Sample records for emerging energy-efficient technology

  1. CHARACTERIZING COSTS, SAVINGS AND BENEFITS OF A SELECTION OF ENERGY EFFICIENT EMERGING TECHNOLOGIES IN THE UNITED STATES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, T.; Slaa, J.W.; Sathaye, J.

    2010-12-15

    Implementation and adoption of efficient end-use technologies have proven to be one of the key measures for reducing greenhouse gas (GHG) emissions throughout the industries. In many cases, implementing energy efficiency measures is among one of the most cost effective investments that the industry could make in improving efficiency and productivity while reducing CO2 emissions. Over the years, there have been incentives to use resources and energy in a cleaner and more efficient way to create industries that are sustainable and more productive. With the working of energy programs and policies on GHG inventory and regulation, understanding and managing themore » costs associated with mitigation measures for GHG reductions is very important for the industry and policy makers around the world. Successful implementation of emerging technologies not only can help advance productivities and competitiveness but also can play a significant role in mitigation efforts by saving energy. Providing evaluation and estimation of the costs and energy savings potential of emerging technologies is the focus of our work in this project. The overall goal of the project is to identify and select emerging and under-utilized energy-efficient technologies and practices as they are important to reduce energy consumption in industry while maintaining economic growth. This report contains the results from performing Task 2"Technology evaluation" for the project titled"Research Opportunities in Emerging and Under-Utilized Energy-Efficient Industrial Technologies," which was sponsored by California Energy Commission and managed by CIEE. The project purpose is to analyze market status, market potential, and economic viability of selected technologies applicable to the U.S. In this report, LBNL first performed re-assessments of all of the 33 emerging energy-efficient industrial technologies, including re-evaluation of the 26 technologies that were previously identified by Martin et al. (2000) and their potential significance to energy use in the industries, and new evaluation of additional seven technologies. The re-assessments were essentially updated with recent information that we searched and collected from literature to the extent possible. The progress of selected technologies as they diffused into the marketplace from 2000 to 2010 was then discussed in this report. The report also includes updated detailed characterizations of 15 technologies studied in 2000, with comparisons noted.« less

  2. Emerging Energy-efficiency and CO{sub 2} Emission-reduction Technologies for Cement and Concrete Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasanbeigi, Ali; Price, Lynn; Lin, Elina

    2012-04-06

    Globally, the cement industry accounts for approximately 5 percent of current anthropogenic carbon dioxide (CO{sub 2}) emissions. World cement demand and production are increasing significantly, leading to an increase in this industry's absolute energy use and CO{sub 2} emissions. Development of new energy-efficiency and CO{sub 2} emission-reduction technologies and their deployment in the market will be key for the cement industry's mid- and long-term climate change mitigation strategies. This report is an initial effort to compile available information on process description, energy savings, environmental and other benefits, costs, commercialization status, and references for emerging technologies to reduce the cement industry'smore » energy use and CO{sub 2} emissions. Although studies from around the world identify a variety of sector-specific and cross-cutting energy-efficiency technologies for the cement industry that have already been commercialized, information is scarce and/or scattered regarding emerging or advanced energy-efficiency and low-carbon technologies that are not yet commercialized. This report consolidates available information on nineteen emerging technologies for the cement industry, with the goal of providing engineers, researchers, investors, cement companies, policy makers, and other interested parties with easy access to a well-structured database of information on these technologies.« less

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Desroches, Louis-Benoit; Garbesi, Karina

    It is well established that energy efficiency is most often the lowest cost approach to reducing national energy use and minimizing carbon emissions. National investments in energy efficiency to date have been highly cost-effective. The cumulative impacts (out to 2050) of residential energy efficiency standards are expected to have a benefit-to-cost ratio of 2.71:1. This project examined energy end-uses in the residential, commercial, and in some cases the industrial sectors. The scope is limited to appliances and equipment, and does not include building materials, building envelopes, and system designs. This scope is consistent with the scope of DOE's appliance standardsmore » program, although many products considered here are not currently subject to energy efficiency standards. How much energy could the United States save if the most efficient design options currently feasible were adopted universally? What design features could produce those savings? How would the savings from various technologies compare? With an eye toward identifying promising candidates and strategies for potential energy efficiency standards, the Max Tech and Beyond project aims to answer these questions. The analysis attempts to consolidate, in one document, the energy savings potential and design characteristics of best-on-market products, best-engineered products (i.e., hypothetical products produced using best-on-market components and technologies), and emerging technologies in research & development. As defined here, emerging technologies are fundamentally new and are as yet unproven in the market, although laboratory studies and/or emerging niche applications offer persuasive evidence of major energy-savings potential. The term 'max tech' is used to describe both best-engineered and emerging technologies (whichever appears to offer larger savings). Few best-on-market products currently qualify as max tech, since few apply all available best practices and components. The three primary analyses presented in this report are: Nevertheless, it is important to analyze best-on-market products, since data on truly max tech technologies are limited. (1) an analysis of the cross-cutting strategies most promising for reducing appliance and equipment energy use in the U.S.; (2) a macro-analysis of the U.S. energy-saving potential inherent in promising ultra-efficient appliance technologies; and (3) a product-level analysis of the energy-saving potential.« less

  4. Emerging Energy-Efficiency and Greenhouse Gas Mitigation Technologies for the Pulp and Paper Industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kong, Lingbo; Hasanbeigi, Ali; Price, Lynn

    2012-11-01

    The pulp and paper industry ranks fourth in terms of energy consumption among industries worldwide. Globally, the pulp and paper industry accounted for approximately 5 percent of total world industrial final energy consumption in 2007, and contributed 2 percent of direct carbon dioxide (CO2) emissions from industry. Worldwide pulp and paper demand and production are projected to increase significantly by 2050, leading to an increase in this industry’s absolute energy use and greenhouse gas (GHG) emissions. Development of new energy-efficiency and GHG mitigation technologies and their deployment in the market will be crucial for the pulp and paper industry’s mid-more » and long-term climate change mitigation strategies. This report describes the industry’s processes and compiles available information on the energy savings, environmental and other benefits, costs, commercialization status, and references for 36 emerging technologies to reduce the industry’s energy use and GHG emissions. Although studies from around the world identify a variety of sector-specific and cross-cutting energy-efficiency technologies that have already been commercialized for the pulp and paper industry, information is scarce and/or scattered regarding emerging or advanced energy-efficiency and low-carbon technologies that are not yet commercialized. The purpose of this report is to provide engineers, researchers, investors, paper companies, policy makers, and other interested parties with easy access to a well-structured resource of information on these technologies.« less

  5. Energy efficiency of high-rise buildings

    NASA Astrophysics Data System (ADS)

    Zhigulina, Anna Yu.; Ponomarenko, Alla M.

    2018-03-01

    The article is devoted to analysis of tendencies and advanced technologies in the field of energy supply and energy efficiency of tall buildings, to the history of the emergence of the concept of "efficiency" and its current interpretation. Also the article show the difference of evaluation criteria of the leading rating systems LEED and BREEAM. Authors reviewed the latest technologies applied in the construction of energy efficient buildings. Methodological approach to the design of tall buildings taking into account energy efficiency needs to include the primary energy saving; to seek the possibility of production and accumulation of alternative electric energy by converting energy from the sun and wind with the help of special technical devices; the application of regenerative technologies.

  6. Current On-Campus Attitudes toward Energy Usage, Efficiency, and Emerging Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lennon, Liz; Sintov, Nicole; Orosz, Michael

    Context & Background for Energy Survey Methods & Survey Overview Respondent Demographics Results Demand Response Current Environmental Comfort Perceptions Smart Meters Perceived Smart Meter Benefits Motivators of Energy Efficient Practices Summary & Implications

  7. Emerging clean energy technology investment trends

    NASA Astrophysics Data System (ADS)

    Bumpus, A.; Comello, S.

    2017-06-01

    Early-stage capital providers and clean energy technology incubators are supporting a new wave of innovations focused on end-use efficiency and demand control. This wave complements expanding investments in supply technologies required for electricity sector decarbonization.

  8. Buildings R&D Breakthroughs: Technologies and Products Supported by the Building Technologies Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weakley, Steven A.

    2012-04-01

    The purpose of the project described in this report is to identify and characterize commercially available products and emerging (near-commercial) technologies that benefited from the support of the Building Technologies Program (BTP) within the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy. The investigation specifically focused on technology-oriented research and development (R&D) projects funded by BTP’s Emerging Technologies subprogram from 2005-2011.

  9. LED Provides Effective and Efficient Parking Area Lighting at the NAVFAC Engineering Service Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2010-08-12

    U.S. Department of Energy (DOE) Federal Energy Management Program (FEMP) emerging technology case study showcasing LED lighting to improve energy efficiency in parking areas at the NAVFAC Engineering Services Center.

  10. Performance Contracting: Taking School Technology Green

    ERIC Educational Resources Information Center

    Taival, Dane

    2009-01-01

    Energy efficiency makes fiscal and environmental sense, and so does energy savings performance contracting. Because an energy savings performance contract can create a self-funding package of products and services that reduce energy and operating costs, over time, school districts' sometimes-large initial investment in emerging technologies saves…

  11. Electric Energy Management in the Smart Home: Perspectives on Enabling Technologies and Consumer Behavior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zipperer, Adam; Aloise-Young, Patricia A.; Suryanarayanan, Siddharth

    2013-11-01

    Smart homes hold the potential for increasing energy efficiency, decreasing costs of energy use, decreasing the carbon footprint by including renewable resources, and transforming the role of the occupant. At the crux of the smart home is an efficient electric energy management system that is enabled by emerging technologies in the electric grid and consumer electronics. This article presents a discussion of the state-of-the-art in electricity management in smart homes, the various enabling technologies that will accelerate this concept, and topics around consumer behavior with respect to energy usage.

  12. Electric Energy Management in the Smart Home: Perspectives on Enabling Technologies and Consumer Behavior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zipperer, A.; Aloise-Young, P. A.; Suryanarayanan, S.

    2013-08-01

    Smart homes hold the potential for increasing energy efficiency, decreasing costs of energy use, decreasing the carbon footprint by including renewable resources, and trans-forming the role of the occupant. At the crux of the smart home is an efficient electric energy management system that is enabled by emerging technologies in the electricity grid and consumer electronics. This article presents a discussion of the state-of-the-art in electricity management in smart homes, the various enabling technologies that will accelerate this concept, and topics around consumer behavior with respect to energy usage.

  13. Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Office - 2014

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    This FY 2014 report updates the results of an effort to identify and characterize commercial and near-commercial (emerging) technologies and products that benefited from the support of the Fuel Cell Technologies Office and its predecessor programs within DOE's Office of Energy Efficiency and Renewable Energy.

  14. Pathways to Commercial Success. Technologies and Products Supported by the Fuel Cell Technologies Program - 2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    This FY 2012 report updates the results of an effort to identify and characterize commercial and near-commercial (emerging) technologies and products that benefited from the support of the Fuel Cell Technologies Program and its predecessor programs within DOE's Office of Energy Efficiency and Renewable Energy.

  15. Pathways to Commercial Success. Technologies and Products Supported by the Fuel Cell Technologies Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    This FY 2011 report updates the results of an effort to identify and characterize commercial and near-commercial (emerging) technologies and products that benefited from the support of the Fuel Cell Technologies Program and its predecessor programs within DOE's Office of Energy Efficiency and Renewable Energy.

  16. Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Office - 2013

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    This FY 2013 report updates the results of an effort to identify and characterize commercial and near-commercial (emerging) technologies and products that benefited from the support of the Fuel Cell Technologies Office and its predecessor programs within DOE's Office of Energy Efficiency and Renewable Energy.

  17. Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Office - 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    2016-01-08

    This FY 2015 report updates the results of an effort to identify and document the commercial and emerging (projected to be commercialized within the next 3 to 5 years) hydrogen and fuel cell technologies and products that resulted from U.S. Department of Energy support through the Fuel Cell Technologies Office in the Office of Energy Efficiency and Renewable Energy.

  18. Pathways to Commercial Success: Technologies and Innovations Enabled by the U.S. Department of Energy Fuel Cell Technologies Office

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    This report published in October 2017 updates the results of an effort to identify and document the commercial and emerging (projected to be commercialized within the next 3 to 5 years) hydrogen and fuel cell technologies and products that resulted from U.S. Department of Energy support through the Fuel Cell Technologies Office in the Office of Energy Efficiency and Renewable Energy.

  19. An Assessment Model for Energy Efficiency Program Planning in Electric Utilities: Case of the Pacific of Northwest U.S.A

    NASA Astrophysics Data System (ADS)

    Iskin, Ibrahim

    Energy efficiency stands out with its potential to address a number of challenges that today's electric utilities face, including increasing and changing electricity demand, shrinking operating capacity, and decreasing system reliability and flexibility. Being the least cost and least risky alternative, the share of energy efficiency programs in utilities' energy portfolios has been on the rise since the 1980s, and their increasing importance is expected to continue in the future. Despite holding great promise, the ability to determine and invest in only the most promising program alternatives plays a key role in the successful use of energy efficiency as a utility-wide resource. This issue becomes even more significant considering the availability of a vast number of potential energy efficiency programs, the rapidly changing business environment, and the existence of multiple stakeholders. This dissertation introduces hierarchical decision modeling as the framework for energy efficiency program planning in electric utilities. The model focuses on the assessment of emerging energy efficiency programs and proposes to bridge the gap between technology screening and cost/benefit evaluation practices. This approach is expected to identify emerging technology alternatives which have the highest potential to pass cost/benefit ratio testing procedures and contribute to the effectiveness of decision practices in energy efficiency program planning. The model also incorporates rank order analysis and sensitivity analysis for testing the robustness of results from different stakeholder perspectives and future uncertainties in an attempt to enable more informed decision-making practices. The model was applied to the case of 13 high priority emerging energy efficiency program alternatives identified in the Pacific Northwest, U.S.A. The results of this study reveal that energy savings potential is the most important program management consideration in selecting emerging energy efficiency programs. Market dissemination potential and program development and implementation potential are the second and third most important, whereas ancillary benefits potential is the least important program management consideration. The results imply that program value considerations, comprised of energy savings potential and ancillary benefits potential; and program feasibility considerations, comprised of program development and implementation potential and market dissemination potential, have almost equal impacts on assessment of emerging energy efficiency programs. Considering the overwhelming number of value-focused studies and the few feasibility-focused studies in the literature, this finding clearly shows that feasibility-focused studies are greatly understudied. The hierarchical decision model developed in this dissertation is generalizable. Thus, other utilities or power systems can adopt the research steps employed in this study as guidelines and conduct similar assessment studies on emerging energy efficiency programs of their interest.

  20. Progress in Energy Storage Technologies: Models and Methods for Policy Analysis

    NASA Astrophysics Data System (ADS)

    Matteson, Schuyler W.

    Climate change and other sustainability challenges have led to the development of new technologies that increase energy efficiency and reduce the utilization of finite resources. To promote the adoption of technologies with social benefits, governments often enact policies that provide financial incentives at the point of purchase. In their current form, these subsidies have the potential to increase the diffusion of emerging technologies; however, accounting for technological progress can improve program success while decreasing net public investment. This research develops novel methods using experience curves for the development of more efficient subsidy policies. By providing case studies in the field of automotive energy storage technologies, this dissertation also applies the methods to show the impacts of incorporating technological progress into energy policies. Specific findings include learning-dependent tapering subsidies for electric vehicles based on the lithium-ion battery experience curve, the effects of residual learning rates in lead-acid batteries on emerging technology cost competitiveness, and a cascading diffusion assessment of plug-in hybrid electric vehicle subsidy programs. Notably, the results show that considering learning rates in policy development can save billions of dollars in public funds, while also lending insight into the decision of whether or not to subsidize a given technology.

  1. Efficiently-cooled plasmonic amorphous silicon solar cells integrated with a nano-coated heat-pipe plate

    PubMed Central

    Zhang, Yinan; Du, Yanping; Shum, Clifford; Cai, Boyuan; Le, Nam Cao Hoai; Chen, Xi; Duck, Benjamin; Fell, Christopher; Zhu, Yonggang; Gu, Min

    2016-01-01

    Solar photovoltaics (PV) are emerging as a major alternative energy source. The cost of PV electricity depends on the efficiency of conversion of light to electricity. Despite of steady growth in the efficiency for several decades, little has been achieved to reduce the impact of real-world operating temperatures on this efficiency. Here we demonstrate a highly efficient cooling solution to the recently emerging high performance plasmonic solar cell technology by integrating an advanced nano-coated heat-pipe plate. This thermal cooling technology, efficient for both summer and winter time, demonstrates the heat transportation capability up to ten times higher than those of the metal plate and the conventional wickless heat-pipe plates. The reduction in temperature rise of the plasmonic solar cells operating under one sun condition can be as high as 46%, leading to an approximate 56% recovery in efficiency, which dramatically increases the energy yield of the plasmonic solar cells. This newly-developed, thermally-managed plasmonic solar cell device significantly extends the application scope of PV for highly efficient solar energy conversion. PMID:27113558

  2. Efficiently-cooled plasmonic amorphous silicon solar cells integrated with a nano-coated heat-pipe plate.

    PubMed

    Zhang, Yinan; Du, Yanping; Shum, Clifford; Cai, Boyuan; Le, Nam Cao Hoai; Chen, Xi; Duck, Benjamin; Fell, Christopher; Zhu, Yonggang; Gu, Min

    2016-04-26

    Solar photovoltaics (PV) are emerging as a major alternative energy source. The cost of PV electricity depends on the efficiency of conversion of light to electricity. Despite of steady growth in the efficiency for several decades, little has been achieved to reduce the impact of real-world operating temperatures on this efficiency. Here we demonstrate a highly efficient cooling solution to the recently emerging high performance plasmonic solar cell technology by integrating an advanced nano-coated heat-pipe plate. This thermal cooling technology, efficient for both summer and winter time, demonstrates the heat transportation capability up to ten times higher than those of the metal plate and the conventional wickless heat-pipe plates. The reduction in temperature rise of the plasmonic solar cells operating under one sun condition can be as high as 46%, leading to an approximate 56% recovery in efficiency, which dramatically increases the energy yield of the plasmonic solar cells. This newly-developed, thermally-managed plasmonic solar cell device significantly extends the application scope of PV for highly efficient solar energy conversion.

  3. Efficiently-cooled plasmonic amorphous silicon solar cells integrated with a nano-coated heat-pipe plate

    NASA Astrophysics Data System (ADS)

    Zhang, Yinan; Du, Yanping; Shum, Clifford; Cai, Boyuan; Le, Nam Cao Hoai; Chen, Xi; Duck, Benjamin; Fell, Christopher; Zhu, Yonggang; Gu, Min

    2016-04-01

    Solar photovoltaics (PV) are emerging as a major alternative energy source. The cost of PV electricity depends on the efficiency of conversion of light to electricity. Despite of steady growth in the efficiency for several decades, little has been achieved to reduce the impact of real-world operating temperatures on this efficiency. Here we demonstrate a highly efficient cooling solution to the recently emerging high performance plasmonic solar cell technology by integrating an advanced nano-coated heat-pipe plate. This thermal cooling technology, efficient for both summer and winter time, demonstrates the heat transportation capability up to ten times higher than those of the metal plate and the conventional wickless heat-pipe plates. The reduction in temperature rise of the plasmonic solar cells operating under one sun condition can be as high as 46%, leading to an approximate 56% recovery in efficiency, which dramatically increases the energy yield of the plasmonic solar cells. This newly-developed, thermally-managed plasmonic solar cell device significantly extends the application scope of PV for highly efficient solar energy conversion.

  4. Lighting for Tomorrow: What have we learned and what about the day after tomorrow?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gordon, Kelly L.; Foster, Rebecca; McGowan, Terry

    2006-08-22

    This paper describes Lighting for Tomorrow, a program sponsored by the US Department of Energy Emerging Technologies Program, the American Lighting Association, and the Consortium for Energy Efficiency. The program has conducted a design competition for residential decorative lighting fixtures using energy-efficient light sources. The paper discusses the reasons for development of the design competition, and the intended outcomes of the effort. The two competitive rounds completed to date are described in terms of their specific messaging and rules, direct results, and lessons learned. Experience to date is synthesized relative to the intended outcomes, including new product introductions, increased awarenessmore » of energy efficiency within the lighting industry, and increased participation by lighting showrooms in marketing and selling energy-efficient light fixtures. The paper also highlights the emergence of Lighting for Tomorrow as a forum for addressing market and technical barriers impeding use of energy-efficient lighting in the residential sector. Finally, it describes how Lighting for Tomorrow's current year (2006) program has been designed to respond to lessons from the previous competitions, feedback from the industry, and changes in lighting technology.« less

  5. Enhancing the NASA Prediction of Worldwide Energy Resource Web Data Delivery System with Geographic Information System (GIS) Capabilities

    NASA Technical Reports Server (NTRS)

    Chandler, William S.; Stackhouse, Paul W., Jr.; Barnett, Audy J.; Hoell, James M.; Westberg, David J.; Ross, Amanda I.

    2015-01-01

    Renewable energy technologies are changing the face of the world's energy market. Currently, these technologies are being incorporated within existing structures to increase energy efficiency. Crucial to the success of the emerging renewable market is the availability of accurate, global solar radiation, and meteorology data. This poster traces the history of the development of an effort to distribute data parameters from NASA's research for use in the energy sector applications spanning from renewable energy to energy efficiency. These data may be useful to several renewable energy sectors: solar and wind power generation, agricultural crop modeling, and sustainable buildings.

  6. A review of integration strategies for solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Zhang, Xiongwen; Chan, S. H.; Li, Guojun; Ho, H. K.; Li, Jun; Feng, Zhenping

    Due to increasing oil and gas demand, the depletion of fossil resources, serious global warming, efficient energy systems and new energy conversion processes are urgently needed. Fuel cells and hybrid systems have emerged as advanced thermodynamic systems with great promise in achieving high energy/power efficiency with reduced environmental loads. In particular, due to the synergistic effect of using integrated solid oxide fuel cell (SOFC) and classical thermodynamic cycle technologies, the efficiency of the integrated system can be significantly improved. This paper reviews different concepts/strategies for SOFC-based integration systems, which are timely transformational energy-related technologies available to overcome the threats posed by climate change and energy security.

  7. Using learning curves on energy-efficient technologies to estimate future energy savings and emission reduction potentials in the U.S. iron and steel industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karali, Nihan; Park, Won Young; McNeil, Michael A.

    Increasing concerns on non-sustainable energy use and climate change spur a growing research interest in energy efficiency potentials in various critical areas such as industrial production. This paper focuses on learning curve aspects of energy efficiency measures in the U.S iron and steel sector. A number of early-stage efficient technologies (i.e., emerging or demonstration technologies) are technically feasible and have the potential to make a significant contribution to energy saving and CO 2 emissions reduction, but fall short economically to be included. However, they may also have the cost effective potential for significant cost reduction and/or performance improvement in themore » future under learning effects such as ‘learning-by-doing’. The investigation is carried out using ISEEM, a technology oriented, linear optimization model. We investigated how steel demand is balanced with/without the availability learning curve, compared to a Reference scenario. The retrofit (or investment in some cases) costs of energy efficient technologies decline in the scenario where learning curve is applied. The analysis also addresses market penetration of energy efficient technologies, energy saving, and CO 2 emissions in the U.S. iron and steel sector with/without learning impact. Accordingly, the study helps those who use energy models better manage the price barriers preventing unrealistic diffusion of energy-efficiency technologies, better understand the market and learning system involved, predict future achievable learning rates more accurately, and project future savings via energy-efficiency technologies with presence of learning. We conclude from our analysis that, most of the existing energy efficiency technologies that are currently used in the U.S. iron and steel sector are cost effective. Penetration levels increases through the years, even though there is no price reduction. However, demonstration technologies are not economically feasible in the U.S. iron and steel sector with the current cost structure. In contrast, some of the demonstration technologies are adapted in the mid-term and their penetration levels increase as the prices go down with learning curve. We also observe large penetration of 225kg pulverized coal injection with the presence of learning.« less

  8. Advanced Manufacturing Office Clean Water Processing Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The DOE Office of Energy Efficiency and Renewable Energy (EERE)’s Advanced Manufacturing Office partners with industry, small business, universities, and other stakeholders to identify and invest in emerging technologies with the potential to create high-quality domestic manufacturing jobs and enhance the global competitiveness of the United States.

  9. 75 FR 15422 - Proposed Agency Information Collection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-29

    ...) Information Collection Request Title: Batteries; (3) Type of Review: Emergency; (4) Purpose: To collect data... Technology, Office of Energy Efficiency and Renewable Energy. [FR Doc. 2010-6877 Filed 3-26-10; 8:45 am...

  10. US-China Clean Energy Research Center on Building Energy Efficiency: Materials that Improve the Cost-Effectiveness of Air Barrier Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hun, Diana E.

    The US–China Clean Energy Research Center (CERC) was launched in 2009 by US Energy Secretary Steven Chu, Chinese Minister of Science and Technology Wan Gang, and Chinese National Energy Agency Administrator Zhang Guobao. This 5-year collaboration emerged from the fact that the United States and China are the world’s largest energy producers, energy consumers, and greenhouse gas emitters, and that their joint effort could have significant positive repercussions worldwide. CERC’s main goal is to develop and deploy clean energy technologies that will help both countries meet energy and climate challenges. Three consortia were established to address the most pressing energy-relatedmore » research areas: Advanced Coal Technology, Clean Vehicles, and Building Energy Efficiency (BEE). The project discussed in this report was part of the CERC-BEE consortia; its objective was to lower energy use in buildings by developing and evaluating technologies that improve the cost-effectiveness of air barrier systems for building envelopes.« less

  11. Opportunities for Improving the Energy Efficiency of Multi-Modal Intra-City Freight Movement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walkowicz, Kevin; Duran, Adam

    This poster focuses on the National Renewable Energy Laboratory's analysis of opportunities for freight movement energy savings via optimization and integration of existing/emerging intra-city goods delivery modes as well as an assessment of the efficacy and energy consumption impact of new technologies.

  12. Waste-to-Energy: Hawaii and Guam Energy Improvement Technology Demonstration Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, J.; Gelman, R.; Tomberlin, G.

    2014-03-01

    The National Renewable Energy Laboratory (NREL) and the U.S. Navy have worked together to demonstrate new or leading-edge commercial energy technologies whose deployment will support the U.S. Department of Defense (DOD) in meeting its energy efficiency and renewable energy goals while enhancing installation energy security. This is consistent with the 2010 Quadrennial Defense Review report1 that encourages the use of 'military installations as a test bed to demonstrate and create a market for innovative energy efficiency and renewable energy technologies coming out of the private sector and DOD and Department of Energy laboratories,' as well as the July 2010 memorandummore » of understanding between DOD and the U.S. Department of Energy (DOE) that documents the intent to 'maximize DOD access to DOE technical expertise and assistance through cooperation in the deployment and pilot testing of emerging energy technologies.' As part of this joint initiative, a promising waste-to-energy (WTE) technology was selected for demonstration at the Hickam Commissary aboard the Joint Base Pearl Harbor-Hickam (JBPHH), Hawaii. The WTE technology chosen is called high-energy densification waste-to-energy conversion (HEDWEC). HEDWEC technology is the result of significant U.S. Army investment in the development of WTE technology for forward operating bases.« less

  13. IEEE TRANSACTIONS ON CYBERNETICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Craig R. RIeger; David H. Scheidt; William D. Smart

    2014-11-01

    MODERN societies depend on complex and critical infrastructures for energy, transportation, sustenance, medical care, emergency response, communications security. As computers, automation, and information technology (IT) have advanced, these technologies have been exploited to enhance the efficiency of operating the processes that make up these infrastructures

  14. Recyclable organic solar cells on cellulose nanocrystal substrates

    PubMed Central

    Zhou, Yinhua; Fuentes-Hernandez, Canek; Khan, Talha M.; Liu, Jen-Chieh; Hsu, James; Shim, Jae Won; Dindar, Amir; Youngblood, Jeffrey P.; Moon, Robert J.; Kippelen, Bernard

    2013-01-01

    Solar energy is potentially the largest source of renewable energy at our disposal, but significant advances are required to make photovoltaic technologies economically viable and, from a life-cycle perspective, environmentally friendly, and consequently scalable. Cellulose nanomaterials are emerging high-value nanoparticles extracted from plants that are abundant, renewable, and sustainable. Here, we report on the first demonstration of efficient polymer solar cells fabricated on optically transparent cellulose nanocrystal (CNC) substrates. The solar cells fabricated on the CNC substrates display good rectification in the dark and reach a power conversion efficiency of 2.7%. In addition, we demonstrate that these solar cells can be easily separated and recycled into their major components using low-energy processes at room temperature, opening the door for a truly recyclable solar cell technology. Efficient and easily recyclable organic solar cells on CNC substrates are expected to be an attractive technology for sustainable, scalable, and environmentally-friendly energy production. PMID:23524333

  15. Recyclable organic solar cells on cellulose nanocrystal substrates.

    PubMed

    Zhou, Yinhua; Fuentes-Hernandez, Canek; Khan, Talha M; Liu, Jen-Chieh; Hsu, James; Shim, Jae Won; Dindar, Amir; Youngblood, Jeffrey P; Moon, Robert J; Kippelen, Bernard

    2013-01-01

    Solar energy is potentially the largest source of renewable energy at our disposal, but significant advances are required to make photovoltaic technologies economically viable and, from a life-cycle perspective, environmentally friendly, and consequently scalable. Cellulose nanomaterials are emerging high-value nanoparticles extracted from plants that are abundant, renewable, and sustainable. Here, we report on the first demonstration of efficient polymer solar cells fabricated on optically transparent cellulose nanocrystal (CNC) substrates. The solar cells fabricated on the CNC substrates display good rectification in the dark and reach a power conversion efficiency of 2.7%. In addition, we demonstrate that these solar cells can be easily separated and recycled into their major components using low-energy processes at room temperature, opening the door for a truly recyclable solar cell technology. Efficient and easily recyclable organic solar cells on CNC substrates are expected to be an attractive technology for sustainable, scalable, and environmentally-friendly energy production.

  16. U.S. DOE Roundtable and Workshop on Advanced Steel Technologies: Emerging Global Technologies and R&D Opportunities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pellegrino, Joan; Jamison, Keith

    2015-12-01

    This report is based on the proceedings of the U.S. DOE Roundtable and Workshop on Advanced Steel Technologies Workshop hosted by Oak Ridge National Laboratory (ORNL) in cooperation with the U.S. Department of Energy s (DOE s) Advanced Manufacturing Office (AMO) on held on June 23, 2015. Representatives from industry, government, and academia met at the offices of the National Renewable Energy Laboratory in Washington, DC, to share information on emerging steel technologies, issues impacting technology investment and deployment, gaps in research and development (R&D), and opportunities for greater energy efficiency. The results of the workshop are summarized in thismore » report. They reflect a snapshot of the perspectives and ideas generated by the individuals who attended and not all-inclusive of the steel industry and stakeholder community.« less

  17. Driving Extreme Efficiency to Market

    NASA Astrophysics Data System (ADS)

    Garbesi, Karina

    2014-03-01

    The rapid development of extremely energy efficient appliances and equipment is essential to curtail catastrophic climate disruption. This will require the on-going development of products that apply all best-practices and that take advantage of the synergies of hybridization and building integration. Beyond that, it requires the development of new disruptive technologies and concepts. To facilitate these goals, in 2011 the Lawrence Berkeley National Laboratory and the U.S. Department of Energy launched the Max Tech and Beyond Design Competition for Ultra-Low-Energy-Use Appliances and Equipment. Now in its third year, the competition supports faculty-lead student design teams at U.S. universities to develop and test new technology prototypes. This talk describes what the competition and the Max Tech Program are doing to drive such rapid technology progress and to facilitate the entry to the market of successful Max Tech prototypes. The talk also initiates a discussion of physicists' unique role in driving that technology progress faster and farther. Emerging Technologies, Building Technologies Office, U.S. Department of Energy.

  18. Novel Material Integration for Reliable and Energy-Efficient NEM Relay Technology

    NASA Astrophysics Data System (ADS)

    Chen, I.-Ru

    Energy-efficient switching devices have become ever more important with the emergence of ubiquitous computing. NEM relays are promising to complement CMOS transistors as circuit building blocks for future ultra-low-power information processing, and as such have recently attracted significant attention from the semiconductor industry and researchers. Relay technology potentially can overcome the energy efficiency limit for conventional CMOS technology due to several key characteristics, including zero OFF-state leakage, abrupt switching behavior, and potentially very low active energy consumption. However, two key issues must be addressed for relay technology to reach its full potential: surface oxide formation at the contacting surfaces leading to increased ON-state resistance after switching, and high switching voltages due to strain gradient present within the relay structure. This dissertation advances NEM relay technology by investigating solutions to both of these pressing issues. Ruthenium, whose native oxide is conductive, is proposed as the contacting material to improve relay ON-state resistance stability. Ruthenium-contact relays are fabricated after overcoming several process integration challenges, and show superior ON-state resistance stability in electrical measurements and extended device lifetime. The relay structural film is optimized via stress matching among all layers within the structure, to provide lower strain gradient (below 10E-3/microm -1) and hence lower switching voltage. These advancements in relay technology, along with the integration of a metallic interconnect layer, enable complex relay-based circuit demonstration. In addition to the experimental efforts, this dissertation theoretically analyzes the energy efficiency limit of a NEM switch, which is generally believed to be limited by the surface adhesion energy. New compact (<1 microm2 footprint), low-voltage (<0.1 V) switch designs are proposed to overcome this limit. The results pave a pathway to scaled energy-efficient electronic device technology.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bogucz, Edward A.

    Healthy buildings provide high indoor environmental quality for occupants while simultaneously reducing energy consumption. This project advanced the development and marketability of envisioned healthy, energy-efficient buildings through studies that evaluated the use of emerging technologies in commercial and residential buildings. The project also provided resources required for homebuilders to participate in DOE’s Builders Challenge, concomitant with the goal to reduce energy consumption in homes by at least 30% as a first step toward achieving envisioned widespread availability of net-zero energy homes by 2030. In addition, the project included outreach and education concerning energy efficiency in buildings.

  20. Unlocking the potential of smart grid technologies with behavioral science

    PubMed Central

    Sintov, Nicole D.; Schultz, P. Wesley

    2015-01-01

    Smart grid systems aim to provide a more stable and adaptable electricity infrastructure, and to maximize energy efficiency. Grid-linked technologies vary widely in form and function, but generally share common potentials: to reduce energy consumption via efficiency and/or curtailment, to shift use to off-peak times of day, and to enable distributed storage and generation options. Although end users are central players in these systems, they are sometimes not central considerations in technology or program design, and in some cases, their motivations for participating in such systems are not fully appreciated. Behavioral science can be instrumental in engaging end-users and maximizing the impact of smart grid technologies. In this paper, we present emerging technologies made possible by a smart grid infrastructure, and for each we highlight ways in which behavioral science can be applied to enhance their impact on energy savings. PMID:25914666

  1. Unlocking the potential of smart grid technologies with behavioral science.

    PubMed

    Sintov, Nicole D; Schultz, P Wesley

    2015-01-01

    Smart grid systems aim to provide a more stable and adaptable electricity infrastructure, and to maximize energy efficiency. Grid-linked technologies vary widely in form and function, but generally share common potentials: to reduce energy consumption via efficiency and/or curtailment, to shift use to off-peak times of day, and to enable distributed storage and generation options. Although end users are central players in these systems, they are sometimes not central considerations in technology or program design, and in some cases, their motivations for participating in such systems are not fully appreciated. Behavioral science can be instrumental in engaging end-users and maximizing the impact of smart grid technologies. In this paper, we present emerging technologies made possible by a smart grid infrastructure, and for each we highlight ways in which behavioral science can be applied to enhance their impact on energy savings.

  2. Unlocking the potential of smart grid technologies with behavioral science

    DOE PAGES

    Sintov, Nicole D.; Schultz, P. Wesley

    2015-04-09

    Smart grid systems aim to provide a more stable and adaptable electricity infrastructure, and to maximize energy efficiency. Grid-linked technologies vary widely in form and function, but generally share common potentials: to reduce energy consumption via efficiency and/or curtailment, to shift use to off-peak times of day, and to enable distributed storage and generation options. Although end users are central players in these systems, they are sometimes not central considerations in technology or program design, and in some cases, their motivations for participating in such systems are not fully appreciated. Behavioral science can be instrumental in engaging end-users and maximizingmore » the impact of smart grid technologies. In this study, we present emerging technologies made possible by a smart grid infrastructure, and for each we highlight ways in which behavioral science can be applied to enhance their impact on energy savings.« less

  3. Unlocking the potential of smart grid technologies with behavioral science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sintov, Nicole D.; Schultz, P. Wesley

    Smart grid systems aim to provide a more stable and adaptable electricity infrastructure, and to maximize energy efficiency. Grid-linked technologies vary widely in form and function, but generally share common potentials: to reduce energy consumption via efficiency and/or curtailment, to shift use to off-peak times of day, and to enable distributed storage and generation options. Although end users are central players in these systems, they are sometimes not central considerations in technology or program design, and in some cases, their motivations for participating in such systems are not fully appreciated. Behavioral science can be instrumental in engaging end-users and maximizingmore » the impact of smart grid technologies. In this study, we present emerging technologies made possible by a smart grid infrastructure, and for each we highlight ways in which behavioral science can be applied to enhance their impact on energy savings.« less

  4. Federal/State Jurisdictional Split: Implications for Emerging Electricity Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dennis, Jeffery S.; Kelly, Suedeen G.; Nordhaus, Robert R.

    The first Administration-wide Quadrennial Energy Review (QER), released in April 2015, found that the “interacting and overlapping” division of authority between “federal, regional and state institutions and regulatory structures” for the electricity sector could “impede development of the grid of the future [and] . . . the development of markets that efficiently integrate” new and emerging technologies.1 While “technology is indifferent to state-Federal boundaries and jurisdictions,” the QER explained, “technology users cannot be.”2 The report concluded that “[b]oth Federal and state governments need to play constructive and collaborative roles in the future to ensure that consumers and industry are ablemore » to maximize the value of new technologies.”3 The QER recommended that the Department of Energy (“DOE”) facilitate such collaboration by playing a “convening role” to bring together state and federal regulators and other stakeholders to consider these issues.4 This paper provides background and analysis on these jurisdictional issues and the impact they may have on adoption of emerging energy technologies and coordination of markets for those technologies, in support of future dialogs on these subjects. In particular, this paper reviews the structure of the Federal Power Act (“FPA”),5 and compares the division of authority between the federal and state governments adopted there with other federal energy and energy-related statutes.« less

  5. From Smart-Eco Building to High-Performance Architecture: Optimization of Energy Consumption in Architecture of Developing Countries

    NASA Astrophysics Data System (ADS)

    Mahdavinejad, M.; Bitaab, N.

    2017-08-01

    Search for high-performance architecture and dreams of future architecture resulted in attempts towards meeting energy efficient architecture and planning in different aspects. Recent trends as a mean to meet future legacy in architecture are based on the idea of innovative technologies for resource efficient buildings, performative design, bio-inspired technologies etc. while there are meaningful differences between architecture of developed and developing countries. Significance of issue might be understood when the emerging cities are found interested in Dubaization and other related booming development doctrines. This paper is to analyze the level of developing countries’ success to achieve smart-eco buildings’ goals and objectives. Emerging cities of West of Asia are selected as case studies of the paper. The results of the paper show that the concept of high-performance architecture and smart-eco buildings are different in developing countries in comparison with developed countries. The paper is to mention five essential issues in order to improve future architecture of developing countries: 1- Integrated Strategies for Energy Efficiency, 2- Contextual Solutions, 3- Embedded and Initial Energy Assessment, 4- Staff and Occupancy Wellbeing, 5- Life-Cycle Monitoring.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farrar, Sara; Rothgeb, Stacey; Polly, Ben

    The U.S. Department of Energy (DOE) Building America Program enables the transformation of the U.S. housing industry to achieve energy savings through energy-efficient, high-performance homes with improved durability, comfort, and health for occupants. Building America bridges the gap between the development of emerging technologies and the adoption of codes and standards by engaging industry partners in applied research, development, and demonstration of high-performance solutions.

  7. Industrial energy-efficiency improvement program

    NASA Astrophysics Data System (ADS)

    1980-12-01

    The industrial energy efficiency improvement program to accelerate market penetration of new and emerging industrial technologies is described. Practices which will improve energy efficiency, encourage substitution of more plentiful domestic fuels, and enhance recovery of energy and materials from industrial waste streams are enumerated. Specific reports from the chemicals and allied products; primary metals; petroleum and coal products; stone, clay, and glass, paper and allied products; food and kindred products; fabricated metals; transportation equipment; machinery (except electrical); textile mill products; rubber and miscellaneous plastics; electrical and electronic equipment; lumber and wood; and tobacco products are discussed. A summary on progress in the utilization of recovered materials, and an analysis of industrial fuel mix is presented.

  8. Environmental Assessment Expanded Ponnequin Wind Energy Project Weld County, Colorado

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    N /A

    1999-03-02

    The U.S.Department of Energy (DOE) has considered a proposal from the State of Colorado, Office of Energy Conservation (OEC), for funding construction of the Expanded Ponnequin Wind Project in Weld County, Colorado. OEC plans to enter into a contracting arrangement with Public Service Company of Colorado (PSCO) for the completion of these activities. PSCo, along with its subcontractors and business partners, are jointly developing the Expanded Ponnequin Wind Project. DOE completed an environmental assessment of the original proposed project in August 1997. Since then, the geographic scope and the design of the project changed, necessitating additional review of the projectmore » under the National Environmental Policy Act. The project now calls for the possible construction of up to 48 wind turbines on State and private lands. PSCo and its partners have initiated construction of the project on private land in Weld County, Colorado. A substation, access road and some wind turbines have been installed. However, to date, DOE has not provided any funding for these activities. DOE, through its Commercialization Ventures Program, has solicited applications for financial assistance from state energy offices, in a teaming arrangement with private-sector organizations, for projects that will accelerate the commercialization of emerging renewable energy technologies. The Commercialization Ventures Program was established by the Renewable Energy and Energy Efficiency Technology Competitiveness Act of 1989 (P.L. 101-218) as amended by the Energy Policy Act of 1992 (P.L. 102-486). The Program seeks to assist entry into the marketplace of newly emerging renewable energy technologies, or of innovative applications of existing technologies. In short, an emerging renewable energy technology is one which has already proven viable but which has had little or no operational experience. The Program is managed by the Department of Energy, Office of Energy Efficiency and Renewable Energy. The Federal action triggering the preparation of this EA is the need for DOE to decide whether to release the requested funding to support the construction of the Expanded Ponnequin Wind Project. The purpose of this Final Environmental Assessment (EA) is to provide DOE and the public with information on potential environmental impacts associated with the Expanded Ponnequin Wind Energy Project. This EA, and public comments received on it, were used in DOE's deliberations on whether to release funding for the expanded project under the Commercialization Ventures Program.« less

  9. Mitsubishi iMiEV: An Electric Mini-Car in NREL's Advanced Technology Vehicle Fleet (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This fact sheet highlights the Mitsubishi iMiEV, an electric mini-car in the advanced technology vehicle fleet at the National Renewable Energy Laboratory (NREL). In support of the U.S. Department of Energy's fast-charging research efforts, NREL engineers are conducting charge and discharge performance testing on the vehicle. NREL's advanced technology vehicle fleet features promising technologies to increase efficiency and reduce emissions without sacrificing safety or comfort. The fleet serves as a technology showcase, helping visitors learn about innovative vehicles that are available today or are in development. Vehicles in the fleet are representative of current, advanced, prototype, and emerging technologies.

  10. An emerging reactor technology for chemical synthesis: surface acoustic wave-assisted closed-vessel Suzuki coupling reactions.

    PubMed

    Kulkarni, Ketav; Friend, James; Yeo, Leslie; Perlmutter, Patrick

    2014-07-01

    In this paper we demonstrate the use of an energy-efficient surface acoustic wave (SAW) device for driving closed-vessel SAW-assisted (CVSAW), ligand-free Suzuki couplings in aqueous media. The reactions were carried out on a mmolar scale with low to ultra-low catalyst loadings. The reactions were driven by heating resulting from the penetration of acoustic energy derived from RF Raleigh waves generated by a piezoelectric chip via a renewable fluid coupling layer. The yields were uniformly high and the reactions could be executed without added ligand and in water. In terms of energy density this new technology was determined to be roughly as efficient as microwaves and superior to ultrasound. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  11. Limits on the maximum attainable efficiency for solid-state lighting

    NASA Astrophysics Data System (ADS)

    Coltrin, Michael E.; Tsao, Jeffrey Y.; Ohno, Yoshi

    2008-03-01

    Artificial lighting for general illumination purposes accounts for over 8% of global primary energy consumption. However, the traditional lighting technologies in use today, i.e., incandescent, fluorescent, and high-intensity discharge lamps, are not very efficient, with less than about 25% of the input power being converted to useful light. Solid-state lighting is a rapidly evolving, emerging technology whose efficiency of conversion of electricity to visible white light is likely to approach 50% within the next years. This efficiency is significantly higher than that of traditional lighting technologies, with the potential to enable a marked reduction in the rate of world energy consumption. There is no fundamental physical reason why efficiencies well beyond 50% could not be achieved, which could enable even greater world energy savings. The maximum achievable luminous efficacy for a solid-state lighting source depends on many different physical parameters, for example the color rendering quality that is required, the architecture employed to produce the component light colors that are mixed to produce white, and the efficiency of light sources producing each color component. In this article, we discuss in some detail several approaches to solid-state lighting and the maximum luminous efficacy that could be attained, given various constraints such as those listed above.

  12. Carolinas Energy Career Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Classens, Anver; Hooper, Dick; Johnson, Bruce

    2013-03-31

    Central Piedmont Community College (CPCC), located in Charlotte, North Carolina, established the Carolinas Energy Career Center (Center) - a comprehensive training entity to meet the dynamic needs of the Charlotte region's energy workforce. The Center provides training for high-demand careers in both conventional energy (fossil) and renewable energy (nuclear and solar technologies/energy efficiency). CPCC completed four tasks that will position the Center as a leading resource for energy career training in the Southeast: • Development and Pilot of a New Advanced Welding Curriculum, • Program Enhancement of Non-Destructive Examination (NDE) Technology, • Student Support through implementation of a model targetedmore » toward Energy and STEM Careers to support student learning, • Project Management and Reporting. As a result of DOE funding support, CPCC achieved the following outcomes: • Increased capacity to serve and train students in emerging energy industry careers; • Developed new courses and curricula to support emerging energy industry careers; • Established new training/laboratory resources; • Generated a pool of highly qualified, technically skilled workers to support the growing energy industry sector.« less

  13. PIMS: Memristor-Based Processing-in-Memory-and-Storage.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, Jeanine

    Continued progress in computing has augmented the quest for higher performance with a new quest for higher energy efficiency. This has led to the re-emergence of Processing-In-Memory (PIM) ar- chitectures that offer higher density and performance with some boost in energy efficiency. Past PIM work either integrated a standard CPU with a conventional DRAM to improve the CPU- memory link, or used a bit-level processor with Single Instruction Multiple Data (SIMD) control, but neither matched the energy consumption of the memory to the computation. We originally proposed to develop a new architecture derived from PIM that more effectively addressed energymore » efficiency for high performance scientific, data analytics, and neuromorphic applications. We also originally planned to implement a von Neumann architecture with arithmetic/logic units (ALUs) that matched the power consumption of an advanced storage array to maximize energy efficiency. Implementing this architecture in storage was our original idea, since by augmenting storage (in- stead of memory), the system could address both in-memory computation and applications that accessed larger data sets directly from storage, hence Processing-in-Memory-and-Storage (PIMS). However, as our research matured, we discovered several things that changed our original direc- tion, the most important being that a PIM that implements a standard von Neumann-type archi- tecture results in significant energy efficiency improvement, but only about a O(10) performance improvement. In addition to this, the emergence of new memory technologies moved us to propos- ing a non-von Neumann architecture, called Superstrider, implemented not in storage, but in a new DRAM technology called High Bandwidth Memory (HBM). HBM is a stacked DRAM tech- nology that includes a logic layer where an architecture such as Superstrider could potentially be implemented.« less

  14. Energy Efficient Community Development in California: Chula Vista Research Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gas Technology Institute

    2009-03-31

    In 2007, the U.S. Department of Energy joined the California Energy Commission in funding a project to begin to examine the technical, economic and institutional (policy and regulatory) aspects of energy-efficient community development. That research project was known as the Chula Vista Research Project for the host California community that co-sponsored the initiative. The researches proved that the strategic integration of the selected and economically viable buildings energy efficiency (EE) measures, photovoltaics (PV), distributed generation (DG), and district cooling can produce significant reductions in aggregate energy consumption, peak demand and emissions, compared to the developer/builder's proposed baseline approach. However, themore » central power plant emission reductions achieved through use of the EE-DG option would increase local air emissions. The electric and natural gas utility infrastructure impacts associated with the use of the EE and EE-PV options were deemed relatively insignificant while use of the EE-DG option would result in a significant reduction of necessary electric distribution facilities to serve a large-scale development project. The results of the Chula Vista project are detailed in three separate documents: (1) Energy-Efficient Community Development in California; Chula Vista Research Project report contains a detailed description of the research effort and findings. This includes the methodologies, and tools used and the analysis of the efficiency, economic and emissions impacts of alternative energy technology and community design options for two development sites. Research topics covered included: (a) Energy supply, demand, and control technologies and related strategies for structures; (b) Application of locally available renewable energy resources including solar thermal and PV technology and on-site power generation with heat recovery; (c) Integration of local energy resources into district energy systems and existing energy utility networks; (d) Alternative land-use design and development options and their impact on energy efficiency and urban runoff, emissions and the heat island effect; and (e) Alternative transportation and mobility options and their impact on local emissions. (2) Creating Energy-Efficient Communities in California: A Reference Guide to Barriers, Solutions and Resources report provides the results of an effort to identify the most innovative existing and emerging public policy, incentive and market mechanisms that encourage investment in advanced energy technologies and enabling community design options in the State of California and the nation. The report evaluates each of these mechanisms in light of the preceding research and concludes with a set of recommended mechanisms designed for consideration by relevant California State agencies, development and finance industry associations, and municipal governments. (3) Creating Energy-Efficient Communities in California: A Technical Reference Guide to Building and Site Design report contains a set of selected commercially viable energy technology and community design options for high-efficiency, low-impact community development in California. It includes a summary of the research findings referenced above and recommendations for energy technology applications and energy-efficient development strategies for residential, commercial and institutional structures and supporting municipal infrastructure for planned communities. The document also identifies design options, technology applications and development strategies that are applicable to urban infill projects.« less

  15. Infrared Technology Trends and Implications to Home and Building Energy Use Efficiency

    NASA Astrophysics Data System (ADS)

    Woolaway, James T.

    2008-09-01

    It has long been realized that infrared technology would have applicability in improving the energy efficiency of homes and buildings. Walls that are missing or are poorly insulated can be quickly evaluated by looking at the thermal images of these surfaces. Similarly, air infiltration leaks under doors and around windows leave a telltale thermal signature easily seen in the infrared. The ability to view, evaluate and quickly respond to these images has immediate benefits in addressing and correcting situations where these types of losses are occurring. The principle issue that has been limiting the use of infrared technology in these applications has been the lack of availability and accessibility of infrared technology at a cost point suited to this market. The emergence of low cost microbolometer based infrared cameras, not needing sensor cooling, will greatly increase the accessibility and use of infrared technology for House Doctor inspections. The technology cost for this use is projected to be less than 1 per inspection.

  16. SO x /NO x Removal from Flue Gas Streams by Solid Adsorbents: A Review of Current Challenges and Future Directions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rezaei, Fateme; Rownaghi, Ali A.; Monjezi, Saman

    One of the main challenges in the power and chemical industries is to remove generated toxic or environmentally harmful gases before atmospheric emission. To comply with stringent environmental and pollutant emissions control regulations, coal-fired power plants must be equipped with new technologies that are efficient and less energy-intensive than status quo technologies for flue gas cleanup. While conventional sulfur oxide (SOx) and nitrogen oxide (NOx) removal technologies benefit from their large-scale implementation and maturity, they are quite energy-intensive. In view of this, the development of lower-cost, less energy-intensive technologies could offer an advantage. Significant energy and cost savings can potentiallymore » be realized by using advanced adsorbent materials. One of the major barriers to the development of such technologies remains the development of materials that are efficient and productive in removing flue gas contaminants. In this review, adsorption-based removal of SOx/NOx impurities from flue gas is discussed, with a focus on important attributes of the solid adsorbent materials as well as implementation of the materials in conventional and emerging acid gas removal technologies. The requirements for effective adsorbents are noted with respect to their performance, key limitations, and suggested future research directions. The final section includes some key areas for future research and provides a possible roadmap for the development of technologies for the removal of flue gas impurities that are more efficient and cost-effective than status quo approaches.« less

  17. Wireless electricity (Power) transmission using solar based power satellite technology

    NASA Astrophysics Data System (ADS)

    Maqsood, M.; Nauman Nasir, M.

    2013-06-01

    In the near future due to extensive use of energy, limited supply of resources and the pollution in environment from present resources e.g. (wood, coal, fossil fuel) etc, alternative sources of energy and new ways to generate energy which are efficient, cost effective and produce minimum losses are of great concern. Wireless electricity (Power) transmission (WET) has become a focal point as research point of view and nowadays lies at top 10 future hot burning technologies that are under research these days. In this paper, we present the concept of transmitting power wirelessly to reduce transmission and distribution losses. The wired distribution losses are 70 - 75% efficient. We cannot imagine the world without electric power which is efficient, cost effective and produce minimum losses is of great concern. This paper tells us the benefits of using WET technology specially by using Solar based Power satellites (SBPS) and also focuses that how we make electric system cost effective, optimized and well organized. Moreover, attempts are made to highlight future issues so as to index some emerging solutions.

