Science.gov

Sample records for emerging terawatt picosecond

  1. Terawatt Picosecond CO(sub 2) Laser Technology for High Energy Physics Applications

    SciTech Connect

    Pogorelsky, I. V.

    1998-07-05

    Demonstration of ultra-high acceleration gradients in the SM LWFA experiments put a next objective for the laser accelerator development to achieve a low-emittance monochromatic acceleration over extended interaction distances. The emerging picosecond terawatt (ps-TW) CO{sub 2} laser technology helps to meet this strategic goal. Among the considered examples are: the staged electron laser accelerator (STELLA) experiment, which is being conducted at the Brookhaven ATF, and the plasma-channeled LWFA. The long-wavelength and high average power capabilities of CO{sub 2} lasers maybe utilized also for generation of intense x-ray and gamma radiation through Compton back-scattering of the laser beams off relativistic electrons. We discuss applications of ps-TW CO{sub 2} lasers for a tentative {gamma}-{gamma} (or {gamma}-lepton) collider and generation of polarized positron beams.

  2. High-brightness picosecond ion beam source based on BNL Terawatt CO2 laser: Proof-of-principle experiments

    SciTech Connect

    Shkolnikov, Peter

    2012-10-04

    Under the continuing DOE support, we have: o assembled the basic experiment setup and then continued expanding it to include diverse diagnostics and to accommodate gas jet targets in addition to metal foils; o conducted an extensive study of our novel laser, significantly enhanced laser beam diagnostics, and improved relevant laser parameters; o turned our experiments into a truly international endeavor with active collaboration of close to 20 researchers in US, UK, and Germany; o conducted the first ever experiments with proton and ion acceleration by lasers interacting with overcritical plasma of gas jets; o for the first time directly observed radiation pressure acceleration of protons, including quasi-monoenergetic spectra promising for future applications; o for the first time directly observed quasi-stable, bubble-like plasma structures that likely evolved from relativistic laser-plasma solitons (post-solitons). Thus, we have confirmed a strong potential of a picosecond TW CO2 laser as a research tool in laser-plasma science and as a promising vehicle for future applications of laser ion acceleration. This has led to apparent increase of the interest in mid-IR laser ion acceleration. In particular, another major research group began extensive proton acceleration experiments with their own CO2 laser at UCLA. As a result, the mechanisms responsible for laser proton acceleration in gas jets have become somewhat clearer. It is also important to note that modest DOE funding played the role of a seed support ensuring the formation of a multinational research team, whose members contributed its time and equipment with value well in excess of that seed amount.

  3. Effects of picosecond terawatt UV laser beam filamentation and a repetitive pulse train on creation of prolonged plasma channels in atmospheric air

    NASA Astrophysics Data System (ADS)

    Zvorykin, V. D.; Ionin, A. A.; Levchenko, A. O.; Seleznev, L. V.; Shutov, A. V.; Sinitsyn, D. V.; Smetanin, I. V.; Ustinovskii, N. N.

    2013-08-01

    Amplitude-modulated UV laser pulse of up to 30 J energy was produced at hybrid Ti:Sapphire/KrF GARPUN-MTW laser facility when a preliminary amplified train of short pulses was injected into unstable resonator cavity of the main e-beam-pumped KrF amplifier. The combined radiation consisted of regeneratively amplified picosecond pulses with subTW peak power overlapped with 100-ns pulse of a free-running lasing. The advantages of combined radiation for production of long-lived prolonged plasma channels in air and HV discharge triggering were demonstrated: photocurrent sustained by modulated pulse is two orders of magnitude higher and HV breakdown distance is twice longer than for a smooth UV pulse. It was found that in contrast to IR radiation multiple filamentation of high-power UV laser beam does not produce extended nonlinear focusing of UV radiation.

  4. Approach to compact terawatt CO{sub 2} laser system for particle acceleration

    SciTech Connect

    Pogorelsky, I.V.; Kimura, W.D.; Fisher, C.H.; Kannari, F.; Kurnit, N.A.

    1994-11-01

    A compact table-top 20-GW 50-ps CO{sub 2} laser system is in operation for strong-field physics studies at the ATF. We propose scaling up of the picosecond CO{sub 2} laser to a terawatt peak power level to meet the requirements of advanced laser accelerators. Computer modeling shows that a relatively compact single-beam picosecond CO{sub 2} laser system with a high-pressure x-ray picosecond amplifier of a 10-cm aperture is potentially scalable to the {approximately}1-TW peak power level.

  5. Picosecond optoelectronic devices

    SciTech Connect

    Lee, C.L.

    1984-01-01

    Ever since the invention of picosecond lasers, scientists and electronic engineers have been dreaming of inventing electronic devices that can record in real time the physical and electronic events that take place on picosecond time scales. With the exception of the expensive streak camera, this dream has been largely unfullfilled. Today, a real-time oscilloscope with picosecond time resolution is still not available. To fill the need for even better time resolution, researchers have turned to optical pulses and thus a hybrid technology has emerged-picosecond optoelectronics. This technology, based on bulk photoconductors, has had a slow start. However, because of the simplicity, scaleability, and jitterfree nature of the devices, the technology has recently experienced a rapid growth. This volume reviews the major developments in the field of picosecond optoelectronics over the past decade.

  6. Status of the Leopard Laser Project in Nevada Terawatt Facility

    NASA Astrophysics Data System (ADS)

    Wiewior, Piotr P.; Astanovitskiy, A.; Aubry, G.; Batie, S.; Caron, J.; Chalyy, O.; Cowan, T.; Haefner, C.; Le Galloudec, B.; Le Galloudec, N.; Macaulay, D.; Nalajala, V.; Pettee, G.; Samek, S.; Stepanenko, Y.; Vesco, J.

    2009-06-01

    Nevada Terawatt Facility (NTF) currently operates a high-intensity laser system—Leopard. NTF already operates a powerful z-pinch device, called Zebra, for plasma and High Energy Density physics research. The unique research opportunities arise from the combination of NTF's terawatt Zebra z-pinch with 50-terawatt-class Leopard laser. This combination also provides opportunities to address fundamental physics of inertial fusion and high energy density physics with intense laser beam. We report on the status, design and architecture of the Leopard laser project. A first experiments carried out with Leopard will be also briefly mentioned.

  7. Experimental plasma astrophysics using a T{sup 3} (Table-top Terawatt) laser

    SciTech Connect

    Tajima, T.

    1996-11-01

    Lasers that can deliver immense power of Terawatt (10{sup 12}W) and can still compactly sit on a Table-Top (T{sup 3} lasers) emerged in the 1990s. The advent of these lasers allows us to access to regimes of astronomical physical conditions that once thought impossible to realize in a terrestrial laboratory. We touch on examples that include superhigh pressure materials that may resemble the interior of giant planets and white dwarfs and of relativistic temperature plasmas that may exist in the early cosmological epoch and in the neighborhood of the blackhole event horizon.

  8. Experimental Plasma Astrophysics Using a T3 (Table-Top Terawatt) Laser

    NASA Astrophysics Data System (ADS)

    Tajima, T.

    1996-11-01

    Lasers that can deliver immense power of Terawatt (1012 W) and can still compactly sit on a Table-Top (T3 lasers) emerged in the 1990s. The advent of these lasers allows us to access to regimes of astronomical physical conditions that once thought impossible to realize in a terrestrial laboratory. We touch on examples that include superhigh pressure materials that may resemble the interior of giant planets and white dwarfs and of relativistic temperature plasmas that may exist in the early cosmological epoch and in the neighborhood of the blackhole event horizon.

  9. A Picosecond 14.7 nm X-Ray Laser for Probing Matter Undergoing Rapid Changes

    SciTech Connect

    Dunn, J; Smith, R F; Nilsen, J; Nelson, A J; Van Buuren, T W; Moon, S J; Hunter, J R; Filevich, J; Rocca, J J; Marconi, M C; Shlyaptsev, V N

    2002-10-07

    With laser-driven tabletop x-ray lasers now operating in the efficient saturation regime, the source characteristics of high photon flux, high monochromaticity, picosecond pulse duration, and coherence are well-matched to many applications involving the probing of matter undergoing rapid changes. We give an overview of recent experiments at the Lawrence Livermore National Laboratory (LLNL) Compact Multipulse Terawatt (COMET) laser using the picosecond 14.7 nm x-ray laser as a compact, ultrafast probe for surface analysis and for interferometry of laser-produced plasmas. The plasma density measurements for known laser conditions allow us to reliably and precisely benchmark hydrodynamics codes. In the former case, the x-ray laser ejects photo-electrons, from the valence band or shallow core-levels of the material, and are measured in a time-of-flight analyzer. Therefore, the electronic structure can be studied directly to determine the physical properties of materials undergoing rapid phase changes.

  10. Front-end simulation of injector for terawatt accumulator.

    PubMed

    Kropachev, G N; Balabin, A I; Kolomiets, A A; Kulevoy, T V; Pershin, V I; Shumshurov, A V

    2008-02-01

    A terawatt accumulator (TWAC) accelerator/storage ring complex with the laser ion source is in progress at ITEP. The new injector I4 based on the radio frequency quadrupole (RFQ) and interdigital H-mode (IH) linear accelerator is under construction. The front end of the new TWAC injector consists of a laser ion source, an extraction system, and a low energy beam transport (LEBT). The KOBRA3-INP was used for the simulation and optimization of the ion source extraction system. The optimization parameter is the maximum brightness of the beam generated by the laser ion source. Also the KOBRA3-INP code was used for LEBT investigation. The LEBT based on electrostatic grid lenses is chosen for injector I4. The results of the extraction system and LEBT investigations for ion beam matching with RFQ are presented.

  11. Broadly tunable picosecond ir source

    DOEpatents

    Campillo, A.J.; Hyer, R.C.; Shapiro, S.L.

    1980-04-23

    A picosecond traveling-wave parametric device capable of controlled spectral bandwidth and wavelength in the infrared is reported. Intense 1.064 ..mu..m picosecond pulses (1) pass through a 4.5 cm long LiNbO/sub 3/ optical parametric oscillator crystal (2) set at its degeneracy angle. A broad band emerges, and a simple grating (3) and mirror (4) arrangement is used to inject a selected narrow-band into a 2 cm long LiNbO/sub 3/ optical parametric amplifier crystal (5) along a second pump line. Typical input energies at 1.064 ..mu..m along both pump lines are 6 to 8 mJ for the oscillator and 10 mJ for the amplifier. This yields 1 mJ of tunable output in the range 1.98 to 2.38 ..mu..m which when down-converted in a 1 cm long CdSe crystal mixer (6) gives 2 ..mu..J of tunable radiation over the 14.8 to 18.5 ..mu..m region. The bandwidth and wavelength of both the 2 and 16 ..mu..m radiation output are controlled solely by the diffraction grating.

  12. Broadly tunable picosecond IR source

    DOEpatents

    Campillo, Anthony J.; Hyer, Ronald C.; Shapiro, Stanley J.

    1982-01-01

    A picosecond traveling-wave parametric device capable of controlled spectral bandwidth and wavelength in the infrared is reported. Intense 1.064 .mu.m picosecond pulses (1) pass through a 4.5 cm long LiNbO.sub.3 optical parametric oscillator crystal (2) set at its degeneracy angle. A broad band emerges, and a simple grating (3) and mirror (4) arrangement is used to inject a selected narrow-band into a 2 cm long LiNbO.sub.3 optical parametric amplifier crystal (5) along a second pump line. Typical input energies at 1.064 .mu.m along both pump lines are 6-8 mJ for the oscillator and 10 mJ for the amplifier. This yields 1 mJ of tunable output in the range 1.98 to 2.38 .mu.m which when down-converted in a 1 cm long CdSe crystal mixer (6) gives 2 .mu.J of tunable radiation over the 14.8 to 18.5 .mu.m region. The bandwidth and wavelength of both the 2 and 16 .mu.m radiation output are controlled solely by the diffraction grating.

  13. Picosecond beam monitor

    DOEpatents

    Schutt, D.W.; Beck, G.O.

    1974-01-01

    The current in the beam of a particle accelerator is monitored with picosecond resolution by causing the beam to impinge upon the center conductor of a coaxial line, generating a pulse of electromagnetic energy in response thereto. This pulse is detected by means such as a sampling oscilloscope. (Official Gazette)

  14. Picosecond Spin Caloritronics

    NASA Astrophysics Data System (ADS)

    Cahill, David G.

    The coupling of spin and heat, i.e., spin caloritronics, gives rise to new physical phenomena in nanoscale spin devices and new ways to manipulate local magnetization. Our work in this field takes advantage of recent advances in the measurement and understanding of heat transport at the nanoscale using ultrafast lasers. We use a picosecond duration pump laser pulses as a source of heat and picosecond duration probe laser pulses to detect changes in temperature, spin accumulation, and spin transfer torque using a combination of time-domain thermoreflectance and time-resolved magneto-optic Kerr effect Our pump-probe optical methods enable us to change the temperature of ferromagnetic layers on a picosecond time-scale and generate enormous heat fluxes on the order of 100 GW m-2 that persist for ~ 30 ps. Thermally-driven ultrafast demagnetization of a perpendicular ferromagnet leads to spin accumulation in a normal metal and spin transfer torque in an in-plane ferromagnet. The data are well described by models of spin generation and transport based on differences and gradients of thermodynamic parameters. The spin-dependent Seebeck effect of a perpendicular ferromagnetic layer converts a heat current into spin current, which in turn can be used to exert a spin transfer torque (STT) on a second ferromagnetic layer with in-plane magnetization. Using a [Co,Ni] multilayer as the source of spin, an energy fluence of ~ 4 J m-2 creates thermal STT sufficient to induce ~ 1 % tilting of the magnetization of a 2 nm-thick CoFeB layer.

  15. Investigation on Soft X-Ray Lasers with a Picosecond-Laser-Irradiated Gas Puff Target

    SciTech Connect

    Fiedorowiez, H; Bartnik, A; Jarocki, R; Rakowski, R; Dunn, J; Smith, R F; Hunter, J; Hilsen, J; Shlyaptsev, V N

    2002-10-09

    We present results of experimental studies on transient gain soft x-ray lasers with a picosecond-laser-irradiated gas puff target. The target in a form of an elongated gas sheet is formed by pulsed injection of gas through a slit nozzle using a high-pressure electromagnetic valve developed and characterized at the Institute of Optoelectronics. The x-ray laser experiments were performed at the Lawrence Livermore National Laboratory using the tabletop Compact Multipulse Terawatt (COMET) laser to irradiate argon, krypton or xenon gas puff targets. Soft x-ray lasing in neon-like argon on the 3p-3s transition at 46.9 nm and the 3d-3p transition at 45.1 nm have been demonstrated, however, no amplification for nickel-like krypton or xenon was observed. Results of the experiments are presented and discussed.

  16. Report of the terawatt laser pressure vessel committee

    SciTech Connect

    Woodle, M.H.; Beauman, R.; Czajkowski, C.; Dickinson, T.; Lynch, D.; Pogorelsky, I.; Skjaritka, J.

    2000-09-25

    In 1995 the ATF project sent out an RFP for a CO2 Laser System having a TeraWatt output. Eight foreign and US firms responded. The Proposal Evaluation Panel on the second round selected Optoel, a Russian firm based in St. Petersburg, on the basis of the technical criteria and cost. Prior to the award, BNL representatives including the principal scientist, cognizant engineer and a QA representative visited the Optoel facilities to assess the company's capability to do the job. The contract required Optoel to provide a x-ray preionized high pressure amplifier that included: a high pressure cell, x-ray tube, internal optics and a HV pulse forming network for the main discharge and preionizer. The high-pressure cell consists of a stainless steel pressure vessel with various ports and windows that is filled with a gas mixture operating at 10 atmospheres. In accordance with BNL Standard ESH 1.4.1 ''Pressurized Systems For Experimental Use'', the pressure vessel design criteria is required to comply with the ASME Boiler and Pressure Vessel Code In 1996 a Preliminary Design Review was held at BNL. The vendor was requested to furnish drawings so that we could confirm that the design met the above criteria. The vendor furnished drawings did not have all dimensions necessary to completely analyze the cell. Never the less, we performed an analysis on as much of the vessel as we could with the available information. The calculations concluded that there were twelve areas of concern that had to be addressed to assure that the pressure vessel complied with the requirements of the ASME code. This information was forwarded to the vendor with the understanding that they would resolve these concerns as they continued with the vessel design and fabrication. The assembled amplifier pressure vessel was later hydro tested to 220 psi (15 Atm) as well as pneumatically to 181 psi (12.5 Atm) at the fabricator's Russian facility and was witnessed by a BNL engineer. The unit was shipped to the

  17. Picosecond laser filamentation in air

    NASA Astrophysics Data System (ADS)

    Schmitt-Sody, Andreas; Kurz, Heiko G.; Bergé, Luc; Skupin, Stefan; Polynkin, Pavel

    2016-09-01

    The propagation of intense picosecond laser pulses in air in the presence of strong nonlinear self-action effects and air ionization is investigated experimentally and numerically. The model used for numerical analysis is based on the nonlinear propagator for the optical field coupled to the rate equations for the production of various ionic species and plasma temperature. Our results show that the phenomenon of plasma-driven intensity clamping, which has been paramount in femtosecond laser filamentation, holds for picosecond pulses. Furthermore, the temporal pulse distortions in the picosecond regime are limited and the pulse fluence is also clamped. In focused propagation geometry, a unique feature of picosecond filamentation is the production of a broad, fully ionized air channel, continuous both longitudinally and transversely, which may be instrumental for many applications including laser-guided electrical breakdown of air, channeling microwave beams and air lasing.

  18. TEM00 terawatt amplification by use of micro-optic spatial mode conversion.

    PubMed

    DiChiara, Anthony; Chowdhury, Enam A; Ongadi, George; Walker, Barry C; Tamosaitis, Robert S

    2003-11-01

    Micro-optic technology is used in a terawatt multipass Ti:sapphire amplifier to convert high-multimode, 532-nm radiation from an unstable resonator Nd:YAG laser into a TEM00 amplified output without sacrificing the amplifier-to-pump energy conversion efficiency. Experimental measurements and Fourier analysis of the spatial mode show a 3.8-fold increase in the peak irradiance and an order-of-magnitude improvement in the spatial contrast. PMID:14587830

  19. The TARANIS laser : A multi-terawatt system for laser plasma physics

    NASA Astrophysics Data System (ADS)

    Lewis, C. L. S.; Nersisyan, G.; Borghesi, M.; Doria, D.; Dromey, B.; Dzelzainis, T.; Makita, M.; McKeever, K.; Riley, D.; White, S.; Marlow, D.; Williams, G.; Zepf, M.

    2012-11-01

    The Terawatt Apparatus for Relativistic And Non-linear Interdisciplinary Science (TARANIS), installed in the Centre for Plasma Physics at the Queen's University Belfast, supports a wide ranging science program, including laser-driven particle acceleration, X-ray lasers and high energy density physics experiments. We present (1) an overview of the laser facility, (2) results of preliminary investigations on proton acceleration, laser action at 13.9 nm and Kα sources and (3) speculation on future experiments using these extreme sources.

  20. High brightness picosecond electron gun

    SciTech Connect

    Merano, M.; Collin, S.; Renucci, P.; Gatri, M.; Sonderegger, S.; Crottini, A.; Ganiere, J.D.; Deveaud, B.

    2005-08-15

    We have developed a high brightness picosecond electron gun. We have used it to replace the thermionic electron gun of a commercial scanning electron microscope (SEM) in order to perform time-resolved cathodoluminescence experiments. Picosecond electron pulses are produced, at a repetition rate of 80.7 MHz, by femtosecond mode-locked laser pulses focused on a metal photocathode. This system has a normalized axial brightness of 93 A/cm{sup 2} sr kV, allowing for a spatial resolution of 50 nm in the secondary electron imaging mode of the SEM. The temporal width of the electron pulse is 12 ps.

  1. Simultaneous High-Resolution 2-Dimensional Spatial and 1-Dimensional Picosecond Streaked X-ray Pinhole Imaging

    SciTech Connect

    Steel, A B; Nagel, S R; Dunn, J; Baldis, H A

    2012-05-03

    A Kentech x-ray streak camera was run at the LLNL Compact Multipulse Terawatt (COMET) laser to record simultaneous space- and time-resolved measurements of picosecond laser-produced plasmas. Four different x-ray energy channels were monitored using broad-band filters to record the time history of Cu targets heated at irradiances of 10{sup 16} - 10{sup 19} W/cm{sup 2}. Through the Cu filter channel, a time-resolution below 3ps was obtained. Additionally, an array of 10 {micro}m diameter pinholes was placed in front of the camera to produce multiple time-resolved x-ray images on the photocathode and time-integrated images on the phosphor with 10 and 15 times magnification, respectively, with spatial resolution of <13 {micro}m.

  2. Simultaneous high-resolution two-dimensional spatial and one-dimensional picosecond streaked x-ray pinhole imaging.

    PubMed

    Steel, A B; Nagel, S R; Dunn, J; Baldis, H A

    2012-10-01

    A Kentech x-ray streak camera was run at the LLNL compact multipulse terawatt (COMET) laser to record simultaneous space- and time-resolved measurements of picosecond laser-produced plasmas. Four different x-ray energy channels were monitored using broadband filters to record the time history of Cu targets heated at irradiances of 10(16)-10(19) W∕cm(2). Through the Cu filter channel, a time-resolution below 3 ps was obtained. Additionally, an array of 10 μm diameter pinholes was placed in front of the camera to produce multiple time-resolved x-ray images on the photocathode and time-integrated images on the phosphor with 10 and 15 times magnification, respectively, with spatial resolution of < 13 μm.

  3. Underwater acoustic wave generation by filamentation of terawatt ultrashort laser pulses.

    PubMed

    Jukna, Vytautas; Jarnac, Amélie; Milián, Carles; Brelet, Yohann; Carbonnel, Jérôme; André, Yves-Bernard; Guillermin, Régine; Sessarego, Jean-Pierre; Fattaccioli, Dominique; Mysyrowicz, André; Couairon, Arnaud; Houard, Aurélien

    2016-06-01

    Acoustic signals generated by filamentation of ultrashort terawatt laser pulses in water are characterized experimentally. Measurements reveal a strong influence of input pulse duration on the shape and intensity of the acoustic wave. Numerical simulations of the laser pulse nonlinear propagation and the subsequent water hydrodynamics and acoustic wave generation show that the strong acoustic emission is related to the mechanism of superfilamention in water. The elongated shape of the plasma volume where energy is deposited drives the far-field profile of the acoustic signal, which takes the form of a radially directed pressure wave with a single oscillation and a very broad spectrum.

  4. Underwater acoustic wave generation by filamentation of terawatt ultrashort laser pulses.

    PubMed

    Jukna, Vytautas; Jarnac, Amélie; Milián, Carles; Brelet, Yohann; Carbonnel, Jérôme; André, Yves-Bernard; Guillermin, Régine; Sessarego, Jean-Pierre; Fattaccioli, Dominique; Mysyrowicz, André; Couairon, Arnaud; Houard, Aurélien

    2016-06-01

    Acoustic signals generated by filamentation of ultrashort terawatt laser pulses in water are characterized experimentally. Measurements reveal a strong influence of input pulse duration on the shape and intensity of the acoustic wave. Numerical simulations of the laser pulse nonlinear propagation and the subsequent water hydrodynamics and acoustic wave generation show that the strong acoustic emission is related to the mechanism of superfilamention in water. The elongated shape of the plasma volume where energy is deposited drives the far-field profile of the acoustic signal, which takes the form of a radially directed pressure wave with a single oscillation and a very broad spectrum. PMID:27415357

  5. Spectrum of synchronous picosecond sonoluminescence

    NASA Astrophysics Data System (ADS)

    Hiller, Robert; Putterman, Seth J.; Barber, Bradley P.

    1992-08-01

    The clocklike emission of picosecond pulses of light with a peak power over 30 mW has been observed to originate from a bubble trapped at the velocity node of a resonant sound field in water. The spectrum of this bright sonoluminescence is broadband and our measurements show that if a spectral peak exists, it lies at photon energies above 6 eV.

  6. Observation of the picosecond supercontinuum

    NASA Astrophysics Data System (ADS)

    Siffalovic, Peter; Bugar, Ignac; Vojtek, Pavel

    1999-07-01

    Properties of the picosecond supercontinuum generated from water have been studied. We have shown development of a stimulated Raman scattering cross-phase modulation spectrum at the anti-Stokes side of the pump frequency. Supercontinuum diffraction patterns have been recorded and diffraction angles for several wavelengths have been measured. Requirement of the supercontinuum generation power threshold have been found out for different outputs. We have also analyzed defocusing interaction among pulses of the pump train.

  7. The use of picosecond lasers beyond tattoos.

    PubMed

    Forbat, E; Al-Niaimi, F

    2016-10-01

    Picosecond lasers are a novel laser with the ability to create a pulse of less than one nanosecond. They have been available in the clinical context since 2012. Dermatologists are now using picosecond lasers regularly for the treatment of blue and green pigment tattoo removal. This article reviews the use of picosecond lasers beyond tattoo removal. The overall consensus for the use of picosecond lasers beyond tattoo treatment is positive. With examples of this in the treatment of nevus of Ota, minocycline-induced pigmentation, acne scarring, and rhytides.

  8. The use of picosecond lasers beyond tattoos.

    PubMed

    Forbat, E; Al-Niaimi, F

    2016-10-01

    Picosecond lasers are a novel laser with the ability to create a pulse of less than one nanosecond. They have been available in the clinical context since 2012. Dermatologists are now using picosecond lasers regularly for the treatment of blue and green pigment tattoo removal. This article reviews the use of picosecond lasers beyond tattoo removal. The overall consensus for the use of picosecond lasers beyond tattoo treatment is positive. With examples of this in the treatment of nevus of Ota, minocycline-induced pigmentation, acne scarring, and rhytides. PMID:27183360

  9. Terawatt power division and combination using self-magnetically insulated transmission lines

    SciTech Connect

    Crow, J.T.; Peterson, G.D.

    1980-01-01

    Self-magnetically insulated transmission lines are necessary for the efficient transport of the terawatt pulses used in electron and ion accelerators. For some applications it is desirable to divide one transmission line into two, or to combine outputs of two or more lines into one, by means of self-magnetically insulated convolutes. Tests have been made on a coaxial-to-triaxial convolute in which connections between negative inner and outer lines are made by pins passing through holes in the intermediate positive conductor. Measurements in the 2 MV, 400 kA, 40 ns pulse Mite facility indicate virtually 100% current transport through the convolute and the ability to vary the division of current between the inner and outer lines of the triax by choice of inner line impedance. These measurements, and results obtained with this convolute connected to the ion diode for which it was designed, will be presented.

  10. A 10-Hz Terawatt Class Ti:Sapphire Laser System: Development and Applications

    SciTech Connect

    Sharma, A.K.; Smedley, J.; Tsang, T.; Rao, T.

    2010-01-12

    We developed a two stage Ti:Sapphire laser system to generate 16 mJ/80fs laser pulses at the pulse repetition rate of 10 Hz. The key deriver for the present design is implementing a highly efficient symmetric confocal pre-amplifier and employing a simple, inexpensive synchronization scheme relying only on a commercial digital delay-generator. We characterized the amplified pulses in spatial-, spectral-, and temporal-domains. The laser system was used to investigate various nonlinear optical processes, and to modify the optical properties of metal- and semiconductor-surfaces. We are currently building a third amplifier to boost the laser power to the multi-terawatt range.

  11. Simple Method to Generate Terawatt-Attosecond X-Ray Free-Electron-Laser Pulses.

    PubMed

    Prat, Eduard; Reiche, Sven

    2015-06-19

    X-ray free-electron lasers (XFELs) are cutting-edge research tools that produce almost fully coherent radiation with high power and short-pulse length with applications in multiple science fields. There is a strong demand to achieve even shorter pulses and higher radiation powers than the ones obtained at state-of-the-art XFEL facilities. In this context we propose a novel method to generate terawatt-attosecond XFEL pulses, where an XFEL pulse is pushed through several short good-beam regions of the electron bunch. In addition to the elements of conventional XFEL facilities, the method uses only a multiple-slotted foil and small electron delays between undulator sections. Our scheme is thus simple, compact, and easy to implement both in already operating as well as future XFEL projects. We present numerical simulations that confirm the feasibility and validity of our proposal.

  12. Fundamentals of picosecond laser ultrasonics.

    PubMed

    Matsuda, Osamu; Larciprete, Maria Cristina; Li Voti, Roberto; Wright, Oliver B

    2015-02-01

    The aim of this article is to provide an introduction to picosecond laser ultrasonics, a means by which gigahertz-terahertz ultrasonic waves can be generated and detected by ultrashort light pulses. This method can be used to characterize materials with nanometer spatial resolution. With reference to key experiments, we first review the theoretical background for normal-incidence optical detection of longitudinal acoustic waves in opaque single-layer isotropic thin films. The theory is extended to handle isotropic multilayer samples, and is again compared to experiment. We then review applications to anisotropic samples, including oblique-incidence optical probing, and treat the generation and detection of shear waves. Solids including metals and semiconductors are mainly discussed, although liquids are briefly mentioned.

  13. Temporal Characterization of a Picosecond Laser-Pumped X-ray Laser (for Applications)

    SciTech Connect

    Dunn, J; Nilsen, J; Shepherd, R; Shlyaptsev, V; Booth, R; Smith, R; Hunter, J

    2003-11-25

    Compact soft x-ray laser sources are now used routinely for various applications primarily because of their high repetition rate, high photon fluence and short pulse duration characteristics. For some of these applications, for example interferometry of high density laser-produced plasmas, longer optical drive pulses, 6-13 ps (FWHM), have been implemented to maximize the x-ray output and coherence. It is therefore important to know the x-ray laser pulse length, shape and repeatability for these specific experiments as a baseline measurement but also to better understand the temporal behavior as a function of the pumping conditions in general. We report a detailed temporal characterization of the picosecond-driven 14.7 nm Ni-like Pd ion x-ray laser on the Compact Multipulse Terawatt (COMET) laser at LLNL using an ultrafast x-ray streak camera measurement of a horizontal slice of the near-field x-ray laser pattern. This is measured as a function of the chirped pulse amplification pumping laser conditions, including varying the pump pulse from 0.5-27 ps (FWHM), varying the plasma column length as well as investigating traveling wave (TW) and non-TW irradiation conditions.

  14. Picosecond Resonance Raman Spectroscopy of Visual Pigments.

    NASA Astrophysics Data System (ADS)

    Carlsen, William Frederick

    We have constructed a picosecond Raman spectrometer to obtain information about primary events in visual excitation. The excitation source at 532 nm is a frequency doubled modelocked Nd:YAG laser optimized for short pulses, high repetition rates, and high pulse to pulse stability. The sample illumination geometry is optimized for pulsed Raman measurements using low magnification light collection and optical multi-channel detection. This instrument gives high signal to noise ratios and high data rates. The visual pigment rhodopsin was studied with this picosecond Raman instrument. We found that within 20 picoseconds of absorbing a photon, low wavenumber Raman bands characteristic of the first photo-intermediate bathorhodopsin appear. This scattering at 853, 875, and 920 wavenumbers arises from enhanced hydrogen out of plane vibrations from a strained all-trans configuration of the retinal chromophore in the protein. Furthermore, bands characteristic of isorhodopsin appear within the 10 picosecond pulse. We therefore conclude that the 11-cis retinal chromophore of rhodopsin isomerizes to a strained all-trans configuration and can further isomerize to a 9-cis form on absorbing a second photon, all within 20 picoseconds. Measurements starting with isorhodopsin show that the reverse process, 9-cis to trans to 11-cis, can also occur within 20 picoseconds. The resonance Raman spectra of bathorhodopsin formed from rhodopsin, however, exhibits consistent small differences from that of bathorhodopsin formed from isorhodopsin. Spectra of corresponding pigments deuterated at the retinal 12 carbon position also show slight differences. These data suggest that the bathorhodopsins formed from rhodopsin and isorhodopsin are initially different. They appear, however, to converge to a common intermediate by the end of 20 picoseconds. This resonance Raman study reveals that much of the isomerization of retinal takes place within a few picoseconds of the absorption of a photon by

  15. Lidar measurement of constituents of microparticles in air by laser-induced breakdown spectroscopy using femtosecond terawatt laser pulses.

    PubMed

    Fujii, Takashi; Goto, Naohiko; Miki, Megumu; Nayuki, Takuya; Nemoto, Koshichi

    2006-12-01

    We experimentally demonstrated remote sensing of the constituents of microparticles in air by combining laser-induced breakdown spectroscopy (LIBS) and lidar, using femtosecond terawatt laser pulses. Laser pulses of 70 fs duration and 130 mJ energy generated filaments when focused at a focal length of 20 m and the pulses irradiated artificial saltwater aerosols in air at a 10 Hz pulse repetition rate. Na fluorescence was observed remotely at a distance of 16 m using a 318 mm diameter Newtonian telescope, a spectrometer, and an intensified CCD camera. These results show the possibility of remote measurement of the constituents of atmospheric particles, such as aerosols, clouds, and toxic materials, by LIBS-lidar using femtosecond terawatt laser pulses.

  16. Lidar measurement of constituents of microparticles in air by laser-induced breakdown spectroscopy using femtosecond terawatt laser pulses.

    PubMed

    Fujii, Takashi; Goto, Naohiko; Miki, Megumu; Nayuki, Takuya; Nemoto, Koshichi

    2006-12-01

    We experimentally demonstrated remote sensing of the constituents of microparticles in air by combining laser-induced breakdown spectroscopy (LIBS) and lidar, using femtosecond terawatt laser pulses. Laser pulses of 70 fs duration and 130 mJ energy generated filaments when focused at a focal length of 20 m and the pulses irradiated artificial saltwater aerosols in air at a 10 Hz pulse repetition rate. Na fluorescence was observed remotely at a distance of 16 m using a 318 mm diameter Newtonian telescope, a spectrometer, and an intensified CCD camera. These results show the possibility of remote measurement of the constituents of atmospheric particles, such as aerosols, clouds, and toxic materials, by LIBS-lidar using femtosecond terawatt laser pulses. PMID:17099748

  17. Diagnosing Pulsed Power Produced Plasmas with X-ray Thomson Scattering at the Nevada Terawatt Facility

    NASA Astrophysics Data System (ADS)

    Valenzuela, J. C.; Krauland, C.; Mariscal, D.; Krasheninnikov, I.; Beg, F. N.; Wiewior, P.; Covington, A.; Presura, R.; Ma, T.; Niemann, C.; Mabey, P.; Gregori, G.

    2015-11-01

    We present experimental results on X-ray Thomson scattering (XRTS) at the Nevada Terawatt Facility (NTF) to study current driven plasmas. Using the Leopard laser, ~ 30 J and pulse width of 0.8 ns, we generated He- α emission (4.75 keV) from a thin Ti foil. Initial parameter scans showed that the optimum intensity is ~ 1015W/cm2 with a foil thickness of 2 μm for forward X-ray production. Bandwidth measurements of the source, using a HAPG crystal in the Von Hamos configuration, were found to be ΔE/E ~ 0.01. Giving the scattering angle of our experimental setup of 129 degrees and X-ray probing energy, the non-collective regime was accessed. The ZEBRA load was a 3 mm wide, 500 μm thick, and 10 mm long graphite foil, placed at one of the six current return posts. Estimates of the plasma temperature, density and ionization state were made by fitting the scattering spectra with dynamic structure factor calculations based on the random phase approximation for the treatment of charged particle coupling. The work was partially funded by the Department of Energy grant number DE-NA0001995.

  18. Airbreathing Laser Propulsion Experiments with 1 {mu}m Terawatt Pharos III Laser: Part 1

    SciTech Connect

    Myrabo, L. N.; Lyons, P. W.; Jones, R. A.; Liu, S.; Manka, C.

    2011-11-10

    This basic research study examines the physics of airbreathing laser propulsion at the extreme flux range of 1-2x10{sup 11} W/cm{sup 2}--within the air breakdown threshold for l {mu}m radiation--using the terawatt PHAROS III neodymium-glass pulsed laser. Six different experimental setups were tested using a 34 mm line focus with 66 {mu}m focal waist, positioned near the flat impulse surface. The first campaign investigated impulse generation with the beam oriented almost normal to the target surface, with energies ranging from 23 to 376 J, and pulses of 5 to 30 ns FWHM. Air breakdown/ plasma dynamics were diagnosed with GOI cameras and color photography. Laser generated impulse was quantified with both vertical pendulums and piezoelectric pressure transducers using the standard performance metric, C{sub M}--the momentum coupling coefficient. Part 1 of this 2-part paper covers Campaign no. 1 results including laser plasma diagnostics, pressure gage and vertical pendulum data.

  19. MeV electron acceleration by sub-terawatt laser pulses in near critical density plasmas

    NASA Astrophysics Data System (ADS)

    Goers, Andy; Hine, George; Feder, Linus; Miao, Bo; Salehi, Fatholah; Milchberg, Howard

    2015-11-01

    We demonstrate laser-plasma acceleration of high charge electron beams to the 10 MeV scale using ultrashort laser pulses with as little energy as 10 mJ. This result is made possible by an extremely dense and thin hydrogen gas jet where even sub-terawatt laser pulses are well above the critical power for relativistic self-focusing, and the 10 mJ pulses can drive a self-modulated wakefield accelerator. Total charge up to 0.5 nC is measured for energies >1 MeV. Acceleration is correlated to the presence of an intense, coherent, broadband light flash, associated with wavebreaking, which can radiate more than 3% of the laser energy in a sub-femtosecond bandwidth consistent with half-cycle optical emission. Our results enable truly portable applications of laser-driven acceleration, such as low dose radiography, ultrafast probing of matter, and isotope production. This work supported by DTRA and the US Department of Energy.

  20. Airbreathing Laser Propulsion Experiments with 1 {mu}m Terawatt Pharos IIILaser: Part 2

    SciTech Connect

    Myrabo, L. N.; Lyons, P. W.; Jones, R. A.; Liu, S.; Manka, C.

    2011-11-10

    This basic research study examines the physics of airbreathing laser propulsion at the extreme flux range of 1-2x10{sup 11} W/cm{sup 2}--within the air breakdown threshold for l {mu}m radiation--using the terawatt Pharos III neodymium-glass pulsed laser. Six different experimental setups were employed using a 34 mm line focus with 66 {mu}m focal waist, positioned near the flat impulse surface. The 2nd Campaign investigated impulse generation with the laser beam focused at grazing incidence across near horizontal target surfaces, with pulse energies ranging from 55 to 186 J, and pulse-widths of 2 to 30 ns FWHM. Laser generated impulse was measured with a horizontal Plexiglas registered ballistic pendulum equipped with either a steel target insert or 0.5 Tesla permanent magnet (NEIT-40), to quantify changes in the momentum coupling coefficient (C{sub M}). Part 2 of this 2-part paper covers Campaign no. 2 results including C{sub M} performance data, and long exposure color photos of LP plasma phenomena.

  1. A two-color terawatt laser system for high-intensity laser-plasma experiments

    NASA Astrophysics Data System (ADS)

    Sanders, James; Zgadzaj, Rafal; Downer, Michael

    2012-10-01

    In some high-field laser-plasma experiments, it is advantageous to accompany the main high-energy (˜1 J) laser with a second high-energy pulse (˜0.1 J) which has been frequency-shifted by ˜10%. Such a pulse-pair would have a low walk-off velocity while remaining spectrally distinct for use in two-color pump-probe experiments. Moreover, by shifting the second pulse by ˜plasma frequency, it is theoretically possible to enhance or suppress relativistic self-focusing, which is the first (uncontrolled) step in many laser-plasma experiments. We report a hybrid chirped pulse Raman amplifier (CPRA)/Ti-Sapphire amplifier (>200 mJ, 15-20 nm bandwidth (FWHM), >60 fs duration) that is capable of performing such two-color high-field experiments. When amplified and compressed, this beam's power exceeds 1 TW. This two-color capability can be added to any commercial terawatt laser system without compromising the energy, duration or beam quality of the main system. We will report progress with a two-color seeded relativistic self-phase modulation experiment.

  2. Design and experimental results on a terawatt magnetically controlled plasma opening switch

    SciTech Connect

    Savage, M.E.; Simpson, W.W.; Mendel, C.W. Jr.; McDaniel, D.H.; Levine, J.S.; Tucker, T.S.

    1998-05-01

    The magnetically controlled plasma opening switch (MCPOS) is an advanced plasma opening switch that utilizes magnetic fields to improve operation. Magnetic fields always dominate terawatt, pulsed power plasma opening switches. For that reason, the MCPOS uses controlled applied magnetic fields with magnitude comparable to the self-magnetic field of the storage inductor. One applied field holds the plasma in place while energy accumulates in the storage inductor, then another applied field pushes the plasma away from the cathode to allow energy to flow downstream. Over a ten month period, an MCPOS was designed, built, and tested on DECADE Module 2 at Physics International. The peak drive current was 1.8 MA in 250 ns. The output parameters were up to 1 MA into an electron beam load. The radiation temporal pulse width averaged 60 nanoseconds full-width at half-maximum. The peak load voltage ranged from one to two megavolts. The experiments demonstrated efficient power flow through a long, low-impedance magnetically insulated transmission line between the magnetically controlled plasma opening switch and the load.

  3. Analysis of Picosecond Pulsed Laser Melted Graphite

    DOE R&D Accomplishments Database

    Steinbeck, J.; Braunstein, G.; Speck, J.; Dresselhaus, M. S.; Huang, C. Y.; Malvezzi, A. M.; Bloembergen, N.

    1986-12-01

    A Raman microprobe and high resolution TEM have been used to analyze the resolidified region of liquid carbon generated by picosecond pulse laser radiation. From the relative intensities of the zone center Raman-allowed mode for graphite at 1582 cm{sup -1} and the disorder-induced mode at 1360 cm{sup -1}, the average graphite crystallite size in the resolidified region is determined as a function of position. By comparison with Rutherford backscattering spectra and Raman spectra from nanosecond pulsed laser melting experiments, the disorder depth for picosecond pulsed laser melted graphite is determined as a function of irradiating energy density. Comparisons of TEM micrographs for nanosecond and picosecond pulsed laser melting experiments show that the structure of the laser disordered regions in graphite are similar and exhibit similar behavior with increasing laser pulse fluence.

  4. Picosecond lasers with the dynamical operation control

    NASA Astrophysics Data System (ADS)

    Mikheev, N. G.; Morozov, V. B.; Olenin, A. N.; Yakovlev, D. V.

    2016-04-01

    Numerical model for simulation of generation process in advanced pulse-periodic high-peak-power picosecond diode-pumped Nd:YAG and Nd:YLF lasers has been developed. The model adequately describes picosecond pulse formation governed by active and passive mode-locking, negative feedback and adjustable loss level in the oscillator cavity. Optical jitter of output pulses attributed to laser generation development from spontaneous noise level was evaluated using statistical analysis of calculation results. In the presented laser scheme, minimal jitter value on the level ~40 ps was estimated.

  5. X-ray and EUV diagnostics for the Nevada Terawatt Facility: Plasma imaging, spectroscopy and polarimetry

    SciTech Connect

    Kantsyrev, V.L.; Bauer, B.S.; Mancini, R.C.

    1999-07-01

    A wide variety of advanced extreme ultraviolet (EUV) and x-ray diagnostics ar being developed for the Nevada Terawatt Facility (NTF) at the University of Nevada, Reno. Time-resolved short-wavelength imaging, backlighting, imaging spectroscopy, and polarization spectroscopy will be employed to measure profiles of plasma temperature, density, flow, charge state, and magnetic field. These diagnostics will be used to examine the early-time evolution of a current-driven wire, the formation of a plasma sheet from the explosion and merging of wires, etc. Wire materials will include Al, Ti, W, and various coatings (e.g., Mg, Ni, Cu). Doping of local regions of wires is planned, for additional spatial resolution of the plasma profiles. The instruments are state-of-the-art applications of glass capillary converters (GCC), multilayer mirrors (MLM), and crystals. The devices include: a prototype of a new glass-capillary-based two-dimensional imaging spectrometer; a pinhole camera with 6 MCP imagers; a 5-channel crystal/MLM spectrometer (Polychromator) with fast x-ray diodes and an added transmission grating spectrometer; a convex-crystal x-ray survey spectrometer; a prototype of an x-ray polarimeter/spectrometer; and a multiframe x-pinch backlighter yielding point-protection microscopy with few-micron, sub-ns resolution. Spectroscopic data will be interpreted with state-of-the-art spectral calculations that take into account line intensity, plasma broadening, opacity, and polarization effects, for both resonance and satellite lines. Emission spectroscopy will be used to measure plasma density and temperature in the hot plasma around exploding wires, with polarization measurements helping to determine the electron distribution function and the magnetic field in this region. The density and temperature of the high-density, low-temperature plasma inside exploding Al wires will be measured with absorption spectroscopy.

  6. Design of a Command-Triggered Plasma Opening Switch for Terawatt Applications

    SciTech Connect

    SAVAGE,MARK E.; MENDEL,C.W.; SEIDEL,DAVID B.

    1999-10-29

    Inductive energy storage systems can have high energy density, lending to smaller, less expensive systems. The crucial element of an inductive energy storage system is the opening switch. This switch must conduct current while energy is stored in an inductor, then open quickly to transfer this energy to a load. Plasma can perform this function. The Plasma Opening Switch (POS) has been studied for more than two decades. Success with the conventional plasma opening switch has been limited. A system designed to significantly improve the performance of vacuum opening switches is described in this paper. The gap cleared of plasma is a rough figure-of-merit for vacuum opening switches. Typical opened gaps of 3 mm are reported for conventional switches. The goal for the system described in this paper is more than 3 cm. To achieve this, the command-triggered POS adds an active opening mechanism, which allows complete separation of conduction and opening. This separation is advantageous because of the widely different time scales of conduction and opening. The detrimental process of magnetic field penetration into the plasma during conduction is less important in this switch. The opening mechanism duration is much shorter than the conduction time, so penetration during opening is insignificant. Opening is accomplished with a fast magnetic field that pushes plasma out of the switch region. Plasma must be removed from the switch region to allow high voltage. This paper describes some processes important during conduction and opening, and show calculations on the trigger requirements. The design of the switch is shown. This system is designed to demonstrate both improved performance and nanosecond output jitter at levels greater than one terawatt. An amplification mechanism is described which reduces the trigger energy. Particle-in-cell simulations of the system are also shown.

  7. Production of Multi-Terawatt Time-Structured CO{sub 2} Laser Pulses for Ion Acceleration

    SciTech Connect

    Haberberger, Dan; Tochitsky, Sergei; Gong Chao; Joshi, Chan

    2010-11-04

    The UCLA Neptune Laboratory CO{sub 2} laser system has been recently upgraded to produce 3ps multi-terawatt 10{mu}m laser pulses. The laser energy is distributed over several 3 ps pulses separated by 18 ps. These temporally structured pulses are applied for laser driven ion acceleration in an H{sub 2} gas jet at a measured plasma density of 2x10{sup 19} cm{sup -3}. Protons in excess of 20 MeV have been observed in the forward direction and with energy spreads ({Delta}E/E{approx}10%).

  8. OSA proceedings on picosecond electronics and optoelectronics

    SciTech Connect

    Sollner, T.C.L.G. . Lincoln Lab.); Bloom, D.M. . Edward L. Ginzton Lab.)

    1989-01-01

    This book presents an introduction to optical communications. Systems considerations of this important application of optoelectronics are used to provide the motivation for many of the papers that follow. The authors are also concerned with another optoelectronic application, the measurement of phenomena that take place on a picosecond time scale. Short optical or electrical pulses are used to sample the parameter of interest, usually electric fields, in electronic or optoelectronic devices and circuits. Several methods of sampling are described, as are improvements to components that make up these systems. The authors address the electronic and optoelectronic components that lay the foundation for the systems considered above. Diode laser chirping, picosecond optical pulse amplifiers, a spread-spectrum approach to modulation, and two novel methods of picosecond pulse synthesis are discussed. Papers on tunneling and resonant tunneling are presented. Devices based on these effects have promise in high-speed electronics. Several papers investigate the speed of electron tunneling between two reservoirs and the effect of speed on device performance. Resonant-tunneling diode switches are also considered. This book also covers transistors as well as studies of carrier transport on the picosecond time scale. Excellent results for silicon FETs are given, demonstrating the great flexibility of that established technology.

  9. Electron acceleration in preformed plasma channels with terawatt CO{sub 2} laser

    SciTech Connect

    Pogorelsky, I.V.

    1995-02-01

    Extended cylindrical plasma channels produced under gas breakdown by axicon-focused laser beams may be used as optical waveguides in laser-driven electron accelerators. Plasma channeling of the laser beams will help to maintain a high acceleration gradient over many Rayleigh lengths. In addition, the rarefied gas density channel produced after the optical gas breakdown, and followed by a plasma column expansion, reduces multiple scattering of the electron beam. A high-power picosecond C0{sub 2}laser operational at the ATF and being further upgraded to the 1 TW level is considered as the source for a plasma channel formation and as the laser accelerator driver. We show how various laser accelerator schemes including beat wave, wake field, and Inverse Cherenkov accelerator benefit from using a channeled short-pulse C0{sub 2}laser as a driver.

  10. Expansion dynamics of supercritical water probed by picosecond time-resolved photoelectron spectroscopy.

    PubMed

    Gladytz, Thomas; Abel, Bernd; Siefermann, Katrin R

    2015-02-21

    Vibrational excitation of liquid water with femtosecond laser pulses can create extreme states of water. Yet, the dynamics directly after initial sub-picosecond delocalization of molecular vibrations remain largely unclear. We study the ultrafast expansion dynamics of an accordingly prepared supercritical water phase with a picosecond time resolution. Our experimental setup combines vacuum-compatible liquid micro-jet technology and a table top High Harmonic light source driven by a femtosecond laser system. An ultrashort laser pulse centered at a wavelength of 2900 nm excites the OH-stretch vibration of water molecules in the liquid. The deposited energy corresponds to a supercritical phase with a temperature of about 1000 K and a pressure of more than 1 GPa. We use a time-delayed extreme ultraviolet pulse centered at 38.6 eV, and obtained via High Harmonic generation (HHG), to record valence band photoelectron spectra of the expanding water sample. The series of photoelectron spectra is analyzed with noise-corrected target transform fitting (cTTF), a specifically developed multivariate method. Together with a simple fluid dynamics simulation, the following picture emerges: when a supercritical phase of water expands into vacuum, temperature and density of the first few nanometers of the expanding phase drop below the critical values within a few picoseconds. This results in a supersaturated phase, in which condensation seeds form and grow from small clusters to large clusters on a 100 picosecond timescale.

  11. Design of a Command-Triggered Plasma Opening Switch for Terawatt Applications

    SciTech Connect

    Mendel, Jr., C.W.; Savage, M.E.; Seidel, D.B.; Shoup, R.W.

    1999-06-23

    Inductive energy storage pulsed power systems can have high energy density, leading to smaller, less expensive systems. The crucial element of an inductive energy storage system is the opening switch. In microsecond and nanosecond pulsed power systems the plasma opening switch has been in use for more than twenty years. Though widely studied, application of the plasma opening switch (POS) has been limited in both performance ad understanding. The development of the triggered switch is aimed to address three important areas. First, complete de-coupling of the closed phase and the opening phase will allow improved performance, especialiy at longer conduction times. Second, the simplified physics allows for easier modeling because of a betterdefined geometry. Third, naturally, triggering will reduce jitter of the output pulse. Improving performance will allow longer conduction time, and triggering will negate the naturaIIy increased self- operating jitter at longer conduction time. The triggered switch system is based on moving the plasma switch armature with a magnetic field. Up unti} the time the armature is pushed away, it is held in place against the drive current magnetic pressure by a second magnetic field. We have demonstrated the components of this system [1], but never before has a plasma opening switch been opened by an independent signal. Our system is designed to deliver 1-2 terawatts of usable load power at multi-megavolt potentiak. We define usable load power as the product of load voltage and load cathode (boundary) current. The length of the vacuum storage inductor defines the 35 ns pulse length. This paper will show the design of the switch and rngger system, which is conservatively designed to provide a wide range of trigger signals. The trigger power for this system is important for cost reasons. The first experiments will use a trigger level of ten percent of the output pulse; we will describe design features intended to reduce the amount of

  12. Carrier-envelope-phase stabilized terawatt class laser at 1 kHz with a wavelength tunable option.

    PubMed

    Langdon, Benjamin; Garlick, Jonathan; Ren, Xiaoming; Wilson, Derrek J; Summers, Adam M; Zigo, Stefan; Kling, Matthias F; Lei, Shuting; Elles, Christopher G; Wells, Eric; Poliakoff, Erwin D; Carnes, Kevin D; Kumarappan, Vinod; Ben-Itzhak, Itzik; Trallero-Herrero, Carlos A

    2015-02-23

    We demonstrate a chirped-pulse-amplified Ti:Sapphire laser system operating at 1 kHz, with 20 mJ pulse energy, 26 femtosecond pulse duration (0.77 terawatt), and excellent long term carrier-envelope-phase (CEP) stability. A new vibrational damping technique is implemented to significantly reduce vibrational noise on both the laser stretcher and compressor, thus enabling a single-shot CEP noise value of 250 mrad RMS over 1 hour and 300 mrad RMS over 9 hours. This is, to the best of our knowledge, the best long term CEP noise ever reported for any terawatt class laser. This laser is also used to pump a white-light-seeded optical parametric amplifier, producing 6 mJ of total energy in the signal and idler with 18 mJ of pumping energy. Due to preservation of the CEP in the white-light generated signal and passive CEP stability in the idler, this laser system promises synthesized laser pulses spanning multi-octaves of bandwidth at an unprecedented energy scale. PMID:25836493

  13. Picosecond pulsed diode ring laser gyroscope

    SciTech Connect

    Rosker, M.J.; Christian, W.R.; McMichael, I.C.

    1994-12-31

    An external ring cavity containing as its active medium a pair of InGaAsP diodes is modelocked to produce picosecond pulses. In such a laser, a small frequency difference proportional to the nonreciprocal phase shift (resulting from, e.g., the Sagnac effect) can be observed by beating together the counter propagating laser arms; the device therefore acts as a rotating sensor. In contrast to a conventional (cw) ring laser gyroscope, the pulsed gyroscope can avoid gain competition, thereby enabling the use of homogeneously broadened gain media like semiconductor diodes. Temporal separation of the pulses within the cavity also discriminates against frequency locking of the lasers. The picosecond pulsed diode ring laser gyroscope is reviewed. Both active and passive modelocking are discussed.

  14. High Power Picosecond Laser Pulse Recirculation

    SciTech Connect

    Shverdin, M Y; Jovanovic, I; Semenov, V A; Betts, S M; Brown, C; Gibson, D J; Shuttlesworth, R M; Hartemann, F V; Siders, C W; Barty, C P

    2010-04-12

    We demonstrate a nonlinear crystal-based short pulse recirculation cavity for trapping the second harmonic of an incident high power laser pulse. This scheme aims to increase the efficiency and flux of Compton-scattering based light sources. We demonstrate up to 36x average power enhancement of frequency doubled sub-millijoule picosecond pulses, and 17x average power enhancement of 177 mJ, 10 ps, 10 Hz pulses.

  15. High-power picosecond laser pulse recirculation.

    PubMed

    Shverdin, M Y; Jovanovic, I; Semenov, V A; Betts, S M; Brown, C; Gibson, D J; Shuttlesworth, R M; Hartemann, F V; Siders, C W; Barty, C P J

    2010-07-01

    We demonstrate a nonlinear crystal-based short pulse recirculation cavity for trapping the second harmonic of an incident high-power laser pulse. This scheme aims to increase the efficiency and flux of Compton-scattering-based light sources. We demonstrate up to 40x average power enhancement of frequency-doubled submillijoule picosecond pulses, and 17x average power enhancement of 177 mJ, 10 ps, 10 Hz pulses.

  16. High-power picosecond laser pulse recirculation.

    PubMed

    Shverdin, M Y; Jovanovic, I; Semenov, V A; Betts, S M; Brown, C; Gibson, D J; Shuttlesworth, R M; Hartemann, F V; Siders, C W; Barty, C P J

    2010-07-01

    We demonstrate a nonlinear crystal-based short pulse recirculation cavity for trapping the second harmonic of an incident high-power laser pulse. This scheme aims to increase the efficiency and flux of Compton-scattering-based light sources. We demonstrate up to 40x average power enhancement of frequency-doubled submillijoule picosecond pulses, and 17x average power enhancement of 177 mJ, 10 ps, 10 Hz pulses. PMID:20596201

  17. A picosecond high pressure gas switch

    SciTech Connect

    Cravey, W.R.; Poulsen, P.P.; Pincosy, P.A.

    1992-06-01

    Work is being done to develop a high pressure gas switch (HPGS) with picosecond risetimes for UWB applications. Pulse risetimes on the order of 200 picoseconds have been observed at 1 kHz prf and 1 atmosphere. Calculations show that switching closure times on the order of tens of picoseconds can be achieved at high pressures and higher electric fields. A voltage hold-off of 1 MV/cm has been measured at 10 atmospheres and several MV/cm appears possible with the HPGS. With these high electric field levels, energy storage of tens of Joules in a reasonably sized package is achievable. Initial HPGS performance has been characterized on the WASP pulse generator at LLNL. A detailed description of the switch used for initial testing is given. Switch recovery times of 1-ms have been measured at 1 atmosphere. Data on the switching uniformity, voltage hold-off recovery, and pulse repeatability, is presented. In addition, a physics switch model is described and results are compared with lab data.

  18. Parametric instabilities in picosecond time scales

    SciTech Connect

    Baldis, H.A.; Rozmus, W.; Labaune, C.; Mounaix, Ph.; Pesme, D.; Baton, S.; Tikhonchuk, V.T.

    1993-03-01

    The coupling of intense laser light with plasmas is a rich field of plasma physics, with many applications. Among these are inertial confinement fusion (ICF), x-ray lasers, particle acceleration, and x-ray sources. Parametric instabilities have been studied for many years because of their importance to ICF; with laser pulses with duration of approximately a nanosecond, and laser intensities in the range 10{sup 14}--10{sup 15}W/cm{sup 2} these instabilities are of crucial concern because of a number of detrimental effects. Although the laser pulse duration of interest for these studies are relatively long, it has been evident in the past years that to reach an understanding of these instabilities requires their characterization and analysis in picosecond time scales. At the laser intensities of interest, the growth rate for stimulated Brillouin scattering (SBS) is of the order of picoseconds, and of an order of magnitude shorter for stimulated Raman scattering (SRS). In this paper the authors discuss SBS and SRS in the context of their evolution in picosecond time scales. They describe the fundamental concepts associated with their growth and saturation, and recent work on the nonlinear treatment required for the modeling of these instabilities at high laser intensities.

  19. Picosecond CO{sub 2} laser for relativistic particle acceleration

    SciTech Connect

    Pogorelsky, I.; Ben-Zvi, I.; Kimura, W.D.; Kurnit, N.A.; Kannari, F.

    1994-06-01

    A table-top 20-GW 50-ps CO{sub 2} laser system is under operation at the Brookhaven Accelerator Test Facility. We compare laser performance with model predictions. Extrapolations suggest the possibility of compact terawatt CO{sub 2} laser systems suitable as laser accelerator drivers and for other strong-field applications. Latest progress on an Inverse Cherenkov Laser Accelerator experiment is reported.

  20. Picosecond laser ablation of porcine sclera

    NASA Astrophysics Data System (ADS)

    Góra, Wojciech S.; Harvey, Eleanor M.; Dhillon, Baljean; Parson, Simon H.; Maier, Robert R. J.; Hand, Duncan P.; Shephard, Jonathan D.

    2013-03-01

    Lasers have been shown to be successful in certain medical procedures and they have been identified as potentially making a major contribution to the development of minimally invasive procedures. However, the uptake is not as widespread and there is scope for many other applications where laser devices may offer a significant advantage in comparison to the traditional surgical tools. The purpose of this research is to assess the potential of using a picosecond laser for minimally invasive laser sclerostomy. Experiments were carried out on porcine scleral samples due to the comparable properties to human tissue. Samples were prepared with a 5mm diameter trephine and were stored in lactated Ringer's solution. After laser machining, the samples were fixed in 3% glutaraldehyde, then dried and investigated under SEM. The laser used in the experiments is an industrial picosecond TRUMPF TruMicro laser operating at a wavelength of 1030nm, pulse length of 6ps, repetition rate of 1 kHz and a focused spot diameter of 30μm. The laser beam was scanned across the samples with the use of a galvanometer scan head and various ablation patterns were investigated. Processing parameters (pulse energy, spot and line separation) which allow for the most efficient laser ablation of scleral tissue without introducing any collateral damage were investigated. The potential to create various shapes, such as linear incisions, square cavities and circular cavities was demonstrated.

  1. Picosecond High Pressure Gas Switch experiment

    SciTech Connect

    Cravey, W.R.; Freytag, E.K.; Goerz, D.A.; Poulsen, P.; Pincosy, P.A.

    1993-08-01

    A high Pressure Gas Switch has been developed and tested at LLNL. Risetimes on the order of 200 picoseconds have been observed at 1 kHz prf and 1 atmosphere pressures. Calculations show that switching closure times on the order of tens of picoseconds can be achieved at higher pressures and electric fields. A voltage hold-off of 1 MV/cm has been measured at 10 atmospheres and several MV/cm appears possible with the HPGS. With such high electric field levels, energy storage of tens of Joules in a reasonably sized package is achievable. Initial HPGS performance has been characterized using the WASP pulse generator at LLNL. A detailed description of the switch used for initial testing is given. Switch recovery times of 1-ms have been measured at 1 atmosphere. Data on the switching uniformity, voltage hold-off recovery, and pulse repeatability, is presented. In addition, a physics switch model is described and results are compared with experimental data. Modifications made to the WASP HV pulser in order to drive the HPGS will also be discussed. Recovery times of less than 1 ms were recorded without gas flow in the switch chambers. Low pressure synthetic air was used as the switch dielectric. Longer recovery times were required when it was necessary to over-voltage the switch.

  2. Picosecond absorption relaxation measured with nanosecond laser photoacoustics

    NASA Astrophysics Data System (ADS)

    Danielli, Amos; Favazza, Christopher P.; Maslov, Konstantin; Wang, Lihong V.

    2010-10-01

    Picosecond absorption relaxation—central to many disciplines—is typically measured by ultrafast (femtosecond or picosecond) pump-probe techniques, which however are restricted to optically thin and weakly scattering materials or require artificial sample preparation. Here, we developed a reflection-mode relaxation photoacoustic microscope based on a nanosecond laser and measured picosecond absorption relaxation times. The relaxation times of oxygenated and deoxygenated hemoglobin molecules, both possessing extremely low fluorescence quantum yields, were measured at 576 nm. The added advantages in dispersion susceptibility, laser-wavelength availability, reflection sensing, and expense foster the study of natural—including strongly scattering and nonfluorescent—materials.

  3. Timing Characteristics of Large Area Picosecond Photodetectors

    SciTech Connect

    Adams, Bernhard W.; Elagin, Andrey L.; Frisch, H.; Obaid, Razib; Oberla, E; Vostrikov, Alexander; Wagner, Robert G.; Wang, Jingbo; Wetstein, Matthew J.; Northrop, R

    2015-09-21

    The LAPPD Collaboration was formed to develop ultralast large-area imaging photodetectors based on new methods for fabricating microchannel plates (MCPs). In this paper we characterize the time response using a pulsed, sub picosecond laser. We observe single photoelectron time resolutions of a 20 cm x 20 cm MCP consistently below 70 ps, spatial resolutions of roughly 500 pm, and median gains higher than 10(7). The RMS measured at one particular point on an LAPPD detector is 58 ps, with in of 47 ps. The differential time resolution between the signal reaching the two ends of the delay line anode is measured to be 5.1 ps for large signals, with an asymptotic limit falling below 2 ps as noise-over-signal approaches zero.

  4. Picosecond kinetics of p-dimethylaminobenzonitrile

    SciTech Connect

    Huppert, D.; Rand, S.D.; Rentzepis, P.M.; Barbara, P.F.; Struve, W.S.; Grabowski, Z.R.

    1981-12-15

    The nanosecond and picosecond resolved dual fluorescences of p-dimethylaminobenzonitrile (DAB), in various solvents and glasses excited by 266 nm 20 ps FWHM laser pulses, have been investigated. Pulse-limited rise times are exhibited by the b*-state emission whose decay in turn feeds directly the risetime of a*-state emission at 440--600 nm in most solvents studied. The a*-state emission was monitored at 520--600 nm in order to eliminate contribution from the b*-state. Within the experimental resolution, the b*-state fluorescence decay times vary approximately linearly with solvent viscosity. The a*-state fluorescence decay times vary with both solvent and temperature, and may reflect either thermally assisted intersystem crossing from the solvated singlet a*-state (presumably of twisted internal charge transfer character) to a corresponding solvated triplet of slightly higher energy, or a thermally activated internal conversion of the /sup 1/TICT to the ground state.

  5. Timing characteristics of Large Area Picosecond Photodetectors

    NASA Astrophysics Data System (ADS)

    Adams, B. W.; Elagin, A.; Frisch, H. J.; Obaid, R.; Oberla, E.; Vostrikov, A.; Wagner, R. G.; Wang, J.; Wetstein, M.

    2015-09-01

    The LAPPD Collaboration was formed to develop ultrafast large-area imaging photodetectors based on new methods for fabricating microchannel plates (MCPs). In this paper we characterize the time response using a pulsed, sub-picosecond laser. We observe single-photoelectron time resolutions of a 20 cm × 20 cm MCP consistently below 70 ps, spatial resolutions of roughly 500 μm, and median gains higher than 107. The RMS measured at one particular point on an LAPPD detector is 58 ps, with ± 1σ of 47 ps. The differential time resolution between the signal reaching the two ends of the delay line anode is measured to be 5.1 ps for large signals, with an asymptotic limit falling below 2 ps as noise-over-signal approaches zero.

  6. Mitotic spindle studied using picosecond laser scissors

    NASA Astrophysics Data System (ADS)

    Baker, N. M.; Botvinick, E. L.; Shi, Linda; Berns, M. B.; Wu, George

    2006-08-01

    In previous studies we have shown that the second harmonic 532 nm, from a picosecond frequency doubled Nd:YAG laser, can cleanly and selectively disrupt spindle fiber microtubules in live cells (Botvinick et al 2004, Biophys. J. 87:4303-4212). In the present study we have ablated different locations and amounts of the metaphase mitotic spindle, and followed the cells in order to observe the fate of the irradiated spindle and the ability of the cell to continue through mitosis. Cells of the rat kangaroo line (PTK2) were stably transfected by ECFP-tubulin and, using fluorescent microscopy and the automated RoboLase microscope, (Botvinick and Berns, 2005, Micros. Res. Tech. 68:65-74) brightly fluorescent individual cells in metaphase were irradiated with 0.2447 nJ/micropulse corresponding to an irradiance of 1.4496*10^7 J/(ps*cm^2) . Upon irradiation the exposed part of the mitotic spindle immediately lost fluorescence and the following events were observed in the cells over time: (1) immediate contraction of the spindle pole towards the cut, (2) recovery of connection between pole and cut microtubule, (3) completion of mitosis. This system should be very useful in studying internal cellular dynamics of the mitotic spindle.

