Science.gov

Sample records for emerging terawatt picosecond

  1. The first picosecond terawatt CO{sub 2} laser at the Brookhaven Accelerator Test Facility

    SciTech Connect

    Pogorelsky, I.V.; Ben-Zvi, I.; Babzien, M.

    1998-02-01

    The first terawatt picosecond CO{sub 2} laser will be brought to operation at the Brookhaven Accelerator Test Facility in 1998. System consists of a single-mode TEA oscillator, picosecond semiconductor optical switch, multi-atmosphere. The authors report on design, simulation, and performance tests of the 10 atm final amplifier that allows for direct multi-joule energy extraction in a picosecond laser pulse.

  2. High-brightness picosecond ion beam source based on BNL Terawatt CO2 laser: Proof-of-principle experiments

    SciTech Connect

    Shkolnikov, Peter

    2012-10-04

    Under the continuing DOE support, we have: o assembled the basic experiment setup and then continued expanding it to include diverse diagnostics and to accommodate gas jet targets in addition to metal foils; o conducted an extensive study of our novel laser, significantly enhanced laser beam diagnostics, and improved relevant laser parameters; o turned our experiments into a truly international endeavor with active collaboration of close to 20 researchers in US, UK, and Germany; o conducted the first ever experiments with proton and ion acceleration by lasers interacting with overcritical plasma of gas jets; o for the first time directly observed radiation pressure acceleration of protons, including quasi-monoenergetic spectra promising for future applications; o for the first time directly observed quasi-stable, bubble-like plasma structures that likely evolved from relativistic laser-plasma solitons (post-solitons). Thus, we have confirmed a strong potential of a picosecond TW CO2 laser as a research tool in laser-plasma science and as a promising vehicle for future applications of laser ion acceleration. This has led to apparent increase of the interest in mid-IR laser ion acceleration. In particular, another major research group began extensive proton acceleration experiments with their own CO2 laser at UCLA. As a result, the mechanisms responsible for laser proton acceleration in gas jets have become somewhat clearer. It is also important to note that modest DOE funding played the role of a seed support ensuring the formation of a multinational research team, whose members contributed its time and equipment with value well in excess of that seed amount.

  3. Effects of picosecond terawatt UV laser beam filamentation and a repetitive pulse train on creation of prolonged plasma channels in atmospheric air

    NASA Astrophysics Data System (ADS)

    Zvorykin, V. D.; Ionin, A. A.; Levchenko, A. O.; Seleznev, L. V.; Shutov, A. V.; Sinitsyn, D. V.; Smetanin, I. V.; Ustinovskii, N. N.

    2013-08-01

    Amplitude-modulated UV laser pulse of up to 30 J energy was produced at hybrid Ti:Sapphire/KrF GARPUN-MTW laser facility when a preliminary amplified train of short pulses was injected into unstable resonator cavity of the main e-beam-pumped KrF amplifier. The combined radiation consisted of regeneratively amplified picosecond pulses with subTW peak power overlapped with 100-ns pulse of a free-running lasing. The advantages of combined radiation for production of long-lived prolonged plasma channels in air and HV discharge triggering were demonstrated: photocurrent sustained by modulated pulse is two orders of magnitude higher and HV breakdown distance is twice longer than for a smooth UV pulse. It was found that in contrast to IR radiation multiple filamentation of high-power UV laser beam does not produce extended nonlinear focusing of UV radiation.

  4. Approach to compact terawatt CO{sub 2} laser system for particle acceleration

    SciTech Connect

    Pogorelsky, I.V.; Kimura, W.D.; Fisher, C.H.; Kannari, F.; Kurnit, N.A.

    1994-11-01

    A compact table-top 20-GW 50-ps CO{sub 2} laser system is in operation for strong-field physics studies at the ATF. We propose scaling up of the picosecond CO{sub 2} laser to a terawatt peak power level to meet the requirements of advanced laser accelerators. Computer modeling shows that a relatively compact single-beam picosecond CO{sub 2} laser system with a high-pressure x-ray picosecond amplifier of a 10-cm aperture is potentially scalable to the {approximately}1-TW peak power level.

  5. Picosecond optoelectronic devices

    SciTech Connect

    Lee, C.L.

    1984-01-01

    Ever since the invention of picosecond lasers, scientists and electronic engineers have been dreaming of inventing electronic devices that can record in real time the physical and electronic events that take place on picosecond time scales. With the exception of the expensive streak camera, this dream has been largely unfullfilled. Today, a real-time oscilloscope with picosecond time resolution is still not available. To fill the need for even better time resolution, researchers have turned to optical pulses and thus a hybrid technology has emerged-picosecond optoelectronics. This technology, based on bulk photoconductors, has had a slow start. However, because of the simplicity, scaleability, and jitterfree nature of the devices, the technology has recently experienced a rapid growth. This volume reviews the major developments in the field of picosecond optoelectronics over the past decade.

  6. Generation of 160-ps terawatt-power CO2 laser pulses

    SciTech Connect

    Tochitsky, S. Ya.; Narang, R.; Filip, C.; Clayton, C. E.; Marsh, K. A.; Joshi, C.

    1999-12-01

    We have developed a three-stage CO{sub 2} master-oscillator-amplifier system that produces 1.1 TW of peak power. The system generates 170 J of energy in a diffraction-limited 160{+-}10 ps pulse on the 10P(20) line. We also report the realization of a two-wavelength terawatt-peak-power CO{sub 2} laser that can be tuned to an arbitrary pair of lines. A two-stage semiconductor switching system driven by a picosecond-pulse Nd:YAG laser was used to slice a short, low-power 10.6-{mu}m pulse for amplification. A simple plasma shutter helped to compensate for gain narrowing in a final three-pass amplifier and to shorten the pulse. (c) 1999 Optical Society of America.

  7. Status of the Leopard Laser Project in Nevada Terawatt Facility

    NASA Astrophysics Data System (ADS)

    Wiewior, Piotr P.; Astanovitskiy, A.; Aubry, G.; Batie, S.; Caron, J.; Chalyy, O.; Cowan, T.; Haefner, C.; Le Galloudec, B.; Le Galloudec, N.; Macaulay, D.; Nalajala, V.; Pettee, G.; Samek, S.; Stepanenko, Y.; Vesco, J.

    2009-06-01

    Nevada Terawatt Facility (NTF) currently operates a high-intensity laser system—Leopard. NTF already operates a powerful z-pinch device, called Zebra, for plasma and High Energy Density physics research. The unique research opportunities arise from the combination of NTF's terawatt Zebra z-pinch with 50-terawatt-class Leopard laser. This combination also provides opportunities to address fundamental physics of inertial fusion and high energy density physics with intense laser beam. We report on the status, design and architecture of the Leopard laser project. A first experiments carried out with Leopard will be also briefly mentioned.

  8. Experimental plasma astrophysics using a T{sup 3} (Table-top Terawatt) laser

    SciTech Connect

    Tajima, T.

    1996-11-01

    Lasers that can deliver immense power of Terawatt (10{sup 12}W) and can still compactly sit on a Table-Top (T{sup 3} lasers) emerged in the 1990s. The advent of these lasers allows us to access to regimes of astronomical physical conditions that once thought impossible to realize in a terrestrial laboratory. We touch on examples that include superhigh pressure materials that may resemble the interior of giant planets and white dwarfs and of relativistic temperature plasmas that may exist in the early cosmological epoch and in the neighborhood of the blackhole event horizon.

  9. Picosecond Chemical and Biological Events.

    ERIC Educational Resources Information Center

    Rentzepis, P. M.

    1978-01-01

    Describes a currently used picosecond spectroscopy system capable of reliably recording picosecond events. Two areas of picosecond research are discussed: one concerns the interaction of electrons in fluids; the second, the primary events in vision. (Author/HM)

  10. Broadly tunable picosecond ir source

    DOEpatents

    Campillo, A.J.; Hyer, R.C.; Shapiro, S.L.

    1980-04-23

    A picosecond traveling-wave parametric device capable of controlled spectral bandwidth and wavelength in the infrared is reported. Intense 1.064 ..mu..m picosecond pulses (1) pass through a 4.5 cm long LiNbO/sub 3/ optical parametric oscillator crystal (2) set at its degeneracy angle. A broad band emerges, and a simple grating (3) and mirror (4) arrangement is used to inject a selected narrow-band into a 2 cm long LiNbO/sub 3/ optical parametric amplifier crystal (5) along a second pump line. Typical input energies at 1.064 ..mu..m along both pump lines are 6 to 8 mJ for the oscillator and 10 mJ for the amplifier. This yields 1 mJ of tunable output in the range 1.98 to 2.38 ..mu..m which when down-converted in a 1 cm long CdSe crystal mixer (6) gives 2 ..mu..J of tunable radiation over the 14.8 to 18.5 ..mu..m region. The bandwidth and wavelength of both the 2 and 16 ..mu..m radiation output are controlled solely by the diffraction grating.

  11. Broadly tunable picosecond IR source

    DOEpatents

    Campillo, Anthony J.; Hyer, Ronald C.; Shapiro, Stanley J.

    1982-01-01

    A picosecond traveling-wave parametric device capable of controlled spectral bandwidth and wavelength in the infrared is reported. Intense 1.064 .mu.m picosecond pulses (1) pass through a 4.5 cm long LiNbO.sub.3 optical parametric oscillator crystal (2) set at its degeneracy angle. A broad band emerges, and a simple grating (3) and mirror (4) arrangement is used to inject a selected narrow-band into a 2 cm long LiNbO.sub.3 optical parametric amplifier crystal (5) along a second pump line. Typical input energies at 1.064 .mu.m along both pump lines are 6-8 mJ for the oscillator and 10 mJ for the amplifier. This yields 1 mJ of tunable output in the range 1.98 to 2.38 .mu.m which when down-converted in a 1 cm long CdSe crystal mixer (6) gives 2 .mu.J of tunable radiation over the 14.8 to 18.5 .mu.m region. The bandwidth and wavelength of both the 2 and 16 .mu.m radiation output are controlled solely by the diffraction grating.

  12. Picosecond beam monitor

    DOEpatents

    Schutt, D.W.; Beck, G.O.

    1974-01-01

    The current in the beam of a particle accelerator is monitored with picosecond resolution by causing the beam to impinge upon the center conductor of a coaxial line, generating a pulse of electromagnetic energy in response thereto. This pulse is detected by means such as a sampling oscilloscope. (Official Gazette)

  13. Prospects of obtaining terawatt class infrared pulses using standard optical parametric amplification

    NASA Astrophysics Data System (ADS)

    Guo, Xiaoyang; Tokita, Shigeki; Tu, Xiaoniu; Zheng, Yanqing; Kawanaka, Junji

    2017-02-01

    We conceptually propose a standard optical parametric amplification system based on YCOB crystal to achieve terawatt (TW) class infrared (IR) pulses with 100 mJ level energy, which would be one order of magnitude more energetic and powerful than currently available IR pulses and suitable to generate high photon flux water window x-rays.

  14. Picosecond Spin Caloritronics

    NASA Astrophysics Data System (ADS)

    Cahill, David G.

    The coupling of spin and heat, i.e., spin caloritronics, gives rise to new physical phenomena in nanoscale spin devices and new ways to manipulate local magnetization. Our work in this field takes advantage of recent advances in the measurement and understanding of heat transport at the nanoscale using ultrafast lasers. We use a picosecond duration pump laser pulses as a source of heat and picosecond duration probe laser pulses to detect changes in temperature, spin accumulation, and spin transfer torque using a combination of time-domain thermoreflectance and time-resolved magneto-optic Kerr effect Our pump-probe optical methods enable us to change the temperature of ferromagnetic layers on a picosecond time-scale and generate enormous heat fluxes on the order of 100 GW m-2 that persist for ~ 30 ps. Thermally-driven ultrafast demagnetization of a perpendicular ferromagnet leads to spin accumulation in a normal metal and spin transfer torque in an in-plane ferromagnet. The data are well described by models of spin generation and transport based on differences and gradients of thermodynamic parameters. The spin-dependent Seebeck effect of a perpendicular ferromagnetic layer converts a heat current into spin current, which in turn can be used to exert a spin transfer torque (STT) on a second ferromagnetic layer with in-plane magnetization. Using a [Co,Ni] multilayer as the source of spin, an energy fluence of ~ 4 J m-2 creates thermal STT sufficient to induce ~ 1 % tilting of the magnetization of a 2 nm-thick CoFeB layer.

  15. Picosecond Spin Seebeck Effect

    NASA Astrophysics Data System (ADS)

    Kimling, Johannes; Choi, Gyung-Min; Brangham, Jack T.; Matalla-Wagner, Tristan; Huebner, Torsten; Kuschel, Timo; Yang, Fengyuan; Cahill, David G.

    2017-02-01

    We report time-resolved magneto-optic Kerr effect measurements of the longitudinal spin Seebeck effect in normal metal /Y3Fe5 O12 bilayers driven by an interfacial temperature difference between electrons and magnons. The measured time evolution of spin accumulation induced by laser excitation indicates transfer of angular momentum across normal metal /Y3Fe5 O12 interfaces on a picosecond time scale, too short for contributions from a bulk temperature gradient in an yttrium iron garnet. The product of spin-mixing conductance and the interfacial spin Seebeck coefficient determined is of the order of 108 A m-2 K-1 .

  16. The picosecond laser for tattoo removal.

    PubMed

    Hsu, Vincent M; Aldahan, Adam S; Mlacker, Stephanie; Shah, Vidhi V; Nouri, Keyvan

    2016-11-01

    The prevalence of tattoos continues to grow as modern society's stigma towards this form of body art shifts towards greater acceptance. Approximately one third of Americans aged 18-25 and 40 % of Americans aged 26-40 are tattooed. As tattoos continue to rise in popularity, so has the demand for an effective method of tattoo removal such as lasers. The various colors of tattoo inks render them ideal targets for specific lasers using the principle of selective photothermolysis. Traditional laser modalities employed for tattoo removal operate on pulse durations in the nanosecond domain. However, this pulse duration range is still too long to effectively break ink into small enough particles. Picosecond (10(-12)) lasers have emerged at the forefront of laser tattoo removal due to their shorter pulse lengths, leading to quicker heating of the target chromophores, and consequently, more effective tattoo clearance. Recent studies have cited more effective treatment outcomes using picosecond lasers. Future comparative studies between picosecond lasers of various settings are necessary to determine optimal laser parameters for tattoo clearance.

  17. Temporally-coherent terawatt attosecond XFEL synchronized with a few cycle laser

    PubMed Central

    Kumar, Sandeep; Parc, Yong Woon; Landsman, Alexandra S.; Kim, Dong Eon

    2016-01-01

    Attosecond metrology using laser-based high-order harmonics has been significantly advanced and applied to various studies of electron dynamics in atoms, molecules and solids. Laser-based high-order harmonics have a limitation of low power and photon energies. There is, however, a great demand for even higher power and photon energy. Here, we propose a scheme for a terawatt attosecond (TW-as) X-ray pulse in X-ray free-electron laser controlled by a few cycle IR pulse, where one dominant current spike in an electron bunch is used repeatedly to amplify a seeded radiation to a terawatt level. This scheme is relatively simple, compact, straightforward, and also produces a temporally and spectrally clean pulse. The viability of this scheme is demonstrated in simulations using Pohang accelerator laboratory (PAL)-XFEL beam parameters. PMID:27892964

  18. Temporally-coherent terawatt attosecond XFEL synchronized with a few cycle laser.

    PubMed

    Kumar, Sandeep; Parc, Yong Woon; Landsman, Alexandra S; Kim, Dong Eon

    2016-11-28

    Attosecond metrology using laser-based high-order harmonics has been significantly advanced and applied to various studies of electron dynamics in atoms, molecules and solids. Laser-based high-order harmonics have a limitation of low power and photon energies. There is, however, a great demand for even higher power and photon energy. Here, we propose a scheme for a terawatt attosecond (TW-as) X-ray pulse in X-ray free-electron laser controlled by a few cycle IR pulse, where one dominant current spike in an electron bunch is used repeatedly to amplify a seeded radiation to a terawatt level. This scheme is relatively simple, compact, straightforward, and also produces a temporally and spectrally clean pulse. The viability of this scheme is demonstrated in simulations using Pohang accelerator laboratory (PAL)-XFEL beam parameters.

  19. Temporally-coherent terawatt attosecond XFEL synchronized with a few cycle laser

    NASA Astrophysics Data System (ADS)

    Kumar, Sandeep; Parc, Yong Woon; Landsman, Alexandra S.; Kim, Dong Eon

    2016-11-01

    Attosecond metrology using laser-based high-order harmonics has been significantly advanced and applied to various studies of electron dynamics in atoms, molecules and solids. Laser-based high-order harmonics have a limitation of low power and photon energies. There is, however, a great demand for even higher power and photon energy. Here, we propose a scheme for a terawatt attosecond (TW-as) X-ray pulse in X-ray free-electron laser controlled by a few cycle IR pulse, where one dominant current spike in an electron bunch is used repeatedly to amplify a seeded radiation to a terawatt level. This scheme is relatively simple, compact, straightforward, and also produces a temporally and spectrally clean pulse. The viability of this scheme is demonstrated in simulations using Pohang accelerator laboratory (PAL)-XFEL beam parameters.

  20. Picosecond measurements using photoacoustic detection

    NASA Technical Reports Server (NTRS)

    Heritier, J.-M.; Siegman, A. E.

    1983-01-01

    A report is presented of experimental results on picosecond time-resolved photoacoustic measurements of excited-state lifetimes, cross sections, and polarization properties for organic dye molecules in solution, using a new technique in which the total photoacoustic impulse produced by two ultrashort optical pulses with variable time delay between them is detected. The picosecond photoacoustic detection technique reported here appears to be a promising new way to observe weak excited-state cross sections and to perform picosecond lifetime measurements in a large variety of weakly absorbing and/or nonfluorescing atomic and molecular systems.

  1. Picosecond Spin Seebeck Effect.

    PubMed

    Kimling, Johannes; Choi, Gyung-Min; Brangham, Jack T; Matalla-Wagner, Tristan; Huebner, Torsten; Kuschel, Timo; Yang, Fengyuan; Cahill, David G

    2017-02-03

    We report time-resolved magneto-optic Kerr effect measurements of the longitudinal spin Seebeck effect in normal metal/Y_{3}Fe_{5}O_{12} bilayers driven by an interfacial temperature difference between electrons and magnons. The measured time evolution of spin accumulation induced by laser excitation indicates transfer of angular momentum across normal metal/Y_{3}Fe_{5}O_{12} interfaces on a picosecond time scale, too short for contributions from a bulk temperature gradient in an yttrium iron garnet. The product of spin-mixing conductance and the interfacial spin Seebeck coefficient determined is of the order of 10^{8}  A m^{-2} K^{-1}.

  2. Picosecond laser filamentation in air

    NASA Astrophysics Data System (ADS)

    Schmitt-Sody, Andreas; Kurz, Heiko G.; Bergé, Luc; Skupin, Stefan; Polynkin, Pavel

    2016-09-01

    The propagation of intense picosecond laser pulses in air in the presence of strong nonlinear self-action effects and air ionization is investigated experimentally and numerically. The model used for numerical analysis is based on the nonlinear propagator for the optical field coupled to the rate equations for the production of various ionic species and plasma temperature. Our results show that the phenomenon of plasma-driven intensity clamping, which has been paramount in femtosecond laser filamentation, holds for picosecond pulses. Furthermore, the temporal pulse distortions in the picosecond regime are limited and the pulse fluence is also clamped. In focused propagation geometry, a unique feature of picosecond filamentation is the production of a broad, fully ionized air channel, continuous both longitudinally and transversely, which may be instrumental for many applications including laser-guided electrical breakdown of air, channeling microwave beams and air lasing.

  3. High efficiency guiding of terawatt subpicosecond laser pulses in a capillary discharge plasma channel

    NASA Astrophysics Data System (ADS)

    Kaganovich, D.; Ting, A.; Moore, C. I.; Zigler, A.; Burris, H. R.; Ehrlich, Y.; Hubbard, R.; Sprangle, P.

    1999-05-01

    Transmission efficiencies in excess of 75% were obtained in the optical guiding of subpicosecond, terawatt laser pulses in a 2-cm-long capillary discharge plasma channel at the Naval Research Laboratory. The guided laser beam size at the exit of the channel was measured using far field imaging and Thomson scattering techniques. The guided laser intensity was >1×1017 W/cm2 at a guided beam diameter of 35 μm for a propagation length of 22 Rayleigh ranges. There is evidence that the plasma channel extends beyond the ends of the capillary and affects the far field beam structure of the transmitted laser pulse.

  4. Underwater acoustic wave generation by filamentation of terawatt ultrashort laser pulses.

    PubMed

    Jukna, Vytautas; Jarnac, Amélie; Milián, Carles; Brelet, Yohann; Carbonnel, Jérôme; André, Yves-Bernard; Guillermin, Régine; Sessarego, Jean-Pierre; Fattaccioli, Dominique; Mysyrowicz, André; Couairon, Arnaud; Houard, Aurélien

    2016-06-01

    Acoustic signals generated by filamentation of ultrashort terawatt laser pulses in water are characterized experimentally. Measurements reveal a strong influence of input pulse duration on the shape and intensity of the acoustic wave. Numerical simulations of the laser pulse nonlinear propagation and the subsequent water hydrodynamics and acoustic wave generation show that the strong acoustic emission is related to the mechanism of superfilamention in water. The elongated shape of the plasma volume where energy is deposited drives the far-field profile of the acoustic signal, which takes the form of a radially directed pressure wave with a single oscillation and a very broad spectrum.

  5. High brightness picosecond electron gun

    SciTech Connect

    Merano, M.; Collin, S.; Renucci, P.; Gatri, M.; Sonderegger, S.; Crottini, A.; Ganiere, J.D.; Deveaud, B.

    2005-08-15

    We have developed a high brightness picosecond electron gun. We have used it to replace the thermionic electron gun of a commercial scanning electron microscope (SEM) in order to perform time-resolved cathodoluminescence experiments. Picosecond electron pulses are produced, at a repetition rate of 80.7 MHz, by femtosecond mode-locked laser pulses focused on a metal photocathode. This system has a normalized axial brightness of 93 A/cm{sup 2} sr kV, allowing for a spatial resolution of 50 nm in the secondary electron imaging mode of the SEM. The temporal width of the electron pulse is 12 ps.

  6. Picosecond spectroscopy of dihydro biliverdin

    NASA Astrophysics Data System (ADS)

    Ditto, Manfred; Brunner, Harald; Lippitsch, Max E.

    1991-10-01

    Picosecond time-resolved fluorescence and absorption spectroscopy was performed on dihydro biliverdin, a model for the chromophore in the plant pigment phytochrome, a chromoprotein governing plant growth. Close agreement between the model compound and the native chromophore proves the importance of the saturated pyrrol ring for the decay kinetics and renders chromophore protonation in phytochrome unlikely.

  7. Time-resolved voltage measurements in terawatt magnetically insulated transmission lines

    SciTech Connect

    Savage, M.E.; Mendel, C.W. Jr.; Grasser, T.W.; Simpson, W.W.; Zagar, D.M. )

    1990-12-01

    We have developed two voltage diagnostics that circumvent many of the difficulties of measuring voltage in magnetically insulated transmission lines driven by terawatt (megavolt and megampere) electrical pulsers. Two versions of simple vacuum capacitive probes use strong magnetic fields to deflect electrons from the anode-mounted displacement current collector. We then introduce the electron launching voltage monitor as a novel way to measure voltage. This device uses a relationship between anode electric field and electron current launched from a cathode-mounted perturbation. The electron launching voltage monitor has a large number of advantages over methods commonly used to measure voltage, including large signal level, tolerance to poor vacuum, and nanosecond temporal response. This article shows designs for all these monitors, and presents data from experiments done on the SuperMite pulser at Sandia National Laboratories.

  8. A 10-Hz Terawatt Class Ti:Sapphire Laser System: Development and Applications

    SciTech Connect

    Sharma, A.K.; Smedley, J.; Tsang, T.; Rao, T.

    2010-01-12

    We developed a two stage Ti:Sapphire laser system to generate 16 mJ/80fs laser pulses at the pulse repetition rate of 10 Hz. The key deriver for the present design is implementing a highly efficient symmetric confocal pre-amplifier and employing a simple, inexpensive synchronization scheme relying only on a commercial digital delay-generator. We characterized the amplified pulses in spatial-, spectral-, and temporal-domains. The laser system was used to investigate various nonlinear optical processes, and to modify the optical properties of metal- and semiconductor-surfaces. We are currently building a third amplifier to boost the laser power to the multi-terawatt range.

  9. The use of picosecond lasers beyond tattoos.

    PubMed

    Forbat, E; Al-Niaimi, F

    2016-10-01

    Picosecond lasers are a novel laser with the ability to create a pulse of less than one nanosecond. They have been available in the clinical context since 2012. Dermatologists are now using picosecond lasers regularly for the treatment of blue and green pigment tattoo removal. This article reviews the use of picosecond lasers beyond tattoo removal. The overall consensus for the use of picosecond lasers beyond tattoo treatment is positive. With examples of this in the treatment of nevus of Ota, minocycline-induced pigmentation, acne scarring, and rhytides.

  10. Airbreathing Laser Propulsion Experiments with 1 {mu}m Terawatt Pharos III Laser: Part 1

    SciTech Connect

    Myrabo, L. N.; Lyons, P. W.; Jones, R. A.; Liu, S.; Manka, C.

    2011-11-10

    This basic research study examines the physics of airbreathing laser propulsion at the extreme flux range of 1-2x10{sup 11} W/cm{sup 2}--within the air breakdown threshold for l {mu}m radiation--using the terawatt PHAROS III neodymium-glass pulsed laser. Six different experimental setups were tested using a 34 mm line focus with 66 {mu}m focal waist, positioned near the flat impulse surface. The first campaign investigated impulse generation with the beam oriented almost normal to the target surface, with energies ranging from 23 to 376 J, and pulses of 5 to 30 ns FWHM. Air breakdown/ plasma dynamics were diagnosed with GOI cameras and color photography. Laser generated impulse was quantified with both vertical pendulums and piezoelectric pressure transducers using the standard performance metric, C{sub M}--the momentum coupling coefficient. Part 1 of this 2-part paper covers Campaign no. 1 results including laser plasma diagnostics, pressure gage and vertical pendulum data.

  11. Airbreathing Laser Propulsion Experiments with 1 {mu}m Terawatt Pharos IIILaser: Part 2

    SciTech Connect

    Myrabo, L. N.; Lyons, P. W.; Jones, R. A.; Liu, S.; Manka, C.

    2011-11-10

    This basic research study examines the physics of airbreathing laser propulsion at the extreme flux range of 1-2x10{sup 11} W/cm{sup 2}--within the air breakdown threshold for l {mu}m radiation--using the terawatt Pharos III neodymium-glass pulsed laser. Six different experimental setups were employed using a 34 mm line focus with 66 {mu}m focal waist, positioned near the flat impulse surface. The 2nd Campaign investigated impulse generation with the laser beam focused at grazing incidence across near horizontal target surfaces, with pulse energies ranging from 55 to 186 J, and pulse-widths of 2 to 30 ns FWHM. Laser generated impulse was measured with a horizontal Plexiglas registered ballistic pendulum equipped with either a steel target insert or 0.5 Tesla permanent magnet (NEIT-40), to quantify changes in the momentum coupling coefficient (C{sub M}). Part 2 of this 2-part paper covers Campaign no. 2 results including C{sub M} performance data, and long exposure color photos of LP plasma phenomena.

  12. Diagnosing Pulsed Power Produced Plasmas with X-ray Thomson Scattering at the Nevada Terawatt Facility

    NASA Astrophysics Data System (ADS)

    Valenzuela, J. C.; Krauland, C.; Mariscal, D.; Krasheninnikov, I.; Beg, F. N.; Wiewior, P.; Covington, A.; Presura, R.; Ma, T.; Niemann, C.; Mabey, P.; Gregori, G.

    2015-11-01

    We present experimental results on X-ray Thomson scattering (XRTS) at the Nevada Terawatt Facility (NTF) to study current driven plasmas. Using the Leopard laser, ~ 30 J and pulse width of 0.8 ns, we generated He- α emission (4.75 keV) from a thin Ti foil. Initial parameter scans showed that the optimum intensity is ~ 1015W/cm2 with a foil thickness of 2 μm for forward X-ray production. Bandwidth measurements of the source, using a HAPG crystal in the Von Hamos configuration, were found to be ΔE/E ~ 0.01. Giving the scattering angle of our experimental setup of 129 degrees and X-ray probing energy, the non-collective regime was accessed. The ZEBRA load was a 3 mm wide, 500 μm thick, and 10 mm long graphite foil, placed at one of the six current return posts. Estimates of the plasma temperature, density and ionization state were made by fitting the scattering spectra with dynamic structure factor calculations based on the random phase approximation for the treatment of charged particle coupling. The work was partially funded by the Department of Energy grant number DE-NA0001995.

  13. ED50 study of femtosecond terawatt laser pulses on porcine skin

    NASA Astrophysics Data System (ADS)

    Kumru, Semih; Cain, Clarence P.; Noojin, Gary; Imholte, Michelle; Cox, Duane; Crane, Carrie; Rockwell, Benjamin

    2005-04-01

    We report on our measurements of the Minimum Visible Lesion (MVL) thresholds for porcine skin [Yucatan mini-pig (Sus scrofa domestica)] for laser exposures at 810 nm and sub-50 femtosecond (fs) laser pulses. In this study we measured the ED50 skin thresholds from laser pulses that produced multiple self-focusing filaments while propagating from the laser to the skin. These high-powered (1-2 terawatt) filaments were focused on the flank of mini-pig and three trained readers determined the number of lesions becoming visible at 1-hour and 24-hour post-exposure. The observed damage patterns on the skin surface indicated the number of filaments in the laser pulse and these were photographed for future reference. Histological sections were obtained after both readings and the results will be reported later for sub-surface damage. The threshold using preliminary data at 1-hour was 9 mJ of energy and increased to 25 mJ after 24 hours. This increase in threshold indicated that many of the laser pulses produced only superficial damage (erthemia) that disappeared in 24 hours and that nearly 3 times the pulse energy was required to cause subsurface or cellular damage.

  14. Temporal Characterization of a Picosecond Laser-Pumped X-ray Laser (for Applications)

    SciTech Connect

    Dunn, J; Nilsen, J; Shepherd, R; Shlyaptsev, V; Booth, R; Smith, R; Hunter, J

    2003-11-25

    Compact soft x-ray laser sources are now used routinely for various applications primarily because of their high repetition rate, high photon fluence and short pulse duration characteristics. For some of these applications, for example interferometry of high density laser-produced plasmas, longer optical drive pulses, 6-13 ps (FWHM), have been implemented to maximize the x-ray output and coherence. It is therefore important to know the x-ray laser pulse length, shape and repeatability for these specific experiments as a baseline measurement but also to better understand the temporal behavior as a function of the pumping conditions in general. We report a detailed temporal characterization of the picosecond-driven 14.7 nm Ni-like Pd ion x-ray laser on the Compact Multipulse Terawatt (COMET) laser at LLNL using an ultrafast x-ray streak camera measurement of a horizontal slice of the near-field x-ray laser pattern. This is measured as a function of the chirped pulse amplification pumping laser conditions, including varying the pump pulse from 0.5-27 ps (FWHM), varying the plasma column length as well as investigating traveling wave (TW) and non-TW irradiation conditions.

  15. Fundamentals of picosecond laser ultrasonics.

    PubMed

    Matsuda, Osamu; Larciprete, Maria Cristina; Li Voti, Roberto; Wright, Oliver B

    2015-02-01

    The aim of this article is to provide an introduction to picosecond laser ultrasonics, a means by which gigahertz-terahertz ultrasonic waves can be generated and detected by ultrashort light pulses. This method can be used to characterize materials with nanometer spatial resolution. With reference to key experiments, we first review the theoretical background for normal-incidence optical detection of longitudinal acoustic waves in opaque single-layer isotropic thin films. The theory is extended to handle isotropic multilayer samples, and is again compared to experiment. We then review applications to anisotropic samples, including oblique-incidence optical probing, and treat the generation and detection of shear waves. Solids including metals and semiconductors are mainly discussed, although liquids are briefly mentioned.

  16. Design of a Command-Triggered Plasma Opening Switch for Terawatt Applications

    SciTech Connect

    SAVAGE,MARK E.; MENDEL,C.W.; SEIDEL,DAVID B.

    1999-10-29

    Inductive energy storage systems can have high energy density, lending to smaller, less expensive systems. The crucial element of an inductive energy storage system is the opening switch. This switch must conduct current while energy is stored in an inductor, then open quickly to transfer this energy to a load. Plasma can perform this function. The Plasma Opening Switch (POS) has been studied for more than two decades. Success with the conventional plasma opening switch has been limited. A system designed to significantly improve the performance of vacuum opening switches is described in this paper. The gap cleared of plasma is a rough figure-of-merit for vacuum opening switches. Typical opened gaps of 3 mm are reported for conventional switches. The goal for the system described in this paper is more than 3 cm. To achieve this, the command-triggered POS adds an active opening mechanism, which allows complete separation of conduction and opening. This separation is advantageous because of the widely different time scales of conduction and opening. The detrimental process of magnetic field penetration into the plasma during conduction is less important in this switch. The opening mechanism duration is much shorter than the conduction time, so penetration during opening is insignificant. Opening is accomplished with a fast magnetic field that pushes plasma out of the switch region. Plasma must be removed from the switch region to allow high voltage. This paper describes some processes important during conduction and opening, and show calculations on the trigger requirements. The design of the switch is shown. This system is designed to demonstrate both improved performance and nanosecond output jitter at levels greater than one terawatt. An amplification mechanism is described which reduces the trigger energy. Particle-in-cell simulations of the system are also shown.

  17. Production of Multi-Terawatt Time-Structured CO{sub 2} Laser Pulses for Ion Acceleration

    SciTech Connect

    Haberberger, Dan; Tochitsky, Sergei; Gong Chao; Joshi, Chan

    2010-11-04

    The UCLA Neptune Laboratory CO{sub 2} laser system has been recently upgraded to produce 3ps multi-terawatt 10{mu}m laser pulses. The laser energy is distributed over several 3 ps pulses separated by 18 ps. These temporally structured pulses are applied for laser driven ion acceleration in an H{sub 2} gas jet at a measured plasma density of 2x10{sup 19} cm{sup -3}. Protons in excess of 20 MeV have been observed in the forward direction and with energy spreads ({Delta}E/E{approx}10%).

  18. Electron acceleration in preformed plasma channels with terawatt CO{sub 2} laser

    SciTech Connect

    Pogorelsky, I.V.

    1995-02-01

    Extended cylindrical plasma channels produced under gas breakdown by axicon-focused laser beams may be used as optical waveguides in laser-driven electron accelerators. Plasma channeling of the laser beams will help to maintain a high acceleration gradient over many Rayleigh lengths. In addition, the rarefied gas density channel produced after the optical gas breakdown, and followed by a plasma column expansion, reduces multiple scattering of the electron beam. A high-power picosecond C0{sub 2}laser operational at the ATF and being further upgraded to the 1 TW level is considered as the source for a plasma channel formation and as the laser accelerator driver. We show how various laser accelerator schemes including beat wave, wake field, and Inverse Cherenkov accelerator benefit from using a channeled short-pulse C0{sub 2}laser as a driver.

  19. A carrier-envelope-phase stabilized terawatt class laser at 1 kHz with a wavelength tunable option

    NASA Astrophysics Data System (ADS)

    Trallero, C. A.; Langdon, B.; Garlick, J.; Ren, X.; Wilson, D. J.; Summers, A. M.; Zigo, S.; Kling, M. F.; Lei, S.; Elles, C. G.; Poliakoff, E. D.; Carnes, K. D.; Kumarappan, V.; Ben-Itzhak, I.

    2015-05-01

    We demonstrate a chirped-pulse-amplified Ti:Sapphire laser system operating at 1 kHz, with 20 mJ pulse energy, 26 femtosecond pulse duration (0.77 terawatt), and excellent long term carrier-envelope-phase (CEP) stability. A new vibrational damping technique is implemented to significantly reduce vibrational noise on both the laser stretcher and compressor, thus enabling a single-shot CEP noise value of 250 mrad RMS over 1 hour and 300 mrad RMS over 9 hours. This is, to the best of our knowledge, the best long term CEP noise ever reported for any terawatt class laser. This laser is also used to pump a white-light-seeded optical parametric amplifier, producing 6 mJ of total energy in the signal and idler. Due to preservation of the CEP in the white-light generated signal and passive CEP stability in the idler, this laser system promises synthesized laser pulses spanning multi-octaves of bandwidth at an unprecedented energy scale. NSF-MRI grant No:1229672, DOD-DURIP grant No. FA2386-12-1-3014, DOE grant No. DE-FG02-86ER13491, NSF Fellowship DGE-1247193 (DJW), and NDSEG Fellowship (AMS).

  20. Carrier-envelope-phase stabilized terawatt class laser at 1 kHz with a wavelength tunable option.

    PubMed

    Langdon, Benjamin; Garlick, Jonathan; Ren, Xiaoming; Wilson, Derrek J; Summers, Adam M; Zigo, Stefan; Kling, Matthias F; Lei, Shuting; Elles, Christopher G; Wells, Eric; Poliakoff, Erwin D; Carnes, Kevin D; Kumarappan, Vinod; Ben-Itzhak, Itzik; Trallero-Herrero, Carlos A

    2015-02-23

    We demonstrate a chirped-pulse-amplified Ti:Sapphire laser system operating at 1 kHz, with 20 mJ pulse energy, 26 femtosecond pulse duration (0.77 terawatt), and excellent long term carrier-envelope-phase (CEP) stability. A new vibrational damping technique is implemented to significantly reduce vibrational noise on both the laser stretcher and compressor, thus enabling a single-shot CEP noise value of 250 mrad RMS over 1 hour and 300 mrad RMS over 9 hours. This is, to the best of our knowledge, the best long term CEP noise ever reported for any terawatt class laser. This laser is also used to pump a white-light-seeded optical parametric amplifier, producing 6 mJ of total energy in the signal and idler with 18 mJ of pumping energy. Due to preservation of the CEP in the white-light generated signal and passive CEP stability in the idler, this laser system promises synthesized laser pulses spanning multi-octaves of bandwidth at an unprecedented energy scale.

  1. Lidar receivers for picosecond remote sensing

    NASA Astrophysics Data System (ADS)

    Stoyanov, D. V.; Dreischuh, T. N.

    1992-07-01

    The lidars of picosecond resolution are an attractive tool for remote probing of some highly dynamic objects like sea subsurface waters, small-scale turbulences in the atmosphere, etc. The picosecond lasers are suitable illuminating sources, but the main restrictions are due to the lack of proper receiving methods, combining the both high temporal and amplitude resolution, good sensitivity, short integration time, and wide dynamic range. The methods for short pulse measurements are not suitable for picosecond lidars, operating at low level, with highly dynamic signals. The streak-cameras are of high cost, lower sensitivity, and lower dynamic range (approximately 10(exp 3)). Because of the background, the single quantum regime in photomultipliers (PMT) is ineffective. The sampling of highly dynamic optical signals with resolution less than or equal to 1ns is a serious problem, limiting the application of the high speed PMT-MCP (microchannel plate) in the picosecond lidar systems. The goal of this work is to describe the use of a new photodetection technique which combines the picosecond resolution with the high amplitude resolution, dynamic range, and sensitivity.

  2. Lidar receivers for picosecond remote sensing

    NASA Technical Reports Server (NTRS)

    Stoyanov, D. V.; Dreischuh, T. N.

    1992-01-01

    The lidars of picosecond resolution are an attractive tool for remote probing of some highly dynamic objects like sea subsurface waters, small-scale turbulences in the atmosphere, etc. The picosecond lasers are suitable illuminating sources, but the main restrictions are due to the lack of proper receiving methods, combining the both high temporal and amplitude resolution, good sensitivity, short integration time, and wide dynamic range. The methods for short pulse measurements are not suitable for picosecond lidars, operating at low level, with highly dynamic signals. The streak-cameras are of high cost, lower sensitivity, and lower dynamic range (approximately 10(exp 3)). Because of the background, the single quantum regime in photomultipliers (PMT) is ineffective. The sampling of highly dynamic optical signals with resolution less than or equal to 1ns is a serious problem, limiting the application of the high speed PMT-MCP (microchannel plate) in the picosecond lidar systems. The goal of this work is to describe the use of a new photodetection technique which combines the picosecond resolution with the high amplitude resolution, dynamic range, and sensitivity.

  3. Analysis of Picosecond Pulsed Laser Melted Graphite

    DOE R&D Accomplishments Database

    Steinbeck, J.; Braunstein, G.; Speck, J.; Dresselhaus, M. S.; Huang, C. Y.; Malvezzi, A. M.; Bloembergen, N.

    1986-12-01

    A Raman microprobe and high resolution TEM have been used to analyze the resolidified region of liquid carbon generated by picosecond pulse laser radiation. From the relative intensities of the zone center Raman-allowed mode for graphite at 1582 cm{sup -1} and the disorder-induced mode at 1360 cm{sup -1}, the average graphite crystallite size in the resolidified region is determined as a function of position. By comparison with Rutherford backscattering spectra and Raman spectra from nanosecond pulsed laser melting experiments, the disorder depth for picosecond pulsed laser melted graphite is determined as a function of irradiating energy density. Comparisons of TEM micrographs for nanosecond and picosecond pulsed laser melting experiments show that the structure of the laser disordered regions in graphite are similar and exhibit similar behavior with increasing laser pulse fluence.

  4. Picosecond lasers with the dynamical operation control

    NASA Astrophysics Data System (ADS)

    Mikheev, N. G.; Morozov, V. B.; Olenin, A. N.; Yakovlev, D. V.

    2016-04-01

    Numerical model for simulation of generation process in advanced pulse-periodic high-peak-power picosecond diode-pumped Nd:YAG and Nd:YLF lasers has been developed. The model adequately describes picosecond pulse formation governed by active and passive mode-locking, negative feedback and adjustable loss level in the oscillator cavity. Optical jitter of output pulses attributed to laser generation development from spontaneous noise level was evaluated using statistical analysis of calculation results. In the presented laser scheme, minimal jitter value on the level ~40 ps was estimated.

  5. Control of the domain of multiple filamentation of terawatt laser pulses along a hundred-meter air path

    SciTech Connect

    Apeksimov, D V; Geints, Yu E; Zemlyanov, A A; Kabanov, A M; Matvienko, G G; Oshlakov, V K

    2015-05-31

    We report the results of experiments and numerical simulation for multiple filamentation of terawatt femtosecond pulses of a Ti : sapphire laser on a 106-meter long air path under varied initial spatial focusing and laser output power. Highly efficient control of the position and length of the filamentation domain is realised by varying the initial focusing of the laser beam, which provides the movement of the filamentation domain along the entire optical path. The unimodal character of the distribution of the number of plasma channels formed by the laser beam along the optical path is revealed and a correlation of the coordinates corresponding to the maximal number of plasma channels and to the nonlinear focus of the beam as a whole is established. (extreme light fields and their applications)

  6. BRIEF COMMUNICATIONS: Picosecond spectroscopy of pyrrol pigments

    NASA Astrophysics Data System (ADS)

    Lippitsch, M. E.; Leitner, A.; Riegler, M.; Aussenegg, F. R.

    1982-05-01

    Picosecond fluorescence and absorption spectroscopy methods were used to study pyrromethenone, pyrromethene, and biliverdin. These methods made it possible to determine some details of the kinetics of various relaxation mechanisms. The results obtained provided a better understanding of the biological action of pyrrol pigments.

  7. Expansion dynamics of supercritical water probed by picosecond time-resolved photoelectron spectroscopy.

    PubMed

    Gladytz, Thomas; Abel, Bernd; Siefermann, Katrin R

    2015-02-21

    Vibrational excitation of liquid water with femtosecond laser pulses can create extreme states of water. Yet, the dynamics directly after initial sub-picosecond delocalization of molecular vibrations remain largely unclear. We study the ultrafast expansion dynamics of an accordingly prepared supercritical water phase with a picosecond time resolution. Our experimental setup combines vacuum-compatible liquid micro-jet technology and a table top High Harmonic light source driven by a femtosecond laser system. An ultrashort laser pulse centered at a wavelength of 2900 nm excites the OH-stretch vibration of water molecules in the liquid. The deposited energy corresponds to a supercritical phase with a temperature of about 1000 K and a pressure of more than 1 GPa. We use a time-delayed extreme ultraviolet pulse centered at 38.6 eV, and obtained via High Harmonic generation (HHG), to record valence band photoelectron spectra of the expanding water sample. The series of photoelectron spectra is analyzed with noise-corrected target transform fitting (cTTF), a specifically developed multivariate method. Together with a simple fluid dynamics simulation, the following picture emerges: when a supercritical phase of water expands into vacuum, temperature and density of the first few nanometers of the expanding phase drop below the critical values within a few picoseconds. This results in a supersaturated phase, in which condensation seeds form and grow from small clusters to large clusters on a 100 picosecond timescale.

  8. Picosecond pulsed diode ring laser gyroscope

    SciTech Connect

    Rosker, M.J.; Christian, W.R.; McMichael, I.C.

    1994-12-31

    An external ring cavity containing as its active medium a pair of InGaAsP diodes is modelocked to produce picosecond pulses. In such a laser, a small frequency difference proportional to the nonreciprocal phase shift (resulting from, e.g., the Sagnac effect) can be observed by beating together the counter propagating laser arms; the device therefore acts as a rotating sensor. In contrast to a conventional (cw) ring laser gyroscope, the pulsed gyroscope can avoid gain competition, thereby enabling the use of homogeneously broadened gain media like semiconductor diodes. Temporal separation of the pulses within the cavity also discriminates against frequency locking of the lasers. The picosecond pulsed diode ring laser gyroscope is reviewed. Both active and passive modelocking are discussed.

  9. High-power picosecond laser pulse recirculation.

    PubMed

    Shverdin, M Y; Jovanovic, I; Semenov, V A; Betts, S M; Brown, C; Gibson, D J; Shuttlesworth, R M; Hartemann, F V; Siders, C W; Barty, C P J

    2010-07-01

    We demonstrate a nonlinear crystal-based short pulse recirculation cavity for trapping the second harmonic of an incident high-power laser pulse. This scheme aims to increase the efficiency and flux of Compton-scattering-based light sources. We demonstrate up to 40x average power enhancement of frequency-doubled submillijoule picosecond pulses, and 17x average power enhancement of 177 mJ, 10 ps, 10 Hz pulses.

  10. High Power Picosecond Laser Pulse Recirculation

    SciTech Connect

    Shverdin, M Y; Jovanovic, I; Semenov, V A; Betts, S M; Brown, C; Gibson, D J; Shuttlesworth, R M; Hartemann, F V; Siders, C W; Barty, C P

    2010-04-12

    We demonstrate a nonlinear crystal-based short pulse recirculation cavity for trapping the second harmonic of an incident high power laser pulse. This scheme aims to increase the efficiency and flux of Compton-scattering based light sources. We demonstrate up to 36x average power enhancement of frequency doubled sub-millijoule picosecond pulses, and 17x average power enhancement of 177 mJ, 10 ps, 10 Hz pulses.

  11. A picosecond high pressure gas switch

    SciTech Connect

    Cravey, W.R.; Poulsen, P.P.; Pincosy, P.A.

    1992-06-01

    Work is being done to develop a high pressure gas switch (HPGS) with picosecond risetimes for UWB applications. Pulse risetimes on the order of 200 picoseconds have been observed at 1 kHz prf and 1 atmosphere. Calculations show that switching closure times on the order of tens of picoseconds can be achieved at high pressures and higher electric fields. A voltage hold-off of 1 MV/cm has been measured at 10 atmospheres and several MV/cm appears possible with the HPGS. With these high electric field levels, energy storage of tens of Joules in a reasonably sized package is achievable. Initial HPGS performance has been characterized on the WASP pulse generator at LLNL. A detailed description of the switch used for initial testing is given. Switch recovery times of 1-ms have been measured at 1 atmosphere. Data on the switching uniformity, voltage hold-off recovery, and pulse repeatability, is presented. In addition, a physics switch model is described and results are compared with lab data.

  12. Parametric instabilities in picosecond time scales

    SciTech Connect

    Baldis, H.A.; Rozmus, W.; Labaune, C.; Mounaix, Ph.; Pesme, D.; Baton, S.; Tikhonchuk, V.T.

    1993-03-01

    The coupling of intense laser light with plasmas is a rich field of plasma physics, with many applications. Among these are inertial confinement fusion (ICF), x-ray lasers, particle acceleration, and x-ray sources. Parametric instabilities have been studied for many years because of their importance to ICF; with laser pulses with duration of approximately a nanosecond, and laser intensities in the range 10{sup 14}--10{sup 15}W/cm{sup 2} these instabilities are of crucial concern because of a number of detrimental effects. Although the laser pulse duration of interest for these studies are relatively long, it has been evident in the past years that to reach an understanding of these instabilities requires their characterization and analysis in picosecond time scales. At the laser intensities of interest, the growth rate for stimulated Brillouin scattering (SBS) is of the order of picoseconds, and of an order of magnitude shorter for stimulated Raman scattering (SRS). In this paper the authors discuss SBS and SRS in the context of their evolution in picosecond time scales. They describe the fundamental concepts associated with their growth and saturation, and recent work on the nonlinear treatment required for the modeling of these instabilities at high laser intensities.

  13. Towards Terawatt Sub-Cycle Long-Wave Infrared Pulses via Chirped Optical Parametric Amplification and Indirect Pulse Shaping.

    PubMed

    Yin, Yanchun; Chew, Andrew; Ren, Xiaoming; Li, Jie; Wang, Yang; Wu, Yi; Chang, Zenghu

    2017-04-03

    We present an approach for both efficient generation and amplification of 4-12 μm pulses by tailoring the phase matching of the nonlinear crystal Zinc Germanium Phosphide (ZGP) in a narrowband-pumped optical parametric chirped pulse amplifier (OPCPA) and a broadband-pumped dual-chirped optical parametric amplifier (DC-OPA), respectively. Preliminary experimental results are obtained for generating 1.8-4.2 μm super broadband spectra, which can be used to seed both the signal of the OPCPA and the pump of the DC-OPA. The theoretical pump-to-idler conversion efficiency reaches 27% in the DC-OPA pumped by a chirped broadband Cr(2+):ZnSe/ZnS laser, enabling the generation of  Terawatt-level 4-12 μm pulses with an available large-aperture ZGP. Furthermore, the 4-12 μm idler pulses can be compressed to sub-cycle pulses by compensating the tailored positive chirp of the idler pulses using the bulk compressor NaCl, and by indirectly controlling the higher-order idler phase through tuning the signal (2.4-4.0 μm) phase with a commercially available acousto-optic programmable dispersive filter (AOPDF). A similar approach is also described for generating high-energy 4-12 μm sub-cycle pulses via OPCPA pumped by a 2 μm Ho:YLF laser.

  14. Multi-dimensional optimization of a terawatt seeded tapered Free Electron Laser with a Multi-Objective Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Wu, Juhao; Hu, Newman; Setiawan, Hananiel; Huang, Xiaobiao; Raubenheimer, Tor O.; Jiao, Yi; Yu, George; Mandlekar, Ajay; Spampinati, Simone; Fang, Kun; Chu, Chungming; Qiang, Ji

    2017-02-01

    There is a great interest in generating high-power hard X-ray Free Electron Laser (FEL) in the terawatt (TW) level that can enable coherent diffraction imaging of complex molecules like proteins and probe fundamental high-field physics. A feasibility study of producing such X-ray pulses was carried out employing a configuration beginning with a Self-Amplified Spontaneous Emission FEL, followed by a "self-seeding" crystal monochromator generating a fully coherent seed, and finishing with a long tapered undulator where the coherent seed recombines with the electron bunch and is amplified to high power. The undulator tapering profile, the phase advance in the undulator break sections, the quadrupole focusing strength, etc. are parameters to be optimized. A Genetic Algorithm (GA) is adopted for this multi-dimensional optimization. Concrete examples are given for LINAC Coherent Light Source (LCLS) and LCLS-II-type systems. Analytical estimate is also developed to cross check the simulation and optimization results as a quick and complimentary tool.

  15. Picosecond x-ray streak cameras

    NASA Astrophysics Data System (ADS)

    Averin, V. I.; Bryukhnevich, Gennadii I.; Kolesov, G. V.; Lebedev, Vitaly B.; Miller, V. A.; Saulevich, S. V.; Shulika, A. N.

    1991-04-01

    The first multistage image converter with an X-ray photocathode (UMI-93 SR) was designed in VNIIOFI in 1974 [1]. The experiments carried out in IOFAN pointed out that X-ray electron-optical cameras using the tube provided temporal resolution up to 12 picoseconds [2]. The later work has developed into the creation of the separate streak and intensifying tubes. Thus, PV-003R tube has been built on base of UMI-93SR design, fibre optically connected to PMU-2V image intensifier carrying microchannel plate.

  16. Picosecond High Pressure Gas Switch experiment

    SciTech Connect

    Cravey, W.R.; Freytag, E.K.; Goerz, D.A.; Poulsen, P.; Pincosy, P.A.

    1993-08-01

    A high Pressure Gas Switch has been developed and tested at LLNL. Risetimes on the order of 200 picoseconds have been observed at 1 kHz prf and 1 atmosphere pressures. Calculations show that switching closure times on the order of tens of picoseconds can be achieved at higher pressures and electric fields. A voltage hold-off of 1 MV/cm has been measured at 10 atmospheres and several MV/cm appears possible with the HPGS. With such high electric field levels, energy storage of tens of Joules in a reasonably sized package is achievable. Initial HPGS performance has been characterized using the WASP pulse generator at LLNL. A detailed description of the switch used for initial testing is given. Switch recovery times of 1-ms have been measured at 1 atmosphere. Data on the switching uniformity, voltage hold-off recovery, and pulse repeatability, is presented. In addition, a physics switch model is described and results are compared with experimental data. Modifications made to the WASP HV pulser in order to drive the HPGS will also be discussed. Recovery times of less than 1 ms were recorded without gas flow in the switch chambers. Low pressure synthetic air was used as the switch dielectric. Longer recovery times were required when it was necessary to over-voltage the switch.

  17. Towards Terawatt Sub-Cycle Long-Wave Infrared Pulses via Chirped Optical Parametric Amplification and Indirect Pulse Shaping

    PubMed Central

    Yin, Yanchun; Chew, Andrew; Ren, Xiaoming; Li, Jie; Wang, Yang; Wu, Yi; Chang, Zenghu

    2017-01-01

    We present an approach for both efficient generation and amplification of 4–12 μm pulses by tailoring the phase matching of the nonlinear crystal Zinc Germanium Phosphide (ZGP) in a narrowband-pumped optical parametric chirped pulse amplifier (OPCPA) and a broadband-pumped dual-chirped optical parametric amplifier (DC-OPA), respectively. Preliminary experimental results are obtained for generating 1.8–4.2 μm super broadband spectra, which can be used to seed both the signal of the OPCPA and the pump of the DC-OPA. The theoretical pump-to-idler conversion efficiency reaches 27% in the DC-OPA pumped by a chirped broadband Cr2+:ZnSe/ZnS laser, enabling the generation of  Terawatt-level 4–12 μm pulses with an available large-aperture ZGP. Furthermore, the 4–12 μm idler pulses can be compressed to sub-cycle pulses by compensating the tailored positive chirp of the idler pulses using the bulk compressor NaCl, and by indirectly controlling the higher-order idler phase through tuning the signal (2.4–4.0 μm) phase with a commercially available acousto-optic programmable dispersive filter (AOPDF). A similar approach is also described for generating high-energy 4–12 μm sub-cycle pulses via OPCPA pumped by a 2 μm Ho:YLF laser. PMID:28367966

  18. Relativistically Self-Channeled Femtosecond Terawatt Lasers for High-Field Physics and X-Ray Generation

    SciTech Connect

    Borisov, A.B.; Boyer, K.; Cameron, S.M.; Luk, T.S.; McPherson, A.; Nelson, T.; Rhodes, C.K.

    1999-01-01

    Optical channeling or refractive guiding processes involving the nonlinear interaction of intense femtosecond optical pulses with matter in the self-focussing regime has created exciting opportunities for next-generation laser plasma-based x-ray sources and directed energy applications. This fundamentally new form of extended paraxial electromagnetic propagation in nonlinear dispersive media such as underdense plasma is attributed to the interplay between normal optical diffraction and intensity-dependent nonlinear focussing and refraction contributions in the dielectric response. Superposition of these mechanisms on the intrinsic index profile acts to confine the propagating energy in a dynamic self-guiding longitudinal waveguide structure which is stable for power transmission and robust compression. The laser-driven channels are hypothesized to support a degree of solitonic transport behavior, simultaneously stable in the space and time domains (group velocity dispersion balances self-phase modulation), and are believed to be self-compensating for diffraction and dispersion over many Rayleigh lengths in contrast with the defining characteristics of conventional diffractive imaging and beamforming. By combining concentrated power deposition with well-ordered spatial localization, this phenomena will also create new possibilities for production and regulation of physical interactions, including electron beams, enhanced material coupling, and self-modulated plasma wakefields, over extended gain distances with unprecedented energy densities. Harmonious combination of short-pulse x-ray production with plasma channeling resulting from a relativistic charge displacement nonlinearity mechanism in the terawatt regime (10{sup 18} W/cm{sup 2}) has been shown to generate high-field conditions conducive to efficient multi-kilovolt x-ray amplification and peak spectral brightness. Channeled optical propagation with intense short-pulse lasers is expected to impact several

  19. Laser induced breakdown spectroscopy with picosecond pulse train

    NASA Astrophysics Data System (ADS)

    Lednev, Vasily N.; Pershin, Sergey M.; Sdvizhenskii, Pavel A.; Grishin, Mikhail Ya; Davydov, Mikhail A.; Stavertiy, Anton Ya; Tretyakov, Roman S.

    2017-02-01

    Picosecond pulse train and nanosecond pulse were compared for laser ablation and laser induced breakdown spectroscopy (LIBS) measurements. A detailed study revealed that the picosecond pulse train ablation improved the quality of laser craters (symmetric crater walls and the absence of large redeposited droplets), which was explained by a smaller heat affected zone and suppression of melt splash. Greater plasma dimensions and brighter plasma emission were observed by gated imaging for picosecond pulse train compared to nanosecond pulse ablation. Increased intensity of atomic and ionic lines in gated and time integrated spectra provided better signal-to-noise ratio for picosecond pulse train sampling. Higher temperature and electron density were detected during first microsecond for the plasma induced by the picosecond pulse train. Improved shot-to-shot reproducibility for atomic/ionic line intensity in the case of picosecond pulse train LIBS was explained by more effective atomization of target material in plasma and better quality of laser craters. Improved precision and limits of detections were determined for picosecond pulse train LIBS due to better reproducibility of laser sampling and increased signal-to-noise ratio.

  20. 100 W all fiber picosecond MOPA laser.

    PubMed

    Chen, Sheng-Ping; Chen, Hong-Wei; Hou, Jing; Liu, Ze-Jin

    2009-12-21

    A high power picosecond laser is constructed in an all fiber master oscillator power amplifier (MOPA) configuration. The seed source is an ytterbium-doped single mode fiber laser passively mode-locked by a semiconductor saturable absorber mirror (SESAM). It produces 20 mW average power with 13 ps pulse width and 59.8 MHz repetition rate. A direct amplification of this seed source encounters obvious nonlinear effects hence serious spectral broadening at only ten watt power level. To avoid these nonlinear effects, we octupled the repetition rate to about 478 MHz though a self-made all fiber device before amplification. The ultimate output laser exhibits an average power of 96 W, a pulse width of 16 ps, a beam quality M2 of less than 1.5, and an optical conversion efficiency of 61.5%.

  1. Timing Characteristics of Large Area Picosecond Photodetectors

    SciTech Connect

    Adams, Bernhard W.; Elagin, Andrey L.; Frisch, H.; Obaid, Razib; Oberla, E; Vostrikov, Alexander; Wagner, Robert G.; Wang, Jingbo; Wetstein, Matthew J.; Northrop, R

    2015-09-21

    The LAPPD Collaboration was formed to develop ultralast large-area imaging photodetectors based on new methods for fabricating microchannel plates (MCPs). In this paper we characterize the time response using a pulsed, sub picosecond laser. We observe single photoelectron time resolutions of a 20 cm x 20 cm MCP consistently below 70 ps, spatial resolutions of roughly 500 pm, and median gains higher than 10(7). The RMS measured at one particular point on an LAPPD detector is 58 ps, with in of 47 ps. The differential time resolution between the signal reaching the two ends of the delay line anode is measured to be 5.1 ps for large signals, with an asymptotic limit falling below 2 ps as noise-over-signal approaches zero.

  2. Picosecond adsorbate dynamics at condensed phase interfaces

    SciTech Connect

    Scott, T.W.; Chang, Y.J.; Martorell, J.

    1993-12-31

    Picosecond surface second harmonic generation has been used to probe a variety of elementary adsorbate reactions at liquid-solid interfaces. Electron transfer reactions at semiconductor-liquid junctions, geminate recombination of photogenerated free radical pairs and the orientational dynamics of dipolar adsorbates have all been explored in varying degrees of detail. These kinetic studies have led to a detailed analysis of adsorbate detection on the surface of non-centrosymmetric substrates as well as the use of total internal reflection geometries for signal enhancement from optically absorbing liquids. Particular emphasis has been placed on the static and dynamic characterization of adsorbate orientational distribution functions and how these are determined from the torque exerted on adsorbates by the angular part of the molecule-surface interaction potential.

  3. Nanoscale Characterization with Laser Picosecond Acoustics

    NASA Astrophysics Data System (ADS)

    Wright, Oliver B.

    2007-11-01

    Nanophotonics—the manipulation of light with nanomaterials—is a booming subject, its success owing to the host of nanoscale fabrication techniques now at our disposal. However, for the characterization of such nanomaterials it is expedient to turn to other types of waves with a wavelength commensurate with the nanostructure in question. One such choice is acoustic waves of nanometre wavelength. The aim of this article is to provide an introduction to laser picosecond acoustics, a means by which gigahertz-terahertz ultrasonic waves can be generated and detected by ultrashort light pulses. This method can therefore be used to characterize materials with nanometre spatial resolution. In this article we review the theoretical background for opaque single-layer thin film isotropic samples with reference to key experiments. Solids including metals and semiconductors are discussed, although liquids and, conceivably, gases, are not excluded.

  4. Patterning of ITO with picosecond lasers

    NASA Astrophysics Data System (ADS)

    Račiukaitis, Gediminas; Brikas, Marijus; Gedvilas, Mindaugas; Darčianovas, Gediminas

    2007-02-01

    Indium-tin oxide (ITO) is the main material for making transparent electrodes in electronic devices and flat panel displays. Laser-direct-write technology has been widely used for patterning ITO. The well defined edges and good electrical isolation at a short separation are required for the modern OLED and RFID devices of high packing density. High repetition rate lasers with a short, picosecond pulse width offer new possibilities for high efficiency structuring of transparent conductors on glass and other substrates. The results of patterning the ITO film on glass with picosecond lasers at various wavelengths are presented. Laser radiation initiated ablation of the material, forming trenches in ITO. Profile of the trenches was analyzed with a phase contrast optical microscope, a stylus type profiler, SEM and AFM. Clean removal of the ITO layer was achieved with the 266 nm radiation when laser fluence was above the threshold at 0.20 J/cm2, while for the 355 nm radiation the threshold was higher, above 0.46 J/cm2. The glass substrate was damaged in the area where the fluence was higher than 1.55 J/cm2. The 532 nm radiation allowed getting well defined trenches, but a lot of residues in the form of dust were generated on the surface. UV radiation at the 266 nm provided the widest working window for ITO ablation without damage of the substrate. Use of UV laser radiation with fluences close to the ablation threshold made it possible to minimize surface contamination and the recast ridge formation during the process.

  5. Investigation of picosecond blue laser emission from chlorophyll molecules

    SciTech Connect

    Liu Yixian; Wang Yagang; Zhu Wei; Li Fuming; Yang Shanyuan; Zhou Peilin

    1988-03-01

    Results on picosecond blue laser emission from a chlorophyll (chl) dye laser with an ultrashort cavity are reported. The laser mechanism involves intermolecular energy transfer from excited coumarin (co) molecules to chlorophyll a and b pigment molecules.

  6. Rapid scanning autocorrelator for measurements of picosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Harde, H.; Burggraf, H.

