent study are urgently required. To accelerate this research, we recommend, and cite examples of, more and better communication: use of collaborative online databases; easier access to knowledge and specimens; production of taxonomic revisions and species identification guides; engagement of nonspecialists; and international collaboration. "Data-sharing" should be abandoned in favor of mandated data publication by the conservation science community. Such a step requires support from peer reviewers, editors, journals, and conservation organizations. Online data publication infrastructures (e.g., Global Biodiversity Information Facility, Ocean Biogeographic Information System) illustrate gaps in biodiversity sampling and may provide common ground for long-term international collaboration between scientists and conservation organizations. © 2015 Society for Conservation Biology.
Science Teaching Orientations and Technology-Enhanced Tools for Student Learning
NASA Astrophysics Data System (ADS)
Campbell, Todd; Longhurst, Max; Duffy, Aaron M.; Wolf, Paul G.; Shelton, Brett E.
2013-10-01
This qualitative study examines teacher orientations and technology-enhanced tools for student learning within a science literacy framework. Data for this study came from a group of 10 eighth grade science teachers. Each of these teachers was a participant in a professional development (PD) project focused on reformed and technology-enhanced science instruction shaped by national standards documents. The research is focused on identifying teacher orientations and use of technology-enhanced tools prior to or unaffected by PD. The primary data sources for this study are drawn from learning journals and classroom observations. Qualitative methods were used to analyze learning journals, while descriptive statistics were used from classroom observations to further explore and triangulate the emergent qualitative findings. Two teacher orientation teacher profiles were developed to reveal the emergent teacher orientation dimensions and technology-enhanced tool categories found: "more traditional teacher orientation profile" and "toward a reformed-based teacher orientation profile." Both profiles were founded on "knowledge of" beliefs about the goals and purposes for science education, while neither profile revealed sophisticated beliefs about the nature of science. The "traditional" profile revealed more teacher-centered beliefs about science teaching and learning, and the "towards reformed-based" profile revealed student-centered beliefs. Finally, only technology-enhanced tools supportive of collaborative construction of science knowledge were found connected to the "towards reformed-based" profile. This research is concluded with a proposed "reformed-based teacher orientation profile" as a future target for science teaching and learning with technology-enhanced tools in a science literacy framework.
Expanding the Graduate Education Experience at Scripps Institution of Oceanography, UC San Diego
NASA Astrophysics Data System (ADS)
Peach, C. L.; Kilb, D. L.; Zmarzly, D.; Abeyta, E.
2016-02-01
Emerging career pathways for graduate students in earth, ocean and climate sciences increasingly require skills in teaching and communication. This is true of academic careers, in which demonstrated teaching skills make applicants for faculty positions far more competitive, and traditionally less conventional careers outside of academia that require cross-disciplinary collaboration and/or communication to audiences not directly involved in science research (e.g. policy makers, educators, the public). Yet most graduate education programs provide little to no opportunity or incentive for young investigators to develop and hone these skills, and graduate students are often discouraged from deviating from the traditional "research apprenticeship" model during their graduate education. At Scripps, the Birch Aquarium at Scripps, and UC San Diego Extension, we are developing new ways to integrate teaching, communication, and outreach into our graduate education program, thus broadening the scope of graduate training and better serving the needs and evolving career aspirations of our graduate students. This effort is an integral part of our overall outreach strategy a Scripps in which we seek to combine high quality STEM outreach and teaching with opportunities for Scripps graduate students to put their teaching and communications training into practice. The overall effort is a "win-win" both for our students and for the highly diverse K-16 community in San Diego County. In this talk we will summarize the programmatic efforts currently underway at Scripps, our strategic collaboration with UCSD Extension, which is expanding the capacity and reach of our integrated program, and our plans for sustaining these efforts for the long term.
Proceedings of the Next Generation Exploration Conference
NASA Technical Reports Server (NTRS)
Schingler, Robbie (Editor); Lynch, Kennda
2006-01-01
The Next Generation Exploration Conference (NGEC) brought together the emerging next generation of space leaders over three intensive days of collaboration and planning. The participants extended the ongoing work of national space agencies to draft a common strategic framework for lunar exploration, to include other destinations in the solar system. NGEC is the first conference to bring together emerging leaders to comment on and contribute to these activities. The majority of the three-day conference looked beyond the moon and focused on the "next destination": Asteroids, Cis-Lunar, Earth 3.0, Mars Science and Exploration, Mars Settlement and Society, and Virtual Worlds and Virtual Exploration.
2014-10-01
Changes in Approach b. Problems/Delays and Plans for Resolution c. Changes that Impacted Expenditures d. Changes in use or care of vertebrate animals...the field of Restorative Transplantation matures , significant opportunities are emerging for transplant researchers and clinicians to capitalize on...that the maturing field of Restorative Transplantation will benefit the most from the establishment of a multi-institutional, multi-disciplinary
BRISK--research-oriented storage kit for biology-related data.
Tan, Alan; Tripp, Ben; Daley, Denise
2011-09-01
In genetic science, large-scale international research collaborations represent a growing trend. These collaborations have demanding and challenging database, storage, retrieval and communication needs. These studies typically involve demographic and clinical data, in addition to the results from numerous genomic studies (omics studies) such as gene expression, eQTL, genome-wide association and methylation studies, which present numerous challenges, thus the need for data integration platforms that can handle these complex data structures. Inefficient methods of data transfer and access control still plague research collaboration. As science becomes more and more collaborative in nature, the need for a system that adequately manages data sharing becomes paramount. Biology-Related Information Storage Kit (BRISK) is a package of several web-based data management tools that provide a cohesive data integration and management platform. It was specifically designed to provide the architecture necessary to promote collaboration and expedite data sharing between scientists. The software, documentation, Java source code and demo are available at http://genapha.icapture.ubc.ca/brisk/index.jsp. BRISK was developed in Java, and tested on an Apache Tomcat 6 server with a MySQL database. denise.daley@hli.ubc.ca.
Sticks AND Carrots: Encouraging Open Science at its source.
Leonelli, Sabina; Spichtinger, Daniel; Prainsack, Barbara
2015-06-30
The Open Science (OS) movement has been seen as an important facilitator for public participation in science. This has been underpinned by the assumption that widespread and free access to research outputs leads to (i) better and more efficient science, (ii) economic growth, in particular for small and medium-sized enterprises wishing to capitalise on research findings and (iii) increased transparency of knowledge production and its outcomes. The latter in particular could function as a catalyst for public participation and engagement. Whether OS is likely to help realise these benefits, however, will depend on the emergence of systemic incentives for scientists to utilise OS in a meaningful manner. While some areas, the environmental sciences have a long tradition of open ethos, citizen inclusion and global collaborations, such activities need to be more systematically supported and promoted by funders and learned societies in order to improve scientific research and public participation.
Advice and Frequently Asked Questions (FAQs) for Citizen-Science Environmental Health Assessments.
Barzyk, Timothy M; Huang, Hongtai; Williams, Ronald; Kaufman, Amanda; Essoka, Jonathan
2018-05-11
Citizen science provides quantitative results to support environmental health assessments (EHAs), but standardized approaches do not currently exist to translate findings into actionable solutions. The emergence of low-cost portable sensor technologies and proliferation of publicly available datasets provides unparalleled access to supporting evidence; yet data collection, analysis, interpretation, visualization, and communication are subjective approaches that must be tailored to a decision-making audience capable of improving environmental health. A decade of collaborative efforts and two citizen science projects contributed to three lessons learned and a set of frequently asked questions (FAQs) that address the complexities of environmental health and interpersonal relations often encountered in citizen science EHAs. Each project followed a structured step-by-step process in order to compare and contrast methods and approaches. These lessons and FAQs provide advice to translate citizen science research into actionable solutions in the context of a diverse range of environmental health issues and local stakeholders.
NASA Astrophysics Data System (ADS)
Myers, B.; Wiggins, H. V.; Turner-Bogren, E. J.; Warburton, J.
2017-12-01
Project Managers at the Arctic Research Consortium of the U.S. (ARCUS) lead initiatives to convene, communicate with, and connect the Arctic research community across challenging disciplinary, geographic, temporal, and cultural boundaries. They regularly serve as the organizing hubs, archivists and memory-keepers for collaborative projects comprised of many loosely affiliated partners. As leading organizers of large open science meetings and other outreach events, they also monitor the interdisciplinary landscape of community needs, concerns, opportunities, and emerging research directions. However, leveraging the ARCUS Project Manager role to strategically build out the intangible infrastructure necessary to advance Arctic research requires a unique set of knowledge, skills, and experience. Drawing on a range of lessons learned from past and ongoing experiences with collaborative science, education and outreach programming, this presentation will highlight a model of ARCUS project management that we believe works best to support and sustain our community in its long-term effort to conquer the complexities of Arctic research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cowles, Robert; Jackson, Craig; Welch, Von
The eXtreme Science Identity Management (XSIM1) research project: collected and analyzed real world data on virtual organization (VO) identity management (IdM) representing the last 15+ years of collaborative DOE science; constructed a descriptive VO IdM model based on that data; used the model and existing trends to project the direction for IdM in the 2020 timeframe; and provided guidance to scientific collaborations and resource providers that are implementing or seeking to improve IdM functionality. XSIM conducted over 20 semistructured interviews of representatives from scientific collaborations and resource providers, both in the US and Europe; the interviewees supported diverse set ofmore » scientific collaborations and disciplines. We developed a definition of “trust,” a key concept in IdM, to understand how varying trust models affect where IdM functions are performed. The model identifies how key IdM data elements are utilized in collaborative scientific workflows, and it has the flexibility to describe past, present and future trust relationships and IdM implementations. During the funding period, we gave more than two dozen presentations to socialize our work, encourage feedback, and improve the model; we also published four refereed papers. Additionally, we developed, presented, and received favorable feedback on three white papers providing practical advice to collaborations and/or resource providers.« less
Everts, Maaike; Heller, Caren; Burke, Christine; Hafer, Nathaniel; Steele, Scott
2014-01-01
Abstract To bring the benefits of science more quickly to patient care, the NIH National Center Advancing Translational Sciences (NCATS) supports programs that enhance the development, testing, and implementation of new medical products and procedures. The NCATS clinical and translational science award (CTSA) program is central to that mission; creating an academic home for clinical and translational science and supporting those involved in the discovery and development of new health‐related inventions. The technology transfer Offices (TTO) of CTSA‐funded universities can be important partners in the development process; facilitating the transfer of medical research to the commercial sector for further development and ultimately, distribution to patients. The Aggregating Intellectual Property (IP) Working Group (AWG) of the CTSA public private partnerships key function committee (PPP‐KFC) developed a survey to explore how CTSA‐funded institutions currently interface with their respective TTOs to support medical product development. The results suggest a range of relationships across institutions; approximately half have formal collaborative programs, but only a few have well‐connected programs. Models of collaborations are described and provided as examples of successful CTSA/TTO partnerships that have increased the value of health‐related inventions as measured by follow‐on funding and industry involvement; either as a consulting partner or licensee. PMID:24945893
Rose, Lynn M; Everts, Maaike; Heller, Caren; Burke, Christine; Hafer, Nathaniel; Steele, Scott
2014-12-01
To bring the benefits of science more quickly to patient care, the NIH National Center Advancing Translational Sciences (NCATS) supports programs that enhance the development, testing, and implementation of new medical products and procedures. The NCATS clinical and translational science award (CTSA) program is central to that mission; creating an academic home for clinical and translational science and supporting those involved in the discovery and development of new health-related inventions. The technology transfer Offices (TTO) of CTSA-funded universities can be important partners in the development process; facilitating the transfer of medical research to the commercial sector for further development and ultimately, distribution to patients. The Aggregating Intellectual Property (IP) Working Group (AWG) of the CTSA public private partnerships key function committee (PPP-KFC) developed a survey to explore how CTSA-funded institutions currently interface with their respective TTOs to support medical product development. The results suggest a range of relationships across institutions; approximately half have formal collaborative programs, but only a few have well-connected programs. Models of collaborations are described and provided as examples of successful CTSA/TTO partnerships that have increased the value of health-related inventions as measured by follow-on funding and industry involvement; either as a consulting partner or licensee. © 2014 Wiley Periodicals, Inc.
Dorsch, Josephine L; Perry, Gerald Jerry
2012-10-01
In 2008, the Association of Academic Health Sciences Libraries established an Education Research Task Force (ERTF) to plan research addressing research priorities outlined in key Association of American Medical Colleges reports. ERTF members conducted a literature review to describe the state of collaborative research at the intersection of medical education and health sciences librarianship. Analysis of initial results revealed instruction in evidence-based medicine (EBM) was a shared interest and is thus the focus of this review. Searches on EBM teaching programs were conducted, and results were posted to a shared online citation management service. Individual articles were assessed and assigned metadata describing subject matter, scope, and format. Article analysis identified key themes. Most papers were descriptive narratives of curricular development. Evaluation studies were also prominent and often based on student satisfaction or self-reported competency. A smaller number of controlled studies provide evidence of impacts of librarian involvement in EBM instruction. Scholarship of EBM instruction is of common interest between medical educators and health sciences librarians. Coauthorship between the groups and distribution of literature points to a productive collaboration. An emerging literature of controlled studies measuring the impact of cross-disciplinary efforts signals continued progress in the arena of EBM instruction.
Dorsch, Josephine L.; Perry, Gerald (Jerry)
2012-01-01
Objectives: In 2008, the Association of Academic Health Sciences Libraries established an Education Research Task Force (ERTF) to plan research addressing research priorities outlined in key Association of American Medical Colleges reports. ERTF members conducted a literature review to describe the state of collaborative research at the intersection of medical education and health sciences librarianship. Analysis of initial results revealed instruction in evidence-based medicine (EBM) was a shared interest and is thus the focus of this review. Methods: Searches on EBM teaching programs were conducted, and results were posted to a shared online citation management service. Individual articles were assessed and assigned metadata describing subject matter, scope, and format. Results: Article analysis identified key themes. Most papers were descriptive narratives of curricular development. Evaluation studies were also prominent and often based on student satisfaction or self-reported competency. A smaller number of controlled studies provide evidence of impacts of librarian involvement in EBM instruction. Conclusions: Scholarship of EBM instruction is of common interest between medical educators and health sciences librarians. Coauthorship between the groups and distribution of literature points to a productive collaboration. An emerging literature of controlled studies measuring the impact of cross-disciplinary efforts signals continued progress in the arena of EBM instruction. PMID:23133324
NASA Astrophysics Data System (ADS)
The CHAIN-REDS Project is organising a workshop on "e-Infrastructures for e-Sciences" focusing on Cloud Computing and Data Repositories under the aegis of the European Commission and in co-location with the International Conference on e-Science 2013 (IEEE2013) that will be held in Beijing, P.R. of China on October 17-22, 2013. The core objective of the CHAIN-REDS project is to promote, coordinate and support the effort of a critical mass of non-European e-Infrastructures for Research and Education to collaborate with Europe addressing interoperability and interoperation of Grids and other Distributed Computing Infrastructures (DCI). From this perspective, CHAIN-REDS will optimise the interoperation of European infrastructures with those present in 6 other regions of the world, both from a development and use point of view, and catering to different communities. Overall, CHAIN-REDS will provide input for future strategies and decision-making regarding collaboration with other regions on e-Infrastructure deployment and availability of related data; it will raise the visibility of e-Infrastructures towards intercontinental audiences, covering most of the world and will provide support to establish globally connected and interoperable infrastructures, in particular between the EU and the developing regions. Organised by IHEP, INFN and Sigma Orionis with the support of all project partners, this workshop will aim at: - Presenting the state of the art of Cloud computing in Europe and in China and discussing the opportunities offered by having interoperable and federated e-Infrastructures; - Exploring the existing initiatives of Data Infrastructures in Europe and China, and highlighting the Data Repositories of interest for the Virtual Research Communities in several domains such as Health, Agriculture, Climate, etc.
NASA Astrophysics Data System (ADS)
Ramamurthy, M. K.
2016-12-01
Increasingly, the conduct of science requires close international collaborations to share data, information, knowledge, expertise, and other resources. This is particularly true in the geosciences where the highly connected nature of the Earth system and the need to understand global environmental processes have heightened the importance of scientific partnerships. As geoscience studies become a team effort involving networked scientists and data providers, it is crucial that there is open and reliable access to earth system data of all types, software, tools, models, and other assets. That environment demands close attention to security-related matters, including the creation of trustworthy cyberinfrastructure to facilitate the efficient use of available resources and support the conduct of science. Unidata and EarthCube, both of which are NSF-funded and community-driven programs, recognize the importance of collaborations and the value of networked communities. Unidata, a cornerstone cyberinfrastructure facility for the geosciences, includes users in nearly 180 countries. The EarthCube initiative is aimed at transforming the conduct of geosciences research by creating a well-connected and facile environment for sharing data and in an open, transparent, and inclusive manner and to accelerate our ability to understand and predict the Earth system. We will present the Unidata and EarthCube community perspectives on the approaches to balancing an environment that promotes open and collaborative eScience with the needs for security and communication, including what works, what is needed, the challenges, and opportunities to advance science.
NASA Astrophysics Data System (ADS)
Eisner, R. K.
2015-12-01
This presentation will describe a collaborative dialogue process between earth scientists and emergency management officials that focused on translation of science into policy, building long term trust based relationships between sectors and unified presentation of hazards, risks and consequence management to public officials and the general public. The author will describe the structure and process of the California Earthquake Prediction Evaluation Council (CEPEC) in assessing the credibility of long and short term earthquake predictions, assessment of risk, and the formulation of public communication strategies and preparatory actions by government agencies. For nearly 4 decades, earth scientists, politically appointed state officials and emergency managers have engaged in ongoing discussions of the policy implications of research on potential seismic risk. Some discussions were scheduled and occurred over months, and others were ad hoc and occurred in the minutes between potential precursory incidents and possible large events. The effectiveness of this process was dependent on building respect for ones counterparts expertise, bias and responsibilities, clear communication of data, uncertainty and knowledge of the physical models assumed, history and probabilities; and the physical and political consequences of possible events; and the costs and economic and social disruption of alternative preparedness actions. But, the dialogue included political and social scientists, representatives of the print and broadcast media, political and management officials from federal, state and local governments. The presentation will provide an assessment of the effectiveness of the collaborative dialogue process and lessons on sustaining a long term partnership among the participating federal, state and local officials.
NASA Astrophysics Data System (ADS)
Olitsky, Stacy; Becker, Elizabeth A.; Jayo, Ignacio; Vinogradov, Philip; Montcalmo, Joseph
2018-02-01
This study explores the implications of a redesign of a college course that entailed a new partnership between a college neuroscience classroom and a high school. In this course, the college students engaged in original research projects which included conducting brain surgery and behavioural tests on rats. They used digital storytelling and social networking to communicate with high school students and were visited by the students during the semester. The aims of the redesign were to align the course with science conducted in the field and to provide opportunities to disseminate scientific knowledge through emerging technologies. This study investigates the impact of these innovations on the college and high school students' perceptions of authentic science, including their relationship with science-centred communities. We found that these collaborative tools increased college students' perceptions that authentic science entailed communication with the general public, in addition to supporting prior perceptions of the importance of conducting experiments and presenting results to experts. In addition, the view of science as high-status knowledge was attenuated as students integrated non-formal communication practices into presentations, showing the backstage process of learning, incorporating music and youth discourse styles, and displaying emotional engagement. An impact of these hybrid presentation approaches was an increase in the high school students' perceptions of the accessibility of laboratory science. We discuss how the use of technologies that are familiar to youth, such as iPads, social networking sites, and multimedia presentations, has the potential to prioritize students' voices and promote a more inclusive view of science.
Turner, Patricia V; Pekow, Cynthia; Clark, Judy MacArthur; Vergara, Patri; Bayne, Kathryn; White, William J; Kurosawa, Tsutomu Miki; Seok, Seung-Hyeok; Baneux, Philippe
2015-01-01
Practical implementation of the 3Rs at national and regional levels around the world requires long-term commitment, backing, and coordinated efforts by international associations for laboratory animal medicine and science, including the International Association of Colleges of Laboratory Animal Medicine (IACLAM) and the International Council for Laboratory Animal Science (ICLAS). Together these organizations support the efforts of regional organization and communities of laboratory animal science professionals as well as the development of local associations and professional colleges that promote the training and continuing education of research facility personnel and veterinary specialists. The recent formation of a World Organization for Animal Health (OIE) Collaborating Center for Laboratory Animal Science and Welfare emphasizes the need for research into initiatives promoting laboratory animal welfare, particularly in emerging economies and regions with nascent associations of laboratory animal science. PMID:25836964
Turner, Patricia V; Pekow, Cynthia; Clark, Judy MacArthur; Vergara, Patri; Bayne, Kathryn; White, William J; Kurosawa, Tsutomu Miki; Seok, Seung-Hyeok; Baneux, Philippe
2015-03-01
Practical implementation of the 3Rs at national and regional levels around the world requires long-term commitment, backing, and coordinated efforts by international associations for laboratory animal medicine and science, including the International Association of Colleges of Laboratory Animal Medicine (IACLAM) and the International Council for Laboratory Animal Science (ICLAS). Together these organizations support the efforts of regional organization and communities of laboratory animal science professionals as well as the development of local associations and professional colleges that promote the training and continuing education of research facility personnel and veterinary specialists. The recent formation of a World Organization for Animal Health (OIE) Collaborating Center for Laboratory Animal Science and Welfare emphasizes the need for research into initiatives promoting laboratory animal welfare, particularly in emerging economies and regions with nascent associations of laboratory animal science.
Native Geoscience: Pathways to Knowledge
NASA Astrophysics Data System (ADS)
Bolman, J. R.; Seielstad, G.
2006-12-01
We are living in a definite time of change. Distinct changes are being experienced in our most sacred and natural environments. This is especially true on Native lands. Native people have lived for millennia in distinct and unique ways. The knowledge of balancing the needs of people with the needs of our natural environments is paramount in all tribal societies. This inherent accumulated knowledge has become the foundation on which to build a "blended" contemporary understanding of western science. The Dakota's and Northern California have embraced the critical need of understanding successful tribal strategies to engage educational systems (K-12 and higher education), to bring to prominence the professional development opportunities forged through working with tribal peoples and ensure the continued growth of Native earth and environmental scientists The presentation will highlight: 1) past and present philosophies on building and maintaining Native/Tribal students in earth and environmental sciences; 2) successful educational programs/activities in PreK-Ph.D. systems; 3) current Native leadership development in earth and environmental sciences; and 4) forward thinking for creating proaction collaborations addressing sustainable environmental, educational and social infrastructures for all people. Humboldt State University (HSU) and the University of North Dakota's Northern Great Plains Center for People and the Environment and the Upper Midwest Aerospace Consortium (UMAC) have been recognized nationally for their partnerships with Native communities. Unique collaborations are emerging "bridging" Native people across geographic areas in developing educational/research experiences which integrate the distinctive earth/environmental knowledge of tribal people. The presentation will highlight currently funded projects and initiatives as well as success stories of emerging Native earth system students and scientists.
NASA Astrophysics Data System (ADS)
Waller, J. L.; Brey, J. A.
2014-12-01
"small problems, Big Trouble" (spBT) is an exhibition of artist Judith Waller's paintings accompanied by text panels written by Earth scientist Dr. James A. Brey and several science researchers and educators. The text panels' message is as much the focus of the show as the art--true interdisciplinarity! Waller and Brey's history of art and earth science collaborations include the successful exhibition "Layers: Places in Peril". New in spBT is extended collaboration with other scientists in order to create awareness of geoscience and other subjects (i.e. soil, parasites, dust, pollutants, invasive species, carbon, ground water contaminants, solar wind) small in scale which pose significant threats. The paintings are the size of a mirror, a symbol suggesting the problems depicted are those we increasingly need to face, noting our collective reflections of shared current and future reality. Naturalistic rendering and abstract form in the art helps reach a broad audience including those familiar with art and those familiar with science. The goal is that gallery visitors gain greater appreciation and understanding of both—and of the sober content of the show as a whole. "small problems, Big Trouble" premiers in Wisconsin April, 2015. As in previous collaborations, Waller and Brey actively utilize art and science (specifically geoscience) as an educational vehicle for active student learning. Planned are interdisciplinary university and area high school activities linked through spBT. The exhibition in a public gallery offers a means to enhance community awareness of and action on scientific issues through art's power to engage people on an emotional level. This AGU presentation includes a description of past Waller and Brey activities: incorporating art and earth science in lab and studio classrooms, producing gallery and museum exhibitions and delivering workshops and other presentations. They also describe how walking the paths of several past earth science disasters continues to inspire new chapters in their "Layers: Places in Peril" exhibit! A slide show includes images of paintings for "small problems, Big Trouble". Brey and Waller will lead a discussion on their process of incorporating broader collaboration with geoscientists and others in an educational art exhibition.
NASA Astrophysics Data System (ADS)
Sparrow, E. B.; Boger, R. A.
2005-12-01
GLOBE is an international hands-on earth science education program that involves scientists, teachers and students in more than 16,000 primary and secondary schools. GLOBE is funded by the National Aeronautics Administration (NASA), the National Science Foundation (NSF) and the U.S. Department of State. GLOBE works with schools (teachers and students) through more than 100 U.S. GLOBE partnerships with universities, state and local school systems, and non-government organizations. Internationally, GLOBE is partnered with 109 countries that include many developing nations throughout the world. In addition to the GLOBE's different areas of investigation e.g. Atmosphere/ Weather, Hydrology, Soils, Land Cover Biology and Phenology ( plant and animal), there are special projects such as the GLOBE Urban Phenology Year Project (GUPY) that engages developing and developed countries ( Finland, United States, Japan, Philippines, Thailand, Jordan, Kyrgystan, Senegal, Poland, Estonia, and the Dominican Republic) in studying the effects of urbanization on vegetation phenology, a sensitive indicator of climate change. Vegetation phenology integrates different components of the Earth system i.e. carbon and geochemical cycling, water cycling and energy cycling and is an excellent way to engage students in collaborative projects. This presentation will highlight the GUPY project and provide additional examples of local initiatives and collaborations with indigenous communities that use GLOBE and an inquiry approach to revise science education in developing countries .