  7. Dielectric breakdown induced by picosecond laser pulses

    NASA Technical Reports Server (NTRS)

    Smith, W. L.; Bechtel, J. H.; Bloembergen, N.

    1976-01-01

    The damage thresholds of transparent optical materials were investigated. Single picosecond pulses at 1.06 microns, 0.53 microns and 0.35 microns were obtained from a mode locked Nd-YAG oscillator-amplifier-frequency multiplier system. The pulses were Gaussian in space and time and permitted the determination of breakdown thresholds with a reproducibility of 15%. It was shown that the breakdown thresholds are characteristic of the bulk material, which included nine alkali halides, five different laser host materials, KDP, quartz, sapphire and calcium fluoride. The extension of the damage data to the ultraviolet is significant, because some indication was obtained that two- and three-photon absorption processes begin to play a role in determining the threshold. Throughout the visible region of the spectrum the threshold is still an increasing function of frequency, indicating that avalanche ionization is the dominant factor in determining the breakdown threshold. This was confirmed by a detailed study of the damage morphology with a high resolution microscope just above the threshold. The influence of self focusing is discussed, and evidence for beam distortion below the power threshold for complete self focusing is presented, confirming the theory of Marburger.

  8. Picosecond dynamics from lanthanide chloride melts

    NASA Astrophysics Data System (ADS)

    Kalampounias, Angelos G.

    2012-12-01

    The picosecond dynamics of molten lanthanide chlorides is studied by means of vibrational spectroscopy. Polarized Raman spectra of molten LaCl3, NdCl3, GdCl3, DyCl3, HoCl3 and YCl3 are fitted to a model enabling to obtain the times of vibrational dephasing, tν and vibrational frequency modulation tω. Our aim is to find possible sensitive indicators of short-time dynamics. It has been found that all lanthanide chlorides exhibit qualitative similarities in the vibrational relaxation and frequency modulation times in the molten state. It appears that the vibrational correlation functions of all melts comply with the Rothschild approach assuming that the environmental modulation is described by a stretched exponential decay. The evolution of the dispersion parameter α indicates the deviation of the melts from the model simple liquid and the similar local environment in which the oscillator is placed and with which it is coupled. The "packing" of the anions around central La3+ cation seems to be the key factor for the structure and the dynamics of the melts. The results are discussed in the framework of the current phenomenological status of the field.

  9. Photon number resolving in picosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Blazej, Josef; Hamal, Karel

    2005-04-01

    We are reporting on research and development in the field of thin-layer planar silicon avalanche photodiodes operated as photon counters in a Geiger mode. We have developed and tested a technique, which permits an estimation of the photon number initiated a detection process. It can be applied in a time correlated photon counting experiment simultaneously with originally required time interval estimation. The principal limitation is a using of laser pulse with width below 30 ps to achieve detection concurrent in compare with carrier multiplication speed. The number of photons which triggered the avalanche is estimated on the basis of the effective rise-time difference of the avalanche current. The active quenching and gating circuit provides two uniform electrical pulses, and the time interval between them is related to the number of photons detected. The strong temporal correlation between avalanche start and one of pulses is preserved. Employing the picosecond event timing device, the photon number can be estimated within the dynamical range from 1 up to 1000 photons with the resolution better than a factor of three. The avalanche structure is operated on temperature achievable by thermo-electrical cooling. The applications of presented technique are in any time correlated photon counting (TCPC) measurement where the additional information about signal strength, i.e. statistical number of photons in laser pulse, is interesting. Other applications in the testing of quantum-well-based single photon light sources or squeezed light sources are expected.

  10. Relativistically Self-Channeled Femtosecond Terawatt Lasers for High-Field Physics and X-Ray Generation

    SciTech Connect

    Borisov, A.B.; Boyer, K.; Cameron, S.M.; Luk, T.S.; McPherson, A.; Nelson, T.; Rhodes, C.K.

    1999-01-01

    Optical channeling or refractive guiding processes involving the nonlinear interaction of intense femtosecond optical pulses with matter in the self-focussing regime has created exciting opportunities for next-generation laser plasma-based x-ray sources and directed energy applications. This fundamentally new form of extended paraxial electromagnetic propagation in nonlinear dispersive media such as underdense plasma is attributed to the interplay between normal optical diffraction and intensity-dependent nonlinear focussing and refraction contributions in the dielectric response. Superposition of these mechanisms on the intrinsic index profile acts to confine the propagating energy in a dynamic self-guiding longitudinal waveguide structure which is stable for power transmission and robust compression. The laser-driven channels are hypothesized to support a degree of solitonic transport behavior, simultaneously stable in the space and time domains (group velocity dispersion balances self-phase modulation), and are believed to be self-compensating for diffraction and dispersion over many Rayleigh lengths in contrast with the defining characteristics of conventional diffractive imaging and beamforming. By combining concentrated power deposition with well-ordered spatial localization, this phenomena will also create new possibilities for production and regulation of physical interactions, including electron beams, enhanced material coupling, and self-modulated plasma wakefields, over extended gain distances with unprecedented energy densities. Harmonious combination of short-pulse x-ray production with plasma channeling resulting from a relativistic charge displacement nonlinearity mechanism in the terawatt regime (10{sup 18} W/cm{sup 2}) has been shown to generate high-field conditions conducive to efficient multi-kilovolt x-ray amplification and peak spectral brightness. Channeled optical propagation with intense short-pulse lasers is expected to impact several

  11. Repetitive highly collimated intense proton beam with sub-MeV energy range driven by a compact few terawatt femtosecond laser

    NASA Astrophysics Data System (ADS)

    Nishiuchi, M.; Daido, H.; Sagisaka, A.; Ogura, K.; Orimo, S.; Kado, M.; Yogo, A.; Mori, M.; Hayashi, Y.; Bulanov, S.; Fukumi, A.; Li, Z.; Noda, A.; Nakamura, S.

    2007-06-01

    A highly collimated sub-MeV proton beam with the divergence angle of 10 degrees is obtained during the interaction of a few terawatt pulse from a table-top Ti:sapphire laser with a thin metallic foil. This beam is used for proton shadowgraphy. The quality of the 107 laminar protons per bunch is sufficient for good quality projection imaging of a micrometer size mesh structure, giving a quantitative characterization of the proton beam, such as the transverse emittance of less than 0.1 π mm mrad. These experimental results open up a new perspective in imaging techniques.

  12. 500 picosecond TDC for DIRC at BABAR

    SciTech Connect

    Lebbolo, H.; Bailly, P.; Chauveau, J.

    1997-12-31

    A 16 channel TDC chip has been developed at LPNHE Paris, to equip the Front-End electronics of the Detector of Internally Reflected Cerenkov light (DIRC) of the BABAR experiment at the SLAC B factory (Stanford, USA). Binning is 500 picosecond, conversion time is 32 ns, with a fall range of 32 {mu}s. The chip integrates channel buffering and selective readout of data falling within a programmable window defined by the level one trigger latency and resolution. The selective readout allows to manage random inputs at a maximum average rate of 100 kHz on each channel and makes data available at any time a trigger occurs. The maximum average rate of L1 accept trigger will be 2 kHz. The chip, housed in a 68 pin PLCC package, is designed in 0.7 {mu}m CMOS technology and manufactured by ATMEL ES2. The TDC section and channel FIFOs are full custom designs. The TDC uses 16 independent voltage controlled digital delay lines and a 17th calibration channel which allows to tune the delays on the 59.5 MHZ reference clock. The selective readout algorithm has been synthesized from Verilog description and uses ATMEL ES2 standard cells. Die size is 36 mm2 and power less than 100 mW with all inputs fired at 100 kHZ. Prototypes test results show performances better than the specifications for the chip to be used on the DIRC detector. The ten production prototypes have been delivered mid May 1997.

  13. Interpreting picosecond acoustics in the case of low interface stiffness.

    PubMed

    Hohensee, Gregory T; Hsieh, Wen-Pin; Losego, Mark D; Cahill, David G

    2012-11-01

    Analysis of data acquired in time-domain thermoreflectance (TDTR) experiments requires accurate measurements of the thickness of the metal film optical transducer that absorbs energy from the pump optical pulse and provides a temperature dependent reflectivity that is interrogated by the probe optical pulse. This thickness measurement is typically accomplished using picosecond acoustics. The presence of contaminants and native oxides at the interface between the sample and transducer often produce a picosecond acoustics signal that is difficult to interpret. We describe heuristics for addressing this common difficulty in interpreting picosecond acoustic data. The use of these heuristics can reduce the propagation of uncertainties and improve the accuracy of TDTR measurements of thermal transport properties.

  14. Optothermal response of plasmonic nanofocusing lens under picosecond laser irradiation

    NASA Astrophysics Data System (ADS)

    Du, Z.; Chen, C.; Traverso, L.; Xu, X.; Pan, L.; Chao, I.-H.; Lavine, A. S.

    2014-03-01

    This work studied the optothermal response of plasmonic nanofocusing structures under picosecond pulsed laser irradiation. The surface plasmon polariton is simulated to calculate the optical energy dissipation as the Joule heating source and the thermal transport process is studied using a two temperature model (TTM). At the picosecond time scale that we are interested in, the Fourier heat equation is used to study the electron thermal transport and the hyperbolic heat equation is used to study the lattice thermal transport. For comparison, the single temperature model (STM) is also studied. The difference between TTM and STM indicates that TTM provides more accurate estimates in the picosecond time scale and the STM results are only reliable when the local electron and lattice temperature difference is negligible.

  15. High power industrial picosecond laser from IR to UV

    NASA Astrophysics Data System (ADS)

    Saby, Julien; Sangla, Damien; Pierrot, Simonette; Deslandes, Pierre; Salin, François

    2013-02-01

    Many industrial applications such as glass cutting, ceramic micro-machining or photovoltaic processes require high average and high peak power Picosecond pulses. The main limitation for the expansion of the picosecond market is the cost of high power picosecond laser sources, which is due to the complexity of the architecture used for picosecond pulse amplification, and the difficulty to keep an excellent beam quality at high average power. Amplification with fibers is a good technology to achieve high power in picosecond regime but, because of its tight confinement over long distances, light undergoes dramatic non linearities while propagating in fibers. One way to avoid strong non linearities is to increase fiber's mode area. Nineteen missing holes fibers offering core diameter larger than 80μm have been used over the past few years [1-3] but it has been shown that mode instabilities occur at approximately 100W average output power in these fibers [4]. Recently a new fiber design has been introduced, in which HOMs are delocalized from the core to the clad, preventing from HOMs amplification [5]. In these so-called Large Pitch Fibers, threshold for mode instabilities is increased to 294W offering robust single-mode operation below this power level [6]. We have demonstrated a high power-high efficiency industrial picosecond source using single-mode Large Pitch rod-type fibers doped with Ytterbium. Large Pitch Rod type fibers can offer a unique combination of single-mode output with a very large mode area from 40 μm up to 100μm and very high gain. This enables to directly amplify a low power-low energy Mode Locked Fiber laser with a simple amplification architecture, achieving very high power together with singlemode output independent of power level or repetition rate.

  16. Synchronization of sub-picosecond electron and laser pulses

    SciTech Connect

    Rosenzweig, J.B.; Le Sage, G.P.

    1999-07-01

    Sub-picosecond laser-electron synchronization is required to take full advantage of the experimental possibilities arising from the marriage of modern high intensity lasers and high brightness electron beams in the same laboratory. Two particular scenarios stand out in this regard, injection of ultra-short electron pulses in short wavelength laser-driven plasma accelerators, and Compton scattering of laser photons from short electron pulses. Both of these applications demand synchronization, which is sub-picosecond, with tens of femtosecond synchronization implied for next generation experiments. The design of a microwave timing modulator system is now being investigated in more detail. (AIP) {copyright} {ital 1999 American Institute of Physics.}

  17. Synchronization of sub-picosecond electron and laser pulses

    SciTech Connect

    Rosenzweig, J. B.; Le Sage, G. P.

    1999-07-12

    Sub-picosecond laser-electron synchronization is required to take full advantage of the experimental possibilities arising from the marriage of modern high intensity lasers and high brightness electron beams in the same laboratory. Two particular scenarios stand out in this regard, injection of ultra-short electron pulses in short wavelength laser-driven plasma accelerators, and Compton scattering of laser photons from short electron pulses. Both of these applications demand synchronization, which is sub-picosecond, with tens of femtosecond synchronization implied for next generation experiments. The design of a microwave timing modulator system is now being investigated in more detail.

  18. Picosecond lasers for tattoo removal: a systematic review.

    PubMed

    Reiter, Ofer; Atzmony, Lihi; Akerman, Lehavit; Levi, Assi; Kershenovich, Ruben; Lapidoth, Moshe; Mimouni, Daniel

    2016-09-01

    Given that the pigment particles in tattoos have a relaxation time of <10 ns, picosecond lasers would be expected to be more effective than nanosecond lasers in tattoo removal. To systematically review the evidence regarding the effectiveness and safety of picosecond lasers for tattoo removal, Pubmed, Cochrane Central Register of Controlled Trials (CENTRAL), ClinicalTrials.gov, and reference lists were searched for relevant trials. The primary outcome was >70 % clearance of tattoo pigment. Secondary outcomes were 90-100 % clearance of tattoo pigment, number of laser sessions required, and adverse effects. Eight trials were included, six with human participants (160 participants) and 2 with animal models. Seven of the eight trials explored the usage of either 755, 758, 795, 1064, or 1064/532-nm picosecond lasers for black and blue ink tattoos. In the human trials, 69-100 % of tattoos showed over 70 % clearance of pigment after 1-10 laser treatments. Reported side effects included pain, hyperpigmentation and hypopigmentation, blister formation and transient erythema, edema, and pinpoint bleeding. Included articles varied in type of laser investigated, mostly non-comparative studies and with a medium to high risk of bias. There is sparse evidence that picosecond lasers are more effective than their nanosecond counterparts for mainly black and blue ink tattoo removal, with minor side effects.

  19. Picosecond lasers for tattoo removal: a systematic review.

    PubMed

    Reiter, Ofer; Atzmony, Lihi; Akerman, Lehavit; Levi, Assi; Kershenovich, Ruben; Lapidoth, Moshe; Mimouni, Daniel

    2016-09-01

    Given that the pigment particles in tattoos have a relaxation time of <10 ns, picosecond lasers would be expected to be more effective than nanosecond lasers in tattoo removal. To systematically review the evidence regarding the effectiveness and safety of picosecond lasers for tattoo removal, Pubmed, Cochrane Central Register of Controlled Trials (CENTRAL), ClinicalTrials.gov, and reference lists were searched for relevant trials. The primary outcome was >70 % clearance of tattoo pigment. Secondary outcomes were 90-100 % clearance of tattoo pigment, number of laser sessions required, and adverse effects. Eight trials were included, six with human participants (160 participants) and 2 with animal models. Seven of the eight trials explored the usage of either 755, 758, 795, 1064, or 1064/532-nm picosecond lasers for black and blue ink tattoos. In the human trials, 69-100 % of tattoos showed over 70 % clearance of pigment after 1-10 laser treatments. Reported side effects included pain, hyperpigmentation and hypopigmentation, blister formation and transient erythema, edema, and pinpoint bleeding. Included articles varied in type of laser investigated, mostly non-comparative studies and with a medium to high risk of bias. There is sparse evidence that picosecond lasers are more effective than their nanosecond counterparts for mainly black and blue ink tattoo removal, with minor side effects. PMID:27311768

  20. Picosecond lasers: the next generation of short-pulsed lasers.

    PubMed

    Freedman, Joshua R; Kaufman, Joely; Metelitsa, Andrea I; Green, Jeremy B

    2014-12-01

    Selective photothermolysis, first discussed in the context of targeted microsurgery in 1983, proposed that the optimal parameters for specific thermal damage rely critically on the duration over which energy is delivered to the tissue. At that time, nonspecific thermal damage had been an intrinsic limitation of all commercially available lasers, despite efforts to mitigate this by a variety of compensatory cooling mechanisms. Fifteen years later, experimental picosecond lasers were first reported in the dermatological literature to demonstrate greater efficacy over their nanosecond predecessors in the context of targeted destruction of tattoo ink. Within the last 4 years, more than a decade after those experiments, the first commercially available cutaneous picosecond laser unit became available (Cynosure, Westford, Massachusetts), and several pilot studies have demonstrated its utility in tattoo removal. An experimental picosecond infrared laser has also recently demonstrated a nonthermal tissue ablative capability in soft tissue, bone, and dentin. In this article, we review the published data pertaining to dermatology on picosecond lasers from their initial reports to the present as well as discuss forthcoming technology.

  1. Picosecond charge transport in rutile at high carrier densities studied by transient terahertz spectroscopy

    NASA Astrophysics Data System (ADS)

    Zajac, V.; Němec, H.; Kužel, P.

    2016-09-01

    We study terahertz photoconductivity of a rutile single crystal between 10 and 300 K under strong photoexcitation by femtosecond pulses at 266 nm. A marked dependence of the carrier mobility on the carrier density is observed leading to highly complex transport phenomena on a picosecond time scale. We develop a general model of carrier photoconductive response in the case of time dependent inhomogeneous distribution of carrier density and mobility. This allows us to assess an important role of both electrons and holes in the response of photoexcited rutile. At low temperatures, the carrier mobility is initially reduced due to the electron-hole scattering and increases by one order of magnitude upon ambipolar diffusion of the carriers into deeper regions of the sample. At room temperature, contributions of transient hot optical phonons and/or of midinfrared polaron excitations with charge-density-dependent dielectric strength emerge in the photoconductivity spectra.

  2. Picosecond Electric-Field-Induced Threshold Switching in Phase-Change Materials.

    PubMed

    Zalden, Peter; Shu, Michael J; Chen, Frank; Wu, Xiaoxi; Zhu, Yi; Wen, Haidan; Johnston, Scott; Shen, Zhi-Xun; Landreman, Patrick; Brongersma, Mark; Fong, Scott W; Wong, H-S Philip; Sher, Meng-Ju; Jost, Peter; Kaes, Matthias; Salinga, Martin; von Hoegen, Alexander; Wuttig, Matthias; Lindenberg, Aaron M

    2016-08-01

    Many chalcogenide glasses undergo a breakdown in electronic resistance above a critical field strength. Known as threshold switching, this mechanism enables field-induced crystallization in emerging phase-change memory. Purely electronic as well as crystal nucleation assisted models have been employed to explain the electronic breakdown. Here, picosecond electric pulses are used to excite amorphous Ag_{4}In_{3}Sb_{67}Te_{26}. Field-dependent reversible changes in conductivity and pulse-driven crystallization are observed. The present results show that threshold switching can take place within the electric pulse on subpicosecond time scales-faster than crystals can nucleate. This supports purely electronic models of threshold switching and reveals potential applications as an ultrafast electronic switch. PMID:27541475

  3. Picosecond dynamics of a shock-driven displacive phase transformation in Zr

    NASA Astrophysics Data System (ADS)

    Swinburne, T. D.; Glavicic, M. G.; Rahman, K. M.; Jones, N. G.; Coakley, J.; Eakins, D. E.; White, T. G.; Tong, V.; Milathianaki, D.; Williams, G. J.; Rugg, D.; Sutton, A. P.; Dye, D.

    2016-04-01

    High-pressure solid-state transformations at high strain rates are usually observed after the fact, either during static holding or after unloading, or inferred from interferometry measurements of the sample surface. The emergence of femtosecond x-ray diffraction techniques provides insight into the dynamics of short-time-scale events such as shocks. We report laser pump-probe experiments of the response of Zr to laser-driven shocks over the first few nanoseconds of the shock event, enabling the α →ω transition and orientation relationship to be observed in real time with picosecond resolution. A clear orientation relationship of (101 ¯0 ) α|| (101 ¯1 ) ω is found, in conflict with ω →α annealing experiments in zirconium and the two α →ω pathways proposed for titanium.

  4. Picosecond Electric-Field-Induced Threshold Switching in Phase-Change Materials

    NASA Astrophysics Data System (ADS)

    Zalden, Peter; Shu, Michael J.; Chen, Frank; Wu, Xiaoxi; Zhu, Yi; Wen, Haidan; Johnston, Scott; Shen, Zhi-Xun; Landreman, Patrick; Brongersma, Mark; Fong, Scott W.; Wong, H.-S. Philip; Sher, Meng-Ju; Jost, Peter; Kaes, Matthias; Salinga, Martin; von Hoegen, Alexander; Wuttig, Matthias; Lindenberg, Aaron M.

    2016-08-01

    Many chalcogenide glasses undergo a breakdown in electronic resistance above a critical field strength. Known as threshold switching, this mechanism enables field-induced crystallization in emerging phase-change memory. Purely electronic as well as crystal nucleation assisted models have been employed to explain the electronic breakdown. Here, picosecond electric pulses are used to excite amorphous Ag4In3Sb67Te26 . Field-dependent reversible changes in conductivity and pulse-driven crystallization are observed. The present results show that threshold switching can take place within the electric pulse on subpicosecond time scales—faster than crystals can nucleate. This supports purely electronic models of threshold switching and reveals potential applications as an ultrafast electronic switch.

  5. Picosecond X-ray streak camera dynamic range measurement

    NASA Astrophysics Data System (ADS)

    Zuber, C.; Bazzoli, S.; Brunel, P.; Fronty, J.-P.; Gontier, D.; Goulmy, C.; Raimbourg, J.; Rubbelynck, C.; Trosseille, C.

    2016-09-01

    Streak cameras are widely used to record the spatio-temporal evolution of laser-induced plasma. A prototype of picosecond X-ray streak camera has been developed and tested by Commissariat à l'Énergie Atomique et aux Énergies Alternatives to answer the Laser MegaJoule specific needs. The dynamic range of this instrument is measured with picosecond X-ray pulses generated by the interaction of a laser beam and a copper target. The required value of 100 is reached only in the configurations combining the slowest sweeping speed and optimization of the streak tube electron throughput by an appropriate choice of high voltages applied to its electrodes.

  6. Heterodyne picosecond thermoreflectance applied to nanoscale thermal metrology

    NASA Astrophysics Data System (ADS)

    Dilhaire, S.; Pernot, G.; Calbris, G.; Rampnoux, J. M.; Grauby, S.

    2011-12-01

    Picosecond thermoreflectance is an unprecedented powerful technique for nanoscale heat transfer analysis and metrology, but different sources of artifacts were reported in the literature making this technique difficult to use for long delay (several ns) thermal analysis. We present in this paper a new heterodyne picosecond thermoreflectance (HPTR) technique. As it uses two slightly frequency shifted lasers instead of a mechanical translation stage, it is possible to avoid all artifacts leading to erroneous thermal parameter identifications. The principle and set-up are described as well as the model. The signal delivered by the HPTR experiment is calculated for each excitation configurations, modulating or not the pump beam. We demonstrate the accuracy of the technique in the identification of the thermal conductivity of a 50 nm thick SiO2 layer. Then, we discuss the role of the modulation frequency for nanoscale heat transfer analysis.

  7. Surfaces and thin films studied by picosecond ultrasonics

    SciTech Connect

    Maris, J.H.; Tauc, J.

    1992-05-01

    This research is the study of thin films and interfaces via the use of the picosecond ultrasonic technique. In these experiments ultrasonic waves are excited in a structure by means of a picosecond light pulse ( pump pulse''). The propagation of these waves is detected through the use of a probe light pulse that is time-delayed relative to the pump. This probe pulse measures the change {Delta}R(t) in the optical reflectivity of the structure that occurs because the ultrasonic wave changes the optical properties of the structure. This technique make possible the study of the attenuation and velocity of ultrasonic waves up to much higher frequencies than was previously possible (up to least 500 GHz). In addition, the excellent time-resolution of the method makes it possible to study nanostructures of linear dimensions down to 100 {Angstrom} or less by ultrasonic pulse-echo techniques. 25 refs.

  8. Picosecond optical vortex pulse illumination forms a monocrystalline silicon needle

    NASA Astrophysics Data System (ADS)

    Takahashi, Fuyuto; Miyamoto, Katsuhiko; Hidai, Hirofumi; Yamane, Keisaku; Morita, Ryuji; Omatsu, Takashige

    2016-02-01

    The formation of a monocrystalline silicon needle by picosecond optical vortex pulse illumination was demonstrated for the first time in this study. The dynamics of this silicon needle formation was further revealed by employing an ultrahigh-speed camera. The melted silicon was collected through picosecond pulse deposition to the dark core of the optical vortex, forming the silicon needle on a submicrosecond time scale. The needle was composed of monocrystalline silicon with the same lattice index (100) as that of the silicon substrate, and had a height of approximately 14 μm and a thickness of approximately 3 μm. Overlaid vortex pulses allowed the needle to be shaped with a height of approximately 40 μm without any changes to the crystalline properties. Such a monocrystalline silicon needle can be applied to devices in many fields, such as core-shell structures for silicon photonics and photovoltaic devices as well as nano- or microelectromechanical systems.

  9. Picosecond resolution soft x-ray laser plasma interferometry

    SciTech Connect

    Moon, S; Nilsen, J; Ng, A; Shlyaptsev, V; Dunn, J; Hunter, J; Keenan, R; Marconi, M; Filevich, J; Rocca, J; Smith, R

    2003-12-01

    We describe a soft x-ray laser interferometry technique that allows two-dimensional diagnosis of plasma electron density with picosecond time resolution. It consists of the combination of a robust high throughput amplitude division interferometer and a 14.7 nm transient inversion soft x-ray laser that produces {approx} 5 ps pulses. Due to its picosecond resolution and short wavelength scalability, this technique has potential for extending the high inherent precision of soft x-ray laser interferometry to the study of very dense plasmas of significant fundamental and practical interest, such as those investigated for inertial confined fusion. Results of its use in the diagnostics of dense large scale laser-created plasmas are presented.

  10. Multifunctional optical correlator for picosecond ultraviolet laser pulse measurement.

    PubMed

    Rakhman, Abdurahim; Wang, Yang; Garcia, Frances; Long, Cary; Huang, Chunning; Takeda, Yasuhiro; Liu, Yun

    2014-11-01

    A compact multifunctional optical correlator system for pulse width measurement of ultrashort ultraviolet (UV) pulses has been designed and experimentally demonstrated. Both autocorrelation and cross-correlation functions are measured using a single nonlinear crystal, and the switching between two measurements requires no adjustment of phase matching and detector. The system can measure UV pulse widths from sub-picoseconds to 100 ps, and it involves no auxiliary pulse in the measurement. The measurement results on a burst-mode picosecond UV laser show a high-quality performance on speed, accuracy, resolution, and dynamic range. The proposed correlator can be applied to measure any ultrashort UV pulses produced through sum-frequency generation or second-harmonic generation. PMID:25402928

  11. X-ray production with sub-picosecond laser pulses

    SciTech Connect

    Schappert, G.T.; Cobble, J.A.; Fulton, R.D.; Kyrala, G.A.

    1993-12-31

    The interaction of intense, sub-picosecond laser pulses with solid targets produces intense picosecond x-ray pulses. With focused laser pulses of several 10 {sup 18} W/cm{sup 2}, He-like and H-like line radiation from targets such as aluminum and silicon has been produced. The energy conversion efficiency from the laser pulse energy to the 1--2 keV line x-rays is nearly one percent. The duration of the line x-ray radiation is of the order of ten picoseconds, although this may be an upper estimate because of the temporal resolution of the x-ray streak camera. The spatial extent of the x-ray source region is only slightly larger than the laser focal spot, or about 10 {mu}m in diameter. With these characteristics, such x-ray sources emit an intensity of nearly 10{sup 14} W/cm{sup 2}. Experiments and modeling which led to the above conclusions will be discussed.

  12. A semiconductor injection-switched high-pressure sub-10-picosecond carbon dioxide laser amplifier

    NASA Astrophysics Data System (ADS)

    Hughes, Michael Kon Yew

    A multiatmospheric-pressure-broadened CO2 laser amplifier was constructed to amplify sub-10-picosecond pulses generated with semiconductor switching. High-intensity, mid-infrared, amplified pulses have many applications: especially in fields such as non-linear optics, laser-plasma interaction, and laser particle acceleration. The injected pulses are produced by exciting GaAs (or an engineered, fast-recombination time semiconductor) with an ultrafast visible laser pulse to induce transient free carriers with sufficient density to reflect a co-incident hybrid-CO2 laser pulse. The short pulse is injected directly into the regenerative amplifier cavity from an intra-cavity semiconductor switch. The CO2-gas-mix amplifier is operated at 1.24 MPa which is sufficient to collisionally broaden the individual rotational spectral lines so that they merge to produce a gain spectrum wide enough to support pulses less than 10 ps long. After sufficient amplification, the pulse is switched out with another semiconductor switch pumped with a synchronized visible-laser pulse. This system is demonstrated and analysed spectrally and temporally. The pulse-train spectral analysis is done for a GaAs-GaAs double-switch arrangement using a standard spectrometer and two HgCdTe detectors; one of which is used for a reference signal. An infrared autocorrelator was designed and constructed to temporally analyse the pulse trains emerging from the amplifier. Interpretation of the results was aided by the development of a computer model for short-pulse amplification which incorporated saturation effects, rotational- and vibrational-mode energy redistribution between pulse round trips, and the gain enhancement due to one sequence band. The results show that a sub-10-picosecond pulse is injected into the cavity and that it is amplified with some trailing pulses at 18 ps intervals generated by coherent effects. The energy level reached, estimated through modelling, was >100 mJ/cm2.

  13. Mechanical Properties of Nuclear Fuel Surrogates using Picosecond Laser Ultrasonics

    SciTech Connect

    David Hurley; Marat Khafizov; Farhad Farzbod; Eric Burgett

    2013-05-01

    Detailed understanding between microstructure evolution and mechanical properties is important for designing new high burnup nuclear fuels. In this presentation we discuss the use of picosecond ultrasonics to measure localize changes in mechanical properties of fuel surrogates. We develop measurement techniques that can be applied to investigate heterogeneous elastic properties caused by localize changes in chemistry, grain microstructure caused by recrystallization, and mechanical properties of small samples prepared using focused ion beam sample preparation. Emphasis is placed on understanding the relationship between microstructure and mechanical properties

  14. Picosecond dynamics of photoexcited carriers in interacting silicon nanocrystals

    NASA Astrophysics Data System (ADS)

    Kořínek, Miroslav; Trojánek, František; Hiller, Daniel; Gutsch, Sebastian; Zacharias, Margit; Kübel, Christian; Malý, Petr

    2016-07-01

    The non-radiative Auger carrier recombination plays an important role in physics and the application of semiconductor nanocrystals. Here we report on the effect of inter-nanocrystal carrier interaction on Auger recombination. We prepared a special set of samples containing silicon nanocrystals embedded in silicon oxide with well-defined geometry. The picosecond carrier recombination rate measured by femtosecond pump and probe technique was found to be strongly dependent on the inter-nanocrystal separation. The observed decrease of the decay rate with nanocrystal separation on the nanometer scale is interpreted in terms of the wave function overlap appearing in the relevant matrix element describing the recombination process.

  15. Picosecond flash spectroscopic studies on ultraviolet stabilizers and stabilized polymers

    NASA Technical Reports Server (NTRS)

    Scott, G. W.

    1982-01-01

    Spectroscopic and excited state decay kinetics are reported for monomeric and polymeric forms of ultraviolet stabilizers in the 2-(2'-hydroxyphenyl)-benzotriazole and 2-hydroxybenzophenone classes. For some of these molecules in various solvents at room temperature, (1) ground state absorption spectra, (2) emission spectra, (3) picosecond time-resolved transient absorption spectra, (4) ground state absorption recovery kinetics, (5) emission kinetics, and (6) transient absorption kinetics are reported. In the solid state at low temperatures, emission spectra and their temperature dependent kinetics up to approximately 200K as well as, in one case, the 12K excitation spectra of the observed dual emission are also reported.

  16. In Vitro picosecond ultrasonics in a single cell

    NASA Astrophysics Data System (ADS)

    Rossignol, C.; Chigarev, N.; Ducousso, M.; Audoin, B.; Forget, G.; Guillemot, F.; Durrieu, M. C.

    2008-09-01

    Ultrasonics signals at frequencies 5.7±0.1 and 6.8±0.1GHz are measured in two organelles of a single vegetal cell in vitro with a picosecond ultrasonic technique. Using standard values for cell optical index, ultrasound velocities of 1.6±0.1 and 2.0±0.1μm/ns are measured from several signals recorded in the vacuole and in the nucleus of a single Allium cepa cell, respectively. A 1μm lateral and 0.25μm depth resolution is attained.

  17. Cryogenically-cooled Yb:YGAG ceramic picosecond oscillator

    NASA Astrophysics Data System (ADS)

    Mužik, J.; Jelínek, M.; Miura, T.; Smrž, M.; Endo, A.; Mocek, T.; Kubeček, V.

    2016-04-01

    In this work, a passively mode-locked Yb:YGAG (Yb:Y3Ga2Al3O12) ceramic laser generating picosecond pulses at liquid-nitrogen temperature is demonstrated. The Yb:YGAG has a similar structure to Yb:YAG, but its emission bandwidth at cryogenic temperature remains much broader, which is advantageous for ultrashort pulse generation and amplification. Using this laser material, a stable train of pulses at a wavelength of 1026 nm was obtained, with measured pulse duration of 2.4 ps, which is more than four times shorter than that achieved with a cryogenically-cooled Yb:YAG.

  18. A rapid-scanning autocorrelation scheme for continuous monitoring of picosecond laser pulses

    SciTech Connect

    Yasa, Zafer A.; Amer, Nabil M.

    1981-03-01

    In this paper, we describe a scheme for rapidly introducing a periodic linear time delay to a train of picosecond laser pulses. Finally, by incorporating this scheme in one arm of the Michelson interferometer of a conventional autocorrelator, the second order intensity autocorrelation function of a cw train of picosecond pulses is continuously displayed on an oscilloscope.

  19. Femtosecond wavelength-tunable OPCPA system based on picosecond fiber laser seed and picosecond DPSS laser pump.

    PubMed

    Danilevičius, R; Zaukevičius, A; Budriūnas, R; Michailovas, A; Rusteika, N

    2016-07-25

    We present a compact and stable femtosecond wavelength-tunable optical parametric chirped pulse amplification (OPCPA) system. A novel OPCPA front-end was constructed using a multi-channel picosecond all-in-fiber source for seeding DPSS pump laser and white light supercontinuum generation. Broadband chirped pulses were parametrically amplified up to 1 mJ energy and compressed to less than 40 fs duration. Pulse wavelength tunability in the range from 680 nm to 930 nm was experimentally demonstrated. PMID:27464199

  20. Picosecond optical vortex pulse illumination forms a monocrystalline silicon needle.

    PubMed

    Takahashi, Fuyuto; Miyamoto, Katsuhiko; Hidai, Hirofumi; Yamane, Keisaku; Morita, Ryuji; Omatsu, Takashige

    2016-01-01

    The formation of a monocrystalline silicon needle by picosecond optical vortex pulse illumination was demonstrated for the first time in this study. The dynamics of this silicon needle formation was further revealed by employing an ultrahigh-speed camera. The melted silicon was collected through picosecond pulse deposition to the dark core of the optical vortex, forming the silicon needle on a submicrosecond time scale. The needle was composed of monocrystalline silicon with the same lattice index (100) as that of the silicon substrate, and had a height of approximately 14 μm and a thickness of approximately 3 μm. Overlaid vortex pulses allowed the needle to be shaped with a height of approximately 40 μm without any changes to the crystalline properties. Such a monocrystalline silicon needle can be applied to devices in many fields, such as core-shell structures for silicon photonics and photovoltaic devices as well as nano- or microelectromechanical systems. PMID:26907639

  1. A Cerenkov source of high-power picosecond pulsed microwaves

    SciTech Connect

    Zhang, T.B.; Marshall, T.C.; Hirshfield, J.L. |

    1998-06-01

    One or more electron bunches passing along the axis of a dielectric-lined cylindrical waveguide are shown to emit picosecond pulses of high-power broad-band microwave radiation. The bunches can be generated by an S-band RF gun, and thus spaced from one another by 10.5 cm in a macropulse sequence, or a single more intense bunch can be generated using a laser-illuminated photocathode in the RF gun. Theory is developed for the excitation of TM{sub 0m} modes of this waveguide which propagate at the bunch velocity from Cerenkov radiation emitted by a single intense bunch. A train of picosecond coherent wakefield pulses is shown to follow the bunch, when the waveguide modes have nearly constant spacing in frequency. An example is shown for an alumina-lined waveguide with 10-nC 3--15-ps bunches having an initial energy of 6 MeV. Computations are presented of the mode spectrum of the radiation and its time structure. It is also shown that measurements of the mode spectrum, or of the energy loss of the bunch, can be used to infer the axial density profile of the bunch. Certain features of the theory are compared with the results of a preliminary experiment.

  2. Picosecond and subpicosecond visible laser ablation of optically transparent polymers

    NASA Astrophysics Data System (ADS)

    Serafetinides, A. A.; Skordoulis, C. D.; Makropoulou, M. I.; Kar, A. K.

    1998-09-01

    The ablation rates, as a function of the laser fluence, of the optically transparent polymers, Nylon-6,6 and PMMA, are reported using picosecond and subpicosecond laser pulses, obtained from a Regenerative Amplified Nd:YAG laser system. The laser pulses had a duration of 100 ps at 1064 and 532 nm wavelengths and 0.8 ps at 595 nm. The ablation rate results indicate a strong saturation behaviour for both polymers in the investigated irradiation conditions. The material removal is 2-3 times higher in the case of the visible (532 nm) picosecond laser ablation experiments. The surface topology of the polymers was also studied. The obtained Atomic Force Microscopy images reveal no mechanical damage in the inner ablation crater wall. The qualitative analysis of the ablation mechanism for ultrashort pulse laser irradiation reveals a combination of photochemically induced direct bond dissociation and a photothermal process due to the relaxation of the excited polymers within the vibrational levels of the ground state.

  3. Picosecond and femtosecond laser ablation of hard tissues

    NASA Astrophysics Data System (ADS)

    Serafetinides, Alexander A.; Makropoulou, Mersini I.; Kar, Ajoy K.; Khabbaz, Marouan

    1996-12-01

    In this study, the interaction of picosecond and femtosecond pulsed laser radiation with human dental tissue was investigated experimentally, as this unexplored field is expected to be a potential alternative in powerful laser processing of biomedical structures. Dentin ablation rate experiments were performed by using teeth sections of different thickness. Dental tissue samples were irradiated in air with i) a regenerative amplifier laser at 1064 nm, pulse duration 110 ps, ii) the second harmonic laser at 532 nm, pulse duration 100 ps, and iii) a picosecond tunable dye amplifier at 595 nm, pulse width 800 fs. In all the experiments the pulse repetition rate was 10 Hz. The ablation rate per pulse at different energy fluence settings was calculated by measuring the time needed for the perforation of the whole dental sample thickness. Short laser pulses can confine thermal energy within the optical zone, which maximizes photothermal and photomechanical mechanisms of interaction. Tissue ablation rates were found to be comparable to or better than other nanosecond lasers, and left smooth surfaces, free of thermal damage.

  4. Picosecond optical vortex pulse illumination forms a monocrystalline silicon needle

    PubMed Central

    Takahashi, Fuyuto; Miyamoto, Katsuhiko; Hidai, Hirofumi; Yamane, Keisaku; Morita, Ryuji; Omatsu, Takashige

    2016-01-01

    The formation of a monocrystalline silicon needle by picosecond optical vortex pulse illumination was demonstrated for the first time in this study. The dynamics of this silicon needle formation was further revealed by employing an ultrahigh-speed camera. The melted silicon was collected through picosecond pulse deposition to the dark core of the optical vortex, forming the silicon needle on a submicrosecond time scale. The needle was composed of monocrystalline silicon with the same lattice index (100) as that of the silicon substrate, and had a height of approximately 14 μm and a thickness of approximately 3 μm. Overlaid vortex pulses allowed the needle to be shaped with a height of approximately 40 μm without any changes to the crystalline properties. Such a monocrystalline silicon needle can be applied to devices in many fields, such as core–shell structures for silicon photonics and photovoltaic devices as well as nano- or microelectromechanical systems. PMID:26907639

  5. Picosecond laser surface micropatterning of ceramics by optical fiber induction

    NASA Astrophysics Data System (ADS)

    Li, Jian; Ji, Lingfei; Hu, Yan; Wu, Yan; Yan, Yinzhou

    2015-06-01

    Parallel microgrooves and mesh structure with a line width of about 16 μm, which is much smaller than the diameter of the laser focus spot of 50 μm, are fabricated on Al2O3 ceramic surfaces by picosecond laser patterning with optical fiber induction. The patterned grooves are of high quality without burr, recasting or thermally induced cracks. Grain refinement of the groove surfaces caused by the rapid condensation and redeposition during picosecond laser irradiation with optical fiber induction improved the smoothness and mechanical strength of the grooves. Different patterns can be fabricated by adjusting the optical fiber layout, which is independent of the laser scanning direction. The regions etched by the laser are kept in near-field contact with the optical fibers when the laser beam passes through the fibers and irradiates the ceramic surface. This results in localized field enhancement between the transparent optic fiber and ceramic surface, which produces the precise microgrooves. The developed technique allows high-resolution micromachining of the surfaces of hard and brittle ceramic-type materials.

  6. (Surfaces and thin films studied by picosecond ultrasonics)

    SciTech Connect

    Maris, H.J.; Tauc, J.

    1990-01-01

    This research supported by grant FG02-86ER45367 is the study of the properties of solids by means of the picosecond technique. In this research we investigate both fundamental problems in phonon physics and lattice dynamics, and we also apply the technique to the non-destructive evaluation of thin-film microstructures. In the experiments a picosecond light pulse is absorbed at a surface, thereby generating an elastic pulse. This strain pulse propagates through the sample, and is detected at a later time by means of a time-delayed probe light pulse. During the past year our research has been concentrated in three main areas. We have made an extensive series of measurements of ultrasonic attenuation as a function of frequency and temperature in glasses. We have succeeded in generating and detecting surface acoustic waves in microstructures with surface gratings and dot arrays, and have performed several experiments to study the structure of thin films and surface layers. The third area is the investigation of heat flow from metal films into dielectric crystals, and the possible observation of second sound. Also included is the proposal for next years work. 7 refs., 3 figs.

  7. Subpicosecond and picosecond laser ablation of dental enamel: comparative analysis

    NASA Astrophysics Data System (ADS)

    Rode, Andrei V.; Madsen, Nathan R.; Kolev, Vesselin Z.; Gamaly, Eugene G.; Luther-Davies, Barry; Dawes, Judith M.; Chan, A.

    2004-06-01

    We report the use of sub-picosecond near-IR and ps UV pulsed lasers for precision ablation of freshly extracted human teeth. The sub-picosecond laser wavelength was ~800nm, with pulsewidth 150 fs and pulse repetition rate of 1kHz; the UV laser produced 10 ps pulses at 266 nm with pulse rate of ~1.2x105 pulses/s; both lasers produced ~1 W of output energy, and the laser fluence was kept at the same level of 10-25 J/cm2. Laser radiation from both laser were effectively absorbed in the teeth enamel, but the mechanisms of absorption were radically different: the near-IR laser energy was absorbed in a plasma layer formed through the optical breakdown mechanism initiated by multiphoton absorption, while the UV-radiation was absorbed due to molecular photodissociation of the enamel and conventional thermal deposition. The rise in the intrapulpal temperature was monitored by embedded thermocouples, and was shown to remain low with subpicosecond laser pulses, but risen up to 30°C, well above the 5°C pain level with the UV-laser. This study demonstrates the potential for ultra-short-pulsed lasers to precision and painless ablation of dental enamel, and indicated the optimal combination of laser parameters in terms of pulse energy, duration, intensity, and repetition rate, required for the laser ablation rates comparable to that of mechanical drill.

  8. Studies on laser material processing with nanosecond and sub-nanosecond and picosecond and sub-picosecond pulses

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Tao, Sha; Wang, Brian; Zhao, Jay

    2016-03-01

    In this paper, laser ablation of widely used metal (Al, Cu. stainless-steel), semiconductor (Si), transparent material (glass, sapphire), ceramic (Al2O3, AlN) and polymer (PI, PMMA) in industry were systematically studied with pulse width from nanosecond (5-100ns), picosecond (6-10ps) to sub-picosecond (0.8-0.95ps). A critical damage zone (CDZ) of up to 100um with ns laser, <=50um with ps laser, and <=20um with sub-ps laser, respectively was observed as a criteria of selecting the laser pulse width. The effects of laser processing parameters on speed and efficiency were also investigated. This is to explore how to provide industry users the best laser solution for device micro-fabrication with best price. Our studies of cutting and drilling with ns, ps, and sub-ps lasers indicate that it is feasible to achieve user accepted quality and speed with cost-effective and reliable laser by optimizing processing conditions.

  9. Simultaneous picosecond and femtosecond solitons delivered from a nanotube-mode-locked all-fiber laser.

    PubMed

    Han, D D; Liu, X M; Cui, Y D; Wang, G X; Zeng, C; Yun, L

    2014-03-15

    We propose a compact nanotube-mode-locked all-fiber laser that can simultaneously generate picosecond and femtosecond solitons at different wavelengths. The pulse durations of picosecond and femtosecond solitons are measured to be ∼10.6  ps and ∼466  fs, respectively. Numerical results agree well with the experimental observations and clearly reveal that the dynamic evolutions of the picosecond and femtosecond solitons are qualitatively distinct in the intracavity. Our study presents a simple, stable, low-cost, and dual-scale ultrafast-pulsed laser source suitable for practical applications in optical communications.

  10. Measuring picosecond isomerization kinetics via broadband microwave spectroscopy.

    PubMed

    Dian, Brian C; Brown, Gordon G; Douglass, Kevin O; Pate, Brooks H

    2008-05-16

    The rotational spectrum of a highly excited molecule is qualitatively different from its pure rotational spectrum and contains information about the intramolecular dynamics. We have developed a broadband Fourier transform microwave spectrometer that uses chirped-pulse excitation to measure a rotational spectrum in the 7.5- to 18.5-gigahertz range in a single shot and thereby reduces acquisition time sufficiently to couple molecular rotational spectroscopy with tunable laser excitation. After vibrationally exciting a single molecular conformation of cyclopropane carboxaldehyde above the barrier to C-C single-bond isomerization, we applied line-shape analysis of the dynamic rotational spectrum to reveal a product yield and picosecond reaction rate that were significantly different from statistical predictions. The technique should be widely applicable to dynamical studies of radical intermediates, molecular complexes, and conformationally flexible molecules with biological interest.

  11. Advantages of Picosecond Laser Machining for Cutting-Edge Technologies

    NASA Astrophysics Data System (ADS)

    Moorhouse, C.

    The demand to reduce the size, weight and material cost of modern electronic devices results in a requirement for precision micromachining to aid product development. Examples include making smaller and more powerful smartphones with brighter displays, eliminating the requirement for post-process cleaning and machining the latest bio- absorbable medical stents. The pace of innovation in high-tech industries has led to ultrafast (picosecond) industrial lasers becoming an important tool for many applications and the high repetition rates now available help to meet industrial throughput levels. This is due to the unique operating regime (megawatts of peak power) enabling clean cutting and patterning of sensitive materials and thin films used in a number of novel devices and allows micromachining of wide bandgap, "difficult" materials such as glass.

  12. Monolithic millimeter-wave and picosecond electronic technologies

    SciTech Connect

    Talley, W.K.; Luhmann, N.C.

    1996-03-12

    Theoretical and experimental studies into monolithic millimeter-wave and picosecond electronic technologies have been undertaken as a collaborative project between the Lawrence Livermore National Laboratory (LLNL) and the University of California Department of Applied Science Coherent Millimeter-Wave Group under the auspices of the Laboratory Directed Research and Development Program at LLNL. The work involves the design and fabrication of monolithic frequency multiplier, beam control, and imaging arrays for millimeter-wave imaging and radar, as well as the development of high speed nonlinear transmission lines for ultra-wideband radar imaging, time domain materials characterization and magnetic fusion plasma applications. In addition, the Coherent Millimeter-Wave Group is involved in the fabrication of a state-of-the-art X-band ({approximately}8-11 GHz) RF photoinjector source aimed at producing psec high brightness electron bunches for advanced accelerator and coherent radiation generation studies.

  13. Picosecond laser-induced water condensation in a cloud chamber.

    PubMed

    Sun, Haiyi; Liu, Yonghong; Ju, Jingjing; Tian, Ye; Bai, Yafeng; Liu, Yaoxiang; Du, Shengzhe; Wang, Cheng; Wang, Tiejun; Liu, Jiansheng; Chin, See Leang; Li, Ruxin; Xu, Zhizhan

    2016-09-01

    We investigated water condensation in a laboratory cloud chamber induced by picosecond (ps) laser pulses at ~350 ps (800 nm/1-1000 Hz) with a maximum peak power of ~25 MW. The peak power was much lower than the critical power for self-focusing in air (~3-10 GW depending on the pulse duration). Sparks, airflow and snow formation were observed under different laser energies or repetition rates. It was found that weaker ps laser pulses can also induce water condensation by exploding and breaking down ice crystals and/or water droplets into tiny particles although there was no formation of laser filament. These tiny particles would grow until precipitation in a super-saturation zone due to laser-induced airflow in a cold region with a large temperature gradient.

  14. Picosecond ir hole-burning spectroscopy on HDO ice Ih

    NASA Astrophysics Data System (ADS)

    Seifert, G.; Weidlich, K.; Graener, H.

    1997-12-01

    Transient hole-burning experiments using picosecond ir pulses in the region of the OH stretching vibration of crystalline HDO (in D2O) ice are reported; holes with a minimum width of 26 cm-1 are measured, proving the OH band to be inhomogeneously broadened. The inhomogeneous distribution having a half width of approximately 25 cm-1 can be related to structural disorder in ice. A vibrational lifetime of 0.5 ps<=T1<=2 ps is found for the OH stretching mode. Additional features in the transient data are attributed to the dissipation of excess energy; particularly microscopic energy flow in the immediate surroundings of primarily excited OH groups can be monitored.

  15. Thermodynamic properties of liquid gallium from picosecond acoustic velocity measurements.

    PubMed

    Ayrinhac, S; Gauthier, M; Le Marchand, G; Morand, M; Bergame, F; Decremps, F

    2015-07-15

    Due to discrepancies in the literature data the thermodynamic properties of liquid gallium are still in debate. Accurate measurements of adiabatic sound velocities as a function of pressure and temperature have been obtained by the combination of laser picosecond acoustics and surface imaging on sample loaded in diamond anvil cell. From these results the thermodynamic parameters of gallium have been extracted by a numerical procedure up to 10 GPa and 570 K. It is demonstrated that a Murnaghan equation of state accounts well for the whole data set since the isothermal bulk modulus BT has been shown to vary linearly with pressure in the whole temperature range. No evidence for a previously reported liquid-liquid transition has been found in the whole pressure and temperature range explored.

  16. Picosecond laser-induced water condensation in a cloud chamber.

    PubMed

    Sun, Haiyi; Liu, Yonghong; Ju, Jingjing; Tian, Ye; Bai, Yafeng; Liu, Yaoxiang; Du, Shengzhe; Wang, Cheng; Wang, Tiejun; Liu, Jiansheng; Chin, See Leang; Li, Ruxin; Xu, Zhizhan

    2016-09-01

    We investigated water condensation in a laboratory cloud chamber induced by picosecond (ps) laser pulses at ~350 ps (800 nm/1-1000 Hz) with a maximum peak power of ~25 MW. The peak power was much lower than the critical power for self-focusing in air (~3-10 GW depending on the pulse duration). Sparks, airflow and snow formation were observed under different laser energies or repetition rates. It was found that weaker ps laser pulses can also induce water condensation by exploding and breaking down ice crystals and/or water droplets into tiny particles although there was no formation of laser filament. These tiny particles would grow until precipitation in a super-saturation zone due to laser-induced airflow in a cold region with a large temperature gradient. PMID:27607654

  17. Mechanical characterization of temperature-sensitive objects using picosecond ultrasonics

    NASA Astrophysics Data System (ADS)

    Dehoux, T.; Audoin, B.; Zouani, O.; Durrieu, M. C.

    2011-01-01

    Biological objects are exquisitely sensitive to temperature variations and their mechanical characterization is often a challenge when using the picosecond ultrasonics technique. To reduce the laser-induced temperature rise, we place single biological cells on a thin metal transducer and we focus the laser beam that generates the acoustic waves at frequencies <= 150 GHz on the rear side of the transducer. The acoustic waves propagate through the transducer and are partially transmitted to the cell to create the so-called Brillouin oscillations. The frequency of these oscillations provides a direct measurement of the sound velocity. The simultaneous measurement of the acoustic reflection coefficient at the transducer/cell interface allows the determination of both the density and the compressibility of the cell.

  18. Picosecond Acoustic Measurement of Anisotropic Properties of Thin Films

    SciTech Connect

    Perton, M.; Rossignol, C.; Chigarev, N.; Audoin, B.

    2007-03-21

    Properties of thin metallic films have been studied extensively by means of laser-picosecond ultrasonics. Generation of longitudinal and shear waves via thermoelastic mechanism and large source has been only demonstrated for waves vectors along the normal to the interface. However, such measurements cannot provide complete information about elastic properties of films. As it has been already shown for nanosecond ultrasonics, the knowledge of group or phase velocities in several directions for sources with small lateral size allows determining the stiffness tensor coefficients of a sample. The experimental set-up was prepared to obtain the thinnest size for the source to achieve acoustic diffraction. The identification of the stiffness tensor components, based on the inversion of the bulk waves phase velocities, is applied to signals simulated and experimentally recorded for a material with hexagonal properties. First estimation of stiffness tensor coefficients for thin metallic film 2.1 {mu}m has been performed.

  19. Retinal threshold studies for nanosecond and picosecond visible laser pulses

    NASA Astrophysics Data System (ADS)

    Roach, William P.; DiCarlo, Cheryl D.; Noojin, Gary D.; Stolarski, David J.; Amnotte, Rodney E.; Smith, Audrey B.; Rogers, Mark E.; Cain, Clarence P.

    1995-05-01

    Threshold measurements for Minimum Visible Lesions (MVL) at the retina are reported for 60 picoseconds (ps) and 4 nanoseconds (ns), single laser pulses in rhesus monkey eyes using a visible wavelength of 532 nanometers (nm) from a doubled Nd:YAG laser. The 50% probability for damage (ED50) dosages are calculated for 1 hour and 24 hour post exposures using 95% fiducial limits. For both pulsewidths, the threshold values calculated by probit analysis decrease between the 1 hour and 24 hour ophthalmoscopic evaluations. The ED50 value determined for the 60 ps pulsewidth was less than half the value at 4 ns (0.43 (mu) J/60 ps vs. 0.90 (mu) J/4 ns at 24 hours) for both readings. Of the 136 exposures for pulse energies ranging from 0.03 to 5.0 (mu) J no hemorrhagic lesions were produced for either pulsewidth studied. However, at 6.6 (mu) J one intraretinal hemorrhagic lesion was observed for 60 ps. The slope of the probit curve was higher for 60 ps when compared with the 4 ns value (3.03 at 60 ps vs. 2.68 at 4 ns). MVL threshold doses calculated are comparable with those reported in the literature. However, the 4 ns MVL values is less than one order of magnitude (a factor 4.7) above the Maximum Permissible Exposure (MPE) level as defined by the 'American National Standard For The Safe Use Of Lasers', ANSI Z136.1-19932. We present the current MVL data as it compares with previous data obtained for picosecond and femtosecond laser pulse thresholds and provide a preliminary assessment of how the ANSI MPE standard might be amended.

  20. Synchronization of Sub-Picosecond Electron and Laser Pulses

    SciTech Connect

    Rosenzweig, J.B.; Le Sage G.P.

    2000-08-15

    Sub-picosecond laser-electron synchronization is required to take full advantage of the experimental possibilities arising from the marriage of modern high intensity lasers and high brightness electron beams in the same laboratory. Two particular scenarios stand out in this regard, injection of ultra-short electron pulses in short wavelength laser-driven plasma accelerators, and Compton scattering of laser photons from short electron pulses. Both of these applications demand synchronization, which is subpicosecond, with tens of femtosecond synchronization implied for next-generation experiments. Typically, an RF electron accelerator is synchronized to a short pulse laser system by detecting the repetition signal of a laser oscillator, adjusted to an exact subharmonic of the linac RF frequency, and multiplying or phase locking this signal to produce the master RF clock. Pulse-to-pulse jitter characteristic of self-mode-locked laser oscillators represents a direct contribution to the ultimate timing jitter between a high intensity laser focus and electron beam at the interaction point, or a photocathode drive laser in an RF photoinjector. This timing jitter problem has been addressed most seriously in the context of the RF photoinjector, where the electron beam properties are sensitive functions of relative timing jitter. The timing jitter achieved in synchronized photocathode drive laser systems is near, or slightly below one picosecond. The ultimate time of arrival jitter of the beam at the photoinjector exit is typically a bit smaller than the photocathode drive-laser jitter due to velocity compression effects in the first RF cell of the gun. This tendency of the timing of the electron beam arrival at a given spatial point to lock to the RF lock is strongly reinforced by use of magnetic compression.

  1. Investigating the influence of a weak continuous-wave-trigger on picosecond supercontinuum generation.

    PubMed

    Li, Qian; Li, Feng; Wong, Kenneth K Y; Lau, Alan Pak Tao; Tsia, Kevin K; Wai, P K A

    2011-07-18

    We numerically study the impacts of introducing a minute continuous-wave (CW) trigger on the properties of picosecond supercontinuum (SC) generation. We show that this simple triggering approach enables active control of not only the bandwidth, but more importantly the temporal coherence of SC. Detailed numerical simulations suggest that depending on the wavelength of the CW-trigger the multiple higher-order four-wave mixing (FWM) components generated by the CW-trigger can create either a relatively more stochastic or a more deterministic beating effect on the pump pulse, which has significant implications on how soliton fission and the onset of SC are initiated in the presence of noise. By controlling the CW-trigger wavelengths, the rogue solitons emerged in SC generation can exhibit high-degree of temporal coherence and pulse-to-pulse intensity stability. The present study provides a valuable insight on how the initial soliton fission can be initiated in a more controllable manner such that SC generation with both high temporal coherence and stability can be realized. PMID:21934736

  2. Serial time-encoded amplified microscopy (STEAM) based on a stabilized picosecond supercontinuum source.

    PubMed

    Zhang, Chi; Qiu, Yi; Zhu, Rui; Wong, Kenneth K Y; Tsia, Kevin K

    2011-08-15

    Temporal stability of the broadband source, such as supercontinuum (SC), is the key enabling factor for realizing high performance ultrafast serial time-encoded amplified microscopy (STEAM). Owing to that the long-pulse SC (picosecond to nanosecond) generation generally results in an ultrabroadband spectrum with significant pulse-to-pulse fluctuation, only the ultrashort-pulse (femtosecond) SC sources, which offer better temporal stability, have been employed in STEAM so far. Here we report a simple approach to achieve active control of picosecond SC stability and to help extend the applicability of SC in STEAM from the femtosecond to the picosecond or even nanosecond regimes. We experimentally demonstrate stable single-shot STEAM imaging at a frame rate of 4.9 MHz using the CW-triggered picosecond SC source. Such CW-stabilized SC can greatly reduce the shot-to-shot fluctuation, and thus improves the STEAM image quality significantly.

  3. Serial time-encoded amplified microscopy (STEAM) based on a stabilized picosecond supercontinuum source

    NASA Astrophysics Data System (ADS)

    Zhang, Chi; Qiu, Yi; Zhu, Rui; Wong, Kenneth K. Y.; Tsia, Kevin K.

    2011-08-01

    Temporal stability of the broadband source, such as supercontinuum (SC), is the key enabling factor for realizing high performance ultrafast serial time-encoded amplified microscopy (STEAM). Owing to that the long-pulse SC (picosecond to nanosecond) generation generally results in an ultrabroadband spectrum with significant pulse-to-pulse fluctuation, only the ultrashort-pulse (femtosecond) SC sources, which offer better temporal stability, have been employed in STEAM so far. Here we report a simple approach to achieve active control of picosecond SC stability and to help extend the applicability of SC in STEAM from the femtosecond to the picosecond or even nanosecond regimes. We experimentally demonstrate stable single-shot STEAM imaging at a frame rate of 4.9 MHz using the CW-triggered picosecond SC source. Such CW-stabilized SC can greatly reduce the shot-to-shot fluctuation, and thus improves the STEAM image quality significantly.

  4. Ultrafast Optical Beam Deflection in a Planar Waveguide for High Dynamic Range Recording at Picosecond Resolution

    SciTech Connect

    Sarantos, C H; Heebner, J E

    2008-07-02

    We report the latest performance of an ultrafast, all-optical beam deflector based on a prism array imprinted in a planar waveguide. The deflector enables single-shot, high dynamic range optical recording with picosecond resolution.

  5. Picosecond laser spectroscopy of charge-separation in photosynthetic model systems

    NASA Astrophysics Data System (ADS)

    Schaafsma, T. J.; Hofstra, U.; Koehorst, R. B. M.; Sanders, G. M.; Vanderplas, H. C.

    Charge-separation in synthetic donor-pigment-acceptor (DPA) compounds and concentration dimers of porphyrins was investigated by fluorescence quenching, EPR-spectroscopy and picosecond optical absorption spectroscopy.

  6. Picosecond x-ray measurements from 100 eV to 30 keV

    SciTech Connect

    Attwood, D.T.; Kauffman, R.L.; Stradling, G.L.

    1980-10-15

    Picosecond x-ray measurements relevant to the Livermore Laser Fusion Program are reviewed. Resolved to 15 picoseconds, streak camera detection capabilities extend from 100 eV to higher than 30 keV, with synchronous capabilities in the visible, near infrared, and ultraviolet. Capabilities include automated data retrieval using charge coupled devices (CCD's), absolute x-ray intensity levels, novel cathodes, x-ray mirror/reflector combinations, and a variety of x-ray imaging devices.

  7. Picosecond time-resolved fluorescence spectroscopy of phytochrome and stentorin

    NASA Astrophysics Data System (ADS)

    Song, Pill-Soon

    1991-05-01

    Phytochrome is a tetrapyrrole chromoprotein. It serves as a sensitive photosensor for red lightmediated gene expression and other developmental/morphological responses in plants. In this paper photochemical dynamics of the phytochrome molecule have been described in terms of photoisomerization of the tetrapyrrole chromophore in its singlet excited state and subsequent thermal processes in the Pr Pfr phototransformation of phytochrome. Stentorin acts as the photosensor molecule in the ciliate Stentor coeruleus. This unicellular protozoan is most sensitive to red light (610-620 urn). Stentor also senses the direction of light propagation as evidenced by their light-avoiding and negative phototactic swimming behaviors. This aneural photosensory phenomenon is triggered by the photoreceptor stentorin. The possible involvement of a light-induced transient proton release from the photoreceptor as the primary mechanism of light-signal processing has been discussed on the basis of picosecond fluorescence decays and time-resolved fluorescence spectra of stentorin in solution. An initial sensory signal generated by the primary photoprocess of stentorin then triggers subsequent transduction steps that include calcium ion influx from the extracellular medium. Calcium ion influx from the extracellular medium to the cytosol causes the Stentor cell to reverse its ciliary beating and subsequently steer away from the light trap. II.

  8. Sub-picosecond optical switching with a negative index metamaterial

    SciTech Connect

    Dani, Keshav M; Upadhya, Prashant C; Zahyum, Ku

    2009-01-01

    Development of all-optical signal processing, eliminating the performance and cost penalties of optical-electrical-optical conversion, is important for continu,ing advances in Terabits/sec (Tb/s) communications.' Optical nonlinearities are generally weak, traditionally requiring long-path, large-area devicesl,2 or very high-Q, narrow-band resonator structures.3 Optical metamaterials offer unique capabilities for optical-optical interactions. Here we report 600 femtosecond (fs) all-optical modulation using a fIShnet (2D-perforated metallamorphous-Si (a-Si)/metal film stack) negative-index meta material with a structurally tunable broad-band response near 1.2 {micro}m. Over 20% modulation (experimentally limited) is achieved in a path length of only 116 nm by photo-excitation of carriers in the a-Si layer. This has the potential for Tb/s aU-optical communication and will lead to other novel, compact, tunable sub-picosecond (ps) photonic devices.

  9. Sub-picosecond Resolution Time-to-Digital Converter

    SciTech Connect

    Ph D, Vladimir Bratov; Ph D, Vladimir Katzman; MS EE, Jeb Binkley

    2006-03-30

    Time-to-digital converters with sub-picosecond resolutions are needed to satisfy the requirements of time-on-flight measurements of the next generation of high energy and nuclear physics experiments. The converters must be highly integrated, power effective, low cost, and feature plug-and-play capabilities to handle the increasing number of channels (up to hundreds of millions) in future Department of Energy experiments. Current state-off-the-art time-to-digital converter integrated circuits do not have the sufficient degree of integration and flexibility to fulfill all the described requirements. During Phase I, the Advanced Science and Novel Technology Company in cooperation with the nuclear physics division of the Oak Ridge National Laboratory has developed the architecture of a novel time-to-digital converter with multiple channels connected to an external processor through a special interfacing block and synchronized by clock signals generated by an internal phase-locked loop. The critical blocks of the system including signal delay lines and delay-locked loops with proprietary differential delay cells, as well as the required digital code converter and the clock period counter have been designed and simulated using the advanced SiGe120 BiCMOS technological process. The results of investigations demonstrate a possibility to achieve the digitization accuracy within 1ps. ADSANTEC has demonstrated the feasibility of the proposed concept in computer simulations. The proposed system will be a critical component for the next generation of NEP experiments.