    1981-08-01

    A rapid scanning autocorrelation interferometer for measurements of picosecond laser pulses is described which uses a rotating prism as scanning device in one arm of the interferometer to permit continuous display of autocorrelation traces at audio frequencies on an oscilloscope. Scan widths of more than 500 ps with high linearity can be achieved. Autocorrelation measurements of picosecond pulses from a synchronously pumped mode-locked dye laser are presented.

  7. Picosecond dynamics from lanthanide chloride melts

    NASA Astrophysics Data System (ADS)

    Kalampounias, Angelos G.

    2012-12-01

    The picosecond dynamics of molten lanthanide chlorides is studied by means of vibrational spectroscopy. Polarized Raman spectra of molten LaCl3, NdCl3, GdCl3, DyCl3, HoCl3 and YCl3 are fitted to a model enabling to obtain the times of vibrational dephasing, tν and vibrational frequency modulation tω. Our aim is to find possible sensitive indicators of short-time dynamics. It has been found that all lanthanide chlorides exhibit qualitative similarities in the vibrational relaxation and frequency modulation times in the molten state. It appears that the vibrational correlation functions of all melts comply with the Rothschild approach assuming that the environmental modulation is described by a stretched exponential decay. The evolution of the dispersion parameter α indicates the deviation of the melts from the model simple liquid and the similar local environment in which the oscillator is placed and with which it is coupled. The "packing" of the anions around central La3+ cation seems to be the key factor for the structure and the dynamics of the melts. The results are discussed in the framework of the current phenomenological status of the field.

  8. Mitotic spindle studied using picosecond laser scissors

    NASA Astrophysics Data System (ADS)

    Baker, N. M.; Botvinick, E. L.; Shi, Linda; Berns, M. B.; Wu, George

    2006-08-01

    In previous studies we have shown that the second harmonic 532 nm, from a picosecond frequency doubled Nd:YAG laser, can cleanly and selectively disrupt spindle fiber microtubules in live cells (Botvinick et al 2004, Biophys. J. 87:4303-4212). In the present study we have ablated different locations and amounts of the metaphase mitotic spindle, and followed the cells in order to observe the fate of the irradiated spindle and the ability of the cell to continue through mitosis. Cells of the rat kangaroo line (PTK2) were stably transfected by ECFP-tubulin and, using fluorescent microscopy and the automated RoboLase microscope, (Botvinick and Berns, 2005, Micros. Res. Tech. 68:65-74) brightly fluorescent individual cells in metaphase were irradiated with 0.2447 nJ/micropulse corresponding to an irradiance of 1.4496*10^7 J/(ps*cm^2) . Upon irradiation the exposed part of the mitotic spindle immediately lost fluorescence and the following events were observed in the cells over time: (1) immediate contraction of the spindle pole towards the cut, (2) recovery of connection between pole and cut microtubule, (3) completion of mitosis. This system should be very useful in studying internal cellular dynamics of the mitotic spindle.

  9. Dielectric breakdown induced by picosecond laser pulses

    NASA Technical Reports Server (NTRS)

    Smith, W. L.; Bechtel, J. H.; Bloembergen, N.

    1976-01-01

    The damage thresholds of transparent optical materials were investigated. Single picosecond pulses at 1.06 microns, 0.53 microns and 0.35 microns were obtained from a mode locked Nd-YAG oscillator-amplifier-frequency multiplier system. The pulses were Gaussian in space and time and permitted the determination of breakdown thresholds with a reproducibility of 15%. It was shown that the breakdown thresholds are characteristic of the bulk material, which included nine alkali halides, five different laser host materials, KDP, quartz, sapphire and calcium fluoride. The extension of the damage data to the ultraviolet is significant, because some indication was obtained that two- and three-photon absorption processes begin to play a role in determining the threshold. Throughout the visible region of the spectrum the threshold is still an increasing function of frequency, indicating that avalanche ionization is the dominant factor in determining the breakdown threshold. This was confirmed by a detailed study of the damage morphology with a high resolution microscope just above the threshold. The influence of self focusing is discussed, and evidence for beam distortion below the power threshold for complete self focusing is presented, confirming the theory of Marburger.

  10. Picosecond runaway electron beams in air

    SciTech Connect

    Mesyats, G. A.; Yalandin, M. I.; Reutova, A. G.; Sharypov, K. A.; Shpak, V. G.; Shunailov, S. A.

    2012-01-15

    Experimental data on the generation of picosecond runaway electron beams in an air gap with an inhomogeneous electric field at a cathode voltage of up to 500 kV are presented. The methods and equipment developed for these experiments made it possible to measure the beam characteristics with a time resolution of better than 10{sup -11} s, determine the voltage range and the beam formation time in the breakdown delay stage, and demonstrate the influence of the state of the cathode surface on the stability of runaway electron generation. It is demonstrated that the critical electron runaway field in air agrees with the classical concepts and that the accelerated beam can be compressed to {approx}20 ps. It is unlikely that, under these conditions, the beam duration is limited due to the transition of field emission from the cathode to a microexplosion of inhomogeneities. The maximum energy acquired by runaway electrons in the course of acceleration does not exceed the value corresponding to the electrode voltage.

  11. Pilot production and advanced development of large-area picosecond photodetectors

    NASA Astrophysics Data System (ADS)

    Minot, Michael J.; Adams, Bernhard W.; Aviles, Melvin; Bond, Justin L.; Craven, Christopher A.; Cremer, Till; Foley, Michael R.; Lyashenko, Alexey; Popecki, Mark A.; Stochaj, Michael E.; Worstell, William A.; Mane, Anil U.; Elam, Jeffrey W.; Siegmund, Oswald H. W.; Ertley, Camden; Frisch, Henry; Elagin, Andrey

    2016-09-01

    We report pilot production and advanced development performance results achieved for Large Area Picosecond Photodetectors (LAPPD). The LAPPD is a microchannel plate (MCP) based photodetector, capable of imaging with single-photon sensitivity at high spatial and temporal resolutions in a hermetic package with an active area of 400 square centimeters. In December 2015, Incom Inc. completed installation of equipment and facilities for demonstration of early stage pilot production of LAPPD. Initial fabrication trials commenced in January 2016. The "baseline" LAPPD employs an all-glass hermetic package with top and bottom plates and sidewalls made of borosilicate float glass. Signals are generated by a bi-alkali Na2KSb photocathode and amplified with a stacked chevron pair of "next generation" MCPs produced by applying resistive and emissive atomic layer deposition coatings to borosilicate glass capillary array (GCA) substrates. Signals are collected on RF strip-line anodes applied to the bottom plates which exit the detector via pinfree hermetic seals under the side walls. Prior tests show that LAPPDs have electron gains greater than 107, submillimeter space resolution for large pulses and several mm for single photons, time resolutions of 50 picoseconds for single photons, predicted resolution of less than 5 picoseconds for large pulses, high stability versus charge extraction, and good uniformity. LAPPD performance results for product produced during the first half of 2016 will be reviewed. Recent advances in the development of LAPPD will also be reviewed, as the baseline design is adapted to meet the requirements for a wide range of emerging application. These include a novel ceramic package design, ALD coated MCPs optimized to have a low temperature coefficient of resistance (TCR) and further advances to adapt the LAPPD for cryogenic applications using Liquid Argon (LAr). These developments will meet the needs for DOE-supported RD for the Deep Underground Neutrino

  12. Optothermal response of plasmonic nanofocusing lens under picosecond laser irradiation

    NASA Astrophysics Data System (ADS)

    Du, Z.; Chen, C.; Traverso, L.; Xu, X.; Pan, L.; Chao, I.-H.; Lavine, A. S.

    2014-03-01

    This work studied the optothermal response of plasmonic nanofocusing structures under picosecond pulsed laser irradiation. The surface plasmon polariton is simulated to calculate the optical energy dissipation as the Joule heating source and the thermal transport process is studied using a two temperature model (TTM). At the picosecond time scale that we are interested in, the Fourier heat equation is used to study the electron thermal transport and the hyperbolic heat equation is used to study the lattice thermal transport. For comparison, the single temperature model (STM) is also studied. The difference between TTM and STM indicates that TTM provides more accurate estimates in the picosecond time scale and the STM results are only reliable when the local electron and lattice temperature difference is negligible.

  13. Fiber-delivered picosecond source for coherent Raman scattering imaging

    PubMed Central

    Wang, Ke; Xu, Chris

    2013-01-01

    We demonstrate a two-color, fiber-delivered picosecond source for coherent Raman scattering (CRS) imaging. The wavelength-tunable picosecond pump is generated by nonlinear spectral compression of a prechirped femtosecond pulse from a mode-locked titanium:sapphire (Ti:S) laser. The 1064 nm picosecond Stokes pulse is generated by an all-fiber time-lens source that is synchronized to the Ti:S laser. The pump and Stokes beams are combined in an optical fiber coupler, which serves not only as the delivery fiber but also as the nonlinear medium for spectral compression of the femtosecond pulse. CRS imaging of mouse skin is performed to demonstrate the practicality of this source. PMID:22048375

  14. Synchronization of sub-picosecond electron and laser pulses

    SciTech Connect

    Rosenzweig, J.B.; Le Sage, G.P.

    1999-07-01

    Sub-picosecond laser-electron synchronization is required to take full advantage of the experimental possibilities arising from the marriage of modern high intensity lasers and high brightness electron beams in the same laboratory. Two particular scenarios stand out in this regard, injection of ultra-short electron pulses in short wavelength laser-driven plasma accelerators, and Compton scattering of laser photons from short electron pulses. Both of these applications demand synchronization, which is sub-picosecond, with tens of femtosecond synchronization implied for next generation experiments. The design of a microwave timing modulator system is now being investigated in more detail. (AIP) {copyright} {ital 1999 American Institute of Physics.}

  15. Synchronization of sub-picosecond electron and laser pulses

    SciTech Connect

    Rosenzweig, J. B.; Le Sage, G. P.

    1999-07-12

    Sub-picosecond laser-electron synchronization is required to take full advantage of the experimental possibilities arising from the marriage of modern high intensity lasers and high brightness electron beams in the same laboratory. Two particular scenarios stand out in this regard, injection of ultra-short electron pulses in short wavelength laser-driven plasma accelerators, and Compton scattering of laser photons from short electron pulses. Both of these applications demand synchronization, which is sub-picosecond, with tens of femtosecond synchronization implied for next generation experiments. The design of a microwave timing modulator system is now being investigated in more detail.

  16. Picosecond time resolved conductance measurements of redox molecular junctions

    NASA Astrophysics Data System (ADS)

    Arielly, Rani; Nachman, Nirit; Zelinskyy, Yaroslav; May, Volkhard; Selzer, Yoram

    2017-03-01

    Due to bandwidth limitations of state of the art electronics, the transient transport properties of molecular junctions are experimentally a terra incognita, which can only be explored if novel picosecond current-probing techniques are developed. Here we demonstrate one such approach: the laser pulse-pair sequence scheme. The method is used to monitor in picosecond resolution the oxidation state of a redox molecule, 6-ferrocenyl-1-hexanethiol, within a junction and to quantify its redox rate constant, which is found to be (80 ps)-1.

  17. An All-Optical Picosecond Switch in Polydiacetylene

    NASA Technical Reports Server (NTRS)

    Abdeldayem, Hossin; Frazier, Donald O.; Paley, Mark S.

    2002-01-01

    Polydiacetylene derivative of 2-methyl-4-nitroaniline (PDAMNA) showed a picosecond switching property. This phenomenon was demonstrated by wave guiding a cw He-Ne laser collinearly with a mode-locked picosecond Nd:YAG laser at 532 nm through a hollow fiber coated on the inside with a thin film of PDAMNA. The z-scan investigations of PDAMNA thin film revealed that the PDAMNA system is a three level system and the switching is caused by excited state absorption of the He-Ne beam.

  18. Molecular collision processes in the presence of picosecond laser pulses

    NASA Technical Reports Server (NTRS)

    Lee, H. W.; George, T. F.

    1979-01-01

    Radiative transitions in molecular collision processes taking place in the presence of picosecond pulses are studied within a semiclassical formalism. An expression for adiabatic potential surfaces in the electronic-field representation is obtained, which directly leads to the evaluation of transition probabilities. Calculations with a Landau-Zener-type model indicate that picosecond pulses can be much more effective in inducing transitions than a single long pulse of the same intensity and the same total energy, if the intensity is sufficiently high that the perturbation treatment is not valid.

  19. Germanium Sub-Microspheres Synthesized by Picosecond Pulsed Laser Melting in Liquids: Educt Size Effects

    PubMed Central

    Zhang, Dongshi; Lau, Marcus; Lu, Suwei; Barcikowski, Stephan; Gökce, Bilal

    2017-01-01

    Pulsed laser melting in liquid (PLML) has emerged as a facile approach to synthesize submicron spheres (SMSs) for various applications. Typically lasers with long pulse durations in the nanosecond regime are used. However, recent findings show that during melting the energy absorbed by the particle will be dissipated promptly after laser-matter interaction following the temperature decrease within tens of nanoseconds and hence limiting the efficiency of longer pulse widths. Here, the feasibility to utilize a picosecond laser to synthesize Ge SMSs (200~1000 nm in diameter) is demonstrated by irradiating polydisperse Ge powders in water and isopropanol. Through analyzing the educt size dependent SMSs formation mechanism, we find that Ge powders (200~1000 nm) are directly transformed into SMSs during PLML via reshaping, while comparatively larger powders (1000~2000 nm) are split into daughter SMSs via liquid droplet bisection. Furthermore, the contribution of powders larger than 2000 nm and smaller than 200 nm to form SMSs is discussed. This work shows that compared to nanosecond lasers, picosecond lasers are also suitable to produce SMSs if the pulse duration is longer than the material electron-phonon coupling period to allow thermal relaxation. PMID:28084408

  20. Germanium Sub-Microspheres Synthesized by Picosecond Pulsed Laser Melting in Liquids: Educt Size Effects.

    PubMed

    Zhang, Dongshi; Lau, Marcus; Lu, Suwei; Barcikowski, Stephan; Gökce, Bilal

    2017-01-13

    Pulsed laser melting in liquid (PLML) has emerged as a facile approach to synthesize submicron spheres (SMSs) for various applications. Typically lasers with long pulse durations in the nanosecond regime are used. However, recent findings show that during melting the energy absorbed by the particle will be dissipated promptly after laser-matter interaction following the temperature decrease within tens of nanoseconds and hence limiting the efficiency of longer pulse widths. Here, the feasibility to utilize a picosecond laser to synthesize Ge SMSs (200~1000 nm in diameter) is demonstrated by irradiating polydisperse Ge powders in water and isopropanol. Through analyzing the educt size dependent SMSs formation mechanism, we find that Ge powders (200~1000 nm) are directly transformed into SMSs during PLML via reshaping, while comparatively larger powders (1000~2000 nm) are split into daughter SMSs via liquid droplet bisection. Furthermore, the contribution of powders larger than 2000 nm and smaller than 200 nm to form SMSs is discussed. This work shows that compared to nanosecond lasers, picosecond lasers are also suitable to produce SMSs if the pulse duration is longer than the material electron-phonon coupling period to allow thermal relaxation.

  1. Germanium Sub-Microspheres Synthesized by Picosecond Pulsed Laser Melting in Liquids: Educt Size Effects

    NASA Astrophysics Data System (ADS)

    Zhang, Dongshi; Lau, Marcus; Lu, Suwei; Barcikowski, Stephan; Gökce, Bilal

    2017-01-01

    Pulsed laser melting in liquid (PLML) has emerged as a facile approach to synthesize submicron spheres (SMSs) for various applications. Typically lasers with long pulse durations in the nanosecond regime are used. However, recent findings show that during melting the energy absorbed by the particle will be dissipated promptly after laser-matter interaction following the temperature decrease within tens of nanoseconds and hence limiting the efficiency of longer pulse widths. Here, the feasibility to utilize a picosecond laser to synthesize Ge SMSs (200~1000 nm in diameter) is demonstrated by irradiating polydisperse Ge powders in water and isopropanol. Through analyzing the educt size dependent SMSs formation mechanism, we find that Ge powders (200~1000 nm) are directly transformed into SMSs during PLML via reshaping, while comparatively larger powders (1000~2000 nm) are split into daughter SMSs via liquid droplet bisection. Furthermore, the contribution of powders larger than 2000 nm and smaller than 200 nm to form SMSs is discussed. This work shows that compared to nanosecond lasers, picosecond lasers are also suitable to produce SMSs if the pulse duration is longer than the material electron-phonon coupling period to allow thermal relaxation.

  2. Picosecond lasers: the next generation of short-pulsed lasers.

    PubMed

    Freedman, Joshua R; Kaufman, Joely; Metelitsa, Andrea I; Green, Jeremy B

    2014-12-01

    Selective photothermolysis, first discussed in the context of targeted microsurgery in 1983, proposed that the optimal parameters for specific thermal damage rely critically on the duration over which energy is delivered to the tissue. At that time, nonspecific thermal damage had been an intrinsic limitation of all commercially available lasers, despite efforts to mitigate this by a variety of compensatory cooling mechanisms. Fifteen years later, experimental picosecond lasers were first reported in the dermatological literature to demonstrate greater efficacy over their nanosecond predecessors in the context of targeted destruction of tattoo ink. Within the last 4 years, more than a decade after those experiments, the first commercially available cutaneous picosecond laser unit became available (Cynosure, Westford, Massachusetts), and several pilot studies have demonstrated its utility in tattoo removal. An experimental picosecond infrared laser has also recently demonstrated a nonthermal tissue ablative capability in soft tissue, bone, and dentin. In this article, we review the published data pertaining to dermatology on picosecond lasers from their initial reports to the present as well as discuss forthcoming technology.

  3. A simple technique for individual picosecond laser pulse duration measurements

    NASA Technical Reports Server (NTRS)

    Smith, W. L.; Bechtel, J. H.

    1976-01-01

    We describe here a simple nonlinear optic technique for the measurement of the duration of individual picosecond pulses. The accuracy and relative simplicity of the technique increase with the number of pulses measured. An experimental test of the basis of the technique is described.

  4. Proposal for Cherenkov Time of Flight Technique with Picosecond Resolution

    SciTech Connect

    S. Majewski; A. Margaryan; L. Tang

    2005-08-05

    A new particle identification device for Jlab 12 GeV program is proposed. It is based on the measurement of time information obtained by means of a new photon detector and time measuring concept. The expected time measurement precision for the Cherenkov time-of-flight detector is about or less than 10 picosecond for Cherenkov radiators with lengths less than 50 cm.

  5. Picosecond photoconductive devices for 10 Gbit/s optoelectronic switching

    NASA Astrophysics Data System (ADS)

    Veith, G.

    1985-03-01

    Semiconductor materials with a high density of recombination and trapping centers exhibit extremely short carrier lifetimes in the order of 1 to 100 ps and have been the base for the development of high speed optoelectronic switches. These devices are activated by picosecond laser pulses and can be driven nearly free of jitter with respect to the optical excitation pulses. They show some unique properties as picosecond risetimes and response times and can be operated within a relatively high dynamical range (10-5 to 10 sub 4 V) (0.00001 to 0.0001 V). A review is given on the wide field of possible applications of the ultrafast photoconductive switches. They can be used as photodetectors for picosecond light pulses as well as sampling gates for the characterization of high speed electronic and optoelectronic devices. In some experiments which are discussed more in detail the author demonstrates the capability of this type of photoconductive switches for the generation of picosecond infrared pulse trains in laser diodes and for the generation of high-bit rate electrical codes for use in Gbit/s optical communication and sensing systems, for logical switching and for testing purposes of high speed electronic instrumentations.

  6. Picosecond lasers for tattoo removal: a systematic review.

    PubMed

    Reiter, Ofer; Atzmony, Lihi; Akerman, Lehavit; Levi, Assi; Kershenovich, Ruben; Lapidoth, Moshe; Mimouni, Daniel

    2016-09-01

    Given that the pigment particles in tattoos have a relaxation time of <10 ns, picosecond lasers would be expected to be more effective than nanosecond lasers in tattoo removal. To systematically review the evidence regarding the effectiveness and safety of picosecond lasers for tattoo removal, Pubmed, Cochrane Central Register of Controlled Trials (CENTRAL), ClinicalTrials.gov, and reference lists were searched for relevant trials. The primary outcome was >70 % clearance of tattoo pigment. Secondary outcomes were 90-100 % clearance of tattoo pigment, number of laser sessions required, and adverse effects. Eight trials were included, six with human participants (160 participants) and 2 with animal models. Seven of the eight trials explored the usage of either 755, 758, 795, 1064, or 1064/532-nm picosecond lasers for black and blue ink tattoos. In the human trials, 69-100 % of tattoos showed over 70 % clearance of pigment after 1-10 laser treatments. Reported side effects included pain, hyperpigmentation and hypopigmentation, blister formation and transient erythema, edema, and pinpoint bleeding. Included articles varied in type of laser investigated, mostly non-comparative studies and with a medium to high risk of bias. There is sparse evidence that picosecond lasers are more effective than their nanosecond counterparts for mainly black and blue ink tattoo removal, with minor side effects.

  7. A picosecond accuracy relativistic VLBI model via Fermi normal coordinates

    NASA Technical Reports Server (NTRS)

    Shahid-Saless, Bahman; Hellings, Ronald W.; Ashby, Neil

    1991-01-01

    Fermi normal coordinates are used to construct transformations relating solar system barycentric coordinates to local inertial geocentric coordinates. Relativistic corrections to terrestrial VLBI measurements are calculated, and this formalism is developed to include corrections needed for picosecond accuracy. A calculation of photon time delay which includes effects arising from the motion of gravitational sources is given.

  8. Picosecond charge transport in rutile at high carrier densities studied by transient terahertz spectroscopy

    NASA Astrophysics Data System (ADS)

    Zajac, V.; Němec, H.; Kužel, P.

    2016-09-01

    We study terahertz photoconductivity of a rutile single crystal between 10 and 300 K under strong photoexcitation by femtosecond pulses at 266 nm. A marked dependence of the carrier mobility on the carrier density is observed leading to highly complex transport phenomena on a picosecond time scale. We develop a general model of carrier photoconductive response in the case of time dependent inhomogeneous distribution of carrier density and mobility. This allows us to assess an important role of both electrons and holes in the response of photoexcited rutile. At low temperatures, the carrier mobility is initially reduced due to the electron-hole scattering and increases by one order of magnitude upon ambipolar diffusion of the carriers into deeper regions of the sample. At room temperature, contributions of transient hot optical phonons and/or of midinfrared polaron excitations with charge-density-dependent dielectric strength emerge in the photoconductivity spectra.

  9. Picosecond Electric-Field-Induced Threshold Switching in Phase-Change Materials

    NASA Astrophysics Data System (ADS)

    Zalden, Peter; Shu, Michael J.; Chen, Frank; Wu, Xiaoxi; Zhu, Yi; Wen, Haidan; Johnston, Scott; Shen, Zhi-Xun; Landreman, Patrick; Brongersma, Mark; Fong, Scott W.; Wong, H.-S. Philip; Sher, Meng-Ju; Jost, Peter; Kaes, Matthias; Salinga, Martin; von Hoegen, Alexander; Wuttig, Matthias; Lindenberg, Aaron M.

    2016-08-01

    Many chalcogenide glasses undergo a breakdown in electronic resistance above a critical field strength. Known as threshold switching, this mechanism enables field-induced crystallization in emerging phase-change memory. Purely electronic as well as crystal nucleation assisted models have been employed to explain the electronic breakdown. Here, picosecond electric pulses are used to excite amorphous Ag4In3Sb67Te26 . Field-dependent reversible changes in conductivity and pulse-driven crystallization are observed. The present results show that threshold switching can take place within the electric pulse on subpicosecond time scales—faster than crystals can nucleate. This supports purely electronic models of threshold switching and reveals potential applications as an ultrafast electronic switch.

  10. Picosecond Electric-Field-Induced Threshold Switching in Phase-Change Materials.

    PubMed

    Zalden, Peter; Shu, Michael J; Chen, Frank; Wu, Xiaoxi; Zhu, Yi; Wen, Haidan; Johnston, Scott; Shen, Zhi-Xun; Landreman, Patrick; Brongersma, Mark; Fong, Scott W; Wong, H-S Philip; Sher, Meng-Ju; Jost, Peter; Kaes, Matthias; Salinga, Martin; von Hoegen, Alexander; Wuttig, Matthias; Lindenberg, Aaron M

    2016-08-05

    Many chalcogenide glasses undergo a breakdown in electronic resistance above a critical field strength. Known as threshold switching, this mechanism enables field-induced crystallization in emerging phase-change memory. Purely electronic as well as crystal nucleation assisted models have been employed to explain the electronic breakdown. Here, picosecond electric pulses are used to excite amorphous Ag_{4}In_{3}Sb_{67}Te_{26}. Field-dependent reversible changes in conductivity and pulse-driven crystallization are observed. The present results show that threshold switching can take place within the electric pulse on subpicosecond time scales-faster than crystals can nucleate. This supports purely electronic models of threshold switching and reveals potential applications as an ultrafast electronic switch.

  11. Multifunctional optical correlator for picosecond ultraviolet laser pulse measurement.

    PubMed

    Rakhman, Abdurahim; Wang, Yang; Garcia, Frances; Long, Cary; Huang, Chunning; Takeda, Yasuhiro; Liu, Yun

    2014-11-01

    A compact multifunctional optical correlator system for pulse width measurement of ultrashort ultraviolet (UV) pulses has been designed and experimentally demonstrated. Both autocorrelation and cross-correlation functions are measured using a single nonlinear crystal, and the switching between two measurements requires no adjustment of phase matching and detector. The system can measure UV pulse widths from sub-picoseconds to 100 ps, and it involves no auxiliary pulse in the measurement. The measurement results on a burst-mode picosecond UV laser show a high-quality performance on speed, accuracy, resolution, and dynamic range. The proposed correlator can be applied to measure any ultrashort UV pulses produced through sum-frequency generation or second-harmonic generation.

  12. Picosecond resolution soft x-ray laser plasma interferometry

    SciTech Connect

    Moon, S; Nilsen, J; Ng, A; Shlyaptsev, V; Dunn, J; Hunter, J; Keenan, R; Marconi, M; Filevich, J; Rocca, J; Smith, R

    2003-12-01

    We describe a soft x-ray laser interferometry technique that allows two-dimensional diagnosis of plasma electron density with picosecond time resolution. It consists of the combination of a robust high throughput amplitude division interferometer and a 14.7 nm transient inversion soft x-ray laser that produces {approx} 5 ps pulses. Due to its picosecond resolution and short wavelength scalability, this technique has potential for extending the high inherent precision of soft x-ray laser interferometry to the study of very dense plasmas of significant fundamental and practical interest, such as those investigated for inertial confined fusion. Results of its use in the diagnostics of dense large scale laser-created plasmas are presented.

  13. Boosting laser-ion acceleration with multi-picosecond pulses

    PubMed Central

    Yogo, A.; Mima, K.; Iwata, N.; Tosaki, S.; Morace, A.; Arikawa, Y.; Fujioka, S.; Johzaki, T.; Sentoku, Y.; Nishimura, H.; Sagisaka, A.; Matsuo, K.; Kamitsukasa, N.; Kojima, S.; Nagatomo, H.; Nakai, M.; Shiraga, H.; Murakami, M.; Tokita, S.; Kawanaka, J.; Miyanaga, N.; Yamanoi, K.; Norimatsu, T.; Sakagami, H.; Bulanov, S. V.; Kondo, K.; Azechi, H.

    2017-01-01

    Using one of the world most powerful laser facility, we demonstrate for the first time that high-contrast multi-picosecond pulses are advantageous for proton acceleration. By extending the pulse duration from 1.5 to 6 ps with fixed laser intensity of 1018 W cm−2, the maximum proton energy is improved more than twice (from 13 to 33 MeV). At the same time, laser-energy conversion efficiency into the MeV protons is enhanced with an order of magnitude, achieving 5% for protons above 6 MeV with the 6 ps pulse duration. The proton energies observed are discussed using a plasma expansion model newly developed that takes the electron temperature evolution beyond the ponderomotive energy in the over picoseconds interaction into account. The present results are quite encouraging for realizing ion-driven fast ignition and novel ion beamlines. PMID:28211913

  14. Surfaces and thin films studied by picosecond ultrasonics

    SciTech Connect

    Maris, J.H.; Tauc, J.

    1992-05-01

    This research is the study of thin films and interfaces via the use of the picosecond ultrasonic technique. In these experiments ultrasonic waves are excited in a structure by means of a picosecond light pulse ( pump pulse''). The propagation of these waves is detected through the use of a probe light pulse that is time-delayed relative to the pump. This probe pulse measures the change {Delta}R(t) in the optical reflectivity of the structure that occurs because the ultrasonic wave changes the optical properties of the structure. This technique make possible the study of the attenuation and velocity of ultrasonic waves up to much higher frequencies than was previously possible (up to least 500 GHz). In addition, the excellent time-resolution of the method makes it possible to study nanostructures of linear dimensions down to 100 {Angstrom} or less by ultrasonic pulse-echo techniques. 25 refs.

  15. Boosting laser-ion acceleration with multi-picosecond pulses

    NASA Astrophysics Data System (ADS)

    Yogo, A.; Mima, K.; Iwata, N.; Tosaki, S.; Morace, A.; Arikawa, Y.; Fujioka, S.; Johzaki, T.; Sentoku, Y.; Nishimura, H.; Sagisaka, A.; Matsuo, K.; Kamitsukasa, N.; Kojima, S.; Nagatomo, H.; Nakai, M.; Shiraga, H.; Murakami, M.; Tokita, S.; Kawanaka, J.; Miyanaga, N.; Yamanoi, K.; Norimatsu, T.; Sakagami, H.; Bulanov, S. V.; Kondo, K.; Azechi, H.

    2017-02-01

    Using one of the world most powerful laser facility, we demonstrate for the first time that high-contrast multi-picosecond pulses are advantageous for proton acceleration. By extending the pulse duration from 1.5 to 6 ps with fixed laser intensity of 1018 W cm‑2, the maximum proton energy is improved more than twice (from 13 to 33 MeV). At the same time, laser-energy conversion efficiency into the MeV protons is enhanced with an order of magnitude, achieving 5% for protons above 6 MeV with the 6 ps pulse duration. The proton energies observed are discussed using a plasma expansion model newly developed that takes the electron temperature evolution beyond the ponderomotive energy in the over picoseconds interaction into account. The present results are quite encouraging for realizing ion-driven fast ignition and novel ion beamlines.

  16. Picosecond transient absorption study of photodissociated carboxy hemoglobin and myoglobin

    SciTech Connect

    Janes, S.M.; Dalickas, G.A.; Eaton, W.A.; Hochstrasser, R.M.

    1988-09-01

    The optical transient absorption spectra at 30 ps and 6.5 ns after photolysis are compared for both carboxy hemoglobin (HbCO) and carboxy myoglobin (MbCO). Both 355- and 532-nm excitation pulses were used. In all cases the shapes of the optical difference spectra thus generated are stationary over the complete time-scale studied. The photolysis spectra for MbCO are not significantly different from the equilibrium difference spectra generated on the same picosecond spectrometer when measured to an accuracy of +/- 0.5 nm. In addition, spectral parameters for delegated HbCO generated on the same spectrometer but detected by two different techniques, either by a Vidicon detector or point by point with photomultiplier tubes, are reported; the results are different from some of the previously reported picosecond experiments.

  17. Recent progress in picosecond pulse generation from semiconductor lasers

    NASA Technical Reports Server (NTRS)

    Auyeung, J. C.; Johnston, A. R.

    1982-01-01

    This paper reviews the recent progress in producing picosecond optical pulses from semiconductor laser diodes. The discussion concentrates on the mode-locking of a semiconductor laser diode in an external resonator. Transform-limited optical pulses ranging from several picoseconds to subpicosecond durations have been observed with active and passive mode-locking. Even though continuing research on the influence of impurities and defects on the mode-locking process is still needed, this technique has good promise for being utilized in fiber-optic communication systems. Alternative methods of direct electrical and optical excitation to produce ultrashort laser pulses are also described. They can generate pulses of similar widths to those obtained by mode-locking. The pulses generated will find applications in laser ranging and detector response measurement.

  18. New and Advanced Picosecond Lasers for Tattoo Removal.

    PubMed

    Adatto, Maurice A; Amir, Ruthie; Bhawalkar, Jayant; Sierra, Rafael; Bankowski, Richard; Rozen, Doran; Dierickx, Christine; Lapidoth, Moshe

    2017-01-01

    Early methods of tattoo removal ultimately resulted in unacceptable cosmetic outcomes. While the introduction of laser technology was an improvement over the existing chemical, mechanical, and surgical procedures, the use of nonselective tattoo removal with carbon dioxide and argon lasers led to scarring. Q-switched lasers with nanosecond (10-9) pulse domains were considered to have revolutionized tattoo treatment, by selectively heating the tattoo particles, while reducing the adverse sequelae to adjacent normal skin. Theoretical considerations of restricting pulse duration, to heat tattoo particles to higher temperatures, proposed the use of sub-nanosecond pulses to target particles with thermal relaxation times lower than the nanosecond pulses in Q-switched lasers. Initial studies demonstrated that picosecond (10-12) pulses were more effective than nanosecond pulses in clearing black tattoos. Advances in picosecond technology led to the development of commercially available lasers, incorporating several different wavelengths, to further refine pigment targeting.

  19. Characterization of Copper Line Array Erosion with Picosecond Ultrasonics

    NASA Astrophysics Data System (ADS)

    Pic, Nicolas; Bennedine, Karim; Tas, Guray; Alliata, Dario; Clerico, Jana

    2007-09-01

    Chemical mechanical planarization (CMP) is a critical process for creating high performance interconnected structures. If line structures are under polished, residual copper or barrier will short out the circuitry resulting in defective dies. However, over polishing increases the line resistance, negatively impacting both the speed and performance of devices. To maintain high yield, it is thus critical to maintain the copper lines at the desired thickness. This requires strict process control. Several metrology techniques are used to monitor CMP processes including optical techniques that measure dielectric polishing and high resolution profilometry (HRP™) that can measure the relative step height differences between structures such as interlayer dielectric pads, copper pads, and line arrays. In contrast, the picosecond ultrasonic laser sonar method (PULSE™) measures the copper thickness and therefore directly measures the parameter of interest for CMP process monitoring. The picosecond ultrasonic technique is well established for measuring on solid copper structures such as pads. However, in the dense narrow line arrays that are required for current and next generation devices, the measurement spot size, while only approximately 10 μm in diameter, may cover hundreds of copper line/dielectric pairs. Therefore a new detector was developed that is insensitive to the dielectric signal. The capabilities of picosecond ultrasonic laser method to measure both copper pads and 0.6 μm line arrays were recently tested at STMicroelectronics (STM). The results were compared against Scanning Electron Microscopy (SEM). The samples included different products and six different metal layers. This paper will further describe the picosecond ultrasonic method, its use at STM, and detailed results for the various samples.

  20. Multi-Kilovolt Solid-State Picosecond Switch Studies

    DTIC Science & Technology

    2013-06-01

    structures, including PIN diode, bipolar transistor , and thyristor [2]. It is well established that picosecond delayed breakdown switching only occurs...reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of...experimental data of figures 3 and 4. The load voltage waveform shows a prepulse feature due to displacement current in the dynamic junction capacity followed

  1. OSA Proceedings on Picosecond Electronics and Optoelectronics. Volume 4

    DTIC Science & Technology

    1989-01-01

    of Anharmonicity and Disorder-Induced Effects in 2. N. S. Wingreen, K. W. Jacobsen, and J. W. Ga -lxAlxAs Epitaxial Layers", Phys. Rev. B24, Wilkins...probably not due to hot emission /absorption process at a higher phonon effects alone, but additionally energy has a lower wavevector associated anti...GaAs MESFET and HBT Technology in Picosecond Electronics ............. 139 KazuyoshiAsai and Tadao Ishibashi Electron-Hole Effects on the Velocity

  2. X-ray production with sub-picosecond laser pulses

    SciTech Connect

    Schappert, G.T.; Cobble, J.A.; Fulton, R.D.; Kyrala, G.A.

    1993-12-31

    The interaction of intense, sub-picosecond laser pulses with solid targets produces intense picosecond x-ray pulses. With focused laser pulses of several 10 {sup 18} W/cm{sup 2}, He-like and H-like line radiation from targets such as aluminum and silicon has been produced. The energy conversion efficiency from the laser pulse energy to the 1--2 keV line x-rays is nearly one percent. The duration of the line x-ray radiation is of the order of ten picoseconds, although this may be an upper estimate because of the temporal resolution of the x-ray streak camera. The spatial extent of the x-ray source region is only slightly larger than the laser focal spot, or about 10 {mu}m in diameter. With these characteristics, such x-ray sources emit an intensity of nearly 10{sup 14} W/cm{sup 2}. Experiments and modeling which led to the above conclusions will be discussed.

  3. A semiconductor injection-switched high-pressure sub-10-picosecond carbon dioxide laser amplifier

    NASA Astrophysics Data System (ADS)

    Hughes, Michael Kon Yew

    A multiatmospheric-pressure-broadened CO2 laser amplifier was constructed to amplify sub-10-picosecond pulses generated with semiconductor switching. High-intensity, mid-infrared, amplified pulses have many applications: especially in fields such as non-linear optics, laser-plasma interaction, and laser particle acceleration. The injected pulses are produced by exciting GaAs (or an engineered, fast-recombination time semiconductor) with an ultrafast visible laser pulse to induce transient free carriers with sufficient density to reflect a co-incident hybrid-CO2 laser pulse. The short pulse is injected directly into the regenerative amplifier cavity from an intra-cavity semiconductor switch. The CO2-gas-mix amplifier is operated at 1.24 MPa which is sufficient to collisionally broaden the individual rotational spectral lines so that they merge to produce a gain spectrum wide enough to support pulses less than 10 ps long. After sufficient amplification, the pulse is switched out with another semiconductor switch pumped with a synchronized visible-laser pulse. This system is demonstrated and analysed spectrally and temporally. The pulse-train spectral analysis is done for a GaAs-GaAs double-switch arrangement using a standard spectrometer and two HgCdTe detectors; one of which is used for a reference signal. An infrared autocorrelator was designed and constructed to temporally analyse the pulse trains emerging from the amplifier. Interpretation of the results was aided by the development of a computer model for short-pulse amplification which incorporated saturation effects, rotational- and vibrational-mode energy redistribution between pulse round trips, and the gain enhancement due to one sequence band. The results show that a sub-10-picosecond pulse is injected into the cavity and that it is amplified with some trailing pulses at 18 ps intervals generated by coherent effects. The energy level reached, estimated through modelling, was >100 mJ/cm2.

  4. High power picosecond vortex laser based on a large-mode-area fiber amplifier.

    PubMed

    Tanaka, Yuichi; Okida, Masahito; Miyamoto, Katsuhiko; Omatsu, Takashige

    2009-08-03

    We present the production of picosecond vortex pulses from a stressed large-mode-area fiber amplifier for the first time. 8.5 W picosecond output with a peak power of approximately 12.5 kW was obtained at a pump power of 29 W. 2009 Optical Society of America.

  5. Pilot Production of Large Area Microchannel Plates and Picosecond Photodetectors

    NASA Astrophysics Data System (ADS)

    Minot, M.; Adams, B.; Abiles, M.; Bond, J.; Craven, C.; Cremer, T.; Foley, M.; Lyashenko, A.; Popecki, M.; Stochaj, M.; Worstell, W.; Elam, J.; Mane, A.; Siegmund, O.; Ertley, C.

    2016-09-01

    Pilot production performance is reported for large area atomic layer deposition (ALD) coated microchannel plates (ALD-GCA-MCPs) and for Large Area Picosecond Photodetectors (LAPPD™) which incorporate them. "Hollowcore" glass capillary array (GCA) substrates are coated with ALD resistive and emissive layers to form the ALDGCA- MCPs, an approach that facilitates independent selection of glass substrates that are mechanically stronger and that have lower levels of radioactive alkali elements compared to conventional MCP lead glass, reducing background noise[1,2,3,4]. ALD-GCA-MCPs have competitive gain ( 104 each or 107 for a chevron pair ), enhanced lifetime and gain stability (7 C cm-2 of charge extraction), reduced background levels (0.028 events cm-2 sec-1) and low gamma-ray detection efficiency. They can be fabricated in large area (20cm X 20 cm) planar and curved formats suitable for use in high radiation environment applications, including astronomy, space instrumentation, and remote night time sensing. The LAPPD™ photodetector incorporates these ALD-GCA-MCPs in an all-glass hermetic package with top and bottom plates and sidewalls made of borosilicate float glass. Signals are generated by a bi-alkali Na2KSb photocathode, amplified with a stacked chevron pair of ALD-GCA-MCPs. Signals are collected on RF strip-line anodes integrated into to the bottom plates which exit the detector via pin-free hermetic seals under the side walls [5]. Tests show that LAPPDTMs have electron gains greater than 107, submillimeter spatial resolution for large (multiphoton) pulses and several mm for single photons, time resolution less than 50 picoseconds for single photons, predicted resolution less than 5 picoseconds for large pulses, high stability versus charge extraction[6], and good uniformity for applications including astrophysics, neutron detection, high energy physics Cherenkov light detection, and quantum-optical photon-correlation experiments.

  6. Efficient second harmonic generation of picosecond laser pulses.

    NASA Technical Reports Server (NTRS)

    Rabson, T. A.; Ruiz, H. J.; Shah, P. L.; Tittel, F. K.

    1972-01-01

    Efficient conversion to the second harmonic (SH) using KD2PO4 and CsH2AsO4 crystals inside a folded cavity of a high-power-dye mode-locked neodymium-glass laser is reported. For the first time, frequency-doubled picosecond light pulses have been obtained in CsH2AsO4 with peak powers of the order of 1 GW/sq cm at 0.531 micron for an effective pump power density of 4 GW/sq cm.

  7. High-power picosecond fiber source for coherent Raman microscopy.

    PubMed

    Kieu, Khanh; Saar, Brian G; Holtom, Gary R; Xie, X Sunney; Wise, Frank W

    2009-07-01

    We report a high-power picosecond fiber pump laser system for coherent Raman microscopy (CRM). The fiber laser system generates 3.5 ps pulses with 6 W average power at 1030 nm. Frequency doubling yields more than 2 W of green light, which can be used to pump an optical parametric oscillator to produce the pump and the Stokes beams for CRM. Detailed performance data on the laser and the various wavelength conversion steps are discussed, together with representative CRM images of fresh animal tissue obtained with the new source.

  8. Picosecond flash spectroscopic studies on ultraviolet stabilizers and stabilized polymers

    NASA Technical Reports Server (NTRS)

    Scott, G. W.

    1982-01-01

    Spectroscopic and excited state decay kinetics are reported for monomeric and polymeric forms of ultraviolet stabilizers in the 2-(2'-hydroxyphenyl)-benzotriazole and 2-hydroxybenzophenone classes. For some of these molecules in various solvents at room temperature, (1) ground state absorption spectra, (2) emission spectra, (3) picosecond time-resolved transient absorption spectra, (4) ground state absorption recovery kinetics, (5) emission kinetics, and (6) transient absorption kinetics are reported. In the solid state at low temperatures, emission spectra and their temperature dependent kinetics up to approximately 200K as well as, in one case, the 12K excitation spectra of the observed dual emission are also reported.

  9. In Vitro picosecond ultrasonics in a single cell

    NASA Astrophysics Data System (ADS)

    Rossignol, C.; Chigarev, N.; Ducousso, M.; Audoin, B.; Forget, G.; Guillemot, F.; Durrieu, M. C.

    2008-09-01

    Ultrasonics signals at frequencies 5.7±0.1 and 6.8±0.1GHz are measured in two organelles of a single vegetal cell in vitro with a picosecond ultrasonic technique. Using standard values for cell optical index, ultrasound velocities of 1.6±0.1 and 2.0±0.1μm/ns are measured from several signals recorded in the vacuole and in the nucleus of a single Allium cepa cell, respectively. A 1μm lateral and 0.25μm depth resolution is attained.

  10. Picosecond imaging of low-density plasmas by electron deflectometry.

    PubMed

    Centurion, M; Reckenthaeler, P; Krausz, F; Fill, E E

    2009-02-15

    We have imaged optical-field ionized plasmas with electron densities as low as 10(13) cm(-3) on a picosecond timescale using ultrashort electron pulses. Electric fields generated by the separation of charges are imprinted on a 20 keV probe electron pulse and reveal a cloud of electrons expanding away from a positively charged plasma core. Our method allows for a direct measurement of the electron energy required to escape the plasma and the total charge. Simulations reproduce the main features of the experiment and allow determination of the energy of the electrons.

  11. Mechanical Properties of Nuclear Fuel Surrogates using Picosecond Laser Ultrasonics

    SciTech Connect

    David Hurley; Marat Khafizov; Farhad Farzbod; Eric Burgett

    2013-05-01

    Detailed understanding between microstructure evolution and mechanical properties is important for designing new high burnup nuclear fuels. In this presentation we discuss the use of picosecond ultrasonics to measure localize changes in mechanical properties of fuel surrogates. We develop measurement techniques that can be applied to investigate heterogeneous elastic properties caused by localize changes in chemistry, grain microstructure caused by recrystallization, and mechanical properties of small samples prepared using focused ion beam sample preparation. Emphasis is placed on understanding the relationship between microstructure and mechanical properties

  12. Picosecond optical vortex pulse illumination forms a monocrystalline silicon needle

    PubMed Central

    Takahashi, Fuyuto; Miyamoto, Katsuhiko; Hidai, Hirofumi; Yamane, Keisaku; Morita, Ryuji; Omatsu, Takashige

    2016-01-01

    The formation of a monocrystalline silicon needle by picosecond optical vortex pulse illumination was demonstrated for the first time in this study. The dynamics of this silicon needle formation was further revealed by employing an ultrahigh-speed camera. The melted silicon was collected through picosecond pulse deposition to the dark core of the optical vortex, forming the silicon needle on a submicrosecond time scale. The needle was composed of monocrystalline silicon with the same lattice index (100) as that of the silicon substrate, and had a height of approximately 14 μm and a thickness of approximately 3 μm. Overlaid vortex pulses allowed the needle to be shaped with a height of approximately 40 μm without any changes to the crystalline properties. Such a monocrystalline silicon needle can be applied to devices in many fields, such as core–shell structures for silicon photonics and photovoltaic devices as well as nano- or microelectromechanical systems. PMID:26907639

  13. Ablation of steel using picosecond laser pulses in burst mode

    NASA Astrophysics Data System (ADS)

    Lickschat, Peter; Demba, Alexander; Weissmantel, Steffen

    2017-02-01

    Results obtained in picosecond laser processing of steel applying the burst mode are presented. Using the burst mode, pulse trains, i.e., bursts, consisting of a number of picosecond pulses with an inter-pulse delay of 12.5 ns and 10 ps pulse duration are applied for material processing. Small cavities with sizes in the range of the laser beam diameter made by single-burst ablation are compared to quadratic cavities of 0.5 × 0.5 mm² produced by multiburst ablation and simultaneous scanning of the laser beam across the steel sample surface. The ablated volume per pulse within the burst was calculated either from the ablated volume per burst or from the ablation depth of the quadratic cavities. With the second to fourth pulses in the bursts, a reduction of the ablated volume per pulse in comparison with the first pulse in the bursts (i.e., to the use of single pulses) was found for both single- and multiburst ablation, which is assumed to be due to plasma shielding. By contrast, the ablated volume per pulse within the bursts increases for the fifth to eighth pulses. Heat accumulation effect and the influence of the heated plasma can be assumed to be the reason for these higher ablation rates. SEM micrographs also show that there is a higher melt ejection out of the laser processed area. This is indicated by the formation of bulges about the ablated area.

  14. Subpicosecond and picosecond laser ablation of dental enamel: comparative analysis

    NASA Astrophysics Data System (ADS)

    Rode, Andrei V.; Madsen, Nathan R.; Kolev, Vesselin Z.; Gamaly, Eugene G.; Luther-Davies, Barry; Dawes, Judith M.; Chan, A.

    2004-06-01

    We report the use of sub-picosecond near-IR and ps UV pulsed lasers for precision ablation of freshly extracted human teeth. The sub-picosecond laser wavelength was ~800nm, with pulsewidth 150 fs and pulse repetition rate of 1kHz; the UV laser produced 10 ps pulses at 266 nm with pulse rate of ~1.2x105 pulses/s; both lasers produced ~1 W of output energy, and the laser fluence was kept at the same level of 10-25 J/cm2. Laser radiation from both laser were effectively absorbed in the teeth enamel, but the mechanisms of absorption were radically different: the near-IR laser energy was absorbed in a plasma layer formed through the optical breakdown mechanism initiated by multiphoton absorption, while the UV-radiation was absorbed due to molecular photodissociation of the enamel and conventional thermal deposition. The rise in the intrapulpal temperature was monitored by embedded thermocouples, and was shown to remain low with subpicosecond laser pulses, but risen up to 30°C, well above the 5°C pain level with the UV-laser. This study demonstrates the potential for ultra-short-pulsed lasers to precision and painless ablation of dental enamel, and indicated the optimal combination of laser parameters in terms of pulse energy, duration, intensity, and repetition rate, required for the laser ablation rates comparable to that of mechanical drill.

  15. Picosecond lidar techniques in laboratory and field diagnostics

    NASA Astrophysics Data System (ADS)

    Goulard, R.

    1984-12-01

    The availability of picosecond laser systems opens a new potential in the field of diagnostics. It is now possible to observe chemical events over time intervals as short as 10 to the minus 9th power sec (e.g., fluorescence, bond-selective chemistry,...) without overlap with the much shorter 10 to the minus 12th power sec triggering signal. In addition, two specific effects are of special interest to real industrial flame diagnostics. One is the elimination of background noise, since the picosecond time-gating of the detector will collect the whole signal of interest but only a tiny fraction of the time-spread noise background (e.g., soot, walls,...). The other is related to the very short length of these pulses (similar to mm): it is the possibility to use the lidar/radar principle to convert the time history of the measured back scattered signals into a millimeter-resolved space distribution along the beam. In this fashion, Raman and other techniques can yield a detailed map of concentrations and temperatures in three-dimensional space, even in sooty combustors background, with the need of only one single porthole.

  16. Simultaneous picosecond and femtosecond solitons delivered from a nanotube-mode-locked all-fiber laser.

    PubMed

    Han, D D; Liu, X M; Cui, Y D; Wang, G X; Zeng, C; Yun, L

    2014-03-15

    We propose a compact nanotube-mode-locked all-fiber laser that can simultaneously generate picosecond and femtosecond solitons at different wavelengths. The pulse durations of picosecond and femtosecond solitons are measured to be ∼10.6  ps and ∼466  fs, respectively. Numerical results agree well with the experimental observations and clearly reveal that the dynamic evolutions of the picosecond and femtosecond solitons are qualitatively distinct in the intracavity. Our study presents a simple, stable, low-cost, and dual-scale ultrafast-pulsed laser source suitable for practical applications in optical communications.

  17. Ultrahigh speed photography of picosecond light pulses and echoes.

    PubMed

    Duguay, M A; Mattick, A T

    1971-09-01

    Three new results have been obtained with a recently developed camera of 10-psec framing time: (1) The effect of the finite speed of light in photographing relativistic objects is experimentally demonstrated, by photographing a dumbbell-like entity formed by two packets of light. In contrast to material objects, which, theory predicts, should appear rotated, the light dumbbell appears sheared. (2) Photographs of the mode-locked Nd: glass laser radiation show numerous subsidiary pulses accompanying the main ultrashort pulses in the train. The latter have durations ranging from 7 psec to 15 psec. (3) The technique of gated picture ranging, previously used with nanosecond pulses, is extended to the picosecond range where a resolution of 1 cm is demonstrated. Some potentially useful applications are proposed.

  18. Picosecond pulse generated supercontinuum as a stable seed for OPCPA.

    PubMed

    Indra, Lukáš; Batysta, František; Hříbek, Petr; Novák, Jakub; Hubka, Zbyněk; Green, Jonathan T; Antipenkov, Roman; Boge, Robert; Naylon, Jack A; Bakule, Pavel; Rus, Bedřich

    2017-02-15

    We present a stable supercontinuum (SC) generated in a bulk YAG crystal, pumped by 3 ps chirped pulses at 1030 nm. The SC is generated in a loose focus geometry in a 13 cm long YAG crystal, allowing for stable and robust single-filament generation. The SC energy stability exceeds that of the pump laser by almost a factor of 3. Additionally, we show that the SC spectrum has long-term stability and that the SC is coherent and compressible by compressing the portions of SC spectra close to the corresponding Fourier limit. This makes the picosecond-pulse-driven SC a suitable stable seed for OPCPA amplifiers.

  19. Picosecond pulse measurements using the active laser medium

    NASA Technical Reports Server (NTRS)

    Bernardin, James P.; Lawandy, N. M.

    1990-01-01

    A simple method for measuring the pulse lengths of synchronously pumped dye lasers which does not require the use of an external nonlinear medium, such as a doubling crystal or two-photon fluorescence cell, to autocorrelate the pulses is discussed. The technique involves feeding the laser pulses back into the dye jet, thus correlating the output pulses with the intracavity pulses to obtain pulse length signatures in the resulting time-averaged laser power. Experimental measurements were performed using a rhodamine 6G dye laser pumped by a mode-locked frequency-doubled Nd:YAG laser. The results agree well with numerical computations, and the method proves effective in determining lengths of picosecond laser pulses.

  20. 157 W all-fiber high-power picosecond laser.

    PubMed

    Song, Rui; Hou, Jing; Chen, Shengping; Yang, Weiqiang; Lu, Qisheng

    2012-05-01

    An all-fiber high-power picosecond laser is constructed in a master oscillator power amplifier configuration. The self-constructed fiber laser seed is passively mode locked by a semiconductor saturable absorber mirror. Average output power of 157 W is obtained after three stages of amplification at a fundamental repetition rate of 60 MHz. A short length of ytterbium double-clad fiber with a high doping level is used to suppress nonlinear effects. However, a stimulated Raman scattering (SRS) effect occurs owing to the 78 kW high peak power. A self-made all-fiber repetition rate increasing system is used to octuple the repetition rate and decrease the high peak power. Average output power of 156.6 W is obtained without SRS under the same pump power at a 480 MHz repetition rate with 0.6 nm line width.

  1. Optical limiting and picosecond relaxation of carbocyanines upper electronic states

    NASA Astrophysics Data System (ADS)

    Oulianov, D. A.; Dvornikov, A. S.; Rentzepis, P. M.

    2002-05-01

    Nonlinear absorption, anomalous fluorescence and relaxation of high-lying electronic states in six carbocyanine dyes, including cryptocyanine (DCI), DDI, DTDCI, DTTCI, DOTCI and HDIDCI, in solution and in polymer, were studied by means of picosecond transient absorption spectroscopy and nonlinear transmission experiments. Absorption cross-sections of the S 1→S n transition, and decay rates of the second singlet excited state, S 2, were measured. All dyes showed strong reverse saturable absorption in the 450-600 nm region with large excited to ground state absorption cross-section ratios. For DTDCI this ratio, at 470 nm, was measured to be 350, which is the largest ever reported. All molecules have shown strong optical limiting effect. However, in all molecules except DCI a saturation of the optical limiting process was observed as expected, owing to relatively long, up to 17.5 ps, lifetime of the S 2 state. The S 2 state fluorescence quantum yields were also measured.

  2. Sub-Picosecond, High Flux, Thomson X-Ray Sources

    SciTech Connect

    James Boyce; David Douglas; Hiroyuki Toyokawa; Winthrop J. Brown; Fred Hartemann

    2003-05-12

    With the advent of high average power FELs, the idea of using such a device to produce x-rays via the Thomson scattering process is appealing, if sufficient flux and/or brightness can be generated. Such x-rays are produced simultaneously with FEL light, offering unprecedented opportunities for pump-probe studies. We discuss non-invasive modifications to the Jefferson Lab's FEL that would meet the criteria of high flux, sub-picosecond, x-ray source. One allows proof-of-principle experiments, is relatively inexpensive, but is not conducive as a ''User-facility.'' Another is a User facility configuration but requires FEL facility modifications. For all sources, we present Thomson scattering flux calculations and potential applications.

  3. Three-dimensional imaging of biological cells with picosecond ultrasonics

    NASA Astrophysics Data System (ADS)

    Danworaphong, Sorasak; Tomoda, Motonobu; Matsumoto, Yuki; Matsuda, Osamu; Ohashi, Toshiro; Watanabe, Hiromu; Nagayama, Masafumi; Gohara, Kazutoshi; Otsuka, Paul H.; Wright, Oliver B.

    2015-04-01

    We use picosecond ultrasonics to image animal cells in vitro—a bovine aortic endothelial cell and a mouse adipose cell—fixed to Ti-coated sapphire. Tightly focused ultrashort laser pulses generate and detect GHz acoustic pulses, allowing three-dimensional imaging (x, y, and t) of the ultrasonic propagation in the cells with ˜1 μm lateral and ˜150 nm depth resolutions. Time-frequency representations of the continuous-wavelet-transform amplitude of the optical reflectivity variations inside and outside the cells show GHz Brillouin oscillations, allowing the average sound velocities of the cells and their ultrasonic attenuation to be obtained as well as the average bulk moduli.

  4. Picosecond laser welding of similar and dissimilar materials.

    PubMed

    Carter, Richard M; Chen, Jianyong; Shephard, Jonathan D; Thomson, Robert R; Hand, Duncan P

    2014-07-01

    We report picosecond laser welding of similar and dissimilar materials based on plasma formation induced by a tightly focused beam from a 1030 nm, 10 ps, 400 kHz laser system. Specifically, we demonstrate the welding of fused silica, borosilicate, and sapphire to a range of materials including borosilicate, fused silica, silicon, copper, aluminum, and stainless steel. Dissimilar material welding of glass to aluminum and stainless steel has not been previously reported. Analysis of the borosilicate-to-borosilicate weld strength compares well to those obtained using similar welding systems based on femtosecond lasers. There is, however, a strong requirement to prepare surfaces to a high (10-60 nm Ra) flatness to ensure a successful weld.

  5. Picosecond ionization dynamics in femtosecond filaments at high pressures

    NASA Astrophysics Data System (ADS)

    Gao, Xiaohui; Patwardhan, Gauri; Schrauth, Samuel; Zhu, Daiwei; Popmintchev, Tenio; Kapteyn, Henry C.; Murnane, Margaret M.; Romanov, Dmitri A.; Levis, Robert J.; Gaeta, Alexander L.

    2017-01-01

    We investigate the plasma dynamics inside a femtosecond-pulse-induced filament generated in an argon gas for a wide range of pressures up to 60 bar. At higher pressures, we observe ionization immediately following a pulse, with up to a threefold increase in the electron density within 30 ps after the filamentary propagation of a femtosecond pulse. Our study suggests that this picosecond evolution can be attributed to collisional ionization including Penning and associative ionizations and electron-impact ionization of excited atoms generated during the pulse. The dominance of excited atoms over ionized atoms at the end of the pulse also indicates an intrapulse inhibition of avalanche ionization. This delayed ionization dynamics provides evidence for diagnosing atomic and molecular excitation and ionization in intense laser interaction with high-pressure gases.

  6. Femtosecond stimulated Raman scattering picosecond molecular thermometry in condensed phases.

    PubMed

    Dang, N C; Bolme, C A; Moore, D S; McGrane, S D

    2011-07-22

    We demonstrate the capability of femtosecond stimulated Raman scattering (FSRS) data to measure the temperature of condensed matter at the molecular vibrational level. We report the temperature dependence of Raman loss to Raman gain ratios for low frequency modes (<300  cm(-1)) in a CaCO3 single crystal from cryogenic to room temperature, which is shown to be in agreement with theoretical predictions. We also report the measurements of nonequilibrium time evolution of mode specific vibrational temperatures in the CaCO3 single crystal to demonstrate that FSRS can measure temperature on picosecond time scales. Finally, we point out the unique origin of this temperature dependent anti-Stokes to Stokes ratio in stimulated Raman, which is not present in other coherent Raman spectroscopies. These measurements require no material dependent parameters or prior calibration.

  7. Picosecond laser-induced water condensation in a cloud chamber.

    PubMed

    Sun, Haiyi; Liu, Yonghong; Ju, Jingjing; Tian, Ye; Bai, Yafeng; Liu, Yaoxiang; Du, Shengzhe; Wang, Cheng; Wang, Tiejun; Liu, Jiansheng; Chin, See Leang; Li, Ruxin; Xu, Zhizhan

    2016-09-05

    We investigated water condensation in a laboratory cloud chamber induced by picosecond (ps) laser pulses at ~350 ps (800 nm/1-1000 Hz) with a maximum peak power of ~25 MW. The peak power was much lower than the critical power for self-focusing in air (~3-10 GW depending on the pulse duration). Sparks, airflow and snow formation were observed under different laser energies or repetition rates. It was found that weaker ps laser pulses can also induce water condensation by exploding and breaking down ice crystals and/or water droplets into tiny particles although there was no formation of laser filament. These tiny particles would grow until precipitation in a super-saturation zone due to laser-induced airflow in a cold region with a large temperature gradient.

  8. Interaction of intense multi-picosecond laser pulses with matter

    NASA Astrophysics Data System (ADS)

    Kemp, Andreas; Divol, Laurent; Cohen, Bruce

    2011-10-01

    We present new results on the two- and three-dimensional kinetic modeling of short-pulse laser-matter interaction of Petawatt pulses at the spatial and temporal scales relevant to current experiments. We address key questions such as characterizing the multi-picosecond evolution of the laser energy conversion into hot electrons, i.e., conversion efficiency as well as angular- and energy distribution; the impact of return currents on the laser-plasma interaction; and the effect of self-generated electric and magnetic fields on electron transport. We will report applications to current experiments at LLNL's Titan laser and Omega EP, and to a Fast-Ignition point design. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Security, LLC, Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  9. Optimally shaped narrowband picosecond pulses for femtosecond stimulated Raman spectroscopy.

    PubMed

    Hoffman, David P; Valley, David; Ellis, Scott R; Creelman, Mark; Mathies, Richard A

    2013-09-09

    A comparison between a Fabry-Pérot etalon filter and a conventional grating filter for producing the picosecond (ps) Raman pump pulses for femtosecond stimulated Raman spectroscopy (FSRS) is presented. It is shown that for pulses of equal energy the etalon filter produces Raman signals twice as large as that of the grating filter while suppressing the electronically resonant background signal. The time asymmetric profile of the etalon-generated pulse is shown to be responsible for both of these observations. A theoretical discussion is presented which quantitatively supports this hypothesis. It is concluded that etalons are the ideal method for the generation of narrowband ps pulses for FSRS because of the optical simplicity, efficiency, improved FSRS intensity and reduced backgrounds.

  10. Picosecond energy transfer in Porphyridium cruentum and Anacystis nidulans.

    PubMed Central

    Brody, S S; Treadwell, C; Barber, J

    1981-01-01

    Picosecond energy transfer is measured in Anacystis nidulans and Porphyridium cruentum. Fluorescence is sensitized by a 6-ps laser flash, at 530 nm. The time dependence of fluorescence is measured with reference to the laser pulse. Fluorescence is recorded from phycoerythrin (576 nm), R-phycocyanin (640 nm), allophycocyanin (666 nm), Photosystem II chlorophyll (690 nm) and long wave length chlorophyll (715 nm). Energy transfer measurements are made at 37 degrees C, 23 degrees C, and 0 degrees C, and 77 degrees K. It is shown that the rate of energy transfer can be varied with temperature. In both A. nidulans and P. cruentum there is a sequential transfer of excitation energy from phycoerythrin to phycocyanin to allophycocyan to Photosystem II chlorophyll fluorescence. The long wavelength chlorophyll fluorescence at 715 nm, however, does not always follow a sequential transfer of excitation energy. Depending on the temperature, fluorescence at 715 nm can precede fluorescence from phycocyanin. PMID:6788106

  11. Generation and detection of incoherent phonons in picosecond ultrasonics.

    PubMed

    Perrin, B; Péronne, E; Belliard, L

    2006-12-22

    In picosecond ultrasonics experiments the absorption of a femtosecond laser pulse in a thin metallic transducer is used to generate very short acoustic pulses. These pulses are made of coherent longitudinal waves with a frequency spectrum that can reach 100-200 GHz. The laser pulse absorption gives rise to a heating of the film of a few Kelvin within a typical time of 1 ps. Later on, the heat goes in the substrate through an interface thermal resistance and is diffused by thermal conduction. At very low temperature and in pure crystals the thermal phonons emitted by the heated metallic film can propagate ballistically over large distances and produce a so-called heat pulse. We report on the experimental evidence of the coexistence of the coherent acoustic pulse and the incoherent heat pulse generated and detected by laser ultrasonics.