ExM:System Support for Extreme-Scale, Many-Task Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katz, Daniel S
The ever-increasing power of supercomputer systems is both driving and enabling the emergence of new problem-solving methods that require the effi cient execution of many concurrent and interacting tasks. Methodologies such as rational design (e.g., in materials science), uncertainty quanti fication (e.g., in engineering), parameter estimation (e.g., for chemical and nuclear potential functions, and in economic energy systems modeling), massive dynamic graph pruning (e.g., in phylogenetic searches), Monte-Carlo- based iterative fi xing (e.g., in protein structure prediction), and inverse modeling (e.g., in reservoir simulation) all have these requirements. These many-task applications frequently have aggregate computing needs that demand the fastestmore » computers. For example, proposed next-generation climate model ensemble studies will involve 1,000 or more runs, each requiring 10,000 cores for a week, to characterize model sensitivity to initial condition and parameter uncertainty. The goal of the ExM project is to achieve the technical advances required to execute such many-task applications efficiently, reliably, and easily on petascale and exascale computers. In this way, we will open up extreme-scale computing to new problem solving methods and application classes. In this document, we report on combined technical progress of the collaborative ExM project, and the institutional financial status of the portion of the project at University of Chicago, over the rst 8 months (through April 30, 2011)« less
ERIC Educational Resources Information Center
Tirado, Alejandro Uribe; Munoz, Wilson Castano
2011-01-01
This text presents the future of librarian education as exemplified by the Interamerican School of Library and Information Science at the University of Antioquia (Medellin-Colombia), using an online learning platform-LMS (Moodle) and through different personalized and collaborative learning activities and tools that help students identify their…
2010-04-25
NASA Administrator Charles Bolden, left, and U.S. Environmental Protection Agency (EPA) Administrator Lisa P. Jackson, right, answer questions from students and faculty from the Howard University Middle School of Mathematics and Science after signing a Memorandum of Agreement (MOA) to promote collaboration between the two agencies for cooperation in environmental and Earth sciences and environmental management applications, Monday, April 26, 2010, at the school in Washington. Photo Credit: (NASA/Paul E. Alers)
ERIC Educational Resources Information Center
Wildsmith-Cromarty, Rosemary; Gordon, Mary
2009-01-01
The focus of this paper is on the effects of the use of the home language (i.e. isiZulu) on teachers' and learners' understanding and use of core concepts in mathematics and science at the senior phase, in contexts where the language of instruction is English. It reports on a national, collaborative, multilingual research project which attempts to…
Data Curation Education Grounded in Earth Sciences and the Science of Data
NASA Astrophysics Data System (ADS)
Palmer, C. L.
2015-12-01
This presentation looks back over ten years of experience advancing data curation education at two Information Schools, highlighting the vital role of earth science case studies, expertise, and collaborations in development of curriculum and internships. We also consider current data curation practices and workforce demand in data centers in the geosciences, drawing on studies conducted in the Data Curation Education in Research Centers (DCERC) initiative and the Site-Based Data Curation project. Outcomes from this decade of data curation research and education has reinforced the importance of key areas of information science in preparing data professionals to respond to the needs of user communities, provide services across disciplines, invest in standards and interoperability, and promote open data practices. However, a serious void remains in principles to guide education and practice that are distinct to the development of data systems and services that meet both local and global aims. We identify principles emerging from recent empirical studies on the reuse value of data in the earth sciences and propose an approach for advancing data curation education that depends on systematic coordination with data intensive research and propagation of current best practices from data centers into curriculum. This collaborative model can increase both domain-based and cross-disciplinary expertise among data professionals, ultimately improving data systems and services in our universities and data centers while building the new base of knowledge needed for a foundational science of data.
NASA Astrophysics Data System (ADS)
Herbert, B. E.; Schroeder, C.; Brody, S.; Cahill, T.; Kenimer, A.; Loving, C.; Schielack, J.
2003-12-01
The ITS Center for Teaching and Learning is a five-year NSF-funded collaborative effort to engage scientists and university and school or district-based science educators in the use of information technology to improve science teaching and learning at all levels. One assumption is that science and mathematics teaching and learning will be improved when they become more connected to the authentic science research done in field settings or laboratories. The effective use of information technology in science classrooms has been shown to help achieve this objective. As a design study that is -working toward a greater understanding of a -learning ecology", the research related to the creation and refinement of the ITS Centeres collaborative environment for professional development is contributing information about an important setting not often included in the descriptions of professional development, a setting that incorporates distributed expertise and resulting distributed growth in the various categories of participants: scientists, science graduate students, education researchers, education graduate students, and master teachers. Design-based research is an emerging paradigm for the study of learning in context through the systematic design and study of instructional strategies and tools. This presentation will discuss the results of the formative evaluation process that has moved the ITS Centeres collaborative environment for professional development through the iterative process from Phase I (the planned program designed in-house) to Phase II (the experimental program being tested in-house). In particular, we will focus on the development of the ITS Centeres Project Teams, which create learning experiences over two summers focused on the exploration of science, technology, engineering or mathematics (STEM) topics through the use of modeling, visualization and complex data sets to explore authentic scientific questions that can be integrated within the K-16 curriculum. Ongoing formative assessment of the Cohort I project teams led to a greater emphasis on participant exploration of authentic scientific questions and tighter integration of scientific explorations and development of participant inquiry projects.
Managing Epilepsy Well: Emerging e-Tools for epilepsy self-management.
Shegog, Ross; Bamps, Yvan A; Patel, Archna; Kakacek, Jody; Escoffery, Cam; Johnson, Erica K; Ilozumba, Ukwuoma O
2013-10-01
The Managing Epilepsy Well (MEW) Network was established in 2007 by the Centers for Disease Control and Prevention Epilepsy Program to expand epilepsy self-management research. The network has employed collaborative research strategies to develop, test, and disseminate evidence-based, community-based, and e-Health interventions (e-Tools) for epilepsy self-management for people with epilepsy, caregivers, and health-care providers. Since its inception, MEW Network collaborators have conducted formative studies (n=7) investigating the potential of e-Health to support epilepsy self-management and intervention studies evaluating e-Tools (n=5). The MEW e-Tools (the MEW website, WebEase, UPLIFT, MINDSET, and PEARLS online training) and affiliated e-Tools (Texting 4 Control) are designed to complement self-management practices in each phase of the epilepsy care continuum. These tools exemplify a concerted research agenda, shared methodological principles and models for epilepsy self-management, and a communal knowledge base for implementing e-Health to improve quality of life for people with epilepsy. © 2013.
Public Lab: Community-Based Approaches to Urban and Environmental Health and Justice.
Rey-Mazón, Pablo; Keysar, Hagit; Dosemagen, Shannon; D'Ignazio, Catherine; Blair, Don
2018-06-01
This paper explores three cases of Do-It-Yourself, open-source technologies developed within the diverse array of topics and themes in the communities around the Public Laboratory for Open Technology and Science (Public Lab). These cases focus on aerial mapping, water quality monitoring and civic science practices. The techniques discussed have in common the use of accessible, community-built technologies for acquiring data. They are also concerned with embedding collaborative and open source principles into the objects, tools, social formations and data sharing practices that emerge from these inquiries. The focus is on developing processes of collaborative design and experimentation through material engagement with technology and issues of concern. Problem-solving, here, is a tactic, while the strategy is an ongoing engagement with the problem of participation in its technological, social and political dimensions especially considering the increasing centralization and specialization of scientific and technological expertise. The authors also discuss and reflect on the Public Lab's approach to civic science in light of ideas and practices of citizen/civic veillance, or "sousveillance", by emphasizing people before data, and by investigating the new ways of seeing and doing that this shift in perspective might provide.
From Data-Sharing to Model-Sharing: SCEC and the Development of Earthquake System Science (Invited)
NASA Astrophysics Data System (ADS)
Jordan, T. H.
2009-12-01
Earthquake system science seeks to construct system-level models of earthquake phenomena and use them to predict emergent seismic behavior—an ambitious enterprise that requires high degree of interdisciplinary, multi-institutional collaboration. This presentation will explore model-sharing structures that have been successful in promoting earthquake system science within the Southern California Earthquake Center (SCEC). These include disciplinary working groups to aggregate data into community models; numerical-simulation working groups to investigate system-specific phenomena (process modeling) and further improve the data models (inverse modeling); and interdisciplinary working groups to synthesize predictive system-level models. SCEC has developed a cyberinfrastructure, called the Community Modeling Environment, that can distribute the community models; manage large suites of numerical simulations; vertically integrate the hardware, software, and wetware needed for system-level modeling; and promote the interactions among working groups needed for model validation and refinement. Various socio-scientific structures contribute to successful model-sharing. Two of the most important are “communities of trust” and collaborations between government and academic scientists on mission-oriented objectives. The latter include improvements of earthquake forecasts and seismic hazard models and the use of earthquake scenarios in promoting public awareness and disaster management.
Structuring the collaboration of science and service in pursuit of a shared vision.
Chorpita, Bruce F; Daleiden, Eric L
2014-01-01
The enduring needs of our society highlight the importance of a shared vision to improve human functioning and yield better lives for families and communities. Science offers a powerful strategy for managing the inevitable uncertainty in pursuit of these goals. This article presents ideas and examples of methods that could preserve the strengths of the two major paradigms in children's mental health, evidence-based treatments and individualized care models, but that also have the potential to extend their applicability and impact. As exemplified in some of the articles throughout this issue, new models to connect science and service will likely emerge from novel consideration of better ways to structure and inform collaboration within mental health systems. We contend that the future models for effective systems will involve increased attention to (a) client and provider developmental pathways, (b) explicit frameworks for coordinating people and the knowledge and other resources they use, and (c) a balance of evidence-based planning and informed adaptation. We encourage the diverse community of scientists, providers, and administrators in our field to come together to enhance our collective wisdom through consideration of and reflection on these concepts and their illustrations.
NASA Astrophysics Data System (ADS)
Enquist, C.
2014-12-01
Within the past decade, a wealth of federal, state, and NGO-driven initiatives has emerged across managed landscapes in the United States with the goal of facilitating a coordinated response to rapidly changing climate and environmental conditions. In addition to acquisition and translation of the latest climate science, climate vulnerability assessment and scenario planning at multiple spatial and temporal scales are typically major components of such broad adaptation efforts. Numerous approaches for conducting this work have emerged in recent years and have culminated in general guidance and trainings for resource professionals that are specifically designed to help practitioners face the challenges of climate change. In particular, early engagement of stakeholders across multiple jurisdictions is particularly critical to cultivate buy-in and other enabling conditions for moving the science to on-the-ground action. I report on a suite of adaptation efforts in the southwestern US and interior Rockies, highlighting processes used, actions taken, lessons learned, and recommended next steps to facilitate achieving desired management outcomes. This includes a discussion of current efforts to optimize funding for actionable climate science, formalize science-management collaborations, and facilitate new investments in approaches for strategic climate-informed monitoring and evaluation.
ERIC Educational Resources Information Center
Namdar, Bahadir
2017-01-01
The purpose of this study was to investigate preservice science teachers' collaborative knowledge building through socioscientific argumentation on healthy eating in a multiple representation-rich computer supported collaborative learning (CSCL) environment. This study was conducted with a group of preservice science teachers (n = 18) enrolled in…
Panfil, Eva-Maria; Kirchner, Elisabeth; Bauder-Missbach, Heidi; Haasenritter, Jörg; Eisenschink, Anna Maria
2009-09-01
In a five-year intervention study about the impact of pre-operative mobilisation training session of patients receiving an elective medial laparotomy experiences about the collaboration between practice (University Hospital Ulm) and science (Hessian Institute of Nursing Research) were made. During the project possibilities and borders of clinical nursing research became clear. A research question based on practice experiences of nurses helps to develop and maintain motivation to conduct a study at a nursing unit. There was a lack of nursing knowledge to develop the best possible design, e.g. outcome criteria for mobilisation and standardized assessment instruments. The cooperation with other health care professionals (human movement science, statistics) was important and without difficulties. In Germany, without doctors' agreement and common application it is impossible to conduct nursing intervention studies in hospitals. It is necessary to train nursing specialists with both scientific and clinical competence to explore systematically clinical research questions.
Friedman, Charles P; Iakovidis, Ilias; Debenedetti, Laurent; Lorenzi, Nancy M
2009-11-01
Countries on both sides of the Atlantic Ocean have invested in health information and communication technologies. Since eHealth challenges cross borders a European Union-United States of America conference on public policies relating to health IT and eHealth was held October 20-21, 2008 in Paris, France. The conference was organized around the four themes: (1) privacy and security, (2) health IT interoperability, (3) deployment and adoption of health IT, and (4) Public Private Collaborative Governance. The four key themes framed the discussion over the two days of plenary sessions and workshops. Key findings of the conference were organized along the four themes. (1) Privacy and security: Patients' access to their own data and key elements of a patient identification management framework were discussed. (2) Health IT interoperability: Three significant and common interoperability challenges emerged: (a) the need to establish common or compatible standards and clear guidelines for their implementation, (b) the desirability for shared certification criteria and (c) the need for greater awareness of the importance of interoperability. (3) Deployment and adoption of health IT: Three major areas of need emerged: (a) a shared knowledge base and assessment framework, (b) public-private collaboration and (c) and effective organizational change strategies. (4) Public Private Collaborative Governance: Sharing and communication are central to success in this area. Nations can learn from one another about ways to develop harmonious, effective partnerships. Three areas that were identified as highest priority for collaboration included: (1) health data security, (2) developing effective strategies to ensure healthcare professionals' acceptance of health IT tools, and (3) interoperability.
ERIC Educational Resources Information Center
DeWitt, Dorothy; Alias, Norlidah; Siraj, Saedah
2014-01-01
Collaborative problem-solving in science instruction allows learners to build their knowledge and understanding through interaction, using the language of science. Computer-mediated communication (CMC) tools facilitate collaboration and may provide the opportunity for interaction when using the language of science in learning. There seems to be…
ENVRIplus - European collaborative development of environmental infrastructures
NASA Astrophysics Data System (ADS)
Asmi, A.; Brus, M.; Kutsch, W. L.; Laj, P.
2016-12-01
European Research Infrastructures (RI) are built using ESFRI process, which dictates the steps towards a common European RIs. Building each RI separately creates unnessary barriers towards service users (e.g. on differing standards) and is not effiicient in e.g. e-science tool or data system development. To answer these inter-RI issues, the European Commission has funded several large scale cluster projectsto bring these RIs together already in planning and development phases to develop common tools, standards and methodologies, as well as learn from the exisiting systems. ENVRIplus is the cluster project for the environmental RIs in Europe, and provides platform for common development and sharing within the RI community. The project is organized around different themes, each having several workpackages with specific tasks. Major themesof the ENVRIplus are: Technical innovation, including tasks such as RI technology transfer, new observation techniques, autonomous operation, etc.; Data for science, with tasks such as RI reference model development, data discovery and citation, data publication, processing, etc.; Access to RIs, with specific tasks on interdicplinary and transnational access to RI services, and common access governance; Societal relevance and understanding, tackling on ethical issues on RI operations and understanding on human-environmental system and citizen science approaches, among others; Knowledge transfer, particularly between the RIs, and with developing RI organizations, organizing training and staff exchange; and Communication and dissemination, working towards a common environmental RI community (ENVRI community platform), and creating an own advisory RI discussion board (BEERi), and disseminating the ENVRIplus products globally. Importantly, all ENVRIplus results are open to any users from any country. Also, collaboration with international RIs and user communities are crucial to the success of the ENVRI initiatives. Overall goal is to do science globally, to answer global and regional critical challenges. The presentation will not only present the project, its state after nearly 2 years of operation, but will alsop present ideas towards building international and even more interdiciplinary collaboration on research infrastructures and their users.
Sociologists and energy engineers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verhapen, F.C.
1982-07-01
Contents include sociology and sociologists; sociologists and energy (history of sociological focus on energy; the sociological profession's official interest in energy; sociological specialties with contributions to the study and planning of energy; potential sociological contributions); functional areas of collaboration between energy sociologists and energy establishment; obstacles to collaboration between consulting energy sociologists and their clients in the energy establishment; overcoming obstacles in the collaboration; advantages and disadvantages in the greater use of sociological resources by the energy establishment; and tables (e.g. comparison of cost-benefit analysis and social impact assessment; two policy science paradigms; selected technical values for electrical energy generation,more » transmission and distribution).« less
NASA Astrophysics Data System (ADS)
Benthien, M. L.; Wood, M. M.; Ballmann, J. E.; DeGroot, R. M.
2017-12-01
The Southern California Earthquake Center (SCEC), headquartered at the University of Southern California, is a collaboration of more than 1000 scientists and students from 70+ institutions. SCEC's Communication, Education, and Outreach (CEO) program translates earthquake science into products and activities in order to increase scientific literacy, develop a diverse scientific workforce, and reduce earthquake risk to life and property. SCEC CEO staff coordinate these efforts through partnership collaborations it has established to engage subject matter experts, reduce duplication of effort, and achieve greater results. Several of SCEC's collaborative networks began within Southern California and have since grown statewide (Earthquake Country Alliance, a public-private-grassroots partnership), national ("EPIcenter" Network of museums, parks, libraries, etc.), and international (Great ShakeOut Earthquake Drills with millions of participants each year). These networks have benefitted greatly from partnerships with national (FEMA), state, and local emergency managers. Other activities leverage SCEC's networks in new ways and with national earth science organizations, such as the EarthConnections Program (with IRIS, NAGT, and many others), Quake Catcher Network (with IRIS) and the GeoHazards Messaging Collaboratory (with IRIS, UNAVCO, and USGS). Each of these partnerships share a commitment to service, collaborative development, and the application of research (including social science theory for motivating preparedness behaviors). SCEC CEO is developing new evaluative structures and adapting the Collective Impact framework to better understand what has worked well or what can be improved, according to the framework's five key elements: create a common agenda; share common indicators and measurement; engage diverse stakeholders to coordinate mutually reinforcing activities; initiate continuous communication; and provide "backbone" support. This presentation will provide an overview of SCEC's partnership activities and how we are adapting them within the Collective Impact framework. The goal is to present our collaborations as case studies for similar efforts seeking to improve the translation of applied research into policy in order to reduce the impact of natural hazards.
Interprofessional E-Learning and Collaborative Work: Practices and Technologies
ERIC Educational Resources Information Center
Bromage, Adrian, Ed.; Clouder, Lynn, Ed.; Thistlethwaite, Jill, Ed.; Gordon, Frances, Ed.
2010-01-01
Interprofessionalism, an emerging model and philosophy of multi-disciplinary and multi-agency working, has in increasingly become an important means of cultivating joint endeavors across varied and diverse disciplinary and institutional settings. This book is therefore, an important source for understanding how interprofessionalism can be promoted…
Crossing borders between social and physical sciences in post-event investigations
NASA Astrophysics Data System (ADS)
Ruin, I.; Gruntfest, E.; Lutoff, C.; Anquetin, S.; Scolobig, A.; Creutin, J.-D.; Borga, M.
2009-04-01
In natural hazard research social and physical scientists tend to approach post-event investigations within their narrow disciplinary lenses. Efforts that are called trans-disciplinary often add social science but do not integrate it effectively. For example, an economist might be brought in to address a question of "value" without any understanding or interest in the context in which the value will be applied (e.g., Merrell et al. 2002, Simmons and Sutter 2005). At the same time, social scientists would benefit from some knowledge of geology, meteorology, hydrology, forecasting operations, and hazard detection systems in order, for instance, to understand the nature and types of uncertainty in the physical systems. Proactive partnership between social and physical scientists in post-event investigations needs a background knowledge and a preparation about several issues from both sides. Moreover neither physical nor social scientists necessarily understand and appreciate the contributions that they can reciprocally bring to their works. Post-event collaborations between social and physical science are rare. The few examples of multi-disciplinary work, when examined closely, are not integrated collaborative projects but patchwork quilts of a variety of specialists taking separate aspects of an issue. There are examples where social scientists and engineers are engaged in one project, but the efforts tend to include social scientists as an "add on" to an existing physical science investigation. In this way, true integration of information, data and knowledge from different fields is lacking and the result is that neither the physical nor the social science perspectives gain a comprehensive picture of the issue under scrutiny. Looking at the flash flood problem, the atmospheric and hydrological generating mechanisms of the phenomenon are poorly understood, leading to highly uncertain forecasts of and warnings for these events. On the other hand warning and crisis response to such violent and fast events is not a straightforward process. In both the social and physical aspect of the problem, space and time scales involved either in hydro-meteorology, human behavior and social organizations sciences are of crucial importance. Interdisciplinary collaboration is particularly important here because those involved with such events, including scholars, hydrologists, meteorologists, road users, emergency managers and civil security services, all have different time and space frameworks that they use for decision-making, forecasting, warnings and research. This presentation will show examples of original findings that emerged from a successful collaboration among different scientific disciplines. Working with geophysical scientists drives us to analyze social data from a different angle, integrating time and space scales as they are used to do in hydrometeorological research. This comprehensive, coupled natural—human system approach over time and space is rarely used but it has been shown to be especially pertinent to integrate social and physical components of the flash flood risk. (Ruin et al., 2008, Ruin et al., 2009, Creutin et al., 2009). Based on these examples we propose to develop a new network, DELUGE (Disasters Evolving Lessons Using Global Experience), to address trans-disciplinary efforts and capacity building related to post-disaster field techniques to change the post-event field experience enterprise and assure that practitioners, forecasters, researchers, students, and others learn from experience to reduce losses. DELUGE is an interdisciplinary, international network aimed at developing a sustainable community of meteorologists, hydrologists, geographers, anthropologists, engineers, planners, economists, and sociologists working together to create a set of guidelines for post-disaster investigations to reduce losses from short-fuse flood events, particularly flash floods, debris flows and landslides (hereafter termed flash floods). Flash-floods, debris flows, and landslides often develop at space and time scales that conventional observation systems are not able to monitor for rainfall and river discharge.
CERAPP: Collaborative Estrogen Receptor Activity Prediction Project
Data from a large-scale modeling project called CERAPP (Collaborative Estrogen Receptor Activity Prediction Project) demonstrating using predictive computational models on high-throughput screening data to screen thousands of chemicals against the estrogen receptor.This dataset is associated with the following publication:Mansouri , K., A. Abdelaziz, A. Rybacka, A. Roncaglioni, A. Tropsha, A. Varnek, A. Zakharov, A. Worth, A. Richard , C. Grulke , D. Trisciuzzi, D. Fourches, D. Horvath, E. Benfenati , E. Muratov, E.B. Wedebye, F. Grisoni, G.F. Mangiatordi, G.M. Incisivo, H. Hong, H.W. Ng, I.V. Tetko, I. Balabin, J. Kancherla , J. Shen, J. Burton, M. Nicklaus, M. Cassotti, N.G. Nikolov, O. Nicolotti, P.L. Andersson, Q. Zang, R. Politi, R.D. Beger , R. Todeschini, R. Huang, S. Farag, S.A. Rosenberg, S. Slavov, X. Hu, and R. Judson. (Environmental Health Perspectives) CERAPP: Collaborative Estrogen Receptor Activity Prediction Project. ENVIRONMENTAL HEALTH PERSPECTIVES. National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, NC, USA, 1-49, (2016).
Collaborative Workshop on Handling, Management, and ...
Report The Water Environment Research Foundation (WERF), in partnership with the U.S. Environmental Protection Agency (EPA) National Homeland Security Research Center (NHSRC) and the National Science Foundation (NSF), hosted an expert workshop on November 17 and 18, 2015, in Alexandria, Virginia, to engage with subject matter experts and wastewater utility stakeholders on a number of topics surrounding high consequence pathogens in wastewater collection and treatment systems, should such pathogens enter the systems as a result of an emergency situation.
Collaborative Education in Climate Change Sciences and Adaptation through Interactive Learning
NASA Astrophysics Data System (ADS)
Ozbay, G.; Sriharan, S.; Fan, C.
2014-12-01
As a result of several funded climate change education grants, collaboration between VSU, DSU, and MSU, was established to provide the innovative and cohesive education and research opportunities to underrepresented groups in the climate related sciences. Prior to offering climate change and adaptation related topics to the students, faculty members of the three collaborating institutions participated at a number of faculty training and preparation workshops for teaching climate change sciences (i.e. AMS Diversity Project Workshop, NCAR Faculty-Student Team on Climate Change, NASA-NICE Program). In order to enhance the teaching and student learning on various issues in the Environmental Sciences Programs, Climatology, Climate Change Sciences and Adaptation or related courses were developed at Delaware State University and its partner institutions (Virginia State University and Morgan State University). These courses were prepared to deliver information on physical basis for the earth's climate system and current climate change instruction modules by AMS and historic climate information (NOAA Climate Services, U.S. and World Weather Data, NCAR and NASA Climate Models). By using Global Seminar as a Model, faculty members worked in teams to engage students in videoconferencing on climate change through Contemporary Global Studies and climate courses including Climate Change and Adaptation Science, Sustainable Agriculture, Introduction to Environmental Sciences, Climatology, and Ecology and Adaptation courses. All climate change courses have extensive hands-on practices and research integrated into the student learning experiences. Some of these students have presented their classroom projects during Earth Day, Student Climate Change Symposium, Undergraduate Summer Symposium, and other national conferences.
(The Ethics of) Teaching Science and Ethics: A Collaborative Proposal.
Kabasenche, William P
2014-12-01
I offer a normative argument for a collaborative approach to teaching ethical issues in the sciences. Teaching science ethics requires expertise in at least two knowledge domains-the relevant science(s) and philosophical ethics. Accomplishing the aims of ethics education, while ensuring that science ethics discussions remain grounded in the best empirical science, can generally best be done through collaboration between a scientist and an ethicist. Ethics as a discipline is in danger of being misrepresented or distorted if presented by someone who lacks appropriate disciplinary training and experience. While there are exceptions, I take philosophy to be the most appropriate disciplinary domain in which to gain training in ethics teaching. Science students, who must be prepared to engage with many science ethics issues, are poorly served if their education includes a misrepresentation of ethics or specific issues. Students are less well prepared to engage specific issues in science ethics if they lack an appreciation of the resources the discipline of ethics provides. My collaborative proposal looks at a variety of ways scientists and ethicists might collaborate in the classroom to foster good science ethics education.
CILogon: An Integrated Identity and Access Management Platform for Science
NASA Astrophysics Data System (ADS)
Basney, J.