  10. Picosecond laser pulses improves sensitivity in standoff explosive detection

    NASA Astrophysics Data System (ADS)

    Åkeson, Madeleine; Nordberg, Markus; Ehlerding, Anneli; Nilsson, Lars-Erik; Östmark, Henric; Strömbeck, Pierre

    2011-06-01

    Portendo has in collaboration with FOI, the Swedish Defence Research Agency, developed a world-leading technique of trace detection of explosives at standoff distance using Raman spectroscopy. The technology is further developed in order to enhance the sensitivity of the method and to be able to extend the field of applications. Raman scattering is a well-established technique able to detect substances down to single micrograms at standoff distances, however, one of the obstacles limiting the detection possibilities is interfering fluorescence, originating either from the substance itself or from the surrounding material. One main challenge for this technology is thus to either omit the excitation of the fluorescent process altogether or to be able to separate the two processes and only detect the Raman signal. Due to the difference in the temporal behavior of the two processes - Raman scattering occurs in the order of femtoseconds while fluorescence typically has a lifetime in the order of nanoseconds - one way to theoretically separate them is to limit the measurement to as short time as possible, cutting off most of the emitted fluorescence. The improvement depends on how much of the fluorescence can be omitted without decreasing the Raman signal. Experimentally, we have verified this improvement in signal to noise ratio when using a laser with picosecond pulses instead of nanosecond pulses, which has resulted in an improvement in SNR of up to 7 times for bulk ANFO. These results verify the predicted signal enhancement and suggest higher sensitivity for standoff detection in future systems.

  11. Direct fluorescence characterisation of a picosecond seeded optical parametric amplifier

    NASA Astrophysics Data System (ADS)

    Stuart, N. H.; Bigourd, D.; Hill, R. W.; Robinson, T. S.; Mecseki, K.; Patankar, S.; New, G. H. C.; Smith, R. A.

    2015-02-01

    The temporal intensity contrast of high-power lasers based on optical parametric amplification (OPA) can be limited by parametric fluorescence from the non-linear gain stages. Here we present a spectroscopic method for direct measurement of unwanted parametric fluorescence widely applicable from unseeded to fully seeded and saturated OPA operation. Our technique employs simultaneous spectroscopy of fluorescence photons slightly outside the seed bandwidth and strongly attenuated light at the seed central wavelength. To demonstrate its applicability we have characterised the performance of a two-stage picosecond OPA pre-amplifier with 2.8×105 gain, delivering 335 μJ pulses at 1054 nm. We show that fluorescence from a strongly seeded OPA is reduced by ~500× from the undepleted to full pump depletion regimes. We also determine the vacuum fluctuation driven noise term seeding this OPA fluorescence to be 0.7±0.4 photons ps-1 nm-1 bandwidth. The resulting shot-to-shot statistics highlights a 1.5% probability of a five-fold and 0.3% probability of a ten-fold increase of fluorescence above the average value. Finally, we show that OPA fluorescence can be limited to a few-ps pedestal with 3×10-9 temporal intensity contrast 1.3 ps ahead of an intense laser pulse, a level highly attractive for large scale chirped-pulse OPA laser systems.

  12. Hierarchical Biomolecular Dynamics: Picosecond Hydrogen Bonding Regulates Microsecond Conformational Transitions.

    PubMed

    Buchenberg, Sebastian; Schaudinnus, Norbert; Stock, Gerhard

    2015-03-10

    Biomolecules exhibit structural dynamics on a number of time scales, including picosecond (ps) motions of a few atoms, nanosecond (ns) local conformational transitions, and microsecond (μs) global conformational rearrangements. Despite this substantial separation of time scales, fast and slow degrees of freedom appear to be coupled in a nonlinear manner; for example, there is theoretical and experimental evidence that fast structural fluctuations are required for slow functional motion to happen. To elucidate a microscopic mechanism of this multiscale behavior, Aib peptide is adopted as a simple model system. Combining extensive molecular dynamics simulations with principal component analysis techniques, a hierarchy of (at least) three tiers of the molecule's free energy landscape is discovered. They correspond to chiral left- to right-handed transitions of the entire peptide that happen on a μs time scale, conformational transitions of individual residues that take about 1 ns, and the opening and closing of structure-stabilizing hydrogen bonds that occur within tens of ps and are triggered by sub-ps structural fluctuations. Providing a simple mechanism of hierarchical dynamics, fast hydrogen bond dynamics is found to be a prerequisite for the ns local conformational transitions, which in turn are a prerequisite for the slow global conformational rearrangement of the peptide. As a consequence of the hierarchical coupling, the various processes exhibit a similar temperature behavior which may be interpreted as a dynamic transition. PMID:26579778

  13. Picosecond infrared laser (PIRL): an ideal phonomicrosurgical laser?

    PubMed

    Hess, Markus; Hildebrandt, Michael Dominik; Müller, Frank; Kruber, Sebastian; Kroetz, Peter; Schumacher, Udo; Reimer, Rudolph; Kammal, Michael; Püschel, Klaus; Wöllmer, Wolfgang; Miller, Dwayne

    2013-11-01

    A comparison of tissue cutting effects in excised cadaver human vocal folds after incisions with three different instruments [scalpel, CO2 laser and the picosecond infrared laser-(PIRL)] was performed. In total, 15 larynges were taken from human cadavers shortly after death. After deep freezing and thawing for the experiment, the vocal folds suspended in the hemilarynx were incised. Histology and environmental scanning electron microscopy (ESEM) analyses were performed. Damage zones after cold instrument cuts ranged from 51 to 135 μm, as compared to 9-28 μm after cutting with the PIRL. It was shown that PIRL incision had smaller zones of tissue coagulation and tissue destruction, when compared with scalpel and CO2 laser cuts. The PIRL technology provides an (almost) atraumatic laser, which offers a quantum jump towards realistic 'micro'-phonosurgery on a factual cellular dimension, almost entirely avoiding coagulation, carbonization, or other ways of major tissue destruction in the vicinity of the intervention area. Although not available for clinical use yet, the new technique appears promising for future clinical applications, so that technical and methodological characteristics as well as tissue experiments seem worthwhile to be communicated at this stage of development. PMID:23708442

  14. Probing single-cell mechanics with picosecond ultrasonics.

    PubMed

    Dehoux, Thomas; Abi Ghanem, Maroun; Zouani, Omar F; Ducousso, Mathieu; Chigarev, Nikolay; Rossignol, Clément; Tsapis, Nicolas; Durrieu, Marie-Christine; Audoin, Bertrand

    2015-02-01

    The mechanical properties of cells play a key role in several fundamental biological processes, such as migration, proliferation, differentiation and tissue morphogenesis. The complexity of the inner cell composition and the intricate meshwork formed by transmembrane cell-substrate interactions demands a non-invasive technique to probe cell mechanics and cell adhesion at a subcell scale. In this paper we review the use of laser-generated GHz acoustic waves--a technique called picosecond ultrasonics (PU)--to probe the mechanical properties of single cells. We first describe applications to vegetal cells and biomimetic systems. We show how these systems can be used as simple models to understand more complex animal cells. We then present an opto-acoustic bio-transducer designed for in vivo measurements in physiological conditions. We illustrate the use of this transducer through the simultaneous probing of the density and compressibility of Allium cepa cells. Finally, we demonstrate that this technique can quantify animal-cell adhesion on metallic surfaces by analyzing the acoustic pulses reflected off the cell-metal interface. This innovative approach allows investigating quantitatively cell mechanics without fluorescent labels or mechanical contact to the cell.

  15. The lartge-area picosecond photo-detector (LAPPD) project

    NASA Astrophysics Data System (ADS)

    Varner, Gary

    2012-03-01

    The technological revolution that replaced the bulky Cathode Ray Tube with a wide variety of thin, reduced-cost display technologies, has yet to be realized for photosensors. Such a low-cost, robust and flexible photon detector, capable of efficient single photon measurement with good spatial and temporal resolution, would have numerous scientific, medical and industrial applications. To address the significant technological challenges of realizing such a disruptive technology, the Large Area Picosecond Photo-Detector (LAPPD) collaboration was formed, and has been strongly supported by the Department of Energy. This group leverages the inter-disciplinary capabilities and facilities at Argonne National Laboratory, the Berkeley Space Sciences Laboratory (SSL), electronics expertise at the Universities of Chicago and Hawaii, and close work with industrial partners to extend the known technologies. Advances in theory-inspired design and in-situ photocathode characterization during growth, Atomic Layer Deposition (ALD) for revolutionizing micro-channel plate fabrication, and compact, wave-form sampling CMOS ASIC readout of micro striplines are key tools toward realizing a viable LAPPD device. Progress toward a first 8" x 8" demonstrator module will be presented.

  16. Picosecond Pulse Radiolysis of Highly Concentrated Carbonate Solutions.

    PubMed

    Ghalei, Mohammad; Ma, Jun; Schmidhammer, Uli; Vandenborre, Johan; Fattahi, Massoud; Mostafavi, Mehran

    2016-03-10

    Highly concentrated potassium carbonate aqueous solutions are studied by picosecond pulse radiolysis with the purpose of exploring the formation processes of carbonate radical CO3(•-). The transient absorption band of solvated electron produced by ionizing is markedly shifted from 715 to 600 nm when the solute concentration of K2CO3 is 5 mol L(-1). This spectral shift is even more important than that observed for the solvated electron in 10 mol L(-1) KOH solutions. The broad absorption band of solvated electron in K2CO3 solutions overlaps with that of carbonate radical CO3(•-) formed at ultrashort time. Nitrate ion is used to scavenge the solvated electron and to observe the contribution of carbonate radical CO3(•-). The analysis of the amplitude and the kinetics of carbonate radical formation in highly concentrated solutions shows that CO3(•-) is formed within the electron pulse (7 ps) by two parallel mechanisms: a direct effect on the solute and the oxidation of the solute by water radical hole H2O(•+). These two mechanisms are followed by an additional one, by reaction between the solute and OH(•) radical especially in lower concentration. The radiolytic yield of each process is discussed. PMID:26885876

  17. Mapping transient electric fields with picosecond electron bunches

    PubMed Central

    Chen, Long; Li, Runze; Chen, Jie; Zhu, Pengfei; Liu, Feng; Cao, Jianming; Sheng, Zhengming; Zhang, Jie

    2015-01-01

    Transient electric fields, which are an important but hardly explored parameter of laser plasmas, can now be diagnosed experimentally with combined ultrafast temporal resolution and field sensitivity, using femtosecond to picosecond electron or proton pulses as probes. However, poor spatial resolution poses great challenges to simultaneously recording both the global and local field features. Here, we present a direct 3D measurement of a transient electric field by time-resolved electron schlieren radiography with simultaneous 80-μm spatial and 3.7-ps temporal resolutions, analyzed using an Abel inversion algorithm. The electric field here is built up at the front of an aluminum foil irradiated with a femtosecond laser pulse at 1.9 × 1012 W/cm2, where electrons are emitted at a speed of 4 × 106 m/s, resulting in a unique “peak–valley” transient electric field map with the field strength up to 105 V/m. Furthermore, time-resolved schlieren radiography with charged particle pulses should enable the mapping of various fast-evolving field structures including those found in plasma-based particle accelerators. PMID:26554022

  18. Picosecond infrared laser (PIRL): an ideal phonomicrosurgical laser?

    PubMed

    Hess, Markus; Hildebrandt, Michael Dominik; Müller, Frank; Kruber, Sebastian; Kroetz, Peter; Schumacher, Udo; Reimer, Rudolph; Kammal, Michael; Püschel, Klaus; Wöllmer, Wolfgang; Miller, Dwayne

    2013-11-01

    A comparison of tissue cutting effects in excised cadaver human vocal folds after incisions with three different instruments [scalpel, CO2 laser and the picosecond infrared laser-(PIRL)] was performed. In total, 15 larynges were taken from human cadavers shortly after death. After deep freezing and thawing for the experiment, the vocal folds suspended in the hemilarynx were incised. Histology and environmental scanning electron microscopy (ESEM) analyses were performed. Damage zones after cold instrument cuts ranged from 51 to 135 μm, as compared to 9-28 μm after cutting with the PIRL. It was shown that PIRL incision had smaller zones of tissue coagulation and tissue destruction, when compared with scalpel and CO2 laser cuts. The PIRL technology provides an (almost) atraumatic laser, which offers a quantum jump towards realistic 'micro'-phonosurgery on a factual cellular dimension, almost entirely avoiding coagulation, carbonization, or other ways of major tissue destruction in the vicinity of the intervention area. Although not available for clinical use yet, the new technique appears promising for future clinical applications, so that technical and methodological characteristics as well as tissue experiments seem worthwhile to be communicated at this stage of development.

  19. Evidence of protein collective motions on the picosecond timescale.

    PubMed

    He, Yunfen; Chen, J-Y; Knab, J R; Zheng, Wenjun; Markelz, A G

    2011-02-16

    We investigate the presence of structural collective motions on a picosecond timescale for the heme protein, cytochrome c, as a function of oxidation and hydration, using terahertz (THz) time domain spectroscopy and molecular dynamics simulations. The THz response dramatically increases with oxidation, with the largest increase for lowest hydrations, and highest frequencies. For both oxidation states the THz response rapidly increases with hydration saturating above ∼25% (g H(2)O/g protein). Quasiharmonic vibrational modes and dipole-dipole correlation functions were calculated from molecular dynamics trajectories. The collective mode density of states alone reproduces the measured hydration dependence, providing strong evidence of the existence of these motions. The large oxidation dependence is reproduced only by the dipole-dipole correlation function, indicating the contrast arises from diffusive motions consistent with structural changes occurring in the vicinity of buried internal water molecules. This source for the observed oxidation dependence is consistent with the lack of an oxidation dependence in nuclear resonant vibrational spectroscopy measurements.

  20. Mapping transient electric fields with picosecond electron bunches.

    PubMed

    Chen, Long; Li, Runze; Chen, Jie; Zhu, Pengfei; Liu, Feng; Cao, Jianming; Sheng, Zhengming; Zhang, Jie

    2015-11-24

    Transient electric fields, which are an important but hardly explored parameter of laser plasmas, can now be diagnosed experimentally with combined ultrafast temporal resolution and field sensitivity, using femtosecond to picosecond electron or proton pulses as probes. However, poor spatial resolution poses great challenges to simultaneously recording both the global and local field features. Here, we present a direct 3D measurement of a transient electric field by time-resolved electron schlieren radiography with simultaneous 80-μm spatial and 3.7-ps temporal resolutions, analyzed using an Abel inversion algorithm. The electric field here is built up at the front of an aluminum foil irradiated with a femtosecond laser pulse at 1.9 × 10(12) W/cm(2), where electrons are emitted at a speed of 4 × 10(6) m/s, resulting in a unique "peak-valley" transient electric field map with the field strength up to 10(5) V/m. Furthermore, time-resolved schlieren radiography with charged particle pulses should enable the mapping of various fast-evolving field structures including those found in plasma-based particle accelerators. PMID:26554022

  1. Oscillations of absorption of a probe picosecond light pulse caused by its interaction with stimulated picosecond emission of GaAs

    SciTech Connect

    Ageeva, N. N.; Bronevoi, I. L. Zabegaev, D. N.; Krivonosov, A. N.

    2015-04-15

    The self-modulation of absorption of a picosecond light pulse was observed earlier [1] in a thin (∼1-μm thick) GaAs layer pumped by a high-power picosecond pulse. Analysis of the characteristics of this self-modulation predicted [5] that the dependences of the probe pulse absorption on the pump pulse energy and picosecond delay between pump and probe pulses should be self-modulated by oscillations. Such self-modulation was experimentally observed in this work. Under certain conditions, absorption oscillations proved to be a function of part of the energy of picosecond stimulated emission of GaAs lying above a certain threshold in the region where the emission front overlapped the probe pulse front. Absorption oscillations are similar to self-modulation of the GaAs emission characteristics observed earlier [4]. This suggests that the self-modulation of absorption and emission is determined by the same type of interaction of light pulses in the active medium, the physical mechanism of which has yet to be determined.

  2. Scaling ablation rates for picosecond lasers using burst micromachining

    NASA Astrophysics Data System (ADS)

    Knappe, Ralf; Haloui, Hatim; Seifert, Albert; Weis, Alexander; Nebel, Achim

    2010-02-01

    High-precision micromachining with picosecond lasers became an established process. Power scaling led to industrial lasers, generating average power levels well above 50 W for applications like structuring turbine blades, micro moulds, and solar cells. In this paper we report, how a smart distribution of energy into groups of pulses can significantly improve ablation rates for some materials, also providing a better surface quality. Machining micro moulds in stainless steel, a net ablation rate of ~1 mm3/min is routinely achieved, e.g. using pulse energy of 200 μJ at a repetition rate of 200 kHz. This is industrial standard, and demonstrates an improvement by two orders of magnitude over the recent years. When the energy was distributed to a burst of 10 pulses (25 μJ), repeated with 200 kHz, the ablation rate of stainless steel was 5 times higher with the same 50 W average power. Bursts of 10 pulses repeated with 1 MHz (5 μJ) even resulted in an ablation rate as high as 12 mm3/min. In addition, optimized pulse delays achieved a reduction of the surface roughness by one order of magnitude, providing Ra values as low as 200 nm. Similar results were performed machining silicon, scaling the ablation rate from 1.2 mm3/min (1 pulse, 250 μJ, 200 kHz) to 15 mm3/min (6 pulses, 8 μJ, 1 MHz). Burst machining of ceramics, copper and glass did not change ablation rates, only improved surface quality. For glass machining, we achieved record-high ablation rates of >50 mm3/min, using a new state-of-the-art laser which could generate >70 W of average power and repetition rates as high as 2 MHz.

  3. Cell stimulation and calcium mobilization by picosecond electric pulses

    PubMed Central

    Semenov, Iurii; Xiao, Shu; Kang, Dongkoo; Schoenbach, Karl H.; Pakhomov, Andrei G.

    2015-01-01

    We tested if picosecond electric pulses (psEP; 190 kV/cm, 500 ps at 50% height), which are much shorter than channel activation time, can activate voltage-gated (VG) channels. Cytosolic Ca2+ was monitored by Fura-2 ratiometric imaging in GH3 and NG108 cells (which express multiple types of VG calcium channels, VGCC), and in CHO cells (which express no VGCC). Trains of up to 100 psEP at 1 kHz elicited no response in CHO cells. However, even a single psEP significantly increased Ca2+ in both GH3 (by 114+/−48 nM) and NG108 cells (by 6 +/−1.1 nM). Trains of 100 psEP amplified the response to 379+/−33 nM and 719+/−315 nM, respectively. Ca2+ responses peaked within 2–15 s and recovered for over 100 s; they were 80–100% inhibited by verapamil and ω-conotoxin, but not by the substitution of Na+ with N-methyl-D-glucamine. There was no response to psEP in Ca2+-free medium, but adding external Ca2+ even 10 s later evoked Ca2+ response. We conclude that electrical stimuli as short as 500 ps can cause long-lasting opening of VGCC by a mechanism which does not involve conventional electroporation, heating (which was under 0.06 °K per psEP), or membrane depolarization by opening of VG Na+ channels. PMID:26011130

  4. Picosecond laser cutting and drilling of thin flex glass

    NASA Astrophysics Data System (ADS)

    Wlodarczyk, Krystian L.; Brunton, Adam; Rumsby, Phil; Hand, Duncan P.

    2016-03-01

    We investigate the feasibility of cutting and drilling thin flex glass (TFG) substrates using a picosecond laser operating at wavelengths of 1030 nm, 515 nm and 343 nm. 50 μm and 100 μm thick AF32®Eco Thin Glass (Schott AG) sheets are used. The laser processing parameters such as the wavelength, pulse energy, pulse repetition frequency, scan speed and the number of laser passes which are necessary to perform through a cut or to drill a borehole in the TFG substrate are studied in detail. Our results show that the highest effective cutting speeds (220 mm/s for a 50 μm thick TFG substrate and 74 mm/s for a 100 μm thick TFG substrate) are obtained with the 1030 nm wavelength, whereas the 343 nm wavelength provides the best quality cuts. The 515 nm wavelength, meanwhile, can be used to provide relatively good laser cut quality with heat affected zones (HAZ) of <25 μm for 50 μm TFG and <40 μm for 100 μm TFG with cutting speeds of 100 mm/s and 28.5 mm/s, respectively. The 343 nm and 515 nm wavelengths can also be used for drilling micro-holes (with inlet diameters of ⩽75 μm) in the 100 μm TFG substrate with speeds of up to 2 holes per second (using 343 nm) and 8 holes per second (using 515 nm). Optical microscope and SEM images of the cuts and micro-holes are presented.

  5. Cell stimulation and calcium mobilization by picosecond electric pulses.

    PubMed

    Semenov, Iurii; Xiao, Shu; Kang, Dongkoo; Schoenbach, Karl H; Pakhomov, Andrei G

    2015-10-01

    We tested if picosecond electric pulses (psEP; 190 kV/cm, 500 ps at 50% height), which are much shorter than channel activation time, can activate voltage-gated (VG) channels. Cytosolic Ca(2+) was monitored by Fura-2 ratiometric imaging in GH3 and NG108 cells (which express multiple types of VG calcium channels, VGCC), and in CHO cells (which express no VGCC). Trains of up to 100 psEP at 1 kHz elicited no response in CHO cells. However, even a single psEP significantly increased Ca(2+) in both GH3 (by 114 ± 48 nM) and NG108 cells (by 6 ± 1.1 nM). Trains of 100 psEP amplified the response to 379 ± 33 nM and 719 ± 315 nM, respectively. Ca(2+) responses peaked within 2-15s and recovered for over 100 s; they were 80-100% inhibited by verapamil and ω-conotoxin, but not by the substitution of Na(+) with N-methyl-D-glucamine. There was no response to psEP in Ca(2+)-free medium, but adding external Ca(2+) even 10s later evoked Ca(2+) response. We conclude that electrical stimuli as short as 500 ps can cause long-lasting opening of VGCC by a mechanism which does not involve conventional electroporation, heating (which was under 0.06 K per psEP), or membrane depolarization by opening of VG Na(+) channels.

  6. Design and development of a sub-picosecond pulse radiolysis system

    NASA Astrophysics Data System (ADS)

    Muroya, Y.; Watanabe, T.; Wu, G.; Li, X.; Kobayashi, T.; Sugahara, J.; Ueda, T.; Yoshii, K.; Uesaka, M.; Katsumura, Y.

    2001-01-01

    In order to reveal the radiation-induced phenomena in the time scale of picosecond, or even sub-picosecond, a new sub-picosecond pulse radiolysis system has been designed and developed at Nuclear Engineering Research Laboratory (NERL), the University of Tokyo. The system is composed of the 18 MeV S-band linac with a laser driven photocathode rf-gun and a chicane-type magnetic compressor, a femtosecond Ti:Sapphire laser, and the synchronization system. At a preliminary experiment the timing jitter of the ps electron pulse and the fs laser pulse was determined to be 2.1 ps (rms) and the total time resolution of the pulse radiolysis was evaluated to be 30 ps.

  7. Parametric amplification of broadband radiation of a cw superluminescent diode under picosecond pumping

    NASA Astrophysics Data System (ADS)

    Vereshchagin, K. A.; Il'chenko, S. N.; Morozov, V. B.; Olenin, A. N.; Tunkin, V. G.; Yakovlev, D. V.; Yakubovich, S. D.

    2016-09-01

    It is proposed to use cw superluminescent diodes with a spectral width of about 300 cm-1 and high spatial coherence as seed radiation sources in parametric amplifiers with picosecond pumping in order to form broadband picosecond pulses. A two-cascade parametric amplifier based on BaB2O4 (BBO) crystals is pumped by 20-ps pulses of the second harmonic of an Nd : YAG laser. For a superluminescent diode spectral width of 275 cm-1 (centre wavelength 790 nm), the spectral width of picosecond pulses at the parametric amplifier output is 203 cm-1. At a total pump energy of 7.2 mJ for BBO crystals, the energy of the enhanced emission of the superluminescent diode is found to be 0.6 mJ.

  8. Production of Picosecond, Kilojoule, and Petawatt Laser Pulses via Raman Amplification of Nanosecond Pulses

    SciTech Connect

    Trines, R. M. G. M.; Bingham, R.; Norreys, P. A.; Fiuza, F.; Fonseca, R. A.; Silva, L. O.

    2011-09-02

    Raman amplification in plasma has been promoted as a means of compressing picosecond optical laser pulses to femtosecond duration to explore the intensity frontier. Here we show for the first time that it can be used, with equal success, to compress laser pulses from nanosecond to picosecond duration. Simulations show up to 60% energy transfer from pump pulse to probe pulse, implying that multikilojoule ultraviolet petawatt laser pulses can be produced using this scheme. This has important consequences for the demonstration of fast-ignition inertial confinement fusion.

  9. Picosecond supercontinuum laser with consistent emission parameters over variable repetition rates from 1 to 40 MHz

    NASA Astrophysics Data System (ADS)

    Schönau, Thomas; Siebert, Torsten; Härtel, Romano; Klemme, Dietmar; Lauritsen, Kristian; Erdmann, Rainer

    2013-02-01

    An freely triggerable picosecond visible supercontinuum laser source is presented that allows for a uniform spectral profile and equivalent pulse characteristics over variable repetition rates from 1 to 40MHz. The system features PM Yb3+-doped fiber amplification of a picosecond gain-switched seed diode at 1062 nm. The pump power in the multi-stage amplifier is actively adjusted by a microcontroller for a consistent peak power of the amplified signal in the full range of repetition rates. The length of the PCF is scaled to deliver a homogeneous spectrum and minimized distortion of the temporal pulse shape.

  10. Relativistic theory for picosecond time transfer in the vicinity of Earth

    NASA Astrophysics Data System (ADS)

    Petit, G.; Wolf, P.

    1994-05-01

    The problem of light propagation is treated in a geocentric reference system with the goal of ensuring picosecond accuracy for time transfer techniques using electromagnetic signals in the vicinity of the Earth. We give an explicit formula for a one way time transfer, to be applied when the spatial coordinates of the time transfer stations are known in a geocentric reference system rotating with the Earth. This expression is extended, at the same accuracy level of one picosecond, to the special cases of two way and LASSO time transfers via geostationary satellites.

  11. Relativistic theory for picosecond time transfer in the vicinity of Earth

    NASA Technical Reports Server (NTRS)

    Petit, G.; Wolf, P.

    1994-01-01

    The problem of light propagation is treated in a geocentric reference system with the goal of ensuring picosecond accuracy for time transfer techniques using electromagnetic signals in the vicinity of the Earth. We give an explicit formula for a one way time transfer, to be applied when the spatial coordinates of the time transfer stations are known in a geocentric reference system rotating with the Earth. This expression is extended, at the same accuracy level of one picosecond, to the special cases of two way and LASSO time transfers via geostationary satellites.

  12. Laser ablation of CFRP using picosecond laser pulses at different wavelengths from UV to IR

    NASA Astrophysics Data System (ADS)

    Wolynski, Alexander; Herrmann, Thomas; Mucha, Patrick; Haloui, Hatim; L'huillier, Johannes

    Laser processing of carbon fibre reinforced plastics (CFRP) has a great industrial relevance for high performance structural parts in airplanes, machine tools and cars. Through-holes drilled by nanosecond laser pulses show thermal induced molten layers and voids. Recently, picosecond lasers have demonstrated the ability to drill high-efficient and high-quality rivet through-holes. In this paper a high-power picosecond laser system operating at different wavelengths (355 nm, 532 nm and 1064 nm) has been used for CFRP ablation experiments to study the influence of different laser parameters in terms of machining quality and processing time.

  13. Picosecond intersubband hole relaxation in p-type quantum wells

    SciTech Connect

    Xu, Z.; Fauchet, P.M.; Rella, C.W.; Schwettman, H.A.

    1995-12-31

    We report the first direct measurement of the relaxation time of holes in p-type quantum wells using tunable, subpicosecond mid-infrared laser pulses in a pump-probe arrangement. The QW layers consisted of 50 In{sub 0.5}Ga{sub 0.5}As/Al{sub 0.5}Ga{sub 0.5}As periods. The In{sub 0.5}Ga{sub 0.5}As well was 4 nm wide and the Al{sub 0.5}Ga{sub 0.5}As barrier was 8 nm wide. The dopant concentration was 10{sup 19} CM{sup -3} which corresponds to a sheet density of 1.2 x 10{sup 13} CM{sup -2}. The room temperature IR spectrum showed a 50 meV wide absorption peak at 5.25 {mu}m (220 meV). This energy agrees with the calculated n=1 heavy hole to n=1 light hole transition energy of 240 meV (150 meV for strain and 90 meV for confinement). The large absorption width results from hole-hole scattering and the difference in dispersion relations between the two subbands. The equal-wavelength pump-probe transmission measurements were performed using the Stanford free electron laser (FEL). The FEL pulses were tuned between 4 and 6 {mu} m and their duration was less than 1 ps. The measurements were performed as a function of temperature, pump wavelength and intensity (from 0.3 to 10 GW/cm{sup 2}). In all our experiments, we find an increase of transmission (decrease of absorption or bleaching) following photopumping, which recovers as a single exponential with a time constant (relaxation time) of the order of 1 picosecond. The maximum change in transmission is linear with pump 2 intensity below 1 GW/cm{sup 2} and saturates to {approximately}3% with a saturation intensity I{sub sat} of 3 GW/cm{sup 2}. As the saturation regime is entered, the relaxation time increases from 0.8 ps to 1.8 ps. This relaxation time depends on the temperature T: it increases from 0.8 ps to 1.3 ps as T decreases from 300 K to 77 K. Finally, when we tune the laser through the absorption band, the magnitude of the signal changes but its temporal behavior does not change, within the accuracy of the measurements.

  14. Lung Emergencies

    MedlinePlus

    ... Emergencies Cardiac Emergencies Eye Emergencies Lung Emergencies Surgeries Lung Emergencies People with Marfan syndrome can be at ... should be considered an emergency. Symptoms of sudden lung collapse (pneumothorax) Symptoms of a sudden lung collapse ...

  15. Electronics for a Picosecond Time-of-flight Measurement

    SciTech Connect

    Brandt, Andrew Gerhart; Rijssenbeek, Michael

    2014-11-03

    TITLE: Electronics for a Picosecond Time-of-flight Measurement ABSTRACT: Time-of-flight (TOF) detectors have historically been used as part of the particle identification capability of multi-purpose particle physics detectors. An accurate time measurement, combined with a momentum measurement based on the curvature of the track in a magnetic field, is often sufficient to determine the particle's mass, and thus its identity. Such detectors typically have measured the particle flight time extremely precisely, with an uncertainty of one hundred trillionths of a second (also referred to as 100 picoseconds). To put this in perspective it would be like counting all the people on the Earth and getting it right within 1 person! Another use of TOFs is to measure the vertex of the event, which is the location along the beam line where the incoming particles (typically protons) collide. This vertex positon is a well measured quantity for events where the protons collide “head on” as the outgoing particles produced when you blast the proton apart can be used to trace back to a vertex point from which they originated. More frequently the protons just strike a glancing blow and remain intact—in this case they are nearly parallel to the beam and you cannot tell their vertex without this ability to precisely measure the time of flight of the protons. Occasionally both happen in the same event, that is, a central system and two protons are produced. But are they from the same collision, or just a boring background where more than one collision in the same bunch crossing conspire to fake the signal of interest? That’s where the timing of the protons comes into play. The main idea is to measure the time it takes for the two protons to reach TOF detectors positioned equidistant from the center of the main detector. If the vertex is displaced to one side than that detector will measure a shorter time while the other side detector will measure a correspondingly longer time

  16. Applications using a Picosecond 14.7 nm X-Ray Laser

    SciTech Connect

    Dunn, J; Smith, R F; Nilsen, J; Shlyaptsev, V N; Filevich, J; Rocca, J J; Marconi, M C

    2001-09-21

    We report recent application experiments on the LLNL COMET tabletop facility using the picosecond, 14.7 nm Ni-like Pd x-ray laser. This work includes measurements of a laser-produced plasma density profile with a diffraction grating interferometer.

  17. Amplitude and polarization instability of picosecond light pulses exciting a semiconductor optical resonator.

    PubMed

    Markarov, V A; Pershin, S M; Podshivalov, A A; Zadoian, R S; Zheludev, N I

    1983-11-01

    The first results of our study of nonlinear shift, distortion of form, and destruction of picosecond light pulses interacting with a nonlinear Fabry-Perot resonator in a strongly nonstationary regime are reported. Polarization instability of the light pulse transmitted through a nonlinear resonator has been observed. PMID:19718182

  18. Development of a picosecond CO2 laser system for a high-repetition γ-source

    SciTech Connect

    Polyanskiy, M.N.; Pogorelsky, I.V.; Yakimenko, V.E.; Platonenko, V.T.

    2009-04-17

    The concept of a high-repetition-rate, high-average power {gamma}-source is based on Compton backscattering from the relativistic electron beam inside a picosecond CO{sub 2} laser cavity. Proof-of-principle experiments combined with computer simulations allow evaluating the promise of this approach for novel applications in science and technology.

  19. PS-1/S1 picosecond streak camera application for multichannel laser system diagnostics

    SciTech Connect

    Garanin, S G; Bel'kov, S A; Rogozhnikov, G S; Rukavishnikov, N N; Romanov, V V; Voronich, I N; Vorob'ev, N S; Gornostaev, P B; Lozovoi, V I; Shchelev, M Ya

    2014-08-31

    A PS-1/S1 picosecond image-tube streak camera (ITSC) with slit scan (streak camera), developed and manufactured at the General Physics Institute RAS, has been used to measure the spatiotemporal characteristics of ultrashort laser pulses generated by a petawatt-power laser installation 'FEMTO' at the Institute of Laser Physics Research in Sarov. It is found that such a camera is suitable for measuring the spatial and temporal parameters of single laser pulses with an accuracy of about one picosecond. It is shown that the intensity time profile of a train of picosecond pulses may be precisely defined for the pulses separated in time by a few picoseconds. The camera allows the contrast of radiation to be determined with a high (no less than 10{sup 3}) accuracy; spatial distribution of the laser pulses can be measured with an accuracy of tens of microns, and the temporal separation of single laser pulses can be identified with an accuracy of 1 – 1.5 ps. (extreme light fields and their applications)

  20. Surface displacement measured by beam distortion detection technique: Application to picosecond ultrasonics

    SciTech Connect

    Chigarev, N.; Rossignol, C.; Audoin, B.

    2006-11-15

    A sensitive technique of surface displacement measurement without interferometry is proposed for the goals of picosecond ultrasonics. Simple description of detection mechanism is provided on the basis of paraxial approximation of light diffraction. Test experiments with gold and tungsten layers have been performed and analyzed. The efficiency of the technique is compared with interferometry and reflectometry methods.

  1. Reactor for boron fusion with picosecond ultrahigh power laser pulses and ultrahigh magnetic field trapping

    NASA Astrophysics Data System (ADS)

    Miley, G. H.; Hora, H.; Kirchhoff, G.

    2016-05-01

    Compared with the deuterium tritium (DT) fusion, the environmentally clean fusion of protons with 11B is extremely difficult. When instead of nanosecond laser pulses for thermal-ablating driven ignition, picosecond pulses are used, a drastic change by nonlinearity results in ultrahigh acceleration of plasma blocks. This radically changes to economic boron fusion by a measured new avalanche ignition.

  2. High-power picosecond laser diodes based on different methods of fast gain control for high-precision radar applications

    NASA Astrophysics Data System (ADS)

    Vainshtein, Sergey; Kostamovaara, Juha; Lantratov, Vladimir; Kaluzhniy, Nikolay; Mintairov, Sergey

    2007-05-01

    Current-pumped picosecond-range laser diodes with a peak power significantly exceeding that achievable from gainswitched lasers are of major interest for a large variety of commercial applications. A group of phenomena have been explored in which the peak transient gain is efficiently controlled by a fast reduction in the pumping current. Common to all these phenomena is the fact that the peak powers of the emitted picosecond optical pulses (15-100 ps) exceed that obtainable from gain-switched laser diodes by at least an order of magnitude, although the physical reasons for the high gain and the design principles of the semiconductor structures are different. The main problem in the realization of these picosecond modes in low-cost practical systems is the high sensitivity of the operation regime to structural and circuit parameters. A related problem is the questionable reproducibility of the fabrication processes used so far. Proper development of reliable high-power picosecond transmitters will require the use of more advanced fabrication methods and further study of the effect of structural parameters on the properties of the picosecond lasing mode. In this paper we report on a record value for the power density of the picosecond lasing (50W / 30ps) obtained from a laser diode chip of width 20 μm and give a qualitative interpretation of the operating mode. Use of the MOCVD process for diode fabrication should allow reproducible technology for picosecond laser diodes to be developed.

  3. Picosecond excite-and-probe absorption measurement of the 4T2 state nonradiative lifetime in ruby

    NASA Technical Reports Server (NTRS)

    Gayen, S. K.; Wang, W. B.; Petricevic, V.; Dorsinville, R.; Alfano, R. R.

    1985-01-01

    In a picosecond excite-and-probe absorption measurement, a 527-nm picosecond pulse excites the 4T2 state of the Cr(3+) ion in ruby and a 3.4-micron picosecond probe pulse monitors the growth and decay of population in the 2E state as a function of pump-probe delay. From the growth of population in the metastable 2E state, an upper limit of 7 ps for the nonradiative lifetime of the 4T2 state is determined.

  4. The First Picosecond after Sunlight Absorption in Si, GaAs, and CdTe from First-Principles Calculations

    NASA Astrophysics Data System (ADS)

    Bernardi, Marco; Neaton, Jeffrey B.; Louie, Steven G.

    2014-03-01

    Sunlight absorption in semiconducting materials generates out-of-equilibrium electron populations - also known as hot carriers - relaxing towards equilibrium through a host of scattering processes at the subpicosecond time scale. While such dissipation processes typically result in the loss of more than half of the energy associated with the absorbed sunlight, a microscopic understanding of this ultrafast regime is still missing. In this talk, we provide a detailed picture of the first picosecond after sunlight absorption in semiconductors of wide use in photovoltaics (PV) such as Si, GaAs, and CdTe. Our results are based on ab initio calculations combining density functional theory and the GW plus Bethe-Salpeter Equation (GW-BSE) approach together with electron-phonon interactions. We computed the lifetimes and k-space dependence of electron-electron and electron-phonon scattering events responsible for ultrafast solar energy dissipation. Using this information, we simulated the ultrafast dynamics of hot carriers using an empirical-parameter-free formulation of the Boltzmann equation. A clear understanding of hot carrier dynamics emerges for several materials of interest in PV, and novel engineering paradigms are suggested.

  5. Note: electronic circuit for two-way time transfer via a single coaxial cable with picosecond accuracy and precision.

    PubMed

    Prochazka, Ivan; Kodet, Jan; Panek, Petr

    2012-11-01

    We have designed, constructed, and tested the overall performance of the electronic circuit for the two-way time transfer between two timing devices over modest distances with sub-picosecond precision and a systematic error of a few picoseconds. The concept of the electronic circuit enables to carry out time tagging of pulses of interest in parallel to the comparison of the time scales of these timing devices. The key timing parameters of the circuit are: temperature change of the delay is below 100 fs/K, timing stability time deviation better than 8 fs for averaging time from minutes to hours, sub-picosecond time transfer precision, and a few picoseconds time transfer accuracy.

  6. Tracing temperature in a nanometer size region in a picosecond time period

    PubMed Central

    Nakajima, Kaoru; Kitayama, Takumi; Hayashi, Hiroaki; Matsuda, Makoto; Sataka, Masao; Tsujimoto, Masahiko; Toulemonde, Marcel; Bouffard, Serge; Kimura, Kenji

    2015-01-01

    Irradiation of materials with either swift heavy ions or slow highly charged ions leads to ultrafast heating on a timescale of several picosecond in a region of several nanometer. This ultrafast local heating result in formation of nanostructures, which provide a number of potential applications in nanotechnologies. These nanostructures are believed to be formed when the local temperature rises beyond the melting or boiling point of the material. Conventional techniques, however, are not applicable to measure temperature in such a localized region in a short time period. Here, we propose a novel method for tracing temperature in a nanometer region in a picosecond time period by utilizing desorption of gold nanoparticles around the ion impact position. The feasibility is examined by comparing with the temperature evolution predicted by a theoretical model. PMID:26293488

  7. Tracing temperature in a nanometer size region in a picosecond time period.

    PubMed

    Nakajima, Kaoru; Kitayama, Takumi; Hayashi, Hiroaki; Matsuda, Makoto; Sataka, Masao; Tsujimoto, Masahiko; Toulemonde, Marcel; Bouffard, Serge; Kimura, Kenji

    2015-08-21

    Irradiation of materials with either swift heavy ions or slow highly charged ions leads to ultrafast heating on a timescale of several picosecond in a region of several nanometer. This ultrafast local heating result in formation of nanostructures, which provide a number of potential applications in nanotechnologies. These nanostructures are believed to be formed when the local temperature rises beyond the melting or boiling point of the material. Conventional techniques, however, are not applicable to measure temperature in such a localized region in a short time period. Here, we propose a novel method for tracing temperature in a nanometer region in a picosecond time period by utilizing desorption of gold nanoparticles around the ion impact position. The feasibility is examined by comparing with the temperature evolution predicted by a theoretical model.

  8. High-power picosecond laser drilling/machining of carbon fibre-reinforced polymer (CFRP) composites

    NASA Astrophysics Data System (ADS)

    Salama, A.; Li, L.; Mativenga, P.; Sabli, A.

    2016-02-01

    The large differences in physical and thermal properties of the carbon fibre-reinforced polymer (CFRP) composite constituents make laser machining of this material challenging. An extended heat-affected zone (HAZ) often occurs. The availability of ultrashort laser pulse sources such as picosecond lasers makes it possible to improve the laser machining quality of these materials. This paper reports an investigation on the drilling and machining of CFRP composites using a state-of-the-art 400 W picosecond laser system. Small HAZs (<25 µm) were obtained on the entry side of 6-mm-diameter hole drilled on sample of 6 mm thickness, whereas no HAZ was seen below the top surface on the cut surfaces. Multiple ring material removal strategy was used. Furthermore, the effect of laser processing parameters such as laser power, scanning speed and repetition rate on HAZ sizes and ablation depth was investigated.

  9. Surfaces and thin films studied by picosecond ultrasonics. Progress report, December 1, 1989--November 30, 1992

    SciTech Connect

    Maris, J.H.; Tauc, J.

    1992-05-01

    This research is the study of thin films and interfaces via the use of the picosecond ultrasonic technique. In these experiments ultrasonic waves are excited in a structure by means of a picosecond light pulse (``pump pulse``). The propagation of these waves is detected through the use of a probe light pulse that is time-delayed relative to the pump. This probe pulse measures the change {Delta}R(t) in the optical reflectivity of the structure that occurs because the ultrasonic wave changes the optical properties of the structure. This technique make possible the study of the attenuation and velocity of ultrasonic waves up to much higher frequencies than was previously possible (up to least 500 GHz). In addition, the excellent time-resolution of the method makes it possible to study nanostructures of linear dimensions down to 100 {Angstrom} or less by ultrasonic pulse-echo techniques. 25 refs.

  10. Tracing temperature in a nanometer size region in a picosecond time period

    NASA Astrophysics Data System (ADS)

    Nakajima, Kaoru; Kitayama, Takumi; Hayashi, Hiroaki; Matsuda, Makoto; Sataka, Masao; Tsujimoto, Masahiko; Toulemonde, Marcel; Bouffard, Serge; Kimura, Kenji

    2015-08-01

    Irradiation of materials with either swift heavy ions or slow highly charged ions leads to ultrafast heating on a timescale of several picosecond in a region of several nanometer. This ultrafast local heating result in formation of nanostructures, which provide a number of potential applications in nanotechnologies. These nanostructures are believed to be formed when the local temperature rises beyond the melting or boiling point of the material. Conventional techniques, however, are not applicable to measure temperature in such a localized region in a short time period. Here, we propose a novel method for tracing temperature in a nanometer region in a picosecond time period by utilizing desorption of gold nanoparticles around the ion impact position. The feasibility is examined by comparing with the temperature evolution predicted by a theoretical model.

  11. Measurement of Sub-Picosecond Electron Bunches via Electro-Optic Sampling of Coherent Transition Radiation

    SciTech Connect

    Maxwell, Timothy John

    2012-01-01

    Future collider applications as well as present high-gradient laser plasma wakefield accelerators and free-electron lasers operating with picosecond bunch durations place a higher demand on the time resolution of bunch distribution diagnostics. This demand has led to significant advancements in the field of electro-optic sampling over the past ten years. These methods allow the probing of diagnostic light such as coherent transition radiation or the bunch wakefields with sub-picosecond time resolution. We present results on the single-shot electro-optic spectral decoding of coherent transition radiation from bunches generated at the Fermilab A0 photoinjector laboratory. A longitudinal double-pulse modulation of the electron beam is also realized by transverse beam masking followed by a transverse-to-longitudinal phase-space exchange beamline. Live profile tuning is demonstrated by upstream beam focusing in conjunction with downstream monitoring of single-shot electro-optic spectral decoding of the coherent transition radiation.

  12. Tracing temperature in a nanometer size region in a picosecond time period.

    PubMed

    Nakajima, Kaoru; Kitayama, Takumi; Hayashi, Hiroaki; Matsuda, Makoto; Sataka, Masao; Tsujimoto, Masahiko; Toulemonde, Marcel; Bouffard, Serge; Kimura, Kenji

    2015-01-01

    Irradiation of materials with either swift heavy ions or slow highly charged ions leads to ultrafast heating on a timescale of several picosecond in a region of several nanometer. This ultrafast local heating result in formation of nanostructures, which provide a number of potential applications in nanotechnologies. These nanostructures are believed to be formed when the local temperature rises beyond the melting or boiling point of the material. Conventional techniques, however, are not applicable to measure temperature in such a localized region in a short time period. Here, we propose a novel method for tracing temperature in a nanometer region in a picosecond time period by utilizing desorption of gold nanoparticles around the ion impact position. The feasibility is examined by comparing with the temperature evolution predicted by a theoretical model. PMID:26293488

  13. Filamentation and supercontinuum generation in solid-state dielectric media with picosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Galinis, J.; Tamošauskas, G.; GražulevičiÅ«tÄ--, I.; KeblytÄ--, E.; Jukna, V.; Dubietis, A.

    2015-09-01

    Filamentation and supercontinuum generation with 1.3-ps, 1055-nm laser pulses in YAG crystal is investigated numerically and experimentally. Numerical simulations based on solving the unidirectional nonparaxial propagation equation uncover that the self-focusing dynamics of a picosecond laser pulse markedly differs from that observed in a femtosecond filamentation regime. We show that spatiotemporal transformation of the picosecond pulse is governed by the free electron plasma, which defocuses and absorbs its rear part, resulting in the formation of several subpulses of femtosecond duration, which thereafter undergo peculiar spatiotemporal dynamics and have different contributions to spectral superbroadening. The numerical findings are confirmed experimentally by measuring the spatiotemporal intensity profiles of the wave packet at various stages of propagation where relevant events of the spectral broadening occur.

  14. Raman linewidth measurements using time-resolved hybrid picosecond/nanosecond rotational CARS.

    PubMed

    Nordström, Emil; Hosseinnia, Ali; Brackmann, Christian; Bood, Joakim; Bengtsson, Per-Erik

    2015-12-15

    We report an innovative approach for time-domain measurements of S-branch Raman linewidths using hybrid picosecond/nanosecond pure-rotational coherent anti-Stokes Raman spectroscopy (RCARS). The Raman coherences are created by two picosecond excitation pulses and are probed using a narrow-band nanosecond pulse at 532 nm. The generated RCARS signal contains the entire coherence decay in a single pulse. By extracting the decay times of the individual transitions, the J-dependent Raman linewidths can be calculated. Self-broadened S-branch linewidths for nitrogen and oxygen at 293 K and ambient pressure are in good agreement with previous time-domain measurements. Experimental considerations of the approach are discussed along with its merits and limitations. The approach can be extended to a wide range of pressures and temperatures and has potential for simultaneous single-shot thermometry and linewidth determination.

  15. Picosecond spectral coherent anti-Stokes Raman scattering imaging with principal component analysis of meibomian glands

    NASA Astrophysics Data System (ADS)

    Lin, Chia-Yu; Suhalim, Jeffrey L.; Nien, Chyong Ly; Miljković, Miloš D.; Diem, Max; Jester, James V.; Potma, Eric. O.

    2011-02-01

    The lipid distribution in the mouse meibomian gland was examined with picosecond spectral anti-Stokes Raman scattering (CARS) imaging. Spectral CARS data sets were generated by imaging specific localized regions of the gland within tissue sections at consecutive Raman shifts in the CH2 stretching vibrational range. Spectral differences between the location specific CARS spectra obtained in the lipid-rich regions of the acinus and the central duct were observed, which were confirmed with a Raman microspectroscopic analysis, and attributed to meibum lipid modifications within the gland. A principal component analysis of the spectral data set reveals changes in the CARS spectrum when transitioning from the acini to the central duct. These results demonstrate the utility of picosecond spectral CARS imaging combined with multivariate analysis for assessing differences in the distribution and composition of lipids in tissues.

  16. Picosecond optical limiting in reverse saturable absorbers: a theoretical and experimental study

    NASA Astrophysics Data System (ADS)

    Lepkowicz, Richard; Kobyakov, Andrey; Hagan, David J.; van Stryland, Eric W.

    2002-01-01

    We theoretically and experimentally study absorption of picosecond laser pulses in materials described by a four-level system that exhibit reverse saturable absorption (RSA). Using an approximate solution to the rate equations, we derive, analyze, and verify, numerically and experimentally, a single dynamical equation for the spatial evolution of the pulse fluence that includes both the rate equations and the propagation equation. This analytical approach considerably simplifies the study of optical limiting with picosecond pulses and helps to predict the behavior of the nonlinear transmittance, the level of output signal clamping, and a possible turnover from RSA to saturable absorption that restricts the performance of optical limiters based on RSA. The results obtained can also be used to characterize RSA materials by the pump-probe technique.

  17. Spatial and Transient Effects during the Amplification of a Picosecond Pulse Beam by a Nanosecond Pump

    NASA Astrophysics Data System (ADS)

    Neuville, C.; Baccou, C.; Debayle, A.; Masson-Laborde, P.-E.; Hüller, S.; Casanova, M.; Marion, D.; Loiseau, P.; Glize, K.; Labaune, C.; Depierreux, S.

    2016-09-01

    Amplification of a picosecond pulse beam by a lower intensity nanosecond pulse beam was experimentally observed in a flowing plasma. Modifications of intensity distributions in beam focal spots due to nonhomogeneous energy transfer and its transient regime were investigated. The mean transferred power reached 57% of the incident power of the nanosecond pulse beam. An imaging diagnostic allowed the intensity profile of the picosecond pulse beam to be determined, bringing to evidence the spatial nonuniformity of energy transfer in the amplified beam. This diagnostic also enabled us to observe the temporal evolution of the speckle intensity distribution because of the transfer. These results are reproduced by numerical simulations of two complementary codes. The method and the observed effects are important for the understanding of experiments with multiple crossing laser beams in plasmas.

  18. Amplification of Picosecond Pulses in a 140-GHz Gyrotron-Traveling Wave Tube

    PubMed Central

    Kim, H. J.; Nanni, E. A.; Shapiro, M. A.; Sirigiri, J. R.; Woskov, P. P.; Temkin, R. J.

    2011-01-01

    An experimental study of picosecond pulse amplification in a gyrotron-traveling wave tube (gyro-TWT) has been carried out. The gyro-TWT operates with 30 dB of small signal gain near 140 GHz in the HE06 mode of a confocal waveguide. Picosecond pulses show broadening and transit time delay due to two distinct effects: the frequency dependence of the group velocity near cutoff and gain narrowing by the finite gain bandwidth of 1.2 GHz. Experimental results taken over a wide range of parameters show good agreement with a theoretical model in the small signal gain regime. These results show that in order to limit the pulse broadening effect in gyrotron amplifiers, it is crucial to both choose an operating frequency at least several percent above the cutoff of the waveguide circuit and operate at the center of the gain spectrum with sufficient gain bandwidth. PMID:21230783

  19. Quantitative phase retrieval with picosecond X-ray pulses from the ATF Inverse Compton Scattering source

    SciTech Connect

    Endrizzi, M.; Pogorelsky, I.; Gureyev, T.E.; Delogu, P.; Oliva, P.; Golosio, B.; Carpinelli, M.; Yakimenko, Y.; Bottigli, U.

    2011-01-28

    Quantitative phase retrieval is experimentally demonstrated using the Inverse Compton Scattering X-ray source available at the Accelerator Test Facility (ATF) in the Brookhaven National Laboratory. Phase-contrast images are collected using in-line geometry, with a single X-ray pulse of approximate duration of one picosecond. The projected thickness of homogeneous samples of various polymers is recovered quantitatively from the time-averaged intensity of transmitted X-rays. The data are in good agreement with the expectations showing that ATF Inverse Compton Scattering source is suitable for performing phase-sensitive quantitative X-ray imaging on the picosecond scale. The method shows promise for quantitative imaging of fast dynamic phenomena.

  20. Relativistic theory for picosecond time transfer in the vicinity of the Earth

    NASA Astrophysics Data System (ADS)

    Petit, G.; Wolf, P.

    1994-06-01

    The problem of light propagation is treated in a geocentric reference system with the goal of ensuring picosecond accuracy for time transfer techniques using electromagnetic signals in the vicinity of the Earth. We show that the first post-Newtonian approximation of the metric, as defined by the Resolution A4 of the International Astronomical Union, is sufficient for this purpose. We derive explicit formulae for a one way time transfer, to be applied when the spatial coordinates of the time transfer stations are known in a geocentric reference system rotating with the Earth. These expressions are extended, at the same accuracy level of one picosecond, to the special cases of two way and LASSO time transfers via geostationary satellites.

  1. Compact picosecond nondegenerate four-wave mixing mirrorless optical parametric oscillator in silicon waveguide

    NASA Astrophysics Data System (ADS)

    Wen, Jin

    2015-02-01

    The compact picosecond nondegenerate four-wave mixing mirrorless optical parametric oscillator based on multimode silicon waveguide is proposed and investigated numerically. Two counterpropagating picosecond pulses of fundamental mode can generate new pulses of second-order mode at different wavelengths due to the large modal dispersion between the fundamental mode and the second-order mode. The frequency of the newly generated waves can be tuned to 0.6 THz by adjusting the pump frequency difference of 5 THz. The output signal wave exhibits pulse width of 50 ps when the pump pulse is 100 ps. The proposed mirrorless optical parametric oscillator exhibits compact configuration and low threshold, which can find important applications in integrated optical source and ultrafast all-optical signal processing.

  2. Magnetic vortex dynamics on a picosecond timescale in a hexagonal permalloy pattern

    SciTech Connect

    Shim, J.-H.; Kim, D.-H.; Mesler, B.; Moon, J.-H.; Lee, K.-J.; Anderson, E. H.; Fischer, P.

    2009-12-02

    We have observed a motion of magnetic vortex core in a hexagonal Permalloy pattern by means of Soft X-ray microscopy. Pump-probe stroboscopic observation on a picosecond timescale has been carried out after exciting a ground state vortex structure by an external field pulse of 1 ns duration. Vortex core is excited off from the center position of the hexagonal pattern but the analysis of the core trajectory reveals that the motion is nongyrotropic.

  3. Flexible pulse delay control up to picosecond for high-intensity twin electron bunches

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen; Ding, Yuantao; Emma, Paul; Huang, Zhirong; Marinelli, Agostino; Tang, Chuanxiang

    2015-09-01

    Two closely spaced electron bunches have attracted strong interest due to their applications in two color X-ray free-electron lasers as well as witness bunch acceleration in plasmas and dielectric structures. In this paper, we propose a new scheme of delay system to vary the time delay up to several picoseconds while not affecting the bunch compression. Numerical simulations based on the Linac Coherent Light Source are performed to demonstrate the feasibility of this method.

  4. Shaping pulses using frequency conversion with a modulated picosecond free electron laser

    SciTech Connect

    Hooper, B.A.; Madey, J.M.J.

    1995-12-31

    Computer simulations and experiments indicate that we can shape the infrared picosecond pulses of the Mark III FEL in amplitude, frequency, and phase. Strongly modulated fundamental and second harmonic pulses have been generated by operating the Mark III FEL in the regime of strong sideband growth. In this paper, we present the results of simulations and experiments for second harmonic generation with fundamental inputs from 2 to 3 {mu}m.

  5. 40 W picosecond fiber amplifier with the large mode-area polarized crystal fiber

    NASA Astrophysics Data System (ADS)

    Yu, H.; Zhou, J.; Wushouer, X.; Yan, P.; Wang, D.; Gong, M.

    2009-09-01

    We reported the 5W picosecond laser with pulse width of 30 ps and the repetition rate of 100 MHz, which was amplified to 40.2 W with the linear polarized Yb-doped photonic crystal fiber (PCF), with the slope efficiency of about 58%. As much as 17.3 W second-harmonic power was achieved corresponding to the conversion efficiency of 43%.

  6. Observation of self-focusing in optical fibers with picosecond pulses.

    PubMed

    Baldeck, P L; Raccah, F; Alfano, R R

    1987-08-01

    Self-focusing was observed at Raman frequencies, using picosecond pulses propagating in a large-core optical fiber of 100-microm diameter. For intense input pulses, a continuum of Stokes frequencies was generated in a small ring-waveguide structure. The ring diameter of 11 microm was about 10 times smaller than the beam diameter at low intensities. The ring structure was attributed to an induced-gradient-index profile arising from the nonlinear index of refraction. PMID:19741807

  7. Applications of infrared free electron lasers in picosecond and nonlinear spectroscopy

    NASA Astrophysics Data System (ADS)

    Fann, W. S.; Benson, S. V.; Madey, J. M. J.; Etemad, S.; Baker, G. L.; Rothberg, L.; Roberson, M.; Austin, R. H.

    1990-10-01

    In this paper we describe two different types of spectroscopic experiments that exploit the characteristics of the infrared FEL, Mark III, for studies of condensed matter: - the spectrum of χ(3)(-3ω; ω, ω, ω) in polyacetylene: an application of the free electron laser in nonlinear optical spectroscopy, and - a dynamical test of Davydov-like solitons in acetanilide using a picosecond free electron laser. These two studies highlight the unique contributions FELs can make to condensed-matter spectroscopy.

  8. Diffraction limited amplification of picosecond pulses in 1170 microm2 effective area erbium fiber.

    PubMed

    Jasapara, J C; DeSantolo, A; Nicholson, J W; Yablon, A D; Várallyay, Z

    2008-11-10

    Robust fundamental mode propagation and amplification of picosecond pulses at 1.56 microm wavelength is demonstrated in a core-pumped Er fiber with 1170 microm2 effective area. Record peak power exceeding 120 kW, and 67 nJ pulse energy are achieved before the onset of pulse breakup. A small increase in input pulse energy results in a temporal collapse of the pulse center to 58 fs duration, with peak powers approaching 200 kW.

  9. High-average-power and high-beam-quality Innoslab picosecond laser amplifier.

    PubMed

    Xu, Liu; Zhang, Hengli; Mao, Yefei; Yan, Ying; Fan, Zhongwei; Xin, Jianguo

    2012-09-20

    We demonstrated a laser-diode, end-pumped picosecond amplifier. With effective shaping of the seed laser, we achieved 73 W amplified laser output at the pump power of 255 W, and the optical-optical efficiency was about 28%. The beam propagation factors M(2) measured at the output power of 60 W in the horizontal direction and the vertical direction were 1.5 and 1.4, respectively.

  10. ARTICLES: Characteristics of the amplification of picosecond ultraviolet pulses in an XeCl amplifier

    NASA Astrophysics Data System (ADS)

    Platonenko, Viktor T.; Taranukhin, Vladimir D.

    1987-01-01

    A numerical investigation was made of the amplification of picosecond pulses in an XeCl amplifier, taking into account the real vibrational-rotational structure of the gain spectrum of the XeCl molecule. It was found that the coherent effects can be manifested and, in particular, that a marked reduction can take place in the duration of the pulses which are amplified.

  11. Laser picoseconde pompé par diode à basse cadence de récurrence

    NASA Astrophysics Data System (ADS)

    Albert, A.; Couderc, V.; Louradour, F.; Barthélémy, A.

    2002-06-01

    Nous présentons une étude expérimentale d'un laser Nd:YAG picoseconde à faible cadence de récurrence. Nous comparons les performances obtenues avec un laser de cavité métrique utilisant la même source de pompe. Des gains en énergie et en puissance crête par impulsion de 10 et 7 ont été obtenus.

  12. Picosecond-time-resolved studies of nonradiative relaxation in ruby and alexandrite

    SciTech Connect

    Gayen, S.K.; Wang, W.B.; Petricevic, V.; Alfano, R.R.

    1985-01-01

    Dynamics of the nonradiative transitions between the /sup 4/T/sub 2/ pump band and the /sup 2/E storage level of the Cr/sup 3 +/ ion in ruby and alexandrite crystals is studied using the picosecond excite-and-probe absorption technique. A 527-nm picosecond pulse excites the /sup 4/T/sub 2/ state of the Cr/sup 3 +/ ion, and an infrared picosecond probe pulse monitors the subsequent growth and decay of population in the excited states as a function of pump-probe delay. An upper limit of 7 ps is determined for the nonradiative lifetime of the /sup 4/T/sub 2/ state in ruby. A vibrational relaxation time of 25 ps for the /sup 4/T/sub 2/ band in alexandrite is estimated. The time to attain thermal equilibrium population between the /sup 2/E and /sup 4/T/sub 2/ levels of alexandrite following excitation of /sup 4/T/sub 2/ band is estimated to be approx. 100 ps.

  13. Detection of nonlinear picosecond acoustic pulses by time-resolved Brillouin scattering

    SciTech Connect

    Gusev, Vitalyi E.

    2014-08-14

    In time-resolved Brillouin scattering (also called picosecond ultrasonic interferometry), the time evolution of the spatial Fourier component of an optically excited acoustic strain distribution is monitored. The wave number is determined by the momentum conservation in photon-phonon interaction. For linear acoustic waves propagating in a homogeneous medium, the detected time-domain signal of the optical probe transient reflectivity shows a sinusoidal oscillation at a constant frequency known as the Brillouin frequency. This oscillation is a result of heterodyning the constant reflection from the sample surface with the Brillouin-scattered field. Here, we present an analytical theory for the nonlinear reshaping of a propagating, finite amplitude picosecond acoustic pulse, which results in a time-dependence of the observed frequency. In particular, we examine the conditions under which this information can be used to study the time-evolution of the weak-shock front speed. Depending on the initial strain pulse parameters and the time interval of its nonlinear transformation, our theory predicts the detected frequency to either be monotonically decreasing or oscillating in time. We support these theoretical predictions by comparison with available experimental data. In general, we find that picosecond ultrasonic interferometry of nonlinear acoustic pulses provides access to the nonlinear acoustic properties of a medium spanning most of the GHz frequency range.

  14. Toward picosecond time-resolved X-ray absorption studies of interfacial photochemistry

    NASA Astrophysics Data System (ADS)

    Gessner, Oliver; Mahl, Johannes; Neppl, Stefan

    2016-05-01

    We report on the progress toward developing a novel picosecond time-resolved transient X-ray absorption spectroscopy (TRXAS) capability for time-domain studies of interfacial photochemistry. The technique is based on the combination of a high repetition rate picosecond laser system with a time-resolved X-ray fluorescent yield setup that may be used for the study of radiation sensitive materials and X-ray spectroscopy compatible photoelectrochemical (PEC) cells. The mobile system is currently deployed at the Advanced Light Source (ALS) and may be used in all operating modes (two-bunch and multi-bunch) of the synchrotron. The use of a time-stamping technique enables the simultaneous recording of TRXAS spectra with delays between the exciting laser pulses and the probing X-ray pulses spanning picosecond to nanosecond temporal scales. First results are discussed that demonstrate the viability of the method to study photoinduced dynamics in transition metal-oxide semiconductor (SC) samples under high vacuum conditions and at SC-liquid electrolyte interfaces during photoelectrochemical water splitting. Opportunities and challenges are outlined to capture crucial short-lived intermediates of photochemical processes with the technique. This work was supported by the Department of Energy Office of Science Early Career Research Program.

  15. Few-femtosecond timing jitter from a picosecond all-polarization-maintaining Yb-fiber laser.

    PubMed

    Chen, Wei; Song, Youjian; Jung, Kwangyun; Hu, Minglie; Wang, Chingyue; Kim, Jungwon

    2016-01-25

    We characterize the timing jitter of a picosecond all-polarization-maintaining (all-PM) Yb-fiber laser using the optical cross-correlation method. For the 10 MHz all-normal dispersion mode-locked laser with ~0.5 nm spectral bandwidth, the measured high-frequency jitter is as low as 5.9 fs (RMS) when integrated from 10 kHz to the Nyquist frequency of 5 MHz. A complete numerical model with ASE noise is built to simulate the timing jitter characteristics in consideration of intracavity pulse evolution. The mutual comparison among simulation result, analytical model and experiment data indicate that the few femtosecond timing jitter from the picosecond fiber laser is attributed to the complete elimination of Gordon-Haus jitter by narrow bandpass filtering by a fiber Bragg grating (FBG). The low level of timing jitter from this compact and maintenance-free PM picosecond fiber laser source at a low MHz repetition rate is promising to advance a number of femtosecond-precision timing and synchronization applications. PMID:26832515

  16. A low timing jitter picosecond microchip laser pumped by pulsed LD

    NASA Astrophysics Data System (ADS)

    Wang, Sha; Wang, Yan-biao; Feng, Guoying; Zhou, Shou-huan

    2016-07-01

    SESAM passively Q-switched microchip laser is a very promising instrument to replace mode locked lasers to obtain picosecond pulses. The biggest drawback of a passively Q-switched microchip laser is its un-avoided large timing jitter, especially when the pump intensity is low, i.e. at low laser repetition rate range. In order to obtain a low timing jitter passively Q-switched picosecond microchip laser in the whole laser repetition rate range, a 1000 kHz pulsed narrow bandwidth Fiber Bragg Grating (FBG) stablized laser diode was used as the pump source. By tuning the pump intensity, we could control the output laser frequency. In this way, we achieved a very low timing jitter passively Q-switched picosecond laser at 2.13 mW, 111.1 kHz. The relative timing jitter was only 0.0315%, which was around 100 times smaller compared with a cw LD pumped microchip working at hundred kilohertz repetition rate frequency range.

  17. Emergency contraception

    MedlinePlus

    Morning-after pill; Postcoital contraception; Birth control - emergency; Plan B; Family planning - emergency contraception ... Emergency contraception most likely prevents pregnancy in the same way as regular birth control pills: By preventing or delaying ...

  18. Chemical Emergency

    MedlinePlus

    ... Emergency App Find our Emergency App in the Apple Store or Google Play Aplicación de Emergencias - ahora ... Lifesaving Blood Get Assistance Types of Emergencies Be Red Cross Ready Mobile Apps Workplaces & Organizations Resources For ...

  19. Emergency Contraception

    MedlinePlus

    ... contraception are available: emergency contraceptive pills and the copper-containing intrauterine device (IUD). Emergency contraceptive pills include ... for emergency use, talk to your doctor. The copper-containing IUD (brand name: Paragard) is a small, ...