  12. Picosecond Acoustic Measurement of Anisotropic Properties of Thin Films

    SciTech Connect

    Perton, M.; Rossignol, C.; Chigarev, N.; Audoin, B.

    2007-03-21

    Properties of thin metallic films have been studied extensively by means of laser-picosecond ultrasonics. Generation of longitudinal and shear waves via thermoelastic mechanism and large source has been only demonstrated for waves vectors along the normal to the interface. However, such measurements cannot provide complete information about elastic properties of films. As it has been already shown for nanosecond ultrasonics, the knowledge of group or phase velocities in several directions for sources with small lateral size allows determining the stiffness tensor coefficients of a sample. The experimental set-up was prepared to obtain the thinnest size for the source to achieve acoustic diffraction. The identification of the stiffness tensor components, based on the inversion of the bulk waves phase velocities, is applied to signals simulated and experimentally recorded for a material with hexagonal properties. First estimation of stiffness tensor coefficients for thin metallic film 2.1 {mu}m has been performed.

  13. Monolithic millimeter-wave and picosecond electronic technologies

    SciTech Connect

    Talley, W.K.; Luhmann, N.C.

    1996-03-12

    Theoretical and experimental studies into monolithic millimeter-wave and picosecond electronic technologies have been undertaken as a collaborative project between the Lawrence Livermore National Laboratory (LLNL) and the University of California Department of Applied Science Coherent Millimeter-Wave Group under the auspices of the Laboratory Directed Research and Development Program at LLNL. The work involves the design and fabrication of monolithic frequency multiplier, beam control, and imaging arrays for millimeter-wave imaging and radar, as well as the development of high speed nonlinear transmission lines for ultra-wideband radar imaging, time domain materials characterization and magnetic fusion plasma applications. In addition, the Coherent Millimeter-Wave Group is involved in the fabrication of a state-of-the-art X-band ({approximately}8-11 GHz) RF photoinjector source aimed at producing psec high brightness electron bunches for advanced accelerator and coherent radiation generation studies.

  14. New picosecond laser emitting blue light for use in periodontology

    NASA Astrophysics Data System (ADS)

    Hennig, Thomas; Nieswand, Elmar; Rechmann, Peter

    2001-04-01

    Aim of the study was to investigate the impact of a new picosecond laser emitting blue light on tooth surfaces in order to remove calculus. The radiation may be comfortably transmitted via 25 micrometers diameter fiber optics. The resulting fluence at the tooth was found to be to low for ablation of calculus via nonlinear effects. Higher absorption of the 446 nm radiation by calculus compared to heathy tissues can provide preferential heating and evaporation of the calculus. The surface of thick calculus is irregular rough thus comprising a large interface to the surrounding cooling medium contra acting the preferential heating. In summary the study indicates the possibility flat layers of calculus by thermal effects. Carbonization in healthy tissues is the major problem concerning removal of subgingival calculus with thermal effects.

  15. Synchronization of Sub-Picosecond Electron and Laser Pulses

    SciTech Connect

    Rosenzweig, J.B.; Le Sage G.P.

    2000-08-15

    Sub-picosecond laser-electron synchronization is required to take full advantage of the experimental possibilities arising from the marriage of modern high intensity lasers and high brightness electron beams in the same laboratory. Two particular scenarios stand out in this regard, injection of ultra-short electron pulses in short wavelength laser-driven plasma accelerators, and Compton scattering of laser photons from short electron pulses. Both of these applications demand synchronization, which is subpicosecond, with tens of femtosecond synchronization implied for next-generation experiments. Typically, an RF electron accelerator is synchronized to a short pulse laser system by detecting the repetition signal of a laser oscillator, adjusted to an exact subharmonic of the linac RF frequency, and multiplying or phase locking this signal to produce the master RF clock. Pulse-to-pulse jitter characteristic of self-mode-locked laser oscillators represents a direct contribution to the ultimate timing jitter between a high intensity laser focus and electron beam at the interaction point, or a photocathode drive laser in an RF photoinjector. This timing jitter problem has been addressed most seriously in the context of the RF photoinjector, where the electron beam properties are sensitive functions of relative timing jitter. The timing jitter achieved in synchronized photocathode drive laser systems is near, or slightly below one picosecond. The ultimate time of arrival jitter of the beam at the photoinjector exit is typically a bit smaller than the photocathode drive-laser jitter due to velocity compression effects in the first RF cell of the gun. This tendency of the timing of the electron beam arrival at a given spatial point to lock to the RF lock is strongly reinforced by use of magnetic compression.

  16. Semiconductor Characterization with Acoustic and Thermal waves on Picosecond Timescales

    NASA Astrophysics Data System (ADS)

    Wright, Oliver B.

    1997-03-01

    Ultrafast optical techniques for semiconductor characterization can probe the dynamics of photoexcited carriers, leading to applications in, for example, in-line monitoring of semiconductor processing and optimization of materials for sub-picosecond electronic switches or for nanoscale electronic devices.(Semiconductors Probed by Ultrafast Laser Spectroscopy, edited by R. R. Alfano (Academic, New York, 1984).) Picosecond or femtosecond optical pulses excite electrons to higher electronic bands, producing a nonequilibrium electron-hole distribution. Various physical effects result from the relaxation of this distribution. Luminescence or photoelectron emission are examples. In the present study the focus is on acoustic and thermal effects. The change in electron and hole occupation probabilities induces an electronic stress distributed throughout the carrier penetration depth. A temperature change of the lattice and an associated thermal stress are also produced. The combined stress distribution launches a strain pulse that propagates into the sample as a longitudinally polarized acoustic wave in the present experiments. Its reflection from sub-surface boundaries, interfaces or defects can be detected at the surface by another, weaker optical probe pulse. During this time the temperature distribution in the semiconductor also changes due to thermal wave propagation,(Photoacoustic and Thermal Wave Phenomena in Semiconductors, edited by Andreas Mandelis (North Holland, New York, 1987).) and this simultaneously influences the optical probe pulse. Both reflectance modulation and beam deflection methods for probing were used to investigate crystalline and amorphous silicon samples.(O. B. Wright, U. Zammit, M. Marinelli, and V. Gusev, Appl. Phys. Lett. 69, 553 (1996).) (O. B. Wright and V. E. Gusev, Appl. Phys. Lett. 66, 1190 (1995).) (O. B. Wright and K. Kawashima, Phonon Scattering in Condensed Matter VII, edited by R. O. Pohl and M. Meissner, Springer Verlag, Berlin

  17. Ultrafast Optical Beam Deflection in a Planar Waveguide for High Dynamic Range Recording at Picosecond Resolution

    SciTech Connect

    Sarantos, C H; Heebner, J E

    2008-07-02

    We report the latest performance of an ultrafast, all-optical beam deflector based on a prism array imprinted in a planar waveguide. The deflector enables single-shot, high dynamic range optical recording with picosecond resolution.

  18. Comparative shock wave analysis during corneal ablation with an excimer laser, picosecond laser, and femtosecond laser

    NASA Astrophysics Data System (ADS)

    Krueger, Ronald R.; Juhasz, Tibor

    1995-05-01

    With the event of topographic steep central islands following excimer laser surgery and the potential damage to the corneal endothelium, shock waves are playing an increasingly important role in laser refractive surgery. With this in mind, we performed a comparative shock wave analysis in corneal tissue using an excimer laser, picosecond laser, and femtosecond laser. We used a Lambda Physik excimer laser at 308 nm wavelength, a Nd:YLF picosecond laser at 1053 nm wavelength and a synchronously pumped linear cavity femtosecond laser at 630 nm wavelength. The pulse widths of the corresponding lasers were 8 ns, 18 ps, 150 fs, respectively. The energy density of irradiation was 2.5 to 8 times the threshold level being 2 J/cm2 (excimer laser), 86 J/cm2 (picosecond laser) and 10.3 J/cm2 (femtosecond laser). Shock wave dynamics were analyzed using time-resolved photography on a nanosecond time scale using the picosecond laser in corneal tissue, water and air. Shock wave dynamics using the femtosecond laser were studied in water only while the excimer laser induced shock wave during corneal ablation was studied in air only. We found the dynamics of shock waves to be similar in water and corneal tissue indicating that water is a good model to investigate shock wave effects in the cornea. The magnitude of the shock wave velocity and pressure decays over time to that of a sound wave. The distance over which it decays is 3 mm in air with the excimer laser and 600 - 700 micrometers in air with the picosecond laser. In water, the picosecond laser shock wave decays over a distance of 150 micrometers compared to the femtosecond laser shock wave which decays over a distance of 30 micrometers . Overall the excimer laser shock wave propagates 5 times further than that of the picosecond laser and the picosecond laser shock wave propagates 5 times further than that of the femtosecond laser. In this preliminary comparison, the time and distance for shock wave decay appears to be directly

  19. Toward a sub-terawatt mid-IR (4-5 μm) femtosecond hybrid laser system based on parametric seed pulse generation and amplification in Fe2+:ZnSe

    NASA Astrophysics Data System (ADS)

    Potemkin, F. V.; Bravy, B. G.; Kozlovsky, V. I.; Korostelin, Yu V.; Migal, E. A.; Podmar'kov, Yu P.; Podshivalov, A. A.; Platonenko, V. T.; Firsov, V. V.; Frolov, M. P.; Gordienko, V. M.

    2016-01-01

    For the first time, an experimentally measured seed pulse gain of about 2 cm-1 allows possibilities in the scaling power of such a femtosecond laser system in terawatts. The concept of a subterawatt power level hybrid femtosecond mid-IR (4-5 μm) laser system, based on a weak pulse from an optical parametric mid-IR seeder that is amplified in chalcogenide monocrystalline Fe2+:ZnSe, to gain medium has been proposed and designed. The method and approach for optimizing the choice of nonlinear medium, its length, and the required light intensity for the efficient non-linear self-compression of an ultrashort pulse has also been proposed and considered.

  20. Oscillations of absorption of a probe picosecond light pulse caused by its interaction with stimulated picosecond emission of GaAs

    SciTech Connect

    Ageeva, N. N.; Bronevoi, I. L. Zabegaev, D. N.; Krivonosov, A. N.

    2015-04-15

    The self-modulation of absorption of a picosecond light pulse was observed earlier [1] in a thin (∼1-μm thick) GaAs layer pumped by a high-power picosecond pulse. Analysis of the characteristics of this self-modulation predicted [5] that the dependences of the probe pulse absorption on the pump pulse energy and picosecond delay between pump and probe pulses should be self-modulated by oscillations. Such self-modulation was experimentally observed in this work. Under certain conditions, absorption oscillations proved to be a function of part of the energy of picosecond stimulated emission of GaAs lying above a certain threshold in the region where the emission front overlapped the probe pulse front. Absorption oscillations are similar to self-modulation of the GaAs emission characteristics observed earlier [4]. This suggests that the self-modulation of absorption and emission is determined by the same type of interaction of light pulses in the active medium, the physical mechanism of which has yet to be determined.

  1. Picosecond infrared laser (PIRL): an ideal phonomicrosurgical laser?

    PubMed

    Hess, Markus; Hildebrandt, Michael Dominik; Müller, Frank; Kruber, Sebastian; Kroetz, Peter; Schumacher, Udo; Reimer, Rudolph; Kammal, Michael; Püschel, Klaus; Wöllmer, Wolfgang; Miller, Dwayne

    2013-11-01

    A comparison of tissue cutting effects in excised cadaver human vocal folds after incisions with three different instruments [scalpel, CO2 laser and the picosecond infrared laser-(PIRL)] was performed. In total, 15 larynges were taken from human cadavers shortly after death. After deep freezing and thawing for the experiment, the vocal folds suspended in the hemilarynx were incised. Histology and environmental scanning electron microscopy (ESEM) analyses were performed. Damage zones after cold instrument cuts ranged from 51 to 135 μm, as compared to 9-28 μm after cutting with the PIRL. It was shown that PIRL incision had smaller zones of tissue coagulation and tissue destruction, when compared with scalpel and CO2 laser cuts. The PIRL technology provides an (almost) atraumatic laser, which offers a quantum jump towards realistic 'micro'-phonosurgery on a factual cellular dimension, almost entirely avoiding coagulation, carbonization, or other ways of major tissue destruction in the vicinity of the intervention area. Although not available for clinical use yet, the new technique appears promising for future clinical applications, so that technical and methodological characteristics as well as tissue experiments seem worthwhile to be communicated at this stage of development.

  2. Sub-picosecond Resolution Time-to-Digital Converter

    SciTech Connect

    Ph D, Vladimir Bratov; Ph D, Vladimir Katzman; MS EE, Jeb Binkley

    2006-03-30

    Time-to-digital converters with sub-picosecond resolutions are needed to satisfy the requirements of time-on-flight measurements of the next generation of high energy and nuclear physics experiments. The converters must be highly integrated, power effective, low cost, and feature plug-and-play capabilities to handle the increasing number of channels (up to hundreds of millions) in future Department of Energy experiments. Current state-off-the-art time-to-digital converter integrated circuits do not have the sufficient degree of integration and flexibility to fulfill all the described requirements. During Phase I, the Advanced Science and Novel Technology Company in cooperation with the nuclear physics division of the Oak Ridge National Laboratory has developed the architecture of a novel time-to-digital converter with multiple channels connected to an external processor through a special interfacing block and synchronized by clock signals generated by an internal phase-locked loop. The critical blocks of the system including signal delay lines and delay-locked loops with proprietary differential delay cells, as well as the required digital code converter and the clock period counter have been designed and simulated using the advanced SiGe120 BiCMOS technological process. The results of investigations demonstrate a possibility to achieve the digitization accuracy within 1ps. ADSANTEC has demonstrated the feasibility of the proposed concept in computer simulations. The proposed system will be a critical component for the next generation of NEP experiments.

  3. Picosecond laser photolysis studies of DMA DMPP in solution

    NASA Astrophysics Data System (ADS)

    Miyasaka, Hiroshi; Itaya, Akira; Rotkiewicz, Krystyna; Rechthaler, Karl

    1999-07-01

    Picosecond transient absorption spectra of: 4-(4'- N,N-dimethylaminophenyl)-3,5-dimethyl-1,7-diphenyl-bis-pyrazolo-[3,4-b;4',3'-e]-pyridine (DMA-DMPP), 3,5-dimethyl-1,7-diphenyl-bis-pyrazolo-[3,4-b;4',3'-e]-pyridine (BPP) and 3,5-dimethyl-1,4,7-triphenyl-bis-pyrazolo-[3,4-b;4',3'-e]-pyridine (H-DMPP) were measured in solvents of different polarity. The results revealed the previously postulated change of the character of the fluorescing state from a primary excited, low polar state in non-polar solvents to a CT state in highly polar ones. Transient absorption spectra in the equilibrium fluorescent state of DMA-DMPP in polar solvents comprised the band ascribable to the cation radical of the DMA moiety. The charge transfer process is fastest in methanol and acetonitrile; in the former it is not controlled by a dynamic Stokes shift.

  4. Upconversion imaging using short-wave infrared picosecond pulses.

    PubMed

    Mathez, Morgan; Rodrigo, Peter John; Tidemand-Lichtenberg, Peter; Pedersen, Christian

    2017-02-01

    To the best of our knowledge, we present the first demonstration of short-wavelength infrared image upconversion that employs intense picosecond signal and pump beams. We use a fiber laser that emits a signal beam at 1877 nm and a pump beam at 1550 nm-both with a pulse width of 1 ps and a pulse repetition rate of 21.7 MHz. Due to synchronization of high peak-power pulses, efficient upconversion is achieved in a single-pass setup that employs a bulk lithium niobate crystal. Optimizing the temporal overlap of the pulses for high upconversion efficiency enables us to exploit a relatively large pump beam diameter to upconvert a wider range of signal spatial frequencies in the crystal. The 1877 nm signal is converted into 849 nm-enabling an image to be acquired by a silicon CCD camera. The measured size of the smallest resolvable element of this imaging system is consistent with the value predicted by an improved model that considers the combined image blurring effect due to finite pump beam size, thick nonlinear crystal, and polychromatic infrared illumination.

  5. Direct fluorescence characterisation of a picosecond seeded optical parametric amplifier

    NASA Astrophysics Data System (ADS)

    Stuart, N. H.; Bigourd, D.; Hill, R. W.; Robinson, T. S.; Mecseki, K.; Patankar, S.; New, G. H. C.; Smith, R. A.

    2015-02-01

    The temporal intensity contrast of high-power lasers based on optical parametric amplification (OPA) can be limited by parametric fluorescence from the non-linear gain stages. Here we present a spectroscopic method for direct measurement of unwanted parametric fluorescence widely applicable from unseeded to fully seeded and saturated OPA operation. Our technique employs simultaneous spectroscopy of fluorescence photons slightly outside the seed bandwidth and strongly attenuated light at the seed central wavelength. To demonstrate its applicability we have characterised the performance of a two-stage picosecond OPA pre-amplifier with 2.8×105 gain, delivering 335 μJ pulses at 1054 nm. We show that fluorescence from a strongly seeded OPA is reduced by ~500× from the undepleted to full pump depletion regimes. We also determine the vacuum fluctuation driven noise term seeding this OPA fluorescence to be 0.7±0.4 photons ps-1 nm-1 bandwidth. The resulting shot-to-shot statistics highlights a 1.5% probability of a five-fold and 0.3% probability of a ten-fold increase of fluorescence above the average value. Finally, we show that OPA fluorescence can be limited to a few-ps pedestal with 3×10-9 temporal intensity contrast 1.3 ps ahead of an intense laser pulse, a level highly attractive for large scale chirped-pulse OPA laser systems.

  6. Picosecond time-resolved fluorescence spectroscopy of phytochrome and stentorin

    NASA Astrophysics Data System (ADS)

    Song, Pill-Soon

    1991-05-01

    Phytochrome is a tetrapyrrole chromoprotein. It serves as a sensitive photosensor for red lightmediated gene expression and other developmental/morphological responses in plants. In this paper photochemical dynamics of the phytochrome molecule have been described in terms of photoisomerization of the tetrapyrrole chromophore in its singlet excited state and subsequent thermal processes in the Pr Pfr phototransformation of phytochrome. Stentorin acts as the photosensor molecule in the ciliate Stentor coeruleus. This unicellular protozoan is most sensitive to red light (610-620 urn). Stentor also senses the direction of light propagation as evidenced by their light-avoiding and negative phototactic swimming behaviors. This aneural photosensory phenomenon is triggered by the photoreceptor stentorin. The possible involvement of a light-induced transient proton release from the photoreceptor as the primary mechanism of light-signal processing has been discussed on the basis of picosecond fluorescence decays and time-resolved fluorescence spectra of stentorin in solution. An initial sensory signal generated by the primary photoprocess of stentorin then triggers subsequent transduction steps that include calcium ion influx from the extracellular medium. Calcium ion influx from the extracellular medium to the cytosol causes the Stentor cell to reverse its ciliary beating and subsequently steer away from the light trap. II.

  7. Advantages offered by high average power picosecond lasers

    NASA Astrophysics Data System (ADS)

    Moorhouse, C.

    2011-03-01

    As electronic devices shrink in size to reduce material costs, device size and weight, thinner material thicknesses are also utilized. Feature sizes are also decreasing, which is pushing manufacturers towards single step laser direct write process as an attractive alternative to conventional, multiple step photolithography processes by eliminating process steps and the cost of chemicals. The fragile nature of these thin materials makes them difficult to machine either mechanically or with conventional nanosecond pulsewidth, Diode Pumped Solids State (DPSS) lasers. Picosecond laser pulses can cut materials with reduced damage regions and selectively remove thin films due to the reduced thermal effects of the shorter pulsewidth. Also, the high repetition rate allows high speed processing for industrial applications. Selective removal of thin films for OLED patterning, silicon solar cells and flat panel displays is discussed, as well as laser cutting of transparent materials with low melting point such as Polyethylene Terephthalate (PET). For many of these thin film applications, where low pulse energy and high repetition rate are required, throughput can be increased by the use of a novel technique to using multiple beams from a single laser source is outlined.

  8. Sub-picosecond optical switching with a negative index metamaterial

    SciTech Connect

    Dani, Keshav M; Upadhya, Prashant C; Zahyum, Ku

    2009-01-01

    Development of all-optical signal processing, eliminating the performance and cost penalties of optical-electrical-optical conversion, is important for continu,ing advances in Terabits/sec (Tb/s) communications.' Optical nonlinearities are generally weak, traditionally requiring long-path, large-area devicesl,2 or very high-Q, narrow-band resonator structures.3 Optical metamaterials offer unique capabilities for optical-optical interactions. Here we report 600 femtosecond (fs) all-optical modulation using a fIShnet (2D-perforated metallamorphous-Si (a-Si)/metal film stack) negative-index meta material with a structurally tunable broad-band response near 1.2 {micro}m. Over 20% modulation (experimentally limited) is achieved in a path length of only 116 nm by photo-excitation of carriers in the a-Si layer. This has the potential for Tb/s aU-optical communication and will lead to other novel, compact, tunable sub-picosecond (ps) photonic devices.

  9. Picosecond laser ablation of nickel-based superalloy C263

    NASA Astrophysics Data System (ADS)

    Semaltianos, N. G.; Perrie, W.; Cheng, J.; French, P.; Sharp, M.; Dearden, G.; Watkins, K. G.

    2010-02-01

    Picosecond laser (10.4 ps, 1064 nm) ablation of the nickel-based superalloy C263 is investigated at different pulse repetition rates (5, 10, 20, and 50 kHz). The two ablation regimes corresponding to ablation dominated by the optical penetration depth at low fluences and of the electron thermal diffusion length at high fluences are clearly identified from the change of the surface morphology of single pulse ablated craters (dimples) with fluence. The two corresponding thresholds were measured as F {th(D1)/1}=0.68±0.02 J/cm2 and F {th(D2)/1}=2.64±0.27 J/cm2 from data of the crater diameters D 1,2 versus peak fluence. The surface morphology of macroscopic areas processed with a scanning laser beam at different fluences is characterised by ripples at low fluences. As the fluence increases, randomly distributed areas among the ripples are formed which appear featureless due to melting and joining of the ripples while at high fluences the whole irradiated surface becomes grainy due to melting, splashing of the melt and subsequent resolidification. The throughput of ablation becomes maximal when machining at high pulse repetition rates and with a relatively low fluence, while at the same time the surface roughness is kept low.

  10. Picosecond time-resolved imaging using SPAD cameras

    NASA Astrophysics Data System (ADS)

    Gariepy, Genevieve; Leach, Jonathan; Warburton, Ryan; Chan, Susan; Henderson, Robert; Faccio, Daniele

    2016-10-01

    The recent development of 2D arrays of single-photon avalanche diodes (SPAD) has driven the development of applications based on the ability to capture light in motion. Such arrays are composed typically of 32x32 SPAD detectors, each having the ability to detect single photons and measure their time of arrival with a resolution of about 100 ps. Thanks to the single-photon sensitivity and the high temporal resolution of these detectors, it is now possible to image light as it is travelling on a centimetre scale. This opens the door for the direct observation and study of dynamics evolving over picoseconds and nanoseconds timescales such as laser propagation in air, laser-induced plasma and laser propagation in optical fibres. Another interesting application enabled by the ability to image light in motion is the detection of objects hidden from view, based on the recording of scattered waves originating from objects hidden by an obstacle. Similarly to LIDAR systems, the temporal information acquired at every pixel of a SPAD array, combined with the spatial information it provides, allows to pinpoint the position of an object located outside the line-of-sight of the detector. A non-line-of-sight tracking can be a valuable asset in many scenarios, including for search and rescue mission and safer autonomous driving.

  11. Probing single-cell mechanics with picosecond ultrasonics.

    PubMed

    Dehoux, Thomas; Abi Ghanem, Maroun; Zouani, Omar F; Ducousso, Mathieu; Chigarev, Nikolay; Rossignol, Clément; Tsapis, Nicolas; Durrieu, Marie-Christine; Audoin, Bertrand

    2015-02-01

    The mechanical properties of cells play a key role in several fundamental biological processes, such as migration, proliferation, differentiation and tissue morphogenesis. The complexity of the inner cell composition and the intricate meshwork formed by transmembrane cell-substrate interactions demands a non-invasive technique to probe cell mechanics and cell adhesion at a subcell scale. In this paper we review the use of laser-generated GHz acoustic waves--a technique called picosecond ultrasonics (PU)--to probe the mechanical properties of single cells. We first describe applications to vegetal cells and biomimetic systems. We show how these systems can be used as simple models to understand more complex animal cells. We then present an opto-acoustic bio-transducer designed for in vivo measurements in physiological conditions. We illustrate the use of this transducer through the simultaneous probing of the density and compressibility of Allium cepa cells. Finally, we demonstrate that this technique can quantify animal-cell adhesion on metallic surfaces by analyzing the acoustic pulses reflected off the cell-metal interface. This innovative approach allows investigating quantitatively cell mechanics without fluorescent labels or mechanical contact to the cell.

  12. Lung Emergencies

    MedlinePlus

    ... Emergencies Cardiac Emergencies Eye Emergencies Lung Emergencies Surgeries Lung Emergencies People with Marfan syndrome can be at ... should be considered an emergency. Symptoms of sudden lung collapse (pneumothorax) Symptoms of a sudden lung collapse ...

  13. Picosecond laser cutting and drilling of thin flex glass

    NASA Astrophysics Data System (ADS)

    Wlodarczyk, Krystian L.; Brunton, Adam; Rumsby, Phil; Hand, Duncan P.

    2016-03-01

    We investigate the feasibility of cutting and drilling thin flex glass (TFG) substrates using a picosecond laser operating at wavelengths of 1030 nm, 515 nm and 343 nm. 50 μm and 100 μm thick AF32®Eco Thin Glass (Schott AG) sheets are used. The laser processing parameters such as the wavelength, pulse energy, pulse repetition frequency, scan speed and the number of laser passes which are necessary to perform through a cut or to drill a borehole in the TFG substrate are studied in detail. Our results show that the highest effective cutting speeds (220 mm/s for a 50 μm thick TFG substrate and 74 mm/s for a 100 μm thick TFG substrate) are obtained with the 1030 nm wavelength, whereas the 343 nm wavelength provides the best quality cuts. The 515 nm wavelength, meanwhile, can be used to provide relatively good laser cut quality with heat affected zones (HAZ) of <25 μm for 50 μm TFG and <40 μm for 100 μm TFG with cutting speeds of 100 mm/s and 28.5 mm/s, respectively. The 343 nm and 515 nm wavelengths can also be used for drilling micro-holes (with inlet diameters of ⩽75 μm) in the 100 μm TFG substrate with speeds of up to 2 holes per second (using 343 nm) and 8 holes per second (using 515 nm). Optical microscope and SEM images of the cuts and micro-holes are presented.

  14. Cell stimulation and calcium mobilization by picosecond electric pulses.

    PubMed

    Semenov, Iurii; Xiao, Shu; Kang, Dongkoo; Schoenbach, Karl H; Pakhomov, Andrei G

    2015-10-01

    We tested if picosecond electric pulses (psEP; 190 kV/cm, 500 ps at 50% height), which are much shorter than channel activation time, can activate voltage-gated (VG) channels. Cytosolic Ca(2+) was monitored by Fura-2 ratiometric imaging in GH3 and NG108 cells (which express multiple types of VG calcium channels, VGCC), and in CHO cells (which express no VGCC). Trains of up to 100 psEP at 1 kHz elicited no response in CHO cells. However, even a single psEP significantly increased Ca(2+) in both GH3 (by 114 ± 48 nM) and NG108 cells (by 6 ± 1.1 nM). Trains of 100 psEP amplified the response to 379 ± 33 nM and 719 ± 315 nM, respectively. Ca(2+) responses peaked within 2-15s and recovered for over 100 s; they were 80-100% inhibited by verapamil and ω-conotoxin, but not by the substitution of Na(+) with N-methyl-D-glucamine. There was no response to psEP in Ca(2+)-free medium, but adding external Ca(2+) even 10s later evoked Ca(2+) response. We conclude that electrical stimuli as short as 500 ps can cause long-lasting opening of VGCC by a mechanism which does not involve conventional electroporation, heating (which was under 0.06 K per psEP), or membrane depolarization by opening of VG Na(+) channels.

  15. Cell stimulation and calcium mobilization by picosecond electric pulses

    PubMed Central

    Semenov, Iurii; Xiao, Shu; Kang, Dongkoo; Schoenbach, Karl H.; Pakhomov, Andrei G.

    2015-01-01

    We tested if picosecond electric pulses (psEP; 190 kV/cm, 500 ps at 50% height), which are much shorter than channel activation time, can activate voltage-gated (VG) channels. Cytosolic Ca2+ was monitored by Fura-2 ratiometric imaging in GH3 and NG108 cells (which express multiple types of VG calcium channels, VGCC), and in CHO cells (which express no VGCC). Trains of up to 100 psEP at 1 kHz elicited no response in CHO cells. However, even a single psEP significantly increased Ca2+ in both GH3 (by 114+/−48 nM) and NG108 cells (by 6 +/−1.1 nM). Trains of 100 psEP amplified the response to 379+/−33 nM and 719+/−315 nM, respectively. Ca2+ responses peaked within 2–15 s and recovered for over 100 s; they were 80–100% inhibited by verapamil and ω-conotoxin, but not by the substitution of Na+ with N-methyl-D-glucamine. There was no response to psEP in Ca2+-free medium, but adding external Ca2+ even 10 s later evoked Ca2+ response. We conclude that electrical stimuli as short as 500 ps can cause long-lasting opening of VGCC by a mechanism which does not involve conventional electroporation, heating (which was under 0.06 °K per psEP), or membrane depolarization by opening of VG Na+ channels. PMID:26011130

  16. The Application Of Picosecond-Resolved Fluorescence Spectroscopy In The Study Of Flavins And Flavoproteins

    NASA Astrophysics Data System (ADS)

    Visser, Antonie J.; van Hoek, Arie

    1988-06-01

    Picosecond relaxation processes of flavins and flavoproteins were investigated with mode-locked and synchronously pumped lasers as source of excitation and time-correlated single photon counting in detection. Free flavin rotational correlation times of 80-150 ps (values depending on the flavin derivative used) could be precisely determined. Picosecond-resolved fluorescence of the flavin bound in the electron-carrier protein flavodoxin from Desulfovibrio vulgaris yields a fluorescence lifetime component of 30 ps in the fluorescence decay. Time-resolved tryptophan fluorescence in flavodoxin exhibits a short lifetime component, which is attributed in part to energy transfer from tryptophan to flavin. Three-dimensional fluorescence spectroscopy and fluorescence anisotropy decay analysis of the two tryptophan residues in flavodoxin provide new evidence for specific flavin-tryptophan interaction. Finally, picosecond-resolved spectroscopy enables the direct measurement of energy transfer between two different chromophores in a protein, from which topographical details can be inferred.

  17. Elemental fractionation in 785 nm picosecond and femtosecond laser ablation inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Shaheen, M. E.; Gagnon, J. E.; Fryer, B. J.

    2015-05-01

    Elemental fractionation and ICP-MS signal response were investigated for two different pulse width laser beams originating from the same laser system. Femtosecond and picosecond laser beams at pulse widths of 130 fs and 110 ps, respectively, and wavelength of 785 nm were used to ablate NIST 610 synthetic glass and SRM 1107 Naval Brass B at the same spot for 800 to 1000 laser pulses at different repetition rates (5 to 50 Hz). Elemental fractionation was found to depend on repetition rate and showed a trend with femtosecond laser ablation that is opposite to that observed in picosecond laser ablation for most measured isotopes. ICP-MS signal intensity was higher in femtosecond than picosecond LA-ICP-MS in both NIST 610 and naval brass when ablation was conducted under the same fluence and repetition rate. The differences in signal intensity were partly related to differences in particle size distribution between particles generated by femtosecond and picosecond laser pulses and the consequent differences in transport and ionization efficiencies. The main reason for the higher signal intensity resulting from femtosecond laser pulses was related to the larger crater sizes compared to those created during picosecond laser ablation. Elemental ratios measured using 66Zn/63Cu, 208Pb/238U, 232Th/238U, 66Zn/232Th and 66Zn/208Pb were found to change with the number of laser pulses with data points being more scattered in picosecond than femtosecond laser pulses. Reproducibility of replicate measurements of signal intensities, fractionation and elemental ratios was better for fs-LA-ICP-MS (RSD ~ 3 to 6%) than ps-LA-ICP-MS (RSD ~ 7 to 11%).

  18. An investigation on the hole quality during picosecond laser helical drilling of stainless steel 304

    NASA Astrophysics Data System (ADS)

    Zhang, Hongyu; Di, Jianke; Zhou, Ming; Yan, Yu; Wang, Rong

    2015-05-01

    Precision drilling with ultra-short pulse lasers (e.g., picosecond and femtosecond) has been advocated to significantly improve the quality of the micro-holes with reduced recast layer thickness and no heat-affected zone. However, a combination of high-power picosecond laser with helical drilling strategy in laser drilling has rarely been reported in previous studies. In the present study, a series of micro-holes with circular, triangular, rectangular, and rhombic shapes (diameter 0.6 mm) were manufactured on stainless steel 304 using a newly developed laser drilling system which incorporated a picosecond laser and a high-speed laser beam rotation apparatus into a five-axis positioning platform. The quality of the helical drilled holes, e.g., recast layer, micro-crack, circularity, and conicity, were evaluated using an optical microscope, an optical interferometer, and a scanning electron microscope. In addition, the microstructure of the samples was investigated following etching treatment. It was demonstrated that the entrance ends, the exit ends, and the side walls of the micro-holes were quite smooth without accumulation of spattering material and formation of recast layer and micro-crack. No tapering phenomenon was observed, and the circularity of the holes was fairly good. There was no distinctive difference with regard to the microstructure between the edges of the holes and the bulk material. Picosecond laser helical drilling can be an effective technique for manufacturing of micro-holes with very high quality. The development of high-power picosecond laser would promote picosecond laser drilling to be more industrial relevance in the future.

  19. Simulation of picosecond pulse propagation in fibre-based radiation shaping units

    NASA Astrophysics Data System (ADS)

    Kuptsov, G. V.; Petrov, V. V.; Laptev, A. V.; Petrov, V. A.; Pestryakov, E. V.

    2016-09-01

    We have performed a numerical simulation of picosecond pulse propagation in a combined stretcher consisting of a segment of a telecommunication fibre and diffraction holographic gratings. The process of supercontinuum generation in a nonlinear photoniccrystal fibre pumped by picosecond pulses is simulated by solving numerically the generalised nonlinear Schrödinger equation; spectral and temporal pulse parameters are determined. Experimental data are in good agreement with simulation results. The obtained results are used to design a high-power femtosecond laser system with a pulse repetition rate of 1 kHz.

  20. Sub-surface channels in sapphire made by ultraviolet picosecond laser irradiation and selective etching.

    PubMed

    Moser, Rüdiger; Ojha, Nirdesh; Kunzer, Michael; Schwarz, Ulrich T

    2011-11-21

    We demonstrate the realization of sub-surface channels in sapphire prepared by ultraviolet picosecond laser irradiation and subsequent selective wet etching. By optimizing the pulse energy and the separation between individual laser pulses, an optimization of channel length can be achieved with an aspect ratio as high as 3200. Due to strong variation in channel length, further investigation was done to improve the reproducibility. By multiple irradiations the standard deviation of the channel length could be reduced to 2.2%. The achieved channel length together with the high reproducibility and the use of a commercial picosecond laser system makes the process attractive for industrial application.

  1. Picosecond supercontinuum laser with consistent emission parameters over variable repetition rates from 1 to 40 MHz

    NASA Astrophysics Data System (ADS)

    Schönau, Thomas; Siebert, Torsten; Härtel, Romano; Klemme, Dietmar; Lauritsen, Kristian; Erdmann, Rainer

    2013-02-01

    An freely triggerable picosecond visible supercontinuum laser source is presented that allows for a uniform spectral profile and equivalent pulse characteristics over variable repetition rates from 1 to 40MHz. The system features PM Yb3+-doped fiber amplification of a picosecond gain-switched seed diode at 1062 nm. The pump power in the multi-stage amplifier is actively adjusted by a microcontroller for a consistent peak power of the amplified signal in the full range of repetition rates. The length of the PCF is scaled to deliver a homogeneous spectrum and minimized distortion of the temporal pulse shape.

  2. Relativistic theory for picosecond time transfer in the vicinity of Earth

    NASA Technical Reports Server (NTRS)

    Petit, G.; Wolf, P.

    1994-01-01

    The problem of light propagation is treated in a geocentric reference system with the goal of ensuring picosecond accuracy for time transfer techniques using electromagnetic signals in the vicinity of the Earth. We give an explicit formula for a one way time transfer, to be applied when the spatial coordinates of the time transfer stations are known in a geocentric reference system rotating with the Earth. This expression is extended, at the same accuracy level of one picosecond, to the special cases of two way and LASSO time transfers via geostationary satellites.

  3. Time-resolved study of formate on Ni( 1 1 1 ) by picosecond SFG spectroscopy

    NASA Astrophysics Data System (ADS)

    Kusafuka, K.; Noguchi, H.; Onda, K.; Kubota, J.; Domen, K.; Hirose, C.; Wada, A.

    2002-04-01

    Time-resolved vibrational measurements were carried out on formate (HCOO) adsorbed on Ni(1 1 1) surface by combining the sum-frequency generation method and picosecond laser system (time resolution of 6 ps). Rapid intensity decrease (within the time resolution) followed by intensity recovery (time constant of several tens of ps) of CH stretching signal was observed when picosecond 800 nm pulse was irradiated on the sample surface. From the results of temperature and pump fluence dependences of temporal behaviour of signal intensity, we concluded that the observed intensity change was induced by non-thermal process. Mechanism of the temporal intensity change was discussed.

  4. Production of Picosecond, Kilojoule, and Petawatt Laser Pulses via Raman Amplification of Nanosecond Pulses

    SciTech Connect

    Trines, R. M. G. M.; Bingham, R.; Norreys, P. A.; Fiuza, F.; Fonseca, R. A.; Silva, L. O.

    2011-09-02

    Raman amplification in plasma has been promoted as a means of compressing picosecond optical laser pulses to femtosecond duration to explore the intensity frontier. Here we show for the first time that it can be used, with equal success, to compress laser pulses from nanosecond to picosecond duration. Simulations show up to 60% energy transfer from pump pulse to probe pulse, implying that multikilojoule ultraviolet petawatt laser pulses can be produced using this scheme. This has important consequences for the demonstration of fast-ignition inertial confinement fusion.

  5. Picosecond anti-Stokes generation in a photonic-crystal fiber for interferometric CARS microscopy.

    PubMed

    Andresen, Esben Ravn; Keiding, Søren Rud; Potma, Eric Olaf

    2006-08-07

    We generate tunable picosecond anti-Stokes pulses by four-wave mixing of two picosecond pump and Stokes pulse trains in a photonic-crystal fiber. The visible, spectrally narrow anti-Stokes pulses with shifts over 150 nm are generated without generating other spectral features. As a demonstration, we employ the generated anti-Stokes pulses as reference pulses in an interferometric coherent anti-Stokes Raman scattering imaging experiment showing that interpulse coherence among the pump, Stokes and anti-Stokes beams is retained.

  6. Highly efficient picosecond degenerate four-wave mixing in a tellurite microstructured optical fiber

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Hoang Tuan, Tong; Kawamura, Harutaka; Nagasaka, Kenshiro; Suzuki, Takenobu; Ohishi, Yasutake

    2016-06-01

    Wavelength-tunable picosecond degenerate four-wave mixing was demonstrated in a tellurite microstructured optical fiber (TMOF). The zero-dispersion wavelength of the TMOF was shifted to 1570 nm by introducing a single ring of air holes in the cladding. The anti-Stokes signal sideband can be generated from 1490 to 1500 nm, and the Stokes idler sideband can emit from 1595 to 1645 nm. Because of the high nonlinearity of the TMOF and the large peak power of the picosecond pump, a maximal signal gain of 31.2 dB and an idler conversion efficiency of +35 dB were achieved.

  7. Picosecond intersubband hole relaxation in p-type quantum wells

    SciTech Connect

    Xu, Z.; Fauchet, P.M.; Rella, C.W.; Schwettman, H.A.

    1995-12-31

    We report the first direct measurement of the relaxation time of holes in p-type quantum wells using tunable, subpicosecond mid-infrared laser pulses in a pump-probe arrangement. The QW layers consisted of 50 In{sub 0.5}Ga{sub 0.5}As/Al{sub 0.5}Ga{sub 0.5}As periods. The In{sub 0.5}Ga{sub 0.5}As well was 4 nm wide and the Al{sub 0.5}Ga{sub 0.5}As barrier was 8 nm wide. The dopant concentration was 10{sup 19} CM{sup -3} which corresponds to a sheet density of 1.2 x 10{sup 13} CM{sup -2}. The room temperature IR spectrum showed a 50 meV wide absorption peak at 5.25 {mu}m (220 meV). This energy agrees with the calculated n=1 heavy hole to n=1 light hole transition energy of 240 meV (150 meV for strain and 90 meV for confinement). The large absorption width results from hole-hole scattering and the difference in dispersion relations between the two subbands. The equal-wavelength pump-probe transmission measurements were performed using the Stanford free electron laser (FEL). The FEL pulses were tuned between 4 and 6 {mu} m and their duration was less than 1 ps. The measurements were performed as a function of temperature, pump wavelength and intensity (from 0.3 to 10 GW/cm{sup 2}). In all our experiments, we find an increase of transmission (decrease of absorption or bleaching) following photopumping, which recovers as a single exponential with a time constant (relaxation time) of the order of 1 picosecond. The maximum change in transmission is linear with pump 2 intensity below 1 GW/cm{sup 2} and saturates to {approximately}3% with a saturation intensity I{sub sat} of 3 GW/cm{sup 2}. As the saturation regime is entered, the relaxation time increases from 0.8 ps to 1.8 ps. This relaxation time depends on the temperature T: it increases from 0.8 ps to 1.3 ps as T decreases from 300 K to 77 K. Finally, when we tune the laser through the absorption band, the magnitude of the signal changes but its temporal behavior does not change, within the accuracy of the measurements.

  8. Electronics for a Picosecond Time-of-flight Measurement

    SciTech Connect

    Brandt, Andrew Gerhart; Rijssenbeek, Michael

    2014-11-03

    TITLE: Electronics for a Picosecond Time-of-flight Measurement ABSTRACT: Time-of-flight (TOF) detectors have historically been used as part of the particle identification capability of multi-purpose particle physics detectors. An accurate time measurement, combined with a momentum measurement based on the curvature of the track in a magnetic field, is often sufficient to determine the particle's mass, and thus its identity. Such detectors typically have measured the particle flight time extremely precisely, with an uncertainty of one hundred trillionths of a second (also referred to as 100 picoseconds). To put this in perspective it would be like counting all the people on the Earth and getting it right within 1 person! Another use of TOFs is to measure the vertex of the event, which is the location along the beam line where the incoming particles (typically protons) collide. This vertex positon is a well measured quantity for events where the protons collide “head on” as the outgoing particles produced when you blast the proton apart can be used to trace back to a vertex point from which they originated. More frequently the protons just strike a glancing blow and remain intact—in this case they are nearly parallel to the beam and you cannot tell their vertex without this ability to precisely measure the time of flight of the protons. Occasionally both happen in the same event, that is, a central system and two protons are produced. But are they from the same collision, or just a boring background where more than one collision in the same bunch crossing conspire to fake the signal of interest? That’s where the timing of the protons comes into play. The main idea is to measure the time it takes for the two protons to reach TOF detectors positioned equidistant from the center of the main detector. If the vertex is displaced to one side than that detector will measure a shorter time while the other side detector will measure a correspondingly longer time

  9. Picosecond optical pulse generation at gigahertz rates by direct modulation of a semiconductor laser

    NASA Technical Reports Server (NTRS)

    Auyeung, J.

    1981-01-01

    We report the generation of picosecond pulses by the direct modulation of a buried heterostructure GaAlAs diode laser. Pulse width of 28 ps is achieved at a repetition frequency of 2.5 GHz. Pulse width dependence on the experimental parameters is described.

  10. Reactor for boron fusion with picosecond ultrahigh power laser pulses and ultrahigh magnetic field trapping

    NASA Astrophysics Data System (ADS)

    Miley, G. H.; Hora, H.; Kirchhoff, G.

    2016-05-01

    Compared with the deuterium tritium (DT) fusion, the environmentally clean fusion of protons with 11B is extremely difficult. When instead of nanosecond laser pulses for thermal-ablating driven ignition, picosecond pulses are used, a drastic change by nonlinearity results in ultrahigh acceleration of plasma blocks. This radically changes to economic boron fusion by a measured new avalanche ignition.

  11. Applications using a Picosecond 14.7 nm X-Ray Laser

    SciTech Connect

    Dunn, J; Smith, R F; Nilsen, J; Shlyaptsev, V N; Filevich, J; Rocca, J J; Marconi, M C

    2001-09-21

    We report recent application experiments on the LLNL COMET tabletop facility using the picosecond, 14.7 nm Ni-like Pd x-ray laser. This work includes measurements of a laser-produced plasma density profile with a diffraction grating interferometer.

  12. PS-1/S1 picosecond streak camera application for multichannel laser system diagnostics

    SciTech Connect

    Garanin, S G; Bel'kov, S A; Rogozhnikov, G S; Rukavishnikov, N N; Romanov, V V; Voronich, I N; Vorob'ev, N S; Gornostaev, P B; Lozovoi, V I; Shchelev, M Ya

    2014-08-31

    A PS-1/S1 picosecond image-tube streak camera (ITSC) with slit scan (streak camera), developed and manufactured at the General Physics Institute RAS, has been used to measure the spatiotemporal characteristics of ultrashort laser pulses generated by a petawatt-power laser installation 'FEMTO' at the Institute of Laser Physics Research in Sarov. It is found that such a camera is suitable for measuring the spatial and temporal parameters of single laser pulses with an accuracy of about one picosecond. It is shown that the intensity time profile of a train of picosecond pulses may be precisely defined for the pulses separated in time by a few picoseconds. The camera allows the contrast of radiation to be determined with a high (no less than 10{sup 3}) accuracy; spatial distribution of the laser pulses can be measured with an accuracy of tens of microns, and the temporal separation of single laser pulses can be identified with an accuracy of 1 – 1.5 ps. (extreme light fields and their applications)

  13. Surface displacement measured by beam distortion detection technique: Application to picosecond ultrasonics

    SciTech Connect

    Chigarev, N.; Rossignol, C.; Audoin, B.

    2006-11-15

    A sensitive technique of surface displacement measurement without interferometry is proposed for the goals of picosecond ultrasonics. Simple description of detection mechanism is provided on the basis of paraxial approximation of light diffraction. Test experiments with gold and tungsten layers have been performed and analyzed. The efficiency of the technique is compared with interferometry and reflectometry methods.

  14. Stimulated backward Raman scattering excited in the picosecond range: high efficiency conversions

    NASA Astrophysics Data System (ADS)

    Chevalier, R.; Sokolovskaia, A.; Tcherniega, N.; Rivoire, G.

    1991-04-01

    Stimulated backward Raman scattering (SBRS) excited by picosecond laser pulses is produced with high efficiency conversion in materials displaying large Raman gain and small Kerr constants. A constant energy efficiency of 40% is obtained in aceton for a wide range of the exciting laser energy. The spatial, spectral and temporal structure of the backscattering beam is studied.

  15. Eye Emergencies

    MedlinePlus

    ... Fight for victory. Marfan & Related Disorders What is Marfan Syndrome? What are Related Disorders? What are the Signs? ... Emergencies Eye Emergencies Lung Emergencies Surgeries Eye Emergencies Marfan syndrome significantly increases your risk of retinal detachment, a ...

  16. Childhood Emergencies

    MedlinePlus

    ... SUBSCRIBE Emergency 101 Share this! Home » Emergency 101 Childhood Emergencies Keeping children healthy and safe is every ... and tools to prevent, recognize and address a childhood emergency is the first step in keeping your ...

  17. A Comparison in laser precision drilling of stainless steel 304 with nanosecond and picosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Zhang, Hongyu; Di, Jianke; Zhou, Ming; Yan, Yu

    2014-09-01

    Precision drilling with picosecond laser has been advocated to significantly improve the quality of micro-holes with reduced recast layer thickness and almost no heat affected zone. However, a detailed comparison between nanosecond and picosecond laser drilling techniques has rarely been reported in previous research. In the present study, a series of micro-holes are manufactured on stainless steel 304 using a nanosecond and a picosecond laser drilling system, respectively. The quality of the micro-holes, e.g., recast layer, micro-crack, circularity, and conicity, etc, is evaluated by employing an optical microscope, an optical interferometer, and a scanning electron microscope. Additionally, the micro-structure of the samples between the edges of the micro-holes and the parent material is compared following etching treatment. The researching results show that a great amount of spattering material accumulated at the entrance ends of the nanosecond laser drilled micro-holes. The formation of a recast layer with a thickness of ˜25 μm is detected on the side walls, associated with initiation of micro-cracks. Tapering phenomenon is also observed and the circularity of the micro-holes is rather poor. With regard to the micro-holes drilled by picosecond laser, the entrance ends, the exit ends, and the side walls are quite smooth without accumulation of spattering material, formation of recast layer and micro-cracks. The circularity of the micro-holes is fairly good without observation of tapering phenomenon. Furthermore, there is no obvious difference as for the micro-structure between the edges of the micro-holes and the parent material. This study proposes a picosecond laser helical drilling technique which can be used for effective manufacturing of high quality micro-holes.

  18. Picosecond excite-and-probe absorption measurement of the 4T2 state nonradiative lifetime in ruby

    NASA Technical Reports Server (NTRS)

    Gayen, S. K.; Wang, W. B.; Petricevic, V.; Dorsinville, R.; Alfano, R. R.

    1985-01-01

    In a picosecond excite-and-probe absorption measurement, a 527-nm picosecond pulse excites the 4T2 state of the Cr(3+) ion in ruby and a 3.4-micron picosecond probe pulse monitors the growth and decay of population in the 2E state as a function of pump-probe delay. From the growth of population in the metastable 2E state, an upper limit of 7 ps for the nonradiative lifetime of the 4T2 state is determined.

  19. Picosecond electric-field-induced threshold switching in phase-change materials [THz-induced threshold switching and crystallization of phase-change materials

    DOE PAGES

    Zalden, Peter; Shu, Michael J.; Chen, Frank; ...

    2016-08-05

    Many chalcogenide glasses undergo a breakdown in electronic resistance above a critical field strength. Known as threshold switching, this mechanism enables field-induced crystallization in emerging phase-change memory. Purely electronic as well as crystal nucleation assisted models have been employed to explain the electronic breakdown. Here, picosecond electric pulses are used to excite amorphous Ag4In3Sb67Te26. Field-dependent reversible changes in conductivity and pulse-driven crystallization are observed. The present results show that threshold switching can take place within the electric pulse on subpicosecond time scales—faster than crystals can nucleate. As a result, this supports purely electronic models of threshold switching and reveals potentialmore » applications as an ultrafast electronic switch.« less

  20. Picosecond electric-field-induced threshold switching in phase-change materials [THz-induced threshold switching and crystallization of phase-change materials

    SciTech Connect

    Zalden, Peter; Shu, Michael J.; Chen, Frank; Wu, Xiaoxi; Zhu, Yi; Wen, Haidan; Johnston, Scott; Shen, Zhi -Xun; Landreman, Patrick; Brongersma, Mark; Fong, Scott W.; Wong, H. -S. Philip; Sher, Meng -Ju; Jost, Peter; Kaes, Matthias; Salinga, Martin; von Hoegen, Alexander; Wuttig, Matthias; Lindenberg, Aaron M.

    2016-08-05

    Many chalcogenide glasses undergo a breakdown in electronic resistance above a critical field strength. Known as threshold switching, this mechanism enables field-induced crystallization in emerging phase-change memory. Purely electronic as well as crystal nucleation assisted models have been employed to explain the electronic breakdown. Here, picosecond electric pulses are used to excite amorphous Ag4In3Sb67Te26. Field-dependent reversible changes in conductivity and pulse-driven crystallization are observed. The present results show that threshold switching can take place within the electric pulse on subpicosecond time scales—faster than crystals can nucleate. As a result, this supports purely electronic models of threshold switching and reveals potential applications as an ultrafast electronic switch.

  1. Note: electronic circuit for two-way time transfer via a single coaxial cable with picosecond accuracy and precision.

    PubMed

    Prochazka, Ivan; Kodet, Jan; Panek, Petr

    2012-11-01

    We have designed, constructed, and tested the overall performance of the electronic circuit for the two-way time transfer between two timing devices over modest distances with sub-picosecond precision and a systematic error of a few picoseconds. The concept of the electronic circuit enables to carry out time tagging of pulses of interest in parallel to the comparison of the time scales of these timing devices. The key timing parameters of the circuit are: temperature change of the delay is below 100 fs/K, timing stability time deviation better than 8 fs for averaging time from minutes to hours, sub-picosecond time transfer precision, and a few picoseconds time transfer accuracy.

  2. Design of a 50 TW/20 J chirped-Pulse Amplification Laser for High-Energy-Density Plasma Physics Experiments at the Nevada Terawatt Facility of the University of Nevada

    SciTech Connect

    Erlandson, A C; Astanovitskiy, A; Batie, S; Bauer, B; Bayramian, A; Caird, J A; Cowan, T; Ebbers, C; Fuchs, J; Faretto, H; Glassman, J; Ivanov, V; LeGalloudec, B; LeGalloudec, N; Letzring, S; Payne, S; Stuart, B

    2003-09-07

    We have developed a conceptual design for a 50 TW/20 J short-pulse laser for performing high-energy-density plasma physics experiments at the Nevada Terawatt Facility of the University of Nevada, Reno. The purpose of the laser is to develop proton and x-ray radiography techniques, to use these techniques to study z-pinch plasmas, and to study deposition of intense laser energy into both magnetized and unmagnetized plasmas. Our design uses a commercial diode-pumped Nd:glass oscillator to generate 3-nJ. 200-fs mode-locked pulses at 1059 m. An all-reflective grating stretcher increases pulse duration to 1.1 ns. A two-stage chirped-pulse optical parametric amplifier (OPCPA) using BBO crystals boosts pulse energy to 12 mJ. A chain using mixed silicate-phosphate Nd:glass increases pulse energy to 85 J while narrowing bandwidth to 7.4 nm (FWHM). About 50 J is split off to the laser target chamber to generate plasma while the remaining energy is directed to a roof-mirror pulse compressor, where two 21 cm x 42 cm gold gratings recompress pulses to {approx}350 fs. A 30-cm-focal-length off-axis parabolic reflector (OAP) focuses {approx}20 J onto target, producing an irradiance of 10{sup 19} W/cm{sup 2} in a 10-{micro}m-diameter spot. This paper describes planned plasma experiments, system performance requirements, the laser design, and the target area design.

  3. Emergency contraception

    MedlinePlus

    Morning-after pill; Postcoital contraception; Birth control - emergency; Plan B; Family planning - emergency contraception ... Emergency contraception most likely prevents pregnancy in the same way as regular birth control pills: By preventing or delaying ...

  4. Emergency Contraception

    MedlinePlus

    ... contraception are available: emergency contraceptive pills and the copper-containing intrauterine device (IUD).Emergency contraceptive pills include ... for emergency use, talk to your doctor.The copper-containing IUD (brand name: Paragard) is a small, ...

  5. Delivery of picosecond lasers in multimode fibers for coherent anti-Stokes Raman scattering imaging.

    PubMed

    Wang, Zhiyong; Yang, Yaliang; Luo, Pengfei; Gao, Liang; Wong, Kelvin K; Wong, Stephen T C

    2010-06-07

    We investigated the possibility of using standard commercial multimode fibers (MMF), Corning SMF28 fibers, to deliver picosecond excitation lasers for coherent anti-Stokes Raman scattering (CARS) imaging. We theoretically and/or experimentally analyzed issues associated with the fiber delivery, such as dispersion length, walk-off length, nonlinear length, average threshold power for self-phase modulations, and four-wave mixing (FWM). These analyses can also be applied to other types of fibers. We found that FWM signals are generated in MMF, but they can be filtered out using a long-pass filter for CARS imaging. Finally, we demonstrated that MMF can be used for delivery of picosecond excitation lasers in the CARS imaging system without any degradation of image quality.

  6. Picosecond laser-induced breakdown at 5321 and 5347 A - Observation of frequency-dependent behavior

    NASA Technical Reports Server (NTRS)

    Smith, W. L.; Bechtel, J. H.; Bloembergen, N.

    1977-01-01

    A study is presented of picosecond laser-induced breakdown at 3547 and 5321 A of several materials. The thresholds obtained for breakdown at 5321 A are compared to previous results obtained at 1.064 microns using the same laser system. This comparison illustrates the transition of bulk laser-induced breakdown as it becomes increasingly frequency dependent. UV picosecond pulses are obtained by mixing 5321 A and 1.064 micron pulses in a KH2PO4 crystal. Upper and lower bounds on the 3547 A breakdown threshold are defined, although some effects of walk-off distortion and self-focusing are observed. The results are discussed with reference to models for the intrinsic processes involved in the breakdown, i.e., avalanche and multiphoton ionization.

  7. High-power picosecond laser drilling/machining of carbon fibre-reinforced polymer (CFRP) composites

    NASA Astrophysics Data System (ADS)

    Salama, A.; Li, L.; Mativenga, P.; Sabli, A.

    2016-02-01

    The large differences in physical and thermal properties of the carbon fibre-reinforced polymer (CFRP) composite constituents make laser machining of this material challenging. An extended heat-affected zone (HAZ) often occurs. The availability of ultrashort laser pulse sources such as picosecond lasers makes it possible to improve the laser machining quality of these materials. This paper reports an investigation on the drilling and machining of CFRP composites using a state-of-the-art 400 W picosecond laser system. Small HAZs (<25 µm) were obtained on the entry side of 6-mm-diameter hole drilled on sample of 6 mm thickness, whereas no HAZ was seen below the top surface on the cut surfaces. Multiple ring material removal strategy was used. Furthermore, the effect of laser processing parameters such as laser power, scanning speed and repetition rate on HAZ sizes and ablation depth was investigated.

  8. Picosecond fiber MOPA pumped supercontinuum source with 39 W output power.

    PubMed

    Chen, Kang Kang; Alam, Shaif-Ul; Price, Jonathan H V; Hayes, John R; Lin, Dejiao; Malinowski, Andrew; Codemard, Christophe; Ghosh, Debashri; Pal, Mrinmay; Bhadra, Shyamal K; Richardson, David J

    2010-03-15

    We report a picosecond fiber MOPA pumped supercontinuum source with 39 W output, spanning at least 0.4-2.25 microm at a repetition rate of 114.8 MHz. The 2m long PCF had a large, 4.4 microm diameter core and a high-delta design which led to an 80% coupling efficiency, high damage threshold and rapid generation of visible continuum generation from the picosecond input pulses. The high and relatively uniform power density across the visible spectral region was approximately 31.7 mW/nm corresponding to peak power density of approximately 12.5 W/nm for the 21 ps input pulses. The peak power density was increased to 26.9 W/nm by reducing the repetition rate to 28 MHz. This represents an increase in both average and peak power compared to previously reported visible supercontinuum sources from either CW pumped or pulsed-systems.

  9. Localized Control of Ligand Binding in Hemoglobin: Effect of Tertiary Structure on Picosecond Geminate Recombination

    NASA Astrophysics Data System (ADS)

    Friedman, J. M.; Scott, T. W.; Fisanick, G. J.; Simon, S. R.; Findsen, E. W.; Ondrias, M. R.; MacDonald, V. W.

    1985-07-01

    The picosecond geminate rebinding of molecular oxygen was monitored in a variety of different human, reptilian, and fish hemoglobins. The fast (100 to 200 picoseconds) component of the rebinding is highly sensitive to protein structure. Both proximal and distal perturbations of the heme affect this rebinding process. The rebinding yield for the fast process correlates with the frequency of the stretching motion of the iron-proximal histidine mode (vFe-His) observed in the transient Raman spectra of photodissociated ligated hemoglobins. The high-affinity R-state species exhibit the highest values for vFe-His and the highest yields for fast rebinding, whereas low affinity R-state species and T-state species exhibit lower values of vFe-His and correspondingly reduced yields for this geminate process. These findings link protein control of ligand binding with events at the heme.

  10. Tracing temperature in a nanometer size region in a picosecond time period

    PubMed Central

    Nakajima, Kaoru; Kitayama, Takumi; Hayashi, Hiroaki; Matsuda, Makoto; Sataka, Masao; Tsujimoto, Masahiko; Toulemonde, Marcel; Bouffard, Serge; Kimura, Kenji

    2015-01-01

    Irradiation of materials with either swift heavy ions or slow highly charged ions leads to ultrafast heating on a timescale of several picosecond in a region of several nanometer. This ultrafast local heating result in formation of nanostructures, which provide a number of potential applications in nanotechnologies. These nanostructures are believed to be formed when the local temperature rises beyond the melting or boiling point of the material. Conventional techniques, however, are not applicable to measure temperature in such a localized region in a short time period. Here, we propose a novel method for tracing temperature in a nanometer region in a picosecond time period by utilizing desorption of gold nanoparticles around the ion impact position. The feasibility is examined by comparing with the temperature evolution predicted by a theoretical model. PMID:26293488

  11. Surfaces and thin films studied by picosecond ultrasonics. Progress report, December 1, 1989--November 30, 1992

    SciTech Connect

    Maris, J.H.; Tauc, J.

    1992-05-01

    This research is the study of thin films and interfaces via the use of the picosecond ultrasonic technique. In these experiments ultrasonic waves are excited in a structure by means of a picosecond light pulse (``pump pulse``). The propagation of these waves is detected through the use of a probe light pulse that is time-delayed relative to the pump. This probe pulse measures the change {Delta}R(t) in the optical reflectivity of the structure that occurs because the ultrasonic wave changes the optical properties of the structure. This technique make possible the study of the attenuation and velocity of ultrasonic waves up to much higher frequencies than was previously possible (up to least 500 GHz). In addition, the excellent time-resolution of the method makes it possible to study nanostructures of linear dimensions down to 100 {Angstrom} or less by ultrasonic pulse-echo techniques. 25 refs.

  12. Amplification of picosecond pulses in a 140-GHz gyrotron-traveling wave tube.

    PubMed

    Kim, H J; Nanni, E A; Shapiro, M A; Sirigiri, J R; Woskov, P P; Temkin, R J

    2010-09-24

    An experimental study of picosecond pulse amplification in a gyrotron-traveling wave tube (gyro-TWT) has been carried out. The gyro-TWT operates with 30 dB of small signal gain near 140 GHz in the HE₀₆ mode of a confocal waveguide. Picosecond pulses show broadening and transit time delay due to two distinct effects: the frequency dependence of the group velocity near cutoff and gain narrowing by the finite gain bandwidth of 1.2 GHz. Experimental results taken over a wide range of parameters show good agreement with a theoretical model in the small signal gain regime. These results show that in order to limit the pulse broadening effect in gyrotron amplifiers, it is crucial to both choose an operating frequency at least several percent above the cutoff of the waveguide circuit and operate at the center of the gain spectrum with sufficient gain bandwidth.

  13. In-line monitoring of advanced copper CMP processes with picosecond ultrasonic metrology

    NASA Astrophysics Data System (ADS)

    Hsieh, Ming Hsun; Yeh, J. H.; Tsai, Mingsheng; Yang, Chan Lon; Tan, John; Leary, Sean Patrick

    2006-03-01

    Chemical mechanical planarization (CMP) is a challenging process step for manufacturers implementing dualdamascene architectures at the 65 nm technology node. The polishing rate can vary significantly from wafer-to-wafer, across a single wafer, and across a single die, depending on factors including electroplate profile, slurry chemistry, pad wear, and underlying structure. The process is further complicated by the introduction of low-k dielectrics that have significantly different mechanical properties than the harder SiO II they replace. Picosecond ultrasonics is a nondestructive, small-spot method that can be used for in-line on-product monitoring of metal processes including copper CMP. In this paper we will present gauge-capable picosecond ultrasonic results on copper erosion test structures that also demonstrate excellent correlation with electrical test measurements and TEM results on 65 nm products.