2016-12-01
When scientists work together, they use web sites and other software to share their ideas and data. To ensure the integrity of their work, these systems require the scientists to log in and verify that they are part of the team working on a particular science problem. Too often, the identity and access verification process is a stumbling block for the scientists. Scientific research projects are forced to invest time and effort into developing and supporting Identity and Access Management (IAM) services, distracting them from the core goals of their research collaboration. CILogon provides an IAM platform that enables scientists to work together to meet their IAM needs more effectively so they can allocate more time and effort to their core mission of scientific research. The CILogon platform enables federated identity management and collaborative organization management. Federated identity management enables researchers to use their home organization identities to access cyberinfrastructure, rather than requiring yet another username and password to log on. Collaborative organization management enables research projects to define user groups for authorization to collaboration platforms (e.g., wikis, mailing lists, and domain applications). CILogon's IAM platform serves the unique needs of research collaborations, namely the need to dynamically form collaboration groups across organizations and countries, sharing access to data, instruments, compute clusters, and other resources to enable scientific discovery. CILogon provides a software-as-a-service platform to ease integration with cyberinfrastructure, while making all software components publicly available under open source licenses to enable re-use. Figure 1 illustrates the components and interfaces of this platform. CILogon has been operational since 2010 and has been used by over 7,000 researchers from more than 170 identity providers to access cyberinfrastructure including Globus, LIGO, Open Science Grid, SeedMe, and XSEDE. The "CILogon 2.0" platform, launched in 2016, adds support for virtual organization (VO) membership management, identity linking, international collaborations, and standard integration protocols, through integration with the Internet2 COmanage collaboration software.
NASA Astrophysics Data System (ADS)
Manning, James; Meinke, Bonnie K.; Schultz, Gregory R.; Smith, Denise A.; Lawton, Brandon L.; Gurton, Suzanne; NASA Astrophysics E/PO Community
2015-01-01
The NASA Astrophysics Science Education and Public Outreach Forum (SEPOF) coordinates the work of NASA Science Mission Directorate (SMD) Astrophysics EPO projects and their teams to bring cutting-edge discoveries of NASA missions to the introductory astronomy college classroom. The Astrophysics Forum assists scientist and educator involvement in SMD E/PO (uniquely poised to foster collaboration between scientists with content expertise and educators with pedagogy expertise) and makes SMD E/PO resources and expertise accessible to the science and education communities. We present three new opportunities for college instructors to bring the latest NASA discoveries in Astrophysics into their classrooms.To address the expressed needs of the higher education community, the Astrophysics Forum collaborated with the Astrophysics E/PO community, researchers, and Astronomy 101 instructors to place individual science discoveries and learning resources into context for higher education audiences. Among these resources are two Resource Guides on the topics of cosmology and exoplanets, each including a variety of accessible sources.The Astrophysics Forum also coordinates the development of the Astro 101 slide set series--5 to 7-slide presentations on new discoveries from NASA Astrophysics missions relevant to topics in introductory astronomy courses. These sets enable Astronomy 101 instructors to include new discoveries not yet in their textbooks into the broader context of the course: http://www.astrosociety.org/education/astronomy-resource-guides/.The Astrophysics Forum also coordinated the development of 12 monthly Universe Discovery Guides, each featuring a theme and a representative object well-placed for viewing, with an accompanying interpretive story, strategies for conveying the topics, and supporting NASA-approved education activities and background information from a spectrum of NASA missions and programs: http://nightsky.jpl.nasa.gov/news-display.cfm?News_ID=611.These resources help enhance the Science, Technology, Engineering, and Mathematics (STEM) experiences of undergraduates.
Actionable Science Lessons Emerging from the Department of Interior Climate Science Center Network
NASA Astrophysics Data System (ADS)
McMahon, G.; Meadow, A. M.; Mikels-Carrasco, J.
2015-12-01
The DOI Advisory Committee on Climate Change and Natural Resource Science (ACCCNRS) has recommended that co-production of actionable science be the core programmatic focus of the Climate Science Center enterprise. Efforts by the Southeast Climate Science Center suggest that the complexity of many climate adaptation decision problems (many stakeholders that can influence implementation of a decision; the problems that can be viewed at many scales in space and time; dynamic objectives with competing values; complex, non-linear systems) complicates development of research-based information that scientists and non-scientists view as comprehensible, trustworthy, legitimate, and accurate. Going forward, organizers of actionable science efforts should consider inclusion of a broad set of stakeholders, beyond formal decisionmakers, and ensure that sufficient resources are available to explore the interests and values of this broader group. Co-produced research endeavors should foster agency and collaboration across a wide range of stakeholders. We recognize that stakeholder agency may be constrained by scientific or political power structures that limit the ability to initiate discussion, make claims, and call things into question. Co-production efforts may need to be preceded by more descriptive assessments that summarize existing climate science in ways that stakeholders can understand and link with their concerns. Such efforts can build rapport and trust among scientists and non-scientists, and may help stakeholders and scientists alike to frame adaptation decision problems amenable to a co-production effort. Finally, university and government researchers operate within an evaluation structure that rewards researcher-driven science that, at the extreme, "throws information over the fence" in the hope that information users will make better decisions. Research evaluation processes must reward more consultative, collaborative, and collegial research approaches if researchers are to widely adopt co-production methods
Hauptmann, Emily
2016-01-01
The Carnegie Corporation's role as a patron of the behavioral sciences has been overlooked; its support for the behavioral sciences not only began earlier than the Ford Foundation's but was also at least equally important to their success. I show how the close postwar collaboration between the Carnegie Corporation and the Social Science Research Council (SSRC) to promote the behavioral sciences emerged after a struggle between Carnegie and the Rockefeller Foundation over the direction and leadership of the SSRC. I then focus on three postwar projects Carnegie helped conceive and fund that were publicized as the work of the SSRC: Chase's The Proper Study of Mankind (1948), Stouffer et al.'s The American Soldier (), and the Michigan's Survey Research Center 1952 election study. In each of these projects, Carnegie deliberately muted its own role and promoted the remade SSRC as a major advocate for the behavioral sciences. © 2016 Wiley Periodicals, Inc.
CosmoQuest: Galvanizing a Dynamic, Inclusive Professional Learning Network
NASA Astrophysics Data System (ADS)
Cobb, W. H.; Buxner, S.; Bracey, G.; Noel-Storr, J.; Gay, P.; Graff, P. V.
2016-12-01
The CosmoQuest Virtual Research Facility offers experiences to audiences around the nation and globally through pioneering citizen science. An endeavor between universities, research institutes, and NASA centers, CosmoQuest brings together scientists, educators, researchers, programmers—and individuals of all ages—to explore and make sense of our solar system and beyond. Scaffolded by an educational framework that inspires 21stCentury learners, CosmoQuest engages people—you, me!—in analyzing and interpreting real NASA data, inspiring questions and defining problems. Linda Darling-Hammond calls for professional development to be: "focused on the learning and teaching of specific curriculum content [i.e. NGSS disciplinary core ideas]; organized around real problems of practice [i.e. NGSS science and engineering practices] …; [and] connected to teachers' collaborative work in professional learning community...." (2012). In light of that, what can CosmoQuest offer NASA STEM education as a virtual research facility? CosmoQuest engages scientists with learners, and learners with science. As a virual research facility, its focal point must be its online platform. CosmoQuest empowers and expands community through a variety of social channels, including science and education-focused hangouts, podcasts, virtual star parties, and social media. In addition to creating standards-aligned materials, CosmoQuest channels are a hub for excellent resources throughout NASA and the larger astronomical community. In support of CosmoQuest citizen science opportunities, the process and outcomes of CosmoQuest initiatives will be leveraged and shared. Thus, CosmoQuest will be present and alive in the awareness of its growing community. Finally, to make CosmoQuest truly relevant, partnerships between scientists and educators are encouraged and facilitated, and "just-in-time" opportunities to support constituents exploring emerging NASA STEM education and new NASA data will be offered, engaging audiences ranging from diverse educators to the curious learner of any age.
ERIC Educational Resources Information Center
Center for Advancement of Informal Science Education, 2010
2010-01-01
Throughout the world, and for many decades, science-rich cultural institutions, such as zoos, aquaria, museums, and others, have collaborated with schools to provide students, teachers and families with opportunities to expand their experiences and understanding of science. However, these collaborations have generally failed to institutionalize:…
ERIC Educational Resources Information Center
Jäppinen, Aini-Kristiina
2014-01-01
The article aims at explicating the emergence of human interactional sense-making process within educational leadership as a complex system. The kind of leadership is understood as a holistic entity called collaborative leadership. There, sense-making emerges across interdependent domains, called attributes of collaborative leadership. The…
BioSIGHT: Interactive Visualization Modules for Science Education
NASA Technical Reports Server (NTRS)
Wong, Wee Ling
1998-01-01
Redefining science education to harness emerging integrated media technologies with innovative pedagogical goals represents a unique challenge. The Integrated Media Systems Center (IMSC) is the only engineering research center in the area of multimedia and creative technologies sponsored by the National Science Foundation. The research program at IMSC is focused on developing advanced technologies that address human-computer interfaces, database management, and high- speed network capabilities. The BioSIGHT project at IMSC is a demonstration technology project in the area of education that seeks to address how such emerging multimedia technologies can make an impact on science education. The scope of this project will help solidify NASA's commitment for the development of innovative educational resources that promotes science literacy for our students and the general population as well. These issues must be addressed as NASA marches towards the goal of enabling human space exploration that requires an understanding of life sciences in space. The IMSC BioSIGHT lab was established with the purpose of developing a novel methodology that will map a high school biology curriculum into a series of interactive visualization modules that can be easily incorporated into a space biology curriculum. Fundamental concepts in general biology must be mastered in order to allow a better understanding and application for space biology. Interactive visualization is a powerful component that can capture the students' imagination, facilitate their assimilation of complex ideas, and help them develop integrated views of biology. These modules will augment the role of the teacher and will establish the value of student-centered interactivity, both in an individual setting as well as in a collaborative learning environment. Students will be able to interact with the content material, explore new challenges, and perform virtual laboratory simulations. The BioSIGHT effort is truly cross-disciplinary in nature and requires expertise from many areas including Biology, Computer Science, Electrical Engineering, Education, and the Cognitive Sciences. The BioSIGHT team includes a scientific illustrator, educational software designer, computer programmers as well as IMSC graduate and undergraduate students. Our collaborators include TERC, a research and education organization with extensive k-12 math and science curricula development from Cambridge, MA.; SRI International of Menlo Park, CA.; teachers and students from local area high schools (Newbury Park High School, USC's Family of Five schools, Chadwick School, and Pasadena Polytechnic High School).
Engaging Scientists in NASA Education and Public Outreach: Tools for Scientist Engagement
NASA Astrophysics Data System (ADS)
Buxner, Sanlyn; Meinke, B. K.; Hsu, B.; Shupla, C.; Grier, J. A.; E/PO Community, SMD
2014-01-01
The NASA Science Education and Public Outreach Forums support the NASA Science Mission Directorate (SMD) and its education and public outreach (E/PO) community through a coordinated effort to enhance the coherence and efficiency of SMD-funded E/PO programs. The Forums foster collaboration between scientists with content expertise and educators with pedagogy expertise. We present tools and resources to support astronomers’ engagement in E/PO efforts. Among the tools designed specifically for scientists are a series of one-page E/PO-engagement Tips and Tricks guides, a sampler of electromagnetic-spectrum-related activities, and NASA SMD Scientist Speaker’s Bureau (http://www.lpi.usra.edu/education/speaker). Scientists can also locate resources for interacting with diverse audiences through a number of online clearinghouses, including: NASA Wavelength, a digital collection of peer-reviewed Earth and space science resources for educators of all levels (http://nasawavelength.org), and EarthSpace (http://www.lpi.usra.edu/earthspace), a community website where faculty can find and share teaching resources for the undergraduate Earth and space sciences classroom. Learn more about the opportunities to become involved in E/PO and to share your science with students, educators, and the general public at http://smdepo.org.
Partly cloudy with a chance of migration: Weather, radars, and aeroecology
Chilson, Phillip B.; Frick, Winifred F.; Kelly, Jeffrey F.; Howard, Kenneth W.; Larkin, Ronald P.; Diehl, Robert H.; Westbrook, John K.; Kelly, T. Adam; Kunz, Thomas H.
2012-01-01
Aeroecology is an emerging scientific discipline that integrates atmospheric science, Earth science, geography, ecology, computer science, computational biology, and engineering to further the understanding of biological patterns and processes. The unifying concept underlying this new transdisciplinary field of study is a focus on the planetary boundary layer and lower free atmosphere (i.e., the aerosphere), and the diversity of airborne organisms that inhabit and depend on the aerosphere for their existence. Here, we focus on the role of radars and radar networks in aeroecological studies. Radar systems scanning the atmosphere are primarily used to monitor weather conditions and track the location and movements of aircraft. However, radar echoes regularly contain signals from other sources, such as airborne birds, bats, and arthropods. We briefly discuss how radar observations can be and have been used to study a variety of airborne organisms and examine some of the many potential benefits likely to arise from radar aeroecology for meteorological and biological research over a wide range of spatial and temporal scales. Radar systems are becoming increasingly sophisticated with the advent of innovative signal processing and dual-polarimetric capabilities. These capabilities should be better harnessed to promote both meteorological and aeroecological research and to explore the interface between these two broad disciplines. We strongly encourage close collaboration among meteorologists, radar scientists, biologists, and others toward developing radar products that will contribute to a better understanding of airborne fauna.
The Computing and Data Grid Approach: Infrastructure for Distributed Science Applications
NASA Technical Reports Server (NTRS)
Johnston, William E.
2002-01-01
With the advent of Grids - infrastructure for using and managing widely distributed computing and data resources in the science environment - there is now an opportunity to provide a standard, large-scale, computing, data, instrument, and collaboration environment for science that spans many different projects and provides the required infrastructure and services in a relatively uniform and supportable way. Grid technology has evolved over the past several years to provide the services and infrastructure needed for building 'virtual' systems and organizations. We argue that Grid technology provides an excellent basis for the creation of the integrated environments that can combine the resources needed to support the large- scale science projects located at multiple laboratories and universities. We present some science case studies that indicate that a paradigm shift in the process of science will come about as a result of Grids providing transparent and secure access to advanced and integrated information and technologies infrastructure: powerful computing systems, large-scale data archives, scientific instruments, and collaboration tools. These changes will be in the form of services that can be integrated with the user's work environment, and that enable uniform and highly capable access to these computers, data, and instruments, regardless of the location or exact nature of these resources. These services will integrate transient-use resources like computing systems, scientific instruments, and data caches (e.g., as they are needed to perform a simulation or analyze data from a single experiment); persistent-use resources. such as databases, data catalogues, and archives, and; collaborators, whose involvement will continue for the lifetime of a project or longer. While we largely address large-scale science in this paper, Grids, particularly when combined with Web Services, will address a broad spectrum of science scenarios. both large and small scale.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Livny, Miron; Shank, James; Ernst, Michael
Under this SciDAC-2 grant the project’s goal w a s t o stimulate new discoveries by providing scientists with effective and dependable access to an unprecedented national distributed computational facility: the Open Science Grid (OSG). We proposed to achieve this through the work of the Open Science Grid Consortium: a unique hands-on multi-disciplinary collaboration of scientists, software developers and providers of computing resources. Together the stakeholders in this consortium sustain and use a shared distributed computing environment that transforms simulation and experimental science in the US. The OSG consortium is an open collaboration that actively engages new research communities. Wemore » operate an open facility that brings together a broad spectrum of compute, storage, and networking resources and interfaces to other cyberinfrastructures, including the US XSEDE (previously TeraGrid), the European Grids for ESciencE (EGEE), as well as campus and regional grids. We leverage middleware provided by computer science groups, facility IT support organizations, and computing programs of application communities for the benefit of consortium members and the US national CI.« less
Growing scientists: A partnership between a university and a school district
NASA Astrophysics Data System (ADS)
Woods, Teresa Marie
Precollege science education in the United States has virtually always been influenced by university scientists to one degree or another. Partnership models for university scientist---school district collaborations are being advocated to replace outreach models. Although the challenges for such partnerships are well documented, the means of fostering successful and sustainable science education partnerships are not well studied. This study addresses this need by empirically researching a unique scientist-educator partnership between a university and a school district utilizing case study methods. The development of the partnership, emerging issues, and multiple perspectives of participants were examined in order to understand the culture of the partnership and identify means of fostering successful science education partnerships. The findings show the partnership was based on a strong network of face-to-face relationships that fostered understanding, mutual learning and synergy. Specific processes instituted ensured equity and respect, and created a climate of trust so that an evolving common vision was maintained. The partnership provided synergy and resilience during the recent economic crisis, indicating the value of partnerships when public education institutions must do more with less. High staff turnover, however, especially of a key leader, threatened the partnership, pointing to the importance of maintaining multiple-level integration between institutions. The instrumental roles of a scientist-educator coordinator in bridging cultures and nurturing the collaborative environment are elucidated. Intense and productive collaborations between teams of scientists and educators helped transform leading edge disciplinary science content into school science learning. The innovative programs that resulted not only suggest important roles science education partnerships can play in twenty-first century learning, but they also shed light on the processes of educational innovation itself. Further, the program and curriculum development revealed insights into areas of teaching and learning. Multiple perspectives of participants were considered in this study, with student perspectives demonstrating the critical importance of investigating student views in future studies. When educational institutions increasingly need to address a diverse population, and scientists increasingly want to recruit diverse students into the fields of science, partnerships show promise in creating a seamless K-20+ continuum of science education.
Supporting Social Awareness in Collaborative E-Learning
ERIC Educational Resources Information Center
Lambropoulos, Niki; Faulkner, Xristine; Culwin, Fintan
2012-01-01
In the last decade, we have seen the emergence of virtual learning environments. Initially, these environments were a little more than document repositories that tutor used unicast to the students. Informed in part by social constructivist theories of education, later environments included capabilities for tutor-student and student-student,…
Peer Communication through Blogging
ERIC Educational Resources Information Center
Wall, Steven D.; Anderson, Janice
2015-01-01
With the emergence of mobile technologies, students' access to computing devices is omnipresent, as is their ability to collaborate through multiple modalities. This 21st-century affordance has generated a shift in the way preservice teachers are prepared to use, understand. and interact with social media (e.g., blogs) during their academic years.…
A Collaborative Model for Ubiquitous Learning Environments
ERIC Educational Resources Information Center
Barbosa, Jorge; Barbosa, Debora; Rabello, Solon
2016-01-01
Use of mobile devices and widespread adoption of wireless networks have enabled the emergence of Ubiquitous Computing. Application of this technology to improving education strategies gave rise to Ubiquitous e-Learning, also known as Ubiquitous Learning. There are several approaches to organizing ubiquitous learning environments, but most of them…
Investigating the Educational Value of Social Learning Networks: A Quantitative Analysis
ERIC Educational Resources Information Center
Dafoulas, Georgios; Shokri, Azam
2016-01-01
Purpose: The emergence of Education 2.0 enabled technology-enhanced learning, necessitating new pedagogical approaches, while e-learning has evolved into an instrumental pedagogy of collaboration through affordances of social media. Social learning networks and ubiquitous learning enabled individual and group learning through social engagement and…
NASA Astrophysics Data System (ADS)
Suarez, Enrique A.
This dissertation investigates how emerging bilingual students make sense of natural phenomena through engaging in certain epistemic practices of science, and the elements of the learning environment that created those opportunities. Specifically, the dissertation focuses on how emerging bilingual students problematized electrical phenomena, like electric flow and electrical resistance, and how the design features of the environment (e.g., sequencing of activities, linguistic practices) may have supported students as they made sense of phenomena. The first study describes how for students presented and evaluated mechanistic models of electric flow, focusing specifically on how students identified and negotiated a disagreement between their explanatory models. The results from this study highlight the complexity of students' disagreements, not only because of the epistemological aspects related to presenting and evaluating knowledge, but also due to interpersonal dynamics and the discomfort associated with disagreeing with another person. The second study focuses on the design features of the learning environment that supported emerging bilingual students' investigations of electrical phenomena. The findings from this study highlight how a carefully designed set of activities, with the appropriate material resources (e.g., experimental tools), could support students to problematize electrical resistance. The third study describes how emerging bilingual students engaged in translanguaging practices and the contextual features of the learning environment that created and hindered opportunities for translanguaging. The findings from this study identify and articulate how emerging bilingual students engaged in translanguaging practices when problematizing electrical resistance, and strengthen the perspective that, in order to be equitable for emerging bilingual students, science learning environments need to act as translanguaging spaces. This dissertation makes three contributions to how science educators understand how elementary-aged emerging bilingual students learning science. First, I offer a detailed account of how emerging bilingual students engaged in epistemic practices to problematize electrical phenomena. Secondly, I argue learning environments need to create opportunities for emerging bilingual students to engage in productive epistemic work through leveraging multiple kinds of resources from their semiotic repertoires. Finally, this dissertation contributes to our understanding of how emerging bilingual students engage in translanguaging practices as they investigate and talk about the natural world.
Immersive Virtual Reality Technologies as a New Platform for Science, Scholarship, and Education
NASA Astrophysics Data System (ADS)
Djorgovski, Stanislav G.; Hut, P.; McMillan, S.; Knop, R.; Vesperini, E.; Graham, M.; Portegies Zwart, S.; Farr, W.; Mahabal, A.; Donalek, C.; Longo, G.
2010-01-01
Immersive virtual reality (VR) and virtual worlds (VWs) are an emerging set of technologies which likely represent the next evolutionary step in the ways we use information technology to interact with the world of information and with other people, the roles now generally fulfilled by the Web and other common Internet applications. Currently, these technologies are mainly accessed through various VWs, e.g., the Second Life (SL), which are general platforms for a broad range of user activities. As an experiment in the utilization of these technologies for science, scholarship, education, and public outreach, we have formed the Meta-Institute for Computational Astrophysics (MICA; http://mica-vw.org), the first professional scientific organization based exclusively in VWs. The goals of MICA are: (1) Exploration, development and promotion of VWs and VR technologies for professional research in astronomy and related fields. (2) Providing and developing novel social networking venues and mechanisms for scientific collaboration and communications, including professional meetings, effective telepresence, etc. (3) Use of VWs and VR technologies for education and public outreach. (4) Exchange of ideas and joint efforts with other scientific disciplines in promoting these goals for science and scholarship in general. To this effect, we have a regular schedule of professional and public outreach events in SL, including technical seminars, workshops, journal club, collaboration meetings, public lectures, etc. We find that these technologies are already remarkably effective as a telepresence platform for scientific and scholarly discussions, meetings, etc. They can offer substantial savings of time and resources, and eliminate a lot of unnecessary travel. They are equally effective as a public outreach platform, reaching a world-wide audience. On the pure research front, we are currently exploring the use of these technologies as a venue for numerical simulations and their visualization, as well as the immersive and interactive visualization of highly-dimensional data sets.
Siamaki, Saba; Geraei, Ehsan; Zare- Farashbandi, Firoozeh
2014-01-01
Background: Scientific collaboration is among the most important subjects in scientometrics, and many studies have investigated this concept to this day. The goal of the current study is investigation of scientific collaboration and co-authorship patterns of researchers in the field of library and information science in Iran between years 2005 and 2009. Materials and Methods: The current study uses scientometrics method. The statistical population consists of 942 documents published in Iranian library and information science journals between years 2005 and 2009. Collaboration coefficient, collaboration index (CI), and degree of collaboration (DC) were used for data analysis. Findings: The findings showed that among 942 investigated documents, 506 documents (53.70%) was created by one individual researcher and 436 documents (46.30%) were the result of collaboration between two or more researchers. Also, the highest rank of different authorship patterns belonged to National Journal of Librarianship and Information Organization (code H). Conclusion: The average collaboration coefficient for the library and information science researchers in the investigated time frame was 0.23. The closer this coefficient is to 1, the higher is the level of collaboration between authors, and a coefficient near zero shows a tendency to prefer individual articles. The highest collaboration index with an average of 1.92 authors per paper was seen in year 1388. The five year collaboration index in library and information science in Iran was 1.58, and the average degree of collaboration between researchers in the investigated papers was 0.46, which shows that library and information science researchers have a tendency for co-authorship. However, the co-authorship had increased in recent years reaching its highest number in year 1388. The researchers’ collaboration coefficient also shows relative increase between years 1384 and 1388. National Journal of Librarianship and Information Organization has the highest rank among all the investigated journals based on collaboration coefficient, collaboration index (CI), and degree of collaboration (DC). PMID:25250365
Siamaki, Saba; Geraei, Ehsan; Zare-Farashbandi, Firoozeh
2014-01-01
Scientific collaboration is among the most important subjects in scientometrics, and many studies have investigated this concept to this day. The goal of the current study is investigation of scientific collaboration and co-authorship patterns of researchers in the field of library and information science in Iran between years 2005 and 2009. The current study uses scientometrics method. The statistical population consists of 942 documents published in Iranian library and information science journals between years 2005 and 2009. Collaboration coefficient, collaboration index (CI), and degree of collaboration (DC) were used for data analysis. The findings showed that among 942 investigated documents, 506 documents (53.70%) was created by one individual researcher and 436 documents (46.30%) were the result of collaboration between two or more researchers. Also, the highest rank of different authorship patterns belonged to National Journal of Librarianship and Information Organization (code H). The average collaboration coefficient for the library and information science researchers in the investigated time frame was 0.23. The closer this coefficient is to 1, the higher is the level of collaboration between authors, and a coefficient near zero shows a tendency to prefer individual articles. The highest collaboration index with an average of 1.92 authors per paper was seen in year 1388. The five year collaboration index in library and information science in Iran was 1.58, and the average degree of collaboration between researchers in the investigated papers was 0.46, which shows that library and information science researchers have a tendency for co-authorship. However, the co-authorship had increased in recent years reaching its highest number in year 1388. The researchers' collaboration coefficient also shows relative increase between years 1384 and 1388. National Journal of Librarianship and Information Organization has the highest rank among all the investigated journals based on collaboration coefficient, collaboration index (CI), and degree of collaboration (DC).