  20. A picosecond laser FAIMS analyzer for detecting ultralow quantities of explosives

    NASA Astrophysics Data System (ADS)

    Chistyakov, Alexander A.; Kotkovskii, Gennadii E.; Sychev, Alexey V.; Odulo, Ivan P.; Bogdanov, Artem S.; Perederiy, Anatoly N.; Spitsyn, Evgeny M.; Shestakov, Alexander V.

    2014-10-01

    A method for detecting ultralow quantities of explosives in air and explosive traces using a state-of-the-art picosecond chip Nd3+:YAG laser has been elaborated. The method combines field asymmetric ion mobility spectrometry (FAIMS) with laser ionization of air samples and laser desorption of analyzed molecules from examined surfaces. Radiation of the fourth harmonic (λ = 266 nm, τpulse = 300 ps, Epulse = 20-150 μJ, ν = 20-300 Hz) was used. The ionization efficiencies for trinitrotoluene (TNT), cyclotrimethylenetrinitramine (RDX), and glyceryl trinitrate (NG) were investigated. The dependences on frequency, pulse energy, peak intensity, and average power for TNT and RDX were determined. It was shown that the optimal peak intensity should be no less than 2•106 W/cm2; at lower peak intensities, the increase of the average laser power in the interval 5-15 mW enhanced the ion signal. The results of detection of TNT, RDX, and NG vapors under these conditions were compared with the results obtained using nanosecond laser excitation. The detected ion signals for all explosives were shown to be two- to threefold higher in the case of picosecond excitation. The FAIMS laser desorption regime was developed where a laser beam exiting the detector after removal of a special plug was used. The results of TNT and RDX detection are presented. The chip Nd3+:YAG laser has a small emitter and a consumed electric power of 25 W. The estimated detection threshold of the prototype picosecond laser FAIMS analyzer of explosives is (1-3)•10-15g/cm3 for TNT vapors.

  1. Picosecond time scale modification of forward scattered light induced by absorption inside particles.

    PubMed

    Kervella, Myriam; d'Abzac, Françoix-Xavier; Hache, François; Hespel, Laurent; Dartigalongue, Thibault

    2012-01-01

    The aim of this work is to evaluate the influence of absorption processes on the Time Of Flight (TOF) of the light scattered out of a thick medium in the forward direction. We use a Monte-Carlo simulation with temporal phase function and Debye modes. The main result of our study is that absorption inside the particle induces a decrease of the TOF on a picosecond time scale, measurable with a femtosecond laser apparatus. This decrease, which exhibits a neat sensitivity to the absorption coefficient of particles, could provide an efficient way to measure this absorption.

  2. A New Technology for Applanation Free Corneal Trephination: The Picosecond Infrared Laser (PIRL)

    PubMed Central

    Linke, Stephan J.; Frings, Andreas; Ren, Ling; Gomolka, Amadeus; Schumacher, Udo; Reimer, Rudolph; Hansen, Nils-Owe; Jowett, Nathan; Richard, Gisbert; Miller, R. J. Dwayne

    2015-01-01

    The impact of using a Femtosecond laser on final functional results of penetrating keratoplasty is low. The corneal incisions presented here result from laser ablations with ultrafast desorption by impulsive vibrational excitation (DIVE). The results of the current study are based on the first proof-of-principle experiments using a mobile, newly introduced picosecond infrared laser system, and indicate that wavelengths in the mid-infrared range centered at 3 μm are efficient for obtaining applanation-free deep cuts on porcine corneas. PMID:25781907

  3. Spur decay of the solvated electron in picosecond radiolysis measured with time-correlated absorption spectroscopy

    SciTech Connect

    Bartels, D.M.; Cook, A.R.; Mudaliar, M.; Jonah, C.D.

    2000-03-02

    Spur decay kinetics of the hydrated electron following picosecond pulse radiolysis of water have been measured using a time-correlated transient absorption technique with an asynchronous mode-locked laser. The 11 ns time window afforded by this signal-averaging technique is ideal to match up with more conventional transient absorption measurements taken to microsecond time scales. The precise data recorded in this study require a revision downward of the time zero solvated electron yield to approximately 4.0 per 100 eV of energy absorbed, to match the best available scavenger product measurements.

  4. Visualizing coherent phonon propagation in the 100 GHz range: A broadband picosecond acoustics approach

    NASA Astrophysics Data System (ADS)

    Pontecorvo, Emanuele; Ortolani, Michele; Polli, Dario; Ferretti, Marco; Ruocco, Giancarlo; Cerullo, Giulio; Scopigno, Tullio

    2011-01-01

    Building on a 1 kHz amplified Ti:sapphire laser source, we developed a novel pump-probe setup for broadband picosecond acoustics using a white-light continuum probe coupled to an optical multichannel analyzer. The system allows one to access, in a single measurement, acoustic parameters such as sound velocity and attenuation all over the bandwidth of the acoustic wave-packet launched by the pump pulse. We use the setup to measure the sound attenuation in fused silica and observe a dynamic crossover occurring at ≈170 GHz.

  5. High-energy picosecond hybrid fiber/crystal laser for thin films solar cells micromachining

    NASA Astrophysics Data System (ADS)

    Lecourt, Jean-Bernard; Boivinet, Simon; Bertrand, Anthony; Lekime, Didier; Hernandez, Yves

    2015-05-01

    We report on an hybrid fiber/crystal ultra-short pulsed laser delivering high pulse energy and high peak power in the picosecond regime. The laser is composed of a mode-lock fiber oscillator, a pulse picker and subsequent fiber amplifiers. The last stage of the laser is a single pass Nd:YVO4 solid-state amplifier. We believe that this combination of both technologies is a very promising approach for making efficient, compact and low cost lasers compatible with industrial requirements.

  6. Simulating picosecond X-ray diffraction from crystals using FFT methods on MD output

    SciTech Connect

    Kimminau, Giles; Nagler, Bob; Higginbotham, Andrew; Murphy, William; Wark, Justin; Park, Nigel; Hawreliak, James; Kalantar, Dan; Lorenzana, Hector; Remington, Bruce

    2007-12-12

    Multi-million atom non-equilibrium molecular dynamics (MD) simulations give significant insight into the transient processes that occur under shock compression. Picosecond X-ray diffraction enables the probing of materials on a timescale fast enough to test such effects. In order to simulate diffraction patterns, Fourier methods are required to gain a picture of reciprocal lattice space. We present here results of fast Fourier transforms of atomic coordinates of shocked crystals simulated by MD, and comment on the computing power required as a function of problem size. The relationship between reciprocal space and particular experimental geometries is discussed.

  7. Ultra-flat supercontinuum generation in cascaded photonic crystal fiber with picosecond fiber laser pumping

    NASA Astrophysics Data System (ADS)

    Zhang, Huanian; Li, Ping

    2016-08-01

    In this letter, a new method for achieving ultra-flat supercontinuum generation is proposed. A picosecond fiber laser was used as the pump source, in a cascaded photonic crystal fiber, ultra-flat supercontinuum generation spectrum at 3 dB level from 1070 up to 1630 nm is obtained, to our knowledge, the 3 dB bandwidth of 560 nm is the most flat supercontinuum generation obtained in photonic crystal fibers, the results indicated that our method is efficient for achieving ultra-flat supercontinuum, which will promote the technical applications of supercontinuum.

  8. Octave-spanning infrared supercontinuum generation in robust chalcogenide nanotapers using picosecond pulses.

    PubMed

    Shabahang, Soroush; Marquez, Michael P; Tao, Guangming; Piracha, Mohammad U; Nguyen, Dat; Delfyett, Peter J; Abouraddy, Ayman F

    2012-11-15

    We report on infrared supercontinuum generation extending over more than one octave of bandwidth, from 850 nm to 2.35 μm, produced in a single spatial mode from a robust, compact, composite chalcogenide glass nanotaper. A picosecond laser at 1.55 μm pumps a high-index-contrast, all-solid nanotaper that strongly confines the field to a 480 nm diameter core, while a thermally compatible built-in polymer jacket lends the nanotaper mechanical stability. PMID:23164864

  9. Si nanostructures grown by picosecond high repetition rate pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Pervolaraki, M.; Komninou, Ph.; Kioseoglou, J.; Athanasopoulos, G. I.; Giapintzakis, J.

    2013-08-01

    One-step growth of n-doped Si nanostructures by picosecond ultra fast pulsed laser deposition at 1064 nm is reported for the first time. The structure and morphology of the Si nanostructures were characterized by X-ray diffraction, scanning electron microscopy and atomic force microscopy. Transmission electron microscopy studies revealed that the shape of the Si nanostructures depends on the ambient argon pressure. Fibrous networks, cauliflower formations and Si rectangular crystals grew when argon pressure of 300 Pa, 30 Pa and vacuum (10-3 Pa) conditions were used, respectively. In addition, the electrical resistance of the vacuum made material was investigated.

  10. On-Chip Picosecond Pulse Detection and Generation Using Graphene Photoconductive Switches

    PubMed Central

    2015-01-01

    We report on the use of graphene for room temperature on-chip detection and generation of pulsed terahertz (THz) frequency radiation, exploiting the fast carrier dynamics of light-generated hot carriers, and compare our results with conventional low-temperature-grown gallium arsenide (LT-GaAs) photoconductive (PC) switches. Coupling of picosecond-duration pulses from a biased graphene PC switch into Goubau line waveguides is also demonstrated. A Drude transport model based on the transient photoconductance of graphene is used to describe the mechanism for both detection and generation of THz radiation. PMID:25710079

  11. High-accuracy picosecond characterization of gain-switched laser diodes

    SciTech Connect

    Cova, S.; Lacaita, A.; Ghioni, M.; Ripamonti, G. )

    1989-12-15

    A unique combination of the time-correlated photon-counting technique and single-photon avalanche diode detectors gives an accurate characterization of gain-switched semiconductor lasers with picosecond resolution. The high sensitivity and the clean shape of the time response reveal even small features (reflections and relaxation oscillations), making a true optimization of the laser-diode operation possible. The technique outperforms the standard characterization with ultrafast p-i-n photodiodes and a sampling oscilloscope. In addition, compared with other methods, it has favorable features that greatly simplify the measurement.

  12. Precise Control of the Number of Layers of Graphene by Picosecond Laser Thinning.

    PubMed

    Lin, Zhe; Ye, Xiaohui; Han, Jinpeng; Chen, Qiao; Fan, Peixun; Zhang, Hongjun; Xie, Dan; Zhu, Hongwei; Zhong, Minlin

    2015-06-26

    The properties of graphene can vary as a function of the number of layers (NOL). Controlling the NOL in large area graphene is still challenging. In this work, we demonstrate a picosecond (ps) laser thinning removal of graphene layers from multi-layered graphene to obtain desired NOL when appropriate pulse threshold energy is adopted. The thinning process is conducted in atmosphere without any coating and it is applicable for graphene films on arbitrary substrates. This method provides many advantages such as one-step process, non-contact operation, substrate and environment-friendly, and patternable, which will enable its potential applications in the manufacturing of graphene-based electronic devices.

  13. Simulating Picosecond X-ray Diffraction from shocked crystals by Post-processing Molecular Dynamics Calculations

    SciTech Connect

    Kimminau, G; Nagler, B; Higginbotham, A; Murphy, W; Park, N; Hawreliak, J; Kadau, K; Germann, T C; Bringa, E M; Kalantar, D; Lorenzana, H; Remington, B; Wark, J

    2008-06-19

    Calculations of the x-ray diffraction patterns from shocked crystals derived from the results of Non-Equilibrium-Molecular-Dynamics (NEMD) simulations are presented. The atomic coordinates predicted by the NEMD simulations combined with atomic form factors are used to generate a discrete distribution of electron density. A Fast-Fourier-Transform (FFT) of this distribution provides an image of the crystal in reciprocal space, which can be further processed to produce quantitative simulated data for direct comparison with experiments that employ picosecond x-ray diffraction from laser-irradiated crystalline targets.

  14. Dynamical test of Davydov-type solitons in acetanilide using a picosecond free-electron laser

    NASA Astrophysics Data System (ADS)

    Fann, Wunshain; Rothberg, Lewis; Roberson, Mark; Benson, Steve; Madey, John; Etemad, Shahab; Austin, Robert

    1990-01-01

    Picosecond infrared excitation experiments on acetanilide, an α-helix protein analog, indicate that the anomalous 1650-cm-1 band which appears on cooling of acetanilide crystals persists for at least several microseconds following rapid pulsed heating. The ground-state recovery time is 15+/-5 psec, consistent with a conventional mode strongly coupled to the phonon bath. We therefore suggest that the unusual temperature-dependent spectroscopy of acetanilide can be accounted for by slightly nondegenerate hydrogen atom configurations in the crystal.

  15. Picosecond laser ultrasonics for imaging of transparent polycrystalline materials compressed to megabar pressures.

    PubMed

    Kuriakose, Maju; Raetz, Samuel; Chigarev, Nikolay; Nikitin, Sergey M; Bulou, Alain; Gasteau, Damien; Tournat, Vincent; Castagnede, Bernard; Zerr, Andreas; Gusev, Vitalyi E

    2016-07-01

    Picosecond laser ultrasonics is an all-optical experimental technique based on ultrafast high repetition rate lasers applied for the generation and detection of nanometric in length coherent acoustic pulses. In optically transparent materials these pulses can be detected not only on their arrival at the sample surfaces but also all along their propagation path inside the sample providing opportunity for imaging of the sample material spatial inhomogeneities traversed by the acoustic pulse. Application of this imaging technique to polycrystalline elastically anisotropic transparent materials subject to high pressures in a diamond anvil cell reveals their significant texturing/structuring at the spatial scales exceeding dimensions of the individual crystallites.

  16. Splash plasma channels produced by picosecond laser pulses in argon gas for laser wakefield acceleration

    NASA Astrophysics Data System (ADS)

    Mizuta, Y.; Hosokai, T.; Masuda, S.; Zhidkov, A.; Makito, K.; Nakanii, N.; Kajino, S.; Nishida, A.; Kando, M.; Mori, M.; Kotaki, H.; Hayashi, Y.; Bulanov, S. V.; Kodama, R.

    2012-12-01

    Short-lived, ˜10ps, deep plasma channels, with their lengths of ˜1mm and diameters of ˜20μm, are observed and characterized in Ar gas jets irradiated by moderate intensity, ˜1015-16W/cm2, laser pulses with a duration from subpicosecond to several picoseconds. The channels, upon 2D particle-in-cell simulations including ionization, fit well in the guiding of high intensity femtosecond laser pulses and, therefore, in laser wakefield acceleration with a controllable electron self-injection.

  17. Ion acceleration in a solitary wave by an intense picosecond laser pulse.

    PubMed

    Zhidkov, A; Uesaka, M; Sasaki, A; Daido, H

    2002-11-18

    Acceleration of ions in a solitary wave produced by shock-wave decay in a plasma slab irradiated by an intense picosecond laser pulse is studied via particle-in-cell simulation. Instead of exponential distribution as in known mechanisms of ion acceleration from the target surface, these ions accelerated forwardly form a bunch with relatively low energy spread. The bunch is shown to be a solitary wave moving over expanding plasma; its velocity can exceed the maximal velocity of ions accelerated forward from the rear side of the target.

  18. g-FACTOR Measurements of Picosecond States:. Opportunities and Limitations of the Recoil-In Method

    NASA Astrophysics Data System (ADS)

    Stone, N. J.; Stone, J. R.; Bingham, C. R.; Fischer, C. Froese; Jönsson, P.

    2008-08-01

    This paper reports a new a-priori approach to the calibration of attenuations observed in Recoil-in-Vacuum angular distribution experiments which should allow extraction of g-factors for states of picosecond (ps) lifetime in many nuclei, of both odd-A and even-A without the need for extensive experimentally based calibration. The methods used and results for Ge and Mo isotopes are discussed, with outline applications to both on-line beam/target Coulomb excitation and fission fragment experiments.

  19. Picosecond laser induced fragmentation of coarse Cu2O particles into nanoparticles in liquid media

    NASA Astrophysics Data System (ADS)

    Ali, Mokhtar; Remalli, Nagarjuna; Yehya, Fahem; Chaudhary, Anil Kumar; Srikanth, Vadali V. S. S.

    2015-12-01

    Micron sized cuprous oxide (Cu2O) particles are easily fragmented into nanosized (5-10 nm) particles using picosecond (ps) laser (wavelength = 532 nm) pulses. The coarse Cu2O particles are first synthesized by reducing copper chloride with the aid of honey. These particles are then dispersed in liquid media (double distilled water or ethanol) and exposed to ps laser pulses to obtain well-dispersed nanosized Cu2O particles. By using this method of fragmentation, morphology of the particles can be altered while retaining their crystal structure. The innate nature of this method allows continuous production of nanoparticles from coarser particles.

  20. High-order harmonic generation of picosecond radiation of moderate intensity in laser plasma

    SciTech Connect

    Boltaev, G S; Ganeev, Rashid A; Kulagin, I A; Satlikov, N Kh; Usmanov, T

    2012-10-31

    The results of investigations into the generation of highorder harmonics (up to the 21st order) of picosecond ({tau} = 38 ps) Nd : YAG laser radiation in the plasma produced by laser ablation of metal and carbon-containing material surfaces are presented. We demonstrate the feasibility of generating high-order harmonics in the vacuum ultraviolet spectral range (with radiation wavelengths shorter than 120 nm) in plasmas with an efficiency of {approx}0.7 Multiplication-Sign 10{sup -4}. In carbon-containing plasma, the 7th harmonic intensity exceeded that of the 5th one by a factor of seven. (nonlinear optical phenomena)

  1. High-order harmonic generation of picosecond radiation of moderate intensity in laser plasma

    NASA Astrophysics Data System (ADS)

    Boltaev, G. S.; Ganeev, Rashid A.; Kulagin, I. A.; Satlikov, N. Kh; Usmanov, T.

    2012-10-01

    The results of investigations into the generation of highorder harmonics (up to the 21st order) of picosecond (τ = 38 ps) Nd : YAG laser radiation in the plasma produced by laser ablation of metal and carbon-containing material surfaces are presented. We demonstrate the feasibility of generating high-order harmonics in the vacuum ultraviolet spectral range (with radiation wavelengths shorter than 120 nm) in plasmas with an efficiency of ~0.7 × 10-4. In carbon-containing plasma, the 7th harmonic intensity exceeded that of the 5th one by a factor of seven.

  2. Spatiospectral and picosecond spatiotemporal properties of a broad area operating channeled-substrate-planar laser array

    NASA Technical Reports Server (NTRS)

    Yu, NU; Defreez, Richard K.; Bossert, David J.; Wilson, Geoffrey A.; Elliott, Richard A.

    1991-01-01

    Spatiospectral and spatiotemporal properties of an eight-element channeled-substrate-planar laser array are investigated in both CW and pulsed operating conditions. The closely spaced CSP array with strong optical coupling between array elements is characterized by a broad area laserlike operation determined by its spatial mode spectra. The spatiotemporal evolution of the near and far field exhibits complex dynamic behavior in the picosecond to nanosecond domain. Operating parameters for the laser device have been experimentally determined. These results provide important information for the evaluation of the dynamic behavior of coherent semiconductor laser arrays.

  3. Synchronously pumped picosecond all-fibre Raman laser based on phosphorus-doped silica fibre.

    PubMed

    Kobtsev, Sergey; Kukarin, Sergey; Kokhanovskiy, Alexey

    2015-07-13

    Reported for the first time is picosecond-range pulse generation in an all-fibre Raman laser based on P₂O₅-doped silica fibre. Employment of phosphor-silicate fibre made possible single-cascade spectral transformation of pumping pulses at 1084 nm into 270-ps long Raman laser pulses at 1270 nm. The highest observed fraction of the Stokes component radiation at 1270 nm in the total output of the Raman laser amounted to 30%. The identified optimal duration of the input pulses at which the amount of Stokes component radiation in a ~16-m long phosphorus-based Raman fibre converter reaches its maximum was 140-180 ps.

  4. Picosecond and nanosecond pulse delivery through a hollow-core Negative Curvature Fiber for micro-machining applications.

    PubMed

    Jaworski, Piotr; Yu, Fei; Maier, Robert R J; Wadsworth, William J; Knight, Jonathan C; Shephard, Jonathan D; Hand, Duncan P

    2013-09-23

    We present high average power picosecond and nanosecond pulse delivery at 1030 nm and 1064 nm wavelengths respectively through a novel hollow-core Negative Curvature Fiber (NCF) for high-precision micro-machining applications. Picosecond pulses with an average power above 36 W and energies of 92 µJ, corresponding to a peak power density of 1.5 TWcm⁻² have been transmitted through the fiber without introducing any damage to the input and output fiber end-faces. High-energy nanosecond pulses (>1 mJ), which are ideal for micro-machining have been successfully delivered through the NCF with a coupling efficiency of 92%. Picosecond and nanosecond pulse delivery have been demonstrated in fiber-based laser micro-machining of fused silica, aluminum and titanium.

  5. Picosecond dynamics of photochemical systems. Final report, 1/1/79-6/30/80. [(Ketone) fluorenone; 1,4-diazobicyclooctane (amine)

    SciTech Connect

    Peters, K.S.

    1980-11-17

    The mechanism of the photoreduction of aromatic ketones by amines has been investigated using picosecond absorption spectroscopy. The experiments reveal that the process involves complete electron transfer occurring within a half-life of 20 picoseconds for benzophenone/Dabco and fluorenone/Dabco.

  6. Design of a 50 TW/20 J chirped-Pulse Amplification Laser for High-Energy-Density Plasma Physics Experiments at the Nevada Terawatt Facility of the University of Nevada

    SciTech Connect

    Erlandson, A C; Astanovitskiy, A; Batie, S; Bauer, B; Bayramian, A; Caird, J A; Cowan, T; Ebbers, C; Fuchs, J; Faretto, H; Glassman, J; Ivanov, V; LeGalloudec, B; LeGalloudec, N; Letzring, S; Payne, S; Stuart, B

    2003-09-07

    We have developed a conceptual design for a 50 TW/20 J short-pulse laser for performing high-energy-density plasma physics experiments at the Nevada Terawatt Facility of the University of Nevada, Reno. The purpose of the laser is to develop proton and x-ray radiography techniques, to use these techniques to study z-pinch plasmas, and to study deposition of intense laser energy into both magnetized and unmagnetized plasmas. Our design uses a commercial diode-pumped Nd:glass oscillator to generate 3-nJ. 200-fs mode-locked pulses at 1059 m. An all-reflective grating stretcher increases pulse duration to 1.1 ns. A two-stage chirped-pulse optical parametric amplifier (OPCPA) using BBO crystals boosts pulse energy to 12 mJ. A chain using mixed silicate-phosphate Nd:glass increases pulse energy to 85 J while narrowing bandwidth to 7.4 nm (FWHM). About 50 J is split off to the laser target chamber to generate plasma while the remaining energy is directed to a roof-mirror pulse compressor, where two 21 cm x 42 cm gold gratings recompress pulses to {approx}350 fs. A 30-cm-focal-length off-axis parabolic reflector (OAP) focuses {approx}20 J onto target, producing an irradiance of 10{sup 19} W/cm{sup 2} in a 10-{micro}m-diameter spot. This paper describes planned plasma experiments, system performance requirements, the laser design, and the target area design.

  7. High-visibility two-photon interference at a telecom wavelength using picosecond-regime separated sources

    SciTech Connect

    Aboussouan, Pierre; Alibart, Olivier; Ostrowsky, Daniel B.; Baldi, Pascal; Tanzilli, Sebastien

    2010-02-15

    We report on a two-photon interference experiment in a quantum relay configuration using two picosecond regime periodically poled lithium niobate (PPLN) waveguide based sources emitting paired photons at 1550 nm. The results show that the picosecond regime associated with a guided-wave scheme should have important repercussions for quantum relay implementations in real conditions, essential for improving both the working distance and the efficiency of quantum cryptography and networking systems. In contrast to already reported regimes, namely, femtosecond and CW, it allows achieving a 99% net visibility two-photon interference while maintaining a high effective photon pair rate using only standard telecom components and detectors.

  8. Multichannel, time-resolved picosecond laser ultrasound imaging and spectroscopy with custom complementary metal-oxide-semiconductor detector

    SciTech Connect

    Smith, Richard J.; Light, Roger A.; Johnston, Nicholas S.; Pitter, Mark C.; Somekh, Mike G.; Sharples, Steve D.

    2010-02-15

    This paper presents a multichannel, time-resolved picosecond laser ultrasound system that uses a custom complementary metal-oxide-semiconductor linear array detector. This novel sensor allows parallel phase-sensitive detection of very low contrast modulated signals with performance in each channel comparable to that of a discrete photodiode and a lock-in amplifier. Application of the instrument is demonstrated by parallelizing spatial measurements to produce two-dimensional thickness maps on a layered sample, and spectroscopic parallelization is demonstrated by presenting the measured Brillouin oscillations from a gallium arsenide wafer. This paper demonstrates the significant advantages of our approach to pump probe systems, especially picosecond ultrasonics.

  9. Graded Al sub x Ga sub 1-x as photoconductive devices for high efficiency picosecond optoelectronic switching

    SciTech Connect

    Morse, J.D.; Mariella, R.P. ); Dutton, R.W. . Center for Integrated Systems)

    1990-10-01

    Picosecond photoconductivity has been achieved for a variety of semiconductor materials by techniques which have now become almost standard. Enhanced scattering by the excessive amount of deep level defects which provide for picosecond recombination lifetimes significantly reduce the mobility, degrading the responsivity of the photoconductor. This paper will present a concept where improved responsivity is achievable by utilizing a graded bandgap Al{sub x}Ga{sub 1-x}As active detecting layer grown on a high defect density GaAs layer by molecular beam epitaxy (MBE). 7 refs., 6 figs.

  10. Fast spectral coherent anti-Stokes Raman scattering microscopy with high-speed tunable picosecond laser.

    PubMed

    Cahyadi, Harsono; Iwatsuka, Junichi; Minamikawa, Takeo; Niioka, Hirohiko; Araki, Tsutomu; Hashimoto, Mamoru

    2013-09-01

    We develop a coherent anti-Stokes Raman scattering (CARS) microscopy system equipped with a tunable picosecond laser for high-speed wavelength scanning. An acousto-optic tunable filter (AOTF) is integrated in the laser cavity to enable wavelength scanning by varying the radio frequency waves applied to the AOTF crystal. An end mirror attached on a piezoelectric actuator and a pair of parallel plates driven by galvanometer motors are also introduced into the cavity to compensate for changes in the cavity length during wavelength scanning to allow synchronization with another picosecond laser. We demonstrate fast spectral imaging of 3T3-L1 adipocytes every 5  cm-1 in the Raman spectral region around 2850  cm-1 with an image acquisition time of 120 ms. We also demonstrate fast switching of Raman shifts between 2100 and 2850  cm-1, corresponding to CD2 symmetric stretching and CH2 symmetric stretching vibrations, respectively. The fast-switching CARS images reveal different locations of recrystallized deuterated and nondeuterated stearic acid.

  11. Iron plasma generation using a Nd:YAG laser pulse of several hundred picoseconds.

    PubMed

    Tamura, Jun; Kumaki, Masafumi; Kondo, Kotaro; Kanesue, Takeshi; Okamura, Masahiro

    2016-02-01

    We investigated the high intensity plasma generated by using a Nd:YAG laser to apply a laser-produced plasma to the direct plasma injection scheme. The capability of the source to generate high charge state ions strongly depends on the power density of the laser irradiation. Therefore, we focused on using a higher power laser with several hundred picoseconds of pulse width. The iron target was irradiated with the pulsed laser, and the ion current of the laser-produced iron plasma was measured using a Faraday cup and the charge state distribution was investigated using an electrostatic ion analyzer. We found that higher charge state iron ions (up to Fe(21+)) were obtained using a laser pulse of several hundred picoseconds in comparison to those obtained using a laser pulse of several nanoseconds (up to Fe(19+)). We also found that when the laser irradiation area was relatively large, the laser power was absorbed mainly by the contamination on the target surface. PMID:26931980

  12. Diffraction of picosecond bulk longitudinal and shear waves in micron thick films

    NASA Astrophysics Data System (ADS)

    Audoin, B.; Perton, M.; Chigarev, N.; Rossignol, C.

    2008-01-01

    Investigation of thin metallic film properties by means of picosecond ultrasonics [C. Thomsen et al., Phys. Rev. Lett. 53, 989 (1984)] has been under the scope of several studies. Generation of longitudinal and shear waves [T. Pézeril et al., Phys. Rev. B 73, 132301 (2006); O. Matsuda et al., Phys. Rev. Lett. 93, 095501 (2004)] with a wave vector normal to the film free surface has been demonstrated. Such measurements cannot provide complete information about properties of anisotropic films. Extreme focusing of a laser pump beam (≈0.5 μm) on the sample surface has recently allowed us to provide evidence of picosecond acoustic diffraction in thin metallic films (≈1 μm) [C. Rossignol et al., Phys. Rev. Lett. 94, 166106 (2005)]. The resulting longitudinal and shear wavefronts propagate at group velocity through the bulk of the film. To interpret the received signals, source directivity diagrams are calculated taking into account material anisotropy, optical penetration, and laser beam width on the sample surface. It is shown that acoustic diffraction increases with optical penetration, so competing with the increasing of directivity caused by beam width. Reflection with mode conversion at the film-substrate interface is discussed.

  13. Electric Field Measurements in Non-Equilibrium Electric Discharge Plasmas Using Picosecond Four-Wave Mixing

    NASA Astrophysics Data System (ADS)

    Goldberg, Benjamin M.

    This dissertation presents the results of development of a picosecond four wave mixing technique and its use for electric field measurements in nanosecond pulse discharges. This technique is similar to coherent anti-Stokes Raman spectroscopy and is well suited for electric field measurements in high pressure plasmas with high spatial and temporal resolution. The results show that the signal intensity scales proportionally to the square of the electric field, the signal is emitted as a coherent beam, and is polarized parallel to the electric field vector, making possible electric field vector component measurements. The signal is generated when a collinear pair of pump and Stokes beams, which are generated in a stimulated Raman shifting cell (SRS), generate coherent excitation of molecules into a higher energy level, hydrogen for the present work. The coherent excitation mixes with a dipole moment induced by an external electric field. The mixing of these three "waves'" allows the molecules to radiate at their Raman frequency, producing a fourth, signal, wave which is proportional to the square of the electric field. The time resolution of this technique is limited by the coherence decay time of the molecules, which is a few hundred picoseconds.

  14. Machining parameter optimization of C/SiC composites using high power picosecond laser

    NASA Astrophysics Data System (ADS)

    Zhang, Ruoheng; Li, Weinan; Liu, Yongsheng; Wang, Chunhui; Wang, Jing; Yang, Xiaojun; Cheng, Laifei

    2015-03-01

    Picosecond laser is an important machining technology for high hardness materials. In this paper, high power picosecond laser was utilized to drill micro-holes in C/SiC composites, and the effects of different processing parameters including the helical line width and spacing, machining time and scanning speed were discussed. To characterize the qualities of machined holes, scanning electron microscope (SEM) was used to analyze the surface morphology, energy dispersive spectroscopy (EDS) and X-ray photoelectric spectroscopy (XPS) were employed to describe the element composition change between the untreated and laser-treated area. The experimental results indicated that all parameters mentioned above had remarkable effects on the qualities of micro-holes such as shape and depth. Additionally, the debris consisted of C, Si and O was observed on the machined surface. The Sisbnd C bonds of the SiC matrix transformed into Sisbnd O bonds after machined. Furthermore, the physical process responsible for the mechanism of debris formation was discussed as well.

  15. Time-resolved fluorescence polarization spectroscopy of visible and near infrared dyes in picosecond dynamics

    NASA Astrophysics Data System (ADS)

    Pu, Yang; Alfano, Robert R.

    2015-03-01

    Near-infrared (NIR) dyes absorb and emit light within the range from 700 to 900 nm have several benefits in biological studies for one- and/or two-photon excitation for deeper penetration of tissues. These molecules undergo vibrational and rotational motion in the relaxation of the excited electronic states, Due to the less than ideal anisotropy behavior of NIR dyes stemming from the fluorophores elongated structures and short fluorescence lifetime in picosecond range, no significant efforts have been made to recognize the theory of these dyes in time-resolved polarization dynamics. In this study, the depolarization of the fluorescence due to emission from rotational deactivation in solution will be measured with the excitation of a linearly polarized femtosecond laser pulse and a streak camera. The theory, experiment and application of the ultrafast fluorescence polarization dynamics and anisotropy are illustrated with examples of two of the most important medical based dyes. One is NIR dye, namely Indocyanine Green (ICG) and is compared with Fluorescein which is in visible range with much longer lifetime. A set of first-order linear differential equations was developed to model fluorescence polarization dynamics of NIR dye in picosecond range. Using this model, the important parameters of ultrafast polarization spectroscopy were identified: risetime, initial time, fluorescence lifetime, and rotation times.

  16. Production of picosecond, kilojoule, petawatt laser pulses via Raman amplification of nanosecond pulses

    NASA Astrophysics Data System (ADS)

    Trines, R.; Bingham, R.; Norreys, P.; Fiúza, F.; Fonseca, R. A.; Silva, L. O.; Cairns, R. A.

    2011-10-01

    The demonstration of fast-ignition (FI) inertial confinement fusion (ICF) requires the delivery of 40 kJ - 100 kJ of laser energy to the hot spot within 16 ps. In addition, third harmonic conversion to 351 nm is needed to optimize Iλ2 to obtain the correct hot electron energy. High-energy picosecond petawatt beams at 351 nm are difficult to generate using conventional solid-state laser systems. Previous studies of Raman amplification concentrated on maximizing the intensity and power of femtosecond pulses [Trines et al., Nature Physics (2010)]. Here we present particle-in-cell simulations and analytic theory that confirm that Raman amplification of high-energy nanosecond pulses in plasma can generate petawatt peak power pulses of picosecond duration with high efficiency (up to 60%), even at 351 nm wavelength. This scheme provides a potential new route for the realization of fast ignition ICF in the laboratory, as well as access to wide range of other high energy density physics research applications. This work was supported by STFC's CLF and CfFP, by EPSRC through grant EP/G04239X/1 and by FCT (Portugal) through grants PTDC/FIS/66823/2006 and SFRH/BD/38952/2007.

  17. A kilowatt average power laser for sub-picosecond materials processing

    SciTech Connect

    Stephen V. Benson; George R. Neil; C. Bohn; , G. Biallas; D. Douglas; F. Dylla; J. Fugitt; K. Jordan; G. Krafft; , L. Merminga; , J. Preble; , Michelle D. Shinn; T. Siggins; R. Walker; B. Yunn

    1999-11-01

    The performance of laser pulses in the sub-picosecond range for materials processing is substantially enhanced over similar fluences delivered in longer pulses. Recent advances in the development of solid state lasers have progressed significantly toward the higher average powers potentially useful for many applications. Nonetheless, prospects remain distant for multi-kilowatt sub-picosecond solid state systems such as would be required for industrial scale surface processing of metals and polymers. The authors present operational results from the world's first kilowatt scale ultra-fast materials processing laser. A Free Electron Laser (FEL) called the IR Demo is operational as a User Facility at Thomas Jefferson National Accelerator Facility in Newport News, Virginia, USA. In its initial operation at high average power it is capable of wavelengths in the 2 to 6 micron range and can produce {approximately}0.7 ps pulses in a continuous train at {approximately}75 MHz. This pulse length has been shown to be nearly optimal for deposition of energy in materials at the surface. Upgrades in the near future will extend operation beyond 10 kW CW average power in the near IR and kilowatt levels of power at wavelengths from 0.3 to 60 microns. This paper will cover the design and performance of this groundbreaking laser and operational aspects of the User Facility.

  18. Micro-processing of Hybrid Field-Effect Transistor Arrays using Picosecond Lasers

    NASA Astrophysics Data System (ADS)

    Ireland, Robert; Liu, Yu; Spalenka, Josef; Jaiswal, Supriya; Oishi, Shingo; Fukumitsu, Kenshi; Ryosuke, Mochizuki; Gopalan, Padma; Evans, Paul; Katz, Howard

    2014-03-01

    We use a solid-state picosecond laser to pattern thin-film semiconductors that completely cover a substrate and utilize an array of top-contact electrodes, particularly for materials with high chemical sensitivity or resistance. Picosecond laser processing is fully data-driven, both thermally and mechanically non-invasive, and exploits highly localized non-linear optical effects. We investigate FETs comprised of p-channel tellurium and organic semiconductor molecules sequentially vapor-deposited onto Si/SiO2 substrates. Secondly, zinc oxide and zinc-tin oxide are used for high mobility n-channel FETs, cast onto Si/SiO2 by sol-gel method. Finally, zinc oxide FETs are prepared as photomodulatable devices using rhenium bipyridine as a light-sensitive electron-donating molecule. The laser effectively isolates FETs while charge carrier mobility is maintained, but leakage currents through the FET dielectric are drastically reduced, and other functions are enhanced. For instance, the ratio of measured gate current to photocurrent for photomodulatable FETs drops from a factor of five to zero after laser isolation, in both forward and reverse bias. We also observe a threshold voltage shift in organic semiconductors after laser isolation, possibly due to local charging effects.

  19. Bistability of self-modulation of the GaAs intrinsic stimulated picosecond radiation spectrum

    SciTech Connect

    Ageeva, N. N.; Bronevoi, I. L. Zabegaev, D. N.; Krivonosov, A. N.

    2013-08-15

    The bistability of self-modulation of the spectrum of the stimulated picosecond radiation that appears during picosecond optical pumping of GaAs is detected. The radiation is measured before it reaches the end faces of a sample. One set of equidistant modes occurs in the radiation spectrum at the radiation pulse front. A set of modes located at the center between the initial modes replaces the first set in the descending radiation branch. The intermode interval inside each set coincides with the calculated interval between the eigenmodes of the GaAs layer, which is an active cavity. The radiation rise time turns out to be an oscillating function of the photon energy. The spectrum evolution is self-consistent so that the time-integrated spectrum and the spectrum-integrated radiation pulse envelope have a smooth (without local singularities) shape. The revealed bistability explains the physical nature of the two radiation-induced states of population depletion between which subterahertz self-oscillations in the radiation field were detected earlier. The radiation spectrum self-modulation is assumed to be a variant of stimulated Raman scattering.

  20. Observation of picosecond superfluorescent pulses in rubidium atomic vapor pumped by 100-fs laser pulses

    SciTech Connect

    Ariunbold, Gombojav O.; Kash, Michael M.; Sautenkov, Vladimir A.; Li, Hebin; Welch, George R.; Rostovtsev, Yuri V.; Scully, Marlan O.

    2010-10-15

    We study the superfluorescence (SF) from a gas of rubidium atoms. The atoms of a dense vapor are excited to the 5D state from the 5S state by a two-photon process driven by 100-fs laser pulses. The atoms decay to the 6P state and then to the 5S state. The SF emission at 420 nm on the 6P-5S transition is recorded by a streak camera with picosecond time resolution. The time duration of the generated SF is tens of picoseconds, which is much shorter than the time scale of the usual relaxation processes, including spontaneous emission and atomic coherence dephasing. The dependence of the time delay between the reference input pulse and SF is measured as a function of laser power. The experimental data are described quantitatively by a simulation based on the semiclassical atom-field interaction theory. The observed change in scaling laws for the peak intensity and delay time can be elucidated by an SF theory in which the sample length is larger than the cooperation length.

  1. Pulsed Picosecond and Nanosecond Discharge Development in Liquids with Various Dielectric Permittivity Constants

    NASA Astrophysics Data System (ADS)

    Starikovskiy, Andrey; Shneider, Michael

    2015-09-01

    The dynamics of pulsed picosecond and nanosecond discharge development in liquid water, ethanol and hexane were investigated experimentally. Three possible mechanisms for the propagation of discharge in liquids play a different role depending on the pulse duration. The first case takes place when a ``long'' (microsecond) electric pulse applied in a non-conducting fluid: as a result of electrostatic repulsion, the formation of low density channels occurs. Consequently, the discharge propagates through the low-density regions. In the second case, under an ``intermediate'' (nanosecond) electric pulse conditions, the electrostatic forces support the expansion of nanoscale voids behind the front of the ionization wave; in the wave front the extreme electric field provides a strong negative pressure in the dielectric fluid due to the presence of electrostriction forces, forming the initial micro-voids in the continuous medium. Finally, in the third case, when a ``short'' (picosecond) electric pulse is utilized, the regions of reduced density cannot form because of the extremely short duration of the applied electric pulse. Ionization in the liquid phase occurs as a result of direct electron impact without undergoing a phase transition, occurring due to the acceleration of electrons by an external electric field comparable to the intra-molecular fields. The discharge propagates with a velocity comparable to the local speed of light.

  2. Iron plasma generation using a Nd:YAG laser pulse of several hundred picoseconds

    NASA Astrophysics Data System (ADS)

    Tamura, Jun; Kumaki, Masafumi; Kondo, Kotaro; Kanesue, Takeshi; Okamura, Masahiro

    2016-02-01

    We investigated the high intensity plasma generated by using a Nd:YAG laser to apply a laser-produced plasma to the direct plasma injection scheme. The capability of the source to generate high charge state ions strongly depends on the power density of the laser irradiation. Therefore, we focused on using a higher power laser with several hundred picoseconds of pulse width. The iron target was irradiated with the pulsed laser, and the ion current of the laser-produced iron plasma was measured using a Faraday cup and the charge state distribution was investigated using an electrostatic ion analyzer. We found that higher charge state iron ions (up to Fe21+) were obtained using a laser pulse of several hundred picoseconds in comparison to those obtained using a laser pulse of several nanoseconds (up to Fe19+). We also found that when the laser irradiation area was relatively large, the laser power was absorbed mainly by the contamination on the target surface.

  3. Nonlinear processes upon two-photon interband picosecond excitation of PbWO4 crystal

    NASA Astrophysics Data System (ADS)

    Lukanin, V. I.; Karasik, A. Ya

    2016-09-01

    A new experimental method is proposed to study the dynamics of nonlinear processes occurring upon two-photon interband picosecond excitation of a lead tungstate crystal and upon its excitation by cw probe radiation in a temporal range from several nanoseconds to several seconds. The method is applied to the case of crystal excitation by a sequence of 25 high-power picosecond pulses with a wavelength of 523.5 nm and 633-nm cw probe radiation. Measuring the probe beam transmittance during crystal excitation, one can investigate the influence of two-photon interband absorption and the thermal nonlinearity of the refractive index on the dynamics of nonlinear processes in a wide range of times (from several nanoseconds to several seconds). The time resolution of the measuring system makes it possible to distinguish fast and slow nonlinear processes of electronic or thermal nature, including the generation of a thermal lens and thermal diffusion. An alternative method is proposed to study the dynamics of induced absorption transformation and, therefore, the dynamics of the development of nonlinear rocesses upon degenerate two-photon excitation of the crystal in the absence of external probe radiation.

  4. Picosecond pulsed infrared laser tuned to amide I band dissociates polyglutamine fibrils in cells.

    PubMed

    Kawasaki, Takayasu; Ohori, Gaku; Chiba, Tomoyuki; Tsukiyama, Koichi; Nakamura, Kazuhiro

    2016-09-01

    Amyloid fibrils are causal substances for serious neurodegenerative disorders and amyloidosis. Among them, polyglutamine fibrils seen in multiple polyglutamine diseases are toxic to neurons. Although much efforts have been made to explore the treatments of polyglutamine diseases, there are no effective drugs to block progression of the diseases. We recently found that a free electron laser (FEL), which has an oscillation wavelength at the amide I band (C = O stretch vibration mode) and picosecond pulse width, was effective for conversion of the fibril forms of insulin, lysozyme, and calcitonin peptide into their monomer forms. However, it is not known if that is also the case in polyglutamine fibrils in cells. We found in this study that the fibril-specific β-sheet conformation of polyglutamine peptide was converted into nonfibril form, as evidenced by the infrared microscopy and scanning-electron microscopy after the irradiation tuned to 6.08 μm. Furthermore, irradiation at this wavelength also changed polyglutamine fibrils to their nonfibril state in cultured cells, as shown by infrared mapping image of protein secondary structure. Notably, infrared thermography analysis showed that temperature increase of the cells during the irradiation was within 1 K, excluding thermal damage of cells. These results indicate that the picosecond pulsed infrared laser can safely reduce amyloid fibril structure to the nonfibril form even in cells. PMID:27342599

  5. Selective ablation of thin films in latest generation CIGS solar cells with picosecond pulses

    NASA Astrophysics Data System (ADS)

    Burn, Andreas; Romano, Valerio; Muralt, Martin; Witte, Reiner; Frei, Bruno; Bücheler, Stephan; Nishiwaki, Shiro

    2012-03-01

    Recent developments in Cu(In,Ga)Se2 (CIGS) thin film photovoltaics enabled the manufacturers to produce highly efficient solar modules. Nevertheless, the production process still lacks a competitive process for module patterning. Today, the industry standard for the serial interconnection of cells is still based on mechanical scribing for the P2 and P3 process. A reduction of the non-productive "dead zone" between the P1 and P3 scribes is crucial for further increasing module efficiency. Compact and affordable picosecond pulsed laser sources are promising tools towards all-laser scribing of CIGS solar modules. We conducted an extensive parameter study comprising picosecond laser sources from 355 to 1064 nm wavelength and 10 to 50 ps pulse duration. Scribing results were analyzed by laser scanning microscope, scanning electron microscope and energy dispersive X-ray spectroscopy. We developed stable and reliable processes for the P1, P2 and P3 scribe. The best parameter sets were then used for the production of functional mini-modules. For comparison, the same was done for a selection of nanosecond pulsed lasers. Standardized analysis of the modules has shown superior electrical performance of the interconnections and confirmed the feasibility of a dead zone width of less than 200 ìm on an entire mini module.

  6. Selective Ablation of Thin Films with Picosecond-Pulsed Lasers for Solar Cells

    NASA Astrophysics Data System (ADS)

    Račiukaitis, G.; Gečys, P.; Gedvilas, M.; Regelskis, K.; Voisiat, B.

    2010-10-01

    Functional thin-films are of high importance in modern electronics for flat panel displays, photovoltaics, flexible and organic electronics. Versatile technologies are required for patterning thin-film materials on rigid and flexible substrates. The large-area applications of thin films such as photovoltaics need high speed and simple to use techniques. Ultra-short laser processing with its flexibility is one of the ways to achieve high quality material etching but optimization of the processes is required to meet specific needs of the applications. Lasers with picosecond pulse duration were applied in selective ablation of conducting, semi-conducting and isolating films in the complex multilayered thin-film solar cells based on amorphous Si and CuInxGa(1-x)Se2 (CIGS) deposited on glass and polymer substrates. Modeling of energy transition between the layers and temperature evolution was performed to understand the processes. Selection of the right laser wavelength was important to keep the energy coupling in a well defined volume at the interlayer interface. Ultra-short pulses ensured high energy input rate into absorbing material permitting peeling of the layers with no influence on the remaining material. Use of high repetition rate lasers with picosecond pulse duration offers new possibilities for high quality and efficiency patterning of advanced materials for thin-film electronics.

  7. Fast spectral coherent anti-Stokes Raman scattering microscopy with high-speed tunable picosecond laser.

    PubMed

    Cahyadi, Harsono; Iwatsuka, Junichi; Minamikawa, Takeo; Niioka, Hirohiko; Araki, Tsutomu; Hashimoto, Mamoru

    2013-09-01

    We develop a coherent anti-Stokes Raman scattering (CARS) microscopy system equipped with a tunable picosecond laser for high-speed wavelength scanning. An acousto-optic tunable filter (AOTF) is integrated in the laser cavity to enable wavelength scanning by varying the radio frequency waves applied to the AOTF crystal. An end mirror attached on a piezoelectric actuator and a pair of parallel plates driven by galvanometer motors are also introduced into the cavity to compensate for changes in the cavity length during wavelength scanning to allow synchronization with another picosecond laser. We demonstrate fast spectral imaging of 3T3-L1 adipocytes every 5  cm-1 in the Raman spectral region around 2850  cm-1 with an image acquisition time of 120 ms. We also demonstrate fast switching of Raman shifts between 2100 and 2850  cm-1, corresponding to CD2 symmetric stretching and CH2 symmetric stretching vibrations, respectively. The fast-switching CARS images reveal different locations of recrystallized deuterated and nondeuterated stearic acid. PMID:24013358

  8. Picosecond spin relaxation in low-temperature-grown GaAs

    SciTech Connect

    Uemura, M.; Honda, K.; Yasue, Y.; Tackeuchi, A.; Lu, S. L.; Dai, P.

    2014-03-24

    The spin relaxation process of low-temperature-grown GaAs is investigated by spin-dependent pump and probe reflectance measurements with a sub-picosecond time resolution. Two very short carrier lifetimes of 2.0 ps and 28 ps, which can be attributed to nonradiative recombinations related to defects, are observed at 10 K. The observed spin polarization shows double exponential decay with spin relaxation times of 46.2 ps (8.0 ps) and 509 ps (60 ps) at 10 K (200 K). The observed picosecond spin relaxation, which is considerably shorter than that of conventional GaAs, indicates the strong relevance of the Elliott-Yafet process as the spin relaxation mechanism. For the first (second) spin relaxation component, the temperature and carrier density dependences of the spin relaxation time indicate that the Bir-Aronov-Pikus process is also effective at temperatures between 10 K and 77 K, and that the D'yakonov-Perel’ process is effective between 125 K (77 K) and 200 K.

  9. Picosecond pulsed infrared laser tuned to amide I band dissociates polyglutamine fibrils in cells.

    PubMed

    Kawasaki, Takayasu; Ohori, Gaku; Chiba, Tomoyuki; Tsukiyama, Koichi; Nakamura, Kazuhiro

    2016-09-01

    Amyloid fibrils are causal substances for serious neurodegenerative disorders and amyloidosis. Among them, polyglutamine fibrils seen in multiple polyglutamine diseases are toxic to neurons. Although much efforts have been made to explore the treatments of polyglutamine diseases, there are no effective drugs to block progression of the diseases. We recently found that a free electron laser (FEL), which has an oscillation wavelength at the amide I band (C = O stretch vibration mode) and picosecond pulse width, was effective for conversion of the fibril forms of insulin, lysozyme, and calcitonin peptide into their monomer forms. However, it is not known if that is also the case in polyglutamine fibrils in cells. We found in this study that the fibril-specific β-sheet conformation of polyglutamine peptide was converted into nonfibril form, as evidenced by the infrared microscopy and scanning-electron microscopy after the irradiation tuned to 6.08 μm. Furthermore, irradiation at this wavelength also changed polyglutamine fibrils to their nonfibril state in cultured cells, as shown by infrared mapping image of protein secondary structure. Notably, infrared thermography analysis showed that temperature increase of the cells during the irradiation was within 1 K, excluding thermal damage of cells. These results indicate that the picosecond pulsed infrared laser can safely reduce amyloid fibril structure to the nonfibril form even in cells.

  10. Picosecond and nanosecond studies of the photoreduction of benzophenone by N,N-diethylaniline and triethylamine

    SciTech Connect

    Devadoss, C.; Fessenden, R.W. )

    1991-09-19

    The photoreduction of benzophenone by N,N-diethylaniline and triethylamine has been examined in a number of solvents by both nano- and picosecond laser photolysis. With diethylaniline, electron transfer is the primary step and the spectrum of the ion pair has been detected even in nonpolar solvents such as benzene and cyclohexane. Rapid proton transfer then takes place to form a high yield of the ketyl radical. The lifetime of the ion pair in benzene is about 900 ps. In acetonitrile, the ion pair dissociated into individual ions which then decay by back electron transfer and proton transfer. A spectral shift to the red occurs over 100 ps as the contact ion pair dissociated. In acidic alcohols such as methanol and trifluoroethanol, proton transfer from the alcohol occurs to produce the ketyl radical. In the case of triethylamine, no distinct absorption band for benzophenone anion was seen in picosecond experiments but difference spectra, which removed much of the spectrum of benzophenone triplet, clearly showed some contribution from the anion. For this compound, it is likely that electron transfer occurs first followed by very fast proton transfer.

  11. Nanoparticles based laser-induced surface structures formation on mesoporous silicon by picosecond laser beam interaction

    NASA Astrophysics Data System (ADS)

    Talbi, A.; Petit, A.; Melhem, A.; Stolz, A.; Boulmer-Leborgne, C.; Gautier, G.; Defforge, T.; Semmar, N.

    2016-06-01

    In this study, laser induced periodic surface structures were formed on mesoporous silicon by irradiation of Nd:YAG picosecond pulsed laser beam at 266 nm wavelength at 1 Hz repetition rate and with 42 ps pulse duration. The effects of laser processing parameters as laser beam fluence and laser pulse number on the formation of ripples were investigated. Scanning electron microscopy and atomic force microscopy were used to image the surface morphologies and the cross section of samples after laser irradiation. At relatively low fluence ∼20 mJ/cm2, ripples with period close to the laser beam wavelength (266 nm) and with an always controlled orientation (perpendicular to the polarization of ps laser beam) appeared after a large laser pulse number of 12,000. It has been found that an initial random distribution of SiOx nanoparticles is periodically structured with an increase of the laser pulse number. Finally, it is experimentally demonstrated that we formed a 100 nm liquid phase under the protusion zones including the pores in the picosecond regime.

  12. Picosecond acoustics at 30 GHz in the nucleus of an osteoblast cell

    NASA Astrophysics Data System (ADS)

    Audoin, B.; Ducousso, M.; Dehoux, T.; Chollet, C.; Zouani, O.; Chanseau, C.; Durrieu, M.-C.

    2011-03-01

    We use femtosecond laser pulses absorbed in a metallic transducer, namely the picosecond ultrasonics technique, for the remote optical generation and detection of GHz acoustic frequencies in single cells by pump-probe sampling. Samples are MC3T3 cells adhering on a TiAl4V alloy substrate. Both pump and probe beams are focused at the cell/transducer interface. The pump absorption yields a temperature rise in the absorbing substrate and a picosecond acoustic pulse is generated through the thermoelastic effect. The probe beam is partially reflected from the metallic interface and partially scattered by the acoustic wavefront propagating in the transparent cell. The change of reflectivity of the cell is measured as a function of the pump-probe time delay. Interferences arise from the two probe contributions causing the so-called Brillouin oscillations. Optical phase variations due to acoustic-induced changes in cell thickness are simultaneously measured. The result of a semi-analytical calculation is fitted to the experimental data. Acoustic frequencies are detected at 30 GHz in the nucleus of single osteoblast cells.

  13. A switchable femtosecond and picosecond soliton fiber laser mode-locked by carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Zhang, Chuang; Zhang, Chunmin

    2015-07-01

    We propose a switchable dual-scale nanotube-mode-locking fiber laser based on a fiber loop mirror and fiber Bragg grating. The loop mirror not only works as a broadband reflector, but also a birefringence-induced filter. By adjusting the polarization controller in the loop, the operation wavelength can be switched between 1530 and 1560 nm. The femtosecond soliton at 1560 nm has a bandwidth of 5.5 nm and pulse duration of 680 fs, while the picosecond soliton is centered at 1529.5 nm with the bandwidth of 0.11 nm and pulse duration of 23.3 ps. The dual-scale solitons display more than 30 times a difference of pulse width, as well as distinct spectral bandwidth, repetition rate, and pulse energy. Our study provides the flexibly switchable ultrashort pulse sources at femtosecond and picosecond scales, which are suitable for practical applications.

  14. Emergency Contraception

    MedlinePlus

    f AQ FREQUENTLY ASKED QUESTIONS FAQ114 CONTRACEPTION Emergency Contraception • What is emergency contraception (EC)? • How does EC work? • What are the different types of EC? • What is the most ...

  15. Generation of picosecond pulses in a dye laser excited by radiation from an argon laser with passively locked modes

    SciTech Connect

    Vinogradova, A.A.; Krindach, D.P.; Nazarov, B.I.; Tsapenko, A.M.

    1980-01-01

    Passive locking of argon laser modes was used in generation of tunable picosecond pulses in a synchronously excited dye laser. An experimental study was made of the characteristics of the dye laser radiation as a function of the argon laser characteristics.

  16. Peak power tunable mid-infrared oscillator pumped by a high power picosecond pulsed fiber amplifier with bunch output

    NASA Astrophysics Data System (ADS)

    Wei, Kaihua; Guo, Yan; Lai, Xiaomin; Fan, Shanhui

    2016-07-01

    A high power mid-infrared optical parametric oscillator (OPO) with picosecond pulse bunch output is experimentally demonstrated. The pump source was a high power master oscillation power amplifier (MOPA) picosecond pulsed fiber amplifier. The seed of the MOPA was a gain-switched distributed Bragg reflector (DBR) laser diode (LD) with picosecond pulse operation at a high repetition rate. The seed laser was amplified to 50 W by two-stage pre-amplifiers and a large mode area (LMA) Yb fiber based power-amplifier. A fiber-pigtailed acousto-optic modulator with the first order diffraction transmission was inserted into the second pre-amplifier to form a picosecond pulse bunch train and to change the peak power simultaneously. The power-amplified pulse bunches were focused to pump a wavelength-tunable OPO for emitting high power mid-infrared laser. By adjusting the OPO cavity length, the maximum average idler powers obtained at 3.1, 3.3 and 3.5 μm were 7, 6.6 and 6.4 W respectively.

  17. [Surfaces and thin films studied by picosecond ultrasonics]. Annual progress report, [December 1, 1993--November 30, 1994

    SciTech Connect

    Maris, H.J.

    1994-10-01

    We are using picosecond optics techniques to perform ultrasonic and thermal transport measurements on thin films and nanostructures. We are investigating the basic physics of sound and phonon propagation in solids, and also attempting to develop practical techniques for the ultrasonic evaluation of thin-film nanostructures.

  18. Childhood Emergencies

    MedlinePlus

    ... Fitness Tracker Save Your Life in the ER? Abdominal Pain Resources Home Safety Checklist ACEP Coloring Book Download the Coloring Book » Emergency Care For You American College of Emergency Phycisians Copyright © American College of Emergency Physicians 2016 Privacy Policy Terms of Use

  19. Emergent Expertise?

    ERIC Educational Resources Information Center

    McGivern, Patrick

    2014-01-01

    The concept of emergence appears in various places within the literature on expertise and expert practice. Here, I examine some of these applications of emergence in the light of two prominent accounts of emergence from the philosophy of science and philosophy of mind. I evaluate these accounts with respect to several specific contexts in which…

  20. generation of picosecond pulses in solid-state lasers using new active media

    SciTech Connect

    Lisitsyn, V.N.; Matrosov, V.N.; Pestryakov, E.V.; Trunov, V.I.

    1986-07-01

    Results are reported of investigations aimed at generating nanosecond radiation pulses in solid-state lasers using new active media having broad gain lines. Passive mode locking is accomplished for the first time in a BeLa:Nd/sup 3/ laser at a wavelength 1.354 microm, and in a YAG:Nd/sup 3/ laser on a 1.32-microm transition. The free lasing and mode-locking regimes were investigated in an alexandrite (BeA1/sub 2/O/sub 4/:Cr/sup 3/) laser in the 0.72-0.78-microm range and in a synchronously pumped laser on F/sub 2//sup -/ centers in LiF in the 1.12-1.24-microm region. The features of nonlinear perception of IR radiation by the eye, using a developed picosecond laser on F/sub 2//sup -/ centers, are investigated for the first time.

  1. NO binding kinetics in myoglobin investigated by picosecond Fe K-edge absorption spectroscopy

    PubMed Central

    Silatani, Mahsa; Lima, Frederico A.; Penfold, Thomas J.; Rittmann, Jochen; Reinhard, Marco E.; Rittmann-Frank, Hannelore M.; Borca, Camelia; Grolimund, Daniel; Milne, Christopher J.; Chergui, Majed

    2015-01-01

    Diatomic ligands in hemoproteins and the way they bind to the active center are central to the protein’s function. Using picosecond Fe K-edge X-ray absorption spectroscopy, we probe the NO-heme recombination kinetics with direct sensitivity to the Fe-NO binding after 532-nm photoexcitation of nitrosylmyoglobin (MbNO) in physiological solutions. The transients at 70 and 300 ps are identical, but they deviate from the difference between the static spectra of deoxymyoglobin and MbNO, showing the formation of an intermediate species. We propose the latter to be a six-coordinated domed species that is populated on a timescale of ∼200 ps by recombination with NO ligands. This work shows the feasibility of ultrafast pump–probe X-ray spectroscopic studies of proteins in physiological media, delivering insight into the electronic and geometric structure of the active center. PMID:26438842

  2. Controlling the Spins Angular Momentum in Ferromagnets with Sequences of Picosecond Acoustic Pulses

    PubMed Central

    Kim, Ji-Wan; Vomir, Mircea; Bigot, Jean-Yves

    2015-01-01

    Controlling the angular momentum of spins with very short external perturbations is a key issue in modern magnetism. For example it allows manipulating the magnetization for recording purposes or for inducing high frequency spin torque oscillations. Towards that purpose it is essential to modify and control the angular momentum of the magnetization which precesses around the resultant effective magnetic field. That can be achieved with very short external magnetic field pulses or using intrinsically coupled magnetic structures, resulting in a transfer of spin torque. Here we show that using picosecond acoustic pulses is a versatile and efficient way of controlling the spin angular momentum in ferromagnets. Two or three acoustic pulses, generated by femtosecond laser pulses, allow suppressing or enhancing the magnetic precession at any arbitrary time by precisely controlling the delays and amplitudes of the optical pulses. A formal analogy with a two dimensional pendulum allows us explaining the complex trajectory of the magnetic vector perturbed by the acoustic pulses. PMID:25687970

  3. Picosecond supercontinuum light source for stroboscopic white-light interferometry with freely adjustable pulse repetition rate.

    PubMed

    Novotny, Steffen; Durairaj, Vasuki; Shavrin, Igor; Lipiäinen, Lauri; Kokkonen, Kimmo; Kaivola, Matti; Ludvigsen, Hanne

    2014-06-01

    We present a picosecond supercontinuum light source designed for stroboscopic white-light interferometry. This source offers a potential for high-resolution characterization of vibrational fields in electromechanical components with frequencies up to the GHz range. The light source concept combines a gain-switched laser diode, the output of which is amplified in a two-stage fiber amplifier, with supercontinuum generation in a microstructured optical fiber. Implemented in our white-light interferometer setup, optical pulses with optimized spectral properties and below 310 ps duration are used for stroboscopic illumination at freely adjustable repetition rates. The performance of the source is demonstrated by characterizing the surface vibration field of a square-plate silicon MEMS resonator at 3.37 MHz. A minimum detectable vibration amplitude of less than 100 pm is reached.

  4. Measurements of Electron Transport in Foils Irradiated with a Picosecond Time Scale Laser Pulse

    SciTech Connect

    Brown, C. R. D.; Hoarty, D. J.; James, S. F.; Swatton, D.; Hughes, S. J.; Morton, J. W.; Guymer, T. M.; Hill, M. P.; Chapman, D. A.; Andrew, J. E.; Comley, A. J.; Shepherd, R.; Dunn, J.; Chen, H.; Schneider, M.; Brown, G.; Beiersdorfer, P.; Emig, J.

    2011-05-06

    The heating of solid foils by a picosecond time scale laser pulse has been studied by using x-ray emission spectroscopy. The target material was plastic foil with a buried layer of a spectroscopic tracer material. The laser pulse length was either 0.5 or 2 ps, which resulted in a laser irradiance that varied over the range 10{sup 16}-10{sup 19} W/cm{sup 2}. Time-resolved measurements of the buried layer emission spectra using an ultrafast x-ray streak camera were used to infer the density and temperature conditions as a function of laser parameters and depth of the buried layer. Comparison of the data to different models of electron transport showed that they are consistent with a model of electron transport that predicts the bulk of the target heating is due to return currents.

  5. Picosecond dynamics of energy transfer in porphyrin-sapphyrin noncovalent assemblies

    SciTech Connect

    Springs, S.L.; Gosztola, D.; Wasielewski, M.R.; Kral, V.; Andrievsky, A.; Sessler, J.L.

    1999-03-17

    The picosecond dynamics of noncovalent ensembles for energy transfer based on anion chelation are reported. The photoactive noncovalent complexes are assembled via salt-bridge formation between carboxyl-containing porphyrin photodonors and a monoprotonated pentapyrrolic sapphyrin acceptor. These complexes are formed with a K{sub a} of ca. 10{sup 3} M{sup {minus}1} upon mixing the receptor and substrate in their respective free-acid and free-base forms in CD{sub 2}Cl{sub 2} (as judged by {sup 1}H NMR spectroscopic means). Upon irradiation at 417 nm, singlet-singlet energy transfer from the porphyrin to the sapphyrin subunit takes place readily with energy transfer dynamics that are consistent with a Foerster-type mechanism. The title systems thus appear to be prototypic of a new kind of noncovalent energy transfer modeling that is predicated on the use of anion chelation.

  6. Picosecond and nanosecond laser annealing and simulation of amorphous silicon thin films for solar cell applications

    NASA Astrophysics Data System (ADS)

    Theodorakos, I.; Zergioti, I.; Vamvakas, V.; Tsoukalas, D.; Raptis, Y. S.

    2014-01-01

    In this work, a picosecond diode pumped solid state laser and a nanosecond Nd:YAG laser have been used for the annealing and the partial nano-crystallization of an amorphous silicon layer. These experiments were conducted as an alternative/complementary to plasma-enhanced chemical vapor deposition method for fabrication of micromorph tandem solar cell. The laser experimental work was combined with simulations of the annealing process, in terms of temperature distribution evolution, in order to predetermine the optimum annealing conditions. The annealed material was studied, as a function of several annealing parameters (wavelength, pulse duration, fluence), as far as it concerns its structural properties, by X-ray diffraction, SEM, and micro-Raman techniques.

  7. Picosecond ultrasonic study of surface acoustic waves on titanium nitride nanostructures

    SciTech Connect

    Bjornsson, M. M.; Connolly, A. B.; Mahat, S.; Rachmilowitz, B. E.; Daly, B. C.; Antonelli, G. A.; Myers, A.; Singh, K. J.; Yoo, H. J.; King, S. W.

    2015-03-07

    We have measured surface acoustic waves on nanostructured TiN wires overlaid on multiple thin films on a silicon substrate using the ultrafast pump-probe technique known as picosecond ultrasonics. We find a prominent oscillation in the range of 11–54 GHz for samples with varying pitch ranging from 420 nm down to 168 nm. We find that the observed oscillation increases monotonically in frequency with decrease in pitch, but that the increase is not linear. By comparing our data to two-dimensional mechanical simulations of the nanostructures, we find that the type of surface oscillation to which we are sensitive changes depending on the pitch of the sample. Surface waves on substrates that are loaded by thin films can take multiple forms, including Rayleigh-like waves, Sezawa waves, and radiative (leaky) surface waves. We describe evidence for detection of modes that display characteristics of these three surface wave types.