  18. Carbon nanotube computer.

    PubMed

    Shulaker, Max M; Hills, Gage; Patil, Nishant; Wei, Hai; Chen, Hong-Yu; Wong, H-S Philip; Mitra, Subhasish

    2013-09-26

    The miniaturization of electronic devices has been the principal driving force behind the semiconductor industry, and has brought about major improvements in computational power and energy efficiency. Although advances with silicon-based electronics continue to be made, alternative technologies are being explored. Digital circuits based on transistors fabricated from carbon nanotubes (CNTs) have the potential to outperform silicon by improving the energy-delay product, a metric of energy efficiency, by more than an order of magnitude. Hence, CNTs are an exciting complement to existing semiconductor technologies. Owing to substantial fundamental imperfections inherent in CNTs, however, only very basic circuit blocks have been demonstrated. Here we show how these imperfections can be overcome, and demonstrate the first computer built entirely using CNT-based transistors. The CNT computer runs an operating system that is capable of multitasking: as a demonstration, we perform counting and integer-sorting simultaneously. In addition, we implement 20 different instructions from the commercial MIPS instruction set to demonstrate the generality of our CNT computer. This experimental demonstration is the most complex carbon-based electronic system yet realized. It is a considerable advance because CNTs are prominent among a variety of emerging technologies that are being considered for the next generation of highly energy-efficient electronic systems.

  19. Cloud computing for energy management in smart grid - an application survey

    NASA Astrophysics Data System (ADS)

    Naveen, P.; Kiing Ing, Wong; Kobina Danquah, Michael; Sidhu, Amandeep S.; Abu-Siada, Ahmed

    2016-03-01

    The smart grid is the emerging energy system wherein the application of information technology, tools and techniques that make the grid run more efficiently. It possesses demand response capacity to help balance electrical consumption with supply. The challenges and opportunities of emerging and future smart grids can be addressed by cloud computing. To focus on these requirements, we provide an in-depth survey on different cloud computing applications for energy management in the smart grid architecture. In this survey, we present an outline of the current state of research on smart grid development. We also propose a model of cloud based economic power dispatch for smart grid.

  20. Life cycle design metrics for energy generation technologies: Method, data, and case study

    NASA Astrophysics Data System (ADS)

    Cooper, Joyce; Lee, Seung-Jin; Elter, John; Boussu, Jeff; Boman, Sarah

    A method to assist in the rapid preparation of Life Cycle Assessments of emerging energy generation technologies is presented and applied to distributed proton exchange membrane fuel cell systems. The method develops life cycle environmental design metrics and allows variations in hardware materials, transportation scenarios, assembly energy use, operating performance and consumables, and fuels and fuel production scenarios to be modeled and comparisons to competing systems to be made. Data and results are based on publicly available U.S. Life Cycle Assessment data sources and are formulated to allow the environmental impact weighting scheme to be specified. A case study evaluates improvements in efficiency and in materials recycling and compares distributed proton exchange membrane fuel cell systems to other distributed generation options. The results reveal the importance of sensitivity analysis and system efficiency in interpreting case studies.

  1. Building America FY 2016 Annual Report: Building America Is Driving Real Solutions in the Race to Zero Energy Homes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farrar, Sara; Rothgeb, Stacey; Polly, Ben

    The U.S. Department of Energy (DOE) Building America Program enables the transformation of the U.S. housing industry to achieve energy savings through energy-efficient, high-performance homes with improved durability, comfort, and health for occupants. Building America bridges the gap between the development of emerging technologies and the adoption of codes and standards by engaging industry partners in applied research, development, and demonstration of high-performance solutions.

  2. Organometallic photovoltaics: a new and versatile approach for harvesting solar energy using conjugated polymetallaynes.

    PubMed

    Wong, Wai-Yeung; Ho, Cheuk-Lam

    2010-09-21

    Energy remains one of the world's great challenges. Growing concerns about limited fossil fuel resources and the accumulation of CO(2) in the atmosphere from burning those fuels have stimulated tremendous academic and industrial interest. Researchers are focusing both on developing inexpensive renewable energy resources and on improving the technologies for energy conversion. Solar energy has the capacity to meet increasing global energy needs. Harvesting energy directly from sunlight using photovoltaic technology significantly reduces atmospheric emissions, avoiding the detrimental effects of these gases on the environment. Currently inorganic semiconductors dominate the solar cell production market, but these materials require high technology production and expensive materials, making electricity produced in this manner too costly to compete with conventional sources of electricity. Researchers have successfully fabricated efficient organic-based polymer solar cells (PSCs) as a lower cost alternative. Recently, metalated conjugated polymers have shown exceptional promise as donor materials in bulk-heterojunction solar cells and are emerging as viable alternatives to the all-organic congeners currently in use. Among these metalated conjugated polymers, soluble platinum(II)-containing poly(arylene ethynylene)s of variable bandgaps (∼1.4-3.0 eV) represent attractive candidates for a cost-effective, lightweight solar-energy conversion platform. This Account highlights and discusses the recent advances of this research frontier in organometallic photovoltaics. The emerging use of low-bandgap soluble platinum-acetylide polymers in PSCs offers a new and versatile strategy to capture sunlight for efficient solar power generation. Properties of these polyplatinynes--including their chemical structures, absorption coefficients, bandgaps, charge mobilities, accessibility of triplet excitons, molecular weights, and blend film morphologies--critically influence the device performance. Our group has developed a novel strategy that allows for tuning of the optical absorption and charge transport properties as well as the PSC efficiency of these metallopolyynes. The absorbance of these materials can also be tuned to traverse the near-visible and near-infrared spectral regions. Because of the diversity of transition metals available and chemical versatility of the central spacer unit, we anticipate that this class of materials could soon lead to exciting applications in next-generation PSCs and other electronic or photonic devices. Further research in this emerging field could spur new developments in the production of renewable energy.

  3. Energy Technology Allocation for Distributed Energy Resources: A Technology-Policy Framework

    NASA Astrophysics Data System (ADS)

    Mallikarjun, Sreekanth

    Distributed energy resources (DER) are emerging rapidly. New engineering technologies, materials, and designs improve the performance and extend the range of locations for DER. In contrast, constructing new or modernizing existing high voltage transmission lines for centralized generation are expensive and challenging. In addition, customer demand for reliability has increased and concerns about climate change have created a pull for swift renewable energy penetration. In this context, DER policy makers, developers, and users are interested in determining which energy technologies to use to accommodate different end-use energy demands. We present a two-stage multi-objective strategic technology-policy framework for determining the optimal energy technology allocation for DER. The framework simultaneously considers economic, technical, and environmental objectives. The first stage utilizes a Data Envelopment Analysis model for each end-use to evaluate the performance of each energy technology based on the three objectives. The second stage incorporates factor efficiencies determined in the first stage, capacity limitations, dispatchability, and renewable penetration for each technology, and demand for each end-use into a bottleneck multi-criteria decision model which provides the Pareto-optimal energy resource allocation. We conduct several case studies to understand the roles of various distributed energy technologies in different scenarios. We construct some policy implications based on the model results of set of case studies.

  4. Excitonic Materials for Hybrid Solar Cells and Energy Efficient Lighting

    NASA Astrophysics Data System (ADS)

    Kabra, Dinesh; Lu, Li Ping; Vaynzof, Yana; Song, Myounghoon; Snaith, Henry J.; Friend, Richard H.

    2011-07-01

    Conventional photovoltaic technology will certainly contribute this century, but to generate a significant fraction of our global power from solar energy, a radically new disruptive technology is required. Research primarily focused on developing the physics and technologies being low cost photovoltaic concepts are required. The materials with carbon-based solution processible organic semiconductors with power conversion efficiency as high as ˜8.2%, which have emerged over the last decade as promising alternatives to expensive silicon based technologies. We aim at exploring the morphological and optoelectronic properties of blends of newly synthesized polymer semiconductors as a route to enhance the performance of organic semiconductor based optoelectronic devices, like photovoltaic diodes (PV) and Light Emitting Diodes (LED). OLED efficiency has reached upto 150 lm/W and going to be next generation cheap and eco friendly solid state lighting solution. Hybrid electronics represent a valuable alternative for the production of easy processible, flexible and reliable optoelectronic thin film devices. I will be presenting recent advancement of my work in the area of hybrid photovoltaics, PLED and research path towards realization electrically injectable organic laser diodes.

  5. A chemistry and material perspective on lithium redox flow batteries towards high-density electrical energy storage.

    PubMed

    Zhao, Yu; Ding, Yu; Li, Yutao; Peng, Lele; Byon, Hye Ryung; Goodenough, John B; Yu, Guihua

    2015-11-21

    Electrical energy storage system such as secondary batteries is the principle power source for portable electronics, electric vehicles and stationary energy storage. As an emerging battery technology, Li-redox flow batteries inherit the advantageous features of modular design of conventional redox flow batteries and high voltage and energy efficiency of Li-ion batteries, showing great promise as efficient electrical energy storage system in transportation, commercial, and residential applications. The chemistry of lithium redox flow batteries with aqueous or non-aqueous electrolyte enables widened electrochemical potential window thus may provide much greater energy density and efficiency than conventional redox flow batteries based on proton chemistry. This Review summarizes the design rationale, fundamentals and characterization of Li-redox flow batteries from a chemistry and material perspective, with particular emphasis on the new chemistries and materials. The latest advances and associated challenges/opportunities are comprehensively discussed.

  6. Integrated Photoelectrochemical Solar Energy Conversion and Organic Redox Flow Battery Devices.

    PubMed

    Li, Wenjie; Fu, Hui-Chun; Li, Linsen; Cabán-Acevedo, Miguel; He, Jr-Hau; Jin, Song

    2016-10-10

    Building on regenerative photoelectrochemical solar cells and emerging electrochemical redox flow batteries (RFBs), more efficient, scalable, compact, and cost-effective hybrid energy conversion and storage devices could be realized. An integrated photoelectrochemical solar energy conversion and electrochemical storage device is developed by integrating regenerative silicon solar cells and 9,10-anthraquinone-2,7-disulfonic acid (AQDS)/1,2-benzoquinone-3,5-disulfonic acid (BQDS) RFBs. The device can be directly charged by solar light without external bias, and discharged like normal RFBs with an energy storage density of 1.15 Wh L -1 and a solar-to-output electricity efficiency (SOEE) of 1.7 % over many cycles. The concept exploits a previously undeveloped design connecting two major energy technologies and promises a general approach for storing solar energy electrochemically with high theoretical storage capacity and efficiency. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Engineered Transport in Microporous Materials and Membranes for Clean Energy Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Changyi; Meckler, Stephen M.; Smith, Zachary P.

    Many forward-looking clean-energy technologies hinge on the development of scalable and efficient membrane-based separations. Ongoing investment in the basic research of microporous materials is beginning to pay dividends in membrane technology maturation. Specifically, improvements in membrane selectivity, permeability, and durability are being leveraged for more efficient carbon capture, desalination, and energy storage, and the market adoption of membranes in those areas appears to be on the horizon. Herein, an overview of the microporous materials chemistry driving advanced membrane development, the clean-energy separations employing them, and the theoretical underpinnings tying membrane performance to membrane structure across multiple length scales is provided.more » The interplay of pore architecture and chemistry for a given set of analytes emerges as a critical design consideration dictating mass transport outcomes. Also discussed are opportunities and outstanding challenges in the field, including high-flux 2D molecular-sieving membranes, phase-change adsorbents as performance-enhancing components in composite membranes, and the need for quantitative metrologies for understanding mass transport in heterophasic materials and in micropores with unusual chemical interactions with analytes of interest.« less

  8. Engineered Transport in Microporous Materials and Membranes for Clean Energy Technologies

    DOE PAGES

    Li, Changyi; Meckler, Stephen M.; Smith, Zachary P.; ...

    2018-01-08

    Many forward-looking clean-energy technologies hinge on the development of scalable and efficient membrane-based separations. Ongoing investment in the basic research of microporous materials is beginning to pay dividends in membrane technology maturation. Specifically, improvements in membrane selectivity, permeability, and durability are being leveraged for more efficient carbon capture, desalination, and energy storage, and the market adoption of membranes in those areas appears to be on the horizon. Herein, an overview of the microporous materials chemistry driving advanced membrane development, the clean-energy separations employing them, and the theoretical underpinnings tying membrane performance to membrane structure across multiple length scales is provided.more » The interplay of pore architecture and chemistry for a given set of analytes emerges as a critical design consideration dictating mass transport outcomes. Also discussed are opportunities and outstanding challenges in the field, including high-flux 2D molecular-sieving membranes, phase-change adsorbents as performance-enhancing components in composite membranes, and the need for quantitative metrologies for understanding mass transport in heterophasic materials and in micropores with unusual chemical interactions with analytes of interest.« less

  9. Reliability of hybrid photovoltaic DC micro-grid systems for emergency shelters and other applications

    NASA Astrophysics Data System (ADS)

    Dhere, Neelkanth G.; Schleith, Susan

    2014-10-01

    Improvement of energy efficiency in the SunSmart Schools Emergency Shelters requires new methods for optimizing the energy consumption within the shelters. One major limitation in current systems is the requirement of converting direct current (DC) power generated from the PV array into alternating current (AC) power which is distributed throughout the shelters. Oftentimes, this AC power is then converted back to DC to run certain appliances throughout the shelters resulting in a significant waste of energy due to DC to AC and then again AC to DC conversion. This paper seeks to extract the maximum value out of PV systems by directly powering essential load components within the shelters that already run on DC power without the use of an inverter and above all to make the system reliable and durable. Furthermore, additional DC applications such as LED lighting, televisions, computers and fans operated with DC brushless motors will be installed as replacements to traditional devices in order to improve efficiency and reduce energy consumption. Cost of energy storage technologies continue to decline as new technologies scale up and new incentives are put in place. This will provide a cost effective way to stabilize the energy generation of a PV system as well as to provide continuous energy during night hours. It is planned to develop a pilot program of an integrated system that can provide uninterrupted DC power to essential base load appliances (heating, cooling, lighting, etc.) at the Florida Solar Energy Center (FSEC) command center for disaster management. PV arrays are proposed to be installed on energy efficient test houses at FSEC as well as at private homes having PV arrays where the owners volunteer to participate in the program. It is also planned to monitor the performance of the PV arrays and functioning of the appliances with the aim to improve their reliability and durability. After a successful demonstration of the hybrid DC microgrid based emergency shelter together with the monitoring system, it is planned to replicate it at other schools in Florida and elsewhere to provide continuous power for essential applications, maximizing the value of PV generation systems.

  10. NASA's Vision for Potential Energy Reduction from Future Generations of Propulsion Technology

    NASA Technical Reports Server (NTRS)

    Haller, Bill

    2015-01-01

    Through a robust partnership with the aviation industry, over the past 50 years NASA programs have helped foster advances in propulsion technology that enabled substantial reductions in fuel consumption for commercial transports. Emerging global trends and continuing environmental concerns are creating challenges that will very likely transform the face of aviation over the next 20-40 years. In recognition of this development, NASA Aeronautics has established a set of Research Thrusts that will help define the future direction of the agency's research technology efforts. Two of these thrusts, Ultra-Efficient Commercial Vehicles and Transition to Low-Carbon Propulsion, serve as cornerstones for the Advanced Air Transport Technology (AATT) project. The AATT project is exploring and developing high-payoff technologies and concepts that are key to continued improvement in energy efficiency and environmental compatibility for future generations of fixed-wing, subsonic transports. The AATT project is primarily focused on the N+3 timeframe, or 3 generations from current technology levels. As should be expected, many of the propulsion system architectures technologies envisioned for N+3 vary significantly from todays engines. The use of batteries in a hybrid-electric configuration or deploying multiple fans distributed across the airframe to enable higher bypass ratios are just two examples of potential advances that could enable substantial energy reductions over current propulsion systems.

  11. Review of the harvesting and extraction program within the National Alliance for Advanced Biofuels and Bioproducts

    DOE PAGES

    Marrone, Babetta L.; Lacey, Ronald E.; Anderson, Daniel B.; ...

    2017-08-07

    Energy-efficient and scalable harvesting and lipid extraction processes must be developed in order for the algal biofuels and bioproducts industry to thrive. The major challenge for harvesting is the handling of large volumes of cultivation water to concentrate low amounts of biomass. For lipid extraction, the major energy and cost drivers are associated with disrupting the algae cell wall and drying the biomass before solvent extraction of the lipids. Here we review the research and development conducted by the Harvesting and Extraction Team during the 3-year National Alliance for Advanced Biofuels and Bioproducts (NAABB) algal consortium project. The harvesting andmore » extraction team investigated five harvesting and three wet extraction technologies at lab bench scale for effectiveness, and conducted a techoeconomic study to evaluate their costs and energy efficiency compared to available baseline technologies. Based on this study, three harvesting technologies were selected for further study at larger scale. We evaluated the selected harvesting technologies: electrocoagulation, membrane filtration, and ultrasonic harvesting, in a field study at minimum scale of 100 L/h. None of the extraction technologies were determined to be ready for scale-up; therefore, an emerging extraction technology (wet solvent extraction) was selected from industry to provide scale-up data and capabilities to produce lipid and lipid-extracted materials for the NAABB program. One specialized extraction/adsorption technology was developed that showed promise for recovering high value co-products from lipid extracts. Overall, the NAABB Harvesting and Extraction Team improved the readiness level of several innovative, energy efficient technologies to integrate with algae production processes and captured valuable lessons learned about scale-up challenges.« less

  12. Review of the harvesting and extraction program within the National Alliance for Advanced Biofuels and Bioproducts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marrone, Babetta L.; Lacey, Ronald E.; Anderson, Daniel B.

    Energy-efficient and scalable harvesting and lipid extraction processes must be developed in order for the algal biofuels and bioproducts industry to thrive. The major challenge for harvesting is the handling of large volumes of cultivation water to concentrate low amounts of biomass. For lipid extraction, the major energy and cost drivers are associated with disrupting the algae cell wall and drying the biomass before solvent extraction of the lipids. Here we review the research and development conducted by the Harvesting and Extraction Team during the 3-year National Alliance for Advanced Biofuels and Bioproducts (NAABB) algal consortium project. The harvesting andmore » extraction team investigated five harvesting and three wet extraction technologies at lab bench scale for effectiveness, and conducted a techoeconomic study to evaluate their costs and energy efficiency compared to available baseline technologies. Based on this study, three harvesting technologies were selected for further study at larger scale. We evaluated the selected harvesting technologies: electrocoagulation, membrane filtration, and ultrasonic harvesting, in a field study at minimum scale of 100 L/h. None of the extraction technologies were determined to be ready for scale-up; therefore, an emerging extraction technology (wet solvent extraction) was selected from industry to provide scale-up data and capabilities to produce lipid and lipid-extracted materials for the NAABB program. One specialized extraction/adsorption technology was developed that showed promise for recovering high value co-products from lipid extracts. Overall, the NAABB Harvesting and Extraction Team improved the readiness level of several innovative, energy efficient technologies to integrate with algae production processes and captured valuable lessons learned about scale-up challenges.« less

  13. The Global Rise of Zero Liquid Discharge for Wastewater Management: Drivers, Technologies, and Future Directions.

    PubMed

    Tong, Tiezheng; Elimelech, Menachem

    2016-07-05

    Zero liquid discharge (ZLD)-a wastewater management strategy that eliminates liquid waste and maximizes water usage efficiency - has attracted renewed interest worldwide in recent years. Although implementation of ZLD reduces water pollution and augments water supply, the technology is constrained by high cost and intensive energy consumption. In this critical review, we discuss the drivers, incentives, technologies, and environmental impacts of ZLD. Within this framework, the global applications of ZLD in the United States and emerging economies such as China and India are examined. We highlight the evolution of ZLD from thermal- to membrane-based processes, and analyze the advantages and limitations of existing and emerging ZLD technologies. The potential environmental impacts of ZLD, notably greenhouse gas emission and generation of solid waste, are discussed and the prospects of ZLD technologies and research needs are highlighted.

  14. The Transforming Mobility Ecosystem: Enabling in Energy-Efficient Future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    Over the next decade, the transportation sector is poised for rapid change, propelled toward a new mobility future by strong technology currents and the confluence of prevailing megatrends. These major forces hold the promise of shaping a new mobility future – one that unlocks tremendous economic value, provides unprecedented gains in safety, offers affordable and equal accessibility, and enables the transition to energy-efficient transport of people and goods. They come, however, with cautionary viewpoints on energy consumption of the entire sector, necessitating the need to carefully guide the emergent future. This report examines four possible mobility futures that could existmore » in 2050 and the positive and negative impacts of these futures on energy consumption and the broader economy.« less

  15. Advanced Heat/Mass Exchanger Technology for Geothermal and Solar Renewable Energy Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greiner, Miles; Childress, Amy; Hiibel, Sage

    2014-12-16

    Northern Nevada has abundant geothermal and solar energy resources, and these renewable energy sources provide an ample opportunity to produce economically viable power. Heat/mass exchangers are essential components to any energy conversion system. Improvements in the heat/mass exchange process will lead to smaller, less costly (more efficient) systems. There is an emerging heat transfer technology, based on micro/nano/molecular-scale surface science that can be applied to heat/mass exchanger design. The objective is to develop and characterize unique coating materials, surface configurations and membranes capable of accommodating a 10-fold increase in heat/mass exchanger performance via phase change processes (boiling, condensation, etc.) andmore » single phase convective heat/mass transfer.« less

  16. Premium Efficiency Motor Selection and Application Guide – A Handbook for Industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilbert A. McCoy and John G. Douglass

    2014-02-01

    This handbook informs new motor purchase decisions by identifying energy and cost savings that can come from replacing motors with premium efficiency units. The handbook provides an overview of current motor use in the industrial sector, including the development of motor efficiency standards, currently available and emerging advanced efficiency motor technologies, and guidance on how to evaluate motor efficiency opportunities. It also several tips on getting the most out of industrial motors, such as how to avoid adverse motor interactions with electronic adjustable speed drives and how to ensure efficiency gains are not lost to undervoltage operation or excessive voltagemore » unbalance.« less

  17. Survey of WBSNs for Pre-Hospital Assistance: Trends to Maximize the Network Lifetime and Video Transmission Techniques

    PubMed Central

    Gonzalez, Enrique; Peña, Raul; Vargas-Rosales, Cesar; Avila, Alfonso; Perez-Diaz de Cerio, David

    2015-01-01

    This survey aims to encourage the multidisciplinary communities to join forces for innovation in the mobile health monitoring area. Specifically, multidisciplinary innovations in medical emergency scenarios can have a significant impact on the effectiveness and quality of the procedures and practices in the delivery of medical care. Wireless body sensor networks (WBSNs) are a promising technology capable of improving the existing practices in condition assessment and care delivery for a patient in a medical emergency. This technology can also facilitate the early interventions of a specialist physician during the pre-hospital period. WBSNs make possible these early interventions by establishing remote communication links with video/audio support and by providing medical information such as vital signs, electrocardiograms, etc. in real time. This survey focuses on relevant issues needed to understand how to setup a WBSN for medical emergencies. These issues are: monitoring vital signs and video transmission, energy efficient protocols, scheduling, optimization and energy consumption on a WBSN. PMID:26007741

  18. Gas-phase optical fiber photocatalytic reactors for indoor air application: a preliminary study on performance indicators

    NASA Astrophysics Data System (ADS)

    Palmiste, Ü.; Voll, H.

    2017-10-01

    The development of advanced air cleaning technologies aims to reduce building energy consumption by reduction of outdoor air flow rates while keeping the indoor air quality at an acceptable level by air cleaning. Photocatalytic oxidation is an emerging technology for gas-phase air cleaning that can be applied in a standalone unit or a subsystem of a building mechanical ventilation system. Quantitative information on photocatalytic reactor performance is required to evaluate the technical and economic viability of the advanced air cleaning by PCO technology as an energy conservation measure in a building air conditioning system. Photocatalytic reactors applying optical fibers as light guide or photocatalyst coating support have been reported as an approach to address the current light utilization problems and thus, improve the overall efficiency. The aim of the paper is to present a preliminary evaluation on continuous flow optical fiber photocatalytic reactors based on performance indicators commonly applied for air cleaners. Based on experimental data, monolith-type optical fiber reactor performance surpasses annular-type optical fiber reactors in single-pass removal efficiency, clean air delivery rate and operating cost efficiency.

  19. Review on Microwave-Matter Interaction Fundamentals and Efficient Microwave-Associated Heating Strategies

    PubMed Central

    Sun, Jing; Wang, Wenlong; Yue, Qinyan

    2016-01-01

    Microwave heating is rapidly emerging as an effective and efficient tool in various technological and scientific fields. A comprehensive understanding of the fundamentals of microwave–matter interactions is the precondition for better utilization of microwave technology. However, microwave heating is usually only known as dielectric heating, and the contribution of the magnetic field component of microwaves is often ignored, which, in fact, contributes greatly to microwave heating of some aqueous electrolyte solutions, magnetic dielectric materials and certain conductive powder materials, etc. This paper focuses on this point and presents a careful review of microwave heating mechanisms in a comprehensive manner. Moreover, in addition to the acknowledged conventional microwave heating mechanisms, the special interaction mechanisms between microwave and metal-based materials are attracting increasing interest for a variety of metallurgical, plasma and discharge applications, and therefore are reviewed particularly regarding the aspects of the reflection, heating and discharge effects. Finally, several distinct strategies to improve microwave energy utilization efficiencies are proposed and discussed with the aim of tackling the energy-efficiency-related issues arising from the application of microwave heating. This work can present a strategic guideline for the developed understanding and utilization of the microwave heating technology. PMID:28773355

  20. Assessment of commercially available energy-efficient room air conditioners including models with low global warming potential (GWP) refrigerants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shah, N. K.; Park, W. Y.; Gerke, B.

    Improving the energy efficiency of room air conditioners (RACs) while transitioning to low global-warming-potential (GWP) refrigerants will be a critical step toward reducing the energy, peak load, and emissions impacts of RACs while keeping costs low. Previous research quantified the benefits of leapfrogging to high efficiency in tandem with the transition to low-GWP refrigerants for RACs (Shah et al., 2015) and identified opportunities for initial action to coordinate energy efficiency with refrigerant transition in economies constituting about 65% of the global RAC market (Shah et al., 2017). This report describes further research performed to identify the best-performing (i.e., most efficientmore » and low-GWP-refrigerant using) RACs on the market, to support an understanding of the best available technology (BAT). Understanding BAT can help support market-transformation programs for high-efficiency and low-GWP equipment such as minimum energy performance standards (MEPS), labeling, procurement, and incentive programs. We studied RACs available in six economies—China, Europe, India, Japan, South Korea, and the United States—that together account for about 70% of global RAC demand, as well as other emerging economies. The following are our key findings: • Highly efficient RACs using low-GWP refrigerants, e.g., HFC-32 (R-32) and HC-290 (R-290), are commercially available today at prices comparable to similar RACs using high-GWP HCFC-22 (R-22) or HFC-410A (R-410A). • High efficiency is typically a feature of high-end products. However, highly efficient, cost-competitive (less than 1,000 or 1,500 U.S. dollars in retail price, depending on size) RACs are available. • Where R-22 is being phased out, high GWP R-410A still dominates RAC sales in most mature markets except Japan, where R-32 dominates. • In all of the economies studied except Japan, only a few models are energy efficient and use low-GWP refrigerants. For example, in Europe, India, and Indonesia, the highest-efficiency RAC models employ the low-GWP refrigerants R-32 or R-290. • RACs are available in most regions and worldwide that surpass the highest efficiency levels recognized by labeling programs. • Fixed-speed RACs using high-GWP and ozone-depleting R-22 refrigerant still dominate the market in many emerging economies. There is significant scope to improve RAC efficiency and transition to low-GWP refrigerants using commercially available technology and to design market-transformation programs for high-efficiency, low-GWP equipment including standards, labeling, procurement, and incentive programs.« less

  1. 48 CFR 952.223 - Clauses related to environment, energy and water efficiency, renewable energy technologies...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... environment, energy and water efficiency, renewable energy technologies, occupational safety, and drug-free workplace. 952.223 Section 952.223 Federal Acquisition Regulations System DEPARTMENT OF ENERGY CLAUSES AND... related to environment, energy and water efficiency, renewable energy technologies, occupational safety...

  2. 48 CFR 952.223 - Clauses related to environment, energy and water efficiency, renewable energy technologies...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... environment, energy and water efficiency, renewable energy technologies, occupational safety, and drug-free workplace. 952.223 Section 952.223 Federal Acquisition Regulations System DEPARTMENT OF ENERGY CLAUSES AND... related to environment, energy and water efficiency, renewable energy technologies, occupational safety...

  3. 48 CFR 952.223 - Clauses related to environment, energy and water efficiency, renewable energy technologies...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... environment, energy and water efficiency, renewable energy technologies, occupational safety, and drug-free workplace. 952.223 Section 952.223 Federal Acquisition Regulations System DEPARTMENT OF ENERGY CLAUSES AND... related to environment, energy and water efficiency, renewable energy technologies, occupational safety...

  4. 48 CFR 952.223 - Clauses related to environment, energy and water efficiency, renewable energy technologies...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... environment, energy and water efficiency, renewable energy technologies, occupational safety, and drug-free workplace. 952.223 Section 952.223 Federal Acquisition Regulations System DEPARTMENT OF ENERGY CLAUSES AND... related to environment, energy and water efficiency, renewable energy technologies, occupational safety...

  5. 48 CFR 952.223 - Clauses related to environment, energy and water efficiency, renewable energy technologies...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... environment, energy and water efficiency, renewable energy technologies, occupational safety, and drug-free workplace. 952.223 Section 952.223 Federal Acquisition Regulations System DEPARTMENT OF ENERGY CLAUSES AND... related to environment, energy and water efficiency, renewable energy technologies, occupational safety...

  6. A hierarchical approach for the design improvements of an Organocat biorefinery.

    PubMed

    Abdelaziz, Omar Y; Gadalla, Mamdouh A; El-Halwagi, Mahmoud M; Ashour, Fatma H

    2015-04-01

    Lignocellulosic biomass has emerged as a potentially attractive renewable energy source. Processing technologies of such biomass, particularly its primary separation, still lack economic justification due to intense energy requirements. Establishing an economically viable and energy efficient biorefinery scheme is a significant challenge. In this work, a systematic approach is proposed for improving basic/existing biorefinery designs. This approach is based on enhancing the efficiency of mass and energy utilization through the use of a hierarchical design approach that involves mass and energy integration. The proposed procedure is applied to a novel biorefinery called Organocat to minimize its energy and mass consumption and total annualized cost. An improved heat exchanger network with minimum energy consumption of 4.5 MJ/kgdry biomass is designed. An optimal recycle network with zero fresh water usage and minimum waste discharge is also constructed, making the process more competitive and economically attractive. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Smart grids: A paradigm shift on energy generation and distribution with the emergence of a new energy management business model

    NASA Astrophysics Data System (ADS)

    Cardenas, Jesus Alvaro

    An energy and environmental crisis will emerge throughout the world if we continue with our current practices of generation and distribution of electricity. A possible solution to this problem is based on the Smart grid concept, which is heavily influenced by Information and Communication Technology (ICT). Although the electricity industry is mostly regulated, there are global models used as roadmaps for Smart Grids' implementation focusing on technologies and the basic generation-distribution-transmission model. This project aims to further enhance a business model for a future global deployment. It takes into consideration the many factors interacting in this energy provision process, based on the diffusion of technologies and literature surveys on the available documents in the Internet as well as peer-reviewed publications. Tariffs and regulations, distributed energy generation, integration of service providers, consumers becoming producers, self-healing devices, and many other elements are shifting this industry into a major change towards liberalization and deregulation of this sector, which has been heavily protected by the government due to the importance of electricity for consumers. We propose an Energy Management Business Model composed by four basic elements: Supply Chain, Information and Communication Technology (ICT), Stakeholders Response, and the resulting Green Efficient Energy (GEE). We support the developed model based on the literature survey, we support it with the diffusion analysis of these elements, and support the overall model with two surveys: one for peers and professionals, and other for experts in the field, based on the Smart Grid Carnegie Melon Maturity Model (CMU SEI SGMM). The contribution of this model is a simple path to follow for entities that want to achieve environmental friendly energy with the involvement of technology and all stakeholders.

  8. AMPED Program Overview

    ScienceCinema

    Gur, Ilan

    2018-01-16

    An overview presentation about ARPA-E's AMPED program. AMPED projects seek to develop advanced sensing, control, and power management technologies that redefine the way we think about battery management. Energy storage can significantly improve U.S. energy independence, efficiency, and security by enabling a new generation of electric vehicles. While rapid progress is being made in new battery materials and storage technologies, few innovations have emerged in the management of advanced battery systems. AMPED aims to unlock enormous untapped potential in the performance, safety, and lifetime of today's commercial battery systems exclusively through system-level innovations, and is thus distinct from existing efforts to enhance underlying battery materials and architectures.

  9. Combining plasma gasification and solid oxide cell technologies in advanced power plants for waste to energy and electric energy storage applications.

    PubMed

    Perna, Alessandra; Minutillo, Mariagiovanna; Lubrano Lavadera, Antonio; Jannelli, Elio

    2018-03-01

    The waste to energy (WtE) facilities and the renewable energy storage systems have a strategic role in the promotion of the "eco-innovation", an emerging priority in the European Union. This paper aims to propose advanced plant configurations in which waste to energy plants and electric energy storage systems from intermittent renewable sources are combined for obtaining more efficient and clean energy solutions in accordance with the "eco-innovation" approach. The advanced plant configurations consist of an electric energy storage (EES) section based on a solid oxide electrolyzer (SOEC), a waste gasification section based on the plasma technology and a power generation section based on a solid oxide fuel cell (SOFC). The plant configurations differ for the utilization of electrolytic hydrogen and oxygen in the plasma gasification section and in the power generation section. In the first plant configuration IAPGFC (Integrated Air Plasma Gasification Fuel Cell), the renewable oxygen enriches the air stream, that is used as plasma gas in the gasification section, and the renewable hydrogen is used to enrich the anodic stream of the SOFC in the power generation section. In the second plant configuration IHPGFC (Integrated Hydrogen Plasma Gasification Fuel Cell) the renewable hydrogen is used as plasma gas in the plasma gasification section, and the renewable oxygen is used to enrich the cathodic stream of the SOFC in the power generation section. The analysis has been carried out by using numerical models for predicting and comparing the systems performances in terms of electric efficiency and capability in realizing the waste to energy and the electric energy storage of renewable sources. Results have highlighted that the electric efficiency is very high for all configurations (35-45%) and, thanks to the combination with the waste to energy technology, the storage efficiencies are very attractive (in the range 72-92%). Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. BLACKCOMB2: Hardware-software co-design for non-volatile memory in exascale systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mudge, Trevor

    This work was part of a larger project, Blackcomb2, centered at Oak Ridge National Labs (Jeff Vetter PI) to investigate the opportunities for replacing or supplementing DRAM main memory with nonvolatile memory (NVmemory) in Exascale memory systems. The goal was to reduce the energy consumed by in future supercomputer memory systems and to improve their resiliency. Building on the accomplishments of the original Blackcomb Project, funded in 2010, the goal for Blackcomb2 was to identify, evaluate, and optimize the most promising emerging memory technologies, architecture hardware and software technologies, which are essential to provide the necessary memory capacity, performance, resilience,more » and energy efficiency in Exascale systems. Capacity and energy are the key drivers.« less

  11. Environmental challenges of the chlor-alkali production: Seeking answers from a life cycle approach.

    PubMed

    Garcia-Herrero, Isabel; Margallo, María; Onandía, Raquel; Aldaco, Rubén; Irabien, Angel

    2017-02-15

    Life Cycle Assessment (LCA) has been used to assess the environmental sustainability of the chlor-alkali production in Europe. The three current technologies applied nowadays are mercury, diaphragm, and membrane cell technology. Despite, having achieved higher energy efficiencies since the introduction of membrane technology, energy consumption is still one of the most important issues in this sector. An emerging technology namely oxygen-depolarised cathodes (ODC) is suggested as a promising approach for reducing the electrolysis energy demand. However, its requirement of pure oxygen and the lack of production of hydrogen, which could otherwise be valorised, are controversial features for greener chlorine production. The aim of this work is to evaluate and compare the environmental profiles of the current and emerging technologies for chlorine production and to identify the main hot spots of the process. Salt mining, brine preparation, electrolysis technology and products treatment are included inside the system boundaries. Twelve environmental impact categories grouped into natural resources usage and environmental burdens are assessed from cradle to gate and further normalised and weighted. Furthermore, hydrogen valorisation, current density and allocation procedure are subjected to sensitivity analysis. Results show that the electrolysis stage is the main contributor to the environmental impacts due to energy consumption, causing 99.5-72% of these impacts. Mercury is the less environmentally sustainable technology, closely followed by diaphragm. This difference becomes bigger after normalisation, owing to hazardous waste generated by mercury technique. Conversely, best results are obtained for ODC instead of membrane scenario, although the reduction in energy requirements is lesser than expected (7%). Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Comparing Efficiency Projections (released in AEO2010)

    EIA Publications

    2010-01-01

    Realized improvements in energy efficiency generally rely on a combination of technology and economics. The figure below illustrates the role of technology assumptions in the Annual Energy Outlook 2010 projections for energy efficiency in the residential and commercial buildings sector. Projected energy consumption in the Reference case is compared with projections in the Best Available Technology, High Technology, and 2009 Technology cases and an estimate based on an assumption of no change in efficiency for building shells and equipment.

  13. Decentralized energy systems for clean electricity access

    NASA Astrophysics Data System (ADS)

    Alstone, Peter; Gershenson, Dimitry; Kammen, Daniel M.

    2015-04-01

    Innovative approaches are needed to address the needs of the 1.3 billion people lacking electricity, while simultaneously transitioning to a decarbonized energy system. With particular focus on the energy needs of the underserved, we present an analytic and conceptual framework that clarifies the heterogeneous continuum of centralized on-grid electricity, autonomous mini- or community grids, and distributed, individual energy services. A historical analysis shows that the present day is a unique moment in the history of electrification where decentralized energy networks are rapidly spreading, based on super-efficient end-use appliances and low-cost photovoltaics. We document how this evolution is supported by critical and widely available information technologies, particularly mobile phones and virtual financial services. These disruptive technology systems can rapidly increase access to basic electricity services and directly inform the emerging Sustainable Development Goals for quality of life, while simultaneously driving action towards low-carbon, Earth-sustaining, inclusive energy systems.

  14. Media analysis of the representations of fusion and other future energy technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delicado, Ana; Schmidt, Luisa; Pereira, Sergio

    2015-07-01

    Media representations of energy have a relevant impact on public opinion and public support for investment in new energy sources. Fusion energy is one among several emerging energy technologies that requires a strong public investment on its research and development. This paper aims to characterise and compare the media representations of fusion and other emerging energy technologies in Portugal and in Spain. The emerging energy technologies selected for analysis are wave and tidal power, hydrogen, deep sea offshore wind power, energy applications of nanotechnology, bio-fuels from microalgae and IV generation nuclear fission. This work covered the news published in amore » selection of newspapers in Portugal and Spain between January 2007 and June 2013. (authors)« less

  15. Integrating the Technology Acceptance Model and Diffusion of Innovation: Factors Promoting Interest in Energy Efficient and Renewable Energy Technologies at Military Installations, Federal Facilities and Land-Grant Universities

    ERIC Educational Resources Information Center

    Dudik, C. E. Jane

    2017-01-01

    Energy managers are tasked with identifying energy savings opportunities and promoting energy independence. Energy-efficient (EE) and renewable-energy (RE) technology demonstrations enable energy managers to evaluate new energy technologies and adopt those that appear most effective. This study examined whether energy technology demonstrations…

  16. Emerging electrochemical energy conversion and storage technologies

    NASA Astrophysics Data System (ADS)

    Badwal, Sukhvinder; Giddey, Sarbjit; Munnings, Christopher; Bhatt, Anand; Hollenkamp, Tony

    2014-09-01

    Electrochemical cells and systems play a key role in a wide range of industry sectors. These devices are critical enabling technologies for renewable energy; energy management, conservation and storage; pollution control / monitoring; and greenhouse gas reduction. A large number of electrochemical energy technologies have been developed in the past. These systems continue to be optimized in terms of cost, life time and performance, leading to their continued expansion into existing and emerging market sectors. The more established technologies such as deep-cycle batteries and sensors are being joined by emerging technologies such as fuel cells, large format lithium-ion batteries, electrochemical reactors; ion transport membranes and supercapacitors. This growing demand (multi billion dollars) for electrochemical energy systems along with the increasing maturity of a number of technologies is having a significant effect on the global research and development effort which is increasing in both in size and depth. A number of new technologies, which will have substantial impact on the environment and the way we produce and utilize energy, are under development. This paper presents an overview of several emerging electrochemical energy technologies along with a discussion some of the key technical challenges.

  17. Emerging electrochemical energy conversion and storage technologies

    PubMed Central

    Badwal, Sukhvinder P. S.; Giddey, Sarbjit S.; Munnings, Christopher; Bhatt, Anand I.; Hollenkamp, Anthony F.

    2014-01-01

    Electrochemical cells and systems play a key role in a wide range of industry sectors. These devices are critical enabling technologies for renewable energy; energy management, conservation, and storage; pollution control/monitoring; and greenhouse gas reduction. A large number of electrochemical energy technologies have been developed in the past. These systems continue to be optimized in terms of cost, life time, and performance, leading to their continued expansion into existing and emerging market sectors. The more established technologies such as deep-cycle batteries and sensors are being joined by emerging technologies such as fuel cells, large format lithium-ion batteries, electrochemical reactors; ion transport membranes and supercapacitors. This growing demand (multi billion dollars) for electrochemical energy systems along with the increasing maturity of a number of technologies is having a significant effect on the global research and development effort which is increasing in both in size and depth. A number of new technologies, which will have substantial impact on the environment and the way we produce and utilize energy, are under development. This paper presents an overview of several emerging electrochemical energy technologies along with a discussion some of the key technical challenges. PMID:25309898

  18. Technology's Impact on Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rachel Amann; Ellis Deweese; Deborah Shipman

    2009-06-30

    As part of a cooperative agreement with the United States Department of Energy (DOE) - entitled Technology's Impact on Production: Developing Environmental Solutions at the State and National Level - the Interstate Oil and Gas Compact Commission (IOGCC) has been tasked with assisting state governments in the effective, efficient, and environmentally sound regulation of the exploration and production of natural gas and crude oil, specifically in relation to orphaned and abandoned wells and wells nearing the end of productive life. Project goals include: (1) Developing (a) a model framework for prioritization and ranking of orphaned or abandoned well sites; (b)more » a model framework for disbursement of Energy Policy Act of 2005 funding; and (c) a research study regarding the current status of orphaned wells in the nation. (2) Researching the impact of new technologies on environmental protection from a regulatory perspective. Research will identify and document (a) state reactions to changing technology and knowledge; (b) how those reactions support state environmental conservation and public health; and (c) the impact of those reactions on oil and natural gas production. (3) Assessing emergent technology issues associated with wells nearing the end of productive life. Including: (a) location of orphaned and abandoned well sites; (b) well site remediation; (c) plugging materials; (d) plug placement; (e) the current regulatory environment; and (f) the identification of emergent technologies affecting end of life wells. New Energy Technologies - Regulating Change, is the result of research performed for Tasks 2 and 3.« less

  19. Modern energy efficient technologies of high-rise construction

    NASA Astrophysics Data System (ADS)

    Lukmanova, Inessa; Golov, Roman

    2018-03-01

    The paper analyzes modern energy-efficient technologies, both being applied, and only introduced into the application in the construction of high-rise residential buildings. All technologies are systematized by the authors as part of a unified model of "Arrows of Energy-Efficient Technologies", which imply performing energy-saving measures in the design, construction and operation of buildings.

  20. 48 CFR 23.000 - Scope.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE... reducing energy and water use in Government facilities; (c) Using renewable energy and renewable energy technologies; (d) Acquiring energy-efficient and water-efficient products and services, environmentally...

  1. 48 CFR 23.000 - Scope.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE... reducing energy and water use in Government facilities; (c) Using renewable energy and renewable energy technologies; (d) Acquiring energy-efficient and water-efficient products and services, environmentally...

  2. 48 CFR 23.000 - Scope.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE... reducing energy and water use in Government facilities; (c) Using renewable energy and renewable energy technologies; (d) Acquiring energy-efficient and water-efficient products and services, environmentally...

  3. 48 CFR 23.000 - Scope.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE... reducing energy and water use in Government facilities; (c) Using renewable energy and renewable energy technologies; (d) Acquiring energy-efficient and water-efficient products and services, environmentally...

  4. Bioinspired fractal electrodes for solar energy storages.

    PubMed

    Thekkekara, Litty V; Gu, Min

    2017-03-31

    Solar energy storage is an emerging technology which can promote the solar energy as the primary source of electricity. Recent development of laser scribed graphene electrodes exhibiting a high electrical conductivity have enabled a green technology platform for supercapacitor-based energy storage, resulting in cost-effective, environment-friendly features, and consequent readiness for on-chip integration. Due to the limitation of the ion-accessible active porous surface area, the energy densities of these supercapacitors are restricted below ~3 × 10 -3  Whcm -3 . In this paper, we demonstrate a new design of biomimetic laser scribed graphene electrodes for solar energy storage, which embraces the structure of Fern leaves characterized by the geometric family of space filling curves of fractals. This new conceptual design removes the limit of the conventional planar supercapacitors by significantly increasing the ratio of active surface area to volume of the new electrodes and reducing the electrolyte ionic path. The attained energy density is thus significantly increased to ~10 -1  Whcm -3 - more than 30 times higher than that achievable by the planar electrodes with ~95% coulombic efficiency of the solar energy storage. The energy storages with these novel electrodes open the prospects of efficient self-powered and solar-powered wearable, flexible and portable applications.

  5. Bioinspired fractal electrodes for solar energy storages

    PubMed Central

    Thekkekara, Litty V.; Gu, Min

    2017-01-01

    Solar energy storage is an emerging technology which can promote the solar energy as the primary source of electricity. Recent development of laser scribed graphene electrodes exhibiting a high electrical conductivity have enabled a green technology platform for supercapacitor-based energy storage, resulting in cost-effective, environment-friendly features, and consequent readiness for on-chip integration. Due to the limitation of the ion-accessible active porous surface area, the energy densities of these supercapacitors are restricted below ~3 × 10−3 Whcm−3. In this paper, we demonstrate a new design of biomimetic laser scribed graphene electrodes for solar energy storage, which embraces the structure of Fern leaves characterized by the geometric family of space filling curves of fractals. This new conceptual design removes the limit of the conventional planar supercapacitors by significantly increasing the ratio of active surface area to volume of the new electrodes and reducing the electrolyte ionic path. The attained energy density is thus significantly increased to ~10−1 Whcm−3- more than 30 times higher than that achievable by the planar electrodes with ~95% coulombic efficiency of the solar energy storage. The energy storages with these novel electrodes open the prospects of efficient self-powered and solar-powered wearable, flexible and portable applications. PMID:28361924

  6. Nanomaterials for Polymer Electrolyte Membrane Fuel Cells; Materials Challenges Facing Electrical Energy Storate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gopal Rao, MRS Web-Editor; Yury Gogotsi, Drexel University; Karen Swider-Lyons, Naval Research Laboratory

    Symposium T: Nanomaterials for Polymer Electrolyte Membrane Fuel Cells Polymer electrolyte membrane (PEM) fuel cells are under intense investigation worldwide for applications ranging from transportation to portable power. The purpose of this seminar is to focus on the nanomaterials and nanostructures inherent to polymer fuel cells. Symposium topics will range from high-activity cathode and anode catalysts, to theory and new analytical methods. Symposium U: Materials Challenges Facing Electrical Energy Storage Electricity, which can be generated in a variety of ways, offers a great potential for meeting future energy demands as a clean and efficient energy source. However, the use ofmore » electricity generated from renewable sources, such as wind or sunlight, requires efficient electrical energy storage. This symposium will cover the latest material developments for batteries, advanced capacitors, and related technologies, with a focus on new or emerging materials science challenges.« less

  7. A sunny future: expert elicitation of China's solar photovoltaic technologies

    NASA Astrophysics Data System (ADS)

    Lam, Long T.; Branstetter, Lee; Azevedo, Inês L.

    2018-03-01

    China has emerged as the global manufacturing center for solar photovoltaic (PV) products. Chinese firms have entered all stages of the supply chain, producing most of the installed solar modules around the world. Meanwhile, production costs are at record lows. The decisions that Chinese solar producers make today will influence the path for the solar industry and its role towards de-carbonization of global energy systems in the years to come. However, to date, there have been no assessments of the future costs and efficiency of solar PV systems produced by the Chinese PV industry. We perform an expert elicitation to assess the technological and non-technological factors that led to the success of China’s silicon PV industry as well as likely future costs and performance. Experts evaluated key metrics such as efficiency, costs, and commercial viability of 17 silicon and non-silicon solar PV technologies by 2030. Silicon-based technologies will continue to be the mainstream product for large-scale electricity generation application in the near future, with module efficiency reaching as high as 23% and production cost as low as 0.24/W. The levelized cost of electricity for solar will be around 34/MWh, allowing solar PV to be competitive with traditional energy resources like coal. The industry’s future developments may be affected by overinvestment, overcapacity, and singular short-term focus.

  8. Alkali metal thermal to electric conversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sievers, R.K.; Ivanenok, J.F. III; Hunt, T.K.

    1995-10-01

    With potential efficiencies of up to 40%, AMTEC technology offers reliability and fuel flexibility for aerospace and ground power applications. Alkali Metal Thermal to Electric Conversion (AMTEC), a direct power-conversion technology, is emerging from the laboratory for use in a number of applications that require lightweight, long-running, efficient power systems. AMTEC is compatible with many heat and fuel sources, and it offers the reliability of direct (that is, no moving parts) thermal to electric conversion. These features make it an attractive technology for small spacecraft used in deep-space missions and for ground power applications, such as self-powered furnaces and themore » generators used in recreational vehicles. Researchers at Ford Scientific Laboratories, in Dearborn, Michigan, first conceived AMTEC technology in 1968 when they identified and patented a converter known as the sodium heat engine. This heat engine was based on the unique properties of {beta}-alumina solid electrolyte (BASE), a ceramic material that is an excellent sodium ion conductor but a poor electronic conductor. BASE was used to form a structural barrier across which a sodium concentration gradient could be produced from thermal energy. The engine provided a way to isothermally expand sodium through the BASE concentration gradient without moving mechanical components. Measured power density and calculated peak efficiencies were impressive, which led to funding from the Department of Energy for important material technology development.« less

  9. Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weakley, Steven A.

    The purpose of the project described in this report is to identify and document the commercial and emerging (projected to be commercialized within the next 3 years) hydrogen and fuel cell technologies and products that resulted from Department of Energy support through the Fuel Cell Technologies (FCT) Program in the Office of Energy Efficiency and Renewable Energy (EERE). Pacific Northwest National Laboratory (PNNL) undertook two efforts simultaneously to accomplish this project. The first effort was a patent search and analysis to identify patents related to hydrogen and fuel cells that are associated with FCT-funded projects (or projects conducted by DOE-EEREmore » predecessor programs) and to ascertain the patents’ current status, as well as any commercial products that may have used the technology documented in the patent. The second effort was a series of interviews with current and past FCT personnel, a review of relevant program annual reports, and an examination of grants made under the Small Business Innovation Research and Small Business Technology Transfer Programs that are related to hydrogen and fuel cells.« less

  10. Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weakley, Steven A.; Brown, Scott A.

    The purpose of the project described in this report is to identify and document the commercial and emerging (projected to be commercialized within the next 3 years) hydrogen and fuel cell technologies and products that resulted from Department of Energy support through the Fuel Cell Technologies (FCT) Program in the Office of Energy Efficiency and Renewable Energy (EERE). To do this, Pacific Northwest National Laboratory (PNNL) undertook two efforts simultaneously to accomplish this project. The first effort was a patent search and analysis to identify hydrogen- and fuel-cell-related patents that are associated with FCT-funded projects (or projects conducted by DOE-EEREmore » predecessor programs) and to ascertain the patents current status, as well as any commercial products that may have used the technology documented in the patent. The second effort was a series of interviews with current and past FCT personnel, a review of relevant program annual reports, and an examination of hydrogen- and fuel-cell-related grants made under the Small Business Innovation Research and Small Business Technology Transfer Programs, and within the FCT portfolio.« less

  11. Carbon dioxide recycling: emerging large-scale technologies with industrial potential.

    PubMed

    Quadrelli, Elsje Alessandra; Centi, Gabriele; Duplan, Jean-Luc; Perathoner, Siglinda

    2011-09-19

    This Review introduces this special issue of ChemSusChem dedicated to CO(2) recycling. Its aim is to offer an up-to-date overview of CO(2) chemical utilization (inorganic mineralization, organic carboxylation, reduction reactions, and biochemical conversion), as a continuation and extension of earlier books and reviews on this topic, but with a specific focus on large-volume routes and projects/pilot plants that are currently emerging at (pre-)industrial level. The Review also highlights how some of these routes will offer a valuable opportunity to introduce renewable energy into the existing energy and chemical infrastructure (i.e., "drop-in" renewable energy) by synthesis of chemicals from CO(2) that are easy to transport and store. CO(2) conversion therefore has the potential to become a key pillar of the sustainable and resource-efficient production of chemicals and energy from renewables. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zitney, S.E.