Mobile, Collaborative Situated Knowledge Creation for Urban Planning
Zurita, Gustavo; Baloian, Nelson
2012-01-01
Geo-collaboration is an emerging research area in computer sciences studying the way spatial, geographically referenced information and communication technologies can support collaborative activities. Scenarios in which information associated to its physical location are of paramount importance are often referred as Situated Knowledge Creation scenarios. To date there are few computer systems supporting knowledge creation that explicitly incorporate physical context as part of the knowledge being managed in mobile face-to-face scenarios. This work presents a collaborative software application supporting visually-geo-referenced knowledge creation in mobile working scenarios while the users are interacting face-to-face. The system allows to manage data information associated to specific physical locations for knowledge creation processes in the field, such as urban planning, identifying specific physical locations, territorial management, etc.; using Tablet-PCs and GPS in order to geo-reference data and information. It presents a model for developing mobile applications supporting situated knowledge creation in the field, introducing the requirements for such an application and the functionalities it should have in order to fulfill them. The paper also presents the results of utility and usability evaluations. PMID:22778639
Mobile, collaborative situated knowledge creation for urban planning.
Zurita, Gustavo; Baloian, Nelson
2012-01-01
Geo-collaboration is an emerging research area in computer sciences studying the way spatial, geographically referenced information and communication technologies can support collaborative activities. Scenarios in which information associated to its physical location are of paramount importance are often referred as Situated Knowledge Creation scenarios. To date there are few computer systems supporting knowledge creation that explicitly incorporate physical context as part of the knowledge being managed in mobile face-to-face scenarios. This work presents a collaborative software application supporting visually-geo-referenced knowledge creation in mobile working scenarios while the users are interacting face-to-face. The system allows to manage data information associated to specific physical locations for knowledge creation processes in the field, such as urban planning, identifying specific physical locations, territorial management, etc.; using Tablet-PCs and GPS in order to geo-reference data and information. It presents a model for developing mobile applications supporting situated knowledge creation in the field, introducing the requirements for such an application and the functionalities it should have in order to fulfill them. The paper also presents the results of utility and usability evaluations.
Practice in Digital Research Spaces to Engage Students with eScience
ERIC Educational Resources Information Center
LeBard, Rebecca J.; Hibbert, D. Brynn; Quinnell, Rosanne
2017-01-01
New and emerging digital technologies are making an impact on how we practice science, and this has implications on how we teach science. We introduce the concept of the Electronic Laboratory Notebook (ELN) as used in the research environment and describe how we have implemented this as a tool for providing undergraduate science students with an…
The view from everywhere: disciplining diversity in post-World War II international social science.
Selcer, Perrin
2009-01-01
This paper explores the attempt of social scientists associated with Unesco to create a system of knowledge production to provide the international perspective necessary for democratic governance of a world community. Social scientists constructed a federal system of international associations that institutionalized American disciplines on an international scale. An international perspective emerged through the process of interdisciplinary international research. I call this ideal of coordinating multiple subjectivities to produce objectivity the "view from everywhere." Influenced by social psychological "action-research," collaborative research was group therapy. The attempt to operationalize internationalists' rallying slogan, "unity in diversity," illuminated tensions inherent in the mobilization of science for social and political reform.
Visualizando el desarrollo de la nanomedicina en México.
Robles-Belmont, Eduardo; Gortari-Rabiela, Rebeca de; Galarza-Barrios, Pilar; Siqueiros-García, Jesús Mario; Ruiz-León, Alejandro Arnulfo
2017-01-01
In this article we present a set of different visualizations of Mexico's nanomedicine scientific production data. Visualizations were developed using different methodologies for data analysis and visualization such as social network analysis, geography of science maps, and complex network communities analysis. Results are a multi-dimensional overview of the evolution of nanomedicine in Mexico. Moreover, visualizations allowed to identify trends and patterns of collaboration at the national and international level. Trends are also found in the knowledge structure of themes and disciplines. Finally, we identified the scientific communities in Mexico that are responsible for the new knowledge production in this emergent field of science. Copyright: © 2017 SecretarÍa de Salud
Teaching Science Online: Hands Off Is Not Minds Off!
ERIC Educational Resources Information Center
Schoenfeld-Tacher, Regina; McConnell, Sherry; Schultheiss, Patricia; Bowen, Richard; Jones, Robert
This study used Bloom's Taxonomy in conjunction with new and emerging research paradigms, such as discourse analysis, to examine the outcomes of online science instruction in various biomedical science courses (i.e., histology, histopathology, physiology, microbiology, and farm animal anatomy). By combining quantitative and qualitative data, a…
Curriculum for Excellence Science: Vision or Confusion?
ERIC Educational Resources Information Center
Day, Stephen; Bryce, Tom
2013-01-01
Policy studies in science education do not have a particularly high profile. For science teachers, policy lurks in the background, somewhat disconnected from their normal classroom practice; for many, it is simply taken-for-granted. This paper analyses policy documents which have emerged from Curriculum for Excellence ("CfE") that impact…
75 FR 68367 - National Institute of Environmental Health Sciences; Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-05
... Environmental Health Sciences; Notice of Closed Meeting Pursuant to section 10(d) of the Federal Advisory... Health Sciences Special Emphasis Panel, E -Learning Hazmat and Emergency Response. Date: December 7, 2010...: Janice B Allen, PhD, Scientific Review Administrator, Scientific Review Branch, Division of Extramural...
Global trends in research related to social media in psychology: mapping and bibliometric analysis.
Zyoud, Sa'ed H; Sweileh, Waleed M; Awang, Rahmat; Al-Jabi, Samah W
2018-01-01
Social media, defined as interactive Web applications, have been on the rise globally, particularly among adults. The objective of this study was to investigate the trend of the literature related to the most used social network worldwide (i.e. Facebook, Twitter, LinkedIn, Snapchat, and Instagram) in the field of psychology. Specifically, this study will assess the growth in publications, citation analysis, international collaboration, author productivity, emerging topics and the mapping of frequent terms in publications pertaining to social media in the field of psychology. Publications related to social media in the field of psychology published between 2004 and 2014 were obtained from the Web of Science. The records extracted were analysed for bibliometric characteristics such as the growth in publications, citation analysis, international collaboration, emerging topics and the mapping of frequent terms in publications pertaining to social media in the field of psychology. VOSviewer v.1.6.5 was used to construct scientific maps. Overall, 959 publications were retrieved during the period between 2004 and 2015. The number of research publications in social media in the field of psychology showed a steady upward growth. Publications from the USA accounted for 57.14% of the total publications and the highest h -index (48).The most common document type was research articles (873; 91.03%). Over 99.06% of the publications were published in English. Computers in Human Behavior was the most prolific journal. The University of Wisconsin - Madison ranked first in terms of the total publications (n = 39). A visualisation analysis showed that personality psychology, experimental psychology, psychological risk factors, and developmental psychology were continual concerns of the research. This is the first study reporting the global trends in the research related to social media in the psychology field. Based on the raw data from the Web of Science, publication characteristics such as quality and quantity were assessed using bibliometric techniques over 12 years. The USA and its institutions play a dominant role in this topic. The most preferred topics related to social media in psychology are personality psychology, experimental psychology, psychological risk factors, and developmental psychology.
2008-01-01
funding support for Royal Thai Army at Armed Forces Research Institute of Medical Sciences (AFRIMS) engaged in research activities in collaboration with... Active and Passive Protection of Mice against Japanese Encephalitis Virus 55 (a) Investigators 55 (b) Objectives 55 (c) Methods 55 (d) Results...Research Project: Sentinel Surveillance for Emerging Diseases Causing Dengue-like or Acute Encephalitis Syndrome in the Philippines (SEDP) 83 (a
NASA Astrophysics Data System (ADS)
Roberts, Sara Hayes
The primary purpose of this action research study was to explore an elementary science program and find ways to support science education as an administrator of an elementary school. The study took place in a large suburban school system in the southeastern United States. Seven teachers at a small rural school volunteered to participate in the study. Each participant became an active member of the research by determining what changes needed to take place and implementing the lessons in science. The study was also focused on teacher collaboration and how it influenced the science instruction. The data collected included two interviews, ten observations of science lessons, the implementation of four science units, and informal notes from planning sessions over a five month period. The questions that guided this study focused on how teachers prepare to teach science through active learning and how instruction shifts due to teacher collaboration. Teachers were interviewed at the beginning of the study to gain the perceptions of the participants in the areas of (a) planning, (b) active learning, (c) collaboration, and (d) teaching science lessons. The teachers and principal then formed a research team that determined the barriers to teaching science according to the Standards, designed units of study using active learning strategies, and worked collaboratively to implement the units of study. The action research project reviewed the National Science Education Standards, the theory of constructivism, active learning and teacher collaboration as they relate to the actions taken by a group of teachers in an elementary school. The evidence from this study showed that by working together collaboratively and overcoming the barriers to teaching science actively, teachers feel more confident and knowledgeable about teaching the concepts.
Collaboration and Team Science Field Guide - Center for Research Strategy
Collaboration and Team Science: A Field Guide provides insight into the practices of conducting collaborative work. Since its 2010 publication, the authors have worked and learned from teams and organizations all over the world. Learn from these experiences in the second edition of the Team Science Field Guide.
ERIC Educational Resources Information Center
Fenwick, Tara
2012-01-01
Professionals increasingly must collaborate very closely, such as through inter-professional work arrangements. This involves learning both "in" and "for" collaboration. Some educational researchers have turned to complexity science to better understand these learning dynamics. This discussion asks, How useful is complexity science for examining…
Collaborative Partnerships: A Model for Science Teacher Education and Professional Development
ERIC Educational Resources Information Center
Jones, Mellita M.
2008-01-01
This paper proposes a collaborative partnership between practicing and pre-service teachers as a model for implementing science teacher education and professional development. This model provides a structure within which partnerships will work collaboratively to plan, implement and reflect on a series of Science lessons in cycles of…
Adult-Rated Oceanography Part 2: Examples from the Trenches
NASA Astrophysics Data System (ADS)
Torres, M. E.; Collier, R.; Cowles, S.
2004-12-01
We will share experiences and specific examples from an ongoing Ocean Science and Math Collaborative Project between OSU faculty and Community College instructors from the Oregon system of adult education and workforce development. The participants represent such diverse instructional programs as workforce training, workplace education (cannery workers), adult basic education, adult secondary education (GED preparation), English to Speakers of Other Languages, Family Literacy, and Tribal Education (Confederated Tribes of the Siletz Indians). This collaborative project is designed to integrate ocean sciences into the science, math, and critical thinking curriculum through the professional development activities of adult educators. Our strategy is to tailor new and existing ocean science resources to the needs of adult education instructors. This project provides a wide range of opportunities in time and effort for scientist involvement. Some scientists have chosen to participate in short interviews or conversations with adult educators, which give added value through real-world connections in the context of the larger project. Other participating scientists have made larger time investments, which include presentations at workshops, hosting teacher-at-sea opportunities and leading project planning and implementation efforts. This project serves as an efficient model for scientists to address the broader impact goals of their research. It takes advantage of a variety of established educational outreach resources funded through NSF (e.g. the national COSEE network and GeoEducation grants), NOAA (e.g. SeaGrant education and Ocean Explorer) as well as State and Federal adult education programs (e.g. The National Institute for Literacy Science and Numeracy Special Collection). We recognize the value and creativity inherent in these resources, and we are developing a model to "tune" their presentation, as well as their connection to new oceanographic research, in a manner that fits the needs of the adult education community.
NASA Astrophysics Data System (ADS)
van Zee, Emily; Lay, Diantha; Roberts, Deborah
2003-07-01
The purpose of this study was to document the perspectives and experiences of participants in a complex collaboration. Prospective teachers planned and conducted science lessons and small educational research projects with mentoring from teacher researchers who are science enthusiasts. These group investigations seemed to be effective in modifying the self-perceptions of many of the prospective teachers enrolled in a course on methods of teaching science in elementary school. According to responses on an informal evaluation at the end of the Spring 2000 group investigation, for example, most of the prospective teachers indicated that they perceived themselves to be more confident and more competent to teach science than at the beginning of the course; a few indicated they had already felt confident and competent. Common themes in the prospective teachers' responses indicated that they had learned about teaching science through inquiry, taking ownership of their own learning, researching while teaching, working in groups, and understanding themselves as learners and teachers. The teacher researchers also perceived themselves as benefiting from the collaborative process. Their responses to an e-mail questionnaire suggested that they found working with the prospective teachers to be stimulating and cheering. They enjoyed the discussions, appreciated the help with demanding activities, grew in their own knowledge about teaching and learning, and valued the opportunities for reflection. However, organizing the group investigation was complex, due to time issues, driving distances, school schedules, unexpected teacher responsibilities, and unpredictable weather.
Tanaka, Masashi; Eynon, Nir; Bouchard, Claude; North, Kathryn N.; Williams, Alun G.; Collins, Malcolm; Britton, Steven L.; Fuku, Noriyuki; Ashley, Euan A.; Klissouras, Vassilis; Lucia, Alejandro; Ahmetov, Ildus I.; de Geus, Eco; Alsayrafi, Mohammed
2015-01-01
Despite numerous attempts to discover genetic variants associated with elite athletic performance, injury predisposition, and elite/world-class athletic status, there has been limited progress to date. Past reliance on candidate gene studies predominantly focusing on genotyping a limited number of single nucleotide polymorphisms or the insertion/deletion variants in small, often heterogeneous cohorts (i.e., made up of athletes of quite different sport specialties) have not generated the kind of results that could offer solid opportunities to bridge the gap between basic research in exercise sciences and deliverables in biomedicine. A retrospective view of genetic association studies with complex disease traits indicates that transition to hypothesis-free genome-wide approaches will be more fruitful. In studies of complex disease, it is well recognized that the magnitude of genetic association is often smaller than initially anticipated, and, as such, large sample sizes are required to identify the gene effects robustly. A symposium was held in Athens and on the Greek island of Santorini from 14–17 May 2015 to review the main findings in exercise genetics and genomics and to explore promising trends and possibilities. The symposium also offered a forum for the development of a position stand (the Santorini Declaration). Among the participants, many were involved in ongoing collaborative studies (e.g., ELITE, GAMES, Gene SMART, GENESIS, and POWERGENE). A consensus emerged among participants that it would be advantageous to bring together all current studies and those recently launched into one new large collaborative initiative, which was subsequently named the Athlome Project Consortium. PMID:26715623
Pitsiladis, Yannis P; Tanaka, Masashi; Eynon, Nir; Bouchard, Claude; North, Kathryn N; Williams, Alun G; Collins, Malcolm; Moran, Colin N; Britton, Steven L; Fuku, Noriyuki; Ashley, Euan A; Klissouras, Vassilis; Lucia, Alejandro; Ahmetov, Ildus I; de Geus, Eco; Alsayrafi, Mohammed
2016-03-01
Despite numerous attempts to discover genetic variants associated with elite athletic performance, injury predisposition, and elite/world-class athletic status, there has been limited progress to date. Past reliance on candidate gene studies predominantly focusing on genotyping a limited number of single nucleotide polymorphisms or the insertion/deletion variants in small, often heterogeneous cohorts (i.e., made up of athletes of quite different sport specialties) have not generated the kind of results that could offer solid opportunities to bridge the gap between basic research in exercise sciences and deliverables in biomedicine. A retrospective view of genetic association studies with complex disease traits indicates that transition to hypothesis-free genome-wide approaches will be more fruitful. In studies of complex disease, it is well recognized that the magnitude of genetic association is often smaller than initially anticipated, and, as such, large sample sizes are required to identify the gene effects robustly. A symposium was held in Athens and on the Greek island of Santorini from 14-17 May 2015 to review the main findings in exercise genetics and genomics and to explore promising trends and possibilities. The symposium also offered a forum for the development of a position stand (the Santorini Declaration). Among the participants, many were involved in ongoing collaborative studies (e.g., ELITE, GAMES, Gene SMART, GENESIS, and POWERGENE). A consensus emerged among participants that it would be advantageous to bring together all current studies and those recently launched into one new large collaborative initiative, which was subsequently named the Athlome Project Consortium. Copyright © 2016 the American Physiological Society.
Michigan/Air Force Research Laboratory (AFRL) Collaborative Center in Control Science (MACCCS)
2016-09-01
AFRL-RQ-WP-TR-2016-0139 MICHIGAN/AIR FORCE RESEARCH LABORATORY (AFRL) COLLABORATIVE CENTER IN CONTROL SCIENCE (MACCCS) Anouck Girard...Final 18 April 2007 – 30 September 2016 4. TITLE AND SUBTITLE MICHIGAN/AIR FORCE RESEARCH LABORATORY (AFRL) COLLABORATIVE CENTER IN CONTROL SCIENCE...and amplify an internationally recognized center of excellence in control science research and education, through interaction between the faculty and
Reis, Steven E.; Berglund, Lars; Bernard, Gordon R.; Califf, Robert M.; FitzGerald, Garret A.; Johnson, Peter C.
2009-01-01
Advances in human health require the efficient and rapid translation of scientific discoveries into effective clinical treatments; this process in turn depends upon observational data gathered from patients, communities, and public-health research that can be used to guide basic scientific investigation. Such bidirectional translational science, however, faces unprecedented challenges due to the rapid pace of scientific and technological development, as well as the difficulties of negotiating increasingly complex regulatory and commercial environments that overlap the research domain. Further, numerous barriers to translational science have emerged among the nation’s academic research centers, including basic structural and cultural impediments to innovation and collaboration, shortages of trained investigators, and inadequate funding. To address these serious and systemic problems, in 2006, the National Institutes of Health created the Clinical and Translational Science Awards (CTSA) program, which aims to catalyze the transformation of biomedical research at a national level, speeding the discovery and development of therapies, fostering collaboration, engaging communities, and training succeeding generations of clinical and translational researchers. The authors report in detail on the planning process, begun in 2008, that was used to engage stakeholders and to identify, refine, and ultimately implement the CTSA program’s overarching strategic goals. They also discuss the implications and likely impact of this strategic planning process as it is applied among the nation’s academic health centers. PMID:20182119
Reis, Steven E; Berglund, Lars; Bernard, Gordon R; Califf, Robert M; Fitzgerald, Garret A; Johnson, Peter C
2010-03-01
Advances in human health require the efficient and rapid translation of scientific discoveries into effective clinical treatments; this process, in turn, depends on observational data gathered from patients, communities, and public health research that can be used to guide basic scientific investigation. Such bidirectional translational science, however, faces unprecedented challenges due to the rapid pace of scientific and technological development, as well as the difficulties of negotiating increasingly complex regulatory and commercial environments that overlap the research domain. Further, numerous barriers to translational science have emerged among the nation's academic research centers, including basic structural and cultural impediments to innovation and collaboration, shortages of trained investigators, and inadequate funding.To address these serious and systemic problems, in 2006 the National Institutes of Health created the Clinical and Translational Science Awards (CTSA) program, which aims to catalyze the transformation of biomedical research at a national level, speeding the discovery and development of therapies, fostering collaboration, engaging communities, and training succeeding generations of clinical and translational researchers. The authors report in detail on the planning process, begun in 2008, that was used to engage stakeholders and to identify, refine, and ultimately implement the CTSA program's overarching strategic goals. They also discuss the implications and likely impact of this strategic planning process as it is applied among the nation's academic health centers.
A Conceptual Framework to Measure Systems’ Performance during Emergency Preparedness Exercises
Savoia, Elena; Agboola, Foluso; Biddinger, Paul D.
2014-01-01
Large-scale public health emergencies require a sophisticated, coordinated response involving multiple entities to protect health and minimize suffering. However, the rarity of such emergencies presents a barrier to gathering observational data about the effectiveness of the public health response before such events occur. For this reason, public health practitioners increasingly have relied on simulated emergencies, known as “exercises” as proxies to test their emergency capabilities. However, the formal evaluation of performance in these exercises, historically has been inconsistent, and there is little research to describe how data acquired from simulated emergencies actually support conclusions about the quality of the public health emergency response system. Over the past six years, we have designed and evaluated more than seventy public health emergency exercises, collaborating with public health agencies, hospitals and others to test a wide variety of systems and their capabilities. Using the data and experience that we gathered, we have developed a conceptual framework that describes the essential elements necessary to consider when applying performance measurement science to public health emergency exercises. We suggest that this framework may assist practitioners and researchers who wish to better measure performance in exercises and to improve public health emergency preparedness. PMID:25233015
Spjuth, Ola; Karlsson, Andreas; Clements, Mark; Humphreys, Keith; Ivansson, Emma; Dowling, Jim; Eklund, Martin; Jauhiainen, Alexandra; Czene, Kamila; Grönberg, Henrik; Sparén, Pär; Wiklund, Fredrik; Cheddad, Abbas; Pálsdóttir, Þorgerður; Rantalainen, Mattias; Abrahamsson, Linda; Laure, Erwin; Litton, Jan-Eric; Palmgren, Juni
2017-09-01
We provide an e-Science perspective on the workflow from risk factor discovery and classification of disease to evaluation of personalized intervention programs. As case studies, we use personalized prostate and breast cancer screenings. We describe an e-Science initiative in Sweden, e-Science for Cancer Prevention and Control (eCPC), which supports biomarker discovery and offers decision support for personalized intervention strategies. The generic eCPC contribution is a workflow with 4 nodes applied iteratively, and the concept of e-Science signifies systematic use of tools from the mathematical, statistical, data, and computer sciences. The eCPC workflow is illustrated through 2 case studies. For prostate cancer, an in-house personalized screening tool, the Stockholm-3 model (S3M), is presented as an alternative to prostate-specific antigen testing alone. S3M is evaluated in a trial setting and plans for rollout in the population are discussed. For breast cancer, new biomarkers based on breast density and molecular profiles are developed and the US multicenter Women Informed to Screen Depending on Measures (WISDOM) trial is referred to for evaluation. While current eCPC data management uses a traditional data warehouse model, we discuss eCPC-developed features of a coherent data integration platform. E-Science tools are a key part of an evidence-based process for personalized medicine. This paper provides a structured workflow from data and models to evaluation of new personalized intervention strategies. The importance of multidisciplinary collaboration is emphasized. Importantly, the generic concepts of the suggested eCPC workflow are transferrable to other disease domains, although each disease will require tailored solutions. © The Author 2017. Published by Oxford University Press on behalf of the American Medical Informatics Association.
Integrating medical imaging analyses through a high-throughput bundled resource imaging system
NASA Astrophysics Data System (ADS)
Covington, Kelsie; Welch, E. Brian; Jeong, Ha-Kyu; Landman, Bennett A.
2011-03-01
Exploitation of advanced, PACS-centric image analysis and interpretation pipelines provides well-developed storage, retrieval, and archival capabilities along with state-of-the-art data providence, visualization, and clinical collaboration technologies. However, pursuit of integrated medical imaging analysis through a PACS environment can be limiting in terms of the overhead required to validate, evaluate and integrate emerging research technologies. Herein, we address this challenge through presentation of a high-throughput bundled resource imaging system (HUBRIS) as an extension to the Philips Research Imaging Development Environment (PRIDE). HUBRIS enables PACS-connected medical imaging equipment to invoke tools provided by the Java Imaging Science Toolkit (JIST) so that a medical imaging platform (e.g., a magnetic resonance imaging scanner) can pass images and parameters to a server, which communicates with a grid computing facility to invoke the selected algorithms. Generated images are passed back to the server and subsequently to the imaging platform from which the images can be sent to a PACS. JIST makes use of an open application program interface layer so that research technologies can be implemented in any language capable of communicating through a system shell environment (e.g., Matlab, Java, C/C++, Perl, LISP, etc.). As demonstrated in this proof-of-concept approach, HUBRIS enables evaluation and analysis of emerging technologies within well-developed PACS systems with minimal adaptation of research software, which simplifies evaluation of new technologies in clinical research and provides a more convenient use of PACS technology by imaging scientists.
NASA Astrophysics Data System (ADS)
Single, Peg Boyle; Muller, Carol B.; Cunningham, Christine M.; Single, Richard M.
In this article, we report on electronic discussion lists (e-lists) sponsored by MentorNet, the National Electronic Industrial Mentoring Network for Women in Engineering and Science. Using the Internet, the MentorNet program connects students in engineering and science with mentors working in industry. These e-lists are a feature of MentorNet's larger electronic mentoring program and were sponsored to foster the establishment of community among women engineering and science students and men and women professionals in those fields. This research supports the hypothesis that electronic communications can be used to develop community among engineering and science students and professionals and identifies factors influencing the emergence of electronic communities (e-communities). The e-lists that emerged into self-sustaining e-communities were focused on topic-based themes, such as balancing personal and work life, issues pertaining to women in engineering and science, and job searching. These e-communities were perceived to be safe places, embraced a diversity of opinions and experiences, and sanctioned personal and meaningful postings on the part of the participants. The e-communities maintained three to four simultaneous threaded discussions and were sustained by professionals who served as facilitators by seeding the e-lists with discussion topics. The e-lists were sponsored to provide women students participating in MentorNet with access to groups of technical and scientific professionals. In addition to providing benefits to the students, the e-lists also provided the professionals with opportunities to engage in peer mentoring with other, mostly female, technical and scientific professionals. We discuss the implications of our findings for developing e-communities and for serving the needs of women in technical and scientific fields.
Khan, Sharib A; McFarlane, Delano J; Li, Jianhua; Ancker, Jessica S; Hutchinson, Carly; Cohall, Alwyn; Kukafka, Rita
2007-10-11
Consumer health informatics has emerged as a strategy to inform and empower patients for self management of their health. The emergence of and explosion in use of user-generated online media (e.g.,blogs) has created new opportunities to inform and educate people about healthy living. Under a prevention research project, we are developing a website that utilizes social content collaboration mediums in conjunction with open-source technologies to create a community-driven resource that provides users with tailored health information.
Online applied dual-use biosecurity education: a case study from the University of Bradford.
Bollaert, Cathy; Whitby, Simon
2012-01-01
Reflecting a consensus that emerged at the 2008 Meeting of States Parties of the Biological Weapons Convention on the importance of ensuring that those working in the biological sciences are aware of their obligations under the Convention and relevant national legislation and guidelines; and in regard to the consensus on the importance of awareness raising and education and training programmes, and of the role that these can play in assisting in the implementation of the Convention, this paper highlights how novel online e-learning approaches can efficiently and effectively be deployed in building a sustainable worldwide capability in this much neglected area of education and training. It provides examples of the development and evolution of education and training resources, notes the importance of standing agenda items for the intersessional process of the BWC between the Seventh and Eight Review Conferences and the range of opportunities that therefore arise for States Party and civil society collaboration in building capacity and achieving sustainability in this area.