  14. Recording the synchrotron radiation by a picosecond streak camera for bunch diagnostics in cyclic accelerators

    SciTech Connect

    Vereshchagin, A K; Vorob'ev, N S; Gornostaev, P B; Kryukov, S S; Lozovoi, V I; Smirnov, A V; Shashkov, E V; Schelev, M Ya; Dorokhov, V L; Meshkov, O I; Nikiforov, D A

    2016-02-28

    A PS-1/S1 picosecond streak camera with a linear sweep is used to measure temporal characteristics of synchrotron radiation pulses on a damping ring (DR) at the Budker Institute of Nuclear Physics (BINP) of the Siberian Branch of the Russian Academy of Sciences (Novosibirsk). The data obtained allow a conclusion as to the formation processes of electron bunches and their 'quality' in the DR after injection from the linear accelerator. The expediency of employing the streak camera as a part of an optical diagnostic accelerator complex for adjusting the injection from a linear accelerator is shown. Discussed is the issue of designing a new-generation dissector with a time resolution up to a few picoseconds, which would allow implementation of a continuous bunch monitoring in the DR during mutual work with the electron-positron colliders at the BINP. (acoustooptics)

  15. Picosecond x-ray diagnostics for third and fourth generation synchrotron sources

    SciTech Connect

    DeCamp, Matthew

    2016-03-30

    In the DOE-EPSCoR State/National Laboratory partnership grant ``Picosecond x-ray diagnostics for third and fourth generation synchrotron sources'' Dr. DeCamp set forth a partnership between the University of Delaware and Argonne National Laboratory. This proposal aimed to design and implement a series of experiments utilizing, or improving upon, existing time-domain hard x-ray spectroscopies at a third generation synchrotron source. Specifically, the PI put forth three experimental projects to be explored in the grant cycle: 1) implementing a picosecond ``x-ray Bragg switch'' using a laser excited nano-structured metallic film, 2) designing a robust x-ray optical delay stage for x-ray pump-probe studies at a hard x-ray synchrotron source, and 3) building/installing a laser based x-ray source at the Advanced Photon Source for two-color x-ray pump-probe studies.

  16. Filamentation and supercontinuum generation in solid-state dielectric media with picosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Galinis, J.; Tamošauskas, G.; GražulevičiÅ«tÄ--, I.; KeblytÄ--, E.; Jukna, V.; Dubietis, A.

    2015-09-01

    Filamentation and supercontinuum generation with 1.3-ps, 1055-nm laser pulses in YAG crystal is investigated numerically and experimentally. Numerical simulations based on solving the unidirectional nonparaxial propagation equation uncover that the self-focusing dynamics of a picosecond laser pulse markedly differs from that observed in a femtosecond filamentation regime. We show that spatiotemporal transformation of the picosecond pulse is governed by the free electron plasma, which defocuses and absorbs its rear part, resulting in the formation of several subpulses of femtosecond duration, which thereafter undergo peculiar spatiotemporal dynamics and have different contributions to spectral superbroadening. The numerical findings are confirmed experimentally by measuring the spatiotemporal intensity profiles of the wave packet at various stages of propagation where relevant events of the spectral broadening occur.

  17. High-voltage picosecond photoconductor switch based on low-temperature-grown GaAs

    NASA Technical Reports Server (NTRS)

    Frankel, Michael Y.; Whitaker, John F.; Mourou, Gerard A.; Smith, Frank W.; Calawa, Arthur R.

    1990-01-01

    A GaAs material grown by molecular beam epitaxy at a low substrate temperature was used to fabricate a photoconductor switch that produces 6-V picosecond electrical pulses. The pulses were produced on a microwave coplanar-strip transmission line lithographically patterned on the low-temperature (LT) GaAs. A 150-fs laser pulse was used to generate carriers in the LT GaAs gap between the metal strips, partially shorting a high DC voltage placed across the lines. The 6-V magnitude of the electrical pulses obtained is believed to be limited by the laser pulse power and not by the properties of the LT GaAs. Experiments were also performed on a picosecond photoconductor switch fabricated on a conventional ion-damaged silicon-on-sapphire substrate. Although comparable pulse durations were obtained, the highest pulse voltage achieved with the latter device was 0.6 V.

  18. Measurement of Sub-Picosecond Electron Bunches via Electro-Optic Sampling of Coherent Transition Radiation

    SciTech Connect

    Maxwell, Timothy John

    2012-01-01

    Future collider applications as well as present high-gradient laser plasma wakefield accelerators and free-electron lasers operating with picosecond bunch durations place a higher demand on the time resolution of bunch distribution diagnostics. This demand has led to significant advancements in the field of electro-optic sampling over the past ten years. These methods allow the probing of diagnostic light such as coherent transition radiation or the bunch wakefields with sub-picosecond time resolution. We present results on the single-shot electro-optic spectral decoding of coherent transition radiation from bunches generated at the Fermilab A0 photoinjector laboratory. A longitudinal double-pulse modulation of the electron beam is also realized by transverse beam masking followed by a transverse-to-longitudinal phase-space exchange beamline. Live profile tuning is demonstrated by upstream beam focusing in conjunction with downstream monitoring of single-shot electro-optic spectral decoding of the coherent transition radiation.

  19. Raman linewidth measurements using time-resolved hybrid picosecond/nanosecond rotational CARS.

    PubMed

    Nordström, Emil; Hosseinnia, Ali; Brackmann, Christian; Bood, Joakim; Bengtsson, Per-Erik

    2015-12-15

    We report an innovative approach for time-domain measurements of S-branch Raman linewidths using hybrid picosecond/nanosecond pure-rotational coherent anti-Stokes Raman spectroscopy (RCARS). The Raman coherences are created by two picosecond excitation pulses and are probed using a narrow-band nanosecond pulse at 532 nm. The generated RCARS signal contains the entire coherence decay in a single pulse. By extracting the decay times of the individual transitions, the J-dependent Raman linewidths can be calculated. Self-broadened S-branch linewidths for nitrogen and oxygen at 293 K and ambient pressure are in good agreement with previous time-domain measurements. Experimental considerations of the approach are discussed along with its merits and limitations. The approach can be extended to a wide range of pressures and temperatures and has potential for simultaneous single-shot thermometry and linewidth determination.

  20. Picosecond Acoustics in Single Quantum Wells of Cubic GaN /(Al ,Ga )N

    NASA Astrophysics Data System (ADS)

    Czerniuk, T.; Ehrlich, T.; Wecker, T.; As, D. J.; Yakovlev, D. R.; Akimov, A. V.; Bayer, M.

    2017-01-01

    A picosecond acoustic pulse is used to study the photoelastic interaction in single zinc-blende GaN /AlxGa1 -x N quantum wells. We use an optical time-resolved pump-probe setup and demonstrate that tuning the photon energy to the quantum well's lowest electron-hole transition makes the experiment sensitive to the quantum well only. Because of the small width, its temporal and spatial resolution allows us to track the few-picosecond-long transit of the acoustic pulse. We further deploy a model to analyze the unknown photoelastic coupling strength of the quantum well for different photon energies and find good agreement with the experiments.

  1. Tracing temperature in a nanometer size region in a picosecond time period.

    PubMed

    Nakajima, Kaoru; Kitayama, Takumi; Hayashi, Hiroaki; Matsuda, Makoto; Sataka, Masao; Tsujimoto, Masahiko; Toulemonde, Marcel; Bouffard, Serge; Kimura, Kenji

    2015-08-21

    Irradiation of materials with either swift heavy ions or slow highly charged ions leads to ultrafast heating on a timescale of several picosecond in a region of several nanometer. This ultrafast local heating result in formation of nanostructures, which provide a number of potential applications in nanotechnologies. These nanostructures are believed to be formed when the local temperature rises beyond the melting or boiling point of the material. Conventional techniques, however, are not applicable to measure temperature in such a localized region in a short time period. Here, we propose a novel method for tracing temperature in a nanometer region in a picosecond time period by utilizing desorption of gold nanoparticles around the ion impact position. The feasibility is examined by comparing with the temperature evolution predicted by a theoretical model.

  2. Recording the synchrotron radiation by a picosecond streak camera for bunch diagnostics in cyclic accelerators

    NASA Astrophysics Data System (ADS)

    Vereshchagin, A. K.; Vorob'ev, N. S.; Gornostaev, P. B.; Dorokhov, V. L.; Kryukov, S. S.; Lozovoi, V. I.; Meshkov, O. I.; Nikiforov, D. A.; Smirnov, A. V.; Shashkov, E. V.; Schelev, M. Ya

    2016-02-01

    A PS-1/S1 picosecond streak camera with a linear sweep is used to measure temporal characteristics of synchrotron radiation pulses on a damping ring (DR) at the Budker Institute of Nuclear Physics (BINP) of the Siberian Branch of the Russian Academy of Sciences (Novosibirsk). The data obtained allow a conclusion as to the formation processes of electron bunches and their 'quality' in the DR after injection from the linear accelerator. The expediency of employing the streak camera as a part of an optical diagnostic accelerator complex for adjusting the injection from a linear accelerator is shown. Discussed is the issue of designing a new-generation dissector with a time resolution up to a few picoseconds, which would allow implementation of a continuous bunch monitoring in the DR during mutual work with the electron-positron colliders at the BINP.

  3. Solitary surface acoustic waves and bulk solitons in nanosecond and picosecond laser ultrasonics.

    PubMed

    Hess, Peter; Lomonosov, Alexey M

    2010-02-01

    Recent achievements of nonlinear acoustics concerning the realization of solitons and solitary waves in crystals and their surfaces attained by nanosecond and picosecond laser ultrasonics are discussed and compared. The corresponding pump-probe setups are described, which allow an all-optical contact-free excitation and detection of short strain pulses in the broad frequency range between 10 MHz and about 300 GHz. The formation of solitons in the propagating longitudinal strain pulses is investigated for nonlinear media with intrinsic lattice-based dispersion. The excitation of solitary surface acoustic waves is realized by a geometric film-based dispersion effect. Future developments and potential applications of nonlinear nanosecond and picosecond ultrasonics are discussed.

  4. Experimental investigation of picosecond dynamics following interactions between laser accelerated protons and water

    NASA Astrophysics Data System (ADS)

    Senje, L.; Coughlan, M.; Jung, D.; Taylor, M.; Nersisyan, G.; Riley, D.; Lewis, C. L. S.; Lundh, O.; Wahlström, C.-G.; Zepf, M.; Dromey, B.

    2017-03-01

    We report direct experimental measurements with picosecond time resolution of how high energy protons interact with water at extreme dose levels (kGy), delivered in a single pulse with the duration of less than 80 ps. The unique synchronisation possibilities of laser accelerated protons with an optical probe pulse were utilized to investigate the energy deposition of fast protons in water on a time scale down to only a few picoseconds. This was measured using absorbance changes in the water, induced by a population of solvated electrons created in the tracks of the high energy protons. Our results indicate that for sufficiently high doses delivered in short pulses, intertrack effects will affect the yield of solvated electrons. The experimental scheme allows for investigation of the ultrafast mechanisms occurring in proton water radiolysis, an area of physics especially important due to its relevance in biology and for proton therapy.

  5. Generation of picosecond laser pulses at 1030 nm with gigahertz range continuously tunable repetition rate.

    PubMed

    Aubourg, Adrien; Lhermite, Jérôme; Hocquet, Steve; Cormier, Eric; Santarelli, Giorgio

    2015-12-01

    We report on a watt range laser system generating picosecond pulses using electro-optical modulation of a 1030 nm single frequency low noise laser diode. Its repetition rate is continuously tunable between 11 and 18 GHz. Over this range, output spectra and pulse characteristics are measured and compared with a numerical simulation. Finally, amplitude and residual phase noise measurements of the source are also presented.

  6. Power scaling of a picosecond vortex laser based on a stressed Yb-doped fiber amplifier.

    PubMed

    Koyama, Mio; Hirose, Tetsuya; Okida, Masahito; Miyamoto, Katsuhiko; Omatsu, Takashige

    2011-01-17

    Power scaling of a picosecond vortex laser based on a stressed Yb-doped fiber amplifier is analyzed. An output power of 25 W was obtained for 53 W of pumping, with a peak power of 37 kW. Frequency doubling of the vortex output was demonstrated using a nonlinear PPSLT crystal. A second-harmonic output power of up to 1.5 W was measured at a fundamental power of 11.2 W.

  7. High-average-power and high-beam-quality Innoslab picosecond laser amplifier.

    PubMed

    Xu, Liu; Zhang, Hengli; Mao, Yefei; Yan, Ying; Fan, Zhongwei; Xin, Jianguo

    2012-09-20

    We demonstrated a laser-diode, end-pumped picosecond amplifier. With effective shaping of the seed laser, we achieved 73 W amplified laser output at the pump power of 255 W, and the optical-optical efficiency was about 28%. The beam propagation factors M(2) measured at the output power of 60 W in the horizontal direction and the vertical direction were 1.5 and 1.4, respectively.

  8. Capturing Transient Electronic and Molecular Structures in Liquids by Picosecond X-Ray Absorption Spectroscopy

    SciTech Connect

    Gawelda, W.; Pham, V. T.; El Nahhas, A.; Kaiser, M.; Zaushitsyn, Y.; Bressler, C.; Chergui, M.; Johnson, S. L.; Grolimund, D.; Abela, R.; Hauser, A.

    2007-02-02

    We describe an advanced setup for time-resolved x-ray absorption fine structure (XAFS) Spectroscopy with picosecond temporal resolution. It combines an intense femtosecond laser source synchronized to the x-ray pulses delivered into the microXAS beamline of the Swiss Light Source (SLS). The setup is applied to measure the short-lived high-spin geometric structure of photoexcited aqueous Fe(bpy)3 at room temperature.

  9. Magnetic vortex dynamics on a picosecond timescale in a hexagonal permalloy pattern

    SciTech Connect

    Shim, J.-H.; Kim, D.-H.; Mesler, B.; Moon, J.-H.; Lee, K.-J.; Anderson, E. H.; Fischer, P.

    2009-12-02

    We have observed a motion of magnetic vortex core in a hexagonal Permalloy pattern by means of Soft X-ray microscopy. Pump-probe stroboscopic observation on a picosecond timescale has been carried out after exciting a ground state vortex structure by an external field pulse of 1 ns duration. Vortex core is excited off from the center position of the hexagonal pattern but the analysis of the core trajectory reveals that the motion is nongyrotropic.

  10. Electronic Raman scattering from terbium gallium garnet excited with a picosecond laser

    NASA Astrophysics Data System (ADS)

    Koningstein, J. A.; Lemaire, H.; Atkinson, G. H.

    1987-09-01

    The electronic Raman (ER) spectrum of terbium gallium garnet, recorded using picosecond radiation from the frequency-doubled output of a Nd:YAG laser is reported. The observed spectral bands with frequency shifts up to 6000 cm-1 are the result of the effect of a strong crystal field which causes J-mixing between the 7F 6,5,....,0 states. The site symmetry of Tb 3+ in the garnet can be confirmed from this spectroscopy.

  11. Applications of infrared free electron lasers in picosecond and nonlinear spectroscopy

    NASA Astrophysics Data System (ADS)

    Fann, W. S.; Benson, S. V.; Madey, J. M. J.; Etemad, S.; Baker, G. L.; Rothberg, L.; Roberson, M.; Austin, R. H.

    1990-10-01

    In this paper we describe two different types of spectroscopic experiments that exploit the characteristics of the infrared FEL, Mark III, for studies of condensed matter: - the spectrum of χ(3)(-3ω; ω, ω, ω) in polyacetylene: an application of the free electron laser in nonlinear optical spectroscopy, and - a dynamical test of Davydov-like solitons in acetanilide using a picosecond free electron laser. These two studies highlight the unique contributions FELs can make to condensed-matter spectroscopy.

  12. Semiconductors Investigated by Time Resolved Raman Absorption and Photoluminescence Spectroscopy Using Femtosecond and Picosecond Laser Techniques.

    DTIC Science & Technology

    1983-05-05

    if necessary and identify by block number) Picosecond Lasers, Femtosecond Lasers, Ring Cavity, Mode Locked Dye and Glass Lasers, Time-resolved...conductor processes. In addition, we have improved the stabil ity and shortened the pulse duration emitted from a mode - locked glass laser by at...pulse duration emitted from a mode -locked glass laser by at least a factor of two, by using heptamethine pyrylium #5 - a new saturable absorber. In the

  13. Shaping pulses using frequency conversion with a modulated picosecond free electron laser

    SciTech Connect

    Hooper, B.A.; Madey, J.M.J.

    1995-12-31

    Computer simulations and experiments indicate that we can shape the infrared picosecond pulses of the Mark III FEL in amplitude, frequency, and phase. Strongly modulated fundamental and second harmonic pulses have been generated by operating the Mark III FEL in the regime of strong sideband growth. In this paper, we present the results of simulations and experiments for second harmonic generation with fundamental inputs from 2 to 3 {mu}m.

  14. Few-femtosecond timing jitter from a picosecond all-polarization-maintaining Yb-fiber laser.

    PubMed

    Chen, Wei; Song, Youjian; Jung, Kwangyun; Hu, Minglie; Wang, Chingyue; Kim, Jungwon

    2016-01-25

    We characterize the timing jitter of a picosecond all-polarization-maintaining (all-PM) Yb-fiber laser using the optical cross-correlation method. For the 10 MHz all-normal dispersion mode-locked laser with ~0.5 nm spectral bandwidth, the measured high-frequency jitter is as low as 5.9 fs (RMS) when integrated from 10 kHz to the Nyquist frequency of 5 MHz. A complete numerical model with ASE noise is built to simulate the timing jitter characteristics in consideration of intracavity pulse evolution. The mutual comparison among simulation result, analytical model and experiment data indicate that the few femtosecond timing jitter from the picosecond fiber laser is attributed to the complete elimination of Gordon-Haus jitter by narrow bandpass filtering by a fiber Bragg grating (FBG). The low level of timing jitter from this compact and maintenance-free PM picosecond fiber laser source at a low MHz repetition rate is promising to advance a number of femtosecond-precision timing and synchronization applications.

  15. Stretching of Picosecond Laser Pulses with Uniform Reflecting Volume Bragg Gratings

    NASA Astrophysics Data System (ADS)

    Mokhov, Sergiy

    It is shown that a uniform reflecting volume Bragg grating (VBG) can be used as a compact monolithic stretcher of high-power picosecond laser pulses in cases when chirped Bragg gratings with an appropriate chirp rate are difficult to fabricate. A chirp-free reflected stretched pulse is generated of almost rectangular shape when incident short pulse propagates along a grating and experiences local Bragg diffraction. The increase in duration of the reflected pulse is approximately equal to twice the propagation times along the grating. We derived the analytic expression for diffraction efficiency, which incorporates incident pulse duration, grating thickness, and amplitude of refractive index modulation, enabling an optimum selection of the grating for pulse stretching. The typical expected theoretical value of diffraction efficiency is about 10% after taking into account the spectral narrowing of the reflected emission. We believe that the relatively low energy efficiency of the proposed method is more than offset by a number of advantages, which are chirp-free spectrum of a stretched pulse, compactness, robustness, preservation of setup alignment and beam quality, and tolerance to high power. Obtained pulses of several tens of picoseconds can be amplified by standard methods which are not requiring special measures to avoid undesirable non-linear effects. We propose a simple and reliable method to control the temporal parameters of the high-power picosecond pulses using the same laser source and the VGB of variable thickness that can significantly simplify the experiments requiring different pulse durations.

  16. A low timing jitter picosecond microchip laser pumped by pulsed LD

    NASA Astrophysics Data System (ADS)

    Wang, Sha; Wang, Yan-biao; Feng, Guoying; Zhou, Shou-huan

    2016-07-01

    SESAM passively Q-switched microchip laser is a very promising instrument to replace mode locked lasers to obtain picosecond pulses. The biggest drawback of a passively Q-switched microchip laser is its un-avoided large timing jitter, especially when the pump intensity is low, i.e. at low laser repetition rate range. In order to obtain a low timing jitter passively Q-switched picosecond microchip laser in the whole laser repetition rate range, a 1000 kHz pulsed narrow bandwidth Fiber Bragg Grating (FBG) stablized laser diode was used as the pump source. By tuning the pump intensity, we could control the output laser frequency. In this way, we achieved a very low timing jitter passively Q-switched picosecond laser at 2.13 mW, 111.1 kHz. The relative timing jitter was only 0.0315%, which was around 100 times smaller compared with a cw LD pumped microchip working at hundred kilohertz repetition rate frequency range.

  17. Refractive index, sound velocity and thickness of thin transparent films from multiple angles picosecond ultrasonics

    SciTech Connect

    Cote, R.; Devos, A.

    2005-05-15

    We present a method for refractive indices and longitudinal sound velocity measurements from picosecond ultrasonic experiments made at different probe incidence angles. For transparent or semitransparent materials such as dielectrics or semiconductors, picosecond ultrasonic experiments can lead to oscillations in the reflectivity curves whose frequency depends on the refractive indices, the sound velocity and the experiments angle. From these data we establish a simple method for the calculation of the refractive indices and verify it on a GaAs sample. We show on fluorinated silica glass and aluminum nitride practical applications of this method on thin films. From two experiments we measure the refraction index and the sound velocity of these materials, with no assumption on the materials properties or on the sample layers' thicknesses. Here the materials are buried under a thin aluminum film. It illustrates the fact that the method can be applied to multilayers. From the same experiments we then derive the thickness of the layers. It shows that this method can render picosecond ultrasonic experiments independent from other characterization means.

  18. Detection of nonlinear picosecond acoustic pulses by time-resolved Brillouin scattering

    SciTech Connect

    Gusev, Vitalyi E.

    2014-08-14

    In time-resolved Brillouin scattering (also called picosecond ultrasonic interferometry), the time evolution of the spatial Fourier component of an optically excited acoustic strain distribution is monitored. The wave number is determined by the momentum conservation in photon-phonon interaction. For linear acoustic waves propagating in a homogeneous medium, the detected time-domain signal of the optical probe transient reflectivity shows a sinusoidal oscillation at a constant frequency known as the Brillouin frequency. This oscillation is a result of heterodyning the constant reflection from the sample surface with the Brillouin-scattered field. Here, we present an analytical theory for the nonlinear reshaping of a propagating, finite amplitude picosecond acoustic pulse, which results in a time-dependence of the observed frequency. In particular, we examine the conditions under which this information can be used to study the time-evolution of the weak-shock front speed. Depending on the initial strain pulse parameters and the time interval of its nonlinear transformation, our theory predicts the detected frequency to either be monotonically decreasing or oscillating in time. We support these theoretical predictions by comparison with available experimental data. In general, we find that picosecond ultrasonic interferometry of nonlinear acoustic pulses provides access to the nonlinear acoustic properties of a medium spanning most of the GHz frequency range.

  19. Picosecond-time-resolved studies of nonradiative relaxation in ruby and alexandrite

    SciTech Connect

    Gayen, S.K.; Wang, W.B.; Petricevic, V.; Alfano, R.R.

    1985-01-01

    Dynamics of the nonradiative transitions between the /sup 4/T/sub 2/ pump band and the /sup 2/E storage level of the Cr/sup 3 +/ ion in ruby and alexandrite crystals is studied using the picosecond excite-and-probe absorption technique. A 527-nm picosecond pulse excites the /sup 4/T/sub 2/ state of the Cr/sup 3 +/ ion, and an infrared picosecond probe pulse monitors the subsequent growth and decay of population in the excited states as a function of pump-probe delay. An upper limit of 7 ps is determined for the nonradiative lifetime of the /sup 4/T/sub 2/ state in ruby. A vibrational relaxation time of 25 ps for the /sup 4/T/sub 2/ band in alexandrite is estimated. The time to attain thermal equilibrium population between the /sup 2/E and /sup 4/T/sub 2/ levels of alexandrite following excitation of /sup 4/T/sub 2/ band is estimated to be approx. 100 ps.

  20. Analysis of efficient ion acceleration with multi-picosecond LFEX laser

    NASA Astrophysics Data System (ADS)

    Iwata, Natsumi; Yogo, Akifumi; Mima, Kunioki; Tosaki, Shota; Koga, Keisuke; Nagatomo, Hideo; Kishimoto, Yasuaki; Nishimura, Hiroaki; Azechi, Horishi

    2016-10-01

    We demonstrate an efficient proton acceleration reaching 30 MeV by using high contrast, kilojoule, picosecond laser LFEX at the peak intensity of 2.3 ×1018 W/cm2. Owing to the large spot size of 70 μm FWHM, the target foil expands one-dimensionally during the multi-picosecond pulse duration time, which yields the electron heating beyond the ponderomotive scaling observed in the experiment. We present by a 1D PIC simulation that the electron temperature evolves in time while the electrons recirculate between the front and rear surfaces of the expanding plasma. A theoretical calculation for the ion maximum energy that takes the temperature evolution into account agrees with the experimental result quantitatively. Being supported by the experiment and simulation, our theoretical model for the non-isothermal plasma expansion dynamics will provide an important basis for understanding the multi-picosecond high intensity laser-plasma interactions and for various applications such as energetic ion beam generation for medical applications and fast ignition-based laser fusion.

  1. Toward picosecond time-resolved X-ray absorption studies of interfacial photochemistry

    NASA Astrophysics Data System (ADS)

    Gessner, Oliver; Mahl, Johannes; Neppl, Stefan

    2016-05-01

    We report on the progress toward developing a novel picosecond time-resolved transient X-ray absorption spectroscopy (TRXAS) capability for time-domain studies of interfacial photochemistry. The technique is based on the combination of a high repetition rate picosecond laser system with a time-resolved X-ray fluorescent yield setup that may be used for the study of radiation sensitive materials and X-ray spectroscopy compatible photoelectrochemical (PEC) cells. The mobile system is currently deployed at the Advanced Light Source (ALS) and may be used in all operating modes (two-bunch and multi-bunch) of the synchrotron. The use of a time-stamping technique enables the simultaneous recording of TRXAS spectra with delays between the exciting laser pulses and the probing X-ray pulses spanning picosecond to nanosecond temporal scales. First results are discussed that demonstrate the viability of the method to study photoinduced dynamics in transition metal-oxide semiconductor (SC) samples under high vacuum conditions and at SC-liquid electrolyte interfaces during photoelectrochemical water splitting. Opportunities and challenges are outlined to capture crucial short-lived intermediates of photochemical processes with the technique. This work was supported by the Department of Energy Office of Science Early Career Research Program.

  2. Picosecond Raman Study of Vibrational Cooling and Protein Dynamics in the Primary Photochemistry of Rhodopsin

    NASA Astrophysics Data System (ADS)

    Kim, Judy; Mathies, Richard

    2003-03-01

    Picosecond Stokes and anti-Stokes Raman spectra are used to probe the structural dynamics and reactive energy flow of both the chromophore and binding pocket residues in the primary cis-to-trans isomerization reaction of rhodopsin. The appearance of characteristic ethylenic, hydrogen out-of-plane (HOOP) and low-wavenumber photoproduct bands in the Stokes Raman spectra of the chromophore is instrument-response limited, consistent with a sub-picosecond product appearance time (1,2). Intense high and low-frequency anti-Stokes chromophore peaks demonstrate that the all-trans photoproduct, photorhodopsin, is produced vibrationally hot on the ground-state surface (2). Specifically, the low-frequency modes at 282, 350 and 477 cm-1 are highly vibrationally excited (T > 2000 K) immediately following isomerization, revealing that these low-frequency motions directly participate in the reactive curve-crossing process. The anti-Stokes modes are characterized by a ˜2.5 ps temporal decay that coincides with the conversion of photorhodopsin to bathorhodopsin. This correspondence shows that the photo-to-batho transition is a ground-state cooling process, and that energy storage in the primary visual photoproduct is complete on the picosecond time scale. The remarkable similarity between the room-temperature picosecond vibrational structure of photo- and bathorhodopsin and that of the low-temperature trapped primary photoproduct suggests that chromophore isomerization impulsively excites and drives changes in nearby protein residues. These amino acid changes within the binding pocket are probed by picosecond UV Raman spectroscopy of aromatic residues (3). Difference spectra reveal that at least one tryptophan (trp265) and one tyrosine (tyr191, 268 and/or 178) residue undergoes structural changes in < 5 ps, presumably due to steric interaction with the isomerizing chromophore as well as energy flow from chromophore to the binding pocket. This result indicates that the protein

  3. Picosecond x-ray laser photoelectron spectroscopy of room temperature and heated materials

    SciTech Connect

    Dunn, J; Nelson, A J; van Buuren, T; Hunter, J R

    2004-08-03

    An 84.5 eV Ni-like Pd ion 4d - 4p x-ray laser source generated by the LLNL Compact Multipulse Terawatt (COMET) tabletop system has been used to probe the electronic structure of various metals and semiconductors. In addition to the {approx}4 - 5 ps time resolution, the probe provides the necessary high photon flux (>10{sup 12}/pulse), narrow line width ({Delta}E/E{approx}2 x 10{sup -5}) and coherence for studying valence band and shallow core electronic structure levels in a single shot. We show some preliminary results of room temperature and heated thin foil samples consisting of 50 nm Cu coated on a 20 nm C substrate. A 527 nm wavelength 400 fs laser pulse containing 0.1 - 2.5 mJ laser energy is focused in a large 500 x 700 {micro}m{sup 2} (FWHM) spot to create heated conditions of 0.07 - 1.8 x 1012 W cm{sup -2} intensity.

  4. Emergency Contraception

    MedlinePlus

    ... against STDs even when using another method of birth control. If a condom breaks (or a couple has ... Emergency contraception is not recommended as a regular birth control method . Instead, it is used for emergencies only. ...

  5. Emergency Contraception

    MedlinePlus

    f AQ FREQUENTLY ASKED QUESTIONS FAQ114 CONTRACEPTION Emergency Contraception • What is emergency contraception (EC)? • How does EC work? • What are the different types of EC? • What is the most ...

  6. Past Emergencies

    EPA Pesticide Factsheets

    These activities, some of national significance requiring coordination with other agencies, demonstrate the emergency response program and provide valuable experience so that EPA can better prevent, prepare for, and respond to emergencies in the future.

  7. Emergent Expertise?

    ERIC Educational Resources Information Center

    McGivern, Patrick

    2014-01-01

    The concept of emergence appears in various places within the literature on expertise and expert practice. Here, I examine some of these applications of emergence in the light of two prominent accounts of emergence from the philosophy of science and philosophy of mind. I evaluate these accounts with respect to several specific contexts in which…

  8. Picosecond pulse duration laser treatment for dermal melanocytosis in Asians : A retrospective review.

    PubMed

    Ohshiro, Takafumi; Ohshiro, Toshio; Sasaki, Katsumi; Kishi, Kazuo

    2016-06-29

    Background and aims: Recently novel picosecond duration lasers (ps-lasers) have been developed for the treatment of multicolored and recalcitrant tattoos, and safety and efficacy have been reported. We therefore hypothesized that the ps-laser could be an alternative treatment for dermal pigmented lesions and performed a retrospective review to evaluate the efficacy and safety of the ps-laser. Subjects and methods: A retrospective photographic review of 10 patients with dermal pigmented lesions was performed (ages from 4 months to 52 yr), 6 nevus of Ota, 3 ectopic Mongolian spots and 1 Mongolian spots. The patients were treated in the Ohshiro Clinic with picosecond 755 nm alexandrite laser (ps-Alex laser) and picosecond 1064 nm Nd:YAG laser (ps-Nd:YAG laser) from April 2014 to December 2015 (ps-Alex laser, 7 patients; ps-Nd:YAG laser, 3 patients, 1 to 3 treatment sessions). Improvement was evaluated as percentage of pigmentation clearance comparing the baseline findings with those at 3 months after the final treatment using a five category grading scale: Poor, 0-24%; Fair, 25-49%; Good, 50-74%; Excellent, 75-94%; and Complete, 95-100% improvement. Adverse events were also assessed. Results: All ten patients obtained clinical improvement ranging from fair to excellent. Treatment with the ps-Alex laser caused transient hyperpigmentation followed by improvement to complete resolution at 3 months follow-up. The ps-Nd:YAG laser caused severe transient erythema and swelling but no post-inflammatory hyperpigmentation. Conclusions: Our results suggest that the 755 nm and 1064 nm ps-lasers are efficacious for the treatment of dermal pigment lesions, with minimum adverse events.

  9. A picosecond laser FAIMS analyzer for detecting ultralow quantities of explosives

    NASA Astrophysics Data System (ADS)

    Chistyakov, Alexander A.; Kotkovskii, Gennadii E.; Sychev, Alexey V.; Odulo, Ivan P.; Bogdanov, Artem S.; Perederiy, Anatoly N.; Spitsyn, Evgeny M.; Shestakov, Alexander V.

    2014-10-01

    A method for detecting ultralow quantities of explosives in air and explosive traces using a state-of-the-art picosecond chip Nd3+:YAG laser has been elaborated. The method combines field asymmetric ion mobility spectrometry (FAIMS) with laser ionization of air samples and laser desorption of analyzed molecules from examined surfaces. Radiation of the fourth harmonic (λ = 266 nm, τpulse = 300 ps, Epulse = 20-150 μJ, ν = 20-300 Hz) was used. The ionization efficiencies for trinitrotoluene (TNT), cyclotrimethylenetrinitramine (RDX), and glyceryl trinitrate (NG) were investigated. The dependences on frequency, pulse energy, peak intensity, and average power for TNT and RDX were determined. It was shown that the optimal peak intensity should be no less than 2•106 W/cm2; at lower peak intensities, the increase of the average laser power in the interval 5-15 mW enhanced the ion signal. The results of detection of TNT, RDX, and NG vapors under these conditions were compared with the results obtained using nanosecond laser excitation. The detected ion signals for all explosives were shown to be two- to threefold higher in the case of picosecond excitation. The FAIMS laser desorption regime was developed where a laser beam exiting the detector after removal of a special plug was used. The results of TNT and RDX detection are presented. The chip Nd3+:YAG laser has a small emitter and a consumed electric power of 25 W. The estimated detection threshold of the prototype picosecond laser FAIMS analyzer of explosives is (1-3)•10-15g/cm3 for TNT vapors.

  10. Picosecond pulse duration laser treatment for dermal melanocytosis in Asians : A retrospective review

    PubMed Central

    Ohshiro, Toshio; Sasaki, Katsumi; Kishi, Kazuo

    2016-01-01

    Background and aims: Recently novel picosecond duration lasers (ps-lasers) have been developed for the treatment of multicolored and recalcitrant tattoos, and safety and efficacy have been reported. We therefore hypothesized that the ps-laser could be an alternative treatment for dermal pigmented lesions and performed a retrospective review to evaluate the efficacy and safety of the ps-laser. Subjects and methods: A retrospective photographic review of 10 patients with dermal pigmented lesions was performed (ages from 4 months to 52 yr), 6 nevus of Ota, 3 ectopic Mongolian spots and 1 Mongolian spots. The patients were treated in the Ohshiro Clinic with picosecond 755 nm alexandrite laser (ps-Alex laser) and picosecond 1064 nm Nd:YAG laser (ps-Nd:YAG laser) from April 2014 to December 2015 (ps-Alex laser, 7 patients; ps-Nd:YAG laser, 3 patients, 1 to 3 treatment sessions). Improvement was evaluated as percentage of pigmentation clearance comparing the baseline findings with those at 3 months after the final treatment using a five category grading scale: Poor, 0–24%; Fair, 25–49%; Good, 50–74%; Excellent, 75–94%; and Complete, 95–100% improvement. Adverse events were also assessed. Results: All ten patients obtained clinical improvement ranging from fair to excellent. Treatment with the ps-Alex laser caused transient hyperpigmentation followed by improvement to complete resolution at 3 months follow-up. The ps-Nd:YAG laser caused severe transient erythema and swelling but no post-inflammatory hyperpigmentation. Conclusions: Our results suggest that the 755 nm and 1064 nm ps-lasers are efficacious for the treatment of dermal pigment lesions, with minimum adverse events. PMID:27721561

  11. Nonlinear optical properties of GaAs at 1. 06 micron, picosecond pulse investigation and applications

    SciTech Connect

    Cui, A.G.

    1992-01-01

    The author explores absorptive and refractive optical nonlinearities at 1.06 [mu]m in bulk, semi-insulating, undoped GaAs with a particular emphasis on the influence of the native deep-level defect known as EL2. Picosecond pump-probe experimental technique is used to study the speed, magnitude, and origin of the absorptive and refractive optical nonlinearities and to characterize the dynamics of the optical excitation of EL2 in three distinctly different undoped, semi-insulating GaAs samples. Intense optical excitation of these materials leads to the redistribution of charge among the EL2 states resulting in an absorptive nonlinearity due to different cross sections for electron and hole generation through this level. This absorptive nonlinearity is used in conjunction with the linear optical properties of the material and independent information regarding the EL2 concentration to extract the cross section ratio [sigma][sub p]/[sigma][sub e] [approx equal]0.8, where [sigma][sub p](e) is the absorption cross section for hole (electron) generation from EL2[sup +] (EL2[sup 0]). The picosecond pump-probe technique can be used to determine that EL2/EL2[sup +]density ratio in an arbitrary undoped, semi-insulating GaAs sample. The author describes the use of complementary picosecond pump-probe techniques that are designed to isolate and quantify cumulative and instantaneous absorptive and refractive nonlinear processes. Numerical simulations of the measurements are achieved by solving Maxwell equations with the material equations in a self-consistent manner. The numerical analysis together with the experimental data allows extraction of a set of macroscopic nonlinear optical parameters in undoped GaAs. The nonlinearities in this material have been used to construct three proof-of-principle nonlinear optical devices for use at 1.06 [mu]m: (1) a weak beam amplifier, (2) a polarization rotation optical switch, and (3) optical limiters.

  12. 130-W picosecond green laser based on a frequency-doubled hybrid cryogenic Yb:YAG amplifier.

    PubMed

    Hong, Kyung-Han; Lai, Chien-Jen; Siddiqui, Aleem; Kärtner, Franz X

    2009-09-14

    130-W average-power picosecond green laser pulses at 514.5 nm are generated from a frequency-doubled hybrid cryogenic Yb:YAG laser. A second-harmonic conversion efficiency of 54% is achieved with a 15-mm-long noncritically phase-matched lithium triborate (LBO) crystal from a 240-W 8-ps 78-MHz pulse train at 1029 nm. The high-average-power hybrid laser system consists of a picosecond fiber chirped-pulse amplification seed source and a cryogenically-cooled double-pass Yb:YAG amplifier. The M(2) value of 2.7, measured at 77 W of second-harmonic power, demonstrates a good focusing quality. A thermal analysis shows that the longitudinal temperature gradient can be the main limiting factor in the second-harmonic efficiency. To our best knowledge, this is the highest-average-power green laser source generating picosecond pulses.

  13. Femtosecond and picosecond laser drilling of metals at high repetition rates and average powers.

    PubMed

    Ancona, A; Döring, S; Jauregui, C; Röser, F; Limpert, J; Nolte, S; Tünnermann, A

    2009-11-01

    The influence of pulse duration on the laser drilling of metals at repetition rates of up to 1 MHz and average powers of up to 70 W has been experimentally investigated using an ytterbium-doped-fiber chirped-pulse amplification system with pulses from 800 fs to 19 ps. At a few hundred kilohertz particle shielding causes an increase in the number of pulses for breakthrough, depending on the pulse energy and duration. At higher repetition rates, the heat accumulation effect overbalances particle shielding, but significant melt ejection affects the hole quality. Using femtosecond pulses, heat accumulation starts at higher repetition rates, and the ablation efficiency is higher compared with picosecond pulses.

  14. Generation of energetic, picosecond seed pulses for CO2 laser using Raman shifter

    NASA Astrophysics Data System (ADS)

    Welch, Eric; Tochitsky, Sergei; Joshi, Chan

    2017-03-01

    We present a new concept for generating 3 ps seed pulses for a high-power CO2 laser amplifier that are multiple orders more energetic than seed pulses generated by slicing from a nanosecond CO2 laser pulse. We propose to send a 1 µm picosecond laser through a C6D6 Raman shifter and mix both the pump and shifted components in a DFG crystal to produce pulses at 10.6 µm. Preliminary results of a proof-of-principle experiment are presented.

  15. Two-photon photoemission from metals induced by picosecond laser pulses

    NASA Technical Reports Server (NTRS)

    Bechtel, J. H.; Smith, W. L.; Bloembergen, N.

    1977-01-01

    We have measured the two-photon photoemission current density from tungsten, tantalum, and molybdenum when irradiated by 532-nm wavelength radiation. This wavelength was produced by the second-harmonic radiation of single picosecond laser pulses from a mode-locked neodymium-doped yttrium-aluminum-garnet laser. The results are interpreted in terms of both a simple temperature-independent two-photon photoemission effect and a generalization of the Fowler-DuBridge theory of photoemission. The laser polarization dependence of the emitted current is also reported.

  16. Polarized multiplex coherent anti-Stokes Raman scattering using a picosecond laser and a fiber supercontinuum.

    PubMed

    Michel, Sébastien; Courjaud, Antoine; Mottay, Eric; Finot, Christophe; Dudley, John; Rigneault, Hervé

    2011-02-01

    We perform multiplex coherent anti-Stokes Raman scattering (CARS) micro-spectroscopy with a picosecond pulsed laser and a broadband supercontinuum (SC) generated in photonic crystal fiber. CARS signal stability is achieved using an active fiber coupler that avoids thermal and mechanical drifts. We obtain multiplex CARS spectra for test liquids in the 600-2000 cm(-1) spectral range. In addition we investigate the polarization dependence of the CARS spectra when rotating the pump beam linear polarization state relative to the linearly polarized broad stokes SC. From these polarization measurements we deduce the Raman depolarization ratio, the resonant versus nonresonant contribution, the Raman resonance frequency, and the linewidth.

  17. Spatiospectral and picosecond spatiotemporal properties of a broad area operating channeled-substrate-planar laser array

    NASA Technical Reports Server (NTRS)

    Yu, NU; Defreez, Richard K.; Bossert, David J.; Wilson, Geoffrey A.; Elliott, Richard A.

    1991-01-01

    Spatiospectral and spatiotemporal properties of an eight-element channeled-substrate-planar laser array are investigated in both CW and pulsed operating conditions. The closely spaced CSP array with strong optical coupling between array elements is characterized by a broad area laserlike operation determined by its spatial mode spectra. The spatiotemporal evolution of the near and far field exhibits complex dynamic behavior in the picosecond to nanosecond domain. Operating parameters for the laser device have been experimentally determined. These results provide important information for the evaluation of the dynamic behavior of coherent semiconductor laser arrays.

  18. GHz high power Yb-doped picosecond fiber laser and supercontinuum generation.

    PubMed

    Gao, Jing; Ge, Tingwu; Li, Wuyi; Kuang, Hongshen; Wang, Zhiyong

    2014-12-20

    We demonstrated a 97 W all-fiber picosecond master oscillator power amplifier seeding by an actively harmonic mode-locked Yb-doped fiber laser. The laser seed pulse duration was 7.7 ps at a 1.223 GHz repetition rate with a central wavelength of 1062 nm. In addition, by launching the amplified pulses into a 5 m long photonic crystal fiber, we obtained a 41.8 W supercontinuum covering the wavelength from 600 to 1700 nm with a 10 dB bandwidth of 1040 nm.

  19. 1016nm all fiber picosecond MOPA laser with 50W output.

    PubMed

    Qi, Xue; Chen, Sheng-Ping; Sun, Hai-Yue; Yang, Bing-Ke; Hou, Jing

    2016-07-25

    This paper presents an all fiber high power picosecond laser at 1016 nm in master oscillator power amplifier (MOPA) configuration. A direct amplification of this seed source encounters obvious gain competition with amplified spontaneous emission (ASE) at ~1030 nm, leading to a seriously reduced amplification efficiency. To suppress the ASE and improve the amplification efficiency, we experimentally investigate the influence of the gain fiber length and the residual ASE on the perforemance of the 1016 nm amplifier. The optimized 1016 nm MOPA laser exhibits an average power of 50 W and an optical conversion efficiency of 53%.

  20. Sub-picosecond ultra-low frequency passively mode-locked fiber laser

    NASA Astrophysics Data System (ADS)

    Cuadrado-Laborde, Christian; Cruz, José L.; Díez, Antonio; Andrés, Miguel V.

    2016-11-01

    We developed a nonlinear polarization rotation all-fiber mode-locked erbium-doped fiber laser, with the purpose to reach a sub-picosecond and sub-megahertz light pulse emission. In the process, we observed three different emission regimes as the net birefringence is changed, namely high-power dissipative soliton resonance, low-power soliton regime, and a mixed combination of both. In the pure solitonic regime, a 0.961 MHz train of chirp-free Gaussian pulses was obtained, with a time width of 0.919 ps at 1564.3 nm.

  1. Simulating picosecond X-ray diffraction from crystals using FFT methods on MD output

    SciTech Connect

    Kimminau, Giles; Nagler, Bob; Higginbotham, Andrew; Murphy, William; Wark, Justin; Park, Nigel; Hawreliak, James; Kalantar, Dan; Lorenzana, Hector; Remington, Bruce

    2007-12-12

    Multi-million atom non-equilibrium molecular dynamics (MD) simulations give significant insight into the transient processes that occur under shock compression. Picosecond X-ray diffraction enables the probing of materials on a timescale fast enough to test such effects. In order to simulate diffraction patterns, Fourier methods are required to gain a picture of reciprocal lattice space. We present here results of fast Fourier transforms of atomic coordinates of shocked crystals simulated by MD, and comment on the computing power required as a function of problem size. The relationship between reciprocal space and particular experimental geometries is discussed.

  2. On-Chip Picosecond Pulse Detection and Generation Using Graphene Photoconductive Switches

    PubMed Central

    2015-01-01

    We report on the use of graphene for room temperature on-chip detection and generation of pulsed terahertz (THz) frequency radiation, exploiting the fast carrier dynamics of light-generated hot carriers, and compare our results with conventional low-temperature-grown gallium arsenide (LT-GaAs) photoconductive (PC) switches. Coupling of picosecond-duration pulses from a biased graphene PC switch into Goubau line waveguides is also demonstrated. A Drude transport model based on the transient photoconductance of graphene is used to describe the mechanism for both detection and generation of THz radiation. PMID:25710079

  3. Simulating Picosecond X-ray Diffraction from shocked crystals by Post-processing Molecular Dynamics Calculations

    SciTech Connect

    Kimminau, G; Nagler, B; Higginbotham, A; Murphy, W; Park, N; Hawreliak, J; Kadau, K; Germann, T C; Bringa, E M; Kalantar, D; Lorenzana, H; Remington, B; Wark, J

    2008-06-19

    Calculations of the x-ray diffraction patterns from shocked crystals derived from the results of Non-Equilibrium-Molecular-Dynamics (NEMD) simulations are presented. The atomic coordinates predicted by the NEMD simulations combined with atomic form factors are used to generate a discrete distribution of electron density. A Fast-Fourier-Transform (FFT) of this distribution provides an image of the crystal in reciprocal space, which can be further processed to produce quantitative simulated data for direct comparison with experiments that employ picosecond x-ray diffraction from laser-irradiated crystalline targets.

  4. A New Technology for Applanation Free Corneal Trephination: The Picosecond Infrared Laser (PIRL)

    PubMed Central

    Linke, Stephan J.; Frings, Andreas; Ren, Ling; Gomolka, Amadeus; Schumacher, Udo; Reimer, Rudolph; Hansen, Nils-Owe; Jowett, Nathan; Richard, Gisbert; Miller, R. J. Dwayne

    2015-01-01

    The impact of using a Femtosecond laser on final functional results of penetrating keratoplasty is low. The corneal incisions presented here result from laser ablations with ultrafast desorption by impulsive vibrational excitation (DIVE). The results of the current study are based on the first proof-of-principle experiments using a mobile, newly introduced picosecond infrared laser system, and indicate that wavelengths in the mid-infrared range centered at 3 μm are efficient for obtaining applanation-free deep cuts on porcine corneas. PMID:25781907

  5. Si nanostructures grown by picosecond high repetition rate pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Pervolaraki, M.; Komninou, Ph.; Kioseoglou, J.; Athanasopoulos, G. I.; Giapintzakis, J.

    2013-08-01

    One-step growth of n-doped Si nanostructures by picosecond ultra fast pulsed laser deposition at 1064 nm is reported for the first time. The structure and morphology of the Si nanostructures were characterized by X-ray diffraction, scanning electron microscopy and atomic force microscopy. Transmission electron microscopy studies revealed that the shape of the Si nanostructures depends on the ambient argon pressure. Fibrous networks, cauliflower formations and Si rectangular crystals grew when argon pressure of 300 Pa, 30 Pa and vacuum (10-3 Pa) conditions were used, respectively. In addition, the electrical resistance of the vacuum made material was investigated.

  6. Two-frequency picosecond laser based on composite vanadate crystals with {sigma}-polarised radiation

    SciTech Connect

    Sirotkin, A A; Sadovskiy, S P; Garnov, Sergei V

    2013-07-31

    A two-frequency picosecond laser based on {alpha}-cut Nd:YVO{sub 4}-YVO{sub 4} composite vanadate crystals is experimentally studied for the s-polarised radiation at the {sup 4}F{sub 3/2} - {sup 4}I{sub 11/2} transition with frequency tuning using Fabry-Perot etalons of different thickness. The difference between the radiation wavelengths was tuned within the range of 1.2-4.4 nm. In the mode-locking regime, the two-frequency radiation power was 280 mW at an absorbed pump power of 12 W. (lasers)

  7. Polarized multiplex coherent anti-Stokes Raman scattering using a picosecond laser and a fiber supercontinuum

    NASA Astrophysics Data System (ADS)

    Michel, Sébastien; Courjaud, Antoine; Mottay, Eric; Finot, Christophe; Dudley, John; Rigneault, Hervé

    2011-02-01

    We perform multiplex coherent anti-Stokes Raman scattering (CARS) micro-spectroscopy with a picosecond pulsed laser and a broadband supercontinuum (SC) generated in photonic crystal fiber. CARS signal stability is achieved using an active fiber coupler that avoids thermal and mechanical drifts. We obtain multiplex CARS spectra for test liquids in the 600-2000 cm-1 spectral range. In addition we investigate the polarization dependence of the CARS spectra when rotating the pump beam linear polarization state relative to the linearly polarized broad stokes SC. From these polarization measurements we deduce the Raman depolarization ratio, the resonant versus nonresonant contribution, the Raman resonance frequency, and the linewidth.

  8. Dynamical test of Davydov-type solitons in acetanilide using a picosecond free-electron laser

    NASA Astrophysics Data System (ADS)

    Fann, Wunshain; Rothberg, Lewis; Roberson, Mark; Benson, Steve; Madey, John; Etemad, Shahab; Austin, Robert

    1990-01-01

    Picosecond infrared excitation experiments on acetanilide, an α-helix protein analog, indicate that the anomalous 1650-cm-1 band which appears on cooling of acetanilide crystals persists for at least several microseconds following rapid pulsed heating. The ground-state recovery time is 15+/-5 psec, consistent with a conventional mode strongly coupled to the phonon bath. We therefore suggest that the unusual temperature-dependent spectroscopy of acetanilide can be accounted for by slightly nondegenerate hydrogen atom configurations in the crystal.

  9. High-accuracy picosecond characterization of gain-switched laser diodes

    SciTech Connect

    Cova, S.; Lacaita, A.; Ghioni, M.; Ripamonti, G. )

    1989-12-15

    A unique combination of the time-correlated photon-counting technique and single-photon avalanche diode detectors gives an accurate characterization of gain-switched semiconductor lasers with picosecond resolution. The high sensitivity and the clean shape of the time response reveal even small features (reflections and relaxation oscillations), making a true optimization of the laser-diode operation possible. The technique outperforms the standard characterization with ultrafast p-i-n photodiodes and a sampling oscilloscope. In addition, compared with other methods, it has favorable features that greatly simplify the measurement.

  10. Electromagnetically induced transparency in a cascade-type quantum well subband system under intense picosecond excitation

    NASA Astrophysics Data System (ADS)

    Hanna, S.; Eichenberg, B.; Firsov, D. A.; Vorobjev, L. E.; Ustinov, V. M.; Seilmeier, A.

    2016-01-01

    The coherent light-matter interaction in a 4-level cascade-type subband system of an asymmetric GaAs/AlGaAs quantum well structure is studied in pump-probe transmission experiments with picosecond (ps) time resolution. Coupling two excited subbands by an intense mid-infrared laser pulse at low sample temperatures is found to result in a substantially increased transparency of the fundamental e1-e2 transition. We find a reduction of the absorption coefficient by ~80%, which is one of the most pronounced electromagnetically induced transparency in solid state systems observed so far.

  11. Fluorescence properties of dyes adsorbed to silver islands, investigated by picosecond techniques

    NASA Astrophysics Data System (ADS)

    Leitner, A.; Lippitsch, M. E.; Draxler, S.; Riegler, M.; Aussenegg, F. R.

    1985-02-01

    The fluorescence properties of dye molecules (rhodamine 6G and erythrosin) adsorbed on pure glass surfaces and on silver islands films are investigated by cw and picosecond time-resolved methods. On pure glass surfaces we observe concentration quenching below a critical intermolecular distance (reduction of the fluorescence power per molecule as well as shortened and non-exponential fluorescence decay). On silver islands films the shortening in fluorescence lifetime is more drastic and is nearly independent of the intermolecular distance. This behavior suggests an electrodynamic interaction between dye monomers and plasmons in the metal particles, modified by a damping influence of dye dimers.

  12. Octave-spanning infrared supercontinuum generation in robust chalcogenide nanotapers using picosecond pulses.

    PubMed

    Shabahang, Soroush; Marquez, Michael P; Tao, Guangming; Piracha, Mohammad U; Nguyen, Dat; Delfyett, Peter J; Abouraddy, Ayman F

    2012-11-15

    We report on infrared supercontinuum generation extending over more than one octave of bandwidth, from 850 nm to 2.35 μm, produced in a single spatial mode from a robust, compact, composite chalcogenide glass nanotaper. A picosecond laser at 1.55 μm pumps a high-index-contrast, all-solid nanotaper that strongly confines the field to a 480 nm diameter core, while a thermally compatible built-in polymer jacket lends the nanotaper mechanical stability.

  13. Picosecond laser ultrasonics for imaging of transparent polycrystalline materials compressed to megabar pressures.

    PubMed

    Kuriakose, Maju; Raetz, Samuel; Chigarev, Nikolay; Nikitin, Sergey M; Bulou, Alain; Gasteau, Damien; Tournat, Vincent; Castagnede, Bernard; Zerr, Andreas; Gusev, Vitalyi E

    2016-07-01

    Picosecond laser ultrasonics is an all-optical experimental technique based on ultrafast high repetition rate lasers applied for the generation and detection of nanometric in length coherent acoustic pulses. In optically transparent materials these pulses can be detected not only on their arrival at the sample surfaces but also all along their propagation path inside the sample providing opportunity for imaging of the sample material spatial inhomogeneities traversed by the acoustic pulse. Application of this imaging technique to polycrystalline elastically anisotropic transparent materials subject to high pressures in a diamond anvil cell reveals their significant texturing/structuring at the spatial scales exceeding dimensions of the individual crystallites.

  14. Use of extended laser plasma for generation of high-order harmonics of picosecond duration

    SciTech Connect

    Ganeev, R A; Boltaev, G S; Reyimbaev, Sh; Sherniyozov, Kh; Usmanov, T

    2015-07-31

    We report the results of experimental investigations on the generation of picosecond radiation harmonics in extended laser plasma produced on the surface of different metal targets. The effect of plasma length, heating pulse duration and delay between the heating and transformable pulses on the efficiency of conversion to higher harmonics is studied. The λ = 1064 nm radiation conversion to a short-wavelength (down to 50 nm, 21st harmonic) range in extended plasma of several metals is demonstrated. (interaction of laser radiation with matter. laser plasma)

  15. Multichannel, time-resolved picosecond laser ultrasound imaging and spectroscopy with custom complementary metal-oxide-semiconductor detector.

    PubMed

    Smith, Richard J; Light, Roger A; Sharples, Steve D; Johnston, Nicholas S; Pitter, Mark C; Somekh, Mike G

    2010-02-01

    This paper presents a multichannel, time-resolved picosecond laser ultrasound system that uses a custom complementary metal-oxide-semiconductor linear array detector. This novel sensor allows parallel phase-sensitive detection of very low contrast modulated signals with performance in each channel comparable to that of a discrete photodiode and a lock-in amplifier. Application of the instrument is demonstrated by parallelizing spatial measurements to produce two-dimensional thickness maps on a layered sample, and spectroscopic parallelization is demonstrated by presenting the measured Brillouin oscillations from a gallium arsenide wafer. This paper demonstrates the significant advantages of our approach to pump probe systems, especially picosecond ultrasonics.

  16. Multichannel, time-resolved picosecond laser ultrasound imaging and spectroscopy with custom complementary metal-oxide-semiconductor detector

    SciTech Connect

    Smith, Richard J.; Light, Roger A.; Johnston, Nicholas S.; Pitter, Mark C.; Somekh, Mike G.; Sharples, Steve D.

    2010-02-15

    This paper presents a multichannel, time-resolved picosecond laser ultrasound system that uses a custom complementary metal-oxide-semiconductor linear array detector. This novel sensor allows parallel phase-sensitive detection of very low contrast modulated signals with performance in each channel comparable to that of a discrete photodiode and a lock-in amplifier. Application of the instrument is demonstrated by parallelizing spatial measurements to produce two-dimensional thickness maps on a layered sample, and spectroscopic parallelization is demonstrated by presenting the measured Brillouin oscillations from a gallium arsenide wafer. This paper demonstrates the significant advantages of our approach to pump probe systems, especially picosecond ultrasonics.

  17. High-visibility two-photon interference at a telecom wavelength using picosecond-regime separated sources

    SciTech Connect

    Aboussouan, Pierre; Alibart, Olivier; Ostrowsky, Daniel B.; Baldi, Pascal; Tanzilli, Sebastien

    2010-02-15

    We report on a two-photon interference experiment in a quantum relay configuration using two picosecond regime periodically poled lithium niobate (PPLN) waveguide based sources emitting paired photons at 1550 nm. The results show that the picosecond regime associated with a guided-wave scheme should have important repercussions for quantum relay implementations in real conditions, essential for improving both the working distance and the efficiency of quantum cryptography and networking systems. In contrast to already reported regimes, namely, femtosecond and CW, it allows achieving a 99% net visibility two-photon interference while maintaining a high effective photon pair rate using only standard telecom components and detectors.

  18. Terawatt Challenge for Thin-Film PV

    SciTech Connect

    Zweibel, K.

    2005-08-01

    The evolution of PV into one of the world's largest industries is not going to happen without major unforeseen problems. However, this study attempts to address the obvious ones, so that we can put aside the mythology of PV (for example, that it is only ''boutique power'' or that one must pave the world with it to be useful) and get on with changing the world's energy infrastructure. With the years of rapid market growth now under way in PV, the author is sure this will not be the last effort to understand the real potential and pitfalls of meeting the Challenge.

  19. Relativistically strong CO{sub 2} laser driver for plasma-channeled particle acceleration

    SciTech Connect

    Pogorelsky, I.V.

    1995-12-31

    Long-wavelength, short-duration laser pulses are desirable for plasma wakefield particle acceleration and plasma waveguiding. The first picosecond terawatt CO{sub 2} laser is under development to test laser-driven electron acceleration schemes.

  20. Structuring of functional thin films and surfaces with picosecond-pulsed lasers

    NASA Astrophysics Data System (ADS)

    Raciukaitis, G.; Gecys, P.; Gedvilas, M.; Voisiat, B.

    2012-03-01

    During the recent few years picosecond lasers have been proved as a reliable tool for microfabrication of diverse materials. We present results of our research on structuring of thin films and surfaces using the direct laser writing and the laser beam interference ablation techniques. The processes of micro-pattering were developed for metallic, dielectric films as well as complex multi-layer structures of thin-film solar cells as a way to manufacture frequency-selective surfaces, fine optical components and integrated series interconnects for photovoltaics. Technologies of nano-structuring of surfaces of advanced technical materials such as tungsten carbide were developed using picosecond lasers as well. Experimental work was supported by modeling and simulation of energy coupling and dissipation inside the layers. Selectiveness of the ablation process is defined by optical and mechanical properties of the materials, and selection of the laser wavelength facilitated control of the structuring process. Implementation of the technologies required fine adjustment of spatial distribution of laser irradiation, therefore both techniques are benefiting from shaping the laser beam with diffractive optical elements. Utilization of the whole laser energy included beam splitting and multi-beam processing.

  1. Experimental and modelling investigations into the laser ablation with picosecond pulses at second harmonics

    NASA Astrophysics Data System (ADS)

    Boerner, Paul; Zandonadi, Germana; Eberle, Gregory; Wegener, Konrad

    2015-03-01

    Ablation threshold experiments on various materials are carried out using a picosecond laser generating second harmonic radiation in air at atmospheric pressure. Various materials are investigated which vary according to their different electronic band gap structure and include: silicon, fine grain polycrystalline diamond, copper, steel and tungsten carbide. Through the use of scanning electron microscopy and 3D confocal microscopy, the crater depth and diameter are determined and a correlation is found. The ablation thresholds are given for the aforementioned materials and compared with recent literature results. Picosecond laser-material interactions are modelled using the two-temperature model, simulated and compared with experimental results for metallic materials. An extension of the two-temperature model to semiconducting and insulating materials is discussed. This alternative model uses multiple rate equations to describe the transient free electron density. Additionally, a set of coupled ordinary differential equations describes the processes of multiphoton excitation, inverse bremsstrahlung, and collisional excitation. The resulting electron density distribution can be used as an input for an electron density dependent twotemperature model. This multiple rate equation model is a generic and fast model, which provides important information like ablation threshold, ablation depth and optical properties.

  2. Superhydrophilicity to superhydrophobicity transition of picosecond laser microstructured aluminum in ambient air.

    PubMed

    Long, Jiangyou; Zhong, Minlin; Zhang, Hongjun; Fan, Peixun

    2015-03-01

    Studies regarding the wettability transition of micro- and nano-structured metal surfaces over time are frequently reported, but there seems to be no generally accepted theory that explains this phenomenon. In this paper, we aim to clarify the mechanism underlying the transition of picosecond laser microstructured aluminum surfaces from a superhydrophilic nature to a superhydrophobic one under ambient conditions. The aluminum surface studied exhibited superhydrophilicity immediately after being irradiated by a picosecond laser. However, the contact angles on the surface increased over time, eventually becoming large enough to classify the surface as superhydrophobic. The storage conditions significantly affected this process. When the samples were stored in CO2, O2 and N2 atmospheres, the wettability transition was restrained. However, the transition was accelerated in atmosphere that was rich with organic compounds. Moreover, the superhydrophobic surface could recover their original superhydrophilicity by low temperature annealing. A detailed XPS analysis indicated that this wettability transition process was mainly caused by the adsorption of organic compounds from the surrounding atmosphere onto the oxide surface.

  3. Iron plasma generation using a Nd:YAG laser pulse of several hundred picoseconds

    NASA Astrophysics Data System (ADS)

    Tamura, Jun; Kumaki, Masafumi; Kondo, Kotaro; Kanesue, Takeshi; Okamura, Masahiro

    2016-02-01

    We investigated the high intensity plasma generated by using a Nd:YAG laser to apply a laser-produced plasma to the direct plasma injection scheme. The capability of the source to generate high charge state ions strongly depends on the power density of the laser irradiation. Therefore, we focused on using a higher power laser with several hundred picoseconds of pulse width. The iron target was irradiated with the pulsed laser, and the ion current of the laser-produced iron plasma was measured using a Faraday cup and the charge state distribution was investigated using an electrostatic ion analyzer. We found that higher charge state iron ions (up to Fe21+) were obtained using a laser pulse of several hundred picoseconds in comparison to those obtained using a laser pulse of several nanoseconds (up to Fe19+). We also found that when the laser irradiation area was relatively large, the laser power was absorbed mainly by the contamination on the target surface.

  4. High average power picosecond pulse generation from a thulium-doped all-fiber MOPA system.

    PubMed

    Liu, Jiang; Wang, Qian; Wang, Pu

    2012-09-24

    We report a stable highly-integrated high power picosecond thulium-doped all-fiber MOPA system without using conventional chirped pulse amplification technique. The master oscillator was passively mode-locked by a SESAM to generate average power of 15 mW at a fundamental repetition rate of 103 MHz in a short linear cavity, and a uniform narrow bandwidth FBG is employed to stabilize the passively mode-locked laser operation. Two-stage double-clad thulium-doped all-fiber amplifiers were used directly to boost average power to 20.7 W. The laser center wavelength was 1962.8 nm and the pulse width was 18 ps. The single pulse energy and peak-power after the amplication were 200 nJ and 11.2 kW respectively. To the best of our knowledge, this is the highest average power ever reported for a picosecond thulium-doped all-fiber MOPA system.