    Emerging fossil energy power generation systems must operate with unprecedented efficiency and near-zero emissions, while optimizing profitably amid cost fluctuations for raw materials, finished products, and energy. To help address these challenges, the fossil energy industry will have to rely increasingly on the use advanced computational tools for modeling and simulating complex process systems. In this paper, we present the computational research challenges and opportunities for the optimization of fossil energy power generation systems across the plant lifecycle from process synthesis and design to plant operations. We also look beyond the plant gates to discuss research challenges and opportunities formore » enterprise-wide optimization, including planning, scheduling, and supply chain technologies.« less

  13. The SEAD global efficiency medal competition: accelerating market transformation for efficient televisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ravi, Kavita; Bennich, Peter; Cockburn, John

    2013-10-15

    The Global Efficiency Medal competition, a cornerstone activity of the Super-efficient Equipment and Appliance Deployment (SEAD) Initiative, is an awards program that encourages the production and sale of super-efficient products. SEAD is a voluntary multinational government collaboration of the Clean Energy Ministerial (CEM). This winner-takes-all competition recognizes products with the best energy efficiency, guides early adopter purchasers towards the most efficient product choices and demonstrates the levels of energy efficiency achievable by commercially available and emerging technologies. The first Global Efficiency Medals were awarded to the most energy-efficient flat panel televisions; an iconic consumer purchase. SEAD Global Efficiency Medals weremore » awarded to televisions that have proven to be substantially more energy efficient than comparable models available at the time of the competition (applications closed in the end of May 2012). The award-winning TVs consume between 33 to 44 percent less energy per 2 unit of screen area than comparable LED-backlit LCD televisions sold in each regional market and 50 to 60 percent less energy than CCFL-backlit LCD TVs. Prior to the launch of this competition, SEAD conducted an unprecedented international round-robin test (RRT) to qualify TV test laboratories to support verification testing for SEAD awards. The RRT resulted in increased test laboratory capacity and expertise around the world and ensured that the test results from participating regional test laboratories could be compared in a fair and transparent fashion. This paper highlights a range of benefits resulting from this first SEAD awards competition and encourages further investigation of the awards concept as a means to promote energy efficiency in other equipment types.« less

  14. Toyota Prius Plug-In HEV: A Plug-In Hybrid Electric Car in NREL's Advanced Technology Vehicle Fleet (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This fact sheet highlights the Toyota Prius plug-in HEV, a plug-in hybrid electric car in the advanced technology vehicle fleet at the National Renewable Energy Laboratory (NREL). In partnership with the University of Colorado, NREL uses the vehicle for grid-integration studies and for testing new hardware and charge-management algorithms. NREL's advanced technology vehicle fleet features promising technologies to increase efficiency and reduce emissions without sacrificing safety or comfort. The fleet serves as a technology showcase, helping visitors learn about innovative vehicles that are available today or are in development. Vehicles in the fleet are representative of current, advanced, prototype, andmore » emerging technologies.« less

  15. Environmental Impacts from Photovoltaic Solar Cells Made with Single Walled Carbon Nanotubes.

    PubMed

    Celik, Ilke; Mason, Brooke E; Phillips, Adam B; Heben, Michael J; Apul, Defne

    2017-04-18

    An ex-ante life cycle inventory was developed for single walled carbon nanotube (SWCNT) PV cells, including a laboratory-made 1% efficient device and an aspirational 28% efficient four-cell tandem device. The environmental impact of unit energy generation from the mono-Si PV technology was used as a reference point. Compared to monocrystalline Si (mono-Si), the environmental impacts from 1% SWCNT was ∼18 times higher due mainly to the short lifetime of three years. However, even with the same short lifetime, the 28% cell had lower environmental impacts than mono-Si. The effects of lifetime and efficiency on the environmental impacts were further examined. This analysis showed that if the SWCNT device efficiency had the same value as the best efficiency of the material under comparison, to match the total normalized impacts of the mono- and poly-Si, CIGS, CdTe, and a-Si devices, the SWCNT devices would need a lifetime of 2.8, 3.5, 5.3, 5.1, and 10.8 years, respectively. It was also found that if the SWCNT PV has an efficiency of 4.5% or higher, its energy payback time would be lower than other existing and emerging PV technologies. The major impacts of SWCNT PV came from the cell's materials synthesis.

  16. Photobiological hydrogen production and artificial photosynthesis for clean energy: from bio to nanotechnologies.

    PubMed

    Nath, K; Najafpour, M M; Voloshin, R A; Balaghi, S E; Tyystjärvi, E; Timilsina, R; Eaton-Rye, J J; Tomo, T; Nam, H G; Nishihara, H; Ramakrishna, S; Shen, J-R; Allakhverdiev, S I

    2015-12-01

    Global energy demand is increasing rapidly and due to intensive consumption of different forms of fuels, there are increasing concerns over the reduction in readily available conventional energy resources. Because of the deleterious atmospheric effects of fossil fuels and the uncertainties of future energy supplies, there is a surge of interest to find environmentally friendly alternative energy sources. Hydrogen (H2) has attracted worldwide attention as a secondary energy carrier, since it is the lightest carbon-neutral fuel rich in energy per unit mass and easy to store. Several methods and technologies have been developed for H2 production, but none of them are able to replace the traditional combustion fuel used in automobiles so far. Extensively modified and renovated methods and technologies are required to introduce H2 as an alternative efficient, clean, and cost-effective future fuel. Among several emerging renewable energy technologies, photobiological H2 production by oxygenic photosynthetic microbes such as green algae and cyanobacteria or by artificial photosynthesis has attracted significant interest. In this short review, we summarize the recent progress and challenges in H2-based energy production by means of biological and artificial photosynthesis routes.

  17. Carbon nanotube circuit integration up to sub-20 nm channel lengths.

    PubMed

    Shulaker, Max Marcel; Van Rethy, Jelle; Wu, Tony F; Liyanage, Luckshitha Suriyasena; Wei, Hai; Li, Zuanyi; Pop, Eric; Gielen, Georges; Wong, H-S Philip; Mitra, Subhasish

    2014-04-22

    Carbon nanotube (CNT) field-effect transistors (CNFETs) are a promising emerging technology projected to achieve over an order of magnitude improvement in energy-delay product, a metric of performance and energy efficiency, compared to silicon-based circuits. However, due to substantial imperfections inherent with CNTs, the promise of CNFETs has yet to be fully realized. Techniques to overcome these imperfections have yielded promising results, but thus far only at large technology nodes (1 μm device size). Here we demonstrate the first very large scale integration (VLSI)-compatible approach to realizing CNFET digital circuits at highly scaled technology nodes, with devices ranging from 90 nm to sub-20 nm channel lengths. We demonstrate inverters functioning at 1 MHz and a fully integrated CNFET infrared light sensor and interface circuit at 32 nm channel length. This demonstrates the feasibility of realizing more complex CNFET circuits at highly scaled technology nodes.

  18. A Survey on Energy Conserving Mechanisms for the Internet of Things: Wireless Networking Aspects.

    PubMed

    Abbas, Zeeshan; Yoon, Wonyong

    2015-09-25

    The Internet of Things (IoT) is an emerging key technology for future industries and everyday lives of people, where a myriad of battery operated sensors, actuators, and smart objects are connected to the Internet to provide services such as mobile healthcare, intelligent transport system, environmental monitoring, etc. Since energy efficiency is of utmost importance to these battery constrained IoT devices, IoT-related standards and research works have focused on the device energy conserving issues. This paper presents a comprehensive survey on energy conserving issues and solutions in using diverse wireless radio access technologies for IoT connectivity, e.g., the 3rd Generation Partnership Project (3GPP) machine type communications, IEEE 802.11ah, Bluetooth Low Energy (BLE), and Z-Wave. We look into the literature in broad areas of standardization, academic research, and industry development, and structurally summarize the energy conserving solutions based on several technical criteria. We also propose future research directions regarding energy conserving issues in wireless networking-based IoT.

  19. A Survey on Energy Conserving Mechanisms for the Internet of Things: Wireless Networking Aspects

    PubMed Central

    Abbas, Zeeshan; Yoon, Wonyong

    2015-01-01

    The Internet of Things (IoT) is an emerging key technology for future industries and everyday lives of people, where a myriad of battery operated sensors, actuators, and smart objects are connected to the Internet to provide services such as mobile healthcare, intelligent transport system, environmental monitoring, etc. Since energy efficiency is of utmost importance to these battery constrained IoT devices, IoT-related standards and research works have focused on the device energy conserving issues. This paper presents a comprehensive survey on energy conserving issues and solutions in using diverse wireless radio access technologies for IoT connectivity, e.g., the 3rd Generation Partnership Project (3GPP) machine type communications, IEEE 802.11ah, Bluetooth Low Energy (BLE), and Z-Wave. We look into the literature in broad areas of standardization, academic research, and industry development, and structurally summarize the energy conserving solutions based on several technical criteria. We also propose future research directions regarding energy conserving issues in wireless networking-based IoT. PMID:26404275

  20. Assessing Energy Efficiency Opportunities in US Industrial and Commercial Building Motor Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, Prakash; Sheaffer, Paul; McKane, Aimee

    2015-09-01

    In 2002, the United States Department of Energy (USDOE) published an energy efficiency assessment of U.S. industrial sector motor systems titled United States Industrial Electric Motor Systems Market Opportunities Assessment. The assessment advanced motor system efficiency by providing a greater understanding of the energy consumption, use characteristics, and energy efficiency improvement potential of industrial sector motor systems in the U.S. Since 2002, regulations such as Minimum Energy Performance Standards, cost reductions for motor system components such as variable frequency drives, system-integrated motor-driven equipment, and awareness programs for motor system energy efficiency have changed the landscape of U.S. motor system energymore » consumption. To capture the new landscape, the USDOE has initiated a three-year Motor System Market Assessment (MSMA), led by Lawrence Berkeley National Laboratory (LBNL). The MSMA will assess the energy consumption, operational and maintenance characteristics, and efficiency improvement opportunity of U.S. industrial sector and commercial building motor systems. As part of the MSMA, a significant effort is currently underway to conduct field assessments of motor systems from a sample of facilities representative of U.S. commercial and industrial motor system energy consumption. The Field Assessment Plan used for these assessments builds on recent LBNL research presented at EEMODS 2011 and EEMODS 2013 using methods for characterizing and determining regional motor system energy efficiency opportunities. This paper provides an update on the development and progress of the MSMA, focusing on the Field Assessment Plan and the framework for assessing the global supply chain for emerging motors and drive technologies.« less

  1. Building Technologies Office FY 2017 Budget At-A-Glance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2016-03-01

    Buildings and homes use more than 73% of the electrical energy consumed in the United States. They also consume 40% of the nation’s total energy, with an annual energy bill of $430 billion. These energy bills can be cost effectively reduced by 20%–50% or more through various energy-efficient technologies and techniques. The Building Technologies Office (BTO) will continue to develop and demonstrate advanced building efficiency technologies and practices to make buildings in the United States more efficient, affordable, and comfortable.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vimmerstedt, Laura; Brown, Austin; Newes, Emily

    The transportation sector is changing, influenced by concurrent, ongoing, dynamic trends that could dramatically affect the future energy landscape, including effects on the potential for greenhouse gas emissions reductions. Battery cost reductions and improved performance coupled with a growing number of electric vehicle model offerings are enabling greater battery electric vehicle market penetration, and advances in fuel cell technology and decreases in hydrogen production costs are leading to initial fuel cell vehicle offerings. Radically more efficient vehicles based on both conventional and new drivetrain technologies reduce greenhouse gas emissions per vehicle-mile. Net impacts also depend on the energy sources usedmore » for propulsion, and these are changing with increased use of renewable energy and unconventional fossil fuel resources. Connected and automated vehicles are emerging for personal and freight transportation systems and could increase use of low- or non-emitting technologies and systems; however, the net effects of automation on greenhouse gas emissions are uncertain. The longstanding trend of an annual increase in transportation demand has reversed for personal vehicle miles traveled in recent years, demonstrating the possibility of lower-travel future scenarios. Finally, advanced biofuel pathways have continued to develop, highlighting low-carbon and in some cases carbon-negative fuel pathways. We discuss the potential for transformative reductions in petroleum use and greenhouse gas emissions through these emerging transportation-sector technologies and trends and present a Clean Transportation Sector Initiative scenario for such reductions, which are summarized in Table ES-1.« less

  3. Smart City Energy Interconnection Technology Framework Preliminary Research

    NASA Astrophysics Data System (ADS)

    Zheng, Guotai; Zhao, Baoguo; Zhao, Xin; Li, Hao; Huo, Xianxu; Li, Wen; Xia, Yu

    2018-01-01

    to improve urban energy efficiency, improve the absorptive ratio of new energy resources and renewable energy sources, and reduce environmental pollution and other energy supply and consumption technology framework matched with future energy restriction conditions and applied technology level are required to be studied. Relative to traditional energy supply system, advanced information technology-based “Energy Internet” technical framework may give play to energy integrated application and load side interactive technology advantages, as a whole optimize energy supply and consumption and improve the overall utilization efficiency of energy.

  4. Comparison of energy efficiency and power density in pressure retarded osmosis and reverse electrodialysis.

    PubMed

    Yip, Ngai Yin; Elimelech, Menachem

    2014-09-16

    Pressure retarded osmosis (PRO) and reverse electrodialysis (RED) are emerging membrane-based technologies that can convert chemical energy in salinity gradients to useful work. The two processes have intrinsically different working principles: controlled mixing in PRO is achieved by water permeation across salt-rejecting membranes, whereas RED is driven by ion flux across charged membranes. This study compares the energy efficiency and power density performance of PRO and RED with simulated technologically available membranes for natural, anthropogenic, and engineered salinity gradients (seawater-river water, desalination brine-wastewater, and synthetic hypersaline solutions, respectively). The analysis shows that PRO can achieve both greater efficiencies (54-56%) and higher power densities (2.4-38 W/m(2)) than RED (18-38% and 0.77-1.2 W/m(2)). The superior efficiency is attributed to the ability of PRO membranes to more effectively utilize the salinity difference to drive water permeation and better suppress the detrimental leakage of salts. On the other hand, the low conductivity of currently available ion exchange membranes impedes RED ion flux and, thus, constrains the power density. Both technologies exhibit a trade-off between efficiency and power density: employing more permeable but less selective membranes can enhance the power density, but undesired entropy production due to uncontrolled mixing increases and some efficiency is sacrificed. When the concentration difference is increased (i.e., natural → anthropogenic → engineered salinity gradients), PRO osmotic pressure difference rises proportionally but not so for RED Nernst potential, which has logarithmic dependence on the solution concentration. Because of this inherently different characteristic, RED is unable to take advantage of larger salinity gradients, whereas PRO power density is considerably enhanced. Additionally, high solution concentrations suppress the Donnan exclusion effect of the charged RED membranes, severely reducing the permselectivity and diminishing the energy conversion efficiency. This study indicates that PRO is more suitable to extract energy from a range of salinity gradients, while significant advancements in ion exchange membranes are likely necessary for RED to be competitive with PRO.

  5. Comparison of Energy Efficiency and Power Density in Pressure Retarded Osmosis and Reverse Electrodialysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yip, NY; Elimelech, M

    Pressure retarded osmosis (PRO) and reverse electrodialysis (RED) are emerging membrane-based technologies that can convert chemical energy in salinity gradients to useful work. The two processes have intrinsically different working principles: controlled mixing in PRO is achieved by water permeation across salt-rejecting membranes, whereas RED is driven by ion flux across charged membranes. This study compares the energy efficiency and power density performance of PRO and RED with simulated technologically available membranes for natural, anthropogenic, and engineered salinity gradients (seawater-river water, desalination brine-wastewater, and synthetic hypersaline solutions, respectively). The analysis shows that PRO can achieve both greater efficiencies (54-56%) andmore » higher power densities (2.4-38 W/m(2)) than RED (18-38% and 0.77-1.2 W/m(2)). The superior efficiency is attributed to the ability of PRO membranes to more effectively utilize the salinity difference to drive water permeation and better suppress the detrimental leakage of salts. On the other hand, the low conductivity of currently available ion exchange membranes impedes RED ion flux and, thus, constrains the power density. Both technologies exhibit a trade-off between efficiency and power density: employing more permeable but less selective membranes can enhance the power density, but undesired entropy production due to uncontrolled mixing increases and some efficiency is sacrificed. When the concentration difference is increased (i.e., natural -> anthropogenic -> engineered salinity gradients), PRO osmotic pressure difference rises proportionally but not so for RED Nernst potential, which has logarithmic dependence on the solution concentration. Because of this inherently different characteristic, RED is unable to take advantage of larger salinity gradients, whereas PRO power density is considerably enhanced. Additionally, high solution concentrations suppress the Donnan exclusion effect of the charged RED membranes, severely reducing the permselectivity and diminishing the energy conversion efficiency. This study indicates that PRO is more suitable to extract energy from a range of salinity gradients, while significant advancements in ion exchange membranes are likely necessary for RED to be competitive with PRO.« less

  6. Long-term shifts in life-cycle energy efficiency and carbon intensity.

    PubMed

    Yeh, Sonia; Mishra, Gouri Shankar; Morrison, Geoff; Teter, Jacob; Quiceno, Raul; Gillingham, Kenneth; Riera-Palou, Xavier

    2013-03-19

    The quantity of primary energy needed to support global human activity is in large part determined by how efficiently that energy is converted to a useful form. We estimate the system-level life-cycle energy efficiency (EF) and carbon intensity (CI) across primary resources for 2005-2100. Our results underscore that although technological improvements at each energy conversion process will improve technology efficiency and lead to important reductions in primary energy use, market mediated effects and structural shifts toward less efficient pathways and pathways with multiple stages of conversion will dampen these efficiency gains. System-level life-cycle efficiency may decrease as mitigation efforts intensify, since low-efficiency renewable systems with high output have much lower GHG emissions than some high-efficiency fossil fuel systems. Climate policies accelerate both improvements in EF and the adoption of renewable technologies, resulting in considerably lower primary energy demand and GHG emissions. Life-cycle EF and CI of useful energy provide a useful metric for understanding dynamics of implementing climate policies. The approaches developed here reiterate the necessity of a combination of policies that target efficiency and decarbonized energy technologies. We also examine life-cycle exergy efficiency (ExF) and find that nearly all of the qualitative results hold regardless of whether we use ExF or EF.

  7. Project acceleration : making the leap from pilot to commercialization.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borneo, Daniel R.

    2010-05-01

    Since the energy storage technology market is in a relatively emergent phase, narrowing the gap between pilot project status and commercialization is fundamental to the accelerating of this innovative market space. This session will explore regional market design factors to facilitate the storage enterprise. You will also hear about: quantifying transmission and generation efficiency enhancements; resource planning for storage; and assessing market mechanisms to accelerate storage adoption regionally.

  8. Targeted opportunities to address the climate-trade dilemma in China

    NASA Astrophysics Data System (ADS)

    Liu, Zhu; Davis, Steven J.; Feng, Kuishuang; Hubacek, Klaus; Liang, Sai; Anadon, Laura Diaz; Chen, Bin; Liu, Jingru; Yan, Jinyue; Guan, Dabo

    2016-02-01

    International trade has become the fastest growing driver of global carbon emissions, with large quantities of emissions embodied in exports from emerging economies. International trade with emerging economies poses a dilemma for climate and trade policy: to the extent emerging markets have comparative advantages in manufacturing, such trade is economically efficient and desirable. However, if carbon-intensive manufacturing in emerging countries such as China entails drastically more CO2 emissions than making the same product elsewhere, then trade increases global CO2 emissions. Here we show that the emissions embodied in Chinese exports, which are larger than the annual emissions of Japan or Germany, are primarily the result of China’s coal-based energy mix and the very high emissions intensity (emission per unit of economic value) in a few provinces and industry sectors. Exports from these provinces and sectors therefore represent targeted opportunities to address the climate-trade dilemma by either improving production technologies and decarbonizing the underlying energy systems or else reducing trade volumes.

  9. Material challenges for solar cells in the twenty-first century: directions in emerging technologies.

    PubMed

    Almosni, Samy; Delamarre, Amaury; Jehl, Zacharie; Suchet, Daniel; Cojocaru, Ludmila; Giteau, Maxime; Behaghel, Benoit; Julian, Anatole; Ibrahim, Camille; Tatry, Léa; Wang, Haibin; Kubo, Takaya; Uchida, Satoshi; Segawa, Hiroshi; Miyashita, Naoya; Tamaki, Ryo; Shoji, Yasushi; Yoshida, Katsuhisa; Ahsan, Nazmul; Watanabe, Kentaro; Inoue, Tomoyuki; Sugiyama, Masakazu; Nakano, Yoshiaki; Hamamura, Tomofumi; Toupance, Thierry; Olivier, Céline; Chambon, Sylvain; Vignau, Laurence; Geffroy, Camille; Cloutet, Eric; Hadziioannou, Georges; Cavassilas, Nicolas; Rale, Pierre; Cattoni, Andrea; Collin, Stéphane; Gibelli, François; Paire, Myriam; Lombez, Laurent; Aureau, Damien; Bouttemy, Muriel; Etcheberry, Arnaud; Okada, Yoshitaka; Guillemoles, Jean-François

    2018-01-01

    Photovoltaic generation has stepped up within the last decade from outsider status to one of the important contributors of the ongoing energy transition, with about 1.7% of world electricity provided by solar cells. Progress in materials and production processes has played an important part in this development. Yet, there are many challenges before photovoltaics could provide clean, abundant, and cheap energy. Here, we review this research direction, with a focus on the results obtained within a Japan-French cooperation program, NextPV, working on promising solar cell technologies. The cooperation was focused on efficient photovoltaic devices, such as multijunction, ultrathin, intermediate band, and hot-carrier solar cells, and on printable solar cell materials such as colloidal quantum dots.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Papay, L.T.; Trocki, L.K.; McKinsey, R.R.

    The Department of Energy`s clean coal technology (CCT) program succeeded in developing more efficient, cleaner, coal-fired electricity options. The Department and its private partners succeeded in the demonstration of CCT -- a major feat that required more than a decade of commitment between them. As with many large-scale capital developments and changes, the market can shift dramatically over the course of the development process. The CCT program was undertaken in an era of unstable oil and gas prices, concern over acid rain, and guaranteed markets for power suppliers. Regulations, fuel prices, emergency of competing technologies, and institutional factors are allmore » affecting the outlook for CCT deployment. The authors identify the major barriers to CCT deployment and then introduce some possible means to surmount the barriers.« less

  11. Photovoltaic technology for sustainability: An investigation of the distributed utility concept as a policy framework

    NASA Astrophysics Data System (ADS)

    Letendre, Steven Emery

    The U.S. electric utility sector in its current configuration is unsustainable. The majority of electricity in the United States is produced using finite fossil fuels. In addition, significant potential exists to improve the nation's efficient use of energy. A sustainable electric utility sector will be characterized by increased use of renewable energy sources and high levels of end-use efficiency. This dissertation analyzes two alternative policy approaches designed to move the U.S. electric utility sector toward sustainability. One approach is labeled incremental which involves maintaining the centralized structure of the electric utility sector but facilitating the introduction of renewable energy and efficiency into the electrical system through the pricing mechanism. A second policy approach was described in which structural changes are encouraged based on the emerging distributed utility (DU) concept. A structural policy orientation attempts to capture the unique localized benefits that distributed renewable resources and energy efficiency offer to electric utility companies and their customers. A market penetration analysis of PV in centralized energy supply and distributed peak-shaving applications is conducted for a case-study electric utility company. Sensitivity analysis was performed based on incremental and structural policy orientations. The analysis provides compelling evidence which suggests that policies designed to bring about structural change in the electric utility sector are needed to move the industry toward sustainability. Specifically, the analysis demonstrates that PV technology, a key renewable energy option likely to play an important role in a renewable energy future, will begin to penetrate the electrical system in distributed peak-shaving applications long before the technology is introduced as a centralized energy supply option. Most policies to date, which I term incremental, attempt to encourage energy efficiency and renewables through the pricing system. Based on past policy experience, it is unlikely that such an approach would allow PV to compete in Delaware as an energy supply option in the next ten to twenty years. Alternatively, a market-based, or green pricing, approach will not create significant market opportunities for PV as a centralized energy supply option. However, structural policies designed to encourage the explicit recognition of the localized benefits of distributed resources could result in PV being introduced into the electrical system early in the next century.

  12. Alternative Fuels Data Center: Ten Ways You Can Implement Alternative Fuels

    Science.gov Websites

    and Energy-Efficient Vehicle Technologies Ten Ways You Can Implement Alternative Fuels and Energy-Efficient Vehicle Technologies to someone by E-mail Share Alternative Fuels Data Center: Ten Ways You Can Implement Alternative Fuels and Energy-Efficient Vehicle Technologies on Facebook Tweet about

  13. Selecting a Control Strategy for Plug and Process Loads

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lobato, C.; Sheppy, M.; Brackney, L.

    2012-09-01

    Plug and Process Loads (PPLs) are building loads that are not related to general lighting, heating, ventilation, cooling, and water heating, and typically do not provide comfort to the building occupants. PPLs in commercial buildings account for almost 5% of U.S. primary energy consumption. On an individual building level, they account for approximately 25% of the total electrical load in a minimally code-compliant commercial building, and can exceed 50% in an ultra-high efficiency building such as the National Renewable Energy Laboratory's (NREL) Research Support Facility (RSF) (Lobato et al. 2010). Minimizing these loads is a primary challenge in the designmore » and operation of an energy-efficient building. A complex array of technologies that measure and manage PPLs has emerged in the marketplace. Some fall short of manufacturer performance claims, however. NREL has been actively engaged in developing an evaluation and selection process for PPLs control, and is using this process to evaluate a range of technologies for active PPLs management that will cap RSF plug loads. Using a control strategy to match plug load use to users' required job functions is a huge untapped potential for energy savings.« less

  14. The Global Experience of Deployment of Energy-Efficient Technologies in High-Rise Construction

    NASA Astrophysics Data System (ADS)

    Potienko, Natalia D.; Kuznetsova, Anna A.; Solyakova, Darya N.; Klyueva, Yulia E.

    2018-03-01

    The objective of this research is to examine issues related to the increasing importance of energy-efficient technologies in high-rise construction. The aim of the paper is to investigate modern approaches to building design that involve implementation of various energy-saving technologies in diverse climates and at different structural levels, including the levels of urban development, functionality, planning, construction and engineering. The research methodology is based on the comprehensive analysis of the advanced global expertise in the design and construction of energy-efficient high-rise buildings, with the examination of their positive and negative features. The research also defines the basic principles of energy-efficient architecture. Besides, it draws parallels between the climate characteristics of countries that lead in the field of energy-efficient high-rise construction, on the one hand, and the climate in Russia, on the other, which makes it possible to use the vast experience of many countries, wholly or partially. The paper also gives an analytical review of the results arrived at by implementing energy efficiency principles into high-rise architecture. The study findings determine the impact of energy-efficient technologies on high-rise architecture and planning solutions. In conclusion, the research states that, apart from aesthetic and compositional interpretation of architectural forms, an architect nowadays has to address the task of finding a synthesis between technological and architectural solutions, which requires knowledge of advanced technologies. The study findings reveal that the implementation of modern energy-efficient technologies into high-rise construction is of immediate interest and is sure to bring long-term benefits.

  15. Barriers to Industrial Energy Efficiency - Report to Congress, June 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2015-06-01

    This report examines barriers that impede the adoption of energy efficient technologies and practices in the industrial sector, and identifies successful examples and opportunities to overcome these barriers. Three groups of energy efficiency technologies and measures were examined: industrial end-use energy efficiency, industrial demand response, and industrial combined heat and power. This report also includes the estimated economic benefits from hypothetical Federal energy efficiency matching grants, as directed by the Act.

  16. FOREWORD: Focus on Advanced Ceramics Focus on Advanced Ceramics

    NASA Astrophysics Data System (ADS)

    Ohashi, Naoki

    2011-06-01

    Much research has been devoted recently to developing technologies for renewable energy and improving the efficiency of the processes and devices used in industry and everyday life. Efficient solutions have been found using novel materials such as platinum and palladium-based catalysts for car exhaust systems, samarium-cobalt and neodymium-iron-boron permanent magnets for electrical motors, and so on. However, their realization has resulted in an increasing demand for rare elements and in their deficit, the development of new materials based on more abundant elements and new functionalities of traditional materials. Moreover, increasing environmental and health concerns demand substitution of toxic or hazardous substances with nature-friendly alternatives. In this context, this focus issue on advanced ceramics aims to review current trends in ceramics science and technology. It is related to the International Conference on Science and Technology of Advanced Ceramics (STAC) held annually to discuss the emerging issues in the field of ceramics. An important direction of ceramic science is the collaboration between experimental and theoretical sciences. Recent developments in density functional theory and computer technology have enabled the prediction of physical and chemical properties of ceramics, thereby assisting the design of new materials. Therefore, this focus issue includes articles devoted to theory and advanced characterization techniques. As mentioned above, the potential shortage of rare elements is becoming critical to the industry and has resulted in a Japanese government initiative called the 'Ubiquitous Element Strategy'. This focus issue also includes articles related to this strategy and to the associated topics of energy conversion, such as phosphors for high-efficiency lighting and photocatalysts for solar-energy harvesting. We hope that this focus issue will provide a timely overview of current trends and problems in ceramics science and technology and promote new research and development in this field.

  17. 48 CFR 923.7003 - Contract clauses.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Section 923.7003 Federal Acquisition Regulations System DEPARTMENT OF ENERGY SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Environmental, Energy and Water Efficiency, Renewable Energy Technologies, and Occupational Safety...

  18. 48 CFR 923.7003 - Contract clauses.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Section 923.7003 Federal Acquisition Regulations System DEPARTMENT OF ENERGY SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Environmental, Energy and Water Efficiency, Renewable Energy Technologies, and Occupational Safety...

  19. 48 CFR 923.7003 - Contract clauses.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Section 923.7003 Federal Acquisition Regulations System DEPARTMENT OF ENERGY SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Environmental, Energy and Water Efficiency, Renewable Energy Technologies, and Occupational Safety...

  20. 48 CFR 923.7003 - Contract clauses.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Section 923.7003 Federal Acquisition Regulations System DEPARTMENT OF ENERGY SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Environmental, Energy and Water Efficiency, Renewable Energy Technologies, and Occupational Safety...

  1. Industrial Technologies Program - A Clean, Secure Energy Future via Industrial Energy Efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The Industrial Technologies Program (ITP) leads the national effort to save energy and reduce greenhouse gas emissions in the largest energy-using sector of the U.S. economy. ITP drives energy efficiency improvements and carbon dioxide reductions throughout the manufacturing supply chain, helping develop and deploy innovative technologies that transform the way industry uses energy.

  2. Microbial electrolysis cells for waste biorefinery: A state of the art review.

    PubMed

    Lu, Lu; Ren, Zhiyong Jason

    2016-09-01

    Microbial electrolysis cells (MECs) is an emerging technology for energy and resource recovery during waste treatment. MECs can theoretically convert any biodegradable waste into H2, biofuels, and other value added products, but the system efficacy can vary significantly when using different substrates or are operated in different conditions. To understand the application niches of MECs in integrative waste biorefineries, this review provides a critical analysis of MEC system performance reported to date in terms of H2 production rate, H2 yield, and energy efficiency under a variety of substrates, applied voltages and other crucial factors. It further discusses the mutual benefits between MECs and dark fermentation and argues such integration can be a viable approach for efficient H2 production from renewable biomass. Other marketable products and system integrations that can be applied to MECs are also summarized, and the challenges and prospects of the technology are highlighted. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Carbon-electroluminescence: An organic approach to lighting

    NASA Astrophysics Data System (ADS)

    Kumari, Sonali; Chaudhary, Tarun; Chandran, Vivek; Lokeshwari, M.; Shastry, K.

    2018-05-01

    Over the recent years, quantum dots have garnered massive following and peaked in interest among the scientific community due to their versatility, exotic properties, ease of preparation and low cost. As the demand for faster, reliable and energy efficient electronic devices intensifies, extra emphasis is laid on the development of smart materials capable of satiating this need. Electroluminescent organic quantum dots have emerged as one of the prime contenders in addressing the ecological, economic and technological constraints. Application of such luminescent nanoparticles as fluorescent light converters in LEDs is touted as one of the reliable and easiest avenues in realizing and developing newer energy efficient technologies for the next millennia. One promising candidate is zig-zag graphene quantum dots, which exhibits high electro-luminescence due to a phenomenon known as quantum confinement (where size of the nano-particle is of the same order or less than that of Bohr exciton radius). In this paper, we aim to provide a review of past and present research in the synthesis and development of luminescence using organic quantum dots.

  4. Statistical-QoS Guaranteed Energy Efficiency Optimization for Energy Harvesting Wireless Sensor Networks

    PubMed Central

    Cheng, Wenchi; Zhang, Hailin

    2017-01-01

    Energy harvesting, which offers a never-ending energy supply, has emerged as a prominent technology to prolong the lifetime and reduce costs for the battery-powered wireless sensor networks. However, how to improve the energy efficiency while guaranteeing the quality of service (QoS) for energy harvesting based wireless sensor networks is still an open problem. In this paper, we develop statistical delay-bounded QoS-driven power control policies to maximize the effective energy efficiency (EEE), which is defined as the spectrum efficiency under given specified QoS constraints per unit harvested energy, for energy harvesting based wireless sensor networks. For the battery-infinite wireless sensor networks, our developed QoS-driven power control policy converges to the Energy harvesting Water Filling (E-WF) scheme and the Energy harvesting Channel Inversion (E-CI) scheme under the very loose and stringent QoS constraints, respectively. For the battery-finite wireless sensor networks, our developed QoS-driven power control policy becomes the Truncated energy harvesting Water Filling (T-WF) scheme and the Truncated energy harvesting Channel Inversion (T-CI) scheme under the very loose and stringent QoS constraints, respectively. Furthermore, we evaluate the outage probabilities to theoretically analyze the performance of our developed QoS-driven power control policies. The obtained numerical results validate our analysis and show that our developed optimal power control policies can optimize the EEE over energy harvesting based wireless sensor networks. PMID:28832509

  5. Statistical-QoS Guaranteed Energy Efficiency Optimization for Energy Harvesting Wireless Sensor Networks.

    PubMed

    Gao, Ya; Cheng, Wenchi; Zhang, Hailin

    2017-08-23

    Energy harvesting, which offers a never-ending energy supply, has emerged as a prominent technology to prolong the lifetime and reduce costs for the battery-powered wireless sensor networks. However, how to improve the energy efficiency while guaranteeing the quality of service (QoS) for energy harvesting based wireless sensor networks is still an open problem. In this paper, we develop statistical delay-bounded QoS-driven power control policies to maximize the effective energy efficiency (EEE), which is defined as the spectrum efficiency under given specified QoS constraints per unit harvested energy, for energy harvesting based wireless sensor networks. For the battery-infinite wireless sensor networks, our developed QoS-driven power control policy converges to the Energy harvesting Water Filling (E-WF) scheme and the Energy harvesting Channel Inversion (E-CI) scheme under the very loose and stringent QoS constraints, respectively. For the battery-finite wireless sensor networks, our developed QoS-driven power control policy becomes the Truncated energy harvesting Water Filling (T-WF) scheme and the Truncated energy harvesting Channel Inversion (T-CI) scheme under the very loose and stringent QoS constraints, respectively. Furthermore, we evaluate the outage probabilities to theoretically analyze the performance of our developed QoS-driven power control policies. The obtained numerical results validate our analysis and show that our developed optimal power control policies can optimize the EEE over energy harvesting based wireless sensor networks.

  6. Fundamental energy limits of SET-based Brownian NAND and half-adder circuits. Preliminary findings from a physical-information-theoretic methodology

    NASA Astrophysics Data System (ADS)

    Ercan, İlke; Suyabatmaz, Enes

    2018-06-01

    The saturation in the efficiency and performance scaling of conventional electronic technologies brings about the development of novel computational paradigms. Brownian circuits are among the promising alternatives that can exploit fluctuations to increase the efficiency of information processing in nanocomputing. A Brownian cellular automaton, where signals propagate randomly and are driven by local transition rules, can be made computationally universal by embedding arbitrary asynchronous circuits on it. One of the potential realizations of such circuits is via single electron tunneling (SET) devices since SET technology enable simulation of noise and fluctuations in a fashion similar to Brownian search. In this paper, we perform a physical-information-theoretic analysis on the efficiency limitations in a Brownian NAND and half-adder circuits implemented using SET technology. The method we employed here establishes a solid ground that enables studying computational and physical features of this emerging technology on an equal footing, and yield fundamental lower bounds that provide valuable insights into how far its efficiency can be improved in principle. In order to provide a basis for comparison, we also analyze a NAND gate and half-adder circuit implemented in complementary metal oxide semiconductor technology to show how the fundamental bound of the Brownian circuit compares against a conventional paradigm.

  7. The roles and functions of a lunar base Nuclear Technology Center

    NASA Astrophysics Data System (ADS)

    Buden, D.; Angelo, J. A., Jr.

    This paper describes the roles and functions of a special Nuclear Technology Center which is developed as an integral part of a permanent lunar base. Numerous contemporary studies clearly point out that nuclear energy technology will play a major role in any successful lunar/Mars initiative program and in the overall establishment of humanity's solar system civilization. The key role of nuclear energy in the providing power has been recognized. A Nuclear Technology Center developed as part of a permanent lunar base can also help bring about many other nuclear technology applications, such as producing radioisotopes for self-illumination, food preservation, waste sterilization, and medical treatment; providing thermal energy for mining, materials processing and agricultural; and as a source of emergency habitat power. Designing such a center will involve the deployment, operation, servicing and waste product management and disposal of megawatt class reactor power plants. This challenge must be met with a minimum of direct human support at the facility. Furthermore, to support the timely, efficient integration of this Nuclear Technology Center in the evolving lunar base infrastructure, an analog of such a facility will be needed here on Earth.

  8. 48 CFR 23.200 - Scope.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Energy and Water Efficiency and Renewable Energy 23.200 Scope. (a) This subpart prescribes... that use renewable energy technology; and (2) Using an energy-savings performance contract to obtain...

  9. 48 CFR 23.200 - Scope.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Energy and Water Efficiency and Renewable Energy 23.200 Scope. (a) This subpart prescribes... that use renewable energy technology; and (2) Using an energy-savings performance contract to obtain...

  10. 48 CFR 23.200 - Scope.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Energy and Water Efficiency and Renewable Energy 23.200 Scope. (a) This subpart prescribes... that use renewable energy technology; and (2) Using an energy-savings performance contract to obtain...

  11. 48 CFR 23.200 - Scope.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Energy and Water Efficiency and Renewable Energy 23.200 Scope. (a) This subpart prescribes... that use renewable energy technology; and (2) Using an energy-savings performance contract to obtain...

  12. 48 CFR 23.200 - Scope.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Energy and Water Efficiency and Renewable Energy 23.200 Scope. (a) This subpart prescribes... that use renewable energy technology; and (2) Using an energy-savings performance contract to obtain...

  13. Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity

    ScienceCinema

    Selldorff, John; Atwell, Monte

    2018-05-18

    Industrial efficiency and low-cost energy resources are key components to increasing U.S. energy productivity and makes the U.S. manufacturing sector more competitive. Companies find a competitive advantage in implementing efficiency technologies and practices, and technologies developed and manufactured in the U.S. enable greater competitiveness economy-wide.

  14. Pretreatment of woody biomass for biofuel production: energy efficiency, technologies, and recalcitrance

    Treesearch

    J.Y. Zhu; Xuejun Pan; Ronald S. Jr. Zalesny

    2010-01-01

    This mini review discusses several key technical issues associated with cellulosic ethanol production from woody biomass: energy consumption for woody biomass pretreatment, pretreatment energy efficiency, woody biomass pretreatment technologies, and quantification of woody biomass recalcitrance. Both total sugar yield and pretreatment energy efficiency, defined as the...

  15. Multifunctional Graphene-based Hybrid Nanomaterials for Electrochemical Energy Storage.

    NASA Astrophysics Data System (ADS)

    Gupta, Sanju

    Intense research in renewable energy is stimulated by global demand of electric energy. Electrochemical energy storage and conversion systems namely, supercapacitors and batteries, represent the most efficient and environmentally benign technologies. Moreover, controlled nanoscaled architectures and surface chemistry of electrochemical electrodes is enabling emergent next-generation efficient devices approaching theoretical limit of energy and power densities. This talk will present our recent activities to advance design, development and deployment of composition, morphology and microstructure controlled two- and three-dimensional graphene-based hybrids architectures. They are chemically and molecularly bridged with carbon nanotubes, conducting polymers, transition metal oxides and mesoproprous silicon wrapped with graphene nanosheets as engineered electrodes for supercapacitor cathodes and battery anodes. They showed significant enhancement in terms of gravimetric specific capacitance, interfacial capacitance, charging-discharging rate and cyclability. We will also present fundamental physical-chemical interfacial processes (ion transfer kinetics and diffusion), imaging electroactive sites, and topography at electrode/electrolyte interface governing underlying electrochemical mechanisms via scanning electrochemical microscopy. KY NSF EPSCoR.

  16. Advanced Materials, Technologies, and Complex Systems Analyses: Emerging Opportunities to Enhance Urban Water Security.

    PubMed

    Zodrow, Katherine R; Li, Qilin; Buono, Regina M; Chen, Wei; Daigger, Glen; Dueñas-Osorio, Leonardo; Elimelech, Menachem; Huang, Xia; Jiang, Guibin; Kim, Jae-Hong; Logan, Bruce E; Sedlak, David L; Westerhoff, Paul; Alvarez, Pedro J J

    2017-09-19

    Innovation in urban water systems is required to address the increasing demand for clean water due to population growth and aggravated water stress caused by water pollution, aging infrastructure, and climate change. Advances in materials science, modular water treatment technologies, and complex systems analyses, coupled with the drive to minimize the energy and environmental footprints of cities, provide new opportunities to ensure a resilient and safe water supply. We present a vision for enhancing efficiency and resiliency of urban water systems and discuss approaches and research needs for overcoming associated implementation challenges.

  17. Application of Modern Coal Technologies to Military Facilities. Volume II. Evaluation of the Applicability and Cost of Current and Emerging Coal Technologies for the Utilization of Coal as a Primary Energy Source

    DTIC Science & Technology

    1968-05-01

    flue gas . Is one. The more popular method Is wet limestone scrubbing. In the limestone Injection system, ground limestone Is mixed with the coal and...is removed. The remainder must be eliminated from the flue gas as SO2 by wet scrubbing. Reduced boiler efficiency, due to ash accumulation on the...use of the fluldlzed-bed boiler, rather than a conventional coal-fired boiler requiring a flue gas cleanup system, will result In an

  18. Energy Technology Investments: Maximizing Efficiency Through a Maritime Energy Portfolio Interface and Decision Aid

    DTIC Science & Technology

    2012-02-09

    Investment (ROI) and Break Even Point ( BEP ). These metrics are essential for determining whether an initiative would be worth pursuing. Balanced...is Unlimited Energy Decision Framework Identify Inefficiencies 2. Perform Analyses 3. Examine Technology Candidates 1. Improve Energy...Unlimited Energy Decision Framework Identify Inefficiencies 2. Perform Analyses 3. Examine Technology Candidates 1. Improve Energy Efficiency 4

  19. Performance Evaluation of Energy-Autonomous Sensors Using Power-Harvesting Beacons for Environmental Monitoring in Internet of Things (IoT).

    PubMed

    Moiş, George Dan; Sanislav, Teodora; Folea, Silviu Corneliu; Zeadally, Sherali

    2018-05-25

    Environmental conditions and air quality monitoring have become crucial today due to the undeniable changes of the climate and accelerated urbanization. To efficiently monitor environmental parameters such as temperature, humidity, and the levels of pollutants, such as fine particulate matter (PM2.5) and volatile organic compounds (VOCs) in the air, and to collect data covering vast geographical areas, the development of cheap energy-autonomous sensors for large scale deployment and fine-grained data acquisition is required. Rapid advances in electronics and communication technologies along with the emergence of paradigms such as Cyber-Physical Systems (CPSs) and the Internet of Things (IoT) have led to the development of low-cost sensor devices that can operate unattended for long periods of time and communicate using wired or wireless connections through the Internet. We investigate the energy efficiency of an environmental monitoring system based on Bluetooth Low Energy (BLE) beacons that operate in the IoT environment. The beacons developed measure the temperature, the relative humidity, the light intensity, and the CO₂ and VOC levels in the air. Based on our analysis we have developed efficient sleep scheduling algorithms that allow the sensor nodes developed to operate autonomously without requiring the replacement of the power supply. The experimental results show that low-power sensors communicating using BLE technology can operate autonomously (from the energy perspective) in applications that monitor the environment or the air quality in indoor or outdoor settings.

  20. Fuel cell programs in the United States for stationary power applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singer, M.

    1996-04-01

    The Department of Energy (DOE), Office of Fossil Energy, is participating with the private sector in sponsoring the development of molten carbonate fuel cell (MCFC) and solid oxide fuel cell (SOFC) technologies for application in the utility, commercial and industrial sectors. Phosphoric acid fuel cell (PAFC) development was sponsored by the Office of Fossil Energy in previous years and is now being commercialized by the private sector. Private sector participants with the Department of Energy include the Electric Power Research Institute (EPRI), the Gas Research institute (GRI), electric and gas utilities, universities, manufacturing companies and their suppliers. through continued governmentmore » and private sector support, fuel cell systems are emerging power generation technologies which are expected to have significant worldwide impacts. An industry with annual sales of over a billion dollars is envisioned early in the 21st century. PAFC power plants have begun to enter the marketplace and MCFC and SOFC power plants are expected to be ready to enter the marketplace in the late 1990s. In support of the efficient and effective use of our natural resources, the fuel cell program seeks to increase energy efficiency and economic effectiveness of power generation. This is to be accomplished through effectiveness of power generation. This is accomplished through the development and commercialization of cost-effective, efficient and environmentally desirable fuel cell systems which will operate on fossil fuels in multiple and end use sectors.« less

  1. Impact and promise of NASA aeropropulsion technology

    NASA Technical Reports Server (NTRS)

    Saunders, Neal T.; Bowditch, David N.

    1987-01-01

    The aeropropulsion industry in the United States has established an enviable record of leading the world in aeropropulsion for commercial and military aircraft. The NASA aeropropulsion propulsion program (primarily conducted through the Lewis Research Center) has significantly contributed to that success through research and technology advances and technology demonstrations such as the Refan, Engine Component Improvement, and the Energy Efficient Engine Programs. Some past NASA contributions to engines in current aircraft are reviewed, and technologies emerging from current research programs for the aircraft of the 1990's are described. Finally, current program thrusts toward improving propulsion systems in the 2000's for subsonic commercial aircraft and higher speed aircraft such as the High-Speed Civil Transport and the National Aerospace Plane (NASP) are discussed.

  2. No Photon Left Behind: Advanced Optics at ARPA-E for Buildings and Solar Energy

    NASA Astrophysics Data System (ADS)

    Branz, Howard M.

    2015-04-01

    Key technology challenges in building efficiency and solar energy utilization require transformational optics, plasmonics and photonics technologies. We describe advanced optical technologies funded by the Advanced Research Projects Agency - Energy. Buildings technologies include a passive daytime photonic cooler, infra-red computer vision mapping for energy audit, and dual-band electrochromic windows based on plasmonic absorption. Solar technologies include novel hybrid energy converters that combine high-efficiency photovoltaics with concentrating solar thermal collection and storage. Because the marginal cost of thermal energy storage is low, these systems enable generation of inexpensive and dispatchable solar energy that can be deployed when the sun doesn't shine. The solar technologies under development include nanoparticle plasmonic spectrum splitting, Rugate filter interference structures and photovoltaic cells that can operate efficiently at over 400° C.

  3. Engineering management technologies of increasing energy efficiency processes in the investment and construction projects

    NASA Astrophysics Data System (ADS)

    Borisovich Zelentsov, Leonid; Dmitrievna Mailyan, Liya; Sultanovich Shogenov, Murat

    2017-10-01

    The article deals with the problems of using the energy-efficient materials and engineering technologies during the construction of buildings and structures. As the analysis showed, one of the most important problems in this sphere is the infringement of production technologies working with energy-efficient materials. To improve the given situation, it is offered to set a technological normal at the design stage by means of working out the technological maps studying the set and the succession of operations in details, taking in mind the properties of energy-efficient materials. At Don State Technical University (DSTU) the intelligent systems of management are being developed providing organizational and technological and also informational integration of design and production stages by means of creating the single database of technological maps, volumes of work and resources.

  4. Opportunities for electricity storage in deregulating markets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graves, F.; Jenkin, T.; Murphy, D.

    1999-10-01

    This article addresses the value of electricity storage and its ability to take advantage of emerging energy arbitrage opportunities: buying power when it is inexpensive, and reselling it at a higher price. The focus of this article is on electricity markets and the opportunities they present for a merchant storage device, rather than on storage technologies themselves. There are a number of existing and emerging storage technologies: pumped hydro, various batteries, compressed air energy storage (CAES), superconducting magnetic energy storage (SMES), flywheels--even conventional hydro has storage-like properties. However, all these technologies operated on the same basic principle of exploiting short-termmore » differentials in electricity prices: buy low, sell high (a strategy that is actually meaningful in electricity markets, unlike in financial markets). The object of this article is to develop and demonstrate a means for assessing the potential value of storage in different electricity markets, rather than to attempt to assess the prospects of a particular technology. The approach taken here is to look at price data from a number of actual electricity markets to determine what opportunities they might offer to a generic storage device. A storage technology is described here by its basic performance parameters--charge and generate capacity, energy inventory limits, and efficiency--which are sufficient to assess the basic economic potential of storage in a given market. The authors look primarily at US markets, but also compare and contrast findings with the situation in foreign markets in the U.K., Norway, Canada, and Australia, and discuss how market structure can influence the value of storage. Moreover, the authors use empirically observed relationships between hourly and 5 x 16 blocked prices to infer a rule for adjusting the value of storage assets in regions where only blocked price information is available.« less

  5. Research and Energy Efficiency: Selected Success Stories

    DOE R&D Accomplishments Database

    Garland, P. W.; Garland, R. W.

    1997-06-26

    Energy use and energy technology play critical roles in the U.S. economy and modern society. The Department of Energy (DOE) conducts civilian energy research and development (R&D) programs for the purpose of identifying promising technologies that promote energy security, energy efficiency, and renewable energy use. DOE-sponsored research ranges from basic investigation of phenomena all the way through development of applied technology in partnership with industry. DOE`s research programs are conducted in support of national strategic energy objectives, however austere financial times have dictated that R&D programs be measured in terms of cost vs. benefit. In some cases it is difficult to measure the return on investment for the basic "curiosity-driven" research, however many applied technology development programs have resulted in measurable commercial successes. The DOE has published summaries of their most successful applied technology energy R&D programs. In this paper, we will discuss five examples from the Building Technologies area of the DOE Energy Efficiency program. Each story will describe the technology, discuss the level of federal funding, and discuss the returns in terms of energy savings, cost savings, or national economic impacts.

  6. 48 CFR 23.203 - Energy-efficient products.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 1 2011-10-01 2011-10-01 false Energy-efficient products... SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Energy and Water Efficiency and Renewable Energy 23.203 Energy-efficient...

  7. 48 CFR 23.203 - Energy-efficient products.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Energy-efficient products... SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Energy and Water Efficiency and Renewable Energy 23.203 Energy-efficient...

  8. 48 CFR 23.203 - Energy-efficient products.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 1 2014-10-01 2014-10-01 false Energy-efficient products... SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Energy and Water Efficiency and Renewable Energy 23.203 Energy-efficient...

  9. 48 CFR 23.203 - Energy-efficient products.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 1 2013-10-01 2013-10-01 false Energy-efficient products... SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Energy and Water Efficiency and Renewable Energy 23.203 Energy-efficient...

  10. 48 CFR 23.203 - Energy-efficient products.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 1 2012-10-01 2012-10-01 false Energy-efficient products... SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Energy and Water Efficiency and Renewable Energy 23.203 Energy-efficient...

  11. Buildings interoperability landscape - Draft

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hardin, Dave B.; Stephan, Eric G.; Wang, Weimin

    2015-02-01

    Buildings are an integral part of our nation’s energy economy. The advancement in information and communications technology (ICT) has revolutionized energy management in industrial facilities and large commercial buildings. As ICT costs decrease and capabilities increase, buildings automation and energy management features are transforming the small-medium commercial and residential buildings sectors. A vision of a connected world in which equipment and systems within buildings coordinate with each other to efficiently meet their owners’ and occupants’ needs, and where buildings regularly transact business with other buildings and service providers (such as gas and electric service providers) is emerging. However, while themore » technology to support this collaboration has been demonstrated at various degrees of maturity, the integration frameworks and ecosystems of products that support the ability to easily install, maintain, and evolve building systems and their equipment components are struggling to nurture the fledging business propositions of their proponents.« less

  12. Future Vision - Emerging Technologies and Their Transformational Potential on the Energy Industry

    NASA Technical Reports Server (NTRS)

    Fredrickson, Steven E.

    2015-01-01

    Where will Digital Energy be in ten years? To look that far ahead, we need to broadly consider how artificial intelligence, robotics, big data, nanotechnology, internet-of-things and other rapidly evolving and interrelated technologies will shape mankind's future. A panel of innovative visionary leaders from inside and outside the energy industry will discuss the emerging technologies that will shape the future of industrial operations over the next decade.