Peters, Mathilde C; Adu-Ababio, Francis; Jarrett-Ananaba, Nejay P; Johnson, Lynn A
2013-12-01
The dearth of dental faculty members is a widely known problem that is exacerbated in countries that are attempting to begin dental education programs. This collaboration between Kwame Nkrumah University of Science and Technology and the University of Michigan investigated if dental students who have just started their clinical dental education can learn the knowledge and skills required for identifying and restoring cavitated caries lesions through compact course delivery. There were three instructional blocks: 1) didactic seminar; 2) seminar, simulated hands-on skills instruction, and clinical observation/assisting with treatment of schoolchildren; and 3) seminar, simulated skills training, and application to schoolchildren. Each dental student completed a questionnaire measuring knowledge and perceptions of knowledge, experience, and confidence at five points in time. The dental students' knowledge increased significantly as well as their perceived knowledge, experience, and confidence (p<0.0001). In general, the students showed proficiency in delivering simple treatments. The project showed that an integrated compact course delivery model may assist emerging dental schools to cope with the challenging shortage of resident faculty members.
Dawn Mission Education and Public Outreach: Science as Human Endeavor
NASA Astrophysics Data System (ADS)
Cobb, W. H.; Wise, J.; Schmidt, B. E.; Ristvey, J.
2012-12-01
Dawn Education and Public Outreach strives to reach diverse learners using multi-disciplinary approaches. In-depth professional development workshops in collaboration with NASA's Discovery Program, MESSENGER and Stardust-NExT missions focusing on STEM initiatives that integrate the arts have met the needs of diverse audiences and received excellent evaluations. Another collaboration on NASA ROSES grant, Small Bodies, Big Concepts, has helped bridge the learning sequence between the upper elementary and middle school, and the middle and high school Dawn curriculum modules. Leveraging the Small Bodies, Big Concepts model, educators experience diverse and developmentally appropriate NASA activities that tell the Dawn story, with teachers' pedagogical skills enriched by strategies drawn from NSTA's Designing Effective Science Instruction. Dawn mission members enrich workshops by offering science presentations to highlight events and emerging data. Teachers' awareness of the process of learning new content is heightened, and they use that experience to deepen their science teaching practice. Activities are sequenced to enhance conceptual understanding of big ideas in space science and Vesta and Ceres and the Dawn Mission 's place within that body of knowledge Other media add depth to Dawn's resources for reaching students. Instrument and ion engine interactives developed with the respective science team leads help audiences engage with the mission payload and the data each instrument collects. The Dawn Dictionary, an offering in both audio as well as written formats, makes key vocabulary accessible to a broader range of students and the interested public. Further, as Dawn E/PO has invited the public to learn about mission objectives as the mission explored asteroid Vesta, new inroads into public presentations such as the Dawn MissionCast tell the story of this extraordinary mission. Asteroid Mapper is the latest, exciting citizen science endeavor designed to invite the general public into the thrill of NASA science. Helping teachers develop a picture of the history and evolution of our understanding of the solar system, and honing in on the place of asteroids in helping us answer old questions and discover new ones, students and the general public sees the power and excitement underlying planetary science as human endeavor. Research indicates that science inquiry is powerful in the classroom and mission scientists are real-life models of science inquiry in action. Cross-curricular elements include examining research-based strategies for enhancing English language learners' ability to engage in higher order questions and a professional astronomy artist's insight into how visual analysis requires not just our eyes engaged, but our brains: comparing, synthesizing, questioning, evaluating, and wondering. Dawn Education and Public Outreach will share out perspectives and lessons learned, backed by extensive evaluation examining the efficacy of the mission's efforts.
Eisenstein, Anna; Vaisman, Lev; Johnston-Cox, Hillary; Gallan, Alexander; Shaffer, Kitt; Vaughan, Deborah; O'Hara, Carl; Joseph, Lija
2014-01-01
Curricular integration has emerged as a consistent theme in medical education reform. Vertical integration of topics such as pathology offers the potential to bring basic science content into the clinical arena, but faculty/student acceptance and curricular design pose challenges for such integration. The authors describe the Cadaver Biopsy Project (CBP) at Boston University School of Medicine as a sustainable model of vertical integration. Faculty and select senior medical students obtained biopsies of cadavers during the first-year gross anatomy course (fall 2009) and used these to develop clinical cases for courses in histology (spring 2010), pathology (fall 2010-spring 2011), and radiology (fall 2011 or spring 2012), thereby linking students' first experiences in basic sciences with other basic science courses and later clinical courses. Project goals included engaging medical stu dents in applying basic science princi ples in all aspects of patient care as they acquire skills. The educational intervention used a patient (cadaver)-centered approach and small-group, collaborative, case-based learning. Through this project, the authors involved clinical and basic science faculty-plus senior medical students-in a collaborative project to design and implement an integrated curriculum through which students revisited, at several different points, the microscopic structure and pathophysiology of common diseases. Developing appropriate, measurable out comes for medical education initiatives, including the CBP, is challenging. Accumu lation of qualitative feedback from surveys will guide continuous improvement of the CBP. Documenting longer-term impact of the curricular innovation on test scores and other competency-based outcomes is an ultimate goal.
ERIC Educational Resources Information Center
Andersson, Annika
2016-01-01
To prepare emergency response organisations for collaborative work in unpredictable and dynamic situations, various types of exercises are widely used. Still, our knowledge of collaboration exercises with emergency response students is limited. This study aimed to contribute to this field by exploring boundaries that emerged between collaborating…
Laboratory for Computer Science Progress Report 18, July 1980-June 1981,
1983-04-01
group in collaboration with Rolf Landauer of IBM Research. Some of the most conspicuous participants: Dyson, Feynman, Wheeler Landauer, Keyes, Bennett...Sheldon A. Data Model Equivalence, December 1978, AD A062-753 TM-119 Shamir, Adi and Richard E. Zippel On the Security of the Merkle -Hellman
Productive Academic Talk during Inquiry-Based Science
ERIC Educational Resources Information Center
Gillies, Robyn M.
2013-01-01
This study reports on the types of academic talk that contribute to enhanced explanatory responses, reasoning, problem-solving and learning. The study involved 10 groups of 3-4 students who were provided with one of three linguistic tools (i.e. Cognitive Questioning, Philosophy for Children and Collaborative Strategic Reading (CSR)) to scaffold…
Understanding Relationship: Maximizing the Effects of Science Coaching
ERIC Educational Resources Information Center
Anderson, Ruth; Feldman, Sue; Minstrell, Jim
2014-01-01
There is growing empirical evidence that instructional coaching can help teachers transfer their learning from professional trainings (e.g., new strategies) to classroom practice and that coaching promotes greater collaboration and reflection among teachers. At the same time, however, research on the effectiveness of particular coaching models and…
NASA Astrophysics Data System (ADS)
Mills, Jada Jamerson
There is a need for STEM (science, technology, engineering, and mathematics) education to be taught effectively in elementary schools. In order to achieve this, teacher preparation programs should graduate confident, content strong teachers to convey knowledge to elementary students. This study used interdisciplinary collaboration between the School of Education and the College of Liberal Arts through a Learning-by-Teaching method (LdL): Lernen durch Lernen in German. Pre-service teacher (PST) achievement levels of understanding science concepts based on pretest and posttest data, quality of lesson plans developed, and enjoyment of the class based on the collaboration with science students. The PSTs enrolled in two treatment sections of EDEL 404: Science in the Elementary Classroom collaborated with science students enrolled in BISC 327: Introductory Neuroscience to enhance their science skills and create case-based lesson plans on neurothology topics: echolocation, electrosensory reception, steroid hormones, and vocal learning. The PSTs enrolled in the single control section of EDEL 404 collaborated with fellow elementary education majors to develop lesson plans also based on the same selected topics. Qualitative interviews of education faculty, science faculty, and PSTs provided depth to the quantitative findings. Upon lesson plan completion, in-service teachers also graded the two best and two worst plans for the treatment and control sections and a science reviewer graded the plans for scientific accuracy. Statistical analyses were conducted for hypotheses, and one significant hypothesis found that PSTs who collaborated with science students had more positive science lesson plan writing attitudes than those who did not. Despite overall insignificant statistical analyses, all PSTs responded as more confident after collaboration. Additionally, interviews provided meaning and understanding to the insignificant statistical results as well as scientific accuracy of the lesson plans.
Page, William R.; Parcher, Jean W.; Stefanov, Jim
2013-01-01
Natural hazards such as earthquakes, landslides and debris flows, wildfires, hurricanes, and intense storm-induced flash floods threaten communities to varying degrees all along the United States–Mexican border. The U.S. Geological Survey (USGS) collaborates with Federal, State, and local agencies to minimize the effects of natural hazards by providing timely, unbiased science information to emergency response officials, resource managers, and the public to help reduce property damage, injury, and loss of life. The USGS often mobilizes response efforts during and after a natural hazard event to provide technical and scientific counsel on recovery and response, and it has a long history of deploying emergency response teams to major disasters in both domestic and international locations. This chapter describes the challenges of natural hazards in the United States–Mexican border region and the capabilities of the USGS in the fields of hazard research, monitoring, and assessment, as well as preventative mitigation and post-disaster response.
An emerging research framework for studying informal learning and schools
NASA Astrophysics Data System (ADS)
Martin, Laura M. W.
2004-07-01
In recognition of the fact that science centers and other informal educational institutions can play a role in the reform of science, technology, engineering, and mathematics (STEM) education, several major research and professional programs are currently underway. This article discusses one such effort, the Center for Informal Learning and Schools (CILS), a collaboration of the Exploratorium, the University of California, Santa Cruz, and King's College, London and the need for a theoretical framework based on socio-cultural theory to link discussion of varied efforts characterizing science learning in informal settings. The article discusses two key problematics related to developments in the science education field of the past decade: (1) integrating studies that are undertaken from multiple disciplinary perspectives, namely, science education, developmental psychology, and cultural studies, and (2) characterizing critical properties of informal learning in museums. It reviews work that has been conducted in nonschool settings and, using examples from research conducted by the Center for Informal Learning and Schools, it reviews questions currently under investigation.
Advice and Frequently Asked Questions (FAQs) for Citizen-Science Environmental Health Assessments
Barzyk, Timothy M.; Huang, Hongtai; Williams, Ronald; Kaufman, Amanda; Essoka, Jonathan
2018-01-01
Citizen science provides quantitative results to support environmental health assessments (EHAs), but standardized approaches do not currently exist to translate findings into actionable solutions. The emergence of low-cost portable sensor technologies and proliferation of publicly available datasets provides unparalleled access to supporting evidence; yet data collection, analysis, interpretation, visualization, and communication are subjective approaches that must be tailored to a decision-making audience capable of improving environmental health. A decade of collaborative efforts and two citizen science projects contributed to three lessons learned and a set of frequently asked questions (FAQs) that address the complexities of environmental health and interpersonal relations often encountered in citizen science EHAs. Each project followed a structured step-by-step process in order to compare and contrast methods and approaches. These lessons and FAQs provide advice to translate citizen science research into actionable solutions in the context of a diverse range of environmental health issues and local stakeholders. PMID:29751612
Menear, Matthew; Stacey, Dawn; Brière, Nathalie; Légaré, France
2016-01-01
Introduction: Healthcare research increasingly focuses on interprofessional collaboration and on shared decision making, but knowledge gaps remain about effective strategies for implementing interprofessional collaboration and shared decision-making together in clinical practice. We used Kuhn’s theory of scientific revolutions to reflect on how an integrated interprofessional shared decision-making approach was developed and implemented over time. Methods: In 2007, an interdisciplinary team initiated a new research program to promote the implementation of an interprofessional shared decision-making approach in clinical settings. For this reflective case study, two new team members analyzed the team’s four projects, six research publications, one unpublished and two published protocols and organized them into recognizable phases according to Kuhn’s theory. Results: The merging of two young disciplines led to challenges characteristic of emerging paradigms. Implementation of interprofessional shared-decision making was hindered by a lack of conceptual clarity, a dearth of theories and models, little methodological guidance, and insufficient evaluation instruments. The team developed a new model, identified new tools, and engaged knowledge users in a theory-based approach to implementation. However, several unresolved challenges remain. Discussion: This reflective case study sheds light on the evolution of interdisciplinary team science. It offers new approaches to implementing emerging knowledge in the clinical context. PMID:28435417
Dogba, Maman Joyce; Menear, Matthew; Stacey, Dawn; Brière, Nathalie; Légaré, France
2016-07-19
Healthcare research increasingly focuses on interprofessional collaboration and on shared decision making, but knowledge gaps remain about effective strategies for implementing interprofessional collaboration and shared decision-making together in clinical practice. We used Kuhn's theory of scientific revolutions to reflect on how an integrated interprofessional shared decision-making approach was developed and implemented over time. In 2007, an interdisciplinary team initiated a new research program to promote the implementation of an interprofessional shared decision-making approach in clinical settings. For this reflective case study, two new team members analyzed the team's four projects, six research publications, one unpublished and two published protocols and organized them into recognizable phases according to Kuhn's theory. The merging of two young disciplines led to challenges characteristic of emerging paradigms. Implementation of interprofessional shared-decision making was hindered by a lack of conceptual clarity, a dearth of theories and models, little methodological guidance, and insufficient evaluation instruments. The team developed a new model, identified new tools, and engaged knowledge users in a theory-based approach to implementation. However, several unresolved challenges remain. This reflective case study sheds light on the evolution of interdisciplinary team science. It offers new approaches to implementing emerging knowledge in the clinical context.
ERIC Educational Resources Information Center
Lindner, M.; Kubat, C.
2014-01-01
The paper informs on the characteristics of a Comenius Network of seven organizations, who are collaborating in exchanging best practice on science camps. This exchange includes evaluation results on more science camps of European organizations, which will deliver information on organization, collaboration with companies, pedagogical aspects, as…
Schools and Informal Science Settings: Collaborate, Co-Exist, or Assimilate?
ERIC Educational Resources Information Center
Adams, Jennifer D.; Gupta, Preeti; DeFelice, Amy
2012-01-01
In this metalogue we build on the arguments presented by Puvirajah, Verma and Webb to discuss the nature of authentic science learning experiences in context of collaborations between schools and out-of-school time settings. We discuss the role of stakeholders in creating collaborative science learning practices and affordances of out of school…
Space Science is Alive with Art
NASA Astrophysics Data System (ADS)
Pell, Sarah Jane; Vermeulen, Angelo
2013-02-01
The history of human space flight and analogue and ground-based space science is alive with art. Artists, scientists and engineers working together build upon diverse frameworks of understanding, but also share tools and processes of investigation. By jointly stepping into new worlds and territories - with common purpose and mutual respect for curiosity - there emerge opportunities for encounters that offer an alternative viewpoint on things. Artists can introduce a meta perspective (taking a step back and inquiring into the practice of research), a historical, conceptual or aesthetic view, all of which can invite those who are researchers, engineers and inventors toward new insight and discovery. Scientist’s methods of inquiry and their particular ways of dealing with natural phenomena and technology can also be a great source of inspiration for artists. Often with technical curiosity, artists can also contribute to concrete R&D just as science can directly impact art and inform aesthetics. So combined, the different philosophies, the experiments and the field work can lead to collaborative outcomes that are positively contributing to research, exploration and advancement. Artist and biologist Angelo Vermeulen has been working together with the European Space Agency (ESA) MELiSSA research program since 2009. In response to the ESA invitation to reflect on the development of future space habitats, Vermeulen set up SEAD (Space Ecologies Art & Design), a platform for artistic research on the transfer of terrestrial ecosystems to space to facilitate space settlement. Artist and diver Sarah Jane Pell has been working with the underwater technology and biotechnology community since 2003. She joined NASA’s Luna Gaia team and the League of New World Explorers analogue space subsea habitat exploration mission Atlantica in 2006. Current and future work by these, and similar partnerships, illustrates a dynamic culture of fieldwork, lab protocols/studio practice, research and development, experimentation, demonstration/exhibition, publication and dissemination made possible by including artists in the fields of science and engineering. As ‘real’ collaborators, artists can truly move science and engineering forward; and by co-creating art works, they can improve science and technology communication. Collaboration between the arts and science should therefore be encouraged and fostered.
Seamless Provenance Representation and Use in Collaborative Science Scenarios
NASA Astrophysics Data System (ADS)
Missier, P.; Ludaescher, B.; Bowers, S.; Altintas, I.; Anand, M. K.; Dey, S.; Sarkar, A.; Shrestha, B.; Goble, C.
2010-12-01
The notion of sharing scientific data has only recently begun to gain ground in science, where data is still considered a private asset. There is growing evidence, however, that the benefits of scientific collaboration through early data sharing during the course of a science project may outgrow the risk of losing exclusive ownership of the data. As exemplar success stories are making the headlines[1], principles of effective information sharing have become the subject of e-science research. In particular, any piece of published data should be self-describing, to the extent necessary for consumers to determine its suitability for reuse in their own projects. This is accomplished by associating a body of formally specified and machine-processable metadata to the data. When data is produced and reused by independent groups, however, metadata interoperability issues emerge. This is the case for provenance, a form of metadata that describes the history of a data product, Y. Provenance is typically expressed as a graph-structured set of dependencies that account for the sequence of computational or interactive steps that led to Y, often starting from some primary, observational data. Traversing dependency graphs is one of the mechanisms used to answer questions on data reliability. In the context of the NSF DataONE project[2], we have been studying issues of provenance interoperability in scientific collaboration scenarios. Consider a first scientist, Alice, who publishes a data product X along with its provenance, and a second scientist who further transforms X into a new product Y, also along with its provenance. A third scientist, who is interested in Y, expects to be able to trace Y's history up to the inputs used by Alice. This is only possible, however, if provenance accumulates into a single, uniform graph that can be seamlessly traversed. This becomes problematic when provenance is captured using different tools and computational models (i.e. workflow systems), as well as when data is published and reused using mechanisms that are not provenance-aware. In this presentation we discuss requirements for ensuring provenance-aware data publishing and reuse, and describe the design and implementation of a prototype toolkit that involves two specific, and broadly used, workflow models, Kepler [3] and Taverna [4]. The implementation is expected to be adopted as part of DataONE's investigators' toolkit, in support of its mission of large-scale data preservation. Refs. [1]Sharing of Data Leads to Progress on Alzheimer’s, G. Kolata, NYT, 8/12/2010 [2]http://www.dataone.org [3]Ludaescher B., Altintas I. et al. Scientific Workflow Management and the Kepler System. Special Issue: Workflow in Grid Systems. Concurrency and Computation: Practice & Experience 18(10): 1039-1065, 2006 [4]D. Hull, K. Wolstencroft, R. Stevens, C. Goble, M. R. Pocock, P. Li, T. Oinn. Taverna: a tool for building and running workflows of services. Nucl. Acids Res. 34: W729-W732, 2006
Center for Center for Technology for Advanced Scientific Component Software (TASCS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kostadin, Damevski
A resounding success of the Scientific Discovery through Advanced Computing (SciDAC) program is that high-performance computational science is now universally recognized as a critical aspect of scientific discovery [71], complementing both theoretical and experimental research. As scientific communities prepare to exploit unprecedented computing capabilities of emerging leadership-class machines for multi-model simulations at the extreme scale [72], it is more important than ever to address the technical and social challenges of geographically distributed teams that combine expertise in domain science, applied mathematics, and computer science to build robust and flexible codes that can incorporate changes over time. The Center for Technologymore » for Advanced Scientific Component Software (TASCS)1 tackles these these issues by exploiting component-based software development to facilitate collaborative high-performance scientific computing.« less
De Stefano, Lucia; Hernández-Mora, Nuria; Iglesias, Ana; Sánchez, Berta
2017-06-15
The uncertainty associated with the definition of strategies for climate change adaptation poses a challenge that cannot be faced by science alone. We present a participatory experience where, instead of having science defining solutions and eliciting stakeholders' feedback, local actors actually drove the process. While principles and methods of the approach are easily adaptable to different local contexts, this paper shows the contribution of participatory dynamics to the design of adaptation measures in the biodiversity-rich socio-ecological region surrounding the Doñana wetlands (Southern Spain). During the process, stakeholders and scientists collaboratively designed a common scenario for the future in which to define and assess a portfolio of potential adaptation measures, and found a safe, informal space for open dialogue and information exchange. Through this dialogue, points of connection among local actors emerged around the need for more integrated, transparent design of adaptation measures; for strengthening local capacity; and for strategies to diversify economic activities in order to increase the resilience of the region. Copyright © 2016 Elsevier Ltd. All rights reserved.
Need for Enhanced Environmental Representation in the Implementation of One Health.
Barrett, Meredith A; Bouley, Timothy A
2015-06-01
Issues of global environmental change, global health, emerging disease, and sustainability present some of the most complex challenges of the twenty-first century. Individual disciplines cannot address these issues in isolation. Proactive, innovative, and trans-disciplinary solutions are required. Recognizing the inherent connectedness of humans, animals, plants, and their shared environment, One Health encourages the collaboration of many disciplines-including human and veterinary medicine, public health, social science, public policy, environmental science, and others-to address global and local health challenges. Despite great progress in this shift toward transdisciplinarity, the environmental component of the One Health paradigm remains underrepresented in One Health discourse. Human and animal health issues are commonly discussed under the umbrella of the One Health paradigm, while upstream environmental drivers and solutions are less prominent. We assessed the current integration of environmental issues in One Health publications and leadership. There is room for enhanced integration of environmental knowledge in the implementation of One Health approaches. We discuss the potential benefits from the collaboration between One Health and ecohealth, and explore strategies for increased environmental involvement.
Johnson, Samuel Y.; Cochrane, Guy R.; Golden, Nadine; Dartnell, Peter; Hartwell, Stephen; Cochran, Susan; Watt, Janet
2017-01-01
The California Seafloor and Coastal Mapping Program (CSCMP) is a collaborative effort to develop comprehensive bathymetric, geologic, and habitat maps and data for California's State Waters. CSCMP began in 2007 when the California Ocean Protection Council (OPC) and the National Oceanic and Atmospheric Administration (NOAA) allocated funding for high-resolution bathymetric mapping, largely to support the California Marine Life Protection Act and to update nautical charts. Collaboration and support from the U.S. Geological Survey and other partners has led to development and dissemination of one of the world's largest seafloor-mapping datasets. CSCMP provides essential science and data for ocean and coastal management, stimulates and enables research, and raises public education and awareness of coastal and ocean issues. Specific applications include:•Delineation and designation of marine protected areas•Characterization and modeling of benthic habitats and ecosystems•Updating nautical charts•Earthquake hazard assessments•Tsunami hazard assessments•Planning offshore infrastructure•Providing baselines for monitoring change•Input to models of sediment transport, coastal erosion, and coastal flooding•Regional sediment management•Understanding coastal aquifers•Providing geospatial data for emergency response
The Virtual Observatory as Critical Scientific Cyber Infrastructure.
NASA Astrophysics Data System (ADS)
Fox, P.
2006-12-01
Virtual Observatories can provide access to vast stores of scientific data: observations and models as well as services to analyze, visualize and assimilate multiple data sources. As these electronic resource become widely used, there is potential to improve the efficiency, interoperability, collaborative potential, and impact of a wide range of interdisciplinary scientific research. In addition, we know that as the diversity of collaborative science and volume of accompanying data and data generators/consumers grows so do the challenges. In order for Virtual Observatories to realize their potential and become indispensible infrastructure, social, political and technical challenges need to be addressed concerning (at least) roles and responsibilities, data and services policies, representations and interoperability of services, data search, access, and usability. In this presentation, we discuss several concepts and instances of the Virtual Observatory and related projects that may, and may not, be meeting the abovementioned challanges. We also argue that science driven needs and architecture development are critical in the development of sustainable (and thus agile) cyberinfrastructure. Finally we some present or emerging candidate technologies and organizational constructs that will need to be pursued.
Digital collaborative learning: identifying what students value
Hemingway, Claire; Adams, Catrina; Stuhlsatz, Molly
2015-01-01
Digital technologies are changing the learning landscape and connecting classrooms to learning environments beyond the school walls. Online collaborations among students, teachers, and scientists are new opportunities for authentic science experiences. Here we present findings generated on PlantingScience ( www.plantingscience.org), an online community where scientists from more than 14 scientific societies have mentored over 14,000 secondary school students as they design and think through their own team investigations on plant biology. The core intervention is online discourse between student teams and scientist mentors to enhance classroom-based plant investigations. We asked: (1) what attitudes about engaging in authentic science do students reveal, and (2) how do student attitudes relate to design principles of the program? Lexical analysis of open-ended survey questions revealed that students most highly value working with plants and scientists. By examining student responses to this cognitive apprenticeship model, we provide new perspectives on the importance of the personal relationships students form with scientists and plants when working as members of a research community. These perspectives have implications for plant science instruction and e-mentoring programs. PMID:26097690
Digital collaborative learning: identifying what students value.
Hemingway, Claire; Adams, Catrina; Stuhlsatz, Molly
2015-01-01
Digital technologies are changing the learning landscape and connecting classrooms to learning environments beyond the school walls. Online collaborations among students, teachers, and scientists are new opportunities for authentic science experiences. Here we present findings generated on PlantingScience ( www.plantingscience.org), an online community where scientists from more than 14 scientific societies have mentored over 14,000 secondary school students as they design and think through their own team investigations on plant biology. The core intervention is online discourse between student teams and scientist mentors to enhance classroom-based plant investigations. We asked: (1) what attitudes about engaging in authentic science do students reveal, and (2) how do student attitudes relate to design principles of the program? Lexical analysis of open-ended survey questions revealed that students most highly value working with plants and scientists. By examining student responses to this cognitive apprenticeship model, we provide new perspectives on the importance of the personal relationships students form with scientists and plants when working as members of a research community. These perspectives have implications for plant science instruction and e-mentoring programs.
ERIC Educational Resources Information Center
Ghosh, Jaideep; Kshitij, Avinash
2017-01-01
This article introduces a number of methods that can be useful for examining the emergence of large-scale structures in collaboration networks. The study contributes to sociological research by investigating how clusters of research collaborators evolve and sometimes percolate in a collaboration network. Typically, we find that in our networks,…
NASA Astrophysics Data System (ADS)
Lickteig, Amanda D.