  5. Wavelength conversion through soliton self-frequency shift in tellurite microstructured fiber with picosecond pump pulse

    NASA Astrophysics Data System (ADS)

    Bi, Wanjun; Li, Xia; Xing, Zhaojun; Zhou, Qinling; Fang, Yongzheng; Gao, Weiqing; Xiong, Liangming; Hu, Lili; Liao, Meisong

    2016-01-01

    Wavelength conversion to the wavelength range that is not covered by commercially available lasers could be accomplished through the soliton self-frequency shift (SSFS) effect. In this study, the phenomenon of SSFS pumped by a picosecond-order pulse in a tellurite microstructured fiber is investigated both theoretically and experimentally. The balance between the dispersion and the nonlinearity achieved by a 1958 nm pump laser induces a distinct SSFS effect. Attributed to the large spectral distance between the pump pulse and the fiber zero-dispersion wavelength, the SSFS is not cancelled due to energy shedding from the soliton to the dispersive wave. Details about the physical mechanisms behind this phenomenon and the variations of the wavelength shift, the conversion efficiency are revealed based on numerical simulations. Owing to the large soliton number N, the pulse width of the first split fundamental soliton is approximately 40 fs, producing a pulse compression factor of ˜38, much higher than that pumped by a femtosecond pulse. Experiments were also conducted to confirm the validity of the simulation results. By varying the pump power, a continuous soliton shift from 1990 nm to 2264 nm was generated. The generation of SSFS in tellurite microstructured fibers with picosecond pump pulse can provide a new approach for wavelength conversion in the mid-infrared range and could be useful in medical and some other areas.

  6. High-power transverse-mode-switchable all-fiber picosecond MOPA.

    PubMed

    Liu, Tong; Chen, Shengping; Qi, Xue; Hou, Jing

    2016-11-28

    A high-power transverse-mode-switchable all-fiber picosecond laser in a master-oscillator power-amplifier (MOPA) configuration is demonstrated. The master oscillator is a gain-switched laser diode delivering picosecond pulses with 25 MHz repetition rate at the wavelength of 1.06 μm. After multi-stage amplification in ytterbium-doped fibers, the average output power is scaled to 117 W. A mechanical long-period grating is employed as a fiber mode convertor to achieve controllable conversion from the fundamental (LP01) to the second-order (LP11) mode. Efficient mode conversion is demonstrated and the output characteristics for both modes are investigated. It is shown that LP01 and LP11 modes have nearly identical optical-to-optical conversion efficiency during amplification, but the nonlinear spectral degradation is significantly alleviated for LP11 mode operation. Owing to the compact all-fiber architecture, this high-power transverse-mode-switchable fiber laser is reliable during long-term operation and thus promising for many practical applications, e.g. high-resolution laser micro-processing.

  7. Fiber laser pumped high power mid-infrared laser with picosecond pulse bunch output.

    PubMed

    Wei, Kaihua; Chen, Tao; Jiang, Peipei; Yang, Dingzhong; Wu, Bo; Shen, Yonghang

    2013-10-21

    We report a novel quasi-synchronously pumped PPMgLN-based high power mid-infrared (MIR) laser with picosecond pulse bunch output. The pump laser is a linearly polarized MOPA structured all fiberized Yb fiber laser with picosecond pulse bunch output. The output from a mode-locked seed fiber laser was directed to pass through a FBG reflector via a circulator to narrow the pulse duration from 800 ps to less than 50 ps and the spectral FWHM from 9 nm to 0.15 nm. The narrowed pulses were further directed to pass through a novel pulse multiplier through which each pulse was made to become a pulse bunch composing of 13 sub-pulses with pulse to pulse time interval of 1.26 ns. The pulses were then amplified via two stage Yb fiber amplifiers to obtain a linearly polarized high average power output up to 85 W, which were then directed to pass through an isolator and to pump a PPMgLN-based optical parametric oscillator via quasi-synchronization pump scheme for ps pulse bunch MIR output. High MIR output with average power up to 4 W was obtained at 3.45 micron showing the feasibility of such pump scheme for ps pulse bunch MIR output.

  8. Machining parameter optimization of C/SiC composites using high power picosecond laser

    NASA Astrophysics Data System (ADS)

    Zhang, Ruoheng; Li, Weinan; Liu, Yongsheng; Wang, Chunhui; Wang, Jing; Yang, Xiaojun; Cheng, Laifei

    2015-03-01

    Picosecond laser is an important machining technology for high hardness materials. In this paper, high power picosecond laser was utilized to drill micro-holes in C/SiC composites, and the effects of different processing parameters including the helical line width and spacing, machining time and scanning speed were discussed. To characterize the qualities of machined holes, scanning electron microscope (SEM) was used to analyze the surface morphology, energy dispersive spectroscopy (EDS) and X-ray photoelectric spectroscopy (XPS) were employed to describe the element composition change between the untreated and laser-treated area. The experimental results indicated that all parameters mentioned above had remarkable effects on the qualities of micro-holes such as shape and depth. Additionally, the debris consisted of C, Si and O was observed on the machined surface. The Sisbnd C bonds of the SiC matrix transformed into Sisbnd O bonds after machined. Furthermore, the physical process responsible for the mechanism of debris formation was discussed as well.

  9. Fast spectral coherent anti-Stokes Raman scattering microscopy with high-speed tunable picosecond laser.

    PubMed

    Cahyadi, Harsono; Iwatsuka, Junichi; Minamikawa, Takeo; Niioka, Hirohiko; Araki, Tsutomu; Hashimoto, Mamoru

    2013-09-01

    We develop a coherent anti-Stokes Raman scattering (CARS) microscopy system equipped with a tunable picosecond laser for high-speed wavelength scanning. An acousto-optic tunable filter (AOTF) is integrated in the laser cavity to enable wavelength scanning by varying the radio frequency waves applied to the AOTF crystal. An end mirror attached on a piezoelectric actuator and a pair of parallel plates driven by galvanometer motors are also introduced into the cavity to compensate for changes in the cavity length during wavelength scanning to allow synchronization with another picosecond laser. We demonstrate fast spectral imaging of 3T3-L1 adipocytes every 5  cm-1 in the Raman spectral region around 2850  cm-1 with an image acquisition time of 120 ms. We also demonstrate fast switching of Raman shifts between 2100 and 2850  cm-1, corresponding to CD2 symmetric stretching and CH2 symmetric stretching vibrations, respectively. The fast-switching CARS images reveal different locations of recrystallized deuterated and nondeuterated stearic acid.

  10. Iron plasma generation using a Nd:YAG laser pulse of several hundred picoseconds

    SciTech Connect

    Tamura, Jun; Kumaki, Masafumi; Kondo, Kotaro; Kanesue, Takeshi; Okamura, Masahiro

    2016-02-15

    We investigated the high intensity plasma generated by using a Nd:YAG laser to apply a laser-produced plasma to the direct plasma injection scheme. The capability of the source to generate high charge state ions strongly depends on the power density of the laser irradiation. Therefore, we focused on using a higher power laser with several hundred picoseconds of pulse width. The iron target was irradiated with the pulsed laser, and the ion current of the laser-produced iron plasma was measured using a Faraday cup and the charge state distribution was investigated using an electrostatic ion analyzer. We found that higher charge state iron ions (up to Fe{sup 21+}) were obtained using a laser pulse of several hundred picoseconds in comparison to those obtained using a laser pulse of several nanoseconds (up to Fe{sup 19+}). We also found that when the laser irradiation area was relatively large, the laser power was absorbed mainly by the contamination on the target surface.

  11. Picosecond spin relaxation in low-temperature-grown GaAs

    SciTech Connect

    Uemura, M.; Honda, K.; Yasue, Y.; Tackeuchi, A.; Lu, S. L.; Dai, P.

    2014-03-24

    The spin relaxation process of low-temperature-grown GaAs is investigated by spin-dependent pump and probe reflectance measurements with a sub-picosecond time resolution. Two very short carrier lifetimes of 2.0 ps and 28 ps, which can be attributed to nonradiative recombinations related to defects, are observed at 10 K. The observed spin polarization shows double exponential decay with spin relaxation times of 46.2 ps (8.0 ps) and 509 ps (60 ps) at 10 K (200 K). The observed picosecond spin relaxation, which is considerably shorter than that of conventional GaAs, indicates the strong relevance of the Elliott-Yafet process as the spin relaxation mechanism. For the first (second) spin relaxation component, the temperature and carrier density dependences of the spin relaxation time indicate that the Bir-Aronov-Pikus process is also effective at temperatures between 10 K and 77 K, and that the D'yakonov-Perel’ process is effective between 125 K (77 K) and 200 K.

  12. Picosecond pulsed infrared laser tuned to amide I band dissociates polyglutamine fibrils in cells.

    PubMed

    Kawasaki, Takayasu; Ohori, Gaku; Chiba, Tomoyuki; Tsukiyama, Koichi; Nakamura, Kazuhiro

    2016-09-01

    Amyloid fibrils are causal substances for serious neurodegenerative disorders and amyloidosis. Among them, polyglutamine fibrils seen in multiple polyglutamine diseases are toxic to neurons. Although much efforts have been made to explore the treatments of polyglutamine diseases, there are no effective drugs to block progression of the diseases. We recently found that a free electron laser (FEL), which has an oscillation wavelength at the amide I band (C = O stretch vibration mode) and picosecond pulse width, was effective for conversion of the fibril forms of insulin, lysozyme, and calcitonin peptide into their monomer forms. However, it is not known if that is also the case in polyglutamine fibrils in cells. We found in this study that the fibril-specific β-sheet conformation of polyglutamine peptide was converted into nonfibril form, as evidenced by the infrared microscopy and scanning-electron microscopy after the irradiation tuned to 6.08 μm. Furthermore, irradiation at this wavelength also changed polyglutamine fibrils to their nonfibril state in cultured cells, as shown by infrared mapping image of protein secondary structure. Notably, infrared thermography analysis showed that temperature increase of the cells during the irradiation was within 1 K, excluding thermal damage of cells. These results indicate that the picosecond pulsed infrared laser can safely reduce amyloid fibril structure to the nonfibril form even in cells.

  13. Pulsed picosecond and nanosecond discharge development in liquids with various dielectric permittivity constants

    NASA Astrophysics Data System (ADS)

    Starikovskiy, Andrey

    2016-09-01

    The dynamics of pulsed picosecond and nanosecond discharge development in liquid water, ethanol and hexane were investigated experimentally. It is shown that the dynamics of discharge formation fundamentally differ between liquids with low and high dielectric permittivity coefficients. The difference in the nanosecond discharge development in liquid dielectrics may be explained by the formation of micro-discontinuities in the media during the electrostriction compression/rarefaction stage in liquids with high dielectric permittivity. Three possible mechanisms for the propagation of discharge in liquids play a different role depending on the pulse duration. The first is the formation of low density channels in liquid. In the second case the electrostatic forces support the expansion of nanoscale voids behind the front of the ionization wave; in the wave front the extreme electric field provides a strong negative pressure in the dielectric fluid due to the presence of electrostriction forces, forming the initial micro-voids in the continuous medium. Finally, in the third case, when a picosecond electric pulse is utilized, the ionization in the liquid phase occurs as a result of direct electron impact without undergoing a phase transition.

  14. Compact, high-pulse-energy, high-power, picosecond master oscillator power amplifier.

    PubMed

    Chan, Ho-Yin; Alam, Shaif-Ul; Xu, Lin; Bateman, James; Richardson, David J; Shepherd, David P

    2014-09-08

    We report a compact, stable, gain-switched-diode-seeded master oscillator power amplifier (MOPA), employing direct amplification via conventional Yb(3+)-doped fibers, to generate picosecond pulses with energy of 17.7 μJ and 97-W average output power (excluding amplified spontaneous emission) at 5.47-MHz repetition frequency in a diffraction-limited and single-polarization beam. A maximum peak power of 197 kW is demonstrated. Such a high-energy, high-power, MHz, picosecond MOPA is of great interest for high-throughput material processing. With 13.8-μJ pulse energy confined in the 0.87-nm 3-dB spectral bandwidth, this MOPA is also a promising source for nonlinear frequency conversion to generate high-energy pulses in other spectral regions. We have explored the pulse energy scaling until the stimulated Raman Scattering (SRS) becomes significant (i.e. spectral peak intensity exceeds 1% of that of the signal).

  15. Low-loss Type II waveguide writing in fused silica with single picosecond laser pulses.

    PubMed

    Zhang, Haibin; Eaton, Shane M; Herman, Peter R

    2006-05-29

    A new domain of rapid waveguide writing with non-overlapping pulses of a 1-kHz ultrashort laser is demonstrated to produce low loss waveguides in fused silica glass. This new regime is distinguishable in two ways from traditional approaches in laser waveguide writing. First, an examination of a wide 50-fs to 5-ps range of pulse duration shows the lowest loss waveguides to form in a narrow 1.0 +/- 0.2 ps window that significantly exceeds the 50 - 200 fs duration reported as optimal in other studies. Second, an unusually high scan speed of 1.0 +/- 0.2 mm/s points to a novel Type-II photosensitivity mechanism for generating low-loss refractive index structures. The waveguides comprise of an array of nearly isolated single-pulse interaction volumes that sharply contrast with the high exposures of tens to thousands of overlapping laser pulses typically applied along a slowly moving focal volume. A minimum propagation loss of ~0.2 dB/cm and a slightly asymmetric mode diameter of ~9 mum is reported for 633-nm light. The low loss waveguides fabricated with picosecond pulses enables 3-D photonics circuit fabrication with simpler and lower cost picosecond laser systems.

  16. Picosecond laser micromachining of nitinol and platinum-iridium alloy for coronary stent applications

    NASA Astrophysics Data System (ADS)

    Muhammad, N.; Whitehead, D.; Boor, A.; Oppenlander, W.; Liu, Z.; Li, L.

    2012-03-01

    The demand for micromachining of coronary stents by means of industrial lasers rises quickly for treating coronary artery diseases, which cause more than one million deaths each year. The most widely used types of laser for stent manufacturing are Nd:YAG laser systems with a wavelength of 1064 nm with pulse lengths of 10-3-10-2 seconds. Considerable post-processing is required to remove heat-affected zones (HAZ), and to improve surface finishes and geometry. Using a third harmonic laser radiation of picosecond laser (6×10-12 s pulse duration) in UV range, the capability of the picosecond laser micromachining of nitinol and platinum-iridium alloy for coronary stent applications are presented. In this study dross-free cut of nitinol and platinum-iridium alloy tubes are demonstrated and topography analysis of the cut surface is carried out. The HAZ characteristics have been investigated by means of microscopic examinations and measurement of micro-hardness distribution near the cut zones.

  17. Electric Field Measurements in Non-Equilibrium Electric Discharge Plasmas Using Picosecond Four-Wave Mixing

    NASA Astrophysics Data System (ADS)

    Goldberg, Benjamin M.

    This dissertation presents the results of development of a picosecond four wave mixing technique and its use for electric field measurements in nanosecond pulse discharges. This technique is similar to coherent anti-Stokes Raman spectroscopy and is well suited for electric field measurements in high pressure plasmas with high spatial and temporal resolution. The results show that the signal intensity scales proportionally to the square of the electric field, the signal is emitted as a coherent beam, and is polarized parallel to the electric field vector, making possible electric field vector component measurements. The signal is generated when a collinear pair of pump and Stokes beams, which are generated in a stimulated Raman shifting cell (SRS), generate coherent excitation of molecules into a higher energy level, hydrogen for the present work. The coherent excitation mixes with a dipole moment induced by an external electric field. The mixing of these three "waves'" allows the molecules to radiate at their Raman frequency, producing a fourth, signal, wave which is proportional to the square of the electric field. The time resolution of this technique is limited by the coherence decay time of the molecules, which is a few hundred picoseconds.

  18. Selective Ablation of Thin Films with Picosecond-Pulsed Lasers for Solar Cells

    NASA Astrophysics Data System (ADS)

    Račiukaitis, G.; Gečys, P.; Gedvilas, M.; Regelskis, K.; Voisiat, B.

    2010-10-01

    Functional thin-films are of high importance in modern electronics for flat panel displays, photovoltaics, flexible and organic electronics. Versatile technologies are required for patterning thin-film materials on rigid and flexible substrates. The large-area applications of thin films such as photovoltaics need high speed and simple to use techniques. Ultra-short laser processing with its flexibility is one of the ways to achieve high quality material etching but optimization of the processes is required to meet specific needs of the applications. Lasers with picosecond pulse duration were applied in selective ablation of conducting, semi-conducting and isolating films in the complex multilayered thin-film solar cells based on amorphous Si and CuInxGa(1-x)Se2 (CIGS) deposited on glass and polymer substrates. Modeling of energy transition between the layers and temperature evolution was performed to understand the processes. Selection of the right laser wavelength was important to keep the energy coupling in a well defined volume at the interlayer interface. Ultra-short pulses ensured high energy input rate into absorbing material permitting peeling of the layers with no influence on the remaining material. Use of high repetition rate lasers with picosecond pulse duration offers new possibilities for high quality and efficiency patterning of advanced materials for thin-film electronics.

  19. Time-resolved fluorescence polarization spectroscopy of visible and near infrared dyes in picosecond dynamics

    NASA Astrophysics Data System (ADS)

    Pu, Yang; Alfano, Robert R.

    2015-03-01

    Near-infrared (NIR) dyes absorb and emit light within the range from 700 to 900 nm have several benefits in biological studies for one- and/or two-photon excitation for deeper penetration of tissues. These molecules undergo vibrational and rotational motion in the relaxation of the excited electronic states, Due to the less than ideal anisotropy behavior of NIR dyes stemming from the fluorophores elongated structures and short fluorescence lifetime in picosecond range, no significant efforts have been made to recognize the theory of these dyes in time-resolved polarization dynamics. In this study, the depolarization of the fluorescence due to emission from rotational deactivation in solution will be measured with the excitation of a linearly polarized femtosecond laser pulse and a streak camera. The theory, experiment and application of the ultrafast fluorescence polarization dynamics and anisotropy are illustrated with examples of two of the most important medical based dyes. One is NIR dye, namely Indocyanine Green (ICG) and is compared with Fluorescein which is in visible range with much longer lifetime. A set of first-order linear differential equations was developed to model fluorescence polarization dynamics of NIR dye in picosecond range. Using this model, the important parameters of ultrafast polarization spectroscopy were identified: risetime, initial time, fluorescence lifetime, and rotation times.

  20. A Brief Technical History of the Large-Area Picosecond Photodetector (LAPPD) Collaboration

    SciTech Connect

    Adams, B.W.; et al.

    2016-03-06

    The Large Area Picosecond PhotoDetector (LAPPD) Collaboration was formed in 2009 to develop large-area photodetectors capable of time resolutions measured in pico-seconds, with accompanying sub-millimeter spatial resolution. During the next three and one-half years the Collaboration developed the LAPPD design of 20 x 20 cm modules with gains greater than $10^7$ and non-uniformity less than $15\\%$, time resolution less than 50 psec for single photons and spatial resolution of 700~microns in both lateral dimensions. We describe the R\\&D performed to develop large-area micro-channel plate glass substrates, resistive and secondary-emitting coatings, large-area bialkali photocathodes, and RF-capable hermetic packaging. In addition, the Collaboration developed the necessary electronics for large systems capable of precise timing, built up from a custom low-power 15-GigaSample/sec waveform sampling 6-channel integrated circuit and supported by a two-level modular data acquisition system based on Field-Programmable Gate Arrays for local control, data-sparcification, and triggering. We discuss the formation, organization, and technical successes and short-comings of the Collaboration. The Collaboration ended in December 2012 with a transition from R\\&D to commercialization.

  1. Electrolytes Ageing in Lithium-ion Batteries: A Mechanistic Study from Picosecond to Long Timescales.

    PubMed

    Ortiz, Daniel; Jiménez Gordon, Isabel; Baltaze, Jean-Pierre; Hernandez-Alba, Oscar; Legand, Solène; Dauvois, Vincent; Si Larbi, Gregory; Schmidhammer, Uli; Marignier, Jean-Louis; Martin, Jean-Frédéric; Belloni, Jacqueline; Mostafavi, Mehran; Le Caër, Sophie

    2015-11-01

    The ageing phenomena occurring in various diethyl carbonate/LiPF6 solutions are studied using gamma and pulse radiolysis as a tool to generate similar species as the ones occurring in electrolysis of Li-ion batteries (LIBs). According to picosecond pulse radiolysis experiments, the reaction of the electron with (Li(+), PF6(-)) is ultrafast, leading to the formation of fluoride anions that can then precipitate into LiF(s). Moreover, direct radiation-matter interaction with the salt produces reactive fluorine atoms forming HF(g) and C2H5F(g). The strong Lewis acid PF5 is also formed. This species then forms various R(1)R(2)R(3) P=O molecules, where R is mainly -F, -OH, and -OC2H5. Substitution reactions take place and oligomers are slowly formed. Similar results were obtained in the ageing of an electrochemical cell filled with the same model solution. This study demonstrates that radiolysis enables a description of the reactivity in LIBs from the picosecond timescale until a few days.

  2. Dermatologic emergencies.

    PubMed

    Sica, P A

    1986-03-01

    Being able to recognize and treat a dermatologic emergency is extremely important to the primary care physician. This ability is very rewarding for the patient and gratifying to the physician. In this article, some of the more commonly encountered emergencies are discussed.

  3. Corneal Emergencies.

    PubMed

    Belknap, Ellen B

    2015-09-01

    Corneal emergencies can be due to a number of different causes and may be vision threatening if left untreated. In an attempt to stabilize the cornea, it is of benefit to place an Elizabethan collar on the patient to prevent further corneal damage. This article discusses the diagnosis, prognosis, and management of corneal emergencies in dogs and cats.

  4. Psychiatric Emergencies

    PubMed Central

    Bayrakal, Sadi

    1972-01-01

    Dr. Bayrakal believes that the time has come for the family physician to deal with minor psychiatric disturbances in his office as well as psychiatric emergencies in the emergency department. The newly emerging medico-social philosophy of both the federal and provincial governments, he says, is giving greater responsibility and authority to the family physician in every area of medicine, including psychiatry. The author discusses major psychiatric emergencies (suicide, suicidal attempt, homicide, social scandal, as well as other psychiatric emergencies) on the ward including adolescent psychiatry. (The descriptions and treatment procedures are given on a concrete clinical level without theoretical overload.) In the family physician's work, psychological understanding is of profound importance. Giving him the added scope of psychiatric consideration to see the patient in bio-psycho-social totality will enable him to practice a more humanized form of medicine. PMID:20468779

  5. Peak power tunable mid-infrared oscillator pumped by a high power picosecond pulsed fiber amplifier with bunch output

    NASA Astrophysics Data System (ADS)

    Wei, Kaihua; Guo, Yan; Lai, Xiaomin; Fan, Shanhui

    2016-07-01

    A high power mid-infrared optical parametric oscillator (OPO) with picosecond pulse bunch output is experimentally demonstrated. The pump source was a high power master oscillation power amplifier (MOPA) picosecond pulsed fiber amplifier. The seed of the MOPA was a gain-switched distributed Bragg reflector (DBR) laser diode (LD) with picosecond pulse operation at a high repetition rate. The seed laser was amplified to 50 W by two-stage pre-amplifiers and a large mode area (LMA) Yb fiber based power-amplifier. A fiber-pigtailed acousto-optic modulator with the first order diffraction transmission was inserted into the second pre-amplifier to form a picosecond pulse bunch train and to change the peak power simultaneously. The power-amplified pulse bunches were focused to pump a wavelength-tunable OPO for emitting high power mid-infrared laser. By adjusting the OPO cavity length, the maximum average idler powers obtained at 3.1, 3.3 and 3.5 μm were 7, 6.6 and 6.4 W respectively.

  6. [Surfaces and thin films studied by picosecond ultrasonics]. Annual progress report, [December 1, 1993--November 30, 1994

    SciTech Connect

    Maris, H.J.

    1994-10-01

    We are using picosecond optics techniques to perform ultrasonic and thermal transport measurements on thin films and nanostructures. We are investigating the basic physics of sound and phonon propagation in solids, and also attempting to develop practical techniques for the ultrasonic evaluation of thin-film nanostructures.

  7. Emergency contraception.

    PubMed

    Van Look, P F; von Hertzen, H

    1993-01-01

    The term 'emergency contraception', as employed in this paper, refers to methods that are used as emergency procedures to prevent pregnancy following unprotected intercourse. Alternative, less appropriate, terms are postcoital and 'morning-after' contraception. References to postcoital preparations can be found as far back as 1500 BC in Egyptian papyri, but it was not until fairly recently that contraceptive research has been able to at least partially fulfill that need. The development of hormonal methods of emergency contraception goes back to the 1960s when the first human trials of postcoitally administered high-dose oestrogens were undertaken. Combined oestrogen- progestogen combination therapy (the so-called Yuzpe regimen) was introduced in the early 1970s, while the postcoital insertion of an intrauterine contraceptive device (IUD) for emergency contraception was first reported in 1976. Other compounds that have been tested more recently include levonorgestrel, the antiprogestogen mifepristone, and danazol. Although there is some debate about the magnitude of the protective effect, few people question the important role that emergency contraception can play in preventing unwanted pregnancy and hence maternal mortality and morbidity resulting from unsafe abortion. Given that the most often used methods of emergency contraception, namely the Yuzpe regimen and postcoital insertion of an IUD, rely on technology that has been available for some 30 years, family planning programmes that claim to be concerned with improving women's reproductive health, cannot really be excused if they do not provide emergency contraception as part of their routine services.

  8. Competition reactions of H2O•+ radical in concentrated Cl- aqueous solutions: picosecond pulse radiolysis study.

    PubMed

    El Omar, Abdel Karim; Schmidhammer, Uli; Rousseau, Bernard; LaVerne, Jay; Mostafavi, Mehran

    2012-11-29

    Picosecond pulse-probe radiolysis measurements of highly concentrated Cl(-) aqueous solutions are used to probe the oxidation mechanism of the Cl(-). The transient absorption spectra are measured from 340 to 710 nm in the picosecond range for the ultrafast electron pulse radiolysis of halide solutions at different concentrations up to 8 M. The amount of Cl(2)(•-) formation within the electron pulse increases notably with increasing Cl(-) concentration. Kinetic measurements reveal that the direct ionization of Cl(-) cannot solely explain the significant amount of fast Cl(2)(•-) formation within the electron pulse. The results suggest that Cl(-) reacts with the precursor of the OH(•) radical, i.e., H(2)O(•+) radical, to form Cl(•) atom within the electron pulse and the Cl(•) atom reacts subsequently with Cl(-) to form Cl(2)(•-) on very short time scales. The proton transfer reaction between H(2)O(•+) and the water molecule competes with the electron transfer reaction between Cl(-) and H(2)O(•+). Molecular dynamics simulations show that number of water molecules in close proximity decreases with increasing concentration of the salt (NaCl), confirming that for highly concentrated solutions the proton transfer reaction between H(2)O(•+) and a water molecule becomes less efficient. Diffusion-kinetic simulations of spur reactions including the direct ionization of Cl(-) and hole scavenging by Cl(-) show that up to 30% of the H(2)O(•+) produced by the irradiation could be scavenged for solutions containing 5.5 M Cl(-). This process decreases the yield of OH(•) radical in solution on the picosecond time scale. The experimental results for the same concentration of Cl(-) at a given absorbed dose show that the radiation energy absorbed by counterions is transferred to Cl(-) or water molecules and the effect of the countercation such as Li(+), K(+), Na(+), and Mg(2+) on the oxidation yield of Cl(-) is negligible.

  9. Swimming Emergencies

    PubMed Central

    Beerman, Stephen B.

    1988-01-01

    Persons who have undergone swimming emergencies are seen in emergency departments everywhere. They are frequently young healthy citizens. In some instances they will receive better care in large specialized referral hospitals. Other problems can be managed well at local facilities. This article attempts to equip all family physicians with some knowledge and management guidelines for dealing with swimming emergencies, submersion injuries including near-drowning, accidental hypothermia, and triathalon hypothermia. The unique problems of hot tub near-drowning, infant water intoxication, and spinal injuries caused by diving are presented. PMID:21253260

  10. Emergency Response

    EPA Pesticide Factsheets

    Information for first responders, industry, federal, state and local governments on EPA's role and available resources for response to oil spills, chemical, biological, radiological releases, and large-scale national emergencies.

  11. Emerging Issues.

    ERIC Educational Resources Information Center

    Carter, Denise

    1988-01-01

    Youth services programs and cholesterol in children's diets, two topics that may emerge as issues in schools and school districts in the near future, are addressed. Resources for further information are listed. (CB)

  12. Picosecond Investigation of the Collisional Deactivation of OH A 2 ( v 1, N 4, 12) in an Atmospheric-Pressure Flame

    NASA Astrophysics Data System (ADS)

    Beaud, Paul; Radi, Peter P.; Franzke, Dieter; Frey, Hans-Martin; Mischler, Bernhard; Tzannis, Alexios-Paul; Gerber, Thomas

    1998-05-01

    The collisional deactivation of the laser excited states A 2 ( v 1 , N 4 , 12 ) of OH in a flame is studied by measurement of spectrally resolved fluorescence decays in the picosecond time domain. Quenching and depolarization rates, as well as vibrational energy-transfer (VET) and rotational energy-transfer (RET) rates are determined. An empirical model describes the temporal evolution of the quenching and VET rates that emerge from the rotational-state relaxation. Fitting this model to the measured 1 0 and 0 0 fluorescence decays yields the quenching and VET rates of the initially excited rotational state along with those that correspond to a rotationally equilibrated vibronic-state population. VET from the higher rotational state ( N 12 ) shows a tendency for resonant transitions to energetic close-lying levels. RET is investigated by analysis of the temporal evolution of the 1 1 emission band. The observed RET is well described by the energy-corrected sudden-approximation theory in conjunction with a power-gap law.

  13. Measuring single-shot, picosecond optical damage threshold in Ge, Si, and sapphire with a 5.1-μm laser

    SciTech Connect

    Agustsson, R.; Pogorelsky, I.; Arab, E.; Murokh, A.; O"Shea, B.; Ovodenko, A.; Rosenzweig, J.; Solovyov, V.; Tilton, R.

    2015-11-18

    Optical photonic structures driven by picosecond, GW-class lasers are emerging as promising novel sources of electron beams and high quality X-rays. Due to quadratic dependence on wavelength of the laser ponderomotive potential, the performance of such sources scales very favorably towards longer drive laser wavelengths. However, to take full advantage of photonic structures at mid-IR spectral region, it is important to determine optical breakdown limits of common optical materials. To this end, an experimental study was carried out at a wavelength of 5 µm, using a frequency-doubled CO2 laser source, with 5 ps pulse length. Single-shot optical breakdowns were detected and characterized at different laser intensities, and damage threshold values of 0.2, 0.3, and 7.0 J/cm2, were established for Ge, Si, and sapphire, respectively. As a result, the measured damage threshold values were stable and repeatable within individual data sets, and across varying experimental conditions.

  14. Measuring single-shot, picosecond optical damage threshold in Ge, Si, and sapphire with a 5.1-μm laser

    DOE PAGES

    Agustsson, R.; Pogorelsky, I.; Arab, E.; ...

    2015-11-18

    Optical photonic structures driven by picosecond, GW-class lasers are emerging as promising novel sources of electron beams and high quality X-rays. Due to quadratic dependence on wavelength of the laser ponderomotive potential, the performance of such sources scales very favorably towards longer drive laser wavelengths. However, to take full advantage of photonic structures at mid-IR spectral region, it is important to determine optical breakdown limits of common optical materials. To this end, an experimental study was carried out at a wavelength of 5 µm, using a frequency-doubled CO2 laser source, with 5 ps pulse length. Single-shot optical breakdowns were detectedmore » and characterized at different laser intensities, and damage threshold values of 0.2, 0.3, and 7.0 J/cm2, were established for Ge, Si, and sapphire, respectively. As a result, the measured damage threshold values were stable and repeatable within individual data sets, and across varying experimental conditions.« less

  15. Emergency contraception.

    PubMed

    Grimes, David A; Raymond, Elizabeth G

    2002-08-06

    Emergency contraception is used to prevent pregnancy after a coital act not adequately protected by a regular method of contraception. In contrast to early medical abortion, emergency contraception prevents a pregnancy from starting and does not disrupt an established pregnancy. The most commonly used approaches consist of two oral doses of contraceptive steroids. The levonorgestrel-only regimen (levonorgestrel, 0.75 mg, repeated in 12 hours) appears to be more effective and better tolerated than the Yuzpe regimen (ethinyl estradiol, 100 microg, and levonorgestrel, 0.5 mg, repeated in 12 hours). In the largest randomized, controlled trial to date, levonorgestrel prevented about 85% of pregnancies that would have occurred without its use. Hormonal emergency contraception has no known medical contraindications, although it is not indicated for suspected or confirmed pregnancy. However, if hormonal emergency contraception is inadvertently taken in early pregnancy, neither the woman nor the fetus will be harmed. Nausea and vomiting associated with the Yuzpe regimen can be reduced by prophylactic use of meclizine. A strong medical and legal case exists for making hormonal emergency contraception available over the counter, as has happened in countries other than the United States. Easier access to and wider use of emergency contraception could dramatically lower the high rates of unintended pregnancy and induced abortion in the United States.

  16. Anorectal emergencies

    PubMed Central

    Lohsiriwat, Varut

    2016-01-01

    Anorectal emergencies refer to anorectal disorders presenting with some alarming symptoms such as acute anal pain and bleeding which might require an immediate management. This article deals with the diagnosis and management of common anorectal emergencies such as acutely thrombosed external hemorrhoid, thrombosed or strangulated internal hemorrhoid, bleeding hemorrhoid, bleeding anorectal varices, anal fissure, irreducible or strangulated rectal prolapse, anorectal abscess, perineal necrotizing fasciitis (Fournier gangrene), retained anorectal foreign bodies and obstructing rectal cancer. Sexually transmitted diseases as anorectal non-surgical emergencies and some anorectal emergencies in neonates are also discussed. The last part of this review dedicates to the management of early complications following common anorectal procedures that may present as an emergency including acute urinary retention, bleeding, fecal impaction and anorectal sepsis. Although many of anorectal disorders presenting in an emergency setting are not life-threatening and may be successfully treated in an outpatient clinic, an accurate diagnosis and proper management remains a challenging problem for clinicians. A detailed history taking and a careful physical examination, including digital rectal examination and anoscopy, is essential for correct diagnosis and plan of treatment. In some cases, some imaging examinations, such as endoanal ultrasonography and computerized tomography scan of whole abdomen, are required. If in doubt, the attending physicians should not hesitate to consult an expert e.g., colorectal surgeon about the diagnosis, proper management and appropriate follow-up. PMID:27468181

  17. Anorectal emergencies.

    PubMed

    Lohsiriwat, Varut

    2016-07-14

    Anorectal emergencies refer to anorectal disorders presenting with some alarming symptoms such as acute anal pain and bleeding which might require an immediate management. This article deals with the diagnosis and management of common anorectal emergencies such as acutely thrombosed external hemorrhoid, thrombosed or strangulated internal hemorrhoid, bleeding hemorrhoid, bleeding anorectal varices, anal fissure, irreducible or strangulated rectal prolapse, anorectal abscess, perineal necrotizing fasciitis (Fournier gangrene), retained anorectal foreign bodies and obstructing rectal cancer. Sexually transmitted diseases as anorectal non-surgical emergencies and some anorectal emergencies in neonates are also discussed. The last part of this review dedicates to the management of early complications following common anorectal procedures that may present as an emergency including acute urinary retention, bleeding, fecal impaction and anorectal sepsis. Although many of anorectal disorders presenting in an emergency setting are not life-threatening and may be successfully treated in an outpatient clinic, an accurate diagnosis and proper management remains a challenging problem for clinicians. A detailed history taking and a careful physical examination, including digital rectal examination and anoscopy, is essential for correct diagnosis and plan of treatment. In some cases, some imaging examinations, such as endoanal ultrasonography and computerized tomography scan of whole abdomen, are required. If in doubt, the attending physicians should not hesitate to consult an expert e.g., colorectal surgeon about the diagnosis, proper management and appropriate follow-up.

  18. Emergency contraception.

    PubMed

    1994-01-01

    Two oral postcoital contraceptive agents are currently available. The first is a 2 x 2 pill; the second is a 5 x 5. Both release a higher dose of hormones than conventional contraceptive pills. Success rates range between 96% and 99%. They must be taken within 72 hours of intercourse. Side effects include nausea and vomiting. Contraindications are the same as for the common oral contraceptives. The contraceptive mode of action can be any of the following: 1) by making the lining of the uterus unreceptive; 2) by slowing the movement of the egg in the fallopian tube; or 3) by affecting the release of the egg. Emergency contraceptive pills have no effect once implantation takes place. The IUD can be used as an emergency postcoital contraceptive method if placed within 10 days of coitus. They are usually placed within 5-7 days because of laws regarding when birth control becomes abortion. One failure has been reported in Great Britain (December, 1993). Side effects are the same as with regular use. RU486/PG may be used in the future as an emergency contraceptive agent. Research is in progress on success rates and side effects. This agent could potentially be used at any time. Currently, emergency contraception can only be obtained by prescription. Limited hours and interrogating staff are obstacles in such emergencies. British women's groups are asking that emergency oral contraceptive pills be made available over the counter with advice from the pharmacist.

  19. Photoluminescent zinc oxide polymer nanocomposites fabricated using picosecond laser ablation in an organic solvent

    NASA Astrophysics Data System (ADS)

    Wagener, Philipp; Faramarzi, Shamsolzaman; Schwenke, Andreas; Rosenfeld, Rupert; Barcikowski, Stephan

    2011-06-01

    Nanocomposites made of ZnO nanoparticles dispersed in thermoplastic polyurethane were synthesized using picosecond laser ablation of zinc in a polymer-doped solution of tetrahydrofuran. The pre-added polymer stabilizes the ZnO nanoparticles in situ during laser ablation by forming a polymer shell around the nanoparticles. This close-contact polymer shell has a layer thickness up to 30 nm. Analysis of ZnO polyurethane nanocomposites using optical spectroscopy, high resolution transmission electron microscopy and X-ray diffraction revealed that oxidized and crystalline ZnO nanoparticles were produced. Those nanocomposites showed a green photoluminescence emission centred at 538 nm after excitation at 350 nm, which should be attributed to oxygen defects generated during the laser formation mechanism of the monocrystalline nanoparticles. Further, the influence of pulse energy and polymer concentration on the production rate, laser fluence and energy-specific mass productivity was investigated.

  20. Quartz Crystal Microbalances for quantitative picosecond laser-material-interaction investigations - Part I: Technical considerations

    NASA Astrophysics Data System (ADS)

    Gierse, N.; Schildt, T.; Esser, H. G.; Sergienko, G.; Brezinsek, S.; Freisinger, M.; Zhao, D.; Ding, H.; Terra, A.; Samm, U.; Linsmeier, Ch.

    2016-12-01

    In this work the technical suitability of Quartz Crystal Microbalances (QMBs) for in situ, pulse resolved mass removal measurements is demonstrated for picosecond laser ablation of magnetron sputtered coatings. The QMBs show a linear characteristic of the sensitivity for layer thickness of different metals up to several microns. Laser pulse resolved measurements of the mass ablated from the metal layer were performed. About 400 ng of chromium was ablated during the first laser pulse while in subsequent pulses < 220 ng were removed. This is compared with previous findings. The sensitivity for ablation of the QMBs is found to be larger than for deposition, which is explained by the radial sensitivity of the QMBs. Future refinements of the setup and the benefits of the pulse resolved mass loss measurements for laser based methods like LIBS and LIAS are discussed and will be presented in part II currently in preparation.

  1. Measurement of transient atomic displacements in thin films with picosecond and femtometer resolution.

    PubMed

    Kozina, M; Hu, T; Wittenberg, J S; Szilagyi, E; Trigo, M; Miller, T A; Uher, C; Damodaran, A; Martin, L; Mehta, A; Corbett, J; Safranek, J; Reis, D A; Lindenberg, A M

    2014-05-01

    We report measurements of the transient structural response of weakly photo-excited thin films of BiFeO3, Pb(Zr,Ti)O3, and Bi and time-scales for interfacial thermal transport. Utilizing picosecond x-ray diffraction at a 1.28 MHz repetition rate with time resolution extending down to 15 ps, transient changes in the diffraction angle are recorded. These changes are associated with photo-induced lattice strains within nanolayer thin films, resolved at the part-per-million level, corresponding to a shift in the scattering angle three orders of magnitude smaller than the rocking curve width and changes in the interlayer lattice spacing of fractions of a femtometer. The combination of high brightness, repetition rate, and stability of the synchrotron, in conjunction with high time resolution, represents a novel means to probe atomic-scale, near-equilibrium dynamics.

  2. Picosecond nonlinear optical studies of gold nanoparticles synthesised using coriander leaves (Coriandrum sativum)

    NASA Astrophysics Data System (ADS)

    Venugopal Rao, S.

    2011-07-01

    The results are presented from the experimental picosecond nonlinear optical (NLO) studies of gold nanoparticles synthesised using coriander leaf (Coriandrum sativum) extract. Nanoparticles with an average size of ∼30 nm (distribution of 5-70 nm) were synthesised according to the procedure reported by Narayanan et al. [Mater. Lett. 2008, 62, 4588-4591]. NLO studies were carried out using the Z-scan technique using 2 ps pulses near 800 nm. Open-aperture data suggested saturation absorption as the nonlinear absorption mechanism, whereas closed-aperture data suggested a positive nonlinearity. The magnitude of third-order nonlinearity was estimated to be (3.3 ± 0.6) × 10-13 esu. A solvent contribution to the nonlinearity was also identified and estimated. A comparison is attempted with some recently reported NLO studies of similar gold nanostructures.

  3. Electric field measurements in a nanosecond pulse discharge by picosecond CARS/4-wave mixing

    NASA Astrophysics Data System (ADS)

    Goldberg, Ben; Shkurenkov, Ivan; Adamovich, Igor; Lempert, Walter

    2014-10-01

    Time-resolved electric field measurements in hydrogen by picosecond CARS/4-wave mixing are presented. Measurements are carried out in a high voltage nanosecond pulse discharge in hydrogen in plane-to-plane geometry, at pressures of up to several hundred Torr, and with a time resolution of 0.2 ns. Absolute calibration of the diagnostics is done using a sub-breakdown high voltage pulse of 12 kV/cm. A diffuse discharge is obtained by applying a peak high voltage pulse of 40 kV/cm between the electrodes. It is found that breakdown occurs at a lower field, 15--20 kV/cm, after which the field in the plasma is reduced rapidly due to plasma self shielding The experimental results are compared with kinetic modeling calculations, showing good agreement between the measured and the predicted electric field.

  4. NO binding kinetics in myoglobin investigated by picosecond Fe K-edge absorption spectroscopy

    PubMed Central

    Silatani, Mahsa; Lima, Frederico A.; Penfold, Thomas J.; Rittmann, Jochen; Reinhard, Marco E.; Rittmann-Frank, Hannelore M.; Borca, Camelia; Grolimund, Daniel; Milne, Christopher J.; Chergui, Majed

    2015-01-01

    Diatomic ligands in hemoproteins and the way they bind to the active center are central to the protein’s function. Using picosecond Fe K-edge X-ray absorption spectroscopy, we probe the NO-heme recombination kinetics with direct sensitivity to the Fe-NO binding after 532-nm photoexcitation of nitrosylmyoglobin (MbNO) in physiological solutions. The transients at 70 and 300 ps are identical, but they deviate from the difference between the static spectra of deoxymyoglobin and MbNO, showing the formation of an intermediate species. We propose the latter to be a six-coordinated domed species that is populated on a timescale of ∼200 ps by recombination with NO ligands. This work shows the feasibility of ultrafast pump–probe X-ray spectroscopic studies of proteins in physiological media, delivering insight into the electronic and geometric structure of the active center. PMID:26438842

  5. Study of plasma pressure evolution driven by strong picosecond laser pulse

    NASA Astrophysics Data System (ADS)

    Li, M.; Wang, J. X.; Xu, Y. X.; Zhu, W. J.

    2017-01-01

    Through one dimensional relativistic particle-in-cell simulation of strong laser interaction with the solid-density plasma, the evolution of the plasma impact pressure behind a thin foil has been investigated in details. An energy-compression mechanism has been proposed to help optimizing the laser and plasma parameters. It has been found that by using a picosecond laser with intensity 1015 W cm-2, an impact pressure as high as several hundreds of GPa order of magnitude can be obtained. The numerical analysis demonstrates that the peak pressure is mainly resulted from the ion contribution. These results are of potential application to the laser loading upon solids in order to study the material properties under extra-high dynamic pressure.

  6. Sub-picosecond streak camera measurements at LLNL: From IR to x-rays

    SciTech Connect

    Kuba, J; Shepherd, R; Booth, R; Steward, R; Lee, E W; Cross, R R; Springer, P T

    2003-12-21

    An ultra fast, sub-picosecond resolution streak camera has been recently developed at the LLNL. The camera is a versatile instrument with a wide operating wavelength range. The temporal resolution of up to 300 fs can be achieved, with routine operation at 500 fs. The streak camera has been operated in a wide wavelength range from IR to x-rays up to 2 keV. In this paper we briefly review the main design features that result in the unique properties of the streak camera and present its several scientific applications: (1) Streak camera characterization using a Michelson interferometer in visible range, (2) temporally resolved study of a transient x-ray laser at 14.7 nm, which enabled us to vary the x-ray laser pulse duration from {approx}2-6 ps by changing the pump laser parameters, and (3) an example of a time-resolved spectroscopy experiment with the streak camera.

  7. Ultra-flat supercontinuum generated from high-power, picosecond telecommunication fiber laser source.

    PubMed

    Liao, Ruoyu; Song, Youjian; Zhou, Xiaokang; Chai, Lu; Wang, Chingyue; Hu, Minglie

    2016-11-20

    An ultra-flat, high-power supercontinuum generated from a picosecond telecommunication fiber laser was presented. The pulse from a carbon nanotube mode-locked oscillator was amplified using an Er-Yb codoped fiber amplifier. The output of the system achieved an average power of 2.7 W, with the center wavelength at 1564 nm and a FWHM of 6 nm in the spectral domain. By passing this amplified high-power pulse through a 4.6 m highly nonlinear photonic crystal fiber, an ultra-flat supercontinuum spanning 1600-2180 nm is generated. And the average power of the supercontinuum achieves 1 W.

  8. 355, 532, and 1064 nm picosecond laser interaction with grass tissues

    NASA Astrophysics Data System (ADS)

    Kim, Jaehun; Ki, Hyungson

    2012-12-01

    In this article, we investigate how 355, 532, and 1064 nm picosecond lasers interact with grass tissues. We have identified five interaction regimes, and based on this classification, interaction maps have been constructed from a systematic experiment. The optical properties of light absorbing grass constituents are studied theoretically in order to understand how and how much light is absorbed by grass tissues. Scanning electron microscopy and optical microscopy are employed for observing morphological and structural changes of grass tissues. To the best of the authors' knowledge, this is the first investigation into laser interaction with plant leaves and reveals some fundamental findings regarding how a laser interacts with grass tissues and how plant leaves can be processed using lasers.

  9. Modeling of multi-burst mode pico-second laser ablation for improved material removal rate

    NASA Astrophysics Data System (ADS)

    Hu, Wenqian; Shin, Yung C.; King, Galen

    2010-02-01

    This paper deals with the unique phenomena occurring during the multi-burst mode picosecond (ps) laser ablation of metals through modeling and experimental studies. The two-temperature model (TTM) is used and expanded to calculate the ablation depth in the multi-burst mode. A nonlinear increment of ablation volume is found during the multi-burst laser ablation. The deactivation of ablated material and the application of temperature-dependent electron-phonon coupling are demonstrated to be important to provide reliable results. The simulation results based on this expanded laser ablation model are experimentally validated. A significant increase of ablation rate is found in the multi-burst mode, compared with the single-pulse mode under the same total fluence. This numerical model provides a physical perspective into the energy transport process during multi-burst laser ablation and can be used to study the pulse-to-pulse separation time effect on the ablation rate.

  10. Degradation of picosecond temporal contrast of Ti:sapphire lasers with coherent pedestals.

    PubMed

    Khodakovskiy, Nikita; Kalashnikov, Mikhail; Gontier, Emilien; Falcoz, Franck; Paul, Pierre-Mary

    2016-10-01

    Recompressed pulses from Ti:sapphire chirped-pulse lasers are accompanied by a slowly decaying post-pulse pedestal that is coherent with the main pulse. The pedestal typically consists of numerous pulses with temporal separation in the picosecond range. The source of this artifact lies in the Ti:sapphire active medium itself, both in the Kerr-lens mode-locked oscillator and in subsequent amplifiers. In the presence of substantial self-phase modulation, after recompression the post-pedestal generates a mirror-symmetric pre-pulse pedestal. This pedestal severely degrades the leading edge of the output pulse. This degradation is far more limiting than the original post-pedestal and severely lowers the achievable temporal contrast.

  11. Picosecond laser damage performance assessment of multilayer dielectric gratings in vacuum.

    PubMed

    Alessi, David A; Carr, C Wren; Hackel, Richard P; Negres, Raluca A; Stanion, Kenneth; Fair, James E; Cross, David A; Nissen, James; Luthi, Ronald; Guss, Gabe; Britten, Jerald A; Gourdin, William H; Haefner, Constantin

    2015-06-15

    Precise assessment of the high fluence performance of pulse compressor gratings is necessary to determine the safe operational limits of short-pulse high energy lasers. We have measured the picosecond laser damage behavior of multilayer dielectric (MLD) diffraction gratings used in the compression of chirped pulses on the Advanced Radiographic Capability (ARC) kilojoule petawatt laser system at the Lawrence Livermore National Laboratory (LLNL). We present optical damage density measurements of MLD gratings using the raster scan method in order to estimate operational performance. We also report results of R-on-1 tests performed with varying pulse duration (1-30 ps) in air, and clean vacuum. Measurements were also performed in vacuum with controlled exposure to organic contamination to simulate the grating use environment. Results show sparse defects with lower damage resistance which were not detected by small-area damage test methods.

  12. Modification of anodised aluminium surfaces using a picosecond fibre laser for printing applications.

    PubMed

    Ansari, I A; Watkins, K G; Sharp, M C; Hutchinson, R A; Potts, R M; Clowes, J

    2012-06-01

    The use of an ultrafast fibre laser at a wavelength of 1064 nm has allowed the surface modification of anodised aluminium plates coated with a 2 micron thick anodised layer for potential industrial applications. The micro- and nano-scale structuring of the anodised aluminium using picosecond pulses of approximately 25 ps duration at 200 kHz repetition rate was investigated. The interaction of the laser with the substrate created a hydrophilic surface, giving a contact angle of less than 10 degrees. On examination under a Scanning Electron Microscope (SEM), a morphology created due to laser induced spallation was observed. It has been found that these laser processed hydrophilic surfaces revert to a hydrophobic state with time. This has potential for application in the printing industry and offers reusability and sustainability of the process materials. This has been confirmed in initial trials.

  13. Multi-gigahertz picosecond optical parametric oscillator pumped by 80-MHz Yb-fiber laser.

    PubMed

    Kimmelma, Ossi; Chaitanya Kumar, S; Esteban-Martin, Adolfo; Ebrahim-Zadeh, M

    2013-11-15

    We report a multi-gigahertz (GHz) repetition-rate picosecond optical parametric oscillator (OPO) based on MgO:PPLN, synchronously pumped by a Yb-fiber laser operating at 80 MHz, where the multiplication of repetition frequency is achieved using fractional increment in the OPO cavity length. Using this simple technique, we achieve OPO operation up to the 88th harmonic of the pump laser frequency, corresponding to a repetition rate as high as 7 GHz. Deploying a 5% output coupler, we are able to extract up to 960 mW of average signal power at the fundamental with 600 mW at the 88th harmonic (7 GHz), using a pump power of 5.6 W. The measured relative standard deviations of the fundamental and fifth harmonic signal power are recorded to be 1.6% and 3.5%, respectively, while the fundamental signal pulse duration is measured to be 18.4 ps.

  14. Sub-picosecond double-clad photonic crystal fiber oscillator and amplifier system

    NASA Astrophysics Data System (ADS)

    Li, Pingxue; Zhang, Mengmeng; Liang, Boxing; Chi, Junjie

    2015-08-01

    A ytterbium-doped large mode area PCF sub-picosecond laser oscillator and amplifier system is experimentally studied. The oscillator which combines NPE and SESAM is operating on the all-normal-dispersion regime and the LMA PCF is used as the gain medium. In the CW mode-locking regime, the oscillator directly generates the pulse at the repetition rate of 83.7 MHz while the pulse duration is 960 fs. The double-clad fiber amplifier system directly generates a high average power of 12.53 W with a pulse duration of 4.1 ps corresponding to the pulse energy of 150 nJ and peak power of 36.6 KW after about 3 m ytterbium doped double clad fiber amplification.

  15. Picosecond and nanosecond laser annealing and simulation of amorphous silicon thin films for solar cell applications

    NASA Astrophysics Data System (ADS)

    Theodorakos, I.; Zergioti, I.; Vamvakas, V.; Tsoukalas, D.; Raptis, Y. S.

    2014-01-01

    In this work, a picosecond diode pumped solid state laser and a nanosecond Nd:YAG laser have been used for the annealing and the partial nano-crystallization of an amorphous silicon layer. These experiments were conducted as an alternative/complementary to plasma-enhanced chemical vapor deposition method for fabrication of micromorph tandem solar cell. The laser experimental work was combined with simulations of the annealing process, in terms of temperature distribution evolution, in order to predetermine the optimum annealing conditions. The annealed material was studied, as a function of several annealing parameters (wavelength, pulse duration, fluence), as far as it concerns its structural properties, by X-ray diffraction, SEM, and micro-Raman techniques.

  16. Picosecond Diffraction at the ESRF: How Far Have We Come and Where Are We Going?

    SciTech Connect

    Wulff, Michael; Kong Qingyu; Cammarata, Marco; Lo Russo, Manuela; Anfinrud, Philip; Schotte, Friedrich; Lorenc, Maciej; Ihee, Hyotcherl; Kim, Tae Kyu; Plech, Anton

    2007-01-19

    The realization of solution phase pump-probe diffraction experiments on beamline ID09B is described. The pink beam from a low-K in-vacuum undulator is used to study the structural dynamics of small molecules in solution to 100 picosecond time resolution and at atomic resolution. The X-ray chopper and the associated timing modes of the synchrotron are described. The dissociation of molecular iodine in liquid CCl4 is studied by single pulse diffraction. The data probe not only the iodine structures but also the solvent structure as the latter is thermally excited by the flow of energy from recombining iodine atoms. The low-q part of the diffraction spectra is a sensitive probe of the hydrodynamics of the solvent as a function of time.

  17. Compact picosecond mode-locked and cavity-dumped Nd:YVO4 laser.

    PubMed

    Wegner, U; Meier, J; Lederer, M J

    2009-12-07

    We report on a diode pumped, semiconductor saturable absorber mirror mode-locked picosecond Nd:YVO(4) oscillator with cavity-dumping. In pure cw-mode-locking this laser produced up to 17W of average power at a pulse repetition rate of 9.7MHz, corresponding to a pulse energy of 1.7microJ. Using an electro-optic cavity dumper, we achieved average powers up to 7.8W at 500kHz and 10W at 1MHz dumping rate. With corresponding pulse energies of 15.6microJ and 10microJ respectively and pulsewidths around 10ps, this laser could become a compact source for materials processing applications, alternative to more complex schemes such as regenerative amplifiers or ultra-long resonator oscillators.

  18. High-power, high repetition-rate, green-pumped, picosecond LBO optical parametric oscillator.

    PubMed

    Kienle, Florian; Teh, Peh Siong; Lin, Dejiao; Alam, Shaif-Ul; Price, Jonathan H V; Hanna, D C; Richardson, David J; Shepherd, David P

    2012-03-26

    We report on a picosecond, green-pumped, lithium triborate optical parametric oscillator with record-high output power. It was synchronously pumped by a frequency-doubled (530 nm), pulse-compressed (4.4 ps), high-repetition-rate (230 MHz), fiber-amplified gain-switched laser diode. For a pump power of 17 W, a maximum signal and idler power of 3.7 W and 1.8 W was obtained from the optical parametric oscillator. A signal pulse duration of ~3.2 ps was measured and wide tunability from 651 nm to 1040 nm for the signal and from 1081 nm to 2851 nm for the idler was achieved.

  19. Low-order harmonic generation in metal ablation plasmas in nanosecond and picosecond laser regimes

    SciTech Connect

    Lopez-Arias, M.; Oujja, M.; Sanz, M.; Castillejo, M.; Ganeev, R. A.; Boltaev, G. S.; Satlikov, N. Kh.; Tugushev, R. I.; Usmanov, T.

    2012-02-15

    Low-order harmonics, third and fifth, of IR (1064 nm) laser emission have been produced in laser ablation plasmas of the metals manganese, copper and silver. The harmonics were generated in a process triggered by laser ablation followed by frequency up-conversion of a fundamental laser beam that propagates parallel to the target surface. These studies were carried out in two temporal regimes by creating the ablation plasma using either nanosecond or picosecond pulses and then probing the plasma plume with pulses of the same duration. The spatiotemporal behavior of the generated harmonics was characterized and reveals the distinct composition and dynamics of the plasma species that act as nonlinear media, allowing the comparison of different processes that control the generation efficiency. These results serve to guide the choice of laser ablation plasmas to be used for efficient high harmonic generation of laser radiation.

  20. Nanosurgery with near-infrared 12-femtosecond and picosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Uchugonova, Aisada; Zhang, Huijing; Lemke, Cornelius; König, Karsten

    2011-03-01

    Laser-assisted surgery based on multiphoton absorption of NIR laser light has great potential for high precision surgery at various depths within the cells and tissues. Clinical applications include refractive surgery (fs-LASIK). The non-contact laser method also supports contamination-free cell nanosurgery. Here we apply femtosecond laser scanning microscopes for sub-100 nm surgery of human cells and metaphase chromosomes. A mode-locked 85 MHz Ti:Sapphire laser with an M-shaped ultrabroad band spectrum (maxima: 770 nm/830 nm) with an in situ pulse duration at the target ranging from 12 femtoseconds up to 3 picoseconds was employed. The effects of laser nanoprocessing in cells and chromosomes have been quantified by atomic force microscopy (AFM) and electron microscopy. These studies demonstrate the potential of extreme ultrashort femtosecond laser pulses at low mean milliwatt powers for sub-100 nm surgery.

  1. Directed fast electron beams in ultraintense picosecond laser irradiated solid targets

    SciTech Connect

    Ge, X. L.; Lin, X. X.; Yuan, X. H. E-mail: ytli@iphy.ac.cn; Sheng, Z. M.; Carroll, D. C.; Neely, D.; Gray, R. J.; Tresca, O.; McKenna, P.; Yu, T. P.; Chen, M.; Liu, F.; Zhuo, H. B.; Zielbauer, B.; and others

    2015-08-31

    We report on fast electron transport and emission patterns from solid targets irradiated by s-polarized, relativistically intense, picosecond laser pulses. A beam of multi-MeV electrons is found to be transported along the target surface in the laser polarization direction. The spatial-intensity and energy distributions of this beam are compared with the beam produced along the laser propagation axis. It is shown that even for peak laser intensities an order of magnitude higher than the relativistic threshold, laser polarization still plays an important role in electron energy transport. Results from 3D particle-in-cell simulations confirm the findings. The characterization of directional beam emission is important for applications requiring efficient energy transfer, including secondary photon and ion source development.

  2. A Novel Low-Ringing Monocycle Picosecond Pulse Generator Based on Step Recovery Diode.

    PubMed

    Zhou, Jianming; Yang, Xiao; Lu, Qiuyuan; Liu, Fan

    2015-01-01

    This paper presents a high-performance low-ringing ultra-wideband monocycle picosecond pulse generator, formed using a step recovery diode (SRD), simulated in ADS software and generated through experimentation. The pulse generator comprises three parts, a step recovery diode, a field-effect transistor and a Schottky diode, used to eliminate the positive and negative ringing of pulse. Simulated results validate the design. Measured results indicate an output waveform of 1.88 peak-to-peak amplitude and 307ps pulse duration with a minimal ringing of -22.5 dB, providing good symmetry and low level of ringing. A high degree of coordination between the simulated and measured results is achieved.

  3. Numerical analysis of laser ablation and damage in glass with multiple picosecond laser pulses.

    PubMed

    Sun, Mingying; Eppelt, Urs; Russ, Simone; Hartmann, Claudia; Siebert, Christof; Zhu, Jianqiang; Schulz, Wolfgang

    2013-04-08

    This study presents a novel numerical model for laser ablation and laser damage in glass including beam propagation and nonlinear absorption of multiple incident ultrashort laser pulses. The laser ablation and damage in the glass cutting process with a picosecond pulsed laser was studied. The numerical results were in good agreement with our experimental observations, thereby revealing the damage mechanism induced by laser ablation. Beam propagation effects such as interference, diffraction and refraction, play a major role in the evolution of the crater structure and the damage region. There are three different damage regions, a thin layer and two different kinds of spikes. Moreover, the electronic damage mechanism was verified and distinguished from heat modification using the experimental results with different pulse spatial overlaps.

  4. Picosecond Z-scan measurements on bulk GaN crystals

    SciTech Connect

    Pacebutas, V.; Stalnionis, A.; Krotkus, A.; Suski, T.; Perlin, P.; Leszczynski, M.

    2001-06-25

    Bulk GaN crystals were characterized by using picosecond laser pulses at {lambda}=0.527{mu}m and Z-scan techniques. The role of the free-carrier absorption was evaluated by a dynamical, pump-and-probe-type transmitivity measurement. The values of two-photon absorption coefficient (17{endash}20 cm/GW) and refractive index changes at high optical irradiances due to bound (n{sub 2}={minus}4{times}10{sup {minus}12}esu) and free ({sigma}{sub r}={minus}1.0{times}10{sup {minus}20}cm{sup 3}) electrons in that material were determined. {copyright} 2001 American Institute of Physics.

  5. NO binding kinetics in myoglobin investigated by picosecond Fe K-edge absorption spectroscopy.

    PubMed

    Silatani, Mahsa; Lima, Frederico A; Penfold, Thomas J; Rittmann, Jochen; Reinhard, Marco E; Rittmann-Frank, Hannelore M; Borca, Camelia; Grolimund, Daniel; Milne, Christopher J; Chergui, Majed

    2015-10-20

    Diatomic ligands in hemoproteins and the way they bind to the active center are central to the protein's function. Using picosecond Fe K-edge X-ray absorption spectroscopy, we probe the NO-heme recombination kinetics with direct sensitivity to the Fe-NO binding after 532-nm photoexcitation of nitrosylmyoglobin (MbNO) in physiological solutions. The transients at 70 and 300 ps are identical, but they deviate from the difference between the static spectra of deoxymyoglobin and MbNO, showing the formation of an intermediate species. We propose the latter to be a six-coordinated domed species that is populated on a timescale of ∼ 200 ps by recombination with NO ligands. This work shows the feasibility of ultrafast pump-probe X-ray spectroscopic studies of proteins in physiological media, delivering insight into the electronic and geometric structure of the active center.

  6. Magnetic vortex-antivortex dynamics on a picosecond timescale in a rectangular Permalloy pattern

    SciTech Connect

    Kim, D.-H.; Mesler-Lai, B.; Anderson, E.; Fischer, P.; Moon, J.-H.; Lee, K.-J.

    2009-06-25

    We report our experimental finding that there exists a pair of magnetic vortex and antivortex generated during an excited motion of a magnetic vortex core. Two vortices structure in 2 x 4 {micro}m{sup 2} rectangular Permalloy pattern is excited by an external field pulse of 1-ns duration, where each vortex is excited and followed by the vortex core splitting. X-ray microscopy with high spatiotemporal resolution enables us to observe a linking domain between two temporarily generated pairs of vortex-antivortex cores only surviving for several hundreds of picoseconds. The linking domain structure is found to depend on the combinational configuration of two original vortex cores, which is supported by micromagnetic simulations with a very good agreement.

  7. Fast phosphor picosecond streak tube for ultrafast laser diagnostics in repetitive mode

    NASA Astrophysics Data System (ADS)

    Ageeva, N. V.; Gornostaev, P. B.; Ivanova, S. R.; Kulechenkova, T. P.; Levina, G. P.; Lozovoi, V. I.; Makushina, V. A.; Schelev, M. Ya; Shashkov, E. V.; Scaballanovich, T. A.; Smirnov, A. V.; Vereschagin, A. K.; Vereschagin, K. A.; Vorobiev, N. S.