  13. Army Projects in the DOD Near Term Energy-Efficient Technologies Program Funded by the American Recovery and Reinvestment Act of 2009

    DTIC Science & Technology

    2010-08-27

    adverse impact to critical missions caused by natural, accidental, or intentional events adversely affecting installation energy and utility supply...Report No. D-2010-RAM-019 August 27, 2010 Army Projects in the DOD Near Term Energy -Efficient Technologies Program Funded...Army Projects in the DOD Near Term Energy -Efficient Technologies Program Funded by the American Recovery and Reinvestment Act of 2009 5a. CONTRACT

  14. Material challenges for solar cells in the twenty-first century: directions in emerging technologies

    PubMed Central

    Delamarre, Amaury; Jehl, Zacharie; Suchet, Daniel; Cojocaru, Ludmila; Giteau, Maxime; Behaghel, Benoit; Julian, Anatole; Ibrahim, Camille; Tatry, Léa; Wang, Haibin; Kubo, Takaya; Uchida, Satoshi; Segawa, Hiroshi; Miyashita, Naoya; Tamaki, Ryo; Shoji, Yasushi; Yoshida, Katsuhisa; Ahsan, Nazmul; Watanabe, Kentaro; Inoue, Tomoyuki; Sugiyama, Masakazu; Nakano, Yoshiaki; Hamamura, Tomofumi; Toupance, Thierry; Olivier, Céline; Chambon, Sylvain; Vignau, Laurence; Geffroy, Camille; Cloutet, Eric; Hadziioannou, Georges; Cavassilas, Nicolas; Rale, Pierre; Cattoni, Andrea; Collin, Stéphane; Gibelli, François; Paire, Myriam; Lombez, Laurent; Aureau, Damien; Bouttemy, Muriel; Etcheberry, Arnaud; Okada, Yoshitaka

    2018-01-01

    Abstract Photovoltaic generation has stepped up within the last decade from outsider status to one of the important contributors of the ongoing energy transition, with about 1.7% of world electricity provided by solar cells. Progress in materials and production processes has played an important part in this development. Yet, there are many challenges before photovoltaics could provide clean, abundant, and cheap energy. Here, we review this research direction, with a focus on the results obtained within a Japan–French cooperation program, NextPV, working on promising solar cell technologies. The cooperation was focused on efficient photovoltaic devices, such as multijunction, ultrathin, intermediate band, and hot-carrier solar cells, and on printable solar cell materials such as colloidal quantum dots. PMID:29707072

  15. Commercial Building Energy Asset Rating Program -- Market Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCabe, Molly J.; Wang, Na

    2012-04-19

    Under contract to Pacific Northwest National Laboratory, HaydenTanner, LLC conducted an in-depth analysis of the potential market value of a commercial building energy asset rating program for the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy. The market research objectives were to: (1) Evaluate market interest and need for a program and tool to offer asset rating and rapidly identify potential energy efficiency measures for the commercial building sector. (2) Identify key input variables and asset rating outputs that would facilitate increased investment in energy efficiency. (3) Assess best practices and lessons learned from existing nationalmore » and international energy rating programs. (4) Identify core messaging to motivate owners, investors, financiers, and others in the real estate sector to adopt a voluntary asset rating program and, as a consequence, deploy high-performance strategies and technologies across new and existing buildings. (5) Identify leverage factors and incentives that facilitate increased investment in these buildings. To meet these objectives, work consisted of a review of the relevant literature, examination of existing and emergent asset and operational rating systems, interviews with industry stakeholders, and an evaluation of the value implication of an asset label on asset valuation. This report documents the analysis methodology and findings, conclusion, and recommendations. Its intent is to support and inform the DOE Office of Energy Efficiency and Renewable Energy on the market need and potential value impacts of an asset labeling and diagnostic tool to encourage high-performance new buildings and building efficiency retrofit projects.« less

  16. Energy-Efficient Transmissions for Remote Wireless Sensor Networks: An Integrated HAP/Satellite Architecture for Emergency Scenarios

    PubMed Central

    Dong, Feihong; Li, Hongjun; Gong, Xiangwu; Liu, Quan; Wang, Jingchao

    2015-01-01

    A typical application scenario of remote wireless sensor networks (WSNs) is identified as an emergency scenario. One of the greatest design challenges for communications in emergency scenarios is energy-efficient transmission, due to scarce electrical energy in large-scale natural and man-made disasters. Integrated high altitude platform (HAP)/satellite networks are expected to optimally meet emergency communication requirements. In this paper, a novel integrated HAP/satellite (IHS) architecture is proposed, and three segments of the architecture are investigated in detail. The concept of link-state advertisement (LSA) is designed in a slow flat Rician fading channel. The LSA is received and processed by the terminal to estimate the link state information, which can significantly reduce the energy consumption at the terminal end. Furthermore, the transmission power requirements of the HAPs and terminals are derived using the gradient descent and differential equation methods. The energy consumption is modeled at both the source and system level. An innovative and adaptive algorithm is given for the energy-efficient path selection. The simulation results validate the effectiveness of the proposed adaptive algorithm. It is shown that the proposed adaptive algorithm can significantly improve energy efficiency when combined with the LSA and the energy consumption estimation. PMID:26404292

  17. Energy-Efficient Transmissions for Remote Wireless Sensor Networks: An Integrated HAP/Satellite Architecture for Emergency Scenarios.

    PubMed

    Dong, Feihong; Li, Hongjun; Gong, Xiangwu; Liu, Quan; Wang, Jingchao

    2015-09-03

    A typical application scenario of remote wireless sensor networks (WSNs) is identified as an emergency scenario. One of the greatest design challenges for communications in emergency scenarios is energy-efficient transmission, due to scarce electrical energy in large-scale natural and man-made disasters. Integrated high altitude platform (HAP)/satellite networks are expected to optimally meet emergency communication requirements. In this paper, a novel integrated HAP/satellite (IHS) architecture is proposed, and three segments of the architecture are investigated in detail. The concept of link-state advertisement (LSA) is designed in a slow flat Rician fading channel. The LSA is received and processed by the terminal to estimate the link state information, which can significantly reduce the energy consumption at the terminal end. Furthermore, the transmission power requirements of the HAPs and terminals are derived using the gradient descent and differential equation methods. The energy consumption is modeled at both the source and system level. An innovative and adaptive algorithm is given for the energy-efficient path selection. The simulation results validate the effectiveness of the proposed adaptive algorithm. It is shown that the proposed adaptive algorithm can significantly improve energy efficiency when combined with the LSA and the energy consumption estimation.

  18. China's growing CO2 emissions--a race between increasing consumption and efficiency gains.

    PubMed

    Peters, Glen P; Weber, Christopher L; Guan, Dabo; Hubacek, Klaus

    2007-09-01

    China's rapidly growing economy and energy consumption are creating serious environmental problems on both local and global scales. Understanding the key drivers behind China's growing energy consumption and the associated CO2 emissions is critical for the development of global climate policies and provides insight into how other emerging economies may develop a low emissions future. Using recently released Chinese economic input-output data and structural decomposition analysis we analyze how changes in China's technology, economic structure, urbanization, and lifestyles affect CO2 emissions. We find that infrastructure construction and urban household consumption, both in turn driven by urbanization and lifestyle changes, have outpaced efficiency improvements in the growth of CO2 emissions. Net trade had a small effect on total emissions due to equal, but significant, growth in emissions from the production of exports and emissions avoided by imports. Technology and efficiency improvements have only partially offset consumption growth, but there remains considerable untapped potential to reduce emissions by improving both production and consumption systems. As China continues to rapidly develop there is an opportunity to further implement and extend policies, such as the Circular Economy, that will help China avoid the high emissions path taken by today's developed countries.

  19. Eco-development and energy efficient technologies in Russia: prospects and reality

    NASA Astrophysics Data System (ADS)

    Kurakova, Oksana

    2017-10-01

    The article highlights the concept of eco-standards in Russia, and discusses new technologies that allow to build energy-efficient houses in the form of countryside real estate. Special attention is given to the principle of heat production based on the use of individual facilities, power centers mini thermal power plants, as well as to ways to reduce water consumption at home. Presents analysis of the advantages projects “built-to-suit” for the introduction of the energy efficient technologies. Justified idea and principles of “green construction” in Russia in the real estate market. Conclusion about the effectiveness of the use, opportunities and development of energy efficient technologies.

  20. An Analysis of Sources of Technological Change in Efficiency Improvement of Fluorescent Lamp Systems

    NASA Astrophysics Data System (ADS)

    Imanaka, Takeo

    In Japan, energy efficient fluorescent lamp systems which use “rare-earth phosphors” and “electronic ballasts” have shown rapid diffusion since 1990s. This report investigated sources of technological change in the efficiency improvement of fluorescent lamp systems: (i) Fluorescent lamp and luminaires have been under steady technological development for getting more energy efficient lighting and the concepts to achieve high efficiency had been found in such activities; however, it took long time until they realized and become widely used; (ii) Electronic ballasts and rare-earth phosphors add fluorescent lamp systems not only energy efficiency but also various values such as compactness, lightweight, higher output, and better color rendering properties, which have also been expected and have induced research and development (R&D) (iii) Affordable electronic ballasts are realized by the new technology “power MOSFET” which is based on IC technologies and has been developed for large markets of information and communication technologies and mobile devices; and (iv) Rare-earth phosphors became available after rare-earth industries developed for the purpose of supplying rare-earth phosphors for color television. In terms of sources of technological change, (i) corresponds to “R&D” aiming at the particular purpose i.e. energy efficiency in this case, on the other hand, (ii), (iii), and (iv) correspond to “spillovers” from activities aiming at other purposes. This case exhibits an actual example in which “spillovers” were the critical sources of technological change in energy technology.

  1. Scout: An Impact Analysis Tool for Building Energy-Efficiency Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harris, Chioke; Langevin, Jared; Roth, Amir

    Evaluating the national impacts of candidate U.S. building energy-efficiency technologies has historically been difficult for organizations with large energy efficiency portfolios. In particular, normalizing results from technology-specific impact studies is time-consuming when those studies do not use comparable assumptions about the underlying building stock. To equitably evaluate its technology research, development, and deployment portfolio, the U.S. Department of Energy's Building Technologies Office has developed Scout, a software tool that quantitatively assesses the energy and CO2 impacts of building energy-efficiency measures on the national building stock. Scout efficiency measures improve upon the unit performance and/or lifetime operational costs of an equipmentmore » stock baseline that is determined from the U.S. Energy Information Administration Annual Energy Outlook (AEO). Scout measures are characterized by a market entry and exit year, unit performance level, cost, and lifetime. To evaluate measures on a consistent basis, Scout uses EnergyPlus simulation on prototype building models to translate measure performance specifications to whole-building energy savings; these savings impacts are then extended to a national scale using floor area weighting factors. Scout represents evolution in the building stock over time using AEO projections for new construction, retrofit, and equipment replacements, and competes technologies within market segments under multiple adoption scenarios. Scout and its efficiency measures are open-source, as is the EnergyPlus whole building simulation framework that is used to evaluate measure performance. The program is currently under active development and will be formally released once an initial set of measures has been analyzed and reviewed.« less

  2. Energy Smart Schools--Applied Research, Field Testing, and Technology Integration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nebiat Solomon; Robin Vieira; William L. Manz

    2004-12-01

    The National Association of State Energy Officials (NASEO) in conjunction with the California Energy Commission, the Energy Center of Wisconsin, the Florida Solar Energy Center, the New York State Energy Research and Development Authority, and the Ohio Department of Development's Office of Energy Efficiency conducted a four-year, cost-share project with the U.S. Department of Energy (USDOE), Office of Energy Efficiency and Renewable Energy to focus on energy efficiency and high-performance technologies in our nation's schools. NASEO was the program lead for the MOU-State Schools Working group, established in conjunction with the USDOE Memorandum of Understanding process for collaboration among statemore » and federal energy research and demonstration offices and organizations. The MOU-State Schools Working Group included State Energy Offices and other state energy research organizations from all regions of the country. Through surveys and analyses, the Working Group determined the school-related energy priorities of the states and established a set of tasks to be accomplished, including the installation and evaluation of microturbines, advanced daylighting research, testing of schools and classrooms, and integrated school building technologies. The Energy Smart Schools project resulted in the adoption of advanced energy efficiency technologies in both the renovation of existing schools and building of new ones; the education of school administrators, architects, engineers, and manufacturers nationwide about the energy-saving, economic, and environmental benefits of energy efficiency technologies; and improved the learning environment for the nation's students through use of better temperature controls, improvements in air quality, and increased daylighting in classrooms. It also provided an opportunity for states to share and replicate successful projects to increase their energy efficiency while at the same time driving down their energy costs.« less

  3. The NASA Aircraft Energy Efficiency Program

    NASA Technical Reports Server (NTRS)

    Klineberg, J. M.

    1978-01-01

    The objective of the NASA Aircraft Energy Efficiency Program is to accelerate the development of advanced technology for more energy-efficient subsonic transport aircraft. This program will have application to current transport derivatives in the early 1980s and to all-new aircraft of the late 1980s and early 1990s. Six major technology projects were defined that could result in fuel savings in commercial aircraft: (1) Engine Component Improvement, (2) Energy Efficient Engine, (3) Advanced Turboprops, (4) Energy Efficiency Transport (aerodynamically speaking), (5) Laminar Flow Control, and (6) Composite Primary Structures.

  4. Data Center Energy Efficiency Standards in India: Preliminary Findings from Global Practices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raje, Sanyukta; Maan, Hermant; Ganguly, Suprotim

    Global data center energy consumption is growing rapidly. In India, information technology industry growth, fossil-fuel generation, and rising energy prices add significant operational costs and carbon emissions from energy-intensive data centers. Adoption of energy-efficient practices can improve the global competitiveness and sustainability of data centers in India. Previous studies have concluded that advancement of energy efficiency standards through policy and regulatory mechanisms is the fastest path to accelerate the adoption of energy-efficient practices in the Indian data centers. In this study, we reviewed data center energy efficiency practices in the United States, Europe, and Asia. Using evaluation metrics, we identifiedmore » an initial set of energy efficiency standards applicable to the Indian context using the existing policy mechanisms. These preliminary findings support next steps to recommend energy efficiency standards and inform policy makers on strategies to adopt energy-efficient technologies and practices in Indian data centers.« less

  5. Recent Inventions and Trends in Algal Biofuels Research.

    PubMed

    Karemore, Ankush; Nayak, Manoranjan; Sen, Ramkrishna

    2016-01-01

    In recent times, when energy crisis compounded by global warming and climate change is receiving worldwide attention, the emergence of algae, as a better feedstock for third-generation biofuels than energy crops or plants, holds great promise. As compared to conventional biofuels feedstocks, algae offer several advantages and can alone produce a significant amount of biofuels sustainably in a shorter period to fulfill the rising demand for energy. Towards commercialisation, there have been numerous efforts put for- ward for the development of algae-derived biofuel. This article reviews and summarizes the recent inventions and the current trends that are reported and captured in relevant patents pertaining to the novel methods of algae biomass cultivation and processing for biofuels and value-added products. In addition, the recent advancement in techniques and technologies for microalgal biofuel production has been highlighted. Various steps involved in the production of algal biofuels have been considered in this article. Moreover, the work that advances to improve the efficiency and cost-effectiveness of the processes for the manufacture of biofuels has been presented. Our survey was conducted in the patent databases: WIPO, Spacenet and USPTO. There are still some technological bottlenecks that could be overcome by designing advanced photobioreactor and raceway ponds, developing new and low cost technologies for biomass cultivation, harvesting, drying and extraction. Recent advancement in algae biofuels methods is directed toward developing efficient and integrated systems to produce biofuels by overcoming the current challenges. However, further research effort is required to scale-up and improve the efficiency of these methods in the upstream and downstream technologies to make the cost of biofuels competitive with petroleum fuels.

  6. Salinity-gradient energy driven microbial electrosynthesis of value-added chemicals from CO2 reduction.

    PubMed

    Li, Xiaohu; Angelidaki, Irini; Zhang, Yifeng

    2018-06-14

    Biological conversion of CO 2 to value-added chemicals and biofuels has emerged as an attractive strategy to address the energy and environmental concerns caused by the over-reliance on fossil fuels. In this study, an innovative microbial reverse-electrodialysis electrolysis cell (MREC), which combines the strengths of reverse electrodialysis (RED) and microbial electrosynthesis technology platforms, was developed to achieve efficient CO 2 -to-value chemicals bioconversion by using the salinity gradient energy as driven energy sources. In the MREC, maximum acetate and ethanol concentrations of 477.5 ± 33.2 and 46.2 ± 8.2 mg L -1 were obtained at the cathode, catalyzed by Sporomusa ovata with production rates of 165.79 ± 11.52 and 25.11 ± 4.46 mmol m -2 d -1 , respectively. Electron balance analysis indicates that 94.4 ± 3.9% of the electrons derived from wastewater and salinity gradient were recovered in acetate and ethanol. This work for the first time proved the potential of innovative MREC configuration has the potential as an efficient technology platform for simultaneous CO 2 capture and electrosynthesis of valuable chemicals. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Bioelectrochemical system platform for sustainable environmental remediation and energy generation.

    PubMed

    Wang, Heming; Luo, Haiping; Fallgren, Paul H; Jin, Song; Ren, Zhiyong Jason

    2015-01-01

    The increasing awareness of the energy-environment nexus is compelling the development of technologies that reduce environmental impacts during energy production as well as energy consumption during environmental remediation. Countries spend billions in pollution cleanup projects, and new technologies with low energy and chemical consumption are needed for sustainable remediation practice. This perspective review provides a comprehensive summary on the mechanisms of the new bioelectrochemical system (BES) platform technology for efficient and low cost remediation, including petroleum hydrocarbons, chlorinated solvents, perchlorate, azo dyes, and metals, and it also discusses the potential new uses of BES approach for some emerging contaminants remediation, such as CO2 in air and nutrients and micropollutants in water. The unique feature of BES for environmental remediation is the use of electrodes as non-exhaustible electron acceptors, or even donors, for contaminant degradation, which requires minimum energy or chemicals but instead produces sustainable energy for monitoring and other onsite uses. BES provides both oxidation (anode) and reduction (cathode) reactions that integrate microbial-electro-chemical removal mechanisms, so complex contaminants with different characteristics can be removed. We believe the BES platform carries great potential for sustainable remediation and hope this perspective provides background and insights for future research and development. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Residential Energy Efficiency Demonstration: Hawaii and Guam Energy Improvement Technology Demonstration Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Earle, L.; Sparn, B.; Rutter, A.

    2014-03-01

    In order to meet its energy goals, the Department of Defense (DOD) has partnered with the Department of Energy (DOE) to rapidly demonstrate and deploy cost-effective renewable energy and energy-efficiency technologies. The scope of this project was to demonstrate tools and technologies to reduce energy use in military housing, with particular emphasis on measuring and reducing loads related to consumer electronics (commonly referred to as 'plug loads'), hot water, and whole-house cooling.

  9. Airport Analyses Informing New Mobility Shifts: Opportunities to Adapt Energy-Efficient Mobility Services and Infrastructure: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henao, Alejandro; Sperling, Joshua; Young, Stanley E

    An airport is one of the most important assets for a region's economic development and connectivity with the rest of the nation and world. Key aspects for investigation of energy efficient mobility at airports is ground transportation including factors ranging from the infrastructure, mobility services, and associated revenues. Data is critical to understand the maturity of new mobility services that can inform both cities and airports on how to respond, approach, manage, and adapt to the challenges, opportunities, and uncertainties associated with shifts in new mobility that influence human behavior, energy-efficiency and sustainability strategies. One key question identified in thismore » article is how quickly we are adapting to new mobility options - such as app-based ride-hailing and 'pooling' services - that may provide an opportunity to influence energy efficiency of ground transportation to and from airports. By starting with airports in the regions of four smart city finalists in the U.S. DOT Smart City Challenge, this paper focuses on key observability aspects of new modes and the rate of shifts in mobility patterns across San Francisco, Portland, Denver, and Kansas City. With the emerging megatrend of rising urbanization and rising air travel demand (a predicted doubling in demand by 2035), airports are expected to increasingly be on the front lines of adaptation to new transportation technology and services in terms of infrastructure investments, policies, and revenues. As airports have demonstrated the most potential and capability of any public institution to implement fees for new ride-hailing services, they are also a prime resource for collecting important data to help understand smart mobility transitions. Results focused on the shifts in revenues for ground transportation at airports offer one vantage point into the pace of transitions and adaptations in the new emerging mobility landscape, and present an opportunity to analyze how future adaptations could support more energy-efficient scenarios.« less

  10. Beyond land application: Emerging technologies for the treatment and reuse of anaerobically digested agricultural and food waste.

    PubMed

    Sheets, Johnathon P; Yang, Liangcheng; Ge, Xumeng; Wang, Zhiwu; Li, Yebo

    2015-10-01

    Effective treatment and reuse of the massive quantities of agricultural and food wastes generated daily has the potential to improve the sustainability of food production systems. Anaerobic digestion (AD) is used throughout the world as a waste treatment process to convert organic waste into two main products: biogas and nutrient-rich digestate, called AD effluent. Biogas can be used as a source of renewable energy or transportation fuels, while AD effluent is traditionally applied to land as a soil amendment. However, there are economic and environmental concerns that limit widespread land application, which may lead to underutilization of AD for the treatment of agricultural and food wastes. To combat these constraints, existing and novel methods have emerged to treat or reuse AD effluent. The objective of this review is to analyze several emerging methods used for efficient treatment and reuse of AD effluent. Overall, the application of emerging technologies is limited by AD effluent composition, especially the total solid content. Some technologies, such as composting, use the solid fraction of AD effluent, while most other technologies, such as algae culture and struvite crystallization, use the liquid fraction. Therefore, dewatering of AD effluent, reuse of the liquid and solid fractions, and land application could all be combined to sustainably manage the large quantities of AD effluent produced. Issues such as pathogen regrowth and prevalence of emerging organic micro-pollutants are also discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. An Energy-Efficient MAC Protocol for Medical Emergency Monitoring Body Sensor Networks

    PubMed Central

    Zhang, Chongqing; Wang, Yinglong; Liang, Yongquan; Shu, Minglei; Chen, Changfang

    2016-01-01

    Medical emergency monitoring body sensor networks (BSNs) monitor the occurrence of medical emergencies and are helpful for the daily care of the elderly and chronically ill people. Such BSNs are characterized by rare traffic when there is no emergency occurring, high real-time and reliable requirements of emergency data and demand for a fast wake-up mechanism for waking up all nodes when an emergency happens. A beacon-enabled MAC protocol is specially designed to meet the demands of medical emergency monitoring BSNs. The rarity of traffic is exploited to improve energy efficiency. By adopting a long superframe structure to avoid unnecessary beacons and allocating most of the superframe to be inactive periods, the duty cycle is reduced to an extremely low level to save energy. Short active time slots are interposed into the superframe and shared by all of the nodes to deliver the emergency data in a low-delay and reliable way to meet the real-time and reliable requirements. The interposition slots can also be used by the coordinator to broadcast network demands to wake-up all nodes in a low-delay and energy-efficient way. Experiments display that the proposed MAC protocol works well in BSNs with low emergency data traffic. PMID:26999145

  12. Real world programs, real world strategies, real world successes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hogan, K.

    1997-12-31

    This paper presents a very brief overview of market opportunities for using energy efficient technology. A brief summary of greenhouse gas emissions and global climate change concludes that the threat of global warming must be taken seriously. It is stated that there are numerous technologies available which can reduce energy use by up to 50%, while offering attractive rates of return. Market analysis has identified a trillion dollar market for high efficiency products and services over the next decade. Three main areas of business opportunity for capitalizing on the growing market for energy efficiency are identified: (1) using efficient energymore » technology in-house, (2) marketing energy efficient products, and (3) international markets.« less

  13. Quantifying Adoption Rates and Energy Savings Over Time for Advanced Manufacturing Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanes, Rebecca; Carpenter Petri, Alberta C; Riddle, Matt

    Energy-efficient manufacturing technologies can reduce energy consumption and lower operating costs for an individual manufacturing facility, but increased process complexity and the resulting risk of disruption means that manufacturers may be reluctant to adopt such technologies. In order to quantify potential energy savings at scales larger than a single facility, it is necessary to account for how quickly and how widely the technology will be adopted by manufacturers. This work develops a methodology for estimating energy-efficient manufacturing technology adoption rates using quantitative, objectively measurable technology characteristics, including energetic, economic and technical criteria. Twelve technology characteristics are considered, and each characteristicmore » is assigned an importance weight that reflects its impact on the overall technology adoption rate. Technology characteristic data and importance weights are used to calculate the adoption score, a number between 0 and 1 that represents how quickly the technology is likely to be adopted. The adoption score is then used to estimate parameters for the Bass diffusion curve, which quantifies the change in the number of new technology adopters in a population over time. Finally, energy savings at the sector level are calculated over time by multiplying the number of new technology adopters at each time step with the technology's facility-level energy savings. The proposed methodology will be applied to five state-of-the-art energy-efficient technologies in the carbon fiber composites sector, with technology data obtained from the Department of Energy's 2016 bandwidth study. Because the importance weights used in estimating the Bass curve parameters are subjective, a sensitivity analysis will be performed on the weights to obtain a range of parameters for each technology. The potential energy savings for each technology and the rate at which each technology is adopted in the sector are quantified and used to identify the technologies which offer the greatest cumulative sector-level energy savings over a period of 20 years. Preliminary analysis indicates that relatively simple technologies, such as efficient furnaces, will be adopted more quickly and result in greater cumulative energy savings compared to more complex technologies that require process retrofitting, such as advanced control systems.« less

  14. Techno-economic and life-cycle modeling and analysis of various energy storage technologies coupled with a solar photovoltaic array

    NASA Astrophysics Data System (ADS)

    Peterson, Brian Andrew

    Renewable energies, such as wind and solar, are a growing piece of global energy consumption. The chief motivation to develop renewable energy is two-fold: reducing carbon dioxide emissions and reducing dependence on diminishing fossil fuel supplies. Energy storage is critical to the growth of renewable energy because it allows for renewably-generated electricity to be consumed at times when renewable sources are unavailable, and it also enhances power quality (maintaining voltage and frequency) on an electric grid which becomes increasingly unstable as more renewable energy is added. There are numerous means of storing energy with different advantages, but none has emerged as the clear solution of choice for renewable energy storage. This thesis attempts to explore the current and developing state of energy storage and how it can be efficiently implemented with crystalline silicon solar photovotlaics, which has a minimum expected lifetime of 25 years assumed in this thesis. A method of uniformly comparing vastly different energy storage technologies using empirical data was proposed. Energy storage technologies were compared based on both economic valuation over the system life and cradle-to-gate pollution rates for systems with electrochemical batteries. For stationary, non-space-constrained settings, lead-acid batteries proved to be the most economical. Carbon-enhanced lead-acid batteries were competitive, showing promise as an energy storage technology. Lithium-ion batteries showed the lowest pollution rate of electrochemical batteries examined, but both lithium-ion and lead-acid batteries produce comparable carbon dioxide to coal-derived electricity.

  15. Energy and Water Efficiency on Campus | NREL

    Science.gov Websites

    Energy and Water Efficiency on Campus Energy and Water Efficiency on Campus NREL ensures the resiliency of our future energy and water systems through energy efficiency strategies and technologies , renewable energy, and water efficiency on the NREL campus. FY17 Energy Intensity. The South Table Mountain

  16. Smart Manufacturing Technologies and Data Analytics for Improving Energy Efficiency in Industrial Energy Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nimbalkar, Sachin U.; Guo, Wei; Wenning, Thomas J.

    Smart manufacturing and advanced data analytics can help the manufacturing sector unlock energy efficiency from the equipment level to the entire manufacturing facility and the whole supply chain. These technologies can make manufacturing industries more competitive, with intelligent communication systems, real-time energy savings, and increased energy productivity. Smart manufacturing can give all employees in an organization the actionable information they need, when they need it, so that each person can contribute to the optimal operation of the corporation through informed, data-driven decision making. This paper examines smart technologies and data analytics approaches for improving energy efficiency and reducing energy costsmore » in process-supporting energy systems. It dives into energy-saving improvement opportunities through smart manufacturing technologies and sophisticated data collection and analysis. The energy systems covered in this paper include those with motors and drives, fans, pumps, air compressors, steam, and process heating.« less

  17. Aircraft Energy Efficiency (ACEE) status report

    NASA Technical Reports Server (NTRS)

    Nored, D. L.; Dugan, J. F., Jr.; Saunders, N. T.; Ziemianski, J. A.

    1979-01-01

    Fuel efficiency in aeronautics, for fuel conservation in general as well as for its effect on commercial aircraft operating economics is considered. Projects of the Aircraft Energy Efficiency Program related to propulsion are emphasized. These include: (1) engine component improvement, directed at performance improvement and engine diagnostics for prolonged service life; (2) energy efficient engine, directed at proving the technology base for the next generation of turbofan engines; and (3) advanced turboprop, directed at advancing the technology of turboprop powered aircraft to a point suitable for commercial airline service. Progress in these technology areas is reported.

  18. An energy-efficient architecture for internet of things systems

    NASA Astrophysics Data System (ADS)

    De Rango, Floriano; Barletta, Domenico; Imbrogno, Alessandro

    2016-05-01

    In this paper some of the motivations for energy-efficient communications in wireless systems are described by highlighting emerging trends and identifying some challenges that need to be addressed to enable novel, scalable and energy-efficient communications. So an architecture for Internet of Things systems is presented, the purpose of which is to minimize energy consumption by communication devices, protocols, networks, end-user systems and data centers. Some electrical devices have been designed with multiple communication interfaces, such as RF or WiFi, using open source technology; they have been analyzed under different working conditions. Some devices are programmed to communicate directly with a web server, others to communicate only with a special device that acts as a bridge between some devices and the web server. Communication parameters and device status have been changed dynamically according to different scenarios in order to have the most benefits in terms of energy cost and battery lifetime. So the way devices communicate with the web server or between each other and the way they try to obtain the information they need to be always up to date change dynamically in order to guarantee always the lowest energy consumption, a long lasting battery lifetime, the fastest responses and feedbacks and the best quality of service and communication for end users and inner devices of the system.

  19. High-efficiency crystalline silicon technology development

    NASA Technical Reports Server (NTRS)

    Prince, M. B.

    1984-01-01

    The rationale for pursuing high efficiency crystalline silicon technology research is discussed. Photovoltaic energy systems are reviewed as to their cost effectiveness and their competitiveness with other energy systems. The parameters of energy system life are listed and briefly reviewed.

  20. 10 CFR 420.18 - Expenditure prohibitions and limitations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... demonstration of energy efficiency or renewable energy techniques and technologies not commercially available... available energy efficiency or renewable energy techniques and technologies are permitted, and are not... which are included in the State's approved SEP plan. (e) A State may use funds under this subpart for...

  1. 10 CFR 420.18 - Expenditure prohibitions and limitations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... demonstration of energy efficiency or renewable energy techniques and technologies not commercially available... available energy efficiency or renewable energy techniques and technologies are permitted, and are not... which are included in the State's approved SEP plan. (e) A State may use funds under this subpart for...

  2. Measuring energy efficiency in economics: Shadow value approach

    NASA Astrophysics Data System (ADS)

    Khademvatani, Asgar

    For decades, academic scholars and policy makers have commonly applied a simple average measure, energy intensity, for studying energy efficiency. In contrast, we introduce a distinctive marginal measure called energy shadow value (SV) for modeling energy efficiency drawn on economic theory. This thesis demonstrates energy SV advantages, conceptually and empirically, over the average measure recognizing marginal technical energy efficiency and unveiling allocative energy efficiency (energy SV to energy price). Using a dual profit function, the study illustrates how treating energy as quasi-fixed factor called quasi-fixed approach offers modeling advantages and is appropriate in developing an explicit model for energy efficiency. We address fallacies and misleading results using average measure and demonstrate energy SV advantage in inter- and intra-country energy efficiency comparison. Energy efficiency dynamics and determination of efficient allocation of energy use are shown through factors impacting energy SV: capital, technology, and environmental obligations. To validate the energy SV, we applied a dual restricted cost model using KLEM dataset for the 35 US sectors stretching from 1958 to 2000 and selected a sample of the four sectors. Following the empirical results, predicted wedges between energy price and the SV growth indicate a misallocation of energy use in stone, clay and glass (SCG) and communications (Com) sectors with more evidence in the SCG compared to the Com sector, showing overshoot in energy use relative to optimal paths and cost increases from sub-optimal energy use. The results show that energy productivity is a measure of technical efficiency and is void of information on the economic efficiency of energy use. Decomposing energy SV reveals that energy, capital and technology played key roles in energy SV increases helping to consider and analyze policy implications of energy efficiency improvement. Applying the marginal measure, we also contributed to energy efficiency convergence analysis employing the delta-convergence and unconditional & conditional beta-convergence concepts, investigating economic energy efficiency differences across the four US sectors using panel data models. The results show that, in terms of technical and allocative energy efficiency, the energy-intensive sectors, SCG and textile mill products, tend to catch the energy extensive sectors, the Com and furniture & fixtures, being conditional on sector-specific characteristics. Conditional convergence results indicate that technology, capital and energy are crucial factors in determining energy efficiency differences across the US sectors, implying that environmental or energy policies, and technological changes should be industry specific across the US sectors. The main finding is that the marginal value measure conveys information on both technical and allocative energy efficiency and accounts for all costs and benefits of energy consumption including environmental and externality costs.

  3. Technology Prioritization: Transforming the U.S. Building Stock to Embrace Energy Efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdelaziz, Omar; Farese, Philip; Abramson, Alexis

    2013-01-01

    The U.S. Buildings sector is responsible for about 40% of the national energy expenditures. This is due in part to wasteful use of resources and limited considerations made for energy efficiency during the design and retrofit phases. Recent studies have indicated the potential for up to 30-50% energy savings in the U.S. buildings sector using currently available technologies. This paper discusses efforts to accelerate the transformation in the U.S. building energy efficiency sector using a new technology prioritization framework. The underlying analysis examines building energy use micro segments using the Energy Information Administration Annual Energy Outlook and other publically availablemore » information. The tool includes a stock-and-flow model to track stock vintage and efficiency levels with time. The tool can be used to investigate energy efficiency measures under a variety of scenarios and has a built-in energy accounting framework to prevent double counting of energy savings within any given portfolio. This tool is developed to inform decision making and estimate long term potential energy savings for different market adoption scenarios.« less

  4. Water assessment for the Lower Colorado River region-emerging energy technology development

    NASA Astrophysics Data System (ADS)

    1981-08-01

    Water supply availability for two hypothetical levels of emerging energy technology development are assessed. The water and related land resources implications of such hypothetical developments are evaluated. Water requirement, the effects on water quality, costs of water supplies, costs of disposal of wastewaters, and the environmental, economic and social impacts are determined, providing information for the development of non-nuclear energy research.

  5. Adsorption Refrigeration System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Kai; Vineyard, Edward Allan

    Adsorption refrigeration is an environmentally friendly cooling technology which could be driven by recovered waste heat or low-grade heat such as solar energy. In comparison with absorption system, an adsorption system has no problems such as corrosion at high temperature and salt crystallization. In comparison with vapor compression refrigeration system, it has the advantages of simple control, no moving parts and less noise. This paper introduces the basic theory of adsorption cycle as well as the advanced adsorption cycles such as heat and mass recovery cycle, thermal wave cycle and convection thermal wave cycle. The types, characteristics, advantages and drawbacksmore » of different adsorbents used in adsorption refrigeration systems are also summarized. This article will increase the awareness of this emerging cooling technology among the HVAC engineers and help them select appropriate adsorption systems in energy-efficient building design.« less

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    D&R International

    South Dakota demonstrates its commitment to technology and efficiency through the Weatherization Program. Weatherization uses advanced technologies and techniques to reduce energy costs for low-income families by increasing the energy efficiency of their homes.

  7. Plasma for environment

    NASA Astrophysics Data System (ADS)

    Van Oost, G.

    2017-11-01

    Human activity is associated with the permanent emergence of a very wide range of waste streams. The most widely used treatment of waste is thermal processing such as incineration. An alternative environmentally friendly process is based on thermal plasma technology which is a very flexible tool because it allows to operate in a wide temperature range with almost any chemical composition of waste and chemicals needed for processing this waste, and to convert organic waste into energy or chemical substances as well as to destroy toxic organic compounds, and to vitrify radioactive waste in a scenario that for each specific type of waste can be considered optimal, both in terms of energy efficiency and environmental safety.

  8. Plasma for environment

    NASA Astrophysics Data System (ADS)

    Van Oost, G.

    2017-12-01

    Human activity is associated with the permanent emergence of a very wide range of waste streams. The most widely used treatment of waste is thermal processing such as incineration. An alternative environmentally friendly process is based on thermal plasma technology which is a very flexible tool because it allows to operate in a wide temperature range with almost any chemical composition of waste and chemicals needed for processing this waste. It allows the conversion of organic waste into energy or chemical substances as well as the destruction of toxic organic compounds in a scenario that for each specific type of waste can be considered optimal, both in terms of energy efficiency and environmental safety.

  9. Innovation, Diffusion, and Regulation in Energy Technologies

    NASA Astrophysics Data System (ADS)

    Fetter, Theodore Robert

    The innovation and diffusion of new technologies is one of the central concerns of economics. New inventions or technological combinations do not spring fully formed into the world; as firms encounter and learn about new technologies they experiment, refine, and learn about them, improving productivity (and sometimes earning economic rents). Understanding the processes by which firms learn, and how these processes interact with regulations, is fundamental to understanding the emergence of new technologies, their contribution to growth, and the interaction of innovation and regulation. This dissertation addresses how firms learn and respond to regulations in the context of emerging technologies. Within this framework, I address several questions. When production inputs are socially controversial, do firms respond to disclosure laws by voluntarily constraining their inputs? Do these public disclosure laws facilitate knowledge transmission across firms, and if so, what are the implications for public welfare - for instance, do the gains from trade outweigh any effects of reduced incentives for innovation? I study these questions in the context of hydraulic fracturing, though the results offer insight for more general settings. Panning out to a much broader view, I also explore how energy-related technologies - in both generation and consumption - diffuse across national boundaries over time, and whether innovation and diffusion of energy-efficient technologies has led to more or less energy-efficient economic growth. In my first paper, I contribute to improved understanding of the conditions in which information-based regulations, which are increasingly common in multiple policy domains, decrease externalities such as environmental pollution. Specifically, I test whether information disclosure regulations applied to hydraulic fracturing chemicals caused firms to decrease their use of toxic inputs. Prior to these mandatory disclosure laws, some operators voluntarily disclosed fluid components for some or all of their wells. I compare the chemical mixtures used prior to the mandatory disclosure laws to those used after the laws took effect, using a difference-in-differences method motivated by the difference in timing of state-level disclosure laws. I use voluntary disclosures to measure the toxicity of fluids prior to mandated disclosure, and thus observe a composite effect of both full reporting and disclosure pressure. These effects likely have opposite signs; I employ several methods to tease them apart so that I can separately identify the effect of disclosure pressure. My analysis, which covers over 70,000 wells in seven states, suggests that state disclosure regulations resulted in a large and persistent decrease in the use of toxic and regulated chemicals in fracturing fluids. This is not the first paper to find that disclosure regulations can change firms' behavior, but it demonstrates such an effect in a setting in which consumer or market pressure is minimal or nonexistent: firms that produce undifferentiated products for an intermediate market, and disclosure policies that do not generate readily accessible or interpretable information. The second paper tests whether disclosure laws facilitated the transmission of useful knowledge across companies. It is well established that economic agents learn about new technologies in part from other adopters, though even sophisticated firms may not take full advantage of social learning. With my co-authors, I examine whether firms took advantage of environmentally-focused disclosure laws to learn from competitors and improve productivity. We find evidence that they did: following mandatory disclosure we observe convergence in productivity per well, in production inputs, and strong evidence of a link between the two. To our knowledge this is the first study to examine this pathway for social learning in an emerging technology. This could also be interpreted as a form of technology diffusion facilitated by environmental regulation. In my third paper, I address a broader scale of technology change, looking for evidence that improved technologies for energy generation and consumption have allowed less energy-intensive or pollution-intensive growth in developing countries. I analyze panel data on Gross Domestic Product (GDP) and national energy consumption to look for evidence of technology "leapfrogging" (i.e., decreased intensity of energy consumption for a given level of economic growth). I combine 1960-2014 data on energy consumption from the International Energy Agency with historical data that extends back to 1861 for several countries on energy consumption and fuel source, as well as GDP. I compare countries at the same income level and test whether energy consumption and energy intensity are different for today's less-developed countries compared to today's industrialized countries when they had similar income levels. Compared to prior analysis, my much longer time series allows me to test for leapfrogging over a scale appropriate to the pace of widespread technological change.

  10. Clean Coal Technology Demonstration Program: Project fact sheets 2000, status as of June 30, 2000

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2000-09-01

    The Clean Coal Technology Demonstration Program (CCT Program), a model of government and industry cooperation, responds to the Department of Energy's (DOE) mission to foster a secure and reliable energy system that is environmentally and economically sustainable. The CCT Program represents an investment of over $5.2 billion in advanced coal-based technology, with industry and state governments providing an unprecedented 66 percent of the funding. With 26 of the 38 active projects having completed operations, the CCT Program has yielded clean coal technologies (CCTs) that are capable of meeting existing and emerging environmental regulations and competing in a deregulated electric powermore » marketplace. The CCT Program is providing a portfolio of technologies that will assure that U.S. recoverable coal reserves of 274 billion tons can continue to supply the nation's energy needs economically and in an environmentally sound manner. As the nation embarks on a new millennium, many of the clean coal technologies have realized commercial application. Industry stands ready to respond to the energy and environmental demands of the 21st century, both domestically and internationally, For existing power plants, there are cost-effective environmental control devices to control sulfur dioxide (S02), nitrogen oxides (NO,), and particulate matter (PM). Also ready is a new generation of technologies that can produce electricity and other commodities, such as steam and synthetic gas, and provide efficiencies and environmental performance responsive to global climate change concerns. The CCT Program took a pollution prevention approach as well, demonstrating technologies that remove pollutants or their precursors from coal-based fuels before combustion. Finally, new technologies were introduced into the major coal-based industries, such as steel production, to enhance environmental performance. Thanks in part to the CCT Program, coal--abundant, secure, and economical--can continue in its role as a key component in the U.S. and world energy markets. The CCT Program also has global importance in providing clean, efficient coal-based technology to a burgeoning energy market in developing countries largely dependent on coal. Based on 1997 data, world energy consumption is expected to increase 60 percent by 2020, with almost half of the energy increment occurring in developing Asia (including China and India). By 2020, energy consumption in developing Asia is projected to surpass consumption in North America. The energy form contributing most to the growth is electricity, as developing Asia establishes its energy infrastructure. Coal, the predominant indigenous fuel, in that region will be the fuel of choice in electricity production. The CCTs offer a means to mitigate potential environmental problems associated with unprecedented energy growth, and to enhance the U.S. economy through foreign equipment sales and engineering services.« less

  11. Photo-electrochemical communication between cyanobacteria (Leptolyngbia sp.) and osmium redox polymer modified electrodes.

    PubMed

    Hasan, Kamrul; Bekir Yildiz, Huseyin; Sperling, Eva; Conghaile, Peter Ó; Packer, Michael A; Leech, Dónal; Hägerhäll, Cecilia; Gorton, Lo

    2014-12-07

    Photosynthetic microbial fuel cells (PMFCs) are an emerging technology for renewable solar energy conversion. Major efforts have been made to explore the electrogenic activity of cyanobacteria, mostly using practically unsustainable reagents. Here we report on photocurrent generation (≈8.64 μA cm(-2)) from cyanobacteria immobilized on electrodes modified with an efficient electron mediator, an Os(2+/3+) redox polymer. Upon addition of ferricyanide to the electrolyte, cyanobacteria generate the maximum current density of ≈48.2 μA cm(-2).

  12. Cold atmospheric pressure plasma jets: Interaction with plasmid DNA and tailored electron heating using dual-frequency excitation

    NASA Astrophysics Data System (ADS)

    Niemi, K.; O'Neill, C.; Cox, L. J.; Waskoenig, J.; Hyland, W. B.; McMahon, S. J.; Reuter, S.; Currell, F. J.; Graham, W. G.; O'Connell, D.; Gans, T.

    2012-05-01

    Recent progress in plasma science and technology has enabled the development of a new generation of stable cold non-equilibrium plasmas operating at ambient atmospheric pressure. This opens horizons for new plasma technologies, in particular in the emerging field of plasma medicine. These non-equilibrium plasmas are very efficient sources for energy transport through reactive neutral particles (radicals and metastables), charged particles (ions and electrons), UV radiation, and electro-magnetic fields. The effect of a cold radio frequency-driven atmospheric pressure plasma jet on plasmid DNA has been investigated. The formation of double strand breaks correlates well with the atomic oxygen density. Taken with other measurements, this indicates that neutral components in the jet are effective in inducing double strand breaks. Plasma manipulation techniques for controlled energy delivery are highly desirable. Numerical simulations are employed for detailed investigations of the electron dynamics, which determines the generation of reactive species. New concepts based on nonlinear power dissipation promise superior strategies to control energy transport for tailored technological exploitations.

  13. Disaster Resiliency and Recovery Example Project: Galena, Alaska |

    Science.gov Websites

    Emergency Management Agency (FEMA) to identify energy-efficient rebuilding solutions, including measures to potential for water and energy efficiency measures, as well as appropriate on site renewable energy

  14. Energy Efficient Legged Robotics at Sandia Labs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buerger, Steve

    Sandia is developing energy efficient actuation and drive train technologies to dramatically improve the charge life of legged robots. The work is supported by DARPA, and Sandia will demonstrate an energy efficient bipedal robot at the technology exposition section of the DARPA Robotics Challenge Finals in June, 2015. This video, the first in a series, describes early development and initial integration of the Sandia Transmission Efficient Prototype Promoting Research (STEPPR) robot.

  15. Energy Efficient Legged Robotics at Sandia Labs

    ScienceCinema

    Buerger, Steve

    2018-05-07

    Sandia is developing energy efficient actuation and drive train technologies to dramatically improve the charge life of legged robots. The work is supported by DARPA, and Sandia will demonstrate an energy efficient bipedal robot at the technology exposition section of the DARPA Robotics Challenge Finals in June, 2015. This video, the first in a series, describes early development and initial integration of the Sandia Transmission Efficient Prototype Promoting Research (STEPPR) robot.

  16. 75 FR 31323 - Energy Efficiency Program: Energy Conservation Standards Furnace Fans: Public Meeting and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-03

    .... EERE-2010-BT-STD-0011] RIN 1904-AC22 Energy Efficiency Program: Energy Conservation Standards Furnace Fans: Public Meeting and Availability of the Framework Document AGENCY: Office of Energy Efficiency and... Energy, Office of Energy Efficiency and Renewable Energy, Building Technologies, EE-2J, 1000 Independence...

  17. 75 FR 70214 - Renewable Energy and Energy Efficiency Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-17

    ... DEPARTMENT OF COMMERCE International Trade Administration Renewable Energy and Energy Efficiency... of an open meeting. SUMMARY: The Renewable Energy and Energy Efficiency Advisory Committee (RE&EEAC... INFORMATION CONTACT: Brian O'Hanlon, Office of Energy and Environmental Technologies Industries (OEEI...

  18. The role of anaerobic digestion in the emerging energy economy.

    PubMed

    Batstone, Damien John; Virdis, Bernardino

    2014-06-01

    Anaerobic digestion is the default process for biological conversion of residue organics to renewable energy and biofuel in the form of methane. However, its scope of application is expanding, due to availability of new technologies, and the emerging drivers of energy and nutrient conservation and recovery. Here, we outline two of these new application areas, namely wastewater nutrient and energy recovery, and generation of value added chemicals through mixed culture biotechnology. There exist two options for nutrient and energy recovery from domestic wastewater: low energy mainline and partition-release-recovery. Both are heavily dependent on anaerobic digestion as an energy generating and nutrient release step, and have been enabled by new technologies such as low emission anaerobic membrane processes. The area of mixed culture biotechnology has been previously identified as a key industrial opportunity, but is now moving closer to application due application of existing and new technologies. As well as acting as a core technology option in bioproduction, anaerobic digestion has a key role in residual waste valorization and generation of energy for downstream processing. These new application areas and technologies are emerging simultaneously with substantial advances in knowledge of underlying mechanisms such as electron transfer, understanding of which is critical to development of the new application areas. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Energy Division annual progress report for period ending September 30, 1983

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This report covers work done during FY 1983 by the staff of the Energy Division and its subcontractors and by colleagues in other Oak Ridge National Laboratory divisions working on Energy Division projects. The work can be divided into four areas: (1) analysis and assessment, (2) models and data systems, (3) research to improve the efficiency of energy use and to improve electric power transmission and distribution, and (4) research utilization. Support came principally from the US Department of Energy (DOE), the US Nuclear Regulatory Commission, and the US Department of Defense, but also from a number of other agenciesmore » and organizations. Analysis and assessment included work on (a) environmental issues, including those deriving from the preparation of environmental impact statements; (b) energy and resource analysis; and (c) emergency preparedness. The models and data systems area involved research on evaluating and developing energy, environment, and engineering simulation models and on devising large data management systems, evaluating user data requirements, and compiling data bases. Research on improving the efficiency of energy use was focused primarily on the buildings and electricity sectors. A major effort on heat pump technology, which includes both heat-activated and electrically driven systems, continues. An important aspect of all the work was research utilization. Since the Energy Division is doing applied research, results are, by definition, intended to solve problems or answer questions of DOE and other sponsors. However, there are other users, and research utilization activities include technology transfer, commercialization efforts, outreach to state and regional organizations, and, of course, information dissemination.« less

  20. Direct Current as an Integrating Platform for ZNE Buildings with EVs and Storage: DC Direct Systems – A Bridge to a Low Carbon Future?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Karl; Vossos, Vagelis; Kloss, Margarita

    2016-09-01

    Cost effective zero net energy (ZNE) schemes exist for many types of residential and commercial buildings. Yet, today’s alternating current (AC) based ZNE designs may be as much as 10% to 20% less efficient, more costly, and more complicated than a design based on direct current (DC) technologies. An increasing number of research organizations and manufacturers are just starting the process of developing products and conducting research and development (R&D) efforts. These early R&D efforts indicate that the use of DC technologies may deliver many energy and non-energy benefits relative to AC-based typologies. DC ZNE schemes may provide for anmore » ideal integrating platform for natively DC-based onsite generation, storage, electric vehicle (EV) charging and end-use loads. Emerging empirical data suggest that DC end-use appliances are more efficient, simpler, more durable, and lower cost. DC technologies appear to provide ratepayers a lower cost pathway to achieve resilient ZNE buildings, and simultaneously yield a plethora of benefits. This paper draws from the current research effort entitled "Direct Current as an Integrating and Enabling Platform," co-led by the Lawrence Berkeley National Laboratory (LBNL), the California Institute for Energy and the Environment (CIEE), the Electric Power Research Institute (EPRI) and funded under the California Energy Commission’s Energy Program Investment Charge (CEC EPIC). The first phase of this EPIC research is focused on assembling and summarizing known global performance information on DC and DC-AC hybrid end-use appliances and power systems. This paper summarizes the information and insights gained from this research effort.« less

  1. 75 FR 17700 - Energy Efficient Building Systems Regional Innovation Cluster Initiative-Joint Federal Funding...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-07

    ... economically dynamic regional innovation cluster focused on energy efficient buildings technologies and systems... DEPARTMENT OF ENERGY Energy Efficient Building Systems Regional Innovation Cluster Initiative... February 8, 2010, titled the Energy Efficient Building Systems Regional Innovation Cluster Initiative. A...

  2. Empirical Study on Total Factor Productive Energy Efficiency in Beijing-Tianjin-Hebei Region-Analysis based on Malmquist Index and Window Model

    NASA Astrophysics Data System (ADS)

    Xu, Qiang; Ding, Shuai; An, Jingwen

    2017-12-01

    This paper studies the energy efficiency of Beijing-Tianjin-Hebei region and to finds out the trend of energy efficiency in order to improve the economic development quality of Beijing-Tianjin-Hebei region. Based on Malmquist index and window analysis model, this paper estimates the total factor energy efficiency in Beijing-Tianjin-Hebei region empirically by using panel data in this region from 1991 to 2014, and provides the corresponding political recommendations. The empirical result shows that, the total factor energy efficiency in Beijing-Tianjin-Hebei region increased from 1991 to 2014, mainly relies on advances in energy technology or innovation, and obvious regional differences in energy efficiency to exist. Throughout the window period of 24 years, the regional differences of energy efficiency in Beijing-Tianjin-Hebei region shrank. There has been significant convergent trend in energy efficiency after 2000, mainly depends on the diffusion and spillover of energy technologies.

  3. Three Essays on Macroeconomics

    NASA Astrophysics Data System (ADS)

    Doda, Lider Baran

    This dissertation consists of three independent essays in macroeconomics. The first essay studies the transition to a low carbon economy using an extension of the neoclassical growth model featuring endogenous energy efficiency, exhaustible energy and explicit climate-economy interaction. I derive the properties of the laissez faire equilibrium and compare them to the optimal allocations of a social planner who internalizes the climate change externality. Three main results emerge. First, the exhaustibility of energy generates strong market based incentives to improve energy efficiency and reduce CO 2 emissions without any government intervention. Second, the market and optimal allocations are substantially different suggesting a role for the government. Third, high and persistent taxes are required to implement the optimal allocations as a competitive equilibrium with taxes. The second essay focuses on coal fired power plants (CFPP) - one of the largest sources of CO2 emissions globally - and their generation efficiency using a macroeconomic model with an embedded CFPP sector. A key feature of the model is the endogenous choice of production technologies which differ in their energy efficiency. After establishing four empirical facts about the CFPP sector, I analyze the long run quantitative effects of energy taxes. Using the calibrated model, I find that sector-specific coal taxes have large effects on generation efficiency by inducing the use of more efficient technologies. Moreover, such taxes achieve large CO2 emissions reductions with relatively small effects on consumption and output. The final essay studies the procyclicality of fiscal policy in developing countries, which is a well-documented empirical observation seemingly at odds with Neoclassical and Keynesian policy prescriptions. I examine this issue by solving the optimal fiscal policy problem of a small open economy government when the interest rates on external debt are endogenous. Given an incomplete asset market, endogeneity is achieved by removing the government's ability to commit to repaying its external obligations. When calibrated to Argentina, the model generates procyclical government spending and countercyclical labor income tax rates. Simultaneously, the model's implications for key business cycle moments align well with the data.

  4. A probabilistic dynamic energy model for ad-hoc wireless sensors network with varying topology

    NASA Astrophysics Data System (ADS)

    Al-Husseini, Amal

    In this dissertation we investigate the behavior of Wireless Sensor Networks (WSNs) from the degree distribution and evolution perspective. In specific, we focus on implementation of a scale-free degree distribution topology for energy efficient WSNs. WSNs is an emerging technology that finds its applications in different areas such as environment monitoring, agricultural crop monitoring, forest fire monitoring, and hazardous chemical monitoring in war zones. This technology allows us to collect data without human presence or intervention. Energy conservation/efficiency is one of the major issues in prolonging the active life WSNs. Recently, many energy aware and fault tolerant topology control algorithms have been presented, but there is dearth of research focused on energy conservation/efficiency of WSNs. Therefore, we study energy efficiency and fault-tolerance in WSNs from the degree distribution and evolution perspective. Self-organization observed in natural and biological systems has been directly linked to their degree distribution. It is widely known that scale-free distribution bestows robustness, fault-tolerance, and access efficiency to system. Fascinated by these properties, we propose two complex network theoretic self-organizing models for adaptive WSNs. In particular, we focus on adopting the Barabasi and Albert scale-free model to fit into the constraints and limitations of WSNs. We developed simulation models to conduct numerical experiments and network analysis. The main objective of studying these models is to find ways to reducing energy usage of each node and balancing the overall network energy disrupted by faulty communication among nodes. The first model constructs the wireless sensor network relative to the degree (connectivity) and remaining energy of every individual node. We observed that it results in a scale-free network structure which has good fault tolerance properties in face of random node failures. The second model considers additional constraints on the maximum degree of each node as well as the energy consumption relative to degree changes. This gives more realistic results from a dynamical network perspective. It results in balanced network-wide energy consumption. The results show that networks constructed using the proposed approach have good properties for different centrality measures. The outcomes of the presented research are beneficial to building WSN control models with greater self-organization properties which leads to optimal energy consumption.