  8. Precise Control of the Number of Layers of Graphene by Picosecond Laser Thinning

    PubMed Central

    Lin, Zhe; Ye, Xiaohui; Han, Jinpeng; Chen, Qiao; Fan, Peixun; Zhang, Hongjun; Xie, Dan; Zhu, Hongwei; Zhong, Minlin

    2015-01-01

    The properties of graphene can vary as a function of the number of layers (NOL). Controlling the NOL in large area graphene is still challenging. In this work, we demonstrate a picosecond (ps) laser thinning removal of graphene layers from multi-layered graphene to obtain desired NOL when appropriate pulse threshold energy is adopted. The thinning process is conducted in atmosphere without any coating and it is applicable for graphene films on arbitrary substrates. This method provides many advantages such as one-step process, non-contact operation, substrate and environment-friendly, and patternable, which will enable its potential applications in the manufacturing of graphene-based electronic devices. PMID:26111758

  9. Patterned graphene ablation and two-photon functionalization by picosecond laser pulses in ambient conditions

    SciTech Connect

    Bobrinetskiy, I. I. Otero, N.; Romero, P. M.; Emelianov, A. V.

    2015-07-27

    Direct laser writing is a technology with excellent prospects for mask-less processing of carbon-based nanomaterials, because of the wide range of photoinduced reactions that can be performed on large surfaces with submicron resolution. In this paper, we demonstrate the use of picoseconds laser pulses for one-step ablation and functionalization of graphene. Varying the parameters of power, pulse frequency, and speed, we demonstrated the ablation down to 2 μm width and up to mm-long lines as well as functionalization with spatial resolution less than 1 μm with linear speeds in the range of 1 m/s. Raman and atomic-force microscopy studies were used to indicate the difference in modified graphene states and correlation to the changes in optical properties.

  10. Coherent Control of Optically Generated and Detected Picosecond Surface Acoustic Phonons

    SciTech Connect

    David H. Hurley

    2006-11-01

    Coherent control of elementary optical excitations is a key issue in ultrafast materials science. Manipulation of electronic and vibronic excitations in solids as well as chemical and biological systems on ultrafast time scales has attracted a great deal of attention recently. In semiconductors, coherent control of vibronic excitations has been demonstrated for bulk acoustic and optical phonons generated in superlattice structures. The bandwidth of these approaches is typically fully utilized by employing a 1-D geometry where the laser spot size is much larger than the superlattice repeat length. In this presentation we demonstrate coherent control of optically generated picosecond surface acoustic waves using sub-optical wavelength absorption gratings. The generation and detection characteristics of two material systems are investigated (aluminum absorption gratings on Si and GaAs substrates).

  11. Measurement of transient atomic displacements in thin films with picosecond and femtometer resolution

    PubMed Central

    Kozina, M.; Hu, T.; Wittenberg, J. S.; Szilagyi, E.; Trigo, M.; Miller, T. A.; Uher, C.; Damodaran, A.; Martin, L.; Mehta, A.; Corbett, J.; Safranek, J.; Reis, D. A.; Lindenberg, A. M.

    2014-01-01

    We report measurements of the transient structural response of weakly photo-excited thin films of BiFeO3, Pb(Zr,Ti)O3, and Bi and time-scales for interfacial thermal transport. Utilizing picosecond x-ray diffraction at a 1.28 MHz repetition rate with time resolution extending down to 15 ps, transient changes in the diffraction angle are recorded. These changes are associated with photo-induced lattice strains within nanolayer thin films, resolved at the part-per-million level, corresponding to a shift in the scattering angle three orders of magnitude smaller than the rocking curve width and changes in the interlayer lattice spacing of fractions of a femtometer. The combination of high brightness, repetition rate, and stability of the synchrotron, in conjunction with high time resolution, represents a novel means to probe atomic-scale, near-equilibrium dynamics. PMID:26798776

  12. Picosecond photolysis of azo compounds in liquid alkanes: germinate recombination kinetics for polyatomic free radical pairs

    NASA Astrophysics Data System (ADS)

    Scott, Thomas W.; Doubleday, Charles, Jr.

    1991-03-01

    Picosecond optical absorption transients for the photolysis products of azocumene and the cyclic azo compound 3,8-diphenyl-1,2-diaza-1-cyclooctene have been measured in a series of alkane solvents having different liquid viscosities. The transient intermediate produced from azocumene decays through a diffusion influenced process which is interpreted as secondary recombination of geminate free radical pairs. This assignment is based on the wavelength dependence of the transient absorption signal, the viscosity dependence of the decay kinetics and the complementary decay profiles seen for free and tethered radical pairs. The long time limit of the survival probability for geminate cumyl free radicals follows the reciprocal square root fo time decay predicted by the Smoluchowski diffusion equation.

  13. Coherent control of optically generated and detected picosecond surface acoustic phonons

    SciTech Connect

    David Hurley

    2007-07-01

    Coherent control of electronic and phononic excitations in solids, as well as chemical and biological systems on ultrafast time scales is of current research interest. In semiconductors, coherent control of phonons has been demonstrated for acoustic and optical phonons generated in superlattice structures. The bandwidth of these approaches is typically fully utilized by employing a 1-D geometry where the laser spot size is much larger than the superlattice repeat length. In this article we demonstrate coherent control of optically generated picosecond surface acoustic phonons using sub-optical wavelength absorption gratings. The generation and detection characteristics of two material systems are investigated (aluminum absorption gratings on Si and GaAs substrates). Constructive and complete destructive interference conditions are demonstrated using two pump pulses derived from a single Michelson interferometer.

  14. Picosecond laser structuration under high pressures: Observation of boron nitride nanorods

    NASA Astrophysics Data System (ADS)

    Museur, Luc; Petitet, Jean-Pierre; Michel, Jean-Pierre; Marine, Wladimir; Anglos, Demetrios; Fotakis, Costas; Kanaev, Andrei V.

    2008-11-01

    We report on picosecond UV-laser processing of hexagonal boron nitride (BN) at moderately high pressures above 500 bar. The main effect is specific to the ambient gas and laser pulse duration in the ablation regime: when samples are irradiated by 5 or 0.45 ps laser pulses in nitrogen gas environment, multiple nucleation of a new crystalline product-BN nanorods-takes place. This process is triggered on structural defects, which number density strongly decreases upon recrystallization. Nonlinear photon absorption by adsorbed nitrogen molecules is suggested to mediate the nucleation growth. High pressure is responsible for the confinement and strong backscattering of ablation products. A strong surface structuring also appears at longer 150 ps laser irradiation in similar experimental conditions. However, the transformed product in this case is amorphous strongly contaminated by boron suboxides BxOy.

  15. Laser Processing of Thin Glass Printed Circuit Boards with a Picosecond Laser at 515 nm Wavelength

    NASA Astrophysics Data System (ADS)

    Plat, K.; Witzendorff, P. v.; Suttmann, O.; Overmeyer, L.

    High temperature applications of printed circuit boards (PCB)require materials with specifically adapted properties. Hence, conventional electrically isolating glass fiber and epoxy-resin materials have to be replaced by thin borosilicate glass.Therefore, an industrially suitable process to remove the metal coatings from the brittle thin glass has to be developed. Laser processing has the advantage of individualization for the production of customer-specific PCBs. Thus, laser ablation of metal coatings for electrical isolation is investigated with different material composites based on thin glass.The study aims to identify a laser process for a picosecond laser source with 515 nm wavelength to perform the process without damaging the glass substrate with a high throughput.

  16. Controlling the spins angular momentum in ferromagnets with sequences of picosecond acoustic pulses.

    PubMed

    Kim, Ji-Wan; Vomir, Mircea; Bigot, Jean-Yves

    2015-02-17

    Controlling the angular momentum of spins with very short external perturbations is a key issue in modern magnetism. For example it allows manipulating the magnetization for recording purposes or for inducing high frequency spin torque oscillations. Towards that purpose it is essential to modify and control the angular momentum of the magnetization which precesses around the resultant effective magnetic field. That can be achieved with very short external magnetic field pulses or using intrinsically coupled magnetic structures, resulting in a transfer of spin torque. Here we show that using picosecond acoustic pulses is a versatile and efficient way of controlling the spin angular momentum in ferromagnets. Two or three acoustic pulses, generated by femtosecond laser pulses, allow suppressing or enhancing the magnetic precession at any arbitrary time by precisely controlling the delays and amplitudes of the optical pulses. A formal analogy with a two dimensional pendulum allows us explaining the complex trajectory of the magnetic vector perturbed by the acoustic pulses.

  17. Numerical analysis of laser ablation and damage in glass with multiple picosecond laser pulses.

    PubMed

    Sun, Mingying; Eppelt, Urs; Russ, Simone; Hartmann, Claudia; Siebert, Christof; Zhu, Jianqiang; Schulz, Wolfgang

    2013-04-01

    This study presents a novel numerical model for laser ablation and laser damage in glass including beam propagation and nonlinear absorption of multiple incident ultrashort laser pulses. The laser ablation and damage in the glass cutting process with a picosecond pulsed laser was studied. The numerical results were in good agreement with our experimental observations, thereby revealing the damage mechanism induced by laser ablation. Beam propagation effects such as interference, diffraction and refraction, play a major role in the evolution of the crater structure and the damage region. There are three different damage regions, a thin layer and two different kinds of spikes. Moreover, the electronic damage mechanism was verified and distinguished from heat modification using the experimental results with different pulse spatial overlaps.

  18. Picosecond laser damage performance assessment of multilayer dielectric gratings in vacuum.

    PubMed

    Alessi, David A; Carr, C Wren; Hackel, Richard P; Negres, Raluca A; Stanion, Kenneth; Fair, James E; Cross, David A; Nissen, James; Luthi, Ronald; Guss, Gabe; Britten, Jerald A; Gourdin, William H; Haefner, Constantin

    2015-06-15

    Precise assessment of the high fluence performance of pulse compressor gratings is necessary to determine the safe operational limits of short-pulse high energy lasers. We have measured the picosecond laser damage behavior of multilayer dielectric (MLD) diffraction gratings used in the compression of chirped pulses on the Advanced Radiographic Capability (ARC) kilojoule petawatt laser system at the Lawrence Livermore National Laboratory (LLNL). We present optical damage density measurements of MLD gratings using the raster scan method in order to estimate operational performance. We also report results of R-on-1 tests performed with varying pulse duration (1-30 ps) in air, and clean vacuum. Measurements were also performed in vacuum with controlled exposure to organic contamination to simulate the grating use environment. Results show sparse defects with lower damage resistance which were not detected by small-area damage test methods. PMID:26193533

  19. A continuously variable frequency cross-correlation phase fluorometer with picosecond resolution.

    PubMed Central

    Gratton, E; Limkeman, M

    1983-01-01

    A detailed description of the construction and performance of a variable frequency cross-correlation phase fluorometer is reported. The phase fluorometer operates over the frequency range 1-160 MHz with a maximum resolution of a few picoseconds. The effects of distortions introduced by the light modulator and the nonlinear dynode characteristic are discussed in terms of the harmonic content of the detected signal. A source of systematic errors due to nonhomogeneous modulation is also discussed with particular attention to the color effect of the photomultipliers. The application of the phase fluorometer to the measurement of very long and very short lifetimes is reported. Some application to the measurement of multiexponential decays is also illustrated. PMID:6661490

  20. A Novel Low-Ringing Monocycle Picosecond Pulse Generator Based on Step Recovery Diode

    PubMed Central

    Zhou, Jianming; Yang, Xiao; Lu, Qiuyuan; Liu, Fan

    2015-01-01

    This paper presents a high-performance low-ringing ultra-wideband monocycle picosecond pulse generator, formed using a step recovery diode (SRD), simulated in ADS software and generated through experimentation. The pulse generator comprises three parts, a step recovery diode, a field-effect transistor and a Schottky diode, used to eliminate the positive and negative ringing of pulse. Simulated results validate the design. Measured results indicate an output waveform of 1.88 peak-to-peak amplitude and 307ps pulse duration with a minimal ringing of -22.5 dB, providing good symmetry and low level of ringing. A high degree of coordination between the simulated and measured results is achieved. PMID:26308450

  1. High-intensity coherent FIR radiation from sub-picosecond electron bunches

    SciTech Connect

    Kung, P.H.; Lihn, Hung-chi; Wiedemann, H.; Bocek, D.

    1994-01-01

    A facility to generate high-intensity, ultra-short pulses of broad-band far-infrared radiation has been assembled and tested at Stanford. The device uses sub-picosecond relativistic electron bunches to generate coherent radiation through transition or synchrotron radiation in the far-infrared (FIR) regime between millimeter waves and wavelengths of about 100 {mu}m and less. Experimental results show a peak radiation power of greater than 0.33 MW within a micro-bunch and an average FIR radiation power of 4 mW. The average bunch length of 2856 micro-bunches within a 1 {mu}sec macro-pulse is estimated to be about 480 sec. Simulations experimental setup and results will be discussed.

  2. Absolute response of Fuji imaging plate detectors to picosecond-electron bunches

    SciTech Connect

    Zeil, K.; Kraft, S. D.; Jochmann, A.; Kroll, F.; Jahr, W.; Schramm, U.; Karsch, L.; Pawelke, J.; Hidding, B.; Pretzler, G.

    2010-01-15

    The characterization of the absolute number of electrons generated by laser wakefield acceleration often relies on absolutely calibrated FUJI imaging plates (IP), although their validity in the regime of extreme peak currents is untested. Here, we present an extensive study on the dependence of the sensitivity of BAS-SR and BAS-MS IP to picosecond electron bunches of varying charge of up to 60 pC, performed at the electron accelerator ELBE, making use of about three orders of magnitude of higher peak intensity than in prior studies. We demonstrate that the response of the IPs shows no saturation effect and that the BAS-SR IP sensitivity of 0.0081 photostimulated luminescence per electron number confirms surprisingly well data from previous works. However, the use of the identical readout system and handling procedures turned out to be crucial and, if unnoticed, may be an important error source.

  3. Magnetic reversal dynamics of a quantum system on a picosecond timescale

    PubMed Central

    Kuznetsov, Alexey V; Soloviev, Igor I; Bakurskiy, Sergey V; Tikhonova, Olga V

    2015-01-01

    Summary We present our approach for a consistent, fully quantum mechanical description of the magnetization reversal process in natural and artificial atomic systems by means of short magnetic pulses. In terms of the simplest model of a two-level system with a magnetic moment, we analyze the possibility of a fast magnetization reversal on the picosecond timescale induced by oscillating or short unipolar magnetic pulses. We demonstrate the possibility of selective magnetization reversal of a superconducting flux qubit using a single flux quantum-based pulse and suggest a promising, rapid Λ-scheme for resonant implementation of this process. In addition, the magnetization reversal treatment is fulfilled within the framework of the macroscopic theory of the magnetic moment, which allows for the comparison and explanation of the quantum and classical behavior. PMID:26665066

  4. Magnetic reversal dynamics of a quantum system on a picosecond timescale.

    PubMed

    Klenov, Nikolay V; Kuznetsov, Alexey V; Soloviev, Igor I; Bakurskiy, Sergey V; Tikhonova, Olga V

    2015-01-01

    We present our approach for a consistent, fully quantum mechanical description of the magnetization reversal process in natural and artificial atomic systems by means of short magnetic pulses. In terms of the simplest model of a two-level system with a magnetic moment, we analyze the possibility of a fast magnetization reversal on the picosecond timescale induced by oscillating or short unipolar magnetic pulses. We demonstrate the possibility of selective magnetization reversal of a superconducting flux qubit using a single flux quantum-based pulse and suggest a promising, rapid Λ-scheme for resonant implementation of this process. In addition, the magnetization reversal treatment is fulfilled within the framework of the macroscopic theory of the magnetic moment, which allows for the comparison and explanation of the quantum and classical behavior. PMID:26665066

  5. Directly driven source of multi-gigahertz, sub-picosecond optical pulses

    DOEpatents

    Messerly, Michael J.; Dawson, Jay W.; Barty, Christopher P.J.; Gibson, David J.; Prantil, Matthew A.; Cormier, Eric

    2015-10-20

    A robust, compact optical pulse train source is described, with the capability of generating sub-picosecond micro-pulse sequences, which can be periodic as well as non-periodic, and at repetition rates tunable over decades of baseline frequencies, from MHz to multi-GHz regimes. The micro-pulses can be precisely controlled and formatted to be in the range of many ps in duration to as short as several fs in duration. The system output can be comprised of a continuous wave train of optical micro-pulses or can be programmed to provide gated bursts of macro-pulses, with each macro-pulse consisting of a specific number of micro-pulses or a single pulse picked from the higher frequency train at a repetition rate lower than the baseline frequency. These pulses could then be amplified in energy anywhere from the nJ to MJ range.

  6. Development of picoseconds Time of Flight systems in Meson Test Beam Facility at Fermilab

    SciTech Connect

    Ronzhin, A.; Albrow, M.; Demarteau, M.; Los, S.; Malik, S.; Pronko, S.; Ramberg, E.; Zatserklyaniy, A.; /Puerto Rico U., Mayaguez

    2010-11-01

    The goal of the work is to develop time of flight (TOF) system with about 10 picosecond time resolution in real beam line when start and stop counters separated by some distance. We name the distance as 'base' for the TOF. This 'real' TOF setup is different from another one when start and stop counters located next to each other. The real TOF is sensitive to beam momentum spread, beam divergence, etc. Anyway some preliminary measurements are useful with close placement of start and stop counter. We name it 'close geometry'. The work started about 2 years ago at Fermilab Meson Test Beam Facility (MTBF). The devices tested in 'close geometry' were Microchannel Plate Photomultipliers (MCP PMT) with Cherenkov radiators. TOF counters based on Silicon Photomultipliers (SiPms) with Cherenkov radiators also in 'close geometry' were tested. We report here new results obtained with the counters in the MTBF at Fermilab, including beam line data.

  7. 355, 532, and 1064 nm picosecond laser interaction with grass tissues

    NASA Astrophysics Data System (ADS)

    Kim, Jaehun; Ki, Hyungson

    2012-12-01

    In this article, we investigate how 355, 532, and 1064 nm picosecond lasers interact with grass tissues. We have identified five interaction regimes, and based on this classification, interaction maps have been constructed from a systematic experiment. The optical properties of light absorbing grass constituents are studied theoretically in order to understand how and how much light is absorbed by grass tissues. Scanning electron microscopy and optical microscopy are employed for observing morphological and structural changes of grass tissues. To the best of the authors' knowledge, this is the first investigation into laser interaction with plant leaves and reveals some fundamental findings regarding how a laser interacts with grass tissues and how plant leaves can be processed using lasers.

  8. Sub-picosecond streak camera measurements at LLNL: From IR to x-rays

    SciTech Connect

    Kuba, J; Shepherd, R; Booth, R; Steward, R; Lee, E W; Cross, R R; Springer, P T

    2003-12-21

    An ultra fast, sub-picosecond resolution streak camera has been recently developed at the LLNL. The camera is a versatile instrument with a wide operating wavelength range. The temporal resolution of up to 300 fs can be achieved, with routine operation at 500 fs. The streak camera has been operated in a wide wavelength range from IR to x-rays up to 2 keV. In this paper we briefly review the main design features that result in the unique properties of the streak camera and present its several scientific applications: (1) Streak camera characterization using a Michelson interferometer in visible range, (2) temporally resolved study of a transient x-ray laser at 14.7 nm, which enabled us to vary the x-ray laser pulse duration from {approx}2-6 ps by changing the pump laser parameters, and (3) an example of a time-resolved spectroscopy experiment with the streak camera.

  9. Bursts of Terahertz Radiation from Large-Scale Plasmas Irradiated by Relativistic Picosecond Laser Pulses

    NASA Astrophysics Data System (ADS)

    Liao, G. Q.; Li, Y. T.; Li, C.; Su, L. N.; Zheng, Y.; Liu, M.; Wang, W. M.; Hu, Z. D.; Yan, W. C.; Dunn, J.; Nilsen, J.; Hunter, J.; Liu, Y.; Wang, X.; Chen, L. M.; Ma, J. L.; Lu, X.; Jin, Z.; Kodama, R.; Sheng, Z. M.; Zhang, J.

    2015-06-01

    Powerful terahertz (THz) radiation is observed from large-scale underdense preplasmas in front of a solid target irradiated obliquely with picosecond relativistic intense laser pulses. The radiation covers an extremely broad spectrum with about 70% of its energy located in the high frequency regime over 10 THz. The pulse energy of the radiation is found to be above 1 0 0 μ J per steradian in the laser specular direction at an optimal preplasma scale length around 40 - 50 μ m . Particle-in-cell simulations indicate that the radiation is mainly produced by linear mode conversion from electron plasma waves, which are excited successively via stimulated Raman scattering instability and self-modulated laser wakefields during the laser propagation in the preplasma. This radiation can be used not only as a powerful source for applications, but also as a unique diagnostic of parametric instabilities of laser propagation in plasmas.

  10. High power THz source based on coherent radiation of picosecond relativistic electron bunch train

    NASA Astrophysics Data System (ADS)

    You, Yan; Yan, LiXin; Du, YingChao; Hua, JianFei; Huang, WenHui; Tang, ChuanXiang

    2011-12-01

    Tunable and compact high power terahertz (THz) radiation based on coherent radiation (CR) of the picosecond relativistic electron bunch train is under development at the Tsinghua accelerator lab. Coherent synchronization radiation (CSR) and coherent transition radiation (CTR) are researched based on an S-band compact electron linac, a bending magnet or a thin foil. The bunch train's form factors, which are the key factor of THz radiation, are analyzed by the PARMELA simulation. The effects of electron bunch trains under different conditions, such as the bunch number, bunch charges, micro-pulses inter-distance, and accelerating gradient of the gun are investigated separately in this paper. The optimal radiated THz power and spectra should take these factors as a whole into account.

  11. Conformational Substates of Myoglobin Intermediate Resolved by Picosecond X-ray Solution Scattering.

    PubMed

    Oang, Key Young; Kim, Jong Goo; Yang, Cheolhee; Kim, Tae Wu; Kim, Youngmin; Kim, Kyung Hwan; Kim, Jeongho; Ihee, Hyotcherl

    2014-03-01

    Conformational substates of proteins are generally considered to play important roles in regulating protein functions, but an understanding of how they influence the structural dynamics and functions of the proteins has been elusive. Here, we investigate the structural dynamics of sperm whale myoglobin associated with the conformational substates using picosecond X-ray solution scattering. By applying kinetic analysis considering all of the plausible candidate models, we establish a kinetic model for the entire cycle of the protein transition in a wide time range from 100 ps to 10 ms. Four structurally distinct intermediates are formed during the cycle, and most importantly, the transition from the first intermediate to the second one (B → C) occurs biphasically. We attribute the biphasic kinetics to the involvement of two conformational substates of the first intermediate, which are generated by the interplay between the distal histidine and the photodissociated CO. PMID:24761190

  12. Electric field measurements in a nanosecond pulse discharge by picosecond CARS/4-wave mixing

    NASA Astrophysics Data System (ADS)

    Goldberg, Ben; Shkurenkov, Ivan; Adamovich, Igor; Lempert, Walter

    2014-10-01

    Time-resolved electric field measurements in hydrogen by picosecond CARS/4-wave mixing are presented. Measurements are carried out in a high voltage nanosecond pulse discharge in hydrogen in plane-to-plane geometry, at pressures of up to several hundred Torr, and with a time resolution of 0.2 ns. Absolute calibration of the diagnostics is done using a sub-breakdown high voltage pulse of 12 kV/cm. A diffuse discharge is obtained by applying a peak high voltage pulse of 40 kV/cm between the electrodes. It is found that breakdown occurs at a lower field, 15--20 kV/cm, after which the field in the plasma is reduced rapidly due to plasma self shielding The experimental results are compared with kinetic modeling calculations, showing good agreement between the measured and the predicted electric field.

  13. Directed fast electron beams in ultraintense picosecond laser irradiated solid targets

    SciTech Connect

    Ge, X. L.; Lin, X. X.; Yuan, X. H. E-mail: ytli@iphy.ac.cn; Sheng, Z. M.; Carroll, D. C.; Neely, D.; Gray, R. J.; Tresca, O.; McKenna, P.; Yu, T. P.; Chen, M.; Liu, F.; Zhuo, H. B.; Zielbauer, B.; and others

    2015-08-31

    We report on fast electron transport and emission patterns from solid targets irradiated by s-polarized, relativistically intense, picosecond laser pulses. A beam of multi-MeV electrons is found to be transported along the target surface in the laser polarization direction. The spatial-intensity and energy distributions of this beam are compared with the beam produced along the laser propagation axis. It is shown that even for peak laser intensities an order of magnitude higher than the relativistic threshold, laser polarization still plays an important role in electron energy transport. Results from 3D particle-in-cell simulations confirm the findings. The characterization of directional beam emission is important for applications requiring efficient energy transfer, including secondary photon and ion source development.

  14. Magnetic vortex-antivortex dynamics on a picosecond timescale in a rectangular Permalloy pattern

    SciTech Connect

    Kim, D.-H.; Mesler-Lai, B.; Anderson, E.; Fischer, P.; Moon, J.-H.; Lee, K.-J.

    2009-06-25

    We report our experimental finding that there exists a pair of magnetic vortex and antivortex generated during an excited motion of a magnetic vortex core. Two vortices structure in 2 x 4 {micro}m{sup 2} rectangular Permalloy pattern is excited by an external field pulse of 1-ns duration, where each vortex is excited and followed by the vortex core splitting. X-ray microscopy with high spatiotemporal resolution enables us to observe a linking domain between two temporarily generated pairs of vortex-antivortex cores only surviving for several hundreds of picoseconds. The linking domain structure is found to depend on the combinational configuration of two original vortex cores, which is supported by micromagnetic simulations with a very good agreement.

  15. Recalescence after solidification in Ge films melted by picosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Siegel, J.; Solis, J.; Afonso, C. N.

    1999-08-01

    Thin amorphous Ge films on glass substrates are irradiated by single picosecond (ps) laser pulses and the induced melting and solidification process is followed by means of real-time reflectivity measurements with ps resolution using a setup based on a streak camera. Due to the excellent time resolution achieved in single exposure, the recalescence process occurring upon solidification can be completely resolved by means of an all-optical technique. The results are consistent with the bulk nucleation of the amorphous phase in the supercooled liquid at an extremely large nucleation rate. The massive release of solidification heat causes the reheating and partial remelting of the film after its complete solidification. The occurrence of recalescence after solidification is responsible for the formation of the crystalline phase finally obtained.

  16. Picosecond laser damage performance assessment of multilayer dielectric gratings in vacuum.

    PubMed

    Alessi, David A; Carr, C Wren; Hackel, Richard P; Negres, Raluca A; Stanion, Kenneth; Fair, James E; Cross, David A; Nissen, James; Luthi, Ronald; Guss, Gabe; Britten, Jerald A; Gourdin, William H; Haefner, Constantin

    2015-06-15

    Precise assessment of the high fluence performance of pulse compressor gratings is necessary to determine the safe operational limits of short-pulse high energy lasers. We have measured the picosecond laser damage behavior of multilayer dielectric (MLD) diffraction gratings used in the compression of chirped pulses on the Advanced Radiographic Capability (ARC) kilojoule petawatt laser system at the Lawrence Livermore National Laboratory (LLNL). We present optical damage density measurements of MLD gratings using the raster scan method in order to estimate operational performance. We also report results of R-on-1 tests performed with varying pulse duration (1-30 ps) in air, and clean vacuum. Measurements were also performed in vacuum with controlled exposure to organic contamination to simulate the grating use environment. Results show sparse defects with lower damage resistance which were not detected by small-area damage test methods.

  17. Picosecond time-resolved X-ray absorption spectroscopy of ultrafast aluminum plasmas.

    PubMed

    Audebert, P; Renaudin, P; Bastiani-Ceccotti, S; Geindre, J-P; Chenais-Popovics, C; Tzortzakis, S; Nagels-Silvert, V; Shepherd, R; Matsushima, I; Gary, S; Girard, F; Peyrusse, O; Gauthier, J-C

    2005-01-21

    We have used point-projection K-shell absorption spectroscopy to infer the ionization and recombination dynamics of transient aluminum plasmas. Two femtosecond beams of the 100 TW laser at the LULI facility were used to produce an aluminum plasma on a thin aluminum foil (83 or 50 nm), and a picosecond x-ray backlighter source. The short-pulse backlighter probed the aluminum plasma at different times by adjusting the delay between the two femtosecond driving beams. Absorption x-ray spectra at early times are characteristic of a dense and rather homogeneous plasma. Collisional-radiative atomic physics coupled with hydrodynamic simulations reproduce fairly well the measured average ionization as a function of time. PMID:15698184

  18. Picosecond Neutron Yields from Ultra-Intense Laser-Target Interactions

    NASA Astrophysics Data System (ADS)

    Ellison, C. Leland; Fuchs, Julien

    2009-11-01

    High-flux neutron sources for neutron imaging and materials analysis applications have typically been provided by accelerator-based (Spallation Neutron Source) and reactor-based (High Flux Isotope Reactor) neutron sources. A novel approach is to use ultra-intense (> 10^18 W/cm^2) laser-target interactions to generate picosecond, collimated neutrons. Here we examine the feasibility of a source based on current (LULI) and upcoming laser facility capabilities. A Monte-Carlo code calculates angular and energy distributions of neutrons generated by D-D fusion events occurring within a deuterated target for a given incident beam of D+ ions. The parameters of the deuteron beam are well understood from laser-plasma and laser-target studies relevant to fast-ignition fusion. Expected neutron yields are presented in comparison to conventional neutron sources, previous experimental neutron yields, and within the context of neutron shielding safety requirements.

  19. Towards a table-top microscope for nanoscale magnetic imaging using picosecond thermal gradients

    PubMed Central

    Bartell, J. M.; Ngai, D. H.; Leng, Z.; Fuchs, G. D.

    2015-01-01

    Research advancement in magnetoelectronics is challenged by the lack of a table-top magnetic measurement technique with the simultaneous temporal and spatial resolution necessary for characterizing magnetization dynamics in devices of interest, such as magnetic memory and spin torque oscillators. Although magneto-optical microscopy provides superb temporal resolution, its spatial resolution is fundamentally limited by optical diffraction. To address this challenge, we study heat rather than light as a vehicle to stroboscopically transduce a local magnetic moment into an electrical signal while retaining picosecond temporal resolution. Using this concept, we demonstrate spatiotemporal magnetic microscopy using the time-resolved anomalous Nernst effect (TRANE). Experimentally and with supporting numerical calculations, we find that TRANE microscopy has temporal resolution below 30 ps and spatial resolution determined by the area of thermal excitation. Based on these findings, we suggest a route to exceed the limits imposed by far-field optical diffraction. PMID:26419515

  20. Picosecond Diffraction at the ESRF: How Far Have We Come and Where Are We Going?

    SciTech Connect

    Wulff, Michael; Kong Qingyu; Cammarata, Marco; Lo Russo, Manuela; Anfinrud, Philip; Schotte, Friedrich; Lorenc, Maciej; Ihee, Hyotcherl; Kim, Tae Kyu; Plech, Anton

    2007-01-19

    The realization of solution phase pump-probe diffraction experiments on beamline ID09B is described. The pink beam from a low-K in-vacuum undulator is used to study the structural dynamics of small molecules in solution to 100 picosecond time resolution and at atomic resolution. The X-ray chopper and the associated timing modes of the synchrotron are described. The dissociation of molecular iodine in liquid CCl4 is studied by single pulse diffraction. The data probe not only the iodine structures but also the solvent structure as the latter is thermally excited by the flow of energy from recombining iodine atoms. The low-q part of the diffraction spectra is a sensitive probe of the hydrodynamics of the solvent as a function of time.

  1. Picosecond nonlinear optical studies of gold nanoparticles synthesised using coriander leaves (Coriandrum sativum)

    NASA Astrophysics Data System (ADS)

    Venugopal Rao, S.

    2011-07-01

    The results are presented from the experimental picosecond nonlinear optical (NLO) studies of gold nanoparticles synthesised using coriander leaf (Coriandrum sativum) extract. Nanoparticles with an average size of ∼30 nm (distribution of 5-70 nm) were synthesised according to the procedure reported by Narayanan et al. [Mater. Lett. 2008, 62, 4588-4591]. NLO studies were carried out using the Z-scan technique using 2 ps pulses near 800 nm. Open-aperture data suggested saturation absorption as the nonlinear absorption mechanism, whereas closed-aperture data suggested a positive nonlinearity. The magnitude of third-order nonlinearity was estimated to be (3.3 ± 0.6) × 10-13 esu. A solvent contribution to the nonlinearity was also identified and estimated. A comparison is attempted with some recently reported NLO studies of similar gold nanostructures.

  2. Morphology and crystalline phase characteristics of α-GST films irradiated by a picosecond laser

    NASA Astrophysics Data System (ADS)

    Zhao, J. J.; Liu, F. R.; Han, X. X.; Bai, N.; Wan, Y. H.; Lin, X.; Liu, F.

    2014-01-01

    The morphology and crystalline phase characteristics of amorphous Ge2Sb2Te5 films irradiated by a picosecond laser were investigated by 3D surface profiler, atomic force microscopy (AFM) and transmission electron microscopy (TEM) integrated with selected area electron diffraction (SAED). The laser irradiated spot was divided into strong ablation area, gentle ablation area, melting area and irradiation area. By theoretical calculation, the ablation and melting thresholds were determined to be 173.05 mJ cm-2 and 99.19 mJ cm-2 respectively. Meantime, the local fine morphologies of the ablation and melting areas were shown and analyzed. We also studied the irradiation area which was made up by the non-phase-change area and phase-change area. In the phase-change area, crystalline phase was determined to be face-centered cubic structure and crystalline phase characteristics for films with different thicknesses were discussed.

  3. High-speed laser-assisted cutting of strong transparent materials using picosecond Bessel beams

    NASA Astrophysics Data System (ADS)

    Bhuyan, M. K.; Jedrkiewicz, O.; Sabonis, V.; Mikutis, M.; Recchia, S.; Aprea, A.; Bollani, M.; Trapani, P. Di

    2015-08-01

    We report single-pass cutting of strong transparent glass materials of 700 μm thickness with a speed up to 270 mm/s using single-shot nanostructuring technique exploiting picosecond, zero-order Bessel beams at laser wavelength of 1030 nm. Particularly, we present results of a systematic study of cutting of tempered glass which has high resistance to thermal and mechanical shocks due to the inhomogeneous material properties along its thickness, and homogeneous glass that identify a unique focusing geometry and a finite pitch dependency, for which cutting with high quality and high reproducibility can be achieved. These results represent a significant advancement in the field of high-speed cutting of technologically important transparent materials.

  4. Low-order harmonic generation in metal ablation plasmas in nanosecond and picosecond laser regimes

    SciTech Connect

    Lopez-Arias, M.; Oujja, M.; Sanz, M.; Castillejo, M.; Ganeev, R. A.; Boltaev, G. S.; Satlikov, N. Kh.; Tugushev, R. I.; Usmanov, T.

    2012-02-15

    Low-order harmonics, third and fifth, of IR (1064 nm) laser emission have been produced in laser ablation plasmas of the metals manganese, copper and silver. The harmonics were generated in a process triggered by laser ablation followed by frequency up-conversion of a fundamental laser beam that propagates parallel to the target surface. These studies were carried out in two temporal regimes by creating the ablation plasma using either nanosecond or picosecond pulses and then probing the plasma plume with pulses of the same duration. The spatiotemporal behavior of the generated harmonics was characterized and reveals the distinct composition and dynamics of the plasma species that act as nonlinear media, allowing the comparison of different processes that control the generation efficiency. These results serve to guide the choice of laser ablation plasmas to be used for efficient high harmonic generation of laser radiation.

  5. Low-reflectance laser-induced surface nanostructures created with a picosecond laser

    NASA Astrophysics Data System (ADS)

    Sarbada, Shashank; Huang, Zhifeng; Shin, Yung C.; Ruan, Xiulin

    2016-04-01

    Using high-speed picosecond laser pulse irradiation, low-reflectance laser-induced periodic surface structures (LIPSS) have been created on polycrystalline silicon. The effects of laser fluence, scan speed, overlapping ratio and polarization angle on the formation of LIPSS are reported. The anti-reflective properties of periodic structures are discussed, and the ideal LIPSS for low surface reflectance is presented. A decrease of 35.7 % in average reflectance of the silicon wafer was achieved over the wavelength range of 400-860 nm when it was textured with LIPSS at high scan speeds of 4000 mm/s. Experimental results of broadband reflectance of silicon wafers textured with LIPSS have been compared with finite difference time domain simulations and are in good agreement, showing high predictability in reflectance values for different structures. The effects of changing the LIPSS profile, fill factor and valley depth on the surface reflectance were also analyzed through simulations.

  6. Treatment of tattoos with a picosecond alexandrite laser: a prospective trial.

    PubMed

    Saedi, Nazanin; Metelitsa, Andrei; Petrell, Kathleen; Arndt, Kenneth A; Dover, Jeffrey S

    2012-12-01

    OBJECTIVE To study a picosecond 755-nm alexandrite laser for the removal of tattoos to confirm the efficacy of this therapy, focusing on the effect of therapy on the target lesion as well as the surrounding tissues and quantifying the number of necessary treatments. DESIGN Fifteen patients with tattoos were enrolled. Treatments were scheduled approximately 6 ± 2 weeks apart. Standard photographs using 2-dimensional imaging were taken at baseline, before each treatment, and 1 month and 3 months after the last treatment. SETTING Dermatology clinic at SkinCare Physicians in Chestnut Hill, Massachusetts. PATIENTS Fifteen patients with darkly pigmented tattoos. MAIN OUTCOME MEASURES Treatment efficacy was assessed by the level of tattoo clearance in standard photographs. These photographs were assessed by a blinded physician evaluator and based on a 4-point scale. Efficacy was also assessed based on physician and patient satisfaction measured on a 4-point scale. RESULTS Twelve of 15 patients with tattoos (80%) completed the study. All 12 patients obtained greater than 75% clearance. Nine patients (75%) obtained greater than 75% clearance after having 2 to 4 treatments. The average number of treatment sessions needed to obtain this level of clearance was 4.25. All 12 patients (100%) were satisfied or extremely satisfied with the treatment. Adverse effects included pain, swelling, and blistering. Pain resolved immediately after therapy, while the swelling and blistering resolved within 1 week. Hypopigmentation and hyperpigmentation were reported at the 3-month follow-up. CONCLUSION The picosecond 755-nm alexandrite laser is a safe and very effective procedure for removing tattoo pigment.

  7. A compact picosecond pulsed laser source using a fully integrated CMOS driver circuit

    NASA Astrophysics Data System (ADS)

    He, Yuting; Li, Yuhua; Yadid-Pecht, Orly

    2016-03-01

    Picosecond pulsed laser source have applications in areas such as optical communications, biomedical imaging and supercontinuum generation. Direct modulation of a laser diode with ultrashort current pulses offers a compact and efficient approach to generate picosecond laser pulses. A fully integrated complementary metaloxide- semiconductor (CMOS) driver circuit is designed and applied to operate a 4 GHz distributed feedback laser (DFB). The CMOS driver circuit combines sub-circuits including a voltage-controlled ring oscillator, a voltagecontrolled delay line, an exclusive-or (XOR) circuit and a current source circuit. Ultrashort current pulses are generated by the XOR circuit when the delayed square wave is XOR'ed with the original square wave from the on-chip oscillator. Circuit post-layout simulation shows that output current pulses injected into an equivalent circuit load of the laser have a pulse full width at half maximum (FWHM) of 200 ps, a peak current of 80 mA and a repetition rate of 5.8 MHz. This driver circuit is designed in a 0.13 μm CMOS process and taped out on a 0.3 mm2 chip area. This CMOS chip is packaged and interconnected with the laser diode on a printed circuit board (PCB). The optical output waveform from the laser source is captured by a 5 GHz bandwidth photodiode and an 8 GHz bandwidth oscilloscope. Measured results show that the proposed laser source can output light pulses with a pulse FWHM of 151 ps, a peak power of 6.4 mW (55 mA laser peak forward current) and a repetition rate of 5.3 MHz.

  8. Picosecond pulse radiolysis of direct and indirect radiolytic effects in highly concentrated halide aqueous solutions.

    PubMed

    Balcerzyk, Anna; Schmidhammer, Uli; El Omar, Abdel Karim; Jeunesse, Pierre; Larbre, Jean-Philippe; Mostafavi, Mehran

    2011-08-25

    Recently we measured the amount of the single product, Br(3)(-), of steady-state radiolysis of highly concentrated Br(-) aqueous solutions, and we showed the effect of the direct ionization of Br(-) on the yield of Br(3)(-). Here, we report the first picosecond pulse-probe radiolysis measurements of ionization of highly concentrated Br(-) and Cl(-) aqueous solutions to describe the oxidation mechanism of the halide anions. The transient absorption spectra are reported from 350 to 750 nm on the picosecond range for halide solutions at different concentrations. In the highly concentrated halide solutions, we observed that, due to the presence of Na(+), the absorption band of the solvated electron is shifted to shorter wavelengths, but its decay, taking place during the spur reactions, is not affected within the first 4 ns. The kinetic measurements in the UV reveal the direct ionization of halide ions. The analysis of pulse-probe measurements show that after the electron pulse, the main reactions in solutions containing 1 M of Cl(-) and 2 M of Br(-) are the formation of ClOH(-•) and BrOH(-•), respectively. In contrast, in highly concentrated halide solutions, containing 5 M of Cl(-) and 6 M of Br(-), mainly Cl(2)(-•) and Br(2)(-•) are formed within the electron pulse without formation of ClOH(-•) and BrOH(-•). The results suggest that, not only Br(-) and Cl(-) are directly ionized into Br(•) and Cl(•) by the electron pulse, the halide atoms can also be rapidly generated through the reactions initiated by excitation and ionization of water, such as the prompt oxidation by the hole, H(2)O(+•), generated in the coordination sphere of the anion.

  9. Hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering for gas-phase temperature measurements

    NASA Astrophysics Data System (ADS)

    Miller, Joseph Daniel

    Hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering (fs/ps CARS) is employed for quantitative gas-phase temperature measurements in combustion processes and heated flows. In this approach, ultrafast 100-fs laser pulses are used to induce vibrational and rotational transitions in N2 and O2, while a third spectrally narrowed picosecond pulse is used to probe the molecular response. Temporal suppression of the nonresonant contribution and elimination of collisional effects are achieved by delay of the probe pulse, while sufficient spectral resolution is maintained for frequency-domain detection and thermometry. A theoretical framework is developed to model experimental spectra by phenomenologically describing the temporal evolution of the vibrational and rotational wavepackets as a function of temperature and pressure. Interference-free, single-shot vibrational fs/ps CARS thermometry is demonstrated at 1-kHz from 1400-2400 K in a H2-air flame, with accuracy better than 3%. A time-asymmetric exponential pulse shape is introduced to optimize nonresonant suppression with a 103 reduction at a probe delay of 0.31 ps. Low-temperature single-shot thermometry (300-700 K) with better than 1.5% accuracy is demonstrated using a fully degenerate rotational fs/ps CARS scheme, and the influence of collision energy transfer on thermometry error is quantified at atmospheric pressure. Interference-free thermometry, without nonresonant contributions and collision-induced error, is demonstrated for the first time using rotational fs/ps CARS at room temperature and pressures from 1-15 atm. Finally, the temporal and spectral resolution of fs/ps CARS is exploited for transition-resolved time-domain measurements of N2 and O2 self-broadened S-branch Raman linewidths at pressures of 1-20 atm.

  10. Treatment of tattoos with a picosecond alexandrite laser: a prospective trial.

    PubMed

    Saedi, Nazanin; Metelitsa, Andrei; Petrell, Kathleen; Arndt, Kenneth A; Dover, Jeffrey S

    2012-12-01

    OBJECTIVE To study a picosecond 755-nm alexandrite laser for the removal of tattoos to confirm the efficacy of this therapy, focusing on the effect of therapy on the target lesion as well as the surrounding tissues and quantifying the number of necessary treatments. DESIGN Fifteen patients with tattoos were enrolled. Treatments were scheduled approximately 6 ± 2 weeks apart. Standard photographs using 2-dimensional imaging were taken at baseline, before each treatment, and 1 month and 3 months after the last treatment. SETTING Dermatology clinic at SkinCare Physicians in Chestnut Hill, Massachusetts. PATIENTS Fifteen patients with darkly pigmented tattoos. MAIN OUTCOME MEASURES Treatment efficacy was assessed by the level of tattoo clearance in standard photographs. These photographs were assessed by a blinded physician evaluator and based on a 4-point scale. Efficacy was also assessed based on physician and patient satisfaction measured on a 4-point scale. RESULTS Twelve of 15 patients with tattoos (80%) completed the study. All 12 patients obtained greater than 75% clearance. Nine patients (75%) obtained greater than 75% clearance after having 2 to 4 treatments. The average number of treatment sessions needed to obtain this level of clearance was 4.25. All 12 patients (100%) were satisfied or extremely satisfied with the treatment. Adverse effects included pain, swelling, and blistering. Pain resolved immediately after therapy, while the swelling and blistering resolved within 1 week. Hypopigmentation and hyperpigmentation were reported at the 3-month follow-up. CONCLUSION The picosecond 755-nm alexandrite laser is a safe and very effective procedure for removing tattoo pigment. PMID:22986470

  11. Shock compression and flash-heating of molecular adsorbates on the picosecond time scale

    NASA Astrophysics Data System (ADS)

    Berg, Christopher Michael

    An ultrafast nonlinear coherent laser spectroscopy termed broadband multiplex vibrational sum-frequency generation (SFG) with nonresonant suppression was employed to monitor vibrational transitions of molecular adsorbates on metallic substrates during laser-driven shock compression and flash-heating. Adsorbates were in the form of well-ordered self-assembled monolayers (SAMs) and included molecular explosive simulants, such as nitroaromatics, and long chain-length alkanethiols. Based on reflectance measurements of the metallic substrates, femtosecond flash-heating pulses were capable of producing large-amplitude temperature jumps with DeltaT = 500 K. Laser-driven shock compression of SAMs produced pressures up to 2 GPa, where 1 GPa ≈ 1 x 104 atm. Shock pressures were estimated via comparison with frequency shifts observed in the monolayer vibrational transitions during hydrostatic pressure measurements in a SiC anvil cell. Molecular dynamics during flash-heating and shock loading were probed with vibrational SFG spectroscopy with picosecond temporal resolution and sub-nanometer spatial resolution. Flash-heating studies of 4-nitrobenzenethiolate (NBT) on Au provided insight into effects from hot-electron excitation of the molecular adsorbates at early pump-probe delay times. At longer delay times, effects from the excitation of SAM lattice modes and lower-energy NBT vibrations were shown. In addition, flash-heating studies of alkanethiolates demonstrated chain disordering behaviors as well as interface thermal conductances across the Au-SAM junction, which was of specific interest within the context of molecular electronics. Shock compression studies of molecular explosive simulants, such as 4-nitrobenzoate (NBA), demonstrated the proficiency of this technique to observe shock-induced molecular dynamics, in this case orientational dynamics, on the picosecond time scale. Results validated the utilization of these refined shock loading techniques to probe the shock

  12. Relaxation time of molecular rotation about its long axis in the smectic-A phase of ferroelectricand antiferroelectric liquid crystals as observed by picosecond optical Kerr effect

    NASA Astrophysics Data System (ADS)

    Miyachi, Kouichi; Takanishi, Yoichi; Ishikawa, Ken; Takezoe, Hideo; Fukuda, Atsuo

    1997-02-01

    We have studied the molecular rotational motion about its long axis in ferroelectric chiral smectic-C (Sm-C) and antiferroelectric chiral smectic-Ca (Sm-C*>A) liquid crystals and observed a few tens of picosecond relaxation time. Previously reported results using degenerate four-wave mixing with 25-ps pump pulses [Lalanne et al., Phys. Rev. A 44, 6632 (1991)] claimed to show a critical slowing down in the temperature region more than 0.1 °C above the Sm-A-Sm-C phase transition. Our measurements of the optical Kerr effect with 130-fs pump pulses do not show any critical slowing down in the corresponding temperature region above the phase transition from Sm-A to Sm-C or Sm-C*>A. The result may indicate that the laser-induced molecular reorientation with τ~10-11 s scarcely couples with the tilt angle and the polarization. A possibility has been discussed that a slower rotational motion with τ>~10-10 s plays a primary role for the emergence of ferroelectricity and/or antiferroelectricity.

  13. Measuring single-shot, picosecond optical damage threshold in Ge, Si, and sapphire with a 5.1-μm laser

    DOE PAGES

    Agustsson, R.; Pogorelsky, I.; Arab, E.; Murokh, A.; O"Shea, B.; Ovodenko, A.; Rosenzweig, J.; Solovyov, V.; Tilton, R.

    2015-11-18

    Optical photonic structures driven by picosecond, GW-class lasers are emerging as promising novel sources of electron beams and high quality X-rays. Due to quadratic dependence on wavelength of the laser ponderomotive potential, the performance of such sources scales very favorably towards longer drive laser wavelengths. However, to take full advantage of photonic structures at mid-IR spectral region, it is important to determine optical breakdown limits of common optical materials. To this end, an experimental study was carried out at a wavelength of 5 µm, using a frequency-doubled CO2 laser source, with 5 ps pulse length. Single-shot optical breakdowns were detectedmore » and characterized at different laser intensities, and damage threshold values of 0.2, 0.3, and 7.0 J/cm2, were established for Ge, Si, and sapphire, respectively. As a result, the measured damage threshold values were stable and repeatable within individual data sets, and across varying experimental conditions.« less

  14. Picosecond Investigation of the Collisional Deactivation of OH A 2 ( v 1, N 4, 12) in an Atmospheric-Pressure Flame

    NASA Astrophysics Data System (ADS)

    Beaud, Paul; Radi, Peter P.; Franzke, Dieter; Frey, Hans-Martin; Mischler, Bernhard; Tzannis, Alexios-Paul; Gerber, Thomas

    1998-05-01

    The collisional deactivation of the laser excited states A 2 ( v 1 , N 4 , 12 ) of OH in a flame is studied by measurement of spectrally resolved fluorescence decays in the picosecond time domain. Quenching and depolarization rates, as well as vibrational energy-transfer (VET) and rotational energy-transfer (RET) rates are determined. An empirical model describes the temporal evolution of the quenching and VET rates that emerge from the rotational-state relaxation. Fitting this model to the measured 1 0 and 0 0 fluorescence decays yields the quenching and VET rates of the initially excited rotational state along with those that correspond to a rotationally equilibrated vibronic-state population. VET from the higher rotational state ( N 12 ) shows a tendency for resonant transitions to energetic close-lying levels. RET is investigated by analysis of the temporal evolution of the 1 1 emission band. The observed RET is well described by the energy-corrected sudden-approximation theory in conjunction with a power-gap law.

  15. Measuring single-shot, picosecond optical damage threshold in Ge, Si, and sapphire with a 5.1-μm laser

    SciTech Connect

    Agustsson, R.; Pogorelsky, I.; Arab, E.; Murokh, A.; O"Shea, B.; Ovodenko, A.; Rosenzweig, J.; Solovyov, V.; Tilton, R.

    2015-11-18

    Optical photonic structures driven by picosecond, GW-class lasers are emerging as promising novel sources of electron beams and high quality X-rays. Due to quadratic dependence on wavelength of the laser ponderomotive potential, the performance of such sources scales very favorably towards longer drive laser wavelengths. However, to take full advantage of photonic structures at mid-IR spectral region, it is important to determine optical breakdown limits of common optical materials. To this end, an experimental study was carried out at a wavelength of 5 µm, using a frequency-doubled CO2 laser source, with 5 ps pulse length. Single-shot optical breakdowns were detected and characterized at different laser intensities, and damage threshold values of 0.2, 0.3, and 7.0 J/cm2, were established for Ge, Si, and sapphire, respectively. As a result, the measured damage threshold values were stable and repeatable within individual data sets, and across varying experimental conditions.

  16. Relativistically strong CO{sub 2} laser driver for plasma-channeled particle acceleration

    SciTech Connect

    Pogorelsky, I.V.

    1995-12-31

    Long-wavelength, short-duration laser pulses are desirable for plasma wakefield particle acceleration and plasma waveguiding. The first picosecond terawatt CO{sub 2} laser is under development to test laser-driven electron acceleration schemes.

  17. Hybrid femtosecond/picosecond rotational coherent anti-Stokes Raman scattering at flame temperatures using a second-harmonic bandwidth-compressed probe.

    PubMed

    Kearney, Sean P; Scoglietti, Daniel J

    2013-03-15

    We demonstrate an approach for picosecond probe-beam generation that enables hybrid femtosecond/picosecond pure-rotational coherent anti-Stokes Raman scattering (CARS) measurements in flames. Sum-frequency generation of bandwidth-compressed picosecond radiation from femtosecond pumps with phase-conjugate chirps provides probe pulses with energies in excess of 1 mJ that are temporally locked to the femtosecond pump/Stokes preparation. This method overcomes previous limitations on hybrid femtosecond/picosecond rotational CARS techniques, which have relied upon less efficient bandwidth-reduction processes that have generally resulted in prohibitively low probe energy for flame measurements. We provide the details of the second-harmonic approach and demonstrate the technique in near-adiabatic hydrogen/air flames.

  18. Terawatt Challenge for Thin-Film PV

    SciTech Connect

    Zweibel, K.

    2005-08-01

    The evolution of PV into one of the world's largest industries is not going to happen without major unforeseen problems. However, this study attempts to address the obvious ones, so that we can put aside the mythology of PV (for example, that it is only ''boutique power'' or that one must pave the world with it to be useful) and get on with changing the world's energy infrastructure. With the years of rapid market growth now under way in PV, the author is sure this will not be the last effort to understand the real potential and pitfalls of meeting the Challenge.

  19. Impedance characteristics of terawatt ion diodes

    NASA Astrophysics Data System (ADS)

    Mendel, C. W., Jr.; Desjarlais, M. P.; Pointon, T. D.; Quintenz, J. P.; Rosenthal, S. E.; Seidel, D. B.; Slutz, S. A.

    Light ion fusion research has developed ion diodes that have unique properties when compared to other ion diodes. These diodes involve relativistic electrons, ion beam stagnation pressures that compress the magnetic field to the order of 10 Tesla, and large space charge and particle current effects throughout the accelerating region. These diodes have required new theories and models to account for effects that previously were unimportant. One of the most important effects of the magnetic field compression and large space charge has been impedance collapse. The impedance collapse can lead to poor energy transfer efficiency, beam debunching, and rapid change of the beam focus. The current understanding of these effects is discussed including some of the methods used to ameliorate them, and the future directions the theory and modeling will take.

  20. Emergency contraception.

    PubMed

    2012-12-01

    Despite significant declines over the past 2 decades, the United States continues to have teen birth rates that are significantly higher than other industrialized nations. Use of emergency contraception can reduce the risk of pregnancy if used up to 120 hours after unprotected intercourse or contraceptive failure and is most effective if used in the first 24 hours. Indications for the use of emergency contraception include sexual assault, unprotected intercourse, condom breakage or slippage, and missed or late doses of hormonal contraceptives, including the oral contraceptive pill, contraceptive patch, contraceptive ring (ie, improper placement or loss/expulsion), and injectable contraception. Adolescents younger than 17 years must obtain a prescription from a physician to access emergency contraception in most states. In all states, both males and females 17 years or older can obtain emergency contraception without a prescription. Adolescents are more likely to use emergency contraception if it has been prescribed in advance of need. The aim of this updated policy statement is to (1) educate pediatricians and other physicians on available emergency contraceptive methods; (2) provide current data on safety, efficacy, and use of emergency contraception in teenagers; and (3) encourage routine counseling and advance emergency-contraception prescription as 1 part of a public health strategy to reduce teen pregnancy. This policy focuses on pharmacologic methods of emergency contraception used within 120 hours of unprotected or underprotected coitus for the prevention of unintended pregnancy. Emergency contraceptive medications include products labeled and dedicated for use as emergency contraception by the US Food and Drug Administration (levonorgestrel and ulipristal) and the "off-label" use of combination oral contraceptives.

  1. Vascular emergencies.

    PubMed

    Semashko, D C

    1997-01-01

    This article reviews the initial assessment and emergent management of several common as well as uncommon vascular emergencies. Aortic dissection, aneurysms, and arterial occlusive disease are familiar but challenging clinical entities. Less frequently encountered conditions are also discussed including an aortic enteric fistula, mesenteric venous thrombosis, phlegmasia alba dolens, and subclavian vein thrombosis.

  2. Hypertensive emergencies.

    PubMed

    Feitosa-Filho, Gilson Soares; Lopes, Renato Delascio; Poppi, Nilson Tavares; Guimarães, Hélio Penna

    2008-09-01

    Emergencies and hypertensive crises are clinical situations which may represent more than 25% of all medical emergency care. Considering such high prevalence, physicians should be prepared to correctly identify these crises and differentiate between urgent and emergent hypertension. Approximately 3% of all visits to emergency rooms are due to significant elevation of blood pressure. Across the spectrum of blood systemic arterial pressure, hypertensive emergency is the most critical clinical situation, thus requiring special attention and care. Such patients present with high blood pressure and signs of acute specific target organ damage (such as acute myocardial infarction, unstable angina, acute pulmonary edema, eclampsia, and stroke). Key elements of diagnosis and specific treatment for the different presentations of hypertensive emergency will be reviewed in this article. The MedLine and PubMed databases were searched for pertinent abstracts, using the key words "hypertensive crises" and "hypertensive emergencies". Additional references were obtained from review articles. Available English language clinical trials, retrospective studies and review articles were identified, reviewed and summarized in a simple and practical way. The hypertensive crisis is a clinical situation characterized by acute elevation of blood pressure followed by clinical signs and symptoms. These signs and symptoms may be mild (headache, dizziness, tinnitus) or severe (dyspnea, chest pain, coma or death). If the patient presents with mild symptoms, but without acute specific target organ damage, diagnosis is hypertensive urgency. However, if severe signs and symptoms and acute specific target organ damage are present, then the patient is experiencing a hypertensive emergency. Some patients arrive at the emergency rooms with high blood pressure, but without any other sign or symptom. In these cases, they usually are not taking their medications correctly. Therefore, this is not a

  3. High-power linearly-polarized picosecond thulium-doped all-fiber master-oscillator power-amplifier.

    PubMed

    Liu, Jiang; Liu, Chen; Shi, Hongxing; Wang, Pu

    2016-06-27

    We demonstrated a linearly-polarized picosecond thulium-doped all-fiber-integrated master-oscillator power-amplifier system, which yielded 240 W of average output power at 127 MHz repetition rate. The seed source is a passively mode-locked polarization-maintaining thulium-doped all-fiber oscillator with a nearly transform-limited pulse duration of 10 ps. In combination with a pre-chirp fiber having a positive group velocity dispersion and a three stage polarization-maintaining thulium-doped all-fiber amplifier, output pulse energies up to 1.89 µJ with 42 kW pulse peak power are obtained without the need of complex free-space stretcher or compressor setups. To the best of our knowledge, this is the highest average output power ever reported for a picosecond all-fiber-integrated laser at 2 µm wavelength region.

  4. High-power linearly-polarized picosecond thulium-doped all-fiber master-oscillator power-amplifier.

    PubMed

    Liu, Jiang; Liu, Chen; Shi, Hongxing; Wang, Pu

    2016-06-27

    We demonstrated a linearly-polarized picosecond thulium-doped all-fiber-integrated master-oscillator power-amplifier system, which yielded 240 W of average output power at 127 MHz repetition rate. The seed source is a passively mode-locked polarization-maintaining thulium-doped all-fiber oscillator with a nearly transform-limited pulse duration of 10 ps. In combination with a pre-chirp fiber having a positive group velocity dispersion and a three stage polarization-maintaining thulium-doped all-fiber amplifier, output pulse energies up to 1.89 µJ with 42 kW pulse peak power are obtained without the need of complex free-space stretcher or compressor setups. To the best of our knowledge, this is the highest average output power ever reported for a picosecond all-fiber-integrated laser at 2 µm wavelength region. PMID:27410651

  5. Narrow-bandwidth Tunable Picosecond Pulses in the Visible Produced by Noncollinear optical parametric Amplification with a Chirped Blue Pump

    SciTech Connect

    Co, Dick T.; Lockard, Jenny V.; McCamant, David W.; Wasielewski, Michael R.

    2010-03-26

    Narrow-bandwidth ( ~27 cm-1 ) tunable picosecond pulses from 480 nm–780 nm were generated from the output of a 1 kHz femtosecond titanium:sapphire laser system using a type I noncollinear optical parametric amplifier (NOPA) with chirped second-harmonic generation (SHG) pumping. Unlike a femto second NOPA, this system utilizes a broadband pump beam, the chirped 400 nm SHG of the Ti:sapphire fundamental, to amplify a monochromatic signal beam (spectrally-filtered output of a type II collinear OPA). Optimum geometric conditions for simultaneous phase- and group-velocity matching were calculated in the visible spectrum. This design is an efficient and simple method for generating tunable visible picosecond pulses that are synchronized to the femtosecond pulses.

  6. Generation and Propagation of a Picosecond Acoustic Pulse at a Buried Interface: Time-Resolved X-Ray Diffraction Measurements

    SciTech Connect

    Lee, S.H.; Cavalieri, A.L.; Fritz, D.M.; Swan, M.C.; Reis, D.A.; Hegde, R.S.; Reason, M.; Goldman, R.S.

    2005-12-09

    We report on the propagation of coherent acoustic wave packets in (001) surface oriented Al{sub 0.3}Ga{sub 0.7}As/GaAs heterostructure, generated through localized femtosecond photoexcitation of the GaAs. Transient structural changes in both the substrate and film are measured with picosecond time-resolved x-ray diffraction. The data indicate an elastic response consisting of unipolar compression pulses of a few hundred picosecond duration traveling along [001] and [001] directions that are produced by predominately impulsive stress. The transmission and reflection of the strain pulses are in agreement with an acoustic mismatch model of the heterostructure and free-space interfaces.

  7. Picosecond to femtosecond pulses from high power self mode-locked ytterbium rod-type fiber laser.

    PubMed

    Deslandes, Pierre; Perrin, Mathias; Saby, Julien; Sangla, Damien; Salin, François; Freysz, Eric

    2013-05-01

    We have designed an ytterbium rod-type fiber laser oscillator with tunable pulse duration. This system that delivers more than 10 W of average power is self mode-locked. It yields femtosecond to picosecond laser pulses at a repetition rate of 74 MHz. The pulse duration is adjusted by changing the spectral width of a band pass filter that is inserted in the laser cavity. Using volume Bragg gratings of 0.9 nm and 0.07 nm spectrum bandwidth, this oscillator delivers nearly Fourier limited 2.8 ps and 18.5 ps pulses, respectively. With a 4 nm interference filter, one obtains picosecond pulses that have been externally dechirped down to 130 fs.

  8. Efficient third harmonic generation of microjoule picosecond pulses at 355 nm in BiB3O6

    NASA Astrophysics Data System (ADS)

    Ghotbi, M.; Sun, Z.; Majchrowski, A.; Michalski, E.; Kityk, I. V.; Ebrahim-Zadeh, M.

    2006-10-01

    The authors report efficient third harmonic generation of microjoule picosecond pulses at 355nm in the nonlinear optical material BiB3O6. Using two crystals of BiB3O6 cut for type I (e +e→o) phase matching in optical yz plane for second and third harmonic generation and fundamental pulses from a mode-locked, amplified picosecond Nd:YAG laser at 1.064μm, they have achieved conversion efficiencies of as much as 50% at 355nm. Third harmonic pulse energies of up to 216μJ in 29ps pulses at 25Hz repetition rate have been obtained for 35ps fundamental pulses. They have also determined the magnitude of two-photon absorption coefficient in BiB3O6 at 355nm to be 0.71 and 1.37cm /GW for ordinary and extraordinary polarizations, respectively.

  9. Nonlinear optical absorption of ZnO doped with copper nanoparticles in the picosecond and nanosecond pulse laser field.

    PubMed

    Ryasnyansky, Aleksandr; Palpant, Bruno; Debrus, Solange; Ganeev, Rashid; Stepanov, Andrey; Can, Nurdogan; Buchal, Christoph; Uysal, Sibel

    2005-05-10

    The nonlinear absorption of nanocomposite layers based on ZnO implanted with Cu+ ions with an energy of 160 keV in implantation doses of 10(16) and 10(17) ions/cm2 was investigated. The values of the nonlinear absorption coefficient were measured by the Z-scan method at a wavelength of 532 nm by use of nanosecond and picosecond laser pulses. Possible optical applications of these materials are discussed.

  10. Supercontinuum generation from 2 to 20 μm in GaAs pumped by picosecond CO₂ laser pulses.

    PubMed

    Pigeon, J J; Tochitsky, S Ya; Gong, C; Joshi, C

    2014-06-01

    We report on the generation of supercontinuum radiation from 2 to 20 μm in a 67 mm long GaAs crystal pumped by a train of 3 ps CO2 laser pulses. Temporal measurements indicate that sub-picosecond pulse splitting is involved in the production of such wide-bandwidth radiation in GaAs. The results show that the observed spectral broadening is heavily influenced by four-wave mixing and stimulated Raman scattering.

  11. Microviscosity in polyacrylamide gels with pendant triphenyl-methane leuco derivatives: picosecond time-resolved fluorescence study

    NASA Astrophysics Data System (ADS)

    Tamai, Naoto; Ishikawa, Masazumi; Kitamura, Noboru; Masuhara, Hiroshi

    1991-10-01

    Picosecond fluorescence dynamics of triphenylmethane dyes bonded to polyacrylamide gels before and after swelling was studied by a single-photon timing technique. Microviscosity in the gels after swelling was estimated to be 10-11 cP by examining the viscosity dependence of fluorescence dynamics of malachite green in various alcohols. The results were interpreted in terms of structured stiff water in a microcavity of the gels.

  12. Generation of picosecond pulses and frequency combs in actively mode locked external ring cavity quantum cascade lasers

    SciTech Connect

    Wójcik, Aleksander K.; Belyanin, Alexey; Malara, Pietro; Blanchard, Romain; Mansuripur, Tobias S.; Capasso, Federico

    2013-12-02

    We propose a robust and reliable method of active mode locking of mid-infrared quantum cascade lasers and develop its theoretical description. Its key element is the use of an external ring cavity, which circumvents fundamental issues undermining the stability of mode locking in quantum cascade lasers. We show that active mode locking can give rise to the generation of picosecond pulses and phase-locked frequency combs containing thousands of the ring cavity modes.