    2015-08-01

    The well-established PIF-01/S1/P43 picosecond streak tube, designed 30 years ago and still manufactured at the A.M. Prokhorov General Physics Institute, was modified by replacing its traditional P43 phosphor screen with a P47 one having approximately three orders of magnitude shorter decay time. The experimental measurements of this decay time were provided by PIF-01/S1/P47 image tube photocathode irradiation either with a single or a train of 8 ps laser pulses separated by 8 ns from each other at a 1.08 μm wavelength. The results of our preliminary measurements of P47-BH phosphor (manufactured by Phosphor Technology Ltd) indicate the possibility of employing the PIF-01/S1/P47 streak tube for synchrotron diagnostics at a units megahertz repetition rate without the negative influence of ‘ghost images’ from the previous streak records.

  8. Directly driven source of multi-gigahertz, sub-picosecond optical pulses

    DOEpatents

    Messerly, Michael J.; Dawson, Jay W.; Barty, Christopher P.J.; Gibson, David J.; Prantil, Matthew A.; Cormier, Eric

    2015-10-20

    A robust, compact optical pulse train source is described, with the capability of generating sub-picosecond micro-pulse sequences, which can be periodic as well as non-periodic, and at repetition rates tunable over decades of baseline frequencies, from MHz to multi-GHz regimes. The micro-pulses can be precisely controlled and formatted to be in the range of many ps in duration to as short as several fs in duration. The system output can be comprised of a continuous wave train of optical micro-pulses or can be programmed to provide gated bursts of macro-pulses, with each macro-pulse consisting of a specific number of micro-pulses or a single pulse picked from the higher frequency train at a repetition rate lower than the baseline frequency. These pulses could then be amplified in energy anywhere from the nJ to MJ range.

  9. Patterned graphene ablation and two-photon functionalization by picosecond laser pulses in ambient conditions

    SciTech Connect

    Bobrinetskiy, I. I. Otero, N.; Romero, P. M.; Emelianov, A. V.

    2015-07-27

    Direct laser writing is a technology with excellent prospects for mask-less processing of carbon-based nanomaterials, because of the wide range of photoinduced reactions that can be performed on large surfaces with submicron resolution. In this paper, we demonstrate the use of picoseconds laser pulses for one-step ablation and functionalization of graphene. Varying the parameters of power, pulse frequency, and speed, we demonstrated the ablation down to 2 μm width and up to mm-long lines as well as functionalization with spatial resolution less than 1 μm with linear speeds in the range of 1 m/s. Raman and atomic-force microscopy studies were used to indicate the difference in modified graphene states and correlation to the changes in optical properties.

  10. Rotational reorientation dynamics of C60 in various solvents. Picosecond transient grating experiments

    NASA Astrophysics Data System (ADS)

    Rubtsov, I. V.; Khudiakov, D. V.; Nadtochenko, V. A.; Lobach, A. S.; Moravskii, A. P.

    1994-11-01

    The picosecond transient grating technique has been used to study the rotational reorientation of C60 in various solvents: in toluene 7 +/- 1.5 ps, o-dichlorobenzene 10.3 +/- 1.5 ps, o-xylene 13 +/- 2 ps and in decalin 3.5 +/- 1.5 ps. The data obtained cannot be described by hydrodynamic Debye theory. Rough-sphere fluid theory predicts the correct values for C60 rotation in toluene, o-dichlorobenzene and in decalin. The deviations for o-xylene are probably connected with the specifics of the local solvent structure or with the stronger interaction of C60 with solvent molecules. The rotation of C60 in decalin is rapid and approaches the rotation in the gas phase determined by inertia.

  11. High-speed laser-assisted cutting of strong transparent materials using picosecond Bessel beams

    NASA Astrophysics Data System (ADS)

    Bhuyan, M. K.; Jedrkiewicz, O.; Sabonis, V.; Mikutis, M.; Recchia, S.; Aprea, A.; Bollani, M.; Trapani, P. Di

    2015-08-01

    We report single-pass cutting of strong transparent glass materials of 700 μm thickness with a speed up to 270 mm/s using single-shot nanostructuring technique exploiting picosecond, zero-order Bessel beams at laser wavelength of 1030 nm. Particularly, we present results of a systematic study of cutting of tempered glass which has high resistance to thermal and mechanical shocks due to the inhomogeneous material properties along its thickness, and homogeneous glass that identify a unique focusing geometry and a finite pitch dependency, for which cutting with high quality and high reproducibility can be achieved. These results represent a significant advancement in the field of high-speed cutting of technologically important transparent materials.

  12. Picosecond ultrasonic study of surface acoustic waves on titanium nitride nanostructures

    SciTech Connect

    Bjornsson, M. M.; Connolly, A. B.; Mahat, S.; Rachmilowitz, B. E.; Daly, B. C.; Antonelli, G. A.; Myers, A.; Singh, K. J.; Yoo, H. J.; King, S. W.

    2015-03-07

    We have measured surface acoustic waves on nanostructured TiN wires overlaid on multiple thin films on a silicon substrate using the ultrafast pump-probe technique known as picosecond ultrasonics. We find a prominent oscillation in the range of 11–54 GHz for samples with varying pitch ranging from 420 nm down to 168 nm. We find that the observed oscillation increases monotonically in frequency with decrease in pitch, but that the increase is not linear. By comparing our data to two-dimensional mechanical simulations of the nanostructures, we find that the type of surface oscillation to which we are sensitive changes depending on the pitch of the sample. Surface waves on substrates that are loaded by thin films can take multiple forms, including Rayleigh-like waves, Sezawa waves, and radiative (leaky) surface waves. We describe evidence for detection of modes that display characteristics of these three surface wave types.

  13. Development of picoseconds Time of Flight systems in Meson Test Beam Facility at Fermilab

    SciTech Connect

    Ronzhin, A.; Albrow, M.; Demarteau, M.; Los, S.; Malik, S.; Pronko, S.; Ramberg, E.; Zatserklyaniy, A.; /Puerto Rico U., Mayaguez

    2010-11-01

    The goal of the work is to develop time of flight (TOF) system with about 10 picosecond time resolution in real beam line when start and stop counters separated by some distance. We name the distance as 'base' for the TOF. This 'real' TOF setup is different from another one when start and stop counters located next to each other. The real TOF is sensitive to beam momentum spread, beam divergence, etc. Anyway some preliminary measurements are useful with close placement of start and stop counter. We name it 'close geometry'. The work started about 2 years ago at Fermilab Meson Test Beam Facility (MTBF). The devices tested in 'close geometry' were Microchannel Plate Photomultipliers (MCP PMT) with Cherenkov radiators. TOF counters based on Silicon Photomultipliers (SiPms) with Cherenkov radiators also in 'close geometry' were tested. We report here new results obtained with the counters in the MTBF at Fermilab, including beam line data.

  14. Picosecond ultrasonic study of surface acoustic waves on titanium nitride nanostructures

    NASA Astrophysics Data System (ADS)

    Bjornsson, M. M.; Connolly, A. B.; Mahat, S.; Rachmilowitz, B. E.; Daly, B. C.; Antonelli, G. A.; Myers, A.; Singh, K. J.; Yoo, H. J.; King, S. W.

    2015-03-01

    We have measured surface acoustic waves on nanostructured TiN wires overlaid on multiple thin films on a silicon substrate using the ultrafast pump-probe technique known as picosecond ultrasonics. We find a prominent oscillation in the range of 11-54 GHz for samples with varying pitch ranging from 420 nm down to 168 nm. We find that the observed oscillation increases monotonically in frequency with decrease in pitch, but that the increase is not linear. By comparing our data to two-dimensional mechanical simulations of the nanostructures, we find that the type of surface oscillation to which we are sensitive changes depending on the pitch of the sample. Surface waves on substrates that are loaded by thin films can take multiple forms, including Rayleigh-like waves, Sezawa waves, and radiative (leaky) surface waves. We describe evidence for detection of modes that display characteristics of these three surface wave types.

  15. generation of picosecond pulses in solid-state lasers using new active media

    SciTech Connect

    Lisitsyn, V.N.; Matrosov, V.N.; Pestryakov, E.V.; Trunov, V.I.

    1986-07-01

    Results are reported of investigations aimed at generating nanosecond radiation pulses in solid-state lasers using new active media having broad gain lines. Passive mode locking is accomplished for the first time in a BeLa:Nd/sup 3/ laser at a wavelength 1.354 microm, and in a YAG:Nd/sup 3/ laser on a 1.32-microm transition. The free lasing and mode-locking regimes were investigated in an alexandrite (BeA1/sub 2/O/sub 4/:Cr/sup 3/) laser in the 0.72-0.78-microm range and in a synchronously pumped laser on F/sub 2//sup -/ centers in LiF in the 1.12-1.24-microm region. The features of nonlinear perception of IR radiation by the eye, using a developed picosecond laser on F/sub 2//sup -/ centers, are investigated for the first time.

  16. Broadband amplification by picosecond OPCPA in DKDP pumped at 515 nm.

    PubMed

    Skrobol, Christoph; Ahmad, Izhar; Klingebiel, Sandro; Wandt, Christoph; Trushin, Sergei A; Major, Zsuzsanna; Krausz, Ferenc; Karsch, Stefan

    2012-02-13

    On the quest towards reaching petawatt-scale peak power light pulses with few-cycle duration, optical parametric chirped pulse amplification (OPCPA) pumped on a time scale of a few picoseconds represents a very promising route. Here we present an experimental demonstration of few-ps OPCPA in DKDP, in order to experimentally verify the feasibility of the scheme. Broadband amplification was observed in the wavelength range of 830-1310 nm. The amplified spectrum supports two optical cycle pulses, at a central wavelength of ~920 nm, with a pulse duration of 6.1 fs (FWHM). The comparison of the experimental results with our numerical calculations of the OPCPA process showed good agreement. These findings confirm the reliability of our theoretical modelling, in particular with respect to the design for further amplification stages, scaling the output peak powers to the petawatt scale.

  17. Measurements of Electron Transport in Foils Irradiated with a Picosecond Time Scale Laser Pulse

    SciTech Connect

    Brown, C. R. D.; Hoarty, D. J.; James, S. F.; Swatton, D.; Hughes, S. J.; Morton, J. W.; Guymer, T. M.; Hill, M. P.; Chapman, D. A.; Andrew, J. E.; Comley, A. J.; Shepherd, R.; Dunn, J.; Chen, H.; Schneider, M.; Brown, G.; Beiersdorfer, P.; Emig, J.

    2011-05-06

    The heating of solid foils by a picosecond time scale laser pulse has been studied by using x-ray emission spectroscopy. The target material was plastic foil with a buried layer of a spectroscopic tracer material. The laser pulse length was either 0.5 or 2 ps, which resulted in a laser irradiance that varied over the range 10{sup 16}-10{sup 19} W/cm{sup 2}. Time-resolved measurements of the buried layer emission spectra using an ultrafast x-ray streak camera were used to infer the density and temperature conditions as a function of laser parameters and depth of the buried layer. Comparison of the data to different models of electron transport showed that they are consistent with a model of electron transport that predicts the bulk of the target heating is due to return currents.

  18. A Novel Low-Ringing Monocycle Picosecond Pulse Generator Based on Step Recovery Diode

    PubMed Central

    Zhou, Jianming; Yang, Xiao; Lu, Qiuyuan; Liu, Fan

    2015-01-01

    This paper presents a high-performance low-ringing ultra-wideband monocycle picosecond pulse generator, formed using a step recovery diode (SRD), simulated in ADS software and generated through experimentation. The pulse generator comprises three parts, a step recovery diode, a field-effect transistor and a Schottky diode, used to eliminate the positive and negative ringing of pulse. Simulated results validate the design. Measured results indicate an output waveform of 1.88 peak-to-peak amplitude and 307ps pulse duration with a minimal ringing of -22.5 dB, providing good symmetry and low level of ringing. A high degree of coordination between the simulated and measured results is achieved. PMID:26308450

  19. Laser diagnostics in combustion: Elastic scattering and picosecond laser-induced fluorescence

    NASA Astrophysics Data System (ADS)

    Ossler, Frederik E.

    Elastic scattering and the Lorenz-Mie (LM) theory in particular is used for the characterization of submicron- and micron-sized droplets of organic fuels in sprays and aerosols. Calculations on the Lorenz-Mie theory show that backward-sideward scattered visible radiation can be used for unambiguous detection of ensembles of homogeneous droplets of organic substances with diameters around 1 micrometer (size parameter between 2 and 6). A backward feature in the polarization ratio appears with a value considerably higher than one, on the opposite to the case of the rainbow observed for larger droplets. A comparison between measurements and LM calculations showed that a large amount of droplets in aerosols and well-atomized sprays were smaller than one micrometer in diameter. The LM theory was also used to characterize different size groups in a burning spray. A 3-D technique based on a picosecond laser and a streak camera was demonstrated for measurements of fast and turbulent biphase flows. The entire 3-D information was obtained within a time-span of less than 15 nanoseconds. A 2-D technique for lifetime measurements based on a picosecond laser and a streak camera has been demonstrated on static objects. An analysis indicates that the technique may be applied to measurements of lifetimes around or below one picosecond employing femtosecond lasers and femtosecond streak-cameras. The technique may in principle be used to study dynamic systems when two detectors are used. Fluorescence lifetime measurements on hydrogen and oxygen atoms in flames at atmospheric pressure demonstrate the need of lasers with suiting spectral properties such as jitter and linewidth and the need of detectors with high sensitivity in the near IR in the case of oxygen atoms. The fluorescence lifetimes of gas phase acetone and 3- pentanone at 266 nm excitation wavelength have been measured for mixtures with nitrogen and air at temperatures between 323 and 723 K and pressures between 0.01 and 10

  20. Picosecond phase-conjugation by degenerate four-wave mixing in sodium vapour

    NASA Astrophysics Data System (ADS)

    Cefalas, A. C.; Mikropoulos, T.; Simon, P.; Hebling, J.; Nicolaides, C. A.

    1988-08-01

    Phase-conjugated waves (PCW), via degenerate four-wave mixing (DFWM) with picosecond laser pulses having a FWHM of 80 ps have been obtained in sodium vapour on both sides of the D 2(32 S 1/2→32 P 3/2) transition at 589 nm. The maximum reflectivity of the PCW signals was 60%. The reflectivity of the PCW has been measured as a function of the temperature, the detuning and the pump and probe intensities. Because of the very strong nonlinear behaviour of the D 2 transition the appearance of the PCW is accompanied by strong self-focusing and defocusing of the beams, which give a rather complicated line-shape of the detuning curve of the PCW. By varying the delay between the beams, the lifetime of the transient volume grating has been, measured to be 7.4 ns. The results are in qualitative agreement with the theoretical model of Abrams and Lind.

  1. Precise Control of the Number of Layers of Graphene by Picosecond Laser Thinning

    PubMed Central

    Lin, Zhe; Ye, Xiaohui; Han, Jinpeng; Chen, Qiao; Fan, Peixun; Zhang, Hongjun; Xie, Dan; Zhu, Hongwei; Zhong, Minlin

    2015-01-01

    The properties of graphene can vary as a function of the number of layers (NOL). Controlling the NOL in large area graphene is still challenging. In this work, we demonstrate a picosecond (ps) laser thinning removal of graphene layers from multi-layered graphene to obtain desired NOL when appropriate pulse threshold energy is adopted. The thinning process is conducted in atmosphere without any coating and it is applicable for graphene films on arbitrary substrates. This method provides many advantages such as one-step process, non-contact operation, substrate and environment-friendly, and patternable, which will enable its potential applications in the manufacturing of graphene-based electronic devices. PMID:26111758

  2. Picosecond laser structuration under high pressures: Observation of boron nitride nanorods

    SciTech Connect

    Museur, Luc; Petitet, Jean-Pierre; Kanaev, Andrei V.; Michel, Jean-Pierre; Marine, Wladimir; Anglos, Demetrios; Fotakis, Costas

    2008-11-01

    We report on picosecond UV-laser processing of hexagonal boron nitride (BN) at moderately high pressures above 500 bar. The main effect is specific to the ambient gas and laser pulse duration in the ablation regime: when samples are irradiated by 5 or 0.45 ps laser pulses in nitrogen gas environment, multiple nucleation of a new crystalline product-BN nanorods-takes place. This process is triggered on structural defects, which number density strongly decreases upon recrystallization. Nonlinear photon absorption by adsorbed nitrogen molecules is suggested to mediate the nucleation growth. High pressure is responsible for the confinement and strong backscattering of ablation products. A strong surface structuring also appears at longer 150 ps laser irradiation in similar experimental conditions. However, the transformed product in this case is amorphous strongly contaminated by boron suboxides B{sub x}O{sub y}.

  3. Towards a table-top microscope for nanoscale magnetic imaging using picosecond thermal gradients

    PubMed Central

    Bartell, J. M.; Ngai, D. H.; Leng, Z.; Fuchs, G. D.

    2015-01-01

    Research advancement in magnetoelectronics is challenged by the lack of a table-top magnetic measurement technique with the simultaneous temporal and spatial resolution necessary for characterizing magnetization dynamics in devices of interest, such as magnetic memory and spin torque oscillators. Although magneto-optical microscopy provides superb temporal resolution, its spatial resolution is fundamentally limited by optical diffraction. To address this challenge, we study heat rather than light as a vehicle to stroboscopically transduce a local magnetic moment into an electrical signal while retaining picosecond temporal resolution. Using this concept, we demonstrate spatiotemporal magnetic microscopy using the time-resolved anomalous Nernst effect (TRANE). Experimentally and with supporting numerical calculations, we find that TRANE microscopy has temporal resolution below 30 ps and spatial resolution determined by the area of thermal excitation. Based on these findings, we suggest a route to exceed the limits imposed by far-field optical diffraction. PMID:26419515

  4. Magnetic reversal dynamics of a quantum system on a picosecond timescale.

    PubMed

    Klenov, Nikolay V; Kuznetsov, Alexey V; Soloviev, Igor I; Bakurskiy, Sergey V; Tikhonova, Olga V

    2015-01-01

    We present our approach for a consistent, fully quantum mechanical description of the magnetization reversal process in natural and artificial atomic systems by means of short magnetic pulses. In terms of the simplest model of a two-level system with a magnetic moment, we analyze the possibility of a fast magnetization reversal on the picosecond timescale induced by oscillating or short unipolar magnetic pulses. We demonstrate the possibility of selective magnetization reversal of a superconducting flux qubit using a single flux quantum-based pulse and suggest a promising, rapid Λ-scheme for resonant implementation of this process. In addition, the magnetization reversal treatment is fulfilled within the framework of the macroscopic theory of the magnetic moment, which allows for the comparison and explanation of the quantum and classical behavior.

  5. Individual and collective vibrational modes of nanostructures studied by picosecond ultrasonics.

    PubMed

    Bienville, T; Robillard, J F; Belliard, L; Roch-Jeune, I; Devos, A; Perrin, B

    2006-12-22

    We report on picosecond ultrasonic measurements obtained on aluminum and platinum nanostructures with variable dot size and lateral periodicity which realized a 2D phononic crystal. Performing investigations at different resolution scales, we have identified individual modes of vibration depending on the dot size, and mode of vibration strongly correlated with the bi-dimensional organization. The platinum dots sputtered on an aluminum layer have shown a behavior of isolated oscillators without any coupling between neighbor elements in this phononic crystal. The frequency of such normal modes, extracted from time resolved measurements are in good agreement with 3D finite element simulations. In contrast, with aluminum dot systems where the coupling is more efficient we observe a complex spectrum of vibrational modes related to the band structure induced by the bi-dimensional patterning.

  6. Shock compression and flash-heating of molecular adsorbates on the picosecond time scale

    NASA Astrophysics Data System (ADS)

    Berg, Christopher Michael

    An ultrafast nonlinear coherent laser spectroscopy termed broadband multiplex vibrational sum-frequency generation (SFG) with nonresonant suppression was employed to monitor vibrational transitions of molecular adsorbates on metallic substrates during laser-driven shock compression and flash-heating. Adsorbates were in the form of well-ordered self-assembled monolayers (SAMs) and included molecular explosive simulants, such as nitroaromatics, and long chain-length alkanethiols. Based on reflectance measurements of the metallic substrates, femtosecond flash-heating pulses were capable of producing large-amplitude temperature jumps with DeltaT = 500 K. Laser-driven shock compression of SAMs produced pressures up to 2 GPa, where 1 GPa ≈ 1 x 104 atm. Shock pressures were estimated via comparison with frequency shifts observed in the monolayer vibrational transitions during hydrostatic pressure measurements in a SiC anvil cell. Molecular dynamics during flash-heating and shock loading were probed with vibrational SFG spectroscopy with picosecond temporal resolution and sub-nanometer spatial resolution. Flash-heating studies of 4-nitrobenzenethiolate (NBT) on Au provided insight into effects from hot-electron excitation of the molecular adsorbates at early pump-probe delay times. At longer delay times, effects from the excitation of SAM lattice modes and lower-energy NBT vibrations were shown. In addition, flash-heating studies of alkanethiolates demonstrated chain disordering behaviors as well as interface thermal conductances across the Au-SAM junction, which was of specific interest within the context of molecular electronics. Shock compression studies of molecular explosive simulants, such as 4-nitrobenzoate (NBA), demonstrated the proficiency of this technique to observe shock-induced molecular dynamics, in this case orientational dynamics, on the picosecond time scale. Results validated the utilization of these refined shock loading techniques to probe the shock

  7. Picosecond pulsed laser ablation and micromachining of 4H-SiC wafers

    NASA Astrophysics Data System (ADS)

    Molian, Pal; Pecholt, Ben; Gupta, Saurabh

    2009-02-01

    Ultra-short pulsed laser ablation and micromachining of n-type, 4H-SiC wafer was performed using a 1552 nm wavelength, 2 ps pulse, 5 μJ pulse energy erbium-doped fiber laser with an objective of rapid etching of diaphragms for pressure sensors. Ablation rate, studied as a function of energy fluence, reached a maximum of 20 nm per pulse at 10 mJ/cm 2, which is much higher than that achievable by the femtosecond laser for the equivalent energy fluence. Ablation threshold was determined as 2 mJ/cm 2. Scanning electron microscope images supported the Coulomb explosion (CE) mechanism by revealing very fine particulates, smooth surfaces and absence of thermal effects including melt layer formation. It is hypothesized that defect-activated absorption and multiphoton absorption mechanisms gave rise to a charge density in the surface layers required for CE and enabled material expulsion in the form of nanoparticles. Trenches and holes micromachined by the picosecond laser exhibited clean and smooth edges and non-thermal ablation mode for pulse repetition rates less than 250 kHz. However carbonaceous material and recast layer were noted in the machined region when the pulse repetition rate was increased 500 kHz that could be attributed to the interaction between air plasma and micro/nanoparticles. A comparison with femtosecond pulsed lasers shows the promise that picosecond lasers are more efficient and cost effective tools for creating sensor diaphragms and via holes in 4H-SiC.

  8. A compact picosecond pulsed laser source using a fully integrated CMOS driver circuit

    NASA Astrophysics Data System (ADS)

    He, Yuting; Li, Yuhua; Yadid-Pecht, Orly

    2016-03-01

    Picosecond pulsed laser source have applications in areas such as optical communications, biomedical imaging and supercontinuum generation. Direct modulation of a laser diode with ultrashort current pulses offers a compact and efficient approach to generate picosecond laser pulses. A fully integrated complementary metaloxide- semiconductor (CMOS) driver circuit is designed and applied to operate a 4 GHz distributed feedback laser (DFB). The CMOS driver circuit combines sub-circuits including a voltage-controlled ring oscillator, a voltagecontrolled delay line, an exclusive-or (XOR) circuit and a current source circuit. Ultrashort current pulses are generated by the XOR circuit when the delayed square wave is XOR'ed with the original square wave from the on-chip oscillator. Circuit post-layout simulation shows that output current pulses injected into an equivalent circuit load of the laser have a pulse full width at half maximum (FWHM) of 200 ps, a peak current of 80 mA and a repetition rate of 5.8 MHz. This driver circuit is designed in a 0.13 μm CMOS process and taped out on a 0.3 mm2 chip area. This CMOS chip is packaged and interconnected with the laser diode on a printed circuit board (PCB). The optical output waveform from the laser source is captured by a 5 GHz bandwidth photodiode and an 8 GHz bandwidth oscilloscope. Measured results show that the proposed laser source can output light pulses with a pulse FWHM of 151 ps, a peak power of 6.4 mW (55 mA laser peak forward current) and a repetition rate of 5.3 MHz.

  9. Energy transfer in LHCII monomers at 77K studied by sub-picosecond transient absorption spectroscopy.

    PubMed

    Kleima, F J; Gradinaru, C C; Calkoen, F; van Stokkum, I H; van Grondelle, R; van Amerongen, H

    1997-12-09

    Energy transfer from chlorophyll b (Chl b) to chlorophyll a (Chl a) in monomeric preparations of light-harvesting complex II (LHCII) from spinach was studied at 77 K using pump-probe experiments. Sub-picosecond excitation pulses centered at 650 nm were used to excite preferentially Chl b and difference absorption spectra were detected from 630 to 700 nm. Two distinct Chl b to Chl a transfer times, approximately 200 fs and 3 ps, were found. A clearly distinguishable energy transfer process between Chl a molecules occurred with a time constant of 18 ps. The LHCII monomer data are compared to previously obtained LHCII trimer data, and both data sets are fitted simultaneously using a global analysis fitting routine. Both sets could be described with the following time constants: 140 fs, 600 fs, 8 ps, 20 ps, and 2.9 ns. In both monomers and trimers 50% of the Chl b to Chl a transfer is ultrafast (<200 fs). However, for monomers this transfer occurs to Chl a molecules that absorb significantly more toward shorter wavelengths than for trimers. Part of the transfer from Chl b to Chl a that occurs with a time constant of 600 fs in trimers is slowed down to several picoseconds in monomers. However, it is argued that observed differences between monomers and trimers should be ascribed to the loss of some Chl a upon monomerization or a shift of the absorption maximum of one or several Chl a molecules. It is concluded that Chl b to Chl a transfer occurs only within monomeric subunits of the trimers and not between different subunits.

  10. Treatment of tattoos with a picosecond alexandrite laser: a prospective trial.

    PubMed

    Saedi, Nazanin; Metelitsa, Andrei; Petrell, Kathleen; Arndt, Kenneth A; Dover, Jeffrey S

    2012-12-01

    OBJECTIVE To study a picosecond 755-nm alexandrite laser for the removal of tattoos to confirm the efficacy of this therapy, focusing on the effect of therapy on the target lesion as well as the surrounding tissues and quantifying the number of necessary treatments. DESIGN Fifteen patients with tattoos were enrolled. Treatments were scheduled approximately 6 ± 2 weeks apart. Standard photographs using 2-dimensional imaging were taken at baseline, before each treatment, and 1 month and 3 months after the last treatment. SETTING Dermatology clinic at SkinCare Physicians in Chestnut Hill, Massachusetts. PATIENTS Fifteen patients with darkly pigmented tattoos. MAIN OUTCOME MEASURES Treatment efficacy was assessed by the level of tattoo clearance in standard photographs. These photographs were assessed by a blinded physician evaluator and based on a 4-point scale. Efficacy was also assessed based on physician and patient satisfaction measured on a 4-point scale. RESULTS Twelve of 15 patients with tattoos (80%) completed the study. All 12 patients obtained greater than 75% clearance. Nine patients (75%) obtained greater than 75% clearance after having 2 to 4 treatments. The average number of treatment sessions needed to obtain this level of clearance was 4.25. All 12 patients (100%) were satisfied or extremely satisfied with the treatment. Adverse effects included pain, swelling, and blistering. Pain resolved immediately after therapy, while the swelling and blistering resolved within 1 week. Hypopigmentation and hyperpigmentation were reported at the 3-month follow-up. CONCLUSION The picosecond 755-nm alexandrite laser is a safe and very effective procedure for removing tattoo pigment.

  11. Hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering for gas-phase temperature measurements

    NASA Astrophysics Data System (ADS)

    Miller, Joseph Daniel

    Hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering (fs/ps CARS) is employed for quantitative gas-phase temperature measurements in combustion processes and heated flows. In this approach, ultrafast 100-fs laser pulses are used to induce vibrational and rotational transitions in N2 and O2, while a third spectrally narrowed picosecond pulse is used to probe the molecular response. Temporal suppression of the nonresonant contribution and elimination of collisional effects are achieved by delay of the probe pulse, while sufficient spectral resolution is maintained for frequency-domain detection and thermometry. A theoretical framework is developed to model experimental spectra by phenomenologically describing the temporal evolution of the vibrational and rotational wavepackets as a function of temperature and pressure. Interference-free, single-shot vibrational fs/ps CARS thermometry is demonstrated at 1-kHz from 1400-2400 K in a H2-air flame, with accuracy better than 3%. A time-asymmetric exponential pulse shape is introduced to optimize nonresonant suppression with a 103 reduction at a probe delay of 0.31 ps. Low-temperature single-shot thermometry (300-700 K) with better than 1.5% accuracy is demonstrated using a fully degenerate rotational fs/ps CARS scheme, and the influence of collision energy transfer on thermometry error is quantified at atmospheric pressure. Interference-free thermometry, without nonresonant contributions and collision-induced error, is demonstrated for the first time using rotational fs/ps CARS at room temperature and pressures from 1-15 atm. Finally, the temporal and spectral resolution of fs/ps CARS is exploited for transition-resolved time-domain measurements of N2 and O2 self-broadened S-branch Raman linewidths at pressures of 1-20 atm.

  12. Hybrid femtosecond/picosecond rotational coherent anti-Stokes Raman scattering at flame temperatures using a second-harmonic bandwidth-compressed probe.

    PubMed

    Kearney, Sean P; Scoglietti, Daniel J

    2013-03-15

    We demonstrate an approach for picosecond probe-beam generation that enables hybrid femtosecond/picosecond pure-rotational coherent anti-Stokes Raman scattering (CARS) measurements in flames. Sum-frequency generation of bandwidth-compressed picosecond radiation from femtosecond pumps with phase-conjugate chirps provides probe pulses with energies in excess of 1 mJ that are temporally locked to the femtosecond pump/Stokes preparation. This method overcomes previous limitations on hybrid femtosecond/picosecond rotational CARS techniques, which have relied upon less efficient bandwidth-reduction processes that have generally resulted in prohibitively low probe energy for flame measurements. We provide the details of the second-harmonic approach and demonstrate the technique in near-adiabatic hydrogen/air flames.

  13. Generation of a 2.2 nJ picosecond optical pulse with blue-violet wavelength using a GaInN master oscillator power amplifier

    NASA Astrophysics Data System (ADS)

    Koda, Rintaro; Takiguchi, Yoshiro; Kono, Shunsuke; Watanabe, Hideki; Hanzawa, Yasunari; Nakajima, Hiroshi; Shiozaki, Masaki; Sugawara, Nobuhiro; Kuramoto, Masaru; Narui, Hironobu

    2015-07-01

    We report the generation of a picosecond optical pulse with 2.2 nJ pulse energy at blue-violet wavelengths using a GaN-based mode-locked laser diode (MLLD) and a semiconductor optical amplifier (SOA). The picosecond optical pulse generated by MLLD at a frequency of 812 MHz was amplified effectively by SOA. We optimized SOA with a widely flared waveguide structure to generate a high optical pulse energy.

  14. [Outpatient emergencies].

    PubMed

    Rivallan, Armel; Le Nagard, Philippe

    2014-01-01

    The outpatient monitoring of patients sometimes involves emergency situations. In their practice, the nurses who visit the patient's home are confronted with the limits of their intervention. Faced with these delicate situations team coordination is a strength and the reactivity of the caregivers often contributes to a satisfactory outcome for the patient.

  15. Radiation Emergencies

    MedlinePlus

    ... If the exposure is large enough, it can cause premature aging or even death. Although there are no guarantees of safety during a radiation emergency, you can take actions to protect yourself. You should have a disaster plan. Being prepared can help reduce fear, anxiety ...

  16. Coital emergencies.

    PubMed Central

    Banerjee, A.

    1996-01-01

    The act of heterosexual coitus is associated with morbidity due to a variety of conditions as well as with a small risk of sudden death. Awareness of the presentation of coital emergencies is essential to allow appropriate medical management and sexual counselling. PMID:8944205

  17. Emerging Scholars

    ERIC Educational Resources Information Center

    Anyaso, Hilary Hurd; Rolo, Mark Anthony; Roach, Ronald; Delos, Robin Chen; Branch-Brioso, Karen; Miranda, Maria Eugenia; Seymour, Add, Jr.; Grossman, Wendy; Nealy, Michelle J.; Lum, Lydia

    2009-01-01

    This year's group of "emerging scholars" is a force to be reckoned with. This diverse group of young (under-40) crusaders is pushing the boundaries of research, technology and public policy in ways never imagined and reaching new heights of accomplishments. The Class of 2009 includes a physiologist who devised an artificial pancreas to produce the…

  18. Diabetic Emergencies

    MedlinePlus

    ... How to Peform CPR Use “ICE” in Your Cell Phone Prepare for Disasters Communication With Your Family And Your Doctor About Your Wishes Visiting the ER Who Takes Care Of You In An Emergency? Checking Into the ER Medical Tests Why Am I Waiting So Long? Admission ...

  19. Emergency contraception.

    PubMed

    Ellertson, C; Trussell, J; Stewart, F; Koenig, J; Raymond, E G; Shochet, T

    2001-12-01

    Emergency contraceptives are methods that prevent pregnancy when used shortly after unprotected sex. Three different emergency contraceptive methods are safe, simple, and widely available in the United States. These are: (1) ordinary combined oral contraceptives containing ethinyl estradiol and levonorgestrel taken in a higher dose for a short period of time and started within a few days after unprotected intercourse; (2) levonorgestrel-only tablets used similarly; and (3) copper-bearing intrauterine devices inserted within approximately 1 week after unprotected intercourse. Emergency contraceptive use is best known for women who have been raped, but the methods are also appropriate for women who have experienced condom breaks, women who did not use any method because they were not planning on having sex, or women who had unprotected intercourse for any other reason. Unfortunately, few women know about emergency contraceptives, and few clinicians think to inform their patients routinely about the option. A nationwide toll-free hotline (1-888-NOT-2-LATE) and a website (http://not-2-late.com) can help women learn about these options. Sharing "family planning's best-kept secret" widely with women could prevent as many as a million unwanted pregnancies annually in the United States.

  20. Neurologic emergencies.

    PubMed

    Piecuch, J F; Lieblich, S E

    1995-07-01

    Neurologic emergencies are rare, and they usually occur in easily identifiable patients, provided that a thorough medical history has been previously obtained. Rare as these may be, however, they occur without warning and are potentially life threatening. Consequently, the dentist should be prepared by virtue of knowledge of the pathophysiology and therapy and by formal training and certification in basic life support.

  1. Narrow-bandwidth Tunable Picosecond Pulses in the Visible Produced by Noncollinear optical parametric Amplification with a Chirped Blue Pump

    SciTech Connect

    Co, Dick T.; Lockard, Jenny V.; McCamant, David W.; Wasielewski, Michael R.

    2010-03-26

    Narrow-bandwidth ( ~27 cm-1 ) tunable picosecond pulses from 480 nm–780 nm were generated from the output of a 1 kHz femtosecond titanium:sapphire laser system using a type I noncollinear optical parametric amplifier (NOPA) with chirped second-harmonic generation (SHG) pumping. Unlike a femto second NOPA, this system utilizes a broadband pump beam, the chirped 400 nm SHG of the Ti:sapphire fundamental, to amplify a monochromatic signal beam (spectrally-filtered output of a type II collinear OPA). Optimum geometric conditions for simultaneous phase- and group-velocity matching were calculated in the visible spectrum. This design is an efficient and simple method for generating tunable visible picosecond pulses that are synchronized to the femtosecond pulses.

  2. Narrow-bandwidth tunable picosecond pulses in the visible produced by noncollinear optical parametric amplification with a chirped blue pump.

    PubMed

    Co, Dick T; Lockard, Jenny V; McCamant, David W; Wasielewski, Michael R

    2010-04-01

    Narrow-bandwidth (approximately 27 cm(-1)) tunable picosecond pulses from 480 nm-780 nm were generated from the output of a 1 kHz femtosecond titanium:sapphire laser system using a type I noncollinear optical parametric amplifier (NOPA) with chirped second-harmonic generation (SHG) pumping. Unlike a femtosecond NOPA, this system utilizes a broadband pump beam, the chirped 400 nm SHG of the Ti:sapphire fundamental, to amplify a monochromatic signal beam (spectrally-filtered output of a type II collinear OPA). Optimum geometric conditions for simultaneous phase- and group-velocity matching were calculated in the visible spectrum. This design is an efficient and simple method for generating tunable visible picosecond pulses that are synchronized to the femtosecond pulses.

  3. Seedless velocimetry at 100  kHz with picosecond-laser electronic-excitation tagging.

    PubMed

    Jiang, Naibo; Mance, Jason G; Slipchenko, Mikhail N; Felver, Josef J; Stauffer, Hans U; Yi, Tongxun; Danehy, Paul M; Roy, Sukesh

    2017-01-15

    Picosecond-laser electronic-excitation tagging (PLEET), a seedless picosecond-laser-based velocimetry technique, is demonstrated in non-reactive flows at a repetition rate of 100 kHz with a 1064 nm, 100 ps burst-mode laser. The fluorescence lifetime of the PLEET signal was measured in nitrogen, and the laser heating effects were analyzed. PLEET experiments with a free jet of nitrogen show the ability to measure multi-point flow velocity fluctuations at a 100 kHz detection rate or higher. Both spectral and dynamic mode decomposition analyses of velocity on a Ma=0.8 free jet show two dominant Strouhal numbers around 0.24 and 0.48, respectively, well within the shear-layer flapping frequencies of the free jets. This technique increases the laser-tagging repetition rate for velocimetry to hundreds of kilohertz. PLEET is suitable for subsonic through supersonic laminar- and turbulent-flow velocity measurements.

  4. High-power linearly-polarized picosecond thulium-doped all-fiber master-oscillator power-amplifier.

    PubMed

    Liu, Jiang; Liu, Chen; Shi, Hongxing; Wang, Pu

    2016-06-27

    We demonstrated a linearly-polarized picosecond thulium-doped all-fiber-integrated master-oscillator power-amplifier system, which yielded 240 W of average output power at 127 MHz repetition rate. The seed source is a passively mode-locked polarization-maintaining thulium-doped all-fiber oscillator with a nearly transform-limited pulse duration of 10 ps. In combination with a pre-chirp fiber having a positive group velocity dispersion and a three stage polarization-maintaining thulium-doped all-fiber amplifier, output pulse energies up to 1.89 µJ with 42 kW pulse peak power are obtained without the need of complex free-space stretcher or compressor setups. To the best of our knowledge, this is the highest average output power ever reported for a picosecond all-fiber-integrated laser at 2 µm wavelength region.

  5. Picosecond to femtosecond pulses from high power self mode-locked ytterbium rod-type fiber laser.

    PubMed

    Deslandes, Pierre; Perrin, Mathias; Saby, Julien; Sangla, Damien; Salin, François; Freysz, Eric

    2013-05-06

    We have designed an ytterbium rod-type fiber laser oscillator with tunable pulse duration. This system that delivers more than 10 W of average power is self mode-locked. It yields femtosecond to picosecond laser pulses at a repetition rate of 74 MHz. The pulse duration is adjusted by changing the spectral width of a band pass filter that is inserted in the laser cavity. Using volume Bragg gratings of 0.9 nm and 0.07 nm spectrum bandwidth, this oscillator delivers nearly Fourier limited 2.8 ps and 18.5 ps pulses, respectively. With a 4 nm interference filter, one obtains picosecond pulses that have been externally dechirped down to 130 fs.

  6. Structure of picosecond pulses of a Q-switched and mode-locked diode-pumped Nd:YAG laser

    SciTech Connect

    Donin, V I; Yakovin, D V; Gribanov, A V

    2015-12-31

    The pulse duration of a diode-pumped Nd:YAG laser, in which Q-switching with mode-locking (QML regime) is achieved using a spherical mirror and a travelling-wave acousto-optic modulator, is directly measured with a streak camera. It is found that the picosecond pulses can have a non-single-pulse structure, which is explained by excitation of several competing transverse modes in the Q-switching regime with a pulse repetition rate of 1 kHz. In the case of cw mode-locking (without Q-switching), a new (auto-QML) regime is observed, in which the pulse train repetition rate is determined by the frequency of the relaxation oscillations of the laser field while the train contains single picosecond pulses. (control of laser radiation parameters)

  7. Generation and Propagation of a Picosecond Acoustic Pulse at a Buried Interface: Time-Resolved X-Ray Diffraction Measurements

    SciTech Connect

    Lee, S.H.; Cavalieri, A.L.; Fritz, D.M.; Swan, M.C.; Reis, D.A.; Hegde, R.S.; Reason, M.; Goldman, R.S.

    2005-12-09

    We report on the propagation of coherent acoustic wave packets in (001) surface oriented Al{sub 0.3}Ga{sub 0.7}As/GaAs heterostructure, generated through localized femtosecond photoexcitation of the GaAs. Transient structural changes in both the substrate and film are measured with picosecond time-resolved x-ray diffraction. The data indicate an elastic response consisting of unipolar compression pulses of a few hundred picosecond duration traveling along [001] and [001] directions that are produced by predominately impulsive stress. The transmission and reflection of the strain pulses are in agreement with an acoustic mismatch model of the heterostructure and free-space interfaces.

  8. 201 W picosecond green laser using a mode-locked fiber laser driven cryogenic Yb:YAG amplifier system.

    PubMed

    Kowalewski, Katie; Zembek, Jason; Envid, Victoria; Brown, David C

    2012-11-15

    We have generated 201 W of green (514.5 nm) average power from a frequency-doubled picosecond cryogenic Yb:YAG laser system driven by a 50 MHz, 12.4 ps mode-locked Yb fiber laser producing 430 W of average power at 1029 nm, using direct pulse amplification. The fundamental beam produced was near-diffraction-limited (M(2)<1.3). Second-harmonic-generation is achieved using a 20 mm long noncritically phase-matched Lithium triborate (LiB3O5) crystal; conversion efficiencies as high as 58% have been observed. At 100 W of 514.5 nm output power, the average M(2) value was 1.35. To the best of our knowledge, this is the highest average power picosecond green pulsed laser.

  9. Quasi CW mode, regular and chaotic dynamics in picosecond Nd:YAG laser with millisecond pumping under optoelectronic feedback control

    NASA Astrophysics Data System (ADS)

    Gorbunkov, M. V.; Maslova, Yu. Ya.; Petukhov, V. A.; Semenov, M. A.; Shabalin, Yu. V.; Vinogradov, A. V.

    2007-06-01

    We propose and study both numerically and experimentally a laser system controlled by the combination of positive and negative feedbacks capable to generate a long picosecond pulse train of stable amplitude as well as regular pulsation with sub-microsecond period. The proper combination of feedbacks is realized in a Nd:YAG laser with millisecond pumping by means of a single optoelectronic negative feedback which utilizes signal reflected from an intracavity Pockels cell polarizer. Regular pulsation (microgroups of picosecond pulses) with controlled period from 25 to 75 resonator round trips is obtained. The development of chaotic dynamics displayed by the system at higher pumping level differs from the Feigenbaum scenario. The regular pulsation regime has a great potential in a laser-electron X-ray generator design and other applications.

  10. Microviscosity in polyacrylamide gels with pendant triphenyl-methane leuco derivatives: picosecond time-resolved fluorescence study

    NASA Astrophysics Data System (ADS)

    Tamai, Naoto; Ishikawa, Masazumi; Kitamura, Noboru; Masuhara, Hiroshi

    1991-10-01

    Picosecond fluorescence dynamics of triphenylmethane dyes bonded to polyacrylamide gels before and after swelling was studied by a single-photon timing technique. Microviscosity in the gels after swelling was estimated to be 10-11 cP by examining the viscosity dependence of fluorescence dynamics of malachite green in various alcohols. The results were interpreted in terms of structured stiff water in a microcavity of the gels.

  11. Supercontinuum generation from 2 to 20 μm in GaAs pumped by picosecond CO₂ laser pulses.

    PubMed

    Pigeon, J J; Tochitsky, S Ya; Gong, C; Joshi, C

    2014-06-01

    We report on the generation of supercontinuum radiation from 2 to 20 μm in a 67 mm long GaAs crystal pumped by a train of 3 ps CO2 laser pulses. Temporal measurements indicate that sub-picosecond pulse splitting is involved in the production of such wide-bandwidth radiation in GaAs. The results show that the observed spectral broadening is heavily influenced by four-wave mixing and stimulated Raman scattering.

  12. Doubly-Resonant Fabry-Perot Cavity for Power Enhancement of Burst-Mode Picosecond Ultraviolet Pulses

    SciTech Connect

    Abudureyimu, Reheman; Huang, Chunning; Liu, Yun

    2015-01-01

    We report on a first experimental demonstration of locking a doubly-resonant Fabry-Perot cavity to burst-mode picosecond ultraviolet (UV) pulses by using a temperature controlled dispersion compensation method. This technique will eventually enable the intra cavity power enhancement of burst-mode 402.5MHz/50ps UV laser pulses with a MW level peak power required for the laser assisted H- beam stripping experiment at the Spallation Neutron Source.

  13. Rapid micromachining of high aspect ratio holes in fused silica glass by high repetition rate picosecond laser

    NASA Astrophysics Data System (ADS)

    Karimelahi, Samira; Abolghasemi, Ladan; Herman, Peter R.

    2014-01-01

    We present multiple methods of high aspect ratio hole drilling in fused silica glass, taking advantage of high power and high repetition rate picosecond lasers and flexible beam delivery methods to excise deep holes with minimal collateral damage. Combinations of static and synchronous scanning of laser focus were explored over a range of laser repetition rates and burst-train profiles that dramatically vary laser plume interaction dynamics, heat-affected zone, and heat accumulation physics. Chemically assisted etching of picosecond laser modification tracks are also presented as an extension from femtosecond laser writing of volume nanograting to form high aspect ratio (77) channels. Processing windows are identified for the various beam delivery methods that optimize the laser exposure over energy, wavelength, and repetition rate to reduce microcracking and deleterious heating effects. The results show the benefits of femtosecond laser interactions in glass extend into the picosecond domain, where the attributes of higher power further yield wide processing windows and significantly faster fabrication speed. High aspect ratio holes of 400 μm depth were formed over widely varying rates of 333 holes per second for mildly cracked holes in static-focal positioning through to one hole per second for low-damage and taper free holes in synchronous scanning.

  14. High-power picosecond 355 nm laser based on La₂CaB₁₀O₁₉ crystal.

    PubMed

    Li, Kai; Zhang, Ling; Xu, Degang; Zhang, Guochun; Yu, Haijuan; Wang, Yuye; Shan, Faxian; Wang, Lirong; Yan, Chao; Wu, Yicheng; Lin, Xuechun; Yao, Jianquan

    2014-06-01

    Third harmonic generation experiments were performed on a type-I phase-matching La2CaB10O19 crystal cut at θ=49.4° and φ=0.0° with dimensions of 4.0  mm×4.0  mm×17.6  mm. A 1064 nm laser with a maximum average power of 35.2 W was employed as the fundamental light source, which has a pulse width of 10 picoseconds and a pulse repetition rate of 80 MHz. A type-I noncritical phase-matching LBO crystal was used to generate 532 nm lasers. By investigating a series of focusing lens combinations, a picosecond 355 nm laser of 5.3 W was obtained, which is the highest power of picosecond 355 nm laser based on a La2CaB10O19 crystal so far. The total conversion efficiency from 1064 to 355 nm was up to 15.1%.

  15. Picosecond pulses compression at 1053-nm center wavelength by using a gas-filled hollow-core fiber compressor

    NASA Astrophysics Data System (ADS)

    Huang, Zhi-Yuan; Wang, Ding; Leng, Yu-Xin; Dai, Ye

    2015-01-01

    We theoretically study the nonlinear compression of picosecond pulses with 10-mJ of input energy at the 1053-nm center wavelength by using a one-meter-long gas-filled hollow-core fiber (HCF) compressor and considering the third-order dispersion (TOD) effect. It is found that when the input pulse is about 1 ps/10 mJ, it can be compressed down to less than 20 fs with a high transmission efficiency. The gas for optimal compression is krypton gas which is filled in a HCF with a 400-μm inner diameter. When the input pulse duration is increased to 5 ps, it can also be compressed down to less than 100 fs efficiently under proper conditions. The results show that the TOD effect has little impact on picosecond pulse compression and the HCF compressor can be applied on compressing picosecond pulses efficiently with a high compression ratio, which will benefit the research of high-field laser physics. Project supported by the National Natural Science Foundation of China (Grant Nos. 11204328, 61221064, 61078037, 11127901, and 11134010), the National Basic Research Program of China (Grant No. 2011CB808101), the Commission of Science and Technology of Shanghai, China (Grant No. 12dz1100700), the Natural Science Foundation of Shanghai, China (Grant No. 13ZR1414800), and the International Science and Technology Cooperation Program of China (Grant No. 2011DFA11300).

  16. A method for detecting ultra-low quantities of explosives with use a picosecond laser FAIMS analyzer

    NASA Astrophysics Data System (ADS)

    Chistyakov, Alexander A.; Kotkovskii, Gennadii E.; Odulo, Ivan P.; Sychev, Alexey V.; Bogdanov, Artem S.; Perederiy, Anatoly N.; Spitsyn, Evgeny M.; Shestakov, Alexander V.

    2015-05-01

    A method for detecting ultralow quantities of explosives in air with use a state-of-the-art picosecond chip Nd3+:YAG laser has been developed. The method combines field asymmetric ion mobility spectrometry (FAIMS) with laser ionization of examined air samples. Radiation of λ = 266nm, τpulse = 300ps, Epulse = 30-150μJ, ν = 20-300Hz was used. Processes in the ion source for the use both picosecond and nanosecond ionization modes were analyzed. Parameters of the laser ion source have been specially optimized. The dependences on frequency, pulse energy, peak intensity, and average power for trinitrotoluene (TNT) and cyclotrimethylenetrinitramine (RDX) were obtained. It was shown that the optimal peak intensity should be no less 3·106 W/cm2. The detected ion signals for all explosives were shown to be threefold higher for picosecond excitation in comparison with use a nanosecond laser of the same average power. The estimated detection threshold of the prototype equals 1. 10-15 g/cm3. The results are promising for the development of a highly sensitive, portable laser explosive detector.

  17. Emergency cricothyrotomy.

    PubMed

    Hart, Kristopher L; Thompson, Stevan H

    2010-03-01

    Establishment of an unobstructed airway and adequate oxygenation is a basic tenet of life support. Mechanical or anatomic airway obstructions can arise secondary to trauma, pathology, foreign bodies, and infection. The oral and maxillofacial surgeon is uniquely trained to provide surgical and anesthetic care, and must be prepared to provide emergency airway management. This article reviews the indications, contraindications, and techniques of surgical and needle cricothyrotomy. Fortunately, with advances in airway techniques and equipment, emergency cricothyrotomy is not a common procedure. However, in the event that a surgeon has no other means of securing an airway, this procedure may avert a catastrophe. If such a situation does occur, quick and decisive action can best be carried out if there is a thorough understanding of the anatomy and techniques involved.

  18. Laser-induced back-ablation of aluminum thin films using picosecond laser pulses

    SciTech Connect

    BULLOCK, A B

    1999-05-26

    Experiments were performed to understand laser-induced back-ablation of Al film targets with picosecond laser pulses. Al films deposited on the back surface of BK-7 substrates are ablated by picosecond laser pulses propagating into the Al film through the substrate. The ablated Al plume is transversely probed by a time-delayed, two-color sub-picoseond (500 fs) pulse, and this probe is then used to produce self-referencing interferograms and shadowgraphs of the Al plume in flight. Optical emission from the Al target due to LIBA is directed into a time-integrated grating spectrometer, and a time-integrating CCD camera records images of the Al plume emission. Ablated Al plumes are also redeposited on to receiving substrates. A post-experimental study of the Al target and recollected deposit characteristics was also done using optical microscopy, interferometry, and profilometry. In this high laser intensity regime, laser-induced substrate ionization and damage strongly limits transmitted laser fluence through the substrate above a threshold fluence. The threshold fluence for this ionization-based transmission limit in the substrate is dependent on the duration of the incident pulse. The substrate ionization can be used as a dynamic control of both transmitted spatial pulse profile and ablated Al plume shape. The efficiency of laser energy transfer between the laser pulse incident on the Al film and the ablated Al plume is estimated to be of order 5% and is a weak function of laser pulsewidth. The Al plume is highly directed. Low plume divergence ({theta}{sub divergence} < 5{sup o}) shows the ablated plume temperature to be very low at long time delays ( T << 0.5 eV at delays of 255 ns). Spectroscopic observations and calculations indicate that, in early time (t < 100 ps), the Al film region near the substrate/metal interface is at temperatures of order 0.5 eV. Interferograms of Al plumes produced with 0.1 {micro}m films show these plumes to be of high neutral atom

  19. Rattling in the cage: ions as probes of sub-picosecond water network dynamics.

    PubMed

    Schmidt, Diedrich A; Birer, Ozgür; Funkner, Stefan; Born, Benjamin P; Gnanasekaran, Ramachandran; Schwaab, Gerhard W; Leitner, David M; Havenith, Martina

    2009-12-30

    We present terahertz (THz) measurements of salt solutions that shed new light on the controversy over whether salts act as kosmotropes (structure makers) or chaotropes (structure breakers), which enhance or reduce the solvent order, respectively. We have carried out precise measurements of the concentration-dependent THz absorption coefficient of 15 solvated alkali halide salts around 85 cm(-1) (2.5 THz). In addition, we recorded overview spectra between 30 and 300 cm(-1) using a THz Fourier transform spectrometer for six alkali halides. For all solutions we found a linear increase of THz absorption compared to pure water (THz excess) with increasing solute concentration. These results suggest that the ions may be treated as simple defects in an H-bond network. They therefore cannot be characterized as either kosmotropes or chaotropes. Below 200 cm(-1), the observed THz excess of all salts can be described by a linear superposition of the water absorption and an additional absorption that is attributed to a rattling motion of the ions within the water network. By providing a comprehensive set of data for different salt solutions, we find that the solutions can all be very well described by a model that includes damped harmonic oscillations of the anions and cations within the water network. We find this model predicts the main features of THz spectra for a variety of salt solutions. The assumption of the existence of these ion rattling motions on sub-picosecond time scales is supported by THz Fourier transform spectroscopy of six alkali halides. Above 200 cm(-1) the excess is interpreted in terms of a change in the wing of the water network librational mode. Accompanying molecular dynamics simulations using the TIP3P water model support our conclusion and show that the fast sub-picosecond motions of the ions and their surroundings are almost decoupled. These findings provide a complete description of the solute-induced changes in the THz solvation dynamics for the

  20. Dental Emergencies

    PubMed Central

    Symington, J.M.

    1988-01-01

    Patients with dental emergencies sometimes present to their physician. This article outlines the role of the physician in the management of dental patients who have suffered traumatic injuries, postoperative hemorrhage, pain, and infection. It deals with those difficulties for which the physician may easily prescribe treatment and outlines the treatment that would be undertaken by a dentist who receives such a patient on referral. PMID:21253249

  1. Emerging jets

    NASA Astrophysics Data System (ADS)

    Schwaller, Pedro; Stolarski, Daniel; Weiler, Andreas

    2015-05-01

    In this work, we propose a novel search strategy for new physics at the LHC that utilizes calorimeter jets that (i) are composed dominantly of displaced tracks and (ii) have many different vertices within the jet cone. Such emerging jet signatures are smoking guns for models with a composite dark sector where a parton shower in the dark sector is followed by displaced decays of dark pions back to SM jets. No current LHC searches are sensitive to this type of phenomenology. We perform a detailed simulation for a benchmark signal with two regular and two emerging jets, and present and implement strategies to suppress QCD backgrounds by up to six orders of magnitude. At the 14 TeV LHC, this signature can be probed with mediator masses as large as 1.5 TeV for a range of dark pion lifetimes, and the reach is increased further at the high-luminosity LHC. The emerging jet search is also sensitive to a broad class of long-lived phenomena, and we show this for a supersymmetric model with R-parity violation. Possibilities for discovery at LHCb are also discussed.

  2. Evaluation of Homogeneity and Elastic Properties of Solid Argon at High Pressures Using Picosecond Laser Ultrasonic Interferometry

    NASA Astrophysics Data System (ADS)

    Zerr, A.; Kuriakose, M.; Raetz, S.; Chigarev, N.; Nikitin, S. M.; Gasteau, D.; Tournat, V.; Bulou, A.; Castagnede, B.; Gusev, V. E.; Lomonosov, A.

    2015-12-01

    In picosecond ultrasonic interferometry [1], femto- or picosecond pump laser pulses are first used to generate acoustic pulses ranging from several to a few tens of nanometres length, thanks to the optoacoustic transduction in a light absorbing generator. Time-delayed femto- or picosecond probe laser pulses are then used to follow the propagation of these ultrashort acoustic pulses through a transparent medium that is in contact with the generator surface. The transient signal thus contains, at each moment in time, information on the local elastic, optical and elasto-optical properties of the tested material at the position where the laser-generated picosecond acoustic pulse is located during its propagation in the sample depth. Hence, the technique allows evaluation of sound velocities and elastic anisotropy of micro-crystallites composing a transparent material compressed to high pressures in a diamond anvil cell (DAC). This interferometry technique also helps to understand the micro-crystallite orientations in a case of elastically anisotropic material. Here we report the preliminary results of picosecond ultrasonic interferometry applied to the evaluation of homogeneities and elastic properties of polycrystalline solid argon compressed to 10 GPa and 15 GPa. In comparison with the earlier reported experiments on H2O ice at Mbar pressures [2], more efforts were spent to the evaluation of the lateral microstructure of the sample at high pressures, i.e., to inhomogeneities along the surface of the optoacoustic generator, rather than to the in-depth imaging along the axis of the DAC. The lateral imaging is performed over a distance of 60 - 90 µm, nearly corresponding to the complete sample diameter. In addition to the presence of expected lateral inhomogeneities the obtained results demonstrate important changes in their distribution upon pressure increase from 10 to 15 GPa. On the basis of the analysis of the statistic probability in the detection of differently

  3. Note: Space qualified photon counting detector for laser time transfer with picosecond precision and stability

    NASA Astrophysics Data System (ADS)

    Prochazka, Ivan; Kodet, Jan; Blazej, Josef

    2016-05-01

    The laser time transfer link is under construction for the European Space Agency in the frame of Atomic Clock Ensemble in Space. We have developed and tested the flying unit of the photon counting detector optimized for this space mission. The results are summarized in this Note. An extreme challenge was to build a detector package, which is rugged, small and which provides long term detection delay stability on picosecond level. The device passed successfully all the tests required for space missions on the low Earth orbits. The detector is extremely rugged and compact. Its long term detection delay stability is excellent, it is better than ±1 ps/day, in a sense of time deviation it is better than 0.5 ps for averaging times of 2000 s to several hours. The device is capable to operate in a temperature range of -55 °C up to +60 °C, the change of the detection delay with temperature is +0.5 ps/K. The device is ready for integration into the space structure now.

  4. Development of large area, pico-second resolution photo-detectors and associated readout electronics

    SciTech Connect

    Grabas, H.; Oberla, E.; Attenkoffer, K.; Bogdan, M.; Frisch, H. J.; Genat, J. F.; May, E. N.; Varner, G. S.; Wetstein, M.

    2011-07-01

    The Large Area Pico-second Photo-detectors described in this contribution incorporate a photo-cathode and a borosilicate glass capillary Micro-Channel Plate (MCP) pair functionalized by atomic layer deposition (ALD) of separate resistive and electron secondary emitters materials. They may be used for biomedical imaging purposes, a remarkable opportunity to apply technologies developed in HEP having the potential to make major advances in the medical world, in particular for Positron Emission Tomography (PET). If daisy-chained and coupled to fast transmission lines read at both ends, they could be implemented in very large dimensions. Initial testing with matched pairs of small glass capillary test has demonstrated gains of the order of 105 to 106. Compared to other fast imaging devices, these photo-detectors are expected to provide timing resolutions in the 10-100 ps range, and two-dimension position in the sub-millimeter range. A 6-channel readout ASIC has been designed in 130 nm CMOS technology and tested. As a result, fast analog sampling up to 17 GS/s has been obtained, the intrinsic analog bandwidth being presently under evaluation. The digitization in parallel of several cells in two microseconds allows getting off-chip digital data read at a maximum rate of 40 MHz. Digital Signal Processing of the sampled waveforms is expected achieving the timing and space resolutions obtained with digital oscilloscopes. (authors)

  5. Morphology and mechanisms of picosecond ablation of metal films on fused silica substrates

    NASA Astrophysics Data System (ADS)

    Bass, Isaac L.; Negres, Raluca A.; Stanion, Ken; Guss, Gabe; Keller, Wesley J.; Matthews, Manyalibo J.; Rubenchik, Alexander M.; Yoo, Jae Hyuck; Bude, Jeffrey D.

    2016-12-01

    The ablation of magnetron sputtered metal films on fused silica substrates by a 1053 nm, picosecond class laser was studied as part of a demonstration of its use for in-situ characterization of the laser spot under conditions commonly used at the sample plane for laser machining and damage studies. Film thicknesses were 60 and 120 nm. Depth profiles and SEM images of the ablation sites revealed several striking and unexpected features distinct from those typically observed for ablation of bulk metals. Very sharp thresholds were observed for both partial and complete ablation of the films. Partial film ablation was largely independent of laser fluence with a surface smoothness comparable to that of the unablated surface. Clear evidence of material displacement was seen at the boundary for complete film ablation. These features were common to a number of different metal films including Inconel on commercial neutral density filters, stainless steel, and aluminum. We will present data showing the morphology of the ablation sites on these films as well as a model of the possible physical mechanisms producing the unique features observed.

  6. Diagnosis of NMOS DRAM functional performance as affected by a picosecond dye laser

    NASA Technical Reports Server (NTRS)

    Kim, Q.; Schwartz, H. R.; Edmonds, L. D.; Zoutendyk, J. A.

    1992-01-01

    A picosec pulsed dye laser beam was at selected wavelengths successfully used to simulate heavy-ion single-event effects (SEEs) in negative channel NMOS DRAMs. A DRAM was used to develop the test technique because bit-mapping capability and previous heavy-ion upset data were available. The present analysis is the first to establish such a correlation between laser and heavy-ion data for devices, such as the NMOS DRAM, where charge collection is dominated by long-range diffusion, which is controlled by carrier density at remote distances from a depletion region. In the latter case, penetration depth is an important parameter and is included in the present analysis. A single-pulse picosecond dye laser beam (1.5 microns diameter) focused onto a single cell component can upset a single memory cell; clusters of memory cell upsets (multiple errors) were observed when the laser energy was increased above the threshold energy. The multiple errors were analyzed as a function of the bias voltage and total energy of a single pulse. A diffusion model to distinguish the multiple upsets from the laser-induced charge agreed well with previously reported heavy ion data.

  7. High-power picosecond laser with 400W average power for large scale applications

    NASA Astrophysics Data System (ADS)

    Du, Keming; Brüning, Stephan; Gillner, Arnold

    2012-03-01

    Laser processing is generally known for low thermal influence, precise energy processing and the possibility to ablate every type of material independent on hardness and vaporisation temperature. The use of ultra-short pulsed lasers offers new possibilities in the manufacturing of high end products with extra high processing qualities. For achieving a sufficient and economical processing speed, high average power is needed. To scale the power for industrial uses the picosecond laser system has been developed, which consists of a seeder, a preamplifier and an end amplifier. With the oscillator/amplifier system more than 400W average power and maximum pulse energy 1mJ was obtained. For study of high speed processing of large embossing metal roller two different ps laser systems have been integrated into a cylinder engraving machine. One of the ps lasers has an average power of 80W while the other has 300W. With this high power ps laser fluencies of up to 30 J/cm2 at pulse repetition rates in the multi MHz range have been achieved. Different materials (Cu, Ni, Al, steel) have been explored for parameters like ablation rate per pulse, ablation geometry, surface roughness, influence of pulse overlap and number of loops. An enhanced ablation quality and an effective ablation rate of 4mm3/min have been achieved by using different scanning systems and an optimized processing strategy. The max. achieved volume rate is 20mm3/min.

  8. Fiber Bragg grating inscription combining DUV sub-picosecond laser pulses and two-beam interferometry.

    PubMed

    Becker, Martin; Bergmann, Joachim; Brückner, Sven; Franke, Marco; Lindner, Eric; Rothhardt, Manfred W; Bartelt, Hartmut

    2008-11-10

    The combination of fiber Bragg grating inscription with femtosecond laser sources and the usage of the Talbot interferometer setup not only gives access to the fabrication of Bragg gratings in new types of materials but also allows, at the same time, to keep the high flexibility of an interferometric setup in choosing the Bragg grating wavelength. Since the spatial and temporal coherence properties of the femtosecond laser source differ strongly from those of conventional laser sources, specific limits and tolerances in the interferometric setup have to be considered. Such limits are investigated on the basis of an analytical ray tracing model. The results are applied to tolerance measurements of fiber Bragg grating reflections recorded with a DUV sub-picosecond laser source at 262 nm. Additionally we demonstrate the wavelength versatility of the two-beam interferometer setup for femtosecond inscription over a 40 nm wavelength band. Inscription experiments in Al/Yb doped silica glasses are demonstrated as a prove for the access to non-photosensitive fibers.