  5. Can radiation chemistry supply a highly efficient AO(R)P process for organics removal from drinking and waste water? A review.

    PubMed

    Trojanowicz, Marek; Bojanowska-Czajka, Anna; Capodaglio, Andrea G

    2017-09-01

    The increasing role of chemistry in industrial production and its direct and indirect impacts in everyday life create the need for continuous search and efficiency improvement of new methods for decomposition/removal of different classes of waterborne anthropogenic pollutants. This review paper addresses a highly promising class of water treatment solutions, aimed at tackling the pressing problem of emerging contaminants in natural and drinking waters and wastewater discharges. Radiation processing, a technology originating from radiation chemistry studies, has shown encouraging results in the treatment of (mainly) organic water pollution. Radiation ("high energy") processing is an additive-free technology using short-lived reactive species formed by the radiolysis of water, both oxidative and reducing, to carry out decomposition of organic pollutants. The paper illustrates the basic principles of radiolytic treatment of organic pollutants in water and wastewaters and specifically of one of its most practical implementations (electron beam processing). Application examples, highlighting the technology's strong points and operational conditions are described, and a discussion on the possible future of this technology follows.

  6. Energy Efficient Legged Robotics at Sandia Labs, Part 2

    ScienceCinema

    Buerger, Steve; Mazumdar, Ani; Spencer, Steve

    2018-01-16

    Sandia is developing energy efficient actuation and drive train technologies to dramatically improve the charge life of legged robots. The work is supported by DARPA, and Sandia will demonstrate an energy efficient bipedal robot at the technology exposition section of the DARPA Robotics Challenge Finals in June, 2015. This video, the second in a series, describes the continued development and integration of the Sandia Transmission Efficient Prototype Promoting Research (STEPPR) robot.

  7. Energy Efficient Legged Robotics at Sandia Labs, Part 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buerger, Steve; Mazumdar, Ani; Spencer, Steve

    Sandia is developing energy efficient actuation and drive train technologies to dramatically improve the charge life of legged robots. The work is supported by DARPA, and Sandia will demonstrate an energy efficient bipedal robot at the technology exposition section of the DARPA Robotics Challenge Finals in June, 2015. This video, the second in a series, describes the continued development and integration of the Sandia Transmission Efficient Prototype Promoting Research (STEPPR) robot.

  8. Engineering Strategies and Methods for Avoiding Air-Quality Externalities: Dispersion Modeling, Home Energy Conservation, and Scenario Planning

    NASA Astrophysics Data System (ADS)

    Knox, Andrew James

    Energy conservation can improve air quality by reducing emissions from fuel combustion. The human health value retained through better air quality can then offset the cost of energy conservation. Through this thesis' innovative yet widely-accessible combination of air pollution dispersion modeling and atmospheric chemistry, it is estimated that the health value retained by avoiding emissions from Ontario's former coal-fired generating stations is 5.74/MWh (using an upper-bound value of 265,000 per year of life lost). This value is combined with energy modeling of homes in the first-ever assessment of the air-quality health benefits of low-energy buildings. It is shown that avoided health damages can equal 7% of additional construction costs of energy efficient buildings in Ontario. At 7%, health savings are a significant item in the cost analysis of efficient buildings. Looking to energy efficiency in the context of likely future low-resource natural gas scenarios, building efficient buildings today is shown to be more economically efficient than any building retrofit option. Considering future natural gas scarcity in the context of Ontario's Long-Term Energy Plan reveals that Ontario may be forced to return to coal-fired electricity. Projected coal use would result in externalities greater than $600 million/year; 80% more than air-quality externalities from Ontario's electricity in 1985. Radically aggressive investment in electricity conservation (75% reduction per capita by 2075) is one promising path forward that keeps air-quality externalities below 1985 levels. Non-health externalities are an additional concern, the quantification, and ultimately monetization, of which could be practical using emerging air pollution monitoring technologies. Energy, conservation, energy planning, and energy's externalities form a complex situation in which today's decisions are critical to a successful future. It is clear that reducing the demand for energy is essential and that there are economically efficient conservation opportunities, particularly in the building sector, being missed.

  9. 48 CFR 23.103 - Sustainable acquisitions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL... the products are— (1) Energy-efficient (ENERGY STAR ® or Federal Energy Management Program (FEMP...

  10. 48 CFR 23.103 - Sustainable acquisitions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL... the products are— (1) Energy-efficient (ENERGY STAR ® or Federal Energy Management Program (FEMP...

  11. Massive MIMO-OFDM indoor visible light communication system downlink architecture design

    NASA Astrophysics Data System (ADS)

    Lang, Tian; Li, Zening; Chen, Gang

    2014-10-01

    Multiple-input multiple-output (MIMO) technique is now used in most new broadband communication system, and orthogonal frequency division multiplexing (OFDM) is also utilized within current 4th generation (4G) of mobile telecommunication technology. With MIMO and OFDM combined, visible light communication (VLC) system's diversity gain is increase, yet system capacity for dispersive channels is also enhanced. Moreover, with the emerging massive MIMO-OFDM VLC system, there are significant advantages than smaller systems' such as channel hardening, further increasing of energy efficiency (EE) and spectral efficiency (SE) based on law of large number. This paper addresses one of the major technological challenges, system architecture design, which was solved by semispherical beehive structure (SBS) receiver and so that diversity gain can be identified and applied in Massive MIMO VLC system. Simulation results shows that the proposed design clearly presents a spatial diversity over conventional VLC systems.

  12. Very high gravity (VHG) ethanolic brewing and fermentation: a research update.

    PubMed

    Puligundla, Pradeep; Smogrovicova, Daniela; Obulam, Vijaya Sarathi Reddy; Ko, Sanghoon

    2011-09-01

    There have been numerous developments in ethanol fermentation technology since the beginning of the new millennium as ethanol has become an immediate viable alternative to fast-depleting crude reserves as well as increasing concerns over environmental pollution. Nowadays, although most research efforts are focused on the conversion of cheap cellulosic substrates to ethanol, methods that are cost-competitive with gasoline production are still lacking. At the same time, the ethanol industry has engaged in implementing potential energy-saving, productivity and efficiency-maximizing technologies in existing production methods to become more viable. Very high gravity (VHG) fermentation is an emerging, versatile one among such technologies offering great savings in process water and energy requirements through fermentation of higher concentrations of sugar substrate and, therefore, increased final ethanol concentration in the medium. The technology also allows increased fermentation efficiency, without major alterations to existing facilities, by efficient utilization of fermentor space and elimination of known losses. This comprehensive research update on VHG technology is presented in two main sections, namely VHG brewing, wherein the effects of nutrients supplementation, yeast pitching rate, flavour compound synthesis and foam stability under increased wort gravities are discussed; and VHG bioethanol fermentation studies. In the latter section, aspects related to the role of osmoprotectants and nutrients in yeast stress reduction, substrates utilized/tested so far, including saccharide (glucose, sucrose, molasses, etc.) and starchy materials (wheat, corn, barley, oats, etc.), and mash viscosity issues in VHG bioethanol production are detailed. Thereafter, topics common to both areas such as process optimization studies, mutants and gene level studies, immobilized yeast applications, temperature effect, reserve carbohydrates profile in yeast, and economic aspects are discussed and future prospects are summarized.

  13. Initial Business Case Analysis of Two Integrated Heat Pump HVAC Systems for Near-Zero-Energy Homes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baxter, Van D

    2006-11-01

    The long range strategic goal of the Department of Energy's Building Technologies (DOE/BT) Program is to create, by 2020, technologies and design approaches that enable the construction of net-zero energy homes at low incremental cost (DOE/BT 2005). A net zero energy home (NZEH) is a residential building with greatly reduced needs for energy through efficiency gains, with the balance of energy needs supplied by renewable technologies. While initially focused on new construction, these technologies and design approaches are intended to have application to buildings constructed before 2020 as well resulting in substantial reduction in energy use for all building typesmore » and ages. DOE/BT's Emerging Technologies (ET) team is working to support this strategic goal by identifying and developing advanced heating, ventilating, air-conditioning, and water heating (HVAC/WH) technology options applicable to NZEHs. Although the energy efficiency of heating, ventilating, and air-conditioning (HVAC) equipment has increased substantially in recent years, new approaches are needed to continue this trend. Dramatic efficiency improvements are necessary to enable progress toward the NZEH goals, and will require a radical rethinking of opportunities to improve system performance. The large reductions in HVAC energy consumption necessary to support the NZEH goals require a systems-oriented analysis approach that characterizes each element of energy consumption, identifies alternatives, and determines the most cost-effective combination of options. In particular, HVAC equipment must be developed that addresses the range of special needs of NZEH applications in the areas of reduced HVAC and water heating energy use, humidity control, ventilation, uniform comfort, and ease of zoning. In FY05 ORNL conducted an initial Stage 1 (Applied Research) scoping assessment of HVAC/WH systems options for future NZEHs to help DOE/BT identify and prioritize alternative approaches for further development. Eleven system concepts with central air distribution ducting and nine multi-zone systems were selected and their annual and peak demand performance estimated for five locations: Atlanta (mixed-humid), Houston (hot-humid), Phoenix (hot-dry), San Francisco (marine), and Chicago (cold). Performance was estimated by simulating the systems using the TRNSYS simulation engine (Solar Energy Laboratory et al. 2006) in two 1800-ft{sup 2} houses--a Building America (BA) benchmark house and a prototype NZEH taken from BEopt results at the take-off (or crossover) point (i.e., a house incorporating those design features such that further progress towards ZEH is through the addition of photovoltaic power sources, as determined by current BEopt analyses conducted by NREL). Results were summarized in a project report, 'HVAC Equipment Design options for Near-Zero-Energy Homes--A Stage 2 Scoping Assessment,' ORNL/TM-2005/194 (Baxter 2005). The 2005 study report describes the HVAC options considered, the ranking criteria used, and the system rankings by priority. Table 1 summarizes the energy savings potential of the highest scoring options from the 2005 study for all five locations.« less

  14. 78 FR 55245 - Activities and Methodology for Assessing Compliance With Building Energy Codes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-10

    ... DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy [Docket No. EERE-2013-BT-BC... Energy Efficiency and Renewable Energy, Department of Energy. ACTION: Notice of reopening of public..., Office of Energy Efficiency and Renewable Energy, Building Technologies Program, Mailstop EE-2J, 1000...

  15. Problems of Technology of Energy-Saving Buildings and Their Impact on Energy Efficiency in Buildings

    NASA Astrophysics Data System (ADS)

    Kwasnowski, Pawel; Fedorczak-Cisak, Malgorzata; Knap, Katarzyna

    2017-10-01

    Introduction of EPBD in legislation of the EU member states caused that buildings must meet very stringent requirements of thermal protection and energy efficiency. On the basis of EPBD provisions, EU Member States introduce standard of NZEB (Nearly Zero-Energy Buildings). Such activities cause a need for new, innovative materials and technologies, and new approaches to design, construction and retrofitting of buildings. Indispensable is the precise coordination of the design of structure and technical installations of building, which may be provided in an integrated design process in the system BIM. Good coordination and cooperation of all contractors during the construction phase is also necessary. The article presents the problems and the new methodology for the design, construction and use of energy efficient buildings in terms of energy saving technologies, including discussion of the significant impact of the automation of technical installations on the building energy efficiency.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mundaca, Luis; Neij, Lena; Worrell, Ernst

    The growing complexities of energy systems, environmental problems and technology markets are driving and testing most energy-economy models to their limits. To further advance bottom-up models from a multidisciplinary energy efficiency policy evaluation perspective, we review and critically analyse bottom-up energy-economy models and corresponding evaluation studies on energy efficiency policies to induce technological change. We use the household sector as a case study. Our analysis focuses on decision frameworks for technology choice, type of evaluation being carried out, treatment of market and behavioural failures, evaluated policy instruments, and key determinants used to mimic policy instruments. Although the review confirms criticismmore » related to energy-economy models (e.g. unrealistic representation of decision-making by consumers when choosing technologies), they provide valuable guidance for policy evaluation related to energy efficiency. Different areas to further advance models remain open, particularly related to modelling issues, techno-economic and environmental aspects, behavioural determinants, and policy considerations.« less

  17. High Altitude Long Endurance UAV Analysis of Alternatives and Technology Requirements Development

    NASA Technical Reports Server (NTRS)

    Nickol, Craig L.; Guynn, Mark D.; Kohout, Lisa L.; Ozoroski, Thomas A.

    2007-01-01

    An Analysis of Alternatives and a Technology Requirements Study were conducted for two mission areas utilizing various types of High Altitude Long Endurance (HALE) Unmanned Aerial Vehicles (UAV). A hurricane science mission and a communications relay mission provided air vehicle requirements which were used to derive sixteen potential HALE UAV configurations, including heavier-than-air (HTA) and lighter-than-air (LTA) concepts with both consumable fuel and solar regenerative propulsion systems. A HTA diesel-fueled wing-body-tail configuration emerged as the preferred concept given near-term technology constraints. The cost effectiveness analysis showed that simply maximizing vehicle endurance can be a sub-optimum system solution. In addition, the HTA solar regenerative configuration was utilized to perform both a mission requirements study and a technology development study. Given near-term technology constraints, the solar regenerative powered vehicle was limited to operations during the long days and short nights at higher latitudes during the summer months. Technology improvements are required in energy storage system specific energy and solar cell efficiency, along with airframe drag and mass reductions to enable the solar regenerative vehicle to meet the full mission requirements.

  18. 48 CFR 23.206 - Contract clause.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Energy and Water Efficiency and Renewable Energy 23.206 Contract clause. Unless exempt pursuant to 23.204, insert the clause at 52.223-15, Energy Efficiency in Energy-Consuming Products...

  19. 48 CFR 23.206 - Contract clause.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Energy and Water Efficiency and Renewable Energy 23.206 Contract clause. Unless exempt pursuant to 23.204, insert the clause at 52.223-15, Energy Efficiency in Energy-Consuming Products...

  20. 48 CFR 23.206 - Contract clause.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Energy and Water Efficiency and Renewable Energy 23.206 Contract clause. Unless exempt pursuant to 23.204, insert the clause at 52.223-15, Energy Efficiency in Energy-Consuming Products...

  1. 48 CFR 23.206 - Contract clause.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Energy and Water Efficiency and Renewable Energy 23.206 Contract clause. Unless exempt pursuant to 23.204, insert the clause at 52.223-15, Energy Efficiency in Energy-Consuming Products...

  2. 48 CFR 23.206 - Contract clause.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Energy and Water Efficiency and Renewable Energy 23.206 Contract clause. Unless exempt pursuant to 23.204, insert the clause at 52.223-15, Energy Efficiency in Energy-Consuming Products...

  3. Microbial fuel cells as an alternative energy source: current status.

    PubMed

    Javed, Muhammad Mohsin; Nisar, Muhammad Azhar; Ahmad, Muhammad Usman; Yasmeen, Nighat; Zahoor, Sana

    2018-06-22

    Microbial fuel cell (MFC) technology is an emerging area for alternative renewable energy generation and it offers additional opportunities for environmental bioremediation. Recent scientific studies have focused on MFC reactor design as well as reactor operations to increase energy output. The advancement in alternative MFC models and their performance in recent years reflect the interests of scientific community to exploit this technology for wider practical applications and environmental benefit. This is reflected in the diversity of the substrates available for use in MFCs at an economically viable level. This review provides an overview of the commonly used MFC designs and materials along with the basic operating parameters that have been developed in recent years. Still, many limitations and challenges exist for MFC development that needs to be further addressed to make them economically feasible for general use. These include continued improvements in fuel cell design and efficiency as well scale-up with economically practical applications tailored to local needs.

  4. Electronic structure of aqueous solutions: Bridging the gap between theory and experiments.

    PubMed

    Pham, Tuan Anh; Govoni, Marco; Seidel, Robert; Bradforth, Stephen E; Schwegler, Eric; Galli, Giulia

    2017-06-01

    Predicting the electronic properties of aqueous liquids has been a long-standing challenge for quantum mechanical methods. However, it is a crucial step in understanding and predicting the key role played by aqueous solutions and electrolytes in a wide variety of emerging energy and environmental technologies, including battery and photoelectrochemical cell design. We propose an efficient and accurate approach to predict the electronic properties of aqueous solutions, on the basis of the combination of first-principles methods and experimental validation using state-of-the-art spectroscopic measurements. We present results of the photoelectron spectra of a broad range of solvated ions, showing that first-principles molecular dynamics simulations and electronic structure calculations using dielectric hybrid functionals provide a quantitative description of the electronic properties of the solvent and solutes, including excitation energies. The proposed computational framework is general and applicable to other liquids, thereby offering great promise in understanding and engineering solutions and liquid electrolytes for a variety of important energy technologies.

  5. Electronic structure of aqueous solutions: Bridging the gap between theory and experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pham, Tuan Anh; Govoni, Marco; Seidel, Robert

    Predicting the electronic properties of aqueous liquids has been a long-standing challenge for quantum mechanical methods. However, it is a crucial step in understanding and predicting the key role played by aqueous solutions and electrolytes in a wide variety of emerging energy and environmental technologies, including battery and photoelectrochemical cell design. We propose an efficient and accurate approach to predict the electronic properties of aqueous solutions, on the basis of the combination of first-principles methods and experimental validation using state-of-the-art spectroscopic measurements. We present results of the photoelectron spectra of a broad range of solvated ions, showing that first-principles molecularmore » dynamics simulations and electronic structure calculations using dielectric hybrid functionals provide a quantitative description of the electronic properties of the solvent and solutes, including excitation energies. The proposed computational framework is general and applicable to other liquids, thereby offering great promise in understanding and engineering solutions and liquid electrolytes for a variety of important energy technologies.« less

  6. Energy Efficiency and Renewable Energy Program. Bibliography, 1993 edition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaughan, K.H.

    1993-06-01

    The Bibliography contains listings of publicly available reports, journal articles, and published conference papers sponsored by the DOE Office of Energy Efficiency and Renewable Energy and published between 1987 and mid-1993. The topics of Bibliography include: analysis and evaluation; building equipment research; building thermal envelope systems and materials; district heating; residential and commercial conservation program; weatherization assistance program; existing buildings research program; ceramic technology project; alternative fuels and propulsion technology; microemulsion fuels; industrial chemical heat pumps; materials for advanced industrial heat exchangers; advanced industrial materials; tribology; energy-related inventions program; electric energy systems; superconducting technology program for electric energy systems; thermalmore » energy storage; biofuels feedstock development; biotechnology; continuous chromatography in multicomponent separations; sensors for electrolytic cells; hydropower environmental mitigation; environmental control technology; continuous fiber ceramic composite technology.« less

  7. Energy Efficiency for Electrical Technology.

    ERIC Educational Resources Information Center

    Scharmann, Larry, Ed.

    Intended primarily but not solely for use at the postsecondary level, this curriculum guide contains five units on energy efficiency that were designed to be incorporated into an existing program in electrical technology. The following topics are examined: where to look for energy waste; conservation methods for electrical consumers, for…

  8. 78 FR 33838 - DOE Participation in Development of the International Energy Conservation Code

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-05

    ... DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy [Docket No. EERE-2012-BT-BC... Energy Efficiency and Renewable Energy, Department of Energy. ACTION: Notice and request for comment... Efficiency and Renewable Energy, Building Technologies Office, Mailstop EE-2J, 1000 Independence Avenue SW...

  9. Microbial electrolysis cells turning to be versatile technology: recent advances and future challenges.

    PubMed

    Zhang, Yifeng; Angelidaki, Irini

    2014-06-01

    Microbial electrolysis cells (MECs) are an electricity-mediated microbial bioelectrochemical technology, which is originally developed for high-efficiency biological hydrogen production from waste streams. Compared to traditional biological technologies, MECs can overcome thermodynamic limitations and achieve high-yield hydrogen production from wide range of organic matters at relatively mild conditions. This approach greatly reduces the electric energy cost for hydrogen production in contrast to direct water electrolysis. In addition to hydrogen production, MECs may also support several energetically unfavorable biological/chemical reactions. This unique advantage of MECs has led to several alternative applications such as chemicals synthesis, recalcitrant pollutants removal, resources recovery, bioelectrochemical research platform and biosensors, which have greatly broaden the application scopes of MECs. MECs are becoming a versatile platform technology and offer a new solution for emerging environmental issues related to waste streams treatment and energy and resource recovery. Different from previous reviews that mainly focus on hydrogen production, this paper provides an up-to-date review of all the new applications of MECs and their resulting performance, current challenges and prospects of future. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. 48 CFR 23.202 - Policy.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Energy and Water Efficiency and Renewable Energy 23.202 Policy. The Government's policy is to acquire supplies and services that promote energy and water efficiency, advance the use of renewable...

  11. Energy efficient industrial technology in Europe: A compendium

    NASA Astrophysics Data System (ADS)

    Fassbender, A. G.; McGee, M. J.

    1982-05-01

    Energy efficient industrial technologies currently in use in Europe are described. Gas-fired equipment in West Germany, France, and the United Kingdom is emphasized. Some of these technologies are unique and some are currently available in the United States. Load management, cogeneration, heat recovery, and various industrial processes are discussed.

  12. Hardware-in-the-Loop emulator for a hydrokinetic turbine

    NASA Astrophysics Data System (ADS)

    Rat, C. L.; Prostean, O.; Filip, I.

    2018-01-01

    Hydroelectric power has proven to be an efficient and reliable form of renewable energy, but its impact on the environment has long been a source of concern. Hydrokinetic turbines are an emerging class of renewable energy technology designed for deployment in small rivers and streams with minimal environmental impact on the local ecosystem. Hydrokinetic technology represents a truly clean source of energy, having the potential to become a highly efficient method of harvesting renewable energy. However, in order to achieve this goal, extensive research is necessary. This paper presents a Hardware-in-the-Loop emulator for a run-of-the-river type hydrokinetic turbine. The HIL system uses an ABB ACS800 drive to control an induction machine as a significant means of replicating the behavior of the real turbine. The induction machine is coupled to a permanent magnet synchronous generator and the corresponding load. The ACS800 drive is controlled through the software system, which comprises of the hydrokinetic turbine real-time simulation through mathematical modeling in the LabVIEW programming environment running on a NI CompactRIO (cRIO) platform. The advantages of this method are that it can provide a means for testing many control configurations without requiring the presence of the real turbine. This paper contains the basic principles of a hydrokinetic turbine, particularly the run-of-the-river configurations along with the experimental results obtained from the HIL system.

  13. 48 CFR 23.703 - Policy.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE...) Implement cost-effective contracting preference programs promoting energy-efficiency, water conservation... energy-efficiency and water conservation. (3) Eliminate or reduce the generation of hazardous waste and...

  14. 48 CFR 23.703 - Policy.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE...) Implement cost-effective contracting preference programs promoting energy-efficiency, water conservation... energy-efficiency and water conservation. (3) Eliminate or reduce the generation of hazardous waste and...

  15. 48 CFR 23.703 - Policy.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE...) Implement cost-effective contracting preference programs promoting energy-efficiency, water conservation... energy-efficiency and water conservation. (3) Eliminate or reduce the generation of hazardous waste and...

  16. 48 CFR 23.703 - Policy.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE...) Implement cost-effective contracting preference programs promoting energy-efficiency, water conservation... energy-efficiency and water conservation. (3) Eliminate or reduce the generation of hazardous waste and...

  17. Energy and Environment Guide to Action - Chapter 4.2: Energy Efficiency Programs

    EPA Pesticide Factsheets

    Provides guidance and recommendations for designing, funding, and implementing effective energy efficiency programs, which provide a range of financial and other incentives to encourage investments in energy-efficient technologies and behavior change.

  18. Accelerating the deployment of energy efficient and renewable energy technologies in South Africa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shickman, Kurt

    Purpose of the project was to accelerate the deployment of energy efficient and renewable energy technologies in South Africa. Activities were undertaken to reduce barriers to deployment by improving product awareness for the South African market; market and policy intelligence for U.S. manufacturers; product/service availability; local technical capacity at the workforce, policymaker and expert levels; and ease of conducting business for these technologies/services in the South African market.

  19. Realizing Efficient Energy Harvesting from Organic Photovoltaic Cells

    NASA Astrophysics Data System (ADS)

    Zou, Yunlong

    Organic photovoltaic cells (OPVs) are emerging field of research in renewable energy. The development of OPVs in recent years has made this technology viable for many niche applications. In order to realize widespread application however, the power conversion efficiency requires further improvement. The efficiency of an OPV depends on the short-circuit current density (JSC), open-circuit voltage (VOC) and fill factor (FF). For state-of-the-art devices, JSC is mostly optimized with the application of novel low-bandgap materials and a bulk heterojunction device architecture (internal quantum efficiency approaching 100%). The remaining limiting factors are the low VOC and FF. This work focuses on overcoming these bottlenecks for improved efficiency. Temperature dependent measurements of device performance are used to examine both charge transfer and exciton ionization process in OPVs. The results permit an improved understanding of the intrinsic limit for VOC in various device architectures and provide insight on device operation. Efforts have also been directed at engineering device architecture for optimized FF, realizing a very high efficiency of 8% for vapor deposited small molecule OPVs. With collaborators, new molecules with tailored desired energy levels are being designed for further improvements in efficiency. A new type of hybrid organic-inorganic perovskite material is also included in this study. By addressing processing issues and anomalous hysteresis effects, a very high efficiency of 19.1% is achieved. Moving forward, topics including engineering film crystallinity, exploring tandem architectures and understanding degradation mechanisms will further push OPVs toward broad commercialization.

  20. Stress myocardial perfusion imaging in the emergency department--new techniques for speed and diagnostic accuracy.

    PubMed

    Harrison, Sheri D; Harrison, Mark A; Duvall, W Lane

    2012-05-01

    Emergency room evaluations of patients presenting with chest pain continue to rise, and these evaluations which often include cardiac imaging, are an increasing area of resource utilization in the current health system. Myocardial perfusion imaging from the emergency department remains a vital component of the diagnosis or exclusion of coronary artery disease as the etiology of chest pain. Recent advances in camera technology, and changes to the imaging protocols have allowed MPI to become a more efficient way of providing this diagnostic information. Compared with conventional SPECT, new high-efficiency CZT cameras provide a 3-5 fold increase in photon sensitivity, 1.65-fold improvement in energy resolution and a 1.7-2.5-fold increase in spatial resolution. With stress-only imaging, rest images are eliminated if stress images are normal, as they provide no additional prognostic or diagnostic value and cancelling the rest images would shorten the length of the test which is of particular importance to the ED population. The rapid but accurate triage of patients in an ED CPU is essential to their care, and stress-only imaging and new CZT cameras allow for shorter test time, lower radiation doses and lower costs while demonstrating good clinical outcomes. These changes to nuclear stress testing can allow for faster throughput of patients through the emergency department while providing a safe and efficient evaluation of chest pain.

  1. Magnetic materials and devices for the 21st century: stronger, lighter, and more energy efficient.

    PubMed

    Gutfleisch, Oliver; Willard, Matthew A; Brück, Ekkes; Chen, Christina H; Sankar, S G; Liu, J Ping

    2011-02-15

    A new energy paradigm, consisting of greater reliance on renewable energy sources and increased concern for energy efficiency in the total energy lifecycle, has accelerated research into energy-related technologies. Due to their ubiquity, magnetic materials play an important role in improving the efficiency and performance of devices in electric power generation, conditioning, conversion, transportation, and other energy-use sectors of the economy. This review focuses on the state-of-the-art hard and soft magnets and magnetocaloric materials, with an emphasis on their optimization for energy applications. Specifically, the impact of hard magnets on electric motor and transportation technologies, of soft magnetic materials on electricity generation and conversion technologies, and of magnetocaloric materials for refrigeration technologies, are discussed. The synthesis, characterization, and property evaluation of the materials, with an emphasis on structure-property relationships, are discussed in the context of their respective markets, as well as their potential impact on energy efficiency. Finally, considering future bottlenecks in raw materials, options for the recycling of rare-earth intermetallics for hard magnets will be discussed. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. 78 FR 6094 - Information Collection Request Submitted to OMB for Review and Approval; Comment Request; EPA's...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-29

    ... encompass organization-wide energy performance improvement, such as building technology upgrades, product... help EPA promote energy-efficient technologies by evaluating the efficiency of their buildings using... Leaders--Ineligible Facilities List (5900-20) ENERGY STAR Leaders--Leaders Story (5900-20) Service and...

  3. The aircraft energy efficiency active controls technology program

    NASA Technical Reports Server (NTRS)

    Hood, R. V., Jr.

    1977-01-01

    Broad outlines of the NASA Aircraft Energy Efficiency Program for expediting the application of active controls technology to civil transport aircraft are presented. Advances in propulsion and airframe technology to cut down on fuel consumption and fuel costs, a program for an energy-efficient transport, and integrated analysis and design technology in aerodynamics, structures, and active controls are envisaged. Fault-tolerant computer systems and fault-tolerant flight control system architectures are under study. Contracts with leading manufacturers for research and development work on wing-tip extensions and winglets for the B-747, a wing load alleviation system, elastic mode suppression, maneuver-load control, and gust alleviation are mentioned.

  4. Volatile organic compounds emission control in industrial pollution source using plasma technology coupled with F-TiO2/γ-Al2O3.

    PubMed

    Zhu, Tao; Chen, Rui; Xia, Ni; Li, Xiaoyang; He, Xianxian; Zhao, Wenjuan; Carr, Tim

    2015-01-01

    Volatile organic compounds' (VOCs) effluents, which come from many industries, are triggering serious environmental problems. As an emerging technology, non-thermal plasma (NTP) technology is a potential technology for VOCs emission control. NTP coupled with F-TiO2/γ-Al2O3 is used for toluene removal from a gaseous influent at normal temperature and atmospheric pressure. NTP is generated by dielectric barrier discharge, and F-TiO2/γ-Al2O3 can be prepared by sol-gel method in the laboratory. In the experiment, the different packed materials were packed into the plasma reactor, including γ-Al2O3, TiO2/γ-Al2O3 and F-TiO2/γ-Al2O3. Through a series of characterization methods such as X-ray diffraction, scanning electronic microscopy and Brunner-Emmet-Teller measurements, the results show that the particle size distribution of F-TiO2 is relatively smaller than that of TiO2, and the pore distribution of F-TiO2 is more uniformly distributed than that of TiO2. The relationships among toluene removal efficiency, reactor input energy density, and the equivalent capacitances of air gap and dielectric barrier layer were investigated. The results show that the synergistic technology NTP with F-TiO2/γ-Al2O3 resulted in greater enhancement of toluene removal efficiency and energy efficiency. Especially, when packing with F-TiO2/γ-Al2O3 in NTP reactor, toluene removal efficiency reaches 99% and higher. Based on the data analysis of Fourier Transform Infrared Spectroscopy, the experimental results showed that NTP reactor packed with F-TiO2/γ-Al2O3 resulted in a better inhibition for by-products formation effectively in the gas exhaust.

  5. Improving Air Quality with Solar Energy

    DOE R&D Accomplishments Database

    2008-04-01

    This fact sheet series highlights how renewable energy and energy efficiency technologies can and are being used to reduce air emissions and meet environmental goals, showcasing case studies and technology-specific topics. This one focus on solar energy technologies.

  6. DOE/ NREL Build One of the World's Most Energy Efficient Office Spaces

    ScienceCinema

    Radocy, Rachel; Livingston, Brian; von Luhrte, Rich

    2018-05-18

    Technology — from sophisticated computer modeling to advanced windows that actually open — will help the newest building at the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) be one of the world's most energy efficient offices. Scheduled to open this summer, the 222,000 square-foot RSF will house more than 800 staff and an energy efficient information technology data center. Because 19 percent of the country's energy is used by commercial buildings, DOE plans to make this facility a showcase for energy efficiency. DOE hopes the design of the RSF will be replicated by the building industry and help reduce the nation's energy consumption by changing the way commercial buildings are designed and built.

  7. Energy Efficiency in Libraries.

    ERIC Educational Resources Information Center

    Lewis, Eleanor J.; And Others

    1993-01-01

    Shows how libraries can save money and energy with energy-efficient technologies, improving maintenance, and encouraging staff efforts to conserve energy. Specific techniques such as life-cycle cost analysis and energy audits focusing on lighting, heating, ventilation, air conditioning, and water efficiency are described. Funding options and…

  8. Country profile: Hungary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-09-01

    Country Profile: Hungary has been prepared as a background document for use by US Government agencies and US businesses interested in becoming involved with the new democracies of Eastern Europe as they pursue sustainable economic development. The focus of the Profile is on energy and highlights information on Hungary`s energy supply, demand, and utilization. It identifies patterns of energy usage in the important economic sectors, especially industry, and provides a preliminary assessment for opportunities to improve efficiencies in energy production, distribution and use by introducing more efficient technologies. The use of more efficient technologies would have the added benefit ofmore » reducing the environmental impact which, although is not the focus of the report, is an issue that effects energy choices. The Profile also presents considerable economic information, primarily in the context of how economic restructuring may affect energy supply, demand, and the introduction of more efficient technologies.« less

  9. Country profile: Hungary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-09-01

    Country Profile: Hungary has been prepared as a background document for use by US Government agencies and US businesses interested in becoming involved with the new democracies of Eastern Europe as they pursue sustainable economic development. The focus of the Profile is on energy and highlights information on Hungary's energy supply, demand, and utilization. It identifies patterns of energy usage in the important economic sectors, especially industry, and provides a preliminary assessment for opportunities to improve efficiencies in energy production, distribution and use by introducing more efficient technologies. The use of more efficient technologies would have the added benefit ofmore » reducing the environmental impact which, although is not the focus of the report, is an issue that effects energy choices. The Profile also presents considerable economic information, primarily in the context of how economic restructuring may affect energy supply, demand, and the introduction of more efficient technologies.« less

  10. Predicting the electronic properties of aqueous solutions from first-principles

    NASA Astrophysics Data System (ADS)

    Schwegler, Eric; Pham, Tuan Anh; Govoni, Marco; Seidel, Robert; Bradforth, Stephen; Galli, Giulia

    Predicting the electronic properties of aqueous liquids has been a long-standing challenge for quantum-mechanical methods. Yet it is a crucial step in understanding and predicting the key role played by aqueous solutions and electrolytes in a wide variety of emerging energy and environmental technologies, including battery and photoelectrochemical cell design. Here we propose an efficient and accurate approach to predict the electronic properties of aqueous solutions, based on the combination of first-principles methods and experimental validation using state-of-the-art spectroscopic measurements. We present results for the photoelectron spectra of a broad range of solvated ions, showing that first-principles molecular dynamics simulations and electronic structure calculations using dielectric hybrid functionals provide a quantitative description of their electronic properties, including excitation energies, of the solvent and solutes. The proposed computational framework is general and applicable to other liquids, thereby offering great promise in understanding and engineering solutions and liquid electrolytes for a variety of important energy technologies. Part of this work was performed under the auspices of the U.S. Department of Energy at LLNL under Contract DE-AC52-07A27344.

  11. Energy-efficient miniature-scale heat pumping based on shape memory alloys

    NASA Astrophysics Data System (ADS)

    Ossmer, Hinnerk; Wendler, Frank; Gueltig, Marcel; Lambrecht, Franziska; Miyazaki, Shuichi; Kohl, Manfred

    2016-08-01

    Cooling and thermal management comprise a major part of global energy consumption. The by far most widespread cooling technology today is vapor compression, reaching rather high efficiencies, but promoting global warming due to the use of environmentally harmful refrigerants. For widespread emerging applications using microelectronics and micro-electro-mechanical systems, thermoelectrics is the most advanced technology, which however hardly reaches coefficients of performance (COP) above 2.0. Here, we introduce a new approach for energy-efficient heat pumping using the elastocaloric effect in shape memory alloys. This development is mainly targeted at applications on miniature scales, while larger scales are envisioned by massive parallelization. Base materials are cold-rolled textured Ti49.1Ni50.5Fe0.4 foils of 30 μm thickness showing an adiabatic temperature change of +20/-16 K upon superelastic loading/unloading. Different demonstrator layouts consisting of mechanically coupled bridge structures with large surface-to-volume ratios are developed allowing for control by a single actuator as well as work recovery. Heat transfer times are in the order of 1 s, being orders of magnitude faster than for bulk geometries. Thus, first demonstrators achieve values of specific heating and cooling power of 4.5 and 2.9 W g-1, respectively. A maximum temperature difference of 9.4 K between heat source and sink is reached within 2 min. Corresponding COP on the device level are 4.9 (heating) and 3.1 (cooling).

  12. Office of Industrial Technologies research in progress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-05-01

    The US Department of Energy (DOE) Office of Industrial Technologies (OIT) conducts research and development activities which focus on improving energy efficiency and providing for fuel flexibility within US industry in the area of industrial conservation. The mission of OIT is to increase the utilization of existing energy-efficient equipment and to find and promote new, cost-effective ways for industrial facilities to improve their energy efficiency and minimize waste products. To ensure advancement of the technological leadership of the United States and to improve the competitiveness of American industrial products in world markets, OIT works closely with industrial partners, the staffsmore » of the national laboratories, and universities to identify research and development needs and to solve technological challenges. This report contains summaries of the currently active projects supported by the Office of Industrial Technologies.« less

  13. Mushrooms as Efficient Solar Steam-Generation Devices.

    PubMed

    Xu, Ning; Hu, Xiaozhen; Xu, Weichao; Li, Xiuqiang; Zhou, Lin; Zhu, Shining; Zhu, Jia

    2017-07-01

    Solar steam generation is emerging as a promising technology, for its potential in harvesting solar energy for various applications such as desalination and sterilization. Recent studies have reported a variety of artificial structures that are designed and fabricated to improve energy conversion efficiencies by enhancing solar absorption, heat localization, water supply, and vapor transportation. Mushrooms, as a kind of living organism, are surprisingly found to be efficient solar steam-generation devices for the first time. Natural and carbonized mushrooms can achieve ≈62% and ≈78% conversion efficiencies under 1 sun illumination, respectively. It is found that this capability of high solar steam generation is attributed to the unique natural structure of mushroom, umbrella-shaped black pileus, porous context, and fibrous stipe with a small cross section. These features not only provide efficient light absorption, water supply, and vapor escape, but also suppress three components of heat losses at the same time. These findings not only reveal the hidden talent of mushrooms as low-cost materials for solar steam generation, but also provide inspiration for the future development of high-performance solar thermal conversion devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Marginalization of end-use technologies in energy innovation for climate protection

    NASA Astrophysics Data System (ADS)

    Wilson, Charlie; Grubler, Arnulf; Gallagher, Kelly S.; Nemet, Gregory F.

    2012-11-01

    Mitigating climate change requires directed innovation efforts to develop and deploy energy technologies. Innovation activities are directed towards the outcome of climate protection by public institutions, policies and resources that in turn shape market behaviour. We analyse diverse indicators of activity throughout the innovation system to assess these efforts. We find efficient end-use technologies contribute large potential emission reductions and provide higher social returns on investment than energy-supply technologies. Yet public institutions, policies and financial resources pervasively privilege energy-supply technologies. Directed innovation efforts are strikingly misaligned with the needs of an emissions-constrained world. Significantly greater effort is needed to develop the full potential of efficient end-use technologies.

  15. Electrorheology for energy production and conservation

    NASA Astrophysics Data System (ADS)

    Huang, Ke

    Recently, based on the physics of viscosity, we developed a new technology, which utilizes electric or magnetic fields to change the rheology of complex fluids to reduce the viscosity, while keeping the temperature unchanged. The method is universal and applicable to all complex fluids with suspended particles of nano-meter, submicrometer, or micrometer size. Completely different from the traditional viscosity reduction method, raising the temperature, this technology is energy-efficient, as it only requires small amount of energy to aggregate the suspended particles. In this thesis, we will first discuss this new technology in detail, both in theory and practice. Then, we will report applications of our technology to energy science research. Presently, 80% of all energy sources are liquid fuels. The viscosity of liquid fuels plays an important role in energy production and energy conservation. With an electric field, we can reduce the viscosity of asphalt-based crude oil. This is important and useful for heavy crude oil and off-shore crude oil production and transportation. Especially, since there is no practical way to raise the temperature of crude oil inside the deepwater pipelines, our technology may play a key role in future off-shore crude oil production. Electrorehology can also be used to reduce the viscosity of refinery fuels, such as diesel fuel and gasoline. When we apply this technology to fuel injection, the fuel droplets in the fuel atomization become smaller, leading to faster combustion in the engine chambers. As the fuel efficiency of internal combustion engines depends on the combustion speed and timing, the fast combustion produces much higher fuel efficiency. Therefore, adding our technology on existing engines improves the engine efficiency significantly. A theoretical model for the engine combustion, which explains how fast combustion improves the engine efficiency, is also presented in the thesis. As energy is the key to our national security, we believe that our technology is important and will have a strong impact on energy production and conversation in the future.

  16. Air transportation energy efficiency

    NASA Technical Reports Server (NTRS)

    Williams, L. J.

    1977-01-01

    The energy efficiency of air transportation, results of the recently completed RECAT studies on improvement alternatives, and the NASA Aircraft Energy Efficiency Research Program to develop the technology for significant improvements in future aircraft were reviewed.

  17. Modeling of electrohydrodynamic drying process using response surface methodology

    PubMed Central

    Dalvand, Mohammad Jafar; Mohtasebi, Seyed Saeid; Rafiee, Shahin

    2014-01-01

    Energy consumption index is one of the most important criteria for judging about new, and emerging drying technologies. One of such novel and promising alternative of drying process is called electrohydrodynamic (EHD) drying. In this work, a solar energy was used to maintain required energy of EHD drying process. Moreover, response surface methodology (RSM) was used to build a predictive model in order to investigate the combined effects of independent variables such as applied voltage, field strength, number of discharge electrode (needle), and air velocity on moisture ratio, energy efficiency, and energy consumption as responses of EHD drying process. Three-levels and four-factor Box–Behnken design was employed to evaluate the effects of independent variables on system responses. A stepwise approach was followed to build up a model that can map the entire response surface. The interior relationships between parameters were well defined by RSM. PMID:24936289

  18. Options for reducing carbon dioxide emissions

    NASA Astrophysics Data System (ADS)

    Rosenfeld, Arthur H.; Price, Lynn

    1992-03-01

    Improvements in energy efficiency can significantly reduce the annual growth in greenhouse gas emissions. Such improvements occur when energy intensity is reduced; no reduction in energy services is required. Using the concept of ``cost of conserved energy'' to develop conservation supply curves similar to resource supply curves, researchers consistently find that electricity and natural gas savings of nearly 50% of current consumption are possible for U.S. buildings. Such reductions in energy consumption directly reduce emissions of greenhouse gases. To capture these savings, we must continue to develop energy-efficient technologies and strategies. This paper describes three recent energy-efficient technologies that benefitted from energy conservation research and development (R&D) funding: high-frequency ballasts, compact fluorescent lamps, and low-emissivity windows. Other advanced technologies and strategies of spectrally selective windows, superwindows, electrochromic windows, advanced insulation, low-flow showerheads, improved recessed lamp fixtures, whitening surfaces and planting urban trees, daylighting, and thermal energy storage are also discussed.

  19. Weatherization Plays a Starring Role in Mississippi: Weatherization Assistance Close-Up Fact Sheet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D&R International

    2001-10-10

    Mississippi demonstrates its commitment to technology and efficiency through the Weatherization Program. Weatherization uses advanced technologies and techniques to reduce energy costs for low-income families by increasing the energy efficiency of their homes.

  20. Stennis Space Center observes 2009 Energy Awareness Day

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Stennis Space Center employees Maria Etheridge (l to r), Linda Sauland Maurice Prevost visit a Coast Electric Power Association display featuring energy-efficient light bulbs during 2009 Energy Awareness Day activities on Oct. 20. The exhibit was one of several energy-efficiency and energy-awareness displays on-site for employees to visit. Vendors included Mississippi Power Company, Coast Electric Power Association, Mississippi Development Authority - Energy Division,Jacobs FOSC Environmental, Southern Energy Technologies, and Siemens Building Technologies.

  1. Stennis Space Center observes 2009 Energy Awareness Day

    NASA Image and Video Library

    2009-10-20

    Stennis Space Center employees Maria Etheridge (l to r), Linda Sauland Maurice Prevost visit a Coast Electric Power Association display featuring energy-efficient light bulbs during 2009 Energy Awareness Day activities on Oct. 20. The exhibit was one of several energy-efficiency and energy-awareness displays on-site for employees to visit. Vendors included Mississippi Power Company, Coast Electric Power Association, Mississippi Development Authority - Energy Division,Jacobs FOSC Environmental, Southern Energy Technologies, and Siemens Building Technologies.

  2. Energy minimization strategies and renewable energy utilization for desalination: a review.

    PubMed

    Subramani, Arun; Badruzzaman, Mohammad; Oppenheimer, Joan; Jacangelo, Joseph G

    2011-02-01

    Energy is a significant cost in the economics of desalinating waters, but water scarcity is driving the rapid expansion in global installed capacity of desalination facilities. Conventional fossil fuels have been utilized as their main energy source, but recent concerns over greenhouse gas (GHG) emissions have promoted global development and implementation of energy minimization strategies and cleaner energy supplies. In this paper, a comprehensive review of energy minimization strategies for membrane-based desalination processes and utilization of lower GHG emission renewable energy resources is presented. The review covers the utilization of energy efficient design, high efficiency pumping, energy recovery devices, advanced membrane materials (nanocomposite, nanotube, and biomimetic), innovative technologies (forward osmosis, ion concentration polarization, and capacitive deionization), and renewable energy resources (solar, wind, and geothermal). Utilization of energy efficient design combined with high efficiency pumping and energy recovery devices have proven effective in full-scale applications. Integration of advanced membrane materials and innovative technologies for desalination show promise but lack long-term operational data. Implementation of renewable energy resources depends upon geography-specific abundance, a feasible means of handling renewable energy power intermittency, and solving technological and economic scale-up and permitting issues. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Renewable energy sources, the internet of things and the third industrial revolution: Smart grid and contemporary information and communication technologies

    NASA Astrophysics Data System (ADS)

    Kitsios, Aristidis; Bousakas, Konstantinos; Salame, Takla; Bogno, Bachirou; Papageorgas, Panagiotis; Vokas, Georgios A.; Mauffay, Fabrice; Petit, Pierre; Aillerie, Michel; Charles, Jean-Pierre

    2017-02-01

    In this paper, the energy efficiency of a contemporary Smart Grid that is based on Distributed Renewable Energy Sources (DRES) is examined under the scope of the communication systems utilized between the energy loads and the energy sources. What is evident is that the Internet of Things (IoT) technologies that are based on the existing Web infrastructure can be heavily introduced in this direction especially when combined with long range low bandwidth networking technologies, power line communication technologies and optimization methodologies for renewable energy generation. The renewable energy generation optimization will be based on devices embedded in the PV panels and the wind power generators, which will rely on bidirectional communications with local gateways and remote control stations for achieving energy efficiency. Smart meters and DRES combined with IoT communications will be the enabling technologies for the ultimate fusion of Internet technology and renewable energy generation realizing the Energy Internet.

  4. Multi-energy spectral CT: adding value in emergency body imaging.

    PubMed

    Punjabi, Gopal V

    2018-04-01

    Most vendors offer scanners capable of dual- or multi-energy computed tomography (CT) imaging. Advantages of multi-energy CT scanning include superior tissue characterization, detection of subtle iodine uptake differences, and opportunities to reduce contrast dose. However, utilization of this technology in the emergency department (ED) remains low. The purpose of this pictorial essay is to illustrate the value of multi-energy CT scanning in emergency body imaging.

  5. Recent Applications of 2D Inorganic Nanosheets for Emerging Energy Storage System.

    PubMed

    Oh, Seung Mi; Patil, Sharad B; Jin, Xiaoyan; Hwang, Seong-Ju

    2018-04-03

    Among many types of nanostructured inorganic materials, highly anisotropic 2D nanosheets provide unique advantages in designing and synthesizing efficient electrode and electrocatalyst materials for novel energy storage technologies. 2D inorganic nanosheets boast lots of unique characteristics such as high surface area, short ion diffusion path, tailorable compositions, and tunable electronic structures. These merits of 2D inorganic nanosheets render them promising candidate materials as electrodes for diverse secondary batteries and supercapacitors, and electrocatalysts. A wide spectrum of examples is presented for inorganic nanosheet-based electrodes and electrocatalysts. Future perspectives in research about 2D nanosheet-based functional materials are discussed to provide insight for the development of next-generation energy storage systems using 2D nanostructured materials. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Frequency-domain trade-offs for dielectric elastomer generators

    NASA Astrophysics Data System (ADS)

    Zanini, Plinio; Rossiter, Jonathan M.; Homer, Martin

    2017-04-01

    Dielectric Elastomer Generators (DEGs) are an emerging energy harvesting technology based on a the cyclic stretching of a rubber-like membrane. However, most design processes do not take into account different excitation frequencies; thus limits the applicability studies since in real-world situations forcing frequency is not often constant. Through the use of a practical design scenario we use modeling and simulation to determine the material frequency response and, hence, carefully investigate the excitation frequencies that maximize the performance (power output, efficiency) of DEGs and the factors that influence it.

  7. Up against the limit: Office building electrical overload and the user benefits of energy-efficient office equipment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kressner, A.

    1995-12-01

    The area of office technology is the fastest growing use of electricity in the fastest growing sector-the commercial sector. More than 10% of energy used by the commercial sector is being used in office technology. The U.S. Environmental Protection Agency`s Energy Star Program is a manufacturer`s voluntary program and is, in effect, non-regulatory compliance. Energy efficiency in office technology is the basis for many benefits that result because the equipment inherently is more efficient in terms of its energy use. The old 486 computer processors, as they increased in MHz, required bigger fans. In fact, some of the high-end 486-machinesmore » came with two fans. Energy efficiency reduces the amount of cooling required, which can potentially reduce the fan requirements, if that feature is properly incorporated into the design by the manufacturer. Because the equipment is more energy efficient, the components can be placed in the equipment more closely-there could be a higher density of components so that the box becomes smaller. On the desktop, that infrastructure is the most expensive real estate, so a small footprint could be a very valuable feature. Also, because it`s more efficient, it rejects less heat, a benefit customers would identify. An added benefit is that the equipment saves energy. Class B office buildings, which are office buildings built `long ago,` don`t have the fundamental energy facilitating infrastructure for information technology, and retrofitting that technology becomes increasingly more expensive. There have been enormous strides in improving energy use in lighting, a major component of energy use in commercial buildings. In fact, energy use has been reduced from 2.5 to 3 W/sq ft to 1.5 W/sq ft, and potentially to below 1 W/sq ft. The plug load typically had been in the 0.3 to 0.5 W/sq ft range and has increased to 1 W/sq ft. Great value has been achieved because of the plug load, so this technology creates value far in excess of its energy use.« less

  8. Miscellaneous and Electronic Loads Energy Efficiency Opportunities for Commercial Buildings: A Collaborative Study by the United States and India

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghatikar, Girish; Cheung, Iris; Lanzisera, Steven

    This report documents the technical evaluation of a collaborative research, development, and demonstration (RD&D) project that aims to address energy efficiency of Miscellaneous and Electronic Loads (MELs) (referred to as plug loads interchangeably in this report) using load monitoring and control devices. The goal s of this project are to identify and provide energy efficiency and building technologies to exemplary information technology (IT) office buildings, and to assist in transforming markets via technical assistance and engagement of Indian and U.S. stakeholders. This report describes the results of technology evaluation and United States – India collaboration between the Lawrence Berkeley Nationalmore » Laboratory (LBNL), Infosys Technologies Limited (India), and Smartenit, Inc. (U.S.) to address plug - load efficiency. The conclusions and recommendations focus on the larger benefits of such technologies and their impacts on both U.S. and Indian stakeholders.« less

  9. An Investigation into the Effects of Roll Gyradius on Experimental Testing and Numerical Simulation: Troubleshooting Emergent Issues

    DTIC Science & Technology

    2015-01-01

    Troubleshooting Emergent Issues Edward Dawson Maritime Division Defence Science and Technology Organisation DSTO-TN-1402 ABSTRACT This...UNCLASSIFIED UNCLASSIFIED Published by Maritime Division DSTO Defence Science and Technology Organisation 506...tools used by the Defence Science and Technology Organisation (DSTO) are an efficient and effective means to determine and evaluate the motion

  10. India Energy Outlook: End Use Demand in India to 2020

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    de la Rue du Can, Stephane; McNeil, Michael; Sathaye, Jayant

    Integrated economic models have been used to project both baseline and mitigation greenhouse gas emissions scenarios at the country and the global level. Results of these scenarios are typically presented at the sectoral level such as industry, transport, and buildings without further disaggregation. Recently, a keen interest has emerged on constructing bottom up scenarios where technical energy saving potentials can be displayed in detail (IEA, 2006b; IPCC, 2007; McKinsey, 2007). Analysts interested in particular technologies and policies, require detailed information to understand specific mitigation options in relation to business-as-usual trends. However, the limit of information available for developing countries oftenmore » poses a problem. In this report, we have focus on analyzing energy use in India in greater detail. Results shown for the residential and transport sectors are taken from a previous report (de la Rue du Can, 2008). A complete picture of energy use with disaggregated levels is drawn to understand how energy is used in India and to offer the possibility to put in perspective the different sources of end use energy consumption. For each sector, drivers of energy and technology are indentified. Trends are then analyzed and used to project future growth. Results of this report provide valuable inputs to the elaboration of realistic energy efficiency scenarios.« less

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolfmeyer, J.C.; Jowers, C.; Weinstein, R.E.