  13. Experimental evidence of predominantly transverse electron plasma waves driven by stimulated Raman scattering of picosecond laser pulses.

    PubMed

    Rousseaux, C; Baton, S D; Bénisti, D; Gremillet, L; Adam, J C; Héron, A; Strozzi, D J; Amiranoff, F

    2009-05-01

    We report on highly time- and space-resolved measurements of the evolution of electron plasma waves driven by stimulated Raman scattering of a picosecond, single laser speckle propagating through a preformed underdense plasma. Two-dimensional Thomson scatter spectra indicate that the dominant waves have significant transverse components. These results are supported by particle-in-cell simulations which pinpoint the dominant role of the wave front bowing and of secondary nonlinear electrostatic instabilities in the evolution of the plasma waves.

  14. Urologic Emergencies.

    PubMed

    Ludvigson, Adam E; Beaule, Lisa T

    2016-06-01

    The diagnosis and management of urologic emergencies are incorporated into the basic training of all urology residents. In institutions without access to urologic services, it is usually left to the General Surgeon or Emergency Medicine physician to provide timely care. This article discusses diagnoses that are important to recognize and treatment that is practically meaningful for the non-Urologist to identify and treat. The non-Urology provider, after reading this article, will have a better understanding and a higher comfort level with treating patients with urologic emergencies.

  15. Urologic Emergencies.

    PubMed

    Ludvigson, Adam E; Beaule, Lisa T

    2016-06-01

    The diagnosis and management of urologic emergencies are incorporated into the basic training of all urology residents. In institutions without access to urologic services, it is usually left to the General Surgeon or Emergency Medicine physician to provide timely care. This article discusses diagnoses that are important to recognize and treatment that is practically meaningful for the non-Urologist to identify and treat. The non-Urology provider, after reading this article, will have a better understanding and a higher comfort level with treating patients with urologic emergencies. PMID:27261785

  16. Picosecond pulses compression at 1053-nm center wavelength by using a gas-filled hollow-core fiber compressor

    NASA Astrophysics Data System (ADS)

    Huang, Zhi-Yuan; Wang, Ding; Leng, Yu-Xin; Dai, Ye

    2015-01-01

    We theoretically study the nonlinear compression of picosecond pulses with 10-mJ of input energy at the 1053-nm center wavelength by using a one-meter-long gas-filled hollow-core fiber (HCF) compressor and considering the third-order dispersion (TOD) effect. It is found that when the input pulse is about 1 ps/10 mJ, it can be compressed down to less than 20 fs with a high transmission efficiency. The gas for optimal compression is krypton gas which is filled in a HCF with a 400-μm inner diameter. When the input pulse duration is increased to 5 ps, it can also be compressed down to less than 100 fs efficiently under proper conditions. The results show that the TOD effect has little impact on picosecond pulse compression and the HCF compressor can be applied on compressing picosecond pulses efficiently with a high compression ratio, which will benefit the research of high-field laser physics. Project supported by the National Natural Science Foundation of China (Grant Nos. 11204328, 61221064, 61078037, 11127901, and 11134010), the National Basic Research Program of China (Grant No. 2011CB808101), the Commission of Science and Technology of Shanghai, China (Grant No. 12dz1100700), the Natural Science Foundation of Shanghai, China (Grant No. 13ZR1414800), and the International Science and Technology Cooperation Program of China (Grant No. 2011DFA11300).

  17. Sub-picosecond chirped return-to-zero nonlinear optical pulse propagating in dense dispersion-managed fibre

    NASA Astrophysics Data System (ADS)

    Guo, Shuqin; Le, Zichun; Quan, Bisheng

    2006-01-01

    By numerical simulation, we show that the fourth-order dispersion (FOD) makes sub-picosecond optical pulse broaden as second-order dispersion (SOD), makes optical pulse oscillate simultaneously as third-order dispersion (TOD). Based on above two reasons, sub-picosecond optical pulse will be widely broaden and lead to emission of continuum radiation during propagation. Here, resemble to two- and third-order dispersion compensation, fourth-order dispersion compensation is also suggested in a dispersion-managed optical fiber link, which is realized by arranging two kinds of fiber with opposite dispersion sign in each compensation cell. For sake of avoiding excessively broadening, ultra short scale dispersion compensation cell is required in ultra high speed optical communication system. In a full dispersion compensation optical fiber system which path average dispersion is zero about SOD, TOD, and FOD, even suffering from affection of high order nonlinear like self-steep effect and self-frequency shift, 200 fs gauss optical pulse can stable propagate over 1000 km with an optimal initial chirp. When space between neighboring optical pulse is only 2 picoseconds corresponding to 500 Gbit/s transmitting capacity, eye diagram is very clarity after 1000 km. The results demonstrate that ultra short scale dispersion compensation including FOD is need and effective in ultra-high speed optical communication.

  18. A method for detecting ultra-low quantities of explosives with use a picosecond laser FAIMS analyzer

    NASA Astrophysics Data System (ADS)

    Chistyakov, Alexander A.; Kotkovskii, Gennadii E.; Odulo, Ivan P.; Sychev, Alexey V.; Bogdanov, Artem S.; Perederiy, Anatoly N.; Spitsyn, Evgeny M.; Shestakov, Alexander V.

    2015-05-01

    A method for detecting ultralow quantities of explosives in air with use a state-of-the-art picosecond chip Nd3+:YAG laser has been developed. The method combines field asymmetric ion mobility spectrometry (FAIMS) with laser ionization of examined air samples. Radiation of λ = 266nm, τpulse = 300ps, Epulse = 30-150μJ, ν = 20-300Hz was used. Processes in the ion source for the use both picosecond and nanosecond ionization modes were analyzed. Parameters of the laser ion source have been specially optimized. The dependences on frequency, pulse energy, peak intensity, and average power for trinitrotoluene (TNT) and cyclotrimethylenetrinitramine (RDX) were obtained. It was shown that the optimal peak intensity should be no less 3·106 W/cm2. The detected ion signals for all explosives were shown to be threefold higher for picosecond excitation in comparison with use a nanosecond laser of the same average power. The estimated detection threshold of the prototype equals 1. 10-15 g/cm3. The results are promising for the development of a highly sensitive, portable laser explosive detector.

  19. Laser-induced back-ablation of aluminum thin films using picosecond laser pulses

    SciTech Connect

    BULLOCK, A B

    1999-05-26

    Experiments were performed to understand laser-induced back-ablation of Al film targets with picosecond laser pulses. Al films deposited on the back surface of BK-7 substrates are ablated by picosecond laser pulses propagating into the Al film through the substrate. The ablated Al plume is transversely probed by a time-delayed, two-color sub-picoseond (500 fs) pulse, and this probe is then used to produce self-referencing interferograms and shadowgraphs of the Al plume in flight. Optical emission from the Al target due to LIBA is directed into a time-integrated grating spectrometer, and a time-integrating CCD camera records images of the Al plume emission. Ablated Al plumes are also redeposited on to receiving substrates. A post-experimental study of the Al target and recollected deposit characteristics was also done using optical microscopy, interferometry, and profilometry. In this high laser intensity regime, laser-induced substrate ionization and damage strongly limits transmitted laser fluence through the substrate above a threshold fluence. The threshold fluence for this ionization-based transmission limit in the substrate is dependent on the duration of the incident pulse. The substrate ionization can be used as a dynamic control of both transmitted spatial pulse profile and ablated Al plume shape. The efficiency of laser energy transfer between the laser pulse incident on the Al film and the ablated Al plume is estimated to be of order 5% and is a weak function of laser pulsewidth. The Al plume is highly directed. Low plume divergence ({theta}{sub divergence} < 5{sup o}) shows the ablated plume temperature to be very low at long time delays ( T << 0.5 eV at delays of 255 ns). Spectroscopic observations and calculations indicate that, in early time (t < 100 ps), the Al film region near the substrate/metal interface is at temperatures of order 0.5 eV. Interferograms of Al plumes produced with 0.1 {micro}m films show these plumes to be of high neutral atom

  20. Initial clinical experience with the picosecond Nd:YLF laser for intraocular therapeutic applications

    PubMed Central

    Geerling, G.; Roider, J.; Schmidt-Erfurt, U.; Nahen, K.; El-Hifnawi, E.; Laqua, H.; Vogel, A.

    1998-01-01

    AIMS/BACKGROUND—Compared with nanosecond (ns) pulses of conventional Nd-YAG lasers, picosecond (ps) laser pulses allow intraocular surgery at considerably lower pulse energy. The authors report initial clinical experiences using a Nd:YLF ps laser for the treatment of various indications for photodisruption.
METHODS—A Nd:YLF laser system (ISL 2001, wavelength 1053 nm) was used to apply pulse series of 100-400 µJ single pulse energy at a repetition rate of 0.12-1.0 kHz. Computer controlled patterns were used to perform iridectomies (n=53), capsulotomies (n=9), synechiolysis (n=3), and pupilloplasties (n=2). Other procedures were vitreoretinal strand incision (n=2) and peripheral retinotomy (n=1). For comparison, 10 capsulotomies and 20 iridotomies were performed with a Nd:YAG ns laser. The ps laser cut of an anterior capsule was assessed by scanning electron microscopy (SEM).
RESULTS—Open, well defined iridectomies (mean total energy 4028 mJ, mean diameter 724 µm) were achieved at first attempt in 92% of the cases. In 64% an iris bleeding and in 21% an IOP increase of >10 mm Hg occurred. All capsulotomies were performed successfully (mean energy 690 mJ/mm cutting length) but with a high incidence of intraocular lens damage. The attempted vitreoretinal applications remained unsuccessful as a result of optical aberrations of the eye and contact lens. Although ps laser capsulotomies and iridectomies required much higher total energy than ns procedures, the resulting tissue effects of the ps pulses were more clearly defined. SEM examination of a ps incision of the anterior lens capsule demonstrated, nevertheless, that the cut was more irregular than the edge of a continuous curvilinear capsulorhexis.
CONCLUSION—Series of ps pulses applied in computer controlled patterns can be used effectively for laser surgery in the anterior segment and are considerably less disruptive than ns pulses. The ps laser is well suited for laser iridectomies while the

  1. Laser-induced back-ablation of aluminum thin films using picosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Bullock, Anthony Burlingame

    Experiments were performed to understand laser-induced back-ablation of Al film targets with picosecond laser pulses. Al films deposited on the back surface of BK-7 substrates are ablated by picosecond laser pulses propagating into the Al film through the substrate. The ablated Al plume is transversely probed by a time- delayed, two-color subpicoseond (500 fs) pulse, and this probe is then used to produce self-referencing interferograms and shadowgraphs of the Al plume in flight. Optical emission from the Al target due to LIBA is directed into a time-integrated grating spectrometer, and a time-integrating CCD camera records images of the Al plume emission. Ablated Al plumes are also redeposited on to receiving substrates. A post-experimental study of the Al target and recollected deposit characteristics was also done using optical microscopy, interferometry, and profilometry. In this high laser intensity regime, laser-induced substrate ionization and damage strongly limits transmitted laser fluence through the substrate above a threshold fluence. The threshold fluence for this ionization-based transmission limit in the substrate is dependent on the duration of the incident pulse. The substrate ionization can be used as a dynamic control of both transmitted spatial pulse profile and ablated Al plume shape. The efficiency of laser energy transfer between the laser pulse incident on the Al film and the ablated Al plume is estimated to be of order 5% and is a weak function of laser pulsewidth. The Al plume is highly directed. Low plume divergence (θdivergence < 5°) shows the ablated plume temperature to be very low at long time delays (T << 0.5 eV at delays of 255 ns). Spectroscopic observations and calculations indicate that, in early time (t < 100 ps), the Al film region near the substrate/metal interface is at temperatures of order 0.5 eV. Interferograms of Al plumes produced with 0.1 μm films show these plumes to be of high neutral atom density (nn of order 10

  2. Rheumatologic emergencies.

    PubMed

    Gutiérrez-González, Luis Arturo

    2015-12-01

    Rheumatological conditions can sometimes present as emergencies. These can occur due to the disease process or infection; contrary to what many people think, rheumatologic emergencies like a pain, rheumatic crisis, or attack gout do not compromise the patient's life. This article mentioned only true emergencies: catastrophic antiphospholipid syndrome (cAPS), kidney-lung syndrome, central nervous system (CNS) vasculitis, anti-Ro syndrome (neonatal lupus), and macrophage activation syndrome (MAS). The management of above emergencies includes critical care, immunosuppression when indicated, and use of a diagnostic flowchart as well as fast laboratory profile for making decisions. Anticoagulants have to be used in the management of antiphospholipid syndrome. A good understanding of these conditions is of paramount importance for proper management.

  3. Emergency contraception.

    PubMed

    Grimes, David A; Raymond, Elizabeth G

    2002-08-01

    Emergency contraception is used to prevent pregnancy after a coital act not adequately protected by a regular method of contraception. In contrast to early medical abortion, emergency contraception prevents a pregnancy from starting and does not disrupt an established pregnancy. The most commonly used approaches consist of two oral doses of contraceptive steroids. The levonorgestrel-only regimen (levonorgestrel, 0.75 mg, repeated in 12 hours) appears to be more effective and better tolerated than the Yuzpe regimen (ethinyl estradiol, 100 microg, and levonorgestrel, 0.5 mg, repeated in 12 hours). In the largest randomized, controlled trial to date, levonorgestrel prevented about 85% of pregnancies that would have occurred without its use. Hormonal emergency contraception has no known medical contraindications, although it is not indicated for suspected or confirmed pregnancy. However, if hormonal emergency contraception is inadvertently taken in early pregnancy, neither the woman nor the fetus will be harmed. Nausea and vomiting associated with the Yuzpe regimen can be reduced by prophylactic use of meclizine. A strong medical and legal case exists for making hormonal emergency contraception available over the counter, as has happened in countries other than the United States. Easier access to and wider use of emergency contraception could dramatically lower the high rates of unintended pregnancy and induced abortion in the United States. PMID:12160366

  4. Anorectal emergencies.

    PubMed

    Lohsiriwat, Varut

    2016-07-14

    Anorectal emergencies refer to anorectal disorders presenting with some alarming symptoms such as acute anal pain and bleeding which might require an immediate management. This article deals with the diagnosis and management of common anorectal emergencies such as acutely thrombosed external hemorrhoid, thrombosed or strangulated internal hemorrhoid, bleeding hemorrhoid, bleeding anorectal varices, anal fissure, irreducible or strangulated rectal prolapse, anorectal abscess, perineal necrotizing fasciitis (Fournier gangrene), retained anorectal foreign bodies and obstructing rectal cancer. Sexually transmitted diseases as anorectal non-surgical emergencies and some anorectal emergencies in neonates are also discussed. The last part of this review dedicates to the management of early complications following common anorectal procedures that may present as an emergency including acute urinary retention, bleeding, fecal impaction and anorectal sepsis. Although many of anorectal disorders presenting in an emergency setting are not life-threatening and may be successfully treated in an outpatient clinic, an accurate diagnosis and proper management remains a challenging problem for clinicians. A detailed history taking and a careful physical examination, including digital rectal examination and anoscopy, is essential for correct diagnosis and plan of treatment. In some cases, some imaging examinations, such as endoanal ultrasonography and computerized tomography scan of whole abdomen, are required. If in doubt, the attending physicians should not hesitate to consult an expert e.g., colorectal surgeon about the diagnosis, proper management and appropriate follow-up. PMID:27468181

  5. Anorectal emergencies.

    PubMed

    Lohsiriwat, Varut

    2016-07-14

    Anorectal emergencies refer to anorectal disorders presenting with some alarming symptoms such as acute anal pain and bleeding which might require an immediate management. This article deals with the diagnosis and management of common anorectal emergencies such as acutely thrombosed external hemorrhoid, thrombosed or strangulated internal hemorrhoid, bleeding hemorrhoid, bleeding anorectal varices, anal fissure, irreducible or strangulated rectal prolapse, anorectal abscess, perineal necrotizing fasciitis (Fournier gangrene), retained anorectal foreign bodies and obstructing rectal cancer. Sexually transmitted diseases as anorectal non-surgical emergencies and some anorectal emergencies in neonates are also discussed. The last part of this review dedicates to the management of early complications following common anorectal procedures that may present as an emergency including acute urinary retention, bleeding, fecal impaction and anorectal sepsis. Although many of anorectal disorders presenting in an emergency setting are not life-threatening and may be successfully treated in an outpatient clinic, an accurate diagnosis and proper management remains a challenging problem for clinicians. A detailed history taking and a careful physical examination, including digital rectal examination and anoscopy, is essential for correct diagnosis and plan of treatment. In some cases, some imaging examinations, such as endoanal ultrasonography and computerized tomography scan of whole abdomen, are required. If in doubt, the attending physicians should not hesitate to consult an expert e.g., colorectal surgeon about the diagnosis, proper management and appropriate follow-up.

  6. Anorectal emergencies

    PubMed Central

    Lohsiriwat, Varut

    2016-01-01

    Anorectal emergencies refer to anorectal disorders presenting with some alarming symptoms such as acute anal pain and bleeding which might require an immediate management. This article deals with the diagnosis and management of common anorectal emergencies such as acutely thrombosed external hemorrhoid, thrombosed or strangulated internal hemorrhoid, bleeding hemorrhoid, bleeding anorectal varices, anal fissure, irreducible or strangulated rectal prolapse, anorectal abscess, perineal necrotizing fasciitis (Fournier gangrene), retained anorectal foreign bodies and obstructing rectal cancer. Sexually transmitted diseases as anorectal non-surgical emergencies and some anorectal emergencies in neonates are also discussed. The last part of this review dedicates to the management of early complications following common anorectal procedures that may present as an emergency including acute urinary retention, bleeding, fecal impaction and anorectal sepsis. Although many of anorectal disorders presenting in an emergency setting are not life-threatening and may be successfully treated in an outpatient clinic, an accurate diagnosis and proper management remains a challenging problem for clinicians. A detailed history taking and a careful physical examination, including digital rectal examination and anoscopy, is essential for correct diagnosis and plan of treatment. In some cases, some imaging examinations, such as endoanal ultrasonography and computerized tomography scan of whole abdomen, are required. If in doubt, the attending physicians should not hesitate to consult an expert e.g., colorectal surgeon about the diagnosis, proper management and appropriate follow-up. PMID:27468181

  7. Evaluation of Homogeneity and Elastic Properties of Solid Argon at High Pressures Using Picosecond Laser Ultrasonic Interferometry

    NASA Astrophysics Data System (ADS)

    Zerr, A.; Kuriakose, M.; Raetz, S.; Chigarev, N.; Nikitin, S. M.; Gasteau, D.; Tournat, V.; Bulou, A.; Castagnede, B.; Gusev, V. E.; Lomonosov, A.

    2015-12-01

    In picosecond ultrasonic interferometry [1], femto- or picosecond pump laser pulses are first used to generate acoustic pulses ranging from several to a few tens of nanometres length, thanks to the optoacoustic transduction in a light absorbing generator. Time-delayed femto- or picosecond probe laser pulses are then used to follow the propagation of these ultrashort acoustic pulses through a transparent medium that is in contact with the generator surface. The transient signal thus contains, at each moment in time, information on the local elastic, optical and elasto-optical properties of the tested material at the position where the laser-generated picosecond acoustic pulse is located during its propagation in the sample depth. Hence, the technique allows evaluation of sound velocities and elastic anisotropy of micro-crystallites composing a transparent material compressed to high pressures in a diamond anvil cell (DAC). This interferometry technique also helps to understand the micro-crystallite orientations in a case of elastically anisotropic material. Here we report the preliminary results of picosecond ultrasonic interferometry applied to the evaluation of homogeneities and elastic properties of polycrystalline solid argon compressed to 10 GPa and 15 GPa. In comparison with the earlier reported experiments on H2O ice at Mbar pressures [2], more efforts were spent to the evaluation of the lateral microstructure of the sample at high pressures, i.e., to inhomogeneities along the surface of the optoacoustic generator, rather than to the in-depth imaging along the axis of the DAC. The lateral imaging is performed over a distance of 60 - 90 µm, nearly corresponding to the complete sample diameter. In addition to the presence of expected lateral inhomogeneities the obtained results demonstrate important changes in their distribution upon pressure increase from 10 to 15 GPa. On the basis of the analysis of the statistic probability in the detection of differently

  8. Fiber-Based, Spatially and Temporally Shaped Picosecond UV Laser for Advanced RF Gun Applications

    SciTech Connect

    Shverdin, M Y; Anderson, S G; Betts, S M; Gibson, D J; Hartemann, F V; Hernandez, J E; Johnson, M; Jovanovic, I; Messerly, M; Pruet, J; Tremaine, A M; McNabb, D P; Siders, C W; Barty, C J

    2007-06-08

    The fiber-based, spatially and temporally shaped, picosecond UV laser system described here has been specifically designed for advanced rf gun applications, with a special emphasis on the production of high-brightness electron beams for free-electron lasers and Compton scattering light sources. The laser pulse can be shaped to a flat-top in both space and time with a duration of 10 ps at full width of half-maximum (FWHM) and rise and fall times under 1 ps. The expected pulse energy is 50 {micro}J at 261.75 nm and the spot size diameter of the beam at the photocathode is 2 mm. A fiber oscillator and amplifier system generates a chirped pump pulse at 1047 nm; stretching is achieved in a chirped fiber Bragg grating. A single multi-layer dielectric grating based compressor recompresses the input pulse to 250 fs FWHM and a two stage harmonic converter frequency quadruples the beam. Temporal shaping is achieved with a Michelson-based ultrafast pulse stacking device with nearly 100% throughput. Spatial shaping is achieved by truncating the beam at the 20% energy level with an iris and relay-imaging the resulting beam profile onto the photocathode. The integration of the system, as well as preliminary laser measurements will be presented.

  9. Low viscosity in the aqueous domain of cell cytoplasm measured by picosecond polarization microfluorimetry

    PubMed Central

    1991-01-01

    Information about the rheological characteristics of the aqueous cytoplasm can be provided by analysis of the rotational motion of small polar molecules introduced into the cell. To determine fluid-phase cytoplasmic viscosity in intact cells, a polarization microscope was constructed for measurement of picosecond anisotropy decay of fluorescent probes in the cell cytoplasm. We found that the rotational correlation time (tc) of the probes, 2,7-bis-(2-carboxyethyl)-5-(and-6- )carboxyfluorescein (BCECF), 6-carboxyfluorescein, and 8-hydroxypyrene- 1,3,6-trisulfonic acid (HPTS) provided a direct measure of fluid-phase cytoplasmic viscosity that was independent of probe binding. In quiescent Swiss 3T3 fibroblasts, tc values were 20-40% longer than those in water, indicating that the fluid-phase cytoplasm is only 1.2- 1.4 times as viscous as water. The activation energy of fluid-phase cytoplasmic viscosity was 4 kcal/mol, which is similar to that of water. Fluid-phase cytoplasmic viscosity was altered by less than 10% upon addition of sucrose to decrease cell volume, cytochalasin B to disrupt cell cytoskeleton, and vasopressin to activate phospholipase C. Nucleoplasmic and peripheral cytoplasmic viscosities were not different. Our results establish a novel method to measure fluid-phase cytoplasmic viscosity, and indicate that fluid-phase cytoplasmic viscosity in fibroblasts is similar to that of free water. PMID:1993739

  10. Nano structured physical vapor deposited coatings by means of picosecond laser radiation.

    PubMed

    Bobzin, K; Bagcivan, N; Ewering, M; Gillner, A; Beckemper, S; Hartmann, C; Theiss, S

    2011-10-01

    Molding of nano structures by injection molding leads to special requirements for the tools e.g., wear resistance and as low as possible release forces of the molded components. On the other hand it is not allowed to affect the replication precision. Physical vapor deposition is one of the promising technologies for applying coatings with adapted properties like high hardness, low roughness, low Young's modulus and less adhesion to the plastics melt. Although physical vapor deposition technology allows the deposition of films on micro structures without changing the structure significantly, film deposition on nano structures and small micro structures leads to a relevant change in surface topography. For this reason direct structuring of physical vapor deposition coatings might be beneficial. In this paper structuring was done using a picoseconds ultraviolet laser, Lumera Laser "Rapid," with a master oscillator power amplifier system at 355 nm. Two different coatings were deposited by magnetron sputter ion plating physical vapor deposition technology for laser structuring tests ((Cr, Al)N, (Cr, Al,Si)N). After deposition, the coatings were analyzed by common techniques regarding hardness, Young's modulus and morphology. The structures were analyzed by scanning electron microscopy. The results show a high potential for laser structuring of coatings deposited via physical vapor deposition. Linear structures with sizes between 400 nm and 10microm were realized.

  11. Direct amplification of picosecond pulses in F{sub 2}{sup -} : LiF crystals

    SciTech Connect

    Basiev, Tasoltan T; Garnov, Sergei V; Vovchenko, V I; Karasik, Aleksandr Ya; Klimentov, Sergei M; Konyushkin, V A; Kravtsov, S B; Malyutin, A A; Papashvili, A G; Pivovarov, Pavel A; Chunaev, D S E-mail: garnov@kapella.gpi.r E-mail: karasik@lst.gpi.r E-mail: vasil@lst.gpi.r E-mail: amal@kapella.gpi.r E-mail: pablo@kapella.gpi.r

    2006-07-31

    An amplifier of picosecond pulses with an output power up to 10{sup 10} W and an energy up to 30 mJ at 1180 nm is developed on the basis of F{sub 2}{sup -} : LiF colour-center crystals. A 3-5-ps, 0.03-mJ probe pulse at 1.18{mu}m was obtained upon intracavity SRS conversion in a passively mode-locked Nd{sup 3+} : KGd(WO{sub 4}){sub 2} laser. The F{sub 2}{sup -} : LiF crystals were pumped by 1053-nm nanosecond pulses from a Nd : YLF laser, amplified in a GLS-22 phosphate glass to an energy of 5 J. The probe SRS pulses were amplified in a four-crystal two-cascade amplifier based on F{sub 2}{sup -} : LiF crystals with the total length of the active medium of 360 mm, by using counterpropagating pump beams. The dependences of the output radiation energy on the pump and input signal energies are measured. (special issue devoted to the 90th anniversary of a.m. prokhorov)

  12. Medical diagnosis and remote sensing at fiber-tip: picosecond resolved FRET sensor

    NASA Astrophysics Data System (ADS)

    Polley, Nabarun; Pal, Samir Kumar

    2016-03-01

    Förster Resonance Energy Transfer (FRET) strategy in popular in fiber-optic sensing. However, the steady state emission quenching of the donor is inadequate to conclude FRET. The resonance type energy transfer from one molecule (donor) to other (acceptor) should meet few key properties including donor to acceptor energy migration in non-radiative way. In the present study, we have coupled the evanescent field of an optical fiber to the covalently attached donor (dansyl) molecules at the fiber tip. By using picosecond resolved time correlated single photon counting (TCSPC) we have demonstrated that dansyl at the fiber tip transfers energy to a well known DNA-intercalating dye ethidium. Our ultrafast detection scheme selectively distinguishes the probe (dansyl) emission from the intrinsic emission of the fiber. We have also used the setup for the remote sensing of the dielectric constant (polarity) of an environment. We have finally implemented the detection mechanism to detect an industrial synthetic dye methylene blue (MB) in water.

  13. Diagnosis of NMOS DRAM functional performance as affected by a picosecond dye laser

    NASA Technical Reports Server (NTRS)

    Kim, Q.; Schwartz, H. R.; Edmonds, L. D.; Zoutendyk, J. A.

    1992-01-01

    A picosec pulsed dye laser beam was at selected wavelengths successfully used to simulate heavy-ion single-event effects (SEEs) in negative channel NMOS DRAMs. A DRAM was used to develop the test technique because bit-mapping capability and previous heavy-ion upset data were available. The present analysis is the first to establish such a correlation between laser and heavy-ion data for devices, such as the NMOS DRAM, where charge collection is dominated by long-range diffusion, which is controlled by carrier density at remote distances from a depletion region. In the latter case, penetration depth is an important parameter and is included in the present analysis. A single-pulse picosecond dye laser beam (1.5 microns diameter) focused onto a single cell component can upset a single memory cell; clusters of memory cell upsets (multiple errors) were observed when the laser energy was increased above the threshold energy. The multiple errors were analyzed as a function of the bias voltage and total energy of a single pulse. A diffusion model to distinguish the multiple upsets from the laser-induced charge agreed well with previously reported heavy ion data.

  14. Picosecond-hetero-FRET microscopy to probe protein-protein interactions in live cells.

    PubMed Central

    Tramier, Marc; Gautier, Isabelle; Piolot, Tristan; Ravalet, Sylvie; Kemnitz, Klaus; Coppey, Jacques; Durieux, Christiane; Mignotte, Vincent; Coppey-Moisan, Maïté

    2002-01-01

    By using a novel time- and space-correlated single-photon counting detector, we show that fluorescence resonance energy transfer (FRET) between cyan fluorescent protein (CFP) and yellow fluorescent protein (YFP) fused to herpes simplex virus thymidine kinase (TK) monomers can be used to reveal homodimerization of TK in the nucleus and cytoplasm of live cells. However, the quantification of energy transfer was limited by the intrinsic biexponential fluorescence decay of the donor CFP (lifetimes of 1.3 +/- 0.2 ns and 3.8 +/- 0.4 ns) and by the possibility of homodimer formation between two TK-CFP. In contrast, the heterodimerization of the transcriptional factor NF-E2 in the nucleus of live cells was quantified from the analysis of the fluorescence decays of GFP in terms of 1) FRET efficiency between GFP and DsRed chromophores fused to p45 and MafG, respectively, the two subunits of NF-E2 (which corresponds to an interchromophoric distance of 39 +/- 1 A); and 2) fractions of GFP-p45 bound to DsRed-MafG (constant in the nucleus, varying in the range of 20% to 70% from cell to cell). The picosecond resolution of the fluorescence kinetics allowed us to discriminate between very short lifetimes of immature green species of DsRed-MafG and that of GFP-p45 involved in FRET with DsRed-MafG. PMID:12496124

  15. Sound velocity of iron up to 152 GPa by picosecond acoustics in diamond anvil cell

    NASA Astrophysics Data System (ADS)

    Decremps, F.; Antonangeli, D.; Gauthier, M.; Ayrinhac, S.; Morand, M.; Marchand, G. Le; Bergame, F.; Philippe, J.

    2014-03-01

    High-pressure method combining diamond anvil cell with picosecond ultrasonics technique is demonstrated to be a very suitable tool to measure the acoustic properties of iron up to 152 GPa. Such innovative approach allows to measure directly the longitudinal sound velocity under pressure of hundreds of GPa in laboratory, overcoming most of the drawbacks of traditional techniques. The very high accuracy, comparable to piezoacoustics technique, allows to observe the kink in elastic properties at the body-centered cubic-hexagonal close packed transition and to show with a good confidence that the Birch's law still stands up to 1.5 Mbar and ambient temperature. The linear extrapolation of the measured sound velocities versus densities of hcp iron is out of the preliminary reference Earth model, arguing for alloying effects or anharmonic high-temperature effects. A comparison between our measurements and shock wave experiments allowed us to quantify temperature corrections at constant pressure in ~-0.35 and ~-0.30 m s-1/K at 100 and 150 GPa, respectively. More in general, the here-presented technique allows detailed elastic and viscoelastic studies under extreme thermodynamic conditions on a wide variety of systems as liquids, crystalline, or polycrystalline solids, metallic or not, with very broad applications in Earth and planetary science.

  16. Note: Space qualified photon counting detector for laser time transfer with picosecond precision and stability.

    PubMed

    Prochazka, Ivan; Kodet, Jan; Blazej, Josef

    2016-05-01

    The laser time transfer link is under construction for the European Space Agency in the frame of Atomic Clock Ensemble in Space. We have developed and tested the flying unit of the photon counting detector optimized for this space mission. The results are summarized in this Note. An extreme challenge was to build a detector package, which is rugged, small and which provides long term detection delay stability on picosecond level. The device passed successfully all the tests required for space missions on the low Earth orbits. The detector is extremely rugged and compact. Its long term detection delay stability is excellent, it is better than ±1 ps/day, in a sense of time deviation it is better than 0.5 ps for averaging times of 2000 s to several hours. The device is capable to operate in a temperature range of -55 °C up to +60 °C, the change of the detection delay with temperature is +0.5 ps/K. The device is ready for integration into the space structure now.

  17. Numerical simulation of transient thermoreflectance of thin films in the picosecond regime

    SciTech Connect

    Kowalski, G.J.

    1996-12-31

    Transient thermoreflectance techniques, especially the picosecond transient thermoreflectance method (PTTR), provide a means of determining the thermo-physical properties of a thin film and of measuring thin film properties and temperature during manufacturing. In these techniques a pump and probe method is used to heat the sample and to measure the reflectance from it. It has been shown using a plane wave analysis and a one-dimensional thermal analysis based on uniform spatial irradiation that internal reflections caused by the spatial temperature field significantly affect the accuracy of the method in some materials. The internal reflection mechanism alters the temperature field as compared to that predicted without it. Criteria to define the range of importance of the internal reflection mechanism have been developed based on these assumptions. These results are extended using numerical analysis to investigate the effects of an incident Gaussian beam instead of uniform irradiation. The code includes mechanisms to describe the temperature and intensity dependent absorption coefficients and index of refraction. It is found that the two-dimensional effects decrease the one dimensional normalized reflectance change by 24%. A technique for the incorporating the code into the analysis of the PTTR is described.

  18. Spur reactions observed by picosecond pulse radiolysis in highly concentrated bromide aqueous solutions.

    PubMed

    El Omar, Abdel Karim; Schmidhammer, Uli; Balcerzyk, Anna; LaVerne, Jay; Mostafavi, Mehran

    2013-03-21

    The formation of the well-known product Br3(-), observed in the steady-state radiolysis of highly concentrated Br(-) aqueous solutions, has now been directly observed at ultrashort times corresponding to the relaxation of the spur. The transient absorption induced by picosecond pulse radiolysis of 6 M Br(-) aqueous solution was probed simultaneously at 260 nm with the third harmonic laser wave and from 350 to 750 nm with a supercontinuum generated by the fundamental laser wave. This approach allows several transient radiolytic species to be followed in parallel, particularly the solvated electron, BrOH(-•), Br2(-•), and Br3(-). The kinetics measured within 4 ns at 260 and 370 nm clearly exhibit that the decay of Br2(•-) is correlated with the formation of Br3(-). In highly concentrated Br(-) solutions, the OH(•) radical is fully replaced by Br2(•-), and the spur kinetics of OH(•) radical in pure water is comparable with that of Br2(-•). Model calculations indicate that the main OH(•) radical combination product H2O2 in pure water has formation kinetics similar to that of Br3(-) in 6 M Br(-) solutions. Moreover, they point out that oxidation of Br(-) occurs within the electron pulse both by direct energy absorption and by scavenging of the water radical cation, H2O(•+).

  19. Post-processing of 3D-printed parts using femtosecond and picosecond laser radiation

    NASA Astrophysics Data System (ADS)

    Mingareev, Ilya; Gehlich, Nils; Bonhoff, Tobias; Meiners, Wilhelm; Kelbassa, Ingomar; Biermann, Tim; Richardson, Martin C.

    2014-03-01

    Additive manufacturing, also known as 3D-printing, is a near-net shape manufacturing approach, delivering part geometry that can be considerably affected by various process conditions, heat-induced distortions, solidified melt droplets, partially fused powders, and surface modifications induced by the manufacturing tool motion and processing strategy. High-repetition rate femtosecond and picosecond laser radiation was utilized to improve surface quality of metal parts manufactured by laser additive techniques. Different laser scanning approaches were utilized to increase the ablation efficiency and to reduce the surface roughness while preserving the initial part geometry. We studied post-processing of 3D-shaped parts made of Nickel- and Titanium-base alloys by utilizing Selective Laser Melting (SLM) and Laser Metal Deposition (LMD) as additive manufacturing techniques. Process parameters such as the pulse energy, the number of layers and their spatial separation were varied. Surface processing in several layers was necessary to remove the excessive material, such as individual powder particles, and to reduce the average surface roughness from asdeposited 22-45 μm to a few microns. Due to the ultrafast laser-processing regime and the small heat-affected zone induced in materials, this novel integrated manufacturing approach can be used to post-process parts made of thermally and mechanically sensitive materials, and to attain complex designed shapes with micrometer precision.

  20. Note: Space qualified photon counting detector for laser time transfer with picosecond precision and stability

    NASA Astrophysics Data System (ADS)

    Prochazka, Ivan; Kodet, Jan; Blazej, Josef

    2016-05-01

    The laser time transfer link is under construction for the European Space Agency in the frame of Atomic Clock Ensemble in Space. We have developed and tested the flying unit of the photon counting detector optimized for this space mission. The results are summarized in this Note. An extreme challenge was to build a detector package, which is rugged, small and which provides long term detection delay stability on picosecond level. The device passed successfully all the tests required for space missions on the low Earth orbits. The detector is extremely rugged and compact. Its long term detection delay stability is excellent, it is better than ±1 ps/day, in a sense of time deviation it is better than 0.5 ps for averaging times of 2000 s to several hours. The device is capable to operate in a temperature range of -55 °C up to +60 °C, the change of the detection delay with temperature is +0.5 ps/K. The device is ready for integration into the space structure now.

  1. Note: Space qualified photon counting detector for laser time transfer with picosecond precision and stability.

    PubMed

    Prochazka, Ivan; Kodet, Jan; Blazej, Josef

    2016-05-01

    The laser time transfer link is under construction for the European Space Agency in the frame of Atomic Clock Ensemble in Space. We have developed and tested the flying unit of the photon counting detector optimized for this space mission. The results are summarized in this Note. An extreme challenge was to build a detector package, which is rugged, small and which provides long term detection delay stability on picosecond level. The device passed successfully all the tests required for space missions on the low Earth orbits. The detector is extremely rugged and compact. Its long term detection delay stability is excellent, it is better than ±1 ps/day, in a sense of time deviation it is better than 0.5 ps for averaging times of 2000 s to several hours. The device is capable to operate in a temperature range of -55 °C up to +60 °C, the change of the detection delay with temperature is +0.5 ps/K. The device is ready for integration into the space structure now. PMID:27250477

  2. Assessing charge carrier trapping in silicon nanowires using picosecond conductivity measurements.

    PubMed

    Ulbricht, Ronald; Kurstjens, Rufi; Bonn, Mischa

    2012-07-11

    Free-standing semiconductor nanowires on bulk substrates are increasingly being explored as building blocks for novel optoelectronic devices such as tandem solar cells. Although carrier transport properties, such as mobility and trap densities, are essential for such applications, it has remained challenging to quantify these properties. Here, we report on a method that permits the direct, contact-free quantification of nanowire carrier diffusivity and trap densities in thin (∼25 nm wide) silicon nanowires-without any additional processing steps such as transfer of wires onto a substrate. The approach relies on the very different terahertz (THz) conductivity response of photoinjected carriers within the silicon nanowires from those in the silicon substrate. This allows quantifying both the picosecond dynamics and the efficiency of charge carrier transport from the silicon nanowires into the silicon substrate. Varying the excitation density allows for quantification of nanowire trap densities: for sufficiently low excitation fluences the diffusion process stalls because the majority of charge carriers become trapped at nanowire surface defects. Using a model that includes these effects, we determine both the diffusion constant and the nanowire trap density. The trap density is found to be orders of magnitude larger than the charge carrier density that would be generated by AM1.5 sunlight.

  3. Investigation of the spall strength of graphite using nano- and picosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Krasyuk, I. K.; Semenov, A. Yu; Stuchebryukhov, I. A.; Belikov, R. S.; Khishchenko, K. V.; Rosmej, O. N.; Rienecker, T.; Schoenlein, A.; Tomut, M.

    2015-11-01

    Spallation phenomena in graphite targets were investigated experimentally under nano- and picosecond shock-wave action at laser facilities “Kamerton-T” (GPI RAS) and PHELIX (GSI). In the range of strain rates of 1 to 10 μs-1 at the first time, data of dynamic tensile strength of the material were obtained. At maximal realized strain rate of 14 μs-1, the spall strength value 2.1 GPa has been achieved that is 64% of the theoretical ultimate tensile strength of the graphite. Spallation was observed not only on the backside of the target, but also on its front (irradiated) surface. The morphology of the front and rear surfaces of the targets was studied using the optical and scanning electron microscopy. The structure of the graphite in irradiated area on the facial side as well as in the spallation zone on the rear side of the target was investigated by Raman scattering method. A comparison of the dynamic strength of the graphite with the dynamic strength of a synthetic diamond is done.

  4. Picosecond spectroscopic studies of energy transfer in phycobiliproteins and model dye systems

    SciTech Connect

    Switalski, S.C.

    1987-02-01

    Energy transfer was investigated in the ..cap alpha beta.. monomer and separated ..cap alpha.. and ..beta.. subunits of C-phycocyanin from Anabaena variabilis and Anacystis nidulans, using steady-state and picosecond spectroscopy. Fluorescence excitation polarization spectra were consistent with a sensitizing (s) - fluorescing (f) model using a Forster energy transfer mechanism. The rise in polarization across the absorption band towards longer wavelength for the ..beta.. subunit and the ..cap alpha beta.. monomer was attributed to energy transfer among the three chromophores in the ..cap alpha beta.. monomer and between the 2 chromophores in the ..beta.. subunit. The constant polarization of the ..cap alpha.. subunit, with one chromophore, is consistent with a lack of any possibility of energy transfer. Fluorescence emission maxima were at 640 nm for the ..cap alpha beta.. monomer and the separated subunits of Anabaena variabilis, and 645 nm for the ..beta.. subunit, 640 nm for the ..cap alpha.. subunit, and 644 nm for ..cap alpha beta.. monomer of Anacystis nidulans. We have shown that the labels s and f are not consistent with all the steady-state spectroscopic results. 171 refs., 32 figs., 15 tabs.

  5. Picosecond pulsed electric fields induce apoptosis in a cervical cancer xenograft.

    PubMed

    Jia, Jia; Xiong, Zheng-Ai; Qin, Qin; Yao, Chen-Guo; Zhao, Xiao-Zhen

    2015-03-01

    The aim of the present study was to evaluate the efficacy of picosecond pulsed electric fields (psPEF) on a cervical cancer xenograft. Human cervical cancer xenografts were established in nude mice by transplantation of HeLa cells, and the tumors were then treated with psPEF. The histological changes were observed by hematoxylin‑eosin staining and transmission electron microscopy. The rate of tumor cell apoptosis was determined using a terminal deoxynucleotidyl‑transferase‑mediated dUTP nick end labeling assay. The mitochondrial transmembrane potential of the tumor cells was detected by laser scanning confocal microscopy, and the activity of caspase‑3, ‑8, ‑9 and ‑12 was determined. The inhibitory rate seven days post‑psPEF treatment was also calculated. The results showed that exposure to psPEF led to an increased rate of apoptosis, collapse of mitochondrial transmembrane potential, and activation of caspases. The inhibitory rate was 9.11% at day 7. The results of the present study indicate that psPEF may induce apoptosis in a cervical cancer xenograft through the endoplasmic reticulum stress and caspase‑dependent signaling pathways. PMID:25405328

  6. Picosecond to nanosecond dynamics provide a source of conformational entropy for protein folding.

    PubMed

    Stadler, Andreas M; Demmel, Franz; Ollivier, Jacques; Seydel, Tilo

    2016-08-01

    Myoglobin can be trapped in fully folded structures, partially folded molten globules, and unfolded states under stable equilibrium conditions. Here, we report an experimental study on the conformational dynamics of different folded conformational states of apo- and holomyoglobin in solution. Global protein diffusion and internal molecular motions were probed by neutron time-of-flight and neutron backscattering spectroscopy on the picosecond and nanosecond time scales. Global protein diffusion was found to depend on the α-helical content of the protein suggesting that charges on the macromolecule increase the short-time diffusion of protein. With regard to the molten globules, a gel-like phase due to protein entanglement and interactions with neighbouring macromolecules was visible due to a reduction of the global diffusion coefficients on the nanosecond time scale. Diffusion coefficients, residence and relaxation times of internal protein dynamics and root mean square displacements of localised internal motions were determined for the investigated structural states. The difference in conformational entropy ΔSconf of the protein between the unfolded and the partially or fully folded conformations was extracted from the measured root mean square displacements. Using thermodynamic parameters from the literature and the experimentally determined ΔSconf values we could identify the entropic contribution of the hydration shell ΔShydr of the different folded states. Our results point out the relevance of conformational entropy of the protein and the hydration shell for stability and folding of myoglobin. PMID:27425443

  7. Monitoring Photosynthesis in Individual Cells of Synechocystis sp. PCC 6803 on a Picosecond Timescale

    PubMed Central

    Krumova, S.B.; Laptenok, S.P.; Borst, J.W.; Ughy, B.; Gombos, Z.; Ajlani, G.; van Amerongen, H.

    2010-01-01

    Picosecond fluorescence kinetics of wild-type (WT) and mutant cells of Synechocystis sp. PCC 6803, were studied at the ensemble level with a streak-camera and at the cell level using fluorescence-lifetime-imaging microscopy (FLIM). The FLIM measurements are in good agreement with the ensemble measurements, but they (can) unveil variations between and within cells. The BE mutant cells, devoid of photosystem II (PSII) and of the light-harvesting phycobilisomes, allowed the study of photosystem I (PSI) in vivo for the first time, and the observed 6-ps equilibration process and 25-ps trapping process are the same as found previously for isolated PSI. No major differences are detected between different cells. The PAL mutant cells, devoid of phycobilisomes, show four lifetimes: ∼20 ps (PSI and PSII), ∼80 ps, ∼440 ps, and 2.8 ns (all due to PSII), but not all cells are identical and variations in the kinetics are traced back to differences in the PSI/PSII ratio. Finally, FLIM measurements on WT cells reveal that in some cells or parts of cells, phycobilisomes are disconnected from PSI/PSII. It is argued that the FLIM setup used can become instrumental in unraveling photosynthetic regulation mechanisms in the future. PMID:20858447

  8. Hybrid optical (freeform) components--functionalization of nonplanar optical surfaces by direct picosecond laser ablation.

    PubMed

    Kleindienst, Roman; Kampmann, Ronald; Stoebenau, Sebastian; Sinzinger, Stefan

    2011-07-01

    The performance of optical systems is typically improved by increasing the number of conventionally fabricated optical components (spheres, aspheres, and gratings). This approach is automatically connected to a system enlargement, as well as potentially higher assembly and maintenance costs. Hybrid optical freeform components can help to overcome this trade-off. They merge several optical functions within fewer but more complex optical surfaces, e.g., elements comprising shallow refractive/reflective and high-frequency diffractive structures. However, providing the flexibility and precision essential for their realization is one of the major challenges in the field of optical component fabrication. In this article we present tailored integrated machining techniques suitable for rapid prototyping as well as the fabrication of molding tools for low-cost mass replication of hybrid optical freeform components. To produce the different feature sizes with optical surface quality, we successively combine mechanical machining modes (ultraprecision micromilling and fly cutting) with precisely aligned direct picosecond laser ablation in an integrated fabrication approach. The fabrication accuracy and surface quality achieved by our integrated fabrication approach are demonstrated with profilometric measurements and experimental investigations of the optical performance. PMID:21743521

  9. Anisotropic picosecond photoconductivity caused by optical alignment of electron momenta in cubic semiconductors

    SciTech Connect

    Malevich, Y. V. Adomavičius, R.; Krotkus, A.; Malevich, V. L.

    2014-02-21

    Transient photoconductivity in cubic semiconductors InGaAs and InAs excited by a femtosecond laser pulse in the presence of a uniform dc electric field has been studied with the use of the Monte Carlo simulation by taking into account optical alignment of photoexcited electrons over their momenta. Simulations show that due to the optical alignment effect and energy dependence of the electron mobility, the transient photoconductivity in cubic semiconductors becomes anisotropic during the first few picoseconds after optical excitation. The magnitude of this anisotropy reaches its peak when the excess energy of the optically excited electrons approaches the threshold for the intervalley transfer. It has also been found that when the electrons are excited near the threshold energy for the intervalley transfer, the component of the transient photocurrent directed along the dc field for a short time after the end of the femtosecond optical pulse can become negative. The anisotropy of the transient photoconductivity has been investigated experimentally on (001) InGaAs sample by the optical pump - terahertz-probe technique. Optically induced changes in terahertz pulse amplitude were found to be dependent on the direction of terahertz field relative to the polarization of the optical pump pulse and to the crystallographic axes of the semiconductor. Experimental data have been explained in terms of the transient anisotropic photoconductivity and correlate with the results of the Monte Carlo simulation.

  10. Picosecond laser ablation of poly-L-lactide: Effect of crystallinity on the material response

    SciTech Connect

    Ortiz, Rocio; Quintana, Iban; Etxarri, Jon; Lejardi, Ainhoa; Sarasua, Jose-Ramon

    2011-11-01

    The picosecond laser ablation of poly-L-lactide (PLLA) as a function of laser fluence and degree of crystallinity was examined. The ablation parameters and the surface modifications were analyzed under various irradiation conditions using laser wavelengths ranging from the ultraviolet through the visible. When processing the amorphous PLLA, both energy threshold and topography varied considerably depending on laser wavelength. Laser irradiation showed a reduction in the energy ablation threshold as the degree of crystallinity increased, probably related to photomechanical effects involved in laser ablation with ultra-short pulses and the lower stress accommodation behavior of semicrystalline polymers. In particular, cooperative chain motions are impeded by the higher degree of crystallinity, showing fragile mechanical behavior and lower energy dissipation. The experimental results on ablation rate versus laser energy showed that UV laser ablation on semicrystalline PLLA was more efficient than the visible ablation, i.e., it exhibits higher etch rates over a wide range of pulse energy conditions. These results were interpreted in terms of photo-thermal and photo-chemical response of polymers as a function of material micro-structure and incident laser wavelength. High quality micro-grooves were produced in amorphous PLLA, reveling the potential of ultra-fast laser processing technique in the field of micro-structuring biocompatible and biodegradable polymers for biomedical applications.

  11. Picosecond Dynamics of Shock Compressed and Flash-Heated Nanometer Thick Films of HMX

    NASA Astrophysics Data System (ADS)

    Berg, Christopher; Dlott, Dana

    2013-06-01

    New results are described for probing molecular dynamics of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) subjected to shock compression to a few GPa and/or temperature excursions exceeding thermal decomposition values (T > 500 K). 5-10 nm thick films of δ-HMX were grown on metallic substrates coated with monolayers of 4-nitrothiophenol. Due to shock velocities of a few nm/ps, nanometer thick films allowed picosecond time resolution of shock loading. A plastic polymer layer a few microns in thickness was spin-coated on top of HMX for shock confinement purposes. Both the monolayer and explosive layer were probed utilizing an ultrafast nonlinear coherent vibrational spectroscopy, vibrational sum-frequency generation. Shock compression pressures were estimated via comparison of the monolayer nitro transition frequency shift with static high pressure measurements in a diamond anvil cell. Temperature determinations were based on thermoreflectance measurements of the metallic substrate. Supported by the Stewardship Sciences Academic Alliance Program from the Carnegie-DOE Alliance Center under grant number DOE CIW 4-3253-13 and the US Air Force Office of Scientific Research under award number FAA9550-09-1-0163.

  12. Picosecond fluorescence of simple photosynthetic membranes: Evidence of spectral inhomogeneity and directed energy transfer

    NASA Astrophysics Data System (ADS)

    Pullerits, Tōnu; Freiberg, Arvi

    1991-01-01

    The picosecond time-domain singlet excitation transfer and trapping kinetics in photosynthetic membranes in case of low excitation intensities is studied by numerical integration of the appropriate master equation. The essential features of our two-dimensional-lattice random walk model are spectral heterogeneity of the light-harvesting antenna, inclusion of temperature effects, nonabsolute excitation trap, correlation between spectral and spatial parameters. A reasonably good agreement between theoretical and experimental fluorescence decay kinetics for purple photosynthetic bacterium Rhodospirillum rubrum is achieved only by assuming relatively large spectral inhomogeneity. From this comparison the average excitation lifetime on the lattice site is estimated to be 5-8 ps at the effective nearest neighbour lattice distance of 32 Å. If the model is correct, the relatively slow hopping rate determines that excitation transfer and trapping in R. rubrum at active photosynthesis conditions is a diffusion-limited process. The invariably present spectral disorder of photosynthetic systems promoting directed energy transfer serves for higher light-utilizing efficiency.

  13. Rear-side picosecond laser ablation of indium tin oxide micro-grooves

    NASA Astrophysics Data System (ADS)

    Liu, Peng; Wang, Wenjun; Mei, Xuesong; Liu, Bin; Zhao, Wanqin

    2015-06-01

    A comparative study of the fabrication of micro-grooves in indium tin oxide films by picosecond laser ablation for application in thin film solar cells is presented, evaluating the variation of different process parameters. Compared with traditional front-side ablation, rear-side ablation results in thinner grooves with varying laser power at a certain scan speed. In particular, and in contrast to front-side ablation, the width of the micro-grooves remains unchanged when the scan speed was changed. Thus, the micro-groove quality can be optimized by adjusting the scan speed while the groove width would not be affected. Furthermore, high-quality micro-grooves with ripple free surfaces and steep sidewalls could only be achieved when applying rear-side ablation. Finally, the formation mechanism of micro-cracks on the groove rims during rear-side ablation is analyzed and the cracks can be almost entirely eliminated by an optimization of the scan speed.

  14. Femtosecond versus picosecond laser machining of nano-gratings and micro-channels in silica glass.

    PubMed

    Corbari, Costantino; Champion, Audrey; Gecevičius, Mindaugas; Beresna, Martynas; Bellouard, Yves; Kazansky, Peter G

    2013-02-25

    The ability of 8 picosecond pulse lasers for three dimensional direct-writing in the bulk of transparent dielectrics is assessed through a comparative study with a femtosecond laser delivering 600 fs pulses. The comparison addresses two main applications: the fabrication of birefringent optical elements and two-step machining by laser exposure and post-processing by chemical etching. Formation of self-organized nano-gratings in glass by ps-pulses is demonstrated. Differential etching between ps-laser exposed regions and unexposed silica is observed. Despite attaining values of retardance (>100 nm) and etching rate (2 μm/min) similar to fs pulses, ps pulses are found unsuitable for bulk machining in silica glass primarily due to the build-up of a stress field causing scattering, cracks and non-homogeneous etching. Additionally, we show that the so-called "quill-effect", that is the dependence of the laser damage from the direction of writing, occurs also for ps-pulse laser machining. Finally, an opposite dependence of the retardance from the intra-pulse distance is observed for fs- and ps-laser direct writing.

  15. Picosecond infrared study of carbonmonoxy cytochrome c oxidase: Ligand transfer dynamics and binding orientations

    SciTech Connect

    Peterson, K.A.; Stoutland, P.O.; Dyer, R.B.; Woodruff, W.H.

    1991-01-01

    Cytochrome c oxidase (CcO), an enzyme which catalyzes the reduction of dioxygen to water in the terminal step of the respiratory chain, combines several fundamental chemical processes in performing its function. The coordination chemistry and ligation dynamics of the cytochrome {alpha}{sub 3}-Cu{sub B} site, where O{sub 2} and other small molecules such as CO, NO and isocyanates can bind, are essential to the function of the enzyme. Recent time-resolved infrared (TRIR) and visible absorption measurements have shown that coordination to Cu{sub B}{sup +} is an obligatory mechanistic step for CO entering the cytochrome {alpha}{sub 3} heme site and departing the protein after photodissociation. The timescale (> 10{sup {minus}7} s) of the TRIR measurements precluded observation of the ligation dynamics immediately following photodissociation. Here we report a picosecond timescale TRIR study of these events. The results reveal that the photoinitiated ligand transfer of CO from Fe{sub a3}{sup 2+} to Cu{sub B}{sup +}, which are believed to lie 4--5 {Angstrom} apart, occurs within 1 ps. 9 refs., 2 figs.

  16. Investigations of morphological features of picosecond dual-wavelength laser ablation of stainless steel

    NASA Astrophysics Data System (ADS)

    Zhao, Wanqin; Wang, Wenjun; Mei, Xuesong; Jiang, Gedong; Liu, Bin

    2014-06-01

    Investigations on the morphological features of holes and grooves ablated on the surface of stainless steel using the picosecond dual-wavelength laser system with different powers combinations are presented based on the scarce researches on morphology of dual-wavelength laser ablation. The experimental results show the profiles of holes ablated by the visible beam appear V-shaped while those for the near-infrared have large openings and display U-shaped, which are independent of the ablation mechanism of ultrafast laser. For the dual-wavelength beam (a combination of visible beam and near-infrared), the holes resemble sunflower-like structures and have smoother ring patterns on the bottom. In general, the holes ablated by the dual-wavelength beam appear to have much flatter bottoms, linearly sloped side-walls and spinodal structures between the bottoms of the holes and the side-walls. Furthermore, through judiciously combining the powers of the dual-wavelength beam, high-quality grooves could be obtained with a flat worm-like structure at the bottom surface and less resolidified melt ejection edges. This study provides insight into optimizing ultrafast laser micromachining in order to obtain desired morphology.

  17. Picosecond ion pulses from an EN tandem created by a femtosecond Ti:sapphire laser

    NASA Astrophysics Data System (ADS)

    Carnes, K. D.; Cocke, C. L.; Chang, Z.; Ben-Itzhak, I.; Needham, H. V.; Rankin, A.

    2007-08-01

    As the James R. Macdonald Laboratory at Kansas State University continues its transformation from an ion collisions facility to an ultrafast laser/ion collisions facility, we are looking for novel ways to combine our traditional accelerator expertise with our new laser capabilities. One such combination is to produce picosecond pulses of stripping gas ions in the high energy accelerating tube of our EN tandem by directing ∼100 fs, sub-milliJoule laser pulses up the high energy end of the tandem toward a focusing mirror at the terminal. Ion pulses from both stripping and residual gas have been produced and identified, with pulse widths thus far on the order of a nanosecond. This width represents an upper limit, as it is dominated by pulse-to-pulse jitter in the ion time-of-flight (TOF) and is therefore not a true representation of the actual pulse width. In this paper, we describe the development process and report on the results to date. Conditions limiting the minimum temporal pulse width, such as tandem terminal ripple, thermal motion of the gas and space charge effects, are also outlined.

  18. Picosecond strain pulses generated by a supersonically expanding electron-hole plasma in GaAs

    NASA Astrophysics Data System (ADS)

    Young, E. S. K.; Akimov, A. V.; Campion, R. P.; Kent, A. J.; Gusev, V.

    2012-10-01

    Strain pulses with picosecond duration are generated directly in GaAs by optical excitation from a femtosecond laser. The photons are absorbed in a 15-nm layer near the surface, creating the electron-hole plasma, which diffusively expands into the bulk of the GaAs. At an early time, the drift velocity of the expanding plasma exceeds the speed of longitudinal sound, and the generated strain pulses cannot escape the plasma cloud. Such supersonic generation of strain pulses results in specific temporal and spatial shapes of the generated strain pulses, where the compression part has a much lower amplitude than the tensile part. This phenomenon is studied experimentally at low temperatures and analyzed theoretically based on the wave and diffusion equations for strain and plasma density, respectively. Two mechanisms, deformation potential and thermoelasticity, are responsible for the experimental observations. The relative contributions from these mechanisms are governed by the nonradiative recombination rate in the plasma and depend on the optical excitation density, inducing such nonlinear optoacoustic effects as shortening of the leading strain front and a superlinear/quadratic increase in its amplitude with the rise of pump laser fluence.

  19. Timing control of an intense picosecond pulse laser to the SPring-8 synchrotron radiation pulses

    NASA Astrophysics Data System (ADS)

    Tanaka, Yoshihito; Hara, Toru; Kitamura, Hideo; Ishikawa, Tetsuya

    2000-03-01

    We have developed a control system to synchronize intense picosecond laser pulses to the hard x-ray synchrotron radiation (SR) pulses of SPring-8. A regeneratively amplified mode-locked Ti:sapphire laser is synchronized to 40 ps SR pulses by locking the laser to the radio frequency of the ring. The synchronization of the pulses is monitored by detecting both beams simultaneously on a gold photocathode of a streak camera. This method enabled us to make a precise measurement of the time interval between the beams, even if the trigger of the streak camera drifts. Synchronization between the laser and the SR pulses has been achieved with a precision of ±2 ps for some hours. The stable timing control ensures the possibility of making two-photon excitation and pump-probe experiments with time resolution of a few tens of ps (limited by the pulse duration of the SR). We have used this system to show that closing undulator gaps in the storage ring shifts the arrival time of the SR pulses, in accord with expectations for the increased power loss.

  20. [Study of cancer cells fluorescence lifetime based on picosecond time resolution].

    PubMed

    Chen, Bi-Fang; Liu, Tian-Fu

    2006-08-01

    The object of the present study was the ultrafast photodynamic processes of hematoporphyrin derivative (HPD) for diagnosis and therapy of cancer. Time-resolved fluorescence spectra of cancerous and normal cells were measured using an ultrashort pulse laser spectral technique and picosecond time-correlated single-photon counting system. The fast part of cancerous and normal cells fluorescence decay was approximately 150 and 300 ps, the fluorescence peak intensity of cancerous and normal cells decayed about 10% and 55% in 12 hour, the lifetime of cancerous and normal cells was about 824 and 1 798 ps by calculating date of fluorescence decay, and HPD stay time was about 17 and 6 days in the cancerous and normal cells sample respectively. The data show that cancerous cells were greatly intimate with HPD. The results obtained can be used as an important basis for the diagnosis of cancer based on ultrashort pulse laser spectral technique. The results will contribute to feebleness ultrafast fluorescence of biology sample for real time measurement. PMID:17058959

  1. Ultrafast graphene and carbon nanotube film patterning by picosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Bobrinetskiy, Ivan I.; Emelianov, Alexey V.; Otero, Nerea; Romero, Pablo M.

    2016-03-01

    Carbon nanomaterials is among the most promising technologies for advanced electronic applications, due to their extraordinary chemical and physical properties. Nonetheless, after more than two decades of intensive research, the application of carbon-based nanostructures in real electronic and optoelectronic devices is still a big challenge due to lack of scalable integration in microelectronic manufacturing. Laser processing is an attractive tool for graphene device manufacturing, providing a large variety of processes through direct and indirect interaction of laser beams with graphene lattice: functionalization, oxidation, reduction, etching and ablation, growth, etc. with resolution down to the nanoscale. Focused laser radiation allows freeform processing, enabling fully mask-less fabrication of devices from graphene and carbon nanotube films. This concept is attractive to reduce costs, improve flexibility, and reduce alignment operations, by producing fully functional devices in single direct-write operations. In this paper, a picosecond laser with a wavelength of 515 nm and pulse width of 30 ps is used to pattern carbon nanostructures in two ways: ablation and chemical functionalization. The light absorption leads to thermal ablation of graphene and carbon nanotube film under the fluence 60-90 J/cm2 with scanning speed up to 2 m/s. Just under the ablation energy, the two-photon absorption leads to add functional groups to the carbon lattice which change the optical properties of graphene. This paper shows the results of controlled modification of geometrical configuration and the physical and chemical properties of carbon based nanostructures, by laser direct writing.

  2. Ejection Regimes in Picosecond Laser-Induced Forward Transfer of Metals

    NASA Astrophysics Data System (ADS)

    Pohl, Ralph; Visser, Claas Willem; Römer, Gert-Willem; Lohse, Detlef; Sun, Chao; Huis in't Veld, Bert

    2015-02-01

    Laser-induced forward transfer (LIFT) is a 3D direct-write method suitable for precision printing of various materials, including pure metals. To understand the ejection mechanism and thereby improve deposition, here we present visualizations of ejection events at high-spatial (submicrometer) and high-temporal resolutions, for picosecond LIFT of copper and gold films with a thickness 50 nm ≤d ≤400 nm . For increasing fluences, these visualizations reveals the fluence threshold below which no ejection is observed, followed by the release of a metal cap (i.e., a hemisphere-shaped droplet), the formation of an elongated jet, and the release of a metal spray. For each ejection regime, the driving mechanisms are analyzed, aided by a two-temperature model. Cap ejection is driven by relaxation of thermal stresses induced by laser-induced heating, whereas jet and spray ejections are vapor driven (as the metal film is partly vaporized). We introduce energy balances that provide the ejection velocity in qualitative agreement with our velocity measurements. The threshold fluences separating the ejection regimes are determined. In addition, the fluence threshold below which no ejection is observed is quantitatively described using a balance between the surface energy and the inertia of the (locally melted) film. In conclusion, the ejection type can now be controlled, which allows for improved deposition of pure metal droplets and sprays.

  3. Note: Optical trigger device with sub-picosecond timing jitter and stability

    NASA Astrophysics Data System (ADS)

    Kodet, Jan; Prochazka, Ivan

    2012-03-01

    We are presenting the design, construction, and overall performance of the optical trigger device. This device generates an electrical signal synchronously to the detected ultra-short optical pulse. The device was designed for application in satellite laser ranging and laser time transfer experiments, time correlated photon counting and similar experiments, where picosecond timing resolution and detection delay stability are required. It consists of the ultrafast optical detector, signal discriminator, output pulse forming circuit, and output driver circuits. It was constructed as a single compact device to optimize their matching and maintain stability. The detector consists of an avalanche photodiode--both silicon and germanium types may be used to cover the wavelength range of 350-1550 nm. The analogue signal of this photodiode is sensed by the ultrafast comparator with 8 GHz bandwidth. The ps clock distribution circuit is used to generate the fast rise/fall time output pulses of pre-set length. The trigger device timing performance is excellent: the random component of the timing jitter is typically 880 fs, the temperature dependence of the detection delay was measured to be 370 fs/K. The systematic error contribution depends on the laser used and its stability. The sub-ps values have been obtained for various laser sources.

  4. Note: Optical trigger device with sub-picosecond timing jitter and stability.

    PubMed

    Kodet, Jan; Prochazka, Ivan

    2012-03-01

    We are presenting the design, construction, and overall performance of the optical trigger device. This device generates an electrical signal synchronously to the detected ultra-short optical pulse. The device was designed for application in satellite laser ranging and laser time transfer experiments, time correlated photon counting and similar experiments, where picosecond timing resolution and detection delay stability are required. It consists of the ultrafast optical detector, signal discriminator, output pulse forming circuit, and output driver circuits. It was constructed as a single compact device to optimize their matching and maintain stability. The detector consists of an avalanche photodiode--both silicon and germanium types may be used to cover the wavelength range of 350-1550 nm. The analogue signal of this photodiode is sensed by the ultrafast comparator with 8 GHz bandwidth. The ps clock distribution circuit is used to generate the fast rise/fall time output pulses of pre-set length. The trigger device timing performance is excellent: the random component of the timing jitter is typically 880 fs, the temperature dependence of the detection delay was measured to be 370 fs/K. The systematic error contribution depends on the laser used and its stability. The sub-ps values have been obtained for various laser sources.