  9. Use of picosecond infrared laser for micromanipulation of early mammalian embryos.

    PubMed

    Karmenyan, Artashes V; Shakhbazyan, Avetik K; Sviridova-Chailakhyan, Tatiana A; Krivokharchenko, Alexander S; Chiou, Arthur E; Chailakhyan, Levon M

    2009-10-01

    A high repetition rate (80 MHz) picosecond pulse (approximately 2 psec) infrared laser was used for the inactivation (functional enucleation) of oocytes and two-cell mouse embryos and also for the fusion of blastomeres of two-cell mouse embryos. The laser inactivation of both blastomeres of two-cell mouse embryos by irradiation of nucleoli completely blocked further development of the embryo. The inactivation of one blastomere, however, did not affect the ability of the second intact blastomere to develop into a blastocyst after treatment. Laser inactivation of oocytes at Metaphase II (MII) stage and parthenogenetically activated pronuclear oocytes also completely blocked their ability for further development. Suitable doses of irradiation in cytoplasm region did not affect the ability of embryos and activated oocytes to development. The efficiency of laser induced fusion for blastomeres of two-cell embryos was 66.7% and all the tetraploid embryos developed successfully into blastocysts in culture. Our results demonstrate unique opportunities of the applications of a suitable infrared periodic pulse laser as a universal microsurgery tool for individual living cells.

  10. Highly efficient picosecond diamond Raman laser at 1240 and 1485 nm.

    PubMed

    Warrier, Aravindan M; Lin, Jipeng; Pask, Helen M; Mildren, Richard P; Coutts, David W; Spence, David J

    2014-02-10

    We present a highly efficient picosecond diamond Raman laser synchronously-pumped by a 4.8 W mode-locked laser at 1064 nm. A ring cavity was adopted for efficient operation. With a low-Q cavity for first-Stokes 1240 nm, we have achieved 2.75 W output power at 1240 nm with 59% overall conversion efficiency. The slope efficiency tended towards 76% far above the SRS threshold, approaching the SRS quantum limit for diamond. A high-Q first-Stokes cavity was employed for second-Stokes 1485 nm generation through the combined processes of four-wave mixing and single-pass stimulated Raman scattering. Up to 1.0 W of second-stokes at 1485 nm was obtained, corresponding to 21% overall conversion efficiency. The minimum output pulse duration was compressed relative to the 15 ps pump, producing pulses as short as 9 ps for 1240 nm and 6 ps for 1485 nm respectively.

  11. Narrow linewidth picosecond UV pulsed laser with mega-watt peak power.

    PubMed

    Huang, Chunning; Deibele, Craig; Liu, Yun

    2013-04-08

    We demonstrate a master oscillator power amplifier (MOPA) burst mode laser system that generates 66 ps/402.5 MHz pulses with mega-watt peak power at 355 nm. The seed laser consists of a single frequency fiber laser (linewidth < 5 KHz), a high bandwidth electro-optic modulator (EOM), a picosecond pulse generator, and a fiber based preamplifier. A very high extinction ratio (45 dB) has been achieved by using an adaptive bias control of the EOM. The multi-stage Nd:YAG amplifier system allows a uniformly temporal shaping of the macropulse with a tunable pulse duration. The light output from the amplifier is converted to 355 nm, and over 1 MW peak power is obtained when the laser is operating in a 5-μs/10-Hz macropulse mode. The laser output has a transform-limited spectrum with a very narrow linewidth of individual longitudinal modes. The immediate application of the laser system is the laser-assisted hydrogen ion beam stripping for the Spallation Neutron Source (SNS).

  12. Note: Optical trigger device with sub-picosecond timing jitter and stability.

    PubMed

    Kodet, Jan; Prochazka, Ivan

    2012-03-01

    We are presenting the design, construction, and overall performance of the optical trigger device. This device generates an electrical signal synchronously to the detected ultra-short optical pulse. The device was designed for application in satellite laser ranging and laser time transfer experiments, time correlated photon counting and similar experiments, where picosecond timing resolution and detection delay stability are required. It consists of the ultrafast optical detector, signal discriminator, output pulse forming circuit, and output driver circuits. It was constructed as a single compact device to optimize their matching and maintain stability. The detector consists of an avalanche photodiode--both silicon and germanium types may be used to cover the wavelength range of 350-1550 nm. The analogue signal of this photodiode is sensed by the ultrafast comparator with 8 GHz bandwidth. The ps clock distribution circuit is used to generate the fast rise/fall time output pulses of pre-set length. The trigger device timing performance is excellent: the random component of the timing jitter is typically 880 fs, the temperature dependence of the detection delay was measured to be 370 fs/K. The systematic error contribution depends on the laser used and its stability. The sub-ps values have been obtained for various laser sources.

  13. Note: Optical trigger device with sub-picosecond timing jitter and stability

    NASA Astrophysics Data System (ADS)

    Kodet, Jan; Prochazka, Ivan

    2012-03-01

    We are presenting the design, construction, and overall performance of the optical trigger device. This device generates an electrical signal synchronously to the detected ultra-short optical pulse. The device was designed for application in satellite laser ranging and laser time transfer experiments, time correlated photon counting and similar experiments, where picosecond timing resolution and detection delay stability are required. It consists of the ultrafast optical detector, signal discriminator, output pulse forming circuit, and output driver circuits. It was constructed as a single compact device to optimize their matching and maintain stability. The detector consists of an avalanche photodiode--both silicon and germanium types may be used to cover the wavelength range of 350-1550 nm. The analogue signal of this photodiode is sensed by the ultrafast comparator with 8 GHz bandwidth. The ps clock distribution circuit is used to generate the fast rise/fall time output pulses of pre-set length. The trigger device timing performance is excellent: the random component of the timing jitter is typically 880 fs, the temperature dependence of the detection delay was measured to be 370 fs/K. The systematic error contribution depends on the laser used and its stability. The sub-ps values have been obtained for various laser sources.

  14. Picosecond energy transfer and multiexciton transfer outpaces Auger recombination in binary CdSe nanoplatelet solids

    NASA Astrophysics Data System (ADS)

    Rowland, Clare E.; Fedin, Igor; Zhang, Hui; Gray, Stephen K.; Govorov, Alexander O.; Talapin, Dmitri V.; Schaller, Richard D.

    2015-05-01

    Fluorescence resonance energy transfer (FRET) enables photosynthetic light harvesting, wavelength downconversion in light-emitting diodes (LEDs), and optical biosensing schemes. The rate and efficiency of this donor to acceptor transfer of excitation between chromophores dictates the utility of FRET and can unlock new device operation motifs including quantum-funnel solar cells, non-contact chromophore pumping from a proximal LED, and markedly reduced gain thresholds. However, the fastest reported FRET time constants involving spherical quantum dots (0.12-1 ns; refs , , ) do not outpace biexciton Auger recombination (0.01-0.1 ns; ref. ), which impedes multiexciton-driven applications including electrically pumped lasers and carrier-multiplication-enhanced photovoltaics. Few-monolayer-thick semiconductor nanoplatelets (NPLs) with tens-of-nanometre lateral dimensions exhibit intense optical transitions and hundreds-of-picosecond Auger recombination, but heretofore lack FRET characterizations. We examine binary CdSe NPL solids and show that interplate FRET (˜6-23 ps, presumably for co-facial arrangements) can occur 15-50 times faster than Auger recombination and demonstrate multiexcitonic FRET, making such materials ideal candidates for advanced technologies.

  15. Patterning of Aluminium thin film on polyethylene terephthalate by multi-beam picosecond laser

    NASA Astrophysics Data System (ADS)

    Jin, Y.; Perrie, W.; Harris, P.; Allegre, O. J.; Abrams, K. J.; Dearden, G.

    2015-11-01

    High speed patterning of a 30 nm thick Aluminium thin film on a flexible Polyethylene Terephthalate substrate was demonstrated with the aid of Computer Generated Holograms (CGH's) applied to a phase only Spatial Light Modulator. Low fluence picosecond laser pulses minimise thermal damage to the sensitive substrate and thus clean, single and multi-beam, front side thin film removal is achieved with good edge quality. Interestingly, rear side ablation shows significant Al film delamination. Measured front and rear side ablation thresholds were Fth=0.20±0.01 J cm-2 and Fth=0.15±0.01 J cm-2 respectively. With laser repetition rate of 200 kHz and 8 diffractive spots, a film removal rate of R>0.5 cm2 s-1 was demonstrated during patterning with a fixed CGH and 5 W average laser power. The effective laser repetition rate was feff~1.3 MHz. The application of 30 stored CGH's switching up to 10 Hz was also synchronised with motion control, allowing dynamic large area multi-beam patterning which however, slows micro-fabrication.

  16. Femtosecond versus picosecond laser machining of nano-gratings and micro-channels in silica glass.

    PubMed

    Corbari, Costantino; Champion, Audrey; Gecevičius, Mindaugas; Beresna, Martynas; Bellouard, Yves; Kazansky, Peter G

    2013-02-25

    The ability of 8 picosecond pulse lasers for three dimensional direct-writing in the bulk of transparent dielectrics is assessed through a comparative study with a femtosecond laser delivering 600 fs pulses. The comparison addresses two main applications: the fabrication of birefringent optical elements and two-step machining by laser exposure and post-processing by chemical etching. Formation of self-organized nano-gratings in glass by ps-pulses is demonstrated. Differential etching between ps-laser exposed regions and unexposed silica is observed. Despite attaining values of retardance (>100 nm) and etching rate (2 μm/min) similar to fs pulses, ps pulses are found unsuitable for bulk machining in silica glass primarily due to the build-up of a stress field causing scattering, cracks and non-homogeneous etching. Additionally, we show that the so-called "quill-effect", that is the dependence of the laser damage from the direction of writing, occurs also for ps-pulse laser machining. Finally, an opposite dependence of the retardance from the intra-pulse distance is observed for fs- and ps-laser direct writing.

  17. Fiber-Based, Spatially and Temporally Shaped Picosecond UV Laser for Advanced RF Gun Applications

    SciTech Connect

    Shverdin, M Y; Anderson, S G; Betts, S M; Gibson, D J; Hartemann, F V; Hernandez, J E; Johnson, M; Jovanovic, I; Messerly, M; Pruet, J; Tremaine, A M; McNabb, D P; Siders, C W; Barty, C J

    2007-06-08

    The fiber-based, spatially and temporally shaped, picosecond UV laser system described here has been specifically designed for advanced rf gun applications, with a special emphasis on the production of high-brightness electron beams for free-electron lasers and Compton scattering light sources. The laser pulse can be shaped to a flat-top in both space and time with a duration of 10 ps at full width of half-maximum (FWHM) and rise and fall times under 1 ps. The expected pulse energy is 50 {micro}J at 261.75 nm and the spot size diameter of the beam at the photocathode is 2 mm. A fiber oscillator and amplifier system generates a chirped pump pulse at 1047 nm; stretching is achieved in a chirped fiber Bragg grating. A single multi-layer dielectric grating based compressor recompresses the input pulse to 250 fs FWHM and a two stage harmonic converter frequency quadruples the beam. Temporal shaping is achieved with a Michelson-based ultrafast pulse stacking device with nearly 100% throughput. Spatial shaping is achieved by truncating the beam at the 20% energy level with an iris and relay-imaging the resulting beam profile onto the photocathode. The integration of the system, as well as preliminary laser measurements will be presented.

  18. The Boersch effect in a picosecond pulsed electron beam emitted from a semiconductor photocathode

    NASA Astrophysics Data System (ADS)

    Kuwahara, Makoto; Nambo, Yoshito; Aoki, Kota; Sameshima, Kensuke; Jin, Xiuguang; Ujihara, Toru; Asano, Hidefumi; Saitoh, Koh; Takeda, Yoshikazu; Tanaka, Nobuo

    2016-07-01

    The space charge effect has been clearly observed in the energy distributions of picosecond pulse beams from a spin-polarized electron microscope, and was found to depend upon the quantity of charge per pulse. The non-linear phenomena associated with this effect have also been replicated in beam simulations that take into account of a three-dimensional space charge. The results show that a charge of 500 aC/pulse provides the highest brightness with a 16-ps pulse duration, a 30-keV beam energy, and an emission spot of 1.8 μm. Furthermore, the degeneracy of the wave packet of the pulsed electron beam has been evaluated to be 1.6 × 10-5 with a charge of 100 aC/pulse, which is higher than that for a continuously emitted electron beam despite the low beam energy of 30 keV. The high degeneracy and high brightness contribute to the realization of high temporal and energy resolutions in low-voltage electron microscopy, which will serve to reduce radiolysis damage and enhance scattering contrast.

  19. Nano structured physical vapor deposited coatings by means of picosecond laser radiation.

    PubMed

    Bobzin, K; Bagcivan, N; Ewering, M; Gillner, A; Beckemper, S; Hartmann, C; Theiss, S

    2011-10-01

    Molding of nano structures by injection molding leads to special requirements for the tools e.g., wear resistance and as low as possible release forces of the molded components. On the other hand it is not allowed to affect the replication precision. Physical vapor deposition is one of the promising technologies for applying coatings with adapted properties like high hardness, low roughness, low Young's modulus and less adhesion to the plastics melt. Although physical vapor deposition technology allows the deposition of films on micro structures without changing the structure significantly, film deposition on nano structures and small micro structures leads to a relevant change in surface topography. For this reason direct structuring of physical vapor deposition coatings might be beneficial. In this paper structuring was done using a picoseconds ultraviolet laser, Lumera Laser "Rapid," with a master oscillator power amplifier system at 355 nm. Two different coatings were deposited by magnetron sputter ion plating physical vapor deposition technology for laser structuring tests ((Cr, Al)N, (Cr, Al,Si)N). After deposition, the coatings were analyzed by common techniques regarding hardness, Young's modulus and morphology. The structures were analyzed by scanning electron microscopy. The results show a high potential for laser structuring of coatings deposited via physical vapor deposition. Linear structures with sizes between 400 nm and 10microm were realized.

  20. Picosecond-hetero-FRET microscopy to probe protein-protein interactions in live cells.

    PubMed Central

    Tramier, Marc; Gautier, Isabelle; Piolot, Tristan; Ravalet, Sylvie; Kemnitz, Klaus; Coppey, Jacques; Durieux, Christiane; Mignotte, Vincent; Coppey-Moisan, Maïté

    2002-01-01

    By using a novel time- and space-correlated single-photon counting detector, we show that fluorescence resonance energy transfer (FRET) between cyan fluorescent protein (CFP) and yellow fluorescent protein (YFP) fused to herpes simplex virus thymidine kinase (TK) monomers can be used to reveal homodimerization of TK in the nucleus and cytoplasm of live cells. However, the quantification of energy transfer was limited by the intrinsic biexponential fluorescence decay of the donor CFP (lifetimes of 1.3 +/- 0.2 ns and 3.8 +/- 0.4 ns) and by the possibility of homodimer formation between two TK-CFP. In contrast, the heterodimerization of the transcriptional factor NF-E2 in the nucleus of live cells was quantified from the analysis of the fluorescence decays of GFP in terms of 1) FRET efficiency between GFP and DsRed chromophores fused to p45 and MafG, respectively, the two subunits of NF-E2 (which corresponds to an interchromophoric distance of 39 +/- 1 A); and 2) fractions of GFP-p45 bound to DsRed-MafG (constant in the nucleus, varying in the range of 20% to 70% from cell to cell). The picosecond resolution of the fluorescence kinetics allowed us to discriminate between very short lifetimes of immature green species of DsRed-MafG and that of GFP-p45 involved in FRET with DsRed-MafG. PMID:12496124

  1. Ultrafast high-repetition imaging of fuel sprays using picosecond fiber laser.

    PubMed

    Purwar, Harsh; Wang, Hongjie; Tang, Mincheng; Idlahcen, Saïd; Rozé, Claude; Blaisot, Jean-Bernard; Godin, Thomas; Hideur, Ammar

    2015-12-28

    Modern diesel injectors operate at very high injection pressures of about 2000 bar resulting in injection velocities as high as 700 m/s near the nozzle outlet. In order to better predict the behavior of the atomization process at such high pressures, high-resolution spray images at high repetition rates must be recorded. However, due to extremely high velocity in the near-nozzle region, high-speed cameras fail to avoid blurring of the structures in the spray images due to their exposure time. Ultrafast imaging featuring ultra-short laser pulses to freeze the motion of the spray appears as an well suited solution to overcome this limitation. However, most commercial high-energy ultrafast sources are limited to a few kHz repetition rates. In the present work, we report the development of a custom-designed picosecond fiber laser generating ∼ 20 ps pulses with an average power of 2.5 W at a repetition rate of 8.2 MHz, suitable for high-speed imaging of high-pressure fuel jets. This fiber source has been proof tested by obtaining backlight images of diesel sprays issued from a single-orifice injector at an injection pressure of 300 bar. We observed a consequent improvement in terms of image resolution compared to standard white-light illumination. In addition, the compactness and stability against perturbations of our fiber laser system makes it particularly suitable for harsh experimental conditions.

  2. Photooxidation and photoaquation of iron hexacyanide in aqueous solution: A picosecond X-ray absorption study.

    PubMed

    Reinhard, M; Penfold, T J; Lima, F A; Rittmann, J; Rittmann-Frank, M H; Abela, R; Tavernelli, I; Rothlisberger, U; Milne, C J; Chergui, M

    2014-03-01

    We present a picosecond Fe K-edge absorption study of photoexcited ferrous and ferric hexacyanide in water under 355 and 266 nm excitation. Following 355 nm excitation, the transient spectra for the ferrous and ferric complexes exhibit a red shift of the edge reflecting an increased electron density at the Fe atom. For the former, an enhanced pre-edge transition is also observed. These observations are attributed to the aquated [Fe(CN)5OH2](3-) species, based on quantum chemical calculations which also provide structural parameters. Upon 266 nm excitation of the ferric complex, a transient reminiscent of the aquated species is observed (appearance of a pre-edge feature and red shift of the edge) but it is different from that obtained under 355 nm excitation. This points to a new reaction channel occurring through an intermediate state lying between these two excitation energies. Finally, 266 nm excitation of the ferrous species is dominated by the photooxidation channel with formation of the ferric complex as main photoproduct. However, we observe an additional minor photoproduct, which is identical to the 266 nm generated photoproduct of the ferric species, suggesting that under our experimental conditions, the pump pulse photooxidises the ferrous complex and re-excites the primary ferric photoproduct.

  3. Picosecond and femtosecond X-ray absorption spectroscopy of molecular systems.

    PubMed

    Chergui, Majed

    2010-03-01

    The need to visualize molecular structure in the course of a chemical reaction, a phase transformation or a biological function has been a dream of scientists for decades. The development of time-resolved X-ray and electron-based methods is making this true. X-ray absorption spectroscopy is ideal for the study of structural dynamics in liquids, because it can be implemented in amorphous media. Furthermore, it is chemically selective. Using X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) in laser pump/X-ray probe experiments allows the retrieval of the local geometric structure of the system under study, but also the underlying photoinduced electronic structure changes that drive the structural dynamics. Recent developments in picosecond and femtosecond X-ray absorption spectroscopy applied to molecular systems in solution are reviewed: examples on ultrafast photoinduced processes such as intramolecular electron transfer, low-to-high spin change, and bond formation are presented.

  4. Photooxidation and photoaquation of iron hexacyanide in aqueous solution: A picosecond X-ray absorption study

    PubMed Central

    Reinhard, M.; Penfold, T. J.; Lima, F. A.; Rittmann, J.; Rittmann-Frank, M. H.; Abela, R.; Tavernelli, I.; Rothlisberger, U.; Milne, C. J.; Chergui, M.

    2014-01-01

    We present a picosecond Fe K-edge absorption study of photoexcited ferrous and ferric hexacyanide in water under 355 and 266 nm excitation. Following 355 nm excitation, the transient spectra for the ferrous and ferric complexes exhibit a red shift of the edge reflecting an increased electron density at the Fe atom. For the former, an enhanced pre-edge transition is also observed. These observations are attributed to the aquated [Fe(CN)5OH2]3− species, based on quantum chemical calculations which also provide structural parameters. Upon 266 nm excitation of the ferric complex, a transient reminiscent of the aquated species is observed (appearance of a pre-edge feature and red shift of the edge) but it is different from that obtained under 355 nm excitation. This points to a new reaction channel occurring through an intermediate state lying between these two excitation energies. Finally, 266 nm excitation of the ferrous species is dominated by the photooxidation channel with formation of the ferric complex as main photoproduct. However, we observe an additional minor photoproduct, which is identical to the 266 nm generated photoproduct of the ferric species, suggesting that under our experimental conditions, the pump pulse photooxidises the ferrous complex and re-excites the primary ferric photoproduct. PMID:26798775

  5. Transform-limited picosecond pulse shaping based on temporal coherence synthesization.

    PubMed

    Park, Yongwoo; Asghari, Mohammad H; Ahn, Tae-Jung; Azaña, José

    2007-07-23

    A simple and efficient optical pulse re-shaper based on the concept of temporal coherence synthesization is proposed and analyzed in detail. Specifically, we demonstrate that an arbitrary chirp-free (transform-limited) optical pulse waveform can be synthesized from a given transform-limited Gaussian-like input optical pulse by coherently superposing a set of properly delayed replicas of this input pulse, e.g. using a conventional multi-arm interferometer. A practical implementation of this general concept based on the use of conventional concatenated two-arm interferometers is also suggested and demonstrated. This specific implementation allows the synthesis of any desired temporally-symmetric optical waveform with time features only limited by the input pulse bandwidth. A general optimization algorithm has been developed and applied for designing the system specifications (number of interferometers and relative time delays in these interferometers) that are required to achieve a desired optical pulse re-shaping operation. The required tolerances in this system have been also estimated and confirmed by numerical simulations. The proposed technique has been experimentally demonstrated by re-shaping an approximately 1-ps Gaussian-like optical pulse into various temporal shapes of practical interest, i.e. picosecond transform-limited flat-top, parabolic and triangular pulses (all centered at a wavelength of approximately 1550nm), using a simple two-stage interferometer setup. A remarkable synthesis accuracy and high energetic efficiency have been achieved for all these pulse re-shaping operations.

  6. Fiber-laser-based green-pumped picosecond MgO:sPPLT optical parametric oscillator.

    PubMed

    Chaitanya Kumar, S; Ebrahim-Zadeh, M

    2013-12-15

    We report a stable, high-power, picosecond optical parametric oscillator (OPO) at 160 MHz repetition rate synchronously pumped by a frequency-doubled mode-locked Yb-fiber laser at 532 nm and tunable in the near-infrared, across 874-1008 nm (signal) and 1126-1359 nm (idler). Using a 30-mm-long MgO:sPPLT crystal, the OPO provides average output power up to 780 mW in the signal at 918.58 nm and 600 mW in the idler at 1242 nm. The device operates stably over many days, even close to degeneracy, exhibiting passive long-term power stability better than 1.8% rms in the signal and 2.4% rms in the idler over 2.5 h at a temperature of 55°C. We investigate spectral and temporal characteristics of the signal pulses under different conditions and demonstrate cavity-length tuning enabled by the dispersion properties of MgO:sPPLT. The output signal pulses have a duration of 2.4 ps at 967 nm.

  7. Negative pressure and spallation in graphite targets under nano- and picosecond laser irradiation

    SciTech Connect

    Belikov, R S; Khishchenko, K V; Krasyuk, I K; Semenov, A Yu; Stuchebryukhov, I A; Rinecker, T; Schoenlein, A; Rosmej, O N; Tomut, M

    2015-05-31

    We present the results of experiments on the spallation phenomena in graphite targets under shock-wave nano- and picosecond irradiation, which have been performed on Kamerton-T (GPI, Moscow, Russia) and PHELIX (GSI, Darmstadt, Germany) laser facilities. In the range of the strain rates of 10{sup 6} – 10{sup 7} s{sup -1}, the data on the dynamic mechanical strength of the material at rapure (spallation) have been for the first time obtained. With a maximal strain rate of 1.4 × 10{sup 7} s{sup -1}, the spall strength of 2.1 GPa is obtained, which constitutes 64% of the theoretical ultimate tensile strength of graphite. The effect of spallation is observed not only on the rear side of the target, but also on its irradiated (front) surface. With the use of optical and scanning electron microscopes, the morphology of the front and rear surfaces of the targets is studied. By means of Raman scattering of light, the graphite structure both on the target front surface under laser exposure and on its rear side in the spall zone is investigated. A comparison of the dynamic strength of graphite and synthetic diamond is performed. (extreme light fields and their applications)

  8. Picosecond laser ablation of poly-L-lactide: Effect of crystallinity on the material response

    SciTech Connect

    Ortiz, Rocio; Quintana, Iban; Etxarri, Jon; Lejardi, Ainhoa; Sarasua, Jose-Ramon

    2011-11-01

    The picosecond laser ablation of poly-L-lactide (PLLA) as a function of laser fluence and degree of crystallinity was examined. The ablation parameters and the surface modifications were analyzed under various irradiation conditions using laser wavelengths ranging from the ultraviolet through the visible. When processing the amorphous PLLA, both energy threshold and topography varied considerably depending on laser wavelength. Laser irradiation showed a reduction in the energy ablation threshold as the degree of crystallinity increased, probably related to photomechanical effects involved in laser ablation with ultra-short pulses and the lower stress accommodation behavior of semicrystalline polymers. In particular, cooperative chain motions are impeded by the higher degree of crystallinity, showing fragile mechanical behavior and lower energy dissipation. The experimental results on ablation rate versus laser energy showed that UV laser ablation on semicrystalline PLLA was more efficient than the visible ablation, i.e., it exhibits higher etch rates over a wide range of pulse energy conditions. These results were interpreted in terms of photo-thermal and photo-chemical response of polymers as a function of material micro-structure and incident laser wavelength. High quality micro-grooves were produced in amorphous PLLA, reveling the potential of ultra-fast laser processing technique in the field of micro-structuring biocompatible and biodegradable polymers for biomedical applications.

  9. In-line high-K/metal gate monitoring using picosecond ultrasonics

    NASA Astrophysics Data System (ADS)

    Hsu, C. W.; Huang, R. P.; Chen, J.; Tan, J.; Huang, H. F.; Lin, Welch; Hsieh, Y. L.; Tsao, W. C.; Chen, C. H.; Lin, Y. M.; Lin, C. H.; Hsu, H. K.; Liu, K.; Huang, C. C.; Wu, J. Y.; Dai, J.; Mukundhan, P.

    2013-04-01

    High-K/metal gate technology, introduced by Intel, to replace the conventional oxide gate dielectric and polysilicon gate has truly revolutionized transistor technology more than any other change over the last 40 years. First introduced at the 45nm node, this complex process has now been adopted for advanced nodes. The capability of picosecond ultrasonic measurements (PULSETM) for in-line monitoring of High-K/metal gate structures was evaluated and the benefits of this technology for measuring various structures including SRAM, pad array, and line array key with excellent correlation to cross sectional TEM was demonstrated. We have shown that, only a direct measurement of SRAM structures can represent true variations of the metal gate height due to CMP process and is strongly affected by the design and layout of pattern, including pattern density, dummy design, and spacing. The small spot, non-contact, non-destructive nature of this technology allows for in-line measurements directly on these structures with excellent repeatability at a very high throughput.

  10. Picosecond spectroscopic studies of energy transfer in phycobiliproteins and model dye systems

    SciTech Connect

    Switalski, S.C.

    1987-02-01

    Energy transfer was investigated in the ..cap alpha beta.. monomer and separated ..cap alpha.. and ..beta.. subunits of C-phycocyanin from Anabaena variabilis and Anacystis nidulans, using steady-state and picosecond spectroscopy. Fluorescence excitation polarization spectra were consistent with a sensitizing (s) - fluorescing (f) model using a Forster energy transfer mechanism. The rise in polarization across the absorption band towards longer wavelength for the ..beta.. subunit and the ..cap alpha beta.. monomer was attributed to energy transfer among the three chromophores in the ..cap alpha beta.. monomer and between the 2 chromophores in the ..beta.. subunit. The constant polarization of the ..cap alpha.. subunit, with one chromophore, is consistent with a lack of any possibility of energy transfer. Fluorescence emission maxima were at 640 nm for the ..cap alpha beta.. monomer and the separated subunits of Anabaena variabilis, and 645 nm for the ..beta.. subunit, 640 nm for the ..cap alpha.. subunit, and 644 nm for ..cap alpha beta.. monomer of Anacystis nidulans. We have shown that the labels s and f are not consistent with all the steady-state spectroscopic results. 171 refs., 32 figs., 15 tabs.

  11. Resonant infrared ablation of polystyrene with single picosecond pulses generated by an optical parametric amplifier

    NASA Astrophysics Data System (ADS)

    Duering, Malte; Haglund, Richard; Luther-Davies, Barry

    2014-01-01

    We report on resonant infrared laser ablation of polystyrene using single 8 ps pulses at a wavelength of 3.31 μm generated by a MgO:PPLN optical parametric amplifier pumped by a Nd:YLF laser. We determined the single-pulse ablation threshold to be 0.46 J/cm2, about a factor of five smaller than in previous free-electron-laser studies. Time-resolved imaging of the laser-target interaction reveals that the detailed dynamics of the ablation process begin with thermal expansion of a large volume of hot material from which a less dense plume of polymeric material evaporates. This plume disappears on a time scale of 0.75 μs and the hot polymer material recedes back into the crater from which it was expelled. Subsequently, and on a much longer time scale, structural alterations in the ablation crater continue to evolve for at least another millisecond. Our results suggest that single picosecond pulses are effective for the ablation of polymers and exhibit dynamics similar to those observed in studies using a free-electron laser.

  12. Picosecond LIBS diagnostics for Tokamak in situ plasma facing materials chemical analysis

    NASA Astrophysics Data System (ADS)

    Morel, Vincent; Pérès, Bastien; Bultel, Arnaud; Hideur, Ammar; Grisolia, Christian

    2016-02-01

    First results are presented in relation with experimental and theoretical studies performed at the CORIA laboratory in the general framework of the determination of the chemical analysis of Tokamak plasma facing materials by laser-induced breakdown spectroscopy (LIBS) in picosecond regime. Experiments are performed on W in a specific chamber. This chamber is equipped with a UV-visible-near IR spectroscopic device. Boltzmann plots are derived for typical laser characteristics. We show that the initial excitation temperature is close to 12 000 K followed by a quasi steady value close to 8500 K. The ECHREM (Euler code for CHemically REactive Multicomponent laser-induced plasmas) code is developed to reproduce the laser-induced plasmas. This code is based on the implementation of a Collisional-Radiative model in which the different excited states are considered as full species. This state-to-state approach is relevant to theoretically assess the departure from excitation and chemical equilibrium. Tested on aluminum, the model shows that the plasma remains close to excitation equilibrium.

  13. Anisotropic picosecond photoconductivity caused by optical alignment of electron momenta in cubic semiconductors

    NASA Astrophysics Data System (ADS)

    Malevich, Y. V.; Adomavičius, R.; Krotkus, A.; Malevich, V. L.

    2014-02-01

    Transient photoconductivity in cubic semiconductors InGaAs and InAs excited by a femtosecond laser pulse in the presence of a uniform dc electric field has been studied with the use of the Monte Carlo simulation by taking into account optical alignment of photoexcited electrons over their momenta. Simulations show that due to the optical alignment effect and energy dependence of the electron mobility, the transient photoconductivity in cubic semiconductors becomes anisotropic during the first few picoseconds after optical excitation. The magnitude of this anisotropy reaches its peak when the excess energy of the optically excited electrons approaches the threshold for the intervalley transfer. It has also been found that when the electrons are excited near the threshold energy for the intervalley transfer, the component of the transient photocurrent directed along the dc field for a short time after the end of the femtosecond optical pulse can become negative. The anisotropy of the transient photoconductivity has been investigated experimentally on (001) InGaAs sample by the optical pump - terahertz-probe technique. Optically induced changes in terahertz pulse amplitude were found to be dependent on the direction of terahertz field relative to the polarization of the optical pump pulse and to the crystallographic axes of the semiconductor. Experimental data have been explained in terms of the transient anisotropic photoconductivity and correlate with the results of the Monte Carlo simulation.

  14. Electron Dynamics at Dye-Semiconductor Interfaces probed with Picosecond Time-Resolved XPS

    NASA Astrophysics Data System (ADS)

    Neppl, Stefan; Shavorskiy, Andrey; Zegkinoglou, Ioannis; Fraund, Matthew; Salmeron, Miquel; Guo, Jinghua; Bluhm, Hendrik; Gessner, Oliver

    2014-05-01

    Picosecond time-resolved core-level spectroscopy using laser pulses to initiate and short X-ray pulses to probe photo-induced processes have the unique potential to provide electronic state- and atomic site-specific insight into fundamental electron dynamics in complex systems. Up to now, however, most of these experiments have concentrated on the electronic and structural dynamics in isolated or solvated molecules. Here we report preliminary results of a time-resolved X-ray photoelectron spectroscopy (TRXPS) study with the goal to follow the light-driven electron dynamics of N3 dye molecules adsorbed on a nano-structured ZnO semiconductor substrate - a technologically pertinent system for dye-sensitized solar cells - on the pico- to nanosecond time scale from the perspective of individual atomic sites at this complex interface. A distinct evolution of the molecular C1s photoemission line shape is observed as a function of time delay between a visible (532 nm) laser pump pulse (resonant with the N3 HOMO-LUMO gap) and the X-ray probe pulses. The observed changes in the C1s TRXPS spectra will be discussed in the context of possible charge recombination and relaxation processes leading to the neutralization of the transiently oxidized dye following ultrafast photo-induced electron injection.

  15. Anisotropic picosecond photoconductivity caused by optical alignment of electron momenta in cubic semiconductors

    SciTech Connect

    Malevich, Y. V. Adomavičius, R.; Krotkus, A.; Malevich, V. L.

    2014-02-21

    Transient photoconductivity in cubic semiconductors InGaAs and InAs excited by a femtosecond laser pulse in the presence of a uniform dc electric field has been studied with the use of the Monte Carlo simulation by taking into account optical alignment of photoexcited electrons over their momenta. Simulations show that due to the optical alignment effect and energy dependence of the electron mobility, the transient photoconductivity in cubic semiconductors becomes anisotropic during the first few picoseconds after optical excitation. The magnitude of this anisotropy reaches its peak when the excess energy of the optically excited electrons approaches the threshold for the intervalley transfer. It has also been found that when the electrons are excited near the threshold energy for the intervalley transfer, the component of the transient photocurrent directed along the dc field for a short time after the end of the femtosecond optical pulse can become negative. The anisotropy of the transient photoconductivity has been investigated experimentally on (001) InGaAs sample by the optical pump - terahertz-probe technique. Optically induced changes in terahertz pulse amplitude were found to be dependent on the direction of terahertz field relative to the polarization of the optical pump pulse and to the crystallographic axes of the semiconductor. Experimental data have been explained in terms of the transient anisotropic photoconductivity and correlate with the results of the Monte Carlo simulation.

  16. Ultrafast graphene and carbon nanotube film patterning by picosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Bobrinetskiy, Ivan I.; Emelianov, Alexey V.; Otero, Nerea; Romero, Pablo M.

    2016-03-01

    Carbon nanomaterials is among the most promising technologies for advanced electronic applications, due to their extraordinary chemical and physical properties. Nonetheless, after more than two decades of intensive research, the application of carbon-based nanostructures in real electronic and optoelectronic devices is still a big challenge due to lack of scalable integration in microelectronic manufacturing. Laser processing is an attractive tool for graphene device manufacturing, providing a large variety of processes through direct and indirect interaction of laser beams with graphene lattice: functionalization, oxidation, reduction, etching and ablation, growth, etc. with resolution down to the nanoscale. Focused laser radiation allows freeform processing, enabling fully mask-less fabrication of devices from graphene and carbon nanotube films. This concept is attractive to reduce costs, improve flexibility, and reduce alignment operations, by producing fully functional devices in single direct-write operations. In this paper, a picosecond laser with a wavelength of 515 nm and pulse width of 30 ps is used to pattern carbon nanostructures in two ways: ablation and chemical functionalization. The light absorption leads to thermal ablation of graphene and carbon nanotube film under the fluence 60-90 J/cm2 with scanning speed up to 2 m/s. Just under the ablation energy, the two-photon absorption leads to add functional groups to the carbon lattice which change the optical properties of graphene. This paper shows the results of controlled modification of geometrical configuration and the physical and chemical properties of carbon based nanostructures, by laser direct writing.

  17. Low viscosity in the aqueous domain of cell cytoplasm measured by picosecond polarization microfluorimetry

    PubMed Central

    1991-01-01

    Information about the rheological characteristics of the aqueous cytoplasm can be provided by analysis of the rotational motion of small polar molecules introduced into the cell. To determine fluid-phase cytoplasmic viscosity in intact cells, a polarization microscope was constructed for measurement of picosecond anisotropy decay of fluorescent probes in the cell cytoplasm. We found that the rotational correlation time (tc) of the probes, 2,7-bis-(2-carboxyethyl)-5-(and-6- )carboxyfluorescein (BCECF), 6-carboxyfluorescein, and 8-hydroxypyrene- 1,3,6-trisulfonic acid (HPTS) provided a direct measure of fluid-phase cytoplasmic viscosity that was independent of probe binding. In quiescent Swiss 3T3 fibroblasts, tc values were 20-40% longer than those in water, indicating that the fluid-phase cytoplasm is only 1.2- 1.4 times as viscous as water. The activation energy of fluid-phase cytoplasmic viscosity was 4 kcal/mol, which is similar to that of water. Fluid-phase cytoplasmic viscosity was altered by less than 10% upon addition of sucrose to decrease cell volume, cytochalasin B to disrupt cell cytoskeleton, and vasopressin to activate phospholipase C. Nucleoplasmic and peripheral cytoplasmic viscosities were not different. Our results establish a novel method to measure fluid-phase cytoplasmic viscosity, and indicate that fluid-phase cytoplasmic viscosity in fibroblasts is similar to that of free water. PMID:1993739

  18. Picosecond dynamics of primary electron-transfer processes in bacterial photosynthesis.

    PubMed Central

    Peters, K; Avouris, P; Rentzepis, P M

    1978-01-01

    The primary electron transfer processes in Rhodopseudomonas sphaeroides R-26 were studied as a function of temperature by means of picosecond spectroscopy. The first chemical step of the bacterial photosynthesis involves an electron transfer from the excited state of a bacteriochlorophyll a dimer, (BChl)2, to a bacteriopheophytin (BPh) to form the radical ion pair (BChl)2+. BPh-.. The upper limit for the formation time of this ion-pair was found to be 10 ps, at temperatures in the range 300-4.2 degree K. Similarly, the second chemical step, involving electron transfer from BPh-. to an ubiquinone-iron complex (QFe), was found to have a lifetime of approximately 150 ps, also independent of temperature in the same range. We interpret the absence of temperature dependence as indicating that process 2 proceeds via a tunneling mechanism. Utilizing our results in conjunction with electron tunneling theories, we calculate the distance between BPh-. and Q(Fe) to be 9--13 A. Our results also imply a closer proximity between (BChl)2 and BPh. PMID:308379

  19. Post-processing of 3D-printed parts using femtosecond and picosecond laser radiation

    NASA Astrophysics Data System (ADS)

    Mingareev, Ilya; Gehlich, Nils; Bonhoff, Tobias; Meiners, Wilhelm; Kelbassa, Ingomar; Biermann, Tim; Richardson, Martin C.

    2014-03-01

    Additive manufacturing, also known as 3D-printing, is a near-net shape manufacturing approach, delivering part geometry that can be considerably affected by various process conditions, heat-induced distortions, solidified melt droplets, partially fused powders, and surface modifications induced by the manufacturing tool motion and processing strategy. High-repetition rate femtosecond and picosecond laser radiation was utilized to improve surface quality of metal parts manufactured by laser additive techniques. Different laser scanning approaches were utilized to increase the ablation efficiency and to reduce the surface roughness while preserving the initial part geometry. We studied post-processing of 3D-shaped parts made of Nickel- and Titanium-base alloys by utilizing Selective Laser Melting (SLM) and Laser Metal Deposition (LMD) as additive manufacturing techniques. Process parameters such as the pulse energy, the number of layers and their spatial separation were varied. Surface processing in several layers was necessary to remove the excessive material, such as individual powder particles, and to reduce the average surface roughness from asdeposited 22-45 μm to a few microns. Due to the ultrafast laser-processing regime and the small heat-affected zone induced in materials, this novel integrated manufacturing approach can be used to post-process parts made of thermally and mechanically sensitive materials, and to attain complex designed shapes with micrometer precision.

  20. Relationship between femtosecond-picosecond dynamics to enzyme catalyzed H-transfer

    PubMed Central

    Cheatum, Christopher M.; Kohen, Amnon

    2015-01-01

    At physiological temperatures, enzymes exhibit a broad spectrum of conformations, which interchange via thermally activated dynamics. These conformations are sampled differently in different complexes of the protein and its ligands, and the dynamics of exchange between these conformers depends on the mass of the group that is moving and the length scale of the motion, as well as restrictions imposed by the globular fold of the enzymatic complex. Many of these motions have been examined and their role in the enzyme function illuminated, yet most experimental tools applied so far have identified dynamics at time scales of seconds to nanoseconds, which are much slower than the time scale for H-transfer between two heavy atoms. This chemical conversion and other processes involving cleavage of covalent bonds occur on picosecond to femtosecond time scales, where slower processes mask both the kinetics and dynamics. Here we present a combination of kinetic and spectroscopic methods that may enable closer examination of the relationship between enzymatic C-H→C transfer and the dynamics of the active site environment at the chemically relevant time scale. These methods include kinetic isotope effects and their temperature dependence, which are used to study the kinetic nature of the H-transfer, and 2D IR spectroscopy, which is used to study the dynamics of transition-state- and ground-state-analog complexes. The combination of these tools is likely to provide a new approach to examine the protein dynamics that directly influence the chemical conversion catalyzed by enzymes. PMID:23539379

  1. Picosecond infrared study of carbonmonoxy cytochrome c oxidase: Ligand transfer dynamics and binding orientations

    SciTech Connect

    Peterson, K.A.; Stoutland, P.O.; Dyer, R.B.; Woodruff, W.H.

    1991-01-01

    Cytochrome c oxidase (CcO), an enzyme which catalyzes the reduction of dioxygen to water in the terminal step of the respiratory chain, combines several fundamental chemical processes in performing its function. The coordination chemistry and ligation dynamics of the cytochrome {alpha}{sub 3}-Cu{sub B} site, where O{sub 2} and other small molecules such as CO, NO and isocyanates can bind, are essential to the function of the enzyme. Recent time-resolved infrared (TRIR) and visible absorption measurements have shown that coordination to Cu{sub B}{sup +} is an obligatory mechanistic step for CO entering the cytochrome {alpha}{sub 3} heme site and departing the protein after photodissociation. The timescale (> 10{sup {minus}7} s) of the TRIR measurements precluded observation of the ligation dynamics immediately following photodissociation. Here we report a picosecond timescale TRIR study of these events. The results reveal that the photoinitiated ligand transfer of CO from Fe{sub a3}{sup 2+} to Cu{sub B}{sup +}, which are believed to lie 4--5 {Angstrom} apart, occurs within 1 ps. 9 refs., 2 figs.

  2. Multipulse mode of heating nanoparticles by nanosecond, picosecond and femtosecond pulses

    NASA Astrophysics Data System (ADS)

    Letfullin, Renat R.; Iversen, Christian B.; George, Thomas F.

    2010-02-01

    Nanoparticles are being researched as a noninvasive method for selectively killing cancer cells. With particular antibody coatings on nanoparticles, they attach to the abnormal cells of interest (cancer or otherwise). Once attached, nanoparticles can be heated with UV/visible/IR or RF pulses, heating the surrounding area of the cell to the point of death. Researchers often use single-pulse or multipulse lasers when conducting nanoparticle ablation research. In the present paper, we are conducting an analysis to determine if the multipulse mode has any advantage in heating of spherical metal nanoparticles (such as accumulative heating effect). The laser heating of nanoparticles is very sensitive to the time structure of the incident pulsed laser radiation, the time interval between the pulses, and the number of pulses used in the experiments. We perform time-dependent simulations and detailed analyses of the different nonstationary pulsed laser-nanoparticle interaction modes, and show the advantages and disadvantages of multipulse (set of short pulses) and single-pulse laser heating of nanoparticles. A comparative analysis for both radiation modes (single-pulse and multipulse) are discussed for laser heating of metal nanotargets on nanosecond, picosecond and femtosecond time scales to make recommendations for efficient laser heating of nanomaterials in the experiments.

  3. Stripline Transversal Filter Techniques for Sub-picosecond Bunch Timing Measurements

    SciTech Connect

    Fox, John D.; Mastorides, Themis; Rivetta, Claudio Hector; Winkle, Daniel Van

    2007-07-06

    Measurement of time of arrival of a particle bunch is a fundamental beam diagnostic. The PEP-II/ALS/BESSY/PLS longitudinal feedback systems use a planar stripline circuit to convert a 30 ps beam BPM impulse signal into a 4 cycle tone burst at the 6th harmonic of the accelerator RF frequency (2.856 GHz). A phase-detection technique is used to measure the arrival time of these BPM impulses with 200 fs rms single-shot resolution (out of a 330 ps dynamic range). Scaled in frequency, this approach is directly applicable to FEL and other sub-ps regime pulse and timing measurements. The transversal circuit structure is applicable to measurement of microbunches or closely spaced bunches (the PEP-II/ALS/BESSY/PLS examples make independent measurements at 2 ns bunch spacing) and opens up some new diagnostic and control possibilities. This paper reviews the principles of the technique, and uses data from PEP-II operations to predict the limits of performance of this measurement scheme for arrival phase measurement. These predictions are compared with results in the literature from electro-optic sub-picosecond beam timing and phasing diagnostics.

  4. Investigations of morphological features of picosecond dual-wavelength laser ablation of stainless steel

    NASA Astrophysics Data System (ADS)

    Zhao, Wanqin; Wang, Wenjun; Mei, Xuesong; Jiang, Gedong; Liu, Bin

    2014-06-01

    Investigations on the morphological features of holes and grooves ablated on the surface of stainless steel using the picosecond dual-wavelength laser system with different powers combinations are presented based on the scarce researches on morphology of dual-wavelength laser ablation. The experimental results show the profiles of holes ablated by the visible beam appear V-shaped while those for the near-infrared have large openings and display U-shaped, which are independent of the ablation mechanism of ultrafast laser. For the dual-wavelength beam (a combination of visible beam and near-infrared), the holes resemble sunflower-like structures and have smoother ring patterns on the bottom. In general, the holes ablated by the dual-wavelength beam appear to have much flatter bottoms, linearly sloped side-walls and spinodal structures between the bottoms of the holes and the side-walls. Furthermore, through judiciously combining the powers of the dual-wavelength beam, high-quality grooves could be obtained with a flat worm-like structure at the bottom surface and less resolidified melt ejection edges. This study provides insight into optimizing ultrafast laser micromachining in order to obtain desired morphology.

  5. Generation of solid-density ultraintense ion beams by a picosecond laser pulse of circular polarization.

    PubMed

    Jablonski, S; Badziak, J

    2012-02-01

    This contribution reports particle-in-cell numerical studies of deuteron beam acceleration by a picosecond laser pulse of circular polarization. The effect of laser wavelength λ and the I(L)λ(2) product (I(L) is laser intensity) on the ion beam parameters is investigated. It is shown that at the I(L)λ(2) product fixed, the beam parameters (, I(i), F(i)) as well as the laser-ions energy conversion efficiency quickly increase with a decrease in the laser wavelength and the best results are achieved for a KrF laser (λ = 0.248 μm). In particular, a 2-ps KrF laser pulse of I(L)λ(2) ∼ 2 × 10(20) Wcm(-2) μm(2) interacting with a 10-μm deuteron target produces a quasi-monoenergetic, solid-density deuteron beam of parameters approaching those required for inertial confinement fusion fast ignition.

  6. A review on high-resolution CMOS delay lines: towards sub-picosecond jitter performance.

    PubMed

    Abdulrazzaq, Bilal I; Abdul Halin, Izhal; Kawahito, Shoji; Sidek, Roslina M; Shafie, Suhaidi; Yunus, Nurul Amziah Md

    2016-01-01

    A review on CMOS delay lines with a focus on the most frequently used techniques for high-resolution delay step is presented. The primary types, specifications, delay circuits, and operating principles are presented. The delay circuits reported in this paper are used for delaying digital inputs and clock signals. The most common analog and digitally-controlled delay elements topologies are presented, focusing on the main delay-tuning strategies. IC variables, namely, process, supply voltage, temperature, and noise sources that affect delay resolution through timing jitter are discussed. The design specifications of these delay elements are also discussed and compared for the common delay line circuits. As a result, the main findings of this paper are highlighting and discussing the followings: the most efficient high-resolution delay line techniques, the trade-off challenge found between CMOS delay lines designed using either analog or digitally-controlled delay elements, the trade-off challenge between delay resolution and delay range and the proposed solutions for this challenge, and how CMOS technology scaling can affect the performance of CMOS delay lines. Moreover, the current trends and efforts used in order to generate output delayed signal with low jitter in the sub-picosecond range are presented.

  7. Is it an Emergency?

    MedlinePlus

    ... Emergency 101 Share this! Home » Emergency 101 Is it an Emergency? Medical emergencies can be frightening and ... situation. Here you can find information about emergencies. It is essential to know how to recognize the ...

  8. Emergency Lighting

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A lighting system originally developed for NASA's Apollo and Skylab manned spacecraft resulted in a industrial spinoff and creation of a whole new company to produce and market the product line. The company is UDEC Corp., Waltham, Mass. UDEC's "Multi-Mode" electronic lighting systems are designed for plant emergency and supplemental use, such as night lighting, "always-on" stairwell lights and illuminated exit signs. Their advantages stem from the qualities demanded for spacecraft installation: extremely high fight output with very low energy drain, compactness, light weight, and high reliability. The Multi-Mode system includes long-life fluorescent lamps operated by electronic circuitry, a sealed battery that needs no maintenance for 10 years, and a solid-state battery charger. A typical emergency installation consists of a master module with battery and an eight watt lamp, together with four remote "Satellight" modules powered by the master's battery. As a night lighting system for maintenance or I security, UDEC fixtures can bypass the battery and 1 operate on normal current at a fraction of the energy 1 demand of conventional night lighting. Industrial customers have realized savings of better than ninety percent with UDEC night lights. UDEC started as a basement industry in 1972 but the company has already sold more than 1,000 lighting systems to building operators.

  9. Emergency preparedness.

    PubMed

    Mahon, Christine F; Long, Carol O

    2006-01-01

    The Boy Scout motto is "be prepared," but can your home health agency abide by this standard? The post-9/11 days of 2001 and the natural disasters that have threatened people and plagued our home and countries abroad illustrate the heightened level of awareness and preparedness home healthcare agencies must achieve to satisfactorily meet emergency preparedness standards. Community-based nurses often are on the front line of response to a man-made, biological, or naturally occurring event. You may have been assigned to work on a plan for your agency's response or have had questions asked about preparedness by your clients and family members. Here are six Web sites to get you started on the answers to those questions and concerns.

  10. Emerging anxiolytics.

    PubMed

    Pillay, Nirvana S; Stein, Dan J

    2007-11-01

    Anxiety disorders are the most common of the psychiatric disorders and are also associated with significant economic costs and impaired work productivity. The first-line pharmacotherapy of pharmatherapy for a number of anxiety disorders comprises selective serotonin re-uptake inhibitors (SSRIs) and serotonin and noradrenaline re-uptake inhibitors (SNRIs). Benzodiazepines are still widely used for the treatment of several anxiety disorders. Although these agents are effective, many patients are treatment-refractory and more effective, better tolerated medications are required. This paper discusses the understandings of mechanisms involved in the anxiety disorders and reviews emerging medications. Mechanisms underlying the use of d-cycloserine, second generation antipsychotics and beta-blockers are particularly exciting.

  11. SURGICAL EMERGENCIES

    PubMed Central

    Rossi, Felix R.

    1950-01-01

    Action according to preconceived plans may be life-saving at the scene of accidents involving serious injury to several persons. Severe hemorrhage and respiratory obstruction must be dealt with immediately. As the latter may not be apparent at a glance, it should be looked for specifically. Artificial respiration may be necessary. Spinal puncture is a procedure in first aid which should be carried out at the site of an accident if there are symptoms of cerebral edema or of increased cerebral pressure. Routine plans should be laid to meet the emergency of cardiac arrest on the operating table. The surgeon must be prepared to begin cardiac massage within three minutes in such instances. PMID:18731685

  12. Emerging holography

    SciTech Connect

    Erlich, Joshua; Kribs, Graham D.; Low, Ian

    2006-05-01

    We rederive AdS/CFT predictions for infrared two-point functions by an entirely four-dimensional approach, without reference to holography. This approach, originally due to Migdal in the context of QCD, utilizes an extrapolation from the ultraviolet to the infrared using a Pade approximation of the two-point function. We show that the Pade approximation and AdS/CFT give the same leading order predictions, and we discuss including power corrections such as those due to condensates of gluons and quarks in QCD. At finite order the Pade approximation provides a gauge invariant regularization of a higher dimensional gauge theory in the spirit of deconstructed extra dimensions. The radial direction of anti-de Sitter space emerges naturally in this approach.

  13. Emergencies and Emergency Permits for Ocean Dumping

    EPA Pesticide Factsheets

    Emergency permits under the MPRSA are issued if disposed material poses a threat to human health. Information is provided on emergency permit examples and disposal sites. Emergencies to safeguard life at sea does not require an ocean dumping permit.

  14. Ultrafast X-ray Science at the Sub-Picosecond Pulse Source

    SciTech Connect

    Gaffney, Kelly J.; /SLAC, SSRL

    2005-09-30

    The ultrafast, high brightness x-ray free electron laser (XFEL) sources of the future have the potential to revolutionize the study of time dependent phenomena in the natural sciences. These linear accelerator (linac) sources will generate femtosecond (fs) x-ray pulses with peak flux comparable to conventional lasers, and far exceeding all other x-ray sources. The Stanford Linear Accelerator Center (SLAC) has pioneered the development of linac science and technology for decades, and since 2000 SLAC and the Stanford Synchrotron Radiation Laboratory (SSRL) have focused on the development of linac based ultrafast electron and x-ray sources. This development effort has led to the creation of a new x-ray source, called the Sub-Picosecond Pulse Source (SPPS), which became operational in 2003 [1]. The SPPS represents the first step toward the world's first hard x-ray free electron laser (XFEL), the Linac Coherent Light Source (LCLS), due to begin operation at SLAC in 2009. The SPPS relies on the same linac-based acceleration and electron bunch compression schemes that will be used at the LCLS to generate ultrashort, ultrahigh peak brightness electron bunches [2]. This involves creating an energy chirp on the electron bunch during acceleration and subsequent compression of the bunch in a series of energy-dispersive magnetic chicanes to create 80 fs electron pulses. The SPPS has provided an excellent opportunity to demonstrate the viability of these electron bunch compression schemes and to pursue goals relevant to the utilization and validation of XFEL light sources.

  15. Reduction of thermocoagulative injury via use of a picosecond infrared laser (PIRL) in laryngeal tissues.

    PubMed

    Böttcher, Arne; Kucher, Stanislav; Knecht, Rainald; Jowett, Nathan; Krötz, Peter; Reimer, Rudolph; Schumacher, Udo; Anders, Sven; Münscher, Adrian; Dalchow, Carsten V; Miller, R J Dwayne

    2015-04-01

    The carbon dioxide (CO2) laser is routinely used in glottic microsurgery for the treatment of benign and malignant disease, despite significant collateral thermal damage secondary to photothermal vaporization without thermal confinement. Subsequent tissue response to thermal injury involves excess collagen deposition resulting in scarring and functional impairment. To minimize collateral thermal injury, short-pulse laser systems such as the microsecond pulsed erbium:yttrium-aluminium-garnet (Er:YAG) laser and picosecond infrared laser (PIRL) have been developed. This study compares incisions made in ex vivo human laryngeal tissues by CO2 and Er:YAG lasers versus PIRL using light microscopy, environmental scanning electron microscopy (ESEM), and infrared thermography (IRT). In comparison to the CO2 and Er:YAG lasers, PIRL incisions showed significantly decreased mean epithelial (59.70 µm) and subepithelial (22.15 µm) damage zones (p < 0.05). Cutting gaps were significantly narrower for PIRL (133.70 µm) compared to Er:YAG and CO2 lasers (p < 0.05), which were more than 5 times larger. ESEM revealed intact collagen fibers along PIRL cutting edges without obvious carbonization, in comparison to diffuse carbonization and tissue melting seen for CO2 and Er:YAG laser incisions. IRT demonstrated median temperature rise of 4.1 K in PIRL vocal fold incisions, significantly less than for Er:YAG laser cuts (171.85 K; p < 0.001). This study has shown increased cutting precision and reduced lateral thermal damage zones for PIRL ablation in comparison to conventional CO2 and Er:YAG lasers in human glottis and supraglottic tissues.

  16. Ambient Mass Spectrometry Imaging with Picosecond Infrared Laser Ablation Electrospray Ionization (PIR-LAESI).

    PubMed

    Zou, Jing; Talbot, Francis; Tata, Alessandra; Ermini, Leonardo; Franjic, Kresimir; Ventura, Manuela; Zheng, Jinzi; Ginsberg, Howard; Post, Martin; Ifa, Demian R; Jaffray, David; Miller, R J Dwayne; Zarrine-Afsar, Arash

    2015-12-15

    A picosecond infrared laser (PIRL) is capable of cutting through biological tissues in the absence of significant thermal damage. As such, PIRL is a standalone surgical scalpel with the added bonus of minimal postoperative scar tissue formation. In this work, a tandem of PIRL ablation with electrospray ionization (PIR-LAESI) mass spectrometry is demonstrated and characterized for tissue molecular imaging, with a limit of detection in the range of 100 nM for reserpine or better than 5 nM for verapamil in aqueous solution. We characterized PIRL crater size using agar films containing Rhodamine. PIR-LAESI offers a 20-30 μm vertical resolution (∼3 μm removal per pulse) and a lateral resolution of ∼100 μm. We were able to detect 25 fmol of Rhodamine in agar ablation experiments. PIR-LAESI was used to map the distribution of endogenous methoxykaempferol glucoronide in zebra plant (Aphelandra squarrosa) leaves producing a localization map that is corroborated by the literature. PIR-LAESI was further used to image the distribution inside mouse kidneys of gadoteridol, an exogenous magnetic resonance contrast agent intravenously injected. Parallel mass spectrometry imaging (MSI) using desorption electrospray ionization (DESI) and matrix assisted laser desorption ionization (MALDI) were performed to corroborate PIR-LAESI images of the exogenous agent. We further show that PIR-LAESI is capable of desorption ionization of proteins as well as phospholipids. This comparative study illustrates that PIR-LAESI is an ion source for ambient mass spectrometry applications. As such, a future PIRL scalpel combined with secondary ionization such as ESI and mass spectrometry has the potential to provide molecular feedback to guide PIRL surgery.

  17. Efficient, high-power, ytterbium-fiber-laser-pumped picosecond optical parametric oscillator.

    PubMed

    Kokabee, O; Esteban-Martin, A; Ebrahim-Zadeh, M

    2010-10-01

    We report a high-power picosecond optical parametric oscillator (OPO) synchronously pumped by a Yb fiber laser at 1.064 μm, providing 11.7 W of total average power in the near to mid-IR at 73% extraction efficiency. The OPO, based on a 50 mm MgO:PPLN crystal, is pumped by 20.8 ps pulses at 81.1 MHz and can simultaneously deliver 7.1 W of signal at 1.56 μm and 4.6 W of idler at 3.33 μm for 16 W of pump power. The oscillator has a threshold of 740 mW, with maximum signal power of 7.4 W at 1.47 μm and idler power of 4.9 W at 3.08 μm at slope efficiencies of 51% and 31%, respectively. Wavelength coverage across 1.43-1.63 μm (signal) and 4.16-3.06 μm (idler) is obtained, with a total power of ~11 W and an extraction efficiency of ~68%, with pump depletion of ~78% maintained over most of the tuning range. The signal and idler output have a single-mode spatial profile and a peak-to-peak power stability of ±1.8% and ±2.9% over 1 h at the highest power, respectively. A signal pulse duration of 17.3 ps with a clean single-peak spectrum results in a time-bandwidth product of ~1.72, more than four times below the input pump pulses.

  18. Picosecond Pump-Probe Raman Spectroscopy of Excited States and Relaxation Phenomena in the Condensed Phase.

    NASA Astrophysics Data System (ADS)

    Lingle, Robert, Jr.

    This dissertation describes the development and application of pump-probe Raman spectroscopy using 8 ps laser pulses as a technique for the study of relaxation phenomena in the condensed phase. I show three examples of systems studied by this technique. First, the dissipation of the heat deposited in the cage of solvent molecules surrounding a photodissociated diatomic solute is directly measured in the solvent Raman spectrum. Second, we provide a full characterization of the excited A^ ' state of iodine which is formed in solution following photodissociation. This work discusses the solvent dependence of the iodine atom recombination process and points toward (iodine atom-solvent molecule) complexes as an intermediate species leading to recombination on the A^' state. We measure and rationalize the rates for both vibrational relaxation within and electronic relaxation out of the A^ ' state. Turning to a laser system, we measure the chromophore-to-protein vibrational relaxation time in deoxyhemoglobin. We learn that mechanical energy finds its way out of the heme and into the protein matrix with 2 to 5 ps exponential time constant. Both the study of iodine and deoxyhemoglobin emphasize that measuring the dynamics of the Stokes and anti-Stokes transient Raman signals provides a direct and powerful method to study vibrational population relaxation. Raman spectra are directly sensitive to vibrational level spacings and populations. As a result, Raman bands dynamics can be affected by electronic, vibrational, and conformational processes. Most previous Raman picosecond experiments have lacked the sensitivity necessary to probe the weak, transient anti-Stokes spectrum, which provides invaluable information on vibrational population dynamics. We also use a subtraction procedure to isolate the transient features in the spectrum, making our spectra taken at kiloHertz repetition rates very sensitive to small changes in the spectrum. This enables us to compare directly the

  19. Picosecond time-gated Raman spectroscopy for transcutaneous evaluation of bone composition

    NASA Astrophysics Data System (ADS)

    Morris, Michael D.; Draper, Edward R. C.; Goodship, Allen E.; Matousek, Pavel; Towrie, Michael; Parker, Anthony W.; Camacho, Nancy P.

    2005-04-01

    For efficacious transcutaneous monitoring of bone mineralization and matrix quality a spatially averaged measurement is needed, often over a large area. This precludes the use of confocal microscopy. We use picosecond pulsed laser excitation and Kerr-gated time-resolved data collection techniques to obtain marker bands of bone condition whilst rejecting interfering Raman scatter from skin, tendon and other overlying tissue. Alternatively, the methodology can be used to collect signals only from these overlying tissues. In all these experiments the 1 ps pulsed laser beam is focused to approximately 1 mm diameter. Raman light is then collected at specific times following the arrival of the pulse at time delays typically from 0 to 10 ps by opening an ultrafast optical shutter based on a Kerr cell that is driven by a second synchronized laser pulse. This permits specific probing of different layers of tissue. Individual delayed spectra are co-added and the resulting correction signal is subtracted from the ungated composite spectrum or from late-arriving time-resolved spectra. We have validated this methodology using tissue from the metacarpus and radius of several strains of laboratory mice. Overlying skin, flesh and tendon was removed from metacarpus and radius of one foreleg of a mouse and the tissue used as a control. The other foreleg served as the test specimen and was prepared by shaving the hair from the tissue, leaving the skin intact. Transcutaneous time-gated Raman spectra were measured on these specimens. With an 800 nm laser spatially resolved spectroscopy with depth penetration to greater than 1 mm was easily achieved. Normal and defective bone tissue were readily distinguished.