In the past, literacy was viewed solely as the basic, functional skills of reading and writing. However, with the New London Group's (1996) proposal of multiliteracies and the more recent push for a plurality of literacies (NCTE, 2011), teachers have been urged to expand their definitions of literacy. This qualitative study explores how secondary-level social studies and science teachers perceive literacies and identifies their instructional literacies practices. Data were collected through a pre- and post-questionnaire, three focus group sessions, classroom observations, field notes, and artifacts. This study solicited nearly one hundred secondary social studies and science teachers from three Midwestern school districts. Eight educators (four social studies and four science) participated in the study that took place in the spring of 2015. Furthermore, a generous grant from a local chapter of Phi Delta Kappa partially funded this research. After applying initial and holistic codes to the data, nine themes emerged: conventional, progressive, hesitant/emerging, collaborate, calibrate, perform, practice, interdisciplinary, and intradisciplinary. The nine themes were further classified by how they appeared in the data: dispositional themes, behavioral themes, and bridge themes. Throughout the data analysis, contemporary genre theory guided the study (Devitt, 2004). Descriptive codes, derived from contemporary genre theory, further revealed that the situational, social, historical, and individual aspects of genre influence teachers' pedagogical practices related to multiple literacies across disciplines. Therefore, the ways in which teachers perceived multiple literacies and implemented them into classroom instruction are multifaceted and vary depending on grade level, content area, and teaching location. However, teachers' dispositions regarding literacy move beyond a traditional mindset of functional reading and writing as they engage in professional learning opportunities and collaborate within and across disciplines and grade levels. This study provides secondary educators insight into the prominence of multiple literacies present across content areas while also revealing the teaching methods and instructional strategies that foster multiple literacies.
Kwon, Jae Yung; Bulk, Laura Yvonne; Giannone, Zarina; Liva, Sarah; Chakraborty, Bubli; Brown, Helen
2018-01-01
Despite numerous studies on formal interprofessional education programes, less attention has been focused on informal interprofessional learning opportunities. To provide such an opportunity, a collaborative peer review process (CPRP) was created as part of a peer-reviewed journal. Replacing the traditional peer review process wherein two or more reviewers review the manuscript separately, the CPRP brings together students from different professions to collaboratively review a manuscript. The aim of this study was to assess whether the CPRP can be used as an informal interprofessional learning tool using an exploratory qualitative approach. Eight students from Counselling Psychology, Occupational and Physical Therapy, Nursing, and Rehabilitation Sciences were invited to participate in interprofessional focus groups. Data were analysed inductively using thematic analysis. Two key themes emerged, revealing that the CPRP created new opportunities for interprofessional learning and gave practice in negotiating feedback. The results reveal that the CPRP has the potential to be a valuable interprofessional learning tool that can also enhance reviewing and constructive feedback skills.
Army Maneuver Center of Excellence
2012-10-18
agreements throughout DoD DARPA, JIEDDO, DHS, FAA, DoE, NSA , NASA, SMDC, etc. Strategic Partnerships Benefit the Army Materiel Enterprise External... Neuroscience Network Sciences Hierarchical Computing Extreme Energy Science Autonomous Systems Technology Emerging Sciences Meso-scale (grain...scales • Improvements in Soldier-system overall performance → operational neuroscience and advanced simulation and training technologies
NASA Astrophysics Data System (ADS)
Glaves, Helen
2015-04-01
Marine research is rapidly moving away from traditional discipline specific science to a wider ecosystem level approach. This more multidisciplinary approach to ocean science requires large amounts of good quality, interoperable data to be readily available for use in an increasing range of new and complex applications. Significant amounts of marine data and information are already available throughout the world as a result of e-infrastructures being established at a regional level to manage and deliver marine data to the end user. However, each of these initiatives has been developed to address specific regional requirements and independently of those in other regions. Establishing a common framework for marine data management on a global scale necessitates that there is interoperability across these existing data infrastructures and active collaboration between the organisations responsible for their management. The Ocean Data Interoperability Platform (ODIP) project is promoting co-ordination between a number of these existing regional e-infrastructures including SeaDataNet and Geo-Seas in Europe, the Integrated Marine Observing System (IMOS) in Australia, the Rolling Deck to Repository (R2R) in the USA and the international IODE initiative. To demonstrate this co-ordinated approach the ODIP project partners are currently working together to develop several prototypes to test and evaluate potential interoperability solutions for solving the incompatibilities between the individual regional marine data infrastructures. However, many of the issues being addressed by the Ocean Data Interoperability Platform are not specific to marine science. For this reason many of the outcomes of this international collaborative effort are equally relevant and transferable to other domains.
Fourth Workshop on Science with the New Generation of High Energy Gamma-ray Experiments
NASA Astrophysics Data System (ADS)
Massai, Marco Maria; Omodei, Nicola; Spandre, Gloria
I. Space-based telescope. Integral-4 years in orbit / P. Umbertini, P. Caraveo. The Suzaku mission / K. Yamaoka. The Swift mission: two years of operation / A. Moretti. Gamma-ray astrophysics with AGILE / F.Longo et al., The AGILE collaboration. The GLAST mission / J.E. McEnery -- II. Ground-based telescope. Recent results from CANGAROO / M. Mori for the CANGAROO team. The H.E.S.S. project / C. Masterson for the H.E.S.S. collaboration. The MAGIC experiment / N. Turini for the MAGIC collaboration. VERITAS: status and performance / J. Holder for the VERITAS collaboration -- III. Galactic variable sources. Galactic variable sky with EGRET and GLAST / S. Digel. Galactic variable sources observed with H.E.S.S. / N. Komin for the H.E.S.S collaboration. Gamma ray pulsars in the GLAST era / M. Razzano. Solving the riddle of unidentified high-energy gamma-ray sources / P. Caraveo. Supernovae and gamma-ray burst / M. Della Valle. First cycle of MAGIC galactic observations / J. Cortina for the MAGIC collaboration. Gamma-rays and neutrinos from a SNR in the galactic center / V. Cavasinni, D. Grasso, L. Maccione. Solving GRBs and SGRs puzzles by precessing jets / D. Fargion, O. Lanciano, P. Oliva -- IV. Extragalactic sources. Multiwavelength observations and theories of blazers / G. Tosti. AGN observations with the MAGIC telescope / C. Bigongiari for the MAGIC collaboration. Gamma ray bursts/ L. Amati. X-rays and GeV flares in GRB light curves / A. Galli ... [et al.]. The highest energy emission from gamma ray bursts: MILAGRO's constraints and HAWC's potential / B. Dingus for the MILAGRO and HAWC collaborations. Observation of GRB with the MAGIC telescope / N. Galante, P. Piccioli for the MAGIC collaboration. GRB 060218 and the outliers with respect to the E-E correlation / G. Ghirlanda, G. Ghibellini -- V. Poster session. Study of the performance and calibration of the GLAST-LAT silicon tracker / M. Brigida, N. Giglietto, P. Spinelli. The online monitor for the GLAST calibration unit beam test / L. Baldini, J. Bregeon, C. Sgrò. ARGO-YBJ experiment: the scalar mode technique / I. James. on behalf of ARGO-YBJ collaboration. Analysis of pulsars in LAT data challenge 2: a population point of view / M. Razzano. Search of optimized cuts for gamma-ray pulsar detection with GLAST-LAT instrument / A. Calandro, N. Biglietto, P. Spinelli. Gamma-ray burst physics with GLAST / N. Omodei. The global fit approach to time-resolved spectroscopy GRBs / A. Chernenko.
The GLObal Robotic telescopes Intelligent Array for e-science (GLORIA)
NASA Astrophysics Data System (ADS)
Castro-Tirado, A. J.; Sánchez Moreno, F. M.; Pérez del Pulgar, C.; Azócar, D.; Beskin, G.; Cabello, J.; Cedazo, R.; Cuesta, L.; Cunniffe, R.; González, E.; González-Rodríguez, A.; Gorosabel, J.; Hanlon, L.; Hudec, R.; Jakubek, M.; Janeček, P.; Jelínek, M.; Lara-Gil, O.; Linttot, C.; López-Casado, M. C.; Malaspina, M.; Mankiewicz, L.; Maureira, E.; Maza, J.; Muñoz-Martínez, V. F.; Nicastro, L.; O'Boyle, E.; Palazzi, E.; Páta, P.; Pio, M. A.; Prouza, M.; Serena, F.; Serra-Ricart, M.; Simpson, R.; Sprimont, P.; Strobl, J.; Topinka, M.; Vitek, S.; Zarnecki, A. F.
2015-05-01
GLORIA, funded under the auspices of the EU FP7 program in 2012--14, is a collaborative web--2.0 project based on a network of 18 robotic telescopes, which has become the first free-access network opened to the world for public outreach and specially for e-Science projects. On-line (solar and night) observations (experiments) as well as batch-mode (night) requests are possible. Educational material, applications (such as Personal Space) and complementary software have been also produced, besides the broadcast of several astronomical events during this period. GLORIA+ will exploit the full GLORIA potential in the years to come.
Clinic Personnel, Facilitator, and Parent Perspectives of eHealth Familias Unidas in Primary Care
Molleda, Lourdes; Bahamon, Monica; St. George, Sara M.; Perrino, Tatiana; Estrada, Yannine; Herrera, Deborah Correa; Pantin, Hilda; Prado, Guillermo
2018-01-01
Introduction The purpose of this qualitative study was to understand the feasibility and acceptability of implementing eHealth Familias Unidas, an Internet-based, family-based, preventive intervention for Hispanic adolescents, in primary care. Methods Semistructured individual interviews with clinic personnel and facilitators (i.e., physicians, nurse practitioners, administrators, and mental health workers; n = 9) and one focus group with parents (n = 6) were audiorecorded, transcribed verbatim, and analyzed using a general inductive approach. Results Nine major themes emerged, including recommendations to minimize disruption to clinic flow, improve collaboration and training of clinic personnel and the research team, promote the clinic as a trusted setting for improving children’s behavioral health, and highlight the flexibility and convenience of the eHealth format. Discussion This study provides feasibility and acceptability findings, along with important considerations for researchers and primary care personnel interested in collaborating to implement an eHealth preventive intervention in pediatric primary care. PMID:28012799
NASA Technical Reports Server (NTRS)
Shariq, Syed Z.; Kutler, Paul (Technical Monitor)
1997-01-01
The emergence of rapidly expanding technologies for distribution and dissemination of information and knowledge has brought to focus the opportunities for development of knowledge-based networks, knowledge dissemination and knowledge management technologies and their potential applications for enhancing productivity of knowledge work. The challenging and complex problems of the future can be best addressed by developing the knowledge management as a new discipline based on an integrative synthesis of hard and soft sciences. A knowledge management professional society can provide a framework for catalyzing the development of proposed synthesis as well as serve as a focal point for coordination of professional activities in the strategic areas of education, research and technology development. Preliminary concepts for the development of the knowledge management discipline and the professional society are explored. Within this context of knowledge management discipline and the professional society, potential opportunities for application of information technologies for more effectively delivering or transferring information and knowledge (i.e., resulting from the NASA's Mission to Planet Earth) for the development of policy options in critical areas of national and global importance (i.e., policy decisions in economic and environmental areas) can be explored, particularly for those policy areas where a global collaborative knowledge network is likely to be critical to the acceptance of the policies.
International collaboration in medical radiation science.
Denham, Gary; Allen, Carla; Platt, Jane
2016-06-01
International collaboration is recognised for enhancing the ability to approach complex problems from a variety of perspectives, increasing development of a wider range of research skills and techniques and improving publication and acceptance rates. The aim of this paper is to describe the current status of international collaboration in medical radiation science and compare this to other allied health occupations. This study utilised a content analysis approach where co-authorship of a journal article was used as a proxy for research collaboration and the papers were assigned to countries based on the corporate address given in the by-line of the publication. A convenience sample method was employed and articles published in the professional medical radiation science journals in the countries represented within our research team - Australia, the United Kingdom (UK) and the United States of America (USA) were sampled. Physiotherapy, speech pathology, occupational therapy and nursing were chosen for comparison. Rates of international collaboration in medical radiation science journals from Australia, the UK and the USA have steadily increased over the 3-year period sampled. Medical radiation science demonstrated lower average rates of international collaboration than the other allied health occupations sampled. The average rate of international collaboration in nursing was far below that of the allied health occupations sampled. Overall, the UK had the highest average rate of international collaboration, followed by Australia and the USA, the lowest. Overall, medical radiation science is lagging in international collaboration in comparison to other allied health fields.
NASA Astrophysics Data System (ADS)
Lee, O. A.
2016-12-01
Significant changes to the Arctic marine environment is anticipated as a result of decreasing sea ice and increasing anthropogenic activity that may occur with increasing access to ice-free waters. Two different collaboration efforts between scientists and artists on projects related to changes in the Alaskan Arctic waters are compared to present different outcomes from two collaboration strategies. The first collaboration involved a funded project to develop visualizations of change on the North Slope as part of an outreach effort for the North Slope Science Initiative Scenarios project. The second collaboration was a voluntary art-science collaboration to develop artwork about changing sea ice habitat for walrus as one contribution to a featured art show during the 2016 Arctic Science Summit Week. Both collaboration opportunities resulted in compelling visualizations. However the funded collaboration provided for more iterative discussions between the scientist and the collaborators for the film and animation products throughout the duration of the project. This ensured that the science remained an important focal point. In contrast, the product of the voluntary collaboration effort was primarily driven by the artist's perspective, although the discussions with the scientist played a role in connecting the content of the three panels in the final art and sculpture piece. This comparison of different levels of scientist-involvement and resources used to develop the visualizations highlights the importance of defining the intended audience and expectations for all collaborators early.
ERIC Educational Resources Information Center
Murphrey, Theresa Pesl; Harlin, Julie F.; Rayfield, John
2011-01-01
The purpose of this research was to investigate collaboration between agricultural science teachers and Extension agents in Texas from the perspective of successful collaboration. Programs, leaders, and participants in both agricultural education and Extension can be impacted positively through collaboration. However, successful collaboration…
Symbiosis on Campus: Collaborations of Scientists and Science Educators.
ERIC Educational Resources Information Center
Duggan-Haas, Don; Moscovici, Hedy; McNulty, Brendan; Gilmer, Penny J.; Eick, Charles J.; Wilson, John
This symposium will provide insights into collaborations among scientists and science educators in a variety of contexts-large research universities, small state and private institutions, and collaborations involving both pre- service and in-service programs. The session will begin with a brief framing of these collaborations as management of the…
NASA Astrophysics Data System (ADS)
Evans, J. D.; Hao, W.; Chettri, S. R.
2014-12-01
Disaster risk management has grown to rely on earth observations, multi-source data analysis, numerical modeling, and interagency information sharing. The practice and outcomes of disaster risk management will likely undergo further change as several emerging earth science technologies come of age: mobile devices; location-based services; ubiquitous sensors; drones; small satellites; satellite direct readout; Big Data analytics; cloud computing; Web services for predictive modeling, semantic reconciliation, and collaboration; and many others. Integrating these new technologies well requires developing and adapting them to meet current needs; but also rethinking current practice to draw on new capabilities to reach additional objectives. This requires a holistic view of the disaster risk management enterprise and of the analytical or operational capabilities afforded by these technologies. One helpful tool for this assessment, the GEOSS Architecture for the Use of Remote Sensing Products in Disaster Management and Risk Assessment (Evans & Moe, 2013), considers all phases of the disaster risk management lifecycle for a comprehensive set of natural hazard types, and outlines common clusters of activities and their use of information and computation resources. We are using these architectural views, together with insights from current practice, to highlight effective, interrelated roles for emerging earth science technologies in disaster risk management. These roles may be helpful in creating roadmaps for research and development investment at national and international levels.
NASA Astrophysics Data System (ADS)
Hughes, Janet
2001-07-01
The purpose of this study was to determine the extent of agreement among science supervisors and public high school science teachers regarding Actual and Desired role responsibilities for science supervisors in six categories, Curriculum, Methodology, Involvement in the Science Field, Staff Development, Procedural Duties, and Assessment and a seventh category measuring the supervisor's degree of Fostering Collaboration within the department. The Science Supervisor Questionnaire was developed specifically for this study and consisted of items that comprised the most current research on the roles of the science supervisor. The instrument was based on the responsibilities of department heads as delineated through a consolidation of the current research. Although the supervisors and the science teachers agreed among themselves to some extent on the seven subscales, the six role expectations of supervisors (Curriculum, Methodology, Involvement in the Science Field, Staff Development, Procedural Duties, and Assessment) and the Fostering of Collaboration, the amount and degree of consensus varied. There was more consensus in the desired roles of science supervisors suggesting that the groups understand and agree upon the expectations of the position. Those top priorities of science supervisor role expectations for both groups were Methodology, Curriculum, Procedural Duties and Staff Development. There was a difference in perceptions between the two groups of the actual role of the supervisor, indicating that what is actually happening in the science supervisor role conflicts with what is expected. Fostering Collaboration ranked lowest for both groups in both perceived actual and desired science supervisor performance. Fostering Collaboration was not seen as a priority by the supervisors and teachers in the teaching and learning environment. Teachers report that supervisors did not play a key role in fostering collaboration in this study.
Little, Meg M; St Hill, Catherine A; Ware, Kenric B; Swanoski, Michael T; Chapman, Scott A; Lutfiyya, M Nawal; Cerra, Frank B
2017-01-01
The National Institute of Health's concept of team science is a means of addressing complex clinical problems by applying conceptual and methodological approaches from multiple disciplines and health professions. The ultimate goal is the improved quality of care of patients with an emphasis on better population health outcomes. Collaborative research practice occurs when researchers from >1 health-related profession engage in scientific inquiry to jointly create and disseminate new knowledge to clinical and research health professionals in order to provide the highest quality of patient care to improve population health outcomes. Training of clinicians and researchers is necessary to produce clinically relevant evidence upon which to base patient care for disease management and empirically guided team-based patient care. In this study, we hypothesized that team science is an example of effective and impactful interprofessional collaborative research practice. To assess this hypothesis, we examined the contemporary literature on the science of team science (SciTS) produced in the past 10 years (2005–2015) and related the SciTS to the overall field of interprofessional collaborative practice, of which collaborative research practice is a subset. A modified preferred reporting items for systematic reviews and meta-analyses (PRISMA) approach was employed to analyze the SciTS literature in light of the general question: Is team science an example of interprofessional collaborative research practice? After completing a systematic review of the SciTS literature, the posed hypothesis was accepted, concluding that team science is a dimension of interprofessional collaborative practice. PMID:27619555
Little, Meg M; St Hill, Catherine A; Ware, Kenric B; Swanoski, Michael T; Chapman, Scott A; Lutfiyya, M Nawal; Cerra, Frank B
2017-01-01
The National Institute of Health's concept of team science is a means of addressing complex clinical problems by applying conceptual and methodological approaches from multiple disciplines and health professions. The ultimate goal is the improved quality of care of patients with an emphasis on better population health outcomes. Collaborative research practice occurs when researchers from >1 health-related profession engage in scientific inquiry to jointly create and disseminate new knowledge to clinical and research health professionals in order to provide the highest quality of patient care to improve population health outcomes. Training of clinicians and researchers is necessary to produce clinically relevant evidence upon which to base patient care for disease management and empirically guided team-based patient care. In this study, we hypothesized that team science is an example of effective and impactful interprofessional collaborative research practice. To assess this hypothesis, we examined the contemporary literature on the science of team science (SciTS) produced in the past 10 years (2005-2015) and related the SciTS to the overall field of interprofessional collaborative practice, of which collaborative research practice is a subset. A modified preferred reporting items for systematic reviews and meta-analyses (PRISMA) approach was employed to analyze the SciTS literature in light of the general question: Is team science an example of interprofessional collaborative research practice? After completing a systematic review of the SciTS literature, the posed hypothesis was accepted, concluding that team science is a dimension of interprofessional collaborative practice. Copyright © 2016 American Federation for Medical Research.
NASA Astrophysics Data System (ADS)
Coll, Sandhya Devi; Coll, Richard Kevin
2018-04-01
Background: Recent research and curriculum reforms have indicated the need for diversifying teaching approaches by drawing upon student interest and engagement in ways which makes learning science meaningful. Purpose: This study examines the integration of informal/free choice learning which occurred during learning experiences outside school (LEOS) with classroom learning using digital technologies. Specifically, the digital technologies comprised a learning management system (LMS), Moodle, which fits well with students' lived experiences and their digital world. Design and Method: This study examines three out-of-school visits to Informal Science Institutes (ISI) using a digitally integrated fieldtrip inventory (DIFI) Model. Research questions were analysed using thematic approach emerging along with semi-structured interviews, before, during and after the visit, and assessing students' learning experiences. Data comprised photographs, field notes, and unobtrusive observations of the classroom, wiki postings, student work books and teacher planning diaries. Results: We argue, that pre- and post-visit planning using the DIFI Model is more likely to engage learners, and the use of a digital learning platform was even more likely to encourage collaborative learning. The conclusion can also be drawn that students' level of motivation for collaborative learning positively correlates with their improvement in academic achievement.
NASA Astrophysics Data System (ADS)
Hill, L. C.
1999-12-01
The emergence of the largely silicate earth from a presumably cosmically normal, H-rich solar nebula 4.5 eons ago is an obviously important issue relevant to many disciplines of the physical sciences. The emergence of terrestrial life is an equally important issue for biological sciences. Recent discoveries of isotopically light carbon (i.e. putative chemical fossils) in 3.85+ Ga Issua, Greenland sediments have reopened the issue of whether terrestrial life may have emerged prior to the earliest known rocks so that one might use biological records to deduce early terrestrial environments. In addition, recent advances in molecular genetics have suggested that all known ancestral life forms passed through an early hydrogen-rich environment which is more consistent with the now rejected Urey hypothesis of a early jovian atmosphere than with contemporary geological and planetological paradigms. In this essay, then, we examine possible limitations of contemporary paradigms of planetary science since a prima facie case will be made that life could not emerge in those environments which those paradigms now allow. Of necessity, the discussion will also address some hidden conflicts embedded in various disciplinary methodologies (e.g. astronomy, biology, geology).
ERIC Educational Resources Information Center
Wendt, Jillian L.; Rockinson-Szapkiw, Amanda
2014-01-01
This quantitative, quasi-experimental pretest/posttest control group design examined the effects of online collaborative learning on middle school students' science literacy. For a 9-week period, students in the control group participated in collaborative face-to-face activities whereas students in the experimental group participated in online…
ERIC Educational Resources Information Center
Todd-Gibson, Christine
2013-01-01
This qualitative case study examined how middle school science teachers conducted collaborative inquiry and reflection about students' conceptual understanding, and how individual teachers in the middle school science group acted and made reflections in response to their collaborative inquiry. It also examined external influences that affected the…
ERIC Educational Resources Information Center
Todd-Gibson, Christine
2017-01-01
This qualitative case study examined how middle school science teachers conducted collaborative inquiry and reflection about students' conceptual understanding, and how individual teachers in the middle school science group acted and made reflections in response to their collaborative inquiry. It also examined external influences that affected the…
Viewpoints about collaboration between primary care and public health in Canada
2013-01-01
Background Although there is a global movement toward health system integration and collaboration, little is known about values, beliefs, and attitudes towards collaboration between stakeholders in public health (i.e. promotion, protection, and prevention with vulnerable groups and/or at the population level) and primary care (i.e., family practices, nurse-led clinics). The purpose of this study was to explore viewpoints of key stakeholders regarding primary care (PC) and public health (PH) collaboration in Canada. Methods We used Q-methodology to identify common viewpoints held by participants who attended a national meeting in Canada in 2010 to discuss PC and PH collaboration. The study was conducted in two phases. In Phase 1 a Q-sample, a Q-sort table, and a short demographic questionnaire were developed which were used in Phase 2 for data collection. The Q-sorts then were analysed to identify the salient factors and consensus statements. Results In total, 25 multidisciplinary individuals including researchers, policy-makers, directors, managers, and practitioners (e.g., nurses, family physicians, dietitians) participated. Using a by-person factor analysis, three factors (salient viewpoints) emerged. Factors were named based on their distinguishing statements as follows: a) System Driven Collaborators, b) Cautious Collaborators, and c) Competent Isolationists. System Driven Collaborators strongly believed that a clear mandate from the top is needed to enable PH, PC and the rest of the health system to effectively work together and that people in different branches in the Ministry/ Ministries have to strongly believe in collaboration, actively support it, and develop directed policies to foster organizations work together. Cautious Collaborators strongly supported the idea of having better consciousness-raising about what collaborations might be possible and beneficial, and also reflecting on the collaborations already in place. The Competent Isolationists strongly believed that it is necessary for PC and PH sectors to spend time to ensure that both parties clearly understand the differences between their roles. They believe that physicians, nurses, and social workers will not see the value in collaboration because they lack inter-professional educational programs. Conclusions Different viewpoints are held by stakeholders around PC and PH collaboration which have the potential to influence the success of collaborations. Understanding and managing these differences is important to assist change management processes required to build and maintain strong PC and PH collaborations. PMID:23945461
Katayama, Toshiaki; Arakawa, Kazuharu; Nakao, Mitsuteru; Ono, Keiichiro; Aoki-Kinoshita, Kiyoko F; Yamamoto, Yasunori; Yamaguchi, Atsuko; Kawashima, Shuichi; Chun, Hong-Woo; Aerts, Jan; Aranda, Bruno; Barboza, Lord Hendrix; Bonnal, Raoul Jp; Bruskiewich, Richard; Bryne, Jan C; Fernández, José M; Funahashi, Akira; Gordon, Paul Mk; Goto, Naohisa; Groscurth, Andreas; Gutteridge, Alex; Holland, Richard; Kano, Yoshinobu; Kawas, Edward A; Kerhornou, Arnaud; Kibukawa, Eri; Kinjo, Akira R; Kuhn, Michael; Lapp, Hilmar; Lehvaslaiho, Heikki; Nakamura, Hiroyuki; Nakamura, Yasukazu; Nishizawa, Tatsuya; Nobata, Chikashi; Noguchi, Tamotsu; Oinn, Thomas M; Okamoto, Shinobu; Owen, Stuart; Pafilis, Evangelos; Pocock, Matthew; Prins, Pjotr; Ranzinger, René; Reisinger, Florian; Salwinski, Lukasz; Schreiber, Mark; Senger, Martin; Shigemoto, Yasumasa; Standley, Daron M; Sugawara, Hideaki; Tashiro, Toshiyuki; Trelles, Oswaldo; Vos, Rutger A; Wilkinson, Mark D; York, William; Zmasek, Christian M; Asai, Kiyoshi; Takagi, Toshihisa
2010-08-21
Web services have become a key technology for bioinformatics, since life science databases are globally decentralized and the exponential increase in the amount of available data demands for efficient systems without the need to transfer entire databases for every step of an analysis. However, various incompatibilities among database resources and analysis services make it difficult to connect and integrate these into interoperable workflows. To resolve this situation, we invited domain specialists from web service providers, client software developers, Open Bio* projects, the BioMoby project and researchers of emerging areas where a standard exchange data format is not well established, for an intensive collaboration entitled the BioHackathon 2008. The meeting was hosted by the Database Center for Life Science (DBCLS) and Computational Biology Research Center (CBRC) and was held in Tokyo from February 11th to 15th, 2008. In this report we highlight the work accomplished and the common issues arisen from this event, including the standardization of data exchange formats and services in the emerging fields of glycoinformatics, biological interaction networks, text mining, and phyloinformatics. In addition, common shared object development based on BioSQL, as well as technical challenges in large data management, asynchronous services, and security are discussed. Consequently, we improved interoperability of web services in several fields, however, further cooperation among major database centers and continued collaborative efforts between service providers and software developers are still necessary for an effective advance in bioinformatics web service technologies.