  5. Picosecond dynamics of a membrane protein revealed by 2D IR

    NASA Astrophysics Data System (ADS)

    Mukherjee, Prabuddha; Kass, Itamar; Arkin, Isaiah T.; Zanni, Martin T.

    2006-03-01

    Fast protein dynamics can be missed with techniques that have relatively slow observation times. Using 2D IR spectroscopy and isotope labeling, we have probed the rapid, picosecond dynamics of a membrane protein in its native environment. By measuring the homogeneous and inhomogeneous IR linewidths of 11 amide I modes (backbone carbonyl stretch), we have captured the structural distributions and dynamics of the CD3 protein along its transmembrane segment that are lost with slower time-scale techniques. We find that the homogeneous lifetimes and population relaxation times are the same for almost all of the residues. In contrast, the inhomogeneous linewidths vary significantly with the largest inhomogeneous distribution occurring for residues near the N terminus and the narrowest near the center. This behavior is highly consistent with a recently reported experimental model of the protein and water accessibility as observed by molecular dynamics simulations. The data support the proposed CD3 peptide structure, and the simulations point to the structural disorder of water and lipid head-groups as the main source of inhomogeneous broadening. Taken together, this rigorous analysis of the vibrational dynamics of a membrane peptide provides experimental insight into a time regime of motions that has so far been largely unexplored. spectroscopy | ultrafast | vibrational

  6. Laser-induced reactions in a deep UV resist system: Studied with picosecond infrared spectroscopy

    SciTech Connect

    Lippert, T.; Koskelo, A.; Stoutland, P.O.

    1995-12-31

    One of the most technologically important uses of organic photochemistry is in the imaging industry where radiation-sensitive organic monomers and polymers are used in photoresists. A widely-used class of compounds for imaging applications are diazoketones; these compounds undergo a photoinduced Wolff rearrangement to form a ketene intermediate which subsequently hydrolyses to a base-soluble, carboxylic acid. Another use of organic molecules in polymer matrices is for dopant induced ablation of polymers. As part of a program to develop diagnostics for laser driven reactions in polymer matrices, we have investigated the photoinduced decomposition of 5-diazo-2,2-dimethyl-1,3-dioxane-4,6-dione (5-diazo Meldrum`s acid, DM) in a PMMA matrix using picosecond infrared spectroscopy. In particular, irradiation of DM with a 60 ps 266 nm laser pulse results in immediate bleaching of the diazo infrared band ({nu} = 2172 cm{sup -1}). Similarly, a new band appears within our instrument response at 2161 cm{sup -1} (FWHM = 29 cm{sup -1}) and is stable to greater than 6 ns.; we assign this band to the ketene photoproduct of the Wolff rearrangement. Using deconvolution techniques we estimate a limit for its rate of formation of {tau} < 20 ps. The linear dependence of the absorbance change with the pump power (266 nm) even above the threshold of ablation suggest that material ejection take place after 6ns.

  7. Resonant infrared ablation of polystyrene with single picosecond pulses generated by an optical parametric amplifier

    NASA Astrophysics Data System (ADS)

    Duering, Malte; Haglund, Richard; Luther-Davies, Barry

    2014-01-01

    We report on resonant infrared laser ablation of polystyrene using single 8 ps pulses at a wavelength of 3.31 μm generated by a MgO:PPLN optical parametric amplifier pumped by a Nd:YLF laser. We determined the single-pulse ablation threshold to be 0.46 J/cm2, about a factor of five smaller than in previous free-electron-laser studies. Time-resolved imaging of the laser-target interaction reveals that the detailed dynamics of the ablation process begin with thermal expansion of a large volume of hot material from which a less dense plume of polymeric material evaporates. This plume disappears on a time scale of 0.75 μs and the hot polymer material recedes back into the crater from which it was expelled. Subsequently, and on a much longer time scale, structural alterations in the ablation crater continue to evolve for at least another millisecond. Our results suggest that single picosecond pulses are effective for the ablation of polymers and exhibit dynamics similar to those observed in studies using a free-electron laser.

  8. Damage morphology and mechanism in ablation cutting of thin glass sheets with picosecond pulsed lasers

    NASA Astrophysics Data System (ADS)

    Sun, Mingying; Eppelt, Urs; Hartmann, Claudia; Schulz, Wolfgang; Zhu, Jianqiang; Lin, Zunqi

    2016-06-01

    We experimentally investigated the morphology and mechanism of laser-induced damage in the ablation cutting of thin glass sheets with picosecond pulsed lasers and we compared the experimental results to our models. After several passes of laser ablation, we observed two different kinds of damage morphologies on the cross-section of the cut channel. They are distinguished to be the damage region caused by high-density free-electrons and the heat-affected zone due to the heat accumulation, respectively. Furthermore, micro-cracks can be observed on the top surface of the workpiece near the cut edge. The nano-cracks could be generated by high energy free-electrons but opened and developed to be visible micro-cracks by thermal stress generated in the heat-affected zone. The crack length was proportional to the volume of heat-affected zone. Heat-affected-zone and visible-cracks free conditions of glass cutting were achieved by controlling the repetition rate and spatial overlap of laser pulses.

  9. Stripline Transversal Filter Techniques for Sub-picosecond Bunch Timing Measurements

    SciTech Connect

    Fox, John D.; Mastorides, Themis; Rivetta, Claudio Hector; Winkle, Daniel Van

    2007-07-06

    Measurement of time of arrival of a particle bunch is a fundamental beam diagnostic. The PEP-II/ALS/BESSY/PLS longitudinal feedback systems use a planar stripline circuit to convert a 30 ps beam BPM impulse signal into a 4 cycle tone burst at the 6th harmonic of the accelerator RF frequency (2.856 GHz). A phase-detection technique is used to measure the arrival time of these BPM impulses with 200 fs rms single-shot resolution (out of a 330 ps dynamic range). Scaled in frequency, this approach is directly applicable to FEL and other sub-ps regime pulse and timing measurements. The transversal circuit structure is applicable to measurement of microbunches or closely spaced bunches (the PEP-II/ALS/BESSY/PLS examples make independent measurements at 2 ns bunch spacing) and opens up some new diagnostic and control possibilities. This paper reviews the principles of the technique, and uses data from PEP-II operations to predict the limits of performance of this measurement scheme for arrival phase measurement. These predictions are compared with results in the literature from electro-optic sub-picosecond beam timing and phasing diagnostics.

  10. Time-dependent radiolytic yield of OH• radical studied by picosecond pulse radiolysis.

    PubMed

    El Omar, Abdel Karim; Schmidhammer, Uli; Jeunesse, Pierre; Larbre, Jean-Philippe; Lin, Mingzhang; Muroya, Yusa; Katsumura, Yosuke; Pernot, Pascal; Mostafavi, Mehran

    2011-11-10

    Picosecond pulse radiolysis measurements using a pulse-probe method are performed to measure directly the time-dependent radiolytic yield of the OH(•) radical in pure water. The time-dependent absorbance of OH(•) radical at 263 nm is deduced from the observed signal by subtracting the contribution of the hydrated electron and that of the irradiated empty fused silica cell which presents also a transient absoption. The time-dependent radiolytic yield of OH(•) is obtained by assuming the yield of the hydrated electron at 20 ps equal to 4.2 × 10(-7) mol J(-1) and by assuming the values of the extinction coefficients of e(aq)(-) and OH(•) at 782 nm (ε(λ=782 nm) = 17025 M(-1) cm(-1)) and at 263 nm (ε(λ=263 nm) = 460 M(-1) cm(-1)), respectively. The value of the yield of OH(•) radical at 10 ps is found to be (4.80 ± 0.12) × 10(-7) mol J(-1). PMID:21970432

  11. Development of large area, pico-second resolution photo-detectors and associated readout electronics

    SciTech Connect

    Grabas, H.; Oberla, E.; Attenkoffer, K.; Bogdan, M.; Frisch, H. J.; Genat, J. F.; May, E. N.; Varner, G. S.; Wetstein, M.

    2011-07-01

    The Large Area Pico-second Photo-detectors described in this contribution incorporate a photo-cathode and a borosilicate glass capillary Micro-Channel Plate (MCP) pair functionalized by atomic layer deposition (ALD) of separate resistive and electron secondary emitters materials. They may be used for biomedical imaging purposes, a remarkable opportunity to apply technologies developed in HEP having the potential to make major advances in the medical world, in particular for Positron Emission Tomography (PET). If daisy-chained and coupled to fast transmission lines read at both ends, they could be implemented in very large dimensions. Initial testing with matched pairs of small glass capillary test has demonstrated gains of the order of 105 to 106. Compared to other fast imaging devices, these photo-detectors are expected to provide timing resolutions in the 10-100 ps range, and two-dimension position in the sub-millimeter range. A 6-channel readout ASIC has been designed in 130 nm CMOS technology and tested. As a result, fast analog sampling up to 17 GS/s has been obtained, the intrinsic analog bandwidth being presently under evaluation. The digitization in parallel of several cells in two microseconds allows getting off-chip digital data read at a maximum rate of 40 MHz. Digital Signal Processing of the sampled waveforms is expected achieving the timing and space resolutions obtained with digital oscilloscopes. (authors)

  12. [Basic emergency].

    PubMed

    Oliveira, Agripino

    2006-01-01

    The increasing demand of health care and lack of its accessibility, in the scope of the National Health Service, are the most determining factors for the use of emergency departments. These facts are reproducible in the town of Espinho in spite of its two emergency consultations working at the same time, open consultation in the primary cares and hospital unit for emergency consultation, twenty meters distant from each other. This study attempt to investigate the reasons why the inhabitants of Espinho choose the institution, based on the opinion survey performed during the first fortnight of July 2002. The purpose of the study was to verify whether the different perception of the illness severity was related to the choice of the institution by the inhabitants of Espinho. In general, the results have shown that the inhabitants of Espinho knew how both consultations work and their choice was a consequence of their expectation at the moment. The patient s self-evaluation of his health condition has proved to be a very important predictor in the choice made. Thus, the open consultation in the primary cares is adjusted to give assistance to the chronic disease, while the emergency unit is prepared for the acute disease. The patients were more pleased with the performance of the emergency unit, which may be used in interventions to improve some aspects of health services and care and concerning the resources of health professionals. PMID:17328842

  13. Thyroid emergencies.

    PubMed

    Klubo-Gwiezdzinska, Joanna; Wartofsky, Leonard

    2012-03-01

    This review presents current knowledge about the thyroid emergencies known as myxedema coma and thyrotoxic storm. Understanding the pathogenesis of these conditions, appropriate recognition of the clinical signs and symptoms, and their prompt and accurate diagnosis and treatment are crucial in optimizing survival.

  14. Emerging Scholars

    ERIC Educational Resources Information Center

    Anyaso, Hilary Hurd; Rolo, Mark Anthony; Roach, Ronald; Delos, Robin Chen; Branch-Brioso, Karen; Miranda, Maria Eugenia; Seymour, Add, Jr.; Grossman, Wendy; Nealy, Michelle J.; Lum, Lydia

    2009-01-01

    This year's group of "emerging scholars" is a force to be reckoned with. This diverse group of young (under-40) crusaders is pushing the boundaries of research, technology and public policy in ways never imagined and reaching new heights of accomplishments. The Class of 2009 includes a physiologist who devised an artificial pancreas to produce the…

  15. Postmodern Emergence

    ERIC Educational Resources Information Center

    Somerville, Margaret

    2007-01-01

    This paper is a work-in-progress in which the author will begin to articulate the elements of a new methodology that she is calling, for the moment, a methodology of postmodern emergence. She explores this approach through examples from her own research journals that follow her research-in-process and from observing student work-in-progress. She…

  16. Chemical Emergencies

    MedlinePlus

    ... agents such as sarin and VX. Many hazardous chemicals are used in industry - for example, chlorine, ammonia, and benzene. Some can be made from everyday items such as household cleaners. Although there are no guarantees of safety during a chemical emergency, you can take actions to protect yourself. ...

  17. Radiation Emergencies

    MedlinePlus

    ... enough, it can cause premature aging or even death. Although there are no guarantees of safety during a radiation emergency, you can take actions to protect yourself. You should have a disaster plan. Being prepared can help reduce fear, anxiety and losses. If you do experience a ...

  18. Emerging Options for Emergency Contraception

    PubMed Central

    Koyama, Atsuko; Hagopian, Laura; Linden, Judith

    2013-01-01

    Emergency post-coital contraception (EC) is an effective method of preventing pregnancy when used appropriately. EC has been available since the 1970s, and its availability and use have become widespread. Options for EC are broad and include the copper intrauterine device (IUD) and emergency contraceptive pills such as levonorgestrel, ulipristal acetate, combined oral contraceptive pills (Yuzpe method), and less commonly, mifepristone. Some options are available over-the-counter, while others require provider prescription or placement. There are no absolute contraindications to the use of emergency contraceptive pills, with the exception of ulipristal acetate and mifepristone. This article reviews the mechanisms of action, efficacy, safety, side effects, clinical considerations, and patient preferences with respect to EC usage. The decision of which regimen to use is influenced by local availability, cost, and patient preference. PMID:24453516

  19. Ambient Mass Spectrometry Imaging with Picosecond Infrared Laser Ablation Electrospray Ionization (PIR-LAESI).

    PubMed

    Zou, Jing; Talbot, Francis; Tata, Alessandra; Ermini, Leonardo; Franjic, Kresimir; Ventura, Manuela; Zheng, Jinzi; Ginsberg, Howard; Post, Martin; Ifa, Demian R; Jaffray, David; Miller, R J Dwayne; Zarrine-Afsar, Arash

    2015-12-15

    A picosecond infrared laser (PIRL) is capable of cutting through biological tissues in the absence of significant thermal damage. As such, PIRL is a standalone surgical scalpel with the added bonus of minimal postoperative scar tissue formation. In this work, a tandem of PIRL ablation with electrospray ionization (PIR-LAESI) mass spectrometry is demonstrated and characterized for tissue molecular imaging, with a limit of detection in the range of 100 nM for reserpine or better than 5 nM for verapamil in aqueous solution. We characterized PIRL crater size using agar films containing Rhodamine. PIR-LAESI offers a 20-30 μm vertical resolution (∼3 μm removal per pulse) and a lateral resolution of ∼100 μm. We were able to detect 25 fmol of Rhodamine in agar ablation experiments. PIR-LAESI was used to map the distribution of endogenous methoxykaempferol glucoronide in zebra plant (Aphelandra squarrosa) leaves producing a localization map that is corroborated by the literature. PIR-LAESI was further used to image the distribution inside mouse kidneys of gadoteridol, an exogenous magnetic resonance contrast agent intravenously injected. Parallel mass spectrometry imaging (MSI) using desorption electrospray ionization (DESI) and matrix assisted laser desorption ionization (MALDI) were performed to corroborate PIR-LAESI images of the exogenous agent. We further show that PIR-LAESI is capable of desorption ionization of proteins as well as phospholipids. This comparative study illustrates that PIR-LAESI is an ion source for ambient mass spectrometry applications. As such, a future PIRL scalpel combined with secondary ionization such as ESI and mass spectrometry has the potential to provide molecular feedback to guide PIRL surgery. PMID:26561279

  20. Disentangling picosecond events that complicate the quantitative use of the calcium sensor YC3.60.

    PubMed

    Laptenok, S P; van Stokkum, I H M; Borst, J W; van Oort, B; Visser, A J W G; van Amerongen, H

    2012-03-01

    Yellow Cameleon 3.60 (YC3.60) is a calcium sensor based on Förster resonance energy transfer (FRET). This sensor is composed of a calmodulin domain and a M13 peptide, which are located in between enhanced cyan-fluorescent protein (ECFP) and the Venus variant of enhanced yellow-fluorescent protein (EYFP). Depending on the calcium concentration, the efficiency of FRET from donor ECFP to acceptor EYFP is changing. In this study, we have recorded time-resolved fluorescence spectra of ECFP, EYFP, and YC3.60 in aqueous solution with picosecond time resolution, using different excitation wavelengths. Detailed insight in the FRET kinetics was obtained by using global and target analyses of time- and wavelength-resolved fluorescence of purified YC3.60 in calcium-free and calcium-bound conformations. The results clearly demonstrate that for both conformations, there are two distinct donor populations: a major one giving rise to FRET and a minor one not able to perform FRET. The transfer time for the calcium-bound conformation is 21 ps, whereas it is in the order of 1 ns for the calcium-free conformation. Ratio imaging of acceptor and donor fluorescence intensities of YC3.60 is usually applied to measure Ca(2+) concentrations in living cells. From the obtained results, it is clear that the intensity ratio is strongly influenced by the presence of donor molecules that do not take part in FRET, thereby significantly affecting the quantitative interpretation of the results.

  1. Reduction of thermocoagulative injury via use of a picosecond infrared laser (PIRL) in laryngeal tissues.

    PubMed

    Böttcher, Arne; Kucher, Stanislav; Knecht, Rainald; Jowett, Nathan; Krötz, Peter; Reimer, Rudolph; Schumacher, Udo; Anders, Sven; Münscher, Adrian; Dalchow, Carsten V; Miller, R J Dwayne

    2015-04-01

    The carbon dioxide (CO2) laser is routinely used in glottic microsurgery for the treatment of benign and malignant disease, despite significant collateral thermal damage secondary to photothermal vaporization without thermal confinement. Subsequent tissue response to thermal injury involves excess collagen deposition resulting in scarring and functional impairment. To minimize collateral thermal injury, short-pulse laser systems such as the microsecond pulsed erbium:yttrium-aluminium-garnet (Er:YAG) laser and picosecond infrared laser (PIRL) have been developed. This study compares incisions made in ex vivo human laryngeal tissues by CO2 and Er:YAG lasers versus PIRL using light microscopy, environmental scanning electron microscopy (ESEM), and infrared thermography (IRT). In comparison to the CO2 and Er:YAG lasers, PIRL incisions showed significantly decreased mean epithelial (59.70 µm) and subepithelial (22.15 µm) damage zones (p < 0.05). Cutting gaps were significantly narrower for PIRL (133.70 µm) compared to Er:YAG and CO2 lasers (p < 0.05), which were more than 5 times larger. ESEM revealed intact collagen fibers along PIRL cutting edges without obvious carbonization, in comparison to diffuse carbonization and tissue melting seen for CO2 and Er:YAG laser incisions. IRT demonstrated median temperature rise of 4.1 K in PIRL vocal fold incisions, significantly less than for Er:YAG laser cuts (171.85 K; p < 0.001). This study has shown increased cutting precision and reduced lateral thermal damage zones for PIRL ablation in comparison to conventional CO2 and Er:YAG lasers in human glottis and supraglottic tissues.

  2. Picosecond time-gated Raman spectroscopy for transcutaneous evaluation of bone composition

    NASA Astrophysics Data System (ADS)

    Morris, Michael D.; Draper, Edward R. C.; Goodship, Allen E.; Matousek, Pavel; Towrie, Michael; Parker, Anthony W.; Camacho, Nancy P.

    2005-04-01

    For efficacious transcutaneous monitoring of bone mineralization and matrix quality a spatially averaged measurement is needed, often over a large area. This precludes the use of confocal microscopy. We use picosecond pulsed laser excitation and Kerr-gated time-resolved data collection techniques to obtain marker bands of bone condition whilst rejecting interfering Raman scatter from skin, tendon and other overlying tissue. Alternatively, the methodology can be used to collect signals only from these overlying tissues. In all these experiments the 1 ps pulsed laser beam is focused to approximately 1 mm diameter. Raman light is then collected at specific times following the arrival of the pulse at time delays typically from 0 to 10 ps by opening an ultrafast optical shutter based on a Kerr cell that is driven by a second synchronized laser pulse. This permits specific probing of different layers of tissue. Individual delayed spectra are co-added and the resulting correction signal is subtracted from the ungated composite spectrum or from late-arriving time-resolved spectra. We have validated this methodology using tissue from the metacarpus and radius of several strains of laboratory mice. Overlying skin, flesh and tendon was removed from metacarpus and radius of one foreleg of a mouse and the tissue used as a control. The other foreleg served as the test specimen and was prepared by shaving the hair from the tissue, leaving the skin intact. Transcutaneous time-gated Raman spectra were measured on these specimens. With an 800 nm laser spatially resolved spectroscopy with depth penetration to greater than 1 mm was easily achieved. Normal and defective bone tissue were readily distinguished.

  3. Capturing interfacial photoelectrochemical dynamics with picosecond time-resolved X-ray photoelectron spectroscopy.

    PubMed

    Neppl, Stefan; Shavorskiy, Andrey; Zegkinoglou, Ioannis; Fraund, Matthew; Slaughter, Daniel S; Troy, Tyler; Ziemkiewicz, Michael P; Ahmed, Musahid; Gul, Sheraz; Rude, Bruce; Zhang, Jin Z; Tremsin, Anton S; Glans, Per-Anders; Liu, Yi-Sheng; Wu, Cheng Hao; Guo, Jinghua; Salmeron, Miquel; Bluhm, Hendrik; Gessner, Oliver

    2014-01-01

    Time-resolved core-level spectroscopy using laser pulses to initiate and short X-ray pulses to trace photoinduced processes has the unique potential to provide electronic state- and atomic site-specific insight into fundamental electron dynamics in complex systems. Time-domain studies using transient X-ray absorption and emission techniques have proven extremely valuable to investigate electronic and structural dynamics in isolated and solvated molecules. Here, we describe the implementation of a picosecond time-resolved X-ray photoelectron spectroscopy (TRXPS) technique at the Advanced Light Source (ALS) and its application to monitor photoinduced electron dynamics at the technologically pertinent interface formed by N3 dye molecules anchored to nanoporous ZnO. Indications for a dynamical chemical shift of the Ru3d photoemission line originating from the N3 metal centre are observed ∼30 ps after resonant HOMO-LUMO excitation with a visible laser pump pulse. The transient changes in the TRXPS spectra are accompanied by a characteristic surface photovoltage (SPV) response of the ZnO substrate on a pico- to nanosecond time scale. The interplay between the two phenomena is discussed in the context of possible electronic relaxation and recombination pathways that lead to the neutralisation of the transiently oxidised dye after ultrafast electron injection. A detailed account of the experimental technique is given including an analysis of the chemical modification of the nano-structured ZnO substrate during extended periods of solution-based dye sensitisation and its relevance for studies using surface-sensitive spectroscopy techniques.

  4. Effect of defocusing on picosecond laser-coupling into gold cones

    SciTech Connect

    Bush, I. A. Pasley, J.; Thomas, A. G. R.; Gartside, L.; Sarfraz, S.; Wagenaars, E.; Green, J. S.; Notley, M.; Lowe, H.; Spindloe, C.; Winstone, T.; Robinson, A. P. L.; Clarke, R.; Ma, T.; Yabuuchi, T.; Wei, M.; Beg, F. N.; Stephens, R. B.; MacPhee, A.; MacKinnon, A. J.; and others

    2014-01-15

    Here, we show that defocusing of the laser in the interaction of a picosecond duration, 1.053 μm wavelength, high energy pulse with a cone-wire target does not significantly affect the laser energy coupling efficiency, but does result in a drop in the fast electron effective temperature. This may be beneficial for fast ignition, since not only were more electrons with lower energies seen in the experiment but also the lower prepulse intensity will reduce the amount of preplasma present on arrival of the main pulse, reducing the distance the hot electrons have to travel. We used the Vulcan Petawatt Laser at the Rutherford Appleton Laboratory and gold cone targets with approximately 1 mm long, 40 μm diameter copper wires attached to their tip. Diagnostics included a quartz crystal imager, a pair of highly oriented pyrolytic graphite crystal spectrometers and a calibrated CCD operating in the single photon counting regime, all of which looked at the copper K{sub α} emission from the wire. A short pulse optical probe, delayed 400 ps relative to the main pulse was employed to diagnose the extent of plasma expansion around the wire. A ray-tracing code modeled the change in intensity on the interior surface of the cone with laser defocusing. Using a model for the wire copper K{sub α} emission coupled to a hybrid Vlasov-Fokker-Planck code, we ran a series of simulations, holding the total energy in electrons constant whilst varying the electron temperature, which support the experimental conclusions.

  5. Study on third-order nonlinear optical properties of 4-methylsulfanyl chalcone derivatives using picosecond pulses

    SciTech Connect

    D'silva, E.D.; Podagatlapalli, G. Krishna; Venugopal Rao, S.; Dharmaprakash, S.M.

    2012-11-15

    Graphical abstract: Photograph and schematic representation of Z-scan experimental setup used to investigate third order nonlinear properties of the chalcone materials. Highlights: ► Br and NO{sub 2} substituted chalcone derivatives were exposed to picosecond laser pulses. ► Third-order nonlinear optical (NLO) properties were investigated. ► Compounds show promising third-order and optical limiting properties. ► These materials found suitable for electrical and optical applications. -- Abstract: In this paper we present results from the experimental study of third-order nonlinear optical (NLO) properties of three molecules of Br and NO{sub 2} substituted chalcone derivatives namely (2E)-1-(4-bromophenyl)-3-[4(methylsulfanyl)phenyl]prop-2-en-1-one (4Br4MSP), (2E)-1-(3-bromophenyl)-3-[4-(methylsulfanyl) phenyl]prop-2-en-1-one (3Br4MSP) and (2E)-3[4(methylsulfanyl) phenyl]-1-(4-nitrophenyl)prop-2-en-1-one (4N4MSP). The NLO properties have been investigated by Z-scan technique using 2 ps laser pulses at 800 nm. The nonlinear refractive indices, nonlinear absorption coefficient, and the magnitude of third-order susceptibility have been determined. The values obtained are of the order of 10{sup −7} cm{sup 2}/GW, 10{sup −3} cm/GW and 10{sup −14} esu respectively. The molecular second hyperpolarizability for the chalcone derivatives is of the order of 10{sup −32} esu. The coupling factor, excited state cross section, ground state cross section etc. were determined. The optical limiting (OL) property was studied. The results suggest that the nonlinear properties investigated for present chalcones are comparable with some of the reported chalcone derivatives and can be desirable for NLO applications.

  6. Ambient Mass Spectrometry Imaging with Picosecond Infrared Laser Ablation Electrospray Ionization (PIR-LAESI).

    PubMed

    Zou, Jing; Talbot, Francis; Tata, Alessandra; Ermini, Leonardo; Franjic, Kresimir; Ventura, Manuela; Zheng, Jinzi; Ginsberg, Howard; Post, Martin; Ifa, Demian R; Jaffray, David; Miller, R J Dwayne; Zarrine-Afsar, Arash

    2015-12-15

    A picosecond infrared laser (PIRL) is capable of cutting through biological tissues in the absence of significant thermal damage. As such, PIRL is a standalone surgical scalpel with the added bonus of minimal postoperative scar tissue formation. In this work, a tandem of PIRL ablation with electrospray ionization (PIR-LAESI) mass spectrometry is demonstrated and characterized for tissue molecular imaging, with a limit of detection in the range of 100 nM for reserpine or better than 5 nM for verapamil in aqueous solution. We characterized PIRL crater size using agar films containing Rhodamine. PIR-LAESI offers a 20-30 μm vertical resolution (∼3 μm removal per pulse) and a lateral resolution of ∼100 μm. We were able to detect 25 fmol of Rhodamine in agar ablation experiments. PIR-LAESI was used to map the distribution of endogenous methoxykaempferol glucoronide in zebra plant (Aphelandra squarrosa) leaves producing a localization map that is corroborated by the literature. PIR-LAESI was further used to image the distribution inside mouse kidneys of gadoteridol, an exogenous magnetic resonance contrast agent intravenously injected. Parallel mass spectrometry imaging (MSI) using desorption electrospray ionization (DESI) and matrix assisted laser desorption ionization (MALDI) were performed to corroborate PIR-LAESI images of the exogenous agent. We further show that PIR-LAESI is capable of desorption ionization of proteins as well as phospholipids. This comparative study illustrates that PIR-LAESI is an ion source for ambient mass spectrometry applications. As such, a future PIRL scalpel combined with secondary ionization such as ESI and mass spectrometry has the potential to provide molecular feedback to guide PIRL surgery.

  7. Fabrication of broadband antireflective black metal surfaces with ultra-light-trapping structures by picosecond laser texturing and chemical fluorination

    NASA Astrophysics Data System (ADS)

    Zheng, Buxiang; Wang, Wenjun; Jiang, Gedong; Mei, Xuesong

    2016-06-01

    A hybrid method consisting of ultrafast laser-assisted texturing and chemical fluorination treatment was applied for efficiently enhancing the surface broadband antireflection to fabricate black titanium alloy surface with ultra-light-trapping micro-nanostructure. Based on the theoretical analysis of surface antireflective principle of micro-nanostructures and fluoride film, the ultra-light-trapping micro-nanostructures have been processed using a picosecond pulsed ultrafast laser on titanium alloy surfaces. Then fluorination treatment has been performed by using fluoroalkyl silane solution. According to X-ray diffraction phase analysis of the surface compositions and measurement of the surface reflectance using spectrophotometer, the broadband antireflective properties of titanium alloy surface with micro-nano structural characteristics were investigated before and after fluorination treatment. The results show that the surface morphology of micro-nanostructures processed by picosecond laser has significant effects on the antireflection of light waves to reduce the surface reflectance, which can be further reduced using chemical fluorination treatment. The high antireflection of over 98 % in a broad spectral range from ultraviolet to infrared on the surface of metal material has been achieved for the surface structures, and the broadband antireflective black metal surfaces with an extremely low reflectance of ultra-light-trapping structures have been obtained in the wavelength range from ultraviolet-visible to near-infrared, middle-wave infrared. The average reflectance of microgroove groups structured surface reaches as low as 2.43 % over a broad wavelength range from 200 to 2600 nm. It indicates that the hybrid method comprising of picosecond laser texturing and chemical fluorination can effectively induce the broadband antireflective black metal surface. This method has a potential application for fabricating antireflective surface used to improve the

  8. Emergency cricothyrotomy.

    PubMed

    Hart, Kristopher L; Thompson, Stevan H

    2010-03-01

    Establishment of an unobstructed airway and adequate oxygenation is a basic tenet of life support. Mechanical or anatomic airway obstructions can arise secondary to trauma, pathology, foreign bodies, and infection. The oral and maxillofacial surgeon is uniquely trained to provide surgical and anesthetic care, and must be prepared to provide emergency airway management. This article reviews the indications, contraindications, and techniques of surgical and needle cricothyrotomy. Fortunately, with advances in airway techniques and equipment, emergency cricothyrotomy is not a common procedure. However, in the event that a surgeon has no other means of securing an airway, this procedure may avert a catastrophe. If such a situation does occur, quick and decisive action can best be carried out if there is a thorough understanding of the anatomy and techniques involved.

  9. Emergence delirium.

    PubMed

    Munk, Louise; Andersen, Lars Peter Holst; Gögenur, Ismail

    2013-11-01

    Emergence delirium (ED) is a well-known phenomenon in the postoperative period. However, the literature concerning this clinical problem is limited. This review evaluates the literature with respect to epidemiology and risk factors. Treatment strategies are discussed. The review concludes that there is a need for guidelines concerning diagnosis and treatment of ED. Risk factors should be investigated further in the clinical setting in the future. PMID:24312995

  10. Thyroid Emergencies.

    PubMed

    Leung, Angela M

    2016-01-01

    Myxedema coma and thyroid storm are thyroid emergencies associated with increased mortality. Prompt recognition of these states-which represent the severe, life-threatening conditions of extremely reduced or elevated circulating thyroid hormone concentrations, respectively-is necessary to initiate treatment. Management of myxedema coma and thyroid storm requires both medical and supportive therapies and should be treated in an intensive care unit setting. PMID:27598067

  11. Emerging jets

    NASA Astrophysics Data System (ADS)

    Schwaller, Pedro; Stolarski, Daniel; Weiler, Andreas

    2015-05-01

    In this work, we propose a novel search strategy for new physics at the LHC that utilizes calorimeter jets that (i) are composed dominantly of displaced tracks and (ii) have many different vertices within the jet cone. Such emerging jet signatures are smoking guns for models with a composite dark sector where a parton shower in the dark sector is followed by displaced decays of dark pions back to SM jets. No current LHC searches are sensitive to this type of phenomenology. We perform a detailed simulation for a benchmark signal with two regular and two emerging jets, and present and implement strategies to suppress QCD backgrounds by up to six orders of magnitude. At the 14 TeV LHC, this signature can be probed with mediator masses as large as 1.5 TeV for a range of dark pion lifetimes, and the reach is increased further at the high-luminosity LHC. The emerging jet search is also sensitive to a broad class of long-lived phenomena, and we show this for a supersymmetric model with R-parity violation. Possibilities for discovery at LHCb are also discussed.

  12. Generation of 0. 7--0. 8. mu. picosecond pulses in an alexandrite laser with passive mode locking

    SciTech Connect

    Lisitsyn, V.N.; Matrosov, V.N.; Orekhova, V.P.; Pestryakov, E.V.; Sevast'yanov, B.K.; Trunov, V.I.; Zenin, V.N.; Remigailo, Y.L.

    1982-03-01

    Picosecond pulses of 0.7--0.8 ..mu.. wavelengths were generated in an alexandrite laser as a result of electronic--vibrational transitions /sup 4/T/sub 2/ ..-->.. /sup 4/A/sub 2/+h..omega../sub phonon/. Passive mode locking was ensured by the use of DS1 and DTTS saturable absorbers. The duration of the pulses generated using DS1 was 8 psec at wavelengths of 0.725--0.745 ..mu.., whereas the duration of the pulses generated using DTTS was 90 psec in the range 0.75--0.775 ..mu...

  13. X-Lase CoreScriber, Picosecond Fiber Laser Tool for High-Precision Scribing and Cutting of Transparent Materials

    NASA Astrophysics Data System (ADS)

    Kivistö, S.; Amberla, T.; Konnunaho, T.; Kangastupa, J.; Sillanpää, J.

    We have developed various industrial transparent material scribing processes and a laser tool, picosecond MHz-range all- fiber laser X-Lase CoreScriber. The remarkably high peak power, exceptionally good beam quality, and integrability of the X-Lase CoreScriber combined with high achievable material processing speeds provide tempting solutions for high- precision glass processing. Here presented sapphire and Gorilla glass dicing processes are based on transparent material internal modification with short and intense high repetition rate ps-laser pulses. Increased processing speeds and cutting qualities in comparison to other conventional processing methods are presented.

  14. Observation of coherently enhanced tunable narrow-band terahertz transition radiation from a relativistic sub-picosecond electron bunch train

    SciTech Connect

    Piot, P.; Sun, Y. -E; Maxwell, T. J.; Ruan, J.; Lumpkin, A. H.; Rihaoui, M. M.; Thurman-Keup, R.

    2011-06-27

    We experimentally demonstrate the production of narrow-band (δf/f ~ =20% at f ~ = 0.5 THz) THz transition radiation with tunable frequency over [0.37, 0.86] THz. The radiation is produced as a train of sub-picosecond relativistic electron bunches transits at the vacuum-aluminum interface of an aluminum converter screen. In addition, we show a possible application of modulated beams to extend the dynamical range of a popular bunch length diagnostic technique based on the spectral analysis of coherent radiation.

  15. Pulsed picosecond 766 nm laser source operating between 1-80 MHz with automatic pump power management

    NASA Astrophysics Data System (ADS)

    Schönau, Thomas; Siebert, Torsten; Härtel, Romano; Eckhardt, Thomas; Klemme, Dietmar; Lauritsen, Kristian; Erdmann, Rainer

    2013-03-01

    The optical amplification and frequency conversion of a gain-switched 1532 nm distributed feedback (DFB) laser diode over a wide range of repetition rates are studied. A two stage Erbium fiber amplifier setup is pumped at 976 nm and operated at 1 to 80MHz pulse repetition frequency. The seed laser repetition rate is evaluated directly inside the pumping electronics to set the optimum pump power. Second-harmonic generation to 766 nm is achieved in a periodically poled lithium niobate bulk crystal. There is a high demand of several hundred milliwatt of picosecond pulsed laser power for stimulated emission depletion (STED) microscopy.

  16. Development of a kW-level picosecond thin-disk regenerative amplifier with a ring cavity

    NASA Astrophysics Data System (ADS)

    Mužik, J.; Smrž, M.; Novák, O.; Miura, T.; Endo, A.; Kubeček, V.; Mocek, T.

    2016-04-01

    We report on development of a 100-kHz, 5-mJ picosecond system based on a two-stage thin-disk Yb:YAG regenerative amplifier. With a compact ring cavity, we obtained 565 W with 46.7% optical-to-optical efficiency in continuous-wave. In seeded operation, pulses with energy up to 4 mJ and 1.4-nm bandwidth were generated with 39% extraction efficiency. Pulse compression below 2 ps was so far demonstrated at lower pulse energy of 1 mJ. Full-power pulse compression and further pulse energy increase are under development.

  17. Investigations on the nonlinear optical response and losses of toluene at 532 and 1064 nm in the picosecond regime

    NASA Astrophysics Data System (ADS)

    Boudebs, Georges; Wang, Hongzhen; Cassagne, Christophe; Leblond, Hervé; de Araújo, Cid B.

    2016-05-01

    The nonlinear (NL) response of toluene was investigated at 1064 and 532 nm using a Nd:YAG laser delivering pulses in the picosecond regime and its second harmonic. The experiments were performed using the Z-scan D4σ technique. Two different regimes were identified for both wavelengths used: at moderate intensities, NL refractive indices of third- and fifth-order were measured, while above certain intensity, NL losses were phenomenologically estimated according to a cubic intensity dependency. This absorption is mainly attributed to multiphoton ionization. The observed saturation behavior for large intensities indicates the important contribution of free-carriers generation.

  18. Picosecond transient circular dichroism of the photoreceptor protein of the light-adapted form of Blepharisma japonicum

    NASA Astrophysics Data System (ADS)

    Hache, François; Khuc, Mai-Thu; Brazard, Johanna; Plaza, Pascal; Martin, Monique M.; Checcucci, Giovanni; Lenci, Francesco

    2009-11-01

    We present a picosecond transient circular dichroism study of OBIP, the putative photoreceptor protein involved in the photophobic response of Blepharisma japonicum. The probe wavelength was chosen at 230 nm. The results are compared to those of the isolated chromophore, OxyBP, in solution. The CD changes in OBIP and OxyBP do not show the same dynamics: OBIP's signal relaxes in a few ps whereas no such decay is obtained for OxyBP. This observation brings support to the formerly evoked existence of a fast photoinduced reaction in the chromoprotein, and demonstrates the implication of local geometrical changes that accompany this process.

  19. Photoinduced electron transfer and back transfer in systems of randomly distributed donors and acceptors: picosecond transient grating experiments

    SciTech Connect

    Dorfman, R.C.; Lin, Y.; Zimmt, M.B.; Baumann, J.; Domingue, R.P.; Fayer, M.D.

    1988-07-28

    Electron transfer from an optically excited donor (rubrene) to randomly distributed acceptors (duroquinone) followed by electron back transfer in a rigid solution (sucrose octaacetate) has been studied theoretically and experimentally. The forward electron transfer process was observed by time-dependent fluorescence quenching measurements, while the electron back transfer from the radical anion to the radical cation was monitored by using the picosecond transient grating (TG) technique. A statistical mechanics theory is used to describe the highly exponential TG signals and to extract the forward and back transfer parameters from the data. The agreement between the theory and experiments is excellent. The values of the forward and back transfer parameters are reported.

  20. Tunable terahertz generation in the picosecond regime from the stimulated polariton scattering in a LiNbO3 crystal.

    PubMed

    Warrier, Aravindan M; Li, Ran; Lin, Jipeng; Lee, Andrew J; Pask, Helen M; Spence, David J

    2016-09-15

    We demonstrate narrowband tunable terahertz generation from a picosecond LiNbO3 polariton laser, pumped by a CW mode-locked Nd:YVO4 picosecond laser. We generated up to 5.4 μW of terahertz output in untuned mode. We tuned the terahertz output, using etalons in the cavity, from 0.51 to 2.12 THz. Terahertz output powers of 3.7 μW and 2.4 μW were achieved at terahertz frequencies of 1.6 THz and 0.9 THz, respectively. PMID:27628410

  1. Tunable terahertz generation in the picosecond regime from the stimulated polariton scattering in a LiNbO3 crystal.

    PubMed

    Warrier, Aravindan M; Li, Ran; Lin, Jipeng; Lee, Andrew J; Pask, Helen M; Spence, David J

    2016-09-15

    We demonstrate narrowband tunable terahertz generation from a picosecond LiNbO3 polariton laser, pumped by a CW mode-locked Nd:YVO4 picosecond laser. We generated up to 5.4 μW of terahertz output in untuned mode. We tuned the terahertz output, using etalons in the cavity, from 0.51 to 2.12 THz. Terahertz output powers of 3.7 μW and 2.4 μW were achieved at terahertz frequencies of 1.6 THz and 0.9 THz, respectively.

  2. Psychiatric Emergencies.

    PubMed

    Wheat, Santina; Dschida, Dorothy; Talen, Mary R

    2016-06-01

    Psychiatric emergencies are acute disturbances in thought, behavior, mood, or social relationship that require immediate intervention as defined by the patient, family, or social unit to save the patient and/or others from imminent danger. Ensuring the safety of the patient, surrounding persons, and the medical team is the first step of evaluation. Treatment focuses on stabilization of the patient, then on specific symptoms and ultimately the cause of symptoms. There are important legal considerations, particularly regarding involuntary admissions. It is important to debrief with the patient, surrounding family, and the health care team to ensure a continued therapeutic alliance and the emotional health of all involved. PMID:27262012

  3. Structure and function of the photoreceptor stentorins in Stentor coeruleus. II. Primary photoprocess and picosecond time-resolved fluorescence.

    PubMed

    Song, P S; Kim, I H; Florell, S; Tamai, N; Yamazaki, T; Yamazaki, I

    1990-08-01

    Stentorin serves as the photoreceptor for the photophobic and negative phototactic responses in Stentor coeruleus. Two forms of the stentorin have been isolated and purified. The strongly fluorescent form, stentorin I at pH 7.8, exhibited nearly exponential fluorescence decay monitored at 620 nm, having two comparable lifetime decay components of 2.53 ns (47%) and 5.95 ns (53%). Stentorin I showed no significant time-resolved fluorescence emission spectra in the picosecond-nanosecond time scales. The weakly fluorescent form, stentorin II, exhibited an ultrafast fluorescence decay component (10 ps) at an emission wavelength of 630 nm and pH 7.8. The amplitudes of the multi-component fluorescence in stentorin II were found to be emission wavelength-dependent. Furthermore, the fluorescence emission spectrum was time-resolvable in the picosecond time scales. Effects of pH and pD on the fluorescence decay kinetics and time-resolved spectra of stentorins I and II have also been investigated. Results are suggestive of proton dissociation as a primary photoprocess from the excited state of stentorin II. PMID:2378902

  4. Effect of different parameters on machining of SiC/SiC composites via pico-second laser

    NASA Astrophysics Data System (ADS)

    Li, Weinan; Zhang, Ruoheng; Liu, Yongsheng; Wang, Chunhui; Wang, Jing; Yang, Xiaojun; Cheng, Laifei

    2016-02-01

    Pico-second laser plays an important role in modern machining technology, especially in machining high hardness materials. In this article, pico-second laser was utilized for irradiation on SiC/SiC composites, and effects of different processing parameters including the machining modes and laser power were discussed in detail. The results indicated that the machining modes and laser power had great effect on machining of SiC/SiC composites. Different types of surface morphology and structure were observed under helical line scanning and single ring line scanning, and the analysis of their formulation was discussed in detail. It was believed that the machining modes would be responsible to the different shapes of machining results at the same parameters. The processing power shall also influence the surface morphology and quality of machining results. In micro-hole drilling process, large amount of debris and fragments were observed within the micro-holes, and XPS analysis showed that there existed Si-O bonds and Si-C bonds, indicating that the oxidation during processing was incomplete. Other surface morphology, such as pores and pits were discussed as well.

  5. Compact KGd(WO4)2 picosecond pulse-train synchronously pumped broadband Raman laser.

    PubMed

    Gao, Xiao Qiang; Long, Ming Liang; Meng, Chen

    2016-08-20

    We demonstrate an efficient approach to realizing an extra-cavity, synchronously pumped, stimulated Raman cascaded process under low repetition frequency (1 kHz) pump conditions. We also construct a compact KGd(WO4)2 (KGW) crystal picosecond Raman laser that has been configured as the developed method. A pulse-train green laser pumped the corresponding 70 mm long KGW crystal Raman cavity. The pulse train contains six pulses, about 800 ps separated, for every millisecond; thus, it can realize synchronous pumping between pump pulse and the pumped Raman cavity. The investigated system produced a collinear Raman laser output that includes six laser lines covering the 532 to 800 nm spectra. This is the first report on an all-solid-state, high-average-power picosecond collinear multi-wavelength (more than three laser components) laser to our knowledge. This method has never been reported on before in the synchronously pumped stimulated Raman scattering (SRS) realm. PMID:27556971

  6. All-fiber wavelength-tunable picosecond nonlinear reflectivity measurement setup for characterization of semiconductor saturable absorber mirrors

    NASA Astrophysics Data System (ADS)

    Viskontas, K.; Rusteika, N.

    2016-09-01

    Semiconductor saturable absorber mirror (SESAM) is the key component for many passively mode-locked ultrafast laser sources. Particular set of nonlinear parameters is required to achieve self-starting mode-locking or avoid undesirable q-switch mode-locking for the ultra-short pulse laser. In this paper, we introduce a novel all-fiber wavelength-tunable picosecond pulse duration setup for the measurement of nonlinear properties of saturable absorber mirrors at around 1 μm center wavelength. The main advantage of an all-fiber configuration is the simplicity of measuring the fiber-integrated or fiber-pigtailed saturable absorbers. A tunable picosecond fiber laser enables to investigate the nonlinear parameters at different wavelengths in ultrafast regime. To verify the capability of the setup, nonlinear parameters for different SESAMs with low and high modulation depth were measured. In the operating wavelength range 1020-1074 nm, <1% absolute nonlinear reflectivity accuracy was demonstrated. Achieved fluence range was from 100 nJ/cm2 to 2 mJ/cm2 with corresponding intensity from 10 kW/cm2 to 300 MW/cm2.

  7. Fabrication of sub-micron surface structures on copper, stainless steel and titanium using picosecond laser interference patterning

    NASA Astrophysics Data System (ADS)

    Bieda, Matthias; Siebold, Mathias; Lasagni, Andrés Fabián

    2016-11-01

    Picosecond direct laser interference patterning (ps-DLIP) is investigated theoretically and experimentally for the bulk metals copper, stainless steel and titanium. While surface texturing with nanosecond pulses is limited to feature sizes in the micrometer range, utilizing picosecond pulses can lead to sub-micrometer structures. The modelling and simulation of ps-DLIP are based on the two-temperature model and were carried out for a pulse duration of 35 ps at 515 nm wavelength and a laser fluence of 0.1 J/cm2. The subsurface temperature distribution of both electrons and phonons was computed for periodic line-like structures with a pitch of 0.8 μm. The increase in temperature rises for a lower absorption coefficient and a higher thermal conductivity. The distance, at which the maximum subsurface temperature occurs, increases for a small absorption coefficient. High absorption and low thermal conductivity minimize internal heating and give rise to a pronounced surface micro topography with pitches smaller than 1 μm. In order to confirm the computed results, periodic line-like surface structures were produced using two interfering beams of a Yb:YAG-Laser with 515 nm wavelength and a pulse duration of 35 ps. It was possible to obtain a pitch of 0.7 μm on the metallic surfaces.

  8. Changes in Protein Architecture and Sub-Picosecond Protein Dynamics Impact the Reaction Catalyzed by Lactate Dehydrogenase

    PubMed Central

    Masterson, Jean E.; Schwartz, Steven D.

    2013-01-01

    We have previously established the importance of a promoting vibration, a sub-picosecond protein motion that propagates through a specific axis of residues, in the reaction coordinate of lactate dehydrogenase (LDH). To test the effect that perturbation of this motion would have on the enzymatic reaction, we employ transition path sampling to obtain transition path ensembles for four independent LDH enzymatic systems: the wild type enzyme, a version of the enzyme expressing heavy isotopic substitution, and two enzymes with mutations in the promoting vibration axis. We show that even slight changes in the promoting vibration of LDH result in dramatic changes in enzymatic chemistry. In the “heavy” version of the enzyme, we find that the dampening of the sub-picosecond dynamics from heavy isotopic substitution leads to a drastic increase in the time of barrier crossing. Furthermore, we see that mutation of the promoting vibration axis causes a decrease in the variability of transition paths available to the enzymatic reaction. The combined results reveal the importance of the protein architecture of LDH in enzymatic catalysis by establishing how the promoting vibration is finely tuned to facilitate chemistry. PMID:23441954

  9. Emergency Lighting

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A lighting system originally developed for NASA's Apollo and Skylab manned spacecraft resulted in a industrial spinoff and creation of a whole new company to produce and market the product line. The company is UDEC Corp., Waltham, Mass. UDEC's "Multi-Mode" electronic lighting systems are designed for plant emergency and supplemental use, such as night lighting, "always-on" stairwell lights and illuminated exit signs. Their advantages stem from the qualities demanded for spacecraft installation: extremely high fight output with very low energy drain, compactness, light weight, and high reliability. The Multi-Mode system includes long-life fluorescent lamps operated by electronic circuitry, a sealed battery that needs no maintenance for 10 years, and a solid-state battery charger. A typical emergency installation consists of a master module with battery and an eight watt lamp, together with four remote "Satellight" modules powered by the master's battery. As a night lighting system for maintenance or I security, UDEC fixtures can bypass the battery and 1 operate on normal current at a fraction of the energy 1 demand of conventional night lighting. Industrial customers have realized savings of better than ninety percent with UDEC night lights. UDEC started as a basement industry in 1972 but the company has already sold more than 1,000 lighting systems to building operators.

  10. Study of picosecond processes of an intercalated dipyridophenazine Cr(III) complex bound to defined sequence DNAs using transient absorption and time-resolved infrared methods.

    PubMed

    Devereux, Stephen J; Keane, Páraic M; Vasudevan, Suni; Sazanovich, Igor V; Towrie, Michael; Cao, Qian; Sun, Xue-Zhong; George, Michael W; Cardin, Christine J; Kane-Maguire, Noel A P; Kelly, John M; Quinn, Susan J

    2014-12-21

    Picosecond transient absorption (TA) and time-resolved infrared (TRIR) measurements of rac-[Cr(phen)2(dppz)](3+) () intercalated into double-stranded guanine-containing DNA reveal that the excited state is very rapidly quenched. As no evidence was found for the transient electron transfer products, it is proposed that the back electron transfer reaction must be even faster (<3 ps).

  11. Multiemission wavelength picosecond time-resolved fluorescence decay data obtained on the millisecond time scale: application to protein:DNA interactions and protein-folding reactions

    NASA Astrophysics Data System (ADS)

    Beechem, Joseph M.

    1992-04-01

    One of the major aspects of fluorescence spectroscopy which differentiates this technique from many other spectroscopic approaches is the inherent multidimensional nature of the data. For instance, the basic pulsed-laser fluorescence data set is characterized by fluorescence versus: emission wavelength, polarization state (parallel and perpendicular intensities), time of emission (picoseconds to nanoseconds), and time of biological reaction (milliseconds to minutes). Usually, this six-dimensional data set is obtained piecemeal, single dimension at a time; often complete data sets are not even collected. This is especially true of the biological time scale axis. Data acquisition times for picosecond decay data are typically seconds to minutes, and, therefore, it has not been generally possible to perform this experiment in a kinetic mode. What is described in this report is the construction of a parallel multichannel time-correlated single-photon counting (TCSPC) fluorometer which is capable of simultaneous collection of: fluorescence vs. picosecond to nanosecond time vs. emission wavelength vs. polarization state vs. millisecond to second time. Use is made of two multi-anode microchannel plate detectors, each obtaining data at two different polarization states, six different emission wavelengths, along 12 independent TCSPC channels. This instrument is interfaced to a three-syringe stepper motor controlled stop-flow apparatus, and picosecond decay data along all of these channels is stored and collected by two 33 MHz 80486 computers at rates approaching 1200 - 12000 data sets per second.

  12. High efficiency picosecond pulse generation in the 675-930 nm region from a dye laser synchronously pumped by an argon-ion laser. Technical report

    SciTech Connect

    Bado, P.; Dupuy, C.; Wilson, K.R.; Boggy, R.; Bowen, J.

    1983-04-01

    Picosecond pulses tunable from 675 to 930 micrometers have been obtained from a dye-laser synchronously pumped at 514.5 micrometers by a mode-locked Argon-ion laser. Peak energy conversion efficiencies between 10% and 29% are observed with pulse durations between 1.7 ps and 16 ps as measured by autocorrelation.

  13. High power gain switched laser diodes using a novel compact picosecond switch based on a GaAs bipolar junction transistor structure for pumping

    NASA Astrophysics Data System (ADS)

    Vainshtein, Sergey; Kostamovaara, Juha

    2006-04-01

    A number of up-to-date applications, including advanced optical radars with high single-shot resolution, precise 3 D imaging, laser tomography, time imaging spectroscopy, etc., require low-cost, compact, reliable sources enabling the generation of high-power (1-100 W) single optical pulses in the picosecond range. The well-known technique of using the gain-switching operation mode of laser diodes to generate single picosecond pulses in the mW range fails to generate high-power single picosecond pulses because of a lack of high-current switches operating in the picosecond range. We report here on the achieving of optical pulses of 45W / 70ps, or alternatively 5W / 40ps, with gain-switched commercial quantum well (QW) laser diodes having emitting areas of 250 × 200 μm and 75 × 2 μm, respectively. This was made possible by the use of a novel high-current avalanche switch based on a GaAs bipolar junction transistor (BJT) structure with a switching time (<200ps) comparable to the lasing delay. (The extremely fast transient in this switch is caused by the generation and spread of a comb of powerfully avalanching Gunn domains of ultra-high amplitude in the transistor structure.) A simulation code developed earlier but modified and carefully verified here allowed detailed comparison of the experimental and simulated laser responses and the transient spectrum.

  14. Emerging technologies

    SciTech Connect

    Hodson, C.O.; Williams, D.

    1996-07-01

    Among the emerging technologies for air, hazardous waste and water come new ways of looking at pollution, in both the figurative and quite literal sense. The use of microbes for remediation and pollution control is a component in many of the technologies in this report and is the focus of environmental research at many university and industry labs. Bacteria are the engines driving one featured emissions control technology: the air biofilter. Biofilters are probably more acceptable to most engineers as a soil remediation technology--such as the innovative method described in the hazardous waste section--rather than as means of cleaning off-gases, but in many cases bugs can perform the function inexpensively. The authors give the basics on this available technology. A more experimental application of microbes is being investigated as a potential quantum leap in heavy metals removal technology: bio-engineered, metal consuming plants. The effort to genetically engineer a green remediation tool is detailed in the hazardous waste section.

  15. Emerging technologies

    SciTech Connect

    Lu, Shin-yee

    1993-03-01

    The mission of the Emerging Technologies thrust area at Lawrence Livermore National Laboratory is to help individuals establish technology areas that have national and commercial impact, and are outside the scope of the existing thrust areas. We continue to encourage innovative ideas that bring quality results to existing programs. We also take as our mission the encouragement of investment in new technology areas that are important to the economic competitiveness of this nation. In fiscal year 1992, we have focused on nine projects, summarized in this report: (1) Tire, Accident, Handling, and Roadway Safety; (2) EXTRANSYT: An Expert System for Advanced Traffic Management; (3) Odin: A High-Power, Underwater, Acoustic Transmitter for Surveillance Applications; (4) Passive Seismic Reservoir Monitoring: Signal Processing Innovations; (5) Paste Extrudable Explosive Aft Charge for Multi-Stage Munitions; (6) A Continuum Model for Reinforced Concrete at High Pressures and Strain Rates: Interim Report; (7) Benchmarking of the Criticality Evaluation Code COG; (8) Fast Algorithm for Large-Scale Consensus DNA Sequence Assembly; and (9) Using Electrical Heating to Enhance the Extraction of Volatile Organic Compounds from Soil.

  16. Emergency contraception

    PubMed Central

    Langille, Donald B.; Allen, Michael; Whelan, Anne Marie

    2012-01-01

    Abstract Objective To determine the extent to which Nova Scotian FPs prescribe and provide emergency contraceptive pills (ECPs) and to explore their knowledge of and attitudes toward ECPs. Design Survey of Nova Scotian FPs using a modified Dillman method. Setting All regions of Nova Scotia. Participants Family physicians registered with Dalhousie University’s Division of Continuing Medical Education. Main outcome measures Sex differences in the provision of ECPs and knowledge and attitudes about the ECP Plan B. Results Of 913 eligible FPs, 155 (17.0%) participated in the survey. Respondents resembled the sampling frame closely. Most physicians (64.0%) had prescribed ECPs in the previous year (mean number of prescriptions, 4.92); only 12.9% provided ECPs in advance of need. Knowledge about Plan B was quite good, except for knowledge of the time frame for potential effectiveness; only 29.2% of respondents answered that question correctly. Respondents generally supported nonprescription availability of ECPs, but 25.0% of FPs were concerned that this could lead to less use of more effective methods of contraception, and 39.2% believed that it would encourage repeat use. Younger FPs provided ECPs more often than their older colleagues, while female respondents had better knowledge about Plan B. In multivariate analysis being younger than 40 years was marginally associated with prescribing Plan B and with prescribing any form of ECP. Conclusion Most Nova Scotian FPs provided ECPs and had generally good knowledge about and attitudes toward providing such contraception without prescription. However, FPs were poorly informed about the length of time that Plan B can be effective, which could potentially affect use when patients consult several days after unprotected sex. There were some concerns about nonprescription availability of ECPs, which could have implications for recommending it to patients. Rarely were ECPs prescribed for advance use, which might represent a lost

  17. Emergency Contraception.

    PubMed

    Batur, Pelin; Kransdorf, Lisa N; Casey, Petra M

    2016-06-01

    Emergency contraception (EC) may help prevent pregnancy in various circumstances, such as contraceptive method failure, unprotected sexual intercourse, or sexual assault, yet it remains underused. There are 4 approved EC options in the United States. Although ulipristal acetate requires a provider's prescription, oral levonorgestrel (LNG) is available over the counter for women of all ages. The most effective method of EC is the copper intrauterine device, which can be left in place for up to 10 years for efficacious, cost-effective, hormone-free, and convenient long-term primary contraception. Ulipristal acetate tends to be more efficacious in pregnancy prevention than is LNG, especially when taken later than 72 hours postcoitus. The mechanism of action of oral EC is delay of ovulation, and current evidence reveals that it is ineffective postovulation. Women who weigh more than 75 kg or have a body mass index greater than 25 kg/m(2) may have a higher risk of unintended pregnancy when using oral LNG EC; therefore, ulipristal acetate or copper intrauterine devices are preferable in this setting. Providers are often unaware of the range of EC options or are unsure of how to counsel patients regarding the access and use of EC. This article critically reviews current EC literature, summarizes recommendations, and provides guidance for counseling women about EC. Useful tips for health care providers are provided, with a focus on special populations, including breast-feeding women and those transitioning to long-term contraception after EC use. When treating women of reproductive age, clinicians should be prepared to counsel them about EC options, provide EC appropriately, and, if needed, refer for EC in a timely manner. PMID:27261868

  18. Surface nano-texturing of silicon by picosecond laser irradiation through TiO2 nanotube arrays

    NASA Astrophysics Data System (ADS)

    Babu, K. E. Sarath Raghavendra; Duraiselvam, Muthukannan

    2015-10-01

    This article presents, nano-texturing of crystalline silicon by irradiating picosecond laser with variable spatial intensity, caused by optically non-linear TiO2 nanotube arrays (TNTA). Along with micro-scale surface structure, highly ordered laser-induced periodic surface structures (LIPSS) was observed at nano-scale. The periodicity (Λ) of the LIPSS generated was near to the laser wavelength (532 nm). Surface morphology at micro-level was characterized by optical microscopy (OM) and white light interferometer (WLI) and at the nano-scale by scanning electron microscope (SEM) and atomic force microscope (AFM). The results highlight the potential use of TNTA as a single step process to produce micro/nanostructures without any gas/liquid medium under ambient condition.

  19. Formation of laser-induced periodic surface structures (LIPSS) on tool steel by multiple picosecond laser pulses of different polarizations

    NASA Astrophysics Data System (ADS)

    Gregorčič, Peter; Sedlaček, Marko; Podgornik, Bojan; Reif, Jürgen

    2016-11-01

    Laser-induced periodic surface structures (LIPSS) are produced on cold work tool steel by irradiation with a low number of picosecond laser pulses. As expected, the ripples, with a period of about 90% of the laser wavelength, are oriented perpendicular to the laser polarization. Subsequent irradiation with the polarization rotated by 45° or 90° results in a corresponding rotation of the ripples. This is visible already with the first pulse and becomes almost complete - erasing the previous orientation - after as few as three pulses. The phenomenon is not only observed for single-spot irradiation but also for writing long coherent traces. The experimental results strongly defy the role of surface plasmon-polaritons as the predominant key to LIPSS formation.

  20. Recrystallization of picosecond laser-melted ZnO nanoparticles in a liquid: a molecular dynamics study.

    PubMed

    Hu, Ming; Poulikakos, Dimos; Grigoropoulos, Costas P; Pan, Heng

    2010-04-28

    We employ molecular dynamics simulation to investigate the rapid melting and subsequent cooling process of zinc oxide (ZnO) nanoparticles in liquid tetradecane upon picosecond laser heating. The coalescence of two neighboring melted nanoparticles into a larger particle and the recrystallization of the latter upon cooling were studied. Severe undercooling and distinct recalescence occurs and the structure of the nanoparticle transforms from its initial hexagonal wurtzite structure to a face-centered cubic structure after recrystallization. By analyzing the heating/cooling process, we demonstrated that the particle size has a large impact on the interfacial thermal conductance between the nanoparticle and the surrounding liquid, as well as on the solidification initiation and solidification completion temperatures. We also investigated the thermal behavior of the surrounding liquid layer at the neighborhood of the particle surface. Boiling of the liquid layer was found in the case of extremely high heat fluxes.

  1. Picosecond wide-field time-correlated single photon counting fluorescence microscopy with a delay line anode detector

    NASA Astrophysics Data System (ADS)

    Hirvonen, Liisa M.; Becker, Wolfgang; Milnes, James; Conneely, Thomas; Smietana, Stefan; Le Marois, Alix; Jagutzki, Ottmar; Suhling, Klaus

    2016-08-01

    We perform wide-field time-correlated single photon counting-based fluorescence lifetime imaging (FLIM) with a crossed delay line anode image intensifier, where the pulse propagation time yields the photon position. This microchannel plate-based detector was read out with conventional fast timing electronics and mounted on a fluorescence microscope with total internal reflection (TIR) illumination. The picosecond time resolution of this detection system combines low illumination intensity of microwatts with wide-field data collection. This is ideal for fluorescence lifetime imaging of cell membranes using TIR. We show that fluorescence lifetime images of living HeLa cells stained with membrane dye di-4-ANEPPDHQ exhibit a reduced lifetime near the coverslip in TIR compared to epifluorescence FLIM.

  2. High-Brightness Picosecond Proton Beam Source Based on BNL TW CO2 Laser: Proof-of-Principle Experiments

    SciTech Connect

    Pogorelsky, I. V.; Pavlishin, I. V.; Yakimenko, V.; Shkolnikov, P. L.; Pukhov, A.

    2006-11-27

    We initiate study of a high-brightness multi-MeV ion and proton beam source driven by a picosecond CO2 laser. High-energy, collimated particle beams will originate from the rear surface of laser-irradiated foils by a process called Target Normal Sheath Acceleration (TNSA). The expected advantage of using a CO2 gas laser for this application rather than the ultra-fast solid state lasers is the 100-fold increase of the electron ponderomotive potential for the same laser intensity due to a 10 times longer CO2 laser wavelength. This promises to provide substantial enhancement in energy efficiency and particle yield, and will facilitate the advancement of the TNSA technique towards practical applications.

  3. Exciton dynamics at a single dislocation in GaN probed by picosecond time-resolved cathodoluminescence

    NASA Astrophysics Data System (ADS)

    Liu, W.; Carlin, J.-F.; Grandjean, N.; Deveaud, B.; Jacopin, G.

    2016-07-01

    We investigate the dynamics of donor bound excitons (D°XA) at T = 10 K around an isolated single edge dislocation in homoepitaxial GaN, using a picosecond time-resolved cathodoluminescence (TR-CL) setup with high temporal and spatial resolutions. An ˜ 1.3 meV dipole-like energy shift of D°XA is observed around the dislocation, induced by the local strain fields. By simultaneously recording the variations of both the exciton lifetime and the CL intensity across the dislocation, we directly assess the dynamics of excitons around the defect. Our observations are well reproduced by a diffusion model. It allows us to deduce an exciton diffusion length of ˜24 nm as well as an effective area of the dislocation with a radius of ˜95 nm, where the recombination can be regarded as entirely non-radiative.

  4. Fabrication of periodical surface structures by picosecond laser irradiation of carbon thin films: transformation of amorphous carbon in nanographite

    NASA Astrophysics Data System (ADS)

    Popescu, C.; Dorcioman, G.; Bita, B.; Besleaga, C.; Zgura, I.; Himcinschi, C.; Popescu, A. C.

    2016-12-01

    Thin films of carbon were synthesized by ns pulsed laser deposition in vacuum on silicon substrates, starting from graphite targets. Further on, the films were irradiated with a picosecond laser source emitting in visible at 532 nm. After tuning of laser parameters, we obtained a film surface covered by laser induced periodical surface structures (LIPSS). They were investigated by optical, scanning electron and atomic force microscopy. It was observed that changing the irradiation angle influences the LIPSS covered area. At high magnification it was revealed that the LIPSS pattern was quite complex, being composed of other small LIPSS islands, interconnected by bridges of nanoparticles. Raman spectra for the non-irradiated carbon films were typical for a-C type of diamond-like carbon, while the LIPSS spectra were characteristic to nano-graphite. The pristine carbon film was hydrophilic, while the LIPSS covered film surface was hydrophobic.