    As the power industry moves toward increased competition, low operating costs become increasingly important for continued profitability. This paper provides an overview of the plant concept evaluation of using an emerging coal-fired technology for repowering one of Duke Energy steam generating stations. The paper describes the results of a US Department of Energy (DOE) conceptual design evaluation of an early commercial repowering application of advanced circulating pressurized fluidized bed combustion combined cycle technology (APFBC). The paper provides a review of the DOE study and summarizes the preliminary results. It shows the prospects for APFBC repowering, and discusses how this mightmore » be an attractive option for a wide range of existing power plants, when added baseload coal-fired generation is needed. This paper presents an APFBC concept under development by DOE and equipment manufacturers. This all-coal technology has projected energy efficiency in the 42 to 46% HHV (43 to 48% LHV) range and environmental emissions superior to New Source Performance Standards (NSPS). A DOE-sponsored Clean Coal Technology (CCT) demonstration program will pioneer the first commercial APFBC demonstration in year 2001. That 170 MWe APFBC CCT demonstration will use all new equipment, and become the City of Lakeland's C.D. McIntosh, Jr. steam plant Unit 4. This paper's concept evaluation is for a larger implementation. A Westinghouse W501F combustion turbine modified for APFBC operation is considered for use to produce a 300+MWe class APFBC combined cycle. At this size, APFBC has a wide application for repowering many existing units in America, Here, APFBC would repower an existing generation station, the Duke Energy Company's Dan River steam station. Repowering concepts are presented for APFBC repowering of Unit 3. The existing coal-fired Unit 3 has an output of about 150 MWe. When repowered with APFBC, this unit is boosted to about 280 MWe output, with high-energy efficiency.« less

  12. Resource optimized TTSH-URA for multimedia stream authentication in swallowable-capsule-based wireless body sensor networks.

    PubMed

    Wang, Wei; Wang, Chunqiu; Zhao, Min

    2014-03-01

    To ease the burdens on the hospitalization capacity, an emerging swallowable-capsule technology has evolved to serve as a remote gastrointestinal (GI) disease examination technique with the aid of the wireless body sensor network (WBSN). Secure multimedia transmission in such a swallowable-capsule-based WBSN faces critical challenges including energy efficiency and content quality guarantee. In this paper, we propose a joint resource allocation and stream authentication scheme to maintain the best possible video quality while ensuring security and energy efficiency in GI-WBSNs. The contribution of this research is twofold. First, we establish a unique signature-hash (S-H) diversity approach in the authentication domain to optimize video authentication robustness and the authentication bit rate overhead over a wireless channel. Based on the full exploration of S-H authentication diversity, we propose a new two-tier signature-hash (TTSH) stream authentication scheme to improve the video quality by reducing authentication dependence overhead while protecting its integrity. Second, we propose to combine this authentication scheme with a unique S-H oriented unequal resource allocation (URA) scheme to improve the energy-distortion-authentication performance of wireless video delivery in GI-WBSN. Our analysis and simulation results demonstrate that the proposed TTSH with URA scheme achieves considerable gain in both authenticated video quality and energy efficiency.

  13. The Garden State Flourishes with Weatherization (New Jersey): Weatherization Assistance Close-Up Fact Sheet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D&R International

    2001-10-10

    New Jersey demonstrates its commitment to technology and efficiency through the Weatherization Program. Weatherization uses advanced technologies and techniques to reduce energy costs for low-income families by increasing the energy efficiency of their homes.

  14. IoT gateways, cloud and the last mile for energy efficiency and sustainability in the era of CPS expansion: "A bot is irrigating my farm.. "

    NASA Astrophysics Data System (ADS)

    Papageorgas, Panagiotis G.; Agavanakis, Kyriakos; Dogas, Ioannis; Piromalis, Dimitrios D.

    2018-05-01

    A cloud-based architecture is presented for the internetworking of sensors and actuators through a universal gateway, network server and application user interface design. The proposed approach targets to Energy Efficiency and sustainability in a holistic way, by integrating an open-source test bed prototype based on long-range low-bandwidth wireless networking technology for sensing and actuation as the elementary block of a viable, cost-effective and reliable solution. The prototype presented is capable of supporting both sensors and actuators, processing data locally and transmitting the results of the imposed computations to a higher level node. Additionally, it is combined with a service-oriented architecture and involves publish/subscribe middleware protocols and cloud technology to confront with the system needs in terms of data volume and processing power. In this context, the integration of instant message (chat) services is demonstrated so that they can be part of an emerging global-scope eco-system of Cyber-Physical Systems to support a wide variety of IoT applications, with strong advantages such as usability, scalability and security, while adopting a unified gateway design and a simple - yet powerful - user interface.

  15. State-of-The-Art of Modeling Methodologies and Optimization Operations in Integrated Energy System

    NASA Astrophysics Data System (ADS)

    Zheng, Zhan; Zhang, Yongjun

    2017-08-01

    Rapid advances in low carbon technologies and smart energy communities are reshaping future patterns. Uncertainty in energy productions and demand sides are paving the way towards decentralization management. Current energy infrastructures could not meet with supply and consumption challenges, along with emerging environment and economic requirements. Integrated Energy System(IES) whereby electric power, natural gas, heating couples with each other demonstrates that such a significant technique would gradually become one of main comprehensive and optimal energy solutions with high flexibility, friendly renewables absorption and improving efficiency. In these global energy trends, we summarize this literature review. Firstly the accurate definition and characteristics of IES have been presented. Energy subsystem and coupling elements modeling issues are analyzed. It is pointed out that decomposed and integrated analysis methods are the key algorithms for IES optimization operations problems, followed by exploring the IES market mechanisms. Finally several future research tendencies of IES, such as dynamic modeling, peer-to-peer trading, couple market design, sare under discussion.

  16. Deconstructing Biomass [part of The frontiers of energy

    DOE PAGES

    Armstrong, Robert C.; Wolfram, Catherine; de Jong, Krijn P.; ...

    2016-01-11

    Great strides have been made over the past century in our ability to harness energy sources, leading to profound transformations — both good and bad — in society. Looking at the energy system of today, it is clear that meeting the energy needs of the world now and in the years to come requires the concerted efforts of many different actors across a range of technologies and approaches. In this Feature, ten leading experts in energy research share their vision of what challenges their respective fields need to address in the coming decades. The issues being faced are diverse andmore » multifaceted, from the search for better materials for fuels, to the design of energy policy and markets for the developing world. However, a common theme emerges: changes to adapt and improve our energy system are greatly needed. As a result, by improving our mutual understanding of the issues faced by each area of energy research, these changes can happen more smoothly, efficiently and rapidly.« less

  17. Energy analysis and agriculture: an application to US Corn Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smil, V.; Nachman, P.; Long, T.V. II

    1983-01-01

    Changes in farming technology have increased the amount and cost of energy used in crop production, raising the question of whether energy efficiency in agriculture has remained constant, decreased, or increased. Despite some studies to the contrary, the authors assert that all essential energy used, both directly and indirectly, in US corn farming has remained constant in relation to crop production during the past two decades. Using a detailed process of energy analysis that takes into account various management and technological changes, they trace and quantify the energy cost of corn production from 1945-1947 and forecast its changes through 1984.more » They conclude that the energy efficiency of corn farming has not declined, and find that future technological and process improvements, led by conservation measures, will likely increase its energy efficiency in the 1980s. 39 references, 33 figures, 88 tables.« less

  18. Degradation of selected industrial dyes using Mg-doped TiO2 polyscales under natural sun light as an alternative driving energy

    NASA Astrophysics Data System (ADS)

    Shivaraju, H. P.; Midhun, G.; Anil Kumar, K. M.; Pallavi, S.; Pallavi, N.; Behzad, Shahmoradi

    2017-11-01

    Designing photocatalytic materials with modified functionalities for the utilization of renewable energy sources as an alternative driving energy has attracted much attention in the area of sustainable wastewater treatment applications. Catalyst-assisted advanced oxidation process is an emerging treatment technology for organic pollutants and toxicants in industrial wastewater. Preparation of visible-light-responsive photocatalyst such as Mg-doped TiO2 polyscales was carried out under mild sol-gel technique. Mg-doped TiO2 polyscales were characterized by powder XRD, SEM, FTIR, and optical and photocatalytic activity techniques. The Mg-doped TiO2 showed a mixed phase of anatase and rutile with an excellent crystallinity, structural elucidations, polyscales morphology, consequent shifting of bandgap energy and adequate photocatalytic activities under visible range of light. Mg-doped TiO2 polyscales were investigated for their efficiencies in the degradation of most commonly used industrial dyes in the real-time textile wastewater. Mg-doped TiO2 polyscales showed excellent photocatalytic degradation efficiency in both model industrial dyes (65-95%) and textile wastewater (92%) under natural sunlight as an alternative and renewable driving energy.

  19. Today's Leaders for a Sustainable Tomorrow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, Bryan

    2013-02-27

    Today's Leaders for a Sustainable Tomorrow is a collaboration of five residential environmental learning centers (Audubon Center of the North Woods, Deep Portage Learning Center, Laurentian Environmental Center, Long Lake Conservation Center and Wolf Ridge Environmental Learning Center) that together increased energy efficiency, energy conservation and renewable energy technologies through a number of different means appropriate for each unique center. For energy efficiency upgrades the centers installed envelope improvements to seal air barriers through better insulation in walls, ceilings, windows, doors as well as the installation of more energy efficient windows, doors, lighting and air ventilation systems. Through energy sub-metermore » monitoring the centers are able to accurately chart the usage of energy at each of their campuses and eliminate unnecessary energy usage. Facilities reduced their dependence on fossil fuel energy sources through the installation of renewable energy technologies including wood gasification, solar domestic hot water, solar photovoltaic, solar air heat, geothermal heating and wind power. Centers also installed energy education displays on the specific renewable energy technologies used at the center.« less

  20. Economical and Energy Efficiency of Iron and Steel Industry Reindustrialisation in Russia Based on Implementation of Breakthrough Energy-Saving Technologies

    NASA Astrophysics Data System (ADS)

    Shevelev, L. N.

    2017-12-01

    Estimates were given of economical and energy efficiency of breakthrough energy-saving technologies, which increase competitive advantages and provide energy efficiency of production while reducing negative impact on the environment through reduction of emissions of harmful substances and greenhouse gases in the atmosphere. Among these technologies, preference is given to the following: pulverized coal fuel, blast-furnace gas recycling, gasification of non-coking coal in bubble-type gas-generators, iron-ore concentrate briquetting with steam coal with further use of ore-coal briquettes in electric furnace steel making. Implementation of these technologies at iron and steel works will significantly reduce the energy intensity of production through reduction of expensive coking coal consumption by means of their substitution by less expensive non-coking (steam) coal, and natural gas substitution by own secondary energy resource, which is the reducing gas. As the result, plants will get an opportunity to become self-sufficient in energy-resources and free themselves entirely from expensive purchased energy resources (natural gas, electric power, and partially coking coals), and cross over to low-carbon development.

  1. Near-Net Shape Fabrication Using Low-Cost Titanium Alloy Powders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dr. David M. Bowden; Dr. William H. Peter

    2012-03-31

    The use of titanium in commercial aircraft production has risen steadily over the last half century. The aerospace industry currently accounts for 58% of the domestic titanium market. The Kroll process, which has been used for over 50 years to produce titanium metal from its mineral form, consumes large quantities of energy. And, methods used to convert the titanium sponge output of the Kroll process into useful mill products also require significant energy resources. These traditional approaches result in product forms that are very expensive, have long lead times of up to a year or more, and require costly operationsmore » to fabricate finished parts. Given the increasing role of titanium in commercial aircraft, new titanium technologies are needed to create a more sustainable manufacturing strategy that consumes less energy, requires less material, and significantly reduces material and fabrication costs. A number of emerging processes are under development which could lead to a breakthrough in extraction technology. Several of these processes produce titanium alloy powder as a product. The availability of low-cost titanium powders may in turn enable a more efficient approach to the manufacture of titanium components using powder metallurgical processing. The objective of this project was to define energy-efficient strategies for manufacturing large-scale titanium structures using these low-cost powders as the starting material. Strategies include approaches to powder consolidation to achieve fully dense mill products, and joining technologies such as friction and laser welding to combine those mill products into near net shape (NNS) preforms for machining. The near net shape approach reduces material and machining requirements providing for improved affordability of titanium structures. Energy and cost modeling was used to define those approaches that offer the largest energy savings together with the economic benefits needed to drive implementation. Technical feasibility studies were performed to identify the most viable approaches to NNS preform fabrication using basic powder metallurgy mill product forms as the building blocks and advanced joining techniques including fusion and solid state joining to assemble these building blocks into efficient machining performs.« less

  2. Energy-Saving Opportunities for Manufacturing Enterprises (International English Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This fact sheet provides information about the Industrial Technologies Program Save Energy Now energy audit process, software tools, training, energy management standards, and energy efficient technologies to help U.S. companies identify energy cost savings.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langner, Rois; Hendron, Bob; Pless, Shanti

    Small buildings have been left behind in the energy efficiency marketplace because financial and technical resources have flowed to larger commercial buildings. DOE's Building Technologies Office works with the commercial building industry to accelerate the uptake of energy efficiency technologies and techniques in existing and new commercial buildings (DOE 2013). BTO recognizes the SBSP sector'spotential for significant energy savings and the need for investments in resources that are tailored to this sector's unique needs. The industry research and recommendations described in this report identify potential approaches and strategic priorities that BTO could explore over the next 3-5 years that willmore » support the implementation of high-potential energy efficiency opportunities for thisimportant sector. DOE is uniquely positioned to provide national leadership, objective information, and innovative tools, technologies, and services to support cost-effective energy savings in the fragmented and complex SBSP sector. Properly deployed, the DOE effort could enhance and complement current energy efficiency approaches. Small portfolios are loosely and qualitatively defined asportfolios of buildings that include only a small number of small buildings. This distinction is important because the report targets portfolio owners and managers who generally do not have staff and other resources to track energy use and pursue energy efficiency solutions.« less

  4. Coupling of individual quantum emitters to channel plasmons.

    PubMed

    Bermúdez-Ureña, Esteban; Gonzalez-Ballestero, Carlos; Geiselmann, Michael; Marty, Renaud; Radko, Ilya P; Holmgaard, Tobias; Alaverdyan, Yury; Moreno, Esteban; García-Vidal, Francisco J; Bozhevolnyi, Sergey I; Quidant, Romain

    2015-08-07

    Efficient light-matter interaction lies at the heart of many emerging technologies that seek on-chip integration of solid-state photonic systems. Plasmonic waveguides, which guide the radiation in the form of strongly confined surface plasmon-polariton modes, represent a promising solution to manipulate single photons in coplanar architectures with unprecedented small footprints. Here we demonstrate coupling of the emission from a single quantum emitter to the channel plasmon polaritons supported by a V-groove plasmonic waveguide. Extensive theoretical simulations enable us to determine the position and orientation of the quantum emitter for optimum coupling. Concomitantly with these predictions, we demonstrate experimentally that 42% of a single nitrogen-vacancy centre emission efficiently couples into the supported modes of the V-groove. This work paves the way towards practical realization of efficient and long distance transfer of energy for integrated solid-state quantum systems.

  5. Re-Building Greensburg

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hewitt, Steven; Wallach, Daniel; Peterson, Stephanie

    2010-01-01

    Greensburg, KS - A town that was devastated by a tornado in 2007, yet came back to be one of the Nation's most energy-efficient, sustainable communities. Civic leaders and entrepreneurs helped rally residents behind the idea of "greening" Greensburg, inspiring the construction of numerous energy-efficient buildings, some of which generate their own renewable power with solar panels and wind turbines. Many of the town's government buildings use cutting edge energy-saving technologies, saving the local taxpayers' money. Greensburg has demonstrated to the world that any city can reach its energy efficiency and renewable energy goals today using widely available technologies.

  6. Re-Building Greensburg

    ScienceCinema

    Hewitt, Steven; Wallach, Daniel; Peterson, Stephanie

    2017-12-09

    Greensburg, KS - A town that was devastated by a tornado in 2007, yet came back to be one of the Nation's most energy-efficient, sustainable communities. Civic leaders and entrepreneurs helped rally residents behind the idea of "greening" Greensburg, inspiring the construction of numerous energy-efficient buildings, some of which generate their own renewable power with solar panels and wind turbines. Many of the town's government buildings use cutting edge energy-saving technologies, saving the local taxpayers' money. Greensburg has demonstrated to the world that any city can reach its energy efficiency and renewable energy goals today using widely available technologies.

  7. Exploratory study on potential safeguards applications for shared ledger technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frazar, Sarah L.; Jarman, Kenneth D.; Joslyn, Cliff A.

    The International Atomic Energy Agency (IAEA) is responsible for providing credible assurance that countries are meeting their obligations not to divert or misuse nuclear materials and facilities for non-peaceful purposes. To this end, the IAEA integrates information about States’ nuclear material inventories and transactions with other types of data to draw its safeguards conclusions. As the amount and variety of data and information has increased, the IAEA’s data acquisition, management, and analysis processes have greatly benefited from advancements in computer science, data management, and cybersecurity during the last 20 years. Despite these advancements, inconsistent use of advanced computer technologies asmore » well as political concerns among certain IAEA Member States centered on trust, transparency, and IAEA authorities limit the overall effectiveness and efficiency of IAEA safeguards. As a result, there is an ongoing need to strengthen the effectiveness and efficiency of IAEA safeguards while improving Member State cooperation and trust in the safeguards system. These chronic safeguards needs could be met with some emerging technologies, specifically those associated with the digital currency bitcoin.« less

  8. An impact assessment of sustainable technologies for the Chinese urban residential sector at provincial level

    NASA Astrophysics Data System (ADS)

    Xing, Rui; Hanaoka, Tatsuya; Kanamori, Yuko; Dai, Hancheng; Masui, Toshihiko

    2015-06-01

    Recently, energy use in the urban residential sector of China has drastically increased due to higher incomes and urbanization. The fossil fuels dominant energy supply has since worsened the air quality, especially in urban areas. In this study we estimate the future energy service demands in Chinese urban residential areas, and then use an AIM/Enduse model to evaluate the emission reduction potential of CO2, SO2, NOx and PM. Considering the climate diversity and its impact on household energy service demands, our analysis is down-scaled to the provincial-level. The results show that in most of the regions, penetration of efficient technologies will bring CO2 emission reductions of over 20% compared to the baseline by the year 2030. Deployment of energy efficient technologies also co-benefits GHG emission reduction. However, efficient technology selection appears to differ across provinces due to climatic variation and economic disparity. For instance, geothermal heating technology is effective for the cold Northern areas while biomass technology contributes to emission reduction the most in the warm Southern areas.

  9. Efficiency improvements in US Office equipment: Expected policy impacts and uncertainties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koomey, J.G.; Cramer, M.; Piette, M.A.

    This report describes a detailed end-use forecast of office equipment energy use for the US commercial sector. We explore the likely impacts of the US Environmental Protection Agency`s ENERGY STAR office equipment program and the potential impacts of advanced technologies. The ENERGY STAR program encourages manufacturers to voluntarily incorporate power saving features into personal computers, monitors, printers, copiers, and fax machines in exchange for allowing manufacturers to use the EPA ENERGY STAR logo in their advertising campaigns. The Advanced technology case assumes that the most energy efficient current technologies are implemented regardless of cost.

  10. 48 CFR 1323.204 - Procurement exemptions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Energy and Water Efficiency and Renewable Energy 1323.204 Procurement exemptions. The designee authorized to exempt the procurement of an ENERGY STAR or Federal Energy Management...

  11. 48 CFR 1323.204 - Procurement exemptions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Energy and Water Efficiency and Renewable Energy 1323.204 Procurement exemptions. The designee authorized to exempt the procurement of an ENERGY STAR or Federal Energy Management...

  12. 48 CFR 1323.204 - Procurement exemptions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Energy and Water Efficiency and Renewable Energy 1323.204 Procurement exemptions. The designee authorized to exempt the procurement of an ENERGY STAR or Federal Energy Management...

  13. 48 CFR 1323.204 - Procurement exemptions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Energy and Water Efficiency and Renewable Energy 1323.204 Procurement exemptions. The designee authorized to exempt the procurement of an ENERGY STAR or Federal Energy Management...

  14. 48 CFR 1323.204 - Procurement exemptions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Energy and Water Efficiency and Renewable Energy 1323.204 Procurement exemptions. The designee authorized to exempt the procurement of an ENERGY STAR or Federal Energy Management...

  15. Data set for Journal article "The shale gas revolution: barriers, sustainability, and emerging opportunities"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Middleton, Richard Stephen

    Shale gas and hydraulic refracturing has revolutionized the US energy sector in terms of prices, consumption, and CO 2 emissions. However, key questions remain including environmental concerns and extraction efficiencies that are leveling off. For the first time, we identify key discoveries, lessons learned, and recommendations from this shale gas revolution through extensive data mining and analysis of 23 years of production from 20,000 wells. Discoveries include identification of a learning-bydoing process where disruptive technology innovation led to a doubling in shale gas extraction, how refracturing with emerging technologies can transform existing wells, and how overall shale gas production ismore » actually dominated by long-term tail production rather than the high-profile initial exponentially-declining production in the first 12 months. We hypothesize that tail production can be manipulated, through better fracturing techniques and alternative working fluids such as CO 2, to increase shale gas recovery and minimize environmental impacts such as through carbon sequestration.« less

  16. The shale gas revolution: Barriers, sustainability, and emerging opportunities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Middleton, Richard S.; Gupta, Rajan; Hyman, Jeffrey D.

    Shale gas and hydraulic refracturing has revolutionized the US energy sector in terms of prices, consumption, and CO 2 emissions. However, key questions remain including environmental concerns and extraction efficiencies that are leveling off. For the first time, we identify key discoveries, lessons learned, and recommendations from this shale gas revolution through extensive data mining and analysis of 23 years of production from 20,000 wells. Discoveries include identification of a learning-by-doing process where disruptive technology innovation led to a doubling in shale gas extraction, how refracturing with emerging technologies can transform existing wells, and how overall shale gas production ismore » actually dominated by long-term tail production rather than the high-profile initial exponentially-declining production in the first 12 months. We hypothesize that tail production can be manipulated, through better fracturing techniques and alternative working fluids such as CO 2, to increase shale gas recovery and minimize environmental impacts such as through carbon sequestration.« less

  17. The shale gas revolution: Barriers, sustainability, and emerging opportunities

    DOE PAGES

    Middleton, Richard S.; Gupta, Rajan; Hyman, Jeffrey D.; ...

    2017-08-01

    Shale gas and hydraulic refracturing has revolutionized the US energy sector in terms of prices, consumption, and CO 2 emissions. However, key questions remain including environmental concerns and extraction efficiencies that are leveling off. For the first time, we identify key discoveries, lessons learned, and recommendations from this shale gas revolution through extensive data mining and analysis of 23 years of production from 20,000 wells. Discoveries include identification of a learning-by-doing process where disruptive technology innovation led to a doubling in shale gas extraction, how refracturing with emerging technologies can transform existing wells, and how overall shale gas production ismore » actually dominated by long-term tail production rather than the high-profile initial exponentially-declining production in the first 12 months. We hypothesize that tail production can be manipulated, through better fracturing techniques and alternative working fluids such as CO 2, to increase shale gas recovery and minimize environmental impacts such as through carbon sequestration.« less

  18. 48 CFR 1323.705 - Electronic products environmental assessment tool.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... COMMERCE SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Contracting for Environmentally Preferable and Energy-Efficient...

  19. 48 CFR 1323.705 - Electronic products environmental assessment tool.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... COMMERCE SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Contracting for Environmentally Preferable and Energy-Efficient...

  20. 48 CFR 1323.705 - Electronic products environmental assessment tool.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... COMMERCE SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Contracting for Environmentally Preferable and Energy-Efficient...

  1. 48 CFR 1323.705 - Electronic products environmental assessment tool.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... COMMERCE SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Contracting for Environmentally Preferable and Energy-Efficient...

  2. 48 CFR 1323.705 - Electronic products environmental assessment tool.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... COMMERCE SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Contracting for Environmentally Preferable and Energy-Efficient...

  3. Photonic Design: From Fundamental Solar Cell Physics to Computational Inverse Design

    NASA Astrophysics Data System (ADS)

    Miller, Owen Dennis

    Photonic innovation is becoming ever more important in the modern world. Optical systems are dominating shorter and shorter communications distances, LED's are rapidly emerging for a variety of applications, and solar cells show potential to be a mainstream technology in the energy space. The need for novel, energy-efficient photonic and optoelectronic devices will only increase. This work unites fundamental physics and a novel computational inverse design approach towards such innovation. The first half of the dissertation is devoted to the physics of high-efficiency solar cells. As solar cells approach fundamental efficiency limits, their internal physics transforms. Photonic considerations, instead of electronic ones, are the key to reaching the highest voltages and efficiencies. Proper photon management led to Alta Device's recent dramatic increase of the solar cell efficiency record to 28.3%. Moreover, approaching the Shockley-Queisser limit for any solar cell technology will require light extraction to become a part of all future designs. The second half of the dissertation introduces inverse design as a new computational paradigm in photonics. An assortment of techniques (FDTD, FEM, etc.) have enabled quick and accurate simulation of the "forward problem" of finding fields for a given geometry. However, scientists and engineers are typically more interested in the inverse problem: for a desired functionality, what geometry is needed? Answering this question breaks from the emphasis on the forward problem and forges a new path in computational photonics. The framework of shape calculus enables one to quickly find superior, non-intuitive designs. Novel designs for optical cloaking and sub-wavelength solar cell applications are presented.

  4. Wireless Sensor for Measuring Pump Efficiency: Small Business Voucher Project with KCF Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fugate, David L.; Liu, Xiaobing; Gehl, Anthony C.

    This document is to fulfill the final report requirements for the Small Business Voucher (SBV) CRADA project with ORNL and KCF Technologies (CRADA/NFE-16-06133). Pumping systems account for nearly 20% of the world’s electrical energy demand and range from 25-50% of the energy usage in many industrial and building power plants. The energy cost is the largest element in the total cost of owning a pump (~40%). In response to a recent DOE mandate for improved pump efficiency pump manufacturers are preparing for the changes that the impending regulations will bring, including design improvements. This mandate also establishes a need formore » new low cost pump efficiency measurement systems. The standard industry definition of pump efficiency is the mechanical water horsepower delivered divided by the electrical horsepower input to the motor. KCF Technologies has developed a new sensor measurement technique to estimate fluid pump efficiency using a thermodynamic approach. KCF Technologies applied for a SBV grant with ORNL as the research partner. KCF needed a research partner with the proper facilities to demonstrate the efficacy of its wireless sensor unit for measuring pump efficiency. The ORNL Building Technologies Research and Integration Center (BTRIC) test resources were used to test and demonstrate the successful measurement of pump efficiency with the KCF sensor technology. KCF is now working on next steps to commercialize this sensing technology.« less

  5. 48 CFR 23.103 - Sustainable acquisitions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Sustainable Acquisition Policy 23.103 Sustainable acquisitions. (a... the products are— (1) Energy-efficient (ENERGY STAR® or Federal Energy Management Program (FEMP...

  6. 48 CFR 23.103 - Sustainable acquisitions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Sustainable Acquisition Policy 23.103 Sustainable acquisitions. (a... the products are— (1) Energy-efficient (ENERGY STAR ® or Federal Energy Management Program (FEMP...

  7. Next-Generation Performance-Based Regulation: Emphasizing Utility Performance to Unleash Power Sector Innovation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Logan, Jeffrey S; Zinaman, Owen R; Littell, David

    Performance-based regulation (PBR) enables regulators to reform hundred-year-old regulatory structures to unleash innovations within 21st century power systems. An old regulatory paradigm built to ensure safe and reliable electricity at reasonable prices from capital-intensive electricity monopolies is now adjusting to a new century of disruptive technological advances that change the way utilities make money and what value customers expect from their own electricity company. Advanced technologies are driving change in power sectors around the globe. Innovative technologies are transforming the way electricity is generated, delivered, and consumed. These emerging technology drivers include renewable generation, distributed energy resources such as distributedmore » generation and energy storage, demand-side management measures such as demand-response, electric vehicles, and smart grid technologies and energy efficiency (EE). PBR enables regulators to recognize the value that electric utilities bring to customers by enabling these advanced technologies and integrating smart solutions into the utility grid and utility operations. These changes in the electric energy system and customer capacities means that there is an increasing interest in motivating regulated entities in other areas beyond traditional cost-of-service performance regulation. This report addresses best practices gleaned from more than two decades of PBR in practice, and analyzes how those best practices and lessons can be used to design innovative PBR programs. Readers looking for an introduction to PBR may want to focus on Chapters 1-5. Chapters 6 and 7 contain more detail for those interested in the intricate workings of PBR or particularly innovative PBR.« less

  8. COD capture: a feasible option towards energy self-sufficient domestic wastewater treatment

    PubMed Central

    Wan, Junfeng; Gu, Jun; Zhao, Qian; Liu, Yu

    2016-01-01

    Although the activated sludge process, one of the most remarkable engineering inventions in the 20th century, has made significant contribution to wastewater reclamation in the past 100 years, its high energy consumption is posing a serious impact and challenge on the current wastewater industry worldwide and is also inevitably linked to the issue of global climate change. In this study, we argued that substantial improvement in the energy efficiency might be no longer achievable through further optimization of the activated sludge process. Instead, we should devote more effort to the development or the adoption of novel treatment configurations and emerging technologies. Of which an example is A-B process which can significantly improve the energy recovery potential at A-stage, while markedly reduces energy consumption at B-stage. Various configurations of A-B process with energy analysis are thus discussed. It appears highly possible to achieve an overall energy gain in WWTPs with A-B process as a core. PMID:27121339

  9. 48 CFR 23.205 - Energy-savings performance contracts.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 1 2012-10-01 2012-10-01 false Energy-savings performance... SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Energy and Water Efficiency and Renewable Energy 23.205 Energy-savings...

  10. 48 CFR 23.205 - Energy-savings performance contracts.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Energy-savings performance... SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Energy and Water Efficiency and Renewable Energy 23.205 Energy-savings...

  11. 48 CFR 23.205 - Energy-savings performance contracts.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 1 2013-10-01 2013-10-01 false Energy-savings performance... SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Energy and Water Efficiency and Renewable Energy 23.205 Energy-savings...

  12. 48 CFR 23.205 - Energy-savings performance contracts.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 1 2014-10-01 2014-10-01 false Energy-savings performance... SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Energy and Water Efficiency and Renewable Energy 23.205 Energy-savings...

  13. 48 CFR 23.205 - Energy-savings performance contracts.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 1 2011-10-01 2011-10-01 false Energy-savings performance... SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Energy and Water Efficiency and Renewable Energy 23.205 Energy-savings...

  14. Formation of the Integral Ecological Quality Index of the Technological Processes in Machine Building Based on Their Energy Efficiency

    ERIC Educational Resources Information Center

    Egorov, Sergey B.; Kapitanov, Alexey V.; Mitrofanov, Vladimir G.; Shvartsburg, Leonid E.; Ivanova, Natalia A.; Ryabov, Sergey A.

    2016-01-01

    The aim of article is to provide development of a unified assessment methodology in relation to various technological processes and the actual conditions of their implementation. To carry the energy efficiency analysis of the technological processes through comparison of the established power and the power consumed by the actual technological…

  15. Clean Energy Technologies Ready for Climate Change Challenge

    Science.gov Websites

    environmental problems is well founded, the director of the National Renewable Energy Laboratory said today renewable energy and energy efficiency technologies in solving environmental problems is clear, Truly said

  16. Automated personnel-assets-consumables-drug tracking in ambulance services for more effective and efficient medical emergency interventions.

    PubMed

    Utku, Semih; Özcanhan, Mehmet Hilal; Unluturk, Mehmet Suleyman

    2016-04-01

    Patient delivery time is no longer considered as the only critical factor, in ambulatory services. Presently, five clinical performance indicators are used to decide patient satisfaction. Unfortunately, the emergency ambulance services in rapidly growing metropolitan areas do not meet current satisfaction expectations; because of human errors in the management of the objects onboard the ambulances. But, human involvement in the information management of emergency interventions can be reduced by electronic tracking of personnel, assets, consumables and drugs (PACD) carried in the ambulances. Electronic tracking needs the support of automation software, which should be integrated to the overall hospital information system. Our work presents a complete solution based on a centralized database supported by radio frequency identification (RFID) and bluetooth low energy (BLE) identification and tracking technologies. Each object in an ambulance is identified and tracked by the best suited technology. The automated identification and tracking reduces manual paper documentation and frees the personnel to better focus on medical activities. The presence and amounts of the PACD are automatically monitored, warning about their depletion, non-presence or maintenance dates. The computerized two way hospital-ambulance communication link provides information sharing and instantaneous feedback for better and faster diagnosis decisions. A fully implemented system is presented, with detailed hardware and software descriptions. The benefits and the clinical outcomes of the proposed system are discussed, which lead to improved personnel efficiency and more effective interventions. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  17. Why do we need nuclear power? Energy policy in the light of history of civilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoda, Susumu

    1996-06-01

    With the population explosion as a background, economic growth needs massive consumption of energy and resources. This massive consumption of energy and resources will deteriorate the global environment. It is a complicated chain of causes and effects. The problems of economic growth, resources and energy, and environment must be solved at the same time. Here the so-called ``Trilemma`` problem emerges. To overcome the Trilemma and assure a sustainable development of the whole world, approaches and actions are needed from various viewpoints including technology, socio-economic system and civilization. From the viewpoint of energy, it will be necessary to introduce all energymore » technologies which will not deteriorate the global environment. Energy conservation and efficiency are an important part of this process. It is also important to introduce renewable energy as much as possible. Even with these efforts, the energy needed by mankind in the 21st century will be tremendous. An energy source is needed which is adequate in terms of quantity, price, and environment. It is nuclear energy that meets these requirements. Several problems must be solved before the fundamental important merit of nuclear power can be realized. These issues are discussed here. They are divided into the following categories: economic issues; technical issues; social issues; political issues; and the issues in Asia.« less

  18. Advanced component technologies for energy-efficient turbofan engines

    NASA Technical Reports Server (NTRS)

    Saunders, N. T.

    1980-01-01

    The paper reviews NASA's Energy Efficient Engine Project which was initiated to provide the advanced technology base for a new generation of fuel-conservative engines for introduction into airline service by the late 1980s. Efforts in this project are directed at advancing engine component and systems technologies to a point of demonstrating technology-readiness by 1984. Early results indicate high promise in achieving most of the goals established in the project.

  19. Avoiding 100 new power plants by increasing efficiency of room air conditioners in India: opportunities and challenges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phadke, Amol; Abhyankar, Nikit; Shah, Nihar

    Electricity demand for room ACs is growing very rapidly in emerging economies such as India. We estimate the electricity demand from room ACs in 2030 in India considering factors such as weather and income growth using market data on penetration of ACs in different income classes and climatic regions. We discuss the status of the current standards, labels, and incentive programs to improve the efficiency of room ACs in these markets and assess the potential for further large improvements in efficiency and find that efficiency can be improved by over 40% cost effectively. The total potential energy savings from Roommore » AC efficiency improvement in India using the best available technology will reach over 118 TWh in 2030; potential peak demand saving is found to be 60 GW by 2030. This is equivalent to avoiding 120 new coal fired power plants of 500 MW each. We discuss policy options to complement, expand and improve the ongoing programs to capture this large potential.« less

  20. 48 CFR 23.000 - Scope.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE..., and encouraging the safe operation of vehicles by— (a) Controlling pollution; (b) Managing energy and water use in Government facilities efficiently; (c) Using renewable energy and renewable energy...

  1. Technology for aircraft energy efficiency

    NASA Technical Reports Server (NTRS)

    Klineberg, J. M.

    1977-01-01

    Six technology programs for reducing fuel use in U.S. commercial aviation are discussed. The six NASA programs are divided into three groups: Propulsion - engine component improvement, energy efficient engine, advanced turboprops; Aerodynamics - energy efficient transport, laminar flow control; and Structures - composite primary structures. Schedules, phases, and applications of these programs are considered, and it is suggested that program results will be applied to current transport derivatives in the early 1980s and to all-new aircraft of the late 1980s and early 1990s.

  2. 10 CFR 431.423 - Filing requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Efficiency and Renewable Energy, U.S. Department of Energy, Section 327 Petitions, Building Technologies, EE... 10 Energy 3 2014-01-01 2014-01-01 false Filing requirements. 431.423 Section 431.423 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL...

  3. 10 CFR 431.423 - Filing requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Efficiency and Renewable Energy, U.S. Department of Energy, Section 327 Petitions, Building Technologies, EE... 10 Energy 3 2012-01-01 2012-01-01 false Filing requirements. 431.423 Section 431.423 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL...

  4. 10 CFR 431.423 - Filing requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Efficiency and Renewable Energy, U.S. Department of Energy, Section 327 Petitions, Building Technologies, EE... 10 Energy 3 2013-01-01 2013-01-01 false Filing requirements. 431.423 Section 431.423 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL...

  5. 10 CFR 431.423 - Filing requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Efficiency and Renewable Energy, U.S. Department of Energy, Section 327 Petitions, Building Technologies, EE... 10 Energy 3 2011-01-01 2011-01-01 false Filing requirements. 431.423 Section 431.423 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL...

  6. 10 CFR 431.293 - Materials incorporated by reference.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    .... Department of Energy, Office of Energy Efficiency and Renewable Energy, Building Technologies Program, 6th... 10 Energy 3 2010-01-01 2010-01-01 false Materials incorporated by reference. 431.293 Section 431.293 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL...

  7. 10 CFR 433.3 - Materials incorporated by reference.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Materials incorporated by reference. 433.3 Section 433.3 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR NEW FEDERAL COMMERCIAL.... Department of Energy, Office of Energy Efficiency and Renewable Energy, Building Technologies Program, Sixth...

  8. 10 CFR 431.293 - Materials incorporated by reference.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    .... Department of Energy, Office of Energy Efficiency and Renewable Energy, Building Technologies Program, 6th... 10 Energy 3 2011-01-01 2011-01-01 false Materials incorporated by reference. 431.293 Section 431.293 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL...

  9. 10 CFR 431.293 - Materials incorporated by reference.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    .... Department of Energy, Office of Energy Efficiency and Renewable Energy, Building Technologies Program, 6th... 10 Energy 3 2013-01-01 2013-01-01 false Materials incorporated by reference. 431.293 Section 431.293 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL...

  10. 10 CFR 431.63 - Materials incorporated by reference.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    .... Department of Energy, Office of Energy Efficiency and Renewable Energy, Building Technologies Program, 6th... 10 Energy 3 2011-01-01 2011-01-01 false Materials incorporated by reference. 431.63 Section 431.63 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND...

  11. 10 CFR 431.323 - Materials incorporated by reference.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... of Energy, Office of Energy Efficiency and Renewable Energy, Building Technologies Program, 6th Floor... 10 Energy 3 2012-01-01 2012-01-01 false Materials incorporated by reference. 431.323 Section 431.323 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL...

  12. 10 CFR 431.63 - Materials incorporated by reference.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    .... Department of Energy, Office of Energy Efficiency and Renewable Energy, Building Technologies Program, 6th... 10 Energy 3 2014-01-01 2014-01-01 false Materials incorporated by reference. 431.63 Section 431.63 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND...

  13. 10 CFR 433.3 - Materials incorporated by reference.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Materials incorporated by reference. 433.3 Section 433.3 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR NEW FEDERAL COMMERCIAL.... Department of Energy, Office of Energy Efficiency and Renewable Energy, Building Technologies Program, Sixth...

  14. 10 CFR 431.63 - Materials incorporated by reference.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    .... Department of Energy, Office of Energy Efficiency and Renewable Energy, Building Technologies Program, 6th... 10 Energy 3 2012-01-01 2012-01-01 false Materials incorporated by reference. 431.63 Section 431.63 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND...

  15. 10 CFR 431.293 - Materials incorporated by reference.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    .... Department of Energy, Office of Energy Efficiency and Renewable Energy, Building Technologies Program, 6th... 10 Energy 3 2014-01-01 2014-01-01 false Materials incorporated by reference. 431.293 Section 431.293 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL...

  16. 10 CFR 431.293 - Materials incorporated by reference.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    .... Department of Energy, Office of Energy Efficiency and Renewable Energy, Building Technologies Program, 6th... 10 Energy 3 2012-01-01 2012-01-01 false Materials incorporated by reference. 431.293 Section 431.293 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL...

  17. 10 CFR 431.63 - Materials incorporated by reference.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    .... Department of Energy, Office of Energy Efficiency and Renewable Energy, Building Technologies Program, 6th... 10 Energy 3 2013-01-01 2013-01-01 false Materials incorporated by reference. 431.63 Section 431.63 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND...

  18. 10 CFR 433.3 - Materials incorporated by reference.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Materials incorporated by reference. 433.3 Section 433.3 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR NEW FEDERAL COMMERCIAL.... Department of Energy, Office of Energy Efficiency and Renewable Energy, Building Technologies Program, Sixth...

  19. 10 CFR 431.323 - Materials incorporated by reference.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... of Energy, Office of Energy Efficiency and Renewable Energy, Building Technologies Program, 6th Floor... 10 Energy 3 2014-01-01 2014-01-01 false Materials incorporated by reference. 431.323 Section 431.323 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL...

  20. Summaries of reports from the Congressional office of technology assessment

    NASA Astrophysics Data System (ADS)

    1985-11-01

    A summary of reports from the Congressional office of technology assessment on the following topics is presented. (1) Residential Energy Conservation, 1979 (2) Energy Efficiency of Buildings in Cities, 1982 (3)Industrial Energy Use, 1983 (4)Increased Automobiles fuel efficiency and synthetic fuels, 1982. (5)U.S. Vulnerability to an oil import curtailment: The oil Replacement Capability, 1984. (6)Oil and Gas Technologies for the Arctic and Deep water, 1985. (7)Acid Rain and Transport Air pollutants: Implications for Public Policy. (AIP)

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lychuk, Taras; Evans, Meredydd; Halverson, Mark A.

    This report provides analysis of the Russian energy efficiency market for the building sector from the perspective of U.S. businesses interested in exporting relevant technologies, products and experience to Russia. We aim to help U.S. energy efficiency and environmental technologies businesses to better understand the Russian building market to plan their market strategy.

  2. Airframe technology for aircraft energy efficiency. [economic factors

    NASA Technical Reports Server (NTRS)

    James, R. L., Jr.; Maddalon, D. V.

    1984-01-01

    The economic factors that resulted in the implementation of the aircraft energy efficiency program (ACEE) are reviewed and airframe technology elements including content, progress, applications, and future direction are discussed. The program includes the development of laminar flow systems, advanced aerodynamics, active controls, and composite structures.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The goals and accomplishments of the Energy Division of Oak Ridge National Laboratory are described in this annual progress report for Fiscal Year (FY) 1988. The Energy Division is a multidisciplinary research organization committed to (1) increasing the knowledge and understanding of the way society makes choices in energy use and energy-using technologies, (2) improving society's understanding of the environmental implications of changes in energy technology, and (3) improving and developing new energy-efficient technologies. The Energy Division's programmatic activities focus on four major areas: (1) analysis and assessment, (2) transportation and decision systems research, (3) technology research and development formore » improving the efficiency of energy and end-use technologies, and (4) electric power systems. The Division's total expenditures in FY 1988 were $44.3 million. The work is supported by the US Department of Energy, US Department of Defense, many other federal agencies, and some private organizations. Disciplines of the 139 staff members include engineering, social sciences, physical and life sciences, and mathematics and statistics.« less

  4. Carbon-free hydrogen production from low rank coal

    NASA Astrophysics Data System (ADS)

    Aziz, Muhammad; Oda, Takuya; Kashiwagi, Takao

    2018-02-01

    Novel carbon-free integrated system of hydrogen production and storage from low rank coal is proposed and evaluated. To measure the optimum energy efficiency, two different systems employing different chemical looping technologies are modeled. The first integrated system consists of coal drying, gasification, syngas chemical looping, and hydrogenation. On the other hand, the second system combines coal drying, coal direct chemical looping, and hydrogenation. In addition, in order to cover the consumed electricity and recover the energy, combined cycle is adopted as addition module for power generation. The objective of the study is to find the best system having the highest performance in terms of total energy efficiency, including hydrogen production efficiency and power generation efficiency. To achieve a thorough energy/heat circulation throughout each module and the whole integrated system, enhanced process integration technology is employed. It basically incorporates two core basic technologies: exergy recovery and process integration. Several operating parameters including target moisture content in drying module, operating pressure in chemical looping module, are observed in terms of their influence to energy efficiency. From process modeling and calculation, two integrated systems can realize high total energy efficiency, higher than 60%. However, the system employing coal direct chemical looping represents higher energy efficiency, including hydrogen production and power generation, which is about 83%. In addition, optimum target moisture content in drying and operating pressure in chemical looping also have been defined.

  5. Providing Personalized Energy Management and Awareness Services for Energy Efficiency in Smart Buildings.

    PubMed

    Fotopoulou, Eleni; Zafeiropoulos, Anastasios; Terroso-Sáenz, Fernando; Şimşek, Umutcan; González-Vidal, Aurora; Tsiolis, George; Gouvas, Panagiotis; Liapis, Paris; Fensel, Anna; Skarmeta, Antonio

    2017-09-07

    Considering that the largest part of end-use energy consumption worldwide is associated with the buildings sector, there is an inherent need for the conceptualization, specification, implementation, and instantiation of novel solutions in smart buildings, able to achieve significant reductions in energy consumption through the adoption of energy efficient techniques and the active engagement of the occupants. Towards the design of such solutions, the identification of the main energy consuming factors, trends, and patterns, along with the appropriate modeling and understanding of the occupants' behavior and the potential for the adoption of environmentally-friendly lifestyle changes have to be realized. In the current article, an innovative energy-aware information technology (IT) ecosystem is presented, aiming to support the design and development of novel personalized energy management and awareness services that can lead to occupants' behavioral change towards actions that can have a positive impact on energy efficiency. Novel information and communication technologies (ICT) are exploited towards this direction, related mainly to the evolution of the Internet of Things (IoT), data modeling, management and fusion, big data analytics, and personalized recommendation mechanisms. The combination of such technologies has resulted in an open and extensible architectural approach able to exploit in a homogeneous, efficient and scalable way the vast amount of energy, environmental, and behavioral data collected in energy efficiency campaigns and lead to the design of energy management and awareness services targeted to the occupants' lifestyles. The overall layered architectural approach is detailed, including design and instantiation aspects based on the selection of set of available technologies and tools. Initial results from the usage of the proposed energy aware IT ecosystem in a pilot site at the University of Murcia are presented along with a set of identified open issues for future research.

  6. Providing Personalized Energy Management and Awareness Services for Energy Efficiency in Smart Buildings

    PubMed Central

    Fotopoulou, Eleni; Tsiolis, George; Gouvas, Panagiotis; Liapis, Paris; Fensel, Anna; Skarmeta, Antonio

    2017-01-01

    Considering that the largest part of end-use energy consumption worldwide is associated with the buildings sector, there is an inherent need for the conceptualization, specification, implementation, and instantiation of novel solutions in smart buildings, able to achieve significant reductions in energy consumption through the adoption of energy efficient techniques and the active engagement of the occupants. Towards the design of such solutions, the identification of the main energy consuming factors, trends, and patterns, along with the appropriate modeling and understanding of the occupants’ behavior and the potential for the adoption of environmentally-friendly lifestyle changes have to be realized. In the current article, an innovative energy-aware information technology (IT) ecosystem is presented, aiming to support the design and development of novel personalized energy management and awareness services that can lead to occupants’ behavioral change towards actions that can have a positive impact on energy efficiency. Novel information and communication technologies (ICT) are exploited towards this direction, related mainly to the evolution of the Internet of Things (IoT), data modeling, management and fusion, big data analytics, and personalized recommendation mechanisms. The combination of such technologies has resulted in an open and extensible architectural approach able to exploit in a homogeneous, efficient and scalable way the vast amount of energy, environmental, and behavioral data collected in energy efficiency campaigns and lead to the design of energy management and awareness services targeted to the occupants’ lifestyles. The overall layered architectural approach is detailed, including design and instantiation aspects based on the selection of set of available technologies and tools. Initial results from the usage of the proposed energy aware IT ecosystem in a pilot site at the University of Murcia are presented along with a set of identified open issues for future research. PMID:28880227

  7. A hybrid MAC protocol design for energy-efficient very-high-throughput millimeter wave, wireless sensor communication networks

    NASA Astrophysics Data System (ADS)

    Jian, Wei; Estevez, Claudio; Chowdhury, Arshad; Jia, Zhensheng; Wang, Jianxin; Yu, Jianguo; Chang, Gee-Kung

    2010-12-01

    This paper presents an energy-efficient Medium Access Control (MAC) protocol for very-high-throughput millimeter-wave (mm-wave) wireless sensor communication networks (VHT-MSCNs) based on hybrid multiple access techniques of frequency division multiplexing access (FDMA) and time division multiplexing access (TDMA). An energy-efficient Superframe for wireless sensor communication network employing directional mm-wave wireless access technologies is proposed for systems that require very high throughput, such as high definition video signals, for sensing, processing, transmitting, and actuating functions. Energy consumption modeling for each network element and comparisons among various multi-access technologies in term of power and MAC layer operations are investigated for evaluating the energy-efficient improvement of proposed MAC protocol.

  8. 2010 Vehicle Technologies Market Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, Jacob; Davis, Stacy Cagle; Diegel, Susan W

    2011-06-01

    In the past five years, vehicle technologies have advanced on a number of fronts: power-train systems have become more energy efficient, materials have become more lightweight, fuels are burned more cleanly, and new hybrid electric systems reduce the need for traditional petroleum-fueled propulsion. This report documents the trends in market drivers, new vehicles, and component suppliers. This report is supported by the U.S. Department of Energy s (DOE s) Vehicle Technologies Program, which develops energy-efficient and environmentally friendly transportation technologies that will reduce use of petroleum in the United States. The long-term aim is to develop "leap frog" technologies thatmore » will provide Americans with greater freedom of mobility and energy security, while lowering costs and reducing impacts on the environment.« less

  9. Electrocatalysts by atomic layer deposition for fuel cell applications

    DOE PAGES

    Cheng, Niancai; Shao, Yuyan; Liu, Jun; ...

    2016-01-22

    Here, fuel cells are a promising technology solution for reliable and clean energy because they offer high energy conversion efficiency and low emission of pollutants. However, high cost and insufficient durability are considerable challenges for widespread adoption of polymer electrolyte membrane fuel cells (PEMFCs) in practical applications. Current PEMFCs catalysts have been identified as major contributors to both the high cost and limited durability. Atomic layer deposition (ALD) is emerging as a powerful technique for solving these problems due to its exclusive advantages over other methods. In this review, we summarize recent developments of ALD in PEMFCs with a focusmore » on design of materials for improved catalyst activity and durability. New research directions and future trends have also been discussed.« less

  10. FY2017 Energy Efficient Mobility Systems Annual Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    During fiscal year 2017 (FY 2017), the U.S. Department of Energy (DOE) Vehicle Technologies Office (VTO) created the Energy Efficient Mobility Systems (EEMS) Program to understand the range of mobility futures that could result from these disruptive technologies and services, and to create solutions that improve mobility energy productivity, or the value derived from the transportation system per unit of energy consumed. Increases in mobility energy productivity result from improvements in the quality or output of the transportation system, and/or reductions in the energy used for transportation.

  11. Numerical study on the thermal management system of a liquid metal battery module

    NASA Astrophysics Data System (ADS)

    Guo, Zhenlin; Xu, Cheng; Li, Wei; Zhu, Fangfang; Li, Haomiao; Wang, Kangli; Cheng, Shijie; Jiang, Kai

    2018-07-01

    Liquid metal battery (LMB), with three-liquid-layer structure and high operating temperature (300-700 °C), is a newly emerging technology for large scale energy storage applications. A thermal management system is critical to achieve satisfied LMB performance and extend the life of batteries. In this work, an improved coupling model composing of a 3D heat-transfer model and a 1D electrochemical model is developed for the thermal analysis of a Li||Sb-Sn LMBs module (5.5 kWh). Key results including transient values, the contribution ratio of heat sources, temperature homogeneity and distribution, as well as the energy efficiency of the battery module, are presented. Based on the coupling model, the changeable-power-heating mode, sand filling material and vacuum insulation are further proposed to achieve the high energy efficiency and optimal performance of the LMBs module. Moreover, the LMBs module can achieve "self-heating" when operated at 0.2 C charge/discharge, under the vacuum insulation (0.01 W m-1 K-1 thermal conductivity, 100 mm thickness), requiring no external heating to keep the batteries at operating temperature.

  12. Fabrication of solar beam steering electrowetting devices—present status and future prospects

    NASA Astrophysics Data System (ADS)

    Khan, I.; Castelletto, S.; Rosengarten, G.

    2017-10-01

    Many different technologies are used to track the movement of the sun to both enable concentration of its energy and maximize the yearly energy capture. Their present main limitations are the cost, size, visual impact and wind loading, particularly for applications involving mounting to a building. A parabolic concentrator, for example, along with its steering equipment is heavy and bulky, and is not suitable for rooftop applications. Instead, thin and flat solar concentration devices are required for hassle-free rooftop applications. The use of electrowetting-controlled liquid lenses has emerged as a novel approach for solar tracking and concentration. By steering sunlight using thin electrowetting cell arrays, bulky mechanical equipment is not required. The basic concept of this technology is to change the shape of a liquid interface that is formed by two immiscible fluids of different refractive indices, by simply applying an electric field. An important challenge in electrowetting beam steering devices is the optimization of the design and fabrication process for each of their main constituent components, to maximize optical efficiency. In this paper, we report on the state-of-the-art fabrication methods for electrowetting devices for solar beam steering. We have reviewed the present status of different components types and related fabrication methods, and how they affect the efficiency and performance of such devices. The work identifies future prospects in using electrowetting beam steering devices for solar energy applications. This paper will help researchers and developers in the field to determine the components and fabrication process that affect the development of efficient beam steering electrowetting devices.

  13. ImSET: Impact of Sector Energy Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roop, Joseph M.; Scott, Michael J.; Schultz, Robert W.