2010-01-01
Web services have become a key technology for bioinformatics, since life science databases are globally decentralized and the exponential increase in the amount of available data demands for efficient systems without the need to transfer entire databases for every step of an analysis. However, various incompatibilities among database resources and analysis services make it difficult to connect and integrate these into interoperable workflows. To resolve this situation, we invited domain specialists from web service providers, client software developers, Open Bio* projects, the BioMoby project and researchers of emerging areas where a standard exchange data format is not well established, for an intensive collaboration entitled the BioHackathon 2008. The meeting was hosted by the Database Center for Life Science (DBCLS) and Computational Biology Research Center (CBRC) and was held in Tokyo from February 11th to 15th, 2008. In this report we highlight the work accomplished and the common issues arisen from this event, including the standardization of data exchange formats and services in the emerging fields of glycoinformatics, biological interaction networks, text mining, and phyloinformatics. In addition, common shared object development based on BioSQL, as well as technical challenges in large data management, asynchronous services, and security are discussed. Consequently, we improved interoperability of web services in several fields, however, further cooperation among major database centers and continued collaborative efforts between service providers and software developers are still necessary for an effective advance in bioinformatics web service technologies. PMID:20727200
China hones plans for ambitious x-ray probe
NASA Astrophysics Data System (ADS)
Normile, Dennis
2018-03-01
China is raising the stakes in its bid to become a major player in space science. At a kick-off meeting in Beijing last week, China's National Space Science Center began detailed design studies for a satellite that would round out an array of orbiting platforms for probing x-rays from the most violent corners of the cosmos. The enhanced X-Ray Timing and Polarimetry (eXTP) mission would be China's most ambitious space science satellite yet—and its most expensive, with an estimated price tag of $473 million. To pull it off, China is assembling a collaboration involving more than 200 scientists so far from dozens of institutions in 20 countries. If the eXTP mission passes a final review next year, it would launch around 2025.
The Role of GIS and Data Librarians in Cyber-infrastructure Support and Governance
NASA Astrophysics Data System (ADS)
Branch, B. D.
2012-12-01
A governance road-map for cyber-infrastructure in the geosciences will include an intentional librarian core capable of technical skills that include GIS and open source support for data curation that involves all aspects of data life cycle management. Per Executive Order 12906 and other policy; spatial data, literacy, and curation are critical cyber-infrastructure needs in the near future. A formal earth science and space informatics librarian may be an outcome of such development. From e-science to e-research, STEM pipelines need librarians as critical data intermediaries in technical assistance and collaboration efforts with scientists' data and outreach needs. Future training concerns should advocate trans-disciplinary data science and policy skills that will be necessary for data management support and procurement.
Synergy Between Archives, VO, and the Grid at ESAC
NASA Astrophysics Data System (ADS)
Arviset, C.; Alvarez, R.; Gabriel, C.; Osuna, P.; Ott, S.
2011-07-01
Over the years, in support to the Science Operations Centers at ESAC, we have set up two Grid infrastructures. These have been built: 1) to facilitate daily research for scientists at ESAC, 2) to provide high computing capabilities for project data processing pipelines (e.g., Herschel), 3) to support science operations activities (e.g., calibration monitoring). Furthermore, closer collaboration between the science archives, the Virtual Observatory (VO) and data processing activities has led to an other Grid use case: the Remote Interface to XMM-Newton SAS Analysis (RISA). This web service-based system allows users to launch SAS tasks transparently to the GRID, save results on http-based storage and visualize them through VO tools. This paper presents real and operational use cases of Grid usages in these contexts
GIO-EMS and International Collaboration in Satellite based Emergency Mapping
NASA Astrophysics Data System (ADS)
Kucera, Jan; Lemoine, Guido; Broglia, Marco
2013-04-01
During the last decade, satellite based emergency mapping has developed into a mature operational stage. The European Union's GMES Initial Operations - Emergency Management Service (GIO-EMS), is operational since April 2012. It's set up differs from other mechanisms (for example from the International Charter "Space and Major Disasters"), as it extends fast satellite tasking and delivery with the value adding map production as a single service, which is available, free of charge, to the authorized users of the service. Maps and vector datasets with standard characteristics and formats ranging from post-disaster damage assessment to recovery and disaster prevention are covered by this initiative. Main users of the service are European civil protection authorities and international organizations active in humanitarian aid. All non-sensitive outputs of the service are accessible to the public. The European Commission's in-house science service Joint Research Centre (JRC) is the technical and administrative supervisor of the GIO-EMS. The EC's DG ECHO Monitoring and Information Centre acts as the service's focal point and DG ENTR is responsible for overall service governance. GIO-EMS also aims to contribute to the synergy with similar existing mechanisms at national and international level. The usage of satellite data for emergency mapping has increased during the last years and this trend is expected to continue because of easier accessibility to suitable satellite and other relevant data in the near future. Furthermore, the data and analyses coming from volunteer emergency mapping communities are expected to further enrich the content of such cartographic products. In the case of major disasters the parallel activity of more providers is likely to generate non-optimal use of resources, e.g. unnecessary duplication; whereas coordination may lead to reduced time needed to cover the disaster area. Furthermore the abundant number of geospatial products of different characteristics and quality can become confusing for users. The urgent need for a better coordination has led to establishment of the International Working Group on Satellite Based Emergency Mapping (IWG-SEM). Members of the IWG-SEM, which include JRC, USGS, DLR-ZKI, SERVIR, Sentinel Asia, UNOSAT, UN-SPIDER, GEO, ITHACA and SERTIT have recognized the need to establish the best practice between operational satellite-based emergency mapping programs. The group intends to: • work with the appropriate organizations on definition of professional standards for emergency mapping, guidelines for product generation and reviewing relevant technical standards and protocols • facilitate communication and collaboration during the major emergencies • stimulate coordination of expertise and capacities. The existence of the group and the cooperation among members already brought benefits during recent disasters in Africa and Europe in 2012 in terms of faster and effective satellite data provision and better product generation.
Making science accessible through collaborative science teacher action research on feminist pedagogy
NASA Astrophysics Data System (ADS)
Capobianco, Brenda M.
The underrepresentation of women and minorities in science is an extensively studied yet persistent concern of our society. Major reform movements in science education suggest that better teaching, higher standards, and sensitivity to student differences can overcome long-standing obstacles to participation among women and minorities. In response to these major reform movements, researchers have suggested teachers transform their goals, science content, and instructional practices to make science more attractive and inviting to all students, particularly young women and minorities (Barton, 1998; Brickhouse, 1994; Mayberry & Rees, 1999; Rodriguez, 1999; Roychoudhury, Tippins, & Nichols, 1995). One of the more dominant approaches currently heralded is the use of feminist pedagogy in science education. The purpose of this study was to examine the ways eleven middle and high school science teachers worked collaboratively to engage in systematic, self-critical inquiry of their own practice and join with other science teachers to engage in collaborative conversations in effort to transform their practice for a more equitable science education. Data were gathered via semi-structured interviews, whole group discussions, classroom observations, and review of supporting documents. Data analysis was based on grounded theory (Strauss & Corbin, 1990) and open coding (Miles and Huberman, 1994). This study described the collective processes the science teachers and university researcher employed to facilitate regular collaborative action research meetings over the course of six months. Findings indicated that engaging in collaborative action research allowed teachers to gain new knowledge about feminist science teaching, generate a cluster of pedagogical possibilities for inclusive pedagogy, and enhance their understanding for science teaching. Additional findings indicated dilemmas teachers experienced including resistance to a feminist agenda and concerns for validity in action research. This study revealed that there are no uniform solutions or standard methods to address issues of equity and accessibility in science education. This study recommends teachers be given time, support, and freedom to collaborate with other teacher-researchers, enact decisions for change, and reflect on and make public the results of their work. Additional implications suggest science teacher educators collaborate with practicing science teachers to devise practical applications and feasible resources for a wider audience.
The CompreHensive collaborativE Framework (CHEF)
NASA Astrophysics Data System (ADS)
Knoop, P. A.; Hardin, J.; Killeen, T.; Middleton, D.
2002-12-01
Data integration, publication, and archiving have become important considerations in most fields of science as experiments and models increase in complexity, and the collaborations necessary to conduct the research grow broader. The development of well thought out strategies and standards for such data handling, however, only goes part way in supporting the scientific process. A primary driving force for such efforts is the need of scientists to access and work with data in a timely, reasonable, and often collaborative fashion. Internet-based collaborative environments are one way to help complete this picture, linking scientists to the data they seek and to one another (e.g., Towards a Robust, Agile, and Comprehensive Information Infrastructure for the Geosciences: A Strategic Plan For High Performance Simulation, NCAR, 2000, http://www.ncar.ucar.edu/Director/plan.pdf). The CompreHensive collaborativE Framework (CHEF, http://chefproject.org) is a generic, extensible, web-based, open-source environment for collaboration. CHEF's goal is to provide the basic building blocks from which a community can assemble a collaborative environment that fits their needs. The design of CHEF has been influenced by our experience developing the Space Physics and Aeronomy Research Collaboratory (SPARC, http://www.si.umich.edu/SPARC), which provides integrated access to a wide variety of heterogeneous data sources, including community-standardized data bases. The design has also been heavily influenced by our involvement with an effort to extract and codify the broad underlying technical and social elements that lead to successful collaboratories (http://www.scienceofcollaboratories.org). A collaborative environment is in itself also not the complete answer to data handling, rather, it provides a facilitating environment in which community efforts to integrate, publish, archive, and share data using standard formats and practices can be taken advantage of by the end-users, the scientists. We present examples of how CHEF and its predecessors are utilized in a wide variety of scientific communities, including engineering, chemistry, and the geosciences. In particular, we focus on CHEF's utilization by the earthquake engineering community, whose Network for Earthquake Engineering Simulation (NEES, http://www.nees.org) involves a community effort to develop data standards and practices. In this context NEES is using CHEF as the "integration" environment in which to place the "tools" that bring together scientists and data; this includes data browsers, meta-data search engines, real-time and archival data viewers, etc. By developing these tools within the CHEF framework and exposing the community-developed data standards to the framework, they automatically gain the features, functionality, and capabilities offered by the collaborative environment. We also explore how a collaborative environment, in conjunction with community developed standards and practices for data integration, publishing, and archiving, could benefit the ocean science community.
ERIC Educational Resources Information Center
Berg, Craig A.; Jefson, Cristy
This paper utilizes the characteristics of model science instruction to identify exemplary Internet-based science collaborations. The filter for attaining "exemplary" status was based on state and national standards-generating initiatives and the corresponding implications for appropriate student activity in science classrooms. Twenty…
Lower Columbia River and Estuary Habitat Monitoring Study, 2011 - Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borde, Amy B.; Kaufmann, Ronald M.; Cullinan, Valerie I.
The Ecosystem Monitoring Program is a collaborative effort between the Lower Columbia River Estuary Partnership (LCREP), University of Washington, Wetland Ecosystem Team (UW), US Geological Survey, Water Science Center (USGS), National Oceanic and Atmospheric Administration, National Marine Fisheries Service (NOAA-Fisheries, hereafter NOAA), and Pacific Northwest National Laboratory, Marine Sciences Laboratory (PNNL). The goal of the program is to conduct emergent wetland monitoring aimed at characterizing salmonid habitats in the lower Columbia River and estuary (LCRE) from the mouth of the estuary to Bonneville Dam (Figure 1). This is an ecosystem based monitoring program focused on evaluating status and trends inmore » habitat and reducing uncertainties regarding these ecosystems to ultimately improve the survival of juvenile salmonids through the LCRE. This project comprehensively assesses habitat, fish, food web, and abiotic conditions in the lower river, focusing on shallow water and vegetated habitats used by juvenile salmonids for feeding, rearing and refugia. The information is intended to be used to guide management actions associated with species recovery, particularly that of threatened and endangered salmonids. PNNL’s role in this multi-year study is to monitor the habitat structure (e.g., vegetation, topography, channel morphology, and sediment type) as well as hydrologic patterns.« less
Advancing Environmental Health: A Ballroom Dance Between Human Health and Earth Sciences Research
NASA Astrophysics Data System (ADS)
Miller, A.
2016-12-01
The mission of the National Institute of Environmental Health Sciences (NIEHS) is to discover how the environment affects people in order to promote healthier lives. Translation of this mission into a meaningful reality entails extensive interdisciplinary interactions, expertise, and collaborations between the traditional health and earth sciences communities. Efforts to advance our understanding of adverse effects and illness associated with environmental factors requires not only a refined understanding of the biological mechanisms and pathways (e.g., inflammation, epigenetic changes, oxidative stress, mutagenesis, etc.) related to function and disease, but also the incredibly broad and complex environmental exposures and systems that influence these processes. Further complicating efforts to understand such interactions is the need to take into account individual susceptibility to disease across the human life span. While it is clear that environmental exposures can be readily linked to disease in individuals and to disproportionate health disparities in populations, the underlying risk factors for such findings are often elusive. Health and earth scientists have a long tradition of crossing their scientific divides to work together on a wide range of problems and issues, including disasters. Emergency situations, such as the environmental asbestos contamination in Libby, Montana, the Gulf Oil Spill, numerous chemical releases into air and water, wildfires, the World Trade Center Attack, and responses to Ebola, and now Zika, demand the collective expertise of the "environmental health sciences enterprise" to protect the public's health, facilitate recovery, and improve future preparedness. Furthermore, such high visibility efforts stand as a clear example of what human and earth sciences research can accomplish when transformative interdisciplinary approaches and a diverse well-trained cadre of scientists dance together on the ballroom floor.
Collaboration and patient safety at an emergency department - a qualitative case study.
Pedersen, Anna Helene Meldgaard; Rasmussen, Kurt; Grytnes, Regine; Nielsen, Kent Jacob
2018-03-19
Purpose The purpose of this paper is to examine how conflicts about collaboration between staff at different departments arose during the establishment of a new emergency department and how these conflicts affected the daily work and ultimately patient safety at the emergency department. Design/methodology/approach This qualitative single case study draws on qualitative semi-structured interviews and participant observation. The theoretical concepts "availability" and "receptiveness" as antecedents for collaboration will be applied in the analysis. Findings Close collaboration between departments was an essential precondition for the functioning of the new emergency department. The study shows how a lack of antecedents for collaboration affected the working relation and communication between employees and departments, which spurred negative feelings and reproduced conflicts. This situation was seen as a potential threat for the safety of the emergency patients. Research limitations/implications This study presents a single case study, at a specific point in time, and should be used as an illustrative example of how contextual and situational factors affect the working environment and through that patient safety. Originality/value Few studies provide an in-depth investigation of what actually takes place when collaboration between professional groups goes wrong and escalates, and how problems in collaboration may affect patient safety.
Materials sciences programs: Fiscal Year 1987
NASA Astrophysics Data System (ADS)
1987-09-01
Purpose of this report is to provide a convenient compilation and index of the DOE Materials Sciences Division programs. This compilation is primarily intended for use by administrators, managers, and scientists to help coordinate research. The report is divided into seven sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the Small Business Innovation Research Program, Sections D and E have information on DOE collaborative research centers, gives distribution of funding, and Section G has various indexes.
Accredited work-based learning: an approach for collaboration between higher education and practice.
Chalmers, H; Swallow, V M; Miller, J
2001-11-01
This article discusses the experience of creating a programme of accredited work based learning (AWBL) for emergency nurse practitioners (ENPs) who work in an Accident and Emergency (A&E) Department in the North East of England. The initiative highlighted the challenges of collaboration with purchasers of education and with professional colleagues, other than nurses. Accredited work-based learning was seen to be an appropriate means of supporting ENP role development. Some of the drivers of the development were: the need for a rapid response to wide ranging changes in the health service; the need to ensure rigour in the quality of both education and health care; to enable participants to engage in role development with appropriate skills, confidence and competence; and to ensure that the learning programme had parity in its design with conventional university based learning. The aim was to collaborate in the creation of learning which was relevant to the Trust's drive to improve patient care which accommodated the nurses' common and individual learning needs and offered academically recognized learning opportunities in tune with the post-Dearing ethos in higher education. This aim was reached and included a great deal of learning on the part of the collaborating partners. Copyright 2001 Harcourt Publishers Ltd.
Henly, Susan J; McCarthy, Donna O; Wyman, Jean F; Heitkemper, Margaret M; Redeker, Nancy S; Titler, Marita G; McCarthy, Ann Marie; Stone, Patricia W; Moore, Shirley M; Alt-White, Anna C; Conley, Yvette P; Dunbar-Jacob, Jacqueline
2015-01-01
The Council for the Advancement of Nursing Science aims to "facilitate and recognize life-long nursing science career development" as an important part of its mission. In light of fast-paced advances in science and technology that are inspiring new questions and methods of investigation in the health sciences, the Council for the Advancement of Nursing Science convened the Idea Festival for Nursing Science Education and appointed the Idea Festival Advisory Committee (IFAC) to stimulate dialogue about linking PhD education with a renewed vision for preparation of the next generation of nursing scientists. Building on the 2005 National Research Council report Advancing The Nation's Health Needs and the 2010 American Association of Colleges of Nursing Position Statement on the Research-Focused Doctorate Pathways to Excellence, the IFAC specifically addressed the capacity of PhD programs to prepare nursing scientists to conduct cutting-edge research in the following key emerging and priority areas of health sciences research: omics and the microbiome; health behavior, behavior change, and biobehavioral science; patient-reported outcomes; big data, e-science, and informatics; quantitative sciences; translation science; and health economics. The purpose of this article is to (a) describe IFAC activities, (b) summarize 2014 discussions hosted as part of the Idea Festival, and (c) present IFAC recommendations for incorporating these emerging areas of science and technology into research-focused doctoral programs committed to preparing graduates for lifelong, competitive careers in nursing science. The recommendations address clearer articulation of program focus areas; inclusion of foundational knowledge in emerging areas of science in core courses on nursing science and research methods; faculty composition; prerequisite student knowledge and skills; and in-depth, interdisciplinary training in supporting area of science content and methods. Copyright © 2015 Elsevier Inc. All rights reserved.
Collaboration, interdisciplinarity, and the epistemology of contemporary science.
Andersen, Hanne
2016-04-01
Over the last decades, science has grown increasingly collaborative and interdisciplinary and has come to depart in important ways from the classical analyses of the development of science that were developed by historically inclined philosophers of science half a century ago. In this paper, I shall provide a new account of the structure and development of contemporary science based on analyses of, first, cognitive resources and their relations to domains, and second of the distribution of cognitive resources among collaborators and the epistemic dependence that this distribution implies. On this background I shall describe different ideal types of research activities and analyze how they differ. Finally, analyzing values that drive science towards different kinds of research activities, I shall sketch the main mechanisms underlying the perceived tension between disciplines and interdisciplinarity and argue for a redefinition of accountability and quality control for interdisciplinary and collaborative science. Copyright © 2015 Elsevier Ltd. All rights reserved.
The MY NASA DATA Project: Tools and a Collaboration Space for Knowledge Discovery
NASA Astrophysics Data System (ADS)
Chambers, L. H.; Alston, E. J.; Diones, D. D.; Moore, S. W.; Oots, P. C.; Phelps, C. S.
2006-05-01
The Atmospheric Science Data Center (ASDC) at NASA Langley Research Center is charged with serving a wide user community that is interested in its large data holdings in the areas of Aerosols, Clouds, Radiation Budget, and Tropospheric Chemistry. Most of the data holdings, however, are in large files with specialized data formats. The MY NASA DATA (mynasadata.larc.nasa.gov) project began in 2004, as part of the NASA Research, Education, and Applications Solutions Network (REASoN), in order to open this important resource to a broader community including K-12 education and citizen scientists. MY NASA DATA (short for Mentoring and inquirY using NASA Data on Atmospheric and earth science for Teachers and Amateurs) consists of a web space that collects tools, lesson plans, and specially developed documentation to help the target audience more easily use the vast collection of NASA data about the Earth System. The core piece of the MY NASA DATA project is the creation of microsets (both static and custom) that make data easily accessible. The installation of a Live Access Server (LAS) greatly enhanced the ability for teachers, students, and citizen scientists to create and explore custom microsets of Earth System Science data. The LAS, which is an open source software tool using emerging data standards, also allows the MY NASA DATA team to make available data on other aspects of the Earth System from collaborating data centers. We are currently working with the Physical Oceanography DAAC at the Jet Propulsion Laboratory to bring in several parameters describing the ocean. In addition, MY NASA DATA serves as a central space for the K-12 community to share resources. The site already includes a dozen User-contributed lesson plans. This year we will be focusing on the Citizen Science portion of the site, and will be welcoming user-contributed project ideas, as well as reports of completed projects. An e-mentor network has also been created to involve a wider community in answering questions on scientific and pedagogical aspects of data use. The MY NASA DATA website, and an initial collection of lesson plans, have passed the NASA Earth Science Education peer review process, and thus are also being cataloged in the Digital Library for Earth System Education (DLESE).
Collaborative research, knowledge and emergence.
Zittoun, Tania; Baucal, Aleksandar; Cornish, Flora; Gillespie, Alex
2007-06-01
We use the notion of emergence to consider the sorts of knowledge that can be produced in a collaborative research project. The notion invites us to see collaborative work as a developmental dynamic system in which various changes constantly occur. Among these we examine two sorts of knowledge that can be produced: scientific knowledge, and collaborative knowledge. We argue that collaborative knowledge can enable researchers to reflectively monitor their collaborative project, so as to encourage its most productive changes. On the basis of examples taken from this special issue, we highlight four modes of producing collaborative knowledge and discuss the possible uses of such knowledge.
CP asymmetries in Strange Baryon Decays
NASA Astrophysics Data System (ADS)
Bigi, I. I.; Kang, Xian-Wei; Li, Hai-Bo
2018-01-01
While indirect and direct CP violation (CPV) has been established in the decays of strange and beauty mesons, no CPV has yet been found for baryons. There are different paths to finding CP asymmetry in the decays of strange baryons; they are all highly non-trivial. The HyperCP Collaboration has probed CPV in the decays of single Ξ and Λ [1]. We discuss future lessons from {{{e}}}+{{{e}}}- collisions at BESIII/BEPCII: probing decays of pairs of strange baryons, namely Λ, Σ and Ξ. Realistic goals are to learn about non-perturbative QCD. One can hope to find CPV in the decays of strange baryons; one can also dream of finding the impact of New Dynamics. We point out that an important new era will start with the BESIII/BEPCII data accumulated by the end of 2018. This also supports new ideas to trigger {{J}}/{{\\psi }}\\to \\bar{{{Λ }}}{{Λ }} at the LHCb collaboration. Supported by National Science Foundation (PHY-1520966), National Natural Science Foundation of China (11335009, 11125525), Joint Large-Scale Scientific Facility Funds of the NSFC and CAS (U1532257), the National Key Basic Research Program of China (2015CB856700), Key Research Program of Frontier Sciences, CAS, (QYZDJ-SSW-SLH003), XWK’s work is also supported by MOST (Taiwan) (104-2112-M-001-022)
NASA Astrophysics Data System (ADS)
Taylor, Jennifer Anne
This thesis presents a qualitative investigation of the effects of social competence on the participation of students with learning disabilities (LD) in the science learning processes associated with collaborative, guided inquiry learning. An inclusive Grade 2 classroom provided the setting for the study. Detailed classroom observations were the primary source of data. In addition, the researcher conducted two interviews with the teacher, and collected samples of students' written work. The purpose of the research was to investigate: (a) How do teachers and peers mediate the participation of students with LD in collaborative, guided inquiry science activities, (b) What learning processes do students with LD participate in during collaborative, guided inquiry science activities, and (c) What components of social competence support and constrain the participation of students with LD during collaborative, guided inquiry science activities? The findings of the study suggest five key ideas for research and teaching in collaborative, guided inquiry science in inclusive classrooms. First, using a variety of collaborative learning formats (whole-class, small-group, and pairs) creates more opportunities for the successful participation of diverse students with LD. Second, creating an inclusive community where students feel accepted and valued may enhance the academic and social success of students with LD. Third, careful selection of partners for students with LD is important for a positive learning experience. Students with LD should be partnered with academically successful, socially competent peers; also, this study suggested that students with LD experience more success working collaboratively in pairs rather than in small groups. Fourth, a variety of strategies are needed to promote active participation and positive social interactions for students with and without LD during collaborative, guided inquiry learning. Fifth, adopting a general approach to teaching collaborative inquiry that crosses curriculum borders may enhance success of inclusive teaching practices.