  5. Yb:YAG single-crystal fiber amplifiers for picosecond lasers using the divided pulse amplification technique.

    PubMed

    Lesparre, Fabien; Gomes, Jean Thomas; Délen, Xavier; Martial, Igor; Didierjean, Julien; Pallmann, Wolfgang; Resan, Bojan; Druon, Frederic; Balembois, François; Georges, Patrick

    2016-04-01

    A two-stage master-oscillator power-amplifier (MOPA) system based on Yb:YAG single-crystal-fiber (SCF) technology and designed for high peak power is studied to significantly increase the pulse energy of a low-power picosecond laser. The first SCF amplifier has been designed for high gain. Using a gain medium optimized in terms of doping concentration and length, an optical gain of 32 dB has been demonstrated. The second amplifier stage designed for high energy using the divided pulse technique allows us to generate a recombined output pulse energy of 2 mJ at 12.5 kHz with a pulse duration of 6 ps corresponding to a peak power of 320 MW. Average powers ranging from 25 to 55 W with repetition rates varying from 12.5 to 500 kHz have been demonstrated. PMID:27192304

  6. Picosecond-resolved FRET on non-amplified DNA for identifying individuals genetically susceptible to type-1 diabetes

    NASA Astrophysics Data System (ADS)

    Nardo, Luca; Tosi, Giovanna; Bondani, Maria; Accolla, Roberto; Andreoni, Alessandra

    2012-06-01

    By tens-of-picosecond resolved fluorescence detection we study Förster resonance energy transfer between a donor and a black-hole-quencher bound at the 5'- and 3'-positions of an oligonucleotide probe matching the highly polymorphic region between codons 51 and 58 of the human leukocyte antigen DQB1 0201 allele, conferring susceptibility to type-1 diabetes. The probe is annealed with non-amplified genomic DNAs carrying either the 0201 sequence or other DQB1 allelic variants. We detect the longest-lived donor fluorescence in the case of hybridization with the 0201 allele and definitely faster and distinct decays for the other allelic variants, some of which are single-nucleotide polymorphic.

  7. Picosecond-petawatt laser-block ignition for avalanche fusion of boron by ultrahigh acceleration and ultrahigh magnetic fields

    NASA Astrophysics Data System (ADS)

    Hora, H.; Lalousis, P.; Giuffrida, L.; Margarone, D.; Korn, G.; Eliezer, S.; Miley, G. H.; Moustaizis, S.; Mourou, G.; Barty, C. P. J.

    2016-05-01

    Fusion energy from reacting hydrogen (protons) with the boron isotope 11 (HB11) resulting in three stable helium nuclei, is without problem of nuclear radiation in contrast to DT fusion. But the HB11 reaction driven by nanosecond laser pulses with thermal compression and ignition by lasers is extremely difficult. This changed radically when irradiation with picosecond laser pulses produces a non-thermal plasma block ignition with ultrahigh acceleration. This uses the nonlinear (ponderomotive) force to surprizingly resulting in same thresholds as DT fusion even under pessimistic assumption of binary reactions. After evaluation of reactions trapped cylindrically by kilotesla magnetic fields and using the measured highly increased HB11 fusion gains for the proof of an avalanche of the three alphas in secondary reactions, possibilities for an absolutely clean energy source at comptitive costs were concluded.

  8. Picosecond acoustics method for measuring the thermodynamical properties of solids and liquids at high pressure and high temperature.

    PubMed

    Decremps, F; Gauthier, M; Ayrinhac, S; Bove, L; Belliard, L; Perrin, B; Morand, M; Le Marchand, G; Bergame, F; Philippe, J

    2015-02-01

    Based on the original combination of picosecond acoustics and diamond anvils cell, recent improvements to accurately measure hypersonic sound velocities of liquids and solids under extreme conditions are described. To illustrate the capability of this technique, results are given on the pressure and temperature dependence of acoustic properties for three prototypical cases: polycrystal (iron), single-crystal (silicon) and liquid (mercury) samples. It is shown that such technique also enables the determination of the density as a function of pressure for liquids, of the complete set of elastic constants for single crystals, and of the melting curve for any kind of material. High pressure ultrafast acoustic spectroscopy technique clearly opens opportunities to measure thermodynamical properties under previously unattainable extreme conditions. Beyond physics, this state-of-the-art experiment would thus be useful in many other fields such as nonlinear acoustics, oceanography, petrology, in of view. A brief description of new developments and future directions of works conclude the article.

  9. Dual-pump vibrational/rotational femtosecond/picosecond coherent anti-Stokes Raman scattering temperature and species measurements.

    PubMed

    Dedic, Chloe E; Miller, Joseph D; Meyer, Terrence R

    2014-12-01

    A method for simultaneous ro-vibrational and pure-rotational hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering (fs/ps CARS) is presented for multi-species detection and improved temperature sensitivity from room temperature to flame conditions. N₂/CH₄ vibrational and N₂/O₂/H₂ rotational Raman coherences are excited simultaneously using fs pump pulses at 660 and 798 nm, respectively, and a common fs Stokes pulse at 798 nm. A fourth narrowband 798 nm ps pulse probes all coherence states at a time delay that minimizes nonresonant background and the effects of collisions. The transition strength is concentration dependent, while the distribution among observed transitions is related to temperature through the Boltzmann distribution. The broadband excitation pulses and multiplexed signal are demonstrated for accurate thermometry from 298 to 2400 K and concentration measurements of four key combustion species.

  10. Picosecond-resolved X-ray absorption spectroscopy at low signal contrast using a hard X-ray streak camera

    SciTech Connect

    Adams, Bernhard W.; Rose-Petruck, Christoph; Jiao, Yishuo

    2015-06-24

    A picosecond-resolving hard-X-ray streak camera has been in operation for several years at Sector 7 of the Advanced Photon Source (APS). Several upgrades have been implemented over the past few years to optimize integration into the beamline, reduce the timing jitter, and improve the signal-to-noise ratio. These include the development of X-ray optics for focusing the X-rays into the sample and the entrance slit of the streak camera, and measures to minimize the amount of laser light needed to generate the deflection-voltage ramp. For the latter, the photoconductive switch generating the deflection ramp was replaced with microwave power electronics. With these, the streak camera operates routinely at 88 MHz repetition rate, thus making it compatible with all of the APS fill patterns including use of all the X-rays in the 324-bunch mode. Sample data are shown to demonstrate the performance.

  11. Pulse duration measurements of a picosecond laser-pumped 14.7 nm x-ray laser

    SciTech Connect

    Dunn, J; Smith, R F; Shepherd, R; Booth, R; Nilsen, J; Hunter, J R; Shlyaptsev, V N

    2004-08-03

    The temporal dependence of the 14.7 nm Ni-like Pd ion x-ray laser is measured as a function of the laser drive conditions with a fast sub-picosecond x-ray streak camera. The chirped pulse amplification laser beam that pumps the inversion process is varied from 0.5 - 27 ps (FWHM) to determine the effect on the x-ray laser pulse duration. The average x-ray laser pulse duration varies by a relatively small factor of 2.5 times from 3.6 ps to 8.1 ps with traveling wave (TW) irradiation conditions. Slightly shorter pulse durations approaching 2 ps are observed with the x-ray laser operating below saturation. The x-ray laser is found to be 4 - 5 times transform-limited for 6 - 13 ps laser pumping conditions.

  12. High energy green nanosecond and picosecond pulse delivery through a negative curvature fiber for precision micro-machining.

    PubMed

    Jaworski, Piotr; Yu, Fei; Carter, Richard M; Knight, Jonathan C; Shephard, Jonathan D; Hand, Duncan P

    2015-04-01

    In this paper we present an anti-resonant guiding, low-loss Negative Curvature Fiber (NCF) for the efficient delivery of high energy short (ns) and ultrashort (ps) pulsed laser light in the green spectral region. The fabricated NCF has an attenuation of 0.15 dB/m and 0.18 dB/m at 532 nm and 515 nm respectively, and provided robust transmission of nanosecond and picosecond pulses with energies of 0.57 mJ (10.4 kW peak power) and 30 µJ (5 MW peak power) respectively. It provides single-mode, stable (low bend-sensitivity) output and maintains spectral and temporal properties of the source laser beam. The practical application of fiber-delivered pulses has been demonstrated in precision micro-machining and marking of metals and glass.

  13. Advanced magneto-optical microscopy: Imaging from picoseconds to centimeters - imaging spin waves and temperature distributions (invited)

    NASA Astrophysics Data System (ADS)

    Urs, Necdet Onur; Mozooni, Babak; Mazalski, Piotr; Kustov, Mikhail; Hayes, Patrick; Deldar, Shayan; Quandt, Eckhard; McCord, Jeffrey

    2016-05-01

    Recent developments in the observation of magnetic domains and domain walls by wide-field optical microscopy based on the magneto-optical Kerr, Faraday, Voigt, and Gradient effect are reviewed. Emphasis is given to the existence of higher order magneto-optical effects for advanced magnetic imaging. Fundamental concepts and advances in methodology are discussed that allow for imaging of magnetic domains on various length and time scales. Time-resolved imaging of electric field induced domain wall rotation is shown. Visualization of magnetization dynamics down to picosecond temporal resolution for the imaging of spin-waves and magneto-optical multi-effect domain imaging techniques for obtaining vectorial information are demonstrated. Beyond conventional domain imaging, the use of a magneto-optical indicator technique for local temperature sensing is shown.

  14. Recrystallization of picosecond laser-melted ZnO nanoparticles in a liquid: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Hu, Ming; Poulikakos, Dimos; Grigoropoulos, Costas P.; Pan, Heng

    2010-04-01

    We employ molecular dynamics simulation to investigate the rapid melting and subsequent cooling process of zinc oxide (ZnO) nanoparticles in liquid tetradecane upon picosecond laser heating. The coalescence of two neighboring melted nanoparticles into a larger particle and the recrystallization of the latter upon cooling were studied. Severe undercooling and distinct recalescence occurs and the structure of the nanoparticle transforms from its initial hexagonal wurtzite structure to a face-centered cubic structure after recrystallization. By analyzing the heating/cooling process, we demonstrated that the particle size has a large impact on the interfacial thermal conductance between the nanoparticle and the surrounding liquid, as well as on the solidification initiation and solidification completion temperatures. We also investigated the thermal behavior of the surrounding liquid layer at the neighborhood of the particle surface. Boiling of the liquid layer was found in the case of extremely high heat fluxes.

  15. Picosecond acoustics method for measuring the thermodynamical properties of solids and liquids at high pressure and high temperature.

    PubMed

    Decremps, F; Gauthier, M; Ayrinhac, S; Bove, L; Belliard, L; Perrin, B; Morand, M; Le Marchand, G; Bergame, F; Philippe, J

    2015-02-01

    Based on the original combination of picosecond acoustics and diamond anvils cell, recent improvements to accurately measure hypersonic sound velocities of liquids and solids under extreme conditions are described. To illustrate the capability of this technique, results are given on the pressure and temperature dependence of acoustic properties for three prototypical cases: polycrystal (iron), single-crystal (silicon) and liquid (mercury) samples. It is shown that such technique also enables the determination of the density as a function of pressure for liquids, of the complete set of elastic constants for single crystals, and of the melting curve for any kind of material. High pressure ultrafast acoustic spectroscopy technique clearly opens opportunities to measure thermodynamical properties under previously unattainable extreme conditions. Beyond physics, this state-of-the-art experiment would thus be useful in many other fields such as nonlinear acoustics, oceanography, petrology, in of view. A brief description of new developments and future directions of works conclude the article. PMID:24852260

  16. Superconducting single-photon counting system for optical experiments requiring time-resolution in the picosecond range

    NASA Astrophysics Data System (ADS)

    Toussaint, Julia; Grüner, Roman; Schubert, Marco; May, Torsten; Meyer, Hans-Georg; Dietzek, Benjamin; Popp, Jürgen; Hofherr, Matthias; Arndt, Matthias; Henrich, Dagmar; Il'in, Konstantin; Siegel, Michael

    2012-12-01

    We have developed a cryogenic measurement system for single-photon counting, which can be used in optical experiments requiring high time resolution in the picosecond range. The system utilizes niobium nitride superconducting nanowire single-photon detectors which are integrated in a time-correlated single-photon counting (TCSPC) setup. In this work, we describe details of the mechanical design, the electrical setup, and the cryogenic optical components. The performance of the complete system in TCSPC mode is tentatively benchmarked using 140 fs long laser pulses at a repetition frequency of 75 MHz. Due to the high temporal stability of these pulses, the measured time resolution of 35 ps (FWHM) is limited by the timing jitter of the measurement system. The result was cross-checked in a Coherent Anti-stokes Raman Scattering (CARS) setup, where scattered pulses from a β-barium borate crystal have been detected with the same time resolution.

  17. High-power picosecond terahertz-wave generation in photonic crystal fiber via four-wave mixing.

    PubMed

    Wu, Huihui; Liu, Hongjun; Huang, Nan; Sun, Qibing; Wen, Jin

    2011-09-20

    We demonstrate picosecond terahertz (THz)-wave generation via four-wave mixing in an octagonal photonic crystal fiber (O-PCF). Perfect phase-matching is obtained at the pump wavelength of 1.55 μm and a generation scheme is proposed. Using this method, THz waves can be generated in the frequency range of 7.07-7.74 THz. Moreover, peak power of 2.55 W, average power of 1.53 mW, and peak conversion efficiency of more than -66.65 dB at 7.42 THz in a 6.25 cm long fiber are realized with a pump peak power of 2 kW.

  18. Energy transfer in the primary stages of the photosynthetic process investigated by picosecond time resolved fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Pellegrino, F.

    The fate of the absorbed light energy in the primary stages of the photosynthetic process was studied. In particular, the energy transfer in the accessory pigment complex consisting of carotenoids, Chl. a and Chl. b in higher green plants and phycobiliproteins in blue-green algae were investigated. These accessory pigments are responsible for the highly efficient transfer of the excitation energy to the photochemically active reaction center traps. The risetime, decay time, fluorescence depolarization, temperature and intensity dependence of the fluoresence emission from higher green plant and algal photosystems were directly measured. Excitation was provided by single picosecond laser pulses, as well as a train of pulses at 530 nm, within an intensity range of 10 to the 12th power to 10 to the 16th power photons/sq cm per pulse.

  19. Visualizing hippocampal neurons with in vivo two-photon microscopy using a 1030 nm picosecond pulse laser

    PubMed Central

    Kawakami, Ryosuke; Sawada, Kazuaki; Sato, Aya; Hibi, Terumasa; Kozawa, Yuichi; Sato, Shunichi; Yokoyama, Hiroyuki; Nemoto, Tomomi

    2013-01-01

    In vivo two-photon microscopy has revealed vital information on neural activity for brain function, even in light of its limitation in imaging events at depths greater than several hundred micrometers from the brain surface. We developed a novel semiconductor-laser-based light source with a wavelength of 1030 nm that can generate pulses of 5-picosecond duration with 2-W output power, and a 20-MHz repetition rate. We also developed a system to secure the head of the mouse under an upright microscope stage that has a horizontal adjustment mechanism. We examined the penetration depth while imaging the H-Line mouse brain and demonstrated that our newly developed laser successfully images not only cortex pyramidal neurons spreading to all cortex layers at a superior signal-to-background ratio, but also images hippocampal CA1 neurons in a young adult mouse. PMID:23350026

  20. Time-resolved non-sequential ray-tracing modelling of non-line-of-sight picosecond pulse LIDAR

    NASA Astrophysics Data System (ADS)

    Sroka, Adam; Chan, Susan; Warburton, Ryan; Gariepy, Genevieve; Henderson, Robert; Leach, Jonathan; Faccio, Daniele; Lee, Stephen T.

    2016-05-01

    The ability to detect motion and to track a moving object that is hidden around a corner or behind a wall provides a crucial advantage when physically going around the obstacle is impossible or dangerous. One recently demonstrated approach to achieving this goal makes use of non-line-of-sight picosecond pulse laser ranging. This approach has recently become interesting due to the availability of single-photon avalanche diode (SPAD) receivers with picosecond time resolution. We present a time-resolved non-sequential ray-tracing model and its application to indirect line-of-sight detection of moving targets. The model makes use of the Zemax optical design programme's capabilities in stray light analysis where it traces large numbers of rays through multiple random scattering events in a 3D non-sequential environment. Our model then reconstructs the generated multi-segment ray paths and adds temporal analysis. Validation of this model against experimental results is shown. We then exercise the model to explore the limits placed on system design by available laser sources and detectors. In particular we detail the requirements on the laser's pulse energy, duration and repetition rate, and on the receiver's temporal response and sensitivity. These are discussed in terms of the resulting implications for achievable range, resolution and measurement time while retaining eye-safety with this technique. Finally, the model is used to examine potential extensions to the experimental system that may allow for increased localisation of the position of the detected moving object, such as the inclusion of multiple detectors and/or multiple emitters.

  1. The Molecular Mechanisms of the Antibacterial Effect of Picosecond Laser Generated Silver Nanoparticles and Their Toxicity to Human Cells

    PubMed Central

    Korshed, Peri; Li, Lin; Liu, Zhu; Wang, Tao

    2016-01-01

    Silver nanoparticles (Ag NPs) are known to have antibacterial properties. They are commonly produced by chemical synthesis which involves the use of harmful reducing agents. Contras, the laser technique is able to generate high-purity Ag NPs in water with specified surface charge characteristics. In the past, the molecular mechanisms contributing to the bactericidal effects of Ag NPs have been investigated extensively, but little is known of the antibacterial and toxic effects and mechanisms involved in laser-generated Ag NPs. In the current study Ag NPs were generated by picosecond laser ablation. Their antibacterial activity was determined on the gram-negative bacteria E. coli and Pseudomonas aeruginosa, and the gram positive bacteria Staphylococcus aureus including the methicillin resistant strain MRSA. Results showed that the laser generated Ag NPs exhibited strong dose-dependent antibacterial activity against all the three bacterial strains tested. Using E.coli as a model system, the laser Ag NPs treatment induced significantly high levels of reactive oxygen species (ROS). These ROS did not include detectable hydroxyl radicals, suggesting for the first time the selective ROS induction in bacterial cells by laser generated Ag NPs. The increased ROS was accompanied by significantly reduced cellular glutathione, and increased lipid peroxidation and permeability, suggesting ROS related bacterial cell damage. The laser generated Ag NPs exhibited low toxicity (within 72 hours) to five types of human cells although a weak significant decrease in cell survival was observed for endothelial cells and the lung cells. We conclude that picosecond laser generated Ag NPs have a broad spectrum of antibacterial effects against microbes including MRSA with minimal human cell toxicity. The oxidative stress is likely the key mechanism underlying the bactericidal effect, which leads to lipid peroxidation, depletion of glutathione, DNA damages and eventual disintegration of the

  2. The Molecular Mechanisms of the Antibacterial Effect of Picosecond Laser Generated Silver Nanoparticles and Their Toxicity to Human Cells.

    PubMed

    Korshed, Peri; Li, Lin; Liu, Zhu; Wang, Tao

    2016-01-01

    Silver nanoparticles (Ag NPs) are known to have antibacterial properties. They are commonly produced by chemical synthesis which involves the use of harmful reducing agents. Contras, the laser technique is able to generate high-purity Ag NPs in water with specified surface charge characteristics. In the past, the molecular mechanisms contributing to the bactericidal effects of Ag NPs have been investigated extensively, but little is known of the antibacterial and toxic effects and mechanisms involved in laser-generated Ag NPs. In the current study Ag NPs were generated by picosecond laser ablation. Their antibacterial activity was determined on the gram-negative bacteria E. coli and Pseudomonas aeruginosa, and the gram positive bacteria Staphylococcus aureus including the methicillin resistant strain MRSA. Results showed that the laser generated Ag NPs exhibited strong dose-dependent antibacterial activity against all the three bacterial strains tested. Using E.coli as a model system, the laser Ag NPs treatment induced significantly high levels of reactive oxygen species (ROS). These ROS did not include detectable hydroxyl radicals, suggesting for the first time the selective ROS induction in bacterial cells by laser generated Ag NPs. The increased ROS was accompanied by significantly reduced cellular glutathione, and increased lipid peroxidation and permeability, suggesting ROS related bacterial cell damage. The laser generated Ag NPs exhibited low toxicity (within 72 hours) to five types of human cells although a weak significant decrease in cell survival was observed for endothelial cells and the lung cells. We conclude that picosecond laser generated Ag NPs have a broad spectrum of antibacterial effects against microbes including MRSA with minimal human cell toxicity. The oxidative stress is likely the key mechanism underlying the bactericidal effect, which leads to lipid peroxidation, depletion of glutathione, DNA damages and eventual disintegration of the

  3. Yb-fiber-laser-based, 1.8 W average power, picosecond ultraviolet source at 266 nm.

    PubMed

    Chaitanya Kumar, S; Canals Casals, J; Sanchez Bautista, E; Devi, K; Ebrahim-Zadeh, M

    2015-05-15

    We report a compact, stable, high-power, picosecond ultraviolet (UV) source at 266 nm based on simple single-pass two-step fourth-harmonic generation (FHG) of a mode-locked Yb-fiber laser at 79.5 MHz in LiB3O5 (LBO) and β-BaB2O4. Using a 30-mm-long LBO crystal for single-pass second-harmonic generation, we achieve up to 9.1 W of average green power at 532 nm for 16.8 W of Yb-fiber power at a conversion efficiency of 54% in 16.2 ps pulses with a TEM00 spatial profile and passive power stability better than 0.5% rms over 16 h. The generated green radiation is then used for single-pass FHG into the UV, providing as much as 1.8 W of average power at 266 nm under the optimum focusing condition in the presence of spatial walk-off, at an overall FHG conversion efficiency of ∼11%. The generated UV output exhibits passive power stability better than 4.6% rms over 1.5 h and beam pointing stability better than 84 μrad over 1 h. The UV output beam has a circularity of >80% in high beam quality with the TEM00 mode profile. To the best of our knowledge, this is the first report of picosecond UV generation at 266 nm at megahertz repetition rates. PMID:26393749

  4. [Pediatric emergencies in the emergency medical service].

    PubMed

    Silbereisen, C; Hoffmann, F

    2015-01-01

    Out-of-hospital pediatric emergencies occur rarely but are feared among medical personnel. The particular characteristics of pediatric cases, especially the unaccustomed anatomy of the child as well as the necessity to adapt the drug doses to the little patient's body weight, produce high cognitive and emotional pressure. In an emergency standardized algorithms can facilitate a structured diagnostic and therapeutic approach. The aim of this article is to provide standardized procedures for the most common pediatric emergencies. In Germany, respiratory problems, seizures and analgesia due to trauma represent the most common emergency responses. This article provides a practical approach concerning the diagnostics and therapy of emergencies involving children.

  5. Emergency Medical Services

    MedlinePlus

    ... and need help right away, you should use emergency medical services. These services use specially trained people ... facilities. You may need care in the hospital emergency room (ER). Doctors and nurses there treat emergencies, ...

  6. Recognizing medical emergencies

    MedlinePlus

    Medical emergencies - how to recognize them ... According to the American College of Emergency Physicians, the following are warning signs of a medical emergency: Bleeding that will not stop Breathing problems ( difficulty breathing , shortness of breath ) ...

  7. Emergency Contraception Website

    MedlinePlus

    Text Only Full media Version Get Emergency Contraception NOW INFO about Emergency Contraception Q&A about Emergency Contraception Español | Arabic Find a Morning After Pill Provider Near You This website is ...

  8. Comparison of nanosecond and picosecond excitation for interference-free two-photon laser-induced fluorescence detection of atomic hydrogen in flames

    SciTech Connect

    Kulatilaka, Waruna D.; Patterson, Brian D.; Frank, Jonathan H.; Settersten, Thomas B

    2008-09-10

    Two-photon laser-induced fluorescence (TP-LIF) line imaging of atomic hydrogen was investigated in a series of premixed CH4/O2/N2, H2/O2, and H2/O2/N2 flames using excitation with either picosecond or nanosecond pulsed lasers operating at 205 nm. Radial TP-LIF profiles were measured for a range of pulse fluences to determine the maximum interference-free signal levels and the corresponding picosecond and nanosecond laser fluences in each of 12 flames. For an interference-free measurement, the shape of the TP-LIF profile is independent of laser fluence. For larger fluences, distortions in the profile are attributed to photodissociation of H2O, CH3, and/or other combustion intermediates, and stimulated emission. In comparison with the nanosecond laser, excitation with the picosecond laser can effectively reduce the photolytic interference and produces approximately an order of magnitude larger interference-free signal in CH4/O2/N2 flames with equivalence ratios in the range of 0.5{<=}{phi}{<=}1.4, and in H{sub 2}/O{sub 2} flames with 0.3{<=}{phi}{<=}1.2. Although photolytic interference limits the nanosecond laser fluence in all flames, stimulated emission, occurring between the laser-excited level, H(n=3), and H(n=2), is the limiting factor for picosecond excitation in the flames with the highest H atom concentration. Nanosecond excitation is advantageous in the richest ({phi}=1.64) CH4/O2/N2 flame and in H2/O2/N2 flames. The optimal excitation pulse width for interference-free H atom detection depends on the relative concentrations of hydrogen atoms and photolytic precursors, the flame temperature, and the laser path length within the flame.

  9. Pediatric office emergencies.

    PubMed

    Fuchs, Susan

    2013-10-01

    Pediatricians regularly see emergencies in the office, or children that require transfer to an emergency department, or hospitalization. An office self-assessment is the first step in determining how to prepare for an emergency. The use of mock codes and skill drills make office personnel feel less anxious about medical emergencies. Emergency information forms provide valuable, quick information about complex patients for emergency medical services and other physicians caring for patients. Furthermore, disaster planning should be part of an office preparedness plan.

  10. Comparison of characteristics of selected metallic and metal oxide nanoparticles produced by picosecond laser ablation at 532 and 1064 nm wavelengths

    NASA Astrophysics Data System (ADS)

    Hamad, Abubaker; Li, Lin; Liu, Zhu

    2016-10-01

    Picosecond laser generation of nanoparticles was only recently reported. The effect of laser wavelength in picosecond laser generation of nanoparticles is not yet fully understood. This investigation reports the new findings comparing the characteristics of Au, Ag, Ag-TiO2, TiO2, ZnO and iron oxide nanoparticles generated by picosecond laser ablation in deionised water at 532 and 1064 nm laser wavelengths. The laser ablation was carried out at a fixed pulse width of 10 ps, a repetition rate of 400 kHz and a scan speed of 250 mm/s. The nanoparticles were characterised by UV-Vis optical spectroscopy, transmission electron microscopy (TEM) and X-ray diffraction (XRD). The work shows that there is no noticeable difference in the size of the metal oxide nanoparticles produced at 532 and 1064 nm, especially for the TiO2 and ZnO nanoparticles; however, a considerable size difference can be seen for metallic (e.g. Au) and metallic compound (e.g. Ag-TiO2) nanoparticles at the two wavelengths. It demonstrates that noble metals are more profoundly affected by laser wavelengths. The reasons behind these results are discussed. In addition, the work shows that there are different crystalline structures of the TiO2 nanoparticles at 1064 and 532 nm wavelengths.

  11. Evidence of liquid phase during laser-induced periodic surface structures formation induced by accumulative ultraviolet picosecond laser beam

    SciTech Connect

    Huynh, T. T. D.; Petit, A.; Semmar, N.

    2015-11-09

    Laser-induced periodic surface structures (LIPSS) were formed on Cu/Si or Cu/glass thin films using Nd:YAG laser beam (40 ps, 10 Hz, and 30 mJ/cm{sup 2}). The study of ablation threshold is always achieved over melting when the variation of the number of pulses increases from 1 to 1000. But the incubation effect is leading to reduce the threshold of melting as increasing the number of laser pulse. Also, real time reflectivity signals exhibit typical behavior to stress the formation of a liquid phase during the laser-processing regime and helps to determine the threshold of soft ablation. Atomic Force Microscopy (AFM) analyses have shown the topology of the micro-crater containing regular spikes with different height. Transmission Electron Microscopy (TEM) allows finally to show three distinguished zones in the close region of isolated protrusions. The central zone is a typical crystallized area of few nanometers surrounded by a mixed poly-crystalline and amorphous area. Finally, in the region far from the protrusion zone, Cu film shows an amorphous structure. The real time reflectivity, AFM, and HR-TEM analyses evidence the formation of a liquid phase during the LIPSS formation in the picosecond regime.

  12. Growth of poly-crystalline Cu films on Y substrates by picosecond pulsed laser deposition for photocathode applications

    NASA Astrophysics Data System (ADS)

    Gontad, F.; Lorusso, A.; Klini, A.; Manousaki, A.; Perrone, A.; Fotakis, C.

    2015-11-01

    In this work, the deposition of Cu thin films on Y substrates for photocathode applications by pulsed laser deposition employing picosecond laser pulses is reported and compared with the use of nanosecond pulses. The influence of power density (6-50 GW/cm2) on the ablation of the target material, as well as on the properties of the resulting film, is discussed. The material transfer from the target to the substrate surface was found to be rather efficient, in comparison to nanosecond ablation, leading to the growth of films with high thickness. Scanning electron microscope analysis indicated a quasi-continuous film morphology, at low power density values, becoming granular with increasing power density. The structural investigation, through X-ray diffraction, revealed the poly-crystalline nature of the films, with a preferential growth along the (111) crystallographic orientation of Cu cubic network. Finally, energy-dispersive X-ray spectroscopy showed a low contamination level of the grown films, demonstrating the potential of a PLD technique for the fabrication of Cu/Y patterned structures, with applications in radiofrequency electron gun technology.

  13. Sensitive analysis of carbon, chromium and silicon in steel using picosecond laser induced low pressure helium plasma

    NASA Astrophysics Data System (ADS)

    Abdulmadjid, Syahrun Nur; Idris, Nasrullah; Pardede, Marincan; Jobiliong, Eric; Hedwig, Rinda; Lie, Zener Sukra; Suyanto, Hery; Tjia, May On; Kurniawan, Koo Hendrik; Kagawa, Kiichiro

    2015-12-01

    An experimental study has been performed on the gas pressure and laser energy dependent variations of plasma emission intensities in Ar, He and N2 ambient gases induced by picosecond (ps) Nd-YAG laser irradiation on low alloy steel (JSS) samples. The study is aimed to demonstrate distinct advantage of using low pressure He ambient gas in combination with ps laser for the sensitive ppm level detection of C, Si and Cr emission lines in the UV-VIS spectral region. The much shorter pulses of ps laser are chosen for the effective ablation at much lower energy and for the benefit of reducing the undesirable long heating of the sample surface. It is found that the C I 247.8 nm, Fe I 253.5 nm, and Si I 251.4 nm emission lines induced by the ps laser at 15 mJ are readily detected with He ambient gas of 2.6 kPA, featuring generally sharp spectral signals with very low background. The following experimental results using samples with various concentrations of C, Si and Cr impurities are shown to produce for each of those elements a linear calibration line with extrapolated zero intercept, demonstrating the applicability for their quantitative analyses, with a preliminary estimated detection limits of 20 μg/g, 15 μg/g, and 5 μg/g, for C, Si, and Cr, respectively. The possibility of applying the same setup for concentration depth profiling is also demonstrated.

  14. Viscosity heterogeneity inside lipid bilayers of single-component phosphatidylcholine liposomes observed with picosecond time-resolved fluorescence spectroscopy.

    PubMed

    Nojima, Yuki; Iwata, Koichi

    2014-07-24

    A number of biochemical reactions proceed inside biomembranes. Because the rate of a chemical reaction is influenced by chemical properties of the reaction field, it is important to examine the chemical properties inside the biomembranes, or lipid bilayer membranes, for understanding biochemical reactions. In this study, we estimate viscosity inside the lipid bilayers of liposomes with picosecond time-resolved fluorescence spectroscopy. trans-Stilbene is solubilized in the lipid bilayers formed by phosphatidylcholines, DSPC, DOPC, DPPC, DMPC, and DLPC, with 18, 18, 16, 14, and 12 carbon atoms in their alkyl chains, respectively, and egg-PC. Viscosity inside the lipid bilayer is estimated from the photoisomerization rate constant and from the rotational relaxation time of the first excited singlet state of trans-stilbene. The effect of the hydrocarbon chain length and temperature on viscosity is examined. The presence of two solvation environments within the lipid bilayer is indicated from the two independent estimations. One environment is 30 to 290 times more viscous than the other. Even single-component lipid bilayers are likely to have heterogeneous structures.

  15. Correlation of the dynamics of native human acetylcholinesterase and its inhibited huperzine A counterpart from sub-picoseconds to nanoseconds

    PubMed Central

    Trapp, M.; Tehei, M.; Trovaslet, M.; Nachon, F.; Martinez, N.; Koza, M. M.; Weik, M.; Masson, P.; Peters, J.

    2014-01-01

    It is a long debated question whether catalytic activities of enzymes, which lie on the millisecond timescale, are possibly already reflected in variations in atomic thermal fluctuations on the pico- to nanosecond timescale. To shed light on this puzzle, the enzyme human acetylcholinesterase in its wild-type form and complexed with the inhibitor huperzine A were investigated by various neutron scattering techniques and molecular dynamics simulations. Previous results on elastic neutron scattering at various timescales and simulations suggest that dynamical processes are not affected on average by the presence of the ligand within the considered time ranges between 10 ps and 1 ns. In the work presented here, the focus was laid on quasi-elastic (QENS) and inelastic neutron scattering (INS). These techniques give access to different kinds of individual diffusive motions and to the density of states of collective motions at the sub-picoseconds timescale. Hence, they permit going beyond the first approach of looking at mean square displacements. For both samples, the autocorrelation function was well described by a stretched-exponential function indicating a linkage between the timescales of fast and slow functional relaxation dynamics. The findings of the QENS and INS investigation are discussed in relation to the results of our earlier elastic incoherent neutron scattering and molecular dynamics simulations. PMID:24872501

  16. Tunable Picosecond Laser Pulses via the Contrast of Two Reverse Saturable Absorption Phases in a Waveguide Platform.

    PubMed

    Tan, Yang; Chen, Lianwei; Wang, Dong; Chen, Yanxue; Akhmadaliev, Shavkat; Zhou, Shengqiang; Hong, Minghui; Chen, Feng

    2016-01-01

    How to enhance the optical nonlinearity of saturable absorption materials is an important question to improve the functionality of various applications ranging from the high power laser to photonic computational devices. We demonstrate the saturable absorption (SA) of VO2 film attributed to the large difference of optical nonlinearities between the two states of the phase-transition materials (VO2). Such VO2 film demonstrated significantly improved performance with saturation intensity higher than other existing ultrathin saturable absorbers by 3 orders due to its unique nonlinear optical mechanisms in the ultrafast phase change process. Owing to this feature, a Q-switched pulsed laser was fabricated in a waveguide platform, which is the first time to achieve picosecond pulse duration and maintain high peak power. Furthermore, the emission of this VO2 waveguide laser can be flexibly switched between the continuous-wave (CW) and pulsed operation regimes by tuning the temperature of the VO2 film, which enables VO2-based miniature laser devices with unique and versatile functions. PMID:27188594

  17. Disentangling two non-photochemical quenching processes in Cyclotella meneghiniana by spectrally-resolved picosecond fluorescence at 77K.

    PubMed

    Chukhutsina, Volha U; Büchel, Claudia; van Amerongen, Herbert

    2014-06-01

    Diatoms, which are primary producers in the oceans, can rapidly switch on/off efficient photoprotection to respond to fast light-intensity changes in moving waters. The corresponding thermal dissipation of excess-absorbed-light energy can be observed as non-photochemical quenching (NPQ) of chlorophyll a fluorescence. Fluorescence-induction measurements on Cyclotella meneghiniana diatoms show two NPQ processes: qE1 relaxes rapidly in the dark while qE2 remains present upon switching to darkness and is related to the presence of the xanthophyll-cycle pigment diatoxanthin (Dtx). We performed picosecond fluorescence measurements on cells locked in different (quenching) states, revealing the following sequence of events during full development of NPQ. At first, trimers of light-harvesting complexes (fucoxanthin-chlorophyll a/c proteins), or FCPa, become quenched, while being part of photosystem II (PSII), due to the induced pH gradient across the thylakoid membrane. This is followed by (partial) detachment of FCPa from PSII after which quenching persists. The pH gradient also causes the formation of Dtx which leads to further quenching of isolated PSII cores and some aggregated FCPa. In subsequent darkness, the pH gradient disappears but Dtx remains present and quenching partly pertains. Only in the presence of some light the system completely recovers to the unquenched state.

  18. Micro-joule pico-second range Yb3+-doped fibre laser for medical applications in acupuncture

    NASA Astrophysics Data System (ADS)

    Alvarez-Chavez, J. A.; Rivera-Manrique, S. I.; Jacques, S. L.

    2011-08-01

    The work described here is based on the optical design, simulation and on-going implementation of a pulsed (Q-switch) Yb3+-doped, 1-um diffraction-limited fibre laser with pico-second, 10 micro-Joule-range energy pulses for producing the right energy pulses which could be of benefit for patients who suffer chronic headache, photophobia, and even nausea which could is sometimes triggered by a series of factors. The specific therapeutic effect known as acupunctural analgesia is the main objective of this medium-term project. It is a simple design on which commercially available software was employed for laser cavity design. Monte Carlo technique for skin light-transport, thermal diffusion and the possible thermal de-naturalization optical study and prediction will also be included in the presentation. Full optical characterization will be included and a complete set of recent results on the laser-skin interaction and the so called moxi-bustion from the laser design will be extensively described.

  19. Absorption band III kinetics probe the picosecond heme iron motion triggered by nitric oxide binding to hemoglobin and myoglobin.

    PubMed

    Yoo, Byung-Kuk; Kruglik, Sergei G; Lamarre, Isabelle; Martin, Jean-Louis; Negrerie, Michel

    2012-04-01

    To study the ultrafast movement of the heme iron induced by nitric oxide (NO) binding to hemoglobin (Hb) and myoglobin (Mb), we probed the picosecond spectral evolution of absorption band III (∼760 nm) and vibrational modes (iron-histidine stretching, ν(4) and ν(7) in-plane modes) in time-resolved resonance Raman spectra. The time constants of band III intensity kinetics induced by NO rebinding (25 ps for hemoglobin and 40 ps for myoglobin) are larger than in Soret bands and Q-bands. Band III intensity kinetics is retarded with respect to NO rebinding to Hb and to Mb. Similarly, the ν((Fe-His)) stretching intensity kinetics are retarded with respect to the ν(4) and ν(7) heme modes and to Soret absorption. In contrast, band III spectral shift kinetics do not coincide with band III intensity kinetics but follows Soret kinetics. We concluded that, namely, the band III intensity depends on the heme iron out-of-plane position, as theoretically predicted ( Stavrov , S. S. Biopolymers 2004 , 74 , 37 - 40 ).

  20. Large optical nonlinearity of ITO nanorods for sub-picosecond all-optical modulation of the full-visible spectrum

    NASA Astrophysics Data System (ADS)

    Guo, Peijun; Schaller, Richard D.; Ocola, Leonidas E.; Diroll, Benjamin T.; Ketterson, John B.; Chang, Robert P. H.

    2016-09-01

    Nonlinear optical responses of materials play a vital role for the development of active nanophotonic and plasmonic devices. Optical nonlinearity induced by intense optical excitation of mobile electrons in metallic nanostructures can provide large-amplitude, dynamic tuning of their electromagnetic response, which is potentially useful for all-optical processing of information and dynamic beam control. Here we report on the sub-picosecond optical nonlinearity of indium tin oxide nanorod arrays (ITO-NRAs) following intraband, on-plasmon-resonance optical pumping, which enables modulation of the full-visible spectrum with large absolute change of transmission, favourable spectral tunability and beam-steering capability. Furthermore, we observe a transient response in the microsecond regime associated with slow lattice cooling, which arises from the large aspect-ratio and low thermal conductivity of ITO-NRAs. Our results demonstrate that all-optical control of light can be achieved by using heavily doped wide-bandgap semiconductors in their transparent regime with speed faster than that of noble metals.

  1. Generation of third harmonic picosecond pulses at 355 nm by sum frequency mixing in periodically poled MgSLT crystal

    NASA Astrophysics Data System (ADS)

    Kaltenbach, André; Schönau, Thomas; Lauritsen, Kristian; Tränkle, Günther; Erdmann, Rainer

    2015-02-01

    Third harmonic 355nm picosecond pulses are generated by sum frequency mixing in a periodically poled magnesium doped stoichiometric lithium tantalate (PPMgSLT) crystal. The third harmonic generation is based on the 1064nm radiation of a gain-switched distributed feedback (DFB) diode laser which is amplified by a two-stage fiber amplifier. The diode laser is freely triggerable at variable repetition rates up to 80MHz and provides optical pulses of 65 ps FWHM duration and pulse energies in the range of 5 pJ. The 355nm third harmonic generation is realized in a two-step conversion process. First, the 1064nm fundamental radiation is frequency-doubled to 532 nm, afterwards both frequencies are mixed in the PPMgSLT crystal to 355 nm. The UV-radiation shows a pulse width of 60 ps, a good beam profile and stable pulse energy over a wide range of repetition rates by proprietary pump power management. At 355nm a pulse peak power of 5.3W was achieved with 192W pulse peak power of the fundamental radiation.

  2. Laser-to-hot-electron conversion limitations in relativistic laser matter interactions due to multi-picosecond dynamics

    DOE PAGES

    Schollmeier, Marius; Sefkow, Adam B.; Geissel, Matthias; Arefiev, Alexey V.; Flippo, Kirk A.; Gaillard, Sandrine A.; Johnson, Randy P.; Kimmel, Mark W.; Offermann, Dustin T.; Rambo, Patrick K.; et al

    2015-04-20

    High-energy short-pulse lasers are pushing the limits of plasma-based particle acceleration, x-ray generation, and high-harmonic generation by creating strong electromagnetic fields at the laser focus where electrons are being accelerated to relativistic velocities. Understanding the relativistic electron dynamics is key for an accurate interpretation of measurements. We present a unified and self-consistent modeling approach in quantitative agreement with measurements and differing trends across multiple target types acquired from two separate laser systems, which differ only in their nanosecond to picosecond-scale rising edge. Insights from high-fidelity modeling of laser-plasma interaction demonstrate that the ps-scale, orders of magnitude weaker rising edge ofmore » the main pulse measurably alters target evolution and relativistic electron generation compared to idealized pulse shapes. This can lead for instance to the experimentally observed difference between 45 MeV and 75 MeV maximum energy protons for two nominally identical laser shots, due to ps-scale prepulse variations. Our results indicate that the realistic inclusion of temporal laser pulse profiles in modeling efforts is required if predictive capability and extrapolation are sought for future target and laser designs or for other relativistic laser ion acceleration schemes.« less

  3. Laser-driven phase transitions in aqueous colloidal gold nanoparticles under high pressure: picosecond pump-probe study.

    PubMed

    Hashimoto, Shuichi; Katayama, Tetsuro; Setoura, Kenji; Strasser, Michael; Uwada, Takayuki; Miyasaka, Hiroshi

    2016-02-14

    Pump-probe transient extinction spectroscopy was used to analyze 355 nm picosecond laser heating-induced phenomena in 60 nm-diameter aqueous gold nanoparticles (AuNPs) under a high pressure of 60 MPa. Kinetic spectroscopy revealed that a supercritical layer surrounding the AuNP nucleated with a lifetime of approximately 1 ns during its dynamic expansion and decay for a fluence of 19.6 mJ cm(-2). Moreover, in the post-mortem transmission electron micrographs we observed a number of fragments, a small percentage of size-reduced cores, and erupted particles among the intact particles after 60 shots, suggesting that evaporation occurred under laser illumination. The particle temperature calculation indicated that evaporation begins with a liquid droplet AuNP surrounded by a supercritical layer at temperatures below the boiling point of gold. By applying high pressure, we obtained a clear picture of the evaporation event, which was not possible at ambient pressure because bubble formation caused particle temperatures to rise uncontrollably. In this study, we shed light on the critical role of the supercritical layer formed around the AuNP under high pressure during laser-induced evaporation. PMID:26812175

  4. Picosecond Bunch length and Energy-z correlation measurements at SLAC's A-Line and End Station A

    SciTech Connect

    Molloy, Stephen; Emma, P.; Frisch, J.C.; Iverson, R.H.; Ross, M.; McCormick, D.J.; Ross, Marc C.; Walston, S.; Blackmore, V.; /Oxford U.

    2007-06-27

    We report on measurements of picosecond bunch lengths and the energy-z correlation of the bunch with a high energy electron test beam to the A-line and End Station A (ESA) facilities at SLAC. The bunch length and the energy-z correlation of the bunch are measured at the end of the linac using a synchrotron light monitor diagnostic at a high dispersion point in the A-line and a transverse RF deflecting cavity at the end of the linac. Measurements of the bunch length in ESA were made using high frequency diodes (up to 100 GHz) and pyroelectric detectors at a ceramic gap in the beamline. Modeling of the beam's longitudinal phase space through the linac and A-line to ESA is done using the 2-dimensional tracking program LiTrack, and LiTrack simulation results are compared with data. High frequency diode and pyroelectric detectors are planned to be used as part of a bunch length feedback system for the LCLS FEL at SLAC. The LCLS also plans precise bunch length and energy-z correlation measurements using transverse RF deflecting cavities.

  5. Millijoule-level picosecond mid-infrared optical parametric amplifier based on MgO-doped periodically poled lithium niobate.

    PubMed

    Xu, Hongyan; Yang, Feng; Chen, Ying; Liu, Ke; Du, Shifeng; Zong, Nan; Yang, Jing; Bo, Yong; Peng, Qinjun; Zhang, Jingyuan; Cui, Dafu; Xu, Zuyan

    2015-03-20

    A millijoule-level high pulse energy picosecond (ps) mid-infrared (MIR) optical parametric amplifier (OPA) at 3.9 μm based on large-aperture MgO-doped periodically poled lithium niobate (MgO:PPLN) crystal was demonstrated for the first time, to the best of our knowledge. The MIR OPA was pumped by a 30 ps 1064 nm Nd:YAG laser at 10 Hz and injected by an energy-adjustable near-infrared seed based on a barium boron oxide (BBO) optical parametric generator/optical parametric amplifier (OPG/OPA) with double-pass geometry. Output energy of 1.14 mJ at 3.9 μm has been obtained at pump energy of 15.2 mJ. Furthermore, the performance of MIR OPG in MgO:PPLN was also investigated for comparing with the seeded OPA.

  6. Single Event Transients Induced by Picosecond Pulsed X-Ray Absorption in III-V Heterojunction Transistors

    SciTech Connect

    Cardoza, David M; LaLumondiere, Stephen D; Tockstein, Michael A; Witczak, Steven C; Sin, Yongkun; Foran, Brendan J; Lotshaw, William T; Moss, Steven C

    2013-01-17

    We perform measurements which show that focused, picosecond pulses of x-rays can be used to generate single event transients (SET) in a GaAs heterostructure field effect transistor (HFET) and a GaN high electron mobility transistor. X-ray pulses with photon energies of 8, 10 and 12 keV from the Advanced Photon Source at Argonne National Laboratory were used to excite transients. SETs are observed when x-ray pulses are incident upon metal layers above sensitive areas on the transistors. We use focused ion beam (FIB) cross-sectioning and scanning transmission electron microscopy energy dispersive x-ray spectroscopy (STEM-EDXS) to determine the compositional structure of the devices. We present a first order analysis of energy deposition in the devices and correlate it to the transient response to make preliminary interpretations of the results. We compare the x-ray transients from the GaAs HFET with transients generated by 750 nm and 870 nm femtosecond laser pulses. We also present results on the total dose susceptibility of the GaN HEMTs.

  7. Large optical nonlinearity of ITO nanorods for sub-picosecond all-optical modulation of the full-visible spectrum

    PubMed Central

    Guo, Peijun; Schaller, Richard D.; Ocola, Leonidas E.; Diroll, Benjamin T.; Ketterson, John B.; Chang, Robert P. H.

    2016-01-01

    Nonlinear optical responses of materials play a vital role for the development of active nanophotonic and plasmonic devices. Optical nonlinearity induced by intense optical excitation of mobile electrons in metallic nanostructures can provide large-amplitude, dynamic tuning of their electromagnetic response, which is potentially useful for all-optical processing of information and dynamic beam control. Here we report on the sub-picosecond optical nonlinearity of indium tin oxide nanorod arrays (ITO-NRAs) following intraband, on-plasmon-resonance optical pumping, which enables modulation of the full-visible spectrum with large absolute change of transmission, favourable spectral tunability and beam-steering capability. Furthermore, we observe a transient response in the microsecond regime associated with slow lattice cooling, which arises from the large aspect-ratio and low thermal conductivity of ITO-NRAs. Our results demonstrate that all-optical control of light can be achieved by using heavily doped wide-bandgap semiconductors in their transparent regime with speed faster than that of noble metals. PMID:27682836

  8. Picosecond measurement of substrate-to-adsorbate energy transfer: The frustrated translation of CO/Pt(111)

    NASA Astrophysics Data System (ADS)

    Germer, T. A.; Stephenson, J. C.; Heilweil, E. J.; Cavanagh, R. R.

    1993-06-01

    The transient infrared response of CO/Pt(111) following picosecond visible excitation is reported. A spectrally broad decrease in reflectivity correlates with heating of the Pt lattice, and an observed shift in the CO(v=0→1) transition is interpreted as heating of the 60 cm-1 in-plane frustrated translational mode. A phenomenological three temperature model that assumes the adsorbate vibrational temperature Tads exclusively couples to either the electronic temperature Te (with a time constant τe) or to the lattice temperature Tlat (with a time constant τlat) describes the temporal response of the adsorbate vibrations. The lattice phonon temperature Tlat(z,t) and measured temperature dependence of the optical constants predict the observed spectrally broad reflectivity change. Density matrix methods model the infrared response of the transiently heated molecule. Limits of τe=2±1 ps or τlat<1 ps are established by comparison of predicted spectra and the data.

  9. Picosecond dynamics of reactions in the liquid phase: studies of iodine photodissociation and development of new laser techniques

    SciTech Connect

    Berg, M.A.

    1985-09-01

    Iodine photodissociation and recombination was studied as a model for processes common to chemical reaction in the liquid phase. Picosecond transient absorption measurements from 1000 to 295 nm were used to monitor the dynamics in a variety of solvents. Most of the atoms which undergo geminate recombination were found to do so in less than or equal to 15 ps, in agreement with the results of existing molecular dynamics simulations. Vibrational relaxation times vary from approx.15 ps near the middle of the ground state well to approx.150 ps for complete relaxation to v = 0. The prediction of strong resonant vibrational energy transfer to chlorinated methane solvents was not supported, but some evidence for this mechanism was found for alkane solvents. Current theory is unable to explain the large variation (65 to 2700 ps) of the excited A'-state lifetime in various solvents. The 10-Hz amplified, synchronously-pumped dye laser which was used in these studies is described and characterized. SERS (Stimulated Electronic Raman Scattering) and difference frequency mixing were used in the generation of the infrared and far-infrared, respectively. 54 refs., 38 figs., 3 tabs. (WRF)

  10. Ultrafast electronic processes in CVD diamonds and GaAs: picosecond photoconductivity and high-voltage switching

    NASA Astrophysics Data System (ADS)

    Garnov, Serge V.; Klimentov, Sergei M.; Pimenov, Sergej M.; Konov, Vitali I.; Kononenko, V. V.; Tsarkova, Olga G.; Gloor, S.; Luethy, Willy A.; Weber, Heinz P.

    1998-04-01

    An 'electrode-free' transient photoconductivity technique was applied to investigate excitation, drift and recombination of non-equilibrium free charge carriers in high quality synthetic polycrystalline diamond films, natural diamond crystals and low-conductive GaAs with a time resolution better than 200 ps. Picosecond laser pulses of UV, visible and Ir spectral range were applied for single- photon excitation of free charge carriers with initial concentrations of (1012-1019) cm-3. Dependences of amplitude and duration of photocurrent on laser intensity/carrier density were measured. Lifetimes, drift mobilities and carrier photoexcitation cross sections as a function of electron concentration were estimated. Computer calculations of conduction and displacement currents, induced space charge and electric field spatial distribution have been performed for the real experimental conditions. Based on the obtained results, high voltage diamond-based switches triggered by ultra-short laser pulses have been designed. Special attention was paid to metal- dielectric interface investigation and ohmic contacts formation. The developed diamond-base module permitted to switch electric fields as high as 100 kV/cm within a time interval less than 200 ps. The amplitude of photocurrent reached 100 A and the electrical resistance reduce by a factor of 1010.

  11. Picosecond CARS measurements of nitrogen rotational/translational and vibrational temperature in a nonequilibrium Mach 5 flow

    NASA Astrophysics Data System (ADS)

    Montello, A.; Nishihara, M.; Rich, J. W.; Adamovich, I. V.; Lempert, W. R.

    2013-01-01

    Picosecond Unstable-resonator Spatially Enhanced Detection Coherent Anti-Stokes Raman Scattering (USED-CARS) is used for the measurement of nitrogen Q-branch (Δ J = 0) spectra in the subsonic plenum and supersonic flow of a highly nonequilibrium Mach 5 wind tunnel. Spectra are processed to infer rotational/translational ( T rot) and first-level vibrational ( T vib) temperatures in the 200-370 torr plenum simultaneously. Operation of the nominally high reduced electric field ( E/ n peak ~ 500 Td), nsec pulsed discharge alone results in fairly significant vibrational loading, T vib ~ 720 K/ T rot ~ 380 K; addition of an orthogonal low E/ n (~10 Td) DC sustainer discharge produces substantial vibrational loading, T vib ~ 2,000 K/ T rot ~ 450 K. Effects of injection of CO2, NO, and H2 downstream of the pulser-sustainer discharge are examined, which result in vibrational relaxation accompanied by simultaneous gas heating, T vib ~ 800-1,000 K/ T rot ~ 600 K. CARSk measurements within very low-density flows in the Mach 5 expansion nozzle are also performed, with T vib measured in both the supersonic free-stream and downstream of a bow shock created by a 5-mm-diameter cylindrical test object in the Mach 5 flow. Measurements within 300 μm of the cylinder leading edge show that for pure N2, or N2 with 0.25 torr CO2 injection, no vibrational relaxation is observed behind the bow shock.

  12. Picosecond CARS measurements of nitrogen rotational/translational and vibrational temperature in a nonequilibrium Mach 5 flow

    NASA Astrophysics Data System (ADS)

    Montello, A.; Nishihara, M.; Rich, J. W.; Adamovich, I. V.; Lempert, W. R.

    2012-12-01

    Picosecond Unstable-resonator Spatially Enhanced Detection Coherent Anti-Stokes Raman Scattering (USED-CARS) is used for the measurement of nitrogen Q-branch (Δ J = 0) spectra in the subsonic plenum and supersonic flow of a highly nonequilibrium Mach 5 wind tunnel. Spectra are processed to infer rotational/translational ( T rot) and first-level vibrational ( T vib) temperatures in the 200-370 torr plenum simultaneously. Operation of the nominally high reduced electric field ( E/ n peak ~ 500 Td), nsec pulsed discharge alone results in fairly significant vibrational loading, T vib ~ 720 K/ T rot ~ 380 K; addition of an orthogonal low E/ n (~10 Td) DC sustainer discharge produces substantial vibrational loading, T vib ~ 2,000 K/ T rot ~ 450 K. Effects of injection of CO2, NO, and H2 downstream of the pulser-sustainer discharge are examined, which result in vibrational relaxation accompanied by simultaneous gas heating, T vib ~ 800-1,000 K/ T rot ~ 600 K. CARSk measurements within very low-density flows in the Mach 5 expansion nozzle are also performed, with T vib measured in both the supersonic free-stream and downstream of a bow shock created by a 5-mm-diameter cylindrical test object in the Mach 5 flow. Measurements within 300 μm of the cylinder leading edge show that for pure N2, or N2 with 0.25 torr CO2 injection, no vibrational relaxation is observed behind the bow shock.

  13. Fabrication of superhydrophilic or superhydrophobic self-cleaning metal surfaces using picosecond laser pulses and chemical fluorination

    NASA Astrophysics Data System (ADS)

    Zheng, Buxiang; Jiang, Gedong; Wang, Wenjun; Mei, Xuesong

    2016-05-01

    Bioinspired superhydrophilic/phobic self-cleaning surfaces have recently drawn a lot of interest in both fundamental and applied research. A hybrid method to produce the self-cleaning property of micro/nanostructured surface using ultra-fast laser pulses followed by chemical fluorination is proposed. The typical micro/nanocomposite structures that form from microporous arrays and microgroove groups have been processed by picosecond laser on titanium alloy surface. The surface hydrophilic/phobic and self-cleaning properties of micro/nanostructures before and after fluorination with fluoroalkyl-silane were investigated using surface contact angle measurements. The results indicate that surface properties change from hydrophilic to hydrophobic after fluorination, and the micro/nanostructured surface with increased roughness contributes to the improvement of surface hydrophobicity. The micro/nanomodification can make the original hydrophilic titanium alloy surface more hydrophilic or superhydrophilic. It also can make an originally hydrophobic fluorinated titanium alloy surface more hydrophobic or superhydrophobic. The produced micro/nanostructured titanium alloy surfaces show excellent self-cleaning properties regardless of the fluorination treatment, although the fluorinated surfaces have slightly better self-cleaning properties. It is found that surface treatment using ultra-fast laser pulses and subsequent chemical fluorination is an effective way to manipulate surface wettability and obtain self-cleaning properties.

  14. Single water solvation dynamics in the 4-aminobenzonitrile-water cluster cation revealed by picosecond time-resolved infrared spectroscopy.

    PubMed

    Miyazaki, Mitsuhiko; Nakamura, Takashi; Wohlgemuth, Matthias; Mitrić, Roland; Dopfer, Otto; Fujii, Masaaki

    2015-11-28

    The dynamics of a solvent is important for many chemical and biological processes. Here, the migration dynamics of a single water molecule is triggered by the photoionization of the 4-aminobenzonitrile-water (4ABN-W) cluster and monitored in real time by picosecond time-resolved IR (ps TRIR) spectroscopy. In the neutral cluster, water is hydrogen-bonded to the CN group. When this CN-bound cluster is selectively ionized with an excess energy of 1238 cm(-1), water migrates with a lifetime of τ = 17 ps from the CN to the NH2 group, forming a more stable 4ABN(+)-W(NH) isomer with a yield of unity. By decreasing the ionization excess energy, the yield of the CN → NH2 reaction is reduced. The relatively slow migration in comparison to the ionization-induced solvent dynamics in the related acetanilide-water cluster cation (τ = 5 ps) is discussed in terms of the internal excess energy after photoionization and the shape of the potential energy surface. PMID:26490096

  15. Optical limiting and dynamical two-photon absorption of porphyrin with ruthenium outlying complexes for a picosecond pulse train

    NASA Astrophysics Data System (ADS)

    Zhang, Yu-Jin; Sun, Yu-Ping; Wang, Chuan-Kui

    2016-01-01

    Propagation and nonlinear optical absorption of a picosecond pulse train in strong reverse saturable absorption (RSA) materials (free-based tetrapyridyl porphyrin H2TPyP with ruthenium (Ru) outlying complexes) are investigated by solving coupled rate equations and field intensity equation. Influence of outlying Ru groups on optical limiting (OL) properties is studied. Propagation of the front subpulses is mainly affected by linear transition between the ground state and the first excited singlet state, while intensity of the latter subpulses is attenuated by the excited state absorption (ESA). These two different absorption mechanisms result in asymmetric distribution of the transmitted pulse. It is shown that effective population transfer time from the ground state to the lowest triplet state and RSA play important roles in the OL performance and pulse shaping. Moreover, our results indicate that the porphyrins studied are ideal optical limiters because of their large ESA cross section and long lifetime of the lowest triplet state. Compounds with the presence of Ru group possess preferable power limiting ability. Ligand group attached to Ru also influences the nonlinear optical absorption of compounds. Special attention has been paid on dynamical two-photon absorption (TPA) cross section which depends crucially on the duration of the subpulse as well as time interval between subpulses. The present study provides a way to modulate nonlinear optical absorption properties of the medium by changing parameters of the pulse train.

  16. Picosecond planar laser-induced fluorescence measurements of OH A 2 ( 2) lifetime and energy transfer in atmospheric pressure flames

    NASA Astrophysics Data System (ADS)

    Bormann, Frank C.; Nielsen, Tim; Burrows, Michael; Andresen, Peter

    1997-08-01

    A picosecond, excimer-Raman laser (268 nm, 400 ps FWHM) was used for laser sheet excitation of OH in the (2, 0) band. The fluorescence was detected with a fast-gated, intensified camera (400-ps gate width). The effective collisional lifetime of the spectrally integrated fluorescence was measured in two dimensions by shifting the intensifier gate across the decay curve. The average lifetime is 2.0 ns for a stoichiometric methane air flame with spatial variations of 10 . Shorter collisional lifetimes were measured for rich flame conditions that are due to a higher number density of the quenchers. Vibrational energy transfer (VET) was observed in premixed methane air and methane oxygen flames by putting the fast-gated camera behind a spectrometer. The spectrum of the methane air flame shows strong VET in contrast with the methane oxygen flame. This is because N 2 is a weak electronic quencher but a strong VET agent. By fitting the measured time dependence of the different vibrational populations ( 2, 1, 0) to a four-level model, rate constants for quenching and VET were determined. For the lower states ( 0, 1) our results are in good agreement with literature values. For a prediction of a spectrally integrated, collisional lifetime in a known collisional environment it is important to consider not only the quenching but also the amount of energy transfer in the excited state as well as the spectral detection sensitivity.

  17. Laser-to-hot-electron conversion limitations in relativistic laser matter interactions due to multi-picosecond dynamics

    SciTech Connect

    Schollmeier, Marius; Sefkow, Adam B.; Geissel, Matthias; Arefiev, Alexey V.; Flippo, Kirk A.; Gaillard, Sandrine A.; Johnson, Randy P.; Kimmel, Mark W.; Offermann, Dustin T.; Rambo, Patrick K.; Schwarz, Jens; Shimada, Tom

    2015-04-20

    High-energy short-pulse lasers are pushing the limits of plasma-based particle acceleration, x-ray generation, and high-harmonic generation by creating strong electromagnetic fields at the laser focus where electrons are being accelerated to relativistic velocities. Understanding the relativistic electron dynamics is key for an accurate interpretation of measurements. We present a unified and self-consistent modeling approach in quantitative agreement with measurements and differing trends across multiple target types acquired from two separate laser systems, which differ only in their nanosecond to picosecond-scale rising edge. Insights from high-fidelity modeling of laser-plasma interaction demonstrate that the ps-scale, orders of magnitude weaker rising edge of the main pulse measurably alters target evolution and relativistic electron generation compared to idealized pulse shapes. This can lead for instance to the experimentally observed difference between 45 MeV and 75 MeV maximum energy protons for two nominally identical laser shots, due to ps-scale prepulse variations. Our results indicate that the realistic inclusion of temporal laser pulse profiles in modeling efforts is required if predictive capability and extrapolation are sought for future target and laser designs or for other relativistic laser ion acceleration schemes.

  18. Fiber-laser-based, green-pumped, picosecond optical parametric oscillator using fan-out grating PPKTP.

    PubMed

    Chaitanya Kumar, S; Parsa, S; Ebrahim-Zadeh, M

    2016-01-01

    We report a stable, Yb-fiber-laser-based, green-pumped, picosecond optical parametric oscillator (OPO) for the near-infrared based on periodically poled potassium titanyl phosphate (PPKTP) nonlinear crystal, using fan-out grating design and operating near room temperature. The OPO is continuously tunable across 726-955 nm in the signal and 1201-1998 nm in the idler, resulting in a total signal plus idler wavelength coverage of 1026 nm by grating tuning at a fixed temperature. The device generates up to 580 mW of average power in the signal at 765 nm and 300 mW in the idler at 1338 nm, with an overall extraction efficiency of up to 52% and a pump depletion >76%. The extracted signal at 765 nm and idler at 1746 nm exhibit excellent passive power stability better than 0.5% and 0.8% rms, respectively, over 1 h with good beam quality in TEM00 mode profile. The output signal pulses have a Gaussian temporal duration of 13.2 ps, with a FWHM spectral bandwidth of 3.4 nm at 79.5 MHz repetition rate. Power scaling limitations of the OPO due to the material properties of PPKTP are studied.

  19. Fiber-laser-based, green-pumped, picosecond optical parametric oscillator using fan-out grating PPKTP.

    PubMed

    Chaitanya Kumar, S; Parsa, S; Ebrahim-Zadeh, M

    2016-01-01

    We report a stable, Yb-fiber-laser-based, green-pumped, picosecond optical parametric oscillator (OPO) for the near-infrared based on periodically poled potassium titanyl phosphate (PPKTP) nonlinear crystal, using fan-out grating design and operating near room temperature. The OPO is continuously tunable across 726-955 nm in the signal and 1201-1998 nm in the idler, resulting in a total signal plus idler wavelength coverage of 1026 nm by grating tuning at a fixed temperature. The device generates up to 580 mW of average power in the signal at 765 nm and 300 mW in the idler at 1338 nm, with an overall extraction efficiency of up to 52% and a pump depletion >76%. The extracted signal at 765 nm and idler at 1746 nm exhibit excellent passive power stability better than 0.5% and 0.8% rms, respectively, over 1 h with good beam quality in TEM00 mode profile. The output signal pulses have a Gaussian temporal duration of 13.2 ps, with a FWHM spectral bandwidth of 3.4 nm at 79.5 MHz repetition rate. Power scaling limitations of the OPO due to the material properties of PPKTP are studied. PMID:26696156

  20. Picosecond-to-nanosecond dynamics of plasmonic nanobubbles from pump-probe spectral measurements of aqueous colloidal gold nanoparticles.

    PubMed

    Katayama, Tetsuro; Setoura, Kenji; Werner, Daniel; Miyasaka, Hiroshi; Hashimoto, Shuichi

    2014-08-12

    The photothermal generation of nanoscale vapor bubbles around noble metal nanoparticles is of significant interest, not only in understanding the underlying mechanisms responsible for photothermal effects, but also to optimize photothermal effects in applications such as photothermal cancer therapies. Here, we describe the dynamics in the 400-900 nm regime of the formation and evolution of nanobubbles around colloidal gold nanoparticles using picosecond pump-probe optical measurements. From excitations of 20-150 nm colloidal gold nanoparticles with a 355 nm, 15 ps laser, time-dependent optical extinction signals corresponding to nanobubble formation were recorded. The extinction spectra associated with nanobubbles of different diameters were simulated by considering a concentric spherical core-shell model within the Mie theory framework. In the simulations, we assumed an increase in particle temperature. From temporal changes in the experimental data of transient extinctions, we estimated the temporal evolution of the nanobubble diameter. Corrections to bubble-free temperature effects on the transient extinction decays were applied in these experiments by suppressing bubble formation using pressures as high as 60 MPa. The results of this study suggest that the nanobubbles generated around a 60 nm-diameter gold nanoparticle using a fluence of 5.2 mJ cm(-2) had a maximum diameter of 260 ± 40 nm, and a lifetime of approximately 10 ns. The combination of fast transient extinction spectral measurements and spectral simulations provides insights into plasmonic nanobubble dynamics.