    2005-07-19

    This version of the Impact of Sector Energy Technologies (ImSET) model represents the ''next generation'' of the previously developed Visual Basic model (ImBUILD 2.0) that was developed in 2003 to estimate the macroeconomic impacts of energy-efficient technology in buildings. More specifically, a special-purpose version of the 1997 benchmark national Input-Output (I-O) model was designed specifically to estimate the national employment and income effects of the deployment of Office of Energy Efficiency and Renewable Energy (EERE) -developed energy-saving technologies. In comparison with the previous versions of the model, this version allows for more complete and automated analysis of the essential featuresmore » of energy efficiency investments in buildings, industry, transportation, and the electric power sectors. This version also incorporates improvements in the treatment of operations and maintenance costs, and improves the treatment of financing of investment options. ImSET is also easier to use than extant macroeconomic simulation models and incorporates information developed by each of the EERE offices as part of the requirements of the Government Performance and Results Act.« less

  14. Fixed Wing Project: Technologies for Advanced Air Transports

    NASA Technical Reports Server (NTRS)

    Del Rosario, Ruben; Koudelka, John M.; Wahls, Richard A.; Madavan, Nateri

    2014-01-01

    The NASA Fundamental Aeronautics Fixed Wing (FW) Project addresses the comprehensive challenge of enabling revolutionary energy efficiency improvements in subsonic transport aircraft combined with dramatic reductions in harmful emissions and perceived noise to facilitate sustained growth of the air transportation system. Advanced technologies and the development of unconventional aircraft systems offer the potential to achieve these improvements. Multidisciplinary advances are required in aerodynamic efficiency to reduce drag, structural efficiency to reduce aircraft empty weight, and propulsive and thermal efficiency to reduce thrust-specific energy consumption (TSEC) for overall system benefit. Additionally, advances are required to reduce perceived noise without adversely affecting drag, weight, or TSEC, and to reduce harmful emissions without adversely affecting energy efficiency or noise.The presentation will highlight the Fixed Wing project vision of revolutionary systems and technologies needed to achieve these challenging goals. Specifically, the primary focus of the FW Project is on the N+3 generation; that is, vehicles that are three generations beyond the current state of the art, requiring mature technology solutions in the 2025-30 timeframe.

  15. On determining specifications and selections of alternative technologies for airport checked-baggage security screening.

    PubMed

    Feng, Qianmei

    2007-10-01

    Federal law mandates that every checked bag at all commercial airports be screened by explosive detection systems (EDS), explosive trace detection systems (ETD), or alternative technologies. These technologies serve as critical components of airport security systems that strive to reduce security risks at both national and global levels. To improve the operational efficiency and airport security, emerging image-based technologies have been developed, such as dual-energy X-ray (DX), backscatter X-ray (BX), and multiview tomography (MVT). These technologies differ widely in purchasing cost, maintenance cost, operating cost, processing rate, and accuracy. Based on a mathematical framework that takes into account all these factors, this article investigates two critical issues for operating screening devices: setting specifications for continuous security responses by different technologies; and selecting technology or combination of technologies for efficient 100% baggage screening. For continuous security responses, specifications or thresholds are used for classifying threat items from nonthreat items. By investigating the setting of specifications on system security responses, this article assesses the risk and cost effectiveness of various technologies for both single-device and two-device systems. The findings provide the best selection of image-based technologies for both single-device and two-device systems. Our study suggests that two-device systems outperform single-device systems in terms of both cost effectiveness and accuracy. The model can be readily extended to evaluate risk and cost effectiveness of multiple-device systems for airport checked-baggage security screening.

  16. Design of High Efficiency High Power Electron Accelerator Systems Based on Normal Conducting RF Technology for Energy and Environmental Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dolgashev, Valery; Tantawi, Sami

    The goal of this project was to perform engineering design studies of three extremely high efficiency electron accelerators with the following parameters [1]: 2 MeV output beam energy and 1 MW average beam power; 10 MeV output energy and 10 MW; 10 MeV output energy and 1 MW. These linacs are intended for energy and environmental applications [2]. We based our designs on normal conducting radio-frequency technology. We have successfully reached this goal where we show rf-to-beam efficiency of 96.7 %, 97.2 %, and 79.6 % for these linacs.

  17. Nanoplasmonics: a frontier of photovoltaic solar cells

    NASA Astrophysics Data System (ADS)

    Gu, Min; Ouyang, Zi; Jia, Baohua; Stokes, Nicholas; Chen, Xi; Fahim, Narges; Li, Xiangping; Ventura, Michael James; Shi, Zhengrong

    2012-12-01

    Nanoplasmonics recently has emerged as a new frontier of photovoltaic research. Noble metal nanostructures that can concentrate and guide light have demonstrated great capability for dramatically improving the energy conversion efficiency of both laboratory and industrial solar cells, providing an innovative pathway potentially transforming the solar industry. However, to make the nanoplasmonic technology fully appreciated by the solar industry, key challenges need to be addressed; including the detrimental absorption of metals, broadband light trapping mechanisms, cost of plasmonic nanomaterials, simple and inexpensive fabrication and integration methods of the plasmonic nanostructures, which are scalable for full size manufacture. This article reviews the recent progress of plasmonic solar cells including the fundamental mechanisms, material fabrication, theoretical modelling and emerging directions with a distinct emphasis on solutions tackling the above-mentioned challenges for industrial relevant applications.

  18. 48 CFR 923.103 - Contract clauses.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Section 923.103 Federal Acquisition Regulations System DEPARTMENT OF ENERGY SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE... specific DOE contracts); FAR 52.223-15, Energy Efficiency in Energy Consuming Products; and FAR 52.223-17...

  19. 48 CFR 923.103 - Contract clauses.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Section 923.103 Federal Acquisition Regulations System DEPARTMENT OF ENERGY SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE... specific DOE contracts); FAR 52.223-15, Energy Efficiency in Energy Consuming Products; and FAR 52.223-17...

  20. 48 CFR 923.103 - Contract clauses.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Section 923.103 Federal Acquisition Regulations System DEPARTMENT OF ENERGY SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE... specific DOE contracts); FAR 52.223-15, Energy Efficiency in Energy Consuming Products; and FAR 52.223-17...

  1. 48 CFR 923.103 - Contract clauses.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Section 923.103 Federal Acquisition Regulations System DEPARTMENT OF ENERGY SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE... specific DOE contracts); FAR 52.223-15, Energy Efficiency in Energy Consuming Products; and FAR 52.223-17...

  2. Final review of the Campbell Creek demonstrations showcased by Tennessee Valley Authority

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gehl, Anthony C.; Munk, Jeffrey D.; Jackson, Roderick K.

    The Tennessee Valley Authority (TVA) Technology Innovation, Energy Efficiency, Power Delivery and Utilization Office funded and managed a showcase demonstration located in the suburbs of west Knox county, Tennessee. Work started March 2008 with the goal of documenting best practices for retrofitting existing homes and for building new high-efficiency homes. The Oak Ridge National Laboratory and the Electric Power Research Institute (EPRI) provided technical support. An analytical base was developed for helping homeowners, homebuyers, builders, practitioners and the TVA make informed economic decisions for the materials and incentives necessary to build a new high-efficiency home or retrofit an existing home.more » New approaches to more efficiently control active energy subsystems and information for selecting or upgrading to Energy Star appliances, changing all lights to 100% CFL s and upgrading windows to low-E gas filled glazing yields a 40% energy savings with neutral cash flow for the homeowner. Passive designs were reviewed and recommendations made for envelope construction that is durable and energy efficient. The Campbell Creek project complements the DOE Building Technologies Program strategic goal. Results of the project created technologies and design approaches that will yield affordable energy efficient homes. The 2010 DOE retrofit goals are to find retrofit packages that attain 30% whole house energy savings as documented by pre and post Home Energy rating scores (HERS). Campbell Creek met these goals.« less

  3. 10 CFR 431.105 - Materials incorporated by reference.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., Office of Energy Efficiency and Renewable Energy, Building Technologies Program, 6th Floor, 950 L'Enfant... 10 Energy 3 2014-01-01 2014-01-01 false Materials incorporated by reference. 431.105 Section 431.105 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL...

  4. 10 CFR 431.105 - Materials incorporated by reference.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., Office of Energy Efficiency and Renewable Energy, Building Technologies Program, 6th Floor, 950 L'Enfant... 10 Energy 3 2013-01-01 2013-01-01 false Materials incorporated by reference. 431.105 Section 431.105 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL...

  5. Political ideology affects energy-efficiency attitudes and choices

    PubMed Central

    Gromet, Dena M.; Kunreuther, Howard; Larrick, Richard P.

    2013-01-01

    This research demonstrates how promoting the environment can negatively affect adoption of energy efficiency in the United States because of the political polarization surrounding environmental issues. Study 1 demonstrated that more politically conservative individuals were less in favor of investment in energy-efficient technology than were those who were more politically liberal. This finding was driven primarily by the lessened psychological value that more conservative individuals placed on reducing carbon emissions. Study 2 showed that this difference has consequences: In a real-choice context, more conservative individuals were less likely to purchase a more expensive energy-efficient light bulb when it was labeled with an environmental message than when it was unlabeled. These results highlight the importance of taking into account psychological value-based considerations in the individual adoption of energy-efficient technology in the United States and beyond. PMID:23630266

  6. Political ideology affects energy-efficiency attitudes and choices.

    PubMed

    Gromet, Dena M; Kunreuther, Howard; Larrick, Richard P

    2013-06-04

    This research demonstrates how promoting the environment can negatively affect adoption of energy efficiency in the United States because of the political polarization surrounding environmental issues. Study 1 demonstrated that more politically conservative individuals were less in favor of investment in energy-efficient technology than were those who were more politically liberal. This finding was driven primarily by the lessened psychological value that more conservative individuals placed on reducing carbon emissions. Study 2 showed that this difference has consequences: In a real-choice context, more conservative individuals were less likely to purchase a more expensive energy-efficient light bulb when it was labeled with an environmental message than when it was unlabeled. These results highlight the importance of taking into account psychological value-based considerations in the individual adoption of energy-efficient technology in the United States and beyond.

  7. Energy-Efficient Wide Datapath Integer Arithmetic Logic Units Using Superconductor Logic

    NASA Astrophysics Data System (ADS)

    Ayala, Christopher Lawrence

    Complementary Metal-Oxide-Semiconductor (CMOS) technology is currently the most widely used integrated circuit technology today. As CMOS approaches the physical limitations of scaling, it is unclear whether or not it can provide long-term support for niche areas such as high-performance computing and telecommunication infrastructure, particularly with the emergence of cloud computing. Alternatively, superconductor technologies based on Josephson junction (JJ) switching elements such as Rapid Single Flux Quantum (RSFQ) logic and especially its new variant, Energy-Efficient Rapid Single Flux Quantum (ERSFQ) logic have the capability to provide an ultra-high-speed, low power platform for digital systems. The objective of this research is to design and evaluate energy-efficient, high-speed 32-bit integer Arithmetic Logic Units (ALUs) implemented using RSFQ and ERSFQ logic as the first steps towards achieving practical Very-Large-Scale-Integration (VLSI) complexity in digital superconductor electronics. First, a tunable VHDL superconductor cell library is created to provide a mechanism to conduct design exploration and evaluation of superconductor digital circuits from the perspectives of functionality, complexity, performance, and energy-efficiency. Second, hybrid wave-pipelining techniques developed earlier for wide datapath RSFQ designs have been used for efficient arithmetic and logic circuit implementations. To develop the core foundation of the ALU, the ripple-carry adder and the Kogge-Stone parallel prefix carry look-ahead adder are studied as representative candidates on opposite ends of the design spectrum. By combining the high-performance features of the Kogge-Stone structure and the low complexity of the ripple-carry adder, a 32-bit asynchronous wave-pipelined hybrid sparse-tree ALU has been designed and evaluated using the VHDL cell library tuned to HYPRES' gate-level characteristics. The designs and techniques from this research have been implemented using RSFQ logic and prototype chips have been fabricated. As a joint work with HYPRES, a 20 GHz 8-bit Kogge-Stone ALU consisting of 7,950 JJs total has been fabricated using a 1.5 μm 4.5 kA/cm2 process and fully demonstrated. An 8-bit sparse-tree ALU (8,832 JJs total) and a 16-bit sparse-tree adder (12,785 JJs total) have also been fabricated using a 1.0 μm 10 kA/cm 2 process and demonstrated under collaboration with Yokohama National University and Nagoya University (Japan).

  8. 48 CFR 923.101 - Policy.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 923.101 Federal Acquisition Regulations System DEPARTMENT OF ENERGY SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Sustainable Acquisition 923.101 Policy. The Department has promoted energy efficient products as well as...

  9. 48 CFR 923.101 - Policy.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 923.101 Federal Acquisition Regulations System DEPARTMENT OF ENERGY SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Sustainable Acquisition 923.101 Policy. The Department has promoted energy efficient products as well as...

  10. 48 CFR 923.101 - Policy.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 923.101 Federal Acquisition Regulations System DEPARTMENT OF ENERGY SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Sustainable Acquisition 923.101 Policy. The Department has promoted energy efficient products as well as...

  11. 48 CFR 923.101 - Policy.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 923.101 Federal Acquisition Regulations System DEPARTMENT OF ENERGY SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Sustainable Acquisition 923.101 Policy. The Department has promoted energy efficient products as well as...

  12. 48 CFR 323.7100 - Policy.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE... the acquisition and use of designated recycled content, and Energy Star ®, Electronic Product Environmental Assessment Tool (EPEAT)-registered, energy-efficient, bio-based, and environmentally preferable...

  13. Investigation of the charge boost technology for the efficiency increase of closed sorption thermal energy storage systems

    NASA Astrophysics Data System (ADS)

    Rohringer, C.; Engel, G.; Köll, R.; Wagner, W.; van Helden, W.

    2017-10-01

    The inclusion of solar thermal energy into energy systems requires storage possibilities to overcome the gap between supply and demand. Storage of thermal energy with closed sorption thermal energy systems has the advantage of low thermal losses and high energy density. However, the efficiency of these systems needs yet to be increased to become competitive on the market. In this paper, the so-called “charge boost technology” is developed and tested via experiments as a new concept for the efficiency increase of compact thermal energy storages. The main benefit of the charge boost technology is that it can reach a defined state of charge for sorption thermal energy storages at lower temperature levels than classic pure desorption processes. Experiments are conducted to provide a proof of principle for this concept. The results show that the charge boost technology does function as predicted and is a viable option for further improvement of sorption thermal energy storages. Subsequently, a new process application is developed by the author with strong focus on the utilization of the advantages of the charge boost technology over conventional desorption processes. After completion of the conceptual design, the theoretical calculations are validated via experiments.

  14. 75 FR 47536 - Application Deadline Extended; Executive Green ICT & Energy Efficiency Trade Mission to Mexico...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-06

    ... States Department of Commerce, International Trade Administration, and U.S. & Foreign Commercial Service... & Communication Technology (ICT)'' solutions, as well as energy efficiency technologies to enter or increase their... the USA Pavilion. DATES: Applications should be submitted to the U.S. Commercial Service in Mexico...

  15. 48 CFR 23.201 - Authorities.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Energy and Water Efficiency and Renewable Energy 23.201 Authorities. (a) Energy... U.S.C. 6901, et seq.). (b) National Energy Conservation Policy Act (42 U.S.C. 8253, 8259b, 8262g...

  16. 48 CFR 23.201 - Authorities.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Energy and Water Efficiency and Renewable Energy 23.201 Authorities. (a) Energy... U.S.C. 6901, et seq.). (b) National Energy Conservation Policy Act (42 U.S.C. 8253, 8259b, 8262g...

  17. 48 CFR 23.201 - Authorities.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Energy and Water Efficiency and Renewable Energy 23.201 Authorities. (a) Energy... U.S.C. 6901, et seq.). (b) National Energy Conservation Policy Act (42 U.S.C. 8253, 8259b, 8262g...

  18. 48 CFR 23.201 - Authorities.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Energy and Water Efficiency and Renewable Energy 23.201 Authorities. (a) Energy... U.S.C. 6901, et seq.). (b) National Energy Conservation Policy Act (42 U.S.C. 8253, 8259b, 8262g...

  19. 48 CFR 23.201 - Authorities.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Energy and Water Efficiency and Renewable Energy 23.201 Authorities. (a) Energy... U.S.C. 6901, et seq.). (b) National Energy Conservation Policy Act (42 U.S.C. 8253, 8259b, 8262g...

  20. Graphene oxide-based efficient and scalable solar desalination under one sun with a confined 2D water path

    PubMed Central

    Li, Xiuqiang; Xu, Weichao; Tang, Mingyao; Zhou, Lin; Zhu, Bin; Zhu, Shining; Zhu, Jia

    2016-01-01

    Because it is able to produce desalinated water directly using solar energy with minimum carbon footprint, solar steam generation and desalination is considered one of the most important technologies to address the increasingly pressing global water scarcity. Despite tremendous progress in the past few years, efficient solar steam generation and desalination can only be achieved for rather limited water quantity with the assistance of concentrators and thermal insulation, not feasible for large-scale applications. The fundamental paradox is that the conventional design of direct absorber−bulk water contact ensures efficient energy transfer and water supply but also has intrinsic thermal loss through bulk water. Here, enabled by a confined 2D water path, we report an efficient (80% under one-sun illumination) and effective (four orders salinity decrement) solar desalination device. More strikingly, because of minimized heat loss, high efficiency of solar desalination is independent of the water quantity and can be maintained without thermal insulation of the container. A foldable graphene oxide film, fabricated by a scalable process, serves as efficient solar absorbers (>94%), vapor channels, and thermal insulators. With unique structure designs fabricated by scalable processes and high and stable efficiency achieved under normal solar illumination independent of water quantity without any supporting systems, our device represents a concrete step for solar desalination to emerge as a complementary portable and personalized clean water solution. PMID:27872280

  1. Graphene oxide-based efficient and scalable solar desalination under one sun with a confined 2D water path.

    PubMed

    Li, Xiuqiang; Xu, Weichao; Tang, Mingyao; Zhou, Lin; Zhu, Bin; Zhu, Shining; Zhu, Jia

    2016-12-06

    Because it is able to produce desalinated water directly using solar energy with minimum carbon footprint, solar steam generation and desalination is considered one of the most important technologies to address the increasingly pressing global water scarcity. Despite tremendous progress in the past few years, efficient solar steam generation and desalination can only be achieved for rather limited water quantity with the assistance of concentrators and thermal insulation, not feasible for large-scale applications. The fundamental paradox is that the conventional design of direct absorber-bulk water contact ensures efficient energy transfer and water supply but also has intrinsic thermal loss through bulk water. Here, enabled by a confined 2D water path, we report an efficient (80% under one-sun illumination) and effective (four orders salinity decrement) solar desalination device. More strikingly, because of minimized heat loss, high efficiency of solar desalination is independent of the water quantity and can be maintained without thermal insulation of the container. A foldable graphene oxide film, fabricated by a scalable process, serves as efficient solar absorbers (>94%), vapor channels, and thermal insulators. With unique structure designs fabricated by scalable processes and high and stable efficiency achieved under normal solar illumination independent of water quantity without any supporting systems, our device represents a concrete step for solar desalination to emerge as a complementary portable and personalized clean water solution.

  2. NET-ZERO ENERGY BUILDING OPERATOR TRAINING PROGRAM (NZEBOT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brizendine, Anthony; Byars, Nan; Sleiti, Ahmad

    2012-12-31

    The primary objective of the Net-Zero Energy Building Operator Training Program (NZEBOT) was to develop certificate level training programs for commercial building owners, managers and operators, principally in the areas of energy / sustainability management. The expected outcome of the project was a multi-faceted mechanism for developing the skill-based competency of building operators, owners, architects/engineers, construction professionals, tenants, brokers and other interested groups in energy efficient building technologies and best practices. The training program draws heavily on DOE supported and developed materials available in the existing literature, as well as existing, modified, and newly developed curricula from the Department ofmore » Engineering Technology & Construction Management (ETCM) at the University of North Carolina at Charlotte (UNC-Charlotte). The project goal is to develop a certificate level training curriculum for commercial energy and sustainability managers and building operators that: 1) Increases the skill-based competency of building professionals in energy efficient building technologies and best practices, and 2) Increases the workforce pool of expertise in energy management and conservation techniques. The curriculum developed in this project can subsequently be used to establish a sustainable energy training program that can contribute to the creation of new “green” job opportunities in North Carolina and throughout the Southeast region, and workforce training that leads to overall reductions in commercial building energy consumption. Three energy training / education programs were developed to achieve the stated goal, namely: 1. Building Energy/Sustainability Management (BESM) Certificate Program for Building Managers and Operators (40 hours); 2. Energy Efficient Building Technologies (EEBT) Certificate Program (16 hours); and 3. Energy Efficent Buildings (EEB) Seminar (4 hours). Training Program 1 incorporates the following topics in the primary five-day Building Energy/Sustainability Management Certificate program in five training modules, namely: 1) Strategic Planning, 2) Sustainability Audits, 3) Information Analysis, 4) Energy Efficiency, and 5) Communication. Training Program 2 addresses the following technical topics in the two-day Building Technologies workshop: 1) Energy Efficient Building Materials, 2) Green Roofing Systems, 3) Energy Efficient Lighting Systems, 4) Alternative Power Systems for Buildings, 5) Innovative Building Systems, and 6) Application of Building Performance Simulation Software. Program 3 is a seminar which provides an overview of elements of programs 1 and 2 in a seminar style presentation designed for the general public to raise overall public awareness of energy and sustainability topics.« less

  3. Reducing Operating Costs and Energy Consumption at Water Utilities

    EPA Pesticide Factsheets

    Due to their unique combination of high energy usage and potential for significant savings, utilities are turning to energy-efficient technologies to help save money. Learn about cost and energy saving technologies from this brochure.

  4. Environmental policy and technological change: The effects of economic incentives and direct regulation on energy-saving innovation

    NASA Astrophysics Data System (ADS)

    Newell, Richard G., Jr.

    Over the long run, the impacts of environmental policies will be greatly affected by the influence these policies have on the rate and direction of technological change. In particular, the roles played by energy prices and product regulation in energy-saving technology innovation are exceptionally important considerations in modeling climate change and evaluating alternative policy options. We analyze the effects of energy prices and energy-efficiency regulations on the menu of air conditioner and water heater models available on the market over a period of more than three decades, measuring their innovation in terms of improvements in the products' underlying characteristics. Through estimation of a series of "characteristics transformation surfaces," we find that during less than four decades, substantial innovation in these products reduced the total capital and operating costs of air conditioning by one-half and water heating by more than one-fifth. Although the overall rate of innovation in these products appears to be independent of energy prices and regulations, the evidence suggests that the direction of innovation may be responsive to energy price changes. This would imply that energy price increases induced innovation in a direction that lowered the capital cost tradeoffs inherent in producing more energy-efficient products. The evidence supporting "regulation-induced" changes in these tradeoffs is much weaker. Our estimates indicate that about one- to two-fifths of the energy-efficiency improvements in these products from 1973 to 1993 were associated with historical changes in energy prices. We also find that this responsiveness to price changes increased substantially after product labeling requirements came into effect, and that minimum efficiency standards had a significant positive effect on average efficiency levels. Nonetheless, a sizeable portion of historical efficiency improvements in these technologies is associated with the products' overall rate of innovation. Looking forward, we estimate that energy taxes of 10 to 30 percent of retail prices could significantly increase the energy efficiency of the product menu. We predict that such taxes would lead to additional efficiency increases in air conditioners of 6 to 26 percent. We conclude that the price-induced component of energy-efficiency innovation should not be ignored when assessing alternative climate change policies.

  5. Chemical and Physical Sensing in the Petroleum Industry

    NASA Astrophysics Data System (ADS)

    Disko, Mark

    2008-03-01

    World-scale oil, gas and petrochemical production relies on a myriad of advanced technologies for discovering, producing, transporting, processing and distributing hydrocarbons. Sensing systems provide rapid and targeted information that can be used for expanding resources, improving product quality, and assuring environmentally sound operations. For example, equipment such as reactors and pipelines can be operated with high efficiency and safety with improved chemical and physical sensors for corrosion and hydrocarbon detection. At the interface between chemical engineering and multiphase flow physics, ``multi-scale'' phenomena such as catalysis and heat flow benefit from new approaches to sensing and data modeling. We are combining chemically selective micro-cantilevers, fiber optic sensing, and acoustic monitoring with statistical data fusion approaches to maximize control information. Miniaturized analyzers represent a special opportunity, including the nanotech-based quantum cascade laser systems for mid-infrared spectroscopy. Specific examples for use of these new micro-systems include rapid monocyclic aromatic molecule identification and measurement under ambient conditions at weight ppb levels. We see promise from emerging materials and devices based on nanotechnology, which can one day be available at modest cost for impact in existing operations. Controlled surface energies and emerging chemical probes hold the promise for reduction in greenhouse gas emissions for current fuels and future transportation and energy technologies.

  6. Oil-Free Turbomachinery Technologies for Long-Life, Maintenance-Free Power Generation Applications

    NASA Technical Reports Server (NTRS)

    Dellacorte, Christopher

    2013-01-01

    Turbines have long been used to convert thermal energy to shaft work for power generation. Conventional turbines rely upon oil-lubricated rotor supports (bearings, seals, etc.) to achieve low wear, high efficiency and reliability. Emerging Oil-Free technologies such as gas foil bearings and magnetic bearings offer a path for reduced weight and complexity and truly maintenance free systems. Oil-Free gas turbines, using gaseous and liquid fuels are commercially available in power outputs to at least 250kWe and are gaining acceptance for remote power generation where maintenance is a challenge. Closed Brayton Cycle (CBC) turbines are an approach to power generation that is well suited for long life space missions. In these systems, a recirculating gas is heated by nuclear, solar or other heat energy source then fed into a high-speed turbine that drives an electrical generator. For closed cycle systems such as these, the working fluid also passes through the bearing compartments thus serving as a lubricant and bearing coolant. Compliant surface foil gas bearings are well suited for the rotor support systems of these advanced turbines. Foil bearings develop a thin hydrodynamic gas film that separates the rotating shaft from the bearing preventing wear. During start-up and shut down when speeds are low, rubbing occurs. Solid lubricants are used to reduce starting torque and minimize wear. Other emerging technologies such as magnetic bearings can also contribute to robust and reliable Oil-Free turbomachinery. In this presentation, Oil-Free technologies for advanced rotor support systems will be reviewed as will the integration and development processes recommended for implementation.

  7. Magnify: A Final Technical Report of the American Energy and Manufacturing Competitiveness Partnership

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evans, Charles

    The energy landscape has undergone profound transformation, with dramatic shifts having an impact on U.S. productivity, global investment, manufacturing operations, and job creation. The sense of urgency for a tighter linkage between clean technologies, energy and advanced manufacturing has only grown. Prior to 2009, the tone of the nation’s energy conversation was centered on how to deal with long-standing energy security challenges and scarcity. Today, the tone is focused on seizing emerging energy growth opportunities to transform America’s industrial base and job creation outlook—centering on energy abundance and strength. In this context, the Council on Competitiveness and the Department ofmore » Energy’s Office of Energy Efficiency & Renewable Energy (EERE) teamed in the American Energy & Manufacturing Competitiveness (AEMC) Partnership to tackle two major goals via a multi-year partnership. The AEMC Partnership identified means to: • Increase U.S. competitiveness in the production of clean energy products • Increase U.S. manufacturing competitiveness across the board by increasing energy productivity The AEMC Partnership has engaged hundreds of leaders from industry, academia, labor and government in a series of 9 regional, progressive dialogues; original research; and 4 national summits. The AEMC dialogues and summits spanned the United States—taking place in our nation’s greatest manufacturing, research, technology and innovation hotspots. The goals of the AEMC Partnership have been straightforward: • State and define key barriers, challenges, and problems in U.S. competitiveness in manufacturing of clean energy products, energy efficiency products, and advanced manufacturing products. • Dive deeply into these problems and generate policies, solutions, concepts and models where the U.S. public and private sectors can work together to solve these problems. • Catalyze policy solutions—including models for public-private partnership (PPP) pilots—to increase competitive manufacturing of clean energy and energy efficiency products in the USA. • Elevate and increase awareness of the importance and benefits of competitive clean energy manufacturing. • Understand how energy game-changers, like breakthrough technologies, impact U.S. clean energy and energy efficient manufacturing. The Council on Competitiveness worked with its stakeholder network to generate potential PPP concepts and proposals to advance the goals of the AEMC Partnership. Magnify outlines 2 PPP concepts—honed by dialogues, conversations, interviews and research—that could be carried out by EERE and/or the Council to increase the competitive production of clean energy products, energy efficient products, and advanced manufacturing in the USA. Magnify’s 2 PPP concepts aim to bridge very specific gaps in the nation’s innovation ecosystem: • Clean Energy Materials Accelerator: This PPP concept focuses on reducing the risks associated with deploying newly developed materials in commercial products and processes by creating a platform to identify and address common challenges; increasing access to existing materials qualification and characterization tools; and creating standards for advanced materials with leaders in industry, academic, government, and other organizations. Why accelerate materials production? As the AEMC Partnership Dialogue and supporting research from the public and private sectors have documented, countries that lead in making next-generation materials will gain significant competitive advantage by unleashing a new wave of manufacturing innovation. • Manufacturing and Energy Technology Accelerator: This PPP concept is a new, physical and virtual collaborative resource platform designed to connect the nation’s world-class innovation institutions—SMEs, large multinational companies, universities, national laboratories, etc.—to facilitate the transition of cutting-edge clean energy technologies into products, processes, or services that are manufactured in the United States. Why should public and private sector leaders in innovation partner to co-create a scale-up platform? The United States is already a mecca for the world’s greatest minds in science and technology—drawn to our shores by world-class universities and opportunities to work with global leaders in innovation. Unfortunately, when it comes time to bring their ideas to market, technologists and entrepreneurs often choose, or are forced, to locate manufacturing overseas. The United States must regain its position in the world as a national scale-up platform for next-generation technologies. A thorough explanation of these PPP concepts and the rationale behind these recommendations is provided in Part 3 of Magnify. Magnify is an important step on the critical journey to define barriers, challenges and problems in the manufacturing of clean energy products and energy efficient products—and further honing concepts for scalable, public-private partnerships—to increase the competitive manufacturing of clean energy and energy efficient products, and the energy productivity throughout the U.S. manufactur¬ing sector. The rest of the world is waking up to the opportunities associated with a strategic focus on manufacturing and energy competitiveness. Global competition is on the rise, and the stakes are high for the United States to act now, to act decisively, and to leverage inherent strengths to ensure a more prosperous, competitive future for decades to come.« less

  8. 76 FR 77977 - U.S. Clean Energy and Energy Efficiency Trade Mission to Saudi Arabia Riyadh and Dhahran, Saudi...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-15

    ... and smart grid; and green building in residential, commercial and industrial settings. This mission....S. companies in the green building and energy efficiency subsectors. Companies will have the... building technologies and services. Greenbuilding/Energy Efficiency: Saudi Arabia is among the highest per...

  9. Understanding Cost-Effectiveness of Energy Efficiency Programs: Best Practices, Technical Methods, and Emerging Issues for Policy-Makers

    EPA Pesticide Factsheets

    Reviews the issues and approaches involved in considering and adopting cost-effectiveness tests for energy efficiency, including discussing each perspective represented by the five standard cost-effectiveness tests and clarifying key terms.

  10. Energy in the environment and the second law of thermodynamics

    NASA Technical Reports Server (NTRS)

    Mueller, R. F.

    1972-01-01

    The relationship between the consumption of energy by technological cultures and the second law of thermodynamics is discussed. The analysis is based on a description of the operation of a mechanical device which consumes energy. It is concluded that the flow of energy in manifold spontaneous conditions, which play a vital role in the operation of any technological process, remove most of the energy flow path from the control of the operator. It is stated that the increased efficiency of a process can benefit the environment only as much as this efficiency enables the total energy input to be reduced for a given level of production and increasing efficiency cannot meet the problems of an increased rate of energy utilization.

  11. A Course on Energy Technology and Policy

    ERIC Educational Resources Information Center

    Edgar, Thomas F.

    2007-01-01

    The emerging energy situation in the United States puts chemical engineering at the forefront of the large research and education effort that will need to be undertaken during the next 20 years. Chemical engineering undergraduates and graduate students will need to be literate on energy alternatives and the interconnection of technology,…

  12. 48 CFR 23.202 - Policy.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Energy and Water Efficiency and Renewable Energy 23.202 Policy. (a) Introduction. The Government's policy is to acquire supplies and services that promote a clean energy economy that increases our Nation...

  13. 48 CFR 23.202 - Policy.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Energy and Water Efficiency and Renewable Energy 23.202 Policy. (a) Introduction. The Government's policy is to acquire supplies and services that promote a clean energy economy that increases our Nation...

  14. 48 CFR 23.202 - Policy.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Energy and Water Efficiency and Renewable Energy 23.202 Policy. (a) Introduction. The Government's policy is to acquire supplies and services that promote a clean energy economy that increases our Nation...

  15. 48 CFR 23.202 - Policy.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Energy and Water Efficiency and Renewable Energy 23.202 Policy. (a) Introduction. The Government's policy is to acquire supplies and services that promote a clean energy economy that increases our Nation...

  16. Emerging Technologies for Gut Microbiome Research

    PubMed Central

    Arnold, Jason W.; Roach, Jeffrey; Azcarate-Peril, M. Andrea

    2016-01-01

    Understanding the importance of the gut microbiome on modulation of host health has become a subject of great interest for researchers across disciplines. As an intrinsically multidisciplinary field, microbiome research has been able to reap the benefits of technological advancements in systems and synthetic biology, biomaterials engineering, and traditional microbiology. Gut microbiome research has been revolutionized by high-throughput sequencing technology, permitting compositional and functional analyses that were previously an unrealistic undertaking. Emerging technologies including engineered organoids derived from human stem cells, high-throughput culturing, and microfluidics assays allowing for the introduction of novel approaches will improve the efficiency and quality of microbiome research. Here, we will discuss emerging technologies and their potential impact on gut microbiome studies. PMID:27426971

  17. Energy Efficiency Opportunities in Highway Lodging Buildings: Development of 50% Energy Savings Design Technology Packages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Wei; Gowri, Krishnan; Thornton, Brian A.

    2010-06-30

    This paper presents the process, methodology, and assumptions for development of the 50% Energy Savings Design Technology Packages for Highway Lodging Buildings, a design guidance document that provides specific recommendations for achieving 50% energy savings in roadside motels (highway lodging) above the requirements of ANSI/ASHRAE/IESNA Standard 90.1-2004. This 50% solution represents a further step toward realization of the U.S. Department of Energy’s net-zero energy building goal, and go beyond the 30% savings in the Advanced Energy Design Guide series (upon which this work was built). This work can serve as the technical feasibility study for the development of a 50%more » saving Advanced Energy Design Guide for highway lodging, and thus should greatly expedite the development process. The purpose of this design package is to provide user-friendly design assistance to designers, developers, and owners of highway lodging properties. It is intended to encourage energy-efficient design by providing prescriptive energy-efficiency recommendations for each climate zone that attains the 50% the energy savings target. This paper describes the steps that were taken to demonstrate the technical feasibility of achieving a 50% reduction in whole-building energy use with practical and commercially available technologies. The energy analysis results are presented, indicating the recommended energy-efficient measures achieved a national-weighted average energy savings of 55%, relative to Standard 90.1-2004. The cost-effectiveness of the recommended technology package is evaluated and the result shows an average simple payback of 11.3 years.« less

  18. Livestock waste-to-bioenergy generation opportunities.

    PubMed

    Cantrell, Keri B; Ducey, Thomas; Ro, Kyoung S; Hunt, Patrick G

    2008-11-01

    The use of biological and thermochemical conversion (TCC) technologies in livestock waste-to-bioenergy treatments can provide livestock operators with multiple value-added, renewable energy products. These products can meet heating and power needs or serve as transportation fuels. The primary objective of this work is to present established and emerging energy conversion opportunities that can transform the treatment of livestock waste from a liability to a profit center. While biological production of methanol and hydrogen are in early research stages, anaerobic digestion is an established method of generating between 0.1 to 1.3m3m(-3)d(-1) of methane-rich biogas. The TCC processes of pyrolysis, direct liquefaction, and gasification can convert waste into gaseous fuels, combustible oils, and charcoal. Integration of biological and thermal-based conversion technologies in a farm-scale hybrid design by combining an algal CO2-fixation treatment requiring less than 27,000m2 of treatment area with the energy recovery component of wet gasification can drastically reduce CO2 emissions and efficiently recycle nutrients. These designs have the potential to make future large scale confined animal feeding operations sustainable and environmentally benign while generating on-farm renewable energy.

  19. Entropy, pumped-storage and energy system finance

    NASA Astrophysics Data System (ADS)

    Karakatsanis, Georgios

    2015-04-01

    Pumped-storage holds a key role for integrating renewable energy units with non-renewable fuel plants into large-scale energy systems of electricity output. An emerging issue is the development of financial engineering models with physical basis to systematically fund energy system efficiency improvements across its operation. A fundamental physically-based economic concept is the Scarcity Rent; which concerns the pricing of a natural resource's scarcity. Specifically, the scarcity rent comprises a fraction of a depleting resource's full price and accumulates to fund its more efficient future use. In an integrated energy system, scarcity rents derive from various resources and can be deposited to a pooled fund to finance the energy system's overall efficiency increase; allowing it to benefit from economies of scale. With pumped-storage incorporated to the system, water upgrades to a hub resource, in which the scarcity rents of all connected energy sources are denominated to. However, as available water for electricity generation or storage is also limited, a scarcity rent upon it is also imposed. It is suggested that scarcity rent generation is reducible to three (3) main factors, incorporating uncertainty: (1) water's natural renewability, (2) the energy system's intermittent components and (3) base-load prediction deviations from actual loads. For that purpose, the concept of entropy is used in order to measure the energy system's overall uncertainty; hence pumped-storage intensity requirements and generated water scarcity rents. Keywords: pumped-storage, integration, energy systems, financial engineering, physical basis, Scarcity Rent, pooled fund, economies of scale, hub resource, uncertainty, entropy Acknowledgement: This research was funded by the Greek General Secretariat for Research and Technology through the research project Combined REnewable Systems for Sustainable ENergy DevelOpment (CRESSENDO; grant number 5145)

  20. The Modern Solar House: Architecture, Energy, and the Emergence of Environmentalism, 1938--1959

    NASA Astrophysics Data System (ADS)

    Barber, Daniel A.

    This dissertation describes the active discourse regarding solar house heating in American architectural, engineering, political, economic, and corporate contexts from the eve of World War II until the late 1950s. Interweaving these multiple narratives, the aim of the project is threefold: to document this vital discourse, to place it in the context of the history of architecture, and to trace through it the emergence of a techno-cultural environmentalism. Experimentation in the solar house relied on the principles of modern architecture for both energy efficiency and claims to cultural relevance. A passive "solar house principle" was developed in the late 30s in the suburban houses of George Fred Keck that involved open plans and flexible roof lines, and emphasized volumetric design. Spurred by wartime concern over energy resource depletion, architectural interest in solar heating also engaged an engineering discourse; in particular, an experimental program at the Massachusetts Institute of Technology led to four solar houses and a codification of its technological parameters. Attention to the MIT projects at the UN and in the Truman and Eisenhower administrations placed the solar house as a central node in an emergent network exploring the problems and possibilities of a renewable resource economy. Further experimentation elaborated on connections between this architecturalengineering discourse and the technical assistance regimes of development assistance; here by MIT researcher Maria Telkes, who also collaborated, at different junctures, with the architects Eleanor Raymond and Aladar Olgyay. The solar house discourse was further developed as a cultural project in the 1958 competition to design a solar heated residence, "Living With the Sun," which coalesced the diverse formal tendencies of midcentury modernism to promote the solar house as an innovation in both lifestyle and policy. Though the examples described are not successful as either technological objects and cultural projects, the story of the modern solar house excavates a history of the present anxiety concerning the relationship between environmental and social conditions. Perhaps most cogently, the narrative reconfigures the role of architecture within such discussions, as a site for both technological innovation and for experimentation in the formation of an environmentalist culture.

  1. A Systematic Review on Recent Advances in mHealth Systems: Deployment Architecture for Emergency Response

    PubMed Central

    2017-01-01

    The continuous technological advances in favor of mHealth represent a key factor in the improvement of medical emergency services. This systematic review presents the identification, study, and classification of the most up-to-date approaches surrounding the deployment of architectures for mHealth. Our review includes 25 articles obtained from databases such as IEEE Xplore, Scopus, SpringerLink, ScienceDirect, and SAGE. This review focused on studies addressing mHealth systems for outdoor emergency situations. In 60% of the articles, the deployment architecture relied in the connective infrastructure associated with emergent technologies such as cloud services, distributed services, Internet-of-things, machine-to-machine, vehicular ad hoc network, and service-oriented architecture. In 40% of the literature review, the deployment architecture for mHealth considered traditional connective infrastructure. Only 20% of the studies implemented an energy consumption protocol to extend system lifetime. We concluded that there is a need for more integrated solutions specifically for outdoor scenarios. Energy consumption protocols are needed to be implemented and evaluated. Emergent connective technologies are redefining the information management and overcome traditional technologies. PMID:29075430

  2. A Systematic Review on Recent Advances in mHealth Systems: Deployment Architecture for Emergency Response.

    PubMed

    Gonzalez, Enrique; Peña, Raul; Avila, Alfonso; Vargas-Rosales, Cesar; Munoz-Rodriguez, David

    2017-01-01

    The continuous technological advances in favor of mHealth represent a key factor in the improvement of medical emergency services. This systematic review presents the identification, study, and classification of the most up-to-date approaches surrounding the deployment of architectures for mHealth. Our review includes 25 articles obtained from databases such as IEEE Xplore, Scopus, SpringerLink, ScienceDirect, and SAGE. This review focused on studies addressing mHealth systems for outdoor emergency situations. In 60% of the articles, the deployment architecture relied in the connective infrastructure associated with emergent technologies such as cloud services, distributed services, Internet-of-things, machine-to-machine, vehicular ad hoc network, and service-oriented architecture. In 40% of the literature review, the deployment architecture for mHealth considered traditional connective infrastructure. Only 20% of the studies implemented an energy consumption protocol to extend system lifetime. We concluded that there is a need for more integrated solutions specifically for outdoor scenarios. Energy consumption protocols are needed to be implemented and evaluated. Emergent connective technologies are redefining the information management and overcome traditional technologies.

  3. Building energy information systems: Synthesis of costs, savings, and best-practice uses

    DOE PAGES

    Granderson, Jessica; Lin, Guanjing

    2016-02-19

    Building energy information systems (EIS) are a powerful customer-facing monitoring and analytical technology that can enable up to 20% site energy savings for buildings. Few technologies are as heavily marketed, but in spite of their potential, EIS remain an under-adopted emerging technology. One reason is the lack of information on purchase costs and associated energy savings. While insightful, the growing body of individual case studies has not provided industry the information needed to establish the business case for investment. Vastly different energy and economic metrics prevent generalizable conclusions. This paper addresses three common questions concerning EIS use: what are themore » costs, what have users saved, and which best practices drive deeper savings? We present a large-scale assessment of the value proposition for EIS use based on data from over two-dozen organizations. Participants achieved year-over-year median site and portfolio savings of 17% and 8%, respectively; they reported that this performance would not have been possible without the EIS. The median five-year cost of EIS software ownership (up-front and ongoing costs) was calculated to be $1,800 per monitoring point (kilowatt meter points were most common), with a median portfolio-wide implementation size of approximately 200 points. In this paper, we present an analysis of the relationship between key implementation factors and achieved energy reductions. Extent of efficiency projects, building energy performance prior to EIS installation, depth of metering, and duration of EIS were strongly correlated with greater savings. As a result, we also identify the best practices use of EIS associated with greater energy savings.« less

  4. Building energy information systems: Synthesis of costs, savings, and best-practice uses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Granderson, Jessica; Lin, Guanjing

    Building energy information systems (EIS) are a powerful customer-facing monitoring and analytical technology that can enable up to 20% site energy savings for buildings. Few technologies are as heavily marketed, but in spite of their potential, EIS remain an under-adopted emerging technology. One reason is the lack of information on purchase costs and associated energy savings. While insightful, the growing body of individual case studies has not provided industry the information needed to establish the business case for investment. Vastly different energy and economic metrics prevent generalizable conclusions. This paper addresses three common questions concerning EIS use: what are themore » costs, what have users saved, and which best practices drive deeper savings? We present a large-scale assessment of the value proposition for EIS use based on data from over two-dozen organizations. Participants achieved year-over-year median site and portfolio savings of 17% and 8%, respectively; they reported that this performance would not have been possible without the EIS. The median five-year cost of EIS software ownership (up-front and ongoing costs) was calculated to be $1,800 per monitoring point (kilowatt meter points were most common), with a median portfolio-wide implementation size of approximately 200 points. In this paper, we present an analysis of the relationship between key implementation factors and achieved energy reductions. Extent of efficiency projects, building energy performance prior to EIS installation, depth of metering, and duration of EIS were strongly correlated with greater savings. As a result, we also identify the best practices use of EIS associated with greater energy savings.« less

  5. Reference Model 6 (RM6): Oscillating Wave Energy Converter.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bull, Diana L; Smith, Chris; Jenne, Dale Scott

    This report is an addendum to SAND2013-9040: Methodology for Design and Economic Analysis of Marine Energy Conversion (MEC) Technologies. This report describes an Oscillating Water Column Wave Energy Converter reference model design in a complementary manner to Reference Models 1-4 contained in the above report. In this report, a conceptual design for an Oscillating Water Column Wave Energy Converter (WEC) device appropriate for the modeled reference resource site was identified, and a detailed backward bent duct buoy (BBDB) device design was developed using a combination of numerical modeling tools and scaled physical models. Our team used the methodology in SAND2013-9040more » for the economic analysis that included costs for designing, manufacturing, deploying, and operating commercial-scale MEC arrays, up to 100 devices. The methodology was applied to identify key cost drivers and to estimate levelized cost of energy (LCOE) for this RM6 Oscillating Water Column device in dollars per kilowatt-hour ($/kWh). Although many costs were difficult to estimate at this time due to the lack of operational experience, the main contribution of this work was to disseminate a detailed set of methodologies and models that allow for an initial cost analysis of this emerging technology. This project is sponsored by the U.S. Department of Energy's (DOE) Wind and Water Power Technologies Program Office (WWPTO), within the Office of Energy Efficiency & Renewable Energy (EERE). Sandia National Laboratories, the lead in this effort, collaborated with partners from National Laboratories, industry, and universities to design and test this reference model.« less

  6. Wireless sensor and actuator networks for lighting energy efficiency and user satisfaction

    NASA Astrophysics Data System (ADS)

    Wen, Yao-Jung

    Buildings consume more than one third of the primary energy generated in the U.S., and lighting alone accounts for approximately 30% of the energy usage in commercial buildings. As the largest electricity consumer of all building electrical systems, lighting harbors the greatest potential for energy savings in the commercial sector. Fifty percent of current energy consumption could be reduced with energy-efficient lighting management strategies. While commercial products do exist, they are poorly received due to exorbitant retrofitting cost and unsatisfactory performance. As a result, most commercial buildings, especially legacy buildings, have not taken advantage of the opportunity to generate savings from lighting. The emergence of wireless sensor and actuator network (WSAN) technologies presents an alternative that circumvents costly rewiring and promises better performance than existing commercial lighting systems. The goal of this dissertation research is to develop a framework for wireless-networked lighting systems with increased cost effectiveness, energy efficiency, and user satisfaction. This research is realized through both theoretical developments and implementations. The theoretical research aims at developing techniques for harnessing WSAN technologies to lighting hardware and control strategies. Leveraging redundancy, a sensor validation and fusion algorithm is developed for extracting pertinent lighting information from the disturbance-prone desktop-mounted photosensors. An adaptive sensing strategy optimizes the timing of data acquisition and power-hungry wireless transmission of sensory feedback in real-time lighting control. Exploiting the individual addressability of wireless-enabled luminaires, a lighting optimization algorithm is developed to create the optimal lighting that minimizes energy usage while satisfying occupants' diverse lighting preferences. The wireless-networked lighting system was implemented and tested in a number of real-life settings. A human subject study conducted in a private office concluded that the research system was competitive with the commercial lighting system with much fewer retrofitting requirements. The system implemented in a shared-space office realized a self-configuring mesh network with wireless photosensors and light actuators, and demonstrated a 50% energy savings and increased performance when harvesting daylight through windows is possible. The cost analysis revealed a reasonable payback period after the system is optimized for commercialization and confirms the marketing feasibility.

  7. Vehicle Technologies Program Awards and Patents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2011-12-13

    Award-winning technologies and processes are hallmarks of the programs funded by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, and industrial partners. Awards, patents, and other recognition validate the products of research undertaken as part of the Vehicle Technologies Program.

  8. Trauma Induced Pain and Wound Management in Emergency Environment by Low Energy Photonic Therapy

    DTIC Science & Technology

    2004-09-01

    Technology and Emergency Medical Procedures”, held in St. Pete Beach, USA, 16-18 August 2004, and published in RTO-MP-HFM-109. Report Documentation Page...Casualty Care in Ground-Based Tactical Situations: Trauma Technology and Emergency Medical Procedures (Soins aux blessés au combat dans des situations...tactiques : technologies des traumas et procédures médicales durgence)., The original document contains color images. 14. ABSTRACT 15. SUBJECT TERMS 16

  9. Using Internet of Things (IoT) technology to study environmental processes

    NASA Astrophysics Data System (ADS)

    Martinez, Kirk; Hart, Jane; Black, Andrew; Blagg, Olivia

    2016-04-01

    The Internet of Things is a term which has emerged to describe the increase of Internet connectivity of everyday objects. While wireless sensor networks have developed highly energy efficient designs they need a step-change in their interoperability and usability to become essential tools in the study of our environment. We discuss the design, deployment and results from an IoT system installed on the Cairngorm Plateau, Scotland. This is a fragile remote environment, which provides an ideal location to test IoT techniques. We have investigated cryospheric, hydrologic and ecological processes, and we report our preliminary findings.

  10. China’s Emerging Capabilities in Energy Technology Innovation and Development

    DTIC Science & Technology

    2015-01-22

    management of tempo, scaling, and cost reduction. For particularly complex energy technology systems, such as civilian nuclear power plants , the...technology systems, such as civilian nuclear power plants , the greatest challenges often involve not so much new technology development (a...are far more complex phenomena unfolding than simply technology transfer, duplication, and mimicry . Our work has opened up a series of new

  11. HARE: Supporting Efficient Uplink Multi-Hop Communications in Self-Organizing LPWANs.

    PubMed

    Adame Vázquez, Toni; Barrachina-Muñoz, Sergio; Bellalta, Boris; Bel, Albert

    2018-01-03

    The emergence of low-power wide area networks (LPWANs) as a new agent in the Internet of Things (IoT) will result in the incorporation into the digital world of low-automated processes from a wide variety of sectors. The single-hop conception of typical LPWAN deployments, though simple and robust, overlooks the self-organization capabilities of network devices, suffers from lack of scalability in crowded scenarios, and pays little attention to energy consumption. Aimed to take the most out of devices' capabilities, the HARE protocol stack is proposed in this paper as a new LPWAN technology flexible enough to adopt uplink multi-hop communications when proving energetically more efficient. In this way, results from a real testbed show energy savings of up to 15% when using a multi-hop approach while keeping the same network reliability. System's self-organizing capability and resilience have been also validated after performing numerous iterations of the association mechanism and deliberately switching off network devices.

  12. HARE: Supporting Efficient Uplink Multi-Hop Communications in Self-Organizing LPWANs

    PubMed Central

    Barrachina-Muñoz, Sergio; Bellalta, Boris

    2018-01-01

    The emergence of low-power wide area networks (LPWANs) as a new agent in the Internet of Things (IoT) will result in the incorporation into the digital world of low-automated processes from a wide variety of sectors. The single-hop conception of typical LPWAN deployments, though simple and robust, overlooks the self-organization capabilities of network devices, suffers from lack of scalability in crowded scenarios, and pays little attention to energy consumption. Aimed to take the most out of devices’ capabilities, the HARE protocol stack is proposed in this paper as a new LPWAN technology flexible enough to adopt uplink multi-hop communications when proving energetically more efficient. In this way, results from a real testbed show energy savings of up to 15% when using a multi-hop approach while keeping the same network reliability. System’s self-organizing capability and resilience have been also validated after performing numerous iterations of the association mechanism and deliberately switching off network devices. PMID:29301351

  13. How far can the world get on energy efficiency alone

    NASA Astrophysics Data System (ADS)

    Katzman, Martin T.

    A recent analysis suggests that by pursuing a path of energy efficiency, the industrial world can maintain and the developing world can achieve a high standard of living with little increase in primary energy consumption over the next 50 years. Moreover, this scenario can be achieved with a reduction of fossil fuel consumption. Three basic issues discussed at a workshop recently held at ORNL are presented to address this thesis. First, is this thesis plausible; to what extent can the scenario be achieved with currently or nearly available technology. Second, why can't a better job be done in reaching the potential; what are the barriers to the deeper penetration of energy-efficient technologies. Third, what policy and technological strategies are necessary to fulfill this scenario.

  14. Emergency Preparedness: Balancing Electrical Supply and Demand

    ERIC Educational Resources Information Center

    Rose, Mary Annette

    2006-01-01

    Integrating technology learning goals and activities with recent experiences created by natural disasters is a valuable motivational strategy. The newfound appreciation that exists for personal emergency preparedness generates unique and sustained interest in alternative energy technologies and conservation. As described in this article, an ice…

  15. The potential impact of new power system technology on the design of a manned space station

    NASA Technical Reports Server (NTRS)

    Fordyce, J. S.; Schwartz, H. J.

    1984-01-01

    Larger, more complex spacecraft of the future such as a manned Space Station will require electric power systems of 100 kW and more, orders of magnitude greater than the present state of the art. Power systems at this level will have a significant impact on the spacecraft design. Historically, long-lived spacecraft have relied on silicon solar cell arrays, a nickel-cadmium storage battery and operation at 28 V dc. These technologies lead to large array areas and heavy batteries for a Space Station application. This, in turn, presents orbit altitude maintenance, attitude control, energy management and launch weight and volume constraints. Size (area) and weight of such a power system can be reduced if new higher efficiency conversion and lighter weight storage technologies are used. Several promising technology options including concentrator solar photovoltaic arrays, solar thermal dynamic and ultimately nuclear dynamic systems to reduce area are discussed. Also, higher energy storage systems such as nickel-hydrogen and the regenerative fuel cell (RFC) and higher voltage power distribution which add system flexibility, simplicity and reduce weight are examined. Emphasis is placed on the attributes and development status of emerging technologies that are sufficiently developed so that they could be available for flight use in the early to mid 1990's.

  16. COST action TD1407: network on technology-critical elements (NOTICE)--from environmental processes to human health threats.