The SWITCH-ON Virtual Water-Science Laboratory
NASA Astrophysics Data System (ADS)
Arheimer, Berit; Boot, Gerben; Calero, Joan; Ceola, Serena; Gyllensvärd, Frida; Hrachowitz, Markus; Little, Lorna; Montanari, Alberto; Nijzink, Remko; Parajka, Juraj; Wagener, Thorsten
2017-04-01
The SWITCH-ON Virtual Water-Science Laboratory (VWSL) aims to facilitate collaboration and support reproducible experiments in water research. The goal is to overcome geographical distance for comparative hydrology and increase transparency when using computational tools in hydrological sciences. The VWSL gives access to open data through dedicated software tools for data search and upload, and helps creating collaborative protocols for joint experiments in the virtual environment. The VWSL will help scientists with: • Cooperation around the world - straightforward connections with other scientists in comparative analyses and collaboration, as a mean to accelerate scientific advance in hydrology. • Repeatability of experiments -thorough review of a large variety of numerical experiments, which is a foundational principle in scientific research, and improvement of research standards. • New forms of scientific research - by using online 'living' protocols, scientists you can elaborate ideas incrementally with a large group of colleagues and share data, tools, models, etc. in open science. The VWSL was developed within the EU project "Sharing Water Information to Tackle Changes in Hydrology - for Operational Needs" (Grant agreement No 603587). Visitors can choose to Define, Participate or Review experiments by clicking the start buttons (http://www.switch-on-vwsl.eu/). Anyone can view protocols without log-in (that's important for Open Science) - but to create, participate and edit protocols, you need to Log-in for security reasons. During the work process, the protocol is moved from one view to another as the experiment evolves from idea, to on-going, to be completed. The users of the Lab also get access to useful tools for running collaborative experiments, for instance: Open data Search, Data (and metadata) Upload, and Create Protocol tools. So far, eight collaborative experiments have been completed in the VWSL and resulted in research papers (published or submitted), and there are currently four on-going experiments, which also involves external participants, not paid by the project. The VWSL is now launched and open to everyone but it will be continuously developed and sustained also after the project. This presentation will give an on-line demonstration of the major features of the present VWSL and discuss some future visions and major challenges in this e-infrastructure.
NASA Astrophysics Data System (ADS)
McGibbney, L. J.; Jiang, Y.; Burgess, A. B.
2017-12-01
Big Earth observation data have been produced, archived and made available online, but discovering the right data in a manner that precisely and efficiently satisfies user needs presents a significant challenge to the Earth Science (ES) community. An emerging trend in information retrieval community is to utilize knowledge graphs to assist users in quickly finding desired information from across knowledge sources. This is particularly prevalent within the fields of social media and complex multimodal information processing to name but a few, however building a domain-specific knowledge graph is labour-intensive and hard to keep up-to-date. In this work, we update our progress on the Earth Science Knowledge Graph (ESKG) project; an ESIP-funded testbed project which provides an automatic approach to building a dynamic knowledge graph for ES to improve interdisciplinary data discovery by leveraging implicit, latent existing knowledge present within across several U.S Federal Agencies e.g. NASA, NOAA and USGS. ESKG strengthens ties between observations and user communities by: 1) developing a knowledge graph derived from various sources e.g. Web pages, Web Services, etc. via natural language processing and knowledge extraction techniques; 2) allowing users to traverse, explore, query, reason and navigate ES data via knowledge graph interaction. ESKG has the potential to revolutionize the way in which ES communities interact with ES data in the open world through the entity, spatial and temporal linkages and characteristics that make it up. This project enables the advancement of ESIP collaboration areas including both Discovery and Semantic Technologies by putting graph information right at our fingertips in an interactive, modern manner and reducing the efforts to constructing ontology. To demonstrate the ESKG concept, we will demonstrate use of our framework across NASA JPL's PO.DAAC, NOAA's Earth Observation Requirements Evaluation System (EORES) and various USGS systems.
ERIC Educational Resources Information Center
Warnick, Brian K.; Thompson, Gregory W.
2007-01-01
This study is part of a larger investigation which focused on determining and comparing the perceptions of agriculture teachers and science teachers on integrating science into agricultural education programs. Science and agriculture teachers' perceptions of barriers to integrating science, the support of stakeholders, and collaboration between…
NASA Astrophysics Data System (ADS)
Schoedinger, S. E.; McDougall, C.; Karsten, J. L.; Campbell, D.; Pippin, M. R.; Chambers, L. H.
2013-12-01
The effort needed for comprehensive climate change education is far greater than any one institution, education sector, or even federal agency can handle. Recognizing a need to synergistically combine efforts, NSF, NASA, and NOAA have created a collaborative community of their climate change education principal investigators (PIs) through tri-agency coordination. The goals of this tri-agency collaboration are to leverage existing resources, minimize duplicate efforts, and facilitate communication among this emergent community of scientists and educators. NASA, NOAA, and NSF work together to strategically coordinate and support a portfolio of projects focused on climate literacy and education in formal and informal learning environments. The activities of the tri-agency collaboration, including annual meetings for PIs, a catalog of the agencies collective investments in climate change education and the ongoing development of a nascent common evaluation framework, have created a strong national network for effectively engaging diverse audiences with the principles of climate literacy (see Eos Vol. 92, No. 24, 14 June 2011). Last year, after 3 years of active collaboration, similar programs underway at other U.S. Global Change Research Program agencies: the EPA, National Institutes for Environmental Health Sciences, and USDA, were engaged in the collaboration. And, in an attempt to understand the interests of the private sector in this arena, conversations have begun with private philanthropic organizations. This year, as many of the funded projects are maturing, the PI meeting will have a focus on bringing this community together to create a science-theme based tangible outcome that can move the field of climate change education forward. Additional outcomes from this PI meeting will be presented as well as the challenges that were encountered in bringing together institutions with diverse missions, and approaches developed to ensure all parties feel they're benefiting from the collaboration.
Boltax, Ariana L; Armanious, Stephanie; Kosinski-Collins, Melissa S; Pontrello, Jason K
2015-01-01
Modern research often requires collaboration of experts in fields, such as math, chemistry, biology, physics, and computer science to develop unique solutions to common problems. Traditional introductory undergraduate laboratory curricula in the sciences often do not emphasize connections possible between the various disciplines. We designed an interdisciplinary, medically relevant, project intended to help students see connections between chemistry and biology. Second term organic chemistry laboratory students designed and synthesized potential polymer inhibitors or inducers of polyglutamine protein aggregation. The use of novel target compounds added the uncertainty of scientific research to the project. Biology laboratory students then tested the novel potential pharmaceuticals in Huntington's disease model assays, using in vitro polyglutamine peptide aggregation and in vivo lethality studies in Drosophila. Students read articles from the primary literature describing the system from both chemical and biological perspectives. Assessment revealed that students emerged from both courses with a deeper understanding of the interdisciplinary nature of biology and chemistry and a heightened interest in basic research. The design of this collaborative project for introductory biology and organic chemistry labs demonstrated how the local interests and expertise at a university can be drawn from to create an effective way to integrate these introductory courses. Rather than simply presenting a series of experiments to be replicated, we hope that our efforts will inspire other scientists to think about how some aspect of authentic work can be brought into their own courses, and we also welcome additional collaborations to extend the scope of the scientific exploration. © 2015 The International Union of Biochemistry and Molecular Biology.
NASA Technical Reports Server (NTRS)
Falke, Stefan; Husar, Rudolf
2011-01-01
The goal of this REASoN applications and technology project is to deliver and use Earth Science Enterprise (ESE) data and tools in support of air quality management. Its scope falls within the domain of air quality management and aims to develop a federated air quality information sharing network that includes data from NASA, EPA, US States and others. Project goals were achieved through a access of satellite and ground observation data, web services information technology, interoperability standards, and air quality community collaboration. In contributing to a network of NASA ESE data in support of particulate air quality management, the project will develop access to distributed data, build Web infrastructure, and create tools for data processing and analysis. The key technologies used in the project include emerging web services for developing self describing and modular data access and processing tools, and service oriented architecture for chaining web services together to assemble customized air quality management applications. The technology and tools required for this project were developed within DataFed.net, a shared infrastructure that supports collaborative atmospheric data sharing and processing web services. Much of the collaboration was facilitated through community interactions through the Federation of Earth Science Information Partners (ESIP) Air Quality Workgroup. The main activities during the project that successfully advanced DataFed, enabled air quality applications and established community-oriented infrastructures were: develop access to distributed data (surface and satellite), build Web infrastructure to support data access, processing and analysis create tools for data processing and analysis foster air quality community collaboration and interoperability.
Evolution and convergence of the patterns of international scientific collaboration.
Coccia, Mario; Wang, Lili
2016-02-23
International research collaboration plays an important role in the social construction and evolution of science. Studies of science increasingly analyze international collaboration across multiple organizations for its impetus in improving research quality, advancing efficiency of the scientific production, and fostering breakthroughs in a shorter time. However, long-run patterns of international research collaboration across scientific fields and their structural changes over time are hardly known. Here we show the convergence of international scientific collaboration across research fields over time. Our study uses a dataset by the National Science Foundation and computes the fraction of papers that have international institutional coauthorships for various fields of science. We compare our results with pioneering studies carried out in the 1970s and 1990s by applying a standardization method that transforms all fractions of internationally coauthored papers into a comparable framework. We find, over 1973-2012, that the evolution of collaboration patterns across scientific disciplines seems to generate a convergence between applied and basic sciences. We also show that the general architecture of international scientific collaboration, based on the ranking of fractions of international coauthorships for different scientific fields per year, has tended to be unchanged over time, at least until now. Overall, this study shows, to our knowledge for the first time, the evolution of the patterns of international scientific collaboration starting from initial results described by literature in the 1970s and 1990s. We find a convergence of these long-run collaboration patterns between the applied and basic sciences. This convergence might be one of contributing factors that supports the evolution of modern scientific fields.
Holman, Dawn M.; Buchanan, Natasha D.
2018-01-01
Compelling evidence suggests that early life exposures can affect lifetime cancer risk. In 2014, the Centers for Disease Control and Prevention’s (CDC’s) Cancer Prevention Across the Lifespan Workgroup hosted a series of virtual meetings with select experts to discuss the state of the evidence linking factors during the prenatal period and early childhood to subsequent risk of both pediatric and adult cancers. In this article, we present the results from a qualitative analysis of the meeting transcripts and summarize themes that emerged from our discussions with meeting participants. Themes included the state of the evidence linking early life factors to cancer risk, research gaps and challenges, the level of evidence needed to support taking public health action, and the challenges of communicating complex, and sometimes conflicting, scientific findings to the public. Opportunities for collaboration among public health agencies and other stakeholders were identified during these discussions. Potential next steps for the CDC and its partners included advancing and building upon epidemiology and surveillance work, developing and using evidence from multiple sources to inform decision-making, disseminating and communicating research findings in a clear and effective way, and expanding collaborations with grantees and other partners. As the science on early life factors and cancer risk continues to evolve, there are opportunities for collaboration to translate science into actionable public health practice. PMID:27940972
NASA Astrophysics Data System (ADS)
Rosemartin, A.; Marsh, L.; Lincicome, A.; Denny, E. G.; Wilson, B. E.
2011-12-01
The USA National Phenology Network (USA-NPN) serves science and society by promoting a broad understanding of plant and animal phenology and the relationships among phenological patterns and all aspects of environmental change. The Network was founded as an NSF-funded Research Coordination Network, for the purpose of fostering collaboration among scientists, policy-makers and the general public to address the challenges posed by global change and its impact on ecosystems and human health. Drupal is a powerful tool for emerging collaborative efforts in the sciences. The USA-NPN has leveraged Drupal through the course the organization's development. Early on, when the organization had few programing resources, Drupal provided a basic, customizable web presence. Today, the USA-NPN's Drupal website is content and feature-rich. The USA-NPN website features Drupal content types for community contributions of publications, affiliates, legacy data sets and phenology festivals. The legacy data set content type creates a reduced Darwin Core metadata record, and will be made available via an EML compliant feed. Map and grid views allow contributors to explore submitted records visually and through filters. Further extensions through the Services/OAuth modules have allowed the website to share logins (for instance, connecting a prototype Facebook app for data entry with the Drupal authentication mechanism). The USA-NPN has leveraged Drupal in a collaborative effort to collect, store, synthesize and output phenological data and information for plants, animals and the environment.
Seaton, Cherisse L; Holm, Nikolai; Bottorff, Joan L; Jones-Bricker, Margaret; Errey, Sally; Caperchione, Cristina M; Lamont, Sonia; Johnson, Steven T; Healy, Theresa
2018-05-01
To explore published empirical literature in order to identify factors that facilitate or inhibit collaborative approaches for health promotion using a scoping review methodology. A comprehensive search of MEDLINE, CINAHL, ScienceDirect, PsycINFO, and Academic Search Complete for articles published between January 2001 and October 2015 was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. To be included studies had to: be an original research article, published in English, involve at least 2 organizations in a health promotion partnership, and identify factors contributing to or constraining the success of an established (or prior) partnership. Studies were excluded if they focused on primary care collaboration or organizations jointly lobbying for a cause. Data extraction was completed by 2 members of the author team using a summary chart to extract information relevant to the factors that facilitated or constrained collaboration success. NVivo 10 was used to code article content into the thematic categories identified in the data extraction. Twenty-five studies across 8 countries were identified. Several key factors contributed to collaborative effectiveness, including a shared vision, leadership, member characteristics, organizational commitment, available resources, clear roles/responsibilities, trust/clear communication, and engagement of the target population. In general, the findings were consistent with previous reviews; however, additional novel themes did emerge.
Agriculture and Health Sectors Collaborate in Addressing Population Health
Kaufman, Arthur; Boren, Jon; Koukel, Sonja; Ronquillo, Francisco; Davies, Cindy; Nkouaga, Carolina
2017-01-01
PURPOSE Population health is of growing importance in the changing health care environment. The Cooperative Extension Service, housed in each state’s land grant university, has a major impact on population health through its many community-based efforts, including the Supplemental Nutrition Assistance Program – Education (SNAP-Ed) nutrition programs, 4-H youth engagement, health and wellness education, and community development. Can the agricultural and health sectors, which usually operate in parallel, mostly unknown to each other, collaborate to address population health? We set out to provide an overview of the collaboration between the Cooperative Extension Service and the health sector in various states and describe a case study of 1 model as it developed in New Mexico. METHODS We conducted a literature review and personally contacted states in which the Cooperative Extension Service is collaborating on a “Health Extension” model with academic health centers or their health systems. We surveyed 6 states in which Health Extension models are being piloted as to their different approaches. For a case study of collaboration in New Mexico, we drew on interviews with the leadership of New Mexico State University’s Cooperative Extension Service in the College of Agricultural, Consumer and Environmental Sciences; the University of New Mexico (UNM) Health Science Center’s Office for Community Health; and the personal experiences of frontline Cooperative Extension agents and UNM Health Extension officers who collaborated on community projects. RESULTS A growing number of states are linking the agricultural Cooperative Extension Service with academic health centers and with the health care system. In New Mexico, the UNM academic health center has created “Health Extension Rural Offices” based on principles of the Cooperative Extension model. Today, these 2 systems are working collaboratively to address unmet population health needs in their communities. Nationally, the Cooperative Extension Service has formed a steering committee to guide its movement into the health arena. CONCLUSION Resources of the agricultural and health sectors offer communities complementary expertise and resources to address adverse population health outcomes. The collaboration between Cooperative Extension and the health sector is 1 manifestation of this emerging collaboration model termed Health Extension. Initial skepticism and protection of funding sources and leadership roles can be overcome with shared funding from new sources, shared priority setting and decision making, and the initiation of practical, collaborative projects that build personal relationships and trust. PMID:28893819
NASA Astrophysics Data System (ADS)
Filley, T. R.; Guo, D.; Plante, A. F.
2015-12-01
The concept of critical zone (CZ) science has gained wide recognition with actively funded and emerging CZ observatory programs across the globe. There is much to be gained through international collaboration that links field, laboratory, and modeling efforts from across the emerging global CZ networks, but building international ties is difficult, especially when peer-to-peer connections are nascent, separated by great distances, and span different cultural and political environments. The U.S. and China share many climatic and geological similarities but differ greatly in the magnitude and timescale of human alteration of their landscapes making the comparative study of their respective pasts, current state, and future co-evolution an outstanding scientific opportunity to better understand, predict, and respond to human influence on the CZ. Leveraging the infrastructure and trust capital of longstanding sub-national volunteer scientific networks to bring together people and organizations is a resource-efficient mechanism to build cross-network CZ programs. The U.S.-China EcoPartnership for Environmental Sustainability (USCEES) is one of 30 current EcoPartnerships established beginning in May 2008 by a joint agreement between the U.S. Department of State and China's National Development and Reform Commission with the overarching goal of addressing the interconnected challenges of environmental, social, and economic sustainability through bi-national research innovation, communication, and entrepreneurship. The 2015 USCEES annual conference on "Critical Zone Science, Sustainability, and Services in a Changing World" was co-sponsored by the U.S. Cross-CZO Working Group on Organic Matter Dynamics and hosted three NSF-funded workshops on organic matter dynamics:1) methods for large and complex data analysis, 2) erosion and deposition processes, and 3) mineralogical and microbial controls on reactivity and persistence. This paper highlights outcomes from the workshops that include consensus recommendations for common measurements, methods, laboratories, and long-term experiments to support cross-U.S. CZO and international CZ science, and the role of the EcoPartnership program in facilitating scientific exchange between CZ scientists in the U.S. and China.
From Website to Moodle in a Blended Learning Context
ERIC Educational Resources Information Center
Buus, Lillian
2016-01-01
This paper presents findings collected from a collaborative implementation project established in Spring 2008 between Aalborg University's IT-department in the Faculty of Social Science (FSS) and the E-Learning Cooperation Unit (ELSA) with the view to implement Moodle in FSS. The purpose of this cooperation was conceived from an organisational…
ERIC Educational Resources Information Center
Lane, Kathleen Lynne
2017-01-01
For many years people have discussed the research-to-practice gap in education. Recently, increased attention has been devoted to creating opportunities for practitioners and researchers to engage in highly collaborative partnerships from design to implementation to dissemination (e.g., Institute for Education Sciences, 2016). In this article, we…
Preserving the Voices of Adult Educators
ERIC Educational Resources Information Center
Bogner, Len A.; King, Brett P.
2017-01-01
The Adult Education Interview Series (AEIS) started at the University of Central Oklahoma (UCO) and was inspired by the use of TED talks and other similar videos in online and distance education courses. It is a collaboration between the Adult Education and Safety Science Department and the Center for eLearning and Connected Environments at UCO.…
Science Leadership in an Era of Accountability: A Call for Collaboration.
ERIC Educational Resources Information Center
Jorgenson, Olaf; MacDougall, Gregory; Llewellyn, Douglas
2003-01-01
Describes the roles of science leaders in identifying and implementing meaningful solutions to systemic weaknesses. Discusses accountability's impact on science leadership and collaboration for enacting reform. (Contains 16 references.) (YDS)
Social Network Analysis of Biomedical Research Collaboration Networks in a CTSA Institution
Bian, Jiang; Xie, Mengjun; Topaloglu, Umit; Hudson, Teresa; Eswaran, Hari; Hogan, William
2014-01-01
BACKGROUND The popularity of social networks has triggered a number of research efforts on network analyses of research collaborations in the Clinical and Translational Science Award (CTSA) community. Those studies mainly focus on the general understanding of collaboration networks by measuring common network metrics. More fundamental questions about collaborations still remain unanswered such as recognizing “influential” nodes and identifying potential new collaborations that are most rewarding. METHODS We analyzed biomedical research collaboration networks (RCNs) constructed from a dataset of research grants collected at a CTSA institution (i.e. University of Arkansas for Medical Sciences (UAMS)) in a comprehensive and systematic manner. First, our analysis covers the full spectrum of a RCN study: from network modeling to network characteristics measurement, from key nodes recognition to potential links (collaborations) suggestion. Second, our analysis employs non-conventional model and techniques including a weighted network model for representing collaboration strength, rank aggregation for detecting important nodes, and Random Walk with Restart (RWR) for suggesting new research collaborations. RESULTS By applying our models and techniques to RCNs at UAMS prior to and after the CTSA, we have gained valuable insights that not only reveal the temporal evolution of the network dynamics but also assess the effectiveness of the CTSA and its impact on a research institution. We find that collaboration networks at UAMS are not scale-free but small-world. Quantitative measures have been obtained to evident that the RCNs at UAMS are moving towards favoring multidisciplinary research. Moreover, our link prediction model creates the basis of collaboration recommendations with an impressive accuracy (AUC: 0.990, MAP@3: 1.48 and MAP@5: 1.522). Last but not least, an open-source visual analytical tool for RCNs is being developed and released through Github. CONCLUSIONS Through this study, we have developed a set of techniques and tools for analyzing research collaboration networks and conducted a comprehensive case study focusing on a CTSA institution. Our findings demonstrate the promising future of these techniques and tools in understanding the generative mechanisms of research collaborations and helping identify beneficial collaborations to members in the research community. PMID:24560679
NASA Astrophysics Data System (ADS)
Steele, Astrid; Brew, Christine; Rees, Carol; Ibrahim-Khan, Sheliza
2013-02-01
Since many preservice teachers (PTs) display anxiety over teaching math and science, four PT educators collaborated to better understand the PTs' background experiences and attitudes toward those subjects. The research project provided two avenues for professional learning: the data collected from the PTs and the opportunity for collaborative action research. The mixed method study focused on: the relationship between gender and undergraduate major (science versus non-science) with respect to previous and current engagement in science and math, understanding the processes of inquiry, and learning outside the classroom. A field trip to a science center provided the setting for the data collection. From a sample of 132 PTs, a multivariate analysis showed that the science major of PTs explained most of the gender differences with respect to the PTs' attitudes toward science and mathematics. The process of inquiry is generally poorly interpreted by PTs, and non-science majors prefer a more social approach in their learning to teach science and math. The four educators/collaborators reflect on the impacts of the research on their individual practices, for example, the need to: include place-based learning, attend to the different learning strategies taken by non-science majors, emphasize social and environmental contexts for learning science and math, be more explicit regarding the processes of science inquiry, and provide out-of-classroom experiences for PTs. They conclude that the collaboration, though difficult at times, provided powerful opportunities for examining individual praxis.
Secondary science teachers' use of the affective domain in science education
NASA Astrophysics Data System (ADS)
Grauer, Bette L.
The purpose of this qualitative case study was to explore (a) the types of student affective responses that secondary science teachers reported emerged in science classes, (b) how those teachers worked with student affective responses, and (c) what interactions were present in the classroom when they worked with student affective responses. The study was motivated by research indicating that student interest and motivation for learning science is low. Eight secondary science teachers participated in the case study. The participants were selected from a pool of teachers who graduated from the same teacher education program at a large Midwest university. The primary sources of data were individual semi-structured interviews with the participants. Krathwohl's Taxonomy of the Affective Domain served as the research framework for the study. Student affective behavior reported by participants was classified within the five levels of Krathwohl's Affective Taxonomy: receiving, responding, valuing, organization, and characterization. Participants in the study reported student behavior representing all levels of the Affective Taxonomy. The types of behavior most frequently reported by participants were identified with the receiving and responding levels of the Affective Taxonomy. Organization behavior emerged during the study of perceived controversial science topics such as evolution. Participants in the study used student affective behavior to provide feedback on their lesson activities and instructional practices. Classroom interactions identified as collaboration and conversation contributed to the development of responding behavior. The researcher identified a process of affective progression in which teachers encouraged and developed student affective behavior changes from receiving to responding levels of the Affective Taxonomy.
Social determinants of health inequalities: towards a theoretical perspective using systems science.
Jayasinghe, Saroj
2015-08-25
A systems approach offers a novel conceptualization to natural and social systems. In recent years, this has led to perceiving population health outcomes as an emergent property of a dynamic and open, complex adaptive system. The current paper explores these themes further and applies the principles of systems approach and complexity science (i.e. systems science) to conceptualize social determinants of health inequalities. The conceptualization can be done in two steps: viewing health inequalities from a systems approach and extending it to include complexity science. Systems approach views health inequalities as patterns within the larger rubric of other facets of the human condition, such as educational outcomes and economic development. This anlysis requires more sophisticated models such as systems dynamic models. An extension of the approach is to view systems as complex adaptive systems, i.e. systems that are 'open' and adapt to the environment. They consist of dynamic adapting subsystems that exhibit non-linear interactions, while being 'open' to a similarly dynamic environment of interconnected systems. They exhibit emergent properties that cannot be estimated with precision by using the known interactions among its components (such as economic development, political freedom, health system, culture etc.). Different combinations of the same bundle of factors or determinants give rise to similar patterns or outcomes (i.e. property of convergence), and minor variations in the initial condition could give rise to widely divergent outcomes. Novel approaches using computer simulation models (e.g. agent-based models) would shed light on possible mechanisms as to how factors or determinants interact and lead to emergent patterns of health inequalities of populations.
ERIC Educational Resources Information Center
Camilli, Andrea Lauren
2009-01-01
Consultation has emerged as an effective alternative to traditional methods of service delivery in schools. Additionally, current research and recent changes in legislation (e.g., reauthorization of IDEA) indicate that not only is consultation an effective approach to service delivery, but it is a preferred activity of school psychologists and an…
Supporting Collaborative Learning and E-Discussions Using Artificial Intelligence Techniques
ERIC Educational Resources Information Center
McLaren, Bruce M.; Scheuer, Oliver; Miksatko, Jan
2010-01-01
An emerging trend in classrooms is the use of networked visual argumentation tools that allow students to discuss, debate, and argue with one another in a synchronous fashion about topics presented by a teacher. These tools are aimed at teaching students how to discuss and argue, important skills not often taught in traditional classrooms. But how…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Springer, Everett P.
Collaborations are critical to the science, technology, and engineering achievements at Los Alamos National Laboratory (LANL). This report analyzed the collaborations as measured through peer-reviewed publications from the Web of Science (WoS) database for LANL for the 1990 – 2015 period. Both a cumulative analysis over the entire time period and annual analyses were performed. The results found that the Department of Energy national laboratories, University of California campuses, and other academic institutions collaborate with LANL on regular basis. Results provide insights into trends in peer-reviewed papers collaborations for LANL.
Communicating Climate Change: Lessons Learned from a Researcher-Museum Collaboration †
Parker, Christopher T.; Cockerham, Debbie; Foss, Ann W.
2018-01-01
The need for science education and outreach is great. However, despite the ever-growing body of available scientific information, facts are often misrepresented to or misunderstood by the general public. This can result in uninformed decisions that negatively impact society at both individual and community levels. One solution to this problem is to make scientific information more available to the public through outreach programs. Most outreach programs, however, focus on health initiatives, STEM programs, or young audiences exclusively. This article describes a collaboration between the Research and Learning Center at the Fort Worth Museum of Science and History and an interdisciplinary team of researchers from the Dallas–Fort Worth (DFW) metroplex area. The collaboration was a pilot effort of a science communication fellowship and was designed to train researchers to effectively convey current science information to the public with a focus on lifelong learning. We focus on the broader idea of a university-museum collaboration that bridges the science communication gap as we outline the process of forming this collaboration, lessons we learned from the process, and directions that can support future collaborations. PMID:29904536