  20. Fiber laser pumped burst-mode operated picosecond mid-infrared laser

    NASA Astrophysics Data System (ADS)

    Wei, Kai-Hua; Jiang, Pei-Pei; Wu, Bo; Chen, Tao; Shen, Yong-Hang

    2015-02-01

    We demonstrate a compact periodically poled MgO-doped lithium niobate (MgO:PPLN)-based optical parametric oscillator (OPO) quasi-synchronously pumped by a fiber laser system with burst-mode operation. The pump source is a peak-power-selectable pulse-multiplied picosecond Yb fiber laser. The chirped pulses from a figure of eight-cavity mode-locked fiber laser seed are narrowed to a duration of less than 50 ps using an FBG reflector and a circulator. The narrowed pulses are directed to pass through a pulse multiplier and to form pulse bunches, each of which is composed of 13 sub-pulses. The obtained pulse bunches are amplified by two-stage fiber pre-amplifiers: one-stage is core-pumped and the other is cladding-pumped. A fiberized acousto-optic modulator is inserted to control the pulse repetition rate (PRR) of the pulse bunches before they are power-amplified in the final amplifier stage with a large mode area (LMA) PM Yb-doped fiber. The maximum average powers from the final amplifier are 85 W, 60 W, and 45 W, respectively, corresponding to the PRR of 2.72 MHz, 1.36 MHz, and 0.68 MHz. The amplified pulses are directed to pump an MgO:PPLN-based optical parametric oscillator (OPO). A maximum peak power at 3.45 μm is obtained approximately to be 8.4 kW. Detailed performance characteristics are presented. Project supported by the National Natural Science Foundation of China (Grant No. 61078015) and the National Basic Research Program of China (Grant No. 2011CB311803).

  1. Measurements of X-ray doses and spectra produced by picosecond laser-irradiated solid targets.

    PubMed

    Yang, Bo; Qiu, Rui; Yu, Minghai; Jiao, Jinlong; Lu, Wei; Yan, Yonghong; Zhang, Bo; Zhang, Zhimeng; Zhou, Weimin; Li, Junli; Zhang, Hui

    2017-05-01

    Experiments have shown that high-intensity laser interaction with a solid target can generate significant X-ray doses. This study was conducted to determine the X-ray doses and spectra produced for picosecond laser-irradiated solid targets. The photon doses and X-ray spectra in the laser forward and side directions were measured using an XG III ps 300 TW laser system. For laser intensities of 7×10(18)-4×10(19)W/cm(2), the maximum photon dose was 16.8 mSv at 50cm with a laser energy of ~153J on a 1-mm Ta target. The photon dose in the forward direction increased more significantly with increasing laser intensity than that in the side direction. For photon energies >300keV, the X-ray spectrum can be fit with an effective temperature distribution of the exponential form, dN/dE = k× exp(-E/Tx). The X-ray temperature Tx increased with the laser intensity in the forward direction with values of 0.46-0.75MeV. Tx was less strongly correlated with the laser intensity in the side direction with values of 0.29-0.32MeV. The escaping electron spectrum was also measured. The measured electron temperature was correlated with the electron temperature predicted by the ponderomotive law. The observations in this experiment were also investigated numerically. A good agreement was observed between the experimental and simulation results.

  2. Unfolding of Ubiquitin Studied by Picosecond Time-Resolved Fluorescence of the Tyrosine Residue

    PubMed Central

    Noronha, Melinda; Lima, João C.; Bastos, Margarida; Santos, Helena; Maçanita, António L.

    2004-01-01

    The photophysics of the single tyrosine in bovine ubiquitin (UBQ) was studied by picosecond time-resolved fluorescence spectroscopy, as a function of pH and along thermal and chemical unfolding, with the following results: First, at room temperature (25°C) and below pH 1.5, native UBQ shows single-exponential decays. From pH 2 to 7, triple-exponential decays were observed and the three decay times were attributed to the presence of tyrosine, a tyrosine-carboxylate hydrogen-bonded complex, and excited-state tyrosinate. Second, at pH 1.5, the water-exposed tyrosine of either thermally or chemically unfolded UBQ decays as a sum of two exponentials. The double-exponential decays were interpreted and analyzed in terms of excited-state intramolecular electron transfer from the phenol to the amide moiety, occurring in one of the three rotamers of tyrosine in UBQ. The values of the rate constants indicate the presence of different unfolded states and an increase in the mobility of the tyrosine residue during unfolding. Finally, from the pre-exponential coefficients of the fluorescence decays, the unfolding equilibrium constants (KU) were calculated, as a function of temperature or denaturant concentration. Despite the presence of different unfolded states, both thermal and chemical unfolding data of UBQ could be fitted to a two-state model. The thermodynamic parameters Tm = 54.6°C, ΔHTm = 56.5 kcal/mol, and ΔCp = 890 cal/mol//K, were determined from the unfolding equilibrium constants calculated accordingly, and compared to values obtained by differential scanning calorimetry also under the assumption of a two-state transition, Tm = 57.0°C, ΔHm= 51.4 kcal/mol, and ΔCp = 730 cal/mol//K. PMID:15454455

  3. Effect of defocusing on picosecond laser-coupling into gold cones

    SciTech Connect

    Bush, I. A. Pasley, J.; Thomas, A. G. R.; Gartside, L.; Sarfraz, S.; Wagenaars, E.; Green, J. S.; Notley, M.; Lowe, H.; Spindloe, C.; Winstone, T.; Robinson, A. P. L.; Clarke, R.; Ma, T.; Yabuuchi, T.; Wei, M.; Beg, F. N.; Stephens, R. B.; MacPhee, A.; MacKinnon, A. J.; and others

    2014-01-15

    Here, we show that defocusing of the laser in the interaction of a picosecond duration, 1.053 μm wavelength, high energy pulse with a cone-wire target does not significantly affect the laser energy coupling efficiency, but does result in a drop in the fast electron effective temperature. This may be beneficial for fast ignition, since not only were more electrons with lower energies seen in the experiment but also the lower prepulse intensity will reduce the amount of preplasma present on arrival of the main pulse, reducing the distance the hot electrons have to travel. We used the Vulcan Petawatt Laser at the Rutherford Appleton Laboratory and gold cone targets with approximately 1 mm long, 40 μm diameter copper wires attached to their tip. Diagnostics included a quartz crystal imager, a pair of highly oriented pyrolytic graphite crystal spectrometers and a calibrated CCD operating in the single photon counting regime, all of which looked at the copper K{sub α} emission from the wire. A short pulse optical probe, delayed 400 ps relative to the main pulse was employed to diagnose the extent of plasma expansion around the wire. A ray-tracing code modeled the change in intensity on the interior surface of the cone with laser defocusing. Using a model for the wire copper K{sub α} emission coupled to a hybrid Vlasov-Fokker-Planck code, we ran a series of simulations, holding the total energy in electrons constant whilst varying the electron temperature, which support the experimental conclusions.

  4. Fabrication of broadband antireflective black metal surfaces with ultra-light-trapping structures by picosecond laser texturing and chemical fluorination

    NASA Astrophysics Data System (ADS)

    Zheng, Buxiang; Wang, Wenjun; Jiang, Gedong; Mei, Xuesong

    2016-06-01

    A hybrid method consisting of ultrafast laser-assisted texturing and chemical fluorination treatment was applied for efficiently enhancing the surface broadband antireflection to fabricate black titanium alloy surface with ultra-light-trapping micro-nanostructure. Based on the theoretical analysis of surface antireflective principle of micro-nanostructures and fluoride film, the ultra-light-trapping micro-nanostructures have been processed using a picosecond pulsed ultrafast laser on titanium alloy surfaces. Then fluorination treatment has been performed by using fluoroalkyl silane solution. According to X-ray diffraction phase analysis of the surface compositions and measurement of the surface reflectance using spectrophotometer, the broadband antireflective properties of titanium alloy surface with micro-nano structural characteristics were investigated before and after fluorination treatment. The results show that the surface morphology of micro-nanostructures processed by picosecond laser has significant effects on the antireflection of light waves to reduce the surface reflectance, which can be further reduced using chemical fluorination treatment. The high antireflection of over 98 % in a broad spectral range from ultraviolet to infrared on the surface of metal material has been achieved for the surface structures, and the broadband antireflective black metal surfaces with an extremely low reflectance of ultra-light-trapping structures have been obtained in the wavelength range from ultraviolet-visible to near-infrared, middle-wave infrared. The average reflectance of microgroove groups structured surface reaches as low as 2.43 % over a broad wavelength range from 200 to 2600 nm. It indicates that the hybrid method comprising of picosecond laser texturing and chemical fluorination can effectively induce the broadband antireflective black metal surface. This method has a potential application for fabricating antireflective surface used to improve the

  5. Psychiatric emergencies.

    PubMed

    Cavanaugh, S V

    1986-09-01

    Psychiatric disorders are common in medical inpatient and outpatient populations. As a result, internists commonly are the first to see psychiatric emergencies. As with all medical problems, a good history, including a collateral history from relatives and friends, physical and mental status examination, and appropriate laboratory tests help establish a preliminary diagnosis and treatment plan. Patients with suicidal ideation usually have multiple stressors in the environment and/or a psychiatric disorder (i.e., a major affective disorder, dysthymic disorder, anxiety or panic disorder, psychotic disorder, alcohol or drug abuse, a personality disorder, and/or an adjustment disorder). Of all patients who commit suicide, 70% have a major depressive disorder, schizophrenia, psychotic organic mental disorder, alcoholism, drug abuse, and borderline personality disorder. Patients who are at great risk have minimal supports, a history of previous suicide attempts, a plan with high lethality, hopelessness, psychosis, paranoia, and/or command self-destructive hallucinations. Treatment is directed toward placing the patient in a protected environment and providing psychotropic medication and/or psychotherapy for the underlying psychiatric problem. Other psychiatric emergencies include psychotic and violent patients. Psychotic disorders fall into two categories etiologically: those that have an identifiable organic factor causing the psychosis and those that have an underlying psychiatric disorder. Initially, it is essential to rule out organic pathology that is life-threatening or could cause irreversible brain damage. After such organic causes are ruled out, neuroleptic medication is indicated. If the patient is not agitated or combative, he or she may be placed on oral divided doses of neuroleptics in the antipsychotic range. Patients who are agitated or psychotic need rapid tranquilization with an intramuscular neuroleptic every half hour to 1 hour until the agitation and

  6. Ablation Study of WC and PCD Composites Using 10 Picosecond and 1 Nanosecond Pulse Durations at Green and Infrared Wavelengths

    NASA Astrophysics Data System (ADS)

    Eberle, Gregory; Wegener, Konrad

    An ablation study is carried out to compare 10 picosecond and 1 nanosecond pulse durations as well as 532 nanometre and 1064 nanometre wavelengths at each corresponding pulse duration. All laser parameters are kept constant in order to understand the influence of pulse duration and wavelength independently. The materials processed according to the electronic band structure are a metal and an insulator/metal composite, i.e. tungsten carbide and polycrystalline diamond composite respectively. After laser processing said materials, the ablation rate and surface roughness are determined. Analysis into the ablation behaviour between the various laser parameters and the materials processed is given, with a particular emphasis on the graphitisation of diamond.

  7. Rapid fabrication of surface micro/nano structures with enhanced broadband absorption on Cu by picosecond laser.

    PubMed

    Fan, Peixun; Zhong, Minlin; Li, Lin; Huang, Ting; Zhang, Hongjun

    2013-05-20

    A surface micro/nano structuring technique was demonstrated by utilizing a picosecond laser beam to rapidly modify the optical property of copper surfaces with a scanning speed up to tens of millimeters per second. Three kinds of surface micro/nanostructures corresponding to three levels of reflectance were produced which are obviously different from those induced by a femtosecond or nanosecond laser. Specifically, a porous coral-like structure results in over 97% absorptivity in the visible spectral region and over 90% absorptivity in average in the UV, visible, and NIR regions (250 - 2500 nm). Potential applications may include solar energy absorbers, thermal radiation sources, and radiative heat transfer devices.

  8. Record bandwidth and sub-picosecond pulses from a monolithically integrated mode-locked quantum well ring laser.

    PubMed

    Moskalenko, Valentina; Latkowski, Sylwester; Tahvili, Saeed; de Vries, Tjibbe; Smit, Meint; Bente, Erwin

    2014-11-17

    In this paper, we present the detailed characterization of a semiconductor ring passively mode-locked laser with a 20 GHz repetition rate that was realized as an indium phosphide based photonic integrated circuit (PIC). Various dynamical regimes as a function of operating conditions were explored in the spectral and time domain. A record bandwidth of the optical coherent comb from a quantum well based device of 11.5 nm at 3 dB and sub-picosecond pulse generation is demonstrated.

  9. Tunable, continuous-wave Ti:sapphire channel waveguide lasers written by femtosecond and picosecond laser pulses.

    PubMed

    Grivas, Christos; Corbari, Costantino; Brambilla, Gilberto; Lagoudakis, Pavlos G

    2012-11-15

    Fabrication and cw lasing at 798.25 nm is reported for femtosecond (fs) and picosecond (ps) laser-inscribed channel waveguides in Ti:sapphire crystals. Lasing in channels written by fs (ps) pulses was obtained above a threshold of 84 mW (189 mW) with a maximum output power and a slope efficiency of 143 mW (45 mW) and 23.5% (7.1%), respectively. The emission wavelength was tuned over a 170 nm range by using a birefringent filter in an external cavity.

  10. Two-photon bioimaging utilizing supercontinuum light generated by a high-peak-power picosecond semiconductor laser source.

    PubMed

    Yokoyama, Hiroyuki; Tsubokawa, Hiroshi; Guo, Hengchang; Shikata, Jun-ichi; Sato, Ki-ichi; Takashima, Keijiro; Kashiwagi, Kaori; Saito, Naoaki; Taniguchi, Hirokazu; Ito, Hiromasa

    2007-01-01

    We developed a novel scheme for two-photon fluorescence bioimaging. We generated supercontinuum (SC) light at wavelengths of 600 to 1200 nm with 774-nm light pulses from a compact turn-key semiconductor laser picosecond light pulse source that we developed. The supercontinuum light was sliced at around 1030- and 920-nm wavelengths and was amplified to kW-peak-power level using laboratory-made low-nonlinear-effects optical fiber amplifiers. We successfully demonstrated two-photon fluorescence bioimaging of mouse brain neurons containing green fluorescent protein (GFP).

  11. Gas-phase thermometry using delayed-probe-pulse picosecond coherent anti-Stokes Raman scattering spectra of H2.

    PubMed

    Stauffer, Hans U; Kulatilaka, Waruna D; Hsu, Paul S; Gord, James R; Roy, Sukesh

    2011-02-01

    We report the development and application of a simple theoretical model for extracting temperatures from picosecond-laser-based coherent anti-Stokes Raman scattering (CARS) spectra of H2 obtained using time-delayed probe pulses. This approach addresses the challenges associated with the effects of rotational-level-dependent decay lifetimes on time-delayed probing for CARS thermometry. A simple procedure is presented for accurate temperature determination based on a Boltzmann distribution using delayed-probe-pulse vibrational CARS spectra of H2; this procedure requires measurement at only a select handful of probe-pulse delays and requires no assumptions about sample environment.

  12. X-Lase CoreScriber, Picosecond Fiber Laser Tool for High-Precision Scribing and Cutting of Transparent Materials

    NASA Astrophysics Data System (ADS)

    Kivistö, S.; Amberla, T.; Konnunaho, T.; Kangastupa, J.; Sillanpää, J.

    We have developed various industrial transparent material scribing processes and a laser tool, picosecond MHz-range all- fiber laser X-Lase CoreScriber. The remarkably high peak power, exceptionally good beam quality, and integrability of the X-Lase CoreScriber combined with high achievable material processing speeds provide tempting solutions for high- precision glass processing. Here presented sapphire and Gorilla glass dicing processes are based on transparent material internal modification with short and intense high repetition rate ps-laser pulses. Increased processing speeds and cutting qualities in comparison to other conventional processing methods are presented.

  13. Picosecond soft X-ray absorption measurement of the photo-inducedinsulator-to-metal transition in VO2.

    SciTech Connect

    Cavalleri, Andrea; Chong, Henry H.W.; Fourmaux, Sylvain; Glover,Thornton E.; Heimann, Phil A.; Kieffer, Jean Claude; Mun, B. Simon; Padmore, Howard A.; Schoenlein, Robert W.

    2004-02-01

    We directly measure the photoinduced insulator-to-metal transition in VO2 using time-resolved near-edge x-ray absorption. Picosecond pulses of synchrotron radiation are used to detect the redshift in the vanadium L3edge at 516 eV, which is associated with the transient collapse of the low-temperature band gap. We identify a two-component temporal response, corresponding to an ultrafast transformation over a 50 nm surface layer, followed by 40 m/s thermal growth of the metallic phase into the bulk.

  14. An all-fiber continuously time-dispersion-tuned picosecond optical parametric oscillator at 1 μm region.

    PubMed

    Zhang, Lei; Yang, Sigang; Li, Pengxiao; Wang, Xiaojian; Gou, Doudou; Chen, Wei; Luo, Wenyong; Chen, Hongwei; Chen, Minghua; Xie, Shizhong

    2013-10-21

    We report the experimental demonstration of a fully fiber-integrated picosecond optical parametric oscillator. The gain is provided by a 50-meters homemade photonic crystal fiber in the ring cavity. A time-dispersion-tuned technique is used to allow the oscillator to select the oscillating wavelength adaptively and synchronize with the pump pulse train. The output wavelength of the oscillator can be continuously tuned from 988 to 1046 nm and from 1085 to 1151 nm by adjusting the pump wavelength and the time-dispersion-tuned technique simultaneously.

  15. Use of picosecond optical pulses and FET's integrated with printed circuit antennas to generate millimeter wave radiation

    NASA Astrophysics Data System (ADS)

    Ni, D. C.; Plant, D. V.; Fetterman, H. R.; Matloubian, M.

    1991-03-01

    Millimeter-wave radiation has been generated from FETs and high electron mobility transistors (HEMTs), integrated with printed circuit antennas and illuminated with picosecond optical pulses. Modulation of the millimeter waves was achieved by applying a swept RF signal to the transistor gate. Using this technique, tunable electrical sidebands were added to the optically generated carrier providing a method of transmitting information. The technique also provides increased resolution for use in spectroscopic applications. Heterodyne detection demonstrated that the system continuously generated tunable radiation, constrained by the high-gain antenna, from 45 to 75 GHz.

  16. Liquid mercury sound velocity measurements under high pressure and high temperature by picosecond acoustics in a diamond anvils cell.

    PubMed

    Decremps, F; Belliard, L; Couzinet, B; Vincent, S; Munsch, P; Le Marchand, G; Perrin, B

    2009-07-01

    Recent improvements to measure ultrasonic sound velocities of liquids under extreme conditions are described. Principle and feasibility of picosecond acoustics in liquids embedded in a diamond anvils cell are given. To illustrate the capability of these advances in the sound velocity measurement technique, original high pressure and high temperature results on the sound velocity of liquid mercury up to 5 GPa and 575 K are given. This high pressure technique will certainly be useful in several fundamental and applied problems in physics and many other fields such as geophysics, nonlinear acoustics, underwater sound, petrology or physical acoustics.

  17. Generation of 0. 7--0. 8. mu. picosecond pulses in an alexandrite laser with passive mode locking

    SciTech Connect

    Lisitsyn, V.N.; Matrosov, V.N.; Orekhova, V.P.; Pestryakov, E.V.; Sevast'yanov, B.K.; Trunov, V.I.; Zenin, V.N.; Remigailo, Y.L.

    1982-03-01

    Picosecond pulses of 0.7--0.8 ..mu.. wavelengths were generated in an alexandrite laser as a result of electronic--vibrational transitions /sup 4/T/sub 2/ ..-->.. /sup 4/A/sub 2/+h..omega../sub phonon/. Passive mode locking was ensured by the use of DS1 and DTTS saturable absorbers. The duration of the pulses generated using DS1 was 8 psec at wavelengths of 0.725--0.745 ..mu.., whereas the duration of the pulses generated using DTTS was 90 psec in the range 0.75--0.775 ..mu...

  18. Observation of coherently enhanced tunable narrow-band terahertz transition radiation from a relativistic sub-picosecond electron bunch train

    SciTech Connect

    Piot, P.; Sun, Y. -E; Maxwell, T. J.; Ruan, J.; Lumpkin, A. H.; Rihaoui, M. M.; Thurman-Keup, R.

    2011-06-27

    We experimentally demonstrate the production of narrow-band (δf/f ~ =20% at f ~ = 0.5 THz) THz transition radiation with tunable frequency over [0.37, 0.86] THz. The radiation is produced as a train of sub-picosecond relativistic electron bunches transits at the vacuum-aluminum interface of an aluminum converter screen. In addition, we show a possible application of modulated beams to extend the dynamical range of a popular bunch length diagnostic technique based on the spectral analysis of coherent radiation.

  19. Transverse spatial coherence of a transient nickellike silver soft-x-ray laser pumped by a single picosecond laser pulse.

    PubMed

    Lucianetti, A; Janulewicz, K A; Kroemer, R; Priebe, G; Tümmler, J; Sandner, W; Nickles, P V; Redkorechev, V I

    2004-04-15

    The degree of spatial coherence in the direction perpendicular to the target surface is reported for a transient nickellike silver x-ray laser at 13.9 nm. An x-ray laser plasma column was produced by irradiating a slab silver target with a single shaped picosecond laser pulse with energy less than 3 J. Young's double-slit method was applied to measure the fringe visibility as a function of the slit separation for different target lengths. The diameter of the equivalent incoherent source and the coherence radius of the output radiation were determined as well.

  20. EFFECT OF LASER LIGHT ON MATTER. LASER PLASMAS: X-ray spectral diagnostics of plasmas heated by picosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Bryunetkin, B. A.; Skobelev, I. Yu; Faenov, A. Ya; Khakhalin, S. Ya; Kalashnikov, M. P.; Nickles, P. V.; Schnürer, M.

    1993-06-01

    The properties of a magnesium plasma heated by picosecond laser pulses have been determined by x-ray spectral methods. Experiments were carried out at a laser power density ~ 1.5 · 1018 W/cm2. The x-ray spectra were detected by spectrographs with a plane CsAP crystal and a mica crystal bent into part of a spherical surface 10 cm in radius. The experimental data are compared with predictions of a calculation on the time-varying kinetics of multiply charged magnesium ions.

  1. Emerging technologies

    SciTech Connect

    Lu, Shin-yee

    1993-03-01

    The mission of the Emerging Technologies thrust area at Lawrence Livermore National Laboratory is to help individuals establish technology areas that have national and commercial impact, and are outside the scope of the existing thrust areas. We continue to encourage innovative ideas that bring quality results to existing programs. We also take as our mission the encouragement of investment in new technology areas that are important to the economic competitiveness of this nation. In fiscal year 1992, we have focused on nine projects, summarized in this report: (1) Tire, Accident, Handling, and Roadway Safety; (2) EXTRANSYT: An Expert System for Advanced Traffic Management; (3) Odin: A High-Power, Underwater, Acoustic Transmitter for Surveillance Applications; (4) Passive Seismic Reservoir Monitoring: Signal Processing Innovations; (5) Paste Extrudable Explosive Aft Charge for Multi-Stage Munitions; (6) A Continuum Model for Reinforced Concrete at High Pressures and Strain Rates: Interim Report; (7) Benchmarking of the Criticality Evaluation Code COG; (8) Fast Algorithm for Large-Scale Consensus DNA Sequence Assembly; and (9) Using Electrical Heating to Enhance the Extraction of Volatile Organic Compounds from Soil.

  2. Emerging technologies

    SciTech Connect

    Hodson, C.O.; Williams, D.

    1996-07-01

    Among the emerging technologies for air, hazardous waste and water come new ways of looking at pollution, in both the figurative and quite literal sense. The use of microbes for remediation and pollution control is a component in many of the technologies in this report and is the focus of environmental research at many university and industry labs. Bacteria are the engines driving one featured emissions control technology: the air biofilter. Biofilters are probably more acceptable to most engineers as a soil remediation technology--such as the innovative method described in the hazardous waste section--rather than as means of cleaning off-gases, but in many cases bugs can perform the function inexpensively. The authors give the basics on this available technology. A more experimental application of microbes is being investigated as a potential quantum leap in heavy metals removal technology: bio-engineered, metal consuming plants. The effort to genetically engineer a green remediation tool is detailed in the hazardous waste section.

  3. 1-MW peak power, 574-kHz repetition rate picosecond pulses at 515 nm from a frequency-doubled fiber amplifier

    NASA Astrophysics Data System (ADS)

    Zou, Feng; Wang, Ziwei; Wang, Zhaokun; Bai, Yang; Li, Qiurui; Zhou, Jun

    2016-11-01

    1-MW peak power picosecond, 574-kHz repetition rate green laser at 515-nm is generated from a frequency-doubled fiber amplifier. 12-ps pulses with 13.9-μJ energy at 515 nm are achieved with a noncritically phase-matched lithium triborate (LBO) crystal through second harmonic generation of a 1030 nm infrared source. The infrared source employs ultra-large-mode-area rod-type photonic crystal fiber (Rod-PCF) for direct picosecond amplification and delivers 20-W 11.6-ps 2.97-MW pulse train with near-diffraction-limited beam quality (M2 = 1.01).

  4. High power 888 nm optical fiber end-pumped Nd:YVO4 picosecond regenerative amplifier at hundreds kHz

    NASA Astrophysics Data System (ADS)

    Bai, Zhenao; Fan, Zhongwei; Lian, Fuqiang; Tan, Tan; Bai, Zhenxu; Yang, Chao; Kang, Zhijun; Liu, Chang

    2016-10-01

    This paper describes a demonstration of a high power 888 nm end-pumped Nd:YVO4 picosecond regenerative amplifier operated at high repetition rate. By utilizing an all-fiber mode-locking picosecond laser as seed source and 888 nm continuous wave (CW) as pumping source, we obtained regenerative amplified output at 1064.07 nm with spectrum width 0.16 nm, pulse width of 38 ps, maximum power of 21 W, and the repetition rate is continuously adjustable from 300 to 500 kHz. The regenerative amplifier has high power stability and high compact structure.

  5. High-power, Yb-fiber-laser-pumped, picosecond parametric source tunable across 752-860 nm.

    PubMed

    Kumar, S Chaitanya; Kimmelma, O; Ebrahim-Zadeh, M

    2012-05-01

    We report a stable, high-power source of picosecond pulses in the near-infrared based on intracavity second harmonic generation (SHG) of a MgO:PPLN optical parametric oscillator synchronously pumped at 81 MHz by a mode-locked Yb-fiber laser. By exploiting the large spectral acceptance bandwidth for Type I (oo→e) SHG in β-BaB2O4 and a 5 mm crystal, we have generated picosecond pulses over 752-860 nm spectral range under minimal angle tuning, with as much as 3.5 W of output power at 778 nm and >2  W over 73% of the tuning range, in good beam quality with TEM00 spatial profile and M2<1.4. The SHG output pulses have durations of 15.2 ps, with a spectral bandwidth of ∼3.4  nm at 784 nm. In addition, the oscillator simultaneously provides a signal power of >1  W over 1505-1721 nm (25 THz) and idler power >1.8  W over 2787-3630 nm (25 THz), corresponding to a total (signal plus idler) tuning range of 1059 nm. The SHG, signal, and idler output exhibit passive long-term power stability better than 1.6%, 1.3%, and 1.6% rms, respectively, over 14 h.

  6. Compact KGd(WO4)2 picosecond pulse-train synchronously pumped broadband Raman laser.

    PubMed

    Gao, Xiao Qiang; Long, Ming Liang; Meng, Chen

    2016-08-20

    We demonstrate an efficient approach to realizing an extra-cavity, synchronously pumped, stimulated Raman cascaded process under low repetition frequency (1 kHz) pump conditions. We also construct a compact KGd(WO4)2 (KGW) crystal picosecond Raman laser that has been configured as the developed method. A pulse-train green laser pumped the corresponding 70 mm long KGW crystal Raman cavity. The pulse train contains six pulses, about 800 ps separated, for every millisecond; thus, it can realize synchronous pumping between pump pulse and the pumped Raman cavity. The investigated system produced a collinear Raman laser output that includes six laser lines covering the 532 to 800 nm spectra. This is the first report on an all-solid-state, high-average-power picosecond collinear multi-wavelength (more than three laser components) laser to our knowledge. This method has never been reported on before in the synchronously pumped stimulated Raman scattering (SRS) realm.

  7. Yb-fiber-laser-based, 1.8 W average power, picosecond ultraviolet source at 266 nm.

    PubMed

    Chaitanya Kumar, S; Canals Casals, J; Sanchez Bautista, E; Devi, K; Ebrahim-Zadeh, M

    2015-05-15

    We report a compact, stable, high-power, picosecond ultraviolet (UV) source at 266 nm based on simple single-pass two-step fourth-harmonic generation (FHG) of a mode-locked Yb-fiber laser at 79.5 MHz in LiB3O5 (LBO) and β-BaB2O4. Using a 30-mm-long LBO crystal for single-pass second-harmonic generation, we achieve up to 9.1 W of average green power at 532 nm for 16.8 W of Yb-fiber power at a conversion efficiency of 54% in 16.2 ps pulses with a TEM00 spatial profile and passive power stability better than 0.5% rms over 16 h. The generated green radiation is then used for single-pass FHG into the UV, providing as much as 1.8 W of average power at 266 nm under the optimum focusing condition in the presence of spatial walk-off, at an overall FHG conversion efficiency of ∼11%. The generated UV output exhibits passive power stability better than 4.6% rms over 1.5 h and beam pointing stability better than 84 μrad over 1 h. The UV output beam has a circularity of >80% in high beam quality with the TEM00 mode profile. To the best of our knowledge, this is the first report of picosecond UV generation at 266 nm at megahertz repetition rates.

  8. Fiber-laser-based, high-repetition-rate, picosecond ultraviolet source tunable across 329-348  nm.

    PubMed

    Devi, Kavita; Chaitanya Kumar, S; Ebrahim-Zadeh, M

    2016-10-15

    We report a compact, fiber-laser-based, high-repetition-rate picosecond source for the ultraviolet (UV), providing multi-tens of milliwatt of average power across 329-348 nm. The source is based on internal sum-frequency-generation (SFG) in a singly resonant optical parametric oscillator (OPO), synchronously pumped at 532 nm by the second harmonic of a picosecond Yb-fiber laser at 80 MHz repetition rate. Using a 30-mm-long single-grating MgO:sPPLT crystal for the OPO and a 5-mm-long BiB3O6 crystal for intracavity SFG, we generate up to 115 mW of average UV power at 339.9 nm, with >50  mW over 73% of the tuning range, for 1.6 W of input pump power. The UV output exhibits a passive rms power stability of ∼2.9% rms over 1 min and 6.5% rms over 2 h in high beam quality. Angular acceptance bandwidth and cavity detuning effects have also been studied.

  9. Effect of different parameters on machining of SiC/SiC composites via pico-second laser

    NASA Astrophysics Data System (ADS)

    Li, Weinan; Zhang, Ruoheng; Liu, Yongsheng; Wang, Chunhui; Wang, Jing; Yang, Xiaojun; Cheng, Laifei

    2016-02-01

    Pico-second laser plays an important role in modern machining technology, especially in machining high hardness materials. In this article, pico-second laser was utilized for irradiation on SiC/SiC composites, and effects of different processing parameters including the machining modes and laser power were discussed in detail. The results indicated that the machining modes and laser power had great effect on machining of SiC/SiC composites. Different types of surface morphology and structure were observed under helical line scanning and single ring line scanning, and the analysis of their formulation was discussed in detail. It was believed that the machining modes would be responsible to the different shapes of machining results at the same parameters. The processing power shall also influence the surface morphology and quality of machining results. In micro-hole drilling process, large amount of debris and fragments were observed within the micro-holes, and XPS analysis showed that there existed Si-O bonds and Si-C bonds, indicating that the oxidation during processing was incomplete. Other surface morphology, such as pores and pits were discussed as well.

  10. Research on marking lines of silicone elastomer PDMS for super-hydrophobic surface fabrication based on picosecond laser

    NASA Astrophysics Data System (ADS)

    Gang, Xiao; Dong, Shiyun; Yan, Shixing; Song, Chaoqun; Wang, Bin

    2016-10-01

    The picosecond laser has ultrashort pulse and superstrong peak power, which make it being focused on and applied in the micro-nanoscale fabrication field. Silicone elastomer PDMS is a typical antifouling material which can desorb defacement, using picosecond laser etching the surface through the way of galvanometer scanning in order to obtain a surface with micro-nano texture. The article studied the relationship between process parameters such as the power density, the scanning rate and the appearance of etched groove respectively, especially the width and depth of the groove. The results show that : for single marking, with the raise of the laser power density I, the depth of the groove increases, the inclination angle of the side wall is reduced. In another time, with the increase of the scanning rate v ,the depth of the groove decreases gradually and the surface morphology cannot be seen clearly. For multiple marking, the depth of the groove shown a falling slope from big to small with the increase of marking number. Finally,we got a path to optimize the process parameters to obtain a surface with micro-nano structures. After testing the surface contact angle, we found that the surface contact angle increased from 113° to 152°,which reached the level of superhydrophobic surface.

  11. All-fiber wavelength-tunable picosecond nonlinear reflectivity measurement setup for characterization of semiconductor saturable absorber mirrors

    NASA Astrophysics Data System (ADS)

    Viskontas, K.; Rusteika, N.

    2016-09-01

    Semiconductor saturable absorber mirror (SESAM) is the key component for many passively mode-locked ultrafast laser sources. Particular set of nonlinear parameters is required to achieve self-starting mode-locking or avoid undesirable q-switch mode-locking for the ultra-short pulse laser. In this paper, we introduce a novel all-fiber wavelength-tunable picosecond pulse duration setup for the measurement of nonlinear properties of saturable absorber mirrors at around 1 μm center wavelength. The main advantage of an all-fiber configuration is the simplicity of measuring the fiber-integrated or fiber-pigtailed saturable absorbers. A tunable picosecond fiber laser enables to investigate the nonlinear parameters at different wavelengths in ultrafast regime. To verify the capability of the setup, nonlinear parameters for different SESAMs with low and high modulation depth were measured. In the operating wavelength range 1020-1074 nm, <1% absolute nonlinear reflectivity accuracy was demonstrated. Achieved fluence range was from 100 nJ/cm2 to 2 mJ/cm2 with corresponding intensity from 10 kW/cm2 to 300 MW/cm2.

  12. 160 W high-power, high-efficiency, near-diffraction-limited beam quality all-fiber picosecond pulse laser

    NASA Astrophysics Data System (ADS)

    Sun, Chang; Ge, Tingwu; An, Na; Cao, Kang; Wang, Zhiyong

    2016-10-01

    We experimentally demonstrate a high-power, high-efficiency, near-diffraction-limited beam quality all-fiber picosecond pulse laser, which consists of a passively mode-locked seed laser and three-stage master power amplifiers. A repetition frequency multiplier and a high Yb-doped gain fiber with shorter length are utilized in the laser system to suppress the nonlinear effects and reduce the pulse broadening caused by dispersion. Moreover, the homemade light mode controllers based on a coiling and tapering fiber technique and the active fiber of the amplifier with a relatively small mode area are adopted to improve the beam quality. In addition, by experimentally adjusting the active fiber length, the optical conversion efficiency of the overall laser system can be optimized. Eventually, a 160 W high-power, high-efficiency, near-diffraction-limited picosecond pulse fiber laser is obtained, with the beam quality factor M2 at 1.12 and an optical conversion efficiency of the system of 75%.

  13. Structure and function of the photoreceptor stentorins in Stentor coeruleus. II. Primary photoprocess and picosecond time-resolved fluorescence.

    PubMed

    Song, P S; Kim, I H; Florell, S; Tamai, N; Yamazaki, T; Yamazaki, I

    1990-08-01

    Stentorin serves as the photoreceptor for the photophobic and negative phototactic responses in Stentor coeruleus. Two forms of the stentorin have been isolated and purified. The strongly fluorescent form, stentorin I at pH 7.8, exhibited nearly exponential fluorescence decay monitored at 620 nm, having two comparable lifetime decay components of 2.53 ns (47%) and 5.95 ns (53%). Stentorin I showed no significant time-resolved fluorescence emission spectra in the picosecond-nanosecond time scales. The weakly fluorescent form, stentorin II, exhibited an ultrafast fluorescence decay component (10 ps) at an emission wavelength of 630 nm and pH 7.8. The amplitudes of the multi-component fluorescence in stentorin II were found to be emission wavelength-dependent. Furthermore, the fluorescence emission spectrum was time-resolvable in the picosecond time scales. Effects of pH and pD on the fluorescence decay kinetics and time-resolved spectra of stentorins I and II have also been investigated. Results are suggestive of proton dissociation as a primary photoprocess from the excited state of stentorin II.

  14. Picosecond laser with specialized optic for facial rejuvenation using a compressed treatment interval.

    PubMed

    Khetarpal, Shilpi; Desai, Shraddha; Kruter, Laura; Prather, Heidi; Petrell, Kathleen; Depina, Joahinha; Arndt, Kenneth; Dover, Jeffrey S

    2016-10-01

    Studies using a 755 nm picosecond laser with a focus lens array have been reported to be effective for facial wrinkles and pigmentation. This study reports the safety and efficacy using a shorter interval of 2-3 weeks between treatments. Nineteen female subjects and one male subject, primarily Fitzpatrick skin types II and III (one skin type I), who had mild to moderate wrinkles and sun-induced pigmentation were enrolled and treated using the 755 nm PicoSure Laser with focus lens array. The skin was cleansed then wiped with an alcohol wipe prior to treatment. Lidocaine 30% ointment and/or forced air cooling could be used to increase subject comfort. Adjacent pulses, with minimal overlap (10% or less), were delivered to the full face. Subjects received four treatments, performed at 2-3-week intervals. The laser energy used was 0.71 J/cm(2) . The physician administered 3-7 passes with an average total of 6,253 pulses per treatment. Follow-up visits occurred at 1 and 3 months post-last treatment at which the physician scored satisfaction and improvement and subjects scored satisfaction and likelihood to recommend to others. The most common side effects were mild swelling, pain, redness, and crusting, most of which subsided within hours of the treatment, with the latest resolving within 48 hours. This is similar to a previous reported study (Weiss et al. ASLMS 2015) where treatments were performed every 6 weeks with side effects resolving within 24 hours. At the 1 and 3 month follow-up visits, 94% (n = 19) and 93% (n = 15) of subjects scored themselves as satisfied or extremely satisfied with their overall results and 81% and 93% were likely to recommend the treatment based on global assessment, respectively. The treating physician was satisfied with 93% of subject's overall results. Three blinded evaluators were able to correctly identify the baseline from post-treatment photographs in 77% of the subjects at the 1 month follow-up and 69% of the subjects

  15. Picosecond reorientational dynamics of polar dye probes in binary aqueous mixtures

    NASA Astrophysics Data System (ADS)

    Dutt, G. B.; Doraiswamy, S.

    1992-02-01

    Picosecond time dependent fluorescence method has been used to measure the rotational reorientation times (τr) of three kinds of dye probes—oxazine 720 (a monocation), nile red (neutral but polar), and resorufin (a monoanion)—in a series of binary mixtures of water-amides, water-dipolar aprotics, and water-alcohols at 298 K. Most of the binary mixtures are characterized by the fact that at a particular composition (between 25% to 40% of the organic solvent in water), the viscosity (η) of the solution reaches a maximum value that is higher than the viscosities of the two solvents. As a consequence, the viscosity profile of the solution as a function of the organic solvent exhibits a bivaluedness, the extent of which is more, if the liquids are nearly isoviscous. The dielectric properties of the solution also change across the composition range. All the dyes show a near linear behavior of τr vs η in formamide-water, N-methylformamide-water, and methanol-water mixtures. A dual-valued profile for τr vs η is obtained for the cation oxazine 720 in the three dipolar aprotic mixtures (N, N-dimethylformamide-water, N, N-dimethylacetamide-water, and dimethylsulphoxide-water), with the rotational reorientation times being higher in the organic solvent-rich zone, compared to the corresponding isoviscous point in the water-rich zone. However, the anion resorufin shows a bivalued profile of τr vs η only in dimethylsulphoxide-water mixtures, while the neutral nile red shows a linear behavior in all the dipolar-aprotic water mixtures. A hook-type profile of τr vs η is seen for the anion resorufin in ethanol-, 1-propanol-, and 2-propanol-water mixtures and for the cation oxazine 720 in 1-propanol- and 2-propanol-water mixtures; but nile red shows no departure from linear behavior even in alcohol-water mixtures. The rotational dynamics of the cation oxazine 720 in dipolar aprotic-water mixtures is explained in terms of solvation since the dielectric friction is minimal

  16. Intense picosecond pulsed electric fields inhibit proliferation and induce apoptosis of HeLa cells.

    PubMed

    Zhang, Min; Xiong, Zheng-Ai; Chen, Wen-Juan; Yao, Cheng-Guo; Zhao, Zhong-Yong; Hua, Yuan-Yuan

    2013-06-01

    A picosecond pulsed electric field (psPEF) is a localized physical therapy for tumors that has been developed in recent years, and that may in the future be utilized as a targeted non‑invasive treatment. However, there are limited studies regarding the biological effects of psPEF on cells. Electric field amplitude and pulse number are the main parameters of psPEF that influence its biological effects. In this study, we exposed HeLa cells to a psPEF with a variety of electric field amplitudes, from 100 to 600 kV/cm, and various pulse numbers, from 1,000 to 3,000. An MTT assay was used to detect the growth inhibition, while flow cytometry was used to determine the occurrence of apoptosis and the cell cycle of the HeLa cells following treatment. The morphological changes during cell apoptosis were observed using transmission electron microscopy (TEM). The results demonstrated that the cell growth inhibition rate gradually increased, in correlation with the increasing electric field amplitude and pulse number, and achieved a plateau of maximum cell inhibition 12 h following the pulses. In addition, typical characteristics of HeLa cell apoptosis in the experimental groups were observed by TEM. The results demonstrated that the rate of apoptosis in the experimental groups was significantly elevated in comparison with the untreated group. In the treatment groups, the rate of apoptosis was greater in the higher amplitude groups than in the lower amplitude groups. The same results were obtained when the variable was the pulse number. Flow cytometric analysis indicated that the cell cycle of the HeLa cells was arrested at the G2/M phase following psPEF treatment. Overall, our results indicated that psPEF inhibited cell proliferation and induced cell apoptosis, and that these effects occurred in a dose-dependent manner. In addition, the results demonstrated that the growth of the HeLa cells was arrested at the G2/M phase following treatment. This study may provide a

  17. High power gain switched laser diodes using a novel compact picosecond switch based on a GaAs bipolar junction transistor structure for pumping

    NASA Astrophysics Data System (ADS)

    Vainshtein, Sergey; Kostamovaara, Juha

    2006-04-01

    A number of up-to-date applications, including advanced optical radars with high single-shot resolution, precise 3 D imaging, laser tomography, time imaging spectroscopy, etc., require low-cost, compact, reliable sources enabling the generation of high-power (1-100 W) single optical pulses in the picosecond range. The well-known technique of using the gain-switching operation mode of laser diodes to generate single picosecond pulses in the mW range fails to generate high-power single picosecond pulses because of a lack of high-current switches operating in the picosecond range. We report here on the achieving of optical pulses of 45W / 70ps, or alternatively 5W / 40ps, with gain-switched commercial quantum well (QW) laser diodes having emitting areas of 250 × 200 μm and 75 × 2 μm, respectively. This was made possible by the use of a novel high-current avalanche switch based on a GaAs bipolar junction transistor (BJT) structure with a switching time (<200ps) comparable to the lasing delay. (The extremely fast transient in this switch is caused by the generation and spread of a comb of powerfully avalanching Gunn domains of ultra-high amplitude in the transistor structure.) A simulation code developed earlier but modified and carefully verified here allowed detailed comparison of the experimental and simulated laser responses and the transient spectrum.

  18. Study of Ultrafast Internal Conversion in Molecules and Ultrafast Dephasing in Condensed Matter with Picosecond Dye Lasers.

    NASA Astrophysics Data System (ADS)

    Xie, Yongjin

    A picosecond cascaded transient oscillator (CTO) dye laser system was modified to generate continuous tunable, near transform-limited picosecond pulses. To improve the CTO system, the characteristics of a simple N_2 laser side-pumped dye laser (the first stage of CTO system) was thoroughly examined. It was found that both the pulse shape and the duration were affected strongly by the tuned wavelength, cavity length, pumping intensity, and the feedback signal from both the front and the back reflectors. A single output pulse as short as 40 ps could be generated by optimizing the operating parameters. The final output of the CTO system has a pulse duration less than 10 ps and a bandwidth less than 1 A. The technique of infrared multiphoton ionization was used to obtain state specific internal conversion rates in CrO_2Cl_2. Using narrow-band tunable 10 ps dye laser pulses, different vibrational states in the B_1 manifold were excited and the energy relaxation was monitored by an IR ps laser pulse. The relaxation can be characterized by a fast component, which is due to internal conversion to the ^1A_1 state, and a slow component, which is due to cooling of the vibrationally hot ^1A _1 ground state. The nonradiative energy transfer rate changes by almost three orders of magnitude for an excess vibrational energy change of merely 550 cm ^{-1}. With broadband incoherent picosecond dye laser pulse, the measurement of the dephasing time T _2 in dye solutions and semiconductor-doped glasses by the two pulse correlation method was demonstrated, with T_2<=ss than the correlation time of the excitation pulse tau_ {rm c}. It was found the dephasing time T_2 measured depended on the excitation photon energy relative to the band-edge or the energy difference between the ground state and the first excited electronic state. In the case of band-edge excitation, a quantum beat behavior with a beat frequency about 28 tera-hertz was observed in Rh-560 dye solutions.

  19. [Pediatric emergencies in the emergency medical service].

    PubMed

    Silbereisen, C; Hoffmann, F

    2015-01-01

    Out-of-hospital pediatric emergencies occur rarely but are feared among medical personnel. The particular characteristics of pediatric cases, especially the unaccustomed anatomy of the child as well as the necessity to adapt the drug doses to the little patient's body weight, produce high cognitive and emotional pressure. In an emergency standardized algorithms can facilitate a structured diagnostic and therapeutic approach. The aim of this article is to provide standardized procedures for the most common pediatric emergencies. In Germany, respiratory problems, seizures and analgesia due to trauma represent the most common emergency responses. This article provides a practical approach concerning the diagnostics and therapy of emergencies involving children.

  20. Emergency care toolkits.

    PubMed

    Black, Steven

    2004-06-01

    Emergency care services are the focus of a series of toolkits developed by the NHS National electronic Library for Health to provide resources for emergency care leads and others involved in modernising emergency care, writes Steven Black.

  1. Emergency Contraception Website

    MedlinePlus

    Text Only Full media Version Get Emergency Contraception NOW INFO about Emergency Contraception Q&A about Emergency Contraception Español | Arabic Find a Morning After Pill Provider Near You This website is ...

  2. Emergency Medical Services

    MedlinePlus

    ... need help right away, you should use emergency medical services. These services use specially trained people and ... emergencies, you need help where you are. Emergency medical technicians, or EMTs, do specific rescue jobs. They ...

  3. Wireless Emergency Alerts

    MedlinePlus

    ... Us Main Content Frequently Asked Questions: Wireless Emergency Alerts This section contains answers to a list of frequently asked questions about Wireless Emergency Alerts (WEAs). Why are Wireless Emergency Alerts (WEA) important ...

  4. Pediatric office emergencies.

    PubMed

    Fuchs, Susan

    2013-10-01

    Pediatricians regularly see emergencies in the office, or children that require transfer to an emergency department, or hospitalization. An office self-assessment is the first step in determining how to prepare for an emergency. The use of mock codes and skill drills make office personnel feel less anxious about medical emergencies. Emergency information forms provide valuable, quick information about complex patients for emergency medical services and other physicians caring for patients. Furthermore, disaster planning should be part of an office preparedness plan.

  5. Incubation and nanostructure formation on n- and p-type Si(1 0 0) and Si(1 1 1) at various doping levels induced by sub-nanojoule femto- and picosecond near-infrared laser pulses

    NASA Astrophysics Data System (ADS)

    Schüle, M.; Afshar, M.; Feili, D.; Seidel, H.; König, K.; Straub, M.

    2014-09-01

    N- and p-doped Si(1 0 0) and Si(1 1 1) surfaces with dopant concentrations of 2 × 1014-1 × 1019 cm-3 were irradiated by tightly focused 85-MHz repetition rate Ti:sapphire laser light (central wavelength 800 nm, bandwidth 120 nm) at pulse durations of 12 fs to 1.6 ps. Dependent on pulse peak intensity and exposure time nanorifts, ripples of period 130 nm as well as sponge-like randomly nanoporous surface structures were generated with water immersion and, thereafter, laid bare by etching off aggregated oxide nanoparticles. The same structure types emerged in air or water with transform-limited 100-fs pulses. At a pulse length of 12 fs pronounced incubation occurred with incubation coefficients S = 0.66-0.85, whereas incubation was diminished for picosecond pulses (S > 0.95). The ablation threshold strongly rose with dopant concentration. At similar doping level it was higher for n-type than for p-type samples and for Si(1 0 0) compared to Si(1 1 1) surfaces. These observations are attributed to laser-induced defect states in the bandgap which participate in photoexcitation, deactivation of dopants by complex formation, and different densities of interface states at the boundary with the ultrathin native silicon dioxide surface layer. The threshold increase with pulse length revealed predominant single-photon excitation as well as multiphoton absorption.

  6. Submicrosecond regular and chaotic nonlinear dynamics in a pulsed picosecond Nd:YAG laser with millisecond pumping.

    PubMed

    Gorbunkov, M V; Maslova, Yu Ya; Petukhov, V A; Semenov, M A; Shabalin, Yu V; Vinogradov, A V

    2009-04-20

    We propose and study both numerically and experimentally a feedback-controlled laser system capable of generating regular bursts with a submicrosecond period. Bursting is obtained in a laser that is controlled by a combination of feedbacks in which the negative feedback loop action is delayed by one cavity round trip with respect to the positive one, and the period is adjusted by relative feedback sensitivity. The proper combination of feedbacks is realized in a Nd:YAG laser with millisecond pumping by means of a single optoelectronic negative feedback unit that utilizes the signal reflected from an intracavity Pockels cell polarizer. Regular bursting (microgroups of picosecond pulses) with controlled periods from 25 to 75 cavity round trips is obtained experimentally. The development of chaotic dynamics displayed by the system at a higher pumping level differs from the Feigenbaum scenario.

  7. Superconducting single-photon counting system for optical experiments requiring time-resolution in the picosecond range

    NASA Astrophysics Data System (ADS)

    Toussaint, Julia; Grüner, Roman; Schubert, Marco; May, Torsten; Meyer, Hans-Georg; Dietzek, Benjamin; Popp, Jürgen; Hofherr, Matthias; Arndt, Matthias; Henrich, Dagmar; Il'in, Konstantin; Siegel, Michael

    2012-12-01

    We have developed a cryogenic measurement system for single-photon counting, which can be used in optical experiments requiring high time resolution in the picosecond range. The system utilizes niobium nitride superconducting nanowire single-photon detectors which are integrated in a time-correlated single-photon counting (TCSPC) setup. In this work, we describe details of the mechanical design, the electrical setup, and the cryogenic optical components. The performance of the complete system in TCSPC mode is tentatively benchmarked using 140 fs long laser pulses at a repetition frequency of 75 MHz. Due to the high temporal stability of these pulses, the measured time resolution of 35 ps (FWHM) is limited by the timing jitter of the measurement system. The result was cross-checked in a Coherent Anti-stokes Raman Scattering (CARS) setup, where scattered pulses from a β-barium borate crystal have been detected with the same time resolution.

  8. Fabrication of periodical surface structures by picosecond laser irradiation of carbon thin films: transformation of amorphous carbon in nanographite

    NASA Astrophysics Data System (ADS)

    Popescu, C.; Dorcioman, G.; Bita, B.; Besleaga, C.; Zgura, I.; Himcinschi, C.; Popescu, A. C.

    2016-12-01

    Thin films of carbon were synthesized by ns pulsed laser deposition in vacuum on silicon substrates, starting from graphite targets. Further on, the films were irradiated with a picosecond laser source emitting in visible at 532 nm. After tuning of laser parameters, we obtained a film surface covered by laser induced periodical surface structures (LIPSS). They were investigated by optical, scanning electron and atomic force microscopy. It was observed that changing the irradiation angle influences the LIPSS covered area. At high magnification it was revealed that the LIPSS pattern was quite complex, being composed of other small LIPSS islands, interconnected by bridges of nanoparticles. Raman spectra for the non-irradiated carbon films were typical for a-C type of diamond-like carbon, while the LIPSS spectra were characteristic to nano-graphite. The pristine carbon film was hydrophilic, while the LIPSS covered film surface was hydrophobic.

  9. Yb:YAG single-crystal fiber amplifiers for picosecond lasers using the divided pulse amplification technique.

    PubMed

    Lesparre, Fabien; Gomes, Jean Thomas; Délen, Xavier; Martial, Igor; Didierjean, Julien; Pallmann, Wolfgang; Resan, Bojan; Druon, Frederic; Balembois, François; Georges, Patrick

    2016-04-01

    A two-stage master-oscillator power-amplifier (MOPA) system based on Yb:YAG single-crystal-fiber (SCF) technology and designed for high peak power is studied to significantly increase the pulse energy of a low-power picosecond laser. The first SCF amplifier has been designed for high gain. Using a gain medium optimized in terms of doping concentration and length, an optical gain of 32 dB has been demonstrated. The second amplifier stage designed for high energy using the divided pulse technique allows us to generate a recombined output pulse energy of 2 mJ at 12.5 kHz with a pulse duration of 6 ps corresponding to a peak power of 320 MW. Average powers ranging from 25 to 55 W with repetition rates varying from 12.5 to 500 kHz have been demonstrated.

  10. Method to control depth error when ablating human dentin with numerically controlled picosecond laser: a preliminary study.

    PubMed

    Sun, Yuchun; Yuan, Fusong; Lv, Peijun; Wang, Dangxiao; Wang, Lei; Wang, Yong

    2015-07-01

    A three-axis numerically controlled picosecond laser was used to ablate dentin to investigate the quantitative relationships among the number of additive pulse layers in two-dimensional scans starting from the focal plane, step size along the normal of the focal plane (focal plane normal), and ablation depth error. A method to control the ablation depth error, suitable to control stepping along the focal plane normal, was preliminarily established. Twenty-four freshly removed mandibular first molars were cut transversely along the long axis of the crown and prepared as 48 tooth sample slices with approximately flat surfaces. Forty-two slices were used in the first section. The picosecond laser was 1,064 nm in wavelength, 3 W in power, and 10 kHz in repetition frequency. For a varying number (n = 5-70) of focal plane additive pulse layers (14 groups, three repetitions each), two-dimensional scanning and ablation were performed on the dentin regions of the tooth sample slices, which were fixed on the focal plane. The ablation depth, d, was measured, and the quantitative function between n and d was established. Six slices were used in the second section. The function was used to calculate and set the timing of stepwise increments, and the single-step size along the focal plane normal was d micrometer after ablation of n layers (n = 5-50; 10 groups, six repetitions each). Each sample underwent three-dimensional scanning and ablation to produce 2 × 2-mm square cavities. The difference, e, between the measured cavity depth and theoretical value was calculated, along with the difference, e 1, between the measured average ablation depth of a single-step along the focal plane normal and theoretical value. Values of n and d corresponding to the minimum values of e and e 1, respectively, were obtained. In two-dimensional ablation, d was largest (720.61 μm) when n = 65 and smallest when n = 5 (45.00 μm). Linear regression yielded the quantitative

  11. Visualizing hippocampal neurons with in vivo two-photon microscopy using a 1030 nm picosecond pulse laser.

    PubMed

    Kawakami, Ryosuke; Sawada, Kazuaki; Sato, Aya; Hibi, Terumasa; Kozawa, Yuichi; Sato, Shunichi; Yokoyama, Hiroyuki; Nemoto, Tomomi

    2013-01-01

    In vivo two-photon microscopy has revealed vital information on neural activity for brain function, even in light of its limitation in imaging events at depths greater than several hundred micrometers from the brain surface. We developed a novel semiconductor-laser-based light source with a wavelength of 1030 nm that can generate pulses of 5-picosecond duration with 2-W output power, and a 20-MHz repetition rate. We also developed a system to secure the head of the mouse under an upright microscope stage that has a horizontal adjustment mechanism. We examined the penetration depth while imaging the H-Line mouse brain and demonstrated that our newly developed laser successfully images not only cortex pyramidal neurons spreading to all cortex layers at a superior signal-to-background ratio, but also images hippocampal CA1 neurons in a young adult mouse.

  12. High energy green nanosecond and picosecond pulse delivery through a negative curvature fiber for precision micro-machining.

    PubMed

    Jaworski, Piotr; Yu, Fei; Carter, Richard M; Knight, Jonathan C; Shephard, Jonathan D; Hand, Duncan P

    2015-04-06

    In this paper we present an anti-resonant guiding, low-loss Negative Curvature Fiber (NCF) for the efficient delivery of high energy short (ns) and ultrashort (ps) pulsed laser light in the green spectral region. The fabricated NCF has an attenuation of 0.15 dB/m and 0.18 dB/m at 532 nm and 515 nm respectively, and provided robust transmission of nanosecond and picosecond pulses with energies of 0.57 mJ (10.4 kW peak power) and 30 µJ (5 MW peak power) respectively. It provides single-mode, stable (low bend-sensitivity) output and maintains spectral and temporal properties of the source laser beam. The practical application of fiber-delivered pulses has been demonstrated in precision micro-machining and marking of metals and glass.

  13. Formation of laser-induced periodic surface structures (LIPSS) on tool steel by multiple picosecond laser pulses of different polarizations

    NASA Astrophysics Data System (ADS)

    Gregorčič, Peter; Sedlaček, Marko; Podgornik, Bojan; Reif, Jürgen

    2016-11-01

    Laser-induced periodic surface structures (LIPSS) are produced on cold work tool steel by irradiation with a low number of picosecond laser pulses. As expected, the ripples, with a period of about 90% of the laser wavelength, are oriented perpendicular to the laser polarization. Subsequent irradiation with the polarization rotated by 45° or 90° results in a corresponding rotation of the ripples. This is visible already with the first pulse and becomes almost complete - erasing the previous orientation - after as few as three pulses. The phenomenon is not only observed for single-spot irradiation but also for writing long coherent traces. The experimental results strongly defy the role of surface plasmon-polaritons as the predominant key to LIPSS formation.

  14. Compact tunable high power picosecond source based on Yb-doped fiber amplification of gain switch laser diode.

    PubMed

    Liu, Hongjun; Gao, Cunxiao; Tao, Jintao; Zhao, Wei; Wang, Yishan

    2008-05-26

    A compact tunable high power picosecond source based on Yb-doped fiber amplification of gain switch laser diode is demonstrated. A multi-stage single mode Yb-doped fiber preamplifier was combined with a single mode double-clad Yb-doped fiber main amplifier to construct the amplification system, which is seeded by a gain switch laser diode. By optimizing preamplifier???s parameters to compensate the seed spectrum gain, a "flat top" broadband spectrum is obtained to realize wavelength tunable output with a self-made tunable filter. The tunable pulses were further amplified to 3.5 W average power 90 ps pulses at 1 MHz repetition rate, and the center wavelength was tunable in the ranges from 1053 nm to 1073 nm with excellent beam quality.

  15. Picosecond mass-selective measurements of phenol-(NH3)n acid-base chemistry in clusters

    NASA Astrophysics Data System (ADS)

    Steadman, Jhobe; Syage, Jack A.

    1990-04-01

    The rate of proton transfer from the acidic S1 state of phenol to the basis solvent (NH3)n was measured as a function of solvent cluster size n. A distinct reaction threshold was observed for solvent size n=5 for 266 nm picosecond excitation. The proton transfer rate was measured to be ka=(60±10 ps)-1 for n=5-7. A competitive recombination rate of k-a =(350±100 ps)-1 occurs for n=5. Additional solvation stabilizes the product side causing the reaction enthalpy and consequently k-a to decrease. No evidence of proton transfer was observed when phenol was seeded in the less basic solvent clusters (CH3OH)n and (H2O)n.

  16. High-power picosecond terahertz-wave generation in photonic crystal fiber via four-wave mixing.

    PubMed

    Wu, Huihui; Liu, Hongjun; Huang, Nan; Sun, Qibing; Wen, Jin

    2011-09-20

    We demonstrate picosecond terahertz (THz)-wave generation via four-wave mixing in an octagonal photonic crystal fiber (O-PCF). Perfect phase-matching is obtained at the pump wavelength of 1.55 μm and a generation scheme is proposed. Using this method, THz waves can be generated in the frequency range of 7.07-7.74 THz. Moreover, peak power of 2.55 W, average power of 1.53 mW, and peak conversion efficiency of more than -66.65 dB at 7.42 THz in a 6.25 cm long fiber are realized with a pump peak power of 2 kW.

  17. Experimental demonstration of sub-picosecond optical pulse shaping in silicon based on discrete space-to-time mapping.

    PubMed

    Bazargani, Hamed Pishvai; Burla, Maurizio; Azaña, José

    2015-12-01

    We experimentally demonstrate on-chip optical pulse shaping based on discrete space-to-time mapping in cascaded co-directional couplers. The demonstrated shapers validate a recent design methodology that exploits the direct relationship between the discrete complex spatial apodization profile of a structure of cascaded couplers and the time-domain impulse response of the device. In this design, the amplitude and phase of the apodization profile can be controlled through the coupling strength of each coupler and the relative time delay between the waveguides connecting consecutive couplers, respectively. This design methodology has been successfully used to demonstrate direct synthesis of high-quality flat-top and phase-coded pulse trains with resolutions down to the sub-picosecond range using passive devices in a silicon-on-insulator platform.

  18. Picosecond-resolved X-ray absorption spectroscopy at low signal contrast using a hard X-ray streak camera

    SciTech Connect

    Adams, Bernhard W.; Rose-Petruck, Christoph; Jiao, Yishuo

    2015-06-24

    A picosecond-resolving hard-X-ray streak camera has been in operation for several years at Sector 7 of the Advanced Photon Source (APS). Several upgrades have been implemented over the past few years to optimize integration into the beamline, reduce the timing jitter, and improve the signal-to-noise ratio. These include the development of X-ray optics for focusing the X-rays into the sample and the entrance slit of the streak camera, and measures to minimize the amount of laser light needed to generate the deflection-voltage ramp. For the latter, the photoconductive switch generating the deflection ramp was replaced with microwave power electronics. With these, the streak camera operates routinely at 88 MHz repetition rate, thus making it compatible with all of the APS fill patterns including use of all the X-rays in the 324-bunch mode. Sample data are shown to demonstrate the performance.

  19. Structural determination of a short-lived excited iron(II) complex by picosecond x-ray absorption spectroscopy.

    PubMed

    Gawelda, Wojciech; Pham, Van-Thai; Benfatto, Maurizio; Zaushitsyn, Yuri; Kaiser, Maik; Grolimund, Daniel; Johnson, Steven L; Abela, Rafael; Hauser, Andreas; Bressler, Christian; Chergui, Majed

    2007-02-02

    Structural changes of the iron(II)-tris-bipyridine ([Fe(II)(bpy)(3)](2+)) complex induced by ultrashort pulse excitation and population of its short-lived (< or =0.6 ns) quintet high spin state have been detected by picosecond x-ray absorption spectroscopy. The structural relaxation from the high spin to the low spin state was followed over the entire lifetime of the excited state. A combined analysis of the x-ray-absorption near-edge structure and extended x-ray-absorption fine structure spectroscopy features delivers an Fe-N bond elongation of 0.2 A in the quintet state compared to the singlet ground state.

  20. Progress in kW-class picosecond thin-disk lasers development at the HiLASE

    NASA Astrophysics Data System (ADS)

    Smrž, Martin; Mužík, Jiří; Novák, Ondřej; Chyla, Michal; Turčičová, Hana; Nagisetty, Siva S.; Huynh, Jaroslav; Miura, Taisuke; Linnemann, Jens; Severová, Patricie; Sikocinski, Pawel; Endo, Akira; Mocek, Tomáš

    2016-03-01

    High average power picosecond Yb:YAG thin-disk lasers are being developed at Hilase. A compact 1 mJ/100 kHz and 4 mJ/100 kHz zero-phonon-line-pumped regenerative amplifiers PERLA C with a CVBG compressor provide <2 ps long pulses in a nearly diffraction-limited beam. The output was successfully converted to 2nd and 4th harmonic frequency with high conversion efficiency. High energy, QCW-pumped beamline PERLA B is operated at 45mJ/1kHz in fundamental spatial mode and pulse length < 2ps. Its second stage amplifier is being assembled and 1.8 J was extracted. The latest development status of all thin-disk beamlines at the Hilase center is reported.