    PubMed

    Cobelo-García, A; Filella, M; Croot, P; Frazzoli, C; Du Laing, G; Ospina-Alvarez, N; Rauch, S; Salaun, P; Schäfer, J; Zimmermann, S

    2015-10-01

    The current socio-economic, environmental and public health challenges that countries are facing clearly need common-defined strategies to inform and support our transition to a sustainable economy. Here, the technology-critical elements (which includes Ga, Ge, In, Te, Nb, Ta, Tl, the Platinum Group Elements and most of the rare-earth elements) are of great relevance in the development of emerging key technologies-including renewable energy, energy efficiency, electronics or the aerospace industry. In this context, the increasing use of technology-critical elements (TCEs) and associated environmental impacts (from mining to end-of-life waste products) is not restricted to a national level but covers most likely a global scale. Accordingly, the European COST Action TD1407: Network on Technology-Critical Elements (NOTICE)-from environmental processes to human health threats, has an overall objective for creating a network of scientists and practitioners interested in TCEs, from the evaluation of their environmental processes to understanding potential human health threats, with the aim of defining the current state of knowledge and gaps, proposing priority research lines/activities and acting as a platform for new collaborations and joint research projects. The Action is focused on three major scientific areas: (i) analytical chemistry, (ii) environmental biogeochemistry and (iii) human exposure and (eco)-toxicology.

  17. The potential impact of new power system technology on the design of a manned Space Station

    NASA Technical Reports Server (NTRS)

    Fordyce, J. S.; Schwartz, H. J.

    1984-01-01

    Larger, more complex spacecraft of the future such as a manned Space Station will require electric power systems of 100 kW and more, orders of magnitude greater than the present state of the art. Power systems at this level will have a significant impact on the spacecraft design. Historically, long-lived spacecraft have relied on silicon solar cell arrays, a nickel-cadmium storage battery and operation at 28 V dc. These technologies lead to large array areas and heavy batteries for a Space Station application. This, in turn, presents orbit altitude maintenance, attitude control, energy management and launch weight and volume constraints. Size (area) and weight of such a power system can be reduced if new higher efficiency conversion and lighter weight storage technologies are used. Several promising technology options including concentrator solar photovoltaic arrays, solar thermal dynamic and ultimately nuclear dynamic systems to reduce area are discussed. Also, higher energy storage systems such as nickel-hydrogen and the regenerative fuel cell (RFC) and higher voltage power distribution which add system flexibility, simplicity and reduce weight are examined. Emphasis placed on the attributes and development status of emerging technologies that are sufficiently developed so that they could be available for flight use in the early to mid 1990's.

  18. Nanotechnologies: tools for sustainability in a new wave of water treatment processes.

    PubMed

    Bottero, Jean-Yves; Rose, Jerome; Wiesner, Mark Robert

    2006-10-01

    In the environmental technology industry alone, nanomaterials will enable new means of reducing the production of industrial wastes, using resources more sparingly, remediating industrial contamination, providing potable water, and improving the efficiency of energy production. This paper discusses three new kinds of nanotechnology materials that should be developed in the future: Membranes, oxidants, and adsorbents. Nanoscale control of membrane architecture may yield membranes of greater selectivity and lower cost in both water treatment and water fabrication. Fullerene-based oxidant nanomaterials such as C60 have a high electron affinity and reactivity, and are capable of producing reactive oxygen species such as singlet oxygen and superoxides. Fullerenes might be used in engineered systems to photocatalytically oxidize organic contaminants, or inhibit or inactivate microbes. The ability to tailor surfaces can help to increase adsorbing capacities or recognize specific contaminants. The potential environmental risks are that nanomaterials could interact with biota and that their toxicity adversely may affect ecosystems. As nanochemistry emerges as an important force behind new environmental technologies, we are also presented with the responsibility of considering the environmental implications of an emerging technology at its inception and taking every precaution to ensure that these technologies develop as tools of sustainability rather than becoming future liabilities.

  19. Metal-organic frameworks and their derived materials for electrochemical energy storage and conversion: Promises and challenges.

    PubMed

    Wu, Hao Bin; Lou, Xiong Wen David

    2017-12-01

    In addition to their conventional uses, metal-organic frameworks (MOFs) have recently emerged as an interesting class of functional materials and precursors of inorganic materials for electrochemical energy storage and conversion technologies. This class of MOF-related materials can be broadly categorized into two groups: pristine MOF-based materials and MOF-derived functional materials. Although the diversity in composition and structure leads to diverse and tunable functionalities of MOF-based materials, it appears that much more effort in this emerging field is devoted to synthesizing MOF-derived materials for electrochemical applications. This is in view of two main drawbacks of MOF-based materials: the low conductivity nature and the stability issue. On the contrary, MOF-derived synthesis strategies have substantial advantages in controlling the composition and structure of MOF-derived materials. From this perspective, we review some emerging applications of both groups of MOF-related materials as electrode materials for rechargeable batteries and electrochemical capacitors, efficient electrocatalysts, and even electrolytes for electrochemical devices. By highlighting the advantages and challenges of each class of materials for different applications, we hope to shed some light on the future development of this highly exciting area.

  20. Metal-organic frameworks and their derived materials for electrochemical energy storage and conversion: Promises and challenges

    PubMed Central

    Wu, Hao Bin; Lou, Xiong Wen (David)

    2017-01-01

    In addition to their conventional uses, metal-organic frameworks (MOFs) have recently emerged as an interesting class of functional materials and precursors of inorganic materials for electrochemical energy storage and conversion technologies. This class of MOF-related materials can be broadly categorized into two groups: pristine MOF-based materials and MOF-derived functional materials. Although the diversity in composition and structure leads to diverse and tunable functionalities of MOF-based materials, it appears that much more effort in this emerging field is devoted to synthesizing MOF-derived materials for electrochemical applications. This is in view of two main drawbacks of MOF-based materials: the low conductivity nature and the stability issue. On the contrary, MOF-derived synthesis strategies have substantial advantages in controlling the composition and structure of MOF-derived materials. From this perspective, we review some emerging applications of both groups of MOF-related materials as electrode materials for rechargeable batteries and electrochemical capacitors, efficient electrocatalysts, and even electrolytes for electrochemical devices. By highlighting the advantages and challenges of each class of materials for different applications, we hope to shed some light on the future development of this highly exciting area. PMID:29214220

  1. Essays on equity-efficiency trade offs in energy and climate policies

    NASA Astrophysics Data System (ADS)

    Sesmero, Juan P.

    Economic efficiency and societal equity are two important goals of public policy. Energy and climate policies have the potential to affect both. Efficiency is increased by substituting low-carbon energy for fossil energy (mitigating an externality) while equity is served if such substitution enhances consumption opportunities of unfavored groups (low income households or future generations). However policies that are effective in reducing pollution may not be so effective in redistributing consumption and vice-versa. This dissertation explores potential trade-offs between equity and efficiency arising in energy and climate policies. Chapter 1 yields two important results. First, while effective in reducing pollution, energy efficiency policies may fall short in protecting future generations from resource depletion. Second, deployment of technologies that increase the ease with which capital can substitute for energy may enhance the ability of societies to sustain consumption and achieve intertemporal equity. Results in Chapter 1 imply that technologies more intensive in capital and materials and less intensive in carbon such as corn ethanol may be effective in enhancing intertemporal equity. However the effectiveness of corn ethanol (relative to other technologies) in reducing emissions will depend upon the environmental performance of the industry. Chapter 2 measures environmental efficiency of ethanol plants, identifies ways to enhance performance, and calculates the cost of such improvements based on a survey of ethanol plants in the US. Results show that plants may be able to increase profits and reduce emissions simultaneously rendering the ethanol industry more effective in tackling efficiency. Finally while cap and trade proposals are designed to correcting a market failure by reducing pollution, allocation of emission allowances may affect income distribution and, hence, intra-temporal equity. Chapter 3 proves that under plausible conditions on preferences and technology increasing efficiency requires greater transfers to low income households the higher the effect of these transfers on the price of permits and the lower their effect on the price of consumption goods. This denotes market conditions under which efficiency and equity are complementary goals.

  2. 76 FR 37344 - Technology Evaluation Process

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-27

    ...-NOA-0039] Technology Evaluation Process AGENCY: Office of Energy Efficiency and Renewable Energy... is an extension of a prior RFI seeking comment on a proposed commercial buildings technology... seeks comments and information related to a commercial buildings technology evaluation process. DOE is...

  3. 76 FR 30696 - Technology Evaluation Process

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-26

    ...-NOA-0039] Technology Evaluation Process AGENCY: Office of Energy Efficiency and Renewable Energy... (DOE) seeks comments and information related to a commercial buildings technology evaluation process... technologies for commercial buildings based on the voluntary submittal of product test data. The program would...

  4. Energy Efficient Engine integrated core/low spool design and performance report

    NASA Technical Reports Server (NTRS)

    Stearns, E. Marshall

    1985-01-01

    The Energy Efficient Engine (E3) is a NASA program to create fuel saving technology for future transport aircraft engines. The E3 technology advancements were demonstrated to operate reliably and achieve goal performance in tests of the Integrated Core/Low Spool vehicle. The first build of this undeveloped technology research engine set a record for low fuel consumption. Its design and detailed test results are herein presented.

  5. Review of NASA programs in applying aerospace technology to energy

    NASA Technical Reports Server (NTRS)

    Schwenk, F. C.

    1981-01-01

    NASA's role in energy research and development, with the aid of aerospace technology, is reviewed. A brief history, which began in 1974 with studies of solar energy systems on earth, is presented, and the major energy programs, consisting of over 60 different projects, are described, and include solar terrestrial systems, conservation and fossil energy systems, and space utilization systems. Special attention is given to the Satellite Power System and the isolation of nuclear wastes in space. Emerging prospects for NASA programs in energy technology include bioenergy, and ocean thermal energy conversion, coal extraction and conversion technologies, and support to the nuclear industry in power plant systems safety.

  6. Nanotechnology for sustainable development: retrospective and outlook

    NASA Astrophysics Data System (ADS)

    Diallo, Mamadou S.; Fromer, Neil A.; Jhon, Myung S.

    2013-11-01

    The world is facing great challenges in meeting rising demands for basic commodities (e.g., food, water and energy), finished goods (e.g., cell phones, cars and airplanes) and services (e.g., shelter, healthcare and employment) while reducing and minimizing the impact of human activities on Earth's global environment and climate. Nanotechnology has emerged as a versatile platform that could provide efficient, cost-effective and environmentally acceptable solutions to the global sustainability challenges facing society. This special issue of the Journal of Nanoparticle Research is devoted to the utilization of nanotechnology to improve or achieve sustainable development. We highlight recent advances and discuss opportunities of utilizing nanotechnology to address global challenges in (1) water purification, (2) clean energy technologies, (3) greenhouse gases management, (4) materials supply and utilization, and (5) green manufacturing and chemistry. In addition to the technical challenges listed above, we also discuss societal perspectives and provide an outlook of the role of nanotechnology in the convergence of knowledge, technology and society for achieving sustainable development.

  7. Moonlight project promotes energy-saving technology

    NASA Astrophysics Data System (ADS)

    Ishihara, A.

    1986-01-01

    In promoting energy saving, development of energy conservation technologies aimed at raising energy efficiency in the fields of energy conversion, its transportation, its storage, and its consumption is considered, along with enactment of legal actions urging rational use of energies and implementation of an enlightenment campaign for energy conservation to play a crucial role. Under the Moonlight Project, technical development is at present being centered around the following six pillars: (1) large scale energy saving technology; (2) pioneering and fundamental energy saving technology; (3) international cooperative research project; (4) research and survey of energy saving technology; (5) energy saving technology development by private industry; and (6) promotion of energy saving through standardization. Heat pumps, magnetohydrodynamic generators and fuel cells are discussed.

  8. 48 CFR 23.204 - Procurement exemptions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Energy and Water Efficiency and Renewable Energy 23.204 Procurement exemptions. An agency is not required to procure an ENERGY STAR ® or FEMP-designated product if the head of the agency...

  9. 48 CFR 23.204 - Procurement exemptions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Energy and Water Efficiency and Renewable Energy 23.204 Procurement exemptions. An agency is not required to procure an ENERGY STAR® or FEMP-designated product if the head of the agency...

  10. 48 CFR 23.204 - Procurement exemptions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Energy and Water Efficiency and Renewable Energy 23.204 Procurement exemptions. An agency is not required to procure an ENERGY STAR ® or FEMP-designated product if the head of the agency...

  11. 48 CFR 23.204 - Procurement exemptions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Energy and Water Efficiency and Renewable Energy 23.204 Procurement exemptions. An agency is not required to procure an ENERGY STAR® or FEMP-designated product if the head of the agency...

  12. 48 CFR 23.204 - Procurement exemptions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Energy and Water Efficiency and Renewable Energy 23.204 Procurement exemptions. An agency is not required to procure an ENERGY STAR ® or FEMP-designated product if the head of the agency...

  13. Energy 101: Electric Vehicles

    ScienceCinema

    None

    2018-03-02

    This edition of Energy 101 highlights the benefits of electric vehicles, including improved fuel efficiency, reduced emissions, and lower maintenance costs. For more information on electric vehicles from the Office of Energy Efficiency and Renewable Energy, visit the Vehicle Technologies Program website: http://www1.eere.energy.gov/vehiclesandfuels/

  14. Design approaches to more energy efficient engines

    NASA Technical Reports Server (NTRS)

    Saunders, N. T.; Colladay, R. S.; Macioce, L. E.

    1978-01-01

    The status of NASA's Energy Efficient Engine Project, a comparative government-industry effort aimed at advancing the technology base for the next generation of large turbofan engines for civil aircraft transports is summarized. Results of recently completed studies are reviewed. These studies involved selection of engine cycles and configurations that offer potential for at least 12% lower fuel consumption than current engines and also are economically attractive and environmentally acceptable. Emphasis is on the advancements required in component technologies and systems design concepts to permit future development of these more energy efficient engines.

  15. Hot Technologies for K-12 Schools: The 2005 Guide for Technology Decision Makers. COSN's Emerging Technologies Series

    ERIC Educational Resources Information Center

    Vockley, Martha, Ed.

    2004-01-01

    As technology companies introduce innovative products and services for the education market, school districts have the opportunity to invest in technologies designed to improve instruction and operations--from teaching, learning and assessments to organizational efficiency. Perhaps the greatest promise of anticipated technologies is their…

  16. Biomethane production system: Energetic analysis of various scenarios.

    PubMed

    Wu, Bin; Zhang, Xiangping; Bao, Di; Xu, Yajing; Zhang, Suojiang; Deng, Liyuan

    2016-04-01

    The energy consumption models of biomethane production system were established, which are more rigorous and universal than the empirical data reported by previous biomethane system energetic assessment work. The energy efficiencies of different scenarios considering factors such as two digestion modes, two heating modes of digester, with or without heat exchange between slurry and feedstock, and four crude biogas upgrading technologies were evaluated. Results showed the scenario employing thermophilic digestion and high pressure water scrubbing technology, with heat exchange between feedstock and slurry, and heat demand of digester supplied by the energy source outside the system has the highest energy efficiency (46.5%) and lowest energy consumption (13.46 MJth/Nm(3) CH4), while scenario employing mesophilic digestion and pressure swing adsorption technology, without heat exchange and heat demand of digester supplied by combusting the biogas produced inside the system has the lowest energy efficiency (15.8%) and highest energy consumption (34.90 MJth/Nm(3) CH4). Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Leveraging gigawatt potentials by smart heat-pump technologies using ionic liquids.

    PubMed

    Wasserscheid, Peter; Seiler, Matthias

    2011-04-18

    One of the greatest challenges to science in the 21 st century is the development of efficient energy production, storage, and transformation systems with minimal ecological footprints. Due to the lack of efficient heat-transformation technologies, industries around the world currently waste energy in the gigawatt range at low temperatures (40-80 °C). These energy potentials can be unlocked or used more efficiently through a new generation of smart heat pumps operating with novel ionic liquid (IL)-based working pairs. The new technology is expected to allow revolutionary technical progress in heat-transformation devices, for example, significantly higher potential efficiencies, lower specific investments, and broader possibilities to incorporate waste energy from renewable sources. Furthermore, due to drastically reduced corrosion rates and excellent thermal stabilities of the new, IL-based working pairs, the high driving temperatures necessary for multi-effect cycles such as double- or triple-effect absorption chillers, can also be realized. The details of this novel and innovative heat-transformation technology are described. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Dynamic Power-Saving Method for Wi-Fi Direct Based IoT Networks Considering Variable-Bit-Rate Video Traffic.

    PubMed

    Jin, Meihua; Jung, Ji-Young; Lee, Jung-Ryun

    2016-10-12

    With the arrival of the era of Internet of Things (IoT), Wi-Fi Direct is becoming an emerging wireless technology that allows one to communicate through a direct connection between the mobile devices anytime, anywhere. In Wi-Fi Direct-based IoT networks, all devices are categorized by group of owner (GO) and client. Since portability is emphasized in Wi-Fi Direct devices, it is essential to control the energy consumption of a device very efficiently. In order to avoid unnecessary power consumed by GO, Wi-Fi Direct standard defines two power-saving methods: Opportunistic and Notice of Absence (NoA) power-saving methods. In this paper, we suggest an algorithm to enhance the energy efficiency of Wi-Fi Direct power-saving, considering the characteristics of multimedia video traffic. Proposed algorithm utilizes the statistical distribution for the size of video frames and adjusts the lengths of awake intervals in a beacon interval dynamically. In addition, considering the inter-dependency among video frames, the proposed algorithm ensures that a video frame having high priority is transmitted with higher probability than other frames having low priority. Simulation results show that the proposed method outperforms the traditional NoA method in terms of average delay and energy efficiency.

  19. Dynamic Power-Saving Method for Wi-Fi Direct Based IoT Networks Considering Variable-Bit-Rate Video Traffic

    PubMed Central

    Jin, Meihua; Jung, Ji-Young; Lee, Jung-Ryun

    2016-01-01

    With the arrival of the era of Internet of Things (IoT), Wi-Fi Direct is becoming an emerging wireless technology that allows one to communicate through a direct connection between the mobile devices anytime, anywhere. In Wi-Fi Direct-based IoT networks, all devices are categorized by group of owner (GO) and client. Since portability is emphasized in Wi-Fi Direct devices, it is essential to control the energy consumption of a device very efficiently. In order to avoid unnecessary power consumed by GO, Wi-Fi Direct standard defines two power-saving methods: Opportunistic and Notice of Absence (NoA) power-saving methods. In this paper, we suggest an algorithm to enhance the energy efficiency of Wi-Fi Direct power-saving, considering the characteristics of multimedia video traffic. Proposed algorithm utilizes the statistical distribution for the size of video frames and adjusts the lengths of awake intervals in a beacon interval dynamically. In addition, considering the inter-dependency among video frames, the proposed algorithm ensures that a video frame having high priority is transmitted with higher probability than other frames having low priority. Simulation results show that the proposed method outperforms the traditional NoA method in terms of average delay and energy efficiency. PMID:27754315

  20. Summary Report for National Aeronautics Space Administration (NASA) and Centro Para Prevencao da Poluicao (C3P) 2011 International Workshop on Environment and Alternative Energy

    NASA Technical Reports Server (NTRS)

    Greene, Brian

    2011-01-01

    The C3P &. NASA International Workshop on Environment and Alternative Energy was held on November 15-18, 2011 at the European Space Agency (ESA)'s Research and Technology Centre (ESTEC) in Noordwijk, The Netherlands. The theme of the workshop was "Global Collaboration in Environmental and Alternative Energy Strategies". The workshop was held at ESTEC's conference center. More than 110 individuals from eleven countries attended the workshop. For the first time since the inception of NASA-C3P workshops, a full day was dedicated to a student session. Fifteen students from around the globe gave oral presentations along with poster displays relating to the latest technologies in environmental and alternative energy strategies. Judges from NASA, C3P and ESA awarded plaques to the top three students. In addition to the students, thirty eight U.S. and international subject matter experts presented on the following general environmental-related topics: (1) Hazardous materials management and substitution in support of space operations (2) Emerging renewable and alternative energy technologies (3) Sustainable development and redevelopment (4) Remediation technologies and strategies The workshop also included a panel discussion on the topic of the challenges of operating installations across borders. Throughout the workshop, attendees heard about the scope of environmental and energy challenges that industry and governments face. They heard about technologies for increasing energy efficiency and increasing use of renewable energy. They learned about ways companies and government agencies are using materials, processes, goods and services in a manner more respectful with the environment and in compliance with health and safety rules. The concept of partnerships and their inherent benefits was evidenced throughout the workshop. Partnering is a key aspect of sustainability because sustainable development is complicated. Through formal presentations and side discussions, attendees commented on the need for continued exploration of joint projects of mutual interest.

  1. Energy Efficiency of the Outotec® Ausmelt Process for Primary Copper Smelting

    NASA Astrophysics Data System (ADS)

    Wood, Jacob; Hoang, Joey; Hughes, Stephen

    2017-03-01

    The global, non-ferrous smelting industry has witnessed the continual development and evolution of processing technologies in a bid to reduce operating costs and improve the safety and environmental performance of processing plants. This is particularly true in the copper industry, which has seen a number of bath smelting technologies developed and implemented during the past 30 years. The Outotec® Ausmelt Top Submerged Lance Process is one such example, which has been widely adopted in the modernisation of copper processing facilities in China and Russia. Despite improvements in the energy efficiency of modern copper smelting and converting technologies, additional innovation and development is required to further reduce energy consumption, whilst still complying with stringent environmental regulations. In response to this challenge, the Ausmelt Process has undergone significant change and improvement over the course of its history, in an effort to improve its overall competitiveness, particularly with respect to energy efficiency and operating costs. This paper covers a number of recent advances to the technology and highlights the impacts of these developments in reducing energy consumptions for a range of different copper flowsheets. It also compares the energy efficiency of the Ausmelt Process against the Bottom Blown Smelting process, which has become widely adopted in China over the past 5-10 years.

  2. Improving Best Air Conditioner Efficiency by 20-30% through a High Efficiency Fan and Diffuser Stage Coupled with an Evaporative Condenser Pre-Cooler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, Danny S; Sherwin, John R; Raustad, Richard

    2014-04-10

    The Florida Solar Energy Center (FSEC) conducted a research project to improve the best residential air conditioner condenser technology currently available on the market by retrofitting a commercially-available unit with both a high efficiency fan system and an evaporative pre-cooler. The objective was to integrate these two concepts to achieve an ultra-efficient residential air conditioner design. The project produced a working prototype that was 30% more efficient compared to the best currently-available technologies; the peak the energy efficiency ratio (EER) was improved by 41%. Efficiency at the Air-Conditioning and Refrigeration Institute (ARI) standard B-condition which is used to estimate seasonalmore » energy efficiency ratio (SEER), was raised from a nominal 21 Btu/Wh to 32 Btu/Wh.« less

  3. Energy efficient engine high-pressure turbine detailed design report

    NASA Technical Reports Server (NTRS)

    Thulin, R. D.; Howe, D. C.; Singer, I. D.

    1982-01-01

    The energy efficient engine high-pressure turbine is a single stage system based on technology advancements in the areas of aerodynamics, structures and materials to achieve high performance, low operating economics and durability commensurate with commercial service requirements. Low loss performance features combined with a low through-flow velocity approach results in a predicted efficiency of 88.8 for a flight propulsion system. Turbine airfoil durability goals are achieved through the use of advanced high-strength and high-temperature capability single crystal materials and effective cooling management. Overall, this design reflects a considerable extension in turbine technology that is applicable to future, energy efficient gas-turbine engines.

  4. Maximizing Residential Energy Savings: Net Zero Energy House (ZEH) Technology Pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, R.; Roberts, D.

    To meet current U.S. Department of Energy zero-energy home performance goals, new technologies and solutions must increase whole-house efficiency savings by an additional 40% relative to those provided by best available components and systems.

  5. Benchmarks of Global Clean Energy Manufacturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandor, Debra; Chung, Donald; Keyser, David

    The Clean Energy Manufacturing Analysis Center (CEMAC), sponsored by the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE), provides objective analysis and up-to-date data on global supply chains and manufacturing of clean energy technologies. Benchmarks of Global Clean Energy Manufacturing sheds light on several fundamental questions about the global clean technology manufacturing enterprise: How does clean energy technology manufacturing impact national economies? What are the economic opportunities across the manufacturing supply chain? What are the global dynamics of clean energy technology manufacturing?

  6. 10 CFR 430.3 - Materials incorporated by reference.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    .... Department of Energy, Office of Energy Efficiency and Renewable Energy, Building Technologies Program, 6th... appendix M to subpart B. (9) ASHRAE 103-1993, Methods of Testing for Annual Fuel Utilization Efficiency of... subpart B. (10) ASHRAE 116-1995 (RA 2005), Methods of Testing for Rating Seasonal Efficiency of Unitary...

  7. Organohalide Perovskites for Solar Energy Conversion.

    PubMed

    Lin, Qianqian; Armin, Ardalan; Burn, Paul L; Meredith, Paul

    2016-03-15

    Lead-based organohalide perovskites have recently emerged as arguably the most promising of all next generation thin film solar cell technologies. Power conversion efficiencies have reached 20% in less than 5 years, and their application to other optoelectronic device platforms such as photodetectors and light emitting diodes is being increasingly reported. Organohalide perovskites can be solution processed or evaporated at low temperatures to form simple thin film photojunctions, thus delivering the potential for the holy grail of high efficiency, low embedded energy, and low cost photovoltaics. The initial device-driven "perovskite fever" has more recently given way to efforts to better understand how these materials work in solar cells, and deeper elucidation of their structure-property relationships. In this Account, we focus on this element of organohalide perovskite chemistry and physics in particular examining critical electro-optical, morphological, and architectural phenomena. We first examine basic crystal and chemical structure, and how this impacts important solar-cell related properties such as the optical gap. We then turn to deeper electronic phenomena such as carrier mobilities, trap densities, and recombination dynamics, as well as examining ionic and dielectric properties and how these two types of physics impact each other. The issue of whether organohalide perovskites are predominantly nonexcitonic at room temperature is currently a matter of some debate, and we summarize the evidence for what appears to be the emerging field consensus: an exciton binding energy of order 10 meV. Having discussed the important basic chemistry and physics we turn to more device-related considerations including processing, morphology, architecture, thin film electro-optics and interfacial energetics. These phenomena directly impact solar cell performance parameters such as open circuit voltage, short circuit current density, internal and external quantum efficiency, fill factor, and ultimately the all-important power conversion efficiency. Finally, we address the key challenges pertinent to actually delivering a new and viable solar cell technology. These include long-term cell stability, scaling to the module level, and the toxicity associated with lead. Organohalide perovskites not only offer exciting possibilities for next generation optoelectronics and photovoltaics, but are an intriguing class of material crossing the boundaries of molecular solids and banded inorganic semiconductors. This is a potential area of rich new chemistry, materials science, and physics.

  8. SCALING AN URBAN EMERGENCY EVACUATION FRAMEWORK: CHALLENGES AND PRACTICES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karthik, Rajasekar; Lu, Wei

    2014-01-01

    Critical infrastructure disruption, caused by severe weather events, natural disasters, terrorist attacks, etc., has significant impacts on urban transportation systems. We built a computational framework to simulate urban transportation systems under critical infrastructure disruption in order to aid real-time emergency evacuation. This framework will use large scale datasets to provide a scalable tool for emergency planning and management. Our framework, World-Wide Emergency Evacuation (WWEE), integrates population distribution and urban infrastructure networks to model travel demand in emergency situations at global level. Also, a computational model of agent-based traffic simulation is used to provide an optimal evacuation plan for traffic operationmore » purpose [1]. In addition, our framework provides a web-based high resolution visualization tool for emergency evacuation modelers and practitioners. We have successfully tested our framework with scenarios in both United States (Alexandria, VA) and Europe (Berlin, Germany) [2]. However, there are still some major drawbacks for scaling this framework to handle big data workloads in real time. On our back-end, lack of proper infrastructure limits us in ability to process large amounts of data, run the simulation efficiently and quickly, and provide fast retrieval and serving of data. On the front-end, the visualization performance of microscopic evacuation results is still not efficient enough due to high volume data communication between server and client. We are addressing these drawbacks by using cloud computing and next-generation web technologies, namely Node.js, NoSQL, WebGL, Open Layers 3 and HTML5 technologies. We will describe briefly about each one and how we are using and leveraging these technologies to provide an efficient tool for emergency management organizations. Our early experimentation demonstrates that using above technologies is a promising approach to build a scalable and high performance urban emergency evacuation framework that can improve traffic mobility and safety under critical infrastructure disruption in today s socially connected world.« less

  9. REACT Real-Time Emergency Action Coordination Tool

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Recently the Emergency Management Operations Center (EMOC) of St. Tammany Parish turned to the Technology Development and Transfer Office (TDTO) of NASA's Stennis Space Center (SSC) for help in combating the problems associated with water inundation. Working through a Dual-Use Development Agreement the Technology Development and Transfer Office, EMOC and a small geospatial applications company named Nvision provided the parish with a new front-line defense. REACT, Real-time Emergency Action coordination Tool is a decision support system that integrates disparate information to enable more efficient decision making by emergency management personnel.

  10. Accelerating Clean Energy Commercialization. A Strategic Partnership Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, Richard; Pless, Jacquelyn; Arent, Douglas J.

    Technology development in the clean energy and broader clean tech space has proven to be challenging. Long-standing methods for advancing clean energy technologies from science to commercialization are best known for relatively slow, linear progression through research and development, demonstration, and deployment (RDD&D); and characterized by well-known valleys of death for financing. Investment returns expected by traditional venture capital investors have been difficult to achieve, particularly for hardware-centric innovations, and companies that are subject to project finance risks. Commercialization support from incubators and accelerators has helped address these challenges by offering more support services to start-ups; however, more effort ismore » needed to fulfill the desired clean energy future. The emergence of new strategic investors and partners in recent years has opened up innovative opportunities for clean tech entrepreneurs, and novel commercialization models are emerging that involve new alliances among clean energy companies, RDD&D, support systems, and strategic customers. For instance, Wells Fargo and Company (WFC) and the National Renewable Energy Laboratory (NREL) have launched a new technology incubator that supports faster commercialization through a focus on technology development. The incubator combines strategic financing, technology and technical assistance, strategic customer site validation, and ongoing financial support.« less

  11. Nanostructured materials for water desalination.

    PubMed

    Humplik, T; Lee, J; O'Hern, S C; Fellman, B A; Baig, M A; Hassan, S F; Atieh, M A; Rahman, F; Laoui, T; Karnik, R; Wang, E N

    2011-07-22

    Desalination of seawater and brackish water is becoming an increasingly important means to address the scarcity of fresh water resources in the world. Decreasing the energy requirements and infrastructure costs of existing desalination technologies remains a challenge. By enabling the manipulation of matter and control of transport at nanometer length scales, the emergence of nanotechnology offers new opportunities to advance water desalination technologies. This review focuses on nanostructured materials that are directly involved in the separation of water from salt as opposed to mitigating issues such as fouling. We discuss separation mechanisms and novel transport phenomena in materials including zeolites, carbon nanotubes, and graphene with potential applications to reverse osmosis, capacitive deionization, and multi-stage flash, among others. Such nanostructured materials can potentially enable the development of next-generation desalination systems with increased efficiency and capacity.

  12. Nanostructured materials for water desalination

    NASA Astrophysics Data System (ADS)

    Humplik, T.; Lee, J.; O'Hern, S. C.; Fellman, B. A.; Baig, M. A.; Hassan, S. F.; Atieh, M. A.; Rahman, F.; Laoui, T.; Karnik, R.; Wang, E. N.

    2011-07-01

    Desalination of seawater and brackish water is becoming an increasingly important means to address the scarcity of fresh water resources in the world. Decreasing the energy requirements and infrastructure costs of existing desalination technologies remains a challenge. By enabling the manipulation of matter and control of transport at nanometer length scales, the emergence of nanotechnology offers new opportunities to advance water desalination technologies. This review focuses on nanostructured materials that are directly involved in the separation of water from salt as opposed to mitigating issues such as fouling. We discuss separation mechanisms and novel transport phenomena in materials including zeolites, carbon nanotubes, and graphene with potential applications to reverse osmosis, capacitive deionization, and multi-stage flash, among others. Such nanostructured materials can potentially enable the development of next-generation desalination systems with increased efficiency and capacity.

  13. Distributed utility technology cost, performance, and environmental characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wan, Y; Adelman, S

    1995-06-01

    Distributed Utility (DU) is an emerging concept in which modular generation and storage technologies sited near customer loads in distribution systems and specifically targeted demand-side management programs are used to supplement conventional central station generation plants to meet customer energy service needs. Research has shown that implementation of the DU concept could provide substantial benefits to utilities. This report summarizes the cost, performance, and environmental and siting characteristics of existing and emerging modular generation and storage technologies that are applicable under the DU concept. It is intended to be a practical reference guide for utility planners and engineers seeking informationmore » on DU technology options. This work was funded by the Office of Utility Technologies of the US Department of Energy.« less

  14. 75 FR 11873 - Notice of Fuel Cell Pre-Solicitation Workshop

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-12

    ... DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy Notice of Fuel Cell Pre... Cell Pre-Solicitation Workshop. SUMMARY: The Fuel Cell Technologies Program, under the DOE Office of Energy Efficiency and Renewable Energy, is inviting the fuel cell research community and other...

  15. Hydrogen Injection Project

    DOT National Transportation Integrated Search

    2018-05-30

    Concerns over fuel cost volatility, climate change and air pollution has motivated a shift to cleaner and more efficient combustion technologies for marine and stationary power production. Numerous technologies have emerged promising to address these...

  16. Status and Analysis on Effects of Energy Efficiency Standards for Industrial Boilers in China

    NASA Astrophysics Data System (ADS)

    Liu, Ren; Chen, Lili; Liu, Meng; Ding, Qing; Zhao, Yuejin

    2017-11-01

    Energy conservation and environmental protection is the basic policy of China, and is an important part of ecological civilization construction. The industrial boilers in China are featured by large quantity, wide distribution, high energy consumption and heavy environmental pollution, which are key problems faced by energy conservation and environmental protection in China. Meanwhile, industrial boilers are important equipment for national economy and people’s daily life, and energy conservation gets through all segments from type selection, purchase, installation and acceptance to fuel management, operation, maintenance and service. China began to implement such national mandatory standards and regulations for industrial boiler as GB24500-2009 The Minimum Allowable Values of Energy Efficiency and Energy Efficiency Grades of Industrial Boilers and TSG G002-2010 Supervision Regulation on Energy-Saving Technology for Boilers since 2009, which obviously promote the development of energy conservation of industrial boilers, but there are also some problems with the rapid development of technologies for energy conservation of industrial boilers. In this paper, the implementation of energy efficiency standards for industrial boilers in China and the significance are analyzed based on survey data, and some suggestions are proposed for the energy efficiency standards for industrial boilers.

  17. Certifying Industrial Energy Efficiency Performance: AligningManagement, Measurement, and Practice to Create Market Value

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McKane, Aimee; Scheihing, Paul; Williams, Robert

    2007-07-01

    More than fifteen years after the launch of programs in theU.K. and U.S., industry still offers one of the largest opportunities forenergy savings worldwide. The International Energy Agency (IEA) estimatesthe savings potential from cost-optimization of industrial motor-drivensystems alone at 7 percent of global electricity use. The U.S. Departmentof Energy (USDOE) Industrial Technologies Program estimates 7 percentsavings potential in total US industrial energy use through theapplication of proven best practice. Simple paybacks for these types ofprojects are frequently two years or less. The technology required toachieve these savings is widely available; the technical skills requiredto identify energy saving opportunities are knownmore » and transferable.Although programs like USDOE's Best Practices have been highlysuccessful, most plants, as supported by 2002 MECS data, remain eitherunaware or unmotivated to improve their energy efficiency--as evidencedby the 98 percent of US industrial facilities reporting to MECS say thatthey lack a full-time energy manager. With the renewed interest in energyefficiency worldwide and the emergence of carbon trading and newfinancial instruments such as white certificates1, there is a need tointroduce greater transparency into the way that industrial facilitiesidentify, develop, and document energy efficiency projects. Historically,industrial energy efficiency projects have been developed by plantengineers, frequently with assistance from consultants and/or supplierswith highly specialized technical skills. Under this scenario,implementation of energy efficiency improvements is dependent onindividuals. These individuals typically include "champions" within anindustrial facility or corporation, working in cooperation withconsultants or suppliers who have substantial knowledge based on years ofexperience. This approach is not easily understood by others without thisspecialized technical knowledge, penetrates the market fairly slowly, andhas no assurance of persistence, since champions may leave the company orbe reassigned after project completion.This paper presents an alternatescenario that builds on the body of expert knowledge concerning energymanagement best practices and the experience of industrial champions toengage industry in continuous energy efficiency improvement at thefacility rather than the individual level. Under this scenario,standardized methodologies for applying and validating energy managementbest practices in industrial facilities will be developed through aconsensus process involving both plant personnel and specializedconsultants and suppliers. The resulting protocols will describe aprocess or framework for conducting an energy savings assessment andverifying the results that will be transparent to policymakers, managers,and the financial community, and validated by a third-party organization.Additionally, a global dialogue is being initiated by the United NationsIndustrial Development Organization (UNIDO) concerning the development ofan international industrial energy management standard that would be ISOcompatible. The proposed scenario will combine the resulting standardwith the best practice protocols for specific energy systems (i.e.,steam, process heating, compressed air, pumping systems, etc.) to formthe foundation of a third party, performance-based certification programfor the overall industrial facility that is compatible with existingmanagement systems, including ISO 9001:2000, 14001:2004 and 6 Sigma. Thelong term goal of this voluntary, industry designed certification programis to develop a transparent, globally accepted system for validatingenergy efficiency projects and management practices. This system wouldcreate a verified record of energy savings with potential market valuethat could be recognized among sectors and countries.« less

  18. EVALUATION OF THE EFFECTIVENESS OF TRUCK EFFICIENCY TECHNOLOGIES IN CLASS 8 TRACTOR-TRAILERS BASED ON A TRACTIVE ENERGY ANALYSIS USING MEASURED DRIVE CYCLE DATA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LaClair, Tim J; Gao, Zhiming; Fu, Joshua S.

    2014-01-01

    Quantifying the fuel savings that can be achieved from different truck fuel efficiency technologies for a fleet s specific usage allows the fleet to select the combination of technologies that will yield the greatest operational efficiency and profitability. This paper presents an analysis of vehicle usage in a commercial vehicle fleet and an assessment of advanced efficiency technologies using an analysis of measured drive cycle data for a class 8 regional commercial shipping fleet. Drive cycle measurements during a period of a full year from six tractor-trailers in normal operations in a less-than-truckload (LTL) carrier were analyzed to develop amore » characteristic drive cycle that is highly representative of the fleet s usage. The vehicle mass was also estimated to account for the variation of loads that the fleet experienced. The drive cycle and mass data were analyzed using a tractive energy analysis to quantify the fuel efficiency and CO2 emissions benefits that can be achieved on class 8 tractor-trailers when using advanced efficiency technologies, either individually or in combination. Although differences exist among class 8 tractor-trailer fleets, this study provides valuable insight into the energy and emissions reduction potential that various technologies can bring in this important trucking application.« less

  19. All the coal in China.

    PubMed

    Lenssen, N

    1993-01-01

    China is emerging as a serious producer of carbon emissions from its burning of coal. China contributes 11% of global carbon emissions, which is still less than its population share. Economic reforms are likely to boost emissions. 33% of all fuel burned in China produces useful energy compared to 50-60% in the USA and Japan. Low prices encourage wasteful use. The Chinese government responds to energy shortages by investing scarce capital in building more mines, power plants, and oil wells. It is unlikely that investing in expanding conventional energy supplies will be a viable solution, regardless of the availability of capital to invest, because air pollution threatens life. Particulate suspension is 14 times greater in China than in the USA. 14% of the country is affected by acid rain. Global warming may be affecting the northern drought prone areas. The solutions must involve greater efficiency. Industrial consumption of energy is more than 66% of energy produced. Energy use for a typical steel or cement factory is 7-75% greater per ton than Western countries, i.e., 55-60% efficiency versus 80% in Europe. The inefficiency is due to poor maintenance and operating procedures and old or obsolete technology. The savings in building a compact, fluorescent light bulb factory is compared to the cost of building coal-fired power plants and transmission facilities. Conservation of heat in northern buildings could be accomplished with boiler improvements, insulation, and double- glazed windows. A $3 billion/year investment could yield a cut in energy demand by nearly 50%. The carbon emissions would be reduced from 1.4 billion tons to 1 billion tons in 2025. Between 1980 and 1985 the energy efficiency program was able to reduce growth in energy from 7% to 4% without slowing growth in industrial production. Since 1985, the government has directed expenditures toward expanding the energy supply, which reduced efficiency expenditures from 10% to 6% of total investment. Alternatives are natural gas or solar, wind, biomass, and geothermal energy. Alternatives are natural gas or solar, wind, biomass, and geothermal energy. International lending agencies must now shift their support to renewable resource development and efficiency improvement and education; an example from industrialized countries would also be very persuasive.

  20. Emergency Medical Service (EMS): Rotorcraft Technology Workshop

    NASA Technical Reports Server (NTRS)

    Bauchspies, J. S.; Adams, R. J.

    1981-01-01

    A lead organization on the national level should be designated to establish concepts, locations, and the number of shock trauma air medical services. Medical specialists desire a vehicle which incorporates advances in medical technology trends in health care. Key technology needs for the emergency medical services helicopter of the future include the riding quality of fixed wing aircraft (reduced noise and vibration), no tail rotor, small rotor, small rotor diameter, improved visibility, crashworthy vehicle, IFR capability, more affordability high reliability, fuel efficient, and specialized cabins to hold medical/diagnostic and communications equipment. Approaches to a national emergency medical service are discussed.

  1. Energy Efficiency, Water Efficiency, and Renewable Energy Site Assessment: Seneca Rocks Discovery Center, Seneca Rocks, West Virginia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kiatreungwattana, Kosol; Salasovich, James; Kandt, Alicen

    As part of ongoing efforts by the U.S. Forest Service to reduce energy use and incorporate renewable energy technologies into its facilities, the Department of Energy's National Renewable Energy Laboratory performed an energy efficiency and renewable energy site assessment of the Seneca Rocks Discovery Center in Seneca Rocks, West Virginia. This report documents the findings of this assessment, and provides site-specific information for the implementation of energy and water conservation measures, and renewable energy measures.

  2. Analysis on effects of energy efficiency regulations & standards for industrial boilers in China

    NASA Astrophysics Data System (ADS)

    Liu, Ren; Chen, Lili; Zhao, Yuejin; Liu, Meng

    2017-11-01

    The industrial boilers in China are featured by large quantity, wide distribution, high energy consumption and heavy environmental pollution, which are key problems faced by energy conservation and environmental protection in China. Meanwhile, industrial boilers are important equipment for national economy and people’s daily life, and energy conservation gets through all segments from type selection, purchase, installation and acceptance to fuel management, operation, maintenance and service. China began to implement such national mandatory standards and regulations for industrial boiler as GB24500-2009 The Minimum Allowable Values of Energy Efficiency and Energy Efficiency Grades of Industrial Boilers and TSG G002-2010 Supervision Regulation on Energy-Saving Technology for Boilers since 2009, which obviously promote the development of energy conservation of industrial boilers, but there are also some problems with the rapid development of technologies for energy conservation of industrial boilers. In this paper, the implementation of energy efficiency standards for industrial boilers in China and the significance are analyzed based on survey data, and some suggestions are proposed for the energy efficiency standards for industrial boilers. Support by Project 2015424050 of Special Fund for quality control Research in the Public Interest

  3. Pollution reduction technologies being applied to small coal-fired boiler systems in Poland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Markussen, J.M.; Gyorke, D.F.

    1997-12-31

    To help in alleviating air pollution problems in Poland, various US environmental technologies are being installed in the city of Krakow to reduce emissions from short-stack coal- and coke-fired boilers. Introduction of low-cost, effective US pollution abatement and energy efficiency technologies is being completed through the US-Polish Krakow Clean Fossil Fuels and Energy Efficiency Program. Seven US firms are currently participating in the program; five projects are well under way and two are in the design phase. The technologies being applied in Krakow include modern district heating equipment and controls, coal preparation techniques, micronized coal combustion, automatic combustion controls, andmore » high-efficiency particulate control equipment. These technologies will be discussed along with pollutant reduction results obtained to date. Applications of these technologies are providing some efficient and economical answers to Krakow`s severe air pollution problems. Certainly, these technologies could be equally effective in many industrial cities throughout the world with similar air pollution concerns.« less

  4. Air transportation energy efficiency - Alternatives and implications

    NASA Technical Reports Server (NTRS)

    Williams, L. J.

    1976-01-01

    Results from recent studies of air transportation energy efficiency alternatives are discussed, along with some of the implications of these alternatives. The fuel-saving alternatives considered include aircraft operation, aircraft modification, derivative aircraft, and new aircraft. In the near-term, energy efficiency improvements should be possible through small improvements in fuel-saving flight procedures, higher density seating, and higher load factors. Additional small near-term improvements could be obtained through aircraft modifications, such as the relatively inexpensive drag reduction modifications. Derivatives of existing aircraft could meet the requirements for new aircraft and provide energy improvements until advanced technology is available to justify the cost of a completely new design. In order to obtain significant improvements in energy efficiency, new aircraft must truly exploit advanced technology in such areas as aerodynamics, composite structures, active controls, and advanced propulsion.

  5. None

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Traylor, T.D.; Hicks, S.C.

    1994-03-01

    Transportation Energy Research announces on a monthly basis the current worldwide research and development information available on energy-efficient, environmentally sound transportation technologies. Its purpose is to enhance the technology transfer efforts of the Department of Energy. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past month. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency`s Energy Technology Data Exchange or government-to-government agreements. The DOE Office of Transportation Technologies (OTT) managesmore » federal R&D programs aimed at improving transportation-sector energy efficiency. OTT currently supports activities in four major program areas: Electric and Hybrid Vehicles; Advanced Propulsion Systems; and magnetic levitation technology; Advanced Materials. DOE and DOE contractors can obtain copies for $4.00 per issue by using VISA, MasterCard, or OSTI deposit accounts. Contact the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831, Attention: Information Services. For further information, call (615) 576-8401. Public availability is by subscription from the US Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161. Order PB94-900900.« less

  6. Key Drivers of Marines Willingness to Adopt Energy-Efficient Technologies

    DTIC Science & Technology

    2013-12-01

    influences the rate of adoption. Communication is “the process by which participants create and share information with one another in order to reach a...more likely to assess the value of the innovation themselves rather than the value of the implementer’s market . Kleijnen, Lee, and Wetzels (2009...willingness to ucc (~pt energy cftid(’nt technologil~. The adaptation of energy efficient technologies will significantly reduce fossil fuel der>endency

  7. Energy-Efficient Renovation of Educational Buildings

    ERIC Educational Resources Information Center

    Erhorn-Kluttig, Heike; Morck, Ove

    2005-01-01

    Case studies demonstrating energy-efficient renovation of educational buildings collected by the International Energy Agency (IEA) provide information on retrofit technologies, energy-saving approaches and ventilation strategies. Some general findings are presented here along with one case study, Egebjerg School in Denmark, which shows how natural…

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    A two-year project between the National Renewable Energy Laboratory (NREL) and the U.S. Navy's Naval Facilities Engineering Command (NAVFAC) to demonstrate energy efficiency technologies at bases in Hawaii and Guam resulted in the identification of several promising options for reducing energy use and costs, including whole-house energy efficiency retrofits.

  9. State of Practice for Emerging Waste Conversion Technologies

    EPA Science Inventory

    New technologies to convert municipal and other waste streams into fuels and chemical commodities, termed conversion technologies, are rapidly developing. Conversion technologies are garnering increasing interest and demand due primarily to alternative energy initiatives. These t...

  10. Energy efficiency in the U.S. residential sector: An engineering and economic assessment of opportunities for large energy savings and greenhouse gas emissions reductions

    NASA Astrophysics Data System (ADS)

    Lima de Azevedo, Ines Margarida

    Energy efficiency and conservation is a very promising part of a portfolio of the needed strategies to mitigate climate change. Several technologies and energy efficiency measures in the residential sector offer potential for large energy savings. However, while energy efficiency options are currently considered as a means of reducing carbon emissions, there is still large uncertainty about the effect of such measures on overall carbon savings. The first part of this thesis provides a national assessment of the energy efficiency potential in the residential sector under several different scenarios, which include the perspectives of different economic agents (consumers, utilities, ESCOs, and a society). The scenarios also include maximizing energy, electricity or carbon dioxide savings. The second part of this thesis deals with a detailed assessment of the potential for white-light LEDs for energy and carbon dioxide savings in the U.S. commercial and residential sectors. Solid-state lighting shows great promise as a source of efficient, affordable, color-balanced white light. Indeed, assuming market discount rates, the present work demonstrates that white solid-state lighting already has a lower levelized annual cost (LAC) than incandescent bulbs and that it will be lower than that of the most efficient fluorescent bulbs by the end of this decade. However, a large literature indicates that households do not make their decisions in terms of simple expected economic value. The present analysis shows that incorporating the findings from literature on high implicit discount rates from households when performing decisions towards efficient technologies delays the adoption of white LEDs by a couple of years. After a review of the technology, the present work compares the electricity consumption, carbon emissions and cost-effectiveness of current lighting technologies, when accounting for expected performance evolution through 2015. Simulations of lighting electricity consumption and implicit greenhouse gases emissions for the U.S. residential and commercial sectors through 2015 under different policy scenarios (voluntary solid-state lighting adoption, implementation of lighting standards in new construction and rebate programs or equivalent subsidies) are also included.

  11. Southwest Energy Efficiency Project (SWEEP) Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geller, Howard; Meyers, Jim

    SWEEP worked with Energy Efficiency and Renewable Energy (EERE) programs to foster greater energy efficiency throughout the Southwest. SWEEP accomplished this through a combination of analysis and support; preparation and distribution of materials on best practice technologies, policies and programs; and technical assistance and information dissemination to states and municipalities in the southwest supporting BTO, AMO, OWIP for advancement of efficiency in products and practices. These efforts were accomplished during the period 2012 through 2017.

  12. Photovoltaics technology program summary

    NASA Astrophysics Data System (ADS)

    1985-05-01

    An adequate supply of energy at reasonable price is discussed. Economic efficiency and the following strategies to obtain it are suggested: (1) minimization of federal regulation in energy pricing; and (2) promote a balanced and mixed energy resource system. The development of photovoltaic energy conversion technology is summarized.

  13. 48 CFR 23.702 - Authorities.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... July 31, 2001, Energy Efficient Standby Power Devices. (f) Executive Order 13423 of January 24, 2007... PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Contracting for Environmentally Preferable Products and Services 23.702 Authorities...

  14. 48 CFR 2923.271 - Purchase and use of environmentally sound and energy efficient products and services.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Energy And Water Efficiency and...-stop shop for agency alternative fuel and vehicle information needs. http://www.afdc.nrel.gov. (5) The...

  15. 48 CFR 2923.271 - Purchase and use of environmentally sound and energy efficient products and services.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Energy And Water Efficiency and...-stop shop for agency alternative fuel and vehicle information needs. http://www.afdc.nrel.gov. (5) The...

  16. 48 CFR 2923.271 - Purchase and use of environmentally sound and energy efficient products and services.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Energy And Water Efficiency and...-stop shop for agency alternative fuel and vehicle information needs. http://www.afdc.nrel.gov. (5) The...

  17. 48 CFR 2923.271 - Purchase and use of environmentally sound and energy efficient products and services.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Energy And Water Efficiency and...-stop shop for agency alternative fuel and vehicle information needs. http://www.afdc.nrel.gov. (5) The...

  18. Hydrogen applications for Lambert-St. Louis International Airport

    DOT National Transportation Integrated Search

    2009-01-01

    Today, major airports are facing challenges related to pollution, energy efficiency, and safety and security. Hydrogen and fuel cell technologies, regarded as one of the key energy solutions of the 21st century are more energy efficient and reliable ...

  19. Multi-Year Program Plan FY'09-FY'15 Solid-State Lighting Research and Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2009-03-01

    President Obama's energy and environment agenda calls for deployment of 'the Cheapest, Cleanest, Fastest Energy Source - Energy Efficiency.' The Department of Energy's (DOE) Office of Energy Efficiency and Renewable Energy (EERE) plays a critical role in advancing the President's agenda by helping the United States advance toward an energy-efficient future. Lighting in the United States is projected to consume nearly 10 quads of primary energy by 2012.3 A nation-wide move toward solid-state lighting (SSL) for general illumination could save a total of 32.5 quads of primary energy between 2012 and 2027. No other lighting technology offers the DOE andmore » our nation so much potential to save energy and enhance the quality of our built environment. The DOE has set forth the following mission statement for the SSL R&D Portfolio: Guided by a Government-industry partnership, the mission is to create a new, U.S.-led market for high-efficiency, general illumination products through the advancement of semiconductor technologies, to save energy, reduce costs and enhance the quality of the lighted environment.« less

  20. Energy efficiency in California laboratory-type facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mills, E.; Bell, G.; Sartor, D.

    The central aim of this project is to provide knowledge and tools for increasing the energy efficiency and performance of new and existing laboratory-type facilities in California. We approach the task along three avenues: (1) identification of current energy use and savings potential, (2) development of a {ital Design guide for energy- Efficient Research Laboratories}, and (3) development of a research agenda for focused technology development and improving out understanding of the market. Laboratory-type facilities use a considerable amount of energy resources. They are also important to the local and state economy, and energy costs are a factor in themore » overall competitiveness of industries utilizing laboratory-type facilities. Although the potential for energy savings is considerable, improving energy efficiency in laboratory-type facilities is no easy task, and there are many formidable barriers to improving energy efficiency in these specialized facilities. Insufficient motivation for individual stake holders to invest in improving energy efficiency using existing technologies as well as conducting related R&D is indicative of the ``public goods`` nature of the opportunity to achieve energy savings in this sector. Due to demanding environmental control requirements and specialized processes, laboratory-type facilities epitomize the important intersection between energy demands in the buildings sector and the industrial sector. Moreover, given the high importance and value of the activities conducted in laboratory-type facilities, they represent one of the most powerful contexts in which energy efficiency improvements stand to yield abundant non-energy benefits if properly applied.« less